
-mtcro
~------1 C 0 MP UTE R ~-------______;

bCIDkS

Larry G. Wintermeyer

Applesoft BASIC Toolbox

Applesoft
BASIC Toolbox
Larry G. Wintermeyer

.,,,•.,,, Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California
London • Amsterdam • Don Mills, Ontario • Sydney

Library of Congress Cataloging in Publication Data

Wintermeyer, Larry G.
Applesoft Basic toolbox.

(Addison-Wesley microcomputer books popular series)
Includes indexes.
1. Apple computer-Programming. 2. Basic (Computer

program language) I. Title. II. Series.
QA76.8.A66W56 1983 001.64'24 82-22710
ISBN 0-201-14775-0

Apple, Apple II, Apple Ile, and Applesoft BASIC are trademarks of Apple Computer, Inc.

Copyright© 1984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-14775-0
ABCDEFGHIJ-HA-8987654

Contents

Part I Using Applesoft BASIC 1

1 Getting Started 3
A Note on Redundance 4
Apple Ile versus Apple II + 5

2 DOS Control Commands 6
The INIT Command 8
Making Backup Copies 11
The SAVE Command 13
The CATALOG Command 14
The LOAD Command 16
The RUN Command 18
The RENAME Command 19
The LOCK Command 20
The UNLOCK Command 22
The DELETE Command 23
Other DOS Commands 24

3 The HOME Instruction 26

4 The NEW Instruction 30

5 The LIST Instruction 35
LIST: Format 1 35
LIST: Format 2 38

6 The DEL Instruction 42

7 The REM Instruction 45

8 The SPEED Instruction 49

9 Assigning Variable Names 53

v

vi I Contents

10 The INPUT Instruction 70
INPUT: Format 1 70
INPUT: Format 2 70

11 The PRINT Instruction 80

12 The GOTO Instruction 93

13 The ON GOTO Instruction 97

14 The END Instruction 101

15 The Screen Control Instructions 103
Methods of Clearing a Line 111

16 The GOSUB I RETURN Instructions 113

17 The ON GOSUB Instruction 121

18 The POP Instruction 125

19 The LET Instruction 127
Basic Numeric Operations in Applesoft 133
Arithmetic Functions in Applesoft 139
String Functions in Applesoft 151

20 The IF Instruction 170

21 The FOR I NEXT Instruction 179

22

Nested FOR I NEXT Instructions 183

The Screen Editing Functions 186
Editing Lines with Multiple Instructions
Summary of Edit Keys and POKE Functions

23 The GET Instruction 197

194
196

Using GET to Accept a Yes/No Response 200

24 The DIM Instruction 202

25 The READ I DATA I RESTORE Instructions 210

26 The TRACE I NOTRACE Instructions 216

27 The PEEK Instruction 219
Some Useful PEEK Addresses 220

Contents I ~ii

28 The POKE Instruction 221
Some Useful POKE Addresses 223

29 The ONERR GOTO Instruction 225

30 The STOP I CONTinue Instructions 228

31 The FRE(O) Instruction 233

32 Instructions Relating to Machine Language Routines 241
The CALL Instruction 241
The USR(Variable) Instruction 242
The LOMEM Instruction 243
The HIMEM Instruction 243

33 Other Applesoft Instructions 244
The DEF FN Instruction 244
The CLEAR Instruction 245
The TEXT Instruction 246
The POS(O) Instruction 246
The FP Instruction 246
The PR# Instruction 247
The IN# Instruction 247
Low-Resolution Graphics Instructions 248
High-Resolution Graphics Instructions 249
Game Controls 250
Magnetic Tape 250

Part II Creating and Using Disk Files 251

1 Information Storage on Disks 253

2 Introduction to DOS Disk Instructions 257
The MON I NOMON Instructions 260
The OPEN Instruction 261
The APPEND Instruction 266
The WRITE Instruction 271
The READ Instruction 275
The CLOSE Instruction 280
The ONERR GOT Instruction (with Sequential Files) 280
The VERIFY Instruction 282
The MAXFILES Instruction 283

viii I Contents

3 The GET Subroutine 284
Why Use the GET Subroutine? 284
Instructions for Using the GET Subroutine 285
The GET Subroutine Listing 288

4 Serial and Sequential Disk Files 295
A General Introduction to Serial and Sequential Files 296
Problem Specifications 301
The Sequential File CREATE Program 306
The Sequential File HELLO Program 309
The Sequential File APPEND Program 316
The Sequential File UPDATE Program 334
The Sequential File LIST Program 358
The Sequential File SEARCH Program 364

5 Random Disk Files 378
A General Introduction to Random Files 379
Problem Specifications 384
The Random File CREATE Program 391
The Random File HELLO Program 395
The Random File UPDATE Program 398
The Random File LIST Program 417

6 Index Disk Files 437
A General Introduction to Index Files 438
Problem Specifications 445
The Index File CREATE Index Program 452
The Index File CREATE Data Program 455
The Index File HELLO Program 457
The Index File UPDATE Program 459
The Index File LIST Program 485
The Index File SEARCH Program 498

Appendix ASCII Character, Binary, and Decimal Table 508

Index 511

section 1 Using Applesoft BASIC

1. Getting Started

This book is intended for use by either the beginning or the experienced programmer.
Either person should find the material helpful in writing Applesoft programs.

For the beginning programmer the first half of the book includes detailed exam­
ples of each of the Applesoft instructions. Each instruction is explained using the
format of

1. Instruction name
2. Instruction format
3. Examples of instruction code
4. Purpose of the instruction
5. Rules for use
6. Illustration of the rules (examples)

The instructions are presented in a sequence in which understanding of each new
instruction is based on an understanding of the instructions already presented.

It is important for the beginning programmer to spend time going through the
programs included with each instruction. The programs show more than just how
to code each instruction. They show how the instruction is used in conjunction with
other related instructions. They point out good and bad programming techniques.
They provide a visual reenforcement by seeing the instructions in action.

The amount of time spent by the beginning programmer on the first half of the
text will determine how easily the disk examples in the last half of the text will be
understood.

Although an explanation is included with each program, the beginner should
study the program code to obtain a better understanding of each instruction and
coding style used. A book on programming cannot be read as a normal book would
be read. The examples must be read and reviewed until the reader has a thorough
understanding of what each instruction does.

The experienced programmer who knows BASIC but does not know Applesoft
BASIC should go through the first half of the book looking specifically at the coding
rules. By scanning the rules the experienced programmer will be able to identify
differences between Applesoft and other BASIC languages.

Even the person who already knows Applesoft may want to go through the
programs to check out the coding style of another programmer. The quickest way
to learn programming is to study someone else's code and to extract the best from
the examples of others.

3

4 / Applesoft BASIC Toolbox

For either the beginning or the experienced programmer, the first half of the
book includes good examples of how each instruction is used, and the programs
provide strong reenforcement of the rules for coding each instruction.

The second half of the book covers the instructions related to using various
types of disk files. A simple name and address system is used to illustrate the coding
logic for three access methods. Programs related to working with sequential files,
random files, and index files are listed and explained.

The disk programs illustrate the logic for creating disk files, updating disk files,
and inquiry/listing operations.

You may be overwhelmed by the size of some of these programs. But if each
program is studied in small sections (called modules or routines), you will be sur­
prised at how easy they are to understand. The first half of the book will come in
handy as a reference guide as you study the disk programs. You may want to flow­
chart or draw a diagram tracing the logic of the more difficult parts of the disk
examples.

The disk programs are intended to serve as models from which you can copy
and build other disk oriented programs. The logic for these programs changes very
little from application to application. The screen design, names of the variables,
and amount of information processed vary, but the basic program structure remains
the same.

Again, the purpose of the example disk programs is to serve as a model from
which you may build your own program. Use the examples when writing disk
programs which create, update, and work with disk files.

A Note on Redundance

The random example contains some redundant information which was presented in
the sequential example, and the index example contains some redundant information
from the random example. The redundance is intentional to allow each chapter to
be used individually and to provide reenforcement to newer programmers.

If the narrative sounds too redundant and you feel you already have a complete
understanding of the topic, skim the material until new information is encountered.

Getting Started I 5

APPLE Ile Versus APPLE II+

The programs were written on the APPLE Ile but will run on either machine. To
keep the programs compatible with the APPLE II+ none of the programs use lower
case letters or use screens wider than 40 columns.

Both versions of the APPLE have a CONTROL key located at the left of the
keyboard. On the APPLE Ile the word is spelled out, whereas on the APPLE II+
the word is abbreviated to CTRL. This book uses the complete word as it appears
on the APPLE Ile.

2.

6

DOS Control Commands

There are nine APPLE disk control commands with which you should be familiar.

These commands are

1. INITialize
2. SAVE
3. CATALOG
4. LOAD
5. RUN
6. RENAME
7. LOCK
8. UNLOCK
9. DELETE

There are several more DOS (Disk Operating System) commands which are
used in special situations. The MONitor, NOMONitor, and MAXFILES commands
are covered in the second half of the book along with the disk file examples. The
commands EXEC , BSAVE , BLOAD, and BRUN are not covered in detail. They are
explained briefly at the end of this chapter under the topic, Other DOS Commands.
See the APPLE DOS Manual for greater detail.

With the exception of the MONitor, NOMONitor, and MAXFILES commands,
each of the DOS commands has three optional parameters. In other words, there
are three units of information which you may code depending on your needs. The
parameters are separated by commas and follow the keywords SAVE , CATALOG,
LOAD, RUN , RENAME , LOCK, UNLOCK, and DELETE.

The three optional parameters provide information on

1. Which slot the disk control card is in
2. Which of the two drives connected to the disk control card you want to use
3. The volume number (identification number) of the diskette you want to work

with

Slot Number The APPLE has eight slots in which electric components may be connected to attach
external devices such as disks, printers, monitors, data communication equipment,
etc . Think of each slot as an electric wall outlet into which you can plug a computer

DOS Control Commands / 7

device . The disk control card is placed in one of these slots and can control up to
two disk drives. This book does not use the slot number option for the DOS com­
mands .

If you have only one or two disk drives , the computer keeps track of which
slot the disk control card is in.

If you have more than two disk drives attached to your computer, see the APPLE
DOS Manual for information on the use of the slot parameter.

Drive Number Each disk control card used with the APPLE computer can control two disk drives.
If the system you are using has only one disk drive , then the computer keeps track
of everything for you. Those of you who have more than one disk drive may tell
the computer which of the two drives you wish to use by entering 01 or 02 following
the disk commands. Make sure each of your disk drives is physically marked DRIVE
1 (01) or DRIVE 2 (02) so you can keep track of which label to use.

When you omit the 01 or 02 following a disk command the computer assumes
you want to work with the last disk used. For example,

SAVE PROGRAM NAME

saves the program on the last disk used

SAVE PROGRAM NAME,02

saves the program on disk drive 2 no matter which disk drive was previously used.

If you want to use a specific drive and you are not sure which of the two drives
was used last, code a 01 or 02 to indicate which drive is to be accessed. It is better
to be safe than sorry.

The terms diskette, disk, and floppy disk are all synonyms . The term diskette
or floppy disk is normally shortened to disk.

Volume Number Each disk has an identification number, which may range from 0 to 254 . The volume
number acts as a security measure to aid you in protecting information on your disk.
The volume number is not required when working with the disk, but if you have
only one drive and are switching disks in and out of that drive, you may want to get
into the habit of using the volume number to make sure the computer is addressing
the correct disk .

When the volume number is not given or a value of 0 is used , the computer
carries out the action you have requested on the disk without checking the label .

SAVE PROGRAM NAME
SAVE PROGRAM NAME,VOOO

8 / Applesoft BASIC Toolbox

If the volume number is used, the number following the V must match the
volume number of the disk in the drive or the computer gives you a NO MATCH
error message and cancels the action you have requested.

SAVE PROGRAM NAME,V001

The slot number, drive number, and volume number are all optional parameters .
When the optional parameters are used , they may occur in any sequence, but each
number must be preceded by either an S for slot, D for drive, or V for volume. Do
not use the slot option unless you have more than two drives and you know where
the disk control cards are connected. If you give the computer a slot number or drive
number that does not exist, it tries to use the nonexistent position, and the computer
system locks up!

Now that I have you completely confused and afraid to use the instructions ,
read the next few pages and see how easy the instructions are to use.

The INIT Command

Command INIT program name,Snumber,Dnumber,Vnumber
It is important to remember that this command should not be used with any

disk which contains programs or files you want to keep.

Example INIT HELLO,D1,V001

Purpose

Rules for Use

Illustration
of the Rules

Initialize the disk in drive l with a start up program named HELLO and a volume
number of 001.

The INIT command is used to format a new disk so it may be used with APPLE
DOS .

1. The program name parameter of the INIT command is required.
2. If no volume number is specified, a default value of 254 is used .
3. The drive number is optional but should be included if the system you are using

has more than one disk drive.
4. This command reformats the disk and destroys any data which is on the disk.

When you buy a blank disk you must use the INIT command to format the disk so
it is compatible with APPLE's DOS . Since this command destroys all information
on the disk , DO NOT USE IT on any disk which contains data you wish to keep.

DOS Control Commands I 9

Diskettes must be initialized with a start-up program. As an APPLE standard
this program is normally called HELLO. The program can serve simply to identify
the disk or may be the drive program for a turnkey system.

A turnke s stem is a computer system which is designed so all the user has
to do is insert a disk into drive l , turn the computer on, and follow the directions .

The drive program or control program of a turnkey system determines the
sequence in which other programs within the system are executed.

Whenever the APPLE is turned on, the computer automatically executes the
start up program from the disk located in drive 1. The process of executing the start
up program from drive 1 is called booting. Use the following procedure to initialize
a disk and create a HELLO program.

The following example uses only a very simple start up program which displays
the disk name and volume number. In the chapter on sequential disk operations , an
example is provided of a more involved HELLO program.

1. Insert the blank disk into the drive you are going to use . If your system has
more than one drive , open the doors on all the other drives. This eliminates
the chance of destroying a good diskette.

2. Use the CATALOG command to ensure that the disk is actually blank. Key in
the CATALOG command as shown below and press RETURN. The disk will
whirl and make a loud noise, then the message 1/0 ERROR (Input/Output Error)
will be displayed. If you don't receive the 1/0 error but get a listing of the disk
catalog, then check to make sure you want to destroy this disk and lose all the
programs and files which are currently on it. Enter

CATALOG,01 < RETURN >

Substitute 02 for 01 if you are using the second disk drive .
3. If you are sure the disk is the one you wish to initialize, continue; otherwise

take out the disk and start over.
4. Key in the following HELLO program.

NEW
HOME
1000 REMHELLO PROGRAM
1010 HOME
1020 PRINT "** WORK DISK F'OR SAMPLE PROGRAMS **"
1030 PRINT II

1040 END
VOLUME 001"

You can change the disk title on line 1020 and the volume number on line 1030
to any message you would like.

5. Now are you ready? Enter

10 / Applesoft BASIC Toolbox

INIT HELLO,V001,Dnumber

Now press RETURN and wait for about 30 seconds until the disk stops spinning
and the red light on the disk goes off.

6. When the disk stops and the red light goes off, enter

CATALOG < RETURN >

You will get a catalog listing of volume number 001 as shown in the following
display:

DISK VOLUME 001

A 002 HELLO

The disk is now ready to store programs or data files.

To test the HELLO program, execute the following steps:

1. Place the newly initialized disk in drive 1.
2. Turn the computer off and then back on or enter

PR#6 < RETURN >

Entering PR#6 has the same effect as turning the computer off and then back
on.

Unless the APPLE computer you are working with is one of the older models,
the disk will whirl and the HELLO program will run .

After the HELLO program has executed, the screen will appear as shown in the
following display:

** WORK DISK FOR SAMPLE PROGRAMS * *
VOLUME 001

DOS Control Commands / 11

Making Backup Copies

Rules to smile by:

1. Always keep a backup copy of your programs and data files.
2. Temporary backups may be kept on the same diskette.
3. Permanent backups should be kept on a separate disk and in a physical

location separate from the original disk.

One of the first lessons you will learn is to always keep a backup copy of your
work. Sooner or later you will experience the frustration of losing a file or program
because of one of the following:

1. After spending time writing or changing a program, you forget to SAVE the
program before turning off the computer.

2. While you are keying in a large program, power to the computer is lost, and
you did not periodically SAVE your work.

3. You have been working on several programs, and without thinking (or checking)
which program is currently in memory, you SAVE the program. Later you
discover you SAVEd the program in memory under the same name which was
used to SAVE a previous program. The earlier program is destroyed, and unless
you have a backup copy you must rekey the old program. If you do not have a
printed copy, you must rethink and recode the logic.

4. You have made some minor changes to one of your programs which works with
a disk file. Since the changes were minor, you didn't test the program com­
pletely. Later you find that because of a program error, the data on the disk file
you were using has been destroyed. If you do not have a backup copy of the
data file, you must now spend hours keying in the data to recreate the file.

5. Your disk gets destroyed by spilled coffee, stray magnets, folding and mutila­
tion, etc.

6. There are many other ways to lose programs and files. You will probably find
some of your own unique methods. Please keep a backup copy of your work.

Creating Periodic Backup Copies

While working on a new program or making major changes to an old program,
SAVE the program periodically, but use a new name each time. After you are done
you can go back and delete the older versions of the program. In the example that
follows the V stands for version and is followed by a number indicating the most
recent version.

12 I Applesoft BASIC Toolbox

Example SAVE program name V1
SAVE program name V2
SAVE program name V3

then 30 to 40 lines later
then 30 to 40 lines later

How to Make a Backup Copy of a Program

Making a backup copy of a program is easy. First, use the LOAD command to copy
the program from the disk to the computer's memory. Second, use the SAVE com­
mand to transfer the program from memory to the new disk. This process works
only for Integer BASIC and Applesoft BASIC programs. Text files and binary files
cannot be copied using this method.

When saving the backup copy use the same program name but add the word
BACKUP or COPY2 to it.

For single disk systems:

1. LOAD program name
2. Take out the original disk and replace it with the backup disk
3. SAVE program name BACKUP

For two disk systems:

1. LOAD program name,D1
2. SAVE program name BACKUP,D2

Making Backup Copies of Data Files or Large Numbers of Programs

If you want to make a copy of a data file ·or what APPLE calls a text file) , the
system disk, which comes with the APPLE computer, contains a good copy program.
The FID program (Fiie Developer) can copy any type of file (Text, Applesoft BASIC,
Integer BASIC, Binary) individually or as a group from one disk to another. If you
have a copy of the system disk and APPLE DOS Manual , read the section in the
manual on how to use the FID program. If you do not have a copy of the program
or manual, find someone who does, and make it a point to learn how to use the FID
program.

Making a Backup Copy of an Entire Diskette

If you want to make a copy of an entire disk , APPLE has a utility program named
COPY A which will do the job . The term utility program refers to a program normally
provided by the computer manufacturer which serves the common processing needs
of persons using the computer. The COPYA program is one of the main utility
programs you should know how to use. If you have a copy of the system disk and
APPLE DOS Manual, use this program whenever you want to create a complete
backup of a disk.

DOS Control Commands I 13

The SAVE Command

Command SAVE program name,Snumber,Dnumber,Vnumber

Example SAVE PAYROLL PROGRAM,D1,V001
Saves the program on disk volume 1, located in drive 1, under the name

PAYROLL PROGRAM.

Purpose The SAVE command is used to copy the program currently in memory to a disk and
assign it a name.

Rules for Use 1. The SAVE command must be followed by the name you wish to assign to the
program currently in memory.

2. The program name may be from 1 to 30 characters long. It must start with an
alphabetic character. If the name is not unique, that is, if you use a name which
already exists on the disk, then the old program is deleted and the new program
stored under that name.

3. The slot, drive, and volume parameters following the keyword SAVE are optional
and may occur in any sequence. If the optional parameters are used, each
number must be preceded by either S for slot, D for drive , or V for volume.
Each parameter must be separated by a comma.

When the drive number is not given, the computer places the program on the last
drive used. If you wish to place the program on a specific drive, use either D1 or
D2 to indicate which drive.

When the volume number is not given, the computer stores the program without
checking the label of the disk. If the volume number is used, the number following
the V must match the volume number of the disk or the program is not stored.

Illustration Key in the following program:
of the Rules

NEW
1000 HOME
1010 PRINT "SAVE COMMAND"
1020 PRINT " l. GIVES PROGRAM A NAME"
1030 PRINT " 2 . COPIES IT TO DISK SO THAT IT CAN"
1040 PRINT II BE USED AGAIN . II
1050 END

If you want to save the program on a disk other than the one which is currently in
the drive you are using, switch the disks now, i.e., take out the disk you don't want
to use, and put in the one onto which you want to copy the program.

14 / Applesoft BASIC Toolbox

Before entering the SAVE command, you must know which disk drive is going
to be used when storing the program. If you only have one drive, you do not need
to use D1, and don't try to use D2. Should you have two drives, decide which drive
you want to write the program on. Use D1 for drive 1 or D2 for drive 2.

Now enter the following command with the correct number following the D.
If you have only one drive, omit the comma and disk parameter.

SAVE DISK COMMANDS SAMPLE1,Dnumber <RETURN>

The disk will whirl for about 5 seconds and stop. If the cursor returns and a
message has not appeared on the screen, you have now stored a program on the
disk. Should you get an error message, make sure you have the correct diskette in
the correct drive and try again.

To check your work and ensure that the program was written on the disk, see
the CATALOG command in the following section.

The CATALOG Command

Command CATALOG Snumber,Dnumber,Vnumber

Example CATALOG,D1
Lists the programs and files which are on the disk located in drive 1.

Purpose The CATALOG command allows you to list on the screen the programs and files
which are stored on a disk.

Rules for Use 1. The slot, drive, and volume parameters following the keyword CATALOG are
optional and may occur in any sequence.

2. When the drive number is NOT SPECIFIED the computer lists the catalog or
index of the disk which is in the last drive accessed. Use D1 or D2 to override
the default option.

3. If the volume number is specified, the computer checks for a match. When the
volume numbers do not match, the computer cancels the command and lets
you put the correct disk in the drive. After the correct disk is in the drive, you
must reenter the CATALOG command.

DOS Control Commands / 15

Illustration To see what files are on the disk, enter the following command:
of the Rules

CATALOG,Dnumber <RETURN>

The disk will whirl, and the program and file names will be listed on the screen.
The terms file and program are synonyms when discussed in conjunction with the
APPLE disk catalog. When there are more than 18 names on the disk, the screen
fills up and stops so you may read the information. If the file is not in the group
being displayed, press any symbol key, and the computer will show you more file
names from the disk's catalog. Depending on how many files are on the disk, you
may need to look through several screens before you find the right program name.
A disk may contain up to 105 files.

Remember you are looking for the program named DISK COMMANDS SAMPLE1
which you just SAVEd on the disk. Since the program was just SAVEd, you might
think it would be the last one listed in the CATALOG. This may or may not be the
case, as DOS puts the name of the program in any available space. If you have been
adding and deleting files from your disk, there will be gaps where names have been
deleted. When you SAVE a program or create a data file, DOS puts the name in the
first unused area of the catalog.

Did you find the program name?
If so, continue; if not, type in CATALOG <RETURN> to see the list again. If

the program is not there, go back and start over with the SAVE command.
Did you notice that when you entered the CATALOG command the first line

displayed gave the disk volume number? If you did not see the disk volume message
enter the CATALOG command again. The first line will read

DISK VOLUME 001

Each line of the catalog listing consists of four parts. The first character of
each line indicates whether the file or program is locked.

*A 023 LOCKED APPLESOFT PROGRAM
t Asterisk indicates file is locked

T 015 UNLOCKED TEXT FILE
t Blank indicates file is unlocked

The second character of each line indicates the type of file or program format.

*A 011 RANDOM ADDRESS UPDATE PROGRAM
t An A indicates an Applesoft BASIC program

16 / Applesoft BASIC Toolbox

The following codes are used to represent the four types of disk files.

A: for Applesoft BASIC programs
I: for Integer BASIC programs

B: for Binary files
T: for Text files

The numbers next to the file name indicate how much room (in sectors) each
file takes up on the diskette. Each disk sector contains 256 characters, and each disk
has 496 sectors available for programs and files.

*A 003 program or file name
itt Indicates that the program or file takes up 3 disk sectors

The following represents a sample CATALOG listing of disk 001.

DISK VOLUME 001

A 003 HELLO
*T 018 LOCKED TEXT FILE 18 SECTORS

I 020 UNLOCKED INTEGER BASIC PROGRAM
B 027 UNLOCKED BINARY PROGRAM

The LOAD Command

Command LOAD program name,Snumber,Dnumber,Vnumber

Example LOAD PAYROLL PROGRAM,D1
The system locates the name PAYROLL PROGRAM on the disk in drive 1 and

then LOADs the program into memory.

Purpose The LOAD command copies a program from the disk into memory. You normally
use the LOAD command to retrieve a program from the disk in order to make changes
or to review the code before running the program.

Rules for Use (Some of these rules should sound familiar.)

1. The program name must be spelled exactly as it was orginally recorded or the
program is not loaded."

DOS Control Commands I 17

2. The slot, drive, and volume numbers following the program name are optional.
If the slot, drive, or volume.numbers are used, they may occur in any sequence.

3. When the drive number is not specified, the computer looks for the program on
the last disk drive accessed.

4. When the volume number is specified, it must match the disk in the drive being
referenced in order for the program to be loaded.

Illustration Load the program by entering
of the Rules

LOAD DISK COMMANDS SAMPLE1,Dnurnber <RETURN>

Use of the comma and drive number is optional if the program is on the disk
drive which was used last. Otherwise you must tell the computer on which drive the
program is located.

The disk will whirl as the program is being loaded. The longer the program,
the longer the disk will run.

If the cursor comes back on the screen and no error message has been displayed,
then the program was successfully loaded. Now to convince yourself that the pro­
gram is really there, enter

HOME <RETURN>
LIST <RETURN>

What do you know! There it is! (I hope.)
If the computer beeps and displays the error message

FILE NOT FOUND

check that you spelled the name correctly.
If you spelled the name exactly as you did when you SAVEd the program, be

sure you have the right disk in the correct drive. If you have done all this correctly,
go back to the CATALOG command and find the name of the program. Recheck the
name on the disk and make sure you have spelled it EXACTLY as it is shown on
the catalog listing.

Before going on, see what happens when you do make a mistake.
Don't ever be afraid of making mistakes. Most programmers learn by trial and

error. To err is human, to err perfectly takes a computer.

1. Misspell the name and see what happens. Enter

LOAD DISK COMMANDS SAMPLE 1 <RETURN>

Notice that there is a space between SAMPLE and 1. You will get the message

FILE NOT FOUND

18 / Applesoft BASIC Toolbox

2. Take out the disk and see what happens. Enter

LOAD DISK COMMANDS SAMPLE1 <RETURN>

In this case the spelling is correct but there is no disk from which to read the
file. You will get the message

1/0 ERROR

3. If you have an extra disk, place it in the drive where the computer expects to
find the. program and see what happens. Enter

LOAD DISK COMMANDS SAMPLE1 <RETURN>

In this case the spelling is correct, but the disk being searched does not contain
the program. You will get the message

FILE NOT FOUND

The RUN Command

Command RUN program name,Snumber,Dnumber,Vnumber (DOS format)
RUN (Applesoft format)

Example RUN PAYROLL PROGRAM,D1
The system locates the program named PAYROLL PROGRAM on the disk in

drive I, loads it into memory, and runs it.

Purpose The DOS version of the RUN command copies a program from the disk into memory
and then starts executing it. If you want to execute a program without looking at or
changing the code, use the RUN command.

The DOS RUN command both loads and executes the program, while the LOAD
command shown previously only brings the program into memory.

The Applesoft version of the RUN command is used to execute the program
currently in memory and does not load a program from the disk.

Rules for Use (The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

DOS Control Commands / 19

1. If the RUN command is used without any parameters, the program currently
in memory is executed. RUN by itself is an Applesoft command and does not
involve any disk operations.

2. If RUN is followed by a program name, the name must be spelled exactly as it
was originally recorded or the program is not run.

Illustration If you have just LOADed a program, RUN it by entering
of the Rules

RUN <RETURN>

Otherwise, both load and run a program by entering

RUN DISK COMMANDS SAMPLE1 <RETURN>

(use drive number if needed).
After you have entered the RUN command, the screen will clear and the four

lines of information from the program will be displayed (see sample screen). Remember,
the program was written and saved in the SAVE command section.

SAVE COMMAND
1. GIVES PROGRAM A NAME
2. COPIES IT TO DISK SO THAT IT CAN

BE USED AGAIN.

If the program did not work as expected, go back to the SAVE command and
start over or attempt to correct the code and rerun the program.

The RENAME Command

Command RENAME current program name,new program name,Snumber,Dnumber,
Vnumber

Example RENAME PAYROLL PROGRAM,PAYROLL PROG,D1
The system locates the name PAYROLL PROGRAM in the disk library and then

changes it to PAYROLL PROG.

20 I Applesoft BASIC Toolbox

Purpose The RENAME command can be used to change the names of either programs or
files.

Rules For Use (The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

Illustration
of the Rules

1. The first name must be exactly the same as the current name on the disk.
2. The second parameter represents the new name for the program or file . The

new name should not exist on the disk or else the renaming process causes two
files with the same name to be on one diskette. If a disk contains more than
one file with the same name, you can only access the first of the two files.

For the RENAME, LOCK, UNLOCK, and DELETE commands the terms file and
program are synonomous. These four DOS commands treat text files the same as
program files. Normally the termfile is used to describe a text file , while the term
program is used to describe a file of instructions.

The name assigned to the program was fairly long. Let's give the program a shorter
name by entering

RENAME DISK COMMANDS SAMPLE1,DISK INST EX1 < RETURN >

(use drive number if required).
The disk will whirl, and when the cursor returns, the name has been changed.

If you get an error message such as FILE NOT FOUND check your work and try, try
again.

To see if the RENAME instruction worked, list the catalog by entering

CATALOG <RETURN>

The new name DISK INST EX1 will be somewhere in the catalog listing .

The LOCK Command

Command LOCK program name,Snumber,Dnumber,Vnumber

Example LOCK PAYROLL PROG,D1
The system finds the program named PAYROLL PROG in the disk library (cat­

alog) and flags the program as being protected.

DOS Control Commands I 21

Purpose Programs: The LOCK command allows you to tag a program as protected, and the
computer does not allow it to be DELETEd , or RENAMEd, or another program
SAVEd under the same name .

Text Files: The LOCK command also allows you to tag a data file as protected,
and the computer does not allow it to be DELETEd or RENAMEd. The computer
also prevents a program from creating a new file with the same name or writing new
records to the locked file . A text file which is locked can ONLY BE READ. If you
try to write to a LOCKed file, the program is canceled and an error message is
displayed.

Rules for Use (The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. The RUN, LOAD, and CATALOG commands are not affected by the LOCK
command.

2. The SAVE, RENAME, and DELETE commands cannot be used on a file or
program name once it has been LOCKed.

3. Before the SAVE, RENAME, or DELETE command can be used with a file or
program name which is locked, the UNLOCK command must be used.

Illustration Let's pretend the program you are using is worth protecting. Lock it by entering
of the Rules

LOCK DISK INST EX1 < RETURN >

The disk will whirl, and the blinking cursor will appear with no messages
displayed. If you get an error message, check the spelling, make sure you have the
correct disk in the correct drive, and try again.

To check your work, use the CATALOG command to list the disk directory.
You should get the following entry.

*A 002 DISK INST EX1
j Asterisk indicates locked Applesoft program

Now try to destroy the program by any of the following methods:

1. SAVEing a program with the same name. Enter

SAVE DISK INST EX1 < RETURN >

You will get the following message:

FILE LOCKED

22 / Applesoft BASIC Toolbox

2. RENAMEing the program. Enter

RENAME DISK INST EX1,WILL NOT WORK

You will get the following message:

FILE LOCKED

3. DELETEing the program. Enter

DELETE DISK INST EX1

You will get the following message:

FILE LOCKED

In theory the only way to destroy a LOCKed program is to destroy the disk.

The UNLOCK Command

Command UNLOCK program name,Snumber,Dnumber,Vnumber

Example UNLOCK PAYROLL PROG,D1

The system finds the program in the disk library and then removes the flag
indicating that it is protected.

Purpose The UNLOCK command allows you to change your mind and remove the protection
provided by the LOCK command.

Rules for Use (The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. Think twice before you UNLOCK a file or program. Once the program is unlocked,
it can be destroyed by accidentally saving a program under that same name or
mistakenly deleting the program.

2. You can tell which files are unlocked by using the CATALOG command. If the
file is Jocked there is an asterisk (*) at the far left of the screen. When no
asterisk appears in front of the program or file name, the information is
unprotected .

DOS Control Commands / 23

Illustration The program you placed on the· disk is not worth protecting. Use the UNLOCK
of the Rules command to remove the protection of the program so it may be deleted. Enter

UNLOCK DISK INST EX1 <RETURN>

Use the CATALOG command to check whether the asterisk was removed. Enter

CATALOG <RETURN>

The program name will be listed in the catalog without an asterisk in the leading
character position.

A 002 DISK INST EX1
t Blank character indicates file is not locked

The DELETE Command

Command DELETE program name,Snumber,Dnumber,Vnumber

Example DELETE PAYROLL PROG,D1
The system removes the program name from the disk library. The program is

lost and the space it occupied freed.

Purpose The DELETE command allows you to remove currently unwanted programs or files
from the disk. I stress currently because after you delete a program you may change
your mind.

Rules For Use (The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. Make sure you want to delete the file or program before entering the command.
2. Spell the name correctly, and make sure you use the name of the program or

file you intend to delete.
3. Double check. Think twice. Is there a backup copy? Are you sure you want to

DELETE the file? If so, press RETURN.

24 / Applesoft BASIC Toolbox

Illustration
of the Rules

Since the program does not really do anything useful and you will not need it
anymore, delete it by entering

DELETE DISK INST EX1 <RETURN>

To make sure the program has been deleted, use the CATALOG command.
Enter

CATALOG <RETURN>

The name DISK INST EX1 should no longer be in the catalog listing.

Other DOS Commands

The following DOS commands are used in special situations. For further information
on these commands, see the APPLE DOS Manual.

BSAVE f,Aa,Ln,Snumber,Dnumber,Vnumber

Where:

f =FILENAME
Aa = A is followed by the starting address in memory from which the data is to be

copied
Ln = L is followed by a value indicating the number of bytes to be copied to the

disk

The BSA VE command is used to create a disk file containing the contents of a specific
area of memory. It can be used to save a high-resolution graphics picture or to save
a machine language routine which has been POKEd into a specific memory location.

BLOAD f,Aa,Snumber,Dnumber,Vnumber

Where:

f =FILENAME
Aa = A is followed by the starting address in memory into which the data is to be

copied

DOS Control Control Commands I 25

The BLOAD command is used to load a disk file into a specific area of memory. It
can be used to load a high-resolution graphics picture into the first or second high­
resolution screen area or to load a machine language routine which can later be
executed by the CALL instruction.

BRUN f,Aa,Snumber,Dnumber,Vnumber

Where:

f =FILENAME
Aa = A is followed by the starting address in memory into which the data is to be

copied

The BRUN command is used to load a disk file into a specific area of memory and
then branch to that address to start execution of a machine language program.

EXEC filename

The EXECute command is used to run a text file consisting of DOS commands and
lines of BASIC code. The commands in the text file operate as if they had been
entered from the keyboard. Use of the EXEC and TEXT file allows a stream of
programs and processing steps to be linked together in such a way that the operator
need only know how to turn the computer on and enter data.

3. The . HOME Instruction

26

Instruction HOME

Purpose The HOME instruction is used to clear the screen and position the cursor in the upper
left hand corner of the screen .

Rules for Use 1. The instruction may be used in either immediate execution mode or program
execution mode. Immediate execution mode means the instruction is executed
when the RETURN key is pressed. To enter an instruction in immediate exe­
cution mode, leave off the statement number.

HOME < RETURN >

The screen is cleared immediately upon pressing RETURN .
Use the HOME instruction in immediate execution mode to clear the screen

and position the cursor when entering new programs.
2. Program execution mode means the instruction is not executed until it is encoun­

tered during the execution of a program. Any statement which starts with a line
number is only executed after a RUN command has been given.

NEW < RETURN >
1000 HOME < RETURN >
RUN < RETURN >

The screen is not cleared until after the RUN command is entered.
Use the HOME instruction in the program execution mode to clear the

screen and position the cursor during program execution.
3. The HOME instruction has no effect on program or the contents of memory.

Only the screen and cursor are affected by the instruction .
4. The HOME instruction has no effect when writing data to a hard copy printer.

The instruction is only used in conjunction with the display screen.

Illustration Key in the following program, or load and list the program by entering
of the Rules

LOAD HOME SAMPLE1 <RETURN>
LIST <RETURN>

The HOME Instruction I 27

When keying in the program, remember to press RETURN after each line. Also,
when keying in the REMarks instruction do not key a blank following the keyword
REM. Applesoft will generate a blank for you when the program is listed.

NEW
HOME
1000 REMHOME SAMPLEl
1010 HOME : REMCLEARS SCREEN AT START OF PROGRAM
1020 PRINT "THE PURPOSE OF THE HOME INSTRUCTION"
1030 PRINT "IS TO:"
1040 PRINT "l. CLEAR THE SCREEN"
1050 PRINT "2. POSITION THE CURSOR"
1060 PRINT
1070 PRINT "PRESS ANY KEY AND WATCH THE HOME"
1080 PRINT "INSTRUCTION IN ACTION"
1090 GET X$: REMSTOPS PROGRAM UNTIL KEY PRESSED
1100 HOME: REMCLEARS SCREEN AT END
1110 END

NEW Before keying in a new program, use the NEW instruction to clear the computer's
memory. The computer should always be cleared before keying in a program.

When LOADing or RUNning the program from disk, it is not necessary to use
the NEW instruction since both commands automatically clear memory.

HOME If you are keying in the program yourself, you can use the HOME instruction in
immediate execution mode to clear the screen and position the cursor at the upper
left hand corner.

1000 The first line of all programs in this text uses the REMarks instruction to give the
name of the program. By following this standard you can list line 1000 after making
changes and find out the name of the program in order to properly SAVE it on the
disk.

1010 The second line of the program uses the HOME instruction in program execution
mode to clear the screen and position the cursor at the upper left hand corner of the
screen. The colon following the keyword HOME separates the HOME instruction
from the REMarks instruction. REMarks is used in this example to document the
program and indicate what the HOME instruction is to accomplish.

'1020-1080 Lines 1020 through 1080 print a series of messages on the screen which tell what
the HOME instruction does and request that you press a key in order to see the HOME
instruction in action.

1090 The GET instruction accepts one character from the keyboard. It is used in this
example to cause the computer to stop while you read the message. When you have

28 / Applesoft BASIC Toolbox

read the message and responded by pressing any key, the computer continues to the
next statement.

Note: To simplify the example the operator was allowed to press any symbolic key.
In actual practice you should code your programs to ask for a specific response from
the operator.

1100 After you have pressed a key, the computer executes the HOME instruction on line
1100. The instruction clears the screen at the end of the program and positions the
cursor in the upper left hand corner.

1110 The END instruction stops execution of the program. Once the END instruction is
encountered no further instructions are executed.

Exercise 1: The HOME Instruction in Program Execution Mode

1. After you have keyed in the program, enter

HOME <RETURN>
LIST <RETURN>

Check the listing against the sample listing. Make sure you didn't make any
mistakes.

2. Once you are sure the program is keyed correctly, enter

RUN

(but don't press RETURN yet).
Now watch the screen and see what happens when you press RETURN.

The screen will clear because of the HOME instruction on line 1010:

1010 HOME: REM CLEARS SCREEN AT START OF PROGRAM

The information from the PRINT instructions will be displayed starting at the
top of the screen. If you encounter a syntax error, correct the line in error and
start over at step 1.

A SYNTAX ERROR occurs when you key in an instruction without fol­
lowing the coding rules for that instruction.

For example, if you misspell an instruction-HOEM instead of HOME­
the machine cannot recognize the instruction and cancels the program. To let
you know what went wrong, the computer displays the message SYNTAX
ERROR along with the statement number which was in error.

The HOME Instruction I 29

3. After you have read the information on the screen, press any key and the HOME
instruction on line 1100 will be executed. The screen will be cleared and the
cursor repositioned.

Again, if you encountered a syntax error, correct the code and start over
at step 1.

Exercise 2: The HOME Instruction in Immediate Execution Mode

1. List the program by entering

LIST <RETURN>

2. At this point your screen will have the program displayed just as you entered
it. Use the HOME instruction to clear the screen by entering

HOME <RETURN>

(but don't press RETURN yet!). Now watch what happens to the screen when
you press RETURN. The screen will be cleared, but the program will still be
in the computer's memory.

3. To prove that the program is still there, enter

LIST <RETURN>

Just like magic the program will reappear. (If your magic fails start over by
returning to the first page of the HOME instruction and trying again.)

4. The NEW Instruction

30

Instruction NEW

Purpose The NEW instruction is used to clear (erase} the current program in memory and
ready the computer for a new program.

Note that you should always use the NEW instruction with care. Do not destroy
a new program before SAVEing it on the disk.

Normally the very first line you enter before keying in a program is the NEW
instruction. The instruction is executed immediately when you press RETURN and
clears memory so you can enter a new program.

You do not see any change in the screen when entering the NEW instruction,
but believe it: Any program in memory is gone. If you want to keep the program
you have keyed in or keep a program you have made changes to, make sure you
SAVE the program prior to entering the NEW instruction.

Unless you are sure of what you are doing , only use the NEW instruction in
immediate execution mode. If the instruction is used in the program execution mode,
the program is self-destructing (see Exercise 3).

Rules for Use 1. The NEW instruction should only be used before entering a new program or,
if you are sure of what you are doing , as the VERY LAST instruction of a
program to erase memory.

2. The NEW instruction clears the computer's memory but does not change any­
thing displayed on the screen .

3. If the NEW instruction is used during execution of the program it destroys the
program.

Illustration Key in the following program. Remember to press RETURN after each of the entries.
of the Rules

NEW
HOME
1000 HOME
1010 REMA VERY SHORT SAMPLE PROGRAM
1020 END

Note: Do not key a blank between REM and A. Machine will insert a blank for you.

The NEW Instruction I 31

NEW When you key in the NEW instruction without any statement number, memory is
immediately cleared. The screen image remains unchanged.

HOME When you key in the HOME instruction without any statement number, the screen
is cleared and the cursor is positioned in the upper left hand corner of the screen.
Memory remains unchanged.

1000 The first line of the program is the HOME instruction, which clears the screen and
positions the cursor.

1010 The second instruction uses the REMarks instruction to tell you this is a very short
program. (As if you could not tell.)

1020 The third and last instruction in the program ENDs the execution of the program.

Exercise 1: Mixing Lines of Code, or Why Use the NEW Instruction?

1. To see the three lines of code you typed, enter

LIST <RETURN>

2. Now let's assume you want to enter another program but forget to first use the
NEW instruction to clear memory. Enter the following three lines:

1005 REM NEW LINE NUMBERS ARE MERGED IN WITH OLD LINE NUMBERS
1010 REMMATCHING LINE NUMBERS REPLACE OLD LINE NUMBERS
1015 REMTHE RESULT IS A MIX UP OF TWO PROGRAMS

3. To see how these lines are treated, enter

LIST <RETURN>

You will see the following mixed lines of code:

1000 HOME
1005 REM NEW LINE NUMBERS ARE MERGED WITH OLD LINE NUMBERS
1010 REM MATCHING LINE NUMBERS REPLACE OLD LINE NUMBERS
1015 REM THE RESULT IS A MIX UP OF TWO PROGRAMS
1020 END

Notice that the new line numbers 1005 and 1015 are merged with the existing

32 I Applesoft BASIC Toolbox

program, while the new line number 1010 replaces the previous line of code
with the same number.

The example shows you why it is important to clear memory before enter­
ing a new program. If you do not clear memory, chances are very good the
new program you key in will be merged with the previously used program,
resulting in a mell-of-a-hess.

Exercise 2: The NEW Instruction in Immediate Execution Mode

1. Once more, the very first line entered before keying in a new program is the
NEW instruction. The instruction is executed when you press RETURN and
clears memory so you can enter a new program.

The NEW instruction destroys the program in memory but does not change
anything displayed on the screen. (But believe it: Any program in memory is
gone. Make sure you SAVE your work before typing in NEW.)

Let's start by clearing the screen and listing the current program in mem­
ory. Enter

HOME <RETURN>
LIST <RETURN>

The screen should now contain the five lines previously entered:

1000 HOME
1005 REM NEW LINE NUMBERS ARE MERGED WITH OLD LINE NUMBERS
1010 REM MATCHING LINE NUMBERS REPLACE OLD LINE NUMBERS
1015 REM THE RESULT IS A MIX UP OF TWO PROGRAMS
1020 END

2. Now to clear memory enter

NEW <RETURN>

The screen will not change, but the program you entered will be gone.
3. If you don't believe it, enter

LIST <RETURN>

Now see, I told you the program would be gone.

The NEW Instruction I 33

Exercise 3: The NEW Instruction in Program Execution Mode.

The NEW instruction should very seldom, if ever, be used in program execution
mode. If the NEW instruction is used it will be the last instruction executed, since
it erases the program.

Key in the following program, or load and list the program by entering

LOAD NEW SAMPLE2 <RETURN>
LIST <RETURN>

NEW
HOME
1000 REMNEW SAMPLE2
1010 HOME : REMCLEARS SCREEN AT START
1020 PRINT "THE PURPOSE OF THE NEW INSTRUCTION"
1030 PRINT "IS TO:"
1040 PRINT "l. CLEAR THE COMPUTER MEMORY"
1050 PRINT "2. PREPARE' THE COMPUTER FOR NEW PROGRAM"
1060 PRINT
1070 PRINT "PRESS ANY KEY AND WATCH THE NEW"
1080 PRINT "INSTRUCTION DESTROY THE COPY OF"
1090 PRINT "THIS PROGRAM."
1100 PRINT : PRINT
1110 PRINT "***********************************"
1120 PRINT "YOU ONLY GET TO WATCH THIS ONCE"
1130 PRINT "AS THIS PROGRAM WILL SELF DESTRUCT"
1140 GET X$: REMSTOPS PROGRAM UNTIL A KEY IS PRESSED
1150 HOME : REMCLEARS SCREEN AT END
1160 NEW : REMCLEARS MEMORY - USE WITH CARE

1. If you keyed in the program yourself, you may want to SAVE it on disk, as that
was a lot of work for only one run. It is important to remember that THIS
PROGRAM SELF-DESTRUCTS! To save the program enter

SAVE NEW SAMPLE2 <RETURN>

2. Enter

RUN

(but don't press RETURN yet). Now watch what happens when you press RETURN.
The screen will clear when the HOME instruction on line 1010 is executed.

After the screen is cleared, lines 1020 through 1130 will PRINT a description
of what the NEW instruction does and what the program will do.

3. After you have read the information, press any key. Allowing the operator to
press any key is not a good programming technique. It is used here to keep the
code short and simple. Later examples will show how to check for a specific
response such as: C to continue, Q to quit, or a space for a general response.

34 / Applesoft BASIC Toolbox

Once a key is pressed the HOME instruction on line 1150 is executed,
clearing the screen and repositioning the cursor to the upper left hand corner.

4. The NEW instruction on line 1160 clears the computer's memory and destroys
the program you have just entered.

5. If you want to repeat the process, too bad; the program is gone. If you don't
believe it enter

LIST <RETURN>

All you will see is a blank screen.

5. The LIST Instruction

LIST: Format 1

Instruction LIST (Format 1)
There are several formats used in conjunction with the LIST instruction. The

first format allows you to LIST the entire program, while the other format allows
you to LIST portions of the program.

Purpose The LIST instruction provides a method of displaying an instruction or a group of
instructions.

Rules for Use 1. When the LIST instruction is entered, the program in memory is listed starting
with the first statement and continuing until either the entire program is listed
or the listing operation is interrupted by you.
a. To temporari1y stop the listing , press CONTROL-S; i.e., press the CON­

TROL key and the S key at the same time. To continue the listing, press
any key other than CONTROL-RESET. (Note: For APPLE II and APPLE
II+ users, the CONTROL key is labeled CTRL.)

b. To cancel tlie listing, press CONTROL-C; i.e., press the CONTROL key
and the C key at the same time. This cancels the LIST instruction, and you
may now enter other instructions.

2. A problem exists with the LIST instruction on some APPLE II and APPLE II+
computers. If the listing operation goes to the end of the program, the next
instruction you key in may be treated as an invalid entry. If you do allow the
listing to go to the end, just press the RETURN key once to clear the computer
before entering any further instructions.

Note: The computer lists the program at a rate faster than most people can follow.
You may want to slow the computer down by using the SPEED instruction (see The
SPEED Instruction, p. 49).

35

38 / Applesoft BASIC Toolbox

Illustration Key in the following program:
of the Rules

NEW
1000 REMLIST SAMPLE!
1010 HOME
1020 INPUT AANUMBER
1030 PRINT AANUMBER
1040 END

After entering the program, key in

LIST<RETURN>

If the cursor is in the middle of screen, the four statements will be listed starting
at the current location of the cursor. If the cursor is at the bottom of the screen, each
of the four statements will be listed on line 24. As each new statement is displayed,
all previously displayed statements will be moved up one line. The upward move­
ment of the lines is referred to as scrolling.

The program is too small to allow you to practice the use of the CONTROL-S
and the CONTROL-C options, so add the following remarks to the end of the pro­
gram, or load the program by entering

LOAD LIST SAMPLE1
LIST

<RETURN>
<RETURN>

Note: If you get the message SYNTAX ERROR after entering the first instruction,
just rekey the instruction and continue. Remember APPLE II and APPLE II+ users
sometimes get a syntax error on the first line entered after listing the entire program.

1050 REMQUICKEST FINGERS IN THE WEST
1060 REMREM STANDS FOR REMARKS
1070 REM
1080 REM
1090 REM
1100 REM
1110 REMAVERAGE FINGERS
1120 REM
1130 REM
1140 REM
1150 REM
1160 REMSLOW FINGERS
1170 REMDON'T GET IN GUN FIGHTS
1180 REM
1190 REM
1200 REM
1210 REM
1220 REM
1230 REMYOU NEED LOTS OF PRACTICE
1240 REM
1250 REMWHAT HAPPENED TO THE TOP LINE?

The LIST Instruction I 37

Now that all the instructions have been entered, run through the following
exercises to practice the use of the LIST instruction.

Exercise 1: Using CONTROL-S

1. Enter

LIST

(but do not press RETURN yet).
2. With your left hand position one finger over the CONTROL key and one finger

over the S key.
3. With your right hand press RETURN, and then see how quickly you can stop

the listing by pressing CONTROL-S. Did the listing stop? If so, continue, if
not, go back to step 1 of this exercise.

4. Once you have gotten the listing to stop, you can restart it by pressing almost
any key. The most convenient key is the space bar.

5. Practice starting and stopping the listing by

a. Entering

LIST <RETURN>

b. Pressing CONTROL-S to stop the listing and the space bar to start the
listing again

c. How many times can you start/stop the listing for the sample program?

0 =Very poor
3 =Good

1 =Poor
4 =Very good

Exercise 2: Using CONTROL-C

1. Enter

LIST

(but do not press RETURN yet).

2 = Fair
5 = I don't believe it

2. With your left hand position one finger over the CONTROL key and one finger
over the C key.

3. With your right hand press RETURN, and see how quickly you can stop the
listing by pressing CONTROL-C. Did it stop? If so, continue; if not, go back
to step 1 of this exercise.

38 I Applesoft BASIC Toolbox

Instruction

4. Now try to restart the listing by pressing any key. Remember that once the LIST
instruction is canceled with the use of CONTROL-C, it cannot be restarted. If
you want to temporarily stop the listing, use CONTROL-S. If you want to cancel
the listing, use CONTROL-C.

LIST: Format 2

LIST statement number
or LIST statement number,statement number
or LIST statement number-statement number
or LIST statement number,
or LIST statement number-

Sample LIST 1000 List line 1000
LIST 1000,2000
LIST 1000-2000
LIST 2000,
LIST 2000-

List lines from 1000 through 2000
List lines from 1000 through 2000
List program starting at line 2000
List program starting at line 2000

Rules for Use 1. If only one statement number is used, only that statement is listed. If the
statement number does not exist within the program, then nothing is displayed.

Illustration
of the Rules

2. If a group of lines are to be displayed, the first statement number indicates the
starting point for the LIST operation, while the second number indicates the
ending point for the LIST operation. Neither statement number need exist within
the program, but there must be some statements within the range of the two
numbers for any instructions to be displayed.

3. If you wish to list the program starting at a certain instruction and continuing
to the end of the program you may use a dash instead of a second statement
number.

4. For Applesoft either the dash(-) or comma(,) may be used when listing seg­
ments of the program.

5. For group listings CONTROL-S and CONTROL-C may be used to interrupt the
listing.

In all the following exercises the HOME instruction is entered prior to the listing
operation. It is not necessary to always use the HOME instruction prior to listing
part of a program. The HOME instruction is used in the examples so you always
start off with a clear screen.

The LIST Instruction I 39

The following exercises assume the LIST program is still in memory. If the
program is not currently in memory, reload the program by entering

LOAD LIST SAMPLE1

Exercise 3: Using LIST With an Existing Statement

1. Enter

HOME <RETURN>
LIST 1030 <RETURN>

Was the following instruction displayed?

1030 PRINT AANUMBER

If so, continue; if not, try again from step 1 of this exercise.
2. 'fry listing other single statements in the program by entering the LIST instruc­

tion followed by an existing line number.

Exercise 4: Using LIST With a Nonexistent Statement

1. Enter

HOME <RETURN>
LIST 1035 <RETURN>

Since there is no statement 1035, none will be listed.

Exercise 5: Using LIST With a Range of Statements

LIST statement number,statement number
or LIST statement number-statement number

1. Enter

HOME <RETURN>
LIST 1000,1040 <RETURN>

40 / Applesoft BASIC Toolbox

Were the following instructions displayed?

1000 REM LIST SAMPLEl
1010 HOME
1020 INPUT AANUMBER
1030 PRINT AANUMBER
1040 END

If so, continue; if not, try again from step 1 of this exercise.
2. Thy listing other parts of the program by entering the LIST instruction followed

by a range of statement numbers. Use either the comma or the dash to separate
the two statement numbers.

Exercise 6: Using LIST With a Range of Nonexistent Statements

LIST statement number.statement number
or LIST statement number-statement number

1. Enter

HOME <RETURN>
LIST 000,2000 <RETURN>

Were all the program instructions displayed? If so, continue; if not, try again
from step 1 of this exercise.

2. Enter

LIST 1035,1095 <RETURN>

The lines from 1040 to 1090 will be listed. When the numbers used in the list
statement do not exist, the computer lists the statements within the numeric
range.

3. Enter

LIST 2000,3000 <RETURN>

No instructions will be listed. Why?
If you don't know why, LIST the entire program and check to see what the

highest statement number is.

Exercise 7: LIST Statements From Any Point to the End of the Program.

LIST statement number­
or LIST statement number,

The LIST Instruction I 41

1. This time don't type in HOME. Leave all the information on the screen and see
where it goes. Enter

LIST 1035- <RETURN>

The statements from 1040 to the end of the program will be listed. Notice that
statement 1035 does not exist. Therefore, the computer starts the listing at the
next higher statement number. The dash (-) following the statement number
instructs the computer to list to the end of the program.

2. Enter

LIST 1035, <RETURN>

The same instructions will be listed. Applesoft allows you to use either the
dash or the comma to separate statement numbers or to indicate a continued
list operation. Some versions of BASIC do not accept the comma as a valid
separator in the LIST operation.

6. The DEL Instruction

42

Instruction Format 1: statement number or DEL statement number
Format 2: DEL statement number,statement number

There are two formats used in conjunction with the DELete instruction. The
first format allows you to delete a single line, while the second format allows you
to delete a group of lines .

Purpose The DELete instruction provides a method of removing one or more statements from
your program.

Rules for Use 1. When entering the instruction think twice. Are you sure you want to delete the
lines? Did you make a typing mistake? Check the first and the last number to
make sure you entered them correctly. Press RETURN only after you are sure
you want to delete the statement(s).

Illustration
of the Rules

2. When a range of line numbers is deleted, the two statement numbers must be
separated by a comma. Unlike the LIST instruction which may use either a
comma or a dash as a separator, the DELete instruction only recognizes the
comma.

Right: DEL 1200, 1300
Wrong: DEL 1200-1300

3. Do not confuse the DELete instruction with the DELETE command. The DELete
instruction is used to remove one or more lines from the program in memory
and has no effect on the disk. The DELETE command erases an entire program
from the disk and has no effect on the program in memory.

In order to see how to use the DELete instruction, key in 10 or more lines of code .
(This do-nothing program is not included on the program disk.)

1000 REM DEL SAMPLE1
1010 REM
.... Add lines 1020 through 1070
1080 REM
1090 REM

The DEL Instruction / 43

Once the instructions have been entered, SAVE the code on the disk so it can
be reused during the exercises that follow. Enter

SAVE DEL SAMPLE1 <RETURN>

After saving the program, enter the following instructions so that you can see the
line numbers while running through the exercises. Enter

HOME <RETURN>
LIST <RETURN>

Exercise 1: Deleting a Single Line

The easiest way to delete a single line is to simply enter the line number. Delete line
1000 by entering

1000 <RETURN>

By typing in the line number without anything following it, you tell the machine to
delete that line.

Another way to delete just one line is to type in DEL followed by the line
number. Delete line 1010 by entering

DEL 1010 <RETURN>

Now, to prove both lines are gone, try listing the deleted lines. Enter

LIST 1000-1010 <RETURN>

No statements were displayed. If you want a line back after it has been deleted,
you must retype the line.

Exercise 2: Deleting Segments of Code

To delete more than one line, enter the DEL instruction followed by the starting and
ending statement numbers to be deleted.

Delete lines 1020 though 1050 by entering

DEL 1020,1050 <RETURN>

The starting and ending statement numbers do not have to exist within the
program. When nonexisting statement numbers are used, the lines between the two

44 / Applesoft BASIC Toolbox

numbers are deleted. Delete the remaining code by entering a very low line number
and a very large line number. Enter

DEL 1,32000 <RETURN>

Exercise 3: Common Mistakes Made When Using the DEL Instruction

For the DELete instruction you must use a comma as a field separator and must
include the starting statement number.

Enter the following instructions and see what happens. Each should end with
a SYNTAX ERROR.

Try to use the dash as a separator. Enter

DEL 1000-2000 <RETURN>

Try to delete from a specific line number to the end of the program. Enter

DEL ,2000 <RETURN>

Now to prove that the DELete instruction has no effect on the original copy of
program, try the following instructions. Enter

LIST <RETURN>

to see that there is nothing left of the program that was in memory. Enter

LOAD DEL SAMPLE1 <RETURN>

to load the original copy from disk into memory. Enter

LIST <RETURN>

to see that the original copy is still intact.

7. The REM Instruction

Instruction REM any group of symbols

Example 1000 REM PROGRAM NAME
1010 REM USE A REMARKS STATEMENT TO GIVE THE NAME
1020 REM OF THE PROGRAM.

Purpose The REMarks instruction allows the progranuner to include comments within the
program to document what the code is supposed to accomplish or to make notes for
later reference. The REMarks instruction can also be used to describe the meaning
of short abbreviated variable names.

Rules for Use 1.
2.

3.

4.

5.

The REM instruction can be used on a line by itself or following any instruction.
Once the REM instruction is used, no additional instructions can be coded for
that line number.
Strong suggestions:
a. Use the REMarks instruction while writing your program to document the

logic. You will be surprised at how much it will help when you are trying
to debug your program, especially if a few days have passed since you
last worked on it.

b. Put a data name dictionary at the end of your program defining each
variable name and giving any additional information about the variable
which will help clarify the program. (See the data name dictionary at the
end of the REMarks program.)

For readability of your listing you may wish to limit remark entries to 22
characters per line number.
A large number of REMark entries within the code being executed will slow
down the computer (somewhat). But think which is more important, your ability
to understand and make changes to the program or the minor difference in
execution speed.

45

46 I Applesoft BASIC Toolbox

Illustration Key in the following program, or load and list the program by entering
of the Rules

LOAD REM SAMPLE1
LIST

If you are keying in the program yourself, do not press the space bar after typing
in REM. It will not mess up the operation of the program but will cause two spaces
to print following the keyword REM instead of one.

The REM instruction generates a space automatically between the keyword REM
and the first character typed. The space does not show up until the instruction is
listed. If you type a space following the REM the listing will end up with two spaces,
the one generated by the REM instruction and one entered by you.

Key in the example REM program exactly as shown.
If you key in any of the programs following this example you will have to

remember NOT to key in the space following REM. To make the programs easier
to read they are listed showing the generated space.

NEW
HOME
1000 REMREM SAMPLE!
1010 HOME
1020 INPUT "ENTER HOURS WORKED = ";AAHOURS
1030 INPUT "ENTER HOURLY WAGE = ";ABWAGE
1040 ACGOSS = AAHOURS * ABWAGE: REMCALCULATES GROSS WAGE ONLY
1050 PRINT "TOTAL GROSS WAGE = ";ACGOSS
1060 END
1070 REM1234567890123456789012
1080 REMDATA NAME DICTIONARY
1090 REMAAHOURS
1100 REM NUMBER HOURS WORKED
1110 REMABWAGE
1120 REM HOURLY WAGE
1130 REMACGOSS
1140 REM GROSS WAGE = AAHOURS
1150 REM * ABWAGE
1160 REM ACGROSS CANNOT BE
1170 REM USED BECAUSE "GR" IS
1180 REM AN APPLESOFT RESERVE
1190 REM WORD

The program is really too simple for such extensive remarks, but hopefully you
will gain an idea of how to use the REM instruction to assist in documenting your
program.

The program is set up to allow the operator to enter the number of hours worked
and the hourly wage. After the two values are entered, the program computes and
prints out the gross wage.

The REM Instruction I 47

Rule 1. The REM instruction can be used on a line by itself or following an instruction.

1000 A standard practice you may wish to use is to enter a name or basic program
description as the first line of code. Notice that no space is entered between REM
and REM SAMPLE1. Later when the program is listed, the computer will insert a
space for you.

1040 The REM instruction may be used on a line by itself as on line 1000, or it may be
used following other instructions as shown on line 1040. A colon is used to separate
multiple instructions on one line.

Rule 2. Once the REM instruction is used, no additional instructions may be coded for that
line number.

Run the program by entering

RUN <RETURN>

The computer will clear the screen and display the message

ENTER HOURS WORKED = ?

In response to the question mark, enter

40 <RETURN>

Immediately after you press RETURN, the computer will display a second message
asking you to enter the hourly wage. In response to the second message, enter

6.75 <RETURN>

The computer will then display the message

TOTAL GROSS WAGE = 270

Did you see how the HOME instruction on line 1010 cleared the screen before
executing the rest of the program? Let's see what happens if you change the program
and put the HOME instruction after a REMarks entry. Key in the following two lines
of code:

1000 REMREM SAMPLE1 : HOME <RETURN>
1010 <RETURN>

48 / Applesoft BASIC Toolbox

1000 When you type in a new line with the same number as an existing line, the new
entry replaces the old entry. 'fyping in 1000 REM REM SAMPLE1 : HOME replaces
1000 REM REM SAMPLE1.

1010 By typing in a line number with no instruction following it, you are deleting the
statement with the matching line number. 'fyping in 1010 deletes the instruction
1010 HOME.

Now list the program and then run it again by entering

LIST <RETURN>
RUN <RETURN>

What happened to the program listing which was on the screen?
The screen did not clear prior to displaying the first message because the HOME

instruction on line 1000 was taken as part of the REM instruction and not as an
individual instruction. Remember, once the REMarks instruction is used, you must
start a new line to enter instructions.

Incorrect: 1000 REMREM SAMPLE1 : HOME
Correct: 1000 REMREM SAMPLE1

1010 HOME

1080-1180 Lines 1080 through 1180 show how you can use the REM instruction to document
the data names used in a program. Applesoft allows you to use up to 238 characters
in a name but only recognizes the first two characters. Since the computer only
looks at the first two characters, I normally use a technique of assigning each variable
name a unique two-character alphanumeric prefix followed by a descriptive name.
By using a unique two-character prefix you are assured that the machine will not
treat what you consider to be two variables as only one variable.

The data name dictionary can give the name of the variable, a description of
what the name stands for, and, if necessary, how the variable is used. Notice how
the variable name starts immediately after the keyword REM but when the name is
described, two spaces are used following REM. When you key in two blanks before
describing the name, the first two letters of the variable name are easier to see.
Remember Applesoft only recognizes the first two characters, and these two char­
acters are what you should be concerned with.

For readability of your listing, you may wish to limit remark entries to 22
characters per line number.

When a program is keyed in, Applesoft uses all 40 columns of each line.
However, when Applesoft lists a program, it reformats each line.

The code looks fine while being entered but is harder to read when listed.
When you limit your remarks to 22 characters, they are easier to read.

8. The SPEED Instruction

Instruction SPEED= number

Example SPEED= 200
The speed at which I normally list programs.

Purpose The SPEED instruction is used to slow the computer down . I have found the instruc­
tion helpful in two situations. First, when listing a program, you may use the speed
instruction to slow down the rate at which the computer displays the instructions ,
making the code easier to read. Second, when writing programs which display
information on the screen, you may use the SPEED instruction to slow down the
rate at which the information is displayed . This may make it easier for the user to
read the information and can produce a visual effect which catches the eye of the
operator.

Rules for Use 1. The number used in conjunction with the SPEED instruction may range from
0 to 255 . The slowest speed is 0, with increasing rates up to the normal speed
of 255.

2. Once the speed is set to a rate other than 255 , the computer remains at the
slower rate until either another SPEED instruction is executed or the computer
is RESET (turned off and then back on) .

3. The SPEED instruction affects only the rate at which data is transmitted to the
output devices (that includes the screen, printer, and disk drives) .

Illustration Key in and run the following program, or run the program by entering
of the Rules

RUN SPEED SAMPLE1 < RETURN >

(Remember, if you are keying in the program, do not enter the space following the
keyword REM.)

49

50 I Applesoft BASIC Toolbox

NEW
1000 REM SPEED SAMPLE!
1010 HOME
1020 REM 1234567890123456789012
1030 REM
1040 REM USE THE SPEED INST. TO
1050 REM SLOW DOWN THE COMPUTER
1060 REM TO HELP VIEW WHAT IS
1070 REM HAPPENING ON SCREEN.
1080 REM
1090 AANUMBER% = 255
1100 SPEED= AANUMBER%
1110 PRINT ">>>";
1120 AANUMBER% = AANUMBER% - 1
1130 IF AANUMBER% = 20 THEN PRINT: PRINT TAB(15)"SLOW ISN'T

IT": PRINT
1140 IF AANUMBER% > -1 GOTO 1100
1150 SPEED= 255
1160 PRINT
1170 PRINT "THAT'S ALL FOLKS!"
1180 END

The program starts out displaying the greater than sign at a rate of 255 (fastest
rate) and each time through the loop slows down by a value of 1 until the rate of 0
(slowest rate) is finally reached.

1090 The counter AANUMBER% is given a starting value of 255.

1100 Line 1100 sets the speed to the current value of AAN UM BER%. The first time
through the loop AANUMBER% contains 255. The second time through the loop
AANUMBER% contains a value of 254. The third time through the loop AANUM­
BER% contains a value of 253, etc. See line 1120, which subtracts 1 from AAN­
UMBER% each time through the loop.

1110 This line prints the greater than signs, which soon fill the screen.

1120 The current value of AANUMBER% is decreased by 1 each time through the loop.
Since AANUMBER% is used by the SPEED instruction oii line 1100, the computer
continues to slow down.

1130 The IF instruction was put in just for the fun of it. You need a break from the
monotony of all the greater than signs.

1140 The IF instruction checks to see when AANUMBER% has reached a value of -1.
When -1 is reached the program ends. Do not try to set the SPEED instruction to
a value less than 0.

The SPEED Instruction / 51

1150 The SPEED instruction resets the speed of the computer back to its normal level. If
this instruction had not been included you would have had trouble continuing to use
your system at a SPEED of 0.

Now that you have seen how the instruction works, let's look at the rules.

Rule 1. The number used to set the SPEED instruction must range from 0 to 255.
Using the immediate execution mode, type in the following instruction and see

what happens. Enter

SPEED = -1 <RETURN>

(remember in the immediate execution mode no statement numbers are used).
You will receive an

?ILLEGAL QUANTITY ERROR

message. The computer will not accept the value less than 0 for the SPEED instruc­
tion. Now try it again with SPEED = 256 and see what happens. You will get
another ?ILLEGAL QUANTITY ERROR message.

Rule 2. Once the speed is set to a rate other than 255, the cpmputer remains at the slower
rate until either another SPEED instruction is executed or the computer is RESET
(turned off and then back on).

Reload the SPEED SAMPLE1 program by keying in

LOAD SPEED SAMPLE1 <RETURN>

Before running the program, read the following paragraph.
While the program is running, position your fingers over CONTROL-C. When

the message SLOW ISN'T IT comes on, press the CONTROL-C. The computer will
beep and indicate that a BREAK in the program has occurred. After you have used
CONTROL-C to cancel the program, type in LIST and see how slowly the computer
lists the program.

Now type in

RUN
CONTROL-C
LIST

<RETURN>
(while message is being displayed)

<RETURN> (after canceling the program)

To reset the speed enter

SPEED= 255

52 / Applesoft BASIC Toolbox

Rule 3 The SPEED instruction affects only the rate at which data is transmitted to the screen,
printer, and disk drives.

Key in and run the following program, or run the program by entering

RUN SPEED SAMPLE2

NEW
1000 REM SPEED SAMPLE2
1010 HOME : SPEED= 255
1020 PRINT "PRESS ANY KEY AND SEE HOW FAST THE"
1030 PRINT" COMPUTER COUNTS TO 100.": PRINT GET Xl$
1040 AACOUNTER = AACOUNTER + 1
1050 IF AACOUNTER < 100 GOTO 1040
1060 PRINT "DONE COUNTING TO 100": PRINT : PRINT
1070 SPEED= 0
1080 PRINT "PRESS ANY KEY AND SEE HOW FAST THE"
1090 PRINT" COMPUTER COUNTS TO 100.": PRINT GET Xl$
1100 ABCOUNTER = ABCOUNTER + 1
1110 IF ABCOUNTER < 100 GOTO 1100
1120 PRINT "DONE COUNTING TO 100"
1130 SPEED= 255
1140 END

Did you notice that the computer took the same length of time to do the arith­
metic and only the speed of the display was affected?

9. Assigning Variable
Names

Format String Names: AAname$ Must end with dollar sign
Integer Names: AAnameo/o Must end with percent sign
Real Names: AAname Cannot end with $ or % sign

Example String Name:
Integer Name:
Real Name:

AANAME$ ="JOHN JONES"
AANUMBERo/o = 45
AANUMBER = 45.5

Rules for Use 1. Applesoft allows you to use up to 238 characters in a variable name but only
recognizes the first two characters. That means you can use long names to
describe variables, but Applesoft only recognizes the first two characters. The
remaining characters serve only to document the program so you can remember
how the variable is used.

2. Variable names must start with an alphabetic character.
3. A variable name may NOT contain embedded reserve words such as GOTO,

PRINT, LIST, GET, PUT, NOT, OR, AND, etc.
4. Names ending with a dollar sign ($) are treated as alphanumeric variables or

string variables. String variables may contain any character, with each character
taking 1 byte of memory.

5. Names ending with a percent sign(%) are treated as integer variables. Integer
variables may only contain whole numbers between - 32767 and + 32767.
The values are stored in binary taking up 2 bytes for each variable.

6. Names ending with characters other than a percent sign or a dollar sign are
treated as real numbers. Real variables may contain any number from

-100000000000000000000000000000000000000 to
+100000000000000000000000000000000000000.

Although the computer keeps track of the decimal to 38 places, only the nine
most significant digits are stored in memory.

7. When real numbers have a fractional value between -.01 and .01 they are
expressed in scientific notation.

53

54 / Applesoft BASIC Toolbox

Illustration The following illustrates the primary rules for assigning variable names.
of the Rules

Rule 1. Only the first two characters of the variable name are recognized by Applesoft.
Key in and run the following program, or run the program by entering

RUN NAMES SAMPLE1 <RETURN>

NEW
1000 REM NAMES SAMPLE!
1010 HOME
1020 REM
1030 COUNTER! = 25
1040 COUNTER2 = 50
1050 PRINT "COUNTER 1 ";COUNTER!
1060 PRINT "COUNTER 2 ";COUNTER2
1070 END

The following will occur:

1030 Line 1030 sets COUNTER1 to a value of 25. As far as the computer is concerned,
the instruction actually reads

1030 co= 25

1040 COUNTER2 is set to a value of 50. Notice COUNTER1 and COUNTER2 both start
with the same two characters. As far as the computer is concerned, the instruction
actually reads

1040 co= 50

1050 Line 1050 prints the current value in COUNTER1, which is 50. You might think the
value should be 25, since line 1030 sets COUNTER1 equal to 25. But look at line
1040, which sets the field CO to a value of 50.

1060 Line 1060 prints the current value in COUNTER2, which is 50.
You consider COUNTER1 and COUNTER2 two distinct variables but both start

with the same two characters. The computer treats these two names as one variable
called CO.

To correct the program you have to start over with new variable names.
Key in and run the following program, or run the program by entering

RUN NAMES SAMPLE2 <RETURN>

NEW
1000 REM NAMES SAMPLE2
1010 HOME
1020 REM
1030 AACOUNTERl = 25
1040 ABCOUNTER2 = 50
1050 PRINT "COUNTER 1 ";AACOUNTERl
1060 PRINT "COUNTER 2 ";ABCOUNTER2
1070 END

The following will occur:

1030 The variable AA is set to a starting value of 25.

1040 The variable AB is set to a starting value of 50.

Assigning Variable Names I 55

1050 Line 1050 prints a descriptive heading followed by the current value in the variable
AA.

1060 Line 1060 prints a descriptive heading followed by the current value in the variable
AB.

Hopefully you see the importance of creating variable names in which the first
two characters are unique.

The format used for this book consists of a two character prefix followed by a
descriptive name. The two character prefix is normally assigned in an alphabetic
sequence of AA, AB, AC, AD, AE, etc. The purpose of the two character prefix is to
ensure that each variable name within the program is unique.

Rule 2. Variable names must start with an alphabetic character.
If you attempt to use a name which starts with a number, Applesoft treats the

number as a separate entry. Applesoft interprets the entry 1 ABC as the number 1
followed by the variable ABC.

Rule 3. The variable name may not contain embedded reserve words such as GOTO, PRINT,
GET, LIST, PUT, NOT, OR, AND, etc.

A reserve word consists of any name which Applesoft uses as part of its
instruction set. Since these words have a special meaning to the Applesoft inter­
preter, you can NEVER use any of the words as variable names or even have the
words embedded within the names you create.

Key in the program shown below, or load and list the program by entering

LOAD NAMES SAMPLE3 <RETURN>
LIST <RETURN>

56 I Applesoft BASIC Toolbox

NEW
1000 REM NAMES SAMPLE3
1010 HOME
1020 REM
1040 HAND$ = "LEFT"
1050 NORTH$ = "UP"
1060 FORTH = 4
1070 FIFTH = 5
1080 END

When you list the program you will find the following occurs:

1040 H AND $ = "LEFT"
The variable name HAND$ comes out HAND$ because AND is an Applesoft reserve
word and cannot be part of a variable name.

1050 N OR TH$ = "UP"
The variable name NORTH$ comes out N OR TH$ because OR is an Applesoft reserve
word and cannot be part of a variable name.

1060 F OR TH = 4
The variable name FORTH lists out as F OR TH because OR is an Applesoft reserve
word and cannot be part of a variable name.

1070 FIFTH= 5
The variable FIFTH lists out as FIFTH because IF is an Applesoft reserve word and
cannot be part of a variable name.

Attempt to run the program and see what occurs.
You will get a syntax error on line 1040. Since the variable name is broken

into several parts, the instruction does not conform to any format that Applesoft
can recognize. If Applesoft cannot interpret an instruction, it stops the program on
that line of code and gives you the error message

SYNTAX ERROR ON LINE number

It is up to you to analyze why the syntax error occurred and to correct the
problem.

In this case you have to create new variable names.
Before continuing you should make sure you understand the following definitions.
Variable: Field Name: Data Name: These terms are synonymous. They refer

to the use of symbolic names (another synonym), to which the computer assigns an
area of memory. When you use the symbolic name, the computer locates its memory
address and uses the value in the area as directed by the instruction. For example,

AANUMBER = AANUMBER + 1

Assigning Variable Names I 57

The computer locates the area of memory allocated to AANUMBER, increments the
value in that area by 1, and then stores the new value back in the same area of
memory.

Alphanumeric variable: String variable: An alphanumeric variable may contain
any symbol you can key into the computer. The variable may contain both alphabetic
and numeric symbols. For example

AASTREET$ = "123 FIRST STREET"

The variable AASTREET$ contains both numbers 123 and letters FIRST.
Constant: A constant is a self-defining term which remains the same during the

execution of the program. For example, in the instruction

AANUMBER = AANUMBER + 1

The value 1 is a constant (not a symbolic name) and cannot be changed during
execution of the program. There are two types of constants used in programming:
numeric and alphanumeric. Numeric constants consist of the symbols plus (+),
minus (-), 0 through 9, and the decimal point and are not enclosed within quotation
marks. Alphanumeric constants, or string constants, consist of any character or
group of characters enclosed within quotations marks "123 FIRST STREET'.

Creating workable data names (variables) is not difficult.

1. Make up a meaningful name and assign it a two character prefix.
2. Check to see if you can recognize any embedded keywords. If you find an

embedded keyword, change the characters to eliminate it, but try to keep a
meaningful name.

3. As a sure check, code the name in a statement and LIST the statement. If the
variable name is listed exactly as you typed it, then the name does not contain
any embedded keywords. If the computer inserts blanks, you have used a
reserve word and must try again.

Rule 4. Names ending with a dollar sign($) are treated as alphanumeric variables, or string
variables.

More rules for string variables:

a. String variables must end in a dollar sign.
b. Strings constants must be enclosed within quotation marks.
c. String variables cannot be used for arithmetic even if the variable contains only

numeric characters.
d. When using the LET (=) instruction, string variables may only be used with

other string variables or string constants.

58 / Applesoft BASIC Toolbox

Key in the following program and attempt to run it, or attempt to run the
program by entering

RUN NAMES SAMPLE4 <RETURN>

NEW
1000 REM NAMES SAMPLE4
1010 HOME
1020 REM 1234567890123456789012
1030 REM
1040 REM STRING VARIABLES CAN
1050 REM CONTAIN ANY CHARACTER
1060 AANAME$ = "ALPHANUMERIC STRINGS ARE ENCLOSED"
1070 ABNAME$ = "WITHIN QUOTES. "
1080 PRINT AANAME$
1090 PRINT ABNAME$
1100 REM
1110 REM CANNOT DO ARITHMETIC
1120 REM WITH STRING VARIABLES
1130 REM EVEN IF THEY CONTAIN
1140 REM NUMBERS
1150 ABNUMBER$ = "123.45"
1160 ABNUMBER$ = ABNUMBER$ + 1
1170 PRINT ABNUMBER$
1180 PRINT ABNAME$
1190 REM
1200 REM ONLY ALPHANUMERIC
1210 REM STRINGS CAN BE USED
1220 REM WITH STRING VARIABLES
1230 ACDTE$ = 103067
1240 ACDTE$ = "10/30/67"
1250 PRINT "ACDTE$ = ";ACDTE$
1260 END

The following will occur when you attempt to run the program:

1060-1090 The variables AANAME$ and ABNAME$ are set equal to the string constants fol­
lowing the equal sign. The contents of the two variables will be displayed by the
PRINT instructions on lines 1080 and 1090.

Notice that the string names end in a dollar sign, the first two characters are
different, and the alphanumeric constants are enclosed within quotation marks. The
alphanumeric constant was divided into two parts so it could be displayed on two
separate lines.

1150 The string variable ABNUMBER$ is set equal to the string constant "123.45". Since
the number is enclosed within quotation marks, it is considered a string constant.
The computer stores the value in character format, taking up 6 bytes of memory.
By character format I mean that the symbols 1, 2, 3, point(.), 4, and 5 are stored

Assigning Variable Names I 59

us~g a binary pattern that the computer assigns to characters which are to be
displayed or read from the keyboard. The binary pattern for printing the characters
123.45 is not the same as the binary pattern used by the computer for representing
the number 123.45 in arithmetic operations. Since the string variable is stored in
character format, the computer cannot use the variable for arithmetic operations.

Did you notice the variable ABNUMBER$ and ABNAME$ both start with the
same two characters? Guess what happens to the old value in ABNAME$ when
ABNUMBER$ is set equal to "123.45"? The old value is gone, and both ABNUM­
BER$ and ABNAME$ refer to the value "123.45". Remember, you may think of the
variables as two separate areas in memory, but since they start with the same two
characters, the computer treats the two names as one variable called AB$.

Applesoft allows you to use names which start with the same two characters if
the names represent different types of variables. That is, the names can start with
the same two letters if one name represents a string name (AANAME$), one an
integer name (AANAME%), and one a real name (AANAME).

1160 If you try to run the program, you will get the following error message for line
1160:

?TYPE MISMATCH ERROR IN 1160

The computer is trying to tell you it will not allow you to mix apples and oranges.
You cannot add the numeric 1 to a string variable. In fact, you cannot do any
arithmetic with string variables. To correct the program, delete the invalid line by
entering

1160 <RETURN>

At this point the screen should contain the following lines:

ALPHANUMERIC STRINGS ARE ENCLOSED
WITHIN QUOTES.

?TYPE MISMATCH ERROR IN 1160
>1160

Now attempt to run the program again by entering

RUN <RETURN>

Don't worry if you get another error message. Keep reading.

60 / Applesoft BASIC Toolbox

1170-1180 Lines 1170 and 1180 are provided to show you that the computer treats the two
names ABNAME$ and ABNUMBER$ as one variable. On your screen you should
have four lines displayed followed by an error message. The first two lines show
the contents of variables AANAME$ and ABNAME$ prior to line 1150. The second
two lines show the contents of ABNUMBER$ and ABNAME$ after the execution of
line 1150.

1230 On your second attempt to run the program you will get the following error message:

?TYPE MISMATCH ERROR IN 1230

Line 1230 causes the error message because in addition to not being able to do
arithmetic with string variables you cannot set a string variable equal to a numeric
constant. To correct the program delete the line by entering

1230 <RETURN>

At this point the screen should contain the following lines.

ALPHANUMERIC STRINGS ARE ENCLOSED
123.45
123.45

?TYPE MISMATCH ERROR IN 1230
>1230

Run the program again; this time you should not get any errors.

1240 The variable ACDTE$ is set equal to a string constant representing the date October
30, 1967. This is mainly just another example of working with strings; but do you
know why the name ACDTE$ was used instead of ACDATE$?

If so, skip on to the next example; if not, key in the following:

NEW
HOME
1000 ACDATE$ = "10/30/67"
LIST

The computer separates ACDATE$ into ACD AT E$. The word AT is an Apple­
soft reserve word and cannot be used within variable names. To correct this and
still have a fairly descriptive name, the A was dropped.

Assigning Variable Names I 61

Rule 5. Names ending with a percent sign (%) are treated as integer variables. Integer
variables may only contain whole numbers between - 32767 and + 32767.

Key in the following program and run it, or run the program by entering

RUN NAMES SAMPLE5 <RETURN>

NEW
1000 REM NAMES SAMPLES
1010 REM 1234567890123456789012
1020 HOME
1030 REM
1040 REM INTEGERS RANGE BETWEEN
1050 REM -32767 AND +32767
1060 REM
1070 AAMINUS% = - 32760
1080 ABPLUS% = + 32760
1090 PRINT "LOW VALUE","HIGH VALUE"
1100 AAMINUS% = AAMINUS% - 1
1110 ABPLUS% = ABPLUS% + 1
1120 PRINT AAMINUS%,ABPLUS%
1130 GOTO 1100

1070 The variable AAMINUS% is set to a starting value of - 32760. Since the objective
is to show you that integers cannot contain a number less than - 32767, a number
close to the limit was chosen so only a few lines would have to be displayed on the
screen.

1080 The variable ABPLUS% is set to a starting value of + 32760. Again, since the
objective is to show you that integers cannot contain a number greater than 32767,
a number close to the limit was chosen.

1100 The variable AAMINUS% is set equal to the current value of AAMINUS% minus 1.
The first time through the instruction, AAMINUS% contains - 32760 (see line 1070).
After execution of the instruction, AAMINUS% contains - 32761.

First pass: AAMINUS% = - 32760 - 1
Second pass: AAMINUS% = - 32761 - 1
Third pass: AAMINUS% = - 32762 - 1
etc. (see screen)

-32761
-32762
-32763

1110 The variable AB PLUS% is set equal to the current value of AB PLUS% plus 1. This
is the same format as line 1100, except that instead of counting down with a negative
1, the computer is counting up with a positive 1.

1120 The PRINT instruction displays the contents of the variables AAMINUS% and
ABPLUS%.

62 / Applesoft BASIC Toolbox

1130 The GOTO instruction tells the computer to go back to line 1100 and start over from
that point.

The program continues counting (looping) until the variable AAMINUS% attempts
to exceed the value of - 32767. Once - 32767 is exceeded, the computer displays
the following error message:

?ILLEGAL QUANTITY ERROR IN 1100

So the rule for using an integer variable is: If there is a chance that the value
will exceed + 32767 or - 32767, do not use an integer name.

Before leaving integer variables let's look at one more example of how integer
variables work when used with real numbers or in arithmetic operations.

When an integer name is used to the left of the equal sign, the answer is
truncated to a whole number and placed in the integer variable.

Key in the following program and run it, or run the program by entering

RUN NAMES SAMPLES <RETURN>

NEW
1000 REM NAMES SAMPLES
1010 HOME
1020 REM
1030 REM 1234567890123456789012
1040 REM IF INTEGER NAMES ARE
1050 REM USED TO THE LEFT OF
1060 REM EQUAL SIGN THE ANSWER
1070 REM WILL BE TRUNCATED TO
1080 REM A WHOLE NUMBER AND PUT
1090 REM INTO THE INTEGER FIELD
1100 REM
1110 AAWHOLE% = 1
ll '20 AAREAL = 1
1130 ABLINE% = 1
1140 REM
1150 PRINT "LINE" TAB(8)"INTEGER" TAB(20)"REAL"
1160 AAWHOLE% = 1.5 * AAWHOLE%
1170 AAREAL = 1.5 * AAREAL
1180 PRINT TAB(2)ABLINE% TAB(8)AAWHOLE% TAB(20)AAREAL
1190 AAWHOLE% = AAWHOLE% t 1
1200 AAREAL = AAREAL t 1
1210 ABLINE% = ABLINE% t 1
1220 IF ABLINE% < 22 GOTO 1160
1230 END

1110-1130 The program begins by setting all three variables equal to 1. The variable AA WHOLE%
is used to illustrate integers. The variable AAREAL is used to illustrate real numbers.
And the variable ABLINE% is used to print a line number on the screen so you and
I will have a common point of reference in the narrative which follows.

Assigning Variable Names I 63

1150 This prints a heading at the top of the screen to identify each column of numbers.

1160 The current value in AAWHOLE% is multiplied by 1.5, and the answer is truncated
to a whole number before being placed back into AAWHOLE%.

1170 The current value in AAREAL is multiplied by 1.5, and the answer is placed back
into AAREAL.

1180 After the new values are computed, the three values are printed.

1190-1210 Just for the fun of it, all three variables are incremented by 1. There is really no
point in incrementing AAWHOLE% and AAREAL other than to show you that real
and integer numbers may be mixed on the right side of an equation.

1220 The IF instruction provides a way to stop the program. I have arbitrarily decided to
stop the program when the value in ABLINE% becomes equal to 22 (close to a full
screen).

If you have not run the program, run it now and see if you get the same results
as shown in the following screen:

LINE INTEGER REAL
1 1 1.5
2 3 3.75
3 6 7 .125
4 10 12.1875
5 16 19. 71125
6 25 31.171875
7 39 48.2578125
8 60 73.8867188
9 91 112.330078
10 138 169.995117
11 138 256.492676
12 313 386.239014
13 471 580.85852
14 708 872.787781
15 1063 1310.68167
16 1596 1967.52251
17 2395 2952.78376
18 3594 4430.67564
19 5392 6647.51346
20 8089 9972.77019
21 12135 14960.6553

64 / Applesoft BASIC Toolbox

The LINE numbers displayed on the screen are used in the following explana­
tion. There are several points I would like you to understand about the numbers
which have been displayed.

Line 1 LINE INTEGER REAL
1.5

Integer numbers do not contain decimal positions. Real numbers may contain dec­
imal positions.

Line 9 LINE
9

INTEGER
91

REAL
112.330078

Line 13

When printing numbers Applesoft does not automatically align the values printed
according to decimal points.

For real numbers only the nine MOST SIGNIFICANT digits are kept. Notice
that as the number of digits in front of the decimal increases, the number of digits
behind the decimal decreases.

LINE
13

INTEGER
471

REAL
580.85852

Look closely at the real number. Only eight digits are printed. Applesoft automati­
cally suppresses any leading or trailing zeros.

Rule 6. Names which end in any character other than a percent sign or dollar sign are treated
as real numbers. Real numeric variables may contain any number from

-100000000000000000000000000000000000000 to
+100000000000000000000000000000000000000.

Even though there are 38 zeros following the leading 1, the APPLE cannot
actually store that many digits. The APPLE can store only the nine most significant
digits, but keeps track of where the decimal is located, up to + 38 or - 38 positions.

Key in the following program and run it, or run the program by entering

RUN NAMES SAMPLE7 <RETURN>

Look over the code and try to get an idea of what each line does before reading
the detailed explanation of each instruction.

NEW
1000 REM NAMES SAMPLE7
1010 HOME
1020 REM
1030 REM ONLY 9 SIGNIFICANT
1040 REM DIGITS ARE STORED FOR
1050 REM EITHER WHOLE OR
1060 REM FRACTIONAL NUMBERS.
1070 REM
1080 AAREAL = .999999999
1090 ABLINE% = 1
llOO PRINT "LINE" TAB(8)"REAL"
lllO SPEED= 150
1120 PRINT ABLINE% TAB(8)AAREAL
1130 AAREAL = AAREAL * 10
1140 ABLINE% = ABLINE% + 1
ll50 GOTO ll20
ll60 END

Assigning Variable Names I 65

Since the program terminated with an error and the SPEED instruction is used
within the program, enter the following instruction to get the computer back to its
normal speedy self:

SPEED= 255 <RETURN>

1080 The field AAREAL is set equal to the fractional value .999999999. The number was
chosen for a couple of reasons. First, it shows you that only the nine most significant
digits are kept. Second, it shows you a problem with computers when you use binary
arithmetic. When you do arithmetic with binary numbers, sometimes a small numeric
error occurs. The error, which is common to all computers using binary arithmetic,
is referred to as a rounding error.

1090 The variable ABLINE% is used as a counter to provide a line number for
the information being displayed. Line 1090 assigns the variable an initial value
of 1.

1100 This line prints the headings for the two variables to be displayed. The first column
is a line number, which will provide you with a reference point in the following
discussion. The second column shows the real number, which illustrates the rules
being discussed.

1110 To make it easier for you to see the information as it is displayed on the screen, the
SPEED instruction is used to slow down the computer. Since the program ends
abnormally, you need to reset the SPEED.

66 / Applesoft BASIC Toolbox

1120 This line prints the current contents of ABLINE% and then tabs over to column 8 of
the screen before printing the contents of AAREAL.

1130 Line 1130 gives a new value to the variable AAREAL. Each time the instruction is
executed, the current value of AAREAL is multiplied by 10 and the new answer
replaces the old value in AAREAL. Essentially, the decimal is moved one position
to the right each time the instruction is executed.

1140 The instruction increments the line counter and places the new value back into the
original variable.

1150 The GOTO instruction sends the logic back to line 1120, where the contents of the
two fields ABLINE% and AAREAL are to be printed.

If you have not run the program, run it now and watch the values which are
displayed. Since there are more than 24 lines to be displayed, not all the data will
fit on the screen at one time.

The last of the screen appears as follows:

31 9 . 99999999E + 29
32 9 . 99999999E + 30
33 9. 99999999E+31
34 9. 99999999E+32
35 9 . 99999999E + 33
36 9 . 99999999E + 34
37 9 . 99999999E + 35
38 9. 99999999E + 36
39 1E+38

?OVERFLOW ERROR IN 1140

Let's look at some of the lines displayed in more detail.

LINE REAL
1 .999999999
2 10

When you run the program the first line prints out .999999999 as expected.
The second line is supposed to display 10 * .999999999. The computer should display
9.99999999 but instead prints out 10. The computer circuitry decided the value is

Assigning Variable Names I 67

close enough to 10 and rounded it off. At line 14 you see that the computer changes
its mind and brings back the 9s. These mistakes are called rounding errors and are
caused because of the way the computer stores numbers.

LINE REAL
9 100000000

10 1E+09
11 1E+10
12 1E+ 11
13 1E+ 12
14 9.99999999E + 12
15 9.99999999E + 13

Lines 9 and 10 show a change in the way the real number is displayed. Once
the number of positions to the left or right of the decimal is greater than nine, the
number is converted to scientific notation. When a number is displayed in scientific
notation, the value is represented using the format of

n.nnnnnnnnE + ee

The numeric portion of the number is always displayed with one whole digit in
front of the decimal followed by up to eight digits after the decimal.

The E always separates the number from the exponent and is followed by either
a plus or minus sign. If a plus sign follows the E, then the decimal is to be moved
to the right ee positions.

1E+09
9.99999999E + 12

1000000000.
9999999990000.

Remember that the computer can store only the nine most significant digits.
If a minus sign follows the E, the decimal is moved to the left as indicated by

the exponent ee.

1E-09
9.99999999E - 12

.000000001

.000999999999

Look closely at the way the decimal moves:

9.99999999E + 12
9.99999999E - 12

9999999990000. (Results in 13 digits)
.000999999999 (Results in 12 digits)

The last few lines on the screen point out what happens when you exceed the limits
of a real variable.

68 f Applesoft BASIC Toolbox

LINE REAL
38 9.99999999E + 36
39 1E+38

?OVERFLOW ERROR IN 1140

The computer can keep track of the decimal down to - 38 positions or up to
+ 38 positions. When you attempt to use a number larger than 38 decimal positions
to the right or left, the program cancels with an overflow error message.

Run the program as many times as needed until you feel you understand that
the computer

1. Only stores the nine most significant digits
2. Converts the number to scientific notation if it exceeds nine significant digits

to the left or right of the decimal

Rule 7. When real numbers have a fractional value between - .01 and + .01, they are
expressed in scientific notation.

You should already have a fairly good idea of what scientific notation is, but
if you want to see how it is used with very small numbers or negative numbers, run
the following program. Enter

RUN NAMES SAMPLES <RETURN>

NEW
1000 REM NAMES SAMPLES
1010 HOME
1020 REM 1234567890123456789012
1030 REM
1040 REM NUMBERS BETWEEN -.01
1050 REM AND +.01 ARE SHOWN IN
1060 REM SCIENTIFIC NOTATION.
1070 REM
1080 AAPLUS = 1
1090 ABMINUS = - 1
llOO ACLINE% = 1
lllO PRINT "LINE" TAB(8)"PLUS" TAB(25)"MINUS"
ll20 REM
1130 PRINT ACLINE% TAB(8)AAPLUS TAB(25)ABMINUS
1140 AAPLUS = AAPLUS * .1
1150 ABMINUS = ABMINUS * .1
1160 ACLINE% = ACLINE% + 1
1170 IF ACLINE < 21 GOTO 1130
ll80 END

Assigning Variable Names I 69

The program displays the following screen:

LINE
1
2
3
4

LINE PLUS MINUS
1 1 -1
2 .1 - .1
3 .01 -.01
4 lE-03 -lE-03
5 lE-04 -lE-04
6 lE-05 -lE-05
7 lE-06 -lE-06
8 lE-07 -lE-07
9 lE-08 -lE-08
10 lE-09 -lE-09
11 lE-10 -lE-10
12 lE-11 -lE-11
13 9.99999999E-13 -9. 99999999E-13
14 9.99999999E-14 -9. 99999999E-14
15 9.99999999E-15 - 9. 99999999E-15
16 9.99999999E-16 -9. 99999999E-16
17 9.99999999E-17 - 9. 99999999E-l 7
18 9.99999999E-18 -9. 99999999E-18
19 9.99999999E-19 - 9. 99999999E-19
20 9.99999999E-20 -9. 99999999E-20

Lines l through 4 illustrate Rule 7:

PLUS

.1

.01
1E-03

MINUS
-1
-.1
-.01
-1E-03

The numbers 1, .1, and .01 are displayed correctly, but when the number
becomes a decimal value between - .01 and + .01, the value is displayed in sci­
entific notation.

LINE
12
13

The computer makes another rounding error between line 12 and line 13.

PLUS
1E-11
9.99999999E-13

MINUS
-1E-11
- 9.99999999E-13

10. The INPUT Instruction

70

INPUT: Format 1

Instruction INPUT VN1,VN2,VN3,VN4, ...
(where VN = Variable Name)

Example INPUT AAEMPNUM%,ABEMPNAME$,ACHOURL YWAGE

The example INPUT instruction reads three values from the screen. The first value
is a whole number (percent sign) representing the EMPioyee's NUMber. The second
value is a string variable (dollar sign) and contains the EMPioyee's NAME. The third
variable is a real number (no percent or dollar sign) and contains the HOURLY
WAGE earned by the employee.

In response to the question mark displayed by the INPUT instruction, the oper­
ator keys in three variables as follows:

?1234,JOHN SMITH,5.75

The leading question mark is generated by the INPUT instruction. The whole
number 1234 corresponds to the variable AAEMPNUM%. JOHN SMITH is a string
value (alphanumeric value) matching the variable ABEMPNAME$. The value 5.75
is a real number corresponding to the variable ACHOURL YWAGE.

Purpose This format of the INPUT instruction accepts one or more input values from the
device being used for entering information (keyboard or disk).

INPUT: Format 2

Instruction INPUT "string to be displayed";VN1,VN2,VN3, VN4,VN5, ...
(where VN = Variable Name)

The INPUT Instruction / 71

Example INPUT "ENTER YOUR DATE OF BIRTH IN MM/DD/YY FORMAT ";AADTE$
The message ENTER YOUR DATE OF BIRTH IN MM/DD/YY FORMAT is dis­

played on the screen. The cursor([) is positioned immediately following the mes­
sage. In response, the operator keys in the date as requested. For example, 02/11/
47 would be keyed in for February 11, 1947.

Purpose The second format of the INPUT instruction combines the display feature of the
PRINT instruction with the data entry operation of the INPUT instruction.

Rules for Use 1.
(General) 2.

3.

The keyword INPUT must be followed by one or more names.
The type of data keyed in must match the type of variable name defined; i.e.,
numeric characters for numeric variables and alphanumeric characters for string
variables.
The number of variables keyed in must match the number of variables defined
in the INPUT instruction.

4. When keying in the data, each variable must be separated by a comma. No
variable may contain an embedded comma.

5. Only one string constant may be printed.
6. The string constant must be coded immediately after the keyword INPUT, and

the constant must be followed by a semicolon.

Illustration The following illustrates the primary rules for the INPUT instruction.
of the Rules

Rule 1. The keyword INPUT must be followed by one or more names.
Key in the following program~

NEW
1000 HOME
1010 INPUT AANUMBER
1020 PRINT AANUMBER
1030 END

After keying in the program run it: and enter the data as indicated below.
Once you have entered RUN and pressed RETURN the following occurs.

1. A question mark appears in the upper left corner of the screen. The question
mark is generated by the INPUT instruction unless the display option is used.
The cursor (]) is positioned immediately following the question mark.

72 I Applesoft BASIC Toolbox

2. Since AANUMBER represents a real number, which may contain a decimal
point use only the digits 0 through 9 and the decimal point, in response to the
question mark. For example, key in any one of the following

123
or 123.45
or 9876543.21

3. The number you key in will be displayed on the second line of the screen.

In order to further understand the use of the INPUT instruction, run through
the following exercises using the program just entered.

Exercise 1: Using the Plus Sign

1. Enter

RUN <RETURN>
+ 123.45 <RETURN>

2. Notice that when the number is displayed, the plus sign is not shown. Positive
numbers are not shown with a sign.

Exercise 2: Using the Minus Sign

1. Enter

RUN <RETURN>
-123.45 <RETURN>

2. Notice that when the number is displayed, a leading minus sign is included.
Applesoft recognizes either leading plus or minus signs but only prints negative
signs.

Exercise 3: Suppression of Zeros

1. Enter

RUN <RETURN>
123.0 <RETURN>

The INPUT Instruction I 73

2. Notice that the decimal and the 0 are not shown. Applesoft drops off nonsig­
nificant digits. Nonsignificant digits consist of any leading or trailing zeros
which are not needed for specification of a numeric value. For example, the
number 000200.0300 has three leading nonsignificant zeros and two trailing
nonsignificant zeros. The two zeros following the 2 and the one zero preceding
the 3 are position holders and must be included to represent the number cor­
rectly. The number would print out as

200.03

Exercise 4: Entering a Value of Zero

1. Enter

RUN <RETURN>
000.00 <RETURN>

2. Notice that for a value of zero, only one digit is printed no matter how many
zeros were entered.

Try entering some numbers on your own until you are comfortable with how
Applesoft treats numeric values entered with the INPUT instruction. Just enter RUN
and then key in your number.

Rule 2. The type of data keyed in must match the type of name defined; i.e., numeric
characters for numeric variables and alphanumeric characters for string variables.

Use the program you keyed in earlier to see what happens when you accidentally
enter alphabetic data when the computer is expecting numeric data.

Exercise 5: Entering Alphabetic Data for Numeric Variables

1. Enter

RUN <RETURN>

2. A question mark will appear in the upper left corner. In response to the question
mark, key in the value

ABC <RETURN>

74 I Applesoft BASIC Toolbox

3. The letters you key in will be rejected because the program is expecting a number
to be entered. Applesoft will reject the letters and display the message

?REENTER

The program will continue to reject any nonnumeric value you key in.
4. Key in a valid number to end the program.

Now modify the program you have keyed in to accept a string value. This can
be done by typing in the following two statements:

1010 INPUT AASTRING$
1020 PRINT AASTRING$

The two statements keyed in replace the previous statements with the same line
numbers. To see that the changes were made correctly, type in

LIST <RETURN>

Exercise 6: Entering Alphanumeric Data

1. Enter

RUN <RETURN>

2. In response to the question mark, type in your name.
3. Notice that your name is printed exactly as you keyed it.

Exercise 7: Entering Numeric Values for String Variables

1. Enter

RUN <RETURN>
+12.34 <RETURN>

2. Notice that the number is printed exactly as you keyed it (including the plus
sign). Applesoft treats the value entered as a string (alphanumeric value) and
not as a number. You cannot perform arithmetic operations with a string.

Exercise 8: Nonsigniftcant Digits in String Variables

1. Enter

RUN <RETURN>
000200.0300 <RETURN>

The INPUT Instruction / 75

2. Since the number is treated as a string variable, it will be printed exactly as
you entered it with each character of the string talcing up one memory location.
Again, you cannot perform arithmetic operations with a string. String numeric
values may be coverted to numeric format by using the VALue function (see
p. 149).

Rule 3. The number of variables keyed in must match the number of variables defined on
the INPUT instruction.

Key in the following program to be used with the exercises below.

NEW
1000 HOME
1010 INPUT AANUMBER,ABNUMBER,ACNUMBER
1020 PRINT AANUMBER,ABNUMBER,ACNUMBER
1030 END

Exercise 9: Entering Multiple Numeric INPUT Variables

1. Enter

RUN <RETURN>
123,456,789 <RETURN>

2. Notice that after pressing return, all three numbers are displayed on one line
with spaces separating each number. Applesoft automatically tabs to certain
columns on the screen unless otherwise instructed.

Exercise 10: Entering Too Few Variables

1. Enter

RUN <RETURN>

76 / Applesoft BASIC Toolbox

2. In response to the question mark, type in only two numbers separated by one
comma. For example,

123,456 <RETURN>

3. Notice that after pressing REIURN, a question mark appears on the next line,
indicating that insufficient data was entered.

4. In response to the new question mark, type in

789 <RETURN>

Now all three numbers will be displayed.

Exercise 11: Entering Too Many Variables

1. Enter

RUN <RETURN>

2. In response to the question mark, key in the following set of numbers:

12,34,56,78 <RETURN>

3. Notice that the message EXTRA IGNORED is displayed, indicating that more
variables were entered than requested. Only the first three values are displayed.

Exercise 12: Omitting a Variable

1. Enter

RUN <RETURN>

2. In response to the question mark, type in the following numbers separated by
two commas as shown

123,,456 <RETURN>

3. Notice that after pressing RETURN three numbers are displayed. By using the
two commas in a row, you accomplish the same thing as entering a 0 for the
second variable (123,0,456).

The INPUT Instruction I 77

Rule 4. When keying in the input, separate each variable with a comma. No variable may
contain an embedded comma.

Key in the following program and use it for the exercises that follow:

NEW
1000 HOME
1010 INPUT AANUMBER,AASTRING$
1020 PRINT AANUMBER,AASTRING$
1030 END

Exercise 13: Entering Commas in Numeric Variables

1. Enter

RUN <RETURN>
12,345.67,YEARLY SALARY <RETURN>

2. The message EXTRA IGNORED will be displayed, indicating that more varia­
bles were entered than requested. The comma in the number 12,345.67 is
treated as a variable separator.

When entering large numbers, do not key in commas.

3. Notice that since 345.67 followed the comma, it was treated as the second
variable and placed in AASTRING$.

4. RUN the program again but this time enter the values correctly as

12345.67,YEARLY SALARY <RETURN>

Exercise 14: Entering Commas in String Variables

1. Enter

RUN <RETURN>
123,COLUMBUS, OHIO <RETURN>

2. Notice that the message EXTRA IGNORED is displayed, indicating that more
variables were entered than requested. The comma after COLUMBUS was treated
as a variable separator. The word OHIO was ignored.

78 / Applesoft BASIC Toolbox

3. RUN the program again, but this time enter the values without embedded
commas. fype in

123,COLUMBUS OHIO <RETURN>

Rule 5. Only one string constant may be printed.
Key in the following program:

NEW
1000 HOME
1010 REM LINE 1020 CONTAINS AN ERROR
1020 INPUT "EMPLOYEE NUMBER";AAEMPNUM,"EMPLOYEE NAME";AAEMPN

AME$
1030 PRINT "EMPLOYEE NUMBER = "AAEMPNUM
1040 PRINT "EMPLOYEE NAME = "AAEMPNAME$
1050 END

After keying in the program, check your work, then enter RUN to test the
program.

The following will occur:

1. You will get a syntax error on line 1020, indicating that the INPUT instruction
is incorrectly formatted. The rule states that only one string constant may be
displayed and it must precede all variable names. If you look at line 1020 you
will see that the programmer tried to display two messages:

"EMPLOYEE NUMBER" and "EMPLOYEE NAME"

2. To correct the program, enter the following two lines of code:

1010 INPUT "EMPLOYEE NUMBER = ";AAEMPNUM
1020 INPUT "EMPLOYEE NAME = ";AAEMPNAME$

3. Now that the program has been corrected, run it again.

4. The first line will be displayed, and the program will wait until you enter the
employee number. After you enter the employee number, the second line will
be displayed, and the computer will wait for you to enter the employee name.
Once you have entered the number and name, lines 1030 and 1040 will display
the two values.

When you use format 1 of the INPUT instruction, the computer displays a
question mark. The question mark indicates to the computer operator that data is to
be entered. When using format 2 of the INPUT instruction, the computer displays
the message within quotes and does not display the question mark.

The INPUT Instruction / 79

Format 1: INPUT AANUMBER Displays as ?[

Format 2: INPUT "NUMBER = ";AANUMBER Displays as NUMBER = [
The symbol [shows the position of the cursor.

When the programmers use the display option of the INPUT instruction, the
person entering the data knows what to enter. By aligning the values to be entered
and preceding them with an equal sign, the programmer improves readability of the
data being entered.

Rule 6. The string constant must be listed immediately after the keyword INPUT, and the
constant must be followed by a semicolon.

This rule will not be discussed in detail. If you want to test it out on your own,
make the following changes to the existing code and try to run the program.

First try

1010 INPUT "EMPLOYEE NUMBER = "AAEMPNUM

This change will result in a syntax error because the semicolon was left off
following the constant.

Second try

1010 INPUT AAEMPNUM;" = EMPLOYEE NUMBER"

This change will result in a syntax error because the variable name is coded
before the constant.

11. The PRINT Instruction

80

Instruction PRINT VN1,VN2,VN3,VN4,VN5, ...
(where VN = Variable Name)

A comma, semicolon, TAB(number) function, or SPC(number) function may be
used to separate the names. Each option results in different spacing.

Example PRINT AAEMPNUMBER SPC(3) ABEMPNAME$ SPC(3) ACHOURSWORKED
Displays as

1234 YOUR NAME 40
j j j i j j Three spaces between each variable

The PRINT instruction causes the value in each of the three variables to be displayed.
The SPC(3) causes three blanks to be displayed between each variable.

Purpose The PRINT instruction is used to display information on the CRT (Cathode Ray
Tube) screen. The instruction is also used to transfer information from memory to
the disk and printer.

Rules for Use 1. The keyword PRINT may be followed by one or more variable names and/or
constants.

2. If a comma is used as a separator, default tab settings are used by the computer.
3. If no symbol or a semicolon is used as a separator, no spacing occurs.
4. IfTAB(number) or SPC(number) functions are used, the computer tabs to the

column indicated by the value within parentheses or spaces over the number
of columns specified by the number within parentheses.

5. When keying in the PRINT instruction, a question mark may be used in place
of the word PRINT. The computer converts the question mark to the word

The PRINT Instruction / 81

PRINT for you. This does not affect execution of your program but is simply a
shorthand method of entering the word PRINT.

lllustratiGn The following illustrates the primary rules for the PRINT instruction.
of the Rules

Rule 1. The keyword PRINT may be followed by one or more variable names and/or constants.
Key in and run the following program, or run the program by entering

RUN PRINT SAMPLE1

NEW
1000 REM PRINT SAMPLEl
1010 HOME
1020 PRINT " 1 2 3 4";
1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 150
1050 PRINT "NUMBER= ",AANUMBER
1060 AANUMBER = AANUMBER + 1
1070 IF AANUMBER < 18 THEN 1050
1080 SPEED= 255
1090 END

After the program is run, the screen will appear as follows:

1 2 3 4
1234567890123456789012345678901234567890

NUMBER 0
NUMBER 1
NUMBER 2
NUMBER 3
NUMBER 4
NUMBER 5
NUMBER 6
NUMBER 7
NUMBER 8
NUMBER 9
NUMBER 10
NUMBER 11
NUMBER 12
NUMBER 13
NUMBER 14
NUMBER 15
NUMBER 16
NUMBER 17

82 I Applesoft BASIC Toolbox

1020-1030 Lines 1020 and 1030 display headings at the top of the screen so you can see which
column the TAB operation has skipped to. The semicolon is required any time
column 40 is used in a PRINT operation and single spacing is desired. If the semi­
colon had been omitted from line 1020, the headings would have been double spaced
as follows:

1 2 3 4

1234567890123456789012345678901234567890

Anytime more than 40 characters are displayed, character 41 is printed in the
first column of the next line.

Now comes the hard part: to explain where character 41 comes from and why
it causes the machine to double space, when one would think it should single space.

Following each PRINT instruction which DOES NOT end with a semicolon is
an invisible symbol called the carriage return character. When the display screen
encounters the carriage return character, it automatically skips to the next line.

1030 PRINT "1234567890123456789012345678901234567890"
Invisible carriage return character j

If the computer has already printed the last visible character in column 40 of
the first line, then the invisible carriage return character is printed in column 1 of
the second line. Even though you cannot see it, it is there.

When the carriage return character is printed, it serves to terminate any addi­
tional printing for that line and positions the cursor at the start of the next line (line
3). The next PRINT instruction ends up printing the second line of heading on the
third line of the screen.

With semicolon:

1 2 3 4
1234567890123456789012345678901234567890

Without semicolon:

1 2 4
t
1234567890123456789012345678901234567890

The PRINT Instruction I 83

(Where the j indicates the position of the invisible carriage return character.)
If you followed the explanation, fine; if not, just remember that when column

40 of the screen is used:

1. Ending with semicolon results in single spacing.
2. Not ending with a semicolon results in double spacing.

1040 The SPEED instruction is used to slow down the rate at which data is printed on the
screen. This makes it easier for you to follow what is being displayed on the screen.

1050 When the PRINT instruction is followed by a constant, "NUMBER = ",the string
between the quotation marks is displayed on the screen exactly as coded. When the
PRINT instruction is followed by a variable name, AANUMBER, the current value
of that variable is printed. The first time line 1050 is executed, a value ofO is printed
for AANUMBER. This is because Applesoft sets all numeric variables to a value of
0 at the start of the program. The second time line 1050 is executed, a value of 1
is printed (see line 1060).

1060 The current value of AANUMBER is replaced with the sum of the current value of
AANUMBER plus 1. After the first execution of line 1060, AANUMBER contains
the value 1. Remember AANUMBER started off with a value of 0 so

AANUMBER
New value (1)

AANUMBER
Old value (0)

+ 1
+ constant (1)

1070 The IF instruction tests the new value of AANUMBER to see if it is less than 18.
When the statement is true, that is, the value in AANUMBER is less than 18, logic
flow goes back to line 1050, where the PRINT instruction is executed again. This is
called a program loop, as lines 1050, 1060, and 1070 are executed over and over
until AANUMBER is equal to 18.

84 / Applasoft BASIC Toolbox

1080 After the program has completed its normal cycle (loop), the speed is reset to 255
so that any further operations are displayed at the normal speed.

Rule 2. If a comma is used as a separator, default tab settings are used by the computer.
The default tab settings for your APPLE are

1 2 3 4
1234567890123456 7890123456789012 34567890
AREAllllllllllll AREA222222222222 AREA3333

1. First area = columns 01 to 16.
The PRINT instruction starts in column 1.

2. Second area = column 17 to 32.
The first comma causes the computer to tab over to column 17 unless something
has been printed in column 16. If data has already been printed in or past
column 16, the comma causes a skip to the next tab position (column 33).

3. Third area = column 33 to 40.
The second comma causes the third value to be printed starting in column 33
unless something printed in columns 24 through 32.

The purpose of the following program is to show you what the automatic tab
functions are for and how the comma works when used with the PRINT instruction.

Key in and run the following program, or run the program by entering

RUN PRINT SAMPLE2

NEW
1000 REM PRINT SAMPLE2
1010 HOME
1020 PRINT II 1 2 3 4";
1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 150
1050 PRINT "TAB1","TAB2","TAB3"
1060 SPEED= 255
1070 END

1050 The PRINTinstruction displays the strings TAB1, TAB2, and TAB3. Since each string
is separated by a comma, the computer uses the automatic tab function. The position
at which the T prints represents the default tab position for your machine. The T in
each word starts in columns 1, 17, and 33.

The PRINT Instruction I 85

There are, however, disadvantages which limit the usefulness of the automatic
tab function. The following program is provided to illustrate two of the problems.

Key in and run the following program, or run the program by entering

RUN PRINT SAMPLE3

NEW
1000 REM PRINT SAMPLE3
1010 HOME
1020 PRINT II 1 2 3 4"·
1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 200
1050 PRINT 11 FIRST11 , 11 SECOND 11 , 11 THIRD 11 , 11 FOURTH","FIFTH"
1060 PRINT : PRINT
1070 PRINT "FIRST 1234567890","SECOND"."THIRD","FOURTH"."FIFTH"
1080 SPEED= 255
1090 END

After you run the program the screen will appear as follows:

1 2 3 4
1234567890123456789012345678901234567890

FIRST
FOURTH

FIRST 1234567890

SECOND
FIFTH

THIRD FOURTH

THIRD

SECOND
FIFTH

1050 The first PRINT instruction demonstrates the wraparound function of the automatic
tab operation. The words FIRST, SECOND, and THIRD are printed on one line, while
the words FOURTH and FIFTH are printed on the next line down. If the number of
variables separated by commas exceeds the number of default tab settings, a new
line is started. This can be an advantage or a disadvantage depending on how you
design your program.

1070 The next PRINT instruction demonstrates how the default tab reacts when a value is
printed which is longer than the area covered by the automatic tab function. Notice
that the value we wanted to print at the SECOND position is printed in the third

86 / Applesoft BASIC Toolbox

column, while the THIRD value is printed at the start of the next line. Anytime the
area allotted by the automatic tab function is filled or exceeded, the computer auto­
matically goes to the next tab location.

The automatic tab operation for the third area works a little differently in that
the computer skips to the next line if any value is printed in columns 24 through
32.

Rule 3. If a semicolon is used as a variable separator, no spacing occurs between variables
or between separate PRINT instructions.

The following program shows several examples of the use of the comma and
semicolon. It should give you a clear understanding of the difference between the
two characters.

Key in and run the following program, or run the program by entering

RUN SEMICOLON SAMPLE1

NEW
1000 REM SEMICOLON SAMPLEl
1010 HOME
1020 PRINT II 1 2 3 4";
1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 200
1050 PRINT "ENTER YOUR NAME PLEASE"
1060 INPUT AANAME$
1070 PRINT
1080 PRINT "ENTER YOUR AGE PLEASE"
1090 INPUT ABAGE
1100 PRINT AANAME$,ABAGE
1110 PRINT
1120 PRINT AANAME$;ABAGE
1130 PRINT
1140 PRINT "NAME= ";AANAME$."AGE = ";ABAGE
1150 PRINT
1160 PRINT "NAME=";
1170 PRINT AANAME$
1180 PRINT 'AGE = I

ll90 PRINT ABAGE
1200 SPEED= 255
1210 END

The PRINT Instruction I 87

For the name JOHN JONES the screen would appear as follows:

1 2 3 4
1234567890123456789012345678901234567890

ENTER YOUR NAME PLEASE
?JOHN JONES

ENTER YOUR AGE PLEASE
?25

JOHN JONES 25

JOHN JONES25

NAME = JOHN JONES

NAME = JOHN JONES
AGE = 25

AGE = 25

1050-1060 The PRINT instruction gives you a prompt to let you know what to enter. The INPUT
instruction causes a question mark to be displayed and waits until you have entered
your name.

1070 The PRINT instruction by itself causes a blank line to be displayed and is one way
to create double spacing.

1080-1090 The PRINT instruction prompts you to enter your age, while the INPUT instruction
reads what is keyed.

1100 This PRINT instruction shows the difference between the automatic tab function and
the semicolon. Depending on the length of your name, your age is printed in either
the second or the third tab location.

1120 The PRINT instruction shows that NO positions are skipped when the semicolon is
used to separate variable names or constants. Notice that your age follows imme­
diately after the last character of your name. You normally would not print two
variables this way because it makes the data difficult to read.

88 / Applesoft BASIC Toolbox

1140 This line provides another example of how to use the semicolon and comma when
displaying constants and variable names. The semicolon is used to separate an
identifying title from the variable name

"NAME = ";AANAME$

The instruction also shows the use of the comma as a separator to provide automatic
tabulation between the name and age.

The semicolon may be used to separate constants and variable names as shown
but is optional and serves only to make the instruction more readable. The instruction
could have been written as

1040 PRINT "NAME = "AANAME$,"AGE = "ABAGE

Notice that in this case the semicolons are omitted between the constants and variables.

1160-1190 Lines 1160 through 1190 show that if a PRINT instruction ends with a semicolon,
the next information displayed occurs on the same line following the last character
printed. The semicolon suppresses starting a new line and suppresses repositioning
the cursor.

Lines 1160 and 1170 cause one line to be printed.

NAME = JOHN JONES

Lines 1180 and 1190 use the same concept to print your age; they generate
only one line.

AGE= 25

Since lines 1170 and 1190 do not end with a semicolon a new line is started
following each PRINT instruction.

Rule 4 If TAB(number) or SPC(number) functions are used, the computer TABs to the
column indicated by the value within parentheses or SPaCes over the number of
columns specified by the number within parentheses.

The following program illustrates the difference between the TAB and the SPC
functions.

The PRINT Instruction I 89

Key in and run the following program, or run the program by entering

RUN TAB & SPC SAMPLE1

NEW
1000 REM TAB & SPC SAMPLE!
1010 HOME
1020 PRINT " 1 2 3 4";
1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 100
1050 PRINT "COLUMN l"; TAB(lO);"COLUMN 10"; TAB(30);"COLUM
N 30"
1060 PRINT:PRINT
1070 PRINT "COLUMN l"; SPC(lO);"COLUMN 19"; SPC(30);"NEW L
INE, COLUMN 18"
1080 SPEED= 255
1090 END

When the program is run, the screen will appear as follows:

1 2 3 4
1234567890123456789012345678901234567890

COLUMN 1 COLUMN 10 COLUMN 30

COLUMN 1 COLUMN 19
NEW LINE, COLUMN 18

1050 Line 1050 demonstrates how the TAB function of the PRINT instruction may be used
to position data across the screen at fixed locations by printing the word COLUMN
starting in column 1, column 10, and column 30.

The semicolons between each of the strings constants and the tab functions are
are optional. The instruction may be coded without the semicolons as follows

PRINT "COLUMN 1" TAB(10) "COLUMN 10" TAB(30) "COLUMN 30"

1070 Line 1070 demonstrates how the SPC function may be used to skip a specific number
of spaces.

Use of the SPC function does not cause the data to be printed in fixed columns
on the screen unless all the variables printed are a fixed length.

The SPC function causes the computer to skip the number of print positions
specified before continuing to display information. The position on the screen where
the new information is displayed depends on where the last character of data was
printed prior to the SPC operation.

Before going on to the next rule, let's look at two more programs using the
TAB and SPC functions.

90 / Applesoft BASIC Toolbox

The first example shows the use of a variable name with the TAB function and
the wraparound effect of printing past the end of a line.

Key in and run the following program, or run the program by entering

RUN TAB SAMPLE2

NEW
1000 REM TAB SAMPLE2
1010 HOME
1020 REM
1030 REM VALUE FOR TAB FUNCTION
1040 REM MUST BE BETWEEN 1 AND
1050 REM 40.
1060 REM
1070 SPEED= 175
1080 AANUMBER = 1
1090 PRINT TAB(AANUMBER);AANUMBER
1100 AANUMBER = AANUMBER + 1
1110 IF AANUMBER < 41 THEN 1090
1120 SPEED= 255
1130 END

After you run the program, the screen will appear as follows:

0

21
22

23
24

25
26
27

28
29
30

31
32

33
34

35
36

37
38

39

4

The PRINT Instruction / 91

1090 This line shows how a variable may be used with the TAB function to change the
position at which data is printed during each loop through the program.

Notice that statement number 1080 gives AANUMBER a starting value of l,
so when line 1090 is executed for the first time, the computer TABs to position l.

Do not try to use a value of 0 or a value greater than 40 in the TAB instruction.

1100 This line adds 1 to the current value of AANUMBER each time it is executed.

1110 The IF on line 1110 tests to see if the program has reached the limit of 40, which is
the maximum for setting the TAB function. If you try to TAB to a value greater than
40, an error occurs. If you want to see what happens, remove line 1110. Just type
in the number 1110 and rerun the program.

Before you go on, notice what happens to the numbers printed on the last two
lines. Since there is not enough room for the value to be printed on the current line,
the computer prints the excess data on the next line starting at the leftmost position.

The last TAB example shows what happens when the program attempts to TAB
to a specific column when that column has already been bypassed.

Key in and run the following program, or run the program by entering

RUN TAB SAMPLE3

NEW
1000 REM TAB SAMPLE3
1010 HOME
1020 REM
1030 PRINT II 1 2 3 4";
1040 PRINT "1234567890123456789012345678901234567890"
1050 SPEED= 255
1060 PRINT "DATA GOES PAST COLUMN TWENTY";TAB(19);
1070 PRINT "TAB OPERATION WILL BE IGNORED"
1080 PRINT
1090 PRINT "NOTICE HOW THE DATA RAN TOGETHER"
1100 PRINT "NO TAB OCCURRED BETWEEN TWENTY AND TAB"
1110 SPEED= 255
1120 END

After the program is run, the screen will appear as follows:

1 2 3 4
1234567890123456789012345678901234567890

DATA GOES PAST COLUMN TWENTYTAB OPERATIO
N WILL BE IGNORED
NOTICE HOW THE DATA RAN TOGETHER
NO TAB OCCURRED BETWEEN TWENTY AND TAB

92 / Applesoft BASIC Toolbox

1060-1070 When data has already been printed past the column indicated by the TAB operation,
the TAB operation is ignored. Normally this is not a problem since you know how
large the data is and set the TAB operation accordingly. But if you use the TAB
function and it does not seem to work, check the length of the data already printed
against the TAB setting.

Since the semicolon is used on line 1060 following the TAB operation, the next
information printed (line 1070) follows immediately behind the information printed
by line 1060.

12. The GOTO Instruction

Instruction GOTO statement number

Example 1000 PRINT NUMBER
1010 IF NUMBER> 100 THEN END
1020 NUMBER = NUMBER + 1
1030 GOTO 1000

Purpose The GOTO instruction is used to change the flow of instruction execution from the
current location (line) to the line number specified by the GOTO instruction.

Rules for Use 1. The statement number used in the GOTO instruction must exist within the
program.

2. The GOTO instruction is considered unconditional GOTO when used by itself
and conditional when used as part of an IF instruction.

Illustration The following illustrates the primary rules for the GOTO instruction.
of the Rules

Rule 1. The statement number used in the GOTO instruction must exist within the program.
Key in the following program, or load and list the program by entering

LOAD GOTO SAMPLE1
LIST

NEW
1000 REM GOTO SAMPLEl
1010 HOME
1020 PRINT "THE GOTO INSTRUCTION ALLOWS YOU TO"
1030 PRINT "BRANCH BACKWARD OR FORWARD IN YOUR"
1040 PRINT "PROGRAM."
1050 GOTO 1021

93

94 / Applesoft BASIC Toolbox

After entering the program, type RUN to execute it. The following will occur:

1. Lines 1020, 1030, and 1040 will each display one line.
2. When line 1050 is encountered, the computer will display the following error

message:

?UNDEF'D STATEMENT ERROR IN 1050

The machine gives you an error message because there is no statement num­
bered 1021.

To correct the program, enter

1050 GOTO 1020

Don't rerun the program yet! Read on.
Look over the logic and see what is going to happen.
First lines 1010, 1020, 1030, 1040, and 1050 will be executed. When the

computer executes the GOTO instruction on line 1050 the logic cycle will go back
to statement 1020 and continue at that point. How does this cycle of 1020, 1030,
1040, 1050, 1020, 1030, etc. stop? It doesn't. The program is in what is called an
endless loop. The only way to stop it is to interrupt the program by keying CON­
TROL-C or CONTROL-RESET or by pulling the plug (although it won't hurt, please
don't pull the plug).

Now, type in RUN and execute the program. Be prepared to press the CON­
TROL-C to stop the loop.

Rule 2. The GOTO instruction is considered unconditional when used by itself and condi­
tional when used as part of an IF instruction.

Key in and run the following program, or run the program by entering

RUN GOTO SAMPLE2

NEW
1000 REM GOTO SAMPLE2
1010 HOME
1020 SPEED= 150
1030 COUNTER = 1
1040 PRINT "COUNTER = "COUNTER
1050 COUNTER = COUNTER + 1
1060 IF COUNTER > 20 GOTO 1080
1070 GOTO 1040
1080 SPEED= 255
1090 END

The GOTO Instruction I 95

The program will display the following rather unexciting screen:

COUNTER = 1
COUNTER = 2
COUNTER = 3
COUNTER = 4
COUNTER = 5
COUNTER = 6
COUNTER = 7
COUNTER = 8
COUNTER = 9
COUNTER = 10
COUNTER = 11
COUNTER = 12
COUNTER = 13
COUNTER = 14
COUNTER = 15
COUNTER = 16
COUNTER = 17
COUNTER = 18
COUNTER = 19
COUNTER = 20

1030 The COUNTER is initialized to a starting value of 1. If a numeric variable is not
given a starting value, Applesoft starts it off with a value of 0.

1040 The PRINT instruction displays the string "COUNTER ="on the screen followed
by the current value of COUNTER. The first time through the loop, COUNTER has
a value of l; the second time the line is executed, a value of 2 is printed, and so
forth.

1050 COUNTER is reset to the current value of COUNTER plus 1. Basically this is a
method of counting on the computer.

1060 Line 1060 provides a sample of how to use the GOTO within an IF instruction to
create a conditional branch instruction. The GOTO is also an example of aforward
GOTO. If the statement is true, logic flow branches to line 1080 further down
(forward) in the program.

For this program the IF instruction is used to provide a way to end the looping
cycle. When COUNTER reaches a value of 21, a conditional branch transfers logic
forward in the program to statement 1090, where the program ends.

s& / Applesoft BASIC Toolbox

1070 Line 1070 creates an unconditional branch backward to line 1040. Every time line
1070 is executed, logic flow loops back to line 1040 and starts executing the instruc­
tions sequentially from that point. Since this GOTO causes logic to branch back to
an earlier statement, it is called a backwards GOTO.

The only way to get around or past an unconditional branch is to use another
GOTO instruction to change the flow of logic and bypass the unconditional GOTO
(see line 1060).

1090 The END instruction is the last logical instruction to be executed. Once the END is
encountered, no further instructions are executed by the computer. Control passes
back to the computer operator (you).

The following terms were used in the preceding narrative. Make sure you
understand the terms and how they relate to the use of the GOTO instruction.

Unconditional GOTO: when a GOTO instruction is used by itself.

Conditional GOTO: when a GOTO instruction is used within an IF instruction.

Forward GOTO: when a GOTO is used to branch futher down in the program code.

Backward GOTO: when a GOTO is used to branch upward to an earlier instruction.

13. The ON GOTO
Instruction

Instruction ON number GOTO statement numbers

Example 1000 INPUT "ENTER NUMBER OF MONTH = ";MTH

1010 ON MTH GOTO 1040, 1050, 1060, 1070, 1080, 1090,
1100, 1110, 1120, 1130, 1140, 1150

1020 REM MTH < 1OR>12
1030 PRINT "ERROR IN MONTH VALUE":END
1040 PRINT "JANUARY":END
1050 PRINT "FEBRUARY":END
1060 PRINT "MARCH":END
1070 PRINT "APRIL":END
1080 PRINT "MAY":END
1090 PRINT "JUNE":END
1100 PRINT "JULY":END
1110 PRINT ''AUGUST":END
1120 PRINT "SEPTEMBER":END
1130 PRINT "OCTOBER":END
1140 PRINT "NOVEMBER":END
1150 PRINT "DECEMBER":END

If the value of MTH is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, the ON GOTO
instruction causes logic flow to branch and print the correct name of the month. If
the value of MTH is less than 1, or greater than 12, an error message printed.

Purpose The ON GOTO instruction is used to change the sequence of instruction execution
based on the value of the number following the keyword ON. The instruction com­
bines the IF and GOTO instructions into one statement.

97

98 / Applesoft BASIC Toolbox

Instead of having to code 12 IFs with 12 GOTOs,

IF MTH = 1GOTO1040
IF MTH = 2 GOTO 1050
IF MTH = 3 GOTO 1060

IF MTH = 12 GOTO 1150

you may code one instruction to test for all 12 values:

ON MTH GOTO 1040, 1050, 1060, 1070, 1080, 1090, 1100, 1110, 1120, 1130, 1140, 1150

Rules for Use 1. The statement numbers used with the ON GOTO instruction must exist within
the program.

2. The name or equation following the keyword ON may be either an integer or
a real value. If the variable contains a real value, any decimal positions are
ignored.

3. The value of the number or arithmetic expression following the keyword ON
must not be negative or exceed 255. If the value is outside the computer's
allowable range, an error message is displayed and the program terminated.

4. Each statement number following the keyword GOTO corresponds to a test for
the value of 1, 2, 3, 4, 5, etc.

5. If the number being evaluated is 0 or is greater than the number of statements
listed, logic flow falls through the ON GOTO and continues with the next
sequential statement.

Illustration Key in the following program, or load and list the program by entering
of the Rules

LOAD ON GOTO SAMPLE1
LIST

1000 REM ON GOTO SAMPLEl
1010 HOME
1020 VTAB 10
1030 PRINT "ENTER A NUMBER FROM 1 TO 10.": PRINT
1040 PRINT "ENTER 11 TO TERMINATE THE PROGRAM.": PRINT
1050 INPUT II = ";AANUMBER
1060 PRINT
1070 ON AANUMBER GOTO 1100,1120,1100,1120,1100,1120,1100,112

0,1100,1120,1170
1080 PRINT "NUMBER NOT WITHIN SPECIFIED RANGE."
1090 GOTO 1130
1100 PRINT "YOU ENTERED AN ODD NUMBER."

1110 GOTO 1130
1120 PRINT "YOU ENTERED AN EVEN NUMBER."
1130 VTAB 23
1140 PRINT "PRESS ANY KEY TO CONTINUE.";
1150 GET Xl$
1160 GOTO 1000
1170 HOME
1180 PRINT "THAT'S ALL FOLKS!"
1190 END

The ON GOTO Instruction / 99

1000-1060 Lines 1000 through 1060 clear the screen, position the cursor, and display what the
program expects the operator to do.

1070 Depending on the value entered by the operator, the ON GOTO instruction either
branches to one of the 11 statement numbers or falls through to line 1080. If l , 3,
5, 7, or 9 is entered, logic flow branches to line 1100. For the value 2, 4, 6, 8, or
10, logic flow branches to line 1120. If the operator enters an 11, logic flow branches
to line 1170. Should the operator enter a value of 0 or a value from 12 to 255, logic
flow falls through to line 1080.

Notice that the same statement number may be used in several different posi­
tions. In the example all the odd numbers are associated with statement 1100, and
all the even numbers are associated with statement 1120.

1080-1090 Lines 1080 and 1090 display an error message and then return to the start of the
program if a value of 0 or a value from 12 to 255 is entered.

1130-1160 After the appropriate message is displayed, the operator is given a chance to read
the message and press a key. After any key is pressed, the program starts over and
gives the operator another chance to enter a number.

To help illustrate the rules, use the program to carry out the following exercises.

Exercise 1: Entering Real Numbers

RUN the program and enter

4.5

The computer will truncate the .5 and treat the number as an integer value of
4. The message "YOU ENTERED AN EVEN NUMBER." will be printed. Press any
key and continue to the next exercise.

100 / Applasoft BASIC Toolbox

Exercise 2: Entering Numbers Outside the Specified Range

The ON GOTO instruction is set up to handle the values from 1 to 11. Enter a value
of 0 or a value from 12 to 255 and see what happens. Enter

12

Logic flow will fall through the ON GOTO instruction and execute line 1080,
which displays the message

NUMBER NOT WITHIN SPECIFIED RANGE.

Press any key and continue to the next exercise.

Exercise 3: Entering Invalid Numbers

Entering a negative value or a value greater than 255 results in an error message
and cancellation of the program. Enter - 1. You will get the error message

?ILLEGAL QUANTITY ERROR IN statement number

To prevent this from happening, you should always precede each ON GOTO instruc­
tion with an IF instruction to make sure the value entered is within the expected
range.

1050 INPUT' = ';AANUMBER
1060 PRINT
1065 IF AANUMBER < 1 OR AANUMBER > 11 THEN

print error message & start over
1070 ON AANUMBER GOTO ...

14. The END Instruction

Instruction END

Example 2000 PRINT "NORMAL END OF PROGRAM" : END
or
2000 END

Purpose The END instruction is used to terminate program execution. Once encountered, no
further instructions are executed.

Rules for Use 1. The END instruction can be located on any line of the program as long as it is
the last logical instruction executed.

2. More than one END instruction may be used in a program, but once one is
encountered, no further instructions are executed.

3. The program may be continued by using the CONT instruction (seep. 228).

Illustration Key in and run the following program, or run the program by entering
of the Rules

RUN END SAMPLE1

NEW
1000 REM END SAMPLEl
1010 HOME
1020 PRINT "ENTER A NUMBER BETWEEN 1 & 5"
1030 INPUT II = ";AANUMBER
1040 ON AANUMBER GOTO 1050,1070,1080,1090
1050 PRINT "BETWEEN 1 & 5 PLEASE"
1060 PRINT "PRESS ANY KEY AND TRY AGAIN":GET X$:GOTO 1000
1070 PRINT "END #2":END
1080 PRINT "END #3":END
1090 PRINT "END #4":END

1050-1060 The program is coded to accept only the numbers 2, 3, or 4 as acceptable entries.
Any other number causes an error message to be displayed (line 1050) indicating
that an invalid number was entered. Line 1060 displays an error message before

101

102 / Applesoft BASIC Toolbox

branching back to line 1000 to allow you to enter the number correctly. The GET
X$ instruction on line 1060 causes the computer to pause while you read the messages.

1070-1090 This is the objective of the program, the END instruction. Before executing the END
instruction and stopping the program, a message is displayed indicating which log­
ical END path was taken. Once the END instruction is executed, no further instruc­
tions are processed.

Did you notice that several instructions are coded on the same line, separated
by a colon? This is common practice for experienced programmers because the
computer can execute the code a little faster and the program takes less memory.
The examples in the text limit the number of instructions entered on one line to make
it easier to read and easier for the beginning programmer to follow. Advanced
programmers may code as many instructions for one statement number as the pro­
gram logic allows. The only physical limit is that each line entered cannot exceed
255 characters.

Some experienced programmers object to having more than one END instruction
in a program. They believe all logic paths should come to a single common END.
Let's change this program to conform to their standards by modifying lines 1070,
1080, and 1090 and adding a new line.

Key in the following code, LIST the program, and then RUN it.

1070 PRINT "END #2":GOTO 1100
1080 PRINT "END #3":GOTO 1100
1090 PRINT "END #4":GOTO 1100
1100 END

If you run the modified program, you cannot tell any difference between the
two methods of coding. The only difference is the programmer's opinion about
which is the most logical method of coding.

15. The Screen Control
Instructions

Instructions VTAB number from 1 to 24
HTAB number from 1 to 40
NORMAL
INVERSE
FLASH

Purpose The screen control instructions of VTAB, HTAB, NORMAL, INVERSE, and FLASH
are used to position data and direct attention to specific areas of the screen.

Example 1000 INVERSE: PRINT "DARK LETIERS ON LIGHT BACKGROUND"
1010 FLASH: PRINT "ALTERNATING LIGHT AND DARK DISPLAY"
1020 NORMAL: PRINT "LIGHT LETIERS ON DARK BACKGROUND"
1030 VTAB 10: HTAB 20: PRINT "X": REM MIDDLE OF SCREEN

Rules for Use 1. VTAB is used to position the cursor on any one of the vertical lines of the
screen. The number following the VTAB instruction must be from 1 to 24,
corresponding to the 24 lines on the screen. Any number outside this range
results in the following error message:

?ILLEGAL QUANTITY ERROR

2. HTAB is used to position the cursor at any one of the 40 positions on a line.
The number following the HT AB instruction may range from 1 to 255. If a
value greater than 40 is used, the cursor wraps around to the next line. For this
book we will consider the HTAB to have a maximum value of 40, corresponding
to the character position of each line . Any number less than 1 or greater than
255 results in the following error message:

?ILLEGAL QUANTITY ERROR

3. NORMAL refers to the normal mode of using white characters on a black
background (or green characters on a black background, depending on the type
of screen you are using). The instruction is used following either a FLASH or
an INVERSE operation to place the computer back into its NORMAL mode.

103

104 / Applesoft BASIC Toolbox

Illustration
of the Rules

4. INVERSE refers to the use of black characters on a white background or (black
characters on a green background). This format is commonly used to indicate
error messages or to highlight data as it is being entered.

5. FLASH refers to the changing between NORMAL mode and INVERSE mode in
a rapid manner. The screen shows the data in NORMAL format followed by
the same data shown in INVERSE format. This rapid change causes a flashing
image on the screen.

Let's start with some very simple examples to demonstrate the NORMAL and INVERSE
instructions.

The first program illustrates how to use the INVERSE and NORMAL instruc­
tions. Key in and run the following program, or run the program by entering

RUN SCREEN SAMPLE1

NEW
1000 REM SCREEN SAMPLE!
1010 HOME
1020 SPEED= 150
1030 INVERSE
1040 FOR NUMBER = 0 TO 30
1050 PRINT TAB(40)" "
1060 NEXT
1070 NORMAL
1080 SPEED= 255
1090 PRINT "THAT'S ALL FOLKS!"
1100 END

For those of you who don't run the program, here is what it does. The screen
clears and starts to display a solid white line. As the program continues, a solid
white line is printed on every other line of the screen (horizontal prison bars). Once
the screen is full, the program continues to display alternating white and black lines
until 30 white lines have been displayed.

1020 The SPEED instruction slows down the output to the screen so you can watch the
cursor move across the screen.

1030 The INVERSE instruction tells the computer that all further information displayed
on the screen is to use black letters on a white background. Since this program is
only printing blanks, each line displayed is entirely white.

1040 The FOR/NEXT instruction sets up a looping process. The FOR/NEXT loop causes
30 lines to be displayed on the screen. After the first 12 lines are displayed, the
screen scrolls up one line at a time as each new line is displayed. Since the line

The Screen Control Instructions / 105

displayed prints a character in column 40 and no ending semicolon is used, each
PRINT instruction results in double spacing.

1050 The PRINT instruction TABs to position 40 and prints a single blank. To reach
position 40 the computer prints a blank in every position up to colllmn 40 and then
prints the blank enclosed within quotes (" "). This operation causes the line to be
cleared to spaces, and since the program is in the INVERSE mode, the spaces show
up as a white line.

Are you ready for another try at the invisible carriage return character and why
the screen double spaces?

Since the PRINT instruction does not end with a semicolon, the computer
attaches a carriage return character to the information being displayed. When the
carriage return character is displayed, the cursor is positioned to the first of the next
line. You cannot see this character, but it is there and it is printed.

1050 PRINT TAB(40) 11 11 Invisible carriage-return character

t

The PRINT instruction puts a blank in column 40, and the invisible carriage
return character in column 1 of the next line. Since the printing of the carriage return
character causes the cursor to be repositioned to the next line, the net effect is double
spacing ori the screen. In the screen below, the t shows where the carriage return
is printed.

- inverse line -
t = invisible carriage return character

- inverse line -
t = invisible carriage return character

- inverse line -

1060 The keyword NEXT forms the other half of the FOR/NEXT instruction. Each time
the keyword NEXT is encountered, the variable listed in the FOR instruction is
incremented. After the variable is incremented, it is tested against the limit specified
in the FOR instruction. In this case if NUMBER is less than or equal to 30, the
instructions between the keyword FOR and keyword NEXT are executed again. If
NUMBER is greater than 30, logic falls through to line 1070.

1070 The computer is instructed to display all the information following this instruction
in NORMAL mode. If the program does not reset the display to NORMAL, all
information displayed after the end of the program is in the INVERSE mode.

106 / Applesoft BASIC Toolbox

1080 The SPEED is reset so your display screen operates at its normal fast pace after the
program ends.

Now that you have seen the INVERSE instruction in action, change line 1030
by entering

1030 FLASH

Be ready to cover your eyes!
Enter

RUN <RETURN>

The FLASH instruction causes the computer to alternate between white letters
on a black background and black letters on a white background. It is a very good
way to get the operator's attention and to cause temporary blindness.

You have seen two short examples of INVERSE and FLASH; now let's look at
a more complete program.

The following program uses the VTAB, HTAB, NORMAL, INVERSE, and FLASH
instructions to show you how to highlight messages. The program is very simple.
Its single purpose is to introduce the use of the screen instructions. The program
requests that you enter a number greater than 1000, less than 32768, and divisible
by 3.

1. If you guess a number which is divisible by 3, the program displays a message
in FLASH screen format.

2. If your number is not divisible by 3, the program displays a message using
INVERSE screen format.

3. If you enter a nmrber less than 1001, the computer displays an error message
in INVERSE screen format.

To terminate the program enter 0 in response to the INPUT instruction.
Key in and run the following program, or run the program by entering

RUN SCREEN SAMPLE2

NEW
1000 REM SCREEN SAMPLE2
1010 HOME
1020 REM
1030 REM NORMAL, INVERSE, FLASH
1040 REM
1050 SPEED= 150
1060 PRINT "GUESS A NUMBER GREATER THAN 1000 AND": PRINT
1070 PRINT" LESS THAN 32768 WHICH IS DIVISIBLE": PRINT
1080 PRINT II BY 3"
1090 PRINT "KEY IN A VALUE OF ZERO TO QUIT"
1100 VTAB 15: HTAB 10

The Screen Control Instructions / 107

1110 INPUT "GUESS = "; AAGUESS
1120 IF AAGUESS = 0 THEN SPEED= 255: HOME : PRINT "THAT'S

ALL FOLKS!" : END
1130 IF AAGUESS < 1001 OR AAGUESS > 32767 THEN
1140 ABWHOLE% = AAGUESS / 3
1150 ACREAL = AAGUESS / 3
1160 ADDECIMAL = ACREAL - ABWHOLE%
1170 IF ADDECIMAL > 0 GOTO 1300
1180 REM
1190 REM CORRECT NUMBER MESSAGE
1200 REM
1210 VTAB 20: HTAB 1: FLASH
1220 PRINT TAB (35)" "
1230 PRINT " G R E A T
1240 PRINT TAB(35)" "
1250 GOSUB 1510 :• REM CLEAR MES
1260 GOTO 1100
1270 REM --------------
1280 REM INCORRECT GUESS MES
1290 REM
1300 VTAB 20: HTAB 1: INVERSE
1310 PRINT TAB(39)" "
1320 PRINT "CANNOT DIVIDE";
1330 NORMAL
1340 PRINT" "AAGUESS11 11 •

1350 INVERSE
1360 PRINT TAB(30)"BY 3
1370 PRINT TAB(39) 11 II

1380 GOSUB 1510: REM CLEAR MES
1390 GOTO 1100
1400 REM ---·-----·
1410 REM OUTSIDE OF RANGE MES
1420 REM
1430 VTAB 20: HTAB 1: INVERSE
1440 PRINT TAB(39)" II

G U E S S

...

1450 PRINT " VALUE ENTERED < 1001 OR > 32767
1460 PRINT TAB(39)" II

1470 GOSUB 1510: REM CLEAR MES
1480 GOTO 1100
1490 REM
1500 REM SUBROUTINE TO CLEAR
1510 REM MESSAGE AREA
1520 REM
1530 NORMAL
1540 PRINT "PRESS ANY KEY TO TRY AGAIN"
1550 GET X$
1560 VTAB 20: HTAB 1
1570 FOR X = 1 TO 160: PRINT 11 11 •• NEXT
1580 VTAB 15: HTAB 18: PRINT "
1590 RETURN

II

1400

II

"

Run the program and enter several numbers to see what happens on the screen.
Use the following numbers to test and view each of the routines in the program.

108 / Applesoft BASIC Toolbox

1. Enter 1000 to test the out-of-range error routine.
2. Enter 1001 to test the not divisible by 3 error routine.
3. Enter 1002 to test the divisible by 3 message.

After you have seen the various messages, read through the explanation to see
how the program skipped around on the screen.

1100 The VT AB instruction positions the cursor on the fifteenth line. The horizontal
position of the cursor remain unchanged. That is, if the cursor is in column 20 before
the VTAB, it is still in column 20 after the VTAB is executed, but on line 15.

The HT AB instruction is used to position the cursor at the tenth column on the
current line.

1110 Since the cursor is positioned on line 15 in the tenth column, the message GUESS
= is displayed starting at that point. The cursor blinks following the message
GUESS = until you enter a number.

By using the VTAB and HTAB instructions, you can display data at various
points on the screen, making it easier for the operator to read and input data.

1120 This group of instructions tests to see if you entered zero. Before the program is
ended the speed is reset, the screen is cleared, and an ending message is displayed.

1130 Just to see if you can follow directions, the IF instruction tests whether the number
entered is within the limits requested. This is called an edit check. The lower range
is important only to this program, but the value of 32767 is significant. Since the
program uses an integ'.}r variable in the calculation process, the value entered is
tested to make sure it does not exceed the maximum integer value which can be
stored by the computer. Remember, an integer variable cannot store a number greater
than 32767 (see p. 53).

If you enter a number less than 1001 or greater than 32767, logic flow branches
to line 1400, where a message is printed indicating the mistake.

1140 Applesoft does not have an instruction which provides the programmer with the
remainder of an integer division operation. In order to know whether the value in
AAGUESS is divisible by 3, you must divide by 3 and check the remainder. A
remainder of 0 indicates that it is divisible by 3. Any other value indicates that the
number is not divisible by 3. The first step in this process is to find the whole number
of times 3 goes into AAGUESS. Line 1140 gives the integer answer to dividing
GUESS by 3. Lines 1150, 1160, and 1170 complete the process by finding out if
there is a remainder of 0. Notice that ABWHOLE% is an integer variable (ends with
a percent sign). For example, in integer format, 1004 I 3 = 34, and 1005 I 3 =
35.

The Screen Control Instructions / 109

1150 The division operation finds out the number of times 3 goes into AAGUESS and the
answer is stored in the real number format (includes decimal positions). For example,
in real format, 1004 I 3 = 34.666667, and 1005 I 3 = 35.0000.

1160 When the integer portion of the answer is subtracted from the real portion, only the
decimal value remains. If the decimal value is 0 the guess is divisible by 3. If the
decimal portion of the answer is greater than 0 the guess is not divisible by 3. So
for AAGUESS = 1004, 34.666667 - 34 = .666667, indicating that AAGUESS
is not divisible by 3. If AAGUESS = 1005, 35.0 - 35 = .0, indicating that
AAGUESS is divisible by 3.

1170 If the decimal portion of the answer is greater than 0, logic flow branches to line
1300, where a message indicating a bad guess is displayed. If ADDECIMAL is equal
to 0, logic flow drops down to the next section of code which FLASHes a message
indicating that you selected a number divisible by 3.

1180-1210 In this program all the messages in response to the INPUT operation are printed
starting on line 20 of the screen. The VTAB 20 instruction positions the cursor on
line 20 but does not change the horizontal position.

The HT AB 1 instruction positions the cursor to column 1 of the current line.
At this point the HT AB instruction could be left out. On line 1110 you enter a number
and press the RETURN key. When the RETURN key is pressed, the computer auto­
matically positions the cursor to the first column of the next line. Since we want the
cursor in column 1, the HTAB instruction is not really needed. It is coded in this
example to help you remember that usually the VTAB and HTAB instructions are
used together.

The FLASH instruction tells the computer that all further information displayed
on the screen is to alternate between white letters on a black background and black
letters on a white background.

I suggest a limited application of this instruction as it is hard on your eyes!

1220 This instruction prints a line of 35 blanks. Since the screen is in FLASH mode, the
line alternates between an all white line and an all black line.

1230 The PRINT instruction displays the GREAT GUESS message. Since the computer is
in FLASH mode, the message alternates in patterns of white and black.

1250 The GOSUB is a new instruction which will be covered later in greater detail. The
instruction is somewhat like the GOTO instruction and causes the logic flow to branch
to line 1510. But unlike the GOTO instruction, the GOSUB (GO TO SUBROUTINE)
remembers where it branched from, and upon completing the subroutine returns to
the instruction following the GOSUB (line 1260).

110 / Applesoft BASIC Toolbox

The term subroutine, routine, or module refers to a set of instructions which
are independent of the main body of the program. The subroutine may be executed
from many different parts of the program, saving the programmer from having to
repeat coding at different locations of the program.

For this program there are three different messages to be displayed. After
displaying each message, the computer pauses and lets the operator read the message.
Once the operator has responded, the subroutine clears lines 20 through 23. Since
the process is common to all three messages, the code for clearing the lines is written
once and then executed in each routine by using the GOSUB instruction.

1260 After logic flow returns from the subroutine, the GOTO on line 1260 causes logic
flow to branch back to line 1100, where another guess is accepted.

1270-1300 The INVERSE instruction tells the computer that all further information is to be
displayed in black letters with a white background.

1310-1370 For this message the CANNOT DIVIDE and BY 3 parts of the line are printed in
INVERSE mode, while the actual number guessed is printed in NORMAL mode. In
order to change back and forth between NORMAL and INVERSE, each part of the
line must be printed separately. Notice the semicolon at the end of lines 1320 and
1340.

The instruction 1340 PRINT" "AAGUESS" "; causes the value in AAGUESS
to be printed in normal mode with two leading and two trailing blanks.

1380 Once the message has been displayed, logic flow branches to the subroutine, which
is responsible for waiting for a response from the operator and clearing lines 20 to
23.

1390 After the subroutine has waited for a key to be pressed, cleared lines 20 to 23 of the
screen, and returned, line 1390 causes logic flow to go back to line 1100, where
another guess is accepted.

1490-1530 The subroutine starts off by setting the computer to the NORMAL display mode no
matter what mode the computer is in prior to entering the subroutine.

1540 This is the common message for all three logic routes taken by the program: correct
guess, incorrect guess, or error in number entered. By putting the code in a common
subroutine, the programmer need only write it once.

1550 The GET instruction is used to cause the computer to wait until a key is pressed.
After a key is pressed logic flow continues to the next line of code.

The Screen Control Instructions/ 111

1560 The VT AB and HT AB instructions are used to position the cursor prior to clearing
lines 20 through 23.

1570 The FOR/NEXT instruction is used in conjunction with the PRINT instruction to clear
four lines starting at line 20. This is done by printing 160 spaces (160 characters/
40 characters per line = 4 lines).

This is not the best way to clear the lines, but it does produce a nice visual
effect as the cursor moves from left to right across the screen. ·

1580 Before the subroutine returns to the main portion of the program, it clears the old
guess. It does this by displaying ten spaces starting at the same position where the
old guess was entered.

1590 This is the last instruction of the subroutine and indicates to RETURN to the instruc­
tion following the calling GOSUB. (The term calling GOSUB refers to the GOSUB
which caused logic flow to brach to this routine.)

Methods of Clearing a Line

The following code represents four ways to blank out a line:

1. PRINT" < 40 blanks> ";
2. FOR NUMBER = 1 TO 40 : PRINT" "; : NEXT
3. PRINT TAB(40)" ";
4. CALL -868

PRINT" < 40 blanks > ,, . ,

The first example requires the programmer to count over 40 spaces. This means the
programmer must not only count correctly but must do all the work in writing out
the blank line.

FOR NUMBER = 1 TO 40 : PRINT" "; : NEXT

The second method requires the computer to loop through the FOR/NEXT statement
40 times. This is easier on the programmer but makes the computer work harder.
Don't forget the semicolon at the end of the PRINT instruction.

PRINT TAB(40)" ";

112 / Applesoft BASIC Toolbox

The third method lets the computer TAB over to column 40, eliminating the need
to count the number of blanks or repeat the loop. As the computer TABs over to
column 40, it uses blanks as a fill character, erasing the current characters on the
line. When column 40 is reached, one blank is printed. This one blank is necessary
to get the computer to TAB correctly. Notice that the statement ends with a semi­
colon. The semicolon is required or else two lines end up being used instead of one.

CALL -868

The fourth method shown uses a CALL instruction to clear the line. The CALL
instruction is similar to the GOSUB instruction in that the CALL causes logic flow
to branch to a machine language subroutine and then return after the subroutine is
done. In this case the CALL executes a machine language subroutine starting at
address - 868. The machine language code is part of the APPLE's operating system.

This method is quick but presents several problems.

1. The CALL - 868 clears the line to NORMAL mode. That is, the CALL blanks
out the line in the black background mode. You may want to have the back­
ground displayed in either the INVERSE or the FLASH mode. For either of these
two cases the CALL will not work.

2. The CALL instruction address works only on the APPLE computer. If your
Applesoft program is to be converted to another computer, this instruction will
have to be replaced.

3. The person reading the code may not understand the CALL instruction as easily
as the PRINT TAB(40)" ";instruction. The PRINT instruction is easier to main­
tain and read than the CALL-868.

16. The GOSUB/RETURN
Instructions

Instructions GOSUB statement number
RETURN

Example 1000 GOSUB 2000:REM FORMAT SCREEN
1010 ...

2000 REM FORMAT SCREEN ROUTINE
2010 ...

2100 RETURN

The GOSUB instruction branches to line 2000, where a subroutine clears and formats
the screen. After the screen has been formatted, logic flow RETURNs to the instruc­
tion following the GOSUB. Since the REM instruction following the GOSUB is a
nonexecutable instruction, logic flow continues to line 1010.

Purpose 1. The GOSUB instruction allows the programmer to code a set of related instruc­
tions once and execute those instructions from many different points of the
program.

When this technique is used, the size of the program is reduced and the
length of time the programmer spends coding is decreased.

Also, some routines which are used in a program are common to other
programs. Once the routine is coded as an independent module, it can be copied
as needed from program to program.

2. The GOSUB instruction allows the programmer to break the program into
smaller, more workable units, which are easy to understand and code. After
coding each segment or module, the programmer may then use GOSU B instruc­
tions to execute the modules in a specific sequence.

This is an important concept. Originally you benefit because it is simpler
to code smaller program modules. Later, if you try to modify the program, you
will find the smaller modules much easier to change.

Rules for Use 1. Each routine executed by way of a GOSUB instruction must end with the
RETURN instruction.

113

114 / Applesoft BASIC Toolbox

Illustration
of the Rules

If you exit a routine without going through the RETURN instruction use the
POP instruction (seep. 125) to remove the RETURN address from the GOSUB
stack table.

2. GOSUBs may be nested (GOSUB within GOSUB within GOSUB). Each group
of instructions, or routine, executed by way of the GOSUB instruction must
end with a RETURN instruction. It is important that you make sure you always
exit a routine by way of the RETURN instruction.

If you want to exit a routine without executing all the instructions within
the routine, use a GOTO instruction to branch to the matching RETURN instruc­
tion for that routine. When you always use the matching RETURN to exit a
module, the chain of GOSUBs is not broken.

1000 GOSUB 2000: REM EXECUTE SUBROUTINE
1010 ...

2000 REM SUBROUTINE
2010 ... instructions
2020 IF ... GOTO 2200: REM CONDITIONAL GOTO
2030 ... instructions you want to skip over

2200 RETURN

The following example does not process anything but shows how the GOSUB works
and shows the basic program structure which can be used to develop any program.

The program is broken down into four parts:

DRIVE ROUTINE
BEGINNING ROUTINE
MAIN ROUTINE
ENDING ROUTINE

Lines 1030 to 1100
Lines 1120 to 1180
Lines 1200 to 1250
Lines 1270 to 1320

Look over the listing and see if you can follow the lines indicating the sequence in
which the instructions are executed.

The GOSUB/RETURN Instructions/ 115

1000 REM GOSUB SAMPLE!
1010 REM 1234567890123456789012
1020 REM
1030 REM DRIVE ROUTINE
1040 REM EXECUTE BEGINNING ROUTINE
1050 GOSUB 1120 ----------.
1060 REM EXECUTE MAIN ROUTINE
1070 GOSUB 1200
1080 REM EXECUTE ENDING ROUTINE
1090 GOSUB 1270: END
1100 REM
1110 REM ______ , ___ _

1120 HOME------------
1130 PRINT "BEGINNING ROUTINE"
1140 REM INSERT INSTRUCTIONS TO
1150 REM BE EXECUTED ONCE AT
1160 REM BEGINNING OF PROGRAM
1170 REM
1180 RETURN -------------'
1190 REM
1200 PRINT "MAIN ROUTINE"--------"'"'
1210 REM INSERT INSTRUCTIONS TO
1220 REM BE EXECUTED REPEATEDLY
1230 REM UNTIL THE END OF PROG
1240 REM
1250 RETURN ------------------'
1260 REM

-

1270 PRINT "ENDING ROUTINE" ------------'
1280 REM INSERT INSTRUCTIONS TO
1290 REM BE EXECUTED ONCE AT
1300 REM THE END OF THE PROG
1310 REM
1320 RETURN
1330 REM --------------

When logic flow encounters line 1050, the GOSUB instruction causes the pro­
gram to branch (GOTO) to line 1120. Before the computer branches, it stores the
address of the next instruction (in this case line 1060) in a GOSUB stack table.
When the computer encounters a RETURN instruction, it uses the address from the
stack table as the RETURNing point.

1050 GOSUB 1120 ---Address of next instruction is placed in GOSUB stack
1060 REM ... table, then logic jumps to line 1120

1120 HOME

1180 RETURN

116 / Applesoft BASIC Toolbox

Once the RETURN is encountered, the computer returns to the address last placed
in the GOSUB stack.

The computer stores the address of the next instruction in the stack table each
time a GOSUB is executed. To make the sample easier to follow, statement numbers
are used to represent the instruction address.

That is, when there is an instruction on the same line as the GOSUB, the
computer stores the address of the instruction following the GOSUB.

2000 GOSUB 3000 : PRINT "STORES ADDRESS OF NEXT INSTRUCTION"
j Stores address of PRINT instruction

To make the following explanation simpler each GOSUB is coded on a separate
line, and line numbers are used in place of the return address.

But it is important that you understand that the GOSUB returns to the next
sequential instruction and not to the next line number.

The GOSUB differs from the GOTO in that the GOTO does not cause the
computer to save a return address. With the GOSUB the computer remembers where
you want logic flow to return.

As indicated by the remarks in the BEGINNING ROUTINE, its purpose is to
execute all the instructions which are necessary to get the program started. The
beginning routine instructions are only executed once. After the RETURN instruction
on line 1080 is executed, logic flow returns to line 1060 of the DRIVE ROUTINE.

When the computer returns to line 1060, logic flow continues down to line
1070, where the second GOSUB is executed.

1070 GOSUB 1200-----1200 PRINT "MAIN ROUTINE"
1080 REM ...

""----------1250 RETURN

When the second GOSUB is executed, the computer stores statement number
1080 in the stack table and then branches to line 1200. After the instructions within
the MAIN ROUTINE are executed and the RETURN instruction is encountered, logic
flow returns to line 1080.

For this example the MAIN ROUTINE is only executed once. In a real situation
you use a GOTO or FOR/NEXT instruction to repeat the MAIN ROUTINE until a
condition exists which indicates ending the routine (such as reaching the end of the
file). When the ending condition is encountered, logic flow is allowed to fall through
to the RETURN instruction.

Once the computer is back in the DRIVE ROUTINE the GOSUB on line 1090
is executed, causing the computer to save the address of the END instruction in the
stack table and then branch to line 1270.

The GOSUB/RETURN Instructions / 117

1090 GOSUB 1270: END ~1270 PRINT "ENDING ROUTINE"

tL.----- 1320 RETURN

Once the RETURN instruction is executed, logic flow returns to the END next
instruction following the GOSUB.

The purpose of the ENDING ROUTINE is to provide an area in which to locate
instructions which are executed once prior to ending the program.

This structure of BEGINNING, MAIN, and ENDING ROUTINE is shown in more
detail in the disk programs. Once you learn how to break a programming problem
into units and code these units separately, your programs will be easier to write and
easier to change.

Now run the program and see if the information displayed on the screen is what
you expected.

The second GOSUB example is an extension of the first but demonstrates the
use of nested GOSUBs (a GOSUB within a GOSUB).

For this example two additional routines have been added. To simplify the
code, both routines display a single line indicating what they are suppose to do. In
a complete program the instructions for formatting the screen would be coded in
the first routine, and the instructions for reading the data would be coded in the
second routine.

In order to give you a better idea of how the routines are repeated, a counter
is used to cycle through the program five times.

Look over the following listing and see if you can follow the logic sequence,
then run the program and watch the screen. Enter

RUN GOSUB SAMPLE2

1000 REM GOSUB SAMPLE2
1010 REM 1234567890123456789012
1020 REM-------------
1030 REM DRIVE ROUTINE
1040 REM EXECUTE BEGINNING ROUTINE
1050 GOSUB 1120
1060 REM EXECUTE MAIN ROUTINE
1070 GOSUB 1210
1080 REM EXECUTE ENDING ROUTINE
1090 GOSUB 1300
1100 END
1110 REM ---------
1120 HOME
1130 PRINT "BEGINNING ROUTINE"
1140 REM INSERT INSTRUCTIONS TO
1150 REM BE EXECUTED ONCE AT
1160 REM BEGINNING OF PROGRAM
1170 REM

118 / Applesoft BASIC Toolbox

1180 LIMIT = 5
1190 RETURN
1200 REM--------------
1210 PRINT "MAIN ROUTINE"
1220 REM PRINT SCREEN ROUTINE
1230 GOSUB 1370
1240 REM READ SCREEN ROUTINE
1250 GOSUB 1420
1260 NUMBER = NUMBER + 1
1270 IF NUMBER < LIMIT THEN 1210
1280 RETURN
1290 REM -----------
1300 PRINT "ENDING ROUTINE"
1310 REM INSERT INSTRUCTIONS TO
1320 REM BE EXECUTED ONCE AT
1330 REM THE END OF THE PROG
1340 REM
1350 RETURN
1360 REM ---------
1370 PRINT "PRINT SCREEN ROUTINE"
1380 REM INSERT INSTRUCTIONS TO
1390 REM DISPLAY SCREEN
1400 RETURN
1410 REM -----------
1420 PRINT "READ SCREEN ROUTINE"
1430 REM INSERT INSTRUCTIONS TO
1440 REM READ DATA FROM SCREEN
1450 RETURN
1460 REM ---------

The DRIVE ROUTINE consists of basically the same code as in GOSUB SAMPLE1.
The BEGINNING ROUTINE consists of the same code but with one line added.

Line 1180 sets the variable LIMIT to a starting value of 5.
The MAIN ROUTINE has been changed to show the use of nested GOSUB

instructions.
The first GOSUB within the MAIN ROUTINE causes logic flow to branch to

the PRINT SCREEN ROUTINE. Since the MAIN ROUTINE is executed by way of the
GOSUB instruction on line 1070, the second GOSUB results in what is called a
nested GOSUB, that is, the use of a GOSUB within a routine executed by way of a
GOSUB.

When the first GOSUB is executed, Applesoft puts the address of the instruction
to which it is suppose to return into the first location of a special table (called a
stack).

Stack
1070 GOSUB 1210------Statement 1 = 1080
1080 ... ----- Statement 2 = Null value

Statement 3 = Null value

The GOSUB/RETURN Instructions / 119

When the second GOSUB is executed, Applesoft puts the return address into
the second location of the stack table. The stack table works using a LIFO sequence
(Last In, First Out).

Stack
1230 GOSUB 1370 Statement 1 = 1080
1240 ... -------Statement 2 = 1240

Statement 3 = Null value

Applesoft continues to place return addresses at the end of the table each time
a new GOSUB is encountered.

Each time a RETURN is encountered, the last entry placed in the table serves
as the RETURN address. By using the LIFO method, Applesoft can continue to nest
GOSUBs, and as long as you follow the rules, Applesoft returns to the correct
instruction.

After execution of the RETURN on line 1400, Applesoft removes the statement
number from the second entry of the table and branches back to that statement.
After the second entry is removed, the stack table contains only the one statement
number which is the return address for the MAIN ROUTINE.

1240

Stack
Statement 1 = 1080

~~...._ Statement 2 = Null value
Statement 3 = Null value

When the GOSUB on line 1250 is executed, Applesoft places the address of
the instruction following the GOSUB into the second location of the table.

Stack
1250 GOSUB 1420 Statement 1 = 1080
1260 ... --------Statement 2 = 1260

Statement 3 = Null value

When the RETURN on line 1450 is executed, the last address placed in the
stack is removed and used as the returning point for logic fl.ow.

Stack
Statement 1 = 1080
Statement 2 = Null value
Statement 3 = Null value

120 / Applesoft BASIC Toolbox

The process of inserting the return address and removing the return address
continues through five loops of the MAIN ROUTINE. On the fifth time through, logic
flow drops through the IF on line 1270 and encounters the RETURN at the end of
the MAIN ROUTINE. At this point there is only one number in the stack table. The
value is removed from the table and used as the return address.

1080

....._______ Stack

1280 RETURN~ Statement 1 =Null value
Statement 2 = Null value

The next instruction to be executed is line 1080. When the GOSUB on line
1090 is executed, the return address of 1100 is placed in the stack, and then logic
flow branches to line 1300. Upon completion of the ENDING ROUTINE, the return
address is removed from the table, and logic flow ends on line 1100 with the END
instruction.

17. The ON GOSUB
Instruction

Instruction ON number GOSUB statement numbers

Example 1000 INPUT "ENTER NUMBER OF MONTH = ";MTH
1010 IF MTH < 1 OR MTH > 12 THEN GOSUB 1160:GOTO 1030
1020 ON MTH GOSUB 1040, 1050, 1060, 1070, 1080, 1090, 1100,

1110, 1120, 1130, 1140, 1150
1030 END
1040 PRINT "JANUARY":RETURN
1050 PRINT "FEBRUARY":RETURN
1060 PRINT "MARCH":RETURN
1070 PRINT "APRIL":RETURN
1080 PRINT "MAY":RETURN
1090 PRINT "JUNE":RETURN
1100 PRINT "JULY":RETURN
1110 PRINT "AUGUST":RETURN
1120 PRINT "SEPTEMBER":RETURN
1130 PRINT "OCTOBER":RETURN
1140 PRINT "NOVEMBER":RETURN
1150 PRINT "DECEMBER":RETURN
1160 PRINT "ERROR IN MONTH VALUE":RETURN

If the value of MTH is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, the ON GOSUB
instruction causes logic flow to branch and print the correct name of the month. If
the value of MTH is less than 1 or greater than 12, line 1010 causes an error message
to be printed. After the name of the month is printed, logic flow returns to line 1030,
and the program ends.

Purpose The ON GOSUB instruction is used to change the flow of instruction execution
based on the value of the number following the keyword ON. The instruction com­
bines the features of the IF and GOSUB instructions into one statement.

Instead of having to code 12 IFs with 12 GOSUBs,

121

122 / Applesoft BASIC Toolbox

IF MTH = 1 GOSUB 1040
IF MTH = 2 GOSUB 1050
IF MTH = 3 GOSUB 1060

IF MTH = 12 GOSUB 1150

you may code one statement to test for all 12 values:

ON MTH GOSUB 1040,1050,1060,1070,1080,1090,1100,1110,
1120, 1130, 1140, 1150

Rules for Use 1. The statement numbers used with the ON GOSUB instruction must exist within
the program.

2. The name or equation following the keyword ON may be either an integer or
a real value. If the variable contains a real value, any decimal positions are
ignored.

3. The value of the number or arithmetic expression following the keyword ON
must not be negative or exceed 255. If the value is outside the computer's
allowable range, an error message is displayed and the program terminated.

4. Each statement number following the keyword GOSUB corresponds to a test
for the value of 1, 2, 3, 4, 5, etc.

5. If the number being evaluated is 0 or is greater than the number of statements
listed, logic flow falls through the ON GOSUB and continues with the next
sequential statement.

6. Each routine executed using the ON GOSUB instruction must end with the
RETURN instruction.

Illustration Key in the following program, or load and list the program by entering
of the Rules

LOAD ON GOSUB SAMPLE1
LIST

1000 REM ON GOSUB SAMPLEl
1010 HOME
1020 VTAB 10
1030 PRINT "ENTER A NUMBER FROM 1 TO 10.": PRINT
1040 PRINT "ENTER 11 TO TERMINATE THE PROGRAM.": PRINT
1050 INPUT II = ";AANUMBER
1060 PRINT
1070 IF AANUMBER < 1 OR AANUMBER > 11 THEN GOSUB 1130:GOTO 1 090
1080 ON AANUMBER GOSUB 1150,1170,1150,1170,1150,1170,1150,1170,

1150. 1170. 1190
1090 VTAB 23
1100 PRINT "PRESS ANY KEY TO CONTINUE.";
1110 GET Xl$

The ON GOSUB Instruction f 123

1120 GOTO 1000
1130 PRINT "NUMBER NOT WITHIN SPECIFIED RANGE."
1140 RETURN
1150 PRINT "YOU ENTERED AN ODD NUMBER."
1160 RETURN
1170 PRINT "YOU ENTERED AN EVEN NUMBER."
1180 RETURN
1190 HOME
1200 PRINT "THAT'S ALL FOLKS!"
1210 END
1220 REM DID NOT RETURN ON LAST GOSUB

1070 Before the ON GOSUB instruction is executed, the value entered is checked to see
if it is within the specified range. To be on the safe side, precede each ON GOSUB
and ON GOTO instruction with an IF instruction. When you test the value to be used
prior to the GOSUB or GOTO operation, there is no chance for an illegal value to
cause the program to abnormally terminate.

1080 Depending on the value entered by the operator, the ON GOSUB instruction branches
to one of the 11 statement numbers. Since the IF instruction on line 1070 has already
tested for any value outside the 11 numbers, the instruction is guaranteed a match.
If 1, 3, 5, 7, or 9 is entered, logic fl.ow branches to line 1150. For the value 2, 4,

· 6, 8, or 10, logic fl.ow branches to line 1170. If the operator enters an 11, logic fl.ow
branches to line 1190.

Notice that the same statement number may be used in several different posi­
tions. In the example all the odd numbers are associated with statement 1150, and
all the even numbers are associated with statement 1170.

1090-1120 After the appropriate message is displayed, the operator is given a chance to read
the message and press a key. After any key is pressed, the program starts over and
gives the operator another chance to enter a number.

1190-1220 This section of code prints a message when an 11 is entered to terminate the program.
Notice that when the program terminates, no RETURN is used. Since lines 1190 to
1220 are the last instructions to be executed by the program, the RETURN is omitted,
and the program is terminated without returning to the calling GOSUB. Normally
each GOSUB operation should have a matching RETURN instruction. Do not get
into the practice of breaking the GOSUB/RETURN structure.

To help illustrate the rules, run the program and enter the following values.

1. Enter a real number with a decimal point, let's say 4.5. The computer will
truncate the .5 and treat the number as an integer value of 4. The message YOU
ENTERED AN EVEN NUMBER. will print out. Press any key to continue the
program.

124 f Applesoft BASIC Toolbox

2. Enter a number outside the acceptable range, such as zero. Since zero is not
within the range of the numbers requested, the IF instruction on line 1070 will
intercept the number and branch to line 1130. The message NUMBER NOT
WITHIN SPECIFIED RANGE. will be displayed. Press any key to continue the
program.

3. Enter an odd or an even number within the acceptable range. If you enter an
odd number, the ON GOSUB will cause logic flow to branch to statement 1150.
If you enter an even number, the ON GOSUB will cause logic flow to branch
to line 1170. In either case a message will be displayed, and logic flow will
return to line 1090. Press any key to continue the program.

4. To terminate the program, enter 11. After terminating the program, delete line
1070 by entering

1070 <RETURN>

Run the program again and enter a negative value or a value greater than 255.
Since the value was not checked prior to being used in the ON GOSUB instruc­
tion, the program will be terminated with an ILLEGAL QUANTITY error message.

Remember that when using either the ON GOSUB or the ON GOTO instruc­
tions, any negative number or value greater than 255 abnormally terminates the
program.

18. The POP Instruction

Instruction POP

Example 1000 GOSUB 2000
1010 /
........ /
2000 GOSUB 3000

········~
3000

3050 POP
3060 REM REMOVES ONE RETURN ADDRESS FROM THE GOSUB STACK.
3070 RETURN
3080 REM RETURN WILL GO BACK TO LINE 1010 BECAUSE POP
3090 REM REMOVED ONE RETURN ADDRESS.

Purpose The POP instruction is used to remove tfie last instruction address placed in the
GOSUB stack . If for some reason you DO NOT want to RETURN to the instruction
following the calling GOSUB, the POP instruction can be used to remove the last
return address placed in the GOSUB stack table.

Rules for Use 1. Prior to execution of a POP instruction, at least one GOSUB instruction must
have been executed or the program ends with error code 22 (RETURN WITH­
OUT GOSUB).

Illustration
of the Rules

2. After the POP instruction is executed, logic flow continues to the next instruc­
tion. No return or branching is associated with the POP instruction.

For the following GOSUBs, three addresses are located in the GOSUB stack. To
make the example easier to illustrate, statement numbers are used, but remember
that the machine actually uses the address of the next instruction.

125

12& / Applesoft BASIC Toolbox

1000 GOSUB 2000 Stack
1010 Statement 1 = 1010
2000 GOSU~Statement 2 : 2010
2010 :-.11nnn ~Statement 3 -~
3000 GOSU~ -----
3010
4000 POP
4010 RETURN

The POP instruction on line 4000 removes the last address from the GOSUB
stack, leaving only two return addresses:

Statement 1 = 1010
Statement 2 = 2010
Statement 3 = Cleared by POP

When the RETURN instruction on line 4010 is executed, program logic returns
to statement 2010 since it is now the last address in the GOSUB stack.

19. The LET Instruction

Instruction LET variable name = {~::::!:}
Constant

Example LET A = B

Sets variable A equal to the value of B.

LET A$ = "ALPHA" + "NUMERIC"

Sets A$ equal to the value ALPHANUMERIC.

Purpose 1. To copy data from one variable to another.
2. To connect two or more strings into one string and store the results in the

variable to the left of the equal sign.
3. To calculate a numeric value based on a formula and store the answer in the

variable to the left of the equal sign.

The LET instruction has many options. The discussion of the LET instruction
is divided into four sections. Each subsection is divided further into a detailed
explanation of each parameter and symbol to be used.

Rules for Use 1. General rules in using the LET instruction
a. The keyword LET is optional in Applesoft.
b. Only one variable name is allowed to the left of the equal sign.
c. The type of variable to the left of the equal sign must match the type of

value produced by the equation on the right side of the equal sign.
2. Numeric operations using the LET instruction

a. + (plus) For addition
b. - (minus) For subtraction or negation
c. * (asterisk) For multiplication
d. I (slash) For division
e. A (caret) For exponentiation
f. () Left and right parentheses for sequence of execution

127

128 / Applesoft BASIC Toolbox

3. Numeric operations using the LET Applesoft functions
Note: To help illustrate the formats of the various functions variable names are

used. The names X and Y are used to show the location where either a
numeric constant, numeric variable, or numeric equation must appear.
The name A$ is used to show where either a string constant or string
variable must appear.

a. ABS(X) References the absolute value of X
b. ASC(A$) References the ASCII (American Standard Code for

Information Interchange) numeric value of the first
character of the variable A$

c. INT(X) References the integer portion of the real number X
d. LEN(A$) References the number of characters in the variable A$
e. RND(X) Returns a random number based on the value of X
f. SGN(X) Returns a -1, 0, or + 1 depending on the value of X
g. VAL(A$) References the numeric value of A$
h. others SIN(X); COS(X); TAN(X); ATN(X); SQR(X); EXP(X); LOG(X)

4. String operations using the LET string functions
a. LEFT$(A$,X) References the X leftmost characters of A$
b. MID$(A$,X,Y) References the middle of A$ starting at location X and

continuing for Y characters
c. RIGHT$(A$,X) References the X rightmost characters of A$
d. + Can be used with string functions to CONNECT groups

of alphanumeric characters together; the process of con­
necting two strings is called concantenation

e. CHR$(X) Returns the ASCII character corresponding to the numeric
value of X

f. STR$(X) Returns the numeric value of X in string format

General Rules for Using the LET Instruction

la. The keyword LET is optional in Applesoft.
lb. Only one variable name is allowed to the left of the equal sign.
le. The type of variable name to the left of the equal sign must match the type of

value produced by the equation on the right side of the equal sign.

Illustration Key in and run the program, or run the program by entering
of the Rules

RUN LET SAMPLE1

1000 REM LET SAMPLE!
1010 HOME
1020 REM
1030 REM FOR APPLESOFT "LET" IN
1040 REM THE LET INSTRUCTION rs

1050 REM OPTIONAL
1060 REM
1070 LET AANUMBER = 5
1080 ABNUMBER = 40

The LET Instruction / 129

1090 ACNUMBER = ADNUMBER = AENUMBER = AANUMBER * ABNUMBER
llOO PRINT "AANUMBER ";AANUMBER
lllO
ll20
ll30
ll40
ll50

PRINT
PRINT
PRINT
PRINT
END

"ABNUMBER ";ABNUMBER
"ACNUMBER ";ACNUMBER
"ADNUMBER ";ADNUMBER
"AENUMBER = ";AENUMBER

1070-1080 The first LET instruction shows the standard format with the keyword LET followed
by the variable name to be changed, the equal sign, and the equation to be evaluated
in developing the answer.

Except for statement 1070, none of the programs used in this book include the
keyword LET.

Line 1070 sets AANUMBER equal to 5, while line 1080 sets ABNUMBER equal
to 40.

1090 This line shows how you might mistakenly attempt to set several variables equal to
the same value with a single LET instruction. Logically, the instruction is trying to
set the variables ACNUMBER, ADNUMBER, and AENUMBER equal to the results
of multiplying AANUMBER by ABNUMBER, but when the instruction is executed,
Applesoft sets ALL variables to zero.

To correctly set all variables to the same value, use multiple LET instructions.
First compute the answer, and then set the other variables equal to the results.

1090 ACNUMBER = AANUMBER * ABNUMBER: ADNUMBER = ACNUMBER:
AENUMBER = ACNUMBER

1100-1140 Lines llOO through l140 print the contents of each of the variables used in the
example, proving that variables AC, AD, and AE were set to zero.

Rule 1 c. The type of variable name to the left of the equal sign must match the results produced
by the equation on the right side of the equal sign.

Example STRINGNAME$ = STRING FUNCTION
REALNAME = ANY ARITHMETIC OPERATION
INTEGERNAME% = ANY ARITHMETIC OPERATION to be truncated

Key in the following program, or load and list the program by entering

130 I Applesoft BASIC Toolbox

LOAD LET SAMPLE2
LIST

1000 REM LET SAMPLE2
1010 HOME
1020 REM CORRECT STR SAMPLES
1030 AASTRING$ = "APPLES"
1040 ABMTH$ = "SEPTEMBER"
1050 ACDTE$ = 11 12/28/81 11

1060 REM
1070 REM INCORRECT STR SAMPLES
1080 ADVLUE$ = 1234
1090 AEDTE$ = 122881
1100 REM
1110 REM CORRECT REAL SAMPLES
1120 AANUMBER = 1234.56
1130 ABDTE = 122881
1140 REM
1150 REM INCORRECT REAL SAM~LES
1160 ACVLUE = "$123.45"
1170 ADDTE = 12/28/81
1180 REM
1190 REM CORRECT INT SAMPLES
1200 AANUMBER% = 1234
1210 ABDTE% = 128l:REM MONTH AND YEAR
1220 REM
1230 REM INCORRECT INT SAMPLES
1240 ACVLUE% = 123.45
1250 ADDTE% = 122881
1260 REM
1270 PRINT "AASTRING$
1280 PRINT "ABMTH$
1290 PRINT "ACDTE$
1300 PRINT "AANUM!3ER
1310 PRINT "ABDTE
1320 PRINT "ADDTE
1330 PRINT 11 AANUMBER% =
1340 PRINT "ABDTE%
1350 PRINT "ACVLUE%
1360 END

"AASTRING$
"ABMTH$
"ACDTE$
"AANUMBER
"ABDTE
"ADDTE
"AANUMBER%
"ABDTE%
"ACVLUE%

1020-1060 String names are initialized to the value indicated by the alphanumeric string to the
right of the equal sign. Alphanumeric constants (string constants) must be enclosed
in quotation marks. Even if the value to be placed in a string variable consists of
all numbers, the value must still be enclosed within quotation marks.

1070-1100 Lines 1080 and 1090 are examples of mismatch errors. Attempt to run the program
and you will get the following message

?TYPE MISMATCH ERROR IN 1080

The LET Instruction I 131

The computer is trying to tell you that you cannot mix variables. You cannot give
an alphanumeric variable a numeric value or give a numeric variable an alphanumeric
value.

Delete the lines in error by entering

DEL 1070,1100
LIST

1110-1140 Lines 1110 to 1140 provide correct examples of how to set a numeric variable to a
numeric value. In this case the numeric variables and values represent what are
called real numbers. The real number set includes whole numbers such as 23, 500,
1001, etc., as well as numbers with decimal portions such as .045, 12.45, 1001.15,
etc. In other words, real numbers may or may not have a decimal portion whereas
integers may only contain whole numbers. Most arithmetic is done with real numbers.

1150-1180 Lines 1150 to 1180 provide examples of incorrect attempts to set a numeric variable
name equal to a specific value. In line 1160 there is another TYPE MISMATCH
error: a numeric variable cannot be set equal to a string value enclosed within
quotation marks.

In line 1170 the value to the right of the equal sign is not interpreted as a date
but causes ADDTE to be set to a value of .00529101. The computer interprets the
equation

ADDTE = 12/28/81

as 12 divided by 28 = .42857143 (see first slash), then .42857143 divided by 81
.00529101 (see second slash).

This mistake does not result in a syntax error but does result in a logic error.
To eliminate these lines, enter

DEL 1150, 1180
LIST

1190-1220 Lines 1190 to 1220 provide correct examples of how to set an integer variable equal
to an initial value. An integer variable is indicated by a percent sign used as the last
character of the name. Integer variables may only contain positive or negative whole
numbers. You may wonder why ABDTE% was set equal to a different date (value)
than in previous examples. The largest whole number which can be stored in an
integer variable is (+, -) 32767. The numeric date 122881 used on lines 1050 and
1130 is too large and would result in an error message.

1230-1260 Line 1240 does not result in a syntax error but is logically incorrect. Applesoft sets

132 / Applesoft BASIC Toolbox

ACVLUEo/o equal to the integer portion of the real number 123.45. After execution
of line 1240, ACVLUEo/o contains the whole number 123. If the programmer wants
to truncate the decimal positions, this instruction is valid. If the programmer expects
to keep the decimal positions, then a logic error has occurred.

Line 1250 shows what happens if you attempt to store a value larger then
+ 32767 or smaller than - 32767. If you try to run the program the following
message is displayed

?ILLEGAL QUANTITY ERROR IN 1250

To delete this line enter

1250
LIST

At this point all the syntax errors should be out of the program. RUN the
program and review the output to make sure you understand the following concepts:

STRING Variables

1. String variable names always end with a dollar sign.
2. String variables are always treated by the computer as alphanumeric even when

they contain only numbers.
3. String constants MUST be enclosed within quotation marks.
4. String variables cannot be used in arithmetic operations.

REAL Variables

1. Real variable names end with either a numeric digit or with an alphabetic
character (A1, A2, AB, AC, etc).

2. Real variables contain numeric values with possible decimal positions.
3. Real constants MUST NOT be enclosed within quotation marks and may or

may not contain a decimal position (123 or 123.0).
4. Real variables can be used in any type of arithmetic operation.

INTEGER Variables

1. Integer variables always end with a percent sign.
2. Integer variables contain only whole numbers. No decimal positions can be

stored.
3. Integer constants MUST NOT be enclosed within quotation marks.
4. Integer variables can be used in any type of arithmetic operation.

The LET Instruction/ 133

Basic Numeric Operation in Applesoft

For numeric operations use the following symbols:

1. + For addition
2. - For subtraction
3. * For multiplication
4. I For division
5. A For exponentiation
6. () Left and right parentheses for sequence of execution

The examples of add, subtract, multiply and divide are very simple. You may
want to look over the first four examples and execute only one before moving on to
the example on exponentation.

Addition

To add, use the plus (+) sign. The following program asks you to input two numbers
and then displays the two numbers and the answer in an equation format.

Key in and run the following program, or run the program by entering

RUN ADD SAMPLE1

NEW
1000 REM ADD SAMPLEl
1010 HOME
1020 REM
1030 REM + FOR ADDITION
1040 REM
1050 PRINT "ADD EXAMPLE +"
1060 PRINT
1070 INPUT "FIRST NUMBER= ";AANUMBER
1080 INPUT "SECOND NUMBER= ";ABNUMBER
1090 ACANSWER = AANUMBER + ABNUMBER
1100 PRINT: PRINT
1110 PRINT AANUMBER" + "ABNUMBER" = "ACANSWER
1120 END

1090 When using the LET instruction, each variable to the right side of the equal sign
MUST be separated by an arithmetic symbol.

The value of the variable to the left of the equal sign is replaced by the new

134 I Applesoft BASIC Toolbox

amount calculated on the right of the equal sign. Again, only one variable is allowed
to the left of the equal sign.

In this case the number you enter for AANUMBER is added to the number
entered for ABNUMBER and the results stored in ACANSWER.

Subtraction

To subtract use the minus (-) sign. The following program uses the same logic as
the add example. If you decide to load the program, run it several times, entering
various combinations of numbers so you get positive, negative, and zero results.

Key in and run the following program, or run the program by entering

RUN SUBTRACT SAMPLE1

Remember, once the program is loaded, you only need to key RUN and press
RETURN to execute it again.

NEW
1000 REM SUBTRACT SAMPLE!
1010 HOME
1020 REM
1030 REM - FOR SUBTRACT
1040 REM
1050 PRINT "SUBTRACT EXAMPLE -"
1060 PRINT
1070 INPUT "FIRST NUMBER = ";AANUMBER
1080 INPUT "SECOND NUMBER= ";ABNUMBER
1090 ACANSWER = AANUMBER - ABNUMBER
1100 PRINT: PRINT
1110 PRINT AANUMBER" - "ABNUMBER" = "ACANSWER
1120 END

Multiplication

To multiply use the asterisk (*) character. Again, the following program follows the
logic of the addition example. You may want to execute it to see how quickly you
can exceed the limit of nine significant characters. Remember, the computer only
stores the nine most significant digits. Multiply a five digit number by another five
digit number and see if all the resulting digits are kept.

For example, try

55555 * 55555

You would expect

55555 * 55555 = 3086358025

The LET Instruction / 135

But you will get

55555 * 55555 = 3.08635803E + 09

Key in and run the following program, or run the program by entering

RUN MULTIPLY SAMPLE1

NEW
1000 REM MULTIPLY SAMPLE!
1010 HOME
1020 REM
1030 REM * FOR MULTIPLY
1040 REM
1050 PRINT "MULTIPLY EXAMPLE *"
1060 PRINT
1070 INPUT "FIRST NUMBER= ";AANUMBER
1080 INPUT "SECOND NUMBER= ";ABNUMBER
1090 ACANSWER = AANUMBER * ABNUMBER
1100 PRINT: PRINT
1110 PRINT AANUMBER" * "ABNUMBER" = "ACANSWER
1120 END

Division

To divide use the slash (/) character. When dividing you must be careful to make
sure that the divisor is not zero. The computer CANNOT divide by zero (nor can
anyone else). Run the following sample, enter zero as the second number, and see
what happens. Key in and run the following program, or run the program by entering

RUN DIVIDE SAMPLE1

NEW
1000 REM DIVIDE SAMPLE!
1010 HOME
1020 REM
1030 REM / FOR DIVISION
1040 REM
1050 PRINT "DIVIDE EXAMPLE /"
1060 PRINT
1070 INPUT "DIVIDEND = ";AANUMBER
1080 INPUT "DIVISOR = ";ABNUMBER
1090 ACANSWER = AANUMBER / ABNUMBER
1100 PRINT: PRINT
1110 PRINT AANUMBER" / "ABNUMBER" = "ACANSWER
1120 END

In order to avoid the division by zero error, you may want to use an IF instruction
to check the value of a divisor prior to dividing.

138 / Applesoft BASIC Toolbox

1085 IF ABNUMBER = 0 THEN ACANSWER = O: GOTO 1110

Exponentiation

To raise a number to a specific power (exponentiation), use the caret(•) character.
For the APPLE II and APPLE II+ , the character is keyed as SHIFT-N, (see the

symbol above the N key).
For the APPLE Ile, the symbol is the SHIFT-6 key.
When using the exponentiation feature, it is very easy to exceed the limits of

the computer. The first program follows the same format as the previous numeric
examples.

Key in and run the following program, or run the program by entering

RUN EXPONENTIATION SAMPLE1

NEW
1000 REM EXPONENTIATION SAMPLE!
1010 HOME
1020 REM
1030 REM A FOR EXPONENTIATION
1040 REM
1050 PRINT "EXPONENTIATION EXAMPLE An

1060 PRINT
1070 INPUT "NUMBER = ";AANUMBER
1080 INPUT "POWER = ";ABNUMBER
1090 ACANSWER = AANUMBER A ABNUMBER
1100 PRINT:PRINT
1110 PRINT AANUMBER" A "ABNUMBER" = "ACANSWER
1120 END

The second exponentiation program prints out the powers of 2 until the limi­
tations of the computer are exceeded. Since the program uses the SPEED instruction
and ends in an error, you must reset the speed after program termination. Enter
SPEED= 255 in response to the ending error message.

Key in and run the following program, or run the program by entering

RUN EXPONENTIATION SAMPLE2

NEW
1000 REM EXPONENTIATION SAMPLE2
1010 HOME
1020 REM
1030 REM PROGRAM WILL END IN
1040 REM ERROR AFTER 126 LOOPS.
1050 REM
1060 AANUMBER = 1
1070 ABNUMBER = 2 A AANUMBER

The LET Instruction/ 137

1080 PRINT " 2 TO THE POWER OF "AANUMBER" "ABNUMBER
1090 AANUMBER = AANUMBER + 1
llOO GOTO 1070

1060 AANUMBER is set to an initial value of 1. The first time statement 1080 is executed,
a value of 2 is printed. Each time through the loop, AANUMBER is incremented by
1 to continually increase the factor for exponentiation.

1070 The field ABNUMBER is set to 2 raised to the power indicated by the current value
of AANUMBER. When AANUMBER gets to 127, the answer exceeds the limits of
the computer and you get the following error message

?OVERFLOW ERROR IN 1080

Parentheses

Parentheses are used to override the standard sequence of arithmetic operations. The
computer computes the answer to an equation by carrying out the individual arith­
metic functions in the following order UNLESS PARENTHESES ARE USED.

1. Exponentiation is performed first if present. The computer scans the equation
for the caret (·) starting at the left side of the equation and proceeding to the
right.

2. Multiplication and division are performed next. The computer scans the equa­
tion from left to right looking for either an asterisk (*) or a slash (/). When
either one is found the operation is carried out.

3. Addition and subtraction are performed last. The computer scans the equation
from left to right looking for either a plus sign or a minus sign. When one is
found, the operation is carried out.

When parentheses are used, the computer begins the sequence described above,
scanning the innermost set of parentheses first. When ALL arithmetic operations
are completed in the innermost parentheses, the next level of parentheses is scanned.
The process continues from innermost parentheses to outermost parentheses until
all the calculations are completed.

For example

GG = AA + BB * (CC I DD - EE) ' FF

where

AA = 35, BB = 10, CC = 22, DD = 2, EE = 8, FF = 4

138 / Applesoft BASIC Toolbox

Answer

GG =845

First, the innermost equation (CC I DD - EE) is solved. The value in CC is
divided by DD (22 I 2 = 11). The value of EE is then subtracted from the quotient
of the division operation (11 - 8 = 3).

Second, the result of the inner parentheses is carried to the power of FF (3 A 4
= 81). Remember, if no parentheses are present exponentiation is done first.

Third, the value in BB is multiplied by the value calculated to this point (10 *
81 = 810).

Last, the value in AA is added to the value calculated to this point, and the
results stored in GG (35 + 810 = 845).

The variable GG ends up with a value of 845.

Example 1: Parentheses

The following example demonstrates the difference between using and not using
parentheses.

Key in and run the following program, or run the program by entering

RUN PARENTHESES SAMPLE1

NEW
1000 REM PARENTHESES SAMPLEl
1010 HOME
1020 REM
1030 REM() FOR OVERRIDING SEQ
1040 REM OF EXECUTION
1050 REM
1060 PRINT "PARENTHESES EXAMPLE"
1070 PRINT
1080 INPUT "FIRST NUMBER = ";AANUMBER
1090 INPUT "SECOND NUMBER= ";ABNUMBER
1100 PRINT : PRINT
1110 PRINT "WITH PARENTHESES"
1120 ACANSWER = (AANUMBER + AANUMBER) * ABNUMBER - (ABNUMBER /

AANUMBER)
1130 PRINT "ANSWER = "ACANSWER
1140 PRINT : PRINT
1150 PRINT "WITHOUT PARENTHESES"
1160 ACANSWER = AANUMBER + AANUMBER * ABNUMBER - ABNUMBER I

AANUMBER
1170 PRINT "ANSWER = "ACANSWER
1180 END

The statements 1120 and 1160 perform the same arithmetic operations but in
different sequences.

The LET Instruction I 139

Did you notice the difference when you ran the program? Ifnot, run the program
again to see how the use of parentheses changes the sequence in which the arithmetic
operations are performed.

Arithmetic Fllnctions in Applesoft

Applesoft has a set of predefined functions which allows the programmer to manip­
ulate numeric variables, convert numbers stored in string format to numeric format,
and perform the basic trigonometry operations.

These functons are listed below. The trigonometry functions are self explana­
tory (if you know trigonometry) and are not covered in detail. The other numeric
functions are covered in alphabetic order.

1. ABS(X)
2. ASC(A$)

3. INT(X)
4. LEN(A$)
5. RND(X)
6. SGN(X)

VAL(A$)

Returns the absolute value of X
Returns the ASCII numeric value of the first character of the
variable A$
Returns the integer portion of the real number X
Returns the number of characters in the variable A$
Returns a random number based on the value of X
Returns a value of - 1, 0, or + 1 depending on the value of
x
Returns the numeric value of A$ 7.

8. Thgonometry and basic math functions

ATN (X) Used to retrieve the arctangent, in radians, of X
COS (X) Used to retrieve the cosine, in radians, of X
EXP (X) Used to retrieve e (2.718279) to the power of X
LOG (X) Used to retrieve the natural logarithm of X
SIN (X) Used to retrieve the sine, in radians, of X
SQR (X) Used to retrieve the square root of X
TAN (X) Used to retrieve the tangent, in radians, of X

ABS(X)

ABSolute is an Applesoft function which is used to convert numbers to their absolute
value.

Rules for Use 1.
2.

The variable or expression used within the parentheses must be numeric.
If the value within the parentheses is negative, the sign is changed to positive.
If the value within the parentheses is positive, the sign remains unchanged.

140 / Applesoft BASIC Toolbox

This function is very simple, and no program is provided. You may wish to
test the instruction out in the immediate mode by keying in the following instructions:

PRINT "ABSOLUTE -123 = "ABS(-123) <RETURN>

displays as

ABSOLUTE - 123 = 123
PRINT "ABSOLUTE + 123 = "ABS(+ 123) <RETURN>

displays as

ABSOLUTE + 123 = 123

ASC(X$)

The American Standard Code for Information Interchange (ASCII) is the binary
coding system used by the APPLE. The ASC function allows the program to convert
a single ASCII symbol into its corresponding ASCII numeric value.

Example: Letter A = Numeric value of 65
Letter B = Numeric value of 66
(see Appendix A, p. 508)

The function has limited programming application but does come in handy
when you need to know the numeric value of a specific key or combination of keys.

Rules for Use 1.
2.

3.

The value within parentheses must be a string value.
If the string contains more than one character only the first character of the
string is converted.
The ASCII code returned is from 0 to 127.

Key in and run the following program, or run the program by entering

RUN ASC SAMPLE1

NEW
1000 REM ASC SAMPLEl
1010 HOME
1020 REM
1030 PRINT "PRESS ANY KEY AND THE COMPUTER WILL"
1040 PRINT "SHOW YOU THE CORRESPONDING ASCII"
1050 PRINT "NUMERIC VALUE."

The LET Instruction/ 141

1060 PRINT
1070 PRINT "PRESS KEY II·

1080 GET X$
1090 PRINT X$
llOO AANUMBER = ASC (X$)
lllO PRINT "ASCII VALUE = "AANUMBER
ll20 PRINT
ll30 PRINT "PRESS Q TO QUIT"
ll40 PRINT "PRESS ANY OTHER KEY TO CONTINUE"
ll50 GET X$
ll60 IF X$ < > "Q" GOTO 1000
ll70 PRINT
ll80 PRINT "THAT'S ALL FOLKS!"
ll90 END

While running the program, press some of the control keys to see the corre­
sponding numeric value. The numeric value for CONTROL-Dis one that you should
memorize, as it is used extensively when working with the disk 110 commands. The
CONTROL-D combination of keys has an ASCII value of 4.

INT(X)

INTeger is an Applesoft function used to truncate the decimal portion of a real
number.

Key in and run the following program, or run the program by entering

RUN INT SAMPLE1

NEW
1000 REM INT SAMPLE!
1010 HOME
1020 REM
1030 PRINT "ENTER A NUMBER WITH MORE THAN TWO"
1040 PRINT "DECIMAL POSITIONS. EXAMPLE: 123.456"
1050 PRINT
1060 PRINT "THE PROGRAM WILL ROUND THE NUMBER"
1070 PRINT "TO TWO DECIMAL POSITIONS"
1080 PRINT
1090 INPUT "NUMBER=" AANUMBER
1100 ABNUMBER = (INT((AANUMBER + .005) * 100) / 100)
lllO PRINT "NUMBER=" ABNUMBER
ll20 VTAB 15
ll30 PRINT "PRESS Q TO QUIT"
ll40 PRINT "PRESS ANY OTHER KEY TO CONTINUE"
ll50 GET X$
ll60 IF X$ <> "Q" GOTO 1000
ll70 HOME
ll80 PRINT "THAT'S ALL FOLKS!"
ll90 END

142 / Applesoft BASIC Toolbox

1100 The innermost parenthesis is cleared by adding .005 to the value in AANUMBER.
Once the value has been rounded, the number is shifted two decimal positions to
the left by multiplying the intermediate result by 100. After the number has been
shifted, the INTeger function truncates the decimal positions, and the decimal is
shifted back to the right by dividing the value by 100.

1.
2.
3.
4.

For example if you enter 123.456, the following occurs:

123.456 + .005
123.461 * 100
INT(12346.1)
12346 I 100

= 123.461
= 12346.1
= 12346
= 123.46 Answer truncated and rounded

LEN(A$)

LENgth is a very handy function when working with 1/0 operations. The function
works only with string variables and returns a value equal to the number of characters
in the string variable.

Example PRINT "NAME IS " LEN(AANAME$) " CHARACTERS LONG"

where

AANAME$ = II JOHN DOE"

prints

NAME IS 8 CHARACTERS LONG

In the following example, the LENgth function is used to control the TAB operation.
By using the length of each variable entered with the TAB operation, all the variables
are aligned on the right (right justified) when PRINTed.

The program is set up to work with either integer numbers or real numbers,
but no allowance has been made to align decimal points.

Key in and run the following program, or run the program by entering

RUN LEN SAMPLE1

NEW
1000 REM LEN SAMPLE!
1010 HOME
1020 REM
1030 INPUT "FIRST NUMBER = ";AANUMBER
1040 INPUT "SECOND NUMBER= ";ABNUMBER
1050 ACANSWER = AANUMBER - ABNUMBER
1060 PRINT

1070 ADTBSET LEN (STR$ (AANUMBER))
1080 AETBSET LEN (STR$ (ABNUMBER))
1090 AFTBSET LEN (STR$ (ACANSWER))
1100 PRINT TAB(20 - ADTBSET)AANUMBER
1110 PRINT TAB(20 - AETBSET - 2)"- "ABNUMBER
1120 PRINT TAB(20 - AFTBSET - 2)"= "ACANSWER
1130 PRINT : PRINT

The LET Instruction I 143

1140 PRINT "PRESS SPACE BAR TO REPEAT LOOP"
1150 PRINT "PRESS ANY OTHER KEY TO END PROGRAM"
1160 GET X$
1170 IF X$ = II " GOTO 1000
1180 HOME
1190 PRINT "THAT'S ALL FOLKS!"
1200 END

The program does the same as previous arithmetic examples, but when the
output is printed the numbers are right justified (aligned on the right side).

1070-1090 Lines 1070 to 1090 compute the length of each of the variables entered. Later these
lengths are used to TAB over the appropriate number of spaces. There are actually
two functions being executed on each line. First, the number is converted to a string
(seep. 153). The conversion is necessary because numbers are stored in a condensed
form (binary) and the LENgth function only works on values stored in the string
format (ASCII code). Second, the LENgth of the string is determined. The length
includes the decimal point if present and the minus sign if present.

1100 Assume AANUMBER has a starting value of 123. The computer subtracts the length
of AANUMBER from 20 (20 - 3 = 17). The first character of AANUMBER is
printed in column 17, second character in column 18, and third character in column
19. The same process is used for lines 1110 and 1120.

1110 Again, to help explain the instruction, assume ABNUMBER has a starting value of
123. The computer subtracts the length of ABNUMBER from 20 to allow for the
number of digits to be printed. The instruction also subtracts an additional 2 to allow
for the two positions taken up by the minus sign and blank which precede the number
(20 - 3 - 2 = 15).

Column 1234567890123456789
Line 1100 prints 123
Line 1110 prints - 123

The minus sign prints in column 15. The space following the minus sign prints in
column 16 with the number printing in columns 17 through 19.

1120 The answer in this case is 0 (123 - 123). Using the value of 0 the length of
ACANSWER is 1 (length of a single 0). The computer subtracts 1 from 20 and also

144 / Applesoft BASIC Toolbox

subtracts an additional 2 to allow for the two positions taken up by the equal sign
and the space which precede the answer (20 - 1 - 2 = 17). The equal sign prints
in column 17 with a space following in column 18. The 0 is right aligned in column
19.

Column 1234567890123456789
Line 1100 prints 123
Line 1110 prints 123
Line 1120 prints 0

1130-1170 Lines 1130 to 1170 are used to allow you to repeat the program as many times as
you want to see how the program right-aligns various numbers. Try entering com­
binations of positive and negative numbers and numbers with and without decimal
points. When you want to quit, press any key except the space bar.

RND(X)

RaNDom is an Applesoft function which returns a random number. The type of
value returned by the function varies with the value of the variable within the
parentheses. The value within the parentheses is referred to as the seed.

The random number generator may be used in games to provide a means of
selecting a logic path through the program which is not the same with each execution
of the game.

In scientific or statistical applications, the RND function may be used to elim­
inate bias in data or to generate test data.

Rules for Use 1. The RND function does not actually generate a true random set of numbers.
The same pattern is generated each time the machine is turned on. Within this
fixed pattern the numbers are random.

2. RND(X) returns a value between 0 and 1. If you wish to have the number in
larger units, multiply the function by a power of 10, for example,

AARANDOM = INT(RND(X) * 10)

produces numbers from 0 to 9.
If you wish to have values from 0 to a specific number then multiply the

random function by a value 1 greater than the maximun number you want
returned. For example, to get a range from 0 to 6 multiply the random function
by 7.

AARANDOM = INT(RND(1) * 7)

3. If the value within parentheses (seed) is greater than 0 a random number is
returned.

The LET Instruction I 145

4. If the seed is 0, Applesoft returns the last random number generated. In other
words RND(O) gives you the value from the last RND(X) instruction executed.

5. If the seed is negative, Applesoft returns a fixed sequence of numbers. The
sequence generated depends on the value of the negative number. That is, for
a - 1 there is a fixed series of numbers generated, for a - 2 there is a fixed
series of numbers generated, etc.

Illustration The following illustrates the primary rules for the RND function.
of the Rules

Rule 1. The RND function returns a fixed pattern of numbers each time the computer is
turned on.

Rule 2. The value returned by RND(X) is between 0 and 1.

Rule 3. A positive seed results in a random number.
If you do not have the program disk, key in and save the following program

before continuing.

NEW
1000 REM RND SAMPLE!
1010 HOME
1020 REM
1030 PRINT "RANDOM NUMBER"
1040 SPEED = 100
1050 FOR AANUMBER = 1 TO 20
1060 PRINT RND(l)
1070 NEXT
1080 SPEED= 255
1090 PRINT "THAT'S ALL FOLKS!"
llOO END

SAVE RND SAMPLE1

Before running the program turn the computer off and then back on. After
turning the computer on enter:

RUN RND SAMPLE1

The values generated will be equal to one of the following columns depending
on which machine you are using.

14& / Applesoft BASIC Toolbox

APPLE II

RANDOM NUMBER
.973136996
.103117626
.0177148333
.779343355
.551834438
.617419111
.960296981
.547150891

APPLE Ile

RANDOM NUMBER
.281730746
.876072276
.225704465
.403810008
.458575223
.290037373
.716005434
.78042385

Notice that all the numbers range between 0.000000000 and 1.000000000.
Now turn the computer off and then back on. After turning the computer on

enter:

RUN RND SAMPLE1

You will get the same pattern as before.
Each time you run the program after turning the machine on you will get the

same set of numbers.
Now run the program again, but without resetting the machine. Enter:

RUN

Each time you re-run the program you will obtain a different set of numbers.
But, each time the computer is turned on, the pattern starts over with the same
sequence of numbers being generated.

To overcome this problem execute the following subroutine before using the
RND function.

5000 REM -----------
5010 REM RANDOM SUBROUTINE
5020 POKE - 16368,0:Xl =PEEK (- 16384):Rl =PEEK (78):R2
PEEK (79): POKE 204,Rl: POKE 205,R2
5030 RETURN
5040 REM ------------

The subroutine resets the memory addresses used by the computer to generate
the random numbers. It only needs to be executed once after turning the computer
on. To test the subroutine key in and save the following program.

NEW
1000 REM RND SAMPLE2
1010 HOME
1020 GOSUB 5000 : REM EXECUTE RANDOM SUBROUTINE
1030 PRINT "RANDOM NUMBER"

1040 SPEED = 100
1050 FOR AANUMBER = 1 TO 20
1060 PRINT RND(l)
1070 NEXT
1080 SPEED= 255
1090 PRINT "THAT'S ALL FOLKS!"
1100 END
5000 REM
5010 REM RANDOM SUBROUTINE

The LET Instruction I 147

5020 POKE - 16368,0:Xl =PEEK (- 16384):Rl =PEEK (78):R2
PEEK (79): POKE 204,Rl: POKE 205,R2
5030 RETURN
5040 REM ----------

SAVE RND SAMPLE2

To show you that the subroutine generates a different set of numbers each time
the machine is turned on, go through the same process of turning the machine off
and then back on. After turning the machine on enter:

RUN RND SAMPLE2

The numbers generated will not match the values displayed earlier.
Execute this subroutine once at the start of any program which uses the RND

function.

Rule 4. If the seed contains a value of 0, Applesoft returns the last random number generated.
In other words, RND(O) gives you the value from the last RND(X) instruction executed.

Key in and run the following program, or run the program by entering

RUN RND SAMPLE3

NEW
1000 REM RND SAMPLE3
1010 HOME
1020 REM
1030 PRINT "RANDOM# RND (l)" TAB(20) "RANDOM # RND (O)"
1040 SPEED= 100
1050 FOR AANUMBER = 1 TO 20
1060 PRINT RND (1) TAB(20) RND (O)
1070 NEXT
1080 SPEED= 255
1090 PRINT "THAT'S ALL FOLKS!"
llOO END

In this example two matching columns of numbers are printed. The first column
consists of a set of random numbers generated using a seed of 1. The second column
is an exact duplicate of the first column because the RND(O) function is used.

148 / Applesoft BASIC Toolbox

The use of the RND(O) function is somewhat limited, but you should know that
it is available and how to code the instruction.

Rule 5. If a negative seed is used the RND function returns a fixed sequence of numbers.
The sequence generated depends on the value of the negative number. That is, for
a - 1 there is a fixed series of numbers generated, for a - 2 there is a fixed series
of numbers generated, etc.

Key in and run the following program, or run the program by entering

RUN RND SAMPLE4

NEW
1000 REM RND SAMPLE4
1010 HOME
1020 REM
1030 SPEED= 150
1040 PRINT "RANDOM SERIES FOR -1"
1050 PRINT
1060 PRINT "FOR -1 SEED="; RND (-1)
1070 FOR AANUMBER = 1 TO 8
1080 PRINT RND(+l)
1090 NEXT
llOO PRINT
1110 PRINT "FOR -1 SEED= ";RND (-1)
1120 FOR AANUMBER = 1 TO 8
1130 PRINT RND(+l)
1140 NEXT
1150 SPEED= 255
1160 END

After running the program, look at the first eight rows to see what numbers
were generated. After you have looked at the first eight rows, compare the values
to the second set of eight rows shown at the bottom of the screen. The two groups
should be exactly alike.

Although the numbers for each negative value appear to be random, you get
the same sequence each time you use a specific negative value as the seed.

Why would you want a fixed sequence of random numbers? When testing a
program using the RND function you may want to use a negative number so you can
generate a fixed set of values which will produce predictable results.

Since you know what the fixed set of numbers is going to be, you can check
the results of your program to see if it executed correctly. Once your program works
correctly with the fixed set of values, you can change the negative seed to a positive
seed and use the random numbers generated.

SGN(X)

The SiGN function returns either -1, 0, or + 1 depending on the value of the
variable within the parentheses. The function has limited applications, but you should
know that it is available and how it operates.

The LET Instruction I 149

Key in and run the following program or run the program by entering

RUN SGN SAMPLE1

NEW
1000 REM SGN SAMPLEl
1010 HOME
1020 REM
1030 PRINT "ENTER ANY NUMBER": PRINT
1040 INPUT II = ";AANUMBER
1050 PRINT
1060 ABNUMBER = SGN (AANUMBER)
1070 ABNUMBER = ABNUMBER + 1
1080 ON ABNUMBER GOTO 1110, 1130
1090 PRINT "NUMBER WAS N~GATIVE"
1100 GOTO 1150
1110 PRINT "NUMBER WAS ZERO"
1120 GOTO 1150
1130 PRINT "NUMBER WAS POSITIVE"
1140 GOTO 1150
1150 PRINT : PRINT
1160 PRINT "PRESS SPACE BAR TO REPEAT LOOP"
1170 PRINT "PRESS ANY OTHER KEY TO END PROGRAM"
1180 GET X$
1190 IF X$ = II II GOTO 1000
1200 HOME
1210 PRINT "THAT'S ALL FOLKS!"
1220 END

1060 The variable ABNUMBER is set to -1, 0, or + 1 depending on the value you enter.
If you enter a negative number, ABNUMBER is set to -1; 0 sets ABNUMBER to O;
a positive number sets ABNUMBER to + 1. The function SGN only returns one of
these three values. The program uses the SGN function to determine the sign of the
number you enter and then branches to print the appropriate message.

1070 The value in ABNUMBER is increased by 1 so the ON count GOTO instruction can
be used. After 1 is added to ABNUMBER, the possible values are 0, 1, and 2.

1080 Since the value returned by the SGN function is increased by 1, the computer falls
through to line 1090 for a negative number, branches to line 1110 for a value of 0,
or branches to line 1130 for a positive value.

VAL(X$)

The VALue function is used to convert a string variable into numeric format so the
number can be used in arithmetic operations.

150 / Applesoft BASIC Toolbox

Rules for Use 1. The value within parentheses must be a string.
2. The computer returns a numeric value equal to the value of the numbers present

at the start of the string. If the string contains nonnumeric characters, only the
leading numeric characters are used to determine the value returned. The com­
puter recognizes leading plus and minus signs as being part of the numeric
character set.

3. If the first symbol is a nonnumeric character, the computer returns a value of
zero.

Illustration Key in and run the following program or run the program by entering
of the Rules

RUN VAL SAMPLE1

1000 REM VAL SAMPLE!
1010 HOME
1020 REM
1030 PRINT "ENTER NUMBERS AND LETTERS IN ANY"
1040 PRINT "COMBINATION."
1050 PRINT
1060 PRINT "THE COMPUTER WILL REPLY WITH THE"
1070 PRINT "NUMBERS YOU ENTERED UP TO THE FIRST"
1080 PRINT "NONNUMERIC CHARACTER."
1090 PRINT
llOO PRINT "IF THE FIRST CHARACTER YOU ENTER"
lllO PRINT "IS NONNUMERIC A ZERO VALUE IS RETURNED."
l120 PRINT
ll30 INPUT "ENTER VALUE= ";AASTRING$
ll40 PRINT
1150 AANUMBER = VAL (AASTRING$)
l160 PRINT "LEADING NUMBER WAS: "AANUMBER
ll70 PRINT
l180 PRINT "PRESS Q TO QUIT"
l190 PRINT "PRESS ANY OTHER KEY TO TRY AGAIN"
1200 GET Q$
1210 IF Q$ < > "Q" GOTO 1000
1220 HOME
1230 PRINT "THAT'S ALL FOLKS!"
1240 END

While running the program enter some of the following values:

123ABC456 Returns a value of 123
-123ABC456 Returns a value of - 123
ABC - 123DE F Returns a value of 0

1130 The value you enter is stored as an alphanumeric string (see dollar sign on AASTR­
ING$). Each character you enter takes one byte in memory.

The LET Instruction / 151

1150 The VAL function is used to convert the string of characters you enter into a numeric
value. Leading plus or minus signs are interpreted correctly.

You should get in the practice of always using string variables with the INPUT
instruction and then converting the strings to numbers by using the VAL function.
By following this practice you can keep the program from being canceled when the
operator accidently presses a nonnumeric key while entering a numeric value. But
using string names with the INPUT instruction does not correct the operator's mis­
take. If the operator enters 123.A5 instead of 123.45 the VAL function returns a
numeric value of 123, not 123.45. The use of string variables only prevents the
program from being canceled, it is not a substitute for editing (checking) the values
entered by the operator.

String Functions in Applesoft

When you work with string variables (alphanumeric data), it is often necessary to
break the data into parts. The LEFT$, MID$, and RIGHT$ functions are Applesoft's
way of manipulating string values.

Note: The following examples contain variable names which are completely
spelled out. Some of these names contain embedded Applesoft keywords and will
not work if used in a program. They are spelled out in the examples to help you
understand the instructions.

LEFT$(variable$,number) t !.._ __ Second parameter
'--------First parameter

The LEFT$ function allows the program to reference the leftmost characters of the
variable indicated by the first parameter. The number of characters to be referenced
is indicated by the number in the second parameter.

Example MONTH$= LEFT$(DATE$,2)

The variable MONTH$ is set equal to the left two positions of the DATE$. If DATE$
= "013182", then MONTH$ = "01".

MID$(variable$,starting character,number of characters)

The MID$ function allows the program to reference any part of a variable. The
variable name to be referenced is placed in the first of the three parameters. The

152 / Applesoft BASIC Toolbox

second parameter indicates the starting position. The third parameter indicates how
many characters are to be referenced.

Example DAY$= MID$(DATE$,3,2)

The variable DAY$ is set equal to the characters within the DATE$ starting with
the third character and continuing for two positions. ff DATE$ = "013182", then
DAY$= "31".

RIGHT$(variable$,number)

The RIGHT$ function allows the program to reference the rightmost portion of a
variable. The variable name to be referenced is placed in the first parameter. The
second parameter indicates how many positions of the variable are to be used.

Example YEAR$= RIGHT$(DATE$,2)

The variable YEAR$ is set equal to the rightmost two characters of the DA TE$.
If DATE$ = "013182", then YEAR$ = "82".

Plus Sign (+)

The plus sign can be used with string functions to CONNECT, NOT ADD, groups
of alphanumeric characters together.

Example DATE$ = MONTH$ + DAY$ + YEAR$

Example

The variable DATE$ is set equal to the combined characters of MONTH$, DAY$,
and YEAR$. If MONTH$= "01", DAY$= "31", and YEAR$= "82", then DATE$
would equal "013182".

CHR$(number)

The CHR$ (CHaRacter) function has a somewhat limited application and requires
understanding of how characters are stored in the computer. The CHR$ function
returns the ASCII character corresponding to the numeric value within the paren­
theses (see Appendix A, p. 508).

1000 D$ = CHR$(4)
1010 REM RETURNS THE CHARACTER CORRESPONDING TO THE
1020 REM CONTROL-D KEY. THIS SYMBOL IS USED WHEN READING
1030 REM DATA FROM THE DISK OR WRITING INFORMATION
1040 REM TO THE DISK.

The LET Instruction/ 153

1000 L$ = CHR$(12)
1010 REM RETURNS THE CHARACTER CORRESPONDING TO THE
1020 REM CONTROL-L KEY. THIS SYMBOL IS USED WITH PRINTER
1030 REM TO POSITION THE PAPER AT THE TOP-OF-PAGE.

STR$(number)

The STR$ (STRing) function converts numbers to string format (each symbol takes
up one byte). This is helpful when printing numbers or writing numbers to disk.

Example WAGE= 15000
WAGE$ = STR$(WAGE)

The variable WAGE contains a numeric value of 15000 and can be used in
arithmetic operations. The variable WAGE$ contains the same characters but is
stored by the computer in string format (one symbol, 1 byte).

LEFT$(variable$,number) Function

Rules for Use 1.
2.

The first parameter must be a string.
The second parameter must have a value greater than 0 and less than 256.

To illustrate how the LEFT$ works, the following program asks you to type in
your name. After you have typed in your name and pressed RETURN, the computer
slowly prints the name using a pattern consisting of the first character, then the first
two characters, then the first three characters, etc.

Key in and run the following program, or run the program by entering

RUN LEFT$ SAMPLE1

NEW
1000 REM LEFT$ SAMPLEl
1010 HOME
1020 SPEED= 100
1030 PRINT "ENTER YOUR FULL NAME"
1040 INPUT AANAME$
1050 HOME
1060 FOR ABNUMBER = 1 TO LEN (AANAME$)
1070 PRINT LEFT$(AANAME$,ABNUMBER)
1080 NEXT
1090 PRINT
llOO PRINT "THAT'S ALL FOLKS!"
1110 SPEED= 255
l120 END

154 / Applesoft BASIC Toolbox

The screen below shows the output for JOHN JONES. The caret (A) symbol is
used to represent a blank when the printing of a blank might not be immediately
obvious (see fifth line down).

J
JO
JOH
JOHN
JOHN"
JOHN J
JOHN JO
JOHN JON
JOHN JONE
JOHN JONES

THAT'S ALL FOLKS!

1060-1080 The FOR instruction will not be covered in detail until later. A brief explanation is
provided now to help you understand the program.

The LENgth function allows the programmer to ask the computer how many
characters are in a string. The keyword LENgth is followed by a string name within
parentheses. The computer calculates the length of the string and substitutes the
value in the position of the LEN function.

1060 FOR ABNUMBER = 1 TO LEN(AANAME$)
Instructions

1080 NEXT

The FOR instruction causes the program to repeat all the instructions between
the keyword FOR and the keyword NEXT until the value in ABNUMBER is greater
than the LENgth of the variable AANAME$.

For example, if you enter JOHN JONES, the variable AANAME$ is 10 char­
acters long. This means line 1070 is executed 10 times. The FOR instruction
automatically adds 1 to the variable ABNUMBER each time the keyword NEXT is en­
countered. At the end of the tenth execution, the loop is broken, and program flow
continues to the statement following the keyword NEXT.

1070 The PRINT instruction displays the LEFT$ portion of AANAME$. The number
of characters displayed depends on the value in ABNUMBER. Since the value in
ABNUMBER varies each time line 1080 is executed, you see your name printed
starting with the first character and continuing until your entire name is printed.

The LET Instruction I 155

MID$(variable$,starting character.number of characters)

This Ml Odle function allows you to access the middle or any part of a string variable.

Rules for Use 1.
2.
3.

The first parameter must be a string.
The second parameter must have a value greater than 0 and less than 256.
The third parameter must have a value from 0 to 255. Notice this operand may
contain a value of 0.

Key in and run the following program or run the program by entering

RUN MID$ SAMPLE1

NEW
1000 REM MID$ SAMPLE!
1010 HOME
1020 REM
1030 REM TAB IN PRINT STATEMENT
1040 REM MAY NOT BE AN INTEGER OR
1050 REM ZERO VALUE.
1060 REM
1070 REM STARTING LOCATION FOR
1080 REM MID$, LEFT$, & RIGHT$
1090 REM CAN NOT BE ZERO.
1100 REM
1110 SPEED= 100
1120 PRINT "ENTER YOUR FULL NAME"
1130 INPUT AANAME$
1140 HOME
1150 ABNUMBER = 1
1160 ACSIZE = LEN (AANAME$)
1170 ADHALF = ACSIZE / 2
1180 AENUMBER = 1
1190 PRINT TAB(ABNUMBER) MID$ (AANAME$,ABNUMBER,ACSIZE -

ABNUMBER - ABNUMBER + 2)
1200 ABNUMBER = ABNUMBER + AENUMBER
1210 IF ABNUMBER > ADHALF THEN AENUMBER = - 1
1220 IF ABNUMBER > 0 GOTO 1190
1230 PRINT
1240 PRINT "THAT'S ALL FOLKS!"
1250 SPEED= 255
1260 END

Before reading what each line of the program does, run the program to see the
output. The program requests that you enter your name, and then program logic
prints it out in an hourglass format.

For the name JOHN JONES the screen would appear as follows:

156 I Applesoft BASIC Toolbox

JOHN JONES
OHN JONE

HN JON
N JO

J
N JO

HN JON
OHN JONE

JOHN JONES

Did you get your name in an hourglass format as shown in the sample screen?
If not, check the program for typing errors and try again.

1020-1100 Lines 1020 to 1100 show a technique you may want to copy. As you learn by trial
and error, you may want to make notes in the program so you remember things
which work or do not work.

1150 The variable ABNUMBER is used to control how many characters of your name are
to be printed, where the portion of your name starts printing, and when the program
ends.

The variable ABNUMBER is initialized to a starting value of + 1. Later
ABNUMBER is incremented, causing the value to increase until it reaches a point
equal to 4 the total number of characters in your name. When it is equal to 4 of the
number of characters in your name, then the value decreases by 1 down to 0. When
ABNUMBER reaches 0 the program ends.

1160 The variable ACSIZE is set equal to the LENgth of your name. This value is used in
conjunction with ABNUMBER to determine how many characters of your name are
printed.

1170 The variable ADHALF is used to determine when the lines being displayed have
shortened to the halfway point of your name and should start lengthening back to
the full name.

1180 The variable AENUMBER starts with a value of+ I. The value of AENUMBER is
added to ABNUMBER each time through the main loop to control the position on
the line where the characters are printed (see line 1200). When the value of ABNUM­
BER becomes greater than 4 the size of your name, AENUMBER is reset to a value
of -1 (see line 1210).

The LET Instruction / 157

1190 The program was developed to illustrate how the MID$ instruction works. So we
are now at the instruction which is the key to the program's operation. The MID$
function allows you to reference a MIDdle portion of the string variable indicated
by the first operand, AANAME$. The starting location is indicated by the second
operand, ABNUMBER. The third operand indicates the number of characters, includ­
ing the starting location, which are to be referenced. In this example the third operand
consists of the formula

(ACSIZE -ABNUMBER -ABNUMBER + 2)

To help illustrate how the instruction works, let's work through an example
using the formula with the name JOHN D. SMITH. For this name the value in ACSIZE
is 13.

First Line For the first line ABNUMBER contains a value of 1 so the results are

ACSIZE - ABNUMBER - A BNUMBER + 2
Number of characters = 13 1 1 + 2
Answer = 13 characters

By adding the 2 you offset the starting value of 1 in ABNUMBER and end up
displaying the entire name on the first and last line.

JOHN D. SMITH

Second Line: For the second time through the loop, ABNUMBER contains a value of 2, so the
results are

ACSIZE - ABNUMBER - ABNUMBER + 2
Number of characters = 13 2 2 + 2
Answer = 11 characters

The middle 11 characters of the name are printed, with the screen now showing
two lines:

JOHN D. SMITH
OHN D. SMIT

Seventh Line For the seventh time through the loop ABNUMBER will contain a value of 7, so the
results are

ACSIZE - ABNUMBER - ABNUMBER + 2
Number of characters = 13 7 7 + 2
Answer = 1 character

158 / Applesoft BASIC Toolbox

In this case if the 2 had not been added, the answer would have been - 1, and
the program would have been canceled since the third parameter of the MID$ func­
tion cannot be negative. By adding the + 2 we eliminate the chance of having a
negative value.

The seven printed lines appear as follows-a caret symbol (·) is used to show
blank positions which may not be obvious to the reader.

JOHN D. SMITH
OHN D. SMIT

HN D. SMI
ND. SM
·o. s

If you can think of a better way to achieve the same results, try it. That's part
of the game of programming.

1200 The current value of ABNUMBER is incremented or decremented depending on
whether AENUMBER contains + 1 or - 1.

1210 When the value in ABNUMBER is greater than ADHALF, the variable AENUMBER
is set to - 1. For those of you who try to make the program more readable by saying
equal to instead of greater than, remember that ABNUMBER is counting in whole
numbers, while ADHALF may contain a .5 because of an odd number of characters
in a name. The program would not work with an equal test if the name contained
an odd number of characters.

Be careful when comparing variables and using the equal sign.

1220 If the value of ABNUMBER is greater than 0, the program has not completed all the
necessary loops, and logic flow returns to statement 1190. When ABNUMBER
reaches a value of 0, logic flow drops through the IF, and the program ends.

RIGHT$(variable$,number)

Rules for Use 1.
2.

The first parameter must be a string.
The second parameter must have a value greater than 0 and less than 256.

The RIGHT$ function allows you to access any portion of a string starting from
the right side of the variable.

The program that follows asks you to enter your name and then prints the name
starting with the rightmost characters. The name is printed in a pattern consisting

The LET Instruction / 159

of the rightmost character, then the two rightmost characters, and then the three
rightmost characters, etc.

Key in and run the following program, or run the program by entering

RUN RIGHT$ SAMPLE1

NEW
1000 REM RIGHT$ SAMPLE!
1010 HOME
1020 SPEED= 100
1030 PRINT "ENTER YOUR FULL NAME"
1040 INPUT AANAME$
1050 HOME
1060 FOR ABNUMBER = 1 TO LEN (AANAME$)
1070 PRINT TAB(LEN (AANAME$) - ABNUMBER + 1) RIGHT$ (AANAME$,

ABNUMBER)
1080 NEXT
1090 PRINT
1100 PRINT "THAT'S ALL FOLKS!"
1110 SPEED= 255
1120 END

Before reading what each line of the program does, run the program to see the
output. You will have to enter your name when the program requests it. The screen
below shows the output for JOHN D. SMITH.

H
TH

ITH
MITH

SMITH
·sMITH
SMITH

D. SMITH
.D. SMITH

N D. SMITH
HN D. SMITH

OHN D. SMITH
JOHN D. SMITH

When you ran the program, did your name print out in the same pattern as that
of Mr. SMITH? If so, continue; if not, debug what you keyed in and try again

1060-1080 The FOR/NEXT instruction sets up a loop which is executed repeatedly until the
value in ABNUMBER is greater than the LENgth of the name you keyed in.

160 / Applesoft BASIC Toolbox

1070 The PRINT instruction consists of two parts. The first part TABs to the correct spot
so the characters to be printed are aligned correctly starting from the right side. The
position is computed by subtracting the number of characters which will be printed
(ABNUMBER) from the LENgth of the name. For the very first time through the
loop, the subtraction results in a value of 0. Since the value portion of the TAB
operation cannot contain a 0, a + 1 is added to correct for this condition.

The second part prints the results of the RIGHT$ function. The number of
positions printed is indicated by the value of ABNUMBER. Since the ABNUMBER
ranges from 1 to the number of characters in your name, the program prints one line
for each character in your name. Each line printed displays an increasing portion of
your name until the entire name is displayed.

Using the STRING$ Functions Together: LEFT$, MID$, and RIGHT$

In the following example, the three string functions are used to convert a date entered
in VY/MM/DD format to MM/DD/VY format.

Before running the program look over the code to see if you can follow the
logic and predict what will happen.

Key in the program or load and list the program by entering

LOAD STRING FUNCTIONS SAMPLE1
LIST

NEW
1000 REM STRING FUNCTIONS SAMPLEl
1010 HOME
1020 REM
1030 REM PROG TO CONVERT DATE
1040 REM FROM YY/MM/DD FORMAT
1050 REM TO MM/DD/YY FORMAT
1060 REM
1070 PRINT "ENTER ANY DATE IN YY/MM/DD FORMAT"
1080 INPUT AADTE$
1090 ABMTH$ = MID$ (AADTE$,4,2)
1100 ACDAY$ = RIGHT$ (AADTE$,2)
1110 ADYEAR$ = LEFT$ (AADTE$,2)
1120 IF ABMTH$ < "01" OR ABMTH$ > "12" GOTO 1260
1130 IF ACDAY$ < "01" OR ACDAY$ > "31" GOTO 1260
1140 IF ADYEAR$ < "00" OR ADYEAR$ > "99" GOTO 1260
1150 AEDTE$ = ABMTH$ + "/" + ACDAY$ + "/" + ADYEAR$
1160 HOME
1170 PRINT "PROGRAM CONVERTED DATE FROM YY/MM/DD"
1180 PRINT TAB(27)"TO MM/DD/YY"
1190 PRINT
1200 PRINT "ADDTE$ "AADTE$
1210 PRINT "ABMTH$ "ABMTH$
1220 PRINT 11 ACDAY$ "ACDAY$
1230 PRINT "ADYEAR$ "ADYEAR$

1240 PRINT "AEDTE$ = "AEDTE$
1250 END
1260 INVERSE
1270 PRINT "DATE MUST BE IN YY/MM/DD FORMAT"
1280 PRINT "PRESS ANY KEY AND TRY AGAIN"
1290 NORMAL
1300 GET X$
1310 GOTO 1000

The LET Instruction / 1&1

1090-1110 Lines 1090 through 1110 break the data entered into smaller parts and assign more
descriptive names. If you are going to reference part of the variable only once, there
is no need to assign it a separate name. For example, if you were not going to edit
(check) the date entered, you could code one line to rearrange the date:

AEDTE$ = MID$(AADTE$,4,2) + "!" + RIGHT$(AADTE$,2) +
"!" + LEFT$(AADTE$,2)

If you are going to use a portion of a variable more than once, you should
assign it a more descriptive name. By assigning it a more descriptive name, you
make the code easier to read and increase the execution speed of the computer. The
computer can interpret a single name faster than it can analyze the MID$, RIGHT$,
or LE FT$ functions.

1120-1140 Lines 1120 through 1140 check (edit) the data to see that what is entered conforms
to what is requested. This is not a complete edit, as ACDAY$ is only checked for
less than 01 or greater than 31. No consideration is given to which month the days
correspond to. If any of the three variables are in error, logic branches to line 1270,
where an error message is displayed prior to restarting the program.

There is a specific reason for using string values in the edit checks rather than
converting the data entered to numeric format by use of the VALue function. If
1A1 BAA were entered and the VALue function used in the edit check, the machine
would not catch the data entry error.

VAL(ABMTH$)
VAL(ACDAY$)
VAL(ADYEAR$)

would result in 1 with letter ignored
would result in 1 with letter ignored
would result in 00 with both letters ignored

1150 This line rearranges the information into MM/00/YY format. The plus sign is the
only connector allowed when working with strings. The sign is interpreted by the
computer as meaning 'connect these alphanumeric values'. The computer does NOT
add the strings, but only connects two or more variables into a larger single variable.

1260-1310 Lines 1260 through 1310 make up an error routine. If you enter a date which does
not pass the edit instructions on lines 1120, 1130, or 1140, the program branches
to this routine.

162 / Applesoft BASIC Toolbox

Now, hopefully, you have a basic understanding of what the program is doing.
Go through the following exercises and study the logic flow through the program.

Exercise 1: Entering an Incorrect Date

Run the program, and in response to the input message, enter an incorrect date,
such as

AA/AA/AA

You will receive an error message shown in the bright inverse format.
After you have seen enough of the error message, press any key, and this time

enter what you think is a valid date, such as

81/12/30

Exercise 2: Entering a Logically Incorrect Date

Enter a date which is logically incorrect but which will pass the limited edit tests,
such as 81/02130. You and I know there is no February 30, but the computer does
not catch this error because it is not programmed to do so.

CHR$(X} Function

The CHaRacter function returns the ASCII character corresponding to the numeric
code indicated by the variable within parentheses (see Appendix A, p. 508). For
example,

LETTER$= CHR$(65): REM PLACES A 'A' IN THE LETTER$
LETTER$ = CHR$(66): REM PLACES A 'B' IN THE LETTER$
LETTER$ = CHR$(67): REM PLACES A 'C' IN THE LETTER$

The ASCII value for the letter A is the number 65. The ASCII value for the
letter B is 66, and C is 67. Any number between 0 and 127 has a corresponding
ASCII symbol. The symbol may be an upper case letter, a lower case letter, a number,
or a control symbol used in data communications.

The following program displays the numbers between 0 and 127 with their
matching ASCII printable character set. The ASCII code runs from 0 to 127, but
unless you have an APPLE Ile or additional hardware on your APPLE II, the lower
case characters (values above 95) will be repeated as upper case. Also, you may be
surprised at the first screen displayed, because the numbers between 0 and 32 do not
have a matching printable character. The numbers between 0 and 32 are used for
control functions (operations for controlling the computer).

The LET Instruction 1183

Key in and run the following program, or run the program by entering

RUN CHR$ SAMPLE1

NEW
1000 REM CHR$ SAMPLE!
1010 REM ASCII NUMERIC VALUES
1020 HOME
1030 REM
1040 REM ASCII CHARACTERS FOR
1050 REM NUMBER 10 &: 13 ARE
1060 REM NOT DISPLAYED AS THEY
1070 REM CAUSE THE SCREEN TO
1080 REM SKIP EXTRA LINES.
1090 REM
1100 REM ASCII CHARACTER FOR
1110 REM MAKING THE SOUND IS
1120 REM NUMBER 7.
1130 REM
1140 PRINT "NUMBER = SYMBOL NUMBER = SYMBOL"
1150 AANUMBER = 2
1160 FOR ABNUMBER = 1 TO 32
1170 HTAB (AANUMBER)
1180 IF ACNUMBER = 10 OR ACNUMBER = 13 THEN PRINT ACNUMBER:
GOTO 1200
1190 PRINT ACNUMBER TAB(AANUMBER + 11) CHR$ (ACNUMBER)
1200 ACNUMBER = ACNUMBER + 1
1210 IF ABNUMBER = 16 THEN VTAB 2:AANUMBER = AANUMBER + 20
1220 NEXT
1230 IF ACNUMBER > 127 GOTO 1280
1240 PRINT
1250 PRINT "PRESS ANY KEY TO SEE REMAINING SYMBOLS"
1260 GET X$
1270 GOTO 1000
1280 PRINT
1290 PRINT "THAT'S ALL FOLKS!"
1300 END

Before reading what each line of the program does, run the program to get a
basic idea of what is displayed. The program displays four screen images. At the
end of the first three displays, you need to press a key to get the program to continue.

Each screen shows a set of numbers and the matching ASCII printable char­
acters. On the first screen you cannot see the characters printed. The numbers from
0 to 31 are used for CONTROL functions and are not printable. The second screen
shows the numeric value of the special symbols and numeric keys. The third screen
shows the numeric value of each of the upper case letters.

The fourth screen repeats the special symbols and numeric values unless you
have an APPLE Ile or your APPLE is equipped to recognize the lower case letters.
The APPLE II and APPLE II + use only the first 96 bit patterns to represent control
functions, special symbols, numbers, and upper case letters.

164 / Applasoft BASIC Toolbox

1180 Some of the ASCII codes below 32 are used to control the functions of the display
screen and other devices. If the ASCII code for 10 or 13 is displayed, it causes the
screen to skip extra lines. To prevent this, the IF instruction tests for these values
and displays the numbers 10 and 13 but not the corresponding ASCII character.

1190 Line 1190 is the key to the whole program. It uses the CHRS function to convert
the numeric value of ACNUMBER to the related ASCII code. Since ACNUMBER
varies from 0 to 127 as the program is executed, all the 128 combinations of the
ASCII code are converted and displayed.

1210 This IF test is to see if all the values for the first column have been printed. If the
first column has been displayed, then the second column is started. Before the second
column is started, the cursor is repositioned by use of the VTAB instruction. The
VTAB instruction moves the cursor back up to the second line of the screen. Next,
20 is added to AANUMBER so that the cursor will be tabbed over to column 22 the
next time line 1170 is executed.

Normally you use the CHRS function when working with the disk or the printer,
or any time you are defining control characters within your program. That is, any
time you need to use a symbol which is keyed by pressing the CONTROL key and
another key at the same time, you should use the CHRS function to define that
character. Do not include CONTROL key symbols within the text of your programs.

For example, when you define control characters to use with the disk or printer,
define the special characters with the CHRS function.

To define a CONTROL-0 for use when working with disk files.

Wrong: OS= "":REM CONTROL-0 BETWEEN QUOTES.
Right: OS= CHRS(4):REM CONTROL-0

To define a CONTROL-L for use when working with printers.

Wrong: LS = "":REM CONTROL-L BETWEEN QUOTES.
Right: LS = CHRS(12): REM CONTROL-L

There are two reasons for using the CHRS function instead of keying in the
special character.

1. If you key in the control character, it does not show up on the screen, and you
cannot be sure you entered it correctly. Notice that in the examples above you
cannot see the CONTROL-0 or the CONTROL-L because they are not printable
characters.

2. If you try to run a listing of a program on a printer and special control characters
are used in the program, the actions taken by the printer may be very surprising.
The printer will be funny to watch, but your listing will most likely be unreadable.

A more complete example of the CHRS function is given with the sample
disk programs.

The LET Instruction / 165

STR$(X) Function

The STRing function converts the number enclosed within parentheses from a numeric
format to an alphanumeric format.

Key in and run the following program, or run the program by entering

RUN STR$ SAMPLE1

NEW
1000 REM STR$ SAMPLEl
1010 HOME
1020 REM
1030 REM STR$ CONVERTS NUMERIC
1040 REM VALUE TO STRING FORMAT
1050 AANUMBER = 1.00
1060 PRINT 11 NUMBER11 , 11 STRING 11

1070 PRINT
1080 FOR ABNUMBER = 1 TO 20
1090 PRINT AANUMBER,STR$ (AANUMBER)
1100 AANUMBER = AANUMBER + .1
1110 NEXT
1120 END

The program counts from 1 to 2. 9 in increments of .1. The left column contains
the numeric version, while the right column contains the string version. The first
part of the screen appears as follows:

NUMBER STRING

1 1
l.l 1.1
1.2 1.2
1.3 1.3
1.4 1.4
1.5 1.5
1.6 1.6
1. 7 1. 7

Do you see any difference?
Even though the values in the two columns look exactly alike when printed,

they are not stored in the computer in the same format. Remember you can do
arithmetic with numeric variables but CANNOT do arithmetic with string variables.

Let's look at a second example, which shows a practical application of this
STR$ function.

Applesoft has no easy way to align decimal points when printing numbers. If
the numbers being printed do not contain exactly the same number of digits to the
left and right of the decimal, then the decimals are not aligned correctly.

166 / Applesoft BASIC Toolbox

For example: Should Print as

123.45
23.40

.50
1.00

Print as

123.45
23.4
.5

The following program contains a subroutine which converts a number from
numeric format to string format in order align the decimals.

Before looking at the program let's consider the four possible situations the
subroutine must handle in order to align the the decimal positions.

1. A whole number is entered with no significant digits following the decimal.
The subroutine must add a decimal and two zeros.

Example Enter 12345, 12345.0, or 12345.00
Computer prints as 12345
Subroutine prints as 12345.00

2. A number is entered with just one decimal position. The subroutine must add
a trailing 0.

Example Enter 12345.6 or 12345.60
Computer prints as 12345.6
Subroutine prints as 12345.60

3. A number is entered with two decimal positions, and no trailing zeros are
needed.

Example Enter 12345.67
Computer prints as 12345.67
Subroutine prints as 12345.67

4. A number is entered with three or more decimal positions, and the extra decimal
positions need to be truncated.

Example Enter 12345.6789
Computer prints as 12345.6789
Subroutine prints as 12345.68

To see the subroutine in action, key in and run the following program, or run
the program by entering

RUN STR$ SAMPLE2

NEW
1000 REM STR$ SAMPLE2
1010 REM -------------------
1020 HOME
1030 REM

The LET Instruction / 167

1040 REM THE PROGRAM EDITS NUMBERS ENTERED TO PRINT OUT DECIMAL
ALIGNED.

1050 REM
1060 REM EACH NUMBER IS TRUNCATED OR EXTENDED TO TWO DECIMAL

POSITIONS.
1070 REM
1080 REM THE NUMBER RETURNED BY THE SUBROUTINE IS 11 CHARACTERS

LONG.
1090 REM
llOO PRINT "ENTER NUMBER < THAN OR TO 9999999.98"
1110 VTAB 3: CALL -958
ll20 INPUT II = ";AANUMBER
ll30 GOSUB 1230
ll40 PRINT
ll50
ll60
ll70
ll80
ll90
1200
1210
1220
1230
1240
1250

1260
1270

1280
1290
1300

PRINT "ANSWER
PRINT

'"ABNUMBER$"'"

PRINT "PRESS Q TO QUIT"
PRINT "PRESS ANY OTHER KEY TO CONTINUE"
GET X$
IF X$ = "Q" THEN HOME : PRINT "THAT'S ALL FOLKS!": END
GOTO lllO
REM -------------------
REM EDIT NUMBER SUBROUTINE
ABNUMBER = AANUMBER + .005
ABNUMBER$ =RIGHT$ (" " + STR$ (INT (ABNUMBER
* 100) I 100),11)
IF MID$ (ABNUMBER$,9,l) ="."THEN 1290
IF MID$ (ABNUMBER$,10,l) = "." THEN ABNUMBER$ =RIGHT$
(ABNUMBER$ + "0", ll): GOTO 1290
ABNUMBER$ =RIGHT$ (ABNUMBER$ + ".00",ll)
RETURN
REM -----------------

The subroutine uses three variables.
AANUMBER = The number to be converted. The value to be converted is

placed in AANUMBER before executing the subroutine.
ABNUMBER = A work variable used by the subroutine so the original value

of AANUMBER is not destroyed.
ABNUMBER$ = The 11 byte, two decimal string answer returned by the

subroutine.

1100-1130 Line 1100 prints the headings for the screen. After the message is displayed, state­
ment 1110 positions the cursor on the third line and clears the remainder of the

168 / Applesoft BASIC Toolbox

screen. The instruction CALL - 958 calls a prewritten APPLE machine language
subroutine at address - 958 which clears the screen from the current cursor position
to the end of the screen.

Two call addresses you may want to remember are

CALL - 868 Clears to the end of the line
CALL - 958 Clears to the end of the screen

(See the CALL instruction for additional addresses of machine languages subroutines.)
After the lower portion of the screen has been cleared, you are asked to enter

a number (line 1120). Once you have entered a number and pressed RETURN, logic
flow branches to the subroutine to convert the number you entered into string format.

1150 After the number is converted, line 1150 prints the results. Notice the use of double
and single quotes to highlight the answer.

1240 The first line of the subroutine adds .005 to the number in order to round it up or
down as needed. Now what did I mean by 'round up or down'? If you enter a
negative value, it should be rounded down. A positive value should be rounded up,
and a value of 0 should not be rounded.

Let's look at what happens for each situation.
Why the program adds .005 to a negative number in order to round down is

the hardest to explain. To start with you must know that the INTeger function auto­
matically changes negative values to the next lower negative whole number when
truncating decimals (something the manuals don't say even in fine print).

INT (-1.0) Gives a value of -1
I NT (- 1.1) Gives a value of - 2
INT (-1.9) Gives a value of - 2

Notice the INTeger function is NOT rounding. It is changing the negative value
to the next lower whole number.

To compensate for this automatic change in negative values, a positive .5 is
added (for this example only, the subroutine uses .005 to round to the correct cent).

INT (-1.0 + .5) = (-0.5) Gives a value of -1
INT (-1.1 + .5) = (- 0.6) Gives a value of - 1
INT (-1.9 + .5) = (- 1.4) Gives a value of - 2

Hopefully you follow the logic of how adding a positive number causes the
negative value to be rounded correctly. If not, just use the subroutine with the
knowledge it works with negative numbers.

If you enter a value of 0, a .5 is still added but is truncated later when the value
is converted to a string.

The LET Instruction 11&9

INT (0.0 + .5) = (0.5) Gives a value of 0

If you entered a positive value, then.the number is rounded up by adding .5.

INT (1.0 + .5) = (1.5) Gives a value of 1
INT (1.9 + .5) = (2.4) Gives a value of 2

1250-1280 Now for the big one! Once the number has been rounded, any excess decimal
positions must be truncated. Line 1250 converts the number to a string and truncates
any excess decimal positions which might exist. To see how the instruction works,
let's take it in parts.

(INT (ABNUMBER * 100) I 100)

First, the function in the inner parentheses multiplies the number entered by
100, moving the decimal two positions to the right. After the decimal has been
moved to the right, the INTeger function is used to drop off any excess decimal
positions. Once the decimal positions have been dropped, the decimal point is moved
back to the left by dividing the number by 100. For example:

Multiply: 12345.6789 * 100 = 1234567 .89
I Nteger: 1234567
Divide: 12345.67

RIGHT$(' ' + STR$ (INT (ABNUMBER * 100) I 100), 11)

After any excess decimal positions have been truncated, the STRing function
converts the number into alphanumeric form. The value is now in string format and
takes up 11 bytes of memory.

Unfortunately, the conversion process does not ensure that there are two dec­
imal positions. Any nonsignificant digits (trailing zeros) are truncated by Applesoft.
If the decimal portion of the number is 0 (.00) or contains only a single digit (.nO),
the trailing zeros are dropped.

To overcome the problem, lines 1260 though 1280 test to see where the decimal
point is located and adds on one or two ending zeros as required.

Keep this subroutine in mind. Anytime you need a routine to print numbers
with decimal alignment, here is a solution.

If you decide to use the subroutine, you may want to change the variable name
prefixes from AA, AB, and AB$ to some other characters so the names do not conflict
with variable names within your program.

20. The IF Instruction

170

Instruction (Simple IF Format)

{
constant }

IF variable_ name
expression

{
constant }

{ r~lati_onship} variable_ name
indicator expression

{ THEN}
GOTO

{ statement(s) }
statement number

Example IF AGE > 21 THEN PRINT "OF VOTING AGE"

Purpose To allow the programmer to ask questions and thereby take different logical paths
through the program.

Rules for Use 1. The value of the first operand is compared with the value of the second operand.
If the question is true, the computer executes the instructions following the
keyword THEN. If the question is false, all instructions included with the IF are
skipped.

2. The allowable relationship indicators are:
a. < for A LESS THAN B
b. > for A GREATER THAN B
c. = for A EQUAL TO B
d. <> for A NOT EQUAL TO B
e. < = for A LESS THAN OR EQUAL TO B
f. = > for A EQUAL TO OR GREATER THAN B

3. The value preceding the relationship indicator must be of the same type as the
value following the relationship indicator (numeric to numeric; string to string).

4. If the GOTO statement is the only instruction following the IF, then either the
keyword GOTO or THEN may be used.

For example,

IF A> B GOTO 1000

Illustration
of the Rules

The IF Instruction / 171

may also be worded as

IF A> B THEN 1000

If you have been reading the text from the start, you have seen the IF instruction
used in most of the examples, but let's look at a few programs in which various
combinations of the simple IF format are used.

Key in and run the following program, or run the program by entering

RUN IF SAMPLE1

1000 REM IF SAMPLEl
1010 HOME
1020 SPEED= 150
1030 PRINT "ENTER TWO NUMBERS AND THE COMPUTER"
1040 PRINT "WILL TELL YOU WHICH IS THE LARGEST"
1050 PRINT
1060 INPUT "FIRST NUMBER ";AANUMBER$: AANUMBER

VAL (AANUMBER$)
1070 INPUT "SECOND NUMBER ";ABNUMBER$: ABNUMBER VAL

(ABNUMBER$)
1080 PRINT
1090 IF AANUMBER > ABNUMBER THEN PRINT "THE FIRST NUMBER IS

GREATER THAN THE": PRINT "SECOND NUMBER.": GOTO 1120
1100 IF AANUMBER = ABNUMBER THEN PRINT "THE FIRST NUMBER IS

EQUAL TO THE": PRINT "SECOND NUMBER.": GOTO 1120
1110 PRINT "THE FIRST NUMBER IS LESS THAN THE": PRINT "SECOND

NUMBER."
1120 PRINT
1130 PRINT "PRESS Q TO QUIT."
1140 PRINT "PRESS c TO CONTINUE.";
1150 GET Xl$
1160 IF Xl$ = "C" THEN 1000
1170 IF Xl$ <> "Q" THEN 1150
1180 PRINT
1190 PRINT "THAT'S ALL FOLKS!"
1200 SPEED= 255
1210 END

The first program is super simple but does show several examples of the basic
format of the IF instruction.

1060-1070 Lines 1060 and 1070 allow the operator to enter the two numbers to be compared.
The numbers are entered in string format and converted to numeric format in order
to avoid REENTER errors should the operator enter a value which contains a non­
numeric character.

1090 The first IF compares the two input variables to see whether AANUMBER is greater

172 / Applesoft BASIC Toolbox

than ABNUMBER. If the statement is true, all instructions on line 1090 following
the keyword THEN are executed. If the statement is false, all instructions on line
1090 following the keyword THEN are skipped, and logic flow continues to the line
1100.

Following the IF clause the keyword THEN is used as a separator between the
conditional test and the instructions to be executed. For all instructions following
the keyword THEN, a colon (:) is used as a separator. Again, notice that each
statement is separated by a colon. The computer requires the word THEN and the
colons to be able to tell where one instruction stops and the next one starts.

1100-1110 The second IF instruction uses the same format as the first IF, but tests for an EQUAL
TO condition.

If the statement is true, the appropriate message is displayed. If the statement
is false, logic flow continues to line 1110.

Notice that for the last condition, LESS THAN, no IF is needed. Since the tests
for GREATER THAN and EQUAL TO have already been made, this leaves the
LESS THAN condition as the only possibility.

1120-1170 Lines 1120 through 1170 cause the program to pause and wait for the operator to
enter either a C to continue or a Q to quit. If any key other than C or Q is pressed,
the program ignores the entry and waits until one of the correct characters is entered.

The GET instruction accepts one character from the keyboard. The symbol is
placed in the string variable called X1$. The value in X1$ is tested to see if the
program is to continue or quit.

There are three points to consider relating to the use of strings in an IF instruction.

1. String variables are compared bit by bit.
2. String constants are enclosed between quotation marks, and therefore use of

quotation marks within the string requires special handling.
3. You should always compare equal size strings.

First, strings are compared by bit pattern on a logical basis. For example, if
the letter A is compared to the letter Q, the following bit patterns would be used:

A= 1000001
Q = 1010001

The bit pattern of A is less than the bit pattern of Q. Notice
the third bit from the left. A contains a 0 bit, while Q contains
a l bit, making it greater.

Second, the first operand is a string name X1$ while the last operand is a
constant with a value of Q. Constants can be used in either the first or the second
operand. Numeric constants may consist of any numeric equation. Alphanumeric
constants may consist of any of the 128 different bit patterns which can be stored
by the computer.

The IF Instruction/ 173

Since the quotation mark is used to indicate the start and end of a string constant,
there is a problem in including quotation marks within the constant. If you want to
use a quote between quotation marks you must key two quotation marks for every
quote you want to appear. For example,

PRINT """TWO QUOTES = 1"""

prints as

"TWO QUOTES = 1 "

The outside set of quotes defined the string constant, the two quotes immediately
following and preceding the outside quotes are treated as a single set of quotes.

Third, the strings must be of equal length in order for a valid comparison to
be made. For example if" ABC" were compared with "ABC", the longer string would
be greater than the shorter string even though they contain the same leading char­
acters. The APPLE does not recognize trailing blanks as being neutral characters.

Notice on line 1170 that two relational indicators (< >) are used. The IF
instruction tests for both a LESS THAN condition and a GREATER THAN con­
dition. If either condition exists, logic flow branches to line 1150 and waits for the
operator to enter an acceptable character.

With Applesoft, instead of saying NOT >, NOT <, or NOT =, the condition is
worded in a positive format using the two symbols corresponding to the NOT test.

NOT > same as < =
NOT < same as = >
NOT = same as < >

The next example is rather long for what it is intended to accomplish. The
example shows the comparison of numeric variables, numeric constants, and numeric
expressions.

Key in and run the following program, or run the program by entering

RUN IF SAMPLE2

NEW
1000 REM IF SAMPLE2
1010 HOME
1020 SPEED= 150
1030 PRINT 11 1. IF NUMERIC VARIABLE <=> CONSTANT"
1040 PRINT
1050 INPUT "ENTER ANY NUMBER= ";AANUMBER
1060 IF AANUMBER > 25 THEN PRINT AANUMBER" GREATER THAN CONSTANT

25": GOTO 1090
1070 IF AANUMBER = 25 THEN PRINT AANUMBER" EQUAL TO

CONSTANT 25":
GOTO 1090

174 / Applesoft BASIC Toolbox

1080 PRINT AANUMBER" LESS THAN CONSTANT 25"
1090 PRINT
llOO PRINT
lllO PRINT "2. IF VARIABLE NAME <=> VARIABLE NAME"
1120 PRINT
ll30 INPUT "ENTER ANY NUMBER= ";ABNUMBER
ll40 IF AANUMBER > ABNUMBER THEN PRINT "FIRST NUMBER

"AANUMBER" IS GREATER THAN SECOND": PRINT "NUMBER
"ABNUMBER:GOTO 1170

ll50 IF AANUMBER = ABNUMBER THEN PRINT "FIRST NUMBER
"AANUMBER II IS EQUAL TO SECOND":PRINT "NUMBER
"ABNUMBER: GOT0ll70

ll60 PRINT "FIRST NUMBER "AANUMBER" IS LESS THAN SECOND": PRINT
"NUMBER ":ABNUMBER

1170 PRINT : PRINT
ll80 PRINT "3. IF EXPRESSION <=> EXPRESSION"
ll90 PRINT
1200 INPUT "ENTER ANY NUMBER= ";ACNUMBER
1210 IF AANUMBER * ABNUMBER > AANUMBER + ABNUMBER *

ACNUMBERTHEN PRINT AANUMBER" * "ABNUMBER" > "AANUMBER" +
"ABNUMBER" * II ACNUMBER: GOTO 1240

1220 IF AANUMBER * ABNUMBER = AANUMBER + ABNUMBER * ACNUMBER
THEN PRINT AANUMBER" * "ABNUMBER" = "AANUMBER" +
"ABNUMBER" * " ACNUMBER: GOTO 1240

1230 PRINT AANUMBER" * "ABNUMBER" < "AANUMBER" + "ABNUMBER"
* II ACNUMBER

1240 PRINT : PRINT
1250 PRINT "THAT'S ALL FOLKS!"
1260 SPEED= 255
1270 END

The first sequence of instructions requests you to enter a number which will be
compared to a numeric constant of 25.

1060-1080 When using numeric constants, no quotation marks are used. The numeric constant
may contain any numeric symbol along with a leading plus or minus sign. Common
sense indicates that if an integer name is used, the constant value should not have
a decimal point. For example, do not use IF AANUMBER% = 12.34 since there is
no way the integer variable can contain a decimal value. Also, numeric constants
CANNOT be compared to string variables unless the STR$ or VAL functions are
used to make the two variables of the same type.

The program is not very functional but does provide an example of mixing
variables within the IF instruction. Line 1130 asks you to enter a second number.
The number is compared with the first number and an appropriate message printed.

1140-1160 The IF instructions on line 1140 and 1150 show how to compare two numeric
variables. Normally you do not want to mix the types of numeric variables. Integer
variables should only be compared with other integer variables and real values should
only be compared with other real values.

The IF Instruction/ 175

1210-1230 The last group of instructions shows how an arithmetic expression can be used
within the IF instruction. An arithmetic expression may be compared with another
arithmetic expression, a numeric variable, or numeric constant.

From an efficiency standpoint, you should not code an equation twice as done
for lines 1210 and 1220. The computer has to calculate the values twice, and if the
program were to be changed, the programmer would have to remember to change
both statements. Whenever the results of an arithmetic expression are used more
than once, calculate the value and give it a variable name.

The third example shows how the word NOT can be used preceding the first
operand of the IF instruction to reverse the meaning of the question. I would suggest
that you do not use negative questions. It is harder for the person reading the code
to follow the logic and make coding changes.

Key in and run the following program, or run the program by entering

RUN IF SAMPLE3

1000 REM IF SAMPLE3
1010 HOME
1020 SPEED= 150
1030 PRINT "THE WORD NOT CAN BE USED PRECEDING"
1040 PRINT "THE IF CLAUSE TO REVERSE THE RESULTS"
1050 PRINT "OF THE CONDITIONAL TEST."
1060 PRINT : PRINT
1070 PRINT "NOT (A>B)
1080 PRINT "NOT (A=B)
1090 PRINT "NOT (A<B)
1100 PRINT : PRINT

LESS THAN OR EQUAL TO"
LESS THAN OR GREATER THAN"
GREATER THAN OR EQUAL TO"

1110 INPUT "ENTER FIRST NUMBER ";AANUMBER
1120 INPUT "ENTER SECOND NUMBER ";ABNUMBER
1130 PRINT
1140 IF NOT (AANUMBER > ABNUMBER) THEN PRINT "FIRST NUMBER

OR< SECOND NUMBER": GOTO 1170
1150 IF NOT (AANUMBER = ABNUMBER) THEN PRINT "FIRST NUMBER <

OR> SECOND NUMBER": GOTO 1170
1160 PRINT "FIRST NUMBER = OR > SECOND NUMBER"
1170 PRINT TAB(5)AANUMBER TAB(25)ABNUMBER
1180 PRINT : PRINT
1190 PRINT "PRESS Q TO QUIT"
1200 PRINT "PRESS ANY OTHER KEY TO TRY AGAIN"
1210 GET Q$
1220 IF NOT (Q$ = "Q") THEN 1000
1230 PRINT
1240 PRINT "THAT'S ALL FOLKS!"
1250 SPEED= 255
1260 END

1070-1090 Lines 1070 through 1090 display some variations on the use of the NOT. You should
look at these lines and see if you follow how the computer interprets the use of the
NOT for each example.

17& / Applesoft BASIC Toolbox

1140-1160 Lines 1140 through 1160 compare the values and display the related message. Notice
that the NOT precedes the test and the entire test MUST be within parentheses.

1210-1220 Line 1220 shows one more example of how the NOT may be used to change the
interpretation of the equal sign. If the value in 0$ is less than or greater than 0,
logic flow branches to statement number 1000

Instruction (Compound IF format)

IF question 1 {A~~} question 2

{ THEN } { basic statements }
GOTO statement number

Rules for Use 1. Two or more simple "questions" may be combined by using AND or OR.

Illustration
of the Rules

a. If AND is used to connect two or more simple questions all the questions
must be true for the compound question to be considered true.

b. If OR is used to connect two or more simple questions, only one of the
simple questions needs to be true for the compound question to be true.

c. When both AND and OR are used to connect simple questions the AND
takes precedence, tying the two questions together and treating them as
one statement. Any statement following an OR is treated independently of
the other statements.

For example,

IF A > BAND A > C OR B = C THEN ...

The IF question is considered true only if A is greater than both Band C,
or Bis equal to C. The AND between the first two questions combines the
two clauses. The OR indicates that one should consider the last question
independent of any prior question.

2. Whenever the AND and the OR are used together, parentheses may be used to
override the default relationships of the AND and OR connectors.

la. If AND is used to connect two or more simple questions, all the questions must
be true for the compound question to be considered true.

IF GRADEPOINT < 2.0 AND HOURSEARNED < 10 AND PROBATION$ =

"YES" THEN PRINT "TERMINATE STUDENT"

The IF Instruction/ 177

In this statement all the individual questions must be true in order for the
message TERMINATE STUDENT to be printed. The grade point average must
be less than 2.0, the hours earned by the student must be less than 10, and the
student must currently be on probation. If any one of the three questions is
false, the entire IF is considered false, and the message is not printed. Notice
that both numeric variables and string variables are combined in the question,
but numeric variables are still compared with numeric constants and string
variables are still compared with string constants.

lb. If OR is used to connect two or more simple questions, only one of the simple
questions needs to be true for the compound question to be true.

IF GRADEPOINT < 2.0 OR HOURSEARNED < 10 OR PROBATION$ = "YES"
THEN PRINT "TERMINATE STUDENT"

In the above IF only one of the individual questions need be true in order for
the message TERMINATE STUDENT to be printed. The grade point average
may be less than 2.0, or the hours earned by the student may be less than 10,
or the student may currently be on probation. If any one of the three questions
is true, the IF is considered true, and the message is printed. If all the statements
are false, the message is not printed.

le. When both AND and OR are used to connect simple questions within one IF,
the AND rakes precedence, tying the two questions together and treating them
as one statement. Any statement following an OR is treated independently of
the other statements.

IF GRADEPOINT < 2.0 AND HOURSEARNED < 10 OR PROBATION$ = "YES"
THEN PRINT "TERMINATE STUDENT"

There are two ways that the message can be printed. If the grade point average
is less than 2.0 and the hours earned are less than 10, the message is printed.
The message is also printed if the student is on probation. Notice that the AND
is the stronger of the connectors and ties the first two questions together. The
question following the OR is considered independently of the first two questions.

2. Whenever the AND and the OR are used together, parentheses may be used to
override the default relationships of the AND and OR connectors.

IF GRADEPOINT < 2.0 AND (HOURSEARNED < 10 OR PROBATION$
"YES") THEN PRINT "TERMINATE STUDENT"

For this example parentheses are used to change the way in which the machine
examines the question. For this version of the question, there are several ways

178 / Applesoft BASIC Toolbox

the message can be printed. First, the grade point must be less than 2.0 for the
computer to consider either of the last two questions.

Only if the grade point average is less than 2.0 does the machine check
the hours earned to see if they are less than 10. If the hours are less than 10,
the message is printed without considering the value of probation. If the hours
earned are NOT less than 10, the computer checks the value in probation for
a YES. If probation contains YES the message is printed.

If both the last two questions are false, the message is not printed.
When parentheses are used, the AND is tied to both questions within the

parentheses. The same statement could be written without parentheses as follows:

IF GRADEPOINT < 2.0 AND HOURSEARNED < 10 OR
GRADEPOINT < 2.0 AND PROBATION$ = "YES"
THEN PRINT "TERMINATE STUDENT"

21. The FOR/NEXT
Instruction

Instruction FOR number1 = parameter1 TO parameter2 STEP parameter3
... instructions to be executed ...
NEXT number1

Where

1. Numberl is a numeric variable which serves as a counter during execution of
the FOR/NEXT loop.

The variable starts with the value indicated by parameter! and is incre­
mented by the value of parameter3 each time the keyword NEXT is encountered.

When the value in numberl is less than or equal to the value in parameter2,
logic flow automatically branches back to the FOR instruction and executes the
instructions between the FOR and the NEXT instruction again. (An exception
to this statement is given in Example 2.)

When the value in numberl exceeds the value in parameter2, the FOR/
NEXT loop ends, and the instructions following the keyword NEXT are executed.

2. Parameter! is the starting value placed in numberl each time the FOR instruc­
tion is encountered in the logic flow of the program.

3. Parameter2 is the comparison value which indicates when to stop the FOR/
NEXTloop. When the value ofnumberl is greater than the value ofparameter2,
the FOR/NEXT cycle is broken, and logic flows to the instruction following the
keyword NEXT.
Note: Since numberl is not compared with parameter2 until the keyword NEXT

is encountered, the instructions between the FOR and the NEXT are
executed at least once.

4. Parameter3 is AN OPTIONAL NUMBER which indicates the value to be added
to numberl each time the keyword NEXT is encountered. The value may be
positive or negative and affects how many times the FOR/NEXT instructions
are executed. The default value is 1.

Example 1. Counting from 1 to 10 (STEP 1 is optional):

1000 FOR N1 = 1TO10 STEP 1
1010 PRINT N1
1020 NEXT

179

180 / Applesoft BASIC Toolbox

The example FOR/NEXT loop is executed 10 times, printing out the numbers l, 2,
3, 4, 5, 6, 7, 8, 9, and 10.

2. Counting backward from 10 to 1:

1000 FOR N1 = 10 TO 1 STEP -1
1010 PRINT N1
1020 NEXT

The example FOR/NEXT loop is executed 10 times, printing out the numbers
IO, 9, 8, 7, 6, 5, 4, 3, 2, and 1.

Purpose The FOR/NEXT instruction allows the programmer to set up a repetitive loop in
which the FOR indicates the start of the loop and the NEXT indicates the end of the
loop.

Rules for Use 1. In Applesoft the variable used as a counter (numberl) must be a real number.

Illustration
of the Rules

2. Parameters 1, 2, and 3 may be real numbers, integers, or equations.
3. The variables represented by numberl and parameter2 may vary during exe­

cution of the FOR/NEXT instructions. Once the FOR instruction has started,
changing the values of numberl and parameter2 affects the number of times
the instructions within the FOR/NEXT loop are executed.

The values represented by parameter I and parameter3 are used to initialize
the counter and to give an incrementing value. Once the FOR instruction has
started, changing the values for parameter I or parameter3 does not change the
number of times the instruction executes.

4. Since the comparison between the counter (numberl) and the limit (parameter2)
is not made until the keyword NEXT is encountered, the instructions between
the FOR and NEXT are executed at least once.

S. The value following the keyword STEP (parameter3) may be either a positive
or a negative number. If positive, the conditional test generated by the keyword
NEXT tests for (numberl > parameter2). If negative, the conditional test gen­
erated by the keyword NEXT tests for (numberl < parameter2).

The following exercise shows the basic format of the FOR/NEXT loop with the
variable AA used as the counter and numeric constants used for the first and the
second parameter.

Exercise 1 Key in and run the following program:

NEW
HOME

1000 FOR AA = 1 TO 10
1010 PRINT "AA = "AA
1020 NEXT
1030 PRINT "FOR/NEXT INSTRUCTION DONE"
1040 END

The FOR/NEXT Instruction / 181

The variable AA is set to 1 when line 1000 is encountered. After AA is set to
the starting value, the instructions between the FOR and the NEXT are executed at
least once.

When the keyword NEXT is encountered, the value in AA is incremented by
the value following the keyword STEP or by 1 if no STEP value is specified. After
AA is incremented, the new value of AA is tested against the limit of 10.

START

FOR AA= 1

INSTRUCTIONS
TO BE EXECUTED

NEXT
AA=AA+1

INSTRUCTIONS
FOLLOWING NEXT

182 / Applesoft BASIC Toolbox

If the value of AA is greater than the 10, logic flow continues down to the next
line (line 1030). If the value in AA is less than or equal to 10, logic flow branches
back to the first instruction following the FOR instruction (line 1010). Each time
the keyword NEXT is encountered, the value in AA is STEPed up by 1 and tested
against 10.

For this example line 1010 is executed 10 times, after which line 1030 is
executed, indicating the end of the FOR/NEXT instruction group.

The flowchart on the previous page shows the cycle of the FOR/NEXT instruction.
The second exercise shows that all the parameters in the FOR/NEXT instruction

can be variables and the STEP value does not have to be 1 (notice DD = 2).

Exercise 2 Key in and run the following program:

NEW
HOME
1000 BB = 1: CC = 10: DD = 2
1010 FOR AA = BB TO CC STEP DD
1020 PRINT "AA = "AA
1030 NEXT
1040 PRINT "FOR/NEXT INSTRUCTION DONE"
1050 END

The variables BB, CC, and DD are set to their starting value by line 1000. When
the FOR/NEXT instruction is first encountered, the variable AA is set to the current
value of BB. The FOR/NEXT loop continues until the value in AA is greater than the
value in CC. Each time the keyword NEXT is encountered, AA is incremented by
the current value of DD (in this case 2).

The loop is executed five times (AA = 1; AA = 3; AA = 5; AA = 7; AA =
9). When AA reaches a value of 11, the loop is terminated, since 11 is greater than
the current value of CC.

Exercise 3 In the third exercise, a negative value is used to decrement the starting value of the
FOR/NEXT instruction.

Key in and run the following program:

NEW
HOME
1000 BB = 10: CC = 1: DD = - 1
1010 FOR AA = BB TO CC STEP DD
1020 PRINT "AA = "AA
1030 NEXT
1040 PRINT "FOR/NEXT INSTRUCTION DONE"
1050 END

The FOR/NEXT Instruction I 183

The variable AA starts off with a value of 10. Each time through the FOR/NEXT
loop a negative 1 is added to AA causing the value in AA to decrease in increments
of 1(10,9,8,7,6,5,4,3,2,1). When the value in AA is LESS THAN the value in CC,
the FOR/NEXT loop is terminated.

Since a negative value is used to decrement the counter, the computer tests for
a LESS THAN condition to indicate termination of the FOR/NEXT loop.

Nested FOR/NEXT Instructions

Sometimes you want to use a FOR/NEXT instruction within another FOR/NEXT
instruction. The use of loops within loops is referred to as nested loops or nested
FOR/NEXT instructions.

Rules for Use 1. When you nest FOR/NEXT instructions, the inner FOR/NEXT instruction MUST
be contained entirely within the outer FOR/NEXT instruction.

Right

FOR AA = 1 TO 20
instructions

FOR BB = 1 TO 30
instructions
NEXT BB

instructions
NEXT AA

J

Wrong

FOR AA = 1 TO 20
instructions

FOR BB = 1 TO 30
instructions
NEXT AA

instructions
NEXT BB

To help you read the nested FOR/NEXT instructions, the inner sets are indented.
Unfortunately, Applesoft suppresses leading spaces, so using spaces to indent
does not work. Some programmers use colons to show indentation (see example
program which follows).

2. Although it is not required by Applesoft, the variable may be included with
the NEXT instruction to help the programmer remember which variable is being
used. The APPLE always matches the inner FOR with the inner NEXT.

3. Values for the inner set of FOR/NEXT instructions are reset each time an outer
FOR/NEXT causes them to be executed again. That is, each time an inner FOR/
NEXT sequence is completed and the outer FOR/NEXT instruction causes the
inner group to be executed again, values for the inner FOR/NEXT are reset.

4. Nested FOR/NEXT loops should always exit by way of the keyword NEXT. That
is, you should not terminate a FOR/NEXT loop by branching around the NEXT

184 I Applesoft BASIC Toolbox

instruction. Terminating the FOR/NEXT loop without going through the NEXT
instruction may or may not cause problems in your program depending on the
logic sequence and the statements being used.

The following program shows three levels of nested FOR/NEXT instructions.
It prints nine random numbers on the screen in the same location, giving the appear­
ance of a slot machine.

After the ninth number is printed, the computer skips to the next column on
the screen and starts printing nine more random numbers. When one entire line is
full, the program skips to the next line and starts the whole process over.

The program takes 4 or 5 minutes to completely fill the screen. After the first
few lines, you may want to press CONTROL-C to cancel the program.

You should look at line 1090 carefully to see how the counters are used as part
of the VT AB and HT AB instructions.

Key in and run the following program, or run the program by entering

RUN FOR NEXT SAMPLE2

NEW
1000 REM FOR NEXT SAMPLE2
1010 HOME
1020 REM
1030 REM NESTED FOR NEXT
1040 REM STATEMENTS.
1050 REM
1060 FOR Al = 1 TO 24
1070 :: FOR A2 = 1 TO 40
1080 ::: : FOR A3 = 1 TO 9
1090 VTAB Al : HTAB A2
1100 ::: : : : A4 = RND (A3)
1110 ::: : : : PRINT INT (A4 * 10);
1120 : : : :NEXT A3
1130 : : NEXT A2
1140 NEXT Al
1150 END

1060 The first FOR/NEXT instruction sets up the outermost loop, which corresponds to
the 24 lines on the screen. The outermost loop is executed 24 times.

1070 The second FOR/NEXT instruction sets up the middle loop, which corresponds to
the number of characters on a line. The middle loop is executed 960 times, once for
each character position on the line times the number of lines on the screen (24 * 40
= 960).

1080 The third FOR/NEXT instruction sets up the innermost loop, which causes nine
random numbers to be printed in the same character position on the screen. When

The FOR/NEXT Instruction I 185

the numbers are printed in the same screen position, they appear to be rotating like
the symbols on slot machines. When random digits are used, there is no pattern to
the numbers printed on the screen.

You may want to use this technique in developing games or creating various
visual effects on the screen.

The innermost loop is executed 8,640 times (24 * 40 * 9 = 8,640).

1090 The VT AB instruction positions the cursor to the current value of A 1. Since A 1 is
the counter corresponding to lines 1 through 24, the VTAB positions the cursor each
time the innermost loop is executed.

The HT AB instruction positions the cursor to the current value of A2. Since A2
is the counter corresponding to columns 1through40, the HTAB positions the cursor
at the column to be used each time the inner loop is executed. Since the value in
A2 remains the same during execution of the inner loop, the cursor stays in the same
print position and displays nine random numbers. Each time the middle loop is
executed, the value of A2 is changed and the cursor is moved one column to the
right.

Each time the outer loop increments A 1, the middle loop resets A2 to a starting
value of 1, causing the cursor to be repositioned to the first column.

1100 Using the current value of A3 as a seed for the RND function, a random number is
generated and placed in the variable A4. Random values consist of nine digit numbers
between .000000000 and 1.0.

1110 The random number A4 is multiplied by 10 to shift the decimal one position to the
right. After the multiplication, the numbers range from 0.00000000 to 9.99999999.
When the INT function is used, the decimal positions are truncated, resulting in a
number ranging from 0 to 9.

1120 This is the matching NEXT instruction for the innermost FOR instruction. In Apple­
soft the variable following the keyword NEXT is optional. When working with single
FOR/NEXT loops the variable is normally left off. When working with nested FOR/
NEXT loops the variable is normally included to help clarify which counter is being
varied. Including the variable name as part of the NEXT instruction does slow down
the execution speed of the FOR/NEXT instruction.

1130 This is the matching NEXT instruction for the middle FOR instruction. Each time
the instruction is encountered, A2 is incremented by 1 and the resulting value is
tested to see if it is greater than 40.

1140 This is the matching NEXT instruction for the outermost FOR instruction. Each time
this instruction is encountered, A 1 is increased by 1 and the resulting value is tested
to see if it is greater than 24. When a value of 25 is reached, the program ends.

22.

186

The Screen Editing
Functions

When you want to make changes to a program, you have two ways in which to
modify statements.

1. Retype the entire statement.
2. List the statement and use the screen editing keys to modify the statement.

There are 10 keys with which you must be familiar when editing Applesoft
statements. The keys include the following:

1. ESC key, the key pressed prior to any cursor movement using the A, B, C, D,
J, K, I, and M keys.

After the ESC key is pressed, the letters A, B, C and D are used to move the
cursor one position. After any of the four keys is pressed, the computer automatically
exits edit mode and returns to normal data entry format.

2. A moves the cursor one column to the left.
3. B moves the cursor one column to the right.
4. C moves the cursor up one row.
5. D moves the cursor down one row.

After the ESC key is pressed, the letters J, K, I, and M may be keyed repeatedly
to move the cursor. To break out of the edit mode and return to normal data entry
format, press any key other than J, K, I, or M. APPLE Ile users should not press the
arrow keys to attempt to break out of the edit mode. Use the space bar or some other
symbol key.

6. J moves the cursor to the left.
7. K moves the cursor to the right.
8. I moves the cursor up.
9. M moves the cursor down.

While changing a line, if you decide the changes should not be included in the
program, press the CONTROL and X keys at the same time to cancel the current line
being entered.

The Screen Editing Functions/ 187

10. CONTROL-X deletes the line currently being entered.

Applesoft provides for full screen editing to make changes to the program.
That is, by using the J, K, I, and M keys you can move the cursor around on the
screen without destroying the data on the screen. Once the cursor is positioned to
the statement you wish to edit, you may press a key to break the cursor movement
function and proceed to change, insert, or delete characters.

Making changes to statements which contain information between quotation
marks is rather involved. Editing the REMarks instruction can also be difficult. To
start off, let's see how to change, insert, and delete characters from a simple LET
instruction.

Enter the following instructions:

NEW
HOME
1000 LET NUMBER= NUMBER+ 1

Let's assume you want to change the word NUMBER to N1. The following
steps allow you to change the U to a 1 and delete the unwanted characters.

1. List the instruction you wish to edit.

LIST 1000 <RETURN>

The line will be listed out as

1000 LET NUMBER = NUMBER + 1

t The cursor will be positioned in the second column two or three lines below
the instruction listed. The line position will vary depending on the length and
type of instruction listed.

2. Press the ESC key. The ESC key tells the computer to enter edit mode so you
can use the J, K, I, and M keys to move the cursor.

3. Press the I key two times to position the cursor over the 0 in the second column
of the statement number.

1000 LET NUMBER = NUMBER + 1
t Cursor should be over the 0

4. Press the J key one time to move the cursor over to the start of the statement
number.

1000 LET NUMBER = NUMBER + 1
t Cursor should be over the 1

188 / Applesoft BASIC Toolbox

Note: All the characters passed over while in edit mode are ignored. That is, the
characters passed over using the J, K, I, and M keys are NOT included in the
statement.

5. Press the space bar and the cursor will not move, but the movement function
associated with the edit keys will be broken. Now press the right arrow key
until the cursor is positioned over the U in NUMBER.

1000 LET NUMBER= NUMBER+ 1
t Cursor should be over the U

6. Key in the number 1 and press the space bar four times. By entering 1 and the
blanks, you have changed the variable NUMBER to N1. Now move the cursor
over to the next U by using the right arrow key. All the characters passed over
with the arrow key are included in the statement just as if you had retyped
them.

Repeat the process of entering a 1 followed by four spaces. After changing the
second variable, use the right arrow key to move the cursor over the + 1.

1000 LET N1 = N1 + 1 [
j Cursor should be over the blank following

the 1.

7. Now press RETURN to complete the process. To make sure the change was
made correctly LIST the statement. Line 1000 should appear as

1000 LET N1 = N1 + 1

You have now been through the process of changing and deleting characters.
To change characters, type the new characters over the old. To delete characters,
use the space bar to blank them out. Applesoft automatically reformats the lines
after the RETURN key is pressed.

For the sake of the example, let's say you have changed your mind after pressing
RETURN and want to change NI back to NUMBER. This requires you to insert the
value UMBER in place of the 1.

To insert characters into the line use the following steps:

1. List the instruction to be changed:

LIST 1000

2. Position the cursor by using the ESC, I, and J keys. Press the ESC key once.
Press the I key two times to position the cursor at the second column of the
statement number. Press the J key once to position the cursor at the first column
of the statement number.

3. Press the space bar to break the edit function.

The Screen Editing Functions/ 199

4. Using the right arrow key, move the cursor over the characters to the 1 in N 1.

1000 LET N1 = N1 + 1
j Cursor should be over the 1

5. Press the ESC key once to enter edit mode. Press the I key to move the cursor
up one line. Press the space bar once to break out of the edit mode and then
enter the letter U. Now finish the word by entering the letters MBER. The screen
should appear as shown below, with the cursor following the letter R.

UMBER [Cursor should be after R
1000 LET N1 = N1 + 1

6. The cursor needs to be moved back to the blank following the number 1. To
move the cursor, press the ESC key once, press the M key to move the cursor
down one line, and press the J key until the cursor is back to the blankfollowing
the number 1.

UMBER
1000 LET N1 = N1 + 1

j Cursor should be here

7. Since the number 1 is to be deleted, we do not want to include it in the data to
be kept. Press the space bar one time to break out of edit mode and the right
arrow key four times to move the cursor to the second 1.

UMBER
1000 LET N 1 = N 1 + 1

j Cursor should be here

8. Now you need to repeat the process done earlier to enter the UMBER. Go back
to step 5 and repeat the process. When you finish step 6, the screen should
appear as shown below, and the cursor should be positioned at the blank fol­
lowing the second 1.

UMBERUMBER
1000 LET N 1 = N 1 + 1

j Cursor should be here

9. Finish the editing process by pressing the space bar and then using the right
arrow key to move the cursor over the + 1. You must move the cursor to the
end of the line in order to include the remainder of the statement. After posi­
tioning the cursor, press the RETURN key to enter the statement. To check your
work, list the statement. The newly edited instruction should appear as

190 / Applasoft BASIC Toolbox

1000 LET NUMBER = NUMBER + 1

If you do not get the same answer, rekey the instruction and start over from
scratch. This is a lot of work to edit such a small statement, but the knowledge of
how to use the edit function will be invaluable when working with long statements.

You now know how to change, insert, and delete characters on a simple LET
instruction by using the editing keys to move the cursor around. You should practice
the editing operation until it becomes second nature to you.

Editing Statements Which Contain Values
Within Quotes

When editing statements which contain information within quotation marks, you
must be careful because of the margins generated by Applesoft. For example if you
key in

1000 PRINT "1 PRESS THE ESCAPE KEY"

and list the instruction, Applesoft breaks the instruction up and list it on two separate
lines as follows:

1000 PRINT "1 PRESS THE ESCAPE K
EY"

Applesoft breaks the line between the letters K and EV because the line extends
past the margin Applesoft uses for displaying instructions. The margin is between
the thirtieth and the fortieth column. Whether or not the break occurs depends on
whether key words or programmer supplied information is encountered in this area.

For the sake of the example, let's change the statement to read

1000 PRINT "1 PRESS THE ESCAPE KEY ONCE"

To add the new word, use the following steps:

1. List the instruction and move the cursor to the first position of the statement

The Screen Editing Functions / 191

by pressing ESC once, I three times, and J once. The cursor MUST be at the
very beginning of the line over the first digit of the statement number.

2. Use the space bar to break out of edit mode and the right arrow key to move
the cursor over to the space following the letter K.

1000 PRINT "l PRESS THE ESCAPE K
EY" t Cursor should be here

Do not move the cursor all the way across the margin following the letter
K. Remember, using the right arrow key is just like retyping the symbols it
passes over.

There are blanks between the K on the first line and the i:Y on the next
line. If you use the arrow key to move the cursor over the blanks, they will be
included as part of the statement because they are between quotation marks!

3. To get the cursor to the next line, first press the ESC key. Once in the edit mode,
use the K key to position the cursor over the letter E. APPLE II and APPLE
II+ users should press both the REPT and the K key to move the cursor.

1000 PRINT "l PRESS THE ESCAPE K
EY"

t Cursor should be here

4. Once the cursor is over the E, press the space bar once to break out of edit
mode and the right arrow key two times to move the cursor to the last quotation
mark. With the cursor on the quotation mark, enter a space and ONCE". Do
not forget the ending quotation mark. After entering a blank, the word ONCE,
and a quotation mark, the screen should appear as follows:

1000 PRINT "l PRESS THE ESCAPE K
EY ONCE"

t Cursor should be here

5. Press RETURN to enter the instruction, and then list the instruction to see if
you entered it correctly.

Be careful when editing data enclosed within quotation marks.
Now that you know how to do it the hard way, you should know that there is

a shorter, easier method.

192 / Applesoft BASIC Toolbox

The instruction POKE 33,33 places the number 33 (second operand) into mem­
ory location 33 (first operand). Memory location 33 indicates to the computer the
number of columns used on the screen. By resetting the screen to 33 columns, you
override the way in which Applesoft breaks up the instructions when they are dis­
played. Instead of being broken up between lines, the instructions are displayed
without any breaks. Enter the following instruction, and follow through the steps
to do the same edit as before. Enter

HOME
NEW
1000 PRINT "1 PRESS THE ESCAPE KEY"

1. After entering the instruction, key in the following three instructions.

HOME
POKE 33,33
LIST

Although it is not required you should enter HOME prior to resetting the screen
margins to clear the garbage out of the right margin.

The screen will display the instruction using only the first 33 columns.

PRINT "l PRESS THE ESCAPE K

To edit the statement, press the ESC key once. Use the I and J keys to
position the cursor over the 1 in statement 1000. Once the cursor is positioned,
use the space bar to break out of edit mode and the right arrow key to move
the cursor to the last quotation mark. Watch closely as the cursor moves from
column 33 to column 1. Since only 33 columns are being used, the cursor
moves to the second line without any problem. With the cursor over the quo­
tation mark, enter a space and ONCE". Do not forget the leading blank or
trailing quotation mark.

2. After changing the statement, key in the following three instructions to reset
the screen to 40 columns:

HOME
POKE 33,40
LIST

or
HOME
TEXT
LIST

To reset the screen, use the POKE or the TEXT instruction. The POKE instruction
places a value of 40 back in memory location 33. The TEXT instruction auto­
matically sets the screen back to normal mode. After resetting the screen, LIST
the statement to see if it was entered correctly. The screen should appear as
follows:

The Screen Editing Functions/ 193

PRESS THE ESCAPE K

POKE memory location 33 with the value 33 prior to editing any of the following:

1. A statement which has data within quotes
2. A REM instruction which extends beyond one line
3. A DATA instruction which extends beyond one line.

With some practice the whole process becomes easy-believe me, it does.
Just remember, if what you are editing is within quotation marks or is a REM

instruction, do not use the arrow keys to move the cursor over the margins. Use the
editing keys J, K, l,and M, or use the POKE instruction to change the margin settings.

When editing the REMarks instruction, you must be aware of the problems not
only with margins but also with the generated blank following the keyword REM.

When you enter the REMarks instruction, it is normally keyed without a space
following the keyword REM.

1000 REMGENERATES ONE BLAN~

When you list the REMark statement, a blank is generated between the keyword
REM and the first letter of the remarks.The blank causes a small problem when
editing a REM instruction .. If you edit the REM instruction and use the arrow keys
to move the cursor over the blank following the keyword REM, the blank is included
as part of the remarks entry. When the remarks instruction is listed, Applesoft
generates a second blank to separate the keyword REM from the leading blank or
what it considers the start of the remarks.

To prevent the extra blank from being generated, use the following procedure.

1. Key in the following statement and list it.

1000 REMGENERATES ONE BLANK
LIST

The statement will be displayed as

1000 REM GENERATES ONE BLANK

Notice the blank inserted by the computer between the REM and GENERATES.
2. Press the ESC key and align the cursor over the first digit of the statement

number by pressing I twice and J once.
3. Use the space bar to break out of edit mode and the right arrow to position the

cursor over the letter R of REM.

194 / Applesoft BASIC Toolbox

4. Now type in a single space followed by the letters REM (REM).
5. The cursor should now be over the top of the Gin GENERATES.
6. Use the right arrow and repeat key to move the cursor to the blank following

the letter K, and press RETURN. Do not go past the end of the statement. Any
blanks passed over by the cursor will be included in the REMarks statement
whether or not you can see them.

7. List the line and you will see a single blank between the REM and the word
GENERATES.

Editing Lines With Multiple Instructions

For most of the programs in this book each instruction is put on a line by itself to
make the programs more readable and easier to follow. Applesoft executes faster
and the programs take up less memory if several instructions are coded for one
statement number. Because many programmers want efficiency in speed of execution
and in memory usage, they code numerous instructions for one statement number.
The technique makes the program run a little faster and take up less memory, but
the technique does make it more difficult to read and modify the code.

fype in the line below, which shows four instructions for one statement number.
The instructions are samples of how you might accumulate the total hours worked
(TAHRSWK), total gross pay (TBGROSS), total net pay (TCNET), and total taxes
(TDTAX). Remember, Applesoft only uses the first two characters of the name. This
is the reason for the TA, TB, TC, and TD.

1000 TAHRSWK = TAHRSWK + AAHRSWK: TBGROSS = TBGROSS +
ABGROSS: TCNET = TCNET + ACNET: TDTAX = TDTAX + ADTAX

Now LIST the instruction. It should appear as follows (notice the spaces within
the variable names):

1000 TAHRSWK = TAHRSWK + AAHRSWK:
TB GR OSS = TB GR OSS + AB GR
OSS: TCNET = TCNET + ACNET: TD
TAX = TDTAX + ADTAX

A statement such as this is where the editing feature really comes in handy.
When we created the names TBGROSS and ABGROSS, we did not realize the names
include the Applesoft command for GRaphics. The letters GR stand for low reso-

The Screen Editing Functions / 195

lution graphics and make up an Applesoft reserve word, which can only be used as
an instruction. We must correct the error by changing TBGROSS to TBSUM and
ABGROSS to ABSUM.

Use the following steps to modify the statement:

1. List the statement.
2. Press the ESC key and move the cursor to the first position of the statement

number. This should take five presses of the I key and one press of the J key.
3. Use the space bar to break out of edit mode and the right arrow key to position

the cursor over the blank following the first TB. Do not worry about moving
the cursor over the blank spaces in the margin. l)'pe in SUM. The line should
appear as

TBSUM OSS = TB GR OSS + AB GR
j Cursor should be here

4. Using the space bar, blank out the letters OSS so that the line appears as

TBS UM = TB GR OSS + AB GR
j Cursor should be here

5. Using the right arrow key, move the cursor to the blank following the next TB
and type in SUM. The line should appear as

TBS UM = TBSUM OSS +AB GR
j Cursor should be here

6. Using the space bar, blank out the letters OSS. The line should appear as

TBS UM = TBSUM + ABGR
j Cursor should be here

7. Using the right arrow key, move the cursor to the blank following the AB and
type in SUM. The line should appear as

TBSUM = TBSUM + ABSUM
j Cursor should be here

8. Using the right arrow key, move the cursor to the OSS on the next line and
blank out the three characters by using the space bar. The two lines should
appear as

TBSUM = TBSUM + ABSUM
:TCNET = TCNET + ACNET:TD

j Cursor should be here

196 / Applesoft BASIC Toolbox

9. Use the right arrow key to move the cursor to the end of the fourth line and
press RETURN. Remember, you must go to the end of the statement prior to
pressing RETURN.

10. List the line again to see if the information was entered correctly. The statement
should appear as

1000 TAHRSWK = TAHRSWK + AAHRSWK:
TBSUM = TBSUM + ABS UM: TCNE
T = TCNET + ACNET: TDTAX = TD
TAX + ADTAX

Look at the code closely. Do you notice another problem? The variable name
ABSUM includes the Applesoft reserve word ABS (ABSolute) and therefore cannot
be used. Give up and key in 1000 to delete the line.

Summary of Edit Keys and POKE Functions

1.
2.
3.
4.
5.
6.

7.

8.

ESC key
J

used to engage the edit keys
used to move the cursor to the left one column

K used to move the cursor to the right one column
I used to move the cursor up one row
M used to move the cursor down one row
POKE 33,33 used to change the width of the screen to 33 columns prior to
editing one or more lines.
POKE 33,40 used to change the width of the screen back
or TEXT to 40 columns after the editing process is over.
PROBLEMS
a. Most people have problems when learning how to edit variables when data

is contained between quotation marks. Be careful not to include the blanks
making up the margin.

b. Be careful when editing the REMarks instruction.

23. The GET Instruction

Instruction GET variable name

Example GET ANSWER$ Retrieves a single string character
GET NUMBER Retrieves a single numeric digit

Purpose

Rules for Use

Illustration
of the Rules

1.
2.

3.

1.

2.

3.

To retrieve one keystroke from the keyboard.
To save the operator from having to press the RETURN key when only one
character of information is to be entered.
To cause the program to stop until the operator is ready and presses a key.

Numeric variable names can only accept numeric values. String variable names
can accept any key except CONTROL-RESET.
The computer waits for a key to be pressed. Once a key is pressed, the computer
continues processing. The operator does not need to press the RETURN key.
If a key is pressed prior to execution of the GET instruction, the symbol is
placed in the keyboard buffer (storage area). When the GET instruction is
executed the character is retrieved from the single character buffer. If more
than one key is pressed prior to execution of the GET instruction, only the last
key pressed is accepted.

4. The symbol entered by way of the GET instruction is not automatically displayed
on the screen. If you want the symbol to appear on the screen, you must PRINT
the symbol as part of your program logic.

5. If your program is using both the GET instruction and DOS commands, you
must cause a RETURN symbol (CHR$(13) to be PRINTed at some point between
using the GET instruction and execution of a DOS command. The RETURN
symbol is generated by any PRINT operation which does not end in a semicolon.

The same program is used to illustrate the first five rules. Rule 5 is not covered in
this section but is covered in Section II, on disk file usage.

Key in and run the following program, or run the program by entering

RUN GET SAMPLE1

197

198 / Applesoft BASIC Toolbox

NEW
1000 REM GET SAMPLE!
1010 HOME
1020 SPEED= 150
1030 PRINT "PRESS ANY KEY OTHER THAN CONTROL-RESET"
1040 GET X$
1050 PRINT
1060 IF X$ < "!" OR X$ >"""THEN 1090
1070 PRINT "YOU PRESSED THE "X$" KEY"
1080 GOTO 1110
1090 PRINT "YOU PRESSED AN UNPRINTABLE KEY"
1100 PRINT "THE ASC II VALUE FOR THE KEY IS " ASC (X$)
1110 PRINT : PRINT
1120 PRINT "NOW PRESS A NUMERIC KEY"
1130 GET AANUMBER
1140 PRINT
1150 PRINT "YOU KEYED THE NUMBER "AANUMBER
1160 PRINT : PRINT

~_~:=~,; . . ~ - .~ .. ·
···- •l.,,.,

1170 PRINT "THE NEXT GET INSTRUCTION IS CODED AS:"
1180 PRINT :1 :~!L; ;~ ': ,···:.;

PRINT II

PRINT
GET AANUMBER" 1190

1200
1210
1220
1230

PRINT "ATTEMPT TO ENTER A NONNUMERIC VALUE"
PRINT "INTO THE NUMERIC FIELD."
PRINT

1240 PRINT "THE PROGRAM WILL CANCEL WITH A SYNTAX"
1250 PRINT "ERROR."
1260 SPEED= 255
1270 GET AANUMBER
1280 PRINT "YOU ENTERED A NUMBER WHEN YOU WERE TO"
1290 PRINT "ENTER A NONNUMERIC VALUE. TRY UNTIL"
1300 PRINT "YOU GET IT RIGHT."
1310 GOTO 1270

The program consists of three parts. The first part illustrates tl
instruction with a string variable. The second illustrates the use c
numeric variable. The third illustrates what happens when a nonnum1

..li ..]T f.~\.

:<~H) ~ ..

r:; ·=i \ -~· ~ :
~.:~\;~I \.:;·.·.·.:

~-... ~.i,;.

for a numeric variable name and what happens when several keys,. P'"'"'··"" .•...

to execution of the GET instruction.

1030 You may enter any key with the GET instruction except CONTROL-RESET. When
CONTROL-RESET is pressed, it causes the computer to be reset, canceling your
program.

1040 The variable following the GET instruction should always be a string variable. If
you want a number entered, use a string variable, edit the the value entered, and
convert the entry to a numeric value by using the VAL function.

1240 GET X$
1241 IF X$ < "O" OR X$ > "9" THEN GOTO error routine
1242 NUMBER = VAL(X$)

The GET Instruction / 199

1060-1100 The value you enter is compared to the bit pattern of the first and last printable
characters. If the key pressed is a nonprintable character, logic branches to line 1090
and prints an appropriate message. If the character is printable, logic falls through
the IF and prints the character entered. Either way logic flow ends up at line 1110.

Did you that notice the character entered by the GET instruction on line 1040
is not printed until line 1070? Remember, a symbol entered by way of the GET
instruction is not automatically printed. If you do not code an instruction to PRINT
the symbol, it does not show up on the screen.

1110-1150 The GET instruction on line 1130 retrieves one numeric character. If you code a
numeric name following the GET instruction, any key entered other than a numeric
character causes the program to terminate and the message ?SYNTAX ERROR to be
displayed.

1160-1270 In the third section of the program you see what happens when a nonnumeric value
is entered in response to a GET instruction that uses a numeric variable name.

As indicated earlier, once you have pressed a nonnumeric character in response
to a request for a numeric value, the computer immediately cancels the program and
displays the message

?SYNTAX ERROR

To prevent this type of error from happening, always use a string variable with
the GET instruction.

Exercise 1: Entering Characters

Enter

RUN <RETURN>

Follow the instructions displayed on the screen. The program will terminate with
an error message if you follow the instructions correctly.

Exercise 2: Entering CONTROL-RESET

Enter

RUN <RETURN>

200 I Applesoft BASIC Toolbox

In response to the first message, press the CONTROL and RESET keys at the same
time. The computer will beep and the program will be cancel.

CONTROL-RESET is the only key I have encountered which the GET instruction
does not accept. You may want to use the following program to see if there are any
other keys which cannot be used with the GET instruction.

1000 HOME: GET X1$: PRINT"= ("X1$")": GOTO 1000

Remember that some symbols such as CONTROL-C, CONTROL-S, CONTROL-D,
etc. do not print.

Exercise 3: Entering a Character Into the Butler

Before running the program again to illustrate Rule 4, modify the code by keying
in

DEL 1120,1310 <RETURN>

The delete instruction will eliminate the last two GET instructions and leave
only the first section of the program.

If you accidentally press a key before the computer executes the GET instruc­
tion, the last key pressed is kept in the keyboard's buffer (a memory area) and used
as the input character for the GET instruction. If the operator correctly anticipates
the character which is to be entered, processing can continue without any error. If
the operator does not key in the correct response, hopefully the program edits the
input and catches the error before continuing.

Now run the program again. As the program is printing out the message on
line 1030, press several keys. When the computer finishes printing the message, the
last character you press will automatically be accepted by line 1040 (GET instruc­
tion). Key in

RUN <RETURN>
(press several keys)

The last character pressed will be printed by line 1070. The other characters will be
lost.

Using GET to Accept a Yes/No Response

One of the most common ways you will use the GET instruction is to accept a yes/
no response or a continue/stop response. When using the GET instruction to accept

The GET Instruction I 201

a specific character you should test the symbol entered for each acceptable value.
If an acceptable value is not entered, make the operator reenter the character.

The following lines show how to code a yes/no response using the GET instruction.

1000 HOME
1010 PRINT "PRESS Y FOR YES"
1020 PRINT "PRESS N FOR NO";
1030 GET Xl$: PRINT Xl$;
1040 IF Xl$ = "Y" THEN 1090
1050 IF Xl$ = "N" THEN 1110
1060 PRINT "PRESS ANY KEY AND TRY AGAIN!"
1070 GET Xl$
1080 GOTO 1000
1090 REM INSTRUCTIONS FOR YES RESPONSE
1100 REM
1110 REM INSTRUCTIONS FOR NO RESPONSE
1120 REM

The basic logic for accepting a response from the operator consists of the
following steps:

1. Display the responses which are acceptable.
2. Use the GET instruction to retrieve the character and the PRINT instruction to

display the character entered.
Warning: Printing symbols on line 24 can cause problems. If a character
is printed on line 24 and not followed by a semicolon, it causes the screen
to scroll. If the operator presses the RETURN key in response to the GET
instruction and the symbol is printed on line 24, the screen scrolls whether
or not a semicolon is used. These problems can be eliminated by editing
the values prior to printing or by not displaying responses on line 24.

3. Test the character entered for ALL the acceptable values. Do not test for one
value and let program logic fall through for the other values as shown by the
following code:

1030 GET X1$: PRINT X1$;
1040 IF X1$ = "N" THEN 1110
1050 REM FALL THROUGH FOR YES RESPONSE
1060 REM
1070 REM INSTRUCTIONS FOR NO RESPONSE

4. If no acceptable value is entered, let the operator know by having the program
display an error message. Have the program wait for the operator to read the
message and then start the process over.

24. The DIM Instruction

202

Instruction DIM NAME(number,number,number, ...)

Note: Although the DIMension instruction may be used to define multiple arrays,
this book only illustrates single entry arrays. Multiple levels are defined when
more than one number (called a subscript) is used within parentheses.

Single dimension: DIM NAME(subscript1)
Double dimension: DIM NAME(subscript1 ,subscript2)
Triple dimension: DIM NAME(subscript1 ,subscript2, subscript3)

Arrays are also referred to as: tables, matrixes, and lists. For this book, the terms
array or table will be used.

Example DIM MTHL YSALES(11)

FOR N1 = 0 TO 11
INPUT "MONTHLY SALES = "; MTHLYSALES(N1)
NEXT

The DIMension instruction creates 12 variables which are accessed by using the
name MTHLYSALES followed by a number within parentheses. The subscript (num­
ber within parentheses) may range from 0 to 11. The FOR/NEXT instruction shows
how you might vary the subscript in order to load a value into each of the 12 variables
making up the table.

Purpose The DIMension instruction allows the programmer to define large groups of related
variables with one general name. Each individual variable is then uniquely refer­
enced by the number following the general name. Without the DI Mension instruction
many problems would be impossible to code.

Rules for Use 1. If a DIM instruction is used in the program to define an array, the DIM instruction
must be executed once prior to any instruction which uses the array or else a
REDIM'D ARRAY error occurs. (There is one exception, see Rule 5.)

BEGINNING ROUTINE
DIM TABLE(100)

MAIN ROUTINE

TABLE (N1) = SALESIN

The DIM Instruction I 203

Put the DIM instruction at the start of the program in
a segment of code which is executed only once.

Arrays are also referred to as tables, matrixes, and
lists.

2. The maximum number of subscripts or levels is 88. I cannot imagine how
anyone could come close to this limit.

T ABLENAME (su bscri pt1 ,su bscri pt2,su bscri pt3,su bscri pt4,
... ,subscript88)

Most programmers never get beyond three levels of subscripts:

TABLE NAME (subscript1 ,subscript2,subscript3)

Do not confuse the maximum number of subscripts with the maximum number of
array entries. The maximum number of array entries is limited only by the memory
size of your computer.

3. Since the computer starts counting at 0, all DIMension definitions and subscripts
are relative to 0.

DIM MTHLYSALES (11)
MTHL YSALES (0)
MTHLYSALES (1)
MTHL YSALES (11)

Defines 12 variables from 0 to 11
References the first entry in the array
References the second entry in the array
References the twelfth entry in the array

Because of the difference between the way humans count and the way com­
puters count, many programmers ignore the first entry of a table, entry (0), and start
with entry (1).

Even though the sample programs use entry (0) I would suggest that you define
and access table entries in human terms.

In human terms the earlier example would be defined as:

DIM MTHLYSALES (12)

The DIMension instruction defines 12 variables from 1 to 12 (actually defines 13,
from 0 to 12, but who cares?).

Use 1 as the starting point for accessing the table.

MTHLYSALES(1) = 25000.00: REM JANUARY SALES

204 / Applesoft BASIC Toolbox

Illustration
of the Rules

4. Memory usage
a. Integer array entry
b. Real array entries
c. String array entries

2 bytes per entry
5 bytes per entry
3 bytes per entry + length of the string

For more information on memory allocation and usage related to the DIM instruction,
see the APPLE programming manuals.
5. If an array name is used in a program and no DIM instruction is specified for

that name, Applesoft automatically generates 10 entries for the array. This
means if you are going to use arrays with 10 or fewer entries, you do not have
to define them with a DIM instruction.

The following program shows how to define, load, and sort an array with up to 100
entries. This program may be useful to you as a model if you plan to write any code
which sequences data.

1000 REM DIM SAMPLE!
1010 HOME
1020 DIM NUMBER(99)
1030 REM ---------·
1040 REM ENTER VALUES
1050 PRINT "ENTER FROM 2 TO 100 NUMBERS"
1060 PRINT
1070 PRINT "ENTER Q TO QUIT"
1080 VTAB 5: HTAB 1
1090 CALL - 958
1100 INPUT II = ";NUMBER$: NUMBER= VAL(NUMBER$)
1110 IF LEFT$(NUMBER$) = "Q" THEN 1160
1120 NUMBER(Nl) = NUMBER
1130 Nl = Nl + 1
1140 IF Nl > 99 THEN 1160
1150 GOTO 1080
1160 REM-------------
1170 REM REPLACEMENT SORT
1180 HOME
1190 PRINT "SORTING NUMBERS": PRINT
1200 PRINT "THE LENGTH OF TIME DEPENDS ON THE": PRINT
1210 PRINT "NUMBER OF VALUES ENTERED."
1220 N3 = Nl - 1
1230 FOR Nl = 0 TO N3 - 1
1240 FOR N2 = Nl + 1 TO N3
1250 IF NUMBER(Nl) < = NUMBER(N2) THEN 1290
1260 NUMBER = NUMBER(Nl)
1270 NUMBER(Nl) = NUMBER(N2)
1280 NUMBER(N2) = NUMBER
1290 NEXT
1300 NEXT
1310 REM----------------
1320 REM PRINT NUMBERS
1330 N2 = 0

1340 HOME
1350 FOR Nl = 0 TO N3
1360 PRINT NUMBER(Nl)
1370 N2 = N2 + 1
1380 IF N2 < 20 THEN 1430
1390 PRINT "PRESS ANY KEY TO CONTINUE"
1400 GET Xl$
1410 N2 = 0
1420 HOME
1430 NEXT
1440 PRINT "THAT'S ALL FOLKS!"
1450 END

The DIM Instruction I 205

1000-1020 The DIM instruction defines a table of 100 elements with the general name of
NUMBER. In order to work with any one of the 100 elements, the label NUMBER
must be followed by either a number or a variable ranging from 0 to 99.

1030-1150 Lines 1030 through 1150 are responsible for accepting up to 100 numbers from the
operator. The input operation is terminated when the operator has entered 100 num­
bers or has entered a Q. The CALL - 958 instruction is used to clear the lower portion
of the screen after each entry. The CALL instruction is used to clear the screen rather
than clearing just one line, since mistakes made by the operator during the entry
process can result in the computer's displaying messages on several lines.

1120-1130 You should look closely at lines 1120 and 1130. Since N 1 starts off with a value of
0 the first time though the loop, the first number entered is placed in the area
NUMBER(O). After each number is placed in the table, the value of N1 is incremented
to point to the next available table location.

1160 REM ----------------------
1170 REM REPLACEMENT SORT

1220 N3 = N 1 - 1
1230 FOR N 1 = 0 TO N3 - 1
1240 FOR N2 = N1 + 1 TO N3
1250 IF NUMBER(N1) < = NUMBER(N2) THEN 1290
1260 NUMBER = NUMBER(N1)
1270 NUMBER(N1) = NUMBER(N2)
1280 NUMBER(N2) = NUMBER
1290 NEXT
1300 NEXT

Basically the sort consists of two FOR/NEXT loops. The inner loop is respon­
sible for doing the comparisons and switching the variables, while the outer loop
resets the counters and determines how many times the inner loop is executed.

To help explain the logic, let's use the following table values:

208 / Applesoft BASIC Toolbox

Value
NUMBER (0) = 00123
NUMBER (1) = 09876
NUMBER (2) = 00001
NUMBER (3) = 00022

1220 N3 = N1 - 1

At the time the sort routine is entered, N1 is 1 greater than the number of entries
loaded into the table. Line 1220 sets N3 equal to the exact number of values entered.
The value in N3 is used during the sort process to limit the number of comparisons
which must be done in order to sequence the numbers. For the data in this example,
the value of N3 is equal to 3. Remember, all the subscripts are relative to 0 so the
value of 3 indicates that four numbers were entered.

The last sentence emphasizes why many programmers ignore entry 0 when
using tables.

1230-1300 Lines 1230 and 1300 form the outer FOR/NEXT loop. The outer loop must be
executed 1 less time than the number of entries to be sorted (see the N3 - 1).

1230 FOR N1 =OTO N3 - 1

1240-1290 Lines 1240 and 1290 form the inner FOR/NEXT loop. The inner loop must be
executed a varying number of times depending on whether this is the first, second,
third, fourth, etc. pass through the sorting process. But no matter which pass is
being made, the starting point of the inner loop is 1 greater than the starting point
of the outer loop (see the N1 + 1).

1240 FOR N2 = N 1 + 1 TO N3

1250-1280 Lines 1250 through 1280 make up the actual comparison and flipping process. For
the four numbers, the comparison process takes the following steps.

The value in NUMBER (0) is compared with the value in NUMBER (1), see
line 1250. For the sample data, 00123 is less than 09876, so the numbers are not
flipped.

Value
NUMBER (0) = 00123 Unchanged
NUMBER (1) = 09876 Unchanged
NUMBER (2) = 00001
NUMBER (3) = 00022

The DIM Instruction I 207

The value in NUMBER (0) is then compared with the value in NUMBER (2).
If the value in NUMBER (0) is greater than the value in NUMBER (2), the two
values are flipped. Since 00123 is greater than 00001, the two numbers are flipped
(see lines 1260-1280). The flipping process is accomplished by saving NUMBER
(0) in the hold area called NUMBER. The value in NUMBER (2) is then placed
into the NUMBER (0). After the value in NUMBER (2) has been moved, the value
which was saved in NUMBER is placed into NUMBER (2).

Value
NUMBER (0) = 00001 Flipped
NUMBER (1) = 09876 Unchanged
NUMBER (2) = 00123 Flipped
NUMBER (3) = 00022

The process is repeated until the value in NUMBER (0) has been compared
with all the values in the table. After completion of the first iteration of the inner
loop, the lowest value is in the first entry of the table: NUMBER (0).

After the first entry has been compared to all the other entries in the table, the
outer FOR/NEXT instruction sets N1 up by 1, and the process of comparing the
second entry with all the other table entries is carried out. If you follow the inner
loop, you will see that during the second execution, two flip operations take place.
First, 09876 and 00123 are flipped:

Value
NUMBER (0) = 00001 No longer used in comparison
NUMBER (1) = 00123 Flipped
NUMBER (2) = 09876 Flipped
NUMBER (3) = 00022

After NUMBER (1) and NUMBER (2) have been flipped, the new value in
NUMBER (1) is compared with NUMBER (3), resulting in another flip.

Value
NUMBER (0) = 00001 No longer used in comparison
NUMBER (1) = 00022 Flipped
NUMBER (2) = 09876
NUMBER (3) = 00123 Flipped

Once NUMBER (1) has been compared with all the other entries in the table,
the outer loop sets N 1 up by 1, and the process of comparing the NUMBER (2) to
all the other table entries is carried out. If you follow the inner loop one more time,
you will see that during the third execution, one flip occurs. The value 09876 in
NUMBER (2) is compared with 00123 in NUMBER (3), causing the values to be
exchanged.

208 / Applesoft BASIC Toolbox

Value
NUMBER (0) = 00001 No longer used in comparison
NUMBER (1) = 00022 No longer used in comparison
NUMBER (2) = 00123 Flipped
NUMBER (3) = 09876 Flipped

Since there are only four entries in the table, N1 is now equal to 1 less than
the number of entries, and the sort is completed.

Look through the code again and see how the sorting takes place. The outer
loop of the REPLACEMENT sort takes one less pass (execution) than the number
of entries in the table (4 - 1 = 3). The number of times the inner loop is executed
may be computed by the following formula:

T(T - 1) I 2

where T = number of table entries.
For the example, the inner loop is executed six times:

4 (4 - 1) I 2 = 6

If the table contains all 100 entries, the inner loop is executed 4950 times:

100 (100 - 1) I 2 = 4950.

You can see why it takes several minutes for the computer to sort the table
when it is completely full.

After the numbers are sorted, lines 1310 through 1430 display the values in
groups of 20.

To see how the sorting program works, execute the following steps. First run
the program by entering

RUN DIM SAMPLE1

The screen will clear and the following messages will be displayed:

ENTER FROM 2 TO 100 NUMBERS

ENTER Q TO QUIT
=?

In response to the question mark, enter some numbers. The program must have
at least two numbers in order to work. For this example enter the following numbers:

=3
= 33
=4
=2
= 88
= Q To terminate data entry process

The DIM Instruction I 209

After you enter a Q, the input routine will terminate and the sorting process
will begin. During the sort, the following message is displayed:

SORTING NUMBERS

THE LENGTH OF TIME DEPENDS ON THE

NUMBER OF VALUES ENTERED.

After the sort is done, the five numbers are printed out in ascending order as
follows:

2
3
4
33
88
THAT'S ALL FOLKS I

25. The READ/DAT A/
RESTORE Instructions

210

The READ and DATA instructions must be used together. The RESTORE instruction
is an optional instruction used to reset the pointer indicating the next variable to be
read.

Instruction READ variable1 ,variable2,variable3,variable4, ...
DATA value1,value2,value3,value4, ...

RESTORE

Example READ INTEGER%,REAL,STRING$
DATA 25,10.5,'JOHN JONES'

Purpose The READ and DAT A instructions provide a method of initializing variables to a
starting value. The two instructions are especially helpful in loading arrays (DIMen­
sion entries).

Some programmers use the READ and DAT A instructions in place of the IN PUT
instruction for entering data. With very few exceptions, this is not a good technique
and should be avoided. When data are constant and only coded in one program, use
the READ and DATA instructions. When data are subject to change or used by more
than one program, create a disk file and use the INPUT instruction to read the data
from disk. If the data change with each program, every time the program is run,
code a routine in the program to allow the operator to INPUT the data.

The RESTORE instruction allows the programmer to reset the data pointers so
the next time the READ instruction is executed, the first DATA entry is reread.

Rules for Use 1. If the READ instruction is used, there must be at least one DATA instruction in
the program.

2. Each value within the DATA instruction MUST be separated by a comma.
3. The value in the DAT A instruction must match the type of name used in the

READ instruction, string values for string names and numeric names for numeric
values.

4. Variable types may occur in any sequence within the READ and DAT A instruc­
tions as long as the usage between the two instructions matches.

The READ/DATA/RESTORE Instructions I 211

1000 READ STRING$,INTEGER%,REAL
1010 DATA JOHN JONES,25,5.25

5. A program can contain any number of READ instructions and DAT A instruc­
tions. The number of READ instruction and the number of DATA instructions
do not have to match. Each time a READ instruction is encountered, the next
sequential data element is read.

1000 READ STRING$
1010 READ INTEGER%
1020 READ REAL

2000 DATA JOHN JONES
2010 DAT A 25,5.25

6. If more variable names are used in the READ instruction(s) than there are values
in the DATA instruction(s), an

OUT OF DATA ERROR IN####

occurs and the program is canceled.

If more values are specified in the DAT A instruction than are read by the READ
instruction, the excess values are ignored.

7. For the very first value of the DAT A instruction, a leading comma specifies a
zero or null value (null means no value).

1000 READ N1,N2
1010 DATA ,25
1020 REM N1 WILL BE SET TO ZERO
1030 REM N2 WILL BE SET TO 25

For the very last value of the DAT A instruction, a trailing comma specifies
a zero or null value.

1000 READ NAME$,AGE,ADDRESS$
1010 DATA JOHN JONES,25,
1020 REM NAME$ = JOHN JONES
1030 REM AGE = 25
1040 REM ADDRESS$ = null value

Notice that the comma at the end of the DATA instruction is necessary to
indicate the absence of the last value.

For other than the first or the last value, a zero or null string may be
specified by using two consecutive commas.

212 / Applesoft BASIC Toolbox

Illustration
of the Rules

1000 READ NAME$,AGE,ADDRESS$
1010 DATA JOHN JONES,,4953 WAGON WHEEL DR
1020 REM NAME$ = JOHN JONES
1030 REM AGE = 0
1040 REM ADDRESS$= 4953 WAGON WHEEL DR

8. String values MUST be within quotation marks if leading or trailing blanks are
to be included as part of the string value.

The first program consists of a date conversion subroutine which you may want to
use in some of your programs. The program starts off by loading the name of each
month into an array, and the maximum number of days for each month into a second
array. The program is not set up to catch all types of data entry errors.

1000 REM READ DATA SAMPLE!
1010 HOME
1020 GOSUB 1210: REM EXECUTE ONLY ONCE
1030 PRINT "ENTER THE DATE IN MMDDYY FORMAT"
1040 INPUT II = ";DTE$
1050 GOSUB 1100: REM EDIT AND CONVERSION ROUTINE
1060 VTAB 10: PRINT DTE$
1070 END
1080 REM -----
1090 REM EDIT AND CONVERT DATE
1100 MM= VAL (LEFT$ (DTE$,2))
1110 IF MM < 1 OR MM > 12 THEN 1180
1120 DD= VAL (MID$ (DTE$,3,2))
1130 IF DD < 1 OR DD > DD(MM) THEN 1180
1140 YY =VAL (RIGHT$ (DTE$,2))
1150 IF YY < 0 OR YY > 99 THEN 1180
1160 DTE$= MM$(MM) +II II + STR$ (DD) + 11 , 19" +RIGHT$ (DTE$,2)
1170 RETURN
1180 DTE$ = "ERROR"
1190 RETURN
1200 REM ---------
1210 REM BEGINNING ROUTINE
1220 DIM MM$(12),DD(12)
1230 REM ---------
1240 REM READ ALPHA MONTH NAME
1250 FOR Nl = 1 TO 12: READ MM$(Nl): NEXT
1260 DATA" JANUARY"." FEBRUARY"." MARCH"," APRIL",

II MAY"," JUNE"," JULY"." AUGUST",
"SEPTEMBER"," OCTOBER"," NOVEMBER"." DECEMBER"

1270 REM ---------
1280 REM READ NUMERIC DAY VALUE
1290 FOR Nl = 1 TO 12: READ DD(Nl): NEXT
1300 DATA 31,29,31,30,31,30,31,31,30,31,30,31
1310 REM ---------
1320 RETURN

The READ/DATA/RESTORE Instructions/ 213

1000-1020 Before a date is accepted and converted into an alphanumeric format, the instructions
related to loading the name of each month and the number of days in each month
must be executed. These instructions must be executed only once at the start of the
program. If you copy the subroutine, make sure you locate the code related to loading
the array so it will only be executed once.

1030-1070 After the name of the month and the number of days are loaded, lines 1030 through
1070 accept a date from the operator and convert the numeric date into alphabetic
format.

Notice that the date is accepted from the operator as a string and not as a
number. As a general rule, use strings for entering all data. Convert string format
values to numeric format by using the VAL function.

1080-1190 Lines 1080 through 1150 edit the date entered to make sure it conforms to the
MMDDYY format requested and each section of the date is within the specified
limits. If the data entered fails any one of the tests, logic flow branches to line 1180,
where a value of ERROR is returned in response to the conversion process. If the
data entered passes all the tests, logic flow falls through to line 1160, where the
various parts making up the date are connected to form the alphabetic date.

Line 1130 uses the numbers read into the second array to check the value
entered for the day. The number entered for the day is compared against the maximum
value for the specific month. The value in MM is used within parentheses to point
to the array entry.

1130 IF DD< 1 OR DD> DD(MM) THEN 1180

Notice that the value of MM is edited prior to its use. If the value to be used
as a pointer is entered by the operator, it should always be edited before being used.
If the value to be used is generated by program code, there is no need to check the
number.

1200-1220 Line 1220 defines the two arrays to be used in the program. The first array is used
to store the string names of each month, while the second array is used to store the
maximum number of days for each month. Applesoft does not allow the programmer
to give starting values to the variables defined by the DIMension instruction. Any
starting value other than a null value for string variables or a zero value for numeric
variables must be loaded into each array entry.

1230-1320 Lines 1230 through 1320 make up the portion of the program which is related to
the use of the READ and DATA instructions. The first loop reads the names of each
month into the MM$ array. The second loop reads the number of days for each month
into the DD array.

The two loops could be combined into one single operation. The single loop
version of the code is as follows:

214 / Applesoft BASIC Toolbox

1240 REM READ ALPHA MONTH NAME AND NUMERIC DAY VALUE
1250 FOR N1 = 1TO12: READ MM$(N1),DD(N1): NEXT
1260 DATA" JANUARY",31," FEBRUARY",29," MARCH",31,

APRIL",30," MAY",31," JUNE",30,
JUL Y",31," AUGUST",31,"SEPTEMBER",30,

" OCTOBER",31," NOVEMBER",30," DECEMBER",31

Notice that since a string variable and a numeric variable are both read by the same
statement, the DATA instruction must format the values in the same sequence as
they are read.

Exercise 1: Entering a Valid Date

To check out the program and see how the program works, run the program using
the following steps:

1. Enter

RUN READ DATA SAMPLE1 <RETURN>

2. In response to the ENTER THE DATE message, key in your birthday.

ENTER THE DATE IN MMDDYY FORMAT
= 112244

3. As soon as you press the RETURN key, the computer will display the converted
date in alphanumeric format:

NOVEMBER 22, 1944

Exercise 2: Enter an Invalid Date

To see what happens when an invalid date is entered, use the following steps:

1. Since the program is still in memory just enter RUN and press RETURN.
2. In response to the ENTER THE DATE message, key in any of the following

invalid dates:

130182,093182,0101-1,orOOOOOO

3. As soon as you press the RETURN key, the computer will display the word
ERROR. If you are using the program as a subroutine within a larger program,
the returned value should be tested for an error condition in order to tell if the
user enters a valid date.

The READ/DATA/RESTORE Instructions/ 215

2000 GOSUB convert date
2010 IF DTE$ = "ERROR" THEN ... invalid date
2020 ... valid date

The second example shows how to use the RESTORE instruction to cause the
values in the DATA instruction to be reread. Whenever you want to reuse the values
included in the DATA instruction, the RESTORE instruction should be used.

The program asks you to enter the cost of merchandise and then multiplies the
cost by 10 different markup percentages. The program can be reexecuted any number
of times using the same values in the DATA instruction.

Key in the program, or load and list the program by entering

LOAD RESTORE SAMPLE1
LIST

1000 REM RESTORE SAMPLE!
1010 HOME
1020 INPUT "ENTER COST OF MERCHANDISE= ";CST
1030 HOME
1040 PRINT "COST OF MERCHANDISE= ";CST
1050 PRINT
1060 PRINT "% MARKUP SALES PRICE"
1070 FOR Nl = 1 TO 10
1080 READ MARKUP
1090 DATA . 05, .15, . 20, . 25, .35, .45, . 50, . 60,. 75, . 90
1100 PRICE = (MARKUP + 1) * CST
1110 PRINT TAB(3);MARKUP + 1 TAB(15)PRICE
1120 NEXT
1130 PRINT : PRINT
1140 PRINT "PRESS C TO CONTINUE"
1150 PRINT "PRESS Q TO QUIT"
1160 GET Xl$
1170 IF Xl$ = "C" THEN RESTORE : GOTO 1000
1180 IF Xl$ = "Q" THEN HOME : END
1190 GOTO 1160

1080-1090 The READ instruction retrieves a new markup percentage each time it is executed.
The first time through, the cost is multiplied by 1.05. The tenth time through the
loop, the cost is multiplied by 1.90.

1170 If the operator enters a C to continue the program, the RESTORE instruction on line
1170 resets the pointer. Once the DATA pointer is reset and the READ instruction
is encountered, the first DATA value is reread.

Run the program and enter several values to see the RESTORE instruction in
action.

26. The TRACE/NOTRACE
Instructions

216

Instructions Immediate Execution Mode:

TRACE
NOTRACE

Program Execution Mode:

1000 TRACE
1010 NOTRACE

Purpose The TRACE and NOTRACE instructions are debugging instructions which can help
you follow the logic flow through your program. Depending on how you use TRACE
and NOTRACE, the instructions can be very helpful in providing you with the state­
ment number of each line executed or can be overwhelming by listing too many
statement numbers and flooding you with too much information.

Rules for Use 1. Use the keyword TRACE in either immediate or program execution mode to
start the trace process . Use the keyword NOTRACE in either immediate or
program execution mode to terminate the trace process .

2. Each statement number executed is displayed along with other data on the screen
and therefore messes up any screen design format. If you are using the HOME,
VTAB, or HTAB instructions to clear the screen or reposition the cursor, the
statement numbers displayed by the TRACE function will be difficult to follow.
Either slow the computer down with the SPEED command or use PR#1 to print
all data displayed (if you have a printer) .

3. The TRACE function can only be turned off by using the NOTRACE instruction
or by resetting the machine. The LOAD and RUN instructions do not reset the
TRACE operation.

4. The TRACE function cannot be used in a program which uses DOS instructions
unless it is turned off prior to a DOS instruction and back on after a DOS
instruction.

2000 NOTRACE Turns trace off before DOS operation
2010 PRINT D$;"READ SEQUENTIAL FILE"
2020 INPUT A1RECORD$

2030 TRACE Turns trace on after DOS operation

Illustration
of the Rules

The TRACE/NO TRACE Instructions / 217

The first program is very short and is intended to show you how the TRACE/NOTRACE
instructions work in immediate-execution mode. The program results in an endless
loop and must be terminated by pressing CONTROL-C.

HOME
NEW
1000 REM TRACE SAMPLE!
1010 REM MAIN ROUTINE
1020 IF EDF$ = "YES" THEN END
1030 GOTO 1010
TRACE

Exercise 1: TRACE and NOTRACE in Immediate Execution Mode

Key in the short program. After the program has been entered, key in the TRACE
instruction. Now RUN the program and watch how fast the screen fills up with
statement numbers.

The new lines on the screen will appear as follows, starting with statement
number 1000.

RUN
#1000 #1010 #1020 #1030 #1010 #1020 #103
0 #1010 #1020 #1030 #1010 #1020 #1030 #1
010 #1020 #1030 #1010 #1020 #1030 #1010

BREAK IN ####

Notice that the cycle repeats in an endless loop. To cancel the program, press
CONTROL-C.

After canceling the program, enter NOTRACE in order to terminate the TRACE
process.

The second example shows how to use the TRACE instruction in the program
execution mode and how to turn the trace process off and on within the program to
cut down on the number of line numbers displayed. The program also uses the PRINT
instruction as a debugging tool to help the programmer know which part of the
program is being executed.

1000 REM TRACE SAMPLE2
1010 HOME
1020 REM MAIN ROUTINE
1030 PRINT "START OF OUTER LOOP"
1040 FOR Nl = 1 TO 5
1050 PRINT "START OF INNER LOOP"
1060 FOR N2 = 1 TO 5
1070 TRACE
1080 REM INNER FOR/NEXT INSTRUCTION
1090 NOTRACE
1100 NEXT

218 / Applesoft BASIC Toolbox

1110 PRINT "END OF INNER LOOP"
1120 NEXT
1130 PRINT "END OF OUTER LOOP"
1140 END

Exercise 2: TRACE and NOTRACE in Program Execution Mode

Study the code and run the program by entering

RUN TRACE SAMPLE2

The following screen image will be displayed:

START OF OUTER LOOP
START OF INNER LOOP
#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP
#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP
#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP
#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP
#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
END OF OUTER LOOP

1070-1090 The TRACE and NOTRACE instructions are used in the innermost loop in order to
limit the number of statement numbers displayed. Whenever you have a problem
following what is happening in a block of code, use the TRACE and NOTRACE
instructions to display the statements which are executed. Use the PRINT instruction
to display routine names or values within specific variables.

27. The PEEK Instruction

Instruction variable = PEEK (address)

Example PRINT "ERROR CODE = ";PEEK (219) * 256 + PEEK (218)

Prints the error number related to an ONERR condition.

FOR N1 = 0 TO 50: N2 = PEEK (- 16336): NEXT

Causes a short noise from the APPLE's speaker.

Purpose The PEEK instruction is used to retrieve the contents of a byte of memory. The
instruction returns a decimal number equal to the value stored at the specified address
or flips a memory address switch.

Rules for Use 1. The variable or expression following the keyword PEEK must be in parentheses
and must be an address within the limits of the computer being used.

Illustration
of the Rules

2. Many of the addresses used in the PEEK and POKE instructions act as program
switches . If the memory address is designated as a switch, either PEEKing or
POKEing the address has the same effect of flipping the switch. Normally the
shorter POKE instruction is used.

1000 REM NOISE ERROR ROUTINE
1010 HOME
1020 PRINT "ENTER A NUMBER BETWEEN 100 AND 1000"
1030 INPUT II = ";NUMBER
1040 IF NUMBER < 100 OR NUMBER > 1000 THEN 1000
1050 GOSUB 1090: REM MAKE NOISE
1060 END
1070 REM ~--------------------
1080 REM NOISE SUBROUTINE
1090 FOR Nl = 0 TO NUMBER : N2 =PEEK (- 16336): NEXT RETURN
1100 REM ----------------------

Note: For another method see the CALL - 1052 instruction.

219

220 / Applesoft BASIC Toolbox

1070-1100 Line 1090 makes up the entire NOISE SUBROUTINE. The length of the noise is
dependent on the value of NUMBER. If you use this instruction, you can substitute
a numeric constant for NUMBER and simplify the operation.

PEEK (36)

PEEK (37)

PEEK (219) * 256
+PEEK (218)

PEEK (222)

PEEK (-16336)

1090 FOR N1 = 0 TO 100: X = PEEK (-16336): NEXT

To get some idea of the noise and how long a FOR/NEXT loop you like, run
the program and enter a variety of numbers from 100 to 1000. Enter:

RUN NOISE ERROR ROUTINE
100
RUN
500
RUN
1000

Some Useful PEEK Addresses

Some of the useful PEEK addresses are given below. For a more detailed listing of
addresses to PEEK see the APPLE programming reference manual.

The memory address is used to store the current horizontal position of the cursor.
The value ranges from 0 for the leftmost column to 39 for the rightmost column.

The memory address is used to store the current vertical position of the cursor. The
value ranges from 0 for the first line to 23 for the bottom line.

The memory locations 219 and 218 are used to store the line number of the statement
which caused an error condition to occur.

The memory address which contains the decimal number representing the type of
error that occurred. A list of these numbers and the matching error message is
included under the description of the ONERR GOTO instruction (see ONERR, p.
225).

This causes the speaker to produce a short click. For the click to be noticeable, the
PEEK must be used in a FOR/NEXT loop and repeated several times (see CALL
-1052, p. 242).

28. The POKE Instruction

Instruction POKE address,number

Example 1000 REM RESET SCREEN SIZE
1010 HOME
1020 POKE 33,20: REM SETS THE WIDTH OF LINE TO 20 CHARACTERS
1030 POKE 32,10: REM SETS LEFT MARGIN TO START IN COLUMN 10
1040 POKE 34,4: REM SETS THE TOP MARGIN TO LINE 5
1050 POKE 35,20: REM SETS THE BOTIOM MARGIN TO LINE 20

The five instructions clear the screen and reset the size of the screen to a 20 character
by 20 row format centered in the middle of the display unit. The instructions must
be executed in program mode or else the outside margins are not clear.

Purpose The POKE instruction is used to place a numeric value in a byte of memory or to
flip a switch at a specific memory address.

Rules for Use 1. The variable or expression following the keyword POKE must consist of a
machine address within the range of the computer and must be followed by a
variable name or constant. The value of the variable name or numeric constant
must be between 0 and 255 .

Illustration
of the Rules

2. Many of the addresses used in the PEEK and POKE instructions act as program
switches. If the memory address is designated as a switch, either PEEKing or
POKEing the address has the same effect of flipping the switch. Normally the
shorter POKE instruction is used .

Exercise 1: Changing the Text Window

The first exercise modifies the text window, showing you how the POKE instruction
works . The second exercise resets the window back to the normal mode.

Enter the following instructions and then run the program:

221

222 I Applesoft BASIC Toolbox

NEW
1000 HOME
1010 POKE 33,20
1020 POKE 32, 10
1030 POKE 34,4
1040 POKE 35. 20
RUN

Sets the width of the line to 20 characters
Sets the left margin to start in column 10
Sets the top margin to line 5
Sets the bottom margin to line 20

After the program has been run, enter the following single line program in the
immediate execution mode:

FOR N1 = 1TO200: PRINT N1;: NEXT

The middle of the screen will fill with the numbers from 1 to 200. As the twentieth
line is filled, the text window will scroll up for each new line displayed.

Exercise 2: Resetting the Text Window

The easy way to reset the text window is to press CONTROL-RESET or enter the
TEXT command. The long way to reset the text is to rePOKE each memory address
with the correct value as follows:

Longway:

HOME
POKE 32,0
POKE 33,40
POKE 34,0
POKE 35,23
HOME

Short way:

TEXT

Optional
Sets the left margin to start in column O
Sets the width of the line to 40 characters
Sets the top margin to line O
Sets the bottom margin to line 23

After resetting the window, enter the same command as used earlier and test
the new setting of the text window.

FOR N1 = 1TO200: PRINT N1;: NEXT

The POKE Instruction I 223

Some Useful POKE Addresses

There are a large number of addresses which can be used with the POKE instruction
when working with high resolution graphics or machine language.

For a more detailed listing of addresses used with the POKE instruction, see
the APPLE programming reference manual.

POKE 32,number Memory location 32 contains a number from 0 to 39 indicating the starting column
(leftmost column) to be used when displaying information on the screen. The left
margin of the screen can be changed by POKEing a new value into memory location
32. Before the screen format is changed, the HOME command should be used to
clear the screen or garbage may be left in the margins.

The left margin does not change until the cursor is repositioned to a new line.
Also, the instruction does not change the width of the screen, which is controlled
by memory location 33. When changing the size of the screen, either run a small
program or use a single line of code in immediate execution mode as follows:

HOME : POKE 32,number: POKE 33,number : POKE 34,number : POKE 35,number
:HOME

The instructions: clear the screen, reset the screen size, and reposition the cursor to
the new location. The instructions must be executed as one line of code. If you
execute each instruction individually, garbage will be left on the screen.

POKE 33,number Memory location 33 contains a number from 1 to 40 indicating the length of the
lines to be displayed on the screen. A value of 0 cancels Applesoft.

For printing Applesoft programs, POKE 33,33 causes the third tab field to be
ignored and can be used when making hard copies of Applesoft programs to print
a full 80 columns.

To print a full 80 columns, enter

HOME
POKE 33,33
PR#1
LIST

POKE 40,33

Optional
After the listing is done enter

For editing Applesoft statements, POKE 33,33 causes the automatic formatting
feature to eliminate extra spaces which are normally generated. Whenever you are
using the edit keys to make changes to either remarks or lines containing string
constants, the POKE instruction helps simplify the editing process.

224 / Applesoft BASIC Toolbox

POKE 33,33
LIST statement to be changed
... Make changes
POKE 33,40

POKE 34,number Memory location 34 contains a value from 0 to 23 indicating the starting line on
the screen to be used as the top margin. Needless to say, the top margin should not
be set below the bottom margin.

POKE 35,number Memory location 35 contains a value from 0 to 23 indicating the ending line on the
screen to be used as the bottom margin. The bottom margin should not be set higher
than the top margin.

29. The ONERR GOTO
Instruction

Instruction ONERR GOTO statement number

Example 1000 REM BEGINNING ROUTINE
1010 ONERR GOTO 3000

3000 REM ERROR ROUTINE

Purpose The ONERR instruction allows the programmer to intercept an error situation and
handle the recovery process within the program. By coding a special error routine,
the programmer may terminate the program in an orderly fashion, give the operator
special instructions, or restart the program.

Rules for Use 1. If an error occurs prior to execution of an ONERR GOTO instruction, the
program displays the statement number in error and the related error message.
Once an ONERR GOTO instruction has been executed and an error occurs, the
computer branches to the instruction indicated by the statement number follow­
ing the keyword GOTO.

2. Any number of ON ERR GOTO instructions may be used in a program, but only
the statement number associated with the last ONERR instruction is kept.

ONERR GOTO 2000
If an error occurs, logic flow branches to
statement 2000

ONERR GOTO 3000
Execution of a second ONERR statement changes
the code so that if an error occurs, logic flow
branches to statement 3000

3. When an error occurs, the pointers associated with the FOR/NEXT instruction
and the stacks associated with the GOSUB instruction are cleared (destroyed).

4. Some of the related memory addresses are the following:
222 Contains a decimal number between 0 and 255 indicating the type of

error which occurred (see program listing).
216 Bit 7 of memory address 216 acts as a switch, indicating whether or not

225

22& / Applesoft BASIC Toolbox

an ONERR instruction has been encountered. If you wish to turn off an
ONERR instruction, execute the instruction POKE 216,0.

218 and 219 Memory addresses 218 and 219 contain the line number on
which the error occurred.

The error subroutine shown in the following program provides a check for all
the Applesoft errors. The program does not check for the DOS errors. See the DOS
manual for DOS error values. There is really no advantage to using the subroutine
unless you wish to change the wording of the error messages or wish to display
some special instructions to the operator.

1000 REM ONERR SAMPLE!
1010. ONERR GOTO 1040
1020 HOME
1030 A = X$: REM CAUSES MISMATCH ERROR
1040 REM
1050 ONERR SUBROUTINE
1060 VTAB 21: HTAB 1: CALL - 958
1070 El = PEEK (222)
1080 E2 = PEEK (219) * 256 + PEEK (218)
1090 PRINT "LINE="E2" ERROR="El
llOO IF El= 0 THEN PRINT "NEXT WITHOUT FOR": GOTO 1290
lllO IF El = 16 THEN PRINT "SYNTAX ERROR": GOTO 1290
ll20 IF El = 22 THEN PRINT "RETURN WITHOUT GOSUB": GOTO 1290
ll30 IF El = 42 THEN PRINT "OUT OF DATA": GOTO 1290
ll40 IF El = 53 THEN PRINT "ILLEGAL QUANTITY": GOTO 1290
ll50 IF El = 69 THEN PRINT "OVERFLOW ERROR": GOTO 1290
ll60 IF El = 77 THEN PRINT "OUT OF MEMORY": GOTO 1290
ll70 IF El= 90 THEN PRINT "UNDEFINED STATEMENT": GOTO 1290
ll80 IF El= 107 THEN PRINT "BAD SUBSCRIPT": GOTO 1290
ll90 IF El= 120 THEN PRINT "REDIMENSIONED ARRAY": GOTO 1290
1200 IF El = 133 THEN PRINT "DIVISION BY ZERO": GOTO 1290
1210 IF El = 163 THEN PRINT "TYPE MISMATCH": GOTO 1290
1220 IF El= 176 THEN PRINT "STRING TOO LONG": GOTO 1290
1230 IF El = 191 THEN PRINT "FORMULA TOO COMPLEX": GOTO 1290
1240 IF El = 224 THEN PRINT "UNDEFINED FUNCTION": GOTO 1290
1250 IF El = 254 THEN PRINT "BAD RESPONSE TO AN INPUT

STATEMENT": GOTO 1290
1260 IF El = 255 THEN PRINT "CONTROL-C INTERRUPT ATTEMPTED":

GOTO 1290
1270 PRINT "UNDETERMINED ERROR"
1280 REM----
1290 REM INCLUDE SPECIAL INSTRUCTIONS TO OPERATOR?
1300 END

The only lines which may need explaining are those using the PEEK instruction.

1070 E1 = PEEK (222)
1080 E2 = PEEK (219) * 256 + PEEK (218)
1090 PRINT "LINE="E2" ERROR="E1

The ONERR GOTO Instruction / 227

The first PEEK instruction sets E1 equal to the error number stored in memory
location 222. The second PEEK instruction sets E2 equal to the line number which
caused the error. Since the APPLE stores the numbers in reverse format and using
the hexadecimal numbering system, the instruction may look a little complicated.
Just use the instruction as shown, and it will give you the line number of the statement
in error.

Note: After an error occurs, you can continue execution of the program at the
start of the instruction which caused the error by using the RESUME instruc­
tion. In actual practice the RESUME instruction is not used since the GOSUB
stacks and FOR/NEXT pointers are destroyed whenever an error occurs (see
Rule 3).

2000 ONERR GOTO 3000

3000 REM HANDLE THE ERROR SITUATION

3100 RESUME

30. The STOP/CONTinue
Instructions

228

Instruction Program Execution Mode: 1000 STOP
Immediate Execution Mode: CONT

Purpose By allowing the use of the CONTinue instruction with the END or STOP instructions,
Applesoft provides the programmer with a way to pause while the operator reads
messages on the screen.

Note: For all the programs in this book the GET instruction is used in place of
the CONT instruction to cause the programs to pause for a response from the
operator. Since the STOP and CONT instructions result in messages being
displayed they cannot be used with formal screen designs.

Rules for Use 1.
2.

The CONTinue instruction can only be used in the immediate execution mode.
The CONTinue instruction can be used when the program has been halted either
by the STOP instruction, by the END instruction, or by the operator's pressing
CONTROL-C. Note that the CONT instruction does not work if the operator
presses CONTROL-C in response to an INPUT instruction.

Illustration
of the Rules

3. Once the program pauses in response to either the STOP, the END, or the
CONTROL-C, the CONT command must be the next entry entered or the con­
tinuation process most likely will not work.

One program will be used to illustrate all the rules related to using the CONTinue
instruction. Most of the program consists of print instructions to indicate what to
do at each step. Look at how the STOP and END instructions are used on lines 1030
and 1060.

1000 REM CONT SAMPLEl
1010 HOME: SPEED= 150
1020 PRINT "l. TYPE IN 'CONT' TO CONTINUE"
1030 STOP: PRINT
1040 PRINT "VERY GOOD": PRINT: PRINT
1050 PRINT "2. TYPE IN 'CONT' TO CONTINUE"
1060 END: PRINT
1070 PRINT "VERY GOOD": PRINT: PRINT
1080 PRINT "3. PRESS CONTROL-C WHILE NUMBERS ARE"
1090 PRINT " BEING DISPLAYED. TYPE IN 'CONT 111

llOO PRINT " TO TRY TO CONTINUE AFTER CONTROL-C."

The STOP/CONTinue Instructions I 229

1110 FOR Nl = 1 TO 100: PRINT Nl;: NEXT: PRINT
1120 PRINT "VERY GOOD": PRINT: PRINT
1130 PRINT "4. TYPE IN 'CONT' TO TRY TO CONTINUE"
1140 PRINT" AFTER ERROR MESSAGE IS DISPLAYED."
1150 SPEED = 255
1160 FOR Nl = 1 TO 999999: Nl% = 2 * (Nl% + 1): NEXT
1170 REM PROGRAM ENDS IN AN ERROR

Run the program by entering

RUN CONT SAMPLE1

After the program has displayed the first message and paused, go through
Exercises 1 through 5 to see how the CONTinue instruction works in various situations.

Exercise 1: CONTinuing in Response to the STOP Instruction

Lines 1020 through 1040 relate to the first exercise.

1020 PRINT "1. TYPE IN 'CONT' TO CONTINUE"
1030 STOP: PRINT
1040 PRINT "VERY GOOD": PRINT: PRINT

After the message on line 1020 is displayed, type in CONT and press RETURN.
The PRINT instruction on line 1030 causes a blank line to be displayed followed by
the VERY GOOD message and two additional blank lines. The PRINT instruction on
line 1030 is important for you to note. The instruction is the second statement on
line 1030 and is executed after you key in the CONT instruction. This is an important
point. The CONT instruction picks up with the next instruction immediately follow­
ing the STOP.

The lines on the screen related to this exercise will appear as

1. TYPE IN 'CONT' TO CONTINUE
BREAK IN 1030
CONT

VERY GOOD

Exercise 2: CONTinuing in Response to the END Instruction

Lines 1050 through 1070 relate to the second exercise.

230 / Applesoft BASIC Toolbox

1050 PRINT "2 TYPE IN 'CONT' TO CONTINUE"
1060 END: PRINT
1070 PRINT "VERY GOOD": PRINT: PRINT

After the message on line 1050 is displayed, type in CONT and press RETURN.
The END instruction does not cause a break message to be displayed. The program
simply ends with a blinking cursor on the screen.

The lines on the screen related to this exercise will appear as

2. TYPE IN 'CONT' TO CONTINUE
CONT
VERY GOOD

The difference between the STOP and END instruction is that the STOP prints
a message while the END does not.

Exercise 3: CONTinuing in Response to a CONTROL-C Termination

Lines 1080 through 1120 relate to the third exercise.

1080 PRINT "3. PRESS CONTROL-C WHILE NUMBERS ARE"
1090 PRINT" BEING DISPLAYED. TYPE IN 'CONT"'
1100 PRINT "TO TRY TO CONTINUE AFTER CONTROL-C"
1110 FOR N1 = 1 TO 100: PRINT N1;: NEXT: PRINT
1120 PRINT "VERY GOOD": PRINT: PRINT

In order to provide you with time to press the CONTROL-C, line 1110 displays
the numbers from 1 to 100 at a SPEED of 150. While the numbers are being dis­
played, press CONTROL-C to cancel the program. Without entering anything else,
enter CONT to continue the program. The program will start up right where it left
off in the middle of the FOR/NEXT loop.

When you pressed CONTROL-C.

1. The current statement was canceled.
2. You entered CONTinue.
3. The program restarted right where you interrupted it.

The STOP/CONTinue Instructions / 231

The lines on the screen related to this exercise will appear as

3. PRESS CONTROL-C WHILE NUMBERS ARE
BEING DISPLAYED. TYPE IN 'CONT'
TO TRY TO CONTINUE AFTER CONTROL-C.

12345678910111213141516 ... Depends on where you interrupted program
BREAK IN 1110
CONT
2526272829303132333435 ... Depends on where you interrupted program
VERY GOOD

Exercise 4: Trying to Continue in Response to an Error Message

Lines 1130 through 1170 relate to the fourth exercise.

1130 PRINT "4. TYPE IN 'CONT' TO TRY TO CONTINUE"
1140 LPRINT "AFTER ERROR MESSAGE IS DISPLAYED."
1150 SPEED = 255
1160 FOR N1 = 1TO999999: N1% = 2 * (N1% + 1): NEXT
1170 REM PROGRAM ENDS IN AN ERROR

Line 1160 results in an error message, since the equation results in a value too
large to be stored in the integer field N1%. In response to the error message, type
in CONT and press RETURN. After you enter CONTinue, a second error message
will be displayed, indicating that the program cannot continue. The lines on the
screen related to this exercise will appear as

4. TYPE IN 'CONT' TO TRY TO CONTINUE
AFTER ERROR MESSAGE IS DISPLAYED.

?ILLEGAL QUANTITY ERROR IN 1160
CONT
?CAN'T CONTINUE ERROR

Exercise 5: 'frying to Continue After Something Other Than CONT Has Been
Entered Following a Program Pause

Run the program again, but this time in response to the first message, enter a new
statement and then enter the word CONT as follows:

232 / Applesoft BASIC Toolbox

1000 REMNEW STATEMENT
CONT

When you entered the new statement, you voided the program's ability to con­
tinue. Any attempt to continue after program modification or cancellation of an
INPUT instruction results in the CAN'T CONTINUE ERROR.

The lines on the screen related to this exercise will appear as

1. TYPE IN 'CONT' TO CONTINUE
1000 REMNEW STATEMENT
CONT

?CAN'T CONTINUE ERROR

31. The FRE (O) Instruction

Instruction variable = FRE (0)

Example N1 = FRE (0)

Purpose The FREe instruction is used to condense memory by eliminating unused areas of
string memory. The instruction also returns the amount of free memory available
after storage is condensed.

If a program uses a large number of strings variables, Applesoft automatically
reorganizes memory when there is no longer any free space available for assigning
new values.

The length of time the machine takes to condense string memory depends on
the number of string variables used and whether or not large tables have been used
(DIM instruction).

By using the FRE instruction, the programmer can control the time and position
within the program when memory is condensed.

Rules for Use 1. The FRE instruction must be specified in an equation format

X = FRE (O)

The variable to the left of the equal sign is set equal to the number of free bytes
left after storage is condensed.

2. The value following the keyword FRE is required and must be in parentheses.
Although the value of the parameter is ignored, it must be included and must
be either an equation or a constant which can be interpreted by Applesoft. To
save time and effort, code the instruction as FRE (0).

3. If your program uses high resolution graphics, you must use the FRE command
to ensure that the high resolution pages are not destroyed.

Three examples are used to help illustrate the FRE instruction and show how
string memory is used. The first example shows how strings are stored in memory
before and after execution of the FRE instruction. The second example uses a sub­
routine which determines when the FRE instruction should be executed. The third
example illustrates the difference between freeing memory when no DIMension

233

234 / Applesoft BASIC Toolbox

entries are used (DIM 0 entries), when a small table is used (DIM 100 entries), and
when a large table is used (DIM 500 entries).

For more information on how the APPLE uses memory, see the APPLE pro­
gramming reference manual.

Before getting started with the first example, let's review how the machine
associates values with variable names.

Each variable name has an associated address which points to the area of
memory where the related data is stored.

Type of Variable
Real number

Integer Number

String Variable

Name Address
N1 2000

N1% 2100

NAME$ 10000

Address remains constant; value in mem­
ory location changes
Address remains constant; value in mem­
ory location changes
Value of address changes to reflect loca­
tion of new string

For numeric variables, the area of memory remains constant, and the value
within the memory area is changed as calculations are done.

For string variables, the address associated with the name changes each time
the value of the string is changed.

Example 1: FREeing Memory

The first program fills up approximately 30 bytes of memory, displays how the 30
bytes look before using the FRE instruction, frees string memory, and then redisplays
the 30 bytes.

The objective of the program is to show you how the machine allocates string
memory and what happens after you use the FRE instruction.

1000 REM FRE SAMPLE!
1010 REM
1020 HOME
1030 FOR Nl = 1 TO 20:Xl$ = STR$ (Nl):NEXT
1040 LOW = PEEK (112) * 256 + PEEK (111)
1050 HIGH = PEEK (116) * 256 + PEEK (115) - 1
1060 PRINT " LOW = "LOW" HIGH = "HIGH
1070 FOR Nl =LOW TO HIGH: PRINT CHR$ (PEEK (Nl));: NEXT
1080 PRINT : PRINT : PRINT
1090 Nl = FRE (O)
llOO Xl$ = "CONSTANT"
lllO PRINT "OLD LOW = "LOW" HIGH = "HIGH

The FRE IOI Instruction I 235

1120 FOR Nl =LOW TO HIGH: PRINT CHR$ (PEEK (Nl));: NEXT
1130 LOW = PEEK (112) * 256 + PEEK (111)
1140 PRINT : PRINT : PRINT "NEW LOW = "LOW
1150 END

Look over the code before running the program. After you run the program,
the screen should appear as follows. The memory addresses vary depending on the
memory size of the machine and the software being used.

LOW = 34754 HIGH = 34784
2019181716151413121110987654321

OLD LOW = 34754 HIGH = 34784
2019181716151413121110987654420

NEW LOW = 34783

1030 Line 1030 generates 20 string values ranging from 1 to 20. As the numeric value of
N1 changes so does the string value of X1$. But while N1 is stored in a fixed area
of memory, the string X1$ continues to be reassigned new areas of memory each
time it changes. At the end of the FOR/NEXT loop, X1$ is equal to 20. All the
previous string values are garbage, taking up memory.

LOW = 34754 HIGH = 34784
2019181716151413121110987654321

C-garbage strings ------

current value of Xl$

Take time to study the way the machine stores each string. First a string value
of 1 is stored in memory location 34784. Next a string value of2 is stored in memory
location 34783. Each new string value is stored in a lower and lower memory
address. Remember, the machine uses string memory starting at the high addresses
and working down. Finally a value of 20 is placed in memory addresses 34754 and
34755.

1040 Line 1040 finds the low address of string memory (address where last string value
was stored). This value changes each time a string is placed into memory. Since the

236 / Applesoft BASIC Toolbox

instruction is executed after the FOR/NEXT loop, the address points to the last string
placed into memory (the '20').

Tu find the starting location of string memory, use the PEEK instruction along
with memory locations 112 and 111.

Remember, the APPLE stores numbers in a format that appears backward to
us. In order to convert the hexadecimal number to base 10, the high address (most
significant digit) is multiplied by 256 and added to the value in the low address (least
significant digit).

1050 The high end of string memory starts 1 byte below the HIMEM (High MEMory) area
of the machine. The high memory address varies with the size of the computer and
the type of programs being run, but the value can be retrieved by PEEKing into
memory locations 115 and 116.

In order to convert the hexadecimal number to base 10, the most significant
digit is multiplied by 256 and added to the least significant digit. Then l is subtracted
from the value in order to show the address of the last (highest) byte of string
storage.

1060-1080 Lines 1060 through 1080 display the contents of each memory location starting at
the lowest memory location and working upward to the highest memory location.
The PEEK instruction is used to retrieve the binary value in each memory location,
while the CHR$ function is used to convert the binary number to printable character
format.

1090 Only the last two characters of the approximately 30 memory locations used reflect
the current value of X1$. The FRE instruction condenses string memory by moving
the active string values into high memory, changing the pointers associated with
each string, and finally changing the address in location 112 and 111 to reflect the
new start of string memory.

1100 Line 1100 is included in the program to point out how the APPLE works with
constants and equal string values. If you study the program and screen closely, you
will see that even though X1$ is set equal to the string CONSTANT, the value does
not appear in the printout of string memory. To conserve memory space, the address
associated with X1$ is set equal to the address of the constant within the Applesoft
program.

1100 X1$ ="CONSTANT": Y1$ = X1$: Z1$ = X1$

X1$ pointer 1
Y1$ pointer
Z1$ pointer

The FRE IOI Instruction I 237

The last part of the line is included to illustrate what happens whenever a string
variable is set equal to another variable. When a string is set equal to another
variable, only the string's pointer is changed. The value is not duplicated in string
memory. Assuming that CONSTANT starts in memory location 2000, all three
variables will point to memory location 2000 after execution of line 1100.

Variable
X1$
Y1$
Z1$

Address in
Pointer
2000
2000
2000

So, whenever you assign a string name to a constant or assign several string
names to the same value, no additional memory is used.

1110-1140 Lines 1110 through 1140 show the content of memory after the FRE instruction has
been used. At the time the FRE instruction was executed, X1$ was equal to 20. Since
the 20 was the only active string value in memory, it was moved to the highest string
address. After condensing memory, the machine reset the address in locations 112
and 111 to reflect the starting address of string memory.

OLD LOW = 34754 HIGH = 34784
2019181716151413121110987654420

t
NEW LOW = 34783-----

The 4 preceding the 2 is not a typing mistake. If you play around with the FRE
instruction, you will find that the character preceding the next available string address
is always duplicated.

OLD LOW = 34754 HIGH = 34784
2019181716151413121110987654420

Next available string
address should have
remained a 3------~
but changed to character in preceding byte
(only the APPLE knows why)

Exercise 2:

The second example shows how to use the FREE MEMORY SUBROUTINE and
emphasizes once more how string memory is allocated.

238 / Applesoft BASIC Toolbox

The program creates an endless loop consisting of two operations. The first
part of the loop assigns a string value to a variable. The second part of the loop
executes the FREE MEMORY SUBROUTINE to see if there is still room to continue
the program. If there is plenty of memory available, the loop continues. If the start
of string storage falls below 16384 (end of high resolution page 1), then the FRE
MEMORY SUBROUTINE displays a message to the operator and executes the FRE
instruction.

Malre sure to let the program keep running until it pauses and displays a mes­
sage. For the system I am using, the loop is executed 483 times. After the program
frees memory and you respond by pressing the space bar, the program starts the
endless loop again. To cancel the program, press CONTROL-C.

Key in and run the following program, or run the program by entering

RUN FRE SAMPLE2.

1000 REM FRE SAMPLE2
1010 REM
1020 HOME
1030 FILLER$ = II •••••••••••••••••••• II

1040 ADDRESS = PEEK (112) * 256 + (111)
1050 VTAB 10: HTAB 10
1060 PRINT "FROM "ADDRESS" TO "ADDRESS + 20" II

1070 VTAB 11: HTAB 10
1080 PRINT II II

1090 VTAB 12: HTAB 10
1100 STRING$= RIGHT$ (FILLER$+ STR$ (NUMBER),20)
1110 PRINT STRING$
1120 GOSUB 1160: REM CHECK AMOUNT OF MEMORY LEFT
1130 NUMBER = NUMBER + 1
1140 GOTO 1040
1150 REM ----
1160 REM FREE MEMORY ROUTINE
1170 STARTING= PEEK (112) * 256 +PEEK (111): IF STARTING>
16384 THEN 1240
1180 VTAB 23: HTAB 1: INVERSE
1190 PRINT " FREEING MEMORY - PLEASE WAIT" TAB(38)" "
1200 STARTING = FRE (0)
1210 PRINT" DONE - PRESS SPACE BAR TO CONTINUE ";:NORMAL
1220 GET Xl$: IF Xl$ < > II II THEN 1220
1230 VTAB 23: HTAB 1: PRINT TAB(39)" ": PRINT TAB(39)" 11 •

1240 RETURN
1250 REM-------------

The FRE (0) Instruction I 239

Each time the variable STRING$ is assigned a new value, the memory addresses
used are displayed along with the string value. The program produces a screen like
the following.

FROM 34785 TO 34805

................... 0

Press CONTROL-S to stop the program periodically so you can see the memory
addresses being displayed. Start the program back up by pressing any key.

You should use the FREE MEMORY SUBROUTINE in any program which does
a large amount of string processing. The subroutine has the following advantages:

1. It does not free memory until the space is needed.
2. While it is freeing memory, it lets the operator know what is going on.

To use the subroutine, simply include it in your program and use a GOSUB to
branch to the first line.

Example 3:

The last FRE example shows how slow the machine is when freeing memory if large
dimension entries are used.

Look over the following code and then run the program to get an idea of the
time difference between freeing memory when no table entries are used (less than
1 second), when 100 table entries are used (around 3 seconds), and when 500 table
entries are used (around 20 seconds).

1000 REM FRE SAMPLE3
1010 REM---------------
1020 DIM TABLE$(500)
1030 HOME
1040 N = 0: GOSUB 1090
1050 N = 100: GOSUB 1200: GOSUB 1090
1060 N = 500: GOSUB 1200: GOSUB 1090
1070 END
1080 REM
1090 REM DISPLAY MESSAGE
1100 PRINT "FREE WITH "N" TABLE ENTRIES"
1110 PRINT
1120 PRINT "PRESS ANY KEY TO START FRE OPERATION";
1130 GET Xl$
1140 N = FRE (O)

240 / Applesoft BASIC Toolbox

1150 FRINT : PRINT
1160 PRINT "FRE DONE - PRESS ANY KEY TO CONTINUE";
1170 GET Xl$
1180 RETURN
1190 REM ----------------
1200 REM LOAD ROUTINE
1210 HOME
1220 PRINT "LOADING "N" ENTRIES"
1230 PRINT
1240 FOR M = 1 TO N
1250 TABLE$(M) = STR$(N)
1260 NEXT
1270 RETURN
1280 REM--------------

For two dimensional entries TABLE$(100, 100), the FAE operation can take
several minutes. Some examples I have worked with take over 5 minutes to condense
memory. That is why it is important to let the operator know what is going on and
approximately how long it will take.

32. Instructions Relating to
Machine Language
Routines
Four instructions are described in this section: CALL, USR(variable), LOMEM, and
HIMEM. The instructions are normally used when working with either machine
language subroutines or high-resolution shape tables. Since this book does not cover
either of these two topics, only a brief description of the four instructions is given.

Check with the APPLE programming reference manual for further details about
how to use the instructions and the memory allocation used by the computer.

The CALL Instruction

Instruction CALL address

1000 CALL -868

1000 CALL -912

The CALL instruction is used to execute a machine language subroutine. The
address following the keyword CALL indicates the starting location of the machine
subroutine.

There are a number of prewritten machine language subroutines which are
available to the Applesoft user. If you intend to use your Applesoft programs on
other than an APPLE II computer, do not get into the habit of using the machine
language subroutines. The machine language subroutines make your program much
more computer dependent than it already is.

Descriptions of the various machine language subroutines are provided in var­
ious locations of the APPLE II manuals. Some of the more useful routines are shown
below with their calling addresses.

In the following descriptions, the term text window is used. The text window
means the same as the full viewing screen unless you have changed the text window
by poking new values into memory locations 32, 33, 34, or 35. If you have modified
the screen settings, the following instructions relate to the smaller screen.

The instruction clears from the current position of the cursor to the end of the line.

The instruction causes data currently displayed in the text window to scroll up one
line.

241

242 / Applesoft BASIC Toolbox

1000 CALL - 922 The instruction issues a line feed, thereby causing the cursor to move one line down
(cursor remains in the same column but one line down).

1000 CALL - 926 The instruction causes a line feed and repositions the cursor to the leftmost position
of the next line.

1000 CALL -936 The instruction clears the text window and repositions the cursor to the HOME
position. The instruction is the same as the HOME instruction. Since the
HOME instruction is easier to read than the CALL instruction, you should use
the HOME instruction.

1000 CALL - 958 The instruction clears the text window from the current cursor position to the bottom
right character of the text window. The clearing operation clears to a dark background
even if the computer is in INVERSE or FLASH mode.

1000 CALL - 998 The instruction causes the cursor to move up one line without changing the horizontal
position.

1000 CALL-1008 This causes the cursor to back up one position. It is the same as the instruction
PRINT CHR$(08)

1000 CALL -1052 The instruction beeps the speaker for 1/10 of a second. When it is used with a FOR/
NEXT loop and a multiple of 10, you can set the number of seconds you want the
speaker to beep.

The USR(variable) Instruction

Instruction USR(variable)
The USR (USeR subroutine) instruction is much like the CALL instruction but

allows the Applesoft program to pass an argument (number) to the user written
machine langauge subroutine. No further explanation will be given. If you are
advanced enough to use this instruction, you don't need an explanation.

Instructions Relating to Machine Language Routines I 243

The LOMEM Instruction

Instruction LOMEM: variable or expression
The low memory instruction is used to reset the lowest memory location in

RAM (Random Access Memory) which will be available to the Applesoft program.

The computer uses various parts of memory for different purposes. The com­
puter automatically protects the lower area of the storage by setting the value of low
memory when the computer is started. The computer assumes memory between the
low memory location and the high memory location is available for it to use as
needed. If you are using shape tables for high-resolution graphics or if you are using
a machine language subroutine, the operating system does not keep track of these
items for you. You must locate them in either low memory or high memory and
protect them from the operating system by resetting the value of low or high memory.

If you want to see the address for low memory for your computer, type in the
following instructions:

NEW
PRINT "LOMEM = "; PEEK (106) * 256 + PEEK (105)

The instruction NEW destroys any program and resets low memory down to
the original value designated by the system.

The address of low memory is in storage locations 105 and 106. Location 106
contains the most significant digits of the address, and location 105 contains the
least significant digits. To convert the hexadecimal number to base 10, the computer
multiplies the first digit by 256 and adds this to the second.

The HIMEM Instruction

Instruction HIMEM: variable or expression
The high memory instruction is used to reset the highest memory location in

RAM which will be available to the Applesoft program.
The upper area of the computer is used for storing the DOS control program

and for 1/0 buffers. After DOS is loaded, it resets high memory in order to protect
itself.

If you want to see the address of high memory for your computer, type in the
following instructions:

NEW
PRINT "HIMEM =";PEEK (116) * 256 + PEEK (115)

33. Other Applesoft
Instructions

244

This section gives a brief description of some of the less used Applesoft instructions,
high-resolution graphics instructions, and low-resolution graphic instructions. For
a detailed description see the related APPLE manuals.

The DEF FN Instruction

Instruction DEF FN function name (real variable) = arithmetic expression

Example Definition:
1100 DEF FN MONTHLYINTEREST (AMT)= RATE* AMT I 12
Usage:
2000 MONTHLYINTEREST = FD MONTHLYINTEREST(AMT)

Purpose The DEFine FuNction instruction allows the programmer to associate a symbolic
name with an arithmetic formula. After the function is defined, the name can be
used thougbout the program in place of the formula without having to recode the
equation.

Rules for Use 1. The function instruction cannot be used to define string functions or integer
functions.

2. The definition of the function may be only one statement long (one equation).
3. The DEF FN instruction must be executed prior to any use of the FN instruction.
4. As with all Applesoft names, only the first two characters of the function name

are recognized and must be unique.
5. Functions may be redefined during execution of the program.

Other Applesoft Instructions I 245

1100 DEF FN INTEREST (W) = INTERESTRATE * W

1200 YEARLYINTEREST = FN INTEREST (AMT)

2100 DEF FN INTEREST (W) = INTERESTRATE *WI 12

2200 MONTHLYINTEREST = FN INTEREST (AMT)

6. The function name may be used in any instruction where an arithmetic expres­
sion is acceptable. Thus

DEF FN AA (X) = X * 12 + (X - 3)
BB= FN AA(4)

results in the equation

BB = 4 * 12 + (4 - 3)
= 49

and

CC = FN AA(2) * FN AA(3)

results in the equation

cc= (2 * 12 + (2 - 3)) * (3 * 12 + (3 - 3))
= (23) * (36) = 828

The DEF FN instruction should be coded whenever a formula is repeatedly used
thoughout a program. The instruction ensures that the formula is repeated correctly
with each use and makes the program easier to code and modify.

The CLEAR Instruction

The CLEAR instruction is used to reset all variables, arrays, and strings to zero or
null values. Pointers and stacks related to the FOR/NEXT and GOSUB instructions
are also reset. The instruction may be used at the end of a program to reset all values
prior to branching back to the first line to reexecute the program.

246 / Applesoft BASIC Toolbox

Example 1000 REMFIRST LINE OF PROGRAM

5000 CLEAR
5010 GOTO 1000
5020 REM CLEAR AND GOTO HAVE THE SAME EFFECT AS
5030 REM ENTERING THE RUN COMMAND.

The TEXT Instruction

The TEXT instruction is used to reset the screen from either low-resolution graphics
mode or high-resolution graphics mode. The instruction sets the text window to the
full-screen format and positions the cursor on the bottom line (line 24). The TEXT
instruction can be used to reset the text window after any of the addresses 32, 33,
34, or 35 have been POKEd with new values.

The POS(O} Instruction

H1 = POS(O)

The POSition instruction returns a number from 0 to 39 indicating the current
horizontal position of the cursor. The value within parentheses is required and must
be interpretable by Applesoft even though it does not change the value returned.

The FP Instruction

FP is used in immediate execution mode to place the APPLE into Applesoft language
mode after the machine has been executing either an Integer BASIC or machine
language program. The use of the instruction varies depending on the options pur­
chased with the APPLE computer. The APPLE II has Integer BASIC residing in

Other Applesoft Instructions I 247

ROM (Read Only Memory). The APPLE II+ and the APPLE Ile has Applesoft
BASIC residing in ROM. Although all three machines can run either language the
version of BASIC which does not reside in ROM must be loaded from a diskette
into program memory (RAM) before use. For specific usage see the user manual
for your APPLE. .

The PR# Instruction

The PR# instruction is followed by a number from 0 to 7. The PR# instruction
specifies that all further PRINT instruction output is to be directed to the slot number
indicated. The statement PR#O means the output will be directed to the standard
data screen. Other than using PR#O, you must know what peripheral cards are in
each slot prior to using the instruction. If you use the instruction with a slot number
which does not contain a device, the computer locks up.

PR#O
PR#1
PR#2-5
PR#6
PR#7

Standard data screen connected to APPLE video jack
Standard slot for printer interface card
User optional interface cards
Standard slot for disk drive control card
User optional interface card

The IN# Instruction

The IN# instruction is followed by a number from 0 to 7. The IN# instruction
specifies that all further INPUT instruction will read data from the specified slot.
IN#O indicates all further data are to be read from the keyboard. IN#6 indicates that
all further data are to be read from the device located in slot 6.

248 / Applesoft BASIC Toolbox

Low-Resolution Graphics Instructions

GR This instruction sets the computer to low-resolution GRaphics mode. Low-resolution
graphics redefines the first 20 lines of the screen into a matrix of 40 by 40 dots. The
last four lines of the screen remain in text mode and act as the text window. Reset
the computer to normal mode by using the TEXT command.

Poking address -16302 converts the screen to full low-resolution graphics
consisting of a 40 by 48 dot matrix.

POKE - 16302,0

COLOR = number Where number ranges from 0 to 15. This sets the color to be used in displaying low­
resolution points. Sixteen colors are available in low-resolution graphics:

0 =Black
1 =Magenta
2 =Dark blue
3 = Purple
4 = Dark green

5 =Gray
6 = Medium blue
7 = Light blue
8 =Brown
9 =Orange

10 = Gray (see 5)
11 = Pink
12 = Green
13 =Yellow
14 =Aqua
15 =White

PLOT x,y The PLOT instruction is used to place a dot at a specific coordinate of position x,y.
The value of x may vary from 0 to 39, while the value of y may vary from 0 to 47.

HLIN x,y,z The HUN (Horizontal LI Ne) instruction is used to draw a line starting with the point
x,z and ending with the point y,z. The third parameter (z) indicates the horizontal
line of the matrix, while the values of x and y indicate the starting and ending
column positions. The value of x and y may range from 0 to 39.

VLIN x,y,z The VLINe (Vertical LINe) instruction is used to draw a line starting with the point
x,z and ending with the point y,z. The third parameter (z) indicates the vertical
column of the matrix, while the values of x and y indicate the starting and ending
line positions. The value of x and y may range from 0 to 47.

SCRN (x,y) The SCReeN command is used to find out the color of a specific spot on the screen.
The values of x and y indicate the coordinates of the position on the screen which
is to be tested. The value returned ranges from 0 to 15, matching the color assign­
ments.

Other Applesoft Instructions I 249

High-Resolution Graphics Instructions

HGR This instruction sets the computer to high-resolution GRaphics mode. High-reso­
lution graphics redefines the first 20 lines of the screen into a matrix of 280 by 160
dots. The last four lines of the screen remain in text mode and act as the text window.
Reset the computer to normal mode by using the TEXT command.

Poking address - 16302 converts the screen to full high-resolution graphics
consisting of a 280 by 192 dot matrix.

POKE -16302,0

HGR2 High-resolution graphics uses two pages in memory. Using HGR2 causes the contents
of the second page located in memory locations 16K to 24K to be displayed.

HCOLOR This instruction sets the color to be used in displaying high-resolution points. Eight
colors are available in high-resolution graphics.

0 = Blackl
1 =Green
2 =Blue

3 = Whitel
4 = Black2
5 = Depends on TV

6 = Depends on TV
7 = White2

The colors of blackl, black2, whitel, and white2 depend on how the colors of the
two corresponding dots within the matrix are set.

HPLOT HPLOT x,y
HPLOTTO x,y
HPLOT a,b TO x,y

The HPLOT instruction has three formats. The first format plots a single dot at
the coordinates of x and y. The second option draws a line starting at the last position
plotted and continuing to the coordinates of x and y. The third option plots a line
starting at coordinates (a,b) and continuing to coordinates (x,y).

Shape Tables Shape tables are drawings made up of binary patterns. The shapes are used in high­
resolution graphics and can be manipulated by five commands. For a detailed expla­
nation of how to build and use shape tables, see the APPLE manuals.

The five instructions used with shape tables are DRAW, XDRAW, ROT (rotate),

250 / Applesoft BASIC Toolbox

SCALE, and SHLOAD. DRAW is used to place a shape on the high-resolution screen.
XDRAW is normally used to erase the shape. ROTate is used to cause movement of
the shape. SCALE is used to enlarge or reduce the size of the drawing. SH LOAD is
used to load a shape table from cassette tape.

Game Controls

POL Function The PaDdLe function returns a numeric value ranging from 0 to 255 indicating the
setting of one of the game paddles.

X = POL (0) Returns the value for paddle 0.
Y = POL (1) Returns the value for paddle 1.

Magnetic Tape

RECALL This instruction is used to recall an array from cassette tape.

STORE This instruction is used to store an array on cassette tape.

Section II Creating and Using Disk
Files

1. Information Storage on
Disks

Disk Terms and Data Organization

1. 'll:acks (35 per disk)
2. Sectors (16 per track with 256 bytes per sector)
3. Directory and VTOC (Volume Table Of Contents)
4. Diskette Directory
5. Files

Track A track is one complete circle consisting of 16 sectors.

Sector A sector is a single recording strip consisting of 256 characters.

Catalog (Diskette
Directory)

The catalog consists of information about the disk and about each file stored on the
disk. The directory contains an entry for all 560 sectors indicating whether the sector
is being used (indicated by a 1 bit) or not used (indicated by a 0 bit). The directory
contains four entries for each file on the disk:

1. The name of the file
2. The type of file (Text, Applesoft BASIC, Integer BASIC, Binary)
3. The number of sectors the file occupies
4. The address of the file's trade/sector list. The trade/sector list consists of infor­

mation on each track and sector used by the file.

VTOC The VTOC is a small part of the directory and, among other things, provides DOS
with information on which sectors of the disk are currently in use.

For each file on the disk, the directory contains the address of the related track/
sector list. The track/sector list in turn gives the address of each sector which contains
data related to the file.

253

254 / Applesoft BASIC Toolbox

SECTOR--------

HOLE FOR READ/WRITE HEADS----

TIMING HOLE--------------

TRACKS 18-34 (FILES)-------------

TRACK 17 (CATALOGNTOC)-----------­

TRACKS 3-16 (FILES)--------------­

TRACKS 0-2 (DOS)-----------------

The file name in the directory points to the track/sector list.
The track/sector list points to the sectors used by the file.
The sectors contain the data making up the file.

WRITE
.. PROTECTION

NOTCH

So each file you define actually consists of two parts: the track/sector list and
the actual data. APPLE designed the file structure in this manner so that the files
can be expanded and all sectors of the disk may be used.

To help you see how the disk operates, let's follow through what occurs when
information is written to a sequential disk file. For each instruction, two explanations

Information Storage on Disk / 255

are given: what happens when an existing file is opened and written to, and what
happens when a new file is opened and written to.

The sequence varies for reading records and working with random files, but
the basic ideas are the same. The following is a general description of what occurs
and is not intended to reflect all the steps or the exact sequence of steps which
actually occur when writing to a sequential file.

1000 0$ = CHR$(4)
1010 PRINT D$;"0PEN FILE NAME"
1020 PRINT D$;"WRITE FILE NAME"
1030 PRINT RECNAME$
1040 PRINT D$;"CLOSE FILE NAME"
1050 END

1000-1010 When DOS encounters the OPEN instruction, it checks the disk directory (also called
catalog) for a matching file name.

1. If the file name currently exists, DOS extracts the location of the track/sector
list from the directory and reuses the area already assigned to the file.

2. If the file does not exist, DOS enters the file name into the directory (catalog)
and searches the VTOC to find an available sector. When an available sector
is found, it is used to start a track/sector list for the file.

1020 The first time the WRITE instruction is encountered, the file buffer is cleared to
binary zeros, and the sector pointers are cleared. The buffer and pointers are cleared
even if the file previously existed and had sectors assigned (the old copy is lost).

There is one exception to this process. If the file exists and is LOCKed, any
attempt to write on the file causes an error message to be displayed and the program
to be canceled.

1. If the file does not exist, DOS clears the buffer and locates an available sector
on the disk.

2. For all executions of the WRITE instruction other than the first, DOS simply
directs any additional PRINT operations to send the data to the output buffer
related to the specified file name.

3. Any data on an existing UNLOCKed file is now lost.
Note: When a file is recreated, DOS does not update the VTOC to free

sectors. When recreating new files with the same file name, it is best to delete
the old file in order to free the space and then create a new file with a new
track/sector list.

1030 When the PRINT instruction is executed, the data is placed in the output buffer. If
all the data fits into the buffer, program execution continues to the next instruction.
If the buffer becomes full during the data transfer operation, that is, if 256 characters
have been sent to the buffer, then the following steps take place:

25& / Applesoft BASIC Toolbox

1. The filled buffer is written to the allocated disk sector as specified in the file's
track/sector list.

2. A new unused sector is located in the VTOC and flagged as being in use (sector
bit set to 1).

3. The address of the new sector is placed in the file's track/sector list.
4. The buffer is cleared, and any remaining data which did not fit during the

PRINT operation is placed at the start of the buffer.

1040 When the CLOSE instruction is encountered, DOS writes out any remaining data
which exists in the output buffer and adds an EOF (End-Of-File) marker. The disk
directory is then updated to indicate the number of sectors assigned to the file.

A Commonly Asked Question

If the outer tracks of the disk are larger than the inner tracks, why do they hold the
same amount of data?

The answer is that since the disk rotates at a constant speed and the computer
writes at a constant speed, the bits recorded in the inner tracks are closer together
than the bits recorded on the outer tracks.

Outer track: 0 1
Middle track: 1 0 1 1 0
Inner track: 10110110

1 0
1 0

1 0

The outer tracks are not recorded to their maximum density because of the
difficulty in developing the necessary control logic and timing hardware to fully
utilize all the recording surface.

2. Introduction to DOS
Disk Instructions

If you purchased the program diskette along with the book, be sure to copy the
sample disk programs to a new disk before attempting to run them. The program
disk does not have sufficient free space for additional files.

Use the APPLE's FID (File Developer) program to copy the programs; or, if
you do not have access to the FID program, you may transfer each program by using
the LOAD and SAVE commands:

LOAD program name,Dnumber
SAVE program name,Dnumber

Remember to INITialize any new disk before trying to use it.
For this chapter, copy the following programs to another disk:

SAMPLE SEQUENTIAL OPEN PROG
SAMPLE RANDOM OPEN PROG
SAMPLE APPEND PROG
SAMPLE SEQUENTIAL WRITE PROG
SAMPLE RANDOM WRITE PROG
SAMPLE SEQUENTIAL READ PROG
SAMPLE RANDOM READ PROG

If you do not have the program disk and are planning to key in the example
programs, you should start off with a new disk. The programs presented in the last
half of the book use the majority of space on one diskette.

There are a few specialized instructions which are used when working with disk
files. Some of these instructions are used in every program which work with disk
files, while others are only used for special situations. The more commonly used
instructions are OPEN, READ, WRITE, and CLOSE. The instructions MON and NOMON

257

258 / Applesoft BASIC Toolbox

are used when debugging programs which work with disk files. The APPEND instruction
is used to add information to the end of a sequential file.

Since the instructions are so closely related, it is difficult to write an example
which does not use several of the instructions at the same time. Before reading the
detailed explanation of each instruction, look over the general descriptions below
to get an idea how each instruction is used.

MON

The MONitor instruction is used to turn ON a debugging option of DOS in which
any 1/0 operations to the disk are displayed on the screen. The MONitor instruction
causes the computer to display on the screen any data read from the disk, data written
to the disk, or any disk instruction being executed.

NOMON

The NOMONitor instruction is used to turn OFF the debugging feature of DOS in
which information is displayed on the screen during disk 110 operations.

OPEN

The OPEN instruction must be executed once prior to any READ or WRITE operations
using the disk.

APPEND

This is a method of opening an existing sequential file that allows records to be
added to the end of the file. When a sequential file is opened with the APPEND
instruction, DOS is set up so that any new records are written starting at the end of
the existing file.

The APPEND instruction is ONLY used in conjunction with the WRITE instruc­
tion to add records to the end of an existing SEQUENTIAL file.

WRITE

This is a preparatory DOS instruction used prior to PRINTing information on the
disk. The instruction is used in conjunction with the Applesoft PRINT instruction.

READ

This is a preparatory DOS instruction used prior to INPUTing information from the
disk. It is used in conjunction with the Applesoft INPUT instruction.

Introduction to DOS Disk Instructions I 259

CLOSE

The CLOSE instruction must be executed once after all processing for a file has been
completed.

ON ERR

This is an Applesoft instruction used to override the normal default option of the
APPLE. When an error is encountered by the computer, the normal process is to
cancel the program and display an error message. When the ONERR instruction is
used, the program intercepts the error process and handles the error without can­
celing the program. The ONERR instruction is used by some programmers when
working with sequential files to test for an EOF (End-Of-File) condition.

The following two instructions are infrequently used, but you should be familiar
with them.

VERIFY

This is an instruction used to check to see if data have been written correctly on the
disk or to see if a file is damaged.

MAXFILES

This is an instruction used to allocate additional buffer space when more than three
files are going to be open at the same time in one program.

Other DOS commands related to disk operations which you should already
know how to use in either immediate execution mode or program execution mode
include the LOCK, UNLOCK, DELETE, and RENAME commands.

These commands were covered in detail in the first part of the book and are
not covered in this part.

LOCK

This locks the file so it cannot be deleted or written over.

UNLOCK

This unlocks the file so it may be deleted or renamed, or records may be written to
the file.

DELETE

This removes the file name (label) from the catalog.

260 / Applesoft BASIC Toolbox

RENAME

This is used to change the name of an existing file.

The MON/NOMON Disk Instructions

Instruction MON l,C,O
NOMON l,C,O

Where

indicates to display all data being read from the disk. Any data read from the
disk is displayed on the screen exactly as read.

C indicates to display all DOS instructions which are executed. Although any
DOS instruction used by the program is displayed, we are only concerned
with the following instructions: READ, WRITE, OPEN, CLOSE, APPEND, MON,
NOMON, LOCK, UNLOCK, and DELETE.

0 indicates to display all output disk operations. Any data written to the disk is
displayed on the screen exactly as written.

Example Immediate Execution Mode:

MON l,C,O Turns on all the DOS monitor functions
NOMON l,C,0 Turns off all the DOS monitor functions
MON 1,0 Turns on only the DOS input and output monitor functions

Program Execution Mode:

1000 PRINT D$;"MON l,C,O"
2000 PRINT D$;"NOMON l,C,0"
where D$ = CHR$(4)

Purpose The purpose of the MON/NOMON instruction is to aid the programmer in debugging
programs which use the disk. By using the instruction, the programmer can see all
the operations and data which are directed toward the disk.

Rules for Use 1. Once the MON (monitor) instruction is executed, it stays in effect until either
the NOMON instruction is executed or the machine is reset by turning it off
and back on, pressing CONTROL-RESET, or entering PR#6 and pressing
RETURN.

Introduction to DOS Disk Instructions I 261

2. The parameters l,C,O may occur in any sequence or combination.
3. At least one parameter must be used. If more than one is used, each parameter

must be separated by a comma.

Illustration Immediate Execution Mode
of the Rules

MONI
MONC
MONO
MON l,C,0

NOMON l,C,0

Displays only disk input operations
Displays only disk instructions
Displays only disk print operations
Turns on all monitoring operations; this is the format you
should normally use
Turns off all monitoring operations; this is the format you
should normally use

Program Execution Mode: See any of the sample disk programs used to describe
the OPEN, APPEND, WRITE, or READ instructions.

The OPEN Instruction

Instruction Sequential Files
Fixed Format:
or Variable Format:

Random Files
Fixed Format:
or Variable Format:

PRINT D$;"0PEN file name,Dnumber"
PRINT D$;"0PEN" ;variable$;" ,D" ;variable

PRINT D$;"0PEN file name,Lnumber,Dnumber"
PRINT D$;"0PEN";variable$;",L";

variable;" ,D" ;variable

Although slot number, drive number, and volume number may be used, only the
drive number is illustrated in the formats.

Example Sequential Files
Fixed Format:
or Variable Format:

PRINT D$;"0PEN SEQ PAYROLL FILE,D1"
PRINT D$;"0PEN";FILEID$;",D";FDRIVE

where FILEID$ = the label of the file to be opened.
FDRIVE = a value of 1 or 2 indicating the drive on which the file is located.

262 / Applesoft BASIC Toolbox

Random Files
Fixed Format: PRINT D$;"0PEN RANDOM PAYROLL FILE,L 10,D2"

PRINT D$;"0PEN";FILEID$;",L";RECLEGTH;",D";
FD RIVE

or Variable Format:

where FILEID$
RECLEGTH
FDRIVE

= the label of the file to be opened.
= the length of the records in the file.

a value of 1 or 2 indicating the drive on which the file is
located.

Purpose The OPEN instruction causes DOS to search the disk catalog to see if there is a
matching file name. If a matching label is found, information about the file is
extracted from the catalog. If no matching label is found, then a new entry is placed
in the catalog.

Rules for Use 1. The OPEN instruction must be executed prior to any 110 operation which uses
the file.

2. If the file name following the keyword OPEN does not currently exist on the
disk, a label is added to the catalog and an area on the disk is assigned to the
file.

3. For sequential files the OPEN instruction indicates to start with the first record
of the file. For sequential files DOS keeps track of the location of the next
record to be read or the location where the next record is to be written. If you
open an existing sequential file and then use a WRITE instruction, all existing
data on the file will be lost.

4. When you open a random file, the ,L parameter of the OPEN instruction must
be included and must be followed by a whole number indicating the length of
the record. For a random file all records must be the same length, or you must
specify the length of the longest record. When computing the length of a record,
remember to include the length of each variable making up the record, plus
one additional character for the EOR (End-Of-Record) marker.

For random files the maximum record length within the file must be included
as part of the OPEN instruction. DOS must know the length of the records on
the file in order to compute the location of an individual record. Exactly how
DOS calculates the relative address of each record will not be shown here, but
for random files the machine must know both the length of the records on the
file and the record number which is to be read. The record number MUST be
provided by the READ or WRITE instruction prior to the actual 110 operation.

A common error made by beginning programmers is to incorrectly specify
the record length in the OPEN instruction. This error becomes obvious when
you attempt to read the random file. The computer beeps and prints a backward
slash (\). No attempt will be made here to explain the error in detail. Just be
aware that if the computer beeps and prints a backward slash, the records written
on the file are longer than the length specified in the OPEN instruction.

5. As with all file processing, it is strongly suggested that you have a backup copy

Illustration
of the Rules

(Sequential Files)

Introduction to DOS Disk Instructions I 263

of the file and/or that the current copy of the file is LOCKed to protect it from
being accidentally written over.

6. The drive number is optional unless the file to be opened is located on a drive
other than the last drive referenced. If the file is not located on the last drive
referenced, then the drive number must be used.

PRINT 0$;"0PEN file name,01"

or

PRINT 0$;"0PEN file name,02"

7. When commas are shown in the example formats, the commas must be within
quotes (",L" and ",O").

The following program creates a sequential file label on a specific disk drive. All
the program does is OPEN a file and CLOSE the file. When you open and close the
file, a label is placed in the disk catalog.

1000 REM SAMPLE SEQUENTIAL OPEN PROG
1010 TEXT : NORMAL : HOME : SPEED= 255
1020 0$ = CHR$ (4)
1030 F'ILEID$ = "SEQUENTIAL F'ILE NAME"
1040 DlDRIVE = 1
1050 PRINT D$;"MON I,0,C"
1060 PRINT D$; II OPEN II; F'ILEID$; II' D" ; DlDRIVE
1070 REM insert instructions to process data
1080 PRINT D$;"CLOSE ";F'ILEID$
1090 PRINT D$;"NOMON I,0,C"

1010 At the start of each program you should include the instructions to ensure that the
computer is operating in the mode you want. This instruction specifies to set the
computer in NORMAL TEXT mode, clear the screen, and set the speed to the maximum.

1020 0$ = CHR$(4)

All DOS instruction must be preceded by a CONTROL-0 symbol.

0$ is the standardized name used to represent a CONTROL-0 symbol. Any
program which uses disk files should initialize the variable 0$ equal to the character
value 4 (same as pressing CONTROL-0).

The 0$ variable is used in the PRINT instruction to precede every DOS com­
mand. Whenever the computer encounters the CONTROL-0 value, it knows that the
information following the character is a disk instruction. The CONTROL-0 value is
also used to indicate termination of a disk operation.

264 / Applesoft BASIC Toolbox

1030 FILEID$ = "SEQUENTIAL FILE NAME"

Although some of the sample programs in this book do not use the variable format
of the DOS instructions, you should make it a standard practice to always use variable
file names. You will find programming easier if you set a variable name equal to
the file label at the start of your program and then use that variable name in all the
DOS instructions. By using the variable format you

1. Make sure that the file label is spelled the same in all the DOS instructions.
2. Save having to type a long label in each instruction.
3. Make your program easier to modify. All occurances of the file label can be

changed by simply changing the instruction which defines the name (FILEID$
= "new label").

1040 A variable may also be used for the drive number. For the example programs,
01 DRIVE is be set equal to I for drive I and D2DRIVE is set equal to 2 for drive 2.

1050 PRINT D$;"MON 1,0,C"

This turns on the debugging tool for monitoring disk input, output, and command
operations.

If you run the program, the screen will clear, and the following lines will be
printed:

OPEN SEQUENTIAL FILE NAME,Dl
CLOSE SEQUENTIAL FILE NAME
NOMON I,O,C

1060 PRINT D$;"0PEN ";FILEID$;",D";D1DRIVE

Creates a label called SEQUENTIAL FILE NAME on disk drive I unless the label
already exists. This instruction could have been written in a fixed format by using
the values in each variable:

1060 PRINT D$;"0PEN SEQUENTIAL FILE NAME,01"

1080 PRINT D$;"CLOSE ";FILEID$

For output files or in this case newly created files, the CLOSE instruction causes any
data which is in the write buffer to be written onto the disk and an EOF marker to
be written following the last record. In this case no records were written, so only

Introduction to DOS Disk Instructions I 265

an EOF marker is written on the file. This instruction could have been written in a
fixed format by using the values in each variable:

1080 PRINT D$;"CLOSE SEQUENTIAL FILENAME,D1"

1090 PRINT D$;"NOMON 1,0,C"

Illustration
of the Rules

(Random Files)

The monitor functions are turned off by the NOMON instruction. You should always
make it a practice to see that any function you set on in a program is turned off prior
to ending the program.

For the example the monitor instructions on lines 1050 and 1090 are not nec­
essary. These lines are only included to let you see the disk instructions in action.

The following program serves only to show how the OPEN instruction is used with
a random file.

Although this example creates a random file label, it is suggested that you do
not use this format. In the chapter on random file processing, a more complete
example will show how to create both the file label and dummy records. Creating
dummy records (whatever dummy records are) makes working with random files
easier.

1000 REM SAMPLE RANDOM OPEN PROG
1010 TEXT : NORMAL : HOME : SPEED= 255
1020 D$ = CHR$ (4)
1030 PRINT D$;"MON I,0,C"
1040 PRINT D$;"0PEN RANDOM FILE NAME,Dl,LlO"
1050 REM insert processing instructions
1060 PRINT D$;"CLOSE RANDOM FILE NAME"
1070 PRINT D$;"NOMON I,0,C"

1030 Line 1030 turns on the debugging tool for monitoring disk input, output, and com­
mand operations.

If you run the program the screen will clear, and the following lines will be
displayed:

OPEN RANDOM FILE NAME,Dl,LlO
CLOSE RANDOM FILE NAME
NOMON I,O,C

1040 PRINT D$;"0PEN RANDOM FILE NAME,D1,L10"

The computer checks the disk in drive 1 to see if the file label RANDOM FILE NAME
exists. If a matching label is not found, then the file label is created and an area

266 / Applesoft BASIC Toolbox

assigned for the file. If a matching label is found, then the file is located and prepared
for use.

In addition to providing the file label, the OPEN instruction also indicates to
DOS that the records will be 9 bytes (characters) long.

Notice that the length specified in the OPEN instruction is 1 greater than the
number of characters to be written.

Remember, DOS adds an EOR (End-Of-Record) indicator to each record written.

1060 For output files, or in this case newly created files, the CLOSE instruction causes
any data which is in the write buffer to be written to the disk.

The APPEND Instruction

Instruction PRINT D$;"APPEND file name,Dnumber"
.or PRINT D$;"APPEND";variable$;",D";variable

Example PRINT D$;"APPEND SEQ ADDRESS FILE,D1"
or PRINT D$;"APPEND";FILEID$;'',D";D1DRIVE

Purpose The APPEND instruction is used to open a file and indicate to DOS that any new
records written to this file are to be placed following the existing records.

Rules for Use 1.
2.

The APPEND instruction is used ONLY with sequential files.
The file label MUST EXIST prior to use of the APPEND instruction. The
APPEND instruction cannot be used to create the file label.

Illustration
of the Rules

3. Once the APPEND instruction is executed, records may only be written to the
file. Any attempt to read from the file results in an error condition.

4. As with all file processing, it is strongly suggested that you have a backup copy
of the file.

The following program first creates a label for the file and then closes the file. The
opening and closing of the file is not done in a normal APPEND program. It is done
in this example in order to ensure that the file label exists prior to trying to use the
APPEND instruction. If the APPEND instruction is used and the file label does not
exist, an 1/0 error occurs. In the program the label is created by lines 1050 and
1060.

After the file label has been created, the program reopens the file using the
APPEND instruction. The program then writes 10 records containing two variables

Introduction to DOS Disk Instructions I 287

each. The first variable consists of the numbers from 1 to 10, and the second variable
is a running sum of the numbers from 1 to 10. These records serve no purpose other
than to provide a simple file structure for the example. After execution of the pro­
gram, the file contains the following records:

Record 1 = 1,1
2 = 2,3
3 = 3,6
4 = 4,10
5 = 5,15
6 = 6,21
7 = 7,28
8 = 8,35
9 = 9,44

10 = 10,54

1000 REM SAMPLE APPEND PROG
1010 TEXT : NORMAL : HOME : SPEED= 255
1020 D$ = C~R$(4)
1030 REM ---
1040 PRINT D$;"NOMON C,I,0"
1050 PRINT D$;"0PEN SEQUENTIAL FILE NAME"
1060 PRINT D$;"CLOSE SEQUENTIAL FILE NAME"
1070 REM --
1080 PRINT D$;"MON C,I,0"
1090 PRINT D$;"APPEND SEQUENTIAL FILE NAME"
1100 FOR Nl = 1 TO 10
1110 PRINT D$;"WRITE SEQUENTIAL FILE NAME"
1120 SUM = SUM + Nl
1130 PRINT Nl","SUM
1140 PRINT D$: REM TERMINATES DISK OPERATIONS
1150 PRINT Nl,SUM
1160 NEXT
1170 PRINT D$;"CLOSE SEQUENTIAL FILE NAME"
1180 PRINT D$;"DELETE SEQUENTIAL FILE NAME"
1190 PRINT D$; "NOMON I, 0, C"
1200 END

There are three points you should understand from the program.

1. The APPEND instruction is used in place of the OPEN instruction to gain access
to a sequential file.

2. Since the data being written to disk is also going to be displayed on the screen,
the operations to write to the disk must be started and stopped for each record.
That is, a CONTROL-D must precede and follow the data written on the disk.

If data is to be written both to the disk and to the screen, then the WRITE
instruction must be executed prior to every PRINT instruction which is directed

268 I Applesoft BASIC Toolbox

to the disk. Following the PRINT instruction which writes to the disk, a CON­
TROL-D character must be printed to terminate the disk operation. If the disk
operation is not terminated correctly, then the data which is intended to be
printed on the screen is directed to the disk instead.

1100 FOR N1 = 1TO10
... Start disk output ...
1110 PRINT D$;"WRITE SEQUENTIAL FILE NAME"
1120SUM =SUM+ N1
1130 PRINT N1","SUM

... Terminate disk output ...
1140 PRINT D$: REM TERMINATES DISK OPERATIONS

... Start screen output ...
1150 PRINT N1,SUM
1160 NEXT

If your program is only going to write data to the disk, then the WRITE instruc­
tion needs to be executed only once, and all PRINT instructions will go to the
disk until another D$ character is encountered. The logic for writing continu­
ously to the disk is shown below. Notice that the WRITE instruction is outside
the FOR/NEXT loop. The WRITE instruction is executed once, while the PRINT
instruction is executed IO times with all printing directed toward the disk file.

1100 PRINT D$;"WRITE SEQUENTIAL FILE NAME"
1110 FOR N1 = 1TO10
1120 SUM =SUM+ N1
1130 PRINT N1","SUM
1140 NEXT
1150 PRINT D$:REM TERMINATES DISK OPERATIONS

3. When you write data to the disk, the comma between variables, if used, must
be in quotes. The reason for using the comma and why it must be enclosed
within quotes will be explained in greater detail as part of the random disk
system. For now just remember the following:

When writing to disk the comma is between quotes.

1130 PRINT N1","SUM

When writing to screen the comma is NOT between quotes.

1150 PRINT N1,SUM

Introduction to DOS Disk Instructions I 269

1010 The first line to be executed in all the example programs follows the format of line
1010. The computer is set to TEXT mode in case you were using a program which
ended while in high resolution graphics. The screen display format is set to NOR­
MAL, and the screen is cleared by using the HOME instruction. The SPEED instruc­
tion resets the computer in case the last program ended with the speed set at a slower
value.

After all program testing is done, a line should be added to turn off the monitor
function in case it was left on by a previous program. The instruction should not be
included during the testing phase, since you may want to monitor disk operations.

1015 PRINT CHR$(4);"NOMON 1,0,C"

Remember, MON and NOMON are DOS instructions and must be preceded
with a CONTROL-D value.

Since we want to monitor this program, the instruction has been left out.

1030-1060 Lines 1030 through 1060 open and close the file to ensure that the file label exists.
If the file label does not exist, you cannot use the APPEND instruction.

1070-1090 Line 1080 turns on all the options of the MONitor instruction so you can see all the
instructions being executed and the data being written to the disk. Line 1090 opens
the file using the APPEND instruction.

1100-1140 Lines 1100 through 1140 represent the first half of a FOR/NEXT loop in which data
is written to the disk. In the last half of the FOR/NEXT loop, the same data is
displayed on the screen. The WRITE instruction on line 1110 is executed each time
through the loop to tell DOS that any PRINT operation which follows should be
directed toward the disk. The PRINT instruction on line 1130 causes the values of
N1 and SUM to be written on the disk separated by a comma. The comma must be
in quotes as shown. When the data is read, the comma serves as a variable separator
to tell DOS where variables start and end.

Look over the code again. Lines 1110, 1130, and 1140 all work together to
write data on the disk.

1100 FOR N1 = 1TO10
1110 PRINT D$;"WRITE SEQUENTIAL FILE NAME"
1120 SUM =SUM + N1
1130 PRINT N1","SUM
1140 PRINT D$: REM TERMINATES DISK OPERATIONS

Line 1140 prints what I call a dummy CONTROL-D. In order to terminate the
disk operation, a single CONTROL-D symbol must be printed. If this instruction is
not included, the PRINT instruction on line 1150 ends up writing on the disk.

270 / Applesoft BASIC Toolbox

1150-1160 Lines 1150 and 1160 make up the last half of the FOR/NEXT loop. Line 1150 displays
on the screen the same data which was written on the disk. The NEXT instruction
causes the variable N 1 to be incremented by 1 and then tested to see if it is greater
than 10. If N1 is 10 or less the loop is repeated.

1170-1200 Lines 1170 through 1200 wrap up the program by closing the file, deleting the file,
and turning off the monitor functions. You should look at line 1180, where the
DELETE instruction is used in program execution mode to remove the file label from
the disk catalog. This is the first time this instruction has been used in this way.

1180 PRINT D$;"DELETE SEQUENTIAL FILE NAME"

This program creates the file label, appends data to the end of the file, and
turns around and deletes the file so you do not have to delete it yourself.

If you run the program, the first few lines of the screen will appear as follows:

APPEND SEQUENTIAL FILE NAME
WRITE SEQUENTIAL FILE NAME
1,1 Note: prints on disk

1 1 Note: prints on screen
WRITE SEQUENTIAL FILE NAME
2,3 Note: prints on disk

2 3 Note: prints on screen
WRITE SEQUENTIAL FILE NAME
3,6 Note: prints on disk

3 6 Note: prints on screen

The MONitor function causes each of the DOS instructions to be displayed (see
APPEND and WRITE messages). The MONitor instruction also causes the data which
is written to the disk to be displayed exactly as it is written (see notes on screen).
Notice that the PRINT instruction used to write to the disk includes the comma.

Once more, when the data is written to the disk, the value of each variable is
separated by the comma within quotation marks. When the data is displayed to the
screen, the comma is not placed within quotation marks. If the comma is not placed
within quotes, it is interpreted by the computer as an automatic tab function, and
the computer skips to column 17 before writing the second variable.

If you do not place the comma in quotes when writing to the disk, two errors
occur. First, the computer interprets the comma as an automatic tab function and
tabs over, generating extra blanks on the disk.

Disk
Column
Record 1

1 2
12345678901234567890
1 <blanks> 1

Introduction to DOS Disk Instructions I 271

Second, since the comma is not written to the disk, you have problems in trying
to read the data. The computer treats the data as one variable since there is no
separator (comma). To the computer this is one variable containing a leading 1,
followed by 15 blanks, followed by a trailing 1.

Once more, use the APPEND and WRITE instructions to add data to the end of
an existing file.

The WRITE Instruction

Instruction Sequential Files
Fixed Format: PRINT D$;"WRITE file name"
or Variable Format: PRINT D$;"WRITE";variable$

Random Files
Fixed Format: PRINT D$;"WRITE file name,Rnumber"
or Variable Format: PRINT D$;"WRITE";variable$;",R";variable

Example Sequential Files
Fixed Format: PRINT D$;"WRITE SEQ PAYROLL FILE"
Variable Format: PRINT D$;"WRITE ";FILEID$
where FILEID$ = the name of the file on which the record is to be written.

Random Files
Fixed Format: PRINT D$;"WRITE RANDOM PAYROLL FILE.RS"
where the fifth record of the file is going to be written.

Very seldom, if ever, do you use a random write instruction with a constant
record number. As written, the instruction always writes record 5, and there is no
way to vary the record number to write other records.

Variable Format: PRINT D$;"WRITE";FILEID$;",R";RECNUMBER
where FILEID$ = the name of the file on which the record is to be written.
RECNUMBER = the number of the record to be written.

Each record on a random file is accessed using the relative record number. For
more information, see the chapter on how to work with random files.

Purpose The WRITE instruction serves as a preparatory command to tell the DOS system
that a PRINT instruction follows and the information is to be written on the disk.

272 / Applesoft BASIC Toolbox

Rules for Use 1. For sequential files any number of records may be written after the WRITE
instruction is executed.

Illustration
of the Rules

(Sequential Files)

2. For random files the WRITE instruction must be executed prior to each PRINT
instruction and must indicate which record is to be written.

3. For the WRITE instruction the slot, volume, and drive parameters are not used.
This information is only specified on the OPEN or APPEND instructions.

The following program writes 10 records containing two variables each. The first
variable consists of the numbers from 1 to 10, and the second variable is a running
sum of the numeric values from 1 to 10.

This program is not intended to be productive but only to serve as an example.

1000 REM SAMPLE SEQUENTIAL WRITE PROG
1010 TEXT : NORMAL : HOME : SPEED= 255
1020 D$ = CHR$ (4)
1030 PRINT D$;"MON C,I,0"
1040 PRINT D$;"0PEN SEQUENTIAL FILE NAME"
1050 FOR Nl = 1 TO 10
1060 PRINT D$;"WRITE SEQUENTIAL FILE NAME"
1070 SUM = SUM + Nl
1080 PRINT Nl","SUM
1090 PRINT D$: REM TERMINATES DISK OPERATIONS
1100 PRINT Nl,SUM
1110 NEXT
1120 PRINT D$;"CLOSE SEQUENTIAL FILE NAME"
1130 PRINT D$; "NOMON C, I, 0"
1140 END

1040 The OPEN instruction checks the disk for a matching label. If a matching label is
found, the existing file is opened. An OPEN followed by a WRITE command destroys
an existing sequential file.

If a matching label is found and the file is LOCKed, any attempt to write on
the locked file results in an error message and the termination of the program.

If no matching label exists on the disk, the file label is created.

1060 The WRITE instruction serves as a preparatory command telling DOS that until
another DOS command is executed, all further PRINT operations are to be directed
to the disk.

1080 Notice that when PRINTing variables on the disk, a comma is used to separate each
variable name.

When you write on the disk, the variable separator (comma) must be enclosed
within quotation marks.

Introduction to DOS Disk Instructions I 273

1090-1100 Normally you want to display the data which is written on the disk either prior to
writing the data or after it is written. To break the disk 110 instructions, you must
print a dummy 0$ (CONTROL-D). The sample program shows the normal sequence
of instructions for writing on the disk:

Line 1060 indicates to DOS that a record is to be written on the disk.
Line 1080 prints a record on the disk.
Line 1090 terminates DOS operations.

1120-1140 Before the program is terminated, the file is closed and the monitor functions are
turned off.

Illustration
of the Rules

(Random Files)

If you run the program, the first few lines of the screen will appear as follows:

OPEN SEQUENTIAL FILE NAME
WRITE SEQUENTIAL FILE NAME
1,1 Note: prints on disk

1 1 Note: prints on screen
WRITE SEQUENTIAL FILE NAME
2,3 Note: prints on disk

2 3 Note: prints on screen
WRITE SEQUENTIAL FILE NAME
3,6 Note: prints on disk

3 6 Note: prints on screen

The following program writes 10 records containing two variables each. The first
variable consists of the numbers from 1 to 10, and the second variable is a running
sum of the numeric values from 1 to 10 (sounds very familiar).

This program is not intended to be productive but is only to serve as an example.

1000 REM SAMPLE RANDOM WRITE PROG
1010 TEXT : NORMAL : HOME : SPEED= 255
1020 D$ = CHR$ (4)
1030 PRINT D$;"MON C,I,0"
1040 PRINT D$;"0PEN RANDOM FILE NAME,L6"
1050 FOR Nl = 1 TO 10
1060 PRINT D$;"WRITE RANDOM FILE NAME,R";Nl
1070 SUM = SUM + Nl
1080 PRINT Nl", "SUM
1090 PRINT D$: REM TERMINATES DISK OPERATIONS
1100 PRINT Nl,SUM
1110 NEXT
1120 PRINT D$;"CLOSE RANDOM FILE NAME"
1130 PRINT D$; "NOMON C, I, 0"
1140 END

274 / Applesoft BASIC Toolbox

1040 PRINT D$;"0PEN RANDOM FILE NAME,L6"

The OPEN instruction checks the disk for a matching label. If a matching label is
found, the existing file is opened. If no matching label is found, the label is placed
in the disk catalog. DOS keeps track of the length of each record as indicated by
the ",L" parameter in the OPEN statement. Each time a record is written, DOS uses
the record length and record number to determine where on the file the record is to
be placed. For this example the maximum length of each record is 6 bytes.

Maximum size of NUMBER = 2
Maximum size of SUM = 2
Number of commas = l
End-of-record indicator = l

Total = 6

Once more, in order to open a random file properly, you must indicate the
maximum length of the records making up the file. The maximum length is computed
by the following formula:

Maximum record length = Maximum size of all variables
+ I for each comma used to separate variables
+ l for an EOR marker which is automatically written by DOS at the end of each

record but which you must count as part of the record length

Total = Length used in the OPEN statement

Once the file has been created, the size of the records cannot be changed.

1060-1100 PRINT D$;"WRITE RANDOM FILE NAME,R";N1

The WRITE instruction serves as a preparatory command telling DOS that a record
is to be written on the disk and indicates which record is to be written.

For random files the WRITE instruction must be specified prior to each PRINT
in order to indicate which record is to be written.

Notice that lines I 060 through I 090 consist of the same basic sequence for
writing on the disk.

Line 1060 indicates to DOS that a record is to be written.
Line 1080 PRINTs the record.
Line l 090 terminates DOS operations.

If you run the program, the first few lines of the screen will appear as follows:

OPEN RANDOM FILE NAME.LS
WRITE RANDOM FILE NAME,Rl

Introduction to DOS Disk Instructions I 275

1,1 Note: prints on disk

1 1 Note: prints on screen
WRITE RANDOM FILE NAME,R2
2,3

2 3
WRITE RANDOM FILE NAME,R3
3,6

3 6
WRITE RANDOM FILE NAME,R4
4, 10

4 10

Did you notice that for random files the WRITE instruction indicates which
record number is to be written? (See lines 2, 6, 10, and 14.)

The READ Instruction

Instruction Sequential Files
Fixed Format: PRINT D$;"READ file name"
or Variable Format: PRINT D$;"READ";variable$

Random Files
Fixed Format: PRINT D$;"READ file name,Rnumber"
or Variable Format: PRINT D$;"READ";variable$;",R";variable

Example Sequential Files
Fixed Format: PRINT D$;"READ SEQ ADDRESS FILE"
or Variable Format: PRINT D$;"READ";ADDRFILE$
where ADDRFILE$ = the name of the file to be opened.

Random Files
Fixed Format: PRINT D$;"READ RAN ADDRESS FILE,R5"
or Variable Format: PRINT D$;"READ";ADDRFILE$;",R";RECNUMBER
where ADDRFILE$ = the name of the file to be opened.

RECNUMBER = the number of the record to be read.

276 / Applesoft BASIC Toolbox

Purpose The READ instruction serves as a preparatory command telling DOS an INPUT or
GET instruction follows and the data is to be transferred from the disk to the com­
puter's memory.

Rules For Use 1. For sequential files any number of records may be read after the READ instruc­
tion is executed.

Illustration
of the Rules

(Sequential Files)

2. For random files the READ instruction must be executed prior to each INPUT
instruction and must indicate which record is to be read.

3. Once OPENed, a sequential file must be either continuously read or continu­
ously written. Do not attempt to mix the READ and WRITE instructions for one
OPEN operation of a sequential file.

4. For the READ instruction the slot, volume, and drive parameters are not used.
This information is only specified on the OPEN instructions.

In order for the following program to work, you must have previously created records
for it to read. The records are created by running the SAMPLE SEQUENTIAL WRITE
PROG. If the records are not created before you run this program, an error occurs
and the message END OF DATA is displayed.

The program reads and displays the 10 records written by the SAMPLE
SEQUENTIAL WRITE PROG.

1000 REM SAMPLE SEQUENTIAL READ PROG
1010 TEXT : NORMAL : HOME : SPEED= 175
1020 D$ = CHR$ (4)
1030 PRINT D$;"MON C,I,0"
1040 PRINT D$;"0PEN SEQUENTIAL FILE NAME"
1050 FOR Nl = 1 TO 10
1060 PRINT D$;"READ SEQUENTIAL FILE NAME"
1070 INPUT NUMBER.SUM
1080 PRINT D$: REM TERMINATES DISK OPERATIONS
1090 PRINT NUMBER.SUM
1100 NEXT
1110 PRINT D$;"CLOSE SEQUENTIAL FILE NAME"
1120 PRINT D$;"NOMON I,C,0"
1130 SPEED= 255
1140 END

1040 The OPEN instruction checks the disk for a matching label. If no matching label
exists, DOS creates one, but when the program attempts to read the file, the computer
cancels the program and displays an END OF DATA message.

1060-1090 The READ instruction serves as a preparatory command telling DOS that until
another DOS instruction is executed, all further INPUT is to come from the disk.

When you INPUT variables from a disk a comma is used to separate each

Introduction to DOS Disk Instructions I 277

variable name. Unlike the PRINT instruction, which WRITEs data to the disk, the
INPUT instruction does not enclose the comma within quotes.

Also, when reading variables from a disk, be sure to read the same number of
variables which were written. If the number of variables read does not match the
number of variables written, an error message is displayed and the program canceled.

Right: PRINT variable1","variable2","variable3

INPUT variable1,variable2,variable3

Wrong: PRINT variable1 ","variable2","variable3

INPUT variable1,variable2
or INPUT variable1 ,variable2,variable3,variable4

Exact match

Not enough
Too many

Normally you want to display the data which is read from the disk prior to
reading another disk record. To break the disk 1/0 instruction, you must PRINT a
dummy D$ (CONTROL-DJ. The program shows the normal sequence of instructions
for reading data from disk and displaying it on the screen.

Line 1060 indicates to DOS that a disk file is to be read.
Line 1070 inputs a record.
Line 1080 terminates DOS operations.
Line 1090 displays the data read.

1110-1130 Prior to terminating any program which uses disk files, make sure you close the files
and reset any options you have set on, such as MONitor or SPEED.

If you run the program, the first few lines of the screen will appear as follows:

OPEN SEQUENTIAL FILE NAME
READ SEQUENTIAL FILE NAME
?l,l Note: reads from disk

l l Note: prints on screen
READ SEQUENTIAL FILE NAME
?2,3 Note: reads from disk

2 3 Note: prints on screen
READ SEQUENTIAL FILE NAME
?3,6 Note: reads from disk

Did you notice the question mark in front of each disk read? This is generated
by the INPUT instruction.

278 / Applesoft BASIC Toolbox

Illustration
of the Rules

(Random Files)

In order for the following program to work, you must have previously created records
for it to read. The records are created by running the SAMPLE RANDOM WRITE
PROG. If the records are not created before this program is run, an error occurs and
the message END OF DATA is displayed.

The program reads and displays the 10 records created by the SAMPLE RAN­
DOM WRITE PROG in reverse order. Since this is a random file, the records may
be read in any sequence. Rather than jumping around in the file in a random sequence,
the computer reads the records starting with record 10 and reading backward to
record 1.

1000 REM SAMPLE RANDOM READ PROG
1010 TEXT : NORMAL : HOME : SPEED= 175
1020 D$ = CHR$ (4)
1030 PRINT D$; "MON C, I, 0"
1040 PRINT D$;"0PEN RANDOM FILE NAME,L6"
1050 FOR Nl = 10 TO 1 STEP -1
1060 PRINT D$;"READ RANDOM FILE NAME,R"Nl
1070 INPUT NUMBER.SUM
1080 PRINT D$: REM TERMINATES DISK OPERATIONS
1090 PRINT NUMBER.SUM
llOO NEXT
lllO PRINT D$;"CLOSE RANDOM FILE NAME"
ll20 PRINT D$;"NOMON C,I,0"
ll30 SPEED= 255
ll40 END

1040 PRINT D$;"0PEN RANDOM FILE NAME,L6"

One last time, the OPEN instruction checks the disk for a matching label. If a
matching label is found, the existing file is opened. DOS keeps track of the record
length as indicated by the L parameter in the OPEN instruction. For this example
the maximum length of each record is 6 bytes.

Maximum size of NUMBER = 2
Maximum size of SUM = 2
Number of commas = 1
End-of-record indicator = 1

Total = 6

If no matching label exists, any attempt to read the file results in an END OF DATA
message and program termination.

1050 Line 1050 shows how to use the STEP parameter to count backward. Normally the
STEP option is not used because the instruction automatically counts in increments
of 1, and for most applications this is what we want.

In this example we want to start with a value of 10 and decrease N 1 each time

Introduction to DOS Disk Instructions / 279

until it reaches a value of 1. The STEP - 1 causes the value of N 1 to be decreased
each time through the FOR/NEXT loop.

1060 PRINT D$;"READ RANDOM FILE NAME,R"N1
i record number

For random files the READ instruction must be specified prior to each INPUT instruc­
tion in order to indicate which record is to be read.

1070 When you INPUT variables from a disk, a comma is used to separate each variable
name. Unlike the PRINT instruction, which WRITEs data to the disk, the INPUT
instruction does NOT enclose the comma within quotes.

Also, when reading variables from a disk, be sure to read the rnme number of
variables which were written. If the number of variables read does not match the
number of variables written, an error message results.

1080-1090 The disk operations are terminated by line 1080, and then the data read is displayed
by line 1090.

1110-1130 Before the program is terminated, the file is closed, the monitor functions are turned
off, and the speed is reset.

If you run the program, the first few lines of the screen will appear as follows:

OPEN RANDOM FILE NAME.LG
READ RANDOM FILE NAME,RlO
?10,55 Note: reads from disk

10 55 Note: prints on screen
READ RANDOM FILE NAME,R9
?9,45 Note: reads from disk

9 45 Note: prints on screen
READ RANDOM FILE NAME.RS
?8,36

8 36

Once more, did you notice that before each record is read, the READ instruction
tells the computer which random record is to be read? In this case the records were
read sequentially starting with record 10 and working backward. For random files
the records may be read in any order.

280 / Applesoft BASIC Toolbox

The CLOSE Instruction

Instruction Fixed Format: PRINT D$;"CLOSE file name"
or Variable Format: PRINT D$;"CLOSE";variable$

Example PRINT D$;"CLOSE SEQ ADDRESS FILE"
or PRINT D$;"CLOSE";FILEID$

Purpose 1. When used with an input file, the CLOSE instruction removes program access
to the input buffer.

2. When used with an output file, the CLOSE instruction causes the current con­
tents of the output buffer to be written on the file. For sequential files, the
CLOSE instruction also records an EOF marker.

Rules for Use 1. The CLOSE instruction must be executed if the WRITE instruction has been
used in conjunction with the file. Unless the CLOSE instruction is executed
before the program is terminated, the last few records in the output buffer may
not get written out to the file, and the file may not be properly closed.

2. The CLOSE instruction is optional if information has only been read from an
existing file. Even though it is optional for input files, you should get into the
habit of closing all files.

3. For the CLOSE instruction the slot, volume, and drive parameters are not used.
This information is only specified on the OPEN or APPEND instructions.

For use of the CLOSE instruction, see any of the programs presented earlier in
this chapter.

The ONERR GOTO Instruction (Witi.
Sequential Files)

The ONERR GOTO instruction is used with sequential disk files to indicate
when the end of the file has been reached.

there are basically two ways to tell when you come to the end of a sequential
disk file. One way is to use a trailer record consisting of a special set of characters.

Introduction to DOS Disk Instructions I 281

By testing each record to see if it is the trailer record, the program may find the end
of the file.

The second method is to use the ONERR GOTO instruction and let the machine
automatically branch to a specific instruction when the computer encounters the
END OF DATA error.

Using a Thaller Record to Indicate End of File

An easy and therefore common way to check for the EOF condition is to use a
record consisting of all 9s, as shown below.

Sequential Disk File with Trailer Record

12345JOHN DOE
22222MARY SMITH

88989808 ZINK

4955 WEST STREET
32 HIGH ST APT 5

123 HARRY ST

MEXICO MO 55543
KANSAS CITY MO 55432

OAK RIDGE ARK 43322
99

Program Logic Flow for Using Trailer Record

PRINT D$;"READ DISK FILE"
INPUT REC$
IF LEFT$(REC$,5) = "99999" THEN goto end-of-file routine
... continue processing

Using ONERR GOTO to Indicate the EOF

If the ONERR GOTO instruction is going to be used to ip.dicate the end of the file,
the instruction must be executed as part of the beginning logic to specify where
logic flow is to branch when the computer encounters an error condition.

1000 REM BEGINNING ROUTINE
1010 ONERR GOTO 9000

2000 PRINT D$;"READ DISK FILE"
2010 ...

9000 REM ENDING ROUTINE
9010 .•.

When the computer encounters the EOF or any other error, it automatically
branches to statement 9000.

282 / Applesoft BASIC Toolbox

For a working example, see the SEQUENTIAL DISK UPDATE PROGram.
Although the sequential example in the book uses the ONERR instruction, I

prefer to use the trailer record technique. Using the ONERR GOTO instruction causes
problems when trying to debug your program and if done correctly is more difficult
to code.

If you do use the ON ERR GOTO instruction, you should PEEK memory address
222 and test it for a value of 5 (END OF DATA error). If the error is an END OF
DATA, the program may continue. If the error is not an END OF DATA, your program
should display the error code, an error message indicating the type of error, and the
line number on which the error occurred (see the sequential file UPDATE program).

The VERIFY Instruction

Instruction VERIFY "filename,Dnumber"

Example Fixed Format: VERIFY "MONTHLY EXPENSE FILE"
Variable Format: VERIFY FILEID$

Purpose The instruction is used to check to see if data are written correctly on the disk or if
the file has been damaged.

Rules for Use 1. The VERIFY instr11ction may be executed in either immediate or program exe­
cution mode.

2. After execution of the instruction, two things may happen. If processing con­
tinues with no error messages, the file has been verified and is correct. If an
1/0 error occurs, some portion of the file is incorrectly recorded or is damaged.

The computer reads each sector of the file and accumulates a check figure for
each sector indicating the number of bits recorded. The check figure is matched
against the check figure which was originally recorded on the sector when the data
was written to disk. If the figures match, then the sector passes the edit test. If the
figures differ, an 1/0 error has occurred.

The VERIFY instruction only needs to be used when you have a question about
the quality of the diskette or the disk drive being used.

Introduction to DOS Disk Instructions I 283

The MAXFILES Instruction

Instruction Immediate execution mode: MAXFILES number
Program execution mode: PRINT D$;"MAXFILES "number
where number may range from 1 to 16

Example MAXFILES 4
PRINT D$;"MAXFILES "4

Purpose The MAXFILES instruction is used to allocate memory area for disk file buffers.

Rules for Use 1. Although the number may range from 1to16, in actual practice the upper limit
is 15 since DOS requires one buffer in order to execute the DOS commands.

2. When more than two files are going to be open at the same time in a program,
the MAXFILES instruction must be used.

3. The MAXFILES instruction can be executed in either immediate or program
execution mode. If MAXFILES is used in program execution mode, it must be
the very first instruction in the program since it resets high memory. The
resetting of the high memory destroys any string variables which have been
defined.

DOS automatically allocates enough memory to handle three files. DOS uses
one and leaves the other two for you to use.

Each file takes 595 bytes of memory: a 256 byte area for 1/0 operations, a 256
byte area for the track/sector list, and additional area for handling the 1/0 operations.

If you execute an 1/0 instruction without an adequate number of buffers, the
NO BUFFERS AVAILABLE message is displayed; or ifthe ONERR GOTO instruction
is used within the program, a branch to the error routine occurs.

3. The GET Subroutine

284

Purpose The GET subroutine provides a method of entering data which eliminates problems
which occur when using the INPUT instruction. The subroutine is used in all the
sample programs which require large amounts of input from the operator.

It is written specifically to make efficient use of string memory, to provide a
controlled method of reading data from the screen, and to prevent the operator from
entering either the comma or the colon.

At the first of the book the terms variable and field were defined as synonyms.
Although they are synonyms, a slight distinction will be made for the rest of the
book. Variable will be used when referring to names within the program. Field will
be used when referring to information entered by the operator, or areas on the screen
where the operator enters the information.

Why Use the GET Subroutine?

The INPUT instruction has several problems which make it unsuitable for the average
computer user. The following is a list of problems with the INPUT instruction. If
you do not understand the list, go back to the first half of the book and review the
INPUT instruction.

I. Commas or colons may be entered incorrectly within the data.
2. Too many fields may be entered. (Remember, the term field is being used to

distinquish information entered by the operator.)
3. Too few fields may be entered.
4. When the RETURN key is pressed, the INPUT instruction causes the remainder

of the line to be cleared.
5. The INPUT instruction does not provide a way to control the number of char­

acters entered by the operator.
6. The operator must press the RETURN key after entering each field.
7. When working with the disk, commas or colons cause problems if included in

the data. The INPUT instruction allows the operator to enter colons, whereas
the GET subroutine does not allow commas or colons to be entered.

The GET Subroutine I 285

Like the INPUT instruction, the GET subroutine also has some disadvantages.
Since it uses a fixed portion of high memory to store the data being entered, there
is one line of code which must be executed at the very start of the program. If the
line is not used at the very beginning of the program to define a portion of high
memory, the subroutine does not work. Also, just as with any instruction, you must
understand how to use it and must follow the rules related to its use.

But the advantages of the GET subroutine outweigh the disadvantages. The
subroutine has the following advantages:

1. It allows you to control the number of characters entered by the operator.
2. The operator does not have to press the RETURN key if the maximum number

of characters is entered.
3. The subroutine returns a numeric value equal to the number of characters

entered. The main use of this value is to tell if the operator entered data or just
pressed the RETURN key.

4. The subroutine may easily be modified to accept only numeric information (see
p. 294).

5. Since the subroutine uses a machine language routine to read the keyboard, it
can accept any characters except CONTROL-RESET.

6. The subroutine does not allow any control characters to be entered which might
cause problems when printing. All values from 31 on down are rejected (CON­
TROL key values).

Don't let the size or complexity of the routine scare you off. You will see it is
very simple to use and can make your efforts much more professional.

Instructions for Using the GET Subroutine

The remainder of this discussion is divided into two sections. The first section
indicates how to use the subroutine. No knowledge of the instructions within the
subroutine is necessary in order to use it. For those of you who want to know how
the routine works, the second section gives a line by line explanation and indicates
why each line is necessary.

There is one line of code which must be the ftrst executable instruction in your
program in order for the GET subroutine to work. This is the one part of the sub­
routine I do not like, but it is necessary in order to use string memory efficiently.
The instruction defines a variable called GA$ in high memory. The variable serves
as a work area for all input operations. The numbers between the quotes are not
important; they only serve to allocate memory. The format and sequence of the
instruction are important. Code it exactly as shown.

28& / Applesoft BASIC Toolbox

1000 REM NAME OF PROGRAM

1010 REM ---------------------
1020 CLEAR :G1 =PEEK (116) * 256 +PEEK (115) - 40

:GA$ = "12345678901234567890" + "12345678901234567890"

1030 REM ----------------------
1040 ... start program here ...

You MUST NEVER use the variable name GA$, other than as shown on line
1020. Line 1020 above defines the variable, and it will be used once again in the
subroutine, but you MUST NEVER use it within your code or the subroutine WILL
NOT WORK!

Now for the easy part. As you go through the programs, you will see a basic
pattern for using the GET subroutine. The pattern consists of three or four instruc­
tions depending on the type of processing being done.

Before the subroutine is used, two instructions must be executed.

1. First the cursor must be positioned to the correct line and column at which the
data is to be entered. The best way to position the cursor is to use the VTAB
and HTAB instructions. For example,

1000 VTAB 10: HTAB 15

2. Second, the variable GALEGTH must be set equal to the number of characters
to be read. For example,

1010 GALEGTH = 25

The subroutine does not test the value in GALEGTH to see if it is within
the acceptable limits (1to40). To keep the subroutine as small as possible, all
error checks were left out. It is up to you to follow the rules and set the variable
equal to a value from 1 to 40 before executing the subroutine.

3. Once the cursor is positioned and the length specified, then execute the sub­
routine by way of the GOSUB instruction. For example,

1020 GOSUB 2000: REM EXECUTE GET SUBROUTINE

2000 REM GET SUBROUTINE
RETURN

After returning from the GET subroutine, three variables contain values which
may be used in evaluating the data entered.

1. GBANSWER$ contains the data entered or is set equal to spaces if only the
RETURN key is pressed.

The GET Subroutine I 287

Normally you want to set a variable name equal to the value returned.
Remember, GBANSWER$ is in string format and must be converted for numeric
operations. For example,

1030 NAME$= GBANSWER$
or 1030 NUMBER = VAL(GBANSWER$)

String variables
Numeric variables

2. GCCHAR contains the number of characters keyed in by the operator. If the
operator only presses the RETURN key, GCCHAR contains a value of zero.

GCCHAR is tested when updating data to see if the operator wants to
change the value in a field or accept the old value.

When data is updated, you should display the old value and allow the
operator a chance to accept it as is or change it. If the operator enters one or
more characters, the variable is set equal to the new value entered by the
operator. If the operator does not enter any characters (only presses RETURN),
the instruction for resetting the variable is skipped.

Example:

1000 VTAB 10: HTAB 1: PRINT "NAME = (";NAME$;")"
1010 VTAB 10: HTAB 9: GALEGTH = 25: GOSUB 2000
1030 IF GCCHAR = 0 THEN 1050: REM SKIP CHANGING FIELD
1040 NAME$= GBANSWER$: REM CHANGE DATA TO NEW VALUE
1050 REM NO CHANGE IN DATA

2000 REM GET SUBROUTINE

3. GB contains the numeric value of the last character entered (ASCII value). The
value is of little use, but you may find a need to know which character was
entered last.

I encourage you to use the GET subroutine in your programs, but if you key in
the subroutine, be extremely careful! Every semicolon and line number in the sub­
routine is important. The subroutine has been condensed to the smallest number of
lines possible without changing the method by which it operates.

If you have the sample disk, use the copy of the subroutine which is on the
disk. If you do not have the sample disk, carefully enter the subroutine and save it.
Once you have a good copy of the subroutine, you can load it into memory and use
the RENUMBER program to merge it into your programs. Remember, the RE­
NUMBER program is on the DOS diskette which comes with the APPLE and is one

288 I Applesoft BASIC Toolbox

of the first utility programs which you should learn how to use. Do not try to rekey
the subroutine for each program.

Let's do a little review before going on to the detailed description of instructions
within the subroutine.

1. The following line MUST be the first executable instruction in your program:

1020 CLEAR :G1 =PEEK (116) * 256 +PEEK (115) - 40
:GA$= "12345678901234567890" + "12345678901234567890"

2. You MUST NEVER use the variable name GA$ in your own code.
3. Each time you use the routine you should

a. Position the cursor
b. Set GALEGTH equal to the number of characters to be read
c. Set a variable name equal to the value returned in GBANSWER$

If you study the sample disk programs and follow through their logic, you will
see how easy the subroutine is to use.

Really, you will.

The GET Subroutine Listing

To keep the statement numbers within the subroutine consistent with the code used
in the sample disk programs, the line numbers start at 1100.

1020 CLEAR : Gl = PEEK (116) * 256 + PEEK (115) - 40: GA$
"12345678901234567890" + "12345678901234567890"

1100 REM ---------------
1110 REM GET SUBROUTINE
1120 IF G3 = 0 THEN GOSUB 1270
1130 G3 = Gl + GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT

G2 = Gl
1140 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1210
1150 IF GB = 13 THEN 1230
1160 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 1190
1170 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1140
1180 PRINT CHR$ (GB);: POKE G2,GB
1190 G2 = G2 + 1: IF G2 > G3 THEN 1260
1200 GOTO 1140

The GET Subroutine I 289

1210 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1140
1220 PRINT CHR$ (8);: GOTO 1140
1230 IF Gl = G2 THEN 1250
1240 FOR GC = G2 TO G3: PRINT"";: NEXT
1250 FOR GC = G2 TO G3: POKE GC,32: NEXT
1260 GB$= LEFT$ (GA$,GA):GC = G2 - Gl: RETURN
1270 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141: p
OKE 772,07: POKE 773,03: POKE 774,96: RETURN
1280 REM
1290 REM------------

Cross Reference Listing

G1 1130, 1210, 1230, 1260
G2 1130, 1160, 1180, 1190, 1210, 1230, 1240, 1250, 1260
G3 1120, 1130, 1190, 1240, 1250
GA 1130, 1260
GA$ 1260
GB 1140, 1150, 1160, 1170, 1180
GB$ 1260
GC 1240, 1250, 1260

Since each instruction making up the lines of code is important to the operation
of the subroutine, in the following discussion each line is repeated and then broken
down into the individual instructions as needed .

.1020 CLEAR :G1 = PEEK (116) * 256 + PEEK (115) - 40: GA$=
"12345678901234567890" + "12345678901234567890"

CLEAR

The CLEAR instruction is used at the beginning of the line just in case you did not
follow the rules and have defined a string variable before coding this line. The
CLEAR instruction wipes out all previous string and numeric values.

There is one exception in which the CLEAR instruction should be removed. If
you are going to use the MAXFILES instruction within your program, it must be
coded before this line, and the CLEAR instruction must be removed from the line.

G1 = PEEK (116) * 256 + PEEK (115) - 40:

The variable G 1 is used to store the starting address of GA$. Since GA$ is the first
string defined in high memory, its starting address is equal to the address of high
memory minus the length of GA$. If you want to change the subroutine to accept
bigger fields, change the - 40 to - nn, where nn is equal to the maximum size you
want the subroutine to handle.

290 I Applesoft BASIC Toolbox

DOS

......... GA$
High memory
Used for strings

Low memory
Used for numeric
Variables and your
program

< Address of high
memory and location of GA$

Machine addresses 115 and 116 contain the address of high memory. The
address is stored in hexadecimal, with the most significant digit in memory location
116. To convert the number to decimal, the value in 116 is multiplied by 256 and
added to the value in memory location 115.

GA$ = "12345678901234567890" + "12345678901234567890"

The variable GA$ is set equal to 40 characters, and the value is placed in the first
40 bytes of high memory. In order for the instruction to work, the 40 characters
must be broken into two strings. If only one string value were used, Applesoft would
not place the value in high memory but would simply set the pointer for GA$ equal
to the location of the constant within the Applesoft program. When the constant is
divided into two parts and then the parts combined into one value, the instruction
is forcing Applesoft to store the complete value in high memory and to set the
pointer for GA$ to the high memory address.

If you want to change the subroutine to be able to handle more than 40 char­
acters, then set GA$ equal to the maximum number of characters you want to use.
Make sure to divide the constant into two parts as shown.

1100 REM ---------------------
1110 REM GET SUBROUTINE
1120 IF G3 = 0 THEN GOSUB 1270

1270 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141:
POKE 772,07: POKE 773,03: POKE 774,96: RETURN

1280 REM
1290 REM ----------------------

The GET Subroutine I 291

1120 IF G3 = 0 THEN GOSUB 1270

The very first line of the subroutine checks to see if this is the first time the subroutine
has been executed. If G3 is equal to zero, then the subroutine has not been executed,
and logic flow branches to line 1270, where a machine language routine is Poked
into memory locations 768 through 774.

No attempt will be made to try to explain the machine language program other
than to say that this is the actual routine which reads the keyboard and stores the
symbol pressed in memory location 775. Later, a PEEK instruction is used to retrieve
the value entered.

During execution of the subroutine, G3 is set equal to a memory address and
is never equal to zero again (unless you reset it).

1130 G3 = G1 +GA - 1: FOR G2 = G1 TO G3: POKE G2,32: NEXT: G2 = G1

Line 1130 is executed once for each execution of the subroutine. The line is respon­
sible for setting G3 equal to the ending address of the field to be entered, blanking
out the area of memory in which the field will be placed, and setting G2 equal to
the starting address of the field.

Remember, the first instruction in the program reserves 40 bytes of high mem­
ory. Before executing the subroutine, you set GALEGTH equal to a value from 1 to
40 indicating the size of the area within the 40 bytes of high memory which is to
be used:

1040 GALEGTH = 25

Therefore,

7- s:
GA$ = "1234567890123456789012345678901234567890"
G 1 = l..starting address t
G3 = Ending address ___ __._

Using the starting and ending address of the field, the FOR/NEXT instruction
blanks out the area of memory to be used for the input operation. Notice that only
an area of memory equal to the size of the data to be entered is blanked out.

GA$=" 678901234567890"
G1 = l.starting address
G3 = Ending address---~ t
After the area is blanked out, G2 is set equal to the starting address of the field (G1).

1140 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1210

292 / Applesoft BASIC Toolbox

CALL 768

The CALL instruction executes the machine language program at memory location
768 (see line 1270). The machine language routine puts the value of the key pressed
in memory location 775.

GB = PEEK (775) - 128

The PEEK instruction is used to retrieve the value from memory. That's the easy
part of the explanation. Now, why subtract 128?

When a key is pressed, the value of the key is placed into a specific memory
address by the APPLE, and the first bit of that address is set on. The first bit acts
as a switch, indicating that a key has been entered (bit on) or has not been entered
(bit off). By testing this bit, the machine language routine knows when a key has
been pressed and when to return a value. Once the value is returned, we must subtract
128 to turn off the high order bit.

1100 0001 = ? With bit on gives incorrect pattern
- 1000 0000 = 128 To take off first bit
= 0100 0001 = A Correct bit pattern for letter A

IF GB = 08 THEN 1210

The value returned is tested to see if a left arrow key was pressed (08 = left arrow
key; see Appendix A). If the left arrow key was pressed, logic flow branches to line
1210, where the instructions related to moving the cursor to the left are located.

1150 IF GB = 13 THEN 1230

The value is tested to see if the RETURN key was pressed (13 = RETURN key). If
the RETURN key is pressed before reaching the end of the field, logic flow branches
to line 1230, where a group of instructions blanks out the remainder of the field.

1160 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 1190

The value is tested to see if a right arrow key was pressed (21 = right arrow key).
If the right arrow key was pressed, the character at the current location of the cursor
is printed. The printing of the character has the effect of moving the cursor over
one position to the right. After the cursor is moved, logic flow branches to line 1190
to increment the position of the cursor and check to see if the end of the field has
been reached.

1170 IF GB= 44 OR GB= 58 OR GB< 32 THEN 1140

The GET Subroutine I 293

If a comma (44), colon (58), or a control character (0 to 31), has been entered, the
values are rejected, and logic flow branches back to accept a valid character.

If the RETURN key was pressed in any position other than the first, both FOR/
NEXT instructions are executed. The first FOR/NEXT instruction blanks out the
remainder of the field on the screen, while the second FOR/NEXT blanks out the
remainder of the field in memory.

1260 GB$ = LEFT$ (GA$,GA):GC = G2 - G1: RETURN

After the value has been entered and placed in high memory, this instruction extracts
the correct number of characters and places the value in GBANSWER$. Also, before
the subroutine returns to the calling GOSUB, the value of GCCHAR is set equal to
the number of characters entered (not necessarily the same as the size of the field).

All the variable names in the subroutine start with G:

G1, G2, G3, GA, GA, GB, GB$, GC,

If you use the subroutine, you should not use any of the variable names above
except in conjunction with the GET subroutine.

The following variables are used as parameters to and from the routine:

GALEGTH This must be set equal to the length of the variable to be read prior to
executing the subroutine.

GBANSWER$ After returning from the subroutine, this variable contains the value
read in.

· GCCHAR After completion of the subroutine, this variable contains the number
of characters keyed in by the operator.

All the other variables used in the GET subroutine are necessary to its internal
operation. The following list gives the full program name and a short description
of each variable used by the subroutine.

G 1 This variable contains the starting address of the GA$.

G2 This variable contains the address where the character being entered is to be
placed.

G3 This variable contains the ending address of the GA$.

GALEGTH This variable contains the number of characters to be read by the
subroutine. The subroutine is set up to read from 1 to 40 characters.

GBCHAR During execution of the subroutine this variable is used to store the
ASCII value of the character keyed in. This allows for more readable code in testing

294 / Applesoft BASIC Toolbox

for various keystrokes. After returning from the subroutine, the variable contains
the numeric value of the last key pressed. If the RETURN key was pressed, the
variable has a value of 13. ·

GBANSWER$ At the end of the subroutine, GBANSWER$ is set equal to
the value keyed in.

GCCHAR After execution of the subroutine, the variable GCCHAR contains a
value equal to the number of characters keyed in. If no characters were entered, that
is, if only the RETURN key was pressed, GCCHAR contains a value of zero.

This ends the explanation of the GET subroutine. Hopefully you understand
how to use it and how it does what it does. Study the example disk programs for
more complete examples of how to interact with the routine.

Feel free to use the subroutine in your programs in place of the INPUT
instruction.

Note 1: To modify the GET subroutine so that it only accepts numeric characters,
insert the following line.

1171 IF GB< 43 OR GB> 57 OR GB= 47 THEN 1140

Note 2: To modify the GET subroutine so that the operator must always press RETURN
to enter a value, add the following two lines of code:

1141 IF GB= 13 AND G2 > G3 THEN 1260
1151 IF G2 > G3 THEN 1140

and change line 1190 to read

1190 G2 = G2 + 1

4. Serial and Sequential
Disk Files

Before any of the programs which work with disk files are run, they must be copied
to a new disk. The program disk does not have sufficient free space for additional
files.

Use the APPLE's FID (File Developer) program to copy the programs; if you
do not have access to the FID program, you can transfer each program by using the
LOAD and SAVE commands.

LOAD program name,Dnumber
SAVE program name,Dnumber

Remember to IN ITialize any new disk before trying to use it.
For this chapter copy the following programs to another disk:

SEQ ADDR CREATE PROG
SEO ADDR HELLO PROG
SEQ ADDR APPEND PROG
SEQ ADDR UPDATE PROG
SEQ ADDR LIST PROG
SEQ ADDR SEARCH PROG

If you want to make your disk operate like a turnkey system, use the following
steps:

I. Use a new disk or one which no longer contains any files you wish to keep.
2. Load the SEQ ADDR HELLO PROG from the program disk. Enter

LOAD SEQ ADDR HELLO PROG

3. REMOVE THE PROGRAM DISK and put in the disk you want to INITialize.
After putting in the new disk, initialize the disk using the SEQ ADDR HELLO
PROG currently in memory. Enter

INIT SEQ ADDR HELLO PROG,Dnumber,Vnumber

Fill in the drive and volume number as desired.
4. After the disk has been initialized, transfer the remaining programs from the

program disk to the newly initialized disk.
5. In order to use the programs on the new disk, all you need to do is insert the

disk into drive I and turn on the computer or key in PR#6 if the computer is

295

296 I Applesoft BASIC Toolbox

already turned on. The SEQ ADDR HELLO PROG will be executed automati­
cally.

Note: The SEQ ADDR FILE CREATE PROG must be run before any of the other
programs. The programs should be executed in the sequence presented .

A General Introduction to Serial and
Sequential Files

Definition and Illustrations

Serial File: A file organization method in which the records are only accessible by
reading the file sequentially and the records making up the file are not
in any specific order.

Sequential File: A file organization method in which the records are only accessible
by reading the file sequentially and the records are organized into
either ascending or descenwng sequence by one or more variables
within the record.

Both types of files are normally referred to as sequential files . But there is a fine
line of difference between serial files and sequential files .

Serial file processing refers to the access method in which records must be
read, rocessed, and written in a sequential manner. In order to access the last
record, all previous records must be read. The first record is read and processed,
then the second record is read and processed, etc.

The processing logic is not dependent on the records being in any specific
sequence .

Example The following data is in serial order, that is, one record following another. The data
is not in sequence by any of the variables making up the record. Therefore , it is
technically NOT considered a sequential file . Even though it should be referred to
as a serial file, most people would refer to the file as sequential.

Student Test
Number Student Name Score

12345 JIM JOHNSON 080
54321 MARY SMITH 095
22222 TIMMY WILLIAMS 070
33333 JAMES MC DONALD 098
etc .

Serial and Sequential Disk Files I 297

Sequential file processing refers to the access method in which records must
be read, processed, and written in a sequential manner. In order to access the last
record, all previous records must be read. The first record is read and processed,
then the second record is read and processed, etc .

The processing logic is dependent on the data within the file being in a specific
sequence.

Example The following table of data is in sequential order, that is, one record following
another organized into either an ascending or a descending sequence by a key var­
iable. The key variable is normally referred to as the record key. The record key is
located in the same position on all records and serves to identify the record. Typical
examples of record keys are Social Security number, student number, employee
number, and driver's license number.

For this example the records are in ascending sequence by the student number.

Student Test
Number Student Name Score

12345 JIM JOHNSON 080
22222 MARY SMITH 095
33333 TIMMY WILLIAMS 070
54321 JAMES MC DONALD 098
etc.

In both serial and sequential files , the records are accessed sequentially. Thus
the fine line of difference between a serial file and a sequential file is

1. Serial files are not organized mto any specific sequence .
2. Sequential files are organized into either ascending or descending sequence by

one or more variables within the record.

Systems Chart and Description of Sequential Processing

The following systems chart may be used to represent both the program which
creates the file label and the program which adds records to the end of the file.

298 / Applesoft BASIC Toolbox

Step 1: Creating the File Label
Step 2: Adding Records to the End of a Sequential File

KEYBOARD

CREATE OR
APPEND
PROGRAM

Before a sequential file can be accessed, the file label must be created. For the
examples used in this book, the file labels are created by a separate program. After
the label is created, records may be added (APPENDed) to the end of the file.

Step 3: Sequential File Update

KEYBOARD

UPDATE
PROGRAM

NEW DISK
FILE

The update program provides the user with a method to keep data on the
MASTER Fl LE current. Variables within existing records may be updated or changed.
Records which are no longer needed may be deleted or purged from the file.

KEYBOARD

Step 4: Sequential Report Generation or Inquiry

REPORT/
INQUIRY
PROGRAM

Serial and Sequential Disk Flies I 299

PRINTER
HARD
COPY

Once a file is created, the data on that file can be used to produce reports.
Inquiries or reports related to the file may be displayed on the screen (soft copy) or
sent to a printer to produce a hard copy. The term inquiry is normally used instead
of report when a request is made to view a single record or a group of records.
Inquiry also implies that the information will be displayed on a CRT.

The Advantages of Sequential and Serial Processing

Note: Even though there are some advantages to sequential files, they are normally
not used on microcomputers or minicomputers because of the way the operator and
the programs interact on smaller systems. Almost all systems developed for the
APPLE use some form of random processing.

If all the records within a file are normally going to be accessed, sequential
processing is faster than random processing.

Since the records are accessed sequentially, the machine does not have to
compute the location of each record as it does when working with random files.
This simplifies the 1/0 process and makes sequential file organization the preferred
method when the majority of the records within a file are to be accessed.

A second advantage of sequential processing is that as part of the update oper­
ation, a second copy of the master file is created, thereby making an automatic
backup of the file. As the OLD MASTER FILE is updated, a NEW MASTER FILE is
created. The new master file is basically a copy of the old master file except for

300 / Applesoft BASIC Toolbox

additions, changes, and deletions which are made during the update process. If for
any reason you discover that errors have occurred during the update process, the
old master is still available in its original state.

Disadvantages of Sequential and Serial Processing

For small computers which operate in an interactive mode (operator interacts with
computer), the disadvantages of sequential files normally outweigh the advantages.

Sequential processing is normally limited to those systems in which information
(transactions) may be grouped together in a batch and processed as a unit against
the master file.

For example, in a sequential payroll application, time cards are batched at the
end of the week and entered into the computer as a group. The time cards are sorted
into the same sequence as the payroll master and then processed sequentially against
the master file to produce a new updated master along with the checks, reports, etc.

Did you notice the word sorted?
For serial files the data does not have to be sorted, but for sequential files the

data must be sorted prior to the updating of the master file.
The primary disadvantage of sequential processing is that the transactions (addi­

tions, changes, and deletions) must be in the same sequence as the master file in
order to be processed.

The computer cannot insert new records into an existing sequential file. It can
only add new records to the end of an existing sequential file. In order to insert new
records, the entire file must be copied and the new records inserted in the proper
sequence. Records which are to be changed or deleted must be processed in the
sequence in which they occur on the master file.

A second disadvantage is that once a record is read from the old master file
and written to the new master file, the computer cannot back up and reprocess it.

A third disadvantage is that even if only a few records are to be added, changed,
or deleted, the entire sequential file must be read and rewritten.

If only a small portion of the records within a file are to be accessed during
any given run or operation, then sequential processing should not be used. The time
required to sequence the transactions, read the old sequential file, and write a new
sequential file exceeds the time required to work with a few individual records in a
random file.

A Summary of Sequential Files for Microcomputers

Sequential processing is fine for larger computers which can sort and process trans­
actions in a batch mode, but for most applications on small computers, some form
of random processing should be used.

Serial and Sequential Disk Files I 301

Because the computer must process sequential files starting with the first record
and continuing sequentially through the file, one record at a time, it is normally not
the best technique for on-line, interactive programs.

Problem Specifications

A General Description of the Problem

Note: The data in this system is not in any specific order, and therefore the term
serial file should be used. But the access method is sequential, so all references to
the file and system are termed sequential.

The same problem is used to illustrate the three types of disk access methods
with just a small variation on the screen design. The screen design for the sequential
version of the client directory consists of the name, address, city, state, ZIP code,
and telephone number as follows:

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

The reason for using the same problem to illustrate all the disk programs is so
you may concentrate on the structure of each type of program and the instructions
related to file handling. Running the same data through each system also gives you
a better chance to make a fair comparison of the advantages and disadvantages of
each file processing technique.

Once you understand the logic of the various programs, you can easily copy
the program structure to modify it for more involved applications. The overall logic
for handling sequential files, random files, or index files is basically the same no
matter what data is being manipulated.

So the problem is to design, write, and create a sequential system to keep track
of client name, street address, city, state, ZIP code, and phone number. No client
number or code is to be used as a record key, since this is a serial file and is not
kept in any specific sequence.

Six programs are used to illustrate sequential processing:

302 / Applesoft BASIC Toolbox

1. A program for creating the file label in order to get the system started
2. A HELLO or MENU selection program which allows the operator a method of

choosing which program is to be executed
3. A program for adding new records to the file
4. A program for updating existing records
5. A program for listing all the records on the file
6. A program for searching the file by last name for a specific client

The SEO ADDR CREATE PROGram is needed to create a label on the disk.
Once a label is created, the SEO ADDR APPEND PROGram is used to add records
to the end of the existing file.

The SEO ADDR HELLO PROGram is used to display a menu to the person
entering data. The operator enters a number matching the program which is to be
executed (see below). With the exception of the SEO ADDR CREATE PROGram and
the SEO ADDR HELLO PROGram, all programs within the system are executed by
way of the menu.

SELECT ONE OF THE FOLLOWING:

1. ADD NEW RECORDS.

2. CHANGE EXISTING RECORDS.

3. LIST RECORDS ON SCREEN.

4. SEARCH FILE BY LAST NAME.

5. QUIT PROCESSING.

SELECTION DESIRED= ()

First error message line
Second error message line

The SEO ADDR APPEND PROGram is used to add records to the end of an
existing file. Since records are added to the end of the file in any sequence, the
system uses SERIAL file processing logic. The system could be programmed to
insert records into a specific sequence such as last name, but the logic is much more
involved. Also, if records are inserted in sequence, there is no need to use the
APPEND instruction. Since one of the objectives of this system is to illustrate how

Serial and Sequential Disk Filas I 303

to use the APPEND instruction, all new records will be added to the end of the
existing file.

The SEQ ADDR UPDATE PROGram is used to change one or more values in
an existing record or to delete a complete record from the file. Again, if this were
a sequential system instead of a serial system, then the program would be set up to
allow records to be inserted (added) into the correct location.

The SEQ ADDR LIST PROGram is used to display all the names and addresses
in the file.

The SEQ ADDR SEARCH PROGram is used to search the file and display all
the records with a specific last name or part of a last name. This example is basically
the same as the list program but shows how to search sequentially for a specific
value within a record.

A Data Name Dictionary for the Sequential Address System

The following list describes the variables used in the sequential system.
Not all the names are used in each program. The dictionary is included here

to give you a single source for the description of the variables used within the system.
If you have a question about the use of one of the variables while looking at a
program listing, return to this section for an explanation and a better understanding
of the variable.

The names are listed in alphabetic order. Each name consists of a two character
prefix followed by a descriptive name. The two character prefix or Applesoft name
is given at the left with the full name and description at the right.

All the variable names starting with an A are part of the address record.

A1$ = A1REC$

This is the name used when reading the record from disk. It consists of all the
variables making up the records.

AA$ = AANAME$

This contains the name of the client and has a fixed length of 25 characters. Data
within the variable is left justified. The system is designed for the name to be entered
using the format of FIRSTNAME LASTNAME. In order for the search program to
work correctly, there must be a blank between the first and the last name. There can
be no embedded blanks within the last name. For example, JOE MC DONALD has
to be entered as JOE MCDONALD.

AB$ = ABADDR$

This contains the street address of the client and has a fixed length of 25 characters.
The data within the variable should be left justified.

304 / Applesoft BASIC Toolbox

AC$ = ACCITY$

This contains the name of the city and has a fixed length of 15 characters. The data
within the variable should be left justified.

FD = FDRIVE = Value of 1

The name stands for File DRIVE !and is used in conjunction with PDRIVE (Program
DRIVE) to indicate which disk drive is to be accessed.

Fl$ = FILEID$

This contains the. name of the file to be read. The variable is initialized in the
BEGINNING ROUTINE of each program and used in all DOS instructions.

All the variable names starting with G are part of the GET subroutine. The
following variables are used as parameters to and from the routine:

GA= GALEGTH

This must be set equal to the length of the variable to be read before the subroutine
is executed. The subroutine is set up to read from 1 to 40 characters.

GB$ = GBANSWER$

After logic flow returns from the subroutine, this variable contains the value keyed
ID.

GC = GCCHAR

After completion of the subroutine, this variable contains the number of characters
keyed in by the operator. GCCHAR is important only if you are testing whether the
operator entered data or just pressed the RETURN key. If no characters are entered,
that is, if only the RETURN key is pressed, the value in GCCHAR is zero.

You need to understand how the variables GALEGTH, GBANSWER$, and
GCCHAR are used in order to follow the logic in the programs. You do not need to
understand how the other variables in the GET subroutine are used in order to follow
the program logic. For a detailed explanation of the variables GBCHAR, G1, G2 and
G3 see the narrative presented earlier on the GET subroutine.

L 1 through LS

The variables L 1, L2, L3, L4, L5, L6, L7, LB, and LS are used for vertical positioning
of the cursor. The number in the second position of the name is not necessarily the
number of the related line. VTAB L 1 does not necessarily position the cursor on line
1. The variables are used for program flexibility and could have just as easily been
called LA, LB, LC, LO, etc. (In fact, I wish I had: it would cause less confusion.)

Serial and Sequential Disk Files I 305

MT= MTCHES

This variable is only used in the SEQ ADDR SEARCH PROGram. The variable is
used to count the number of MaTCHES made when searching the file.

N1, N2, N3

N1, N2, and N3 (Numeric variable 1, 2, and 3) are used as general counters in FOR/
NEXT instructions or for general numeric operations.

PD = PDRIVE = Value of 1

The name stands for Program DRIVE and is used in conjunction with FDRIVE (File
DRIVE) to indicate which disk drive is to be accessed.

X1$, X2$

X1 $and X2$ are general string variables used in the GET instruction when requesting
a response from the operator.

Disk Record Format Specifications

All the disk examples in this book work with fixed length records. That is, each
variable in the record has a fixed length and each record has a fixed length.

For this example the record length is 83 characters. The table below shows the
fixed size of each variable in the record.

Variable Name Length Record Position
AANAME$ 25 1to25
ABAD DR$ 25 26 to 50
ACCITY$ 15 51 to 65
ADS TE$ 2 66 to 67
AEZIP$ 5 68 to 72
AFPHNE$ 10 73 to 82
EOR mark 1 83

The EOR or End-Of-Record indicator is written and controlled by the computer.
It is included in the record description in case you are going to figure how much
disk storage space is used.

When all these variables are combined and written onto the disk, the record
has the following format:

Column
1 2 3 4 5

12345678901234567890123456789012345678901234567890
NNNNNNNNNNNNNNNNNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAA

306 / Applesoft BASIC Toolbox

6 7 8
Column# 123456789012345678901234567890123

cccccccccccccccsszzzzzpppppppppp?

where N = name; A = street address; C = city; S = state; Z = ZIP code; P =
phone number; ? = end-of-record marker

The Sequential File CREA TE Program

Program Name SEQ ADDR CREATE PROG

Program To create a label and EOF marker so that the APPEND program can add new records
Objective to the empty file.

Instructions for Note 1: Prior to running any of the programs in the sequential file system, you must
Running the copy the program from the program disk to a new disk. There is not enough

Program room on the program disk to store any text files.

Note 2: Since all the programs are set up for a single drive system, the disk being
used must be in drive 1 or the values for FDRIVE and PDRIVE must be
changed in each program.

To keep this program as simple as possible, most of the responsibility for a
successful run has been shifted from the program to the computer operator.

There are several situations which result in the program's failing to create the
new empty file and file label.

1. If the file label already exists, the program simply OPENs and CLOSEs the
existing file. The contents of the existing file remain unchanged.

2. If the disk is full, write protected, or not initialized, the program is canceled
by DOS with an 1/0 ERROR message. The responsibility for handling these
errors is left up to the operator.

Before running the program, you should make sure the file label (SEQ ADDR FILE)
does not exist on the disk. Use the CATALOG command and check to see ifthe label
exists. If the label exists and you are sure you want to destroy the data that is currently
on the file, use the DELETE command to remove the file.

After you have made sure the file does not exist enter

RUN SEQ ADDR CREATE PROG <RETURN>

Program Listing 1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
llOO
lllO
l120
l130
l140

Explanation by
Line Number

REM SEQ ADDR CREATE PROG
REM ------------- - - -------
TEXT : NORMAL : HOME : SPEED= 255
D$ = CHR$ (4)
FDRIVE = 1
FILEID$ = "SEQ ADDR FILE"
PRINT D$;"MON I , 0 , C"
PRINT D$;"0PEN " ; FILEID$; ",D" ; FDRIVE
PRINT D$; "CLOSE "; FILEID$
PRINT D$; "NOMON I , 0 , C"
PRINT D$
PRINT
PRINT "NORMAL END OF PROGRAM"
REM ------ ----------------
END

Serial and Sequential Disk Files I 307

1020 As a coding standard , each of the programs in the systems start out with four
instructions. The TEXT instruction makes sure the computer is in TEXT, mode. The
NORMAL instruction makes sure the computer is set to light letters on a dark back­
ground .

Some instructions should be executed only while in the NORMAL mode. If you
try to open a file while the system is in FLASH mode , the characters generated in
the file name will not be the same as when the system is in NORMAL mode, and
you will have problems retrieving the file in any mode other than FLASH. Also, the
MONitor instruction , if used , must be executed while the system is in NORMAL
mode .

The HOME instruction ensures that any information from a previous program
is cleared from the screen as the program is starting. The SPEED instruction makes
sure that any data displayed on the screen is displayed at the computer's normal
speed of 255.

As a general guideline, start all your programs with this set of instructions . By
always resetting these features , you are assured that the computer is set up correctly
for your program. You need not be concerned if the last program used graphics,
ended with the INVERSE or FLASH display options , left data on the screen , or slowed
down the computer.

1030 The binary pattern for the CONTROL-D key must precede all DOS commands.
As a coding convention, most programmers use the variable name 0$ to rep­

resent the CONTROL-D key. At the very beginning of the program, the string 0$ is
set equal to CHR$(4). CHaRacter$(4) represents the numeric value generated by the
computer when both the CONTROL key and D key are pressed simultaneously.

The use of 0$ in conjunction with the CHR$ function is the best way to code
the CONTROL-D, but you may see programs which use other techniques.

308 / Applesoft BASIC Toolbox

DO NOT USE THE FOLLOWING CODING TECHNIQUE!

Bad Example: 0$ = ":REM CONTROL-DIS BETWEEN QUOTES
or PRINT";"OPEN FILE NAME"

In this example the CONTROL-D key is hidden between the quotation marks.
Since the CONTROL-D key is not a printable character, it does not show up on the
screen or on printed listings of the program. You have no easy way of knowing what
is between the two quotation marks.

Also, some printers use various control keys to indicate printer control opera­
tions such as skipping to the top of a page, changing the size or style of print,
changing between graphics and text mode, etc.

If you attempt to list a program which has hidden control keys, you may become
very frustrated.

Example: PRINT CHR$(4);"0PEN file name"
PRINT CHR$(4);"CLOSE file name"

If you have a limited number of places in your program which use the CON­
TROL-D value, you may code the CHR$ function in each location. This takes a little
more coding, but some programmers prefer to see the actual control value rather
than a variable.

1040 As a coding standard, the disk programs use the variable FDRIVE to represent the
number of the disk drive on which the general data files are to be located.

The variable PDRIVE is used in other programs to represent the number of the
disk drive on which the programs are located.

If you have one disk drive both fields will equal 1. If you have two disk drives
normally the programs are located on drive 1 and the data files are located on drive
2.

1050 For the disk programs, a variable is used to specify the file name. The main advantage
of using a variable for the file name rather than a constant is that there is no chance
that the file labels will not match (at least within the program). When you key the
name once, all the DOS instructions use the same value even if a keying error was
made.

1060 The MONitor instruction is executed in order to provide you with some feedback
on what the program is doing. As the files are opened and closed, you are able to
see the instructions being executed. For operators who do not understand program­
ming, you should display messages in more human oriented terms such as FILES
OPENED, FILES CLOSED, and NORMAL END OF PROGRAM.

Serial and Sequential Disk Flies I 309

1070 The OPEN instruction allocates an area in the computer to prepare for handling
either input from this file or output directed to the file.

The OPEN instruction also causes the file label to be entered into the disk
catalog if the label does not currently exist.

1080 The CLOSE instruction causes any data which is in the output buffer and an EOF
marker to be written.

The creation of a label on the disk and the writing of an EOF marker are the
two objectives of this program. These objectives are not accomplished until the file
is properly closed.

1090 The MONitor function is turned off since it is of no further use.

Program Name

Program
Objective

After the program completes execution, the screen will appear as follows:

OPEN SEQ ADDR FILE,Dl
CLOSE SEQ ADDR FILE
NOMON I,O,C

NORMAL END OF PROGRAM

The Sequential File HELLO Program

SEO ADDR HELLO PROG

To provide a method of transition between the programs making up the ADDRESS
SYSTEM so that the person using the system needs no technical knowledge of how
to run a computer.

Every effort should be made to make an application package as simple for the
user as possible. One technique to accomplish this is to program the system (appli­
cation package) in such a way that the person using the computer" needs only to
know how to turn the computer on and follow directions.

The APPLE computer provides an ideal way of letting the programmer set up
a turnkey system in which the user only needs to know how to insert a disk into
drive 1 and turn the computer on.

310 I Applesoft BASIC Toolbox

Instructions for
Running the

Program

When the computer is turned on, DOS automatically looks for the HELLO program
which was stored on the disk during the disk INITialization process (seep. 295).

The HELLO program displays a menu and requests a response from the operator.

1. SEQ ADDR APPEND PROG

2. SEQ ADDR UPDATE PROG

SEQ ADDR HELLO PROG 3. SEQ ADDR LIST PROG

4. SEQ ADDR SEARCH PROG

5. QUIT PROCESSING

The SEQ ADDR HELLO PROG is executed automatically when the disk is placed
in drive 1 and the computer is turned on (or PR#6 is entered). The operator selects
a number from 1 to 5 indicating which operation is desired. The HELLO program
then executes the matching program. Each program is set up to automatically return
to the SEQ ADDR HELLO PROG when completed. Each time the HELLO program
is executed, the operator has a choice between entering another number to run a
program or entering 5 to quit processing.

The user never has to enter a RUN command for any of the processing programs.
The HELLO program and menu concept assume that only one system or set of

programs is going to be located on the disk. For example, if cost is not a problem,
you could put all the programs related to sequential file processing on one disk, all
the programs related to random file processing on another disk, and all the programs
related to indexed file processing on a third disk. Each system would have its own
HELLO program, which would be executed when the system was turned on. Nor­
mally you do not want to store programs and files for more than one system on a
single disk.

Use a separate disk for each system you develop. If possible, use one disk to
store the programs and a separate disk to store the files.

Make sure you have run the SEQ ADDR CREATE PROG before running any of the
menu driven programs. The file label must exist before you run any of the programs
which access the file.

Use the CATALOG command to check to see if the label exists and how many
sectors are used. Scroll through the names looking for SEQ ADDA FILE. If you find
the name, it should appear as

T 001 SEQ ADDR FILE

Serial and Sequential Disk Files I 311

The T indicates that the file is a text file, and the 001 indicates that the file
takes up sector on the disk. Since a file cannot take less than a sector, you may
assume the file is empty (contains no data) . If the number of sectors used is greater
than 1, the file most likely contains data .

After you are sure the file exists and does not contain any data, run the SEQ
ADDR HELLO PROG by keying in

RUN SEQ ADDR HELLO PROG <RETURN >

The screen will clear and the menu screen will be displayed.

SELECT ONE OF THE FOLLOWING:

l. ADD NEW RECORDS .

2. CHANGE EXISTING RECORDS.

3. LIST RECORDS ON SCREEN.

4. SEARCH FILE BY LAST NAME.

5. QUIT PROCESSING.

SELECTION DESIRED = ()

First error message line
Second error message line

Normally you enter a number from 1 to 4 depending on which program you
want to execute. But since you are just starting and there are no records currently
on the SEO ADDR FILE, you MUST RUN the APPEND program first in order to add
records to the empty file.

Before you make a correct selection, press some of the following keys to see
how the error messages are displayed.

1. Press the RETURN key
No symbol is printed between the parentheses following the SELECTION

message, but an error message is displayed at the bottom of the screen. Press
the space bar to continue.

2. Press any key other than 1, 2, 3, 4, 5 or CONTROL-RESET.

312 / Applesoft BASIC Toolbox

The symbol is printed between the parentheses following the SELECTION
message, and an error message is displayed at the bottom of the screen. Press
the space bar to continue.

Before continuing you should look over the program listing and line explana­
tion. After finishing with the SEQ ADDR HELLO PROGram, you will want to read
all the information about the SEQ ADDR APPEND PROGram before actually adding
any data.

Program Listing 10,00 REM SEQ ADDR HELLO PROG
1010 REM ---------
1020 TEXT : NORMAL : HOME : SPEED= 255
1030 D$ = CHR$ (4)
1040 PDRIVE = 1
1050 VTAB 5
1060 PRINT "SELECT ONE OF THE FOLLOWING:"
1070 PRINT
1080 PRINT" 1. ADD NEW RECORDS."
1090 PRINT
1100 PRINT " 2. CHANGE EXISTING RECORDS."
1110 PRINT
1120 PRINT " 3. LIST RECORDS ON SCREEN."
1130 PRINT
1140 PRINT" 4. SEARCH FlLE BY LAST NAME."
1150 PRINT
1160 PRINT II 5. QUIT PROCESSING."
1170 PRINT
1180 PRINT "SELECTION DESIRED=()"
1190 VTAB 15: HTAB 20
1200 PRINT " "; CHR$ (8); : REM CHR$(8) =BACKSPACE
1210 GET Xl$: Xl =VAL (Xl$): IF ASC(Xl$) > 31 THEN PRINT Xl$;
1220 IF Xl < 1 OR Xl > 5 THEN 1270

<:-""1230 IF Xl = 5 THEN 1490
1240 VTAB 23: HTAB 1: INVERSE
1250 PRINT " LOADING PROGRAM - PLEASE WAIT 11 • NORMAL
1260 ON Xl GOTO 1370,1400,1430,1460
1270 VTAB 23: HTAB 1: INVERSE
1280 PRINT II INVALID ENTRY" TAB(39)" II

1290 PRINT " PRESS SPACE BAR AND TRY AGAIN" TAB(38)" ";
1300 NORMAL : GET Xl$
1310 IF Xl$ < > II II THEN 1300
1320 VTAB 23: HTAB 1
1330 PRINT TAB(39)" II

1340 PRINT TAB(39)" 11 •

1350 GOTO 1190
1360 REM ___ ,

+1370 PRINT D$
1380 PRINT D$;"RUN SEQ ADDR APPEND PROG,D"PDRIVE
1390 REM ---------

kt' 1400 PRINT D$
1410 PRINT D$;"RUN SEQ ADDR UPDATE PROG,D"PDRIVE

1420 REM ------------------­
t 1430 PRINT 0$

Serial and Sequential Disk Files I 313

1440 PRINT D$;"RUN SEQ ADDR LIST PROG,D"PDRIVE
1450 REM ---------

+- 1460 PRINT 0$
1470 PRINT D$;"RUN SEQ ADDR SEARCH PROG.D"PDRIVE
1480 REM --------------
1490 HOME
1500 PRINT "THAT'S ALL FOLKS!"
1510 END

Explanation by Detailed explanations by line number follow.
Line Number

1040 When designing a system, it is best to put all the programs on one disk and the data
files on a second disk. This works fine for systems with two or more disk drives but
does not work for single disk systems.

As a coding standard, all the programs which access information on the disk
use two variables to indicate which disk drive is to be accessed. The name PDRIVE
stands for Program DRIVE and contains the number 1, indicating the drive on which
the programs are located. The name FDRIVE stands for File DRIVE and should contain
either a 1 or 2 depending on how many drives you have on your system.

Rather than hard coding the OPEN and RUN instructions to use a specific disk,
use variables to make the programs easier to change. If you code constants such as

PRINT D$;"RUN program name,D1"

or

PRINT D$;"0PEN file name,D2"

throughout your programs, the instructions will be difficult to change. If you code
variables such as

PRINT D$;"RUN program name,D"PDRIVE

or

PRINT D$;"0PEN file name,D"FDRIVE

throughout your programs, then all the instructions may easily be changed by setting
the drive variable equal to either a 1 or 2 at the beginning of each program.

By using a variable name to indicate which disk is to be accessed, you make
your software much more flexible. In this book all the programs are set up to run
with one disk drive. But you may change the value of FDRIVE to 2 and have the
files located on drive 2.

314 / Applesoft BASIC Toolbox

1050-1190 Lines 1050 through 1170 display the menu indicating the possible choices to the
operator. You should look at the last two lines to see how they are coded . Line 1180
provides a place for the operator to respond, and line 1190 is responsible for posi­
tioning the cursor within the parentheses .

1200 PRINT""; CHR$ (8); : REM CHR$(8) = BACKSPACE

This PRINT instruction is beneficial only if the operator makes a mistake and enters
a character other than 1, 2, 3, 4, or 5. For example, if you run the program and
press the letter A, the A is displayed between the parentheses, and an error message
is printed , indicating the mistake. After the error message is displayed, the operator
is given another chance to enter a correct value. Before the operator is given another
chance, line 1200 erases the A and backs up the cursor so it is located between the
parentheses . The " " erases the position, while the CHR$(8) backs the cursor up
one position .

1210 Line 1210 accepts a character, converts the symbol to a numeric value , and then
checks and prints the character. The VAL function converts the single character
string variable to a value from 0 to 9 so it can be used in the ON GOTO instruction .
The ASC function converts the symbol to the binary value related to the character
(see Appendix A). If the binary value of the character entered is greater than 31 , it
is not a_ control character and is displayed .

If you are using the GET instruction and want to display the character entered ,
you can follow the GET with a PRINT instruction; but be careful of control characters
and the RETURN key. If you print the RETURN character on lines 1 through 23 and
follow it with a semicolon, the screen will not scroll . But if you are using line 24
and the operator makeJ a mistake and presses the RETURN key instead of some
acceptable character, there is a problem. When the RETURN symbol is printed on
line 24 , the screen scrolls up one line, even if the PRINT instruction ends with a
semicolon.

If you are entering data on line 24 , check the character entered for an ASC
value of 13 (RETURN key), and do not print a RETURN symbol. Use the following
sequence of instructions:

1000 GET X1$
1010 IF ASC (X1$) = 13 THEN PRINT" ";:GOTO 1030
1020 PRINT X1$;
1030 .. . next instruction

1220 Line 1220 tests to make sure the value entered is within acceptable limits of the ON
GOTO instruction . This test is not really necessary for this program since only a
single digit may be entered . But it is a good practice to always precede an ON GOTO
or an ON GOSUB with a test to make sure the value is not less than 0 or greater
than 255 .

Serial and Sequential Disk Files I 315

If an invalid value is entered, logic flow skips to line 1270.

1230 If the operator enters a 5, the program is terminated.

1240-1250 Since there is a significant amount of time (several seconds) between the operator's
entering a number and the execution of the next program, lines 1240 and 1250
display a message to indicate what is going on.

1260 ON X1 GOTO 1370,1400,1430,1460

1270

1280

1290

1300

1310

1320

Depending on the value keyed in, the ON number GOTO instruction causes program
flow to branch to one of the four statement numbers following the GOTO or to fall
through to the next instruction. If a 1 is entered, logic flow branches to statement
1370: a 2 causes a branch to 1400, a 3 to 1430, and a 4 to 1460.

VTAB 23: HTAB 1: INVERSE

PRINT "INVALID ENTRY" TAB(39)" "

PRINT "PRESS SPACE BAR AND TRY AGAIN" TAB(38)" ". ,

NORMAL: GET X1$

IF X1$ < > " "THEN 1300

VTAB 23: HTAB 1

1330 PRINT TAB(39)" "

1340 PRINT TAB(39)" ";

1350 GOTO 1190

The set of instructions from lines 1270 through 1350 represents a standard sequence
for displaying an error message and waiting for a response from the operator.

As a design standard, all programs in this book use lines 23 and 24 of the
screen for displaying error messages.

Lines 1270, 1280, and 1290 print the error message in the INVERSE mode.
The lines look very simple, but there are several points you should make sure you
understand.

316 I Applesoft BASIC Toolbox

Notice that the TAB function is used to cause inverse blanks to be printed all
the way over to column 39. If the inverse blanks are not printed to column 39, the
error message does not form a nice looking box. Also, notice that column 40 is not
used on lines 23 and 24. When something is printed in column 40 of line 24, the
screen automatically scrolls up one line even if the information is followed by a
semicolon. The scrolling messes up the screen design, so none of the programs use
column 40 of line 24.

Since a semicolon is used at the end of the PRINT instruction on line 1290, the
cursor stays on line 24 in column 39 waiting for the operator to respond to the error
message. If the semicolon is not used, the computer automatically scrolls up one
line since the line just printed is the last line on the screen.

After the operator presses the space bar, lines 1320 through 1350 clear the error
message and branch back to give the operator another chance at entering a correct
value.

1370 PRINT D$

1380 PRINT D$;"RUN SEO ADDR APPEND PROG,D"PDRIVE

1470 PRINT D$;"RUN SEQ ADDR SEARCH PROG,D"PDRIVE

If I, 2, 3, or 4 is entered, logic branches to the matching RUN statement and causes
the program to be run. Because of the way the GET and the DOS instructions work,
there is a problem with trying to execute a DOS instruction after using the GET
instruction. I will not try to explain why the problem exists but suggest that whenever
you use the GET instruction and any DOS instructions in the same program, you
should always print a dummy CONTROL-D prior to printing the actual DOS instruc­
tion.

The programs in this book always print a dummy D$ prior to executing a DOS
instruction.

The Sequential File APPEND Program

Program Name SEQ ADDR APPEND PROG

Program To provide the user with a method of adding new records to the SEQ ADDR FILE.
Objective

There are basically two methods for adding records to a file. The easiest method
for both the operator and the programmer is to add new records to the end of an

Instructions for
Running the

Program

Serial and Sequential Disk Flies I 317

existing file. The harder method is to copy the old file and insert the new records in
correct sequence as the new file is written out.

Since the objective of this program is to show how to use the APPEND instruc­
tion, the new records will be added to the end of the existing file (this also happens
to be the easiest method to program).

Make sure you have run the SEQ ADDR CREATE PROG. After the file has been
created, run the SEQ ADDR HELLO PROG. In response to the menu, enter a 1, and
the HELLO program will execute the APPEND program for you.

Those of you who want to bypass the HELLO program may run the program
directly by entering

RUN SEQ ADDR APPEND PROG <RETURN>

After the program starts, the following screen will be displayed.

SEQ ADDR APPEND PROG

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

PRESS A TO ACCEPT THE ENTRY.
PRESS R TO REJECT THE ENTRY.

() PRESS Q TO QUIT.
PRESS THE SPACE BAR TO CONTINUE.

First error message line
Second error message line

When the screen is displayed, the cursor is positioned at the start of the quit or
continue message. The program waits until you press Q to quit processing or the
space bar to continue. When the space bar is pressed, the cursor is repositioned to
the first data line. The] symbol indicates the position of the cursor on the screen.

318 / Applesoft BASIC Toolbox

()) PRESS Q TO QUIT.
PRESS THE SPACE BAR TO CONTINUE.

In response to the first question, press the space bar. The cursor should now
be in the first column of the name field.

NAME =(]
ADDRESS =(

)
)

Enter the name JOHN JONES and press RETURN. The cursor will move to the
first column of the address field. Continue the data entry operation by keying in the
address and the city as shown below. Since the data you are entering is shorter than
the size of the field on the screen you must press RETURN after entering the last
character of each field.

NAME =(JOHN JONES)
ADDRESS = (1234 EASY STREET)
CITY =(NEW YORK)

When you enter the state code, ZIP code, and phone number, the number of
characters entered matches the maximum size of the field, and you do not need to
press RETURN. As you press the last key of the character, the cursor automatically
skips to the next field. Enter the state code, ZIP code, and phone number as follows:

STATE =(NY)
ZIP CODE =(11111)
PHONE = (222-333-4444)

After you enter the last digit of the phone number, the cursor is repositioned
to the accept or reject message line, where it waits for you to check what you have
entered.

()) PRESS A TO ACCEPT THE ENTRY.
PRESS R TO REJECT THE ENTRY.

If you did not make any mistakes on entering the data, then press A, and the
record will be accepted. If you made a mistake and want to reject the data, enter an
R.

The programs are designed to allow you to back up and change characters
within the fields (by using the back arrow key) but are not designed to allow you to
back up between fields. Once the cursor moves to the next field, you cannot return
to the prior field. If you make a mistake and do not catch it until the cursor is
positioned to a new field, then press the RETURN key until all the remaining fields

Serial end Sequential Disk Files I 319

have been skipped. Then reject the record and you will have another chance to
reenter all the data correctly. This is not the best programming technique, but it is
easy to code.

If you enter an A, the information is accepted, the screen is cleared, and the
cursor is repositioned to the quit or continue message line to start the process over.
Depending on how many records have been entered, the disk drive may or may not
be activated (whirl and start up). Do not be concerned if the disk does not start up
after accepting a record. Records are not written out to the disk until the output
buffer is full. The buffer can hold a maximum of 256 characters, so data is written
to the disk every three or four records (83 * 3 = 249; 83 * 4 = 332).

If you enter an R the screen is cleared, the data entered is rejected, and the
cursor is repositioned to the quit or continue message line to start Llie process over.

If you press any key other than A or R, then the following error message is
displayed at the bottom of the screen.

INVALID RESPONSE- PRESS SPACE BAR
TO CONTINUE

Continue entering a few records. Try to enter at least five records so you may
see what happens when the buffer is filled. Hint: The red light on the disk turns on
and buffer is written out.

After you are through entering data, press a Q in response to quit or continue
message. The disk will whirl, any data currently in the output buffer will be written,
and the file will be closed. After the file is closed, the SEQ ADDR HELLO PROGram
is run, and the original menu is displayed.

The program must terminate normally in order for the last few records to be
written out and the EOF marker to be correctly written.

If you want to see the data you entered, press a 3 in response to the menu to
run the SEQ ADDR LIST PROGram.

Program Listing 1000 REM SEQ ADDR APPEND PROG
1010 REM ---------
1020 CLEAR :Gl = PEEK (116) * 256 + PEEK (115) - 40 :GA$ "

12345678901234567890" + "12345678901234567890"
1030 REM
1040 REM -------------
1050 REM DRIVE ROUTINE
1060 GOSUB 1870: REM BEGINNING
1070 GOSUB 1300: REM MAIN MOD
1080 GOTO 2280: REM END MODULE
1090 REM
1100 REM --------------
1110 REM GET SUBROUTINE
1120 IF G3 = 0 THEN GOSUB 1270
1130 G3 = Gl + GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT

G2 = Gl

320 / Applasoft BASIC Toolbox

1140 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1210
1150 IF GB = 13 THEN 1230
1160 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 1190
1170 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1140
1180 PRINT CHR$ (GB);: POKE G2,GB
1190 G2 = G2 + 1: IF G2 > G3 THEN 1260
1200 GOTO 1140
1210 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1140
1220 PRINT CHR$ (8);: GOTO 1140
1230 IF Gl = G2 THEN 1250
1240 FOR GC = G2 TO G3: PRINT"";: NEXT
1250 FOR GC = G2 TO G3: POKE GC,32: NEXT
1260 GB$= LEFT$ (GA$,GA):GC = G2 - Gl: RETURN
1270 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141:

POKE 772,07: POKE 773,03: POKE 774,96: RETURN
1280 REM
1290 REM -----------
1300 REM MAIN ROUTINE
1310 VTAB LB: HTAB 2: GET Xl$
1320 IF Xl$ = "Q" THEN 1840
1330 IF Xl$ < > II II THEN 1310
1340 GOSUB 2180: REM CHECK ;MEMORY SPACE
1350 GALEGTH = 25: VTAB Ll: HTAB 12: GOSUB 1110
1360 IF LEFT$ (GBANSWER$,l) = II II THEN 1350
1370 AANAME$ = GBANSWER$
1380 VTAB L2: HTAB 12: GOSUB 1110
1390 ABADDR$ = GBANSWER$
1400 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1110
1410 ACCITY$ = GBANSWER$
1420 GALEGTH = 2: VTAB L4: HTAB 12: GOSUB 1110
1430 ADSTE$ = GBANSWER$
1440 GALEGTH = 5: VTAB L5: HTAB 12: GOSUB 1110
1450 AEZIP$ = GBANSWER$
1460 GALEGTH = 3: VTAB L6: HTAB 12: GOSUB 1110
1470 AFPHNE$ = GBANSWER$
1480 HTAB 16: GOSUB 1110
1490 AFPHNE$ = AFPHNE$ + GBANSWER$
1500 GALEGTH = 4: HTAB 20: GOSUB 1110
1510 AFPHNE$ = AFPHNE$ + GBANSWER$
1520 VTAB L7: HTAB 2: PRINT""; CHR$(8);: REM CHR$(8) =BACKSPACE
1530 GET Xl$: PRINT Xl$;
1540 IF Xl$ = "A" THEN 1680
1550 IF Xl$ = "R" THEN 1750
1560 REM ---------
1570 REM ERROR MESSAGE
1580 VTAB L9: HTAB 1: INVERSE
1590 PRINT "INVALID RESPONSE - PRESS SPACE BAR" TAB(39)" "
1600 PRINT II TO CONTINUE" TAB (38) II";: NORMAL
1610 GET Xl$: IF Xl$ < > II II THEN 1610
1620 VTAB L9: HTAB 1
1630 PRINT TAB(39)" II

1640 PRINT TAB(39)" 11 '

1650 GOTO 1520
1660 REM

Serial end Sequentiel Disk Flies I 321

1G70 REM
lGBO REM WRITE ON DISK
1G90 PRINT D$
1700 PRINT D$;"WRITE ";FILEID$
1710 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$
1720 PRINT D$.
1730 REM
1740 REM----------
1750 REM CLEAR SCREEN
17GO VTAB Ll: HTAB 12: PRINT TAB(3G)" 11 • REM SPC CLEARED LINE
1770 VTAB L2: HTAB 12: PRINT TAB(3G)" "
1780 VTAB L3: HTAB 12: PRINT SPC(15)
1790 VTAB L4: HTAB 12: PRINT " "
1800 VTAB L5: HTAB 12: PRINT " "
1810 VTAB LG: HTAB 12: PRINT " 11

1820 VTAB L7: HTAB 2: PRINT " "
1830 GOTO 1310
1840 RETURN
1850 REM
18GO REM
1870 REM BEGINNING ROUTINE
1880 TEXT : NORMAL : HOME : SPEED= 255
1890 D$ = CHR$ (4)
1900 FDRIVE = l:PDRIVE = 1
1910 FILEID$ = "SEQ ADDR FILE"
1920 Ll = 5:L2 = G:L3 = 7:L4 = 8:L5 = 9:LG

17: L9 = 23
1930 PRINT D$
1940 PRINT D$;"APPEND ";FILEID$;",D";FDRIVE
1950 PRINT D$
19GO REM
1970 REM ----------
1980 REM PRINT SCREEN IMAGE
1990 HOME
2000 PRINT

SEQ ADDR APPEND PROG".
PRINT "NAME =(" SPC(25) 11)"

PRINT "ADDRESS =(" SPC(25) 11)"

PRINT "CITY =(" SPC(15) II)"
PRINT "STATE; =() "

)"

10:L7

2010 PRINT "
2020 VTAB Ll:
2030 VTAB L2:
2040 VTAB L3:
2050 VTAB L4:
20GO VTAB L5:
2070 VTAB LG:
2080 VTAB L7
2090 PRINT "(
2100 PRINT "
2110 VTAB LB

PRINT "ZIP CODE =(
PRINT "PHONE =()"

2120 PRINT "(
2130 PRINT "
2140 RETURN
2150 REM
21GO REM

PRESS A TO ACCEPT THE ENTRY."
PRESS R TO REJECT THE ENTRY."

PRESS Q TO QUIT."
PRESS THE SPACE BAR TO CONTINUE."

14:L8

2170 REM FREE MEMORY ROUTINE
2180 STARTING = PEEK (112) * 25G +PEEK (111): IF STARTING>

17000 THEN 2250

322 I Applesoft BASIC Toolbox

2190 VTAB L9: HTAB 1: INVERSE
2200 PRINT " FREEING MEMORY - PLEASE WAIT" TAB(38)" "
2210 STARTING = FRE (O)
2220 PRINT" DONE - PRESS SPACE BAR TO CONTINUE ";: NORMAL
2230 GET X1$: IF X1$ < > " " THEN 2230
2240 VTAB L9: HTAB 1: PRINT TAB(39}" ": PRINT TAB(39)" ";
2250 RETURN
2260 REM
2270 REM---------------
2280 REM ENDING ROUTINE
2290 PRINT D$
2300 PRINT D$;"CLOSE ";FILEID$
2310 HOME
2320 PRINT D$;"RUN SEQ ADDR HELLO PROG,D"PDRIVE
2330 REM
2340 REM

Cross Reference Listing

Variable names used with the address record:

AA$ 1370, 1710
AB$ 1390, 1710
AC$ 1410, 1710
AD$ 1430, 1710
AE$ 1450, 1710
AF$ 1470, 1490, 1510, 1710

Variable names used with the disk commands:

D$ 1690, 1700, 1720, 1890, 1930, 1940, 1950, 2290, 2300, 2320
FD 1900, 1940
Fl$ 1700, 1910, 1940, 2300
PD 1900, 2320

Variable names used with the GET subroutine:

G1 1020, 1130, 1210, 1230, 1260
G2 1130, 1160, 1180, 1190, 1210, 1230, 1240, 1250, 1260
G3 1120, 1130, 1190, 1240, 1250
GA 1130, 1260, 1350, 1400, 1420, 1440, 1460, 1500
GA$ 1020, 1260
GB 1140, 1150, 1160, 1170, 1180
GB$ 1260, 1360, 1370, 1390, 1410, 1430, 1450, 1470, 1490, 1510
GC 1240, 1250, 1260

Variable names used with displaying data on the screen:

L 1 1350, 1760, 1920, 2020
L2 1380, 1770, 1920, 2030
L3 1400, 1780, 1920, 2040
L4 1420, 1790, 1920, 2050
L5 1440, 1800, 1920, 2060
L6 1460, 1810, 1920, 2070
L7 1520, 1820, 1920, 2080
LB 1310, 1920, 2110
L9 1580, 1620, 1920, 2190, 2240

Serial and Sequential Disk Files I 323

Variable name used for general GET instruction in response to the screen messages:

X1$ 1310, 1320, 1330, 1530, 1540, 1550, 1610, 2230

Explanation By Detailed explanations by line number follow.
Line Number

1000 REM SEQ ADDR APPEND PROG

1010 REM ----------------------

1020 CLEAR :G1 = PEEK (116) * 256 + PEEK (115) - 40 :GA$=
"12345678901234567890" + "12345678901234567890"

1030

1040

1050

1060

1070

1080

REM

REM ----------------------

REM DRIVE ROUTINE

GOSUB 1790: REM BEGINNING

GOSUB 1280: REM MAIN MOD

GOTO 2070: REM END MODULE

With the exception of a few short programs in the system, each program starts off
with the same basic set of instructions.

Line 1020 is used by the GET subroutine. The instruction must be coded exactly
as shown and must be the first instruction in the program.

324 / Applesoft BASIC Toolbox

The first line of each program contains the name of the program as stored on
the disk. If you follow the practice of always listing the first line of the program and
then SAVEing the program under the name on line 1000, you are less likely to
destroy a program by saving one under the wrong name.

Almost all programs may be broken down into three parts:

1. Those instructions which are to be executed once at the beginning of the pro­
gram to start the program correctly (BEGINNING process)

2. Those instructions which are to be executed repeatedly to process each record
(MAIN process)

3. Those instructions which are to be executed once at the end of the program to
correctly terminate the program (ENDING process)

GOSUB instructions are used to execute the BEGINNING ROUTINE and the
MAIN ROUTINE since they return to the DRIVE ROUTINE when done. A GOTO
instruction is used to execute the ENDING ROUTINE since it starts execution of
another program and does not return to the DRIVE ROUTINE.

Logically, the code is executed in the sequence of beginning instructions, main
instructions, and ending instructions. Physically, the various parts of the program
are located in a different sequence. The primary reason for having the code in a
different sequence from that in which it is executed is that Applesoft and most
BASIC languages execute faster if the most frequently used code is located toward
the beginning of the program.

Therefore, one reason to place the most frequently used code toward the begin­
ning of the program is to improve execution speed.

In working with programs, I have found it better to have the more difficult code
toward the beginning of the program and the easier code toward the end; the most
often referenced or changed code toward the beginning and the least often referenced
code toward the end.

You may arrange your code in the same sequence as instruction execution if
you like, but no matter what sequence you arrange the modules in, always code your
programs in independent segments as shown in the example programs.

1100-1280 The GET subroutine was explained in detail earlier. If you want to review the GET
subroutine, seep. 284.

1300 REM MAIN ROUTINE

1310 VTAB LB: HTAB 2: GET X1$

1320 IF X1$ = "Q" THEN 1840

1840 RETURN

Serial and Sequentlal Disk Files I 325

The first line of the MAIN ROUTINE positions the cursor at the bottom of the screen
to allow the operator to respond by pressing a to quit or to press the space bar to
continue.

(]) PRESS Q TO QUIT.
PRESS THE SPACE BAR TO CONTINUE.

If the operator enters a 0, then the IF instruction causes a branch to line 1840,
which in turn causes logic flow to RETURN to the DRIVE ROUTINE. Once back at
the drive module, the GOTO instruction on line 1080 branches to the ENDING
ROUTINE.

The RETURN and IF instruction could be combined and written as

1320 IF X1$ = "O" THEN RETURN

The two instructions are separated because as a general rule it is best to have
only one entry point to a module and one exit point from a module. The entry point
is normally the first line of code, while the RETURN is normally the last line of
code. This may require a little extra coding, but in the long run it is simpler to
follow and debug.

Also, unless you are going to exclude all remarks from your program, I suggest
you always branch to the REM instruction which names the module. This allows
you to insert instructions at the very start of the module without having to worry
about changing line numbers. Unfortunately, the example programs do not always
follow this coding standard even though they should. This is one of those 'Do as I
say and not as I do' situations.

1290 REM --------------------
GOSU B or GOTO to this line > 1300 REM MAIN ROUTINE

1310 VTAB LB: HTAB 2: GET X1$

1340 Because of the way in which the APPLE uses string memory, you should periodically
check how much memory is available. If string memory becomes full, the APPLE
automatically pauses and condenses memory, but does not let the operator know
what it is doing. The operator can be in the middle of keying in a field when the
cursor disappears for several minutes. By checking the amount of memory yourself,
you can control when the memory is cleared and can display a message to the
operator indicating what is going on (see FRE instruction p. 233).

1350 GALEGTH = 25: VTAB L1: HTAB 12: GOSUB 1110

1360 IF LEFT$ (GBANSWER$,1) = " "THEN 1350

1370 AANAME$ = GBANSWER$

326 / Applesoft BASIC Toolbox

1510 AFPHNE$ = AFPHNE$ + GBANSWER$

Most of the MAIN ROUTINE includes instructions for retrieving data from the screen
and forms a repetitive pattern.

If you look closely at the code you will see a sequence of five instructions for
each value entered.

1. Set GALEGTH to the length of the field to be read.
2. Position the cursor on the correct line.
3. Position the cursor at the correct column.
4. Execute the GET subroutine.
5. Set a variable equal to the value entered.

Lines 1460 through 1510 break the basic sequence by containing code which
is dependent on prior lines to set up the correct field length and cursor position.

1460 GALEGTH = 3: VTAB L6: HTAB 12: GOSUB 1110
1470 AFPHNE$ = GBANSWER$
1480 HTAB 16: GOSUB 1110
1490 AFPHNE$ = AFPHNE$ + GBANSWER$

Line 1480 relies on line 1460 for setting GALEGTH to the correct length and
for positioning the cursor on the correct line. '

Since the phone number is all on the same line, no VTAB instruction is needed
for the last two parts of the phone number. Also, since the first and second part of
the phone number are the same length, the variable GALEGTH only has to be set
equal to 3 one time. When code relies on prior lines to set up specific values, it is
referred to as dependent code. This coding technique is more efficient in execution
time but may make it harder to modify the program.

Any modification to the lines between 1460 and 1510 may result in an error
unless the programmer is aware of the dependent code.

From a program maintenance standpoint it would be better to repeat the VT AB
instruction and to set the length for each field to be read even though the code is
redundant.

Some programmers like to make the program execute as fast as possible and
take as few instructions as possible. They spend hours trying to eliminate redundant
code. The resulting program executes slightly faster but is harder to change.

The problem with trying to eliminate redundant code is that the cost it takes in
man hours to make a program operate more efficiently may not be recovered during
the life of the program.

Most production shops are concerned with the number of correctly written and
easily modifiable programs which may be turned out by a programmer rather than
how efficiently the programs can be made to run.

1520-1530 VTAB L7: HTAB2: PRINT" "; CHR$(8);: REM CHR$(8) =BACKSPACE GETX1$:
PRINTX1$;

Serial and Sequential Disk Files I 327

Once all the fields have been entered, lines 1520 and 1530 position the cursor and
accept a response from the operator.

() PRESS A TO ACCEPT THE ENTRY.
PRESS R TO REJECT THE ENTRY.

If the operator enters A, the program branches to the WRITE ROUTINE, where
the record is written on the disk and the screen cleared. After the screen is cleared,
logic flow branches back to the beginning of the MAIN ROUTINE to start the whole
process over.

If the operator enters R, the program skips over the WRITE ROUTINE and
branches to instructions for clearing the screen. After the screen is cleared, logic
flow starts over from the beginning of the MAIN ROUTINE to allow the operator a
choice of quitting or entering another record.

The only two allowable responses are A and R. Any other key causes program
logic to fall through the two IF instructions and continue on to display an error
message.

The last half of line 1520 is beneficial only if the operator made a mistake and
entered a character other than A or R. The instruction PRINT" "; CHR$(8); blanks
out any character which was printed between the two parentheses.

1560 REM -----------------------

1570 REM ERROR MESSAGE

1580 VTAB L9: HTAB 1: INVERSE

1590 PRINT "INVALID RESPONSE - PRESS SPACE BAR" TAB(39)" "

1600 PRINT II TO CONTINUE" TAB (38)" ";:NORMAL

1610 GET X1$: IF X1$ <>II II THEN 1610

1620 VTAB L9: HTAB 1

1630 PRINT TAB(39)" II

1640 PRINT TAB(39)" ";

1650 GOTO 1520

328 / Applesoft BASIC Toolbox

The following narrative is a repeat, so if you understand the routine, skip to the
next group of instructions.

The set of instructions from line 1560 through 1640 represents the standard
sequence for displaying an error message and waiting for a response from the oper­
ator.

As a design standard, all the programs in this book use lines 23 and 24 of the
screen for displaying error messages.

Lines 1580, 1590, and 1600 print the error message in the INVERSE mode.
The lines look very simple, but there are several points you should understand.

Notice that the TAB function is used to cause INVERSE blanks to be printed all
the way over to column 39. If the inverse blanks are not printed to column 39, the
error message does not form a good looking box. Notice that column 40 is not used
on lines 23 and 24. When something is printed in column 40 of line 24 a scrolling
problem results. The scrolling messes up the screen design, so none of the programs
use column 40 of line 24.

On the second line of the error message, the TAB function stops at column 38.
Since the semicolon is used at the end of the PRINT instruction, the cursor stays on
line 24 in column 39 waiting for the operator to respond to the error message.

1670 REM ----------------------

1680 REM WRITE ON DISK

1690 PRINT 0$

1700 PRINT D$;"WRITE";FILEID$

1710 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$

1720 PRINT 0$

There are several ways records may be written. One way is to write one fixed length
record as shown above, and the other is to write each variable individually, separated
by a comma within quotation marks.

1710 PRINT AANAME$" ,"ABADDR$"," ACCITY$" ," ADSTE$" ," AEZIP$" ," AFPHNE$

There are advantages and disadvantages to each method.

1. Writing one fixed record (semicolon separation)
a. Advantage: It takes less room on the disk when you are working with all

string variables.

Serial and Sequential Disk Flies I 329

b. Disadvantage: It requires a set of instructions when you are reading the
record to break down the information into the individual variables. How
to break down the record is shown in the update program.

c. Disadvantage: Numeric variables must be converted to string format with
a fixed size (not shown iii. examples).

2. Writing each individual variable (comma separation)
a. Advantage: It is easier to code.
b. Advantage: Numeric variables may be written directly to the disk without

being converted to string format. Since n1lmeric variables are stored in
binary notation, they take less space on the disk than when converted to
string format and stored.

c. Disadvantage: It requires more room on the disk (unless you are working
with numeric variables).

d. Disadvantage: If any of the string variables written to the disk are blank
or have leading spaces, the spaces will be S\lppressed when the values are
read. This disadvantage is explained in the random disk system.

Wheri individual variables are written to the disk, each comma separating the
variables is also written on the disk. For dris example, each. record would take up
an additional five characters on the disk (count the commas between the six varia­
bles).

The programs presented earlier to illustrate the READ and WRITE instruction
explained how to use the commas when reading and writing disk files. All the
sequential address programs use the technique of writing the variables separated by
semicolons. When the semicolon is used, each variable is written immediately fol­
lowing the previous variable, and no separator (comma) is written within the record.
The machine sees the record as one big string variable.

This technique should be used only when working with all string data. If you
have records which contain numeric data, you should use commas between the
numeric variables.

1740 REM ----------------------

1750 REM CLEAR SCREEN

1760 VTAB L1: HTAB 12: PRINT TAB(36)" "

1820 VTAB L7: HTAB 2: PRINT" "

1830 GOTO 1310

1840 RETURN

330 / Applesoft BASIC Toolbox

After the record is written or the data rejected, the screen is cleared. Notice only
that the variable portion of the screen is cleared. The fixed titles remain on the
screen.

The process for clearing a specific part of the screen is to first position the
cursor at the area to be cleared (see line 1760). Once the cursor is at the correct
location, then the PRINT instruction is used to print the correct number of blanks
or to TAB to the last position and print a single blank (see lines 1760 and 1820).
The TAB function clears to spaces all positions it passes over.

Two approaches are used for microcomputers when a screen format is dis­
played. Each has its own advantages and disadvantages.

1. Displaying a new screen for each entry
a. Advantage: It is easier for the programmer to code.
b. Disadvantages: The screen scrolls as lines are displayed, and this is harder

on the operator's eyes. Also, since everything is redisplayed, this takes
longer between data entry steps and slows down the operator.

2. Displaying the format once and clearing out the variable information after each
entry
a. Advantage: This gives faster execution and is easier on the operator's eyes.
b. Disadvantage: It is harder for the programmer to code. Some computers

do not have instructions corresponding to the VTAB and HTAB operations,
leaving scrolling as the only method available.

After the screen is cleared, line 1830 causes program flow to branch back to
the start of the MAIN ROUTINE. The RETURN instruction on line 1840 is executed
only when the operator enters a a to quit.

1860 REM ----------------------

1870 REM BEGINNING ROUTINE

1920 L1 = 5:L2 = 6:L3 = 7:L4 = 8:L5 = 9:L6 = 10:L7 = 14:L8 = 17: L9 = 23

1930 PRINT 0$

1940 PRINT D$;"APPEND ";FILEID$:",D";FDRIVE

1950 PRINT 0$

Serial and Sequential Disk Flies I 331

Line 1920 initializes the variable names for use in the VTAB instruction. When you
use variables throughout the program code, it is much easier to redesign the screen
by simply changing the values of the variable. If constants are used and you want
to redesign the screen, you must locate and change each VTAB instruction in the
program.

One word of warning. Only nine variable names are used on line 1920 (L 1 to
L9). If you need more than nine values, be sure to name them LA, LB, LC, etc.
Remember, Applesoft only keeps track of the first two characters. To the computer,
L 10 is the same variable as L 1.

Lines 1930 through 1950 instruct the computer to open the file and position
the record pointer at the end of the file. Line 1930 prints a dummy disk control
character. Since this set of code is executed at the very start of the program and no
GET instruction has been executed, line 1930 may be eliminated. It is included here
to be consistent with the sequence of

1. Printing a dummy control character because of the problems which occur when
a DOS PRINT instruction follows a GET instruction

2. Printing a disk control character followed by the actual disk instruction
3. Printing a disk control character to terminate a disk instruction

1970 REM ----------------------

1980 REM PRINT SCREEN IMAGE

2140 RETURN

As indicated earlier, the fixed portion of the screen is displayed only once. Two
points you might want to study are represented on line 2020.

2020 VTAB L 1: PRINT "NAME = (" SPC(25)")"

When lines are displayed on the screen, the variables L 1 though L9 are used in
order to make the program easier to change. If for some reason you want to change
the positions at which various lines are printed, only the line which defines the
variables needs to be changed, and all VTAB operations using the variable auto­
matically position the cursor to the correct location.

Another reason for using variables instead of constants is that Applesoft exe­
cutes faster if variables are used.

When a large number of spaces are needed on the same line, the SPC function
may be used. Using the SPC function is sometimes easier than counting out and
keying the exact number of spaces.

2160 REM ----------------------

332 / Applesoft BASIC Toolbox

2170 REM FREE MEMORY ROUTINE

2180 STARTING= PEEK(112) * 256 + PEEK(111): IF STARTING> 17000THEN 2250

2210 STARTING = FAE (O)

2250 RETURN

The FREE MEMORY ROUTINE tests to see when memory is becoming full. The
advantages of the routine are the following:

1. It does not free memory until the space is needed.
2. While it is freeing memory, it lets the operator know what is going on.

To help explain why it is important to use the FAE instruction in programs which
work extensively with string variables, let's review how string memory is used.

When Applesoft assigns a new value to a string variable, it does not put the
value into a specific area of memory allocated for that variable. Instead Applesoft
puts each new value into a new area of memory and then changes the pointer
associated with the variable to indicate the address of the new data.

For the following two lines of code, assume the next available string memory
location is 2000.

1000 STRING$ = STR$(123)

When line 1000 is executed, the characters 123 are placed into memory locations
1998, 1999, and 2000. Remember, strings are stored working from high memory
addresses down. After moving the values into string memory, Applesoft changes
the address pointer associated with STRING$ to point to the start of the variable
(address 1998).

1010 STRING$ = STRING$ + STR$(456)

When STRING$ is set equal to a new value, the new value is not moved into locations
1998, 1999, and 2000. Instead, the value 123456 is moved into the next available
memory locations (1992 to 1997) and the pointer for STRING$ is set equal to the
start of the new value (1992). The old value of 123 is still in memory locations 1998
through 2000 but is no longer associated with the variable called STRING$. The
value has become garbage and is just taking up memory.

As the program continues to use different values, the garbage (unused areas)
continues to build. If your program is short and you have a lot of memory, you may

Serial and Sequential Disk Flies I 333

never have any problems. But if the program does an extensive amount of string
processing, you should periodically clear memory. Remember, the FREe instruction
is only needed for condensing unused string values. Numeric variables are stored
using fixed memory locations and do not cause problems by generating wasted
storage.

Now back to why you should use the FREE MEMORY ROUTINE. If the program
does not periodically free memory, the computer automatically frees memory when
string storage starts to run into the numeric values stored in lower memory.

There are several problems in letting the computer do its own housecleaning
whenever it wants to. The primary problem is that the computer does not let the
operator know what is going on. When the computer frees memory, the cursor
disappears and can take several minutes before returning.

Put yourself in the operator's position. If you were an operator and the cursor
disappeared for several minutes, you might think the program had a bug and turn
off the computer. This frees memory but also results in the loss of some processing
and causes frustration for the operator.

Copy this routine and use it in any program which does an extensive amount
of string processing. If possible, execute the routine during each main cycle (MAIN
ROUTINE loop).

If you are writing extremely large programs or using page 2 of high resolution
graphics, you should raise the address on line 2180 from 17000 to a higher value.

Note: If you use large tables DIM TABLE$(1000), the clearing process is very slow
(minutes). If you do not use large DIM entries, the clearing process is very fast
(fractions of a second). See the FRE instruction for more detail (p. 233).

2270 REM ----------------------

2280 REM ENDING ROUTINE

2290 PRINT D$

2300 PRINT D$;"CLOSE ";FILEID$

2310 HOME

2320 PRINT D$;"RUN SEQ ADDR HELLO PROG,D"PDRIVE

The ENDING ROUTINE is the last module to be executed. There are two important
instructions to consider within this set of code.

On line 2300 the SEQ ADDR FILE is closed. You MUST close all files which
are used for output operations.

If you WRITE to a file and do not close the file, the last few records in the
output buffer will not be written, and your file will not be properly closed. To be
safe always close all files.

334 / Applesoft BASIC Toolbox

On line 2320 the SEQ ADDR HELLO PROG is executed, ending the operations
associated with the APPEND program and giving the operator a chance to select a
new process from the HELLO menu. The RUN command is executed just like any
other DOS command. Notice that the program drive number is used as part of the
RUN command. As indicated earlier, this allows a person with two disk drives to
have the programs on one drive and the files on a secvnd drive.

The Sequential File UPDATE Program

Program Name SEO ADDR UPDATE PROG

Program To provide the user with a method of changing and deleting records.
Objective

Instructions for
Running the

Program

This is the hardest program in the book. If you can make it through this program,
you can easily make it through any of the other programs.

In order for a file to be of any use, there must be a way to insert new information,
change existing data on the file, and delete unwanted data from the file. The process
of adding, changing, and deleting information is normally referred to as updating
the file. In the sequential address system, the update process is broken down into
two programs. The SEQ ADDR APPEND PROGram is used to add new records to
the file, while the SEO ADDR UPDATE PROGram is used to change and delete
information.

Records cannot be changed and rewritten back to a sequential file, nor can
records be deleted from an existing sequential file. In order for you to change or
delete records, the update program must read the old sequential file and create a
new sequential file.

Even if only one record is to be changed or deleted, the entire old sequential
file must be read and rewritten to a new updated sequential file.

After the update process is complete, the new disk file becomes the current
copy and the old disk file becomes the backup copy. If for some reason the new disk
file contains a mistake or is lost, the backup copy can be renamed and used as input
to the update program. The automatic creation of a backup copy each time the file
is updated is one of the advantages of sequential file processing. (See diagram on
top of page 335.)

Make sure you have run the SEO ADDR CREATE PROG and have added some records
to the file by using the SEO ADDR APPEND PROG. If you have not created the label
and added records to the file, the update program will not have any records to change
or delete and will not run correctly.

Run the program by entering

RUN SEQ ADDR HELLO PROG <RETURN>

Serial and Sequential Disk Files I 335

System Flowchart of Sequential File Update Program

KEYBOARD

UPDATE
PROGRAM

NEW DISK
FILE

After the menu is displayed, enter a 2, and the HELLO program will start
execution of the update program. After the update program has started, the following
screen will be displayed:

SEQ ADDR FILE UPDATE PROGRAM

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

PRESS A TO ACCEPT THE ENTRY.
PRESS R TO REJECT THE ENTRY.

ENTER CHARACTER CORRESPONDING TO
PROCESS DESIRED.

A TO ACCEPT THE RECORD.
C TO CHANGE THE RECORD.
D TO DELETE THE RECORD.
Q TO QUIT PROCESSING.

First error message line
Second error message line

336 / Applesoft BASIC Toolbox

Once the screen layout has been displayed, the disk will whirl and the first
record will be displayed in the variable portion of the screen. After displaying the
record the computer will wait for you to enter either A, C, D, or Q.

If you want to accept the record as displayed, enter an A. The accepted record
will be written to the new disk file, the next record in sequence will be displayed,
and then you will be given another chance to select a processing code. In response
to the first record, enter an A to accept the record.

Dis entered to delete a record. If Dis entered, instead of rewriting the record
to the new disk file, the program ignores the old record and displays the next sequen­
tial record. The deleted record is still on the old (backup) file but does not exist on
the new (current) file.

In response to the second record displayed, enter D and see what happens.
Normally you do NOT see or hear any difference between the accepting process
and the deleting process. Remember, the buffer for the new file is not written to the
disk until either it is full or the CLOSE instruction is executed. By just looking at
the screen, you are not able to tell if the record was actually accepted or deleted
correctly. Later when you run the listing program, you can check to see how well
the update process works.

If you want to change the record being displayed, you enter C. After a change
is requested, the cursor is positioned at the first character of the name line.

If you want to change a field, you simply key in the new data over the old data
and press RETURN. You must reenter the entire field even if only part of the field is
incorrect. For example, if only the first name is incorrectly spelled, you must still
reenter the entire field.

Old field contains = JONH JONES
Key in all the characters = JOHN JONES <RETURN>

If you do not want to change a field, press the RETURN key without pressing
any other keys.

Respond to the third record by entering C in order to change some of the fields.
After you enter the C, the cursor will be positioned in the name field over the top
of the first character of the first name.

NAME = (]IRSTNAME LASTNAME

Press the RETURN key without hitting any other keys. The name will remain
the same and the cursor will move to the first position of the address line. Type in
a new address which is shorter than the original address, and then press RETURN.
The unused portion of the address line will be blanked out and the cursor positioned
to the first character of the city.

Follow the same procedure for the city, state, and ZIP code, pressing RETURN
or making changes as you wish.

The phone number is broken down into three parts and is actually three separate
fields. You may change any one of the three parts individually. That is, if you want

Serial and Sequential Disk Flies I 337

to change the last four digits, you do not need to rekey the first six digits: simply
press RETURN to skip over each subfield.

After you have been given a chance to change each of the fields, the cursor
will be positioned on line 12, and the program will wait for you to check the fields.

()) PRESS A TO ACCEPT THE ENTRY.
PRESS R TO REJECT THE ENTRY.

If the changes are correct enter an A to indicate that the changes are to be
accepted. When a record is accepted, it is written on the new file and the next record
displayed.

If you want to reject the changes and start over, enter R. The changes will be
rejected and the record redisplayed in its original form; no record will be written or
read.

After either an A or R is entered the cursor will be repositioned to allow you
to select another processing mode.

(]) ENTER CHARACTER CORRESPONDING TO
PROCESS DESIRED.

There are two ways the program can end. You may enter Q to quit, or the
program may reach the end of the old address file.

If you enter Q, then the program cannot just stop processing. All the remaining
records on the old file must be read and rewritten to the new file. During this process
the following screen is displayed.

READING AND WRITING REMAINING RECORDS
PLEASE BE PATIENT.

If the program reaches the end of the file, the update process is complete, and
the program terminates without displaying any additional screens.

Program Listing 1000 REM SEQ ADDR UPDATE PROG
1010 REM
1020 CLEAR :Gl = PEEK (116) * 256 + PEEK (115) - 40 :GA$

12345678901234567890" + "12345678901234567890"
1030 REM
1040 REM ---------------
1050 REM DRIVE ROUTINE

II

338 / Applesoft BASIC Toolbox

1060 GOSUB 2380: REM BEGINNING
1070 GOTO 1310: REM MAIN MOD
1080 GOTO 2860: REM END MODULE
1090 REM
1100 REM ------------------
1110 REM GET SUBROUTINE
1120 IF G3 = 0 THEN GOSUB 1270
1130 G3 = Gl + GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT

G2 = Gl
1140 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1210
1150 IF GB = 13 THEN 1230
1160 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 1190
1170 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1140
1180 PRINT CHR$ (GB);: POKE G2,GB
1190 G2 = G2 + 1: IF G2 > G3 THEN 1260
1200 GOTO 1140
1210 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1140
1220 PRINT CHR$ (8);: GOTO 1140
1230 IF Gl = G2 THEN 1250
1240 FOR GC = G2 TO G3: PRINT"";: NEXT
1250 FOR GC = G2 TO G3: POKE GC,32: NEXT
1260 GB$= LEFT$ (GA$,GA):GC = G2 - Gl: RETURN
1270 ~IS[)768, 32: POKE 769, 12: POKE 770, 253: POKE 771, 141:

POKE 772,07: POKE 773,03: POKE 774,96: RETURN
1280 REM
1290 REM ---·
1300 REM MAIN ROUTINE

-1310 GOSUB 2040: REM READ DISK
1320 GOSUB 2180: REM WRITE SCREEN
1330 GOSUB 2750: REM CHECK MEMORY
1340 VTAB L9: HTAB 2: GET X2$
1350 IF X2$ "A" THEN 1820
1360 IF X2$ "C" THEN 1430
1370 IF X2$ "D" THEN 1900
1380 IF X2$ "Q" THEN 2280
1390 GOTO 1340
1400 REM
1410 REM---------------
1420 REM CHANGE ROUTINE
1430 GALEGTH = 25: VTAB Ll: HTAB 12: GOSUB 1120
1440 IF GCCHAR = 0 THEN 1470
1450 IF LEFT$ (GBANSWER$,l) =" "THEN 1430
1460 AANAME$ = GBANSWER$
1470 VTAB L2: HTAB 12: GOSUB 1120
1480 IF GCCHAR = 0 THEN 1500
1490 ABADDR$ = GBANSWER$
1500 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1120
1510 IF GCCHAR = 0 THEN 1530
1520 ACCITY$ = GBANSWER$
1530 GALEGTH = 2: VTAB L4: HTAB 12: GOSUB 1120
1540 IF GCCHAR = 0 THEN 1560
1550 ADSTE$ = GBANSWER$

Serial and Sequential Disk Flies I 339

1560 GALEGTH = 5: VTAB L5: HTAB 12: GOSUB 1120
1570 IF GCCHAR = 0 THEN 1590
1580 AEZIP$ = GBANSWER$
1590 GALEGTH = 3: VTAB L6: HTAB 12: GOSUB 1120
1600 IF GCCHAR = 0 THEN 1620
1610 AFPHNE$ = GBANSWER$ +RIGHT$ (AFPHNE$,7)
1620 HTAB 16: GOSUB 1120
1630 IF GCCHAR = 0 THEN 1650
1640 AFPHNE$ = LEFT$ (AFPHNE$,3) + GBANSWER$ + RIGHT$ (AFPHN

E$,4)
1650 GALEGTH = 4: HTAB 20: GOSUB 1120
1660 IF GCCHAR = 0 THEN 1680
1670 AFPHNE$ = LEFT$ (AFPHNE$,6) + GBANSWER$
1680 VTAB L7: HTAB 2: GET Xl$
1690 IF Xl$ = "A" THEN 1820
1700 IF Xl$ = "R" THEN GOSUB 2080: GOTO 1320
1710 INVERSE: VTAB L9: HTAB 1
1720 PRINT "INVALID RESPONSE - PRESS SPACE BAR" TAB(39)" "
1730 PRINT " TO CONTINUE" TAB (38)" 11 • • NO

RMAL
1740 GET Xl$: IF Xl$ < > II II THEN 1740
1750 VTAB L9: HTAB 1
1760 PRINT TAB(39)" II

1770 PRINT TAB(39)" ";
1780 GOTO 1680
1790 REM
1800 REM
1810 REM WRITE ON DISK
1820 PRINT D$
1830 PRINT D$;"WRITE ";FILEID$;" NEW"
1840 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$
1850 PRINT D$
1860 IF X2$ = "Q" THEN RETURN
1870 REM
1880 REM
1890 REM CLEAR SCREEN
1900 VTAB Ll: HTAB 12: PRINT TAB(36)" "
1910 VTAB L2: HTAB 12: PRINT TAB(36)" "
1920 VTAB L3: HTAB 12: PRINT TAB(26)" "
1930 VTAB L4: HTAB 12: PRINT II II

1940 VTAB L5: HTAB 12: PRINT II II

1950 VTAB L6: HTAB 12: PRINT II II

1960 GOTO 1310
1970 REM
1980 REM ----
1990 REM ONERR STATEMENT WILL BREAK
2000 THE LOOP.
2010 REM
2020 REM-------------
2030 REM READ DISK

• 2040 PRINT D$
2050 PRINT D$;"READ ";FILEID$

340 I Applesoft BASIC Toolbox

2060 INPUT AlADDR$
2070 PRINT D$
2080 AANAME$ = LEFT$ (AlADDR$,25)
2090 ABADDR$ =MID$ (AlADDR$,26,25)
2100 ACCITY$ =MID$ (AlADDR$,51,15)
2110 ADSTE$ = MID$ (AlADDR$,66,2)
2120 AEZIP$ = MID$ (AlADDR$,68,5)
2130 AFPHNE$ =RIGHT$ (AlADDR$,10)
2140 RETURN
2150 REM
2160 REM
2170 REM WRITE ON SCREEN
2180 VTAB Ll: HTAB 12: PRINT AANAME$
2190 VTAB L2: HTAB 12: PRINT ABADDR$
2200 VTAB L3: HTAB 12: PRINT ACCITY$
2210 VTAB L4: HTAB 12: PRINT ADSTE$
2220 VTAB L5: HTAB 12: PRINT AEZIP$
2230 VTAB LG: HTAB 12: PRINT LEFT$ (AFPHNE$,3)'-' MID$ (AFPHNE$,4,3)

'-' RIGHT$ (AFPHNE$,4)
2240 RETURN
2250 REM
2260 REM ----------~----------
2270 REM READ/WRITE REST FILE
2280 HOME : VTAB 10
2290 PRINT 'READING AND WRITING REMAINING RECORDS.'
2300 PRINT
2310 PRINT 'PLEASE BE PATIENT.'
2320 GOSUB 1820: REM WRITE
2330 GOSUB 2040: REM READ
2340 GOTO 2320
2350 REM NO RETURN NEEDED - ONERR WILL TERMINATE LOOP
2360 REM
2370 REM ----------------------
2380 REM BEGINNING ROUTINE
2390 TEXT : NORMAL : HOME : SPEED= 255
2400 ONERR GOTO 1080
2410 D$ = CHR$ (4)
2420 FDRIVE = 1 : ?DRIVE = 1
2430 FILEID$ = I SEQ ADDR FILE I

2440 Ll = 3:L2 = 4:L3 = 5:L4 6:L5 7:L6
L9 = 23

2450 PRINT D$
2460 PRINT D$;'0PEN I ;FILEID$; ',D' ;FDRIVE
2470 PRINT D$;'0PEN ';FILEID$;' NEW,D' ;FDRIVE
2480 PRINT D$
2490 REM
2500 REM ----------------------
2510 REM PRINT SCREEN IMAGE
2520 HOME
2530 PRINT ' SEQ ADDR FILE UPDATE PROGRAM'
2540 VTAB Ll: PRINT 'NAME =(' SPC(25)')'
2550 VTAB L2 : PRINT I ADDRESS = (I SPC (25) I) I

2560 VTAB L3: PRINT 'CITY = (I SPC(15) I) I

2570 VTAB L4: PRINT 'STATE =()'

8:L7 12:L8 15:

Serial and Sequential Disk Flies I 341

2580 VTAB L5: PRINT 'ZIP CODE = () '
2590 VTAB L6: PRINT 'PHONE = () '

2600 VTAB L7
2610 PRINT'(PRESS A TO ACCEPT THE ENTRY.'
2620 PRINT' PRESS R TO REJECT THE ENTRY.'
2630 VTAB LB
2640 PRINT'(ENTER CHARACTER CORRESPONDING TO'
2650 PRINT ' PROCESS DESIRED.'
2660 PRINT
2670 PRINT' A TO ACCEPT THE RECORD.'
2680 PRINT' C TO CHANGE THE RECORD.'
2690 PRINT' D TO DELETE THE RECORD.'
2700 PRINT ' Q TO QUIT PROCESSING.'
2710 RETURN
2720 REM
2730 REM -----------
2740 REM FREE MEMORY ROUTINE
2750 STARTING= PEEK (112) * 256 +PEEK (111): IF STARTING>

16000 THEN 2820
2760 VTAB L9: HTAB 1: INVERSE
2770 PRINT " FREEING MEMORY - PLEASE WAIT" TAB(38)" "
2780 STARTING = FRE (O)
2790 PRINT" DONE - PRESS SPACE BAR TO CONTINUE ";:NORMAL
2800 GET Xl$: IF Xl$ < > " " THEN 2800
2810 VTAB L9: HTAB 1: PRINT TAB(39)" ": PRINT TAB(39)" ";
2820 RETURN
2830 REM
2840 REM
2850 REM ENDING ROUTINE

+ 2860 ER = PEEK (222)
2870 IF ER < > 5 THEN 3050
2880 REM
2890 REM
2900 NORMAL END OF FILE
2910 VTAB L9: HTAB 1: INVERSE
2920 PRINT " NORMAL END OF FILE - PLEASE WAIT "· NORMAL
2930 PRINT D$
2940 PRINT D$;"CLOSE ";FILEID$
2950 PRINT D$;"CLOSE ";FILEID$;" NEW"
2960 ONERR GOTO 2980
2970 PRINT D$;"DELETE ";FILEID$;" BACKUP"
2980 PRINT D$;"RENAME ";FILEID$;",";FILEID$;" BACKUP"
2990 PRINT D$;"RENAME ";FILEID$;" NEW.";FILEID$
3000 HOME
3010 PRINT D$;"RUN SEQ ADDR HELLO PROG,D";PDRIVE
3020 REM
3030 REM----------------
3040 REM ABNORMAL TERMINATION ROUTINE
3050 HOME
3060 PRINT'"*** NOTIFY PROGRAM SUPPORT***"
3070 PRINT
3080 PRINT "ABNORMAL TERMINATION!!!!!"
3090 PRINT "ALL CHANGES WERE LOST!!!!"
3100 PRINT

342 / Applesoft BASIC Toolbox

3110 PRINT "ERROR CODE = "ER
3120 PRINT
3130 IF ER= 6 THEN PRINT "FILE NOT FOUND - CHECK DISKETTE":

PRINT "AND TRY AGAIN"
3140 IF ER = 9 THEN PRINT "DISK FULL - FREE SPACE & START OVER"
3150 IF ER = 11 THEN PRINT "SYNTAX ERROR"
3160 PRINT
3170 PRINT "*** PROCESSING TERMINATED ***"
3180 END
3190 REM

Cross Reference Listing

Variable names used with the address record:

A1$ 2060, 2080, 2090, 2100, 2110, 2120, 2130
AA$ 1460, 1840, 2080, 2180
AB$ 1490, 1840, 2090, 2190
AC$ 1520, 1840, 2100, 2200
AD$ 1550, 1840, 2110, 2210
AE$1580, 1840,2120,2220
AF$1610, 1640, 1670, 1840,2130,2230

Variable names used with the disk commands:

D$ 1820, 1830, 1850, 2040, 2050, 2070, 2410, 2450, 2460, 2470, 2480, 2910,
2940, 2970, 2980, 2990, 3010

ER 2860, 2870, 3110, 3130, 3140, 3150
FD 2420, 2460, 2470
PD 2420, 3010

Variable names used with the GET subroutine:

G1 1020, 1130, 1210, 1230, 1260
G2 1130, 1160, 1180, 1190, 1210, 1230, 1240, 1250, 1260
G3 1120, 1130, 1190, 1240, 1250
GA 1130, 1260, 1430, 1500, 1530, 1560, 1590, 1650
GA$ 1020, 1260
GB 1140, 1150, 1160, 1170, 1180
GB$1260, 1450, 1460, 1490, 1520, 1550, 1580, 1610, 1640, 1670
GC 1240, 1250, 1260, 1440, 1480, 1510, 1540, 1570, 1600, 1630, 1660

Variable names used with displaying data on the screen:

L 1 1430, 1900, 2180, 2440, 2540
L2 1470, 1910, 2190, 2440, 2550

L3 1500, 1920, 2200, 2440, 2560
L4 1530, 1930, 2210, 2440, 2570
L5 1560, 1940, 2220, 2440, 2580
L6 1590, 1620, 1650, 1950, 2230, 2440, 2590
L7 1680, 2440, 2600
LB 1340, 2440, 2630
L9 1710, 1750, 2440, 2760, 2810, 2920

Serial and Sequential Disk Files I 343

Variable names used for general GET instruction in response to the screen messages:

X1$ 1680, 1690, 1700, 1740, 2800
X2$ 1340, 1350, 1360, 1370, 1380, 1860

Explanation by Detailed explanations by line number follow.
Line Number

1000 REM SEQ ADDR UPDATE PROG

1010 REM----------------------

1020 CLEAR :G1 =PEEK (116) * 256 +PEEK (115) - 40 :GA$=
II 1234567890123456789011 + 111234567890123456789011

1030

1040

1050

1060

1070

1080

1090

REM

REM ----------------------

REM DRIVE ROUTINE

GOSUB 2380: REM BEGINNING

GOTO 1310: REM MAIN MOD

GOTO 2860: REM END MODULE

REM

With the exception of a few short programs in the system, each program starts off
with the same basic set of instructions.

344 / Applesoft BASIC Toolbox

This group of instructions was described at the first explanation for the SEQ
ADDR APPEND PROG. For a detailed explanation of the instruction group, you may
want to go back and review the first part of the SEQ APPEND PROG. The only
statement which is different from that of the earlier program is line 1070. A GOTO
instruction is used to execute the MAIN ROUTINE since an ONERR condition ter­
minates the routine and forces logic to return to line 1080 to execute the ENDING
ROUTINE (see ONERR line 2400).

1100 REM --------------------

1110 REM GET SUBROUTINE

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

The GET subroutine is explained in detail in Chapter 3 of Section II.

Lines 1290 through 1390 of the MAIN ROUTINE are responsible for reading a
record, displaying a record, checking memory space, accepting a response from the
operator, and executing the code related to the action requested by the operator.

REM ----------------------

REM MAIN ROUTINE

GOSUB 2040: REM READ DISK

GOSUB 2180: REM WRITE SCREEN

GOSUB 2750: REM CHECK MEMORY

VTAB L9: HTAB 2: GET X2$

IF X2$ = "A" THEN 1820

IF X2$ = "C" THEN 1430

IF X2$ = "D" THEN 1900

IF X2$ = "Q" THEN 2280

GOTO 1340

Serial and Sequential Disk Files I 345

To start the process of updating the file, a record is first read and displayed on the
screen. After the record has been displayed, the operator is given a chance to respond
by entering either A, C, D, or 0. A different sequence of instructions is executed
depending on which character is entered.

If the operator enters A to accept the entry program logic branches to the
sequence of code which writes the old record on the new file, clears the screen, and
returns to line 1310 to read and display the next record.

If the operator enters C in order to change one or more fields on the existing
record, program logic branches to the sequence of code which allows the operator
to change any field. After changing one or more fields, the operator is given a chance
to either accept or reject the changes which were made. If the operator accepts the
record as changed, program logic writes the record on the new file, clears the screen,
and returns to line 1310 to read and display the next record. If the operator rejects
the changes that were·made, program logic returns to line 1320, which redisplays
the existing record, giving the operator another chance to select the type of process­
ing desired for this record.

If the operator enters D to delete the record, program logic branches to the
sequence of code which clears the screen, and returns to line 1310 which reads and
displays the next record. Since the record is not written to the new file, the effect is
that of deleting the record.

If the operator enters Q, program logic must wrap up any loose ends before
terminating. This is done by reading the old file and writing each record to the new
file.

The responses A, C, D and Qare tested in alphabetic order, but this just happens
to be a quirk of the letters selected. In actual practice you should ask the questions
about the response in the sequence of most likely response first to least likely response
last. For this program the assumption is that more records will be accepted as they
exist than changed and more records will be changed than deleted. Since the operator
will only enter Q once, it is the last value tested.

Notice that if the operator presses any key other than one of the four acceptable
characters, no error message is displayed. The program simply branches back to the
GET instruction and waits for the operator to enter a correct character (see line
1390). This is not necessarily the best technique but it is easy to code.

141 0 REM ----------------------

1420 REM CHANGE ROUTINE

1430 GALEGTH = 25: VTAB L1: HTAB 12: GOSUB 1120

1440 IF GCCHAR = 0 THEN 1470

1450 IF LEFT$ (GBANSWER$, 1) = " "THEN 1430

346 / Applesoft BASIC Toolbox

1460 AANAME$ = GBANSWER$

1670 AFPHNE$ = LEFT$ (AFPHNE$,6) + GBANSWER$

Lines 1410 through 1670 allow the operator to make changes to any of the fields
within the record. If you look closely at the code, you will see a sequence of six
instructions for each field.

1. Set GALEGTH to the length of the field to be read.
2 Position the cursor on the correct line.
3. Position the cursor at the correct column.
4. Execute the GET subroutine.
5. Check to see if the field was changed by testing to see if any data were entered.
6. If the field was changed place the new value in the related variable.

The IF instruction on line 1450 is included to make sure the operator does not
enter leading blanks in the name field. Since the name is the first field in the record,
any leading blanks cause problems when writing the record to the disk and trying
to read it back. If the operator uses leading blanks, program logic branches back to
line 1430 and makes the operator reenter the name.

The phone number is entered or changed using three executions of the GET
subroutine. The first sequence of instructions accepts any change to the area code.

1590 GALEGTH.= 3: VTAB L6: HTAB 12: GOSUB 1120
1600 IF GCCHAR = 0 THEN 1620
1610 AFPHNE$ = GBJl.NSWER$ + RIGHT$ (AFPHNE$,7)

If the area code is changed, the new area code is added to the last seven digits
of the old phone number, and the new number is placed back in AFPHNE$. The
operator is given a chance to change the middle three digits. If the digits are changed,
they replace the middle three digits of the current phone number, and the new phone
number is put back in AFPHNE$ (see line 1640). The process is repeated for the last
segment of the phone number.

1680-1780 Lines 1680 through 1700 give the operator a chance to look at the changes which
were made and to enter A to accept the changes or to enter R to reject the changes
and start over with the original display. Lines 1710 through 1780 consist of the
standard sequence for displaying an error message; this has previously been described
and will not be explained again.

If the operator enters an A, program logic writes out the record with the changes,
clears the screen, and returns to the beginning of the MAIN ROUTINE to read and
display the next record.

If the operator enters R, program logic rejects the changes by resetting all the

Serial and Sequential Disk Files I 347

variables back to their original values and redisplaying the screen. Look closely at
how this is done.

First, the GOSUB branches into the middle of the READ ROUTINE, where the
variables are set equal to specific columns within the record. As long as the variable
A 1 $ is not used anywhere else in the program, it still contains the contents of the
original record. All the variables are reset to their original contents prior to returning
back to line 1700.

1700 IF X1$ = "R" THEN GOSUB 2080: GOTO 1320

2020 REM ----------------------
2030 REM READ DISK
2040 PRINT D$
2050 PRINT D$;"READ ";FILEID$
2060 INPUT A1ADDR$
2070 PRINT D$

--+2080 AANAME$ = LEFT$ (A1ADDR$,25)
2090 ABADDR$ = MID$ (A1ADDR$,26,25)
2100 ACCITY$ = MID$ (A1ADDR$,51,15)
2110 ADSTE$ = MID$ (A1ADDR$,66,2)
2120 AEZIP$ = MID$ (A1ADDR$,68,5)
2130 AFPHNE$ =RIGHT$ (A1ADDR$,10)
2140 RETURN

The GOSUB instruction may be used to branch into the middle of a routine, but
most programmers try to avoid this because of problems in following the logic if
and when changes are made to the program. As a general rule, each routine should
have only one entry point and one exit point.

After the variables are reset, the GOTO instruction at the end of line 1700
branches to line 1320, skipping over the GOSUB which reads the next record, but
executing the GOSUB which displays the record.

1700 IF X1$ = "R"THEN GOSUB 2080: GOTO 1320

1290 REM ----------------------
1300 REM MAIN ROUTINE
1310 GOSUB 2040: REM READ DISK

--+1320 GOSUB 2180: REM WRITE SCREEN

The old record is redisplayed and the process started over.

1800 REM ----------------------

1810 REM WRITE ON DISK

1820 PRINT D$

348 / Applesoft BASIC Toolbox

1830 PRINT D$;''WRITE ";FILEID$;" NEW"

1840 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$

1850 · PRINT D$

1860 IF X2$ = "O" THEN RETURN

Lines 1800 through 1860 write the record to the new file. The logic is the same as
in the APPEND program except for two things.

On line 1830 notice that the new file has the same name as the old file except
for the last four characters (NEW).

Line 1860 tests to see if the operator has entered a Q in response to the terminate
program message. If a Q was entered, the program returns to the calling module
(see line 2270 in the READ/WRITE REST FILE ROUTINE).

2260 REM ----------------------
2270 REM READ/WRITE REST FILE

2280 HOME : VTAB 10
2290 PRINT "READING AND WRITING REMAINING RECORDS."

2300 PRINT
2310 PRINT "PLEASE BE PATIENT."

-2320 GOSUB 1820: REM WRITE

2330 GOSUB 2040: REM READ
2340 GOTO 2320
2350 REM NO RETURN NEEDED - ONERR WILL TERMINATE LOOP

If the operator has not entered 0, logic flow continues to line 1870.
Line 1860 represents another break in the rule of one entry point and one exit

point to a routine. In an effort to make the program shorter and not recode certain
segments of the WRITE ROUTINE, the module is executed in two ways. During
normal processing the WRITE ROUTINE is entered at line 1820 and falls through to
the CLEAR SCREEN ROUTINE. But if the operator enters a Q to quit processing,
line 1860 causes the routine to RETURN to the calling GOSUB instruction on line
2320 in the READ/WRITE REST FILE ROUTINE.

Normally it is better either to repeat a set of instructions or to make the instruc­
tions a separate module executed only by way of a GOSUB than to try to patch the
code with a switch.

This is another case of "Do as I say and not as I do." The example programs
are designed to show you a variety of coding techniques. When you are coding your
own programs you should try to use good coding techniques, but when you are
looking at another programmer's code, you must be able to follow any style of
programming.

Serial and Sequential Disk Flies / 349

1880 REM ----------------------

1890 REM CLEAR SCREEN

1900 VTAB L1: HTAB 12: PRINT TAB(36)11 11

1950 VTAB L6: HTAB 12: PRINT II
II

1960 GOTO 1310

Lines 1880 through 1960 clear the variable portion of the screen. The clearing
process is really not necessary in this program as the next record is displayed imme­
diately after the operator accepts or rejects the current record. The process of clearing
the screen provides the operator with a visual feedback, since the screen is cleared
prior to each new record. Study lines 1900 and 1950 to see the two ways the variable
section of the lines are cleared. Line 1900 uses the TAB function to clear the area,
while line 1950 uses spaces and dashes to erase the old data.

Line 1960 causes logic flow to return to the first line of the MAIN ROUTINE,
where the entire process is started over. This looping process continues until one of
the two following things occurs:

1. The end of the old SEQ ADDR FILE is reached and causes the ON ERR instruction
to be executed.

2. The operator enters a Q to quit.

If the end of the file is reached, the ONERR instruction branches to statement
1080.

2400 ONERR GOTO 1080

1080 GOTO 2860: REM END MODULE

2020 REM ----------------------

2030 REM READ DISK

2040 PRINT D$

2050 PRINT D$; 11READ 11;FILEID$

350 / Applesoft BASIC Toolbox

2060

2070

2080

2090

2100

2110

2120

2130

2140

INPUT A1ADDR$

PRINTD$

AANAME$ = LEFT$ (A1ADDR$,25)

ABADDR$ = MID$ (A1ADDR$,26,25)

ACCITY$ =MID$ (A1ADDR$,51,15)

ADSTE$ =MID$ (A1ADDR$,66,2)

AEZIP$ = MID$ (A1ADDR$,68,5)

AFPHNE$ = RIGHT$ (A1ADDR$,10)

RETURN

Lines 2020 through 2140 cause a new record to be read and broken down into the
individual variables making up the record.

As explained in the APPEND program, data may be written to the disk at the
variable level:

2000 PRINT D$;'WRITE ";FILEID$
2010 PRINT AANAME$","ABADDR$".''ACCITY$".''ADSTE$","AEZIP$"," AFPHNE$
2020 PRINT 0$

or as a single record.

2000 PRINT D$;'WRITE ";FILEID$
2010 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$
2020 PRINT D$

When the record is read, it must be read USING EXACTLY THE SAME
FORMAT AS THE ONE IN WHICH IT WAS WRITTEN. The names may vary,
but the number of entries read must match the number of entries written whether or
not single variables are read:

2100 PRINT D$;"READ ";FILEID$
2110 PRINT AANAME$,ABADDR$,ACCITY$,ADSTE$,AEZIP$,AFPHNE$
2120 PRINT D$

or as a single record:

2100 PRINT D$;"READ ";FILEID$
2110 PRINT A1ADDR$
2120 PRINT D$

Serial and Sequential Disk Files I 351

Remember, if you write individual variables, the commas must be within quo­
tation marks when writing and without quotation marks when reading.

If you are working mainly with string variables, use the format shown in the
sequential programs. If you are working with numeric data, write each variable
individually (separate with commas; see the random file UPDATE example).

2160 REM ----------------------

2170 REM WRITE ON SCREEN

2180 VTAB L 1: HTAB 12: PRINT AANAME$

2230 VTAB L6: HTAB 12: PRINT LEFT$ (AFPHNE$,3)"-" MID$ (AFPHNE$,4,3) "-"RIGHT$
(AFPHNE$,4)

2240 RETURN

Lines 2160 through 2240 display the values read within the areas set aside for each
variable.

Line 2230 is written a little differently from the rest of the statements because
of the dashes which are inserted between the parts of the phone number (see line
2230). Each segment of the phone number is printed using the LEFT$, MID$, and
RIGHT$ functions.

2260 REM ----------------------

2270 REM READ/WRITE REST FILE

2280 HOME: VTAB 10

2290 PRINT "READING AND WRITING REMAINING RECORDS."

2300 PRINT

352 / Applesoft BASIC Toolbox

2310 PRINT "PLEASE BE PATIENT."

2320 GOSUB 1820: REM WRITE

2330 GOSUB 2040: REM READ

2340 GOTO 2320

2350 REM NO RETURN NEEDED - ONERR WILL TERMINATE LOOP

Lines 2260 through 2350 are executed when the operator presses Q prior to reaching
the end of the SEQ ADDR FILE.

In order to copy all the records from the old file onto the new file, the READ
ROUTINE and WRITE ROUTINE are executed repeatedly until the end of the old file
is reached. Notice that the routines start off by writing the current record and then
reading the next record.

If you check the program logic carefully, you will find that when the operator
enters Q to quit, a record is being displayed. The record currently being displayed
must be written before another record is read. ·

This group of instructions appears to cause an endless loop consisting of lines
2320, 2330, and 2340. The loop is broken when the EOF is reached and the computer
breaks the sequence of execution in order to execute the ONERR instruction (see
line 2400 in the BEGINNING ROUTINE). When the EOF is reached, logic flow
branches to line 1080 of the DRIVE ROUTINE, where the ENDING ROUTINE is
executed.

2370 REM ----------------------

2380 REM BEGINNING ROUTINE

2390 TEXT : NORMAL : HOME : SPEED= 255

2400 ONERR GOTO 1080

2460 PRINT D$;"0PEN ";FILEID$;",D";FDRIVE

2470 PRINT D$;"0PEN ";FILEID$;" NEW,D";FDRIVE

2480 PRINT 0$

2490 REM

Serial and Sequential Disk Files I 353

Lines 2370 through 2490 ensure that the computer is set up correctly for program
execution, initializes some of the variables to the correct starting value, and opens
the two files which are to be used within the program.

Line 2400 introduces the ONERR instruction and should be studied carefully.
There are several ways to h.andle coming to the end of a sequential file, but

with the exception of the ONERR instruction, the alternatives are not compatible
with the use of the APPEND instruction. Since the sequential system is designed
with one of the programs using the APPEND instruction, the rest of the programs
must rely on the ONERR instruction to indicate an EOF condition.

When the computer reaches the end of the file, it automatically interrupts the
current sequence of code and branches to the line number indicated by the ON ERR
instruction.

Lines 2460 through 2470 open up the two files to be used within the program.
When records are processed sequentially, the old file must be read and the new
records written to another file. As a general rule you should use the same file names
but follow the new file with a suffix to make the file name unique. In this example
the suffix (NEW) is used to indicate the new file. At the end of the update process,
the backup copy of the file is deleted, the old file is renamed as the backup copy,
and the new file is renamed, making it the most current version.

2500 REM ----------------------

2510 REM PRINT SCREEN IMAGE

2520 HOME

2710 RETURN

2720 REM

Lines 2500 through 2720 display the screen image and present no new concepts.

2730 REM ----------------------

2740 REM FREE MEMORY ROUTINE

2750 STARTING = PEEK (112) * 256 + PEEK (111): IF STARTING> 16000 THEN 2820

2820 RETURN

354 / Applesoft BASIC Toolbox

The FREE MEMORY ROUTINE is important to any program which uses large num­
bers of string variables.

You do not need to completely understand the routine, but you should include
it in every program which does a lot of string processing.

Lines 2840 through 3190 make up the ENDING ROUTINE. The ending set of
instructions consists of three parts. The first few lines check to see how the program
terminates. If the program terminates as expected, the instructions related to a
normal ending are executed (lines 2890 throught 3020). If the program terminates
in an unexpected manner, then the instructions related to an abnormal ending are
executed (lines 3030 through 3190).

2840 REM ----------------------

2850 REM ENDING ROUTINE

2860 ER = PEEK (222)

2870 IF ER < > 5 THEN 3050

2890

2900

2910

2920

2930

2940

2950

Line 2860 finds out what the ending error code is by PEEKing into memory location
222. Line 2870 checks the error code. If the value is equal to 5 as expected, meaning
EOF, then logic flow falls through to the next line. If the error code is any value
other than 5, logic branches to line 3050, where the instructions related to an
abnormal ending are executed, and the processing is terminated without returning
to the HELLO program.

REM ----------------------

NORMAL END OF FILE

VTAB L9: HTAB 1: INVERSE

PRINT 11 NORMAL END OF FILE - PLEASE WAIT ":NORMAL

PRINTD$

PRINT D$;"CLOSE ";FILEID$

PRINT D$;"CLOSE ";FILEID$;" NEW"

Serial and Sequential Disk Files I 355

2960 ONERR GOTO 2980

2970 PRINT D$;"DELETE ";FILEID$;" BACKUP"

2980 PRINT D$;"RENAME ";FILEID$;",";FILEID$;" BACKUP"

2990 PRINT D$;"RENAME ";FILEID$;" NEW,";FILEID$

3000 HOME

3010 PRINT D$;"RUN SEQ ADDR HELLO PROG,D";PDRIVE

If the program ends normally, both files are closed. After the files are closed they
are renamed so that each file reflects its status as a backup copy or a current copy.

Prior to closing:

SEO ADDR FILE BACKUP

SEQ ADDR FILE
SEQ ADDR FILE NEW

After close:

SEQ ADDR FILE BACKUP

SEQ ADDR FILE

SEQ ADDR FILE NEW

This is the prior master file (does not exist
during first run).
This is the current master file.
This is the new file being created.

The oldest version of the file is deleted from
the disk.
This becomes the backup copy after renam­
ing it to SEQ ADDR FILE BACKUP
This becomes the current master file after
renaming it to SEQ ADDR FILE

The process of rotating the file names as shown provides you with the security
of a backup copy of the file and makes sure the most recent copy of the file is always
used as input by the processing programs.

Line 2970 deletes the backup copy prior to the renaming process. But there are
a couple of situations in which there may not be a backup copy to delete.

1. When you run the program the very first time, there is no backup copy.
2. If for some reason you have problems with the current master file and have to

rerun the UPDATE program using the backup copy, because of the rerun pro­
cedure (see below), there is no backup copy to delete.

356 / Applesoft BASIC Toolbox

Rerun Procedure In order to rerun the UPDATE program using the backup copy, the operator must
execute the following sequence of instructions in immediate execution mode:

DELETE SEQ ADDR FILE
RENAME SEQ ADDR FILE BACKUP,SEQ ADDR FILE
RUN program name

Since the backup copy has been renamed, the file name SEO ADDR FILE
BACKUP no longer exists, and any attempt to reference it results in an error.

2960 ONERR GOTO 2980

Line 2960 resets the statement number used in conjunction with the ONERR instruc­
tion. If the program attempts to delete a nonexistent file, the ONERR instruction is
executed. Prior to this statement the ONERR was set to branch to line 1080 any time
an error occurred.

2380 BEGINNING ROUTINE

2400 ON ERR GOTO 1080

If the ONERR instruction is not reset as done by line 2960 and the backup copy
does not exist, the computer will incorrectly end the program by executing the
ABNORMAL TERMINATION ROUTINE.

The ONERR condition MUST be reset. The following rather lengthy narrative
describes the logic flow which would occur ifthe ONERR instruction were not reset
and the backup copy of the address file did not exist. The sequence of logic flow
leading to the abnormal ending consists of the following:

1. After the last record is read, an attempt is made to read another record, and
the EOF marker is encountered. The resulting END OF DATA error causes the
ONERR instruction to be executed.

2. The ONERR instruction causes the program to branch to line 1080, which in
turn branches to the ENDING ROUTINE.

3. At the beginning of the ENDING ROUTINE, the error code is checked for a
value of 5. Since the END OF DATA error code is equal to 5, logic flow
continues to fall through and starts execution of the instructions related to a
normal ending instructions.

Up to this point everything is going as it should.

4. As part of the normal ending process, the two files are closed, and the DELETE
instruction attempts to delete a nonexistent backup file. Since there is no file
to delete, a code 6 error indicating FILE NOT FOUND occurs.

Serial and Sequentlal Disk Files I 357

S. As soon as the FILE NOT FOUND error occurs the computer executes the
ONERR instruction. Since the ONERR instruction was not reset, the program
goes back to line 1080, which in turn sends the computer back to the beginning
of the ENDING ROUTINE.

Are you still with me?

6. At the beginning of the ENDING ROUTINE, the ONERR code is checked. Since
the code is not equal to 5, logic flow branches to the instructions to handle the
abnormal ending.

Now hopefully you see why line 2960 resets the ONERR statement to branch to 2980
in case the backup file does not exist.

2970 PRINT D$;"DELETE ";FILEID$;" BACKUP"

Line 2970 deletes the backup copy of the address file if it exists. This must be done
prior to the renaming process or there will be two files on the same disk with the
same name.

2980 PRINT D$;"RENAME ";FILEID$;",";FILEID$;" BACKUP"

2990 PRINT D$;"RENAME ";FILEID$;" NEW,";FILEID$

Line 2980 and 2990 rename the two existing files to reflect their current status as
backup copy and current copy.

After the files are properly renamed, the HELLO program is executed, returning
once again to the original menu.

Lines 3030 through ~190 are executed only if an abnormal ending occurs. This
should never happen, but if the disk becomes full, an 1/0 error occurs, or some
other nonanticipated event occurs, the ABNORMAL TERMINATION ROUTINE dis-
plays a message and error code to the operator. ·

One important note. The backup copy of the file created by the sequential
UPDATE program Should not be your only backup copy. There are two problems in
relying on this backup copy.

1. The backup copy is on the same disk. If the disk is lost or damaged, both the
original and the backup are lost.

2. The backup copy contains old data and does not reflect the most recent changes.

You should make it a standard practice to back up the latest version of your
files on a separate disk, and to store the disk in a separate location.

358 / Applesoft BASIC Toolbox

The Sequential File LIST Program

Program Name SEQ ADDR LIST PROG

Program To provide the user with a method of listing all the records in the address file.
Objective

Every system should have a way of listing the records either to the screen or
to a printer. If the records are being printed, the program can read each record and
print each record as fast as the printer operates. But if records are being displayed
to the screen, the program must periodically pause to allow the records to be read
by the computer operator.

The LISTing program displays three records per screen and then pauses. The
program waits for a response from the operator and then continues. The program
displays records in groups of three until either the end of the file is reached or the
operator presses Q to terminate processing.

The three record screen format appears as follows:

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

PRESS Q TO QUIT.
PRESS c TO CONTINUE.

Instructions for Run the program by entering
Running the

Program RUN SEQ ADDR HELLO PROG <RETURN>

Serial and Sequential Disk Flies I 359

After the menu is displayed, enter a 3 to start execution of the listing program.
You may not like the idea of running the HELLO program to execute any of the

other programs in the system. You do not always have to run the HELLO program.
You may run any of the programs by entering RUN followed by the program name.

RUN SEQ ADDR LIST PROG <RETURN>

Remember in designing a computer system that the end user should only have
to know how to put the program and file disk into the disk drives. After the operator
places the disk in the disk drive and turns the computer on, the screen displays
should guide the operator in using the system. The end user should not have to enter
the RUN command and remember the various program names. But since you know
more than the end user, you can execute the programs either way.

Once the program has started, the first three records are displayed on the screen.
After the records are displayed, the computer waits until you enter either Q to quit
or C to continue.

If you enter Q the program terminates and returns to the HELLO program. If
you enter C the program reads and displays the next three records.

Program Listing 1000 REM SEQ ADDR LIST PROG
1010 REM-----------
1020 REM DRIVE ROUTINE
1030 GOSUB 1410: REM BEGINNING
1040 GOSUB 1090: REM MAIN MOD
1050 GOTO 1500: REM END MODULE
1060 REM
1070 REM ----------
1080 REM MAIN ROUTINE
1090 GOSUB 1280: REM READ DISK
1100 PRINT "NAME =("AANAME$")"
1110 PRINT "ADDRESS =("ABADDR$") II
1120 PRINT "CITY =("ACCITY$")"
1130 PRINT "STATE =("ADSTE$")"
1140 PRINT "ZIP CODE =("AEZIP$")"
1150 PRINT "PHONE =("AFPHNE$")"
1160 Nl = Nl + 1
1170 IF Nl < 3 THEN PRINT: GOTO 1090
1180 PRINT
1190 PRINT "PRESS Q TO QUIT."

360 / Applesoft BASIC Toolbox

1200 PRINT "PRESS C TO CONTINUE.";
1210 GET Xl$
1220 IF Xl$ = "C" THEN HOME :Nl = 0: GOTO 1090
1230 IF Xl$ = "Q" THEN RETURN
1240 GOTO 1210
1250 REM NO RETURN NEEDED
1260 REM
1270 REM READ DISK
1280 PRINT D$
1290 PRINT D$;"READ SEQ ADDR FILE"
1300 INPUT AlADDR$
1310 PRINT D$
1320 AANAME$ = LEFT$ (AlADDR$.25)
1330 ABADDR$ = MID$ (AlADDR$,26,25)
1340 ACCITY$ =MID$ (AlADDR$,51,15)
1350 ADSTE$ = MID$ (AlADDR$,66,2)
1360 AEZIP$ = MID$ (AlADDR$,68,5)
1370 AFPHNE$ =MID$ (AlADDR,73,3) + "-" +MID$ (AlADDR$,76,3) +

"-" + RIGHT$ (AlADDR$,4)
1380 RETURN
1390 REM ---------
1400 REM BEGINNING ROUTINE
1410 TEXT : NORMAL : HOME : SPEED= 255
1420 ONERR GOTO 1050
1430 D$ = CHR$ (4)
1440 FDRIVE = 1 : PDRIVE = 1
1450 FILEID$ = "SEQ ADDR FILE"
1460 PRINT D$;"0PEN ";FILEID$;".D";FDRIVE
1470 RETURN
1480 REM -----·
1490 REM ENDING ROUTINE
1500 IF Xl$ = "Q" THEN 1540
1510 IF Nl = 0 THEN 1540
1520 PRINT 11 PRESS C TO CONTINUE.";
1530 GET Xl$: IF Xl$ < > "C" THEN 1530
1540 PRINT D$
1550 PRINT D$;"CLOSE ";FILEID$
1560 PRINT D$;"RUN SEQ ADDR HELLO PROG,D"PDRIVE
1570 REM ---------

Cross Reference Listing

Variable names used with the address record:

A1$1300, 1320, 1330, 1340, 1350, 1360, 1370
AA$ 1100, 1320
AB$ 1110, 1330
AC$ 1120, 1340
AD$ 1130, 1350
AE$ 1140, 1360
AF$ 1150, 1370

Serial and Sequential Disk Files I 361

Variable names used with the disk commands:

D$ 1280, 1290, 1310, 1430, 1460, 1540, 1550, 1560
FD 1440, 1460
Fl$ 1290, 1450, 1460, 1550
PD 1440, 1560

General counters used to keep track of the number of records displayed on the screen:

N1 1160, 1170, 1220, 1510

Variable names used for general GET instruction in response to the screen messages:

X1$ 1210, 1220, 1230, 1500, 1530

Explanation by Detailed explanations by line number follow.
Line Number

1000 REM SEQ ADDA LIST PROG

1010 REM --------------------

1020 REM DRIVE ROUTINE

1030 GOSUB 1410: REM BEGINNING

1040 GOSUB 1090: REM MAIN MOD

1050 GOTO 1500: REM END MODULE

As with most of the programs in this book, the DRIVE ROUTINE contains the same
three basic operations. A GOSUB instruction is used to execute those instructions
necessary to get the program started. A GOSUB instruction is used to branch to the
MAIN ROUTINE, which is executed repeatedly until all the records are displayed or
the operator enters Q to quit processing. A GOTO instruction is used to branch to
the ENDING ROUTINE to execute the instructions which terminate the program.

A GOSUB is used to execute the MAIN ROUTINE because it is possible for the
operator to enter Q to quit processing. If Q is entered, logic RETURNs to the DRIVE
ROUTINE. If the end of the file is reached, an ONERR instruction causes logic flow

362 / Applesoft BASIC Toolbox

to go to line 1050, which in turn goes to the ENDING ROUTINE. This is the long
way around, but it is an attempt to give the program a standardized logical structure.

The MAIN ROUTINE consists of two parts. The first half reads and displays
the data, while the second half displays a message and waits for a response.

1070 REM --------------------

1080 REM MAIN ROUTINE

1090 GOSUB 1280: REM READ DISK

1100 PRINT "NAME = ("AANAME$")"

1150 PRINT "PHONE = ("AFPHNE$")"

1160 N1=N1+1

1170 IF N1 < 3 THEN PRINT: GOTO 1090

Lines 1080 through 1170 are responsible for reading and displaying each record.
Once three records have been displayed, the program pauses for the operator to view
the information. Lines 1180 through 1240 consist of the standard logic for displaying
and testing a response.

1260 REM ----------------------

1270 REM READ DISK

1370 AFPHNE$ = MID$(A1ADDR,73,3) + "-" + MID$(A1ADDR$,76,3) +"-"+RIGHT$
(A1ADDR$.4)

1380 RETURN

Lines 1260 through 1380 cause one record to be read; they consist basically of the
same code as in all the sequential programs. The only difference is on line 1370,
where hyphens are inserted into the phone number at the time the record is read.

Serial end Sequential Disk Flies I 363

1390 REM ----------------------

1400 REM BEGINNING ROUTINE

1410 TEXT: NORMAL: HOME: SPEED= 255

1420 ONERR GOTO 1050

1470 RETURN

Lines 1410 through 1470 make sure the computer is set up correctly for program
execution, initialize some of the variables to the correct starting value, and open
the address file. Notice the ONERR statement on line 1420. If you are reading
sequential files, you must allow for th(l error which occurs when the EOF is reached.

1480 REM ----------------------

1490 REM ENDING ROUTINE

1500 IF X1$ = "O" THEN 1540

1510 IF N1 = 0 THEN 1540

1560 PRINT D$;"RUN SEQ ADDR HELLO PROG,D"PDRIVE

Lines 1490 through 1560 are responsible for correctly terminating the program. The
first few lines represent code which handles the various ways the program may
terminate.

Some logic represented by the first few lines may not be immediately obvious
but is necessary because there are three ways the program may terminate.

1. The program may terminate by the operator's entering Q at the end of one of
the display screens. The operator may choose not to look at the entire file. If
so, logic fl.ow RETURNs to the DRIVE ROUTINE, which in turn executes the
ENDING ROUTINE.

364 / Applesoft BASIC Toolbox

2. The program may terminate by encountering the EOF after displaying a full
screen and prior to displaying any records on a new screen. That is, after three
records are displayed, the operator responds by pressing C, but there are no
more records to be read, so the ONERR instruction causes logic flow to execute
the ENDING ROUTINE.

3. The program may terminate by encountering the EOF after displaying the first
or second record of a new screen. The operator should have a chance to view
and respond to the records which have just been displayed.

Each of these conditions requires a different sequence of instruction execution
to correctly terminate the program.

1500 IF X1$ = "0" THEN 1540

If the operator enters 0, there is no need to pause for any further response. If X1$
is equal to Q, logic flow skips over the messages and goes directly to the CLOSE
instruction.

1510 IF N1 = 0 THEN 1540

If the program terminates by encountering the EOF prior to displaying any record
on a new screen, there is no reason to pause and let the operator view the screen,
so logic flow skips over the messages and goes directly to the CLOSE statement.

You may think all these checks are unnecessary, but can you imagine what the
operator would think looking at a screen which was completely blank except for a
message that said, PRESS C TO CONTINUE?

1520 PRINT "PRESS C TO CONTINUE.";

1530 GET X1$: IF X1$ <> "C" THEN 1530

If the program terminates with a partial screen (only one or two records displayed),
the termination message is displayed, and the program waits for a response. The
only response which is allowed is C. After C is entered, program logic falls through
to the CLOSE instruction.

Program Name

Program
Objective

Serial and Sequential Disk Flies I 385

The Sequential File SEARCH Program

SEQ ADDR SEARCH PROG

To provide the user with a method of scanning the file for a specific last name or
scanning the file for all last names which start with a specific set of characters.

If the file is large, the user will not want to list all the records in sequence just
to find one or two individuals. In order to make the system more usable, this program
allows the operator to enter a last name or the first few characters of the last name,
and the program searches the entire file for any records which match the characters
entered.

The screen design is exactly the same as for the SEQ ADDR LISTING PROG
except that there is a chance that no matching record will be found. If no record
with a matching last name is found, an appropriate message is displayed, and the
operator is given another chance to search the file.

Instructions for Run the program by entering
Running the

Program RUN SEQ ADDR HELLO PROG <RETURN>

After the menu is displayed, enter a 4 to start execution of the SEARCH pro­
gram.

The first screen requests that you enter the last name or the first few characters
of the last name to be used in searching the file.

ENTER THE LAST NAME OR FIRST FEW
LETTERS OF THE LAST NAME TO BE
USED WHEN SEARCHING THE FILE.

LAST NAME = (

After receiving the value to be used during the search process, the program
reads and displays any records which contain the same last name or partial last
name. For example, if you enter JO as the characters to be used in searching the
file, all the JOHNSONs, JOHNSTONs, JONESes, JORDANs, etc. are displayed.

366 / Applesoft BASIC Toolbox

NAME =(JOHN JOHNSTON
ADDRESS =(1234 EASY STREET
CITY =(RICH TOWN)
STATE =(NY)
ZIP CODE = (12345)
PHONE = (222-333-4444)

NAME =(MARY JONES
ADDRESS =(4321 FIRST STREET
CITY = (MODEL TOWN)
STATE =(CA)
ZIP CODE =(98765)
PHONE =(444-333-2222)

NAME =(JIM JORDAN
ADDRESS =(333 TRACK SIDE
CITY =(BOX CAR
STATE =(PA)
ZIP CODE = (34343)
PHONE = (252-252-2525)

PRESS Q TO QUIT.
PRESS c TO CONTINUE.

If three or more matches exist, the screen appears as just shown. If only one
or two matches are found before the EOF is reached, a partial screen is displayed,
and the operator is given a chance to enter C to continue. For a partial screen the
operator is not given a chance to enter Q, since the EOF has already been reached.

If no matches are found, a message is displayed as shown in the following
screen. Once the operator is through, C is entered to continue.

NO MATCHING RECORDS FOUND

PRESS C TO CONTINUE.

At the end of the program, the operator is given a chance to rerun the program
or to return to the menu program.

Serial and Sequential Disk Files I 367

SELECT ONE OF THE FOLLOWING

1. TO RUN THE PROGRAM AGAIN

2. TO RETURN TO THE MENU

SELECTION DESIRED (])

Program Listing 1000 REM SEQ ADDR SEARCH PROG
1010 REM ------------------
1020 CLEAR :Gl = PEEK (116) * 256 +PEEK (115) - 40 :GA$

12345678901234567890" + "12345678901234567890"
1030 REM
1040 REM --------------------
1050 REM DRIVE ROUTINE
1060 GOSUB 1690: REM BEGINNING
1070 GOSUB 1120: REM MAIN MOD
1080 GOTO 2150: REM END MODULE
1090 REM
llOO REM
1110 REM MAIN ROUTINE
1120 GOSUB 1340: REM READ DISK
1130 GOSUB 1550: REM EXTRACT NAME
1140 IF FANAME$ < > FBNAME$ THEN 1120
1150 MTCHES = MTCHES + 1
ll60 PRINT "NAME =("AANAME$")"
ll70 PRINT "ADDRESS =("ABADDR$")"
ll80 PRINT "CITY =("ACCITY$")"
ll90 PRINT "STATE =("ADSTE$")"
1200 PRINT "ZIP CODE =("AEZIP$")"
1210 PRINT "PHONE =("AFPHNE$")"
1220 Nl = Nl + 1
1230 IF N2 < 3 THEN PRINT: GOTO 1120
1240 VTAB 23: HTAB 1
1250 PRINT "PRESS C TO CONTINUE."
1260 PRINT "PRESS Q TO QUIT.";
1270 GET Xl$
1280 IF Xl$ = "C" THEN N2 = 0: GOSUB 1470: GOTO ll20
1290 IF Xl$ = "Q" THEN N2 = 0: RETURN
1300 GOTO 1270
1310 REM

-1320 REM-----------------
1330 REM READ DISK
1340 PRINT D$
1350 PRINT D$; "READ "; FILEID$
1360 INPUT AlADDR$
1370 PRINT D$
1380 AANAME$ = LEFT$ (AlADDR$,25)

"

368 I Applesoft BASIC Toolbox

1390 ABADDR$ =MID$ (AlADDR$,26,25)
1400 ACCITY$ =MID$ (AlADDR$,51,15)
1410 ADSTE$ = MID$ (AlADDR$.66,2)
1420 AEZIP$ = MID$ (AlADDR$,68,5)
1430 AFPHNE$ =MID$ (AlADDR,73,3) + "-" +MID$ (AlADDR$,76,3) +

"-" + RIGHT$ (AlADDR$,4)
1440 RETURN
1450 REM
1460 REM ----------------
1470 REM SEARCHING MESSAGE
1480 HOME : VTAB 24
1490 INVERSE : PRINT " SEARCHING FILE - BE PATIENT" TAB(38)

II II; : NORMAL
1500 VTAB 1: HTABl
1510 RETURN
1520 REM
1530 REM--------------
1540 REM EXTRACT NAME
1550 FOR Nl = 25 to 2 STEP - 1
1560 IF MID$ (AANAME$,Nl,l) II II THEN 1580
1570 GOTO 1590
1580 NEXT
1590 FOR Nl = Nl TO 1 STEP - 1
1600 IF MID$ (AANAME$,Nl,l) = II II THEN 1620
1610 NEXT
1620 FBNAME$ = RIGHT$ (AANAME$,25 - Nl)
1630 IF LEN (FBNAME$) > N3 THEN FBNAME$ = LEFT$ (FBNAME$,N3)

: GOTO 1650
1640 IF LEN (FBNAME$) < N3 THEN FBNAME$ = FBNAME$ + " ": GOTO 1640
1650 RETURN
1660 REM
1670 REM ---------------
1680 REM BEGINNING ROUTINE
1690 TEXT : NORMAL : HOME : SPEED= 255
1700 ONERR GOTO 1080
1710 D$ = CHR$ (4)
1720 FDRIVE = 1 : PDRIVE = 1
1730 FILEID$ = "SEQ ADDR FILE"
1740 PRINT D$
1750 PRINT D$;"0PEN ";FILEID$;",D"FDRIVE
1760 PRINT D$
1770 GOSUB 1820: REM INPUT NAME
1780 REM
1790 REM FALL THROUGH TO NEXT ROUTINE
1800 REM ---------------------
1810 REM INPUT NAME ROUTINE
1820 VTAB 5
1830 PRINT "ENTER THE LAST NAME OR FIRST FEW"
1840 PRINT "LETTERS OF THE LAST NAME TO BE"
1850 PRINT "USED WHEN SEARCHING THE FILE." : PRINT
1860 PRINT "LAST NAME = (" SPC(20)")"
1870 VTAB 9: HTAB 14
1880 GALEGTH = 20: GOSUB 1960: IF LEFT$ (GBANSWER$,l) II II THEN 1870

1890 FANAME$ = LEFT$ (GBANSWER$,GCCHAR)
1900 N3 = GCCHAR
1910 GOSUB 1470
1920 RETURN
1930 REM
1940 REM
1950 REM GET SUBROUTINE
1960 IF G3 = 0 THEN GOSUB 2110

Serial and Sequential Disk Files I 369

1970 G3 = Gl + GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT G2 = Gl
1980 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 2050
1990 IF GB = 13 THEN 2070
2000 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 2030
2010 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1980
2020 PRINT CHR$ (GB);: POKE G2,GB
2030 G2 = G2 + 1: IF G2 > G3 THEN 2100
2040 GOTO 1980
2050 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1980
2060 PRINT CHR$ (8);: GOTO 1980
2070 IF Gl = G2 THEN 2090
2080 FOR GC = G2 TO G3: PRINT " ";: NEXT
2090 FOR GC = G2 TO G3: POKE GC,32: NEXT
2100 GB$= LEFT$ (GA$,GA):GC = G2 - Gl: RETURN
2110 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141: P

OKE 772,07: POKE 773,03: POKE 774,96: RETURN
2120 REM
2130 REM
2140 REM ENDING ROUTINE
2150 IF MTCHES = 0 THEN HOME: PRINT "NO MATCHES FOUND": PRINT

: GOTO 2170
2160 IF N2 = 0 THEN 2190
2170 VTAB 24: PRINT "PRESS C TO CONTINUE." TAB(39)" 11 •

2180 GET Xl$: IF Xl$ < > "C" THEN 2180
2190 PRINT D$
2200 PRINT D$;"CLOSE ";FILEID$
2210 PRINT D$
2220 HOME
2230 VTAB 5
2240 PRINT "SELECT ONE OF THE FOLLOWING"
2250 PRINT
2260 PRINT " 1. TO RUN THE PROGRAM AGAIN"
2270 PRINT
2280 PRINT II

2290 PRINT
2300 PRINT

2. TO RETURN TO THE MENU"

2310 PRINT "SELECTION DESIRED ()";
2320 VTAB 12: HTAB 22
2330 GET Xl$: PRINT Xl$
2340 IF Xl$ = "l" THEN CLEAR : GOTO 1000
2350 IF Xl$ = "2" THEN PRINT D$: PRINT D$;"RUN SEQ ADDR HELLO

PROG,D"PDRIVE
2360 GOTO 2320
2370 REM
2380 REM --------------------

370 / Applesoft BASIC Toolbox

Cross Reference Listing

Variable names used with the address record:

A1$ 1360, 1380, 1390, 1400, 1410, 1420, 1430
AA$ 1160, 1380, 1560, 1600, 1620
AB$ 1170, 1390
AC$ 1180, 1400
AD$ 1190, 1410
AE$ 1200, 1420
AF$ 1210, 1430

Variables used for matching names:

FA$ 1140, 1890
FB$1140, 1620, 1630, 1640

Variable names used with the disk commands:

D$ 1340, 1350, 1370, 1710, 1740, 1750, 1760, 2190, 2200, 2210, 2350
FD 1720, 1750
PD 1720, 2350

Variable names used with the GET subroutine:

G1 1020, 1970, 2050, 2070, 2100
G2 1970, 2000, 2020, 2030, 2050, 2070, 2080, 2090, 2100
G3 1960, 1970, 2030, 2080, 2090
GA 1880, 1970, 2100
GB 1980, 1990, 2000, 2010, 2020
GB$ 1890, 2100
GC 1890, 1900, 2080, 2090, 2100

Variables used as general counters:

MT 1150, 2150
N1 1550, 1560, 1590, 1600, 1620
N2 1220, 1230, 1280, 1290, 2160
N3 1630, 1640, 1900

Variable names used for general GET instruction in response to the screen messages:

X1$ 1270, 1280, 1290, 2180, 2330, 2340, 2350

Serial and Sequential Disk Flies / 371

Explanation by Detailed explanations by line number follow.
Line Number

1000-1090 The DRIVE ROUTINE uses the same logic as previous programs. A GOSUB instruc­
tion is used to execute the BEGINNING ROUTINE. After returning from the BEGIN­
NING ROUTINE, logic flow uses a GOSUB instruction to execute the MAIN ROU­
TINE.

The MAIN ROUTINE is executed until one of two conditions occurs. If the
operator enters Q to quit, the MAIN ROUTINE is terminated by using a RETURN
instruction. If the EOF is reached, the ON ERR instruction breaks the GOSUB oper­
ation and branches to line 1080. In either case logic flow branches from line 1080
to the ENDING ROUTINE.

The logic of the MAIN ROUTINE consists of three smaller segments. Lines
1110 through 1140 read a record, extract the name, and test to see if there is a
match. When a match does occur, lines 1150 through 1230 display the record and
increment the counters related to the number of entries displayed. Lines 1240 through
1300 cause the computer to pause and give the operator a chance to respond if there
are three matches.

1100 REM --------------------

1110 REM MAIN ROUTINE

1120 GOSUB 1340: REM READ DISK

1130 GOSUB 1550: REM EXTRACT NAME

1140 IF FANAME$ < > FBNAME$ THEN 1120

Line 1120 reads a record. After the record is read, a routine is executed which
extracts the last name from AANAME$ and places it in the variable FBNAME$. If
the name read is equal to the name entered by the operator, logic flow falls through
the IF instruction, and the record is displayed. If the name is not equal, the record
is rejected and a new record is read.

1150 MTCHES = MTCHES + 1

1160 PRINT "NAME = ("AANAME$")"

1210 PRINT "PHONE = ("AFPHNE$")"

1220 N1 = N1 + 1

1230 IF N2 < 3 THEN PRINT: GOTO 1120

372 / Applesoft BASIC Toolbox

As each record is displayed, two counters are incremented. The first counter keeps
track of the total number of matches. This counter is tested during the ENDING
ROUTINE to determine if any records were displayed. If the value of MTCHES is
equal to zero, that means that no matching records were found, and an appropriate
message is displayed to the operator.

1150 MTCHES = MTCHES + 1

2140 REM ENDING ROUTINE
2150 IF MTCHES = 0 THEN HOME: PRINT "NO MATCHES FOUND": PRINT:

GOTO 2170

The second counter keeps track of the number of records displayed on the
screen. Once three records have been displayed, logic flow falls through the IF
instruction and pauses while the operator is given a chance to view the data on the
screen. After the operator has responded, the counter is reset and the process started
over.

1220 N2 = N2 + 1
1230 IF N2 < 3 THEN PRINT: GOTO 1120

1240-1310 Lines 1240 through 1310 display the two options to the operator. If the operator
enters Q, the MAIN ROUTINE is exited by way of the RETURN instruction. If the
operator enters C, the screen is cleared and the search process continues.

If the operator fails to press Q or C, no message is displayed, but the GET
instruction is reexecuted, giving the operator another chance to enter the right value.

1320-1450 Lines 1320 through 1450 consist of the READ ROUTINE, which was explained in
the previous examples.

1460-1520 Since the process of searching the file is rather slow, a message is displayed on line
24 to let the operator know what is going on. The routine is different from other
message routines in that the screen is cleared and then the message is displayed.
After the message is displayed, the cursor is repositioned to line 1 column I.

1530 REM ----------------------

1540 REM EXTRACT NAME

1550 FOR N1 = 25 TO 2 STEP - 1

1560 IF MID$ (AANAME$,N1,1) =II "THEN 1580

1570 GOTO 1590

Serial and Sequential Disk Files I 373

1580 NEXT

1590 FOR N1 = N1 TO 1 STEP - 1

1600 IF MID$ (AANAME$,N1,1) =II "THEN 1620

1610 NEXT

1620 FBNAME$ =RIGHT$ (AANAME$,25 - N1)

1630 IF LEN (FBNAME$) > N3 THEN FBNAME$ = LEFT$ (FBNAME$,20): GOTO 1650

1640 IF LEN (FBNAME$) < N3 THEN FBNAME$ = FBNAME$ + " ": GOTO 1640

1650 RETURN

1660 REM

1530

1540

1550

1560

1570

1580

Lines 1530 through 1660 consist of the logic for extracting the last name from
AANAME$ and placing it in FBNAME$. The routine consists of three segments. The
first segment of code locates the last character of the last name. The second segment
of code locates the first character of the last name, and the third segment extracts
all the characters making up the last name. In order for this routine to work, the
name must be entered using the format of first name first, followed by a space,
followed by the last name, followed by as many trailing spaces as necessary.

FIRSTNAME LASTNAME (where A•s point to blanks)
A AAAAAAA

REM ----------------------

REM EXTRACT NAME

FOR N1 = 25 TO 2 STEP - 1

IF MID$ (AANAME$,N1,1) =II "THEN 1580

GOTO 1590

NEXT

Line 1550 starts a FOR/NEXT loop in which each character of the string is examined
starting from the rightmost character and working to the left.

374 / Applesoft BASIC Toolbox

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

The twenty-fifth character is checked first to see if it is equal to a blank. If it
is equal to a blank, logic flow skips to line 1580, and N1 is decreased by 1 (see -1
on line 1550). After N1 is decreased, line 1560 is executed again to check to see if
the twenty-fourth character is equal to a blank.

The FOR/NEXT loop continues to execute until a nonblank character is located
or the counter reaches a value of 2. For the following example logic flow exits this
segment of code when column 18 is checked for a blank. Notice that column 18
contains an E.

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

1590 FOR N1 = N1TO1 STEP - 1

1600 IFMID$(AANAME$,N1,1) =II "THEN 1620

1610 NEXT

After the last character of the name is found, the problem is to find the first character
of the last name. Lines 1590 through 1610 accomplish this by starting a new search
but this time for the blank between the first and the last name.

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

The FOR/NEXT loop is executed until N1 is equal to 10. When the blank in the
tenth column is found, logic flow skips around the NEXT instruction and goes to
line 1620.

1620 FBNAME$ = RIGHT$ (AANAME$,25 - N1)

1630 IF LEN (FBNAME$) > N3 THEN FBNAME$ = LEFT$ (FBNAME$,20): GOTO 1650

1640 IF LEN (FBNAME$) < N3 THEN FBNAME$ = FBNAME$ + 11 11 : GOTO 1640

1650 RETURN

Serial and Sequential Disk Flies I 375

1660 REM

After the blank preceding the last name is found, all that remains is to extract the
correct number of characters from the start of the last name to the end of the string.
This is done by using the RIGHT$ function.

The variable FBNAME$ is set equal to the characters making up the right side
of AANAME$. The portion of AANAME$ to be used is determined by subtracting
N 1 from 25 where

25 = The length of the field
- N 1 = The position of the blank between the first and the last name
= 15 =The number of characters to be extracted

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

After extracting the name, the remaining code ensures that the string contains
the same number of characters as entered by the operator. This is done by either
truncating the excess characters or padding the string with blanks on the right side.

Lines 1810 through 1920 are executed after falling through the BEGINNING
ROUTINE; they allow the operator to enter the name used in searching the address
file. The rest of the BEGINNING ROUTINE consists of the same type of code as in
all the previous examples.

1670 REM ----------------------

1680 REM BEGINNING ROUTINE

1780 REM

1790 REM FALL THROUGH TO NEXT ROUTINE

1800 REM ----------------------

1810 REM INPUT NAME ROUTINE

1820 VTAB 5

37& / Apf>lesoft BASIC Toolbox

1830 PRINT "ENTER THE LAST NAME TO BE USED WHEN"

1840 PRINT "SEARCHING THE FILE."

1850 PRINT

1860 PRINT "LAST NAME = (" SPC(20)")"

1870 VTAB8:HTAB14

1880 GALEGTH = 20: GOSUB 1960: IF LEFT$ (GBANSWER$, 1) = " "THEN 1870

1890 FANAME$ = LEFT$ (GBANSWER$,GCCHAR)

1900 N3 = GCCHAR

1910 GOSUB 1470

1920 RETURN

Lines 1800 through 1920 are responsible for retrieving the name from the operator.
The IF instruction at the end of line 1880 makes sure the name starts with a nonblank
character. Since the names extracted from the file will all start with a letter, the
name entered by the operator must start with a letter. Line .1890 is important in that
it determines how many c::haracters were entered by the operator. One of the features
of the GET subroutine is that it returns the number of characters entered in the
variable GCCHAR. The program must know how many characters were entered in
order to extract the matching number of characters from the name in each record.

The name extracted from the record must be the same length as the name entered
by the operator in order for the comparison to work correctly. You cannot correctly
compare unequal size strings in Applesoft.

1950-2120 The GET subroutine is executed only once in this program and is placed toward the
end of the program.

The ENDING ROUTINE contains some interesting logic and a technique for
restarting the program.

2130 REM ----------------------

Serial and Sequential Disk Flies I 377

2140 REM ENDING ROUTINE

2340 IF X1$ = "1" THEN CLEAR: GOTO 1000

2350 IF X1$ = "2" THEN PRINT D$: PRINT D$;"RUN SEQ ADDR HELLO PROG,D" PDRIVE

2360 GOTO 2320

2370 REM

2380 REM ----------------------

After the file is closed, the operator is given a chance to rerun the program or to
return to the menu.

2130-2380 The operator must enter either a 1 or a 2. If a 1 is entered, all variables are CLEARed
(set to 0) and the program is restarted. Since all variables are set to 0, the program
must start over on the very first line so that variables can be initialized to the correct
starting values and the files reopened.

5.

378

Random Disk Files

Before any of the following programs are run, they must be copied to a new disk.
The program disk does not have enough free space for additional files.

For this chapter copy the following programs to another disk:

RAN ADDR CREATE PROG
RAN ADDR HELLO PROG
RAN ADDR UPDATE PROG
RAN ADDR LIST PROG

If you want to make your disk operate like a turnkey system, use the following
steps:

1. Use a new disk or one which no longer contains any files you wish to keep.
2. Load the RAN ADDR HELLO PROG from the program disk. Enter

LOAD RAN ADDR HELLO PROG

3. Remove the program disk and put in the disk you want to initialize. After putting
in the new disk, in:tialize the disk using the RAN ADDR HELLO PROG currently
in memory. Enter

INIT RAN ADDR HELLO PROG,Dnumber,Vnumber

fill in the drive and volume number as desired.
4. After the disk has been initialized, transfer the remaining programs from the

program disk to the newly initialized disk.
5. In order to use the programs on the new disk, all you need to do is to insert

the disk into drive 1 and turn the computer on, or key in PR#6 if the computer
is already on. The RAN ADDR HELLO PROG will be executed automatically.

Random Disk Files I 379

A General Introduction to Random Files

Definition and mustrations

The terms random or direct access are sometimes incorrectly used when referring
to sequential files or indexed file structures. There is only one form of pure random
processing, and the concepts used in accessing the record are basically the same for
microcomputers as they are for large mainframe computers.

Random access refers to the access method whereby each record is assigned a
relative record number and a specific location within the file. A record MAY ONLY
BE ACCESSED (read or written) using the relative record number related to the
record's location within the file.

Relative record number = a whole number starting at 0 and progressing upward in
increments of 1 (0, 1, 2, 3, 4, etc.).

Each relative record number corresponds to an area reserved on the disk for a
record. Since the computer starts counting at 0 and humans start counting at 1, the
relative record number and the actual number of the record do not match (in human
terms).

Relative record 0 = the first record in the file.
Relative record 1 = the second record in the file.
Relative record 2 = the third record in the file.

To overcome this discrepancy, some programmers ignore record 0 and do not
use that area of the file.

Since the computer MUST HAVE THE RELATIVE RECORD NUMBER in
order to locate a specific record, most programmers or systems analysts use the
relative record number as the identifying variable for the record (record key).

0105JOHN JONES
/\/\/\/\

The employee number serves as the relative record number. Mr. Jone's record is
located on the disk in relative record location number 0105. The record is physically
the 106th record.

Once more, the value for the relative record number starts at 0 and continues
as a closed set of sequential numbers up to the maximum number of records to be
stored on the file.

The term closed set of sequential numbers refers to the requirement that the
relative record numbers start at 0 and progress in increments of 1 up to the maximum
number of records to be stored on the file.

0, 1, 2, 3, 4, 5, 6, 7, ... , 495, 496, 497, 498, 499

380 / Applesoft BASIC Toolbox

On large computers each number has an area on the disk reserved for it even
if the area is not used to store any data. For the APPLE the area in the text file is
not reserved, but space in the traclc/sector list is reserved. The actual space in the
text file is not used until the record is written.

Example 1: If record 1000 is written, DOS sets aside 1000 areas in the track/
sector list to be used to store the pointers for the 1000 records (even though 1000
records do not currently exist on the file). Record 1000 is written in the first sector
assigned to the file, and a pointer is placed in position 1000 of the track/sector list
to indicate the location of the record. As other records are written to the file, the
area within the track/sector list is updated to point to the location of the record.
Records are physically stored in the sequence in which they are added to the file,
but the track/sector list is maintained by relative record number.

Example 2: The following table of data shows the relationship between the
relative record number and the related record. Each student is assigned a number.
If the instructor is smart, the numbers are assigned starting with 01, 02, 03, etc.,
and the student number serves as the relative record number. For the following data
the record key serves both to identify the student and to indicate the location of the
record within the random file.

Since the student number equals the relative record number, it may be, but does
not have to be, stored as part of the record. For example, when record 01 is retrieved,
the student number (01) is already known, so why take up additional disk space by
recording the student number on the file? For the data shown below, only the student
name and test score are recorded on the disk.

Relative Student Test
Record # Name Score

00 ... Unused; space not allocated
01 JIM JOHNSON 080
02 MARY SMITH 095
03 ... Unused; space not allocated
04 JAMES MC DONALD 070

...............
98 BOB NEXT-TO-LAST 065
99 JOHN LAST-RECORD 083

Each of the 100 records (00 to 99) is allocated space in the track/sector list
whether or not all 100 records actually contain data.

Applesoft does not TI",quire that all the records be written out to the disk as
shown in the example programs, but to code the programs so that they work with a
partial random file creates more problems than the wasted disk space.

Because of the method used by the computer in locating the records on a random
file, the space allocated for each record must be the same length. The maximum
length of each record is specified when you OPEN the file prior to any 110 operations.
When you READ or WRITE a record, the relative record number must be specified.

Random Disk Files I 381

Once again, the computer needs two items of information in order to locate a
record:

1. Length of the area reserved for each record (must be specified in the OPEN
instruction).

2. Relative record number (must be specified by both the READ and WRITE
instructions).

If you would like a more technical explanation, see the APPLE DOS Manual.

KEYBOARD

A Systems Chart and Description of Random Files

Step 1: Creating File Labels and Dummy Records

CREATE
l?ROGRAM

Before a random file is accessed, the file label should be created and dummy
values written for each record making up the file. The dummy record values serve
to allocate disk space and as a method of indentifying records which are not currently
in use.

For example, to create the student file shown earlier, the program opens the
random file and writes out 100 dummy records. In this case periods are used as filler
or dummy data in creating the records making up the random file.

Relative
Record #

00
01
02
03
04

98
99

Student
Name

Test
Score

382 I Applesoft BASIC Toolbox

KEYBOARD

KEYBOARD

Step 2: Random File Update

UPDATE
PROGRAM

After the dummy file is created, records may be added to, changed, or deleted
from the file. Records are added to the file by changing the dummy data(......) and
writing the record back to disk. Changes to the file are made by reading the old
record, changing the data within the record, and writing the record back to the disk
in the same location that it was before. Deleting a record is done by writing dummy
data(......) over the top of the old data, thereby destroying the old record.

Step 3: Random Report Generation or Inquiry

REPORT
PROGRAM

RANDOM
DISK
FILE

PRINTER
HARD COPY

Once a file is created, the data on the file may be used to produce reports.
Inquiries or reports related to the file may be displayed on the screen (soft copy) or
sent to a printer to produce a hard copy.

Random Disk Files I 383

The Advantages of Random Files

If the system you are developing requires an on-line direct inquiry, or if only a small
portion of the records within a file are to be accessed by most programs, a form of
random processing should be used.

Random files allow the operator to access any record within the file in any
sequence. The operator may request information about the last record on the file
and then turn around and inquire about the first record on the file without any
problems.

Since the records may be processed in any order, the computer operator does
not need to worry about the sequence of the transaction records. Only the records
which are to be updated need to be read and rewritten. This greatly simplifies the
job of the operator.

Unlike sequential file updating, in which the entire master file must be copied
during the update cycle, random files need only rewrite the updated records. Since
only the records which are changed need to be rewritten, the time required for 1/0
operations is reduced.

Disadvantages of Random Files

If the application you are developing cannot assign a closed set of sequential numbers
to the records within the file, there will be problems in how the relative record
number is associated with each record.

The computer must have the relative record number to be able to read and write
information on the file. If the relative record number cannot serve as the record key,
then for cross-reference purposes the record must contain both the record key and
the relative record number, as shown in the following data.

SN# R# Student Name

00 ... Unused area
30303 01 JIM JOHNSON
10101 02 MARY SMITH
..... 03 ... Unused area
20202 04 JAMES MC DONALD
23134 98 BOB NEXT-TO-LAST
55328 99 JOHN LAST-RECORD

PTS

080
095
080
070
065
083

where SN#= student number (record key);
R# = relative record number;
PTS = points

Having two ways to identify the record increases the disk space required and creates
problems when working with the records.

384 / Applesoft BASIC Toolbox

When working with student number 10101 (Mary Smith), the computer user
must know Mary's relative record number (02) or have a chart to help cross-reference
the student number with the corresponding relative record number. The cross-ref­
erencing gets to be a major problem with large files.

A Summary of Random Files for Microcomputers

Random files are ideal for on-line interactive programs. The only drawback to using
pure random files is designing the application so the relative record number also
serves as the record key.

If the application you are developing can use a closed set of sequential numbers
to identify each record, then random file processing .should be your first choice.

The closed set of numbers does not have to start at 1. For example, say you
are working with product numbers which start at 1000 and run continuously up to
1999. To arrive at a relative re~ord number for accessing each record, simply subtract
the starting number (1000) from each product number.

1000 - 1000 = Relative record 000

1010 - 1000 = Relative record 010

1999 - 1000 = Relative record 999

The key to random file usage is a closed set of sequential numbers which identify
each record.

Problem Specifications

A General Description of the Problem

The same problem is used to illustrate the three types of disk access methods with
the sequential and random systems using the same screen design.

The basic fields making up the screen design for the random version of the
client directory are as follows:

RECORD # =(
NAME =(·
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

Random Disk Files I 385

The problem is to design, write, and create a random system to keep track of
the client's name, street address, city, state, ZIP code, and phone number. Each
client is assigned a relative record number by which information is accessed.

Note: Since there is no logical way to tie the relative record number to a specific
name and address, the client record system does not lend itself to using pure random
file organization. In order to use the file you need to produce a cross-reference listing
giving the relative record number and client name.

Four programs are used to illustrate random processing:

1. A program for creating the file label and dummy records
2. A HELLO program which allows the operator a method of choosing which

program is to be executed
3. A program for updating existing records
4. A program for listing all the records on the file

The RAN ADDR CREATE PROGram is needed to create a label on the disk and
to create the correct number of dummy records. Once the label and dummy records
are created, other programs within the system may access the file.

The RAN ADDR HELLO PROGram is used to display a menu and execute the
other programs in the system. With the exception of the RAN ADDR CREATE PRO­
Gram and the RAN ADDR HELLO PROGram, all programs within the system are
executed by using the menu.

The RAN ADDR UPDATE PROGram is used to add, change, or delete records
from the file. Records cannot actually be added since the space has already been
allocated by the dummy records and space cannot be deleted from the file because
of the way random files work. Additions to the file are made by writing over the
dummy records with new data. Deletions to the file are made by writing over the

386 / Applesoft BASIC Toolbox

old data with a dummy record containing all periods (......) . Changes are made by
reading the record, changing specific fields, and then rewriting the new record over
the old record.

The RAN ADDR LIST PROGram is used to display all the names and addresses
in ascending order by the client's last name.

A Data Name Dictionary for the Random Address System

The following list describes the variables used in the random system. Most of the
names used are the same as those used for the sequential file system. You should
scan the list and review the definition and use of each variable.

Not all the names are used in each program. The dictionary is included here
to give a single source for the description of all the variables used within the system.
If you have a question about the use of one of the variables while looking at a
program listing, return to this section for an explanation and a better understanding
of the variable.

The names are listed in alphabetic order. Each name consists of a two character
prefix followed by a descriptive name. The two character prefix or Applesoft name
is given at the left with the full name and description at the right.

All the variable names starting with an A are part of the address record.

AA$= AANAME$

This contains the name of the client and has a fixed length of 25 characters. Data
within the variable is left justified. The system is designed for the name to be entered
using the format of FIRSTNAME LASTNAME.

AB$ = ABADDR$

This contains the street address of the client and has a fixed length of 25 characters.
The data within the variable is left justified.

AC$ = ACCITY$

This contains the name of the city and has a fixed length of 15 characters. The data
within the variable is left justified.

AD$= ADSTE$

This contains a two digit code representing the state. The AT in stATe has to be
omitted because of the way in which Applesoft recognizes keywords.

Random Disk Files I 387

AE$ = AEZIP$

This contains the ZIP code. Although it should be numeric, no edit check is made.

AF$= AFPHNE$

This contains the first three digits (area code) of the phone number.

AG$ = AGPHNE$

This contains the second set of three digits (prefix) of the phone number.

AH$= AHPHNE$

This contains the last four digits of the phone number.

D$ = D$ = CONTROL-D character

At the beginning of the each program, the variable D$ is set equal to the character
CHR$(4). The character is used when working with 1/0 operations on the disk.

FB = FBNUM

This variable is only used in the listing program. While records are read the variable
serves as a counter, indicating how many valid client names have been read and
loaded into a table. After the table has been loaded, the variable serves as a limit
of how many times the SORT ROUTINE must be executed.

FB$ = FBNAME$

This variable is used only in the listing program during the process of extracting the
last name. FBNAME$ is used to hold the last name of the client.

FB$(= FBNAME$(number)

The name represents the table used to store the last name and relative record number
of each client. After the table is sorted by the last name, the corresponding record
number is used to read and display each record.

FD = FDRIVE = Value of 1

The name stands for File DRIVE and is used in conjunction with PDRIVE (Program
DRIVE) to indicate which disk drive is to be accessed.

Fl= FILEID$

388 / Applesoft BASIC Toolbox

This contains the name of the file to be read. The variable is initialized in the
BEGINNING ROUTINE of each program and used in all DOS instructions.

All the variable names starting with G are part of the GET subroutine. The
following variables are used as parameters to pass data to and from the routine:

GALEGTH

GBANSWER$

GCCHAR

This variable must be set equal to the length of the field to be
read before the subroutine is executed.
After completion of the subroutine, the variable contains the
value read in.
After completion of the subroutine, GCCHAR contains the
number of characters keyed in by the operator. This variable
is important only if you are testing whether the operator entered
data or just pressed the RETURN key.

All the other variables starting with a G used in the GET subroutine are nec­
essary to its internal operation and are not described in this chapter.

L 1 through L9

The variables L 1, L2, L3, L4, L5, L6, L7, LB, and L9 are used for vertical positioning
of the cursor. The number in the name of the variable is not necessarily the number
of the related line. VT AB L 1 does not necessarily position the cursor on line 1.

L$ = L$ CONTROL-L Character

L$ is used only in the LIST program when the records are to be printed. L$ is set
equal to a CONTROL-L. When this character is sent to a printer which recognizes
the ASCII control codes, it causes the printer to skip to the top of the next sheet of
paper.

LI = LINE

LINE is only used in the listing program when the records are printed. The variable
actually counts the number of records printed, and the name is a little misleading.
This is a case of choosing a bad descriptive name, but since the variable REC is
used for other purposes, we'll just have to remember that LINE counts the number
of records printed. Once a specific number of records have been printed and the
page is full, logic causes the printer to skip to the top of the next page and start the
listing process again.

N1, N2, N3

N1, N2, and N3 are general counters used with the FOR/NEXT instruction or for
other general numeric operations.

Random Disk Flies I 389

PD = PDRIVE = Value of 1

The name stands for Program DRIVE and is used in conjunction with FDRIVE (File
DRIVE) to indicate which disk drive is to be accessed.

RE= REC

The numeric variable RECord is used when reading or writing records to the random
file. The variable contains a numeric whole number indicating the relative record
number of the record to be accessed.

RE$= REC$

This is the alphanumeric format of the relative record number. The variable is used
whenever suppression of the leading 0 for the numbers 0 through 9 would cause a
problem in how the data is stored or printed.

Warning: Whenever working with numbers in string format, you should make sure
they are all the same length. Pad smaller numeric string variables with
leading zeros to make all the strings the same size.

The following instruction makes sure the variable REC$ always contains three
digits.

2000 IF LEN(REC$) < 3 THEN REC$ = "O" + REC$

Also, be careful of accidentally using the letter 0 instead of the numeric character
0.

SP$= SPACE$

The variable is used for extending the size of variables read from the disk. When
DOS reads in a string variable which contains leading blanks (spaces), the leading
spaces are ignored and the data is shifted to the left until the first significant character
is encountered. If the variable is completely blank, then the data is reduced to only
one space. If the smaller variable is printed over a larger variable, it leaves garbage
on the screen. To overcome this problem, each string variable is checked and extended
to its maximum size before being displayed.

ST= STARTING

The variable is used in the FREE MEMORY ROUTINE as a general work area. If in
your program you use a name which starts with ST, be careful of also using the
FREE MEMORY ROUTINE.

X1$, X2$, X3$

390 I Applesoft BASIC Toolbox

X1$, X2$, and X3$ are general alphanumeric variables used with the GET instruction
when requesting a response from the operator.

Disk Record Format Specifications

The technique used to write the records on the random file is different from the
technique used in the sequential file example.

Instead of being written as one large record containing all the variables as was
done in the sequential example, each variable is written as an individual unit sepa­
rated by a comma. This takes more disk space and presents a problem with variables
containing leading spaces but is normally easier for the programmer to code.

Note: This technique should be used when working mainly with numeric data. If
you write numbers in string format on the disk, each character takes up 1 byte. If
you write numeric variables to the disk, the condensed binary format takes far less
space. For example the value 32000 takes 5 bytes in string format and 2 bytes in
integer format.

All the variables written to the disk have a fixed length. Since commas are
required between each variable, the total length of the record is 90 characters.

The following table shows the position of each variable and comma.

Variable Name Length Record Position Required Comma
AANAME$ 25 1to25 26
ABAD DR$ 25 27 to 51 52
ACCITY$ 15 53 to 67 68
ADS TE$ 2 69 to 70 71
AEZIP$ 5 72 to 76 77
AFPHNE$ 3 78 to 80 81
AG PH NE$ 3 82 to 84 85
AHPHNE$ 4 86 to 89 none
EORMark 1 90

The (EOR) End of Record indicator is written and controlled by the computer.
It is included in the record description to make sure you understand that it is part of
the record length specified in the length parameter of the OPEN instruction.

When all the variables are combined and written onto the disk, the record has
the following format:

1 2 3 4 5
Column 1234567890123456789012345678901234567890123456789012

NNNNNNNNNNNNNNNNNNNNNNNNN,AAAAAAAAAAAAAAAAAAAAAAAAA,

6 7 8 9
Column 34567890123456789012345678901234567890

ccccccccccccccc.ss,zzzzz,PPP,PPP,PPPP?

where N = name; A = street address; C = city; 5 = state; Z = ZIP code; P =
phone number; 7 = end-of-record marker.

Program Name

Program
Objective

Random Disk Filas I 391

Knowing the format of each record may not seem important to you, but it is
very important that you are always aware of how many characters are being written
to the disk, how big each variable is, and how the variables are being written out
(string format or numeric format). If you write a record larger than the size specified
when opening the file, you mess up the EOR marker and will have problems the
next time you try to read the destroyed record.

If, while trying to read a random file, the computer beeps and prints a backward
slash(\), then you have written larger records than specified by the OPEN instruction.
The data on the file is bad and you have to recreate the file.

The Random File CREATE Program

RAN ADDR CREATE PROG

To create a label and 100 dummy records so the UPDATE program may add, change,
or delete records as necessary.

Instructions for Note 1: Prior to running any of the programs in the random file system, you MUST
Running The copy the program from the program disk to a new disk. There is not enough room

Program on the program disk to store any text files.

Note 2: Since all the programs are set up for a single drive system, the disk being
used MUST be in drive 1 or the values for FDRIVE and PDRIVE must be changed
in each program.

To keep the CREATE program as simple as possible, most of the responsibility
for a successful run has been shifted from the program to the computer operator.

There are several situations which result in the program's failing to correctly
create the new file.

1. The file label already exists and the file is locked. When the program is run it
attempts to OPEN and WRITE on the file. DOS prevents an existing file from
being written on if it is locked. The program is terminated with a FILE LOCKED
error message.

2. The file label already exists and the file is unlocked. If this should happen, then
the program writes dummy records over the existing data. If this is what you
want, fine, but if not, the original data is lost.

3. The disk is full, write protected, not initialized, or some other situation not
handled within the code of the program. If the program is run under any of
these conditions, an 1/0 ERROR occurs. The responsibility for handling these
errors is left up to the operator.

392 / Applesoft BASIC Toolbox

Before running the program, you should make sure the file label (RAN ADDR
FILE) does not exist on the disk. Use the CATALOG command and check to see if
the label exists. If the label exists and you are sure you want to destroy the data that
is currently on the file, use the DELETE command to remove the file.

Even though record 0 is written out by the CREATE program, all other programs
ignore the record. After the program starts, each WRITE command and related record
will be displayed as follows:

WRITE RAN ADDR FILE,Rl

WRITE RAN ADDR FILE,R2

Program Listing 1000 REM RAN ADDR CREATE PROG
1010 REM
1020 TEXT : NORMAL : HOME : SPEED= 255
1030 D$ = CHR$ (4)
1040 FDRIVE = 1
1050 FILEID$ = "RAN ADDR FILE"
1060 REM --
1070 REM SET UP DUMMY RECORDS
1080 REM PROBLEM WITH SPACES
1090 REM ----
1100 AA$ II •••••••••••••••••••••••••

1110 AB$ II ••••••••••••••••••••••••• II

1120 AC$ II ••••••••••••••• II

1130 AD$ II II

1140 AE$ II

1150 AF$ II II

1160 AG$ II II

1170 AH$ II II

1180 REM --

II

1190 REM CREATE 100 DUMMY REC'S ON FILE.
1200 REM MUST OPEN AS ONE CHARACTER GREATER THAN SIZE OF RECORD.
1210 REM ----
1220 PRINT D$; 11 MON I,0,C"
1230 PRINT D$; 11 0PEN ";FILEID$;",L90,D 11 ;FDRIVE
1240 FOR REC = 0 TO 99
1250 PRINT D$; 11 WRITE ";FILEID$; 11 ,R";REC
1260 PRINT AA$ 11 , 11 AB$ 11 , 11 AC$ 11 , 11 AD$","AE$ 11 , 11 AF$ 11 , 11 AG$","AH$
1270 NEXT
1280 PRINT D$; 11 CLOSE 11 ;FILEID$
1290 PRINT D$;"NOMON I,0,C"
1300 END
1310 REM------------

Random Disk Flies I 393

Explanation by Detailed explanations by line number follow.
Line Number

1000-1040 As a coding standard, each of the disk programs starts out with this set of instruc­
tions. (See the SEQ ADDR CREATE PROG for greater detail.)

1050 FILEID$ = "RAN ADDR FILE"
A variable is used to represent the file name. You should always use a variable to
prevent problems with keying errors and to make the programs easier to change.

1100 AA$=" "

1170 AH$ = " "

When writing string variables out to the disk and reading the variables back into
memory, the APPLE has a problem in that it suppresses leading blanks. If you allow
string variables to be blank or have leading spaces, you should extend the variables
to their maximum length before they are displayed.

For this book periods are used in place of spaces when writing out dummy
records. Using periods or sonie dummy value helps overcome the problem of leading
spaces and provides a visual reference to the operator. To create the correct number
of periods, each variable is set to a string of periods equal to the length of the
variable.

1220 The MONitor instruction is executed in order to provide you with feedback on what
the program is doing. As the file is opened, records written, and the file closed, you
are able to see the instructions in execution.

1230 PRINT 0$;"0PEN ";FILEID$;",L90,D";FDRIVE
The OPEN instruction allocates an area in the computer to prepare for handling of
either input from the file or output directed to the file. If the file label does not
currently exist on the disk, the label is created in the disk directory.

For a random file the length parameter L is required. The length must be 1
greater than the number of characters which are to be written on the disk. In this
case there are 83 characters making up the data plus six commas used to separate
the variables, for a total of 89 characters. The file is opened with a length of 90, 1
greater than 89.

1240 FOR REC = 0 TO 99

1250 PRINT D$;"WRITE ";FILEID$;",R";REC

394 / Applesoft BASIC Toolbox

1260 PRINT AA$",'' AB$"," AC$"," AD$"," AE$" ,"AF$"," AG$"," AH$

1270 NEXT

Lines 1240 through 1270 are responsible for writing out the 100 dummy records.
The important thing to notice is that the WRITE instruction is inside the FOR/NEXT
loop. Each time through the loop, the value of REC is incremented by 1. The first
time through the loop, relative record 0 is written; the second time, relative record
1, third time, relative record 2; etc.

The WRITE instruction MUST BE EXECUTED prior to the PRINT instruction
which causes the information to be recorded on the disk.

After the lOOth record is written (relative record 99), the FOR/NEXT loop is
terminated and the file is closed.

You should look closely at line 1260, where each variable is printed individually
separated by a comma. When writing to the disk, the comma separating each variable
MUST BE WITHIN QUOTATION MARKS. The comma is written to the disk as
part of the record. If you forget to put the quotes around the comma, the computer
tabs and writes blanks on the disk.

1280 The CLOSE instruction causes any data which is in the output buffer and an EOF
marker to be written on the file.

If for some reason you cancel a program while disk files are open, use the
CLOSE instruction in immediate execution mode to clear the 1/0 buffers. After
pressing CONTROL-RESET or CONTROL-Center

CLOSE <RETURN>

Once the program has terminated, you may want to use the CATALOG command
to list the disk directory and see how many sectors the RAN ADDR FILE takes up.
The file should take up around 36 sectors.

90
* 100

9000
256

35.15

character per record
number of records on the file
total number of characters stored
per sector
sectors (round to 36)

If you list the directory you will find that the file actually takes up 37 sectors.
The one sector difference represents the single sector used for the track/sector list
which DOS builds for all disk files.

Program Name

Program
Objective

Instructions for
Running the

Program

Random Disk Files I 395

The Random File HELLO Program

RAN ADDR HELLO PROG

To provide a method of transition between the programs making up the random
address system.

The explanation of this program is brief. The ma~rial was covered in detail as
part of the narrative on the SEQ ADDR HELLO PROG. If you did not read the chapter
on sequential file handling, go back and read about the HELLO program.

Make sure you have run the RAN ADDR CREATE PROG before running any of the
menu driven programs. The file label and the dummy records must exist before you
run any of the programs which access the file.

Use the CATALOG command to check if the label exists and how many sectors
are used. Scroll through the names looking for RAN ADDR FILE. If you find the
name, it should appear as

T 037 RAN ADDR FILE

After you are sure the file exists enter

RUN RAN ADDR HELLO PROG <RETURN>

Once the program starts the screen will be cleared and the menu displayed.

SELECT ONE OF THE FOLLOWING:

1. UPDATE ADDRESS FILE.

2. LIST RECORDS.

3. QUIT PROCESSING.

SELECTION DESIRED= ()

Don't be overwhelmed by the large number of selections. The random address
system is set up to allow you to either update the file or list the records, that's all.
The APPEND and SEARCH options which were part of the sequential example are
not repeated here. The APPEND instruction is used only with sequential files. If

39& / Applesoft BASIC Toolbox

records need to be added to the end of a random file, all you need to do is to modify
the CREATE program to write out more dummy records starting at relative record
number 100: 100, 101, 102, 103, etc. The SEARCH program is not repeated since
it would consist of almost exactly the same logic. Since random files can be accessed
only by the relative record number, each record in the file would have to be read
and compared with the search value in order to locate a specific name within the
file.

When you are finished reviewing the code for the HELLO program, enter a 1
to start execution of the UPDATE program. Since this is the first time you have
executed the random UPDATE program, the file will not contain any valid data. You
must start off by adding three or four records to the file.

See the narrative on RAN ADDR UPDATE PROGram for instructions on how
to enter data.

Program Listing 1000 REM RAN ADDR HELLO PROG
1010 REM
1020 TEXT : NORMAL : HOME : SPEED= 255
1030 D$ = CHR$ (4)
1040 PDRIVE = 1
1050 VTAB 5
1060 PRINT "SELECT ONE OF THE FOLLOWING:"
1070 PRINT
1080 PRINT" 1. UPDATE ADDRESS FILE."
1090 PRINT
1100 PRINT " 2. LIST RECORDS."
1110 PRINT
1120 PRINT " 3. QUIT PROCESSING."
1130 PRINT
1140 PRINT "SELECTION DESIRED=()"
1150 VTAB 13: HTAB 21
1160 PRINT CHR$(8);: REM CHR$(8) =BACKSPACE
1170 GET Xl$: PRINT Xl$;:Xl =VAL (Xl$)
1180 IF Xl < 1 OR Xl > 3 THEN 1150
1190 IF Xl = 3 THEN 1320
1200 VTAB 23: HTAB 1: INVERSE
1210 PRINT " LOADING PROGRAM - PLEASE WAIT "
1220 NORMAL
1230 ON Xl GOTO 1260,1290
1240 GOTO 1150
1250 REM
1260 PRINT D$
1270 PRINT D$;"RUN RAN ADDR UPDATE PROG,D"PDRIVE
1280 REM
1290 PRINT D$
1300 PRINT D$;"RUN RAN ADDR LIST PROG,D"PDRIVE
1310 REM --
1320 HOME
1330 PRINT "THAT'S ALL FOLKS!"
1340 END

Random Disk Files I 397

Explanation by Detailed explanations by line number follow.
Line Number

1000-1040 See prior programs.

1050-1160 Lines 1050 through 1130 display the menu indicating the possible choices to the
operator. You should look at the last three lines to see how they are coded. Line
1140 provides a place for the operator to respond. Line 1150 positions the cursor
one column beyond where we want the cursor to end up. Line 1160 backs up the
cursor so it is blinking over the space between the parentheses.

The reason for the rather complex sequence of instructions is obvious only
when the operator enters an invalid value. When an invalid character is entered, it
is printed between the parentheses, and then the cursor is moved backward so it is
blinking over the invalid character. The operator can see the invalid character and
realize the mistake (or try to outwait the computer).

1170 GET X1$: PRINT X1$; : X1 = VAL (X1$)
The GET instruction allows the operator to enter one character. The symbol is printed
and the character converted to a numeric value so it can be tested prior to use in the
ON GOTO instruction.

1180 When accepting a value from the screen, you should always edit it to make sure it
is within the expected limits. If the value is not between 1 and 3, the operator must
try again.

1190 The IF tests to see if the operator wants to end processing. If the operator wants to
end processing, logic flow skips to the end of the program and displays an ending
message.

1200-1220 The UPDATE program is rather long and takes awhile to load. To let the operator
know what is going on, a message is displayed at the bottom of the screen. It is
always nice to let the operator know what is going on. Think how you feel when
the computer is busy and you don't know why.

1230-1300 Depending on the value keyed in, the ON number GOTO instruction causes program
flow to branch to one of the two statement numbers following the GOTO. If 1 is
entered, logic branches to statement 1260. If 2 is entered, statement 1290 is exe­
cuted. Since the value of X1 was edited earlier, there is no need to code the GOTO
following the ON GOTO instruction. The statement is coded to prevent future errors.
If someone changes the code and does not correctly edit the value, the GOTO
prevents logic flow from falling through to the DOS commands.

398 / Applesoft BASIC Toolbox

The Random File UPDATE Program

Program Name RAN ADDR UPDATE PROG

Program To provide the user with a method of adding, changing, and deleting records.
Objective

KEYBOARD

Instructions for
Running the

Program

In order for a file to be of any use, there must be a way to add new information,
change existing data on the file, and delete unwanted data. The process of adding,
changing, and deleting information is normally referred to as updating the file.

One of the major benefits of random file processing is that records may be read,
changed, and rewritten back to the same file. Unlike sequential file processing,
random file processing does not require rewriting the entire file just to change one
record.

System Flowchart of Random File Update Program

UPDATE
PROGRAM

One of the disadvantages of random file processing is that no backup copy is
created as part of the update process. You would be wise to periodically make a
backup copy of any random file you create.

The biggest investment you make in working with the computer is not the cost
of the equipment but the cost of your time in programming and entering data. Do
not waste your time by failing to make a backup copy of all your work.

Make sure the RAN ADDR CREATE PROG has been run. If you do not create the
label and dummy records, the update program will terminate with an END OF DATA
error message the first time you try to read a record.

Run the program by entering

RUN RAN ADDR HELLO PROG <RETURN>

Random Disk Flies I 399

After the menu is displayed, enter 1 to start execution of the UPDATE program.
The UPDATE program uses the following screen for data entry:

RAN ADDR FILE UPDATE PROG

RECORD # = (

NAME = (
ADDRESS = (
CITY = (

STATE = (
ZIP CODE = (
PHONE = (

? SELECTION

ADD CHANGE DELETE LIST QUIT

First error message line
Second error message line

The screen differs from the sequential example in three areas. First, the program
options have been shortened to a single word with the first letter of each option
displayed in INVERSE mode. Second, the operator enters the selection over the top
of the question mark preceding the word SELECTION. Last and most important, the
operator must enter a number from 1 tO 99 corresponding to the record to be processed
(see RECORD# = () at top of screen).

Remember: RANDOM ACCESS FILES ARE BASED ON THE USER'S KNOW­
ING THE RELATIVE RECORD NUMBER OF EACH RECORD.

Once you enter a relative record number from 01 to 99, the record is read and
displayed.

Exercise 1: Adding a Record

To add a record enter an A and a relative record number. One of two things will
happen. If the relative record number you enter refers to an unused record (dummy
record), the cursor will be positioned on the first line, allowing you to enter data.
If the relative record number you enter contains an existing record (no periods in
first five characters of name), an error message will be displayed on the last two
lines of the screen.

400 / Applesoft BASIC Toolbox

To test these two situations, execute the following steps:
First, add a record to the file.

1. Enter A in response to the? SELECTION message.
2. Enter 01 in response to the RECORD # = message.
3. All the fields displayed will contain periods ulliess you have already added

information to record 1.
4. Enter a name, address, city, state, ZIP code, and phone number. After the last

digit of the phone number is entered, the record will be rewritten to the disk,
and the cursor will be repositioned for another selection.

Second, try to add a record to the file which already exists (one which you
added earlier).

1. Enter A in response to the? SELECTION message.
2. Enter 01 in response to the RECORD # = message.
3. The data entered previously will be displayed followed by an error message at

the bottom of the screen indicating this record already contains data.
4. To erase the error message, press the space bar and start over.

Exercise 2: Changing a Record

To change a record enter C and a relative record number. To keep the program short,
no check is made to see if the record you are changing contains good data or dummy
periods.

To test the logic for changing a record, run through the following two exercises.
First, change a record with existing data.

1. Enter C in response to the? SELECTION message.
2. Enter 01 in response to the RECORD # = message.
3. The fields will be displayed as previously entered.
4. Change any or all of the fields, but remember that if you want to change a field

you must reenter the entire field even if only part of the field is incorrect. After
the last field is finished, the record will be rewritten to the disk, and the cursor
will be repositioned for another selection.

Second, change a record with dummy data.

1. Enter C in response to the? SELECTION message.
2. Enter 02 in response to the RECORD # = message.
3. The fields displayed will contain periods, indicating a dummy record.
4. Change any or all of the fields. After the last field is changed, the record will

be rewritten to the disk, and the cursor repositioned for another selection.
Technically the program should not allow you to change a record in which valid
data does not exist.

Random Disk Files I 401

Exercise 3: Deleting a Record

To delete a record enter a D and a relative record number.
To test the logic for deleting a record:

1. Enter Din response to the? SELECTION message.
2. Enter 01 in response to the RECORD# =message.
3. The fields will be displayed with the current contents.
4. At the bottom of the screen a message will be displayed asking you if you are

sure this is the record you want deleted. To delete the record, enter Y. To avoid
deleting the record, press any other key.

S. Enter Y to delete the record. You will not see any change in the data displayed.
To check your work list the record (see following exercise).

Exercise 4: Listing a Record

To list a record enter L and the relative record number.

1. Enter L in response to the 7 SELECTION message.
2. Enter 01 in response to the RECORD # = message.
3. The fields will be displayed with periods, indicating that the record has been

deleted.
4. After the data is displayed, the cursor will be repositioned to the selection line

ready for the next inquiry.

Exercise 5: Quit Processing

Prior to quitting, make sure you add several records to the file. If you do not add
records to the file, there will be no records for the listing program to display. To see
how the listing program works, you should enter at least four records.

To terminate the program enter Q. The screen will be cleared and the HELLO
program will be executed, allowing you to make another program selection.

Program Listing 1000 REM RAN ADDR UPDATE PROG
1010 REM------------
1020 CLEAR :Gl = PEEK (116) * 256 + PEEK (115) - 40 :GA$
12345678901234567890" + "12345678901234567890"
1030 REM
1040 REM ----------
1050 REM DRIVE ROUTINE
1060 GOSUB 2710: REM BEGINNING
1070 GOSUB 1300: REM MAIN MOD
1080 GOTO 3140: REM END MODULE

II

402 / Applesoft BASIC Toolbox

1090 REM
llOO REM ---·
1110 REM GET SUBROUTINE
1120 IF G3 = 0 THEN GOSUB 1270
1130 G3 = Gl +GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT G2 Gl
1140 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1210
1150 IF GB = 13 THEN 1230
1160 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 1190
1170 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1140
1180 PRINT CHR$ (GB);: POKE G2,GB
1190 G2 = G2 + 1: IF G2 > G3 THEN 1260
1200 GOTO ll40
1210 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1140
1220 PRINT CHR$ (8);: GOTO 1140
1230 IF Gl = G2 THEN 1250
1240 FOR GC = G2 TO G3: PRINT" ";: NEXT
1250 FOR GC = G2 TO G3: POKE GC,32: NEXT
1260 GB$= LEFT$ (GA$,GA):GC = G2 - Gl: RETURN
1270 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141:

POKE 772,07: POKE 773,03: POKE 774,96: RETURN
1280 REM
1290 REM---------------
1300 REM MAIN ROUTINE
1310 VTAB L7: HTAB 1: INVERSE
1320 PRINT II ? SELECTION" TAB(39)" II

1330 NORMAL : VTAB L7: HTAB 12: GET X2$: PRINT X2$
1340 IF X2$ = "Q 11 THEN RETURN
1350 GOSUB 3040: REM CHECK MEMORY SPACE
1360 IF X2$ = 11 A" OR X2$ = "C 11 OR X2$ = .'D" OR X2$ "L 11 THEN 1380
1370 GOTO 1330
1380 VTAB LO: HTAB 12: GALEGTH = 2: GOSUB 1120
1390 REC = VAL (GBANSWER$)
1400 IF REC < 1 OR REC > 99 THEN 1380
1410 GOSUB 2460: REM READ DISK
1420 GOSUB 2550: REM WRITE SCR
1430 IF X2$ 11 A" THEN GOSUB 1540: GOTO 1300
1440 IF X2$ 11 C" THEN GOSUB 1880: GOTO 1300
1450 IF X2$ 11 D" THEN GOSUB 2200: GOTO 1300
1460 REM
1470 REM---------------
1480 REM LIST ROUTINE
1490 REM NO EDIT CHECK IS MADE
1500 REM TO SEE IF VALID RECORD.
1510 GOTO 1300
1520 REM
1530 REM ------------------
1540 REM ADD ROUTINE
1550 IF LEFT$ (AANAME$,5) < > "· "THEN GOSUB 1770: GOTO 1740
1560 GALEGTH = 25: VTAB Ll: HTAB 12: GOSUB 1120
1570 IF LEFT$ (GAANSWER$,l) =" "THEN 1560
1580 AANAME$ = GBANSWER$
1590 VTAB L2: HTAB 12: GOSUB 1120
1600 ABADDR$ = GBANSWER$
1610 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1120

1620 ACCITY$ = GBANSWER$
1630 GALEGTH = 2: VTAB L4: HTAB 12:
1640 ADSTE$ = GBANSWER$
1650 GALEGTH = 5: VTAB L5: HTAB 12:
1660 AEZIP$ = GBANSWER$
1G70 GALEGTH = 3: VTAB LG: HTAB 12:
1680 AFPHNE$ = GBANSWER$
1690 VTAB L6: HTAB lG: GOSUB 1120
1700 AGPHNE$ = GBANSWER$
1710 GALEGTH = 4: VTAB LG: HTAB
1720 AHPHNE$ = GBANSWER$
1730 GOSUB 23GO: REM WRITE REC
1740 RETURN
1750 REM
17GO REM ---
1770 REM ADD ERROR ROUTINE
1780 VTAB L9: HTAB 1: INVERSE

20:

GOSUB 1120

GOSUB 1120

GOSUB 1120

GOSUB 1070

1790 PRINT " RECORD ALREADY EXIST - CANNOT ADD

Random Disk Files I 403

1800 PRINT" PRESS SPACE BAR AND TRY AGAIN 11 •

1810 NORMAL : GET Xl$: IF Xl$ < > " " THEN 1810
1820 VTAB L9: HTAB 1
1830 PRINT TAB(39)" "
1840 PRINT TAB(39)" 11 •

1850 RETURN
18GO REM
1870 REM ~~---~------------
1880 REM CHANGE ROUTINE
1890 REM NO EDIT CHECK IS MADE
1900 REM TO SEE IF VALID RECORD
1910 GALEGTH = 25: VTAB Ll: HTAB 12: GOSUB 1120
1920 IF GCHAR = 0 THEN 1950
1930 IF LEFT$ (GBANSWER$,l) =" "THEN 1910
1940 AANAME$ = GBANSWER$
1950 VTAB L2: HTAB 12: GOSUB 1120
19GO IF GCCHAR = 0 THEN 1980
1970 ABADDR$ = GBANSWER$
1980 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1120
1990 IF GCCHAR = 0 THEN 2010
2000 ACCITY$ = GBANSWER$
2010 GALEGTH = 2: VTAB L4: HTAB 12: GOSUB 1120
2020 IF GCCHAR = 0 THEN 2040
2030 ADSTE$ = GBANSWER$
2040 GALEGTH = 5: VTAB L5: HTAB 12: GOSUB 1120
2050 IF GCCHAR = 0 THEN 2070
2060 AEZIP$ = GBANSWER$
2070 GALEGTH = 3: VTAB LG: HTAB 12: GOSUB 1120
2080 IF GCCHAR = 0 THEN 2100
2090 AFPHNE$ = GBANSWER$
2100 VTAB L6: HTAB lG: GOSUB 1120
2110 IF GCCHAR = 0 THEN 2130
2120 AGPHNE$ = GBANSWER$
2130 GALEGTH = 4: VTAB LG: HTAB 20: GOSUB 1120
2140 IF GCCHAR = 0 THEN 21GO
2150 AHPHNE$ = GBANSWER$

404 I Applesoft BASIC Toolbox

2160 GOSUB 2360: REM WRITE ON DISK
2170 RETURN
2180 REM
2190 REM ------------------
2200 REM DELETE ROUTINE
2210 REM NO EDIT CHECK IS MADE
2220 REM TO SEE IF VALID RECORD
2230 VTAB L9: HTAB 1: INVERSE
2240 PRINT "ARE YOU SURE? ENTER Y TO DELETE THE "
2250 PRINT "RECORD. ANY OTHER KEY TO KEEP RECORD"·
2260 NORMAL : GET Xl$
2270 VTAB L9: HTAB 1
2280 PRINT TAB(39)" II

2290 PRINT TAB(39)" ";
2300 IF Xl$ < > "Y" THEN 2300
2310 AANAME$ = " ": ABADDR$ = "

........................ " : ACCITY$ = " " : A
DSTE$ = " .. ":AEZIP$ = " ":AFPHNE$ = " ... ":AGPHNE$ =
" ... " : AHPHNE$ = " "

2320 GOSUB 2370: REM WRITE ON DISK
2330 RETURN
2340 REM
2350 REM----------------
2360 REM WRITE ON DISK
2370 VTAB 1: HTAB 39
2380 PRINT D$
2390 PRINT D$;"WRITE ";FILEID$;",R";REC
2400 PRINT AANAME$","ABADDR$","ACCITY$","ADSTE$","AEZIP$","A

FPHNE$","AGPHNE$","AHPHNE$
2410 PRINT D$
2420 RETURN
2430 REM
2440 REM
2450 REM READ DISK
2460 VTAB 1: HTAB 39
2470 PRINT D$
2480 PRINT D$;"READ ";FILEID$;",R";REC
2490 INPUT AANAME$,ABADDR$,ACCITY$,ADSTE$,AEZIP$,AFPHNE$,AGP
HNE$,AHPHNE$
2500 PRINT D$
2510 RETURN
2520 REM
2530 REM ------------
2540 REM WRITE ON SCREEN
2550 IF LEN (ABADDR$) < 25 THEN ABADDR$ = LEFT$ (ABADDR$ + SPACES$,25)
2560 IF LEN (ACCITY$) < 15 THEN ACCITY$ =LEFT$ (ACCITY$ + SPACES$,15)
2570 IF LEN (ADSTE$) < 2 THEN ADSTE$ = LEFT$ (ADSTE$ + SPACES$,2)
2580 IF LEN (AEZIP$) < 5 THEN AEZIP$ = LEFT$ (AEZIP$ + SPACES$,5)
2590 IF LEN (AFPHNE$) < 3 THEN AFPHNE$ = LEFT$ (AFPHNE$ + SPACES$,3)
2600 IF LEN (AGPHNE$) < 3 THEN AGPHNE$ = LEFT$ (AGPHNE$ + SPACES$,3)
2610 IF LEN (AHPHNE$) < 4 THEN AHPHNE$ = LEFT$ (AHPHNE$ + SPACES$,4)
2620 VTAB Ll: HTAB 12: PRINT AANAME$
2630 VTAB L2: HTAB 12: PRINT ABADDR$
2640 VTAB L3: HTAB 12: PRINT ACCITY$

2650 VTAB L4: HTAB 12: PRINT ADSTE$
2660 VTAB L5: HTAB 12: PRINT AEZIP$

Random Disk Files I 405

2670 VTAB L6: HTAB 12: PRINT AFPHNE$"-"AGPHNE$"-"AHPHNE$
2680 RETURN
2690 REM
2700 REM ------------------
2710 REM BEGINNING ROUTINE
2720 TEXT : NORMAL : HOME SPEED= 255
2730 D$ = CHR$ (4)
2740 FDRIVE = 1: PDRIVE = 1
2750 FILEID$ = "RAN ADDR FILE"
2760 LO = 4:Ll = 6:L2 = 7:L3 = 8:L4 9:L5 10:L6 ll:L7

14:L8 = 16:L9 = 23
2770 SPACES$ = II "

2780 PRINT D$
2790 PRINT D$;"0PEN ";FILEID$;".L90,D"FDRIVE
2800 PRINT D$
2810 REM
2820 REM
2830 REM PRINT SCREEN IMAGE
2840 HOME
2850 PRINT
2860 PRINT " RAN ADDR FILE UPDATE PROG"
2870 VTAB LO: PRINT "RECORD#=()"
2880 VTAB Ll: PRINT "NAME =(" SPC(25)")"
2890 VTAB L2: PRINT "ADDRESS =(" SPC(25)")"
2900 VTAB L3: PRINT "CITY =(" SPC(15)")"
2910 VTAB L4: PRINT "STATE =(
2920 VTAB L5: PRINT "ZIP CODE =(
2930 VTAB L6: PRINT "PHONE =(
2940 VTAB LS
2950 INVERSE
2960 INVERSE
2970 INVERSE
2980 INVERSE
2990 INVERSE
3000 RETURN
3010 REM

PRINT
PRINT
PRINT
PRINT
PRINT

"A";: NORMAL
"C";: NORMAL
"D";: NORMAL
"L";: NORMAL
"Q";: NORMAL

3020 REM ----------------------
3030 REM FREE MEMORY ROUTINE

)"
)"

)"

PRINT "DD
PRINT "HANGE
PRINT "ELETE
PRINT "!ST
PRINT "UIT"

II·
". .

3040 STARTING= PEEK (112) * 256 +PEEK (111): IF STARTING>
17000 THEN 3110
3050 VTAB L9: HTAB 1: INVERSE
3060 PRINT " FREEING MEMORY - PLEASE WAIT" TAB(38)" "
3070 STARTING = FRE (O)
3080 PRINT" DONE - PRESS SPACE BAR TO CONTINUE ";:NORMAL
3090 GET Xl$: IF Xl$ < > " " THEN 3090
3100 VTAB L9: HTAB 1: PRINT TAB(39)" ": PRINT TAB(39)" 11 •

3110 RETURN
3120 REM
3130 REM------------
3140 REM ENDING ROUTINE
3150 PRINT D$
3160 PRINT D$;"CLOSE"

406 I Applesoft BASIC Toolbox

3170 HOME
3180 PRINT D$;"RUN RAN ADDR HELLO PROG,D"PDRIVE
3190 REM
3200 REM

Cross Reference Listing

Variable names used with the address record:

AA$ 1550, 1580, 1940, 2310, 2400, 2490, 2620
AB$ 1600, 1970, 2310, 2400, 2490, 2550, 2630
AC$1620,2000,2310,2400,2490,2560,2640
AD$ 1640, 2030, 2310, 2400, 2490, 2570, 2650
AE$1660,2060,2310,2400,2490,2580,2660
AF$ 1680, 2090,2310, 2400, 2490,2590, 2670
AG$1700,2120,2310,2400,2490,2600,2670
AH$ 1720, 2150, 2310, 2400, 2490, 2610, 2670

Variable names used with the disk instruction:

D$ 2380, 2390, 2410, 2470, 2480, 2500, 2730, 2780, 2790, 2800, 3150, 3160,
3180

FD 2740, 2790
Fl$ 2390, 2480, 2750, 2790
PD 2740, 3180
RE 1390, 1400, 2390, 2480

Variable names used with the GET subroutine:

G1 1020, 1130, 1210, 1230, 1260
G2 1130, 1160, 1180, 1190, 1210, 1230, 1240, 1250, 1260
G3 1120, 1130, 1190, 1240, 1250
GA 1130, 1260, 1380, 1560, 1610, 1630, 1650, 1670, 1710, 1910, 1980, 2010,

2040, 2070, 2130
GA$ 1020, 1260
GB 1140, 1150, 1160, 1170, 1180
GB$ 1260, 1390, 1570, 1580, 1600, 1620, 1640, 1660, 1680, 1700, 1710, 1720,

1930, 1940, 1970,2000,2030, 2060,2090,2120,2150
GC 1240, 1250, 1260, 1920, 1960, 1990, 2020, 2050, 2080, 2110, 2140

Variable names used when displaying data on the screen:

LO 1380, 2760, 2870
L 1 1560, 1910, 2620, 2760, 2880
L2 1590, 1950, 2630, 2760, 2890

L3 1610, 1980, 2640, 2760, 2900
L4 1630, 2010, 2650, 2760, 2910
L5 1650, 2040, 2660, 2760, 2920
L6 1670, 1690, 1710, 2070, 2100, 2130, 2670, 2760, 2930
L7 1310, 1330, 2760
L8 2760, 2940
L9 1780, 1820, 2230, 2270, 2760, 3050, 3100
SP$ 2550, 2560, 2570, 2580, 2590, 2600, 2610, 2770

Random Disk Fllu I 407

Variable names used for general GET instruction in response to screen messages:

X1$ 1810, 2260, 2300, 3090
X2$1330, 1340, 1360, 1430, 1440, 1450

Explanation by Detailed explanations by line number follow.
Line Number

1000 REM RAN ADDR UPDATE PROG

1010 REM ----------------------

1020 CLEAR :G1 = PEEK (116) * 256 + PEEK (115) - 40 :GA$=
"12345678901234567890" + "12345678901234567890"

1030

1040

1050

1060

1070

1080

REM

REM ----------------------

REM DRIVE ROUTINE

GOSUB 2710: REM BEGINNING

GOSUB 1300: REM MAIN MOD

GOTO 3140: REM END MODULE
Lines 1000 through 1280 consist of the same code as used in earlier programs. For
a detailed explanation see the sequential file UPDATE program.

1100 REM ---------------------

408 I Applesoft BASIC Toolbox

1110 REM GET SUBROUTINE
The GET subroutine is explained in detail in Chapter 3 of Section IT.

Lines 1290 through 1460 of the MAIN ROUTINE are responsible for the following:

1. Accepting a response from the operator indicating what type of processing is
to be done

2. Checking to see if string memory is full
3. Accepting the record number of the entry to be processed
4. Reading the record
5. Displaying the record
6. Executing the routine requested by the operator

1290 REM ----------------------

1300 REM MAIN ROUTINE

1310 VTAB L7: HTAB 1: INVERSE

1320 PRINT II ? SELECTION" TAB(39)" "

1330 NORMAL : VTAB L7: HTAB 12: GET X2$: PRINT X2$

1340 IF X2$ = "O" THEN RETURN
Even though the operator enters Q only once, it must be tested first. If the operator
wants to quit, the program must exit the MAIN ROUTINE prior to asking the operator
to enter a record number.

1350 GOSUB 3040: REM CHECK MEMORY SPACE
During each cycle through the MAIN ROUTINE, the amount of string memory is
checked. If string memory is full, a message is displayed and string memory is
condensed (see FREE MEMORY ROUTINE p. 238).

1360 IF X2$ = "A" OR X2$ = "C" OR X2$ = "D" OR X2$ = "L" THE N 1380

1370 GOTO 1330
The character entered is tested before the operator is asked to enter a record number.
There is no point in asking the operator to enter a record number if an invalid
processing code has been entered. If an acceptable character is entered, then logic
flow skips to line 1380. If the character fails the edit, the logic flow goes back to
line 1330 and makes the operator reenter the data.

Random Disk Files I 409

1380 VTAB LO: HTAB 12: GALEGTH = 2: GOSUB 1120

1390 REC = VAL (GBANSWER$)

1400 IF REC < 1 OR REC > 99 THEN 1380
The value entered is tested to make sure it is within the limits of the file. You may
think this is not necessary since the operator can enter only two digits (01 to 99).
But there is always a possibility that the operator might accidently enter negative or
decimal values which would cancel the program (- 1 through - 9 or .1 through
.9).

The check also eliminates record 0 as an acceptable choice. There are two
reasons for not using record 0. First, ignoring record 0 keeps the program working
in human terms. Second, while entering the record number it is very easy to make
a mistake which results in a record number of 0. For example, if the operator enters
a leading alpha character instead of a number, the VAL function returns a value of
0, and the wrong record is read.

1410 GOSUB 2460: REM READ DISK

1420 GOSUB 2550: REM WRITE SCR

1430 IF X2$ ="A" THEN GOSUB 1540: GOTO 1300

1440 IF X2$ = "C" THEN GOSUB 1880: GOTO 1300

1450 IF X2$ = "D" THEN GOSUB 2200: GOTO 1300

1460 REM

1470 REM ----------------------

1480 REM LIST ROUTINE (Logic flow falls through IF instructions to the LIST ROUTINE.)
After the relative record number has been entered, the matching record is read

and displayed. After displaying the record, logic flow continues to one of the four
routines related to processing the record.

Notice that only the A, C and D codes are checked. Since the character has
already been edited by line 1360, the last code is not checked: When the operator
requests a listing operation, logic flow falls through all the IF instructions and exe­
cutes the LIST ROUTINE.

410 I Applesoft BASIC Toolbox

1480-1520 Lines 1480 through 1520 consist of the code related to the LIST ROUTINE. Since
the record has already been read and displayed, there is nothing for the LIST ROU­
TINE to do but to branch back to the start of the MAIN ROUTINE. To keep the
program simpler, no check is made to see if the record being listed contains dummy
information (all periods) or good data.

1530 REM ----------------------

1540 REM ADD ROUTINE

1550 IF LEFT$ (AANAME$,5) < > " "THEN GOSUB 1770: GOTO 1740

1740 RETURN
At the very start of the ADD ROUTINE, the record just displayed is checked to see
if the name starts off with periods. If the name does contain periods, the entry is a
dummy record and logic flow continues to the next line. If the name does not contain
periods, then the program assumes that the information displayed represents a valid
record and an error has been made in trying to add a new record over an existing
one. If the record already contains data, an error message is displayed, and logic
flow returns to the beginning of the MAIN ROUTINE.

1560 GALEGTH = 25: VTAB L1: HTAB 12: GOSUB 1120

1570 IF LEFT$ (GAANSWER$,1) =" "THEN 1560

1580 AANAME$ = GBANSWER$

1590 VTAB L2: HTAB 12: GOSUB 1120

1600 ABADDR$ = GBANSWER$

1610 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1120

1620 ACCITY$ = GBANSWER$

1730 GOSUB 2360: REM WRITE REC

1740 RETURN

Random Disk Flies I 411

1750 REM
Lines 1560 through 1750 represent the code which allows the operator to enter data
into each field. H a more realistic (longer) example was coded, each value entered
would be edited in some manner to see if the value was left justified, numeric, within
a specific range, or any other edit check which improves the validity of the file. The
more you edit the data entered by the operator, the better the file and reports will
be. Unlike the examples shown in this book, your programs should completely edit
each value entered.

Lines 1560 and 1570 show how you can check the data entered to make sure
the operator left justifies the field (enters the first letter of the name in the first
column). ff the first character entered by the operator is equal to a space, the program
branches back and makes the operator reenter the data.

Line 1590 through 1750 consist of the basic pattern for adding data. This pattern
is illustrated by lines 1610 and 1620.

-~.

1610 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1120
1620 ACCITY$ = GBANSWER$

1. Set GALEGTH equal to the length of the field to be read.
2. Position the cursor on the correct line.
3. Position the cursor at the correct column.
4. Execute the GET subroutine.
5. Edit the value entered the ensure that it is as valid as possible (this is not shown

in the example).
6. H the value passes the edit check, set the receiving variable equal to the value

read (GBANSWER$).

1760-1860 Lines 1760 through 1860 consist of the standard error routine in which a message
is displayed and the program waits for the operator to read the message and respond.
The message is then cleared and processing resumes.

1870 REM ---------------------

1880 REM CHANGE ROUTINE

1980 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1120

1990 IF GCCHAR = 0 THEN 2010

2000 ACCITY$ = GBANSWER$

2160 GOSUB 2360: REM WRITE ON DISK

412 / Applesoft BASIC Toolbox

2170 RETURN
The CHANGE ROUTINE is exactly like the ADD ROUTINE except for one extra
instruction in the logic pattern. The pattern is illustrated by lines 1980 through 2000.

Same as ADD
Same as ADD

Same as ADD
Only on CHANGE

Same as ADD

Same as ADD

2190 REM -----------------------

1. Set GALEGTH to the length of the field to be read.
2. Position the cursor to the correct line and in the correct

column.
3. Execute the subroutine.
4. Check to see if any data was entered (line 1990). If no

data was entered, skip to the next field.
5. If a value was entered, edit the value prior to accepting

it. (This is not shown in the example.)
6. If the field was changed, set the receiving variable equal

to the value entered.

2200 REM DELETE ROUTINE

2210 REM NO EDIT CHECK IS MADE

2220 REM TO SEE IF VALID RECORD

2230 VTAB L9: HTAB 1: INVERSE

2240 PRINT "ARE YOU SURE? ENTER Y TO DELETE THE"

2250 PRINT "RECORD. ANY OTHER KEY TO KEEP RECORD";

2260 NORMAL: GET X1$

2270 VTAB L9: HTAB 1

2280 PRINT TAB(39)" "

2290 PRINT TAB(39)" ";

2300 IF X1$ < > "Y" THEN 2300

Random Disk Flies / 413

2310 AANAME$ = " ":ABADDR$ = " ":ACCITY$ =
" ":A DSTE$ = " .. ":AEZIP$ = " ":AFPHNE$ = " ... ":AGPHNE$ =

" ... ":AHPHNE$ = " "

2320 GOSUB 2370: REM WRITE ON DISK

2330 RETURN

2340 REM
The DELETE ROUTINE consists mainly of coding to ask the operator if the record
displayed is really the one which is to be deleted. If the operator responds to the
message by entering Y, each individual variable is set equal to the correct number
of periods prior to being rewritten back to the disk.

If any value other than Y is entered, the record is not deleted, and logic flow
returns to the MAIN ROUTINE. Always have the operator check twice when deleting
a record.

2350 REM ----------------------

2360 REM WRITE ON DISK

2370 VTAB 1: HTAB 39

2380 PRINT D$

2390 PRINT D$;'WRITE ";FILEID$;",R";REC

2400 PRINT AANAME$" ," ABADDR$" ," ACCITY$" ," ADSTE$" ," AEZIP$" ,"A FPHNE$",
"AGPHNE$","AHPHNE$

2410 PRINT D$

2420 RETURN ·
In programming circles, line 2370 is called a patch. For some reason, before line
2370 was inserted, whenever the WRITE ROUTINE was executed the position of the
cursor on the screen was cleared. To overcome this problem (after hours of trying
to solve it in other ways) a program patch was put in to "correct" the situation. The
cursor is moved to the upper right comer where it can do no harm.

The programmer's motto is "If all else fails, PATCH IT."

414 / Applesoft BASIC Toolbox

2440 REM ----------------------

2450 REM READ DISK

2460 VTAB 1: HTAB 39

2470 PRINT D$

2480 PRINT D$;"READ ";FILEID$;",R";REC

2490 INPUT AANAME$,ABADDR$,ACCITY$,ADSTE$,AEZIP$,AFPHNE$,AGP HNE$,
AH PH NE$

2500 PRINT D$

2510 RETURN

2520 REM
Lines 2440 through 2510 make up the READ ROUTINE for the random file. You
should pay special attention to two of the lines. First, line 2460 is another patch to
keep the cursor from clearing data from the screen when reading a record. Again
the cursor is sent to the upper right corner. Second, line 2480 tells the computer
which record is to be read. Every time a record is read from a random file, the
relative record number must be specified by the READ instruction.

2530 REM ----------------------

2540 REM WRITE ON SCREEN

2550 IF LEN (ABADDR$) < 25 THEN ABADDR$ = LEFT$ (ABADDR$ + SPACES$,25)

2560 IF LEN (ACCITY$) < 15 THEN ACCITY$ = LEFT$ (ACCITY$ + SPACES$,15)

2620 VTAB L1: HTAB 12: PRINT AANAME$

2630 VTAB L2: HTAB 12: PRINT ABADDR$

2680 RETURN

Random Disk Files I 415

Before any data is displayed, lines 2550 through 2610 ensure that all the variables
are set to the maximum length. Any strings which do not contain the maximum
number of characters are padded with spaces on the right.

If you display a shorter variable over the top of a longer variable, the display
shows all of the short value and part of the long value. To prevent this from hap­
pening, always use fixed length strings.

Example Old field: "INDIANAPOLIS"
New field: "SALEM"
Display: CITY = (SALEMNAPOLIS

You may think padding the variable with extra spaces is not necessary since
fixed length variables were written and read from the disk. Remember, there is a
problem with leading spaces. The computer WRITEs out spaces correctly and READs
in the spaces. But sometime during the READ process, leading spaces in a value are
eliminated. So for a completely blank variable, you get only one blank character.
For variables that contain leading blanks, the data is moved to the left and the
variable shortened.

Example When writing: ABADDR$ = /1

After reading: ABADDR$ = /1
"

25 spaces
1 space

(What goes out as 25 spaces comes back as 1.)

Example When writing: ABADDR$ = /1 1234 MIDDLE STREET

(Notice the value is not left justified.)

After reading: ABADDR$ = 111234 MIDDLE STREET "

(Notice the leading spaces are suppressed and the value is shortened by the number
of leading spaces.)

You might question why we did not have this problem with the sequential
address system. Remember, the sequential system reads and writes one complete
string (record) which starts with a nonblank character.

2700-2810 The BEGINNING ROUTINE presents no new instructions or coding techniques.

2820 REM ----------------------

2830 REM PRINT SCREEN IMAGE

2940 VTAB LS

41& / Applesoft BASIC Toolbox

2950 INVERSE: PRINT "A";: NORMAL: PRINT "DD";

2960 INVERSE: PRINT "C";: NORMAL: PRINT "HANGE ";

2970 INVERSE: PRINT "D";: NORMAL: PRINT "ELETE ";

2980 INVERSE: PRINT "L";: NORMAL: PRINT "IST ";

2990 INVERSE: PRINT "O";: NORMAL: PRINT "UIT"

3000 RETURN
Lines 2950 through 2990 combine to print one line on the screen. The leading
character of each option is printed in INVERSE format to let the operator know
which character to enter when making a selection. The remaining characters in the
word are printed in NORMAL format with each PRINT intruction ending with a
semicolon. This form of display is common among purchased software.

3020 REM ----------------------

3030 REM FREE MEMORY ROUTINE

3040 STARTING = PEEK (112) * 256 + PEEK (111): IF STARTING> 17000 THEN 3110

3070 STARTING = FRE (0)

3110 RETURN
Each time a string variable is set equal to a new value, additional memory is used.
The FREE MEMORY ROUTINE checks the amount of free space available. If there
is still plenty of memory, the routine quickly returns to the calling GOSUB. If the
start of string memory falls below 17000, the FRE instruction is executed and string
memory is condensed.

The memory address 17000 was chosen because it is well past the end of any
of the programs in this book. The larger programs use around 14000 bytes of
memory.

For a detailed explanation of the routine, see the sequential UPDATE program.

3130 REM ----------------------

3140 REM ENDING ROUTINE

Random Disk Flies/ 417

3150 PRINT D$

3160 PRINT D$;"CLOSE"

3170 HOME

3180 PRINT D$;"RUN RAN ADDR HELLO PROG,D"PDRIVE

3190 REM

3200 REM ----------------------

Program Name

Program
Objective

The ENDING ROUTINE consists of no new instructions but does show a different
format for the CLOSE instruction. When the CLOSE instruction is used without a
file name, DOS CLOSEs all the open files used in the program.

The Random File LIST Program

RAN ADDR LIST PROG

To provide the user with a method of displaying all the records on the screen or
printing a hard copy of the records.

The random address LIST program varies in several ways from the sequential
LIST program shown earlier. The random address LIST program:

1. Allows the user either to display the records on the screen or to print each
record.

2. Sorts the records into alphabetic sequence by the client's last name.
3. Does not use the DRIVE ROUTINE as in previous examples. The coding still

uses modules and limits the use of the GOTO instruction, but because of the
nature of the program, logic flow is allowed to simply fall through each module
as it is executed.

The random address LIST program displays two records to the screen or prints
three records per page. When displaying the records the program pauses at the end
of each screen and waits for a response from the operator. When printing records
the program does not pause.

The two-record screen format appears as follows:

418 / Applesoft BASIC Toolbox

RECORD # = (

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

RECORD # =(

NAME =(
ADDRESS =(
CITY =(
STATE =(
ZIP CODE =(
PHONE =(

PRESS THE SPACE BAR TO CONTINUE

Instructions for Run the program by entering
Running the

Program RUN RAN ADDR HELLO PROG <RETURN>

After the menu is displayed, enter 2 to start execution of the listing program.
After the listing program has started the screen will be cleared, and the follow­

ing message will be displayed.

READING FILE & LOADING TABLE

TAKES ONE MINUTE!

As each record is read, the record number is displayed to give the operator
visual feedback about what the program is doing.

Each record in the file must be read and examined to see if it contains a valid
name, the last name extracted, and the name placed into a table. With a random file
it is possible for the operator to skip around and enter data for any record in the file.

Random Disk Files/ 419

To ensure that each name in the file is found, all 99 records making up the file are
read and checked for a valid name. Be patient, as the program must read from record
01 to record 99.

After all the records have been read and the last name of each client is placed
into a table, the table is sorted. The length of time it takes the program to sort the
table depends on how many records are found. If only a few records contain infor­
mation, you cannot even tell that the sorting is taking place (except for the message
on the screen). But if every record on the file contains a name, the sorting takes
around 1 V2 minutes to sequence the records.

The SORT ROUTINE uses the following screen format:

SORTING TABLE ENTRIES

PASS ## OF ##

SORT DONE - PRESS SPACE BAR TO CONT.

During the sorting process, two numbers are displayed. The last number indi­
cates the total number of passes needed to sort the table, while the first number
indicates which pass the computer is currently working on. The length of time the
first number is displayed depends on the number of entries in the table. Toward the
end of the sorting the numbers change very rapidly.

After the sort is done, the operator must press the space bar to continue. The
pause is put in so the operator has a chance to see the screen and know what is going
on. If there are only a few entries in the table, the sorting is done in a matter of
seconds. If there were no pause, the message would flash on the screen, the sort
would be done, and a new message would be displayed before the operator knew
what happened.

The current version of the program does not give the operator any method of
terminating the program early. Once the program has started, it continues to execute
until all the records have been displayed or printed. The display portion of the
program should be modified to allow the operator a method of continuing or ending
the program. The operator will most likely not want to look at every name in the
file two at a time. This is another case of "Do as I say and not as I do." When
displaying records on the screen you should always make the operator respond with
a specific key in order to continue and always give the operator a way to end the
program gracefully (gracefully means without canceling the program or pulling the
plug on the computer).

420 / Applesoft BASIC Toolbox

As the program is written, the operator's only options are to wait until process­
ing has been completed or to cancel the program.

After the sort is done and the operator has responded, the next screen is dis­
played. The screen allows the operator to enter either D to display the records on
the screen or P to print the records.

ENTER D TO DISPLAY THE NAMES

ENTER P TO PRINT THE NAMES

RESPONSE = t

If the operator chooses to display the records, then the display process is started.
If the operator wants to print the records, another screen is displayed, and the
program pauses to give the operator time to make sure the printer is ready.

PRESS SPACE BAR WHEN:

1. PRINTER IS TURNED ON.

2. FORMS ARE ALIGNED.

Program Listing 1000 REM RAN ADDR LIST PROG
1010 REM-------------
1020 REM BEGINNING ROUTINE
1030 DIM FBNAME$(99)
1040 TEXT : NORMAL : HOME : SPEED= 255
1050 D$ = CHR$ (4)
1060 FDRIVE = l:PDRIVE = 1
1070 FILEID$ = "RAN ADDR FILE"
1080 SPACES$ = "
1090 REM L$ = TO-TOP-OF-PAGE
1100 L$ = CHR$ (12)
1110 VTAB 10: HTAB 5
1120 PRINT "READING FILE & LOADING TABLE"
1130 VTAB 12: HTAB 10
1140 PRINT "TAKES ONE MINUTE!"
1150 PRINT D$

"

Random Disk Fiias I 421

1160 PRINT D$;"0PEN ";FILEID$;",L90,D"FDRIVE
1170 PRINT D$
1180 REM
1190 REM ---------
1200 REM MAIN ROUTINE
1210 FOR REC = 1 TO 99
1220 REM --MUST READ ALL FIELDS OR EXTRA IGNORED MESSAGE
IS DISPLAYED
1230 GOSUB 2070: REM READ DISK
1240 VTAB 15: HTAB 19: PRINT REC
1250 REM
1260 REM ----------
1270 IF LEFT$ (AANAME$,l) ="·"THEN 1460
1280 REM
1290 R (AANAME$,Nl,l} = " II THEN N2 = Nl:Nl = 1
1370 NEXT
1380 IF N2 = 25 THEN FBNAME$ =LEFT$ (AANAME$,20): GOTO 1420
1390 FBNAME$ = RIGHT$ (AANAME$,25 - N2)
1400 IF LEN (FBNAME$) > 20 THEN FBNAME$ = LEFT$ (FBNAME$,20}
: GOTO 1420
1410 IF LEN (FBNAME$) < 20 THEN FBNAME$ = LEFT$ (FBNAME$ + SPACES$,20)
1420 REC$ = STR$ (REC)
1430 IF LEN (REC$) < 2 THEN REC$ "0" + REC$
1440 FBNAME$(FBNUM) = FBNAME$ + REC$
1450 FBNUM = FBNUM + 1
1460 NEXT
1470 REM
1480 REM -----------
1490 REM SORT ROUTINE
1500 HOME : VTAB 10: HTAB 5
1510 PRINT "SORTING TABLE ENTRIES"
1520 N3 = FBNUM - 1: IF N3 < 1 THEN 1670
1530 FOR Nl = 0 TO N3 - 1
1540 VTAB 12: HTAB 9: PRINT "PASS "Nl + l" OF "N3
1550 :: FOR N2 = Nl + 1 TO N3
1560 IF FBNAME$(Nl) < FBNAME$(N2) THEN 1600
1570 :::: Xl$ = FBNAME$(Nl)
1580 ::: : FBNAME$(Nl) = FBNAME$(N2)
1590 :: :: FBNAME$(N2) = Xl$
1600 : : NEXT
1610 NEXT
1620 VTAB 24: HTAGB 1
1630 INVERSE : PRINT " SORT DONE - PRESS SPACE BAR TO CONT. ";:NORMAL
1640 GET Xl$: IF Xl$ < > " " THEN 1640
1650 REM
1660 REM ---------
1670 REM SELECT DEVICE
1680 HOME
1690 PRINT : PRINT
1700 PRINT "ENTER D TO DISPLAY THE NAMES"
1710
1720
1730
1740

PRINT
PRINT "ENTER P TO PRINT THE NAMES"
PRINT
PRINT II RESPONSE=";: GET X2$: PRINT X2$;

422 / Applesoft BASIC Toolbox

1750 IF X2$ = "D" THEN HOME GOTO 1910
1760 IF X2$ = "P" THEN 1780
1770 GOTO 1680
1780 HOME
1790 PRINT "PRESS SPACE BAR WHEN:"
1800 PRINT
1810 PRINT" 1. PRINTER IS TURNED ON."
1820 PRINT
1830 PRINT" 2. FORMS ARE ALIGNED.";
1840 GET X1$: IF X1$ < > II II THEN 1840
1850 HOME
1860 PRINT D$
1870 PRINT D$;"PR#l"
1880 REM
1890 REM -----
1900 REM PRINT TABLE ENTRIES
1910 FOR Nl = 0 TO N3
1920 REC$= RIGHT$ (FBNAME$(Nl),2)
1930 REC = VAL (REC)
1940 GOSUB 2080: REM READ DISK
1950 GOSUB 2160: REM WRITE PRT
1960 NEXT
1970 IF X2$ = "D" AND LINE > 0 THEN VTAB 22: HTAB 1: PRINT " PRESS

THE SPACE BAR TO CONTINUE";: GET X1$: IF X1$ <>""THEN 1970
1980 IF X2$ = "D" THEN 2010
1990 PRINT L$;L$
2000 PRINT D$: PRINT D$;"PR#O"
2010 PRINT D$: PRINT D$;"CLOSE"
2020 PRINT D$;"RUN RAN ADDR HELLO PROG,D"PDRIVE
2030 REM
2040 REM
2050 REM *** SUBROUTINES ***
2060 REM -------·
2070 REM READ DISK
2080 PRINT D$
2090 PRINT D$;"READ ";FILEID$;",R"REC
2100 INPUT AANAME$,ABADDR$,ACCITY$,ADSTE$,AFPHNE$,AGPHNE$,AHPHNE$
2110 PRINT D$
2120 RETURN
2130 REM
2140 REM ----------
2150 REM PRINT SCREEN IMAGE
2160 IF LEN (ABADDR$) < 25 THEN ABADDR$ = LEFT$ (ABADDR$ + SPACES$,25)
2170 IF LEN (ACCITY$) < 15 THEN ACCITY$ =LEFT$ (ACCITY$ + SPACES$,15)
2180 IF LEN (ADSTE$) < 2 THEN ADSTE$ = LEFT$ (ADSTE$ + SPACES$,2)
2190 IF LEN (AEZIP$) < 5 THEN AEZIP$ = LEFT$ (AEZIP$ + SPACES$,5)
2200 IF LEN (AFPHNE$) < 3 THEN AFPHNE$ = LEFT$ (AFPHNE$ + SPACES$,3)
2210 IF LEN (AGPHNE$) < 3 THEN AGPHNE$ = LEFT$ (AGPHNE$ + SPACES$,3)
2220 IF LEN (AHPHNE$) < 4 THEN AHPHNE$ = LEFT$(AHPHNE$ +

SPACES$,4)
2230 PRINT
2240 PRINT "RECORD# =("REC$")"
2250 PRINT
2260 PRINT "NAME =("AANAME$")"

Random Disk Files I 423

2270 PRINT "ADDRESS =("ABADDR$")"
2280 PRINT "CITY =("ACCITY$")"
2290 PRINT "STATE =("ADSTE$")"
2300 PRINT "ZIP CODE =("AEZIP$")"
2310 PRINT "PHONE =("AFPHNE$"-"AFPHNE$"-"AFPHNE$")"
2320 PRINT : PRINT
2330 REM
2340 REM
2350 IF X2$ = "D" THEN 2410
2360 LINE = LINE + 1
2370 IF LINE > 4 THEN PRINT L$: LINE = 0
2380 RETURN
2390 REM
2400 REM ---------
2410 LINE = LINE + l
2420 IF LINE < 2 THEN 2460
2430 PRINT "PRESS THE SPACE BAR TO CONTINUE";
2440 GET X1$: IF X1$ < > II II THEN 2440
2450 HOME: LINE = 0
2460 RETURN
2470 REM
2480 REM --------

Cross Reference Listing

Variable names used with the address record:

AA$1270, 1320, 1360, 1380, 1390,2100, 2260
AB$ 2100, 2160, 2270
AC$ 2100, 2i 70, 2280
AD$ 2100, 2180, 2290
AE$ 2100, 2190, 2300
AF$ 2100, 2200, 2310
AG$ 2100, 2210, 2310
AH$ 2100, 2220, 2310

Variable names used with the disk instructions:

D$ 1050, 1150, 1160, 1170, 1860, 1870,2000, 2010, 2020,2080, 2090, 2110
FD 1060, 1160
Fl$ 1070, 1160, 2090
PD 1060, 2020

Variable names used when working with finding and storing the last name:

FB 1440, 1450, 1520
FB$ 1380, 1390, 1400, 1410, 1440
FB$(1030, 1440, 1560, 1570, 1580, 1590, 1920

424 / Applesoft BASIC Toolbox

Other general purpose variable names:

L$ 1100, 1990, 2370
LI 1970, 2360, 2370, 2410, 2420, 2450
N1 1310, 1320, 1330, 1350, 1360, 1530, 1540, 1550, 1560, 1570, 1580, 1910,

1920
N2 1330, 1350, 1360, 1380, 1390, 1550, 1560, 1580, 1590
N3 1520, 1530, 1540, 1550, 1910
RE 1210, 1240, 1420, 1930, 2090
RE$1420, 1430, 1440, 1920, 1930,2240
X1$1570, 1590, 1640, 1840, 1970, 2440
X2$1740, 1750, 1760, 1970, 1980,2350

Explanation by Detailed explanations by line number follow.
Line Number

1000 REM RAN ADDR LIST PROG

1030 DIM FBNAME$(99)

1090 REM L$ = TO-TOP-OF-PAGE

1100 L$ = CHR$ (12)

1160 PRINT D$;"0PEN ";FILEID$;",L90,D"FDRIVE
There are four instructions in the BEGINNING ROUTINE you should look at closely.
The first instruction sets up the table used to store the client's last name. A table
(also called list or array) provides the programmer with an easy way to reference
many values by using a single variable name followed by a number.

FBNAME$ (O) = First table entry
FBNAME$ (1) = Second table entry
FBNAME$ (2) = Third table entry

FBNAME$ (99)= 100th table entry

Instead of a constant (0, 1, 99), a variable is used following the table name,
allowing the programmer to access each table entry by varying the value within the
parentheses. Looking ahead at lines 1440 and 1450 shows us how the table is loaded.

.... Find a name in the file and then put it in the table
1440 FBNAME$(FBNUM) = FBNAME$ + REC$
1450 FBNUM = FBNUM + 1

Random Disk Files I 425

Each time a name is found in the file, the name and matching record number
are placed in the table. The very first time line 1440 is executed, FBNUM is equal
to 0, so FBNAME$ (0) is set equal to the value of FBNAME$ + REC$. After a value
is put FBNAME$ (O), FBNUM is incremented to point to the next table entry. The
next time line 1440 is executed, FBNAME$ (1) is set equal to the value of FBNAME$
+ REC$ and FBNUM is incremented to point to FBNAME$ (2). The process is
repeated for each name found in the file.

If you have trouble understanding how the table is being used, go back and
review the DIM instruction in Chapter 24 of Section I.

The second line to review sets L$ equal to CONTROL-L.

1090 REM L$ = TO-TOP-OF-PAGE
1100 L$ = CHR$ (12)

The CONTROL-Lis used to cause the printer to advance to the top of the next
page. By printing the character (sending the character to the printer), the printer
automatically advances the form to the top of the next page.

The third line you should examine is the OPEN instruction, which specifies the
length of the records making up the random address file.

1160 PRINT D$;"0PEN ";FILEID$;",L90,D"FDRIVE

Although it has been stated several times before, remember that when using
random files the maximum length of each record must be specified as part of the
OPEN instruction. The length must include the number of characters per variable,
any commas used to separate the variables, and one character for the EOR indicator.

The MAIN ROUTINE consists of one large FOR/NEXT loop, which is executed
99 times.

1190 REM ----------------------

1200 REM MAIN ROUTINE

1210 FOR REC = 1 TO 99

1220 REM -----MUST READ ALL FIELDS OR EXTRA IGNORED MESSAGE IS DISPLAYED

1230 GOSUB 2070: REM READ DISK

1240 VTAB 15: HTAB 19: PRINT REC

426 / Applesoft BASIC Toolbox

1250 REM

1260 REM ----------------------

1270 IF LEFT$ (AANAME$,1) = "."THEN 1460

1460 NEXT
Each time the MAIN ROUTINE is executed, a record is read and the name checked
to see if it starts with a period. If the name starts with a period, logic flow branches
to line 1460, where the NEXT instruction either causes the FOR/NEXT loop to be
repeated (REC = 01 to 99) or drops through to line 1470 (REC > 99).

Line 1220 has been inserted to remind you that even though you may be
interested in only one or two variables within the record, all the variables making
up a record must be read or else an error message is displayed indicating that the
extra data was ignored. The first time through the file, the only variable needed is
the last name. The name is required in order to sort the names prior to rereading
the file and displaying the records in last name sequence. But in order to retrieve
the name, all the variables making up the record must be read.

Lines 1300 through 1460 consist of the logic for extracting the last name. The
routine is basically the same as in the SEQ ADDR SEARCH PROG. You may want
to study it again in detail or skim over the material and go to the explanation of the
next module.

The routine consists of three segments. The first segment of code locates the
last character in the last name. The second segment of code locates the first character
of the last name, and the third segment extracts all the characters making up the last
name. In order for the routine to work, the name must have been entered using the
format of first name, followed by a space, followed by the last name, followed by
as many trailing spaces as necessary.

FIRSTNAME LASTNAME
f\ /\/\/\/\/\/\ Where f\ points to blank positions

1290 REM ----------------------

1300 REM EXTRACT NAME

1310 FOR N1 = 25 TO 1 STEP - 1

1320 IF MID$ (AANAME$,N1,1) =" "THEN 1340

1330 N2 = N1:N1 = 1

Random Disk Files I 427

1340 NEXT
Line 1310 starts a FOR/NEXT loop in which each character of the variable is exam­
ined starting from the rightmost character and working to the left.

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

The twenty-fifth character is checked to see if it is equal to a blank. If it is
equal to a blank, logic flow skips to line 1340 where N1 is decreased by 1 (see -1
on line 1310). After N1 is reduced, line 1320 is executed again to check to see if
the twenty-fourth character is equal to a blank. The FOR/NEXT loop is continued
until a nonblank character is located or the counter reaches a value of 2. For the
example, logic flow exits the segment of code when column 18 is checked for a
blank. Notice that column 18 contains an E.

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

After the last character of the name is found, the problem is finding the first
character of the last name. Lines 1350 through 1370 accomplish this by starting a
new search, but this time for the blank between the first and the last name.

1350 FOR N1 = N2 TO 1 STEP - 1

1360 IFMID$(AANAME$,N1,1) =" "THEN N2 = N1:N1=1

1370 NEXT
The FOR/NEXT loop is executed until a blank is found or N 1 is less than 1. For the
example the loop stops when N1 reaches 10. When the blank is found, N2 is set
equal to the current value of N1 (which is 10), and N1 is set equal to 1 in order to
terminate the FOR/NEXT loop. Since the FOR/NEXT loop is set up to terminate when
N1 is less than 1, logic flow falls through statement 1370 to 1380 (remember the
NEXT statement subtracts l from N1 and tests for a LESS THAN condition).

We now know that the last name is between the value in N2 (10) and the last
column.

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

" N2 " Last Byte of field

1380 IF N2 = 25 THEN FBNAME$ = LEFT$ (AANAME$,20): GOTO 1420

428 / Applesoft BASIC Toolbox

1390 FBNAME$ = RIGHT$ (AA NAME$,25 - N2)
But there is a very slight chance that the client's last name talces up the entire 25
characters. If the name talces up the entire 25 characters, the formula used to extract
the name results in an error.

If N2 = 25, then RIGHT$ (AANAME$,25 - N2)
= RIGHT$ (AANAME$,0)

The second parameter of the RIGHT$ function cannot be 0.
To handle this unlikely situation, the value of N2 is checked to see if it is equal

to 25. If it is equal to 25, only the leftmost 20 characters of the variable are used
(see line 1380).

For a name less than 25 characters long, FBNAME$ is set equal to the characters
making up the right side of AANAME$. The portion of AANAME$ to be used is
determined by subtracting N 1 from 25 where

25 The length of the FBNAME$
- N 1 The position of the blank between the first and the last name
= 15 The number of characters to be extracted

1 2
1234567890123456789012345
FIRSTNAME LASTNAME

1400 IF LEN (FBNAME$) > 20 THEN FBNAME$ = LEFT$ (FBNAME$,20): GOTO 1420

1410 IF LEN (FBNAME$) < 20 THEN FBNAME$ = LEFT$ (FBNAME$ + SPACES$,20)
After the last name has been extracted, the remaining code guarantees that the
variable contains exactly 20 characters. In order for the sort to work, all the variables
must be exactly the same length. Strings being compared in Applesoft must be the
same size or the shorter string will be considered less than the longer string.

1420 REC$ = STR$ (REC)

1430 IF LEN (REC$) < 2 THEN REC$ II II + REC$

1440 FBNAME$(FBNUM) = FBNAME$ + REC$

1450 FBNUM = FBNUM + 1

1460 NEXT (Remember the FOR on line 1210)

Random Disk Filas / 429

1470 REM
Once the last name has been found, lines 1420 through 1450 attach the relative
record number to the name and place both entries into the table.

LASTNAME 00
AAAAAAAAAAAAAAAAAAAA Name

AARelative record number

Both the name and the relative record number are needed. The last name is
needed in order to sort the records, and the relative record number is needed after
the names are sorted so the records can be read in the same sequence as they were
sorted.

For example, if the following three names were on the file

Record
Name Number
BOOTH 05
SMITH 15
ADAMS 20

after the sort they would appear as

Record
Name Number
ADAMS 20
BOOTH 05
SMITH 15

Record 20 is read first: record 5, second: and record 15, third.
Lines 1490 through 1640 make up the logic for sorting the table entries into

ascending order. The program uses a replacement sort, which is the easiest sorting
technique for the programmer to code. Unfortunately, the replacement sort is one
of the most inefficient methods of sorting if you are considering the amount of time
it takes for the computer to complete the sort.

Basically, the sort logic consists of two FOR/NEXT loops. The inner loop is
responsible for doing the comparisons and switching the values, while the outer
loop resets the counters and determines how many times the inner loop is executed.

Look over the complete routine and then follow through the line by line expla­
nation. The FOR/NEXT loops have been indented by using leading colons to help
you follow the logic.

1480 REM ----------------------

1490 REM SORT ROUTINE

430 / Applesoft BASIC Toolbox

1500 HOME : VTAB 10: HTAB 5

1510 PRINT "SORTING TABLE ENTRIES"

1520 N3 = FBNUM - 1: IF N3 < 1THEN1670

1530 FOR N1 = 0 TO N3 - 1

1540 VTAB 12: HTAB 9: PRINT 'PASS 'N1 + 1' OF 'N3

1550 :: FOR N2 = N1 + 1 TO N3

1560 ::::IF FBNAME$(N1) < FBNAME$(N2) THEN 1600

1570 :::: X1$ = FBNAME$(N1)

1580 :::: FBNAME$(N1) = FBNAME$(N2)

1590 :::: FBNAME$(N2) = X1$

1600 :: NEXT

1610 NEXT

1620 VTAB 24: HTAGB 1

1630 INVERSE: PRINT" SORT DONE - PRESS SPACE BAR TO CONT. ";:NORMAL

1640 GET X1$: IF X1$ < >""THEN 1640

1520 N3 = FBNUM - 1: IF N3 < 1 THEN 1670
Line 1520 sets N3 equal to the number of names in the table. If you go back to line
1450, you will see that FBNUM points to the next empty location of the table. By
subtracting 1 from the value of FBNUM, the program sets N3 equal to the exact
number of entries in the table. After 1 is subtracted, an IF is used to make sure there
are two or more entries. The sort is bypassed if the file contains only one record.
No allowance is made for an empty file.

To help explain the logic, let's use the following table values:

FBNAME$ (0) =

FBNAME$ (1) =

FBNAME$ (2) =

FBNAME$ (3) =

Name
SMITH
ADAMS
JOHNSON
BOOTH

Record
Number
03
04
08
11

Random Disk Files I 431

The name in FBNAME$ (0) is compared with the name in FBNAME$ (1) (see line
1560). If the name in FBNAME$ (0) is greater than the name in FBNAME$ (1), the
two names (including record numbers) are exchanged (see lines 1570 to 1590). The
exchange or flipping process is accomplished by setting X1$ equal to FBNAME$ (O)
in order to prevent the value from being lost. The name in FBNAME$ (1) is then
placed into FBNAME$ (0). After the name in FBNAME$ (1) has been moved, the
first value, which was saved in X1$, is placed into FBNAME$ (1).

FBNAME$ (0) =

FBNAME$ (1) =

FBNAME$ (2) =

FBNAME$ (3) =

Name
ADAMS
SMITH
JOHNSON
BOOTH

Record
Number
04 Flipped
03 Flipped
08
11

The name in FBNAME$ (0) is then compared with the name in FBNAME$ (2).
If the name in FBNAME$ (0) is greater than the name in FBNAME$ (2), the two
names are flipped.

The process is repeated until the name in the first entry has been compared
with all the names in the table. After the first iteration of the inner loop is completed,
the lowest name is in the first entry of the table, FBNAME$ (0).

After the first entry has been compared to all the other entries in the table, the
outer FOR/NEXT instruction sets N1 up by 1 and the inner FOR/NEXT instructions
are executed again in order to compare the second entry with all the other table
entries. If you follow the inner loop, you will see that during the second execution
two flip operations take place. First, SMITH and JOHNSON are flipped.

FBNAME$ (0) =

FBNAME$ (1) =

FBNAME$ (2) =

FBNAME$ (3) =

Name
ADAMS
JOHNSON
SMITH
BOOTH

Record
Number
04 No longer used in comparison
08 Flipped
03 Flipped
11

Then, when JOHNSON is compared with BOOTH, those names are flipped.

432 / Applesoft BASIC Toolbox

FBNAME$ (0) =

FBNAME$ (1) =

FBNAME$ (2) =

FBNAME$ (3) =

Name
ADAMS
BOOTH
SMITH
JOHNSON

Record
Number
04 No longer used in comparison
11 Flipped
03
08 Flipped

Once the FBNAME$ (1) has been compared with all the other entries in the
table, the outer loop sets N1 up by 1 and the process of comparing FBNAME (2)
with all the other table entries is carried out. If you follow the inner loop one more
time, you will see that during the third execution, one flip occurs. SMITH is com­
pared with JOHNSON causing the names to be exchanged.

FBNAME$ (0) =
FBNAME$ (1) =
FBNAME$ (2) =

FBNAME$ (3) =

Name
ADAMS
BOOTH
JOHNSON
SMITH

Record
Number
04 No longer used in comparison
11 No longer used in comparison
08 Flipped
03 Flipped

Since there are only four entries in the table, N 1 is now equal to 1 less than
the number of entries, and the sort is done.

Look through the code again and see how the sorting takes place. The outer
loop of the replacement sort takes one less pass (execution) than the number of
entries in the table (4 - 1 = 3). The number of times the inner loop is executed
may be computed by the following formula:

Number of table entries * (number of table entries - 1) I 2

For the example, the inner loop is executed six times.

4 * (4 - 1) I 2 = 6

If the table contained 100 entries, the inner loop would be executed 4950 times:

100 * (100 - 1) I 2 = 4950.

You can see why it takes several minutes for the computer to sort the table
when it is completely full.

1660 REM ----------------------

1670 REM SELECT DEVICE

Random Disk Files I 433

1860 PRINT D$

1870 PRINT D$;"PR#1"

1890

1900

1910

1920

1930

1940

1950

1960

Lines 1660 through 1870 allow the operator to decide whether the records are to be
displayed on the screen or printed. The only line which you should find new is 1870.

The PRINT instruction is telling DOS to channel all further output to slot 1,
where the printer control board is located. If you have a printer, the interface board
is located in slot l, and the printer is turned on, the statement is executed correctly
and data printed. If the printer is not turned on, the cursor disappears and waits for
you to turn on the printer. If you do not have a printer interface board in slot 1 when
the statement is executed, the cursor disappears and the computer LOCKS UP. You
must reset the computer and start over.

REM ----------------------

REM PRINT TABLE ENTRIES

FOR N1 =OTO N3

REC$= RIGHT$ (FBNAME$(N1),2)

REC = VAL (REC$)

GOSUB 2080: REM READ DISK

GOSUB 2160: REM WRITE PRT

NEXT
Lines 1890 through 1960 display all the entries which were loaded into the table.
The FOR/NEXT instruction is executed from 0 to N3 times, where N3 is equal to
the total number of entries in the table.

Line 1920 extracts the relative record number but leaves it in a string format
so it can be printed without suppression of the leading 0 (01through09). Line 1930
converts the relative record number from string format to numeric format so it can
be used in the READ module to retrieve the record.

After the record number has been extracted, the record is read and the data
displayed.

The FOR/NEXT loop continues to read and display the records until all the
entries in the table have been displayed.

434 / Applesoft BASIC Toolbox

1970 IF X2$ = "D" AND LINE > 0 THEN VTAB 22: HTAB 1: PRINT " PRESS THE
SPACE BAR TO CONTINUE";: GET X1$: IF X1$ < >" "THEN 1970

1980 IF X2$ = "D" THEN 2010

1990 PRINT L$;L$

2000 PRINT D$: PRINT D$;"PR#O"

2010 PRINT D$: PRINT D$;"CLOSE"

2020 PRINT D$;"RUN RAN ADDA HELLO PROG,D"PDRIVE

2030 REM
After all the entries are printed or displayed logic flow falls through to line 1970. If
records are being displayed and there is a record on the screen, logic flow gives the
operator a chance to view the last record before continuing. If the records were being
displayed but there are none on the screen, logic flow skips to line 2010.

If the records were being printed, lines 1990 and 2000 are executed. On line
1990 two CONTROL-Ls are printed. The first L$ causes the last page being printed
to eject. The second L$ causes a blank page to be ejected so the operator can easily
tear off the last page· of the printout. This may waste one or two sheets of paper but
makes the job of the operator much easier.

After positioning the paper, line 2000 tells DOS to direct all further displayed
data to the screen. The PR#O stands for the console screen (slot #0).

Whether the data was displayed or printed, the file is closed and the HELLO
program run.

2060 REM ---------------------

2070 REM READ DISK

2080 PRINT D$

2090 PRINT D$;"READ ";FILEID$;",R"REC

2100 INPUT AANAME$,ABADDR$,ACCITY$,ADSTE$,AFPHNE$,AGPHNE$,AHPHNE$

2110 PRINT 0$

Random Disk Files I 435

2120 RETURN

2130 REM
For the READ DISK ROUTINE you should make sure you understand lines 2090 and
2100. Before a record on a random file is read the READ instruction MUST be
executed, indicating which record is to be read. The INPUT instruction which reads
the random record MUST match the format and style of that in which the data were
written.

The PRINT SCREEN ROUTINE consists of three segments. Lines 2160 through
2320 make sure the variables are the correct length, and display both headings and
data at the same time. Lines 2360 through 2380 are used when the data are being
directed to a printer. Lines 2410 through 2460 are used when the data are being
directed to the screen.

2140 REM ----------------------

2150 REM PRINT SCREEN IMAGE

2160 IF LEN (ABADDR$) < 25 THEN ABADDR$ = LEFT$ (ABADDR$ + SPACES$,25)

2230 PRINT

2240 PRINT "RECORD # =("REC$")"

2250 PRINT

2260 PRINT "NAME = ("AANAME$")"
To make all the records fit the same format, each variable is set to its maximum
length prior to being displayed. One point you may want examine is how the data
and headings are displayed at the same time (see lines 2240 through 2310).

2340 REM ----------------------

2350 IF X2$ = "D" THEN 2410

2360 LINE = LINE + 1

2370 IF LINE > 4 THEN PRINT L$: LINE = 0

436 / Applesoft BASIC Toolbox

2380 RETURN
Line 2350 checks to see if the data is being displayed or printed. If the data is being
displayed to the screen, logic flow skips to line 2410. If the data is being printed,
LINE is incremented by 1 and tested to see if a full page has been printed. Once a
page is full, the PRINT L$ command causes the printer to skip up to the top of the
next page. When a new page is started, Do not forget to reset the line counter. The
last instruction on line 2370 resets LINE to 0. This is an important instruction. If
you do not reset the line counter to 0 it continues to increase, and the printer skips
to the top of a new page for every record printed after record 4. Forgetting to reset
the line counter is a common error made by new programmers.

2400 REM ----------------------

2410 LINE = LINE + 1

2420 IF LINE < 2 THEN 2460

2430 PRINT "PRESS THE SPACE BAR TO CONTINUE";

2440 GET X1$: IF X1$ < > " "THEN 2440

2450 HOME: LINE = 0

2460 RETURN
Records being displayed to the screen must be handled differently from records
being printed. In order to give the operator time to read the records, the program
pauses after displaying two records. Once the operator has viewed the two records
and pressed the space bar, the program continues to the next two records.

Do not forget to reset the line counter after a screen is full.
The program did not use the FREE MEMORY ROUTINE in order to keep the

listing short. The FREE MEMORY ROUTINE should have been used prior to and
during the sort. Anytime you sort string variables, large amounts of memory are
used up.

6. Index Disk Files

Before any of the following programs are run, they must be copied to a new disk.
The program disk does not have enough free space to create additional files.

For this chapter copy the following programs to another disk:

INDEX FILE CREATE PROG
IND ADDR FILE CREATE PROG
IND ADDR HELLO PROG
IND ADDR UPDATE PROG
IND ADDR LIST PROG
IND ADDR SEARCH PROG

If you want to make your disk operate as a turnkey system, use the following
steps:

1. Use a new disk or one which no longer contains any files you wish to keep.
2. Load the IND ADDR HELLO PROG from the program disk. Enter

LOAD IND ADDR HELLO PROG <RETURN>

3. REMOVE THE PROGRAM DISK and put in the disk you want to initialize.
After putting in the new disk, initialize the disk using the IND ADDR HELLO
PROG currently in memory. Enter

INIT IND ADDR HELLO PROG,Dnumber,Vnumber <RETURN>

Fill in the drive and volume number as desired.
4. After the disk has been initialized, transfer the remaining programs from the

program disk to the newly initialized disk.
5. In order to use the programs on the new disk, all you need to do is to insert

the disk into drive 1 and turn the computer on, or key in PR#6 if the computer
is already on. The IND ADDR HELLO PROG will be executed automatically.

437

438 / Applesoft BASIC Toolbox

A General Introduction to Index Files

Definitions and Illustrations

Sequential and random file processing are the only two types of file handling sup­
ported by the APPLE and most microcomputers. Unfortunately, these two structures
do not provide the flexibility most computer users need. In order to overcome the
disadvantages of sequential files and pure random files, a third method is developed
which we refer to as indexed file processing. This form of file processing allows the
terminal user to access the records either sequentially or randomly according to a
key field within the record.

Index files are constructed on the APPLE by combining two random files. The
first random file consists of a table made up of the index used to identify each record.
The second random file consists of the actual data. The first random file is called
the index file, and the second random file is called the data file.

Index file structure = 1. Index file
2. Data file

The index is used just as you would use the index in a book. If you want to
find a specific topic, you quickly scan through the abbreviated index until it is
located. Once it is located, you turn to the page number indicated to read the
information.

Unlike the user of random file processing, the user of an indexed file structure
does not need to know the relative record number in order to access information. A
short identifying key, normally part of the data, is associated with each record. The
identifying key, or index, is used in the 1/0 operations associated with each record.
For example, the most common index used for people is the Social Security number.
Other common index keys include driver's license number and employee number.
Normally the index is unique to the individual record. That is, no two records are
identified by the same key.

Almost all systems developed for on-line operator interaction should be devel­
oped around some form of indexed file organization. Notice the words some form.
There are many ways in which an index structure may be set up and associated with
the data on a file. The method presented in this chapter is only one of the numerous
methods, but the information gives you a good starting point for developing your
own index files.

The following two tables show how the records appear within an index file and
within the associated data file.

Index Disk Flies I 439

Records on the Records on the Data File
Index File

Relative Student Test
Index Record Record Name Score

Number Number

ADAMS 000 000 JAMES ADAMS 087
BARNE 002 001 JIM WILSON 080
BRENN 003 002 MARY BARNES 095
MCDON 004 003 TIMMY BRENNER 088
WILSO 001 004 JAMES MCDONALD 070

005 005
006 006

etc. etc.

There are several things you should notice about the sample data.

1. There are actually two files. The first file consists of the indexes and associated
relative record numbers. The second file consists of the actual data (student
name and test score).

2. The indexes on the index file are in alphabetic sequence, but the relative record
numbers are not in numeric sequence. When records are added to the file, they
do not need to be entered in alphabetic sequence. Each time a student is added,
the computer assigns the next available record location. Although the data is
not in sequence by last name, the indexes can be sorted and kept in alphabetic
sequence (for this example).

3. Within the index file unused record locations are given a dummy index key of
" ". When a dummy value is assigned to each unused index within the file,
the program can search through the index to find an unused area.

For this example the first five characters of the student's last name are used
as the record index. When a record is added to the file, program logic locates an
unused record (see " " in index) and associates the matching relative record
number with the index of the new record. The data for the student being added is
written to the direct access file using the relative record number associated with the
new index. Later, when accessing the data, the user of the system only needs to
remember the first five characters of the student's last name. The program matches
the five characters to the index in order to find out which relative record was used
to store the data. After the relative record number is found, the student's record can
be read.

440 I Applesoft BASIC Toolbox

KEYBOARD

KEYBOARD

A record can only be accessed randomly (read or written) using the relative
record number associated with each record. The program must locate the index value
within the index file and use the associated relative record number to actually read
the data. This may appear to be a lot of coding, but remember that the objective of
indexed file processing is to make it easier for the computer user, not the programmer.

Sequential processing of the file is controlled by program logic. In the previous
example the index file is kept in alphabetic sequence. The program reads the index
file sequentially and then reads the matching record on the data file. The computer
operator does not need to know any of the record keys (index values).

For the index address example which follows, both the index file and the data
file are created and filled with dummy values prior to letting the user enter any data.
This is not the only approach but it is one of the simpler methods. Program logic is
simplified by setting up the system to handle a maximum number of records and
allocating all the disk space ahead of time.

A Systems Chart and Description of Index Files

Step 1: Creating File Labels and Dummy Records for the Index File

CREATE
INDEX
FILE

CREATE
DATA
FILE

INDEX
DISK
FILE

DATA
FILE

Index Disk Files I 441

Before the index file structure can be used, two file labels must be created and
dummy values written for each record making up the two files.

In order to create the files, we must determine the maximum number of records
the file is to handle. This may sound like a problem, but we can always extend the
file if more space is needed.

For the index file the dummy records consist of two variables. The first variable
corresponds to the index value, while the second variable is the associated relative
record number.

For the index file the dummy value of " " indicates an unused index value.

Index Value l r Relative Record Number

..... oo

..... 01

..... 02

..... 99

The second file represents the data, with dummy records written in order to
initialize and allocate disk space.

For example, if the student file shown earlier is created, the program opens the
data file and writes out dummy records. One record is written for each entry in the
index file. If the index file is set up to handle 100 records, the data file must also
contain 100 records.

Relative Student
Record Number Name

00
01
02
03
04

98
99

Test
Score

442 / Applesoft BASIC Toolbox

KEYBOARD

Step 2: Index File Update

UPDATE
PROGRAM

DATA
FILE
(DIRECT
ACCESS)

After the file is created, records may be added, changed, or deleted from the
file.

Records are added to the data file by first finding an unused index entry in the
index file.

Unused index ---i, r- Relative record number
..... 01

After an unused area is located, the related record is read from the data file and
displayed. Once the operator has entered new information in place of the dummy
values, the new data is written back to the data file.

New record
Name l r Test Score

JOHN JONES 89

In addition to writing out the new record, the program must update the index
file to reflect the new data.

New index value ----i f"" Relative record number
JONES01

Changes to the file are made by reading the old record, changing the data within
the record, and writing the revised record back over the top of the old record. In
order to change the record, the user must know the index key for the record. For the

Index Disk Files / 443

previous example the user must know the first five characters of the student's last
name.

Deleting a record is done by writing dummy data (......) over the top of the
old data, thereby destroying the old record. The index value within the index file is
also reset to a dummy value of five periods " ". In order to delete the record, the
user must know the index key for the record.

KEYBOARD

Step 3: Index File Report Generation or Inquiry

INQUIRY/LIST
PROGRAM

INDEX
FILE
(DIRECT
ACCESS)

DATA
FILE
(DIRECT
ACCESS)

PRINTER
HARD COPY

Once a file is created, the data on the file may be used to produce reports.
Inquiries or reports related to the file may be displayed on the screen (soft copy) or
sent to a printer to produce a hard copy.

The Advantages of Index Files

The advantages of index files are all directed toward the user of the system. There
are no real advantages to the programmer in developing an index system except
pride in accomplishment.

Although index systems are harder for the programmer to write, they are much
easier for the user to work with, and therefore the majority of applications being
developed for microcomputers use some form of index file handling.

444 / Applesoft BASIC Toolbox

You should develop an index system wherever

1. The system you are developing requires on-line inquiry, and/or
2. Only a small portion of the records within a file are to be accessed by most

programs, and/or
3. The key for identifying the record cannot be a closed set of sequential numbers

as used in random processing (001, 002, 003, 004, etc.)

Index file processing provides the user with the ability to access data either in
a random mode or in an ascending or descending sequence by a specific field within
the record (if programmed to do so).

Unlike the random file system, in which the user must remember the relative
record number in order to retrieve the record randomly, the index system requires
the user to remember only the value of the record key. Since the record key is
normally part of the data, it is much easier for the user to remember than a relative
record number.

Unlike the random file system, in which the record keys must be a closed set
of sequential numbers, the index file system may use any combination of characters.
Index files may use either alphanumeric or numeric record keys, and the keys may
contain wide gaps (AAA, A01, 999, etc.).

Since the records may be processed in any order, the computer operator does
not need to worry about the sequence of the transaction records. Only the records
which are to be updated need to be read and written. This simplifies the job of the
operator.

The Disadvantages of Index Files

The user must be able to remember all or part of the record key, depending on how
flexibly the program has been written.

Although the index file structure is wonderful for the user, it is harder for the
programmer to work with and requires more processing time than simpler random
file structures.

A Summary of Index Files for Microcomputers

Almost all systems developed for the microcomputer should use an index file struc­
ture. The benefits for the end user include:

1. Being able to use meaningful record keys to retrieve a record
2. Faster access to record (faster than sequential files but slower than random files)

Index Disk Files I 445

3. Faster searching options (faster than either sequential files or random files)
4. The ability to access a record by using multiple keys (if programmed with

multiple indexes)

Problem Specifications

A General Description of the Problem

The same basic problem is used to illustrate the three types of disk access methods.
The screen design for the index file contains two additional lines for comments about
the client.

The basic screen design for the index version of the directory is as follows.
The actual screen format varies with each program.

LAST NAME= (

NAME = (
ADDRESS = (
CITY = (
STATE = (
ZIP CODE = (

PHONE = (

COMMENT#!= (
COMMENT#2= (

Serves as index

Six programs are used to illustrate index file processing:

1. A program for creating the index file label and dummy index records. Each
index record consists of five periods and a relative record number ranging from
00 to 99.

2. A program for creating the data file label and dummy records consisting of 124
periods. The new record format includes two comment fields which make the
record a total of 124 characters long.

446 / Applesoft BASIC Toolbox

3. A HELLO program which gives the operator a method of choosing which pro­
gram is to be executed.

4. A program for updating existing records.
5. A program for listing all the records on the file in ascending sequence by the

index value.
6. A program for searching the file for a specific record based on all or part of

the index.

The INDEX FILE CREATE PROGram is needed to create a label on the disk and
to create 100 dummy index records in the correct format. Both the index file and
the random data file must be created before any of the other programs are run.

The IND ADDR FILE CREATE PROGram is needed to create a label on the disk
and to create the correct number of dummy records. Once the label and dummy
records are created, the UPDATE program can be run to add records to the file.

The IND ADDR HELLO PROGram is used to display a menu to the operator.
The operator enters a number matching the program which is to be executed. With
the exception of the INDEX FILE CREATE PROGram, the IND ADDR FILE CREATE
PROGram, and the IND ADDR HELLO PROGram, all programs within the system
are executed by using the menu.

The IND ADDR UPDATE PROGram is used to add, change, or delete records.
Records cannot truly be added since the space has already been allocated by the
dummy records, and space cannot be deleted from the file because of the way random
files work. Additions to the file are made by writing over the dummy records with
new data. Deletions to the file are made by writing over the old data with a dummy
record containing all periods(.....). Changes are made by reading the record, chang­
ing specific fields, and then rewriting the new record over the old record.

Both the index file and the data file must be updated when adding, changing,
or deleting records.

The IND ADDR LIST PROGram is used either to display or to print all the names
and addresses in ascending order by the index (assumed to be the first five characters
of the client's last name).

The IND ADDR SEARCH PROGram is used to search the file and display all
the records with the same index value or partial index value. The program is set up
to allow the operator to enter from one to five characters of the index. The program
then searches through the index file and displays records with matching index values.

A Data Name Dictionary for the Index Address System

The following list describes the variables used in the index system. Most of the
names are the same as those used for the sequential system and the random system.
Some of the variable specifications have been changed. You should scan the list and
review the definition and use of each variable.

Index Disk Files / 447

Not all the names are used in each program. The dictionary is included here
to give a single source for the description of all the variables used within the system.
If you have a question about the use of one of the variables while looking at a
program listing, return to this section for an explanation and a better understanding
of the variable usage.

The names are listed in alphabetic order. Each name consists of a two character
prefix followed by a descriptive name. The two character prefix or Applesoft name
is given at the left with the full name and description at the right.

The variables X1$, X2$, X3$, N1, N2, N3, and a few others are used without
complete descriptions and for multiple purposes. This is an example of bad (lazy)
programming. It is true that Applesoft executes faster if fewer variables are used,
but the program is very difficult to maintain when short multifunction variables are
used.

Each variable should have a meaningful description and a single purpose within
the program. If the variable is a general counter, indicate the use by the name. If
the variable is a switch, use the term SWITCH within the name.

It is very easy to create new variable names. It takes a little more time to
correctly define the variables. But the extra time it takes to do it right the first time
is saved later when maintaining the program. This is one more case of "Do as I say
and not as I do."

All the variable names starting with an A are part of the address record.

A1$ = A1ADDR$

This is the name used when reading the record. It consists of all the variables making
up one record. The record must be broken down when read from the disk using the
LEFT$, RIGHT$, and MID$ functions.

AA$ = AANAME$

This contains the name of the client and has a fixed length of 25 characters. The
variable is left justified. The system is designed for the name to be entered using
the format of FIRSTNAME LASTNAME.

AB$ = ABADDR$

This contains the street address of the client and has a fixed length of 25 characters.
The variable should be left justified.

AC$ = ACCITY$

448 / Applasoft BASIC Toolbox

This contains the name of the city and has a fixed length of 15 characters. The
variable should be left justified.

AD$= ADSTE$

This contains a two digit code representing the state. The AT in stATe has to be
omitted because of the way in which Applesoft recognizes keywords.

AE$ = AEZIP$

This contains the ZIP code. The variable is edited and must be either blank or contain
all numeric characters.

AF$ = AFPHNE$

This contains the phone number, consisting of a three digit area code, a three digit
prefix, and a four digit number. Each portion of the phone number is edited and
must contain all spaces or all numbers. The 0 in phOne has to be omitted because
of the way in which Applesoft recognizes keywords.

AG$ = AGCOM1$

This contains 21 characters of comments.

AH$ = AHCOM2$

This contains 21 characters of comments.

0$ = 0$ = CONTROL-D character

At the beginning of each program, 0$ is set equal to the character CHR$(4). The
character is used when working with 110 operations on the disk.

F1 = F1 FILEID$

This contains the name of the index file. The variable is initialized in the BEGINNING
ROUTINE of each program and used in all DOS instructions directed toward the
file.

F2 = F2FILEID$

This contains the name of the data file. The variable is initialized in the BEGINNING

Index Disk Files I 449

ROUTINE of each program and used in all DOS instructions directed toward the
file.

FD = FDRIVE = Value of 1

The name stands for File DRIVE and is used in conjunction with PDRIVE (Program
DRIVE) to indicate which disk drive is to be accessed.

All the variable names starting with G are part of the GET subroutine. The
following variables are used as parameters to pass data to and from the routine:

GALEGTH

GBANSWER$

GCCHAR

Before execution of the subroutine GALEGTH must be set
equal to the length of the field to be read.
After completion of the subroutine, GBANSWER$ contains
the value read in.
After completion of the subroutine, GCCHAR contains the
number of characters keyed in by the operator.

All the other variables starting with G used in the GET subroutine are necessary
to its internal operation and are not described in this chapter.

KE$= KEY$

This variable is used when searching the index table. It contains the record key
entered by the operator which is to be matched to the entry in the index table.

IN$(= INDEX$(99)

This is the name of the index table used to store the index file in memory. The table
is loaded during the BEGINNING ROUTINE and continually updated as records are
changed.

L 1 through L9

The variables L 1, L2, L3, L4, L5, L6, L7, L8, and L9 are used for vertical positioning
of the cursor. The number in the name of the variable is not necessarily the number
of the related line. VTAB L 1 does not necessarily position the cursor on line l.

L$ = L$ (CONTROL-L)

L$ is used only in the listing program when the records are to be printed. L$ is set
equal to CHR$(12), which is a CONTROL-L symbol. When this character is sent to
a printer which recognizes the ASCII control codes, it causes the printer to skip to
the top of a new sheet of paper.

450 / Applesoft BASIC Toolbox

LI = LINE

The variable LINE is used only in the listing program when the records are to be
printed. LINE is used to count how many records have been printed. Once a specific
number of records have been printed and the page is full, logic causes the printer to
skip to the top of the next page.

N1, N2, N3

N1, N2, and N3 are general counters used with the FOR/NEXT instruction or for
other general numeric operations.

PD = PDRIVE = Value of 1

The name stands for Program DRIVE and is used in conjunction with FDRIVE (File
Drive) to indicate which disk drive is to be accessed.

RE= REC

RECord is used when reading or writing records to the random file. The variable
contains a numeric whole number indicating the relative record number of the record
to be accessed.

RE$= REC$

This is the alphanumeric format of the relative record number and is used whenever
suppression of the leading 0 for the numbers 0 through 9 cause a problem in how
the data is stored or how it is printed.

SI= SIZE

This variable is only used in the IND ADDR SEARCH PROG. It contains the size of
the search key entered by the operator.

ST = STARTING

This variable is used by the FREE MEMORY ROUTINE as a general work area. If
you use a name in your program which starts with ST, be careful of also using the
FREE MEMORY ROUTINE.

X1$, X2$, X3$

X1$, X2$, and X3$ are general string variables used with the GET instruction when
requesting a response from the operator.

Index Disk Files I 451

X1$ may be used at any time, but X2$ and X3$ are used to pass information
between subroutines and should be used with care. Changing the value of X2$ or
X3$ without considering how their current value is being used could result in problems.

Disk Record Format Specifications

The technique used to write the records on the index file is the same as that used in
the sequential file example.

One large record is written with no variable separators (commas). This tech­
nique requires slightly more coding by the programmer but saves disk space and
eliminates the problem with leading spaces within individual variables.

All records written to the disk have a fixed variable and a fixed record length.
Since comments have been added, the new record is 125 characters long. There are
124 characters in the record and one position for the end of record marker.

The record breakdown is as follows:

Variable Name = Length Record Position
AANAME$ 25 1 to 25
ABAD DR$ 25 26 to 50
AC CITY$ 15 51 to 65
AD STE$ 2 66 to 67
AEZIP$ 5 68 to 72
AFPHNE$ 10 73 to 82
AGCOM1$ 21 83 to 103
AHCOM2$ 21 104 to 124
EORmark 125

The EOR or End-Of-Record indicator is written and controlled by the computer.
It is included in the record description in case you are going to figure how much
disk storage space is used.

When all these variables are combined and written to the disk, the record has
the following format:

1 2 3 4 5

Column 12345678901234567890123456789012345678901234567890

NNNNNNNNNNNNNNNNNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAA

6 7 8 9 10

Column 12345678901234567890123456789012345678901234567890

CCCCCCCCCCCCCCCSSZZZZZPPPPPPPPPPllllllllllllllllll

11 12

Column 1234567890123456789012345
111222222222222222222222?

452 / Applasoft BASIC Toolbox

Program Name

Program
Objective

Instructions for
Running the

Program

where N = name; A = street address; C = city; S = state; Z = ZIP code;
P = phone number; 1 comment 1; 2 = comment 2;
? end-of-record marker.

You should always know how many charar.ters are being written to the disk
and how the variables are being written out. If you write a record larger than the
size specified when opening the file, you mess up the EOR marker and have problems
the next time you try to read the file.

The Index File CREA TE Index Program

INDEX FILE CREATE PROG

Create a label and 100 dummy index records consisting of a five character index
and a two digit relative record number.

Note 1: Prior to running any of the programs in the index file system, you MUST
copy the program from the program disk to a new disk. There is not enough room
on the example disk to store any text files.

Note 2: Since all the programs are set up for a single drive system, the disk being
used MUST be in drive 1 or the values for FDRIVE and PDRIVE must be changed
in each program.

To keep the two file CREATE programs as simple as possible, most of the
responsibility for a successful run has been shifted from the program to the computer
operator.

There are several situations which will cause the program to fail to create the
new file correctly. These conditions were covered in the discussion of the RAN
ADDR CREATE PROG and are not repeated here.

Before running the program, you should make sure the file label (INDEX FILE)
does not exist on the disk. Use the CATALOG command and check to see ifthe label
exists. If the label exists and you are sure you want to destroy any data that are
currently in the file, use the DELETE command to remove the file.

After you have made sure the file does not exist enter

RUN INDEX FILE CREATE PROG <RETURN>

As the records are written to the file, both the WRITE command and the contents
of the record will be displayed on the screen.

WRITE INDEX FILE.RO
..... 00
WRITE INDEX FILE,Rl
..... 01
WRITE INDEX FILE,R2
..... 02
etc.

Index Disk Files I 453

Program Listing 1000 REM INDEX FILE CREATE PROG
1010 REM ---------
1020 TEXT : NORMAL : HOME : SPEED= 200
1030 D$ = CHR$ (4)
1040 FDRIVE = 1
1050 FlFILEID$ = "INDEX FILE"
1060 REM ----
1070 REM CREATE 100 DUMMY INDEX RECORDS
1080 INDEX$=" "
1090 REM ----
1100 PRINT D$;"MON I,0,C"
lllO PRINT D$;"0PEN ";FlFILEID$;",L8,D";FDRIVE
1120 FOR REC = 0 TO 99
ll30 PRINT D$;"WRITE 11 ;FlFILEID$; 11 ,R 11 ;REC
1140 REC$ = STR$ (REC)
ll50 IF LEN (REC$) < 2 THEN REC$ = "0" + REC$
1160 PRINT INDEX$;REC$
ll70 NEXT
ll80 PRINT D$; "CLOSE"
ll90 PRINT D$;"NOMON I,0,C"
1200 SPEED= 255
1210 REM --------------------

Explanation by Detailed explanations by line number follow.
Line Number

1020 ... SPEED= 200
The SPEED instruction is used to slow down the rate at which the records are written
on the disk. When you slow down the 110 speed, the operator can see the records
as they are displayed on the screen. If the speed were not slowed down, the records
would scroll by so fast on the screen that the operator could not read them.

1110 PRINT D$;"0PEN ";F1FILEID$;" ,L8,D";FDRIVE
The OPEN instruction allocates two areas in the computer to prepare for handling
either input from the file or output directed to the file. If the file label does not
currently exist on the disk, the label is written to the disk directory.

454 / Applesoft BASIC Toolbox

For a random file the L (length) parameter is required. The length must be 1
greater than the number of characters written on the disk. In this case seven char­
acters make up the record: five characters for the index and two characters for the
relative record number. The file is opened with a length of 8, 1 greater than the size
of the data making up the record.

For a more detailed explanation, see the section on the random file CREATE
program in Chapter 5.

1120 FOR REC= 0 TO 99

1130 PRINT D$;"WRITE ";F1FILEID$;",R";REC

1140 REC$ = STR$ (REC)

1150 IF LEN (REC$)< 2 THEN REC$= "O" + REC$

1160 PRINT INDEX$;REC$

1170 NEXT
Lines 1120 through 1170 are responsible for writing out the 100 dummy index
records. The important thing to notice is that the WRITE instruction is inside the
FOR/NEXT loop. Each time through the loop, the value of REC is incremented by
1. The first time through the loop, relative record 0 is written: the second time,
relative record 1: third time, relative record 2, etc.

The WRITE instruction must be executed prior to the PRINT instruction which
causes the information to be recorded on the disk.

When the record numbers 0 through 9 are converted to a string format, they
are only one character long. All the programs are set up to handle a two digit relative
record number. The IF instruction on line 1150 places a leading 0 in front of the
single digit numbers so all records are the same length. This instruction may seem
relatively minor, but NONE of the other programs work correctly with records 0
through 9 unless it is included. Be sure to use it in any index structure you develop.

After the lOOth record is written, the FOR/NEXT loop is terminated and the file
is closed.

After the program has terminated, you may want to use the CATALOG command
to list the disk directory and see how many sectors the INDEX FILE takes up. The
file should take up around 4 sectors.

8
* 100

= 800
I 256

= 3.12

character per record
number of records on the file
total number of characters stored
per sector
sectors (round to 4, always round up)

Program Name

Program
Objective

Instructions for
Running the

Program

Index Disk Files I 455

If you list the directory, you will find that the file actually takes up 5 sectors.
Four sectors are used for the data and 1 sector for the track/sector index which DOS
builds for all disk files.

The Index File CREATE Data Program

IND ADDR FILE CREATE PROG

To create a label and 100 dummy records consisting of 124 periods. The dummy
records serve to allocate space on the disk and to indicate an unused record.

To keep the two file CREATE programs as simple as possible, most of the respon­
sibility for a successful run has been shifted from the program to the computer
operator.

There are several situations which cause the program to fail to create the
new file correctly. These conditions were covered in the discussion of the RAN
ADDR CREATE PROG and are not repeated here.

Before running the program you should make sure the file label (IND ADDR
FILE) does not exist on the disk. Use the CATALOG command and check to see if
the label exists. If the label exists and you are sure you want to destroy any data that
is currently in the file, use the DELETE command to remove the file.

After you have made sure the file does not exist enter

RUN IND ADDR FILE CREATE PROG <RETURN>

After the program starts, each WRITE command and related record will be
displayed as follows:

WRITE IND ADDR FILE.RO

.... ?
WRITE IND ADDR FILE.Rl

.... ?
etc.

456 / Applesoft BASIC Toolbox

Program Listing 1000 REM IND ADDR FILE CREATE PROG
1010 REM

Explanation by
Line Number

1020 TEXT : NORMAL : HOME : SPEED= 255
1030 D$ = CHR$ (4)
1040 FDRIVE = 1
1050 F2FILEID$ = "IND ADDR FILE"
1060 REM ----
1070 REM CREATE 100 DUMMY RECORDS
1080 FOR Nl = 1 TO 124
1090 A1ADDR$ = AlADDR$ + "·"
1100 NEXT
1110 REM --
1120 PRINT D$;"MON I,0,C"
1130 PRINT D$;"0PEN ";F2FILEID$;",L125,D"FDRIVE
1140 FOR REC = 0 TO 99
1150 PRINT D$;"WRITE ";F2FILEID$;",R"REC
1160 PRINT A1ADDR$
1170 NEXT
1180 PRINT D$; "CLOSE"
1190 PRINT D$;"NOMON I,0,C"
1200 REM

1080-1100 Rather than counting out 124 periods within a constant (" ... 124 ... "), lines 1080
through 1100 use a FOR/NEXT instruction to link 124 periods into one big variable.

1130 Once more, look at the OPEN instruction. For a random file the L (length) parameter
is required. The length must be 1 greater than the number of characters which will
be written to the disk. In this case 124 characters make up the record. The file is
opened with a length of 125.

1140-1170 Lines 1140 through 1170 are responsible for writing out the 100 dummy records.
The important thing to notice is that the WRITE instruction is inside the FOR/NEXT
loop. Each time through the loop, the value of REC is incremented by 1. The first
time through the loop, relative record 0 is written; the second time, relative record
1, third time, relative record 2, etc.

The WRITE instruction must be executed prior to the PRINT instruction which
causes the information to be recorded on the disk.

After the lOOth record is written (relative record 99), the FOR/NEXT loop is
terminated and the file is closed.

After the program has terminated you may want to use the CATALOG command
to list the disk directory and see how many sectors the INDEX FILE takes up. The
file should take up around 49 sectors.

Program Name

Program
Objective

Instructions for
Running the

Program

125
* 100

= 12,500
I 256

= 48.82

character per record
number of records on the file
total number of characters stored
per sector
sectors (round to 49, always round up)

Index Disk Files I 457

If you list the directory you will find that the file actually takes up 50 sectors.
The 1 sector difference represents the single sector used for the track/sector list
which DOS builds for all disk files.

The Index File HELLO Program

IND ADDR HELLO PROG

To provide a method of transition between the programs making up the INDEX
ADDRESS SYSTEM.

For a detailed explanation of the purpose of a HELLO program and how to set
up the disk, see the SEQ ADDA HELLO PROG and the INITialize instruction.

Make sure you have run the INDEX FILE CREATE PROG and the IND ADDR FILE
CREATE PROG before running any of the menu driven programs. Both files must
exist prior to running any of the programs which access the two files.

After you are sure that both files exist, run the IND ADDDR HELLO PROG by
keying in

RUN IND ADDR HELLO PROG <RETURN>

The HELLO program will display the following screen:

SELECT ONE OF THE FOLLOWING:

1. UPDATE THE ADDRESS FILE.

2. LIST OR DISPLAY RECORDS.

3. SEARCH FILE BY INDEX.

4. QUIT PROCESSING.

SELECTION DESIRED= (?)

458 / Applesoft BASIC Toolbox

Program Listing

Explanation by
Line Number

When you are finished reviewing the code for the HELLO program, enter 1 to
start execution of the UPDATE program. Since this is the first time you have executed
the UPDATE program, the file will not contain any valid data. Use the UPDATE
program to add records to the file.

See the narrative on IND ADDR UPDATE PROGram for instructions on how to
enter data.

1000 REM IND ADDR HELLO PROG
1010 REM
1020 TEXT : NORMAL : HOME : SPEED= 255
1030 D$ = CHR$ (4)
1040 PDRIVE = 1
1050 VTAB 5
1060 PRINT "SELECT ONE OF THE FOLLOWING:"
1070 PRINT
1080 PRINT II 1. UPDATE THE ADDRESS FILE."
1090 PRINT
1100 PRINT II 2. LIST OR DISPLAY RECORDS."
1110 PRINT
1120 PRINT II 3. SEARCH FILE BY INDEX."
1130 PRINT
1140 PRINT II 4. QUIT PROCESSING."
1150 PRINT
1160 PRINT "SELECTION DESIRE=(?)"
1170 VTAB 15: HTAB 21
1180 PRINT CHR$ (8) ;

1190 GET Xl$; PRINT X;: Xl =val (Xl$)
1200 IF Xl < 1 OR Xl > 4 THEN
1210 IF Xl = 4 THEN 1340
1220 VTAB 23: HTAB 1: INVERSE
1230 PRINT " LOADING PROGRAM -
1240 NORMAL
1250 ON Xl GOTO 1280,1300,1320
1260 GOTO 1170

1170

PLEASE WAIT

1270 REM ----~-~----~-------
1280 PRINT D$;"RUN IND ADDR UPDATE PROG,D"PDRIVE
1290 REM
1300 PRINT D$;"RUN IND ADDR LIST PROG,D"PDRIVE
1310 REM
1320 PRINT D$;"RUN IND ADDR SEARCH PROG,D"PDRIVE
1330 REM ~--------------------
1340 HOME
1350 PRINT "THAT'S ALL FOLKS!"
1360 END

II

The HELLO program is basically the same as the ones used in the sequential and the
random system. The only difference you might notice is the absence of the dummy
D$ prior to each DOS command.

If a PRINT instruction, which Does not end in a semicolon, is used after a GET
instruction and before the DOS command, the dummy D$ (PRINT) is not necessary.

Index Disk Files I 459

Since the message on line 1230 is printed before any of the DOS commands are
executed, there should be no problem between using the GET instruction and exe­
cuting the DOS commands.

The Index File UPDATE Program

Program Name IND ADDA UPDATE PROG

Program To provide the user with a method of adding, changing, and deleting records.
Objective

Since the index file structure is actually a combination of two related random
files, it has the advantages of random files. One of the major benefits of the index
file structure is that records may be read, changed, and rewritten back to the same
file. Unlike sequential file processing, index file processing does not require the user
to rewrite the entire file just to change one record.

System Flowchart of Index File Update Program

UPDATE
PROGRAM

INDEX
FILE

KEYBOARD

DATA
FILE

One of the disadvantages of index file processing is that no backup copy is
created as part of the update process. You should periodically make a backup copy
of both the index and the data file.

460 / Applesoft BASIC Toolbox

Instructions for
Running the

Program

Make sure you have run both the INDEX FILE CREATE PROG and the IND ADDR
CREATE PROG. If you do not create the two index files correctly, the UPDATE
program terminates with an END OF DATA error message the first time the program
tries to read a record.

Run the program by entering

RUN IND ADDR HELLO PROG <RETURN>

After the menu is displayed, enter a 1 to start execution of the UPDATE pro­
gram. the UPATE program uses the following screen:

ADDRESS FILE UPDATE PROGRAM

LAST NAME= (
NAME = (
ADDRESS = (
CITY = (
STATE = (
ZIP CODE = (
PHONE = (

COMMENT#!= (
COMMENT#2= (

? SELECTION

ADD CHANGE DELETE LIST QUIT

First error message line
Second error message line

After the entire screen has been displayed, the cursor is positioned over the
question mark preceding the word SELECTION. The program then waits for you to
enter A, C, D, L, or Q.

After you have entered any acceptable character other than Q, the cursor is
repositioned to the top of the screen, where the program waits for you to enter the
five character index used to identify the record being processed.

Once you enter the index value, the program either searches the index table for
a matching value or searches the table for an unused area. If you are adding a record,
the index table is searched for an empty location. If you are adding a record, the
index table is searched for an empty location. If you are changing or deleting a
record, the table is searched for a matching index value.

Index Disk Files I 461

Exercise 1: Adding a Record

To add a record enter A and then an index value (LAST NAME=) from one to five
characters long. The program searches through the index table looking for an unused
record. Since this is the first record to be added to the file, the program finds periods
in the first table position.

Index Value-i r--Relative Record Number

First entry unused 00
..... 01
..... 02

To test the ADD logic, execute the following steps:

1. Enter A in response to the SELECTION message.
2. Enter JOHNS in response to the LAST NAME= (message.
3. All the entries on the screen should be displayed as periods.
4. Enter

Name MARY J JOHNSON
Address = 4444 HIGH STREET

City = PORTLAND
State = OR

ZIP code 01234
Phone = 717-177-7177

Comment l = as desired
Comment2 as desired

After the last comment entry has been entered or skipped, the record will be
written to the disk and the cursor repositioned for another selection.

Exercise 2: Changing a Record

To change a record you enter C and the index value to be used in searching for a
matching record. Since more than one record can have the same five character index
value, the program searches sequentially through the index table until it finds a
match. Once a match is found, the program displays the record and asks you if it is
the record you want to change. After looking at the record, if it is not the one you
want to change, you respond with N for No, and the program continues to search
for another matching index. If it is the correct record, you respond with Y for Yes,
and the program allows you to make changes to the record just displayed.

To test the logic for changing a record, execute the following two sequences
of instructions.

First, change a record with existing data.

462 / Applesoft BASIC Toolbox

1. Enter C in response to the SELECTION message.
2. Enter JOHNS in response to the LAST NAME= (message.
3. All the entries on the screen will be displayed as previously entered. On the

last two lines of the screen a message will be displayed asking you if this is the
record you want to change. In response to the question, key in Y for Yes.

4. Change any or all of the fields, but remember that if you want to change a field
you must reenter the entire field even if only part of the field is incorrect.

If you change the last name, you should also change the five character index.
After the last field is entered, the record will be rewritten to the disk and the

cursor repositioned for another selection.
Next, attempt to change a record that does not exist.

1. Enter C in response to the SELECTION message.
2. Enter JOHNS in response to the LAST NAME= (message.
3. All the entries on the screen will be displayed as previously entered. On the

bottom two lines of the screen a message is displayed asking you if this is the
record you want to change. In response to the question, key in N for No.

4. After you have rejected the current record, a second message will be displayed
indicating that the record you are searching for does not exist. In response to
the last message, press the space bar, and the program will continue.

Exercise 3: Deleting a Record

To delete a record you enter D and the index value to be used in searching for a
matching record. Since more than one record can have the same five character index
value, the program searches sequentially through the index table until it finds a
match. Once a match is found, the program displays the record and asks you if it is
the record you want to delete. If the record is not the one you want to delete, you
respond with N (No), and the program continues to search for another matching
index. Once the record you want to delete is found and you enter Y to indicate it is
the correct record, a second message is displayed. The second message asks you if
you are sure you want to delete the record. This gives you one last chance to change
your mind and exit the DELETE ROUTINE.

To test the logic for deleting a record:

1. Enter Din response to the SELECTION message.
2. Enter JOHNS in response to the LAST NAME= (message.
3. All the entries on the screen will be displayed as previously entered. On the

bottom two lines of the screen a message will be displayed asking you if this
is the record you want to delete. In response to this question, key in Y for Yes.

4. On the bottom two lines of the screen a second message will be displayed
asking you if you are sure this is the record you want deleted. To delete the
record, enter Y. To avoid deleting the record, press any other key.

Index Disk Files I 483

Since we will want to list this record later, press any key other than Y. The
screen will be cleared and the cursor repositioned for the next transaction.

Exercise 4: Listing a Record

To list a record you enter L and the index value to be used in searching for a matching
record. Since more than one record can have the same five character index value,
the program searches sequentially through the index table until it finds a match.
Once a match is found, the program displays the record and asks if it is the record
you want. After looking at the record, if it is not the one you want, respond with N
(No), and the program continues to search for another matching index value. Once
the record you want listed is found, do not enter Y until you are finished with the
record. Once you are done, enter Y, and the program sets up the screen for the next
transaction.

To list a record enter L and the index value to be used in searching the index
table.

1. Enter L in response to the SELECTION message.
2. Enter JOHNS in response to the LAST NAME= (message.
3. All the entries on the screen will be displayed as previously entered. On the

bottom two lines of the screen a message will be displayed asking you if this
is the record you want to list. Before entering Y, view the record, as it will be
erased once the Y is entered.

Enter Y to terminate the listing operation. The screen will be cleared and the cursor
repositioned for the next transaction.

Exercise 5: Quit Processing

Prior to running the LIST or SEARCH program, make sure you add several records
to the file. If you do not add records to the file, there will be no records for the
listing program to display.

To terminate the program, enter 0. The HELLO program will be executed,
allowing you to make another program selection.

Program Listing 1000 REM IND ADDR UPDATE PROG
1010 REM ---------
1020 CLEAR :Gl = PEEK (116) * 256 + PEEK (115) - 40 :GA$

"12345678901234567890" + "12345678901234567890"
1030 REM ------
1040 REM DRIVE ROUTINE
1050 GOSUB 3590: REM BEGINNING
1060 GOSUB 1290: REM MAIN MOD
1070 GOTO 4030: REM END MODULE

464 / Applesoft BASIC Toolbox

1080 REM ---------
1090 REM GET SUBROUTINE
1100 IF G3 = 0 THEN GOSUB 1250
1110 G3 = Gl + GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT G2 = Gl
1120 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1190
1130 IF GB = 13 THEN 1210
1140 IF GB= 21 THEN PRINT CHR$ (PEEK (G2));: GOTO 1170
1150 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1120
1160 PRINT CHR$ (GB);: POKE G2,GB
1170 G2 = G2 + 1: IF G2 > G3 THEN 1240
l180 GOTO l120
1190 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1120
1200 PRINT CHR$ (8);: GOTO 1120
1210 IF Gl = G2 THEN 1230
1220 FOR GC = G2 TO G3: PRINT II";: NEXT
1230 FOR GC = G2 TO G3: POKE GC,32: NEXT
1240 GB$= LEFT$ (GA$,GA):GC = G2 - Gl: RETURN
1250 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141:

POKE 772,07: POKE 773,03: POKE 774,96: RETURN
1260 REM
1270 REM
1280 REM MAIN ROUTINE
1290 VTAB LB: HTAB 1: INVERSE : PRINT " ? SELECTION"

TAB(38) "";:NORMAL: HTAB 12: GET X2$: PRINT X2$
1300 IF X2$ = "Q" THEN 1380
1310 GOSUB 3490: REM CHECK MEMORY SPACE
1320 GOSUB 2680: REM CLEAR SCREEN
1330 IF X2$ = "A" THEN GOSUB 1460: GOTO 1290
1340 IF X2$ = "C" THEN GOSUB 1730: GOTO 1290
1350 IF X2$ = "D" THEN GOSUB 2170: GOTO 1290
1360 IF X2$ = "L" THEN GOSUB 2410: GOTO 1290
1370 GOTO 1290
1380 RETURN
1390 REM ------------
1400 REM SEARCH INDEX
1410 N2 = 100: FOR Nl =REC TO 99: IF LEFT$ (INDEX$(Nl),5) =

KEY$ THEN REC$= RIGHT$ (INDEX$(Nl),2):N2 = Nl:Nl = 100
1420 NEXT
1430 RETURN
1440 REM ---:---
1450 REM ADD ROUTINE
1460 REC= 0: KEY$=" ": GOSUB 1410
1470 IF N2 > 99 THEN GOSUB 3240: GOTO 1700
1480 REC = VAL (REC$)
1490 VTAB LO: HTAB 12: GALEGTH = 5: GOSUB 1090
1500 IF LEFT$(GBANSWER$,l) = II II THEN 1490
1510 KEY$ = GBANSWER$: INDEX$(N2) = KEY$ + REC$
1520 GOSUB 2800: REM READ DISK
1530 GOSUB 2960: REM WRITE SCR
1540 GALEGTH = 25: VTAB Ll: HTAB 12: GOSUB 1090: IF LEFT$

(GBANSWER$,l) = II II THEN 1540
1550 AANAME$ = GBANSWER$
1560 VTAB L2: HTAB 12: GOSUB 1090:ABADDR$ = GBANSWER$
1570 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1090:ACCITY$ = GBANSWER$

Index Disk Files I 465

1580 GALEGTH = 2: VTAB L4: HTAB 12: GOSUB 1090:ADSTE$ = GBANSWER$
1590 GALEGTH = 5: VTAB L5: HTAB 12: GOSUB 1090: GOSUB 3320:

IF Xl$ = "N" THEN 1590
lGOO AEZIP$ = GBANSWER$
lGlO GALEGTH = 3: VTAB LG: HTAB 12: GOSUB 1090: GOSUB 3320:

IF Xl$ = "N" THEN lGlO
1G20 AFPHNE$ = GBANSWER$
1G30 HTAB lG: GOSUB 1090: GOSUB 3320: IF Xl$ = "N" THEN 1G30
1G40 AFPHNE$ = AFPHNE$ + GBANSWER$
1G50 GALEGTH = 4: HTAB 20: GOSUB 1090: GOSUB 3320: IF Xl$ =

'N" THEN 1G50
lGGO AFPHNE$ = AFPHNE$ + GBANSWER$
1G70 GALEGTH = 21: VTAB L7: HTAB 12: GOSUB 1090:AGCOM1$ = GBANSWER$
1G80 VTAB L7 + 1: HTAB 12: GOSUB 1090:AHCOM2$ = GBANSWER$
1G90 GOSUB 25GO: REM WRITE DISK
1700 RETURN
1710 REM ------------------
1720 REM CHANGE ROUTINE
1730 VTAB LO: HTAB 12:GALEGTH = 5: GOSUB 1090
1740 IF LEFT$(GBANSWER$,l) =" " THEN 1730
1750 KEY$ = GBANSWER$
17GO REC = 0
1770 IF REC > 99 THEN GOSUB 3070: GOTO 2140
1780 GOSUB 1410: REM SEARCH INDEX
1790 IF N2 > 99 THEN GOSUB 3070: GOTO 2140
1800 REC = VAL (REC$)
1810 GOSUB 2800: REM READ DISK
1820 GOSUB 29GO: REM WRITE SCR
1830 GOSUB 3150: REM MESSAGE
1840 IF Xl$ = "N" THEN REC = REC + 1: GOTO 1770
1850 VTAB LO: HTAB 12: GALEGTH 5: GOSUB 1090: IF GCCHAR

0 THEN 1880
18GO IF LEFT$(GBANSWER$,l) =" "THEN 1850
1870 INDEX$(N2) = GBANSWER$ + REC$
1880 GALEGTH = 25: VTAB Ll: HTAB 12: GOSUB 1090: IF GCCHAR

0 THEN 1910
1890 IF LEFT$ (GBANSWER$,l) =" "THEN 1880
1900 AANAME$ = GBANSWER$
1910 VTAB L2: HTAB 12: GOSUB 1090: IF GCCHAR = 0 THEN 1930
1920 ABADDR$ = GBANSWER$
1930 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1090: IF GCCHAR

0 THEN 1950
1940 ACCITY$ = GBANSWER$
1950 GALEGTH = 2: VTAB L4: HTAB 12: GOSUB 1090: IF GCCHAR

0 THEN 1970
19GO ADSTE$ = GBANSWER$
1970 GALEGTH = 5: VTAB L5: HTAB 12: GOSUB 1090: IF GCCHAR

0 THEN 2000
1980 GOSUB 3320: IF Xl$ = "N" THEN 1970
1990 AEZIP$ = GBANSWER$
2000 GALEGTH = 3: VTAB LG: HTAB 12: GOSUB 1090: IF GCCHAR

0 THEN 2030
2010 GOSUB 3320: IF Xl$ = "N" THEN 2000
2020 AFPHNE$ = GBANSWER$ +RIGHT$ (AFPHNE$,7)

466 / Applesoft BASIC Toolbox

2030 HTAB 16: GOSUB 1090: IF GCCHAR = 0 THEN 2060
2040 GOSUB 3320: IF Xl$ = "N" THEN 2030
2050 AFPHNE$ = LEFT$ (AFPHNE$,3) + GBANSWER$ + RIGHT$(AFPHNE$,4)
2060 GALEGTH = 4: HTAB 20 : GOSUB 1090 : IF GCCHAR = 0 THEN 2090
2070 GOSUB 3320: IF Xl$ = "N" THEN 2060
2080 AFPHNE$ = LEFT$ (AFPHNE$,6) + GBANSWER$
2090 GALEGTH = 21: VTAB L7: HTAB 12: GOSUB 1090: IF GCCHAR

0 THEN 2110
2100 AGCOM1$ GBANSWER$
2110 VTAB L7 + 1: HTAB 12: GOSUB 1090: IF GCCHAR 0 THEN 2130
2120 AHCOM2$ = GBANSWER$
2130 GOSUB 2560: REM WRITE DISK
2140 RETURN
2150 REM -------------------
2160 REM DELETE ROUTINE
2170 GALEGTH = 5: VTAB LO: HTAB 12: GOSUB 1090
2180 IF LEFT$ (GBANSWER$,l) II II THEN 2170
2190 KEY$ = GBANSWER$
2200 REC = 0
2210 IF REC > 99 THEN GOSUB 3070: GOTO 2380
2220 GOSUB 1410: REM SEARCH INDEX
2230 IF N2 > 99 THEN GOSUB 3070: GOTO 2380
2240 REC = VAL (REC$)
2250 GOSUB 2800: REM READ DISK
2260 GOSUB 2960: REM WRITE SCR
2270 GOSUB 3150: REM MESSAGE
2280 IF Xl$ = "N" THEN REC= REC + 1: GOTO 2210
2290 VTAB L9: HTAB 1: INVERSE
2300 PRINT "ARE YOU SURE? ENTER Y TO DELETE THE "
2310 PRINT "RECORD. ANY OTHER KEY TO KEEP RECORD";
2320 GET Xl$
2330 VTAB L9: HTAB 1: NORMAL
2340 PRINT TAB(39)" II

2350 PRINT TAB(39)" 11 ;

2360 REM
2370 IF Xl$ = "Y" THEN INDEX$(REC)
2380 RETURN
2390 REM ----------------------
2400 REM LIST ROUTINE

II
II + REC$: GOSUB 2560

2410 VTAB LO: HTAB 12: GALEGTH = 5: GOSUB 1090
2420 IF LEFT$ (GBANSWER$,l) = II II THEN 2410
2430 KEY$ = GBANSWER$
2440 REC = 0
2450 IF.REC> 99 THEN GOSUB 3070: GOTO 2530
2460 GOSUB 1410: REM SEARCH INDEX
2470 IF N2 > 99 THEN GOSUB 3070: GOTO 2530
2480 REC = VAL (REC$)
2490 GOSUB 2800: REM READ DISK
2500 GOSUB 2960: REM WRITE SCR
2510 GOSUB 3150: REM MESSAGE
2520 IF Xl$ = "N" THEN REC = REC + 1: GOTO 2450
2530 RETURN
2540 REM -------------
2550 REM WRITE ON DISK

2560 VTAB 1: HTAB 39
2570 PRINT D$
2580 PRINT D$;"WRITE ";F2FILEID$;",R";REC
2590 IF X2$ = 11 D11 THEN PRINT RlRESET$: GOTO 2610

Index Disk Files I 467

2600 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$;AGCOM1$;
AHCOM2$

2610 PRINT D$;"WRITE ";FlFILEID$; 11 ,R11 ;REC
2620 PRINT INDEX$(REC)
2630 PRINT D$
2640 REM
2650 RETURN
2660 REM --------------------
2670 REM CLEAR SCREEN
2680 VTAB LO: HTAB 12: PRINT II II

2690 VTAB Ll: HTAB 12: PRINT TAB(36) 11 11

2700 VTAB L2: HTAB 12: PRINT TAB(36)" 11

2710 VTAB L3: HTAB 12: PRINT TAB(26)" 11

2720 VTAB L4: HTAB 12: PRINT II II

2730 VTAB L5: HTAB 12: PRINT II II

2740 VTAB L6: HTAB 12: PRINT " 11

2750 VTAB L7: HTAB 12: PRINT TAB(32)" 11

2760 VTAB L7 + 1: HTAB 12: PRINT TAB(32)" "
2770 RETURN
2780 REM ------------------
2790 REM READ DISK
2800 VTAB 1: HTAB 39
2810 PRINT D$
2820 PRINT D$; 11 READ ";F2FILEID$; 11 ,R11 ;REC
2830 INPUT AlADDR$
2840 PRINT D$
2850 AANAME$ = LEFT$ (AlADDR$,25)
2860 ABADDR$ = MID$ (AlADDR$,26,25)
2870 ACCITY$ =MID$ (AlADDR$,51,15)
2880 ADSTE$ = MID$ (AlADDR$,66,2)
2890 AEZIP$ = MID$ (AlADDR$,68,5)
2900 AFPHNE$ =MID$ (AlADDR$,73,10)
2910 AGCOM1$ = MID$ (AlADDR$,83,21)
2920 AHCOM2$ = RIGHT$ (AlADDR$.21)
2930 RETURN
2940 REM ----------------
2950 REM WRITE ON SCREEN
2960 VTAB Ll: HTAB 12: PRINT AANAME$
2970 VTAB L2: HTAB 12: PRINT ABADDR$
2980 VTAB L3: HTAB 12: PRINT ACCITY$
2990 VTAB L4: HTAB 12: PRINT ADSTE$
3000 VTAB L5: HTAB 12: PRINT AEZIP$
3010 VTAB L6: HTAB 12: PRINT LEFT$ (AFPHNE$,3) "-" MID$ (AFPHNE$,

4,3) 11 - 11 RIGHT$ (AFPHNE$,4)
3020 VTAB L7: HTAB 12: PRINT AGCOM1$
3030 VTAB L7 + 1: HTAB 12: PRINT AHCOM2$
3040 RETURN
3050 REM ----------------
3060 REM REC NOT FOUND MESSAGE
3070 VTAB L9: HTAB 1: INVERSE

488 / Applasoft BASIC Toolbox

3080 PRINT "RECORD NOT ON FILE
3090 PRINT "PRESS THE SPACE BAR TO TRY AGAIN
3100 GET Xl$: IF Xl$ < > II II THEN 3100

II ...
3110 VTAB L9: HTAB 1: NORMAL : PRINT TAB(39)" 11 • PRINT TAB(39)" 11 •

3120 RETURN
3130 REM -·---------
3140 REM IS THIS REC MESSAGE
3150 VTAB L9: HTAB 1: INVERSE
3160 PRINT "IS THIS THE RECORD YOU WANTED?
3170 PRINT "ENTER Y (YES) OR N (NO)
3180 GET Xl$: IF Xl$ = "Y" OR Xl$ = "N" THEN 3200
3190 GOTO 3180

II

II• .
3200 VTAB L9: HTAB 1: NORMAL : PRINT TAB(39)" 11 : PRINT TAB(39)" ";
3210 RETURN
3220 REM
3230 REM FILE FULL MESSAGE
3240 VTAB L9: HTAB 1: INVERSE: SPEED= 100
3250 PRINT "THE ADDRESS FILE IS FULL-REC'S MUST BE"
3260 PRINT "DELETED BEFORE ANY MORE CAN BE ADDED. 11 •

3270 FOR Nl = 1 TO 10: CALL - 1052: NEXT
3280 VTAB L9: HTAB 1: NORMAL
3290 PRINT TAB(39)" ": PRINT TAB 39)" 11 •• SPEED= 255
3300 RETURN
3310 REM--------------
3320 REM NUMERIC EDIT
3330 REM SPACES OR NUMBERS ONLY
3340 N2 = LEN (GBANSWER$)
3350 Xl$ = "Y"
3360 FOR Nl = 1 TO N2
3370 IF MID$ (GBANSWER$,Nl,l) < > II II THEN Xl$ = "N": Nl = N2
3380 NEXT
3390 IF Xl$ = "Y" THEN 3460
3400 Xl$ = "Y"
3410 FOR Nl = 1 TO N2
3420 IF MID$ (GBANSWER$.Nl,l) < "0" OR MID$ (GBANSWER$,Nl,l)

> "9" THEN Xl$ = "N": Nl = N2
3430 NEXT
3440 IF Xl$ = "Y" THEN 3460
3450 FOR Nl = 1 TO 30: N2 =PEEK (- 16336): NEXT
3460 RETURN
3470 REM
3480 REM FREE MEMORY ROUTINE
3490 STARTING= PEEK (112) * 256 +PEEK (111): IF STARTING>

17000 THEN 3560
3500 VTAB L9: HTAB 1: INVERSE
3510 PRINT " FREEING MEMORY - PLEASE WAIT" TAB(38)" "
3520 STARTING = FRE (O)
3530 PRINT" DONE - PRESS SPACE BAR TO CONTINUE ";: NORMAL
3540 GET Xl$: IF Xl$ < > II II THEN 3540
3550 VTAB L9: HTAB 1: PRINT TAB(39)" ": PRINT TAB(39)" 11 •

3560 RETURN
3570 REM
3580 REM BEGINNING ROUTINE

3590 TEXT : NORMAL : HOME : SPEED= 255
3600 D$ = CHR$ (4)
3610 FDRIVE = l:PDRIVE = 1
3620 FlFILEID$ = "INDEX FILE"
3630 F2FILEID$ = "IND ADDR FILE"
3640 DIM INDEX$(99)

Index Disk Flies I 469

3650 LO = 3:Ll = 5:L2 = 6:L3 = 7:L4 = 8:L5 = 9:L6 = 10:L7 =
12:L8 = 17:L9 = 23

3660 FOR Nl = 1 TO 124:RlRESET$ = RlRESET$ + ".": NEXT
3670 HOME : PRINT "OPENING FILES AND LOADING INDEX TABLE."
3680 PRINT D$
3690 PRINT D$;"0PEN 11 ;FlFILEID$; 11 ,L8,D";FDRIVE
3700 FOR REC = 0 TO 99
3710 VTAB 12: HTAB 15: PRINT "REC = ";REC
3720 PRINT D$;"READ 11 ;FlFILEID$; 11 ,R11 ;REC
3730 INPUT INDEX$(REC)
3740 PRINT D$
3750 NEXT
3760 PRINT D$;"0PEN ";F2FILEID$;",Ll25,D";FDRIVE
3770 PRINT D$
3780 REM ---------
3790 REM PRINT SCREEN IMAGE
3800 HOME
3810 PRINT II

3820 VTAB LO
ADDRESS FILE UPDATE PROGRAM"

3830 PRINT "LAST NAME=(
3840 VTAB Ll
3850 PRINT "NAME =("
3860 PRINT "ADDRESS =("
3870 PRINT "CITY =("
3880 PRINT "STATE =(

)"

SPC(25)")"
SPC(25)")"
SPC(15)")"
)"

)" 3890 PRINT "ZIP CODE =(
3900 PRINT "PHONE =(
3910 VTAB L7

)"

3920 PRINT "COMMENT#l=(" SPC(21)")"
3930 PRINT 11 COMMENT#2=(11 SPC(21)")"
3940 VTAB LB + 2
3950 INVERSE PRINT "A";:
3960 INVERSE PRINT "C";:
3970 INVERSE PRINT "D";:
3980 INVERSE PRINT "L";:
3990 INVERSE PRINT "Q";:
4000 RETURN
4010 REM
4020 REM ENDING ROUTINE
4030 PRINT D$

NORMAL
NORMAL
NORMAL
NORMAL
NORMAL

4040 PRINT D$;"CLOSE ";FlFILEID$
4050 PRINT D$;"CLOSE ";F2FILEID$
4060 HOME

PRINT "DD
PRINT "HANGE
PRINT "ELETE
PRINT "!ST
PRINT "UIT"

4070 PRINT D$;"RUN IND ADDR HELLO PROG,D"PDRIVE
4080 REM
4090 REM ___ ,

...

470 / Applesoft BASIC Toolbox

Cross Reference Listing

Variable names used with the address record:

A1$ 2830, 2850, 2860, 2870, 2880, 2890, 2900, 2910, 2920
AA$ 1550, 1900, 2600, 2850, 2960
AB$ 1560, 1920, 2600, 2860, 2970
AC$ 1570, 1940, 2600, 2870, 2980
AD$ 1580, 1960, 2600, 2880, 2990
AE$ 1600, 1990, 2600, 2890, 3000
AF$ 1620, 1640, 1660, 2020, 2050, 2080, 2600, 2640, 2900, 3010
AG$ 1670, 2100, 2600, 2910, 3020
AH$ 1680, 2120, 2600, 2920, 3030

Variable names used with the disk commands:

D$ 2570, 2580, 2610, 2630, 2810, 2820, 2840, 3600, 3680, 3690, 3720, 3740,
3760, 3770,4030,4040,4050,4070

F1$ 2610, 3620, 3690, 3720,4040
F2$ 2580, 2820, 3630, 3760,4050
FD 3610,3690,3760
PD 3610, 4070

Variable names used with the GET subroutine:

GA 1110, 1240, 1490, 1540, 1570, 1580, 1590, 1610, 1650, 1670, 1730, 1850,
1880, 1930, 1950, 1970, 2000, 2060, 2090, 2170, 2410

GB$ 1240, 1500, 1510, 1540, 1550, 1560, 1570, 1580, 1600, 1620, 1640, 1660,
1670, 1680, 1740, 1860, 1870, 1890, 1900, 1920, 1940, 1960, 1990, 2020,
2050, 2080, 2100, 2120, 2180, 2190, 2420, 2430, 3340, 3370, 3420

GC 1220, 1230, 1240, 1850, 1880, 1910, 1930, 1950, 1970, 2000, 2030, 2050,
2090, 2110

Variable names used with index table:

IN$(1410, 1510, 1870, 2370, 2620, 3640, 3730
KE$ 1410, 1460, 1510, 1750, 2190, 2430

Variable names used with displaying data on the screen:

LO 1490, 1730, 1850, 2170, 2410, 2680,3650, 3820
L1 1540, 1880, 2690, 2960, 3650, 3840
L2 1560. 1910, 2700, 2970, 3650
L3 1570, 1930, 2710, 2980, 3650
L4 1580, 1950, 2720, 2990, 3650
L5 1590, 1970, 2730, 3000, 3650

Index Disk Files / 471

L6 1610,2000, 2740, 3010, 3650
L7 1670, 1680, 2090,2110,2750,2760, 3020,3030, 3650,3910
LS 1290,3650, 3940
L9 2290,2330,2360,3070, 3110, 3150, 3200,3240, 3280, 3500, 3550, 3650
R1$ 2590,3660
RE 1410, 1460, 1480, 1760, 1770, 1800, 1840, 2200, 2210, 2240, 2280, 2370,

2440, 2450, 2480,2520, 2580, 2610, 2820, 3700, 3710,3720, 3730
RE$ 1410, 1480, 1510, 1800, 1870,2240, 2370,2480

Variable names used for general GET instruction in response to screen messages and
for general counting in FOR/NEXT operations:

N1 1410, 3270, 3360, 3370, 3410,3420, 3450, 3660
N2 1410, 1470, 1510, 1790, 1870, 2230, 2470, 3340, 3360, 3370 3410, 3420,

3450
X1$ 1590, 1610, 1630, 1650, 1840, 1980, 2010, 2040, 2070, 2280, 2320, 2370,

2520, 3100, 3180, 3350, 3370, 3390, 3400, 3420, 3440,3540
X2$ 1290, 1300, 1330, 1340, 1350, 1360,2590

Explanation by Detailed explanations by line number follow.
Line Number

1040-1070 The DRIVE ROUTINE consists of the same basic instruction group as in all the
example programs.

1 080 REM ----------------------

1090 REM GET SUBROUTINE
The GET subroutine is explained in detail in Chapter 3 of Section II.

1270 REM ----------------------

1280 REM MAIN ROUTINE

1290 VTAB LS: HTAB 1: INVERSE : PRINT" 7 SELECTION"TAB(3S)
" ";:NORMAL: HTAB 12: GET X2$: PRINT X2$

...
1300 IF X2$ = "Q" THEN 13SO

1310 GOSUB 3490: REM CHECK MEMORY SPACE

472 / Applesoft BASIC Toolbox

1320 GOSUB 2680: REM CLEAR SCREEN

1330 IF X2$ = "A" THEN GOSUB 1460: GOTO 1290

1340 IF X2$ = "C" THEN GOSUB 1730: GOTO 1290

1350 IF X2$ = "D" THEN GOSUB 2170: GOTO 1290

1360 IF X2$ = "L" THEN GOSUB 2410: GOTO 1290

1370 GOTO 1290

1380 RETURN
Lines 1270 through 1380 of the MAIN ROUTINE are responsible for the following:

1. Displaying a message and accepting a response from the operator
2. Clearing memory between each record
3. Clearing the screen
4. Executing the routine corresponding to the processing code entered by the

operator

One part you may want to review is the subroutine for clearing memory. The
reason and the logic were explained in the RAN ADDA UPDATE PROG (seep. 398).

1390 REM ----------------------

1400 REM SEARCH INDEX

1410 N2 = 100: FOR N1 =REC TO 99: IF LEFT$ (INDEX$(N1),5) = KEY$ THEN REC$
= RIGHT$ (INDEX$(N1),2):N2 = N1 :N1 = 100

1420 NEXT

1430 RETURN
As part of the BEGINNING ROUTINE logic, the index file is read and loaded into
the table called INDEX$(number). Once an index value is entered by the operator,
this subroutine searches the table to find a matching value and the related record
number.

Index Disk Files I 473

Line 1410 contains a number of instructions. The first instruction sets N2 equal
to 100. N2 serves as a switch after returning from the subroutine. If N2 still has a
value of 100 after the SEARCH INDEX ROUTINE is done, this indicates that no
matching index was found. If the value of N2 is changed during the search, this
indicates that a match was found. The new value of N2 points to the matching entry
within the index table.

The second instruction on line 1410 starts a FOR/NEXT loop. You may wonder
why there are so many instructions on line 1410, while the NEXT instruction is on
a line by itself. To make the SEARCH INDEX ROUTINE work faster, as many
instructions as possible were put on one line. But since the FOR/NEXT loop includes
an IF instruction, the entire loop cannot be put on one line. Whenever a FOR/NEXT
instruction includes an IF, it must be written on two or more lines, and the keyword
NEXT should not be part of the IF instruction.

The FOR/NEXT loop searches through the table until either a match is found
or the entire table has been searched. If a match is found, REC$ is set equal to the
relative record number located in the right two digits of the index record. After the
relative record number is found, the variables N2 and N1 are reset. N2 is set equal
to the location of the index within the table. N1 is set equal to 100 in order to
terminate the FOR/NEXT loop.

FOR N1 = REC TO 99:
IF LEFT$ (INDEX$(N1),5) = KEY$

THEN REC$= RIGHT$ (INDEX$(N1),2):
N2 = N1:
N1 = 100

NEXT

If no matching index value is found, N2 remains at 100, indicating that the
index value does not exist within the program.

1440 REM ----------------------

1450 REM ADD ROUTINE

1460 REC = O: KEY$ = " ": GOSUB 1410

1470 IF N2 > 99 THEN GOSUB 3240: GOTO 1700

1480 REC= VAL (REC$)

1490 VTAB LO: HTAB 12: GALEGTH = 5: GOSUB 1090

474 / Applesoft BASIC Toolbox

1500 IF LEFT$(GBANSWER$,1) =II "THEN 1490

1510 KEY$ = GBANSWER$: INDEX$(N2) = KEY$ + REC$

1520 GOSUB 2800: REM READ DISK

1530 GOSUB 2960: REM WRITE SCR

1540 GALEGTH = 25: VTAB L 1: HTAB 12: GOSUB 1090: IF LEFT$ (G BANSWER$, 1)
= II II THEN 1540

1550 AANAME$ = GBANSWER$

1560 VTAB L2: HTAB 12: GOSUB 1090:ABADDR$ = GBANSWER$

1570 GALEGTH = 15: VTAB L3: HTAB 12: GOSUB 1090:ACCITY$ = GB ANSWER$

1610 GALEGTH = 3: VTAB L6: HTAB 12: GOSUB 1090: GOSUB 3320: IF X1$ = "N"
THEN 1610

1620 AFPHNE$ = GBANSWER$

1690 GOSUB 2560: REM W~ITE DISK

1700 RETURN

1460 REC = O: KEY$ = " ": GOSUB 1410
When a record is added to the file, an unused record location must be found. In
order to find an unused area, the variable REC is given a starting value of zero. REC
is used in the FOR/NEXT loop of the SEARCH INDEX ROUTINE to indicate the
position within the table where the search is to begin.

1410 N2 = 100: FOR N1 = REC TO 99 ...
/\/\/\

For the ADD ROUTINE the table is always searched starting at the first entry.
In the CHANGE ROUTINE, the DELETE ROUTINE, and the LIST ROUTINE, the point
at which the table is searched varies depending on whether or not a previous match
has already been found.

Index Disk Files I 475

After REC is initialized, the variable KEY$ is set equal to the dummy value
used on the index file (five periods). The five periods are compared with the indexes
in the table until an unused record location is found.

1470 After logic flow returns from the SEARCH INDEX ROUTINE the value of N2 is
checked to see if it is greater than 99. If N2 is greater than 99, it indicates that there
were no unused record locations and the file is full. If the file is full, an appropriate
message is displayed, and the GOTO skips the rest of the ADD ROUTINE.

1480 If the value of N2 is less than 100, the numeric variable REC is set equal to the
relative record number which was located in the table. Remember, REC$ is used
when printing on the screen or disk, and REC is used in the READ/WRITE commands.

1490 VTAB LO: HTAB 12: GALEGTH = 5: GOSUB 1090

1500 IF LEFT$(GBANSWER$, 1) = " "THEN 1490

1510 KEY$ = GBANSWER$: INDEX$(N2) = KEY$ + REC$
Lines 1490 through 1510 allow the operator to enter a five character index. The first
four instructions relate to the use of the GET subroutine. Line 1500 tests the value
returned to make sure it does not start with a blank. Remember, any record written
to the disk should not contain leading spaces.

Line 1510 sets KEY$ equal to the index value and places the new index value
along with the related record number back into the table.

For example, when adding the first record, the SEARCH INDEX ROUTINE stops
at the first entry in the table and returns a value of

..... 00

where " " is the dummy index and 00 the relative record number.
After the index value is correctly entered, line 1510 places the new index into

the first table location.

KEY$-i r- REC$
JOHNSOO

where JOHNS is the index value and 00 the relative record number.

1520-1530 After the index value has been entered, the matching record is read using the relative
record number retrieved from the table. For the ADD ROUTINE the record read
should contain all periods, indicating an unused record. Once the record is read, the
periods are displayed on the screen. '

476 / Applesoft BASIC Toolbox

1540 GALEGTH = 25: VTAB L1: HTAB 12: GOSUB 1090: IF LEFT$ (GBANSWER$,1)
= II II THEN 1540

1550 AANAME$ = GBANSWER$

1610 GALEGTH = 3: VTAB L6: HTAB 12: GOSUB 1090: GOSUB 3320: IF X1$ = 11N"
THEN 1610

1620 AFPHNE$ = GBANSWER$
Lines 1490 through 1700 make up the body of the ADD ROUTINE and consist
basically of the same sequence of instructions. The operator is given a chance to
enter data for each field. The very first field in the record is checked to make sure
there are no leading spaces. Numeric fields are edited to make sure the value is
either all spaces or all numeric (see GOSUB 3320 and IF).

Once more, the name field is treated differently than the other fields because
it is the first field in the record. Since the APPLE suppresses leading spaces when
reading data back from the disk, the program makes sure the operator does not
include any leading spaces in the name.

If the operator makes a mistake and starts the name off with a leading space,
the IF instruction rejects the entry and has the operator start over.

Other than the instructions for the name the basic sequence of instructions is
as follows:

1. Set GALEGTH equal to the length of the field to be read.
2. Position the cursor on the correct line.
3. Position the cursor at the correct column.
4. Execute the GET ~abroutine.
5. For numeric fields, edit the data entered and test the switch returned by the

NUMERIC EDIT ROUTINE.
6. Once past the edit test set a variable equal to the value returned by the GET

subroutine.

1690-1700 After all the fields have been entered, the new data is rewritten over the old dummy
values. Once the record is added, logic flow returns to the main body of the program.

1710 REM ----------------------

1720 REM CHANGE ROUTINE

1730 VTAB LO: HTAB 12:GALEGTH = 5: GOSUB 1090

1740 IF LEFT$(GBANSWER$,1) =II II THEN 1730

Index Disk Flies I 477

1750 KEY$= GBANSWER$

1760 REC= 0
Lines 1730 through 1750 allow the operator to enter the five character index. For
all the processing codes except the A (Add), the first step is to have the operator
enter the index value corresponding to the record to be read. After the index is
entered, REC is set equal to zero so the searching process initially starts with the
first entry in the table.

1770 Line 1770 has been inserted before the table is searched to handle a unique situation.
The search process (lines 1770 through 1840) is executed repeatedly until either an
acceptable match is found or the end of the index table is reached. A match on entry
99 can occur. If the ninety-ninth entry is not the desired one, the search routine is
executed again starting at entry 100 (99 + 1 = 100).

1840 IF X1$ = "N" THEN REC = REC + 1: GOTO 1770

Whoops! There is no table entry 100. The number is beyond the end of the
table and if used caused an error message to cancel the program. To prevent this
from happening, line 1770 checks the value of REC before starting the search. If
the value is greater than 99, then a message is displayed indicating that the record
is not on the file, and logic flow exits the CHANGE ROUTINE.

1770 IF REC > 99 THEN GOSUB 3070: GOTO 2140 No match

1780 GOSUB 1410: REM SEARCH INDEX

1790 IF N2 > 99 THEN GOSUB 3070: GOTO 2140 No match

1800 REC= VAL (REC$) Yes match

1810 GOSUB 2800: REM READ DISK

1820 GOSUB 2960: REM WRITE SCR

1830 GOSUB 3150: REM MESSAGE

1840 IF X1$ = "N" THEN REC = REC + 1: GOTO 1770
Lines 1770 through 1840 make up the code which

478 / Applesoft BASIC Toolbox

1850

1. Executes the SEARCH INDEX ROUTINE (GOSUB 1410)
2. Tests to see if a matching index value was NOT found (IF N2 > 99 THEN

GOSUB 3070: GOTO 2140)
3. Reads and displays the matching record
4. Requests the operator to respond with a Y (Yes) or N (No) indicating whether

or not the record displayed is the one to be changed

The GOSUB instruction (line 1780) executes the table SEARCH INDEX ROU­
TINE. After logic flow returns from the routine, the value of N2 is tested. If N2 is
greater then 99, this indicates that no matching index was found. If no matching
index was located, a message is displayed (GOSUB 3070), and logic flow exits the
CHANGE ROUTINE (GOTO 2140).

If N2 is less than 100, a record is read and the information displayed. Since
there could be more than one record with the same index, a standard message is
displayed with each screen. The operator must respond, indicating whether or not
the record displayed is the one to be processed.

If the operator enters Y, logic flow continues through the CHANGE ROUTINE.
If the operator enters N, the value of REC is incremented by 1, and logic flow skips
to line 1770, where the SEARCH INDEX ROUTINE is executed again. Take some
time to study the use of the variable REC. Before the first execution of the SEARCH
INDEX ROUTINE REC is set to 0, the routine starts looking through the table until
a match is found. Once a match is found, REC contains the table position of the
matching index. If the operator rejects the record, then the value of REC is incre­
mented by 1 so it points to the table position following the last match. After the
value of REC has been incremented, the SEARCH INDEX ROUTINE is executed
again starting with the new value of REC.

1880 GALEGTH = 25: VTAB L 1: HTAB 12: GOSUB 1090: IF GCCHAR = 0 THEN 1910

1890 IF LEFT$ (GBANSWER$,1) = " "THEN 1880

1900 AANAME$ = GBANSWER$

2000 GALEGTH = 3: VTAB L6: HTAB 12: GOSUB 1090: IF GCCHAR = 0 THEN 2030

2010 GOSUB 3320: IF X1$ = "N" THEN 2000

2020 AFPHNE$ = GBANSWER$ + RIGHT$ (AFPHNE$,7)

Index Disk Flies I 479

Lines 1850 through 2140 consist of the instructions for allowing the operator to
change the current value of any of the fields.

The points to remember are the following:

1. For the first variable in the record, make sure there are no leading spaces (lines
1880 and 1890).

2. When changes are made, you must test to see if any data were entered or if
only the return key was pressed (IF GCCHAR = O THEN 1910).

3. If data are entered, then edit the value to make sure it was entered correctly
(lines 1890 and 2010).

4. If the data entered pass the edit test, then set the variable name equal to the
new value (lines 1900 and 2020).

Line 2000 through 2080 work with the phone number. Since the field is entered
in three separate parts, care must be taken to combine the new information with the
old. It is possible for the operator to change only part of the phone number.

2130-2140 Once all the changes have been made, the record is rewritten, and logic flow returns
to the main portion of the program.

2150 REM ----------------------

2160 REM DELETE ROUTINE
The first part of the DELETE ROUTINE is the same as the first part of the CHANGE
ROUTINE. The operator enters the index to be used in searching the file. If a matching
value is found, the related record is read and displayed. After the record is displayed,
the operator is given a chance to indicate whether or not this is the record to be
deleted.

If the operator indicates that the current record is to be deleted, a second
message is displayed. The operator is given a second chance to exit the routine and
keep the record. If the operator presses any key other than Y, the record is not
deleted.

If the operator enters Y in response to the second message, the index value in
the table is set equal to periods, and then both the index and data records are rewritten
(see related lines 2580, 2590, and 2620).

2390 REM ----------------------

2400 REM LIST ROUTINE
The LIST ROUTINE follows the same pattern as the ADD ROUTINE, the CHANGE
ROUTINE, and the DELETE ROUTINE.

480 / Applesoft BASIC Toolbox

2540 REM ----------------------

2550 REM WRITE ON DISK

2560 VTAB 1: HTAB 39

2570 PRINT D$

2580 PRINT D$;"WRITE ";F2FILEID$;",R";REC

2590 IF X2$ = "D" THEN PRINT R1RESET$: GOTO 2610

2600 PRINT AANAME$;ABADDR$;ACCITY$;ADSTE$;AEZIP$;AFPHNE$;AGC
OM1$;AHCOM2$

2610 PRINT D$;"WRITE ";F1FILEID$;",R";REC

2620 PRINT INDEX$(REC)
Line 2560 is the program patch which keeps the cursor from erasing a position on
the screen. Line 2590 or line 2600 writes the new information to the disk. If the
record is being deleted, line 2590 writes 124 periods on the disk. If data is being
added or changed, then line 2600 writes the information in one large 124 character
record.

Either way, line 2620 writes the new index value back on the index file.

2680 REM ----------------------

2690 REM CLEAR SCREEN
This routine does not present any new ideas. See the sequential file UPDATE program
for a detailed explanation.

2780 REM ----------------------

2790 REM READ DISK

2800 VTAB 1: HTAB 39

2810 PRINT D$

Index Disk Files I 481

2820 PRINT D$;"READ ";F2FILEID$;",R";REC

2830 INPUT A1ADDR$

2840 PRINT D$

2850 AANAME$ = LEFT$ (A1ADDR$,25)

2930 RETURN
Lines 2780 through 2930 read the record and break it down into the individual
variables.

2940 REM ----------------------

2950 REM WRITE ON SCREEN

3050

3060

3070

3080

3090

3100

This routine does not present any new ideas. See the sequential file UPDATE program
for a detailed explanation.

REM ----------------------

REM REC NOT FOUND MESSAGE

VTAB L9: HTAB 1: INVERSE

PRINT "RECORD NOT ON FILE

PRINT "PRESS THE SPACE BAR TO TRY AGAIN II• .
GET X1$: IF X1$ <>II II THEN 3100

3110 VTAB L9: HTAB 1: NORMAL: PRINT TAB(39)" ":PRINT TAB(39)" ";

3120 RETURN
If the index value entered by the operator is not matched up to an index value in the
table, the "RECORD NOT ON FILE" message is displayed. After the operator has
read the message and pressed the space bar, the subroutine returns to the calling
GOSUB.

3220 REM ----------------------

482 / Applesoft BASIC Toolbox

3230 REM FILE FULL MESSAGE

3240 VTAB L9: HTAB 1: INVERSE: SPEED= 100

3250 PRINT "THE ADDRESS FILE IS FULL-REC'S MUST BE

3260 PRINT "DELETED BEFORE ANY MORE CAN BE ADDED. ";

3270 FOR N1 = 1 TO 10: CALL - 1052: NEXT

3280 VTAB L9: HTAB 1: NORMAL

3290 PRINT TAB(39)" ": PRINT TAB (39)" ";:SPEED= 255

3300 RETURN
This routine handles the error message differently than previous error routines. The
INVERSE and SPEED commands are used on line 3240 to attract the operator's
attention to the message being displayed and to slow the computer down so the
operator has time to view the message.

Line 3270 sets up a FOR/NEXT loop which is used to make a beep for 1 second.
There are two ways to make noise with the APPLE. One is to PEEK memory address
-16336 within a FOR/NEXT loop, and the other is to CALL -1052. The PEEK
version makes a very short sound and must be executed many times to be noticeable.
The CALL -1052 makes a beep for 1/10 of a second. The two sounds are different;
you should try both of the instructions to see which one you like.

After the FOR/NEXT instruction is done, line 3290 slowly clears the error
message and automatically returns to the calling GOSUB.

This error routine has the advantage of not requiring the operator to respond.
It has the disadvantage of lilsting a specific length of time and making a noise which
may embarrass the operator.

331 0 REM ----------------------

3320 REM NUMERIC EDIT

3330 REM SPACES OR NUMBERS ONLY
The NUMERIC EDIT ROUTINE checks GBANSWER$ and returns a code of Y if
GBANSWER$ contains all spaces or all numbers. If GBANSWER$ does not pass
the edit test, a code of N is returned. The routine consists of three FOR/NEXT loops.

Index Disk Files I 483

3340 N2 = LEN (GBANSWER$)

3350 x 1 $ = "Y"

3360 FOR N1 = 1 TO N2

3370 IF MID$ (GBANSWER$,N1,1) < >" "THEN X1$ = "N": N1 = N2

3380 NEXT

3390 IF X1$ = "Y" THEN 3460

3400 X1$ = "Y"
The routine starts off by finding the length GBANSWER$ and initializing the switch
to a starting value of Y. Then the first FOR/NEXT loop tests every character of
GBANSWER$ for spaces. If a nonblank character is found, X1$ is set equal to N
and the FOR/NEXT statement is terminated.

If the GBANSWER$ contains only spaces, logic flow exits the routine (see line
3390). If a nonblank character is found, the switch is reset to Y and the second FOR/
NEXT instruction is executed.

3410 FOR N1 = 1 TO N2

3420 IF MID$ (GBANSWER$,N1, 1) < "O" OR MID$ (GBANSWER$,N1, 1) > "9" THEN
X1$ = "N": N1 = N2

3430 NEXT

3440 IF X1$ = "Y" THEN 3460

3450 FOR N1 = 1TO30: N2 = PEEK (- 16336): NEXT

3460 RETURN
After the second FOR/NEXT instruction is finished, the switch is tested, and logic
flow either exits the routine or falls through to line 3450.

Line 3450 provides a second example of how to make noise with the APPLE.
The PEEK (- 16336) instruction is used within the FOR/NEXT instruction to generate
a short sound with the speaker.

484 / Applesoft BASIC Toolbox

3470 REM ----------------------

3480 REM FREE MEMORY ROUTINE
For an explanation of the FREE MEMORY ROUTINE, see the sequential UPDATE
program.

3570 REM ----------------------

3580 REM BEGINNING ROUTINE

3690 PRINT D$;"0PEN ";F1FILEID$;",L8,D";FDRIVE

3700 FOR REC = 0 TO 99

3710 VTAB 12: HTAB 15: PRINT "REC = ";REC

3720 PRINT D$;"READ ";F1FILEID$;",R";REC

3730 INPUT INDEX$(REC)

3740 PRINT D$

3750 NEXT
The BEGINNING ROUTINE is responsible for reading the INDEX FILE and placing
each record into the INDEX$ table. During this process, line 3710 displays the
relative record number of each record placed in the table. Displaying the record
number lets the user sees what is going on and how fast the computer is working.

3780 REM ----------------------

3790 REM PRINT SCREEN IMAGE

401 0 REM ----------------------

4020 REM ENDING ROUTINE
The PRINT SCREEN IMAGE ROUTINE and the ENDING ROUTINE do not present
any new ideas. See the sequential file UPDATE program for a detailed explanation.

Program Name

Program
Objective

Index Disk Files I 485

The Index File LIST Program.

IND ADDR LIST PROG

To provide the user with a method of listing all the records in the address file on the
screen or printer.

This example follows the same format as the RAN ADDR LIST PROG except
that the file is listed by the index value rather than by the entire last name. The IND
ADDR LIST PROGram

1. Sorts the records into ascending sequence by the index value, which should be
the first five characters of the client's last name.

2. Allows the user either to display the records on the screen or to print a hard
copy of each record.

3. Does not use the DRIVE ROUTINE as in previous examples. The coding still
uses modules and limits the use of the GOTO instruction, but because of the
nature of the program, logic flow is allowed to simply fall through each module
as it is executed.

The IND ADDR LIST PROGram displays one record per screen or prints three
records per page. When displaying the records, the program pauses after displaying
each screen and waits for a response from the operator. When printing records, the
program does not pause.

The one record screen format is as follows:

INDEX = (
RECORD # = (

NAME = (
ADDRESS = (
CITY = (
STATE = (
ZIP CODE = (
PHONE = (

COMMENT#!= (
COMMENT#2 = (

PRESS Q TO QUIT PROCESSING
PRESS C TO CONTINUE

486 / Applesoft BASIC Toolbox

Instructions for Run the program by entering
Running the

Program RUN IND ADDR HELLO PROG <RETURN>

After the menu is displayed, enter a 2 to start execution of the listing program.
After the listing program has started, the screen will be cleared and a message

displayed as follows:

READING FILE & LOADING TABLE

REC = ##

The IND ADDR LIST PROGram only needs to load the index values from the INDEX
FILE into a table, so the message is not on the screen very long. ·

After all the index values have been read and placed into the table, the values
are sorted. The length of time it takes the program to sort the indexes depends on
how many index values were found. If only a few indexes were loaded into the table,
the sort executes so fast you do not even know it has taken place. But if every record
on the file contains data, it takes around a minute to sequence the indexes.

While the records are being sorted, the following screen is displayed:

SORTING TABLE ENTRIES

- TAKES ONE MINUTE IF FILE IS FULL -

PASS ## OF ##

SORT DONE - PRESS SPACE BAR TO CONT.

During the sorting process, two numbers are displayed. The last number indi­
cates the total number of passes needed to sort the table, while the first number
indicates which pass the computer is currently working on.

After the sort is done, the operator must press the space bar to continue. The
pause is put in so the operator has a chance to see the screen and know what is going
on.

Index Disk Files I 487

After the sort is done and the operator has responded, the next screen is dis­
played. The screen allows the operator to enter either D to display the records on
the screen or P to print the records.

ENTER D TO DISPLAY THE NAMES

ENTER P TO PRINT THE NAMES

RESPONSE = [

If the operator chooses to display the records, then the display process is started.
If the operator wants to print the records, another screen is displayed, and the
program pauses to give the operator time to make sure the printer is ready.

PRESS SPACE BAR WHEN:

1. PRINTER IS TURNED ON.

2. FORMS ARE ALIGNED.

Program Listing 1000 REM IND ADDR LIST PROG
1010 REM -----------~----~--
1020 REM BEGINNING ROUTINE
1030 TEXT : NORMAL : HOME : SPEED= 255
1040 D$ = CHR$ (4)
1050 FDRIVE = l:PDRIVE = 1
1060 FlFILEID$ = "INDEX FILE"
1070 F2FILEID$ = "IND ADDR FILE"
1080 REM L$ = TO-TOP-OF-PAGE
1090 L$ = CHR$ (12)
1100 DIM INDEX$ (99)
1110 VTAB 10: HTAB 5: PRINT "READING FILE & LOADING TABLE"
1120 PRINT D$
1130 PRINT D$;"0PEN ";FlFILEID$;",L8,D";FDRIVE
1140 REM
1150 FOR REC = 0 TO 99
1160 VTAB 12: HTAB 17: PRINT "REC = ";REC
1170 PRINT D $;"READ ";FlFILEID$;",R"REC

488 / Applesoft BASIC Toolbox

1180 INPUT Xl$
1190 IF LEFT$ (Xl$,5) II II THEN 1220
1200 INDEX$(Nl) = Xl$
1210 Nl = Nl + 1
1220 NEXT
1230 N3 = Nl - 1: REM N3 = EXACT NUMBER OF ENTRIES IN TABLE
1240 PRINT D$;"CLOSE ";FlFILEID$
1250 PRINT D$;"0PEN ";F2FILEID$;",Ll25,D";FDRIVE
1260 PRINT D$
1270 IF N3 < 1 THEN 1480
1280 REM
1290 REM
1300 REM SORT INDEX TABLE
1310 HOME : VTAB 8 : HTAB 8
1320 PRINT "SORTING TABLE ENTRIES"
1330 VTAB 10
1340 PRINT " - TAKES ONE MINUTE IF FILE IS FULL - "
1350 FOR Nl = 0 TO N3 - 1
1360 : : VTAB 12: HTAB 14: PRINT "PASS "Nl + l" OF "N3
1370 : : FOR N2 = Nl + 1 TO N3
1380 IF INDEX$(Nl) < INDEX$(N2) THEN 1420
1390 :::: Xl$ = INDEX$(Nl)
1400: ::: INDEX$(Nl) = INDEX$(N2)
1410 :::: INDEX$(N2) = Xl$
1420 : : NEXT
1430 NEXT
1440 VTAB 14: PRINT " SORT DONE - PRESS SPACE BAR TO CONT. ";
1450 GET Xl$: IF Xl$ < II II THEN 1450
1460 REM
1470 REM
1480 REM SELECT DEVICE
1490 HOME
1500 PRINT : PRINT
1510 PRINT "ENTER D TO DISPLAY THE NAMES"
1520 PRINT
1530 PRINT "ENTER P TO PRINT THE NAMES"
1540 PRINT
1550 PRINT II

1560 IF X2$ =
1570 IF X2$ =
1580 GOTO 1490
1590 REM
1600 HOME

RESPONSE=";: GET X2$: PRINT X2$
"D" THEN HOME : GOTO 1730
"P" THEN 1600

1610 PRINT "PRESS SPACE BAR WHEN:"
1620 PRINT
1630 PRINT " 1. PRINTER IS TURNED ON."
1640 PRINT
1650 PRINT" 2. FORMS ARE ALIGNED.";
1660 GET Xl$; IF Xl$ < > II II THEN 1660
1670 HOME
1680 PRINT D$
1690 PRINT D$."PR#l"
1700 REM
1710 REM -------·

1720 REM PRINT TABLE ENTRIES
1730 FOR Nl = 0 TO N3
1740 REC$= RIGHT$ (INDEX$(Nl),2)
1750 REC = VAL (REC$)
1760 INDEX$= LEFT$ (INDEX$(Nl),5)
1770 GOSUB 1910: REM READ DISK
1780 GOSUB 2070: REM WRITE PRT
1790 IF Xl$ = "Q" THEN 1850
1800 NEXT
1810 REM
1820 IF X2$ = "D" THEN 1860
1830 PRINT L$: REM EJECT ONE PAGE

Index Disk Files I 489

1840 IF LINE > 0 THEN PRINT L$: REM EJECT SECOND PAGE IF NEEDED
1850 PRINT D$: PRINT D$;"PR#O"
1860 PRINT D$: PRINT D$;"CLOSE"
1870 PRINT D$;"RUN IND ADDR HELLO PROG.D"PDRIVE
1880 REM
1890 REM
1900 REM READ DISK
1910 PRINT 0$
1920 PRINT D$;"READ ";F2FILEID$;",R";REC
1930 INPUT AlADDR$
1940 PRINT 0$
1950 AANAME$ = LEFT$ (AlADDR$,25)
1960 ABADDR$ = MID$ (AlADDR$,26,25)
1970 ACCITY$ =MID$ (AlADDR$,51,15)
1980 ADSTE$ = MID$ (AlADDR$,66,2)
1990 AEZIP$ = MID$ (AlADDR$,68,5)
2000 AFPHNE$ =MID$ (AlADDR$,73,10)
2010 AGCOM1$ = MID$ (AlADDR$,83,21)
2020 AHCOM2$ = RIGHT$ (AlADDR$,21)
2030 RETURN
2040 REM
2050 REM ---------
2060 REM.PRINT SCREEN IMAGE
2070 PRINT
2080 PRINT "INDEX = ("n:IDEX$") 11

2090 PRINT "RECORD # =("REC$")"
2100 PRINT
2110 PRINT "NAME =("AANAME$")"
2120 PRINT "ADDRESS =("ABADDR$")"
2130 PRINT "CITY =("ACCITY$")"
2140 PRINT "STATE =("ADSTE$")"
2150 PRINT "ZIP CODE =("AEZIP$")"
2160 PRINT "PHONE =("LEFT$ (AFPHNE$,3)"-" MID$ (AFPHNE$,4

,3)"-" RIGHT$ (AFPHNE$,4)")"
2170 PRINT
2180 PRINT "COMMENT#l=("AGCOM1$")"
2190 PRINT "COMMENT#2=("AHCOM2$")"
2200 PRINT
2210 REM
2220 REM ---·
2230 IF X3$ = "D" THEN 2290
2240 LINE = LINE + 1

490 / Applesoft BASIC Toolbox

2250 IF LINE > 3 THEN PRINT L$: LINE = 0
2260 RETURN
2270 REM
2280 REM -----------------
2290 PRINT "PRESS Q TO QUIT PROCESSING"
2300 PRINT "PRESS C TO CONTINUE:;
2310 GET Xl$
2320 IF Xl$ = "Q" OR Xl$ = "C" THEN 2340
2330 GOTO 2310
2340 HOME
2350 RETURN
2360 REM
2370 REM -------------

Cross Reference Listing

Variable names used with the address record:

A1$1930, 1950, 1960, 1970, 1980, 1990, 2000, 2010, 2020
AA$ 1950, 2110
AB$ 1960, 2120
AC$ 1970, 2130
AD$ 1980, 2140
AE$ 1990, 2150
AF$ 2000, 2160
AG$ 2010, 2180
AH$ 2020, 2190

Variable names used with the disk commands:

D$ 1040, 1120, 1130, 1170, 1240, 1250, 1260, 1680, 1690, 1850, 1860, 1870,
1910, 1920, 2940

F1$1060, 1130, 1170, 1240
F2$ 1070, 1250, 1920
FD 1050, 1130, 1250
PD 1050, 1870

Variable names used with index table

IN$ 1760, 2080
IN$(1100, 1200, 1380, 1390, 1400, 1410, 1740, 1760

Other general purpose variable names:

L$ 1090, 1830, 1840, 2250
LI 1840, 2240, 2250

Index Disk Flies / 491

N1 1200, 1210, 1230, 1350, 1360, 1370, 1380, 1390, 1400, 1730, 1740, 1760
N2 1370, 1380, 1400, 1410
N3 1230, 1270, 1350, 1360, 1370, 1730
RE 1150, 1160, 1170, 1750, 1920
RE$ 1740, 1750, 2090
X1$ 1180, 1190, 1200, 1390, 1410, 1450, 1660, 1790, 2310, 2320
X2$1550, 1560, 1570, 1820,2230

Explanation by Detailed explanations by line number follow.
Line Number

1000 REM IND ADDR LIST PROG

1010 REM ----------------------

1080 REM L$ =TO-TOP-OF-PAGE

1090 L$ = CHR$ (12)
For any printer which uses the standard ASCII control characters the symbol rep­
resented by the value 12 is used to cause the printer to skip to the top of a new page.
That is, by printing this character (sending the character to the printer) the printer
automatically advances the form.

1100 The DIMension instruction defines a table of 100 elements 0 through 99. The table
is used to store the entire INDEX FILE in memory during execution of the program.
After the file is loaded into the table the entries will be sorted into ascending sequence.

1130 The OPEN instruction provides DOS with the length of each record on the file and
the number of the disk drive on which the file is located.

1150 FOR REC= 0 TO 99

1160 VTAB 12: HTAB 17: PRINT "REC= ";REC

1170 PRINT D$;"READ ";F1FILEID$;",R"REC

1180 INPUT X1$

1190 IF LEFT$ (X1$,5) = " "THEN 1220

492 / Applesoft BASIC Toolbox

1200 INDEX$(N1) = X1$

1210 N1 = N1 + 1

1220 NEXT
Lines 1150 through 1220 load the INDEX$ table with the records from the INDEX
FILE. Each of the 100 records in the file is read and examined to see if it contains a
dummy value. If the record contains five periods, it is ignored. If the record contains
an index, it is placed in the INDEX$ table. The value of N1 is incremented after
each entry is put in the table. When the sort is done, N 1 is 1 greater than the number
of entries in the table.

1230 N3 = N1 - 1: REM N3 = EXACT NUMBER OF ENTRIES IN TABLE

1270 IF N3 < 1 THEN 1480
After the INDEX FILE has been read into the INDEX$ table, lines 1230 through 1270
finish up the housekeeping job related to loading the file. Line 1230 sets N3 equal
to 1 less than the numeric value of N1 at the time the load process ended. Since N1
always points to the next empty table location, N3 now points to the last entry loaded
into the table.

The sort cannot work with fewer than two entries in the table. Line 1270 checks
N3 and makes sure there are at least two or more entries to sort. If only one entry
is in the table, then logic fl.ow bypasses the sort routine.

Note: There is an error in the logic. If the file is empty, the program still displays
one dummy record. No test is made for an empty file.

1290 REM ----------------------

1300 REM SORT INDEX TABLE
Lines 1290 through 1450 make up the logic for sorting the table into ascending
order. The sort is exactly the same as the one used in the RAN ADDR LIST PROG,
but you may want to go through it one more time just for review.

Basically, the sort consists of two FOR/NEXT loops. The inner loop is respon­
sible for doing the comparisons and switching the values, while the outer loop resets
the counters and determines how many times the inner loop is executed.

1350 FOR N1 = 0 TO N3 - 1
1360 :: VTAB 12: HTAB 14: PRINT "PASS "N1 + 1" OF "N3
1370 :: FOR N2 = N1 + 1 TO N3
1380 ::::IF INDEX$(N1) < INDEX$(N2) THEN 1420
1390 :::: X1$ = INDEX$(N1)

1400 :::: INDEX$(N1) = INDEX$(N2)
1410 :::: INDEX$(N2) = X1$
1420 :: NEXT
1430 NEXT

To help explain the logic, let's use the following table values:

Index Disk Files / 493

Namel !Relative Record Number

INDEX$ (O) SMITH03
INDEX$ (1) ADAMS04
INDEX$ (2) JOHNS08
INDEX$ (3) = SMITHll

The value in INDEX$ (0) is compared with the value in INDEX$ (1) (see line
1380). If the value in INDEX$ (0) is greater than the value in INDEX$ (1), the two
names (including record numbers) are flipped (see lines 1390 to 1410). The flipping
process is accomplished by setting X1$ equal to INDEX$ (O) in order to prevent it
from being lost. INDEX$ (1) is then placed into INDEX (0). After the second value
has been moved, the first value, which was saved in X1$, is placed into INDEX (1).

Name --i r Relative Record Number

INDEX$ (O) = ADAMS04 Flipped
INDEX$ (1) = SMITH03 Flipped
INDEX$ (2) = JOHNS08
INDEX$ (3) SMITHll

The value in INDEX$ (0) is then compared with the value in INDEX$ (2). If the
value in INDEX$ (0) is greater than the value in INDEX$ (2), the two table entries
are flipped.

The process is repeated until the value in INDEX$ (0) has been compared with
all the values in the table. After the first iteration of the inner loop is completed,
the lowest value is in the first entry of the table, INDEX$ (0).

After the first entry has been compared with all the other entries in the table,
the outer FOR/NEXT instruction sets N 1 up by 1 and the inner FOR/NEXT instructions
are executed again in order to compare the second entry with all the other table
entries. If you follow the inner loop, you will see that during the second execution,
two flips take place. First, SMITH and JOHNSON are flipped.

INDEX$ (O)
INDEX$ (1)

Name l r Relative Record Number

ADAMS04 No longer used in comparison
= JOHNS08 Flipped

494 / Applasoft BASIC Toolbox

INDEX$ (2)
INDEX$ (3)

SMITH03 Flipped
BOOTHll

Then, when JOHNS is compared with BOOTH, the names are flipped.

Name t r Relative Record Numbe:

INDEX$ (0) ADAMS04 No longer used in comparison
INDEX$ (1) = BOOTHll Flipped
INDEX$ (2) = SMITH03
INDEX$ (3) JOHNS08 Flipped

Once the value in INDEX$ (1) has been compared with all the other entries in
the table, the outer loop sets N1 up by 1 and the process of comparing the third
entry with all the other table entries is carried out. If you follow the inner loop one
more time, you will see that during the third execution, one flip occurs. SMITH is
compared with JOHNS, causing the names to be exchanged.

Namel f Relative Record Number

INDEX$ (0) ADAMS04 No longer used in comparison
INDEX$ (1) BOOTHll No longer used in comparison
INDEX$ (2) JOHNSOB Flipped
INDEX$ (3) SMITH03 Flipped

Since there are only four entries in the table, N1 is now equal to 1 less than
the number of entries, and the sort is done.

Look through the code again and see how the sorting takes place. The outer
loop of the replacement sort takes one less pass (execution) than the number of
entries in the table (4 - 1 = 3). The number of times the inner loop is executed
may be computed by the following formula:

Number of table entries * (number of table entries - 1) I 2

For the example the inner loop is executed six times.

4 * (4 - 1) I 2 = 6

If the table contained 100 entries, the inner loop would be executed 4950 times:
100 * (100 - 1) I 2 = 4950

1470 REM ----------------------

Index Disk Files / 495

1480 REM SELECT DEVICE

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

The operator is given a chance to either display the records on the screen (D) or print
the records on the printer (P). If the operator enters P, a second screen is displayed
in order to give the operator a chance to align the forms and make sure the printer
is ready.

REM ----------------------

REM PRINT TABLE ENTRIES

FOR N1 = 0 TO N3

REC$= RIGHT$ (INDEX$(N1),2)

REC = VAL (REC$)

INDEX$= LEFT$ (INDEX$(N1),5)

GOSUB 1910: REM READ DISK

GOSUB 2070: REM WRITE PRT

IF X1$ = "Q" THEN 1850

NEXT

Lines 1710 through 1800 make up the code for displaying the records. The FOR/
NEXT loop is executed from 0 to N3 times, where N3 contains the exact number of
sorted entries.

Line 1740 extracts the record number from the right part of the table entry and
puts the two digit number in REC$. REC$ is used whenever printing or displaying
the relative record number. Line 1750 converts the string REC$ to numeric format.
REC is used in the DOS READ and WRITE instructions to indicate the relative record
number to be accessed.

Line 1790 is important only if the operator selects to display the records. It
gives the operator a chance to quit before all the records are displayed on the screen.
(see related line 2320).

1820 IF X2$ = "D" THEN 1860

496 / Applesoft BASIC Toolbox

1830 PRINT L$: REM EJECT ONE PAGE

1840 IF LINE > 0 THEN PRINT L$: REM EJECT SECOND PAGE IF NEEDED

1850 PRINT D$: PRINT D$;"PR#O"

1860 PRINT D$: PRINT D$;"CLOSE"

1870 PRINT D$;"RUN IND ADDR HELLO PROG,D"PDRIVE
Lines 1830 through 1850 are executed only if the data is being printed. When the
data is printed, two situations can occur.

1. The program can end in the middle of a page after printing either the first, the
second, or the third record.

Top of page ~ First

Second

Third
Printer
positioned here ~

2. Or the program can end after just printing the fourth entry of a page and ejecting
to a new page (see line 2250).

Fourth entry
Bottom of page ~

Top of next page ~ Printer positioned
at top of page

If the printer is in the middle of the page, then two ejects are necessary in order
to position the paper to make it easy for the operator to tear off the report. If the
printer is already at the top of a new page, only one eject is needed to correctly
position the paper.

Line 1830 prints one CONTROL-L no matter where the printer is located. Line
1840 prints the second CONTROL-L only if LINE is greater than zero, indicating that
a new page has been started.

This is an improved version of the same code as presented in the RAN ADDR
LIST PROG. In the random version, two CONTROL-Ls are printed no matter where
the printer is positioned. This can result in wasting two sheets of paper rather than
one (big deal).

Index Disk Alas I 497

1890 REM ---------------------

1900 REM READ DISK
For an explanation of the READ DISK ROUTINE see the SEQ ADDR UPDATE PROG.

2050 REM ----------------------

2060 REM PRINT SCREEN IMAGE

2220 REM ----------------------

2230 IF X3$ = "D" THEN 2290

2240 LINE = LINE + 1

2250 IF LINE > 3 THEN PRINT~$: LINE = 0

2260 RETURN

2270 REM

2280 REM ----------------------

2290 PRINT "PRESS Q TO QUIT PROCESSING"

2300 PRINT "PRESS C TO CONTINUE:;

2310 GETX1$

2320 IF X1$ = "Q" OR X1$ = "C" THEN 2340

2330 GOTO 2310

2340 HOME

2350 RETURN

498 / Applesoft BASIC Toolbox

Program Name

Program
Objective

Instructions for
Running the

Program

The first part of the PRINT SCREEN IMAGE ROUTINE is executed when displaying
or printing the data. The end of the routine is split into two segments. The first
segment contains the instruction for handling records which are being printed. The
second segment contains the instructions for handling records which are being displayed.

Lines 2240 and 2250 are important. Each time a record is printed, LINE is
incremented by 1. If four records have been printed (0, 1, 2, and 3), then a CON­
TROL-Lis printed to start a new page. After a new page is started, make sure you
reset the line or record counter to 0.

Lines 2290 through 2320 pause to give the operator a chance to view the data
and to quit before all the records are displayed. Notice that the program does not
end (quit) immediately. The value of X1$ is returned to the calling GOSUB and
tested in that module (see line 1790). By letting logic flow go back to the calling
module, there is only one ending routine whether the data is being printed or displayed.

The Index File SEARCH Program

IND ADDR SEARCH PROG

To provide the user with a method of scanning the file for a specific index value or
scanning the file for index values which start with a specific set of characters.

If the file is large, the user will not want to list all the records in sequence just
to find one or two individuals. In order to make the system more usable, this program
allows the operator to enter all or part of the index. After the search characters are
entered, the program searches the entire file for any records which match the char­
acters entered.

The screen design is jasically the same as that for the IND ADDR LISTING
PROG except that there is a chance that no matching record will be found. If no
record is found with a matching last name, an appropriate message is displayed, and
the operator is given another chance to search the file.

Run the program by entering

RUN IND ADDR HELLO PROG <RETURN>

After the menu is displayed, enter a 3 to start execution of the search program.
The first screen will let you know that the program is reading and loading the

table. After the index table is loaded, a second screen will be displayed, requesting
that you enter from one to five characters to be used in searching the index file.

ENTER FROM 1 TO 5 CHARACTERS TO SEARCH
FOR A MATCH.

SEARCH VALUE

Index Disk Files I 499

After receiving the value to be used during the search process, the program
will search quickly through the index table and then read and display any records
which match the characters entered.

The IND ADDA SEARCH PROG works much faster than the SEO ADDA SEARCH
PROG because the search is all done in memory, and only the matching records
must be read.

MATCH NUMBER 01 OF 04

INDEX =(JO
RECORD # = (01)

NAME
ADDRESS

CITY
STATE
ZIP CODE
PHONE

=(MARY JONES
=(4321 FIRST STREET

= (MODEL TOWN
=(CA)
=(98765)
=(444-333-2222)

COMMENT#l=(GOOD BASIC PROGRAMMER)
COMMENT#2=(KNOWS PASCAL/COBOL/AS)

PRESS Q TO QUIT LIST OPERATION
PRESS C TO CONTINUE

Only one record is shown per screen, but the first line of the screen indicates
how many matches were found. The relative record number is displayed on the line
following the record index. Normally you do not display the relative record number
for the operator. It is provided in this example to emphasize that although the operator
retrieves the record by the index value, the program must associate the index with
a relative record number before being able to read the file.

If no matches are found, a message is displayed as follows, and the computer
pauses in order for the operator to read the message. Once the operator is done, C
is entered to continue.

500 / Applesoft BASIC Toolbox

NO MATCHES FOUND

PRESS Q TO QUIT PROCESSING

PRESS C TO CONTINUE

If no matches are found, or after all the matches have been displayed, the
operator is given a chance to either quit and return to the HELLO menu or enter a
new search value.

Program Listing 1000 REM IND ADDR SEARCH PROG
1010 REM ------------------
1020 CLEAR :Gl = PEEK (116) * 256 + PEEK (115) - 40 :GA$

12345678901234567890" + "12345678901234567890"
1030 REM
1040 REM ------------------
1050 REM DRIVE ROUTINE
1060 GOSUB 1120: REM BEGINNING
1070 GOSUB 1410: REM MAIN MOD
1080 GOTO 2440: REM END MODULE
1090 REM
1100 REM -------------------
1110 REM BEGINNING ROUTINE
1120 TEXT : NORMAL : HOME : SPEED= 255
1130 D$ = CHR$ (4)
1140 FDRIVE = l:PDRIVE = l
1150 FlFILEID$ "INDEX FILE"
1160 F2FILEID$ = "IND ADDR FILE"
1170 REM
1180 DIM INDEX$ (99),MTCH$(99)
1190 REM
1200 VTAB 8: HTAB 8
1210 PRINT "READING FILE & LOADING TABLE"
1220 PRINT D$
1230 PRINT D$;"0PEN ";F1FILEID$;",L8,D";FDRIVE
1240 FOR REC = 0 TO 99
1250 PRINT D$;"READ ";F1FILEID$;",R";REC
1260 VTAB 10: HTAB 17: PRINT "REC = ";REC
1270 INPUT X1$
1280 PRINT D$
1290 IF LEFT$ (Xl$,5)
1300 INDEX$(Nl) = X1$
1310 Nl = Nl + l
1320 NEXT

II
II THEN 1320

1330 N3 = Nl - 1: REM N3 =EXACT NUMBER OF ENTRIES IN TABLE
1340 PRINT D$
1350 PRINT D$;"0PEN ";F2FILEID$;",L125,D";FDRIVE

"

1360 PRINT D$
1370 RETURN
1380 REM
1390 REM
1400 REM MAIN ROUTINE
1410 GOSUB 1720: REM ENTER SEARCH VALUE
1420 GOSUB 1660: REM SEARCH INDEX

Index Disk Files I 501

1430 IF N2 = 0 THEN HOME : VTAB 8: PRINT "NO MATCHES FOUND":
PRINT : GOTO 1570

1440 REM
1450 FOR Nl = 0 TO N2 - l
1460 REC$= RIGHT$ (MTCH$(Nl),2)
1470 REC = VAL (REC$)
1480 GOSUB 2080: REM READ DISK
1490 GOSUB 2240: REM WRITE SCREEN
1500 PRINT "PRESS Q TO QUIT LIST OPERATION"
1510 PRINT "PRESS C TO CONTINUE";
1520 GET Xl$: IF Xl$ = "Q" THEN Nl = N2
1530 IF Xl$ < > "C" THEN 1520
1540 NEXT
1550 REM
1560 HOME : VTAB 10
1570 PRINT "PRESS Q TO QUIT PROCESSING"
1580 PRINT
1590 PRINT "PRESS C TO CONTINUE";
1600 GET Xl$: IF Xl$ = "C" THEN 1410
1610 IF Xl$ < > "Q" THEN 1600
1620 RETURN
1630 REM
1640 REM ---------
1650 REM SEARCH INDEXES
1660 N2 = 0
1670 FOR Nl = 0 TO N3
1680 IF LEFT$ (INDEX$(Nl),SIZE) INDEX$ THEN MTCH$(N2)

INDEX$(Nl): N2 = N2 + l
1690 NEXT
1700 RETURN
1710 REM --- ------
1720 REM ENTER SEARCH VALUE
1730 HOME : VTAB 10
1740 PRINT "ENTER FROM l TO 5 CHARACTERS TO SEARCH"
1750 PRINT "FOR A MATCH."
1760 PRINT
1770 PRINT "SEARCH VALUE =)"
1780 VTAB 13: HTAB 17
1790 GALEGTH = 5: GOSUB 1890
1800 INDEX$ = GBANSWER$
1810 SIZE = GCCHAR
1820 IF SIZE = 0 THEN 1730
1830 INDEX$ = LEFT$ (INDEX$,SIZE)
1840 HOME
1850 RETURN
1860 REM
1870 REM -------

502 I Applasoft BASIC Toolbox

1880 REM GET SUBROUTINE
1890 IF G3 = 0 THEN GOSUB 2040
1900 G3 = Gl +GA - 1: FOR G2 = Gl TO G3: POKE G2,32: NEXT G2 = Gl
1910 CALL 768:GB = PEEK (775) - 128: IF GB = 08 THEN 1980
1920 IF GB = 13 THEN 2000
1930 IF GB= 21 THEN PRINT CHRS (PEEK (G2));: GOTO 1960
1940 IF GB = 44 OR GB = 58 OR GB < 32 THEN 1910
1950 PRINT CHRS (GB);: POKE G2,GB
1960 G2 = G2 + 1: IF G2 > G3 THEN 2030
1970 GOTO 1910
1980 G2 = G2 - 1: IF G2 < Gl THEN G2 = Gl: GOTO 1910
1990 PRINT CHRS (8);: GOTO 1910
2000 IF Gl = G2 THEN 2020
2010 FOR GC = G2 TO G3: PRINT"";: NEXT
2020 FOR GC = G2 TO G3: POKE GC,32: NEXT
2030 GBS =LEFTS (GAS,GA):GC = G2 - Gl: RETURN
2040 POKE 768,32: POKE 769,12: POKE 770,253: POKE 771,141:

POKE 772,07: POKE 773,03: POKE 774,96: RETURN
2050 REM
2060 REM ---------
2070 REM READ DISK
2080 PRINT DS
2090 PRINT DS;"READ ";F2FILEIDS;",R";REC
2100 INPUT AlADDRS
2110 PRINT DS
2120 AANAMES = LEFTS (AlADDRS,25)
2130 ABADDRS = MIDS (AlADDRS,26,25)
2140 ACCITYS =MIDS {AlADDRS,51,15)
2150 ADSTES = MIDS (AlADDRS,66,2)
2160 AEZIPS = MIDS (AlADDRS,68,5)
2170 AFPHNES =MIDS {AlADDRS,73,10)
2180 AGCOMlS = MIDS {AlADDRS,83,21)
2190 AHCOM2S = RIGHTS (AlADDRS,21)
2200 RETURN
2210 REM
2220 REM ---------
2230 REM PRINT SCREEN IMAGE
2240 HOME : PRINT
2250 PRINT "MATCH NUMBER "Nl + 1" OF "N2
2260 PRINT
2270 PRINT "INDEX =("LEFTS (MTCHS(Nl),5)")"
2280 PRINT "RECORD# ={"RECS")"
2290 PRINT
2300 PRINT "NAME =("AANAMES")"
2310 PRINT "ADDRESS ={"ABADDRS")"
2320 PRINT "CITY =("ACCITYS")"
2330 PRINT "STATE =("ADSTES")"
2340 PRINT "ZIP CODE ={"AEZIPS")"
2350 PRINT "PHONE =("LEFTS (AFPHNE$,3)"-" MIDS (AFPHNES,4

,3)"-" RIGHTS (AFPHNES,4)")"
2360 PRINT
2370 PRINT "COMMENT#l={"AGCOMlS")"
2380 PRINT "COMMENT#2={"AHCOM2S")"
2390 PRINT

2400 RETURN
2410 REM
2420 REM -----------------
2430 REM ENDING ROUTINE
2440 HOME
2450 PRINT D$
2460 PRINT D$;"CLOSE"
2470 PRINT D$;"RUN IND ADDR HELLO PROG,D"PDRIVE
2480 REM
2490 REM ----------------~~

Cross Reference Listing

Variable names used with the address record:

A1$ 2100, 2120, 2130, 2140, 2150, 2160, 2170, 2180, 2190
AA$ 2120, 2300
AB$ 2130, 2310
AC$ 2140, 2320
AD$ 2150, 2330
AE$ 2160, 2340
AF$ 2170, 2350
AG$ 2180, 2370
AH$ 2190, 2380

Variable names used with the disk commands:

Index Disk Files I 503

D$ 1130, 1220, 1230, 1250, 1280, 1340, 1350, 1360, 2080, 2090, 2110, 2450,
2460, 2470

F1$ 1150, 1230, 1250
F2$ 1160, 1350, 2090
FD 1140, 1230, 1350
PD 1140, 2470

Variable names used with the index table:

IN$ 1680, 1800, 1830
IN$(1180, 1300, 1680
MT$(1180, 1460, 1680, 2270

Other general purpose variable names:

N1 1300, 1310, 1330, 1450, 1460, 1520, 1670, 1680, 2250, 2270
N2 1430, 1450, 1520, 1660, 1680, 2250
N3 1330, 1670
RE 1240, 1250, 1260, 1470, 2090

504 / Applesoft BASIC Toolbox

RE$ 1460, 1470, 2280
SI 1680, 1810, 1820, 1830
X1$1270, 1290, 1300, 1520, 1530, 1600, 1610

Explanation by Detailed explanations by line number follow.
Line Number

1100 REM ---------------------

1110 REM BEGINNING ROUTINE

1180 DIM INDEX$ (99),MTCH$(99)
Two tables are defined. The first table stores the index values read in from the disk,
while the second table is used to store any matches found during the search.

Here comes another "Do as I say and not as I do." Notice that the constant 99
is used to define the tables. The value (99) is hard coded all through the program.
A much better approach is to use a variable thoughout the program. If a variable is
used and the program needs to be changed, only one line is affected.

Yes: 1175 T1 = 99
1180 DIM INDEX$(T1),MTCH$(T1)

1240 FOR REC= 0 TO T1

No: 1180 DIM INDEX$(99),MTCH$(99)

1240 FOR REC= 0 TO 99

If a constant is used, every line in the program must be examined and the lines
using the constant changed. Most likely you will miss one line or make a mistake
while changing a line. 'fry to make it a practice always to use variables and to
initialize them to their starting values in the BEGINNING ROUTINE.

1240 FOR REC = 0 TO 99

1290 IF LEFT$ (X1$,5) = " "THEN 1320

1300 INDEX$(N1) = X1$

1310 N1 = N1 + 1

Index Disk Files I 505

1320 NEXT

1330 N3 = N1 - 1: REM N3 = EXACT NUMBER OF ENTRIES IN TABLE
The routine for reading the index varies from that used in the UPDATE program in
that any index which contains dummy periods is not loaded into the table. When
only active index values are loaded, the SEARCH executes faster (depending on the
number of active entries).

1390 REM ----------------------

1400 REM MAIN ROUTINE

1410 GOSUB 1720: REM ENTER SEARCH VALUE

1420 GOSUB 1660: REM SEARCH INDEX

1430 IF N2 = 0 THEN HOME : VTAB 8: PRINT "NO MATCHES FOUND": PRINT :
GOTO 1570
The MAIN ROUTINE requests the operator to enter a value to be used in searching
the index (line 1410). After a search value has been entered the INDEX$ table is
searched for matches, and any matching value is placed in the table MTCH$ (line
1420). If no matches are found, a message is displayed, and the operator is given a
chance to enter another value or quit processing.

1450 FOR N1 =OTO N2 - 1
The entries are printed out with a FOR/NEXT loop. The loop is executed one less
time than the value in N2. If you look at the SEARCH ROUTINE, you will find that
N2 is always 1 greater than the number of matches.

1460 REC$ = RIGHT$ (MTCH$(N1),2)

1470 REC =VAL (REC$)
Lines 1460 and 1470 extract the record number from the index record. Remember,
REC$ is used for printing, while the numeric variable REC is used in the disk READ
instruction. The RIGHT$ function may appear rather complex, so let's break it down
into parts to see what is happening.

MTCH$(N1) = A table entry
RIGHT$(MTCH$(N1),2) = The right two characters of the table entry

50& / Applesoft BASIC Toolbox

A table entry is just like any other variable, but you must remember to use the correct
number of parentheses.

1520 GET X1$: IF X1$ = "Q" THEN N1 = N2
Line 1520 tests to see if the operator wants to quit. If the operator wants to quit,
the variable used in the FOR/NEXT loop (N1) is set to a number equal to or greater
than the number of times the loop is to be executed. This is a way to terminate the
FOR/NEXT loop without a GOTO instruction.

1640 REM ----------------------

1650 REM SEARCH INDEXES

1660 N2 = 0

1670 FOR N1 = 0 TO N3

1680 IF LEFT$ (INDEX$(N1),SIZE) = INDEX$ THEN MTCH$(N2) = IN
DEX$(N1): N2 = N2 + 1

1690 NEXT
The search is basically the same as earlier search versions, except that since the
operator can search the table more than once, the program must reset any variable
used in the routine. Lim, 1660 sets N2 equal to zero each time the SEARCH ROUTINE
is executed. The second part of the code to look at is on line 1680. Notice that the
variable SIZE is used with the LEFT$ function to make sure only the left portion of
the index is compared with the index value entered by the operator. Remember when
comparing string variables to always compare equal length variables.

171 0 REM ----------------------

1720 REM ENTER SEARCH VALUE

1810 SIZE = GCCHAR
Line 1810 places the size of the variable into a more descriptive variable name.
Remember, the GET subroutine returns the number of characters keyed in by the
operator in the variable GCCHAR. By limiting the size of the search to the specific
number of characters entered, the program allows the operator to test only a leading
portion of the indexes.

Index Disk Flies I 607

1820 IF SIZE = 0 THEN 1730
Line 1820 makes sure the operator entered at least one character to be used in
searching the index table. If the operator did not enter a character, then logic fl.ow
starts back at the first line of the routine.

1830 INDEX$ = LEFT$ (INDEX$,SIZE)
Since the GET subroutine returns trailing blanks, line 1830 truncates the value of
INDEX$ to the exact number of characters entered.

2220 REM --------------------

2230 REM PRINT SCREEN IMAGE

2240 HOME : PRINT

2250 PRINT "MATCH NUMBER "N1 + 1" OF "N2

2260 PRINT

2270 PRINT "INDEX =("LEFTS (MTCH$(N1),5)")"

2280 PRINT "RECORD# =("REC$")"
The PRINT SCREEN IMAGE ROUTINE presents no new coding, but there are.several
lines which should be touched on. First, line 2250 is a nice feature for the operator.
By looking at the first line of the screen, the operator knows immediately how many
matches were found and how many screens will be displayed.

If I were rewriting the program, I would change the logic to allow the operator
to go through the screens more than once. It is not unlikely that an operator would
go through the screens looking at all the matches and then would want to go back
and see them again. This would be easy to allow by just putting a message on the
last screen displayed asking if the operator wanted to see the matches again (Y or
N). If the operator entered a Y, logic fl.ow would branch back to line 1720 to redisplay
the records.

APPENDIX

508

ASCII Character, Binary,
and Decimal Table

Bit Decimal Keying Bit Decimal Keying
Pattern Number Symbol Pattern Number Symbol

0000000 000 CTRL-@ 0101110 046
0000001 001 CTRL-A 0101111 047 I
0000010 002 CTRL-B 0110000 048 0
0000011 003 CTRL-C 0110001 049 1
0000100 004 CTRL-D 0110010 050 2
0000101 005 CTRL-E 0110011 051 3
0000110 006 CTRL-F 0110100 052 4
0000111 007 CTRL-G 0110101 053 5
0001000 008 CTRL-H 0110110 054 6
0001001 009 CTRL-1 0110111 055 7
0001010 010 CTRL-J 0111000 056 8
0001011 011 CTRL-K 0111001 057 9
0001100 012 CTRL-L 0111010 058
0001101 013 CTRL-M 0111011 059
0001110 014 CTRL-N 0111100 060 <
0001111 015 CTRL-0 0111101 061
0010000 016 CTRL-P 0111110 062 >
0010001 017 CTRL-Q 0111111 063 ?
0010010 018 CTRL-R 1000000 064 @
0010011 019 CTRL-S 1000001 065 A
0010100 020 CTRL-T 1000010 066 B
0010101 021 CTRL-U 1000011 067 c
0010110 022 CTRL-V 1000100 068 D
0010111 023 CTRL-W 1000101 069 E
0011000 024 CTRL-X 1000110 070 F
0011001 025 CTRL-Y 1000111 071 G
0011010 026 CTRL-Z 1001000 072 H
0011011 027 ESC 1001001 073 I
0011100 028 CTRL-Y 1001010 074 J
0011101 029 CTRL-SHIFT-M 1001011 075 K
0011110 030 CTRL-SHIFT-N 1001100 076 L
0011111 031 CTRL-DASH 1001101 077 M
0100000 032 space 1001110 078 N
0100001 033 1001111 079 0

ASCII Character, Binary, and Decimal Table / 509

Bit Decimal Keying Bit Decimal Keying
Pattern Number Symbol Pattern Number Symbol

0100010 034 1010000 080 p

0100011 035 # 1010001 081 Q
0100100 036 $ 1010010 082 R
0100101 037 % 1010011 083 s
0100110 038 & 1010100 084 T
0100111 039 1010101 085 u
0101000 040 1010110 086 v
0101001 041 1010111 087 w
0101010 042 * 1011000 088 x
0101011 043 + 1011001 089 y

0101100 044 1011010 090 z
0101101 045 1011011 091 [

Index

ABS function, 139
Alphanumeric constant, 57, 130
Alphanumeric variable, 53, 57
APPEND instruction, 258, 266, 269, 298
APPLE Ile, 5
APPLE II+, 5
Applesoft BASIC, 12, 15, 16
Application, 300, 309
Arrays, 202, 424
Arrays, memory usage, 204
Arithmetic expression, 175
Argument, 242
ASC function, 140
A~CII, 128, 140
Automatic tab function, 84

Backup copies, 11, 299, 334, 355, 357,
398

Backward GOTO, 96
Backward slash\, 262, 391
Binary file, 12, 16
Bit pattern, 172
BLOAD command, 24
Booting, 9
BRUN command, 25
BSAVE command, 24
Buffer, 255, 280, 283
Byte, 58

CALL instruction, 241
CALL -868, 111, 168
CALL -958, 168
Carriage return character, 82, 105
Catalog, 253, 255
CATALOG command, 14
CHR$ function, 152, 162
CLEAR instruction, 245
CLOSE instruction, 259, 280
Comma

automatic tab function, 84

disk usage, 268, 270
disk instructions, 277
embedded, 71
field separator, 44
PRINT instruction, 80, 84 '
READ instruction, 277
variable separator, 71
WRITE instruction, 272

Colon, instruction separation, 102
Colon, use of, 27
Column 40, problems with using, 105
Concantenation, 128
Conditional GOTO, 96
Constant, 57
CONT instruction, 228
Control function, 162
CONTROL key, 5
Control program, 9
CONTROL-C, 35, 37, 51
CONTROL-D, 141, 164, 263, 267, 307
CONTROL-L, 164, 425
CONTROL-RESET, 35, 197, 198, 260
CONTROL-S, 35, 37
CONTROL-X, 187
COPYA program, 12
CRT (Cathode Ray Tube), 80
CTRL key, 5
Current copy, 355

Data file, 12, 438
Data name, 48, 56
Data name dictionary, 45, 48
Default tab settings, 84
DEF FN instruction, 244
DEL instruction, 42
DELETE command, 23, 259
Dependent code, 326
DIM instruction, 202
Direct access, 379
Directory, 253

511

512 f Index

Disk, 7
Disk directory, 255
Disk file buffers, 283
Disk sector, 16
Diskette, 7
Division by zero, 135
Drive number, 7, 13
Drive program, 9

Edit check, 108, 161
Editing

DATA instruction, 193
multiple instructions, 194
REM instruction, 193
values within quotes, 193

END instruction, 101
Endless loop, 94, 217
EOF (End-Of-File) marker, 281, 256, 306
EOR (End Of Record), 262, 266, 305, 390
Error Message

CAN'T CONTINUE ERROR,231
END OF DATA,276,282
EXTRA IGNORED message, 76, 77
FILE LOCKED,21
FILE NOT FOUND, 17,357
ILLEGAL QUANTITY ERROR,51,62,

100, 132
I/O ERROR,9, 18
NO BUFFERS AVAILABLE,283
NO MATCH,8
OUT OF DATA ERROR,211
OVERFLOW ERROR,68
REDIM'D ARRAY,202
REENTER error, 74
RETURN WITHOUT GOSUB, 125
SYNTAX ERROR,28,36,56, 199
TYPE MISMATCH ERROR,59, 130
UNDEF'D STATEMENT ERROR,94

ESC key, 186
EXEC command, 25
Exponent, 67
Exponentiation, 136

FID program, 12, 257
Field, 284
Field name, 56
File, 15, 20
Fixed length records, 305
FLASH instruction, 104, 106
Floppy disk, 7
Format, 8
FOR/NEXT instruction, 154, 179, 225

FOR/NEXT instruction, nested, 183
Forward GOTO, 95, 96
FP instruction, 246
FRE instruction, 233

GET instruction, 197
GET Subroutine, 284
GOSUB

calling, 111
instruction, 113
nested, 117, 118
stacks table, 225

GOTO instruction, 93

HELLO program, 10
High-resolution graphics instructions, 249
HIMEM instruction, 243
HOME instruction, 26
HPLOT, 249
HTAB instruction, 103, 184

IF instruction, 170
AND, 176
compound format, 176
OR, 176
string variables, 172
string constants, 172

Immediate execution mode, 26
Index, 438
Index file, 438
Index file processing, 438
INIT command, 8
INPUT instruction, 70
INPUT instruction, problems with, 284
Inquiry, 299
Instructions per statement number, 102
INT function, 141
Integer BASIC, 12
Integer BASIC program, 16
Integer names, 53
Integer variables, 53, 61, 132
IN# instruction, 247
INVERSE instruction, 104

Keyboard buffer, 197, 200

Leading blanks, 212, 346, 389, 393
LEFT$ function, 151, 153
LEN function, 142
LET instruction, 127

numeric functions, 128, 139
numeric operations, 127, 133
string operations, 137

LIST instruction, 35
LOAD command, 12, 16
LOCK command, 20, 259
Locked, 15
LOMEM instruction, 243
Lower case characters, 162
Low-resolution graphics instructions, 248

Matrix, 202
MAXFILES instruction, 259, 283
MID$ function, 151, 155
Mixed lines of code, 31
Module, 110, 113
MON instruction, 258, 260

Nested loops, 183
NEW instruction, 27, 30
NOMON instruction, 258, 260
Nonsignificant digit, 73, 75
NORMAL instruction, 103
NOTRACE instruction, 216
Numeric constant, 57
Numeric variable, starting value, 83

ON GOSUB instruction, 121
ON GOTO instruction, 97
On-line, 301
ONERR GOTO instruction, 225, 259,

280, 353, 356
OPEN instruction, 258, 261

Parameter, 6
Patch, 413
POL function, 250
PEEK instruction, 219

useful PEEK addresses, 220
Plus sign with string variables, 152
POKE instruction, 219

useful POKE addresses, 223
POKE 33, 33, 196
POKE 33, 40, 196

POP instruction, 114, 125
POS instruction, 246
PRINT instruction, 80

comma, 84,86
semicolon, 83, 86
TAB function, 88
SPC function, 88

PR#O, 434
Program, 15, 20, 21
Program execution mode, 26
Program loop, 80

Program name, 13
Protected, 21
PR# instruction, 247
PR#6, 10, 260

Index/ 513

RAM (Random Access Memory), 247
Random access, 379
Random number, 144
Random subroutine, 146
READ instruction DOS, 258, 275
READ/DATA instructions, 210
Real names, 53
Real numbers, 64
Real variables, 53, 132
RECALL instruction, 250
Record key, 297, 379
Record length, 274
Record number, 274
Redundant code, 326
Relationship indicator, 170
REM instruction, 27, 45
Remainder, 108
RENAME command, 19, 260
Replacement sort, 204
Report, 299
Reserve word, 53, 55
RESTORE instruction, 210, 215
RETURN instruction, 113
Right justified, 143
RIGHT$ function, 152, 158
RND function, 144
ROM (Read Only Memory), 247
Rounding error, 65, 67, 69
Routine, 110
RUN command, 18

Applesoft, 18
DOS, 18

SAVE command, 12, 13
Scientific notation, 67
Screen editing functions, 186
Scrolling, 36
Sector, 16, 253
Seed, 144
Semicolon, 79, 80, 83, 84
Sequential file, 296
Serial file, 296
SGN function, 148
Slot number, 6
Sorting, 205
SPC function, 80, 88
SPEED instruction, 49
Stack table, 115, 118

514 /Index

Start up program, 8
STOP instruction, 228
STORE instruction, 250
String constant, 57, 130
String functions, 151
String name, 53
String variable, 53, 57, 132
STR$ function, 153, 165
Subroutine, 110
Subroutines

Date Conversion Subroutine, 212
Edit Number Subroutine, 167
Error Subroutine, 226
Free Memory Subroutine, 238
Noise Subroutine, 219

Subscript, 202, 203
Switch, 219, 221
Symbolic name, 56

Table, 424
TAB function, 80, 88, 91
Tables, 202
Text file, 12, 16, 20, 21
TEXT instruction, 196, 246
Text window, 222, 241
Timing hole, 254
TRACE instruction, 216

Track, 253
Track/sector list, 253, 254, 255, 380
Trailing blanks, 212
Trailor record, 281
Transactions, 300
Turnkey system, 9

Unconditional GOTO, 96
UNLOCK command, 22, 259
Unlocked, 15
Update, 334, 398
USR instruction, 242
Utility program, 12

VAL function, 149, 161
Variable, 56, 284
Variable names, 53
Variable separator (comma), 272
VERIFY instruction, 259, 282
Version, 11
Volume number, 7, 13
VTAB instruction, 103, 184
VTOC, 253

WRITE instruction, 258, 271
Write protection notch, 254

NOW AVAILABLE

Save time and keep keyboarding errors
out of your programs!

A complete set of programs on disk is available for APPLESOFT BASIC TOOLBOX. All the programs
in this book can be run with a few simple keystrokes. These include the sequential and random disk
file programs, BASIC subroutines, and more.

Equipment you will need :

Hardware Apple II, II+, lie; monitor; 1 disk drive

Memory 48K

To order today, use the handy card below. (Available by mail only.)

APPLESOFT BASIC TOOLBOX

Please send me

___ (quantity) APPLESOFT BASIC TOOLBOX disks $16.95 each,
ISBN 0-201-14778-5

___ Check enclosed (include your state sales tax; Addison-Wesley will pay postage
and handling)

___ Charge to my VISA credit card # _______________ _
Expiration date:----------------

___ Charge to my MasterCard credit card# __________ __ _
Expiration date:-------- --------
Four digits above your name: ____ _______ _

YOUR SIGNATURE: _________ ___________ _

Name: ___ _________ Title: ________ ___ _

Company (if applicable):--------------------­

Address: - -------- ------------- ----

City: _ ____________ State: _____ ZIP: _____ _

OTHER TITLES OF RELATED INTEREST PUBLISHED BY

ADDISON-WESLEY, AVAILABLE AT BOOKSTORES AND

COMPUTER STORES NATIONWIDE

Pascal for BASIC Programmers
Seiter & Weiss ISBN 0-201-06577-0

Discovering Apple Logo
Thornburg ISBN 0-201-07769-8

The Addison-Wesley Book of Apple Sofiware 1984
(Available in Bookstores only)

Stanton, Wells, Rochowansky, Mellin ISBN 0-201-16453-1

Basic Money
Seiter ISBN 0-201-06599-1

Coming soon from Addison-Wesley:

The Netweaver's Sourcebook
Gengle ISBN 0-201-05208-3

Expanding and Maintaining Your Apple Personal Computer
Morrison ISBN 0-201-05157-5

Assembly Language for the Applesoft Programmer
Finley & Meyers ISBN 0-201-05209c l

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 11 READING, MA.

Postage Will Be Paid By Addressee

ADDISON-WESLEY
PUBLISHING COMPANY, INC.
Reading, Massachusetts U.S.A. 01867

Dept. MT

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

>$16 .. 95

M.0201147750

