F_‘VV‘—N

7 mICFO

COMPUTER

- BaKs
arry G. Wintermeyer

) Iesoﬁ BASIC
Ploolbox

ggo Using the Language and Creating Sequential,
andom Access, and Index Files

Applesoft BASIC Toolbox

Applesoft
BASIC Toolbox

Larry G. Wintermeyer

W Addison-Wesley Publishing Company
Reading, Massachusetts « Menlo Park, California
London « Amsterdam Don Mills, Ontario « Sydney

Library of Congress Cataloging in Publication Data

Wintermeyer, Larry G.
Applesoft Basic toolbox.

(Addison-Wesley microcomputer books popular series)

Includes indexes.

1. Apple computer—Programming. 2. Basic (Computer
program language) I. Title. II. Series.
QA76.8.A66W56 1983 001.64'24 82-22710
ISBN 0-201-14775-0

Apple, Apple II, Apple Ile, and Applesoft BASIC are trademarks of Apple Computer, Inc.

Copyright © 1984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-14775-0
ABCDEFGHIJ-HA-8987654

Part I

Contents

Using Applesoft BASIC

Getting Started 3
A Note on Redundance 4
Apple Ile versus Apple I + 5

DOS Control Commands 6
The INIT Command 8
Making Backup Copies 11
The SAVE Command 13
The CATALOG Command 14
The LOAD Command 16
The RUN Command 18

The RENAME Command 19
The LOCK Command 20
The UNLOCK Command 22
The DELETE Command 23
Other DOS Commands 24

The HOME Instruction 26
The NEW Instruction 30
The LIST Instruction 35
LIST: Format 1 35

LIST: Format 2 38

The DEL Instruction 42
The REM Instruction 45

The SPEED Instruction 49

Assigning Variable Names 53

vi / Contents

10

11

12

13

14

15

16

17

18

19

20

21

22

25

27

The INPUT Instruction 70
INPUT: Format 1 70

INPUT: Format 2 70

The PRINT Instruction 80
The GOTO Instruction 93
The ON GOTO Instruction 97
The END Instruction 101

The Screen Control Instructions 103
Methods of Clearing a Line 111

The GOSUB / RETURN Instructions 113
The ON GOSUB Instruction 121

The POP Instruction 125

The LET Instruction 127

Basic Numeric Operations in Applesoft 133
Arithmetic Functions in Applesoft 139
String Functions in Applesoft 151

The IF Instruction 170

The FOR / NEXT Instruction 179
Nested FOR / NEXT Instructions 183

The Screen Editing Functions 186
Editing Lines with Multiple Instructions 194
Summary of Edit Keys and POKE Functions 196

The GET Instruction 197
Using GET to Accept a Yes/No Response 200

The DIM Instruction 202
The READ / DATA / RESTORE Instructions 210
The TRACE / NOTRACE Instructions 216

The PEEK Instruction 219
Some Useful PEEK Addresses 220

28

29

31

32

33

Part 11

The POKE Instruction 221
Some Useful POKE Addresses 223

The ONERR GOTO Instruction 225
The STOP / CONTinue Instructions 228
The FRE(0) Instruction 233

Instructions Relating to Machine Language Routines
The CALL Instruction 241

The USR(Variable) Instruction 242

The LOMEM Instruction 243

The HIMEM Instruction 243

Other Applesoft Instructions 244

The DEF FN Instruction 244

The CLEAR Instruction 245

The TEXT Instruction 246

The POS(0) Instruction 246

The FP Instruction 246

The PR# Instruction 247

The IN# Instruction 247

Low-Resolution Graphics Instructions 248
High-Resolution Graphics Instructions 249
Game Controls 250

Magnetic Tape 250

Creating and Using Disk Files 251

Information Storage on Disks 253

Introduction to DOS Disk Instructions 257
The MON / NOMON Instructions 260

The OPEN Instruction 261

The APPEND Instruction 266

The WRITE Instruction 271

The READ Instruction 275

The CLOSE Instruction 280

The ONERR GOT Instruction (with Sequential Files)
The VERIFY Instruction 282

The MAXFILES Instruction 283

241

280

Contents / vii

viii / Contents

Appendix

The GET Subroutine 284

Why Use the GET Subroutine? 284
Instructions for Using the GET Subroutine 285
The GET Subroutine Listing 288

Serial and Sequential Disk Files 295

A General Introduction to Serial and Sequential Files
Problem Specifications 301

The Sequential File CREATE Program 306

The Sequential File HELLO Program 309

The Sequential File APPEND Program 316

The Sequential File UPDATE Program 334

The Sequential File LIST Program 358

The Sequential File SEARCH Program 364

Random Disk Files 378

A General Introduction to Random Files 379
Problem Specifications 384

The Random File CREATE Program 391
The Random File HELLO Program 395

The Random File UPDATE Program 398
The Random File LIST Program 417

Index Disk Files 437

A General Introduction to Index Files 438
Problem Specifications 445

The Index File CREATE Index Program 452
The Index File CREATE Data Program 455
The Index File HELLO Program 457

The Index File UPDATE Program 459

The Index File LIST Program 485

The Index File SEARCH Program 498

ASCII Character, Binary, and Decimal Table 508

Index 511

296

Section | USing App'ESOft BASIC

Getting Started

This book is intended for use by either the beginning or the experienced programmer.
Either person should find the material helpful in writing Applesoft programs.

For the beginning programmer the first half of the book includes detailed exam-
ples of each of the Applesoft instructions. Each instruction is explained using the
format of

Instruction name

Instruction format

Examples of instruction code
Purpose of the instruction

Rules for use

Illustration of the rules (examples)

Sh W

The instructions are presented in a sequence in which understanding of each new
instruction is based on an understanding of the instructions already presented.

It is important for the beginning programmer to spend time going through the
programs included with each instruction. The programs show more than just how
to code each instruction. They show how the instruction is used in conjunction with
other related instructions. They point out good and bad programming techniques.
They provide a visual reenforcement by seeing the instructions in action.

The amount of time spent by the beginning programmer on the first half of the
text will determine how easily the disk examples in the last half of the text will be
understood.

Although an explanation is included with each program, the beginner should
study the program code to obtain a better understanding of each instruction and
coding style used. A book on programming cannot be read as a normal book would
be read. The examples must be read and reviewed until the reader has a thorough
understanding of what each instruction does.

The experienced programmer who knows BASIC but does not know Applesoft
BASIC should go through the first half of the book looking specifically at the coding
rules. By scanning the rules the experienced programmer will be able to identify
differences between Applesoft and other BASIC languages.

Even the person who already knows Applesoft may want to go through the
programs to check out the coding style of another programmer. The quickest way
to learn programming is to study someone else’s code and to extract the best from
the examples of others.

3

4 | Applesoft BASIC Toolbox

For either the beginning or the experienced programmer, the first half of the
book includes good examples of how each instruction is used, and the programs
provide strong reenforcement of the rules for coding each instruction.

The second half of the book covers the instructions related to using various
types of disk files. A simple name and address system is used to illustrate the coding
logic for three access methods. Programs related to working with sequential files,
random files, and index files are listed and explained.

The disk programs illustrate the logic for creating disk files, updating disk files,
and inquiry/listing operations.

You may be overwhelmed by the size of some of these programs. But if each
program is studied in small sections (called modules or routines), you will be sur-
prised at how easy they are to understand. The first half of the book will come in
handy as a reference guide as you study the disk programs. You may want to flow-
chart or draw a diagram tracing the logic of the more difficult parts of the disk
examples.

The disk programs are intended to serve as models from which you can copy
and build other disk oriented programs. The logic for these programs changes very
little from application to application. The screen design, names of the variables,
and amount of information processed vary, but the basic program structure remains
the same.

Again, the purpose of the example disk programs is to serve as a model from
which you may build your own program. Use the examples when writing disk
programs which create, update, and work with disk files.

A Note on Redundance

The random example contains some redundant information which was presented in
the sequential example, and the index example contains some redundant information
from the random example. The redundance is intentional to allow each chapter to
be used individually and to provide reenforcement to newer programmers.

If the narrative sounds too redundant and you feel you already have a complete
understanding of the topic, skim the material until new information is encountered.

Getting Started / 5

APPLE Ile Versus APPLE 11+

The programs were written on the APPLE Ile but will run on either machine. To
keep the programs compatible with the APPLE II + none of the programs use lower
case letters or use screens wider than 40 columns.

Both versions of the APPLE have a CONTROL key located at the left of the
keyboard. On the APPLE Ile the word is spelled out, whereas on the APPLE II +
the word is abbreviated to CTRL. This book uses the complete word as it appears
on the APPLE Ile.

Slot Number

DOS Control Commands

There are nine APPLE disk control commands with which you should be familiar.
These commands are

INITialize
SAVE
CATALOG
LOAD
RUN
RENAME
LOCK
UNLOCK
DELETE

o pe TSy I A b hol

There are several more DOS (Disk Operating System) commands which are
used in special situations. The MONitor, NOMONitor, and MAXFILES commands
are covered in the second half of the book along with the disk file examples. The
commands EXEC, BSAVE, BLOAD, and BRUN are not covered in detail. They are
explained briefly at the end of this chapter under the topic, Other DOS Commands.
See the APPLE DOS Manual for greater detail.

With the exception of the MONitor, NOMON:itor, and MAXFILES commands,
each of the DOS commands has three optional parameters. In other words, there
are three units of information which you may code depending on your needs. The
parameters are separated by commas and follow the keywords SAVE, CATALOG,
LOAD, RUN, RENAME, LOCK, UNLOCK, and DELETE.

The three optional parameters provide information on

L

Which slot the disk control card is in

2. Which of the two drives connected to the disk control card you want to use

3. The volume number (identification number) of the diskette you want to work
with

The APPLE has eight slots in which electric components may be connected to attach
external devices such as disks, printers, monitors, data communication equipment,
etc. Think of each slot as an electric wall outlet into which you can plug a computer

Drive Number

Volume Number

DOS Control Commands / 7

device. The disk control card is placed in one of these slots and can control up to
two disk drives. This book does not use the slot number option for the DOS com-
mands.

If you have only one or two disk drives, the computer keeps track of which
slot the disk control card is in.

If you have more than two disk drives attached to your computer, see the APPLE
DOS Manual for information on the use of the slot parameter.

Each disk control card used with the APPLE computer can control two disk drives.
If the system you are using has only one disk drive, then the computer keeps track
of everything for you. Those of you who have more than one disk drive may tell
the computer which of the two drives you wish to use by entering D1 or D2 following
the disk commands. Make sure each of your disk drives is physically marked DRIVE
1 (D1) or DRIVE 2 (D2) so you can keep track of which label to use.

When you omit the D1 or D2 following a disk command the computer assumes
you want to work with the last disk used. For example,

SAVE PROGRAM NAME

saves the program on the last disk used

SAVE PROGRAM NAME,D2

saves the program on disk drive 2 no matter which disk drive was previously used.

If you want to use a specific drive and you are not sure which of the two drives
was used last, code a D1 or D2 to indicate which drive is to be accessed. It is better
to be safe than sorry.

The terms diskette, disk, and floppy disk are all synonyms. The term diskette
or floppy disk is normally shortened to disk.

Each disk has an identification number, which may range from 0 to 254. The volume
number acts as a security measure to aid you in protecting information on your disk.
The volume number is not required when working with the disk, but if you have
only one drive and are switching disks in and out of that drive, you may want to get
into the habit of using the volume number to make sure the computer is addressing
the correct disk.

When the volume number is not given or a value of 0 is used, the computer
carries out the action you have requested on the disk without checking the label.

SAVE PROGRAM NAME
SAVE PROGRAM NAME, V000

8 / Applesoft BASIC Toolbox

If the volume number is used, the number following the V must match the
volume number of the disk in the drive or the computer gives you a NO MATCH
error message and cancels the action you have requested.

SAVE PROGRAM NAME,V001

The slot number, drive number, and volume number are all optional parameters.
When the optional parameters are used, they may occur in any sequence, but each
number must be preceded by either an S for slot, D for drive, or V for volume. Do
not use the slot option unless you have more than two drives and you know where
the disk control cards are connected. If you give the computer a slot number or drive
number that does not exist, it tries to use the nonexistent position, and the computer
system locks up!

Now that I have you completely confused and afraid to use the instructions,
read the next few pages and see how easy the instructions are to use.

The INIT Command

Command

Example

Purpose

Rules for Use

lllustration
of the Rules

INIT program name,Snumber,Dnumber,Vnumber
It is important to remember that this command should not be used with any
disk which contains programs or files you want to keep.

INIT HELLO,D1,V001
Initialize the disk in drive 1 with a start up program named HELLO and a volume
number of 001.

The INIT command is used to format a new disk so it may be used with APPLE
DOS.

[

The program name parameter of the INIT command is required.

If no volume number is specified, a default value of 254 is used.

3. The drive number is optional but should be included if the system you are using
has more than one disk drive.

4. This command reformats the disk and destroys any data which is on the disk.

o

When you buy a blank disk you must use the INIT command to format the disk so
it is compatible with APPLE’s DOS. Since this command destroys all information
on the disk, DO NOT USE IT on any disk which contains data you wish to keep.

DOS Control Commands / 9

Diskettes must be initialized with a start-up program. As an APPLE standard
this program is normally called HELLO. The program can serve simply to identify
the disk or may be the drive program for a turnkey system.

A turnkey system is a computer system which is designed so all the user has
to do is insert a disk into drive 1, turn the computer on, and follow the directions.

The drive program or control program of a turnkey system determines the
sequence in which other programs within the system are executed.

Whenever the APPLE is turned on, the computer automatically executes the
start up program from the disk located in drive 1. The process of executing the start
up program from drive 1 is called booting. Use the following procedure to initialize
a disk and create a HELLO program.

The following example uses only a very simple start up program which displays
the disk name and volume number. In the chapter on sequential disk operations, an
example is provided of a more involved HELLO program.

1. Insert the blank disk into the drive you are going to use. If your system has
more than one drive, open the doors on all the other drives. This eliminates
the chance of destroying a good diskette.

2. Use the CATALOG command to ensure that the disk is actually blank. Key in
the CATALOG command as shown below and press RETURN. The disk will
whirl and make a loud noise, then the message I/0O ERROR (Input/Output Error)
will be displayed. If you don’t receive the I/O error but get a listing of the disk
catalog, then check to make sure you want to destroy this disk and lose all the
programs and files which are currently on it. Enter

CATALOG,D1 <RETURN>

Substitute D2 for D1 if you are using the second disk drive.

3. If you are sure the disk is the one you wish to initialize, continue; otherwise
take out the disk and start over.

4. Key in the following HELLO program.

NEW

HOME

1000 REMHELLO PROGRAM

1010 HOME

1020 PRINT "** WORK DISK FOR SAMPLE PROGRAMS **"
1030 PRINT " VOLUME 001"

1040 END

You can change the disk title on line 1020 and the volume number on line 1030
to any message you would like.
5. Now are you ready? Enter

10 / Applesoft BASIC Toolbox

INIT HELLO,V001,Dnumber

Now press RETURN and wait for about 30 seconds until the disk stops spinning
and the red light on the disk goes off.
When the disk stops and the red light goes off, enter

CATALOG <RETURN>

You will get a catalog listing of volume number 001 as shown in the following
display:

DISK VOLUME 001

A 002 HELLO

The disk is now ready to store programs or data files.
To test the HELLO program, execute the following steps:

1. Place the newly initialized disk in drive 1.
2. Turn the computer off and then back on or enter

PR#6 <RETURN>

Entering PR#6 has the same effect as turning the computer off and then back
on.

Unless the APPLE computer you are working with is one of the older models,

the disk will whirl and the HELLO program will run.

After the HELLO program has executed, the screen will appear as shown in the

following display:

** WORK DISK FOR SAMPLE PROGRAMS **
VOLUME 001

DOS Control Commands / 11

Making Backup Copies

Rules to smile by:

1.

2
3.

Always keep a backup copy of your programs and data files.

Temporary backups may be kept on the same diskette.

Permanent backups should be kept on a separate disk and in a physical
location separate from the original disk.

One of the first lessons you will learn is to always keep a backup copy of your

work. Sooner or later you will experience the frustration of losing a file or program
because of one of the following:

After spending time writing or changing a program, you forget to SAVE the
program before turning off the computer.

While you are keying in a large program, power to the computer is lost, and
you did not periodically SAVE your work.

You have been working on several programs, and without thinking (or checking)
which program is currently in memory, you SAVE the program. Later you
discover you SAVEd the program in memory under the same name which was
used to SAVE a previous program. The earlier program is destroyed, and unless
you have a backup copy you must rekey the old program. If you do not have a
printed copy, you must rethink and recode the logic.

You have made some minor changes to one of your programs which works with
a disk file. Since the changes were minor, you didn’t test the program com-
pletely. Later you find that because of a program error, the data on the disk file
you were using has been destroyed. If you do not have a backup copy of the
data file, you must now spend hours keying in the data to recreate the file.
Your disk gets destroyed by spilled coffee, stray magnets, folding and mutila-
tion, etc. .

There are many other ways to lose programs and files. You will probably find
some of your own unique methods. Please keep a backup copy of your work.

Creating Periodic Backup Copies

While working on a new program or making major changes to an old program,
SAVE the program periodically, but use a new name each time. After you are done
you can go back and delete the older versions of the program. In the example that
follows the V stands for version and is followed by a number indicating the most
recent version.

12 / Applesoft BASIC Toolbox

Example SAVE program name V1 then 30 to 40 lines later
SAVE program name V2 then 30 to 40 lines later
SAVE program name V3

How to Make a Backup Copy of a Program

Making a backup copy of a program is easy. First, use the LOAD command to copy
the program from the disk to the computer’s memory. Second, use the SAVE com-
mand to transfer the program from memory to the new disk. This process works
only for Integer BASIC and Applesoft BASIC programs. Text files and binary files
cannot be copied using this method.

When saving the backup copy use the same program name but add the word
BACKUP or COPY?2 to it.

For single disk systems:

[y

LOAD program name
Take out the original disk and replace it with the backup disk
3. SAVE program name BACKUP

=

For two disk systems:

1. LOAD program name,D1
2. SAVE program name BACKUP,D2

Making Backup Copies of Data Files or Large Numbers of Programs

If you want to make a copy of a data file (or what APPLE calls a text file), the
system disk, which comes with the APPLE computer, contains a good copy program.
The FID program (Flle Developer) can copy any type of file (Text, Applesoft BASIC,
Integer BASIC, Binary) individually or as a group from one disk to another. If you
have a copy of the system disk and APPLE DOS Manual, read the section in the
manual on how to use the FID program. If you do not have a copy of the program
or manual, find someone who does, and make it a point to learn how to use the FID
program.

Making a Backup Copy of an Entire Diskette

If you want to make a copy of an entire disk, APPLE has a utility program named
COPYA which will do the job. The term utility program refers to a program normally
provided by the computer manufacturer which serves the common processing needs
of persons using the computer. The COPYA program is one of the main utility
programs you should know how to use. If you have a copy of the system disk and
APPLE DOS Manual, use this program whenever you want to create a complete
backup of a disk.

DOS Control Commands / 13

The SAVE Command

Command SAVE program name,Snumber,Dnumber,Vnumber

Example SAVE PAYROLL PROGRAM,D1,V001
Saves the program on disk volume 1, located in drive 1, under the name
PAYROLL PROGRAM.

Purpose The SAVE command is used to copy the program currently in memory to a disk and
assign it a name.

Rules for Use 1. The SAVE command must be followed by the name you wish to assign to the
program currently in memory.

2. The program name may be from 1 to 30 characters long. It must start with an
alphabetic character. If the name is not unique, that is, if you use a name which
already exists on the disk, then the old program is deleted and the new program
stored under that name.

3. The slot, drive, and volume parameters following the keyword SAVE are optional
and may occur in any sequence. If the optional parameters are used, each
number must be preceded by either S for slot, D for drive, or V for volume.
Each parameter must be separated by a comma.

When the drive number is not given, the computer places the program on the last
drive used. If you wish to place the program on a specific drive, use either D1 or
D2 to indicate which drive.

When the volume number is not given, the computer stores the program without
checking the label of the disk. If the volume number is used, the number following
the V must match the volume number of the disk or the program is not stored.

lllustration Key in the following program:
of the Rules
NEW
1000 HOME
1010 PRINT "SAVE COMMAND"
1020 PRINT " 1. GIVES PROGRAM A NAME"
1030 PRINT " 2. COPIES IT TO DISK SO THAT IT CAN"
1040 PRINT " BE USED AGAIN."
1050 END

If you want to save the program on a disk other than the one which is currently in
the drive you are using, switch the disks now, i.e., take out the disk you don’t want
to use, and put in the one onto which you want to copy the program.

14 / Applesoft BASIC Toolbox

Before entering the SAVE command, you must know which disk drive is going
to be used when storing the program. If you only have one drive, you do not need
to use D1, and don’t try to use D2. Should you have two drives, decide which drive
you want to write the program on. Use D1 for drive 1 or D2 for drive 2.

Now enter the following command with the correct number following the D.
If you have only one drive, omit the comma and disk parameter.

SAVE DISK COMMANDS SAMPLE1,Dnumber <RETURN>

The disk will whirl for about 5 seconds and stop. If the cursor returns and a
message has not appeared on the screen, you have now stored a program on the
disk. Should you get an error message, make sure you have the correct diskette in
the correct drive and try again.

To check your work and ensure that the program was written on the disk, see
the CATALOG command in the following section.

The CATALOG Command

Command

Example

Purpose

Rules for Use

CATALOG Snumber,Dnumber,Vnumber

CATALOG,D1
Lists the programs and files which are on the disk located in drive 1.

The CATALOG command allows you to list on the screen the programs and files
which are stored on a disk.

1. The slot, drive, and volume parameters following the keyword CATALOG are
optional and may occur in any sequence.

2. When the drive number is NOT SPECIFIED the computer lists the catalog or
index of the disk which is in the last drive accessed. Use D1 or D2 to override
the default option.

3. If the volume number is specified, the computer checks for a match. When the
volume numbers do not match, the computer cancels the command and lets
you put the correct disk in the drive. After the correct disk is in the drive, you
must reenter the CATALOG command.

lllustration
of the Rules

DOS Control Commands / 15

To see what files are on the disk, enter the following command:
CATALOG,Dnumber <RETURN>

The disk will whirl, and the program and file names will be listed on the screen.
The terms file and program are synonyms when discussed in conjunction with the
APPLE disk catalog. When there are more than 18 names on the disk, the screen
fills up and stops so you may read the information. If the file is not in the group
being displayed, press any symbol key, and the computer will show you more file
names from the disk’s catalog. Depending on how many files are on the disk, you
may need to look through several screens before you find the right program name.
A disk may contain up to 105 files.

Remember you are looking for the program named DISK COMMANDS SAMPLE1
which you just SAVEd on the disk. Since the program was just SAVEd, you might
think it would be the last one listed in the CATALOG. This may or may not be the
case, as DOS puts the name of the program in any available space. If you have been
adding and deleting files from your disk, there will be gaps where names have been
deleted. When you SAVE a program or create a data file, DOS puts the name in the
first unused area of the catalog.

Did you find the program name?

If so, continue; if not, type in CATALOG <RETURN> to see the list again. If
the program is not there, go back and start over with the SAVE command.

Did you notice that when you entered the CATALOG command the first line
displayed gave the disk volume number? If you did not see the disk volume message
enter the CATALOG command again. The first line will read

DISK VOLUME 001

Each line of the catalog listing consists of four parts. The first character of
each line indicates whether the file or program is locked.

*A 023 LOCKED APPLESOFT PROGRAM
1 Asterisk indicates file is locked

T 015 UNLOCKED TEXT FILE
1 Blank indicates file is unlocked

The second character of each line indicates the type of file or program format.

*A 011 RANDOM ADDRESS UPDATE PROGRAM
1 An A indicates an Applesoft BASIC program

16 / Applesoft BASIC Toolbox

The following codes are used to represent the four types of disk files.

A: for Applesoft BASIC programs
I: for Integer BASIC programs

B: for Binary files

T: for Text files

The numbers next to the file name indicate how much room (in sectors) each
file takes up on the diskette. Each disk sector contains 256 characters, and each disk
has 496 sectors available for programs and files.

*A 003 program or file name
1M1 Indicates that the program or file takes up 3 disk sectors

The following represents a sample CATALOG listing of disk 001.

DISK VOLUME 001

A 003 HELLO

*T 018 LOCKED TEXT FILE 18 SECTORS

I 020 UNLOCKED INTEGER BASIC PROGRAM
B 027 UNLOCKED BINARY PROGRAM

The LOAD Command

Command

Example

Purpose

Rules for Use

LOAD program name,Snumber,Dnumber,Vnumber

LOAD PAYROLL PROGRAM,D1
The system locates the name PAYROLL PROGRAM on the disk in drive 1 and
then LOADs the program into memory.

The LOAD command copies a program from the disk into memory. You normally
use the LOAD command to retrieve a program from the disk in order to make changes
or to review the code before running the program.

(Some of these rules should sound familiar.)

1. The program name must be spelled exactly as it was orginally recorded or the
program is not loaded.

lllustration
of the Rules

DOS Control Commands / 17

2. The slot, drive, and volume numbers following the program name are optional.
If the slot, drive, or volume numbers are used, they may occur in any sequence.

3. When the drive number is not specified, the computer looks for the program on
the last disk drive accessed.

4. When the volume number is specified, it must match the disk in the drive being
referenced in order for the program to be loaded.

Load the program by entering
LOAD DISK COMMANDS SAMPLE1,Dnumber <RETURN>

Use of the comma and drive number is optional if the program is on the disk
drive which was used last. Otherwise you must tell the computer on which drive the
program is located.

The disk will whirl as the program is being loaded. The longer the program,
the longer the disk will run.

If the cursor comes back on the screen and no error message has been displayed,
then the program was successfully loaded. Now to convince yourself that the pro-
gram is really there, enter

HOME <RETURN>
LIST <RETURN>

What do you know! There it is! (I hope.)
If the computer beeps and displays the error message

FILE NOT FOUND

check that you spelled the name correctly.

If you spelled the name exactly as you did when you SAVEd the program, be
sure you have the right disk in the correct drive. If you have done all this correctly,
go back to the CATALOG command and find the name of the program. Recheck the
name on the disk and make sure you have spelled it EXACTLY as it is shown on
the catalog listing.

Before going on, see what happens when you do make a mistake.

Don’t ever be afraid of making mistakes. Most programmers learn by trial and
error. To err is human, to err perfectly takes a computer.

1. Misspell the name and see what happens. Enter
LOAD DISK COMMANDS SAMPLE 1 <RETURN>
Notice that there is a space between SAMPLE and 1. You will get the message

FILE NOT FOUND

18 / Applesoft BASIC Toolbox

2. Take out the disk and see what happens. Enter
LOAD DISK COMMANDS SAMPLE1 <RETURN>

In this case the spelling is correct but there is no disk from which to read the
file. You will get the message

I/0 ERROR

3. If you have an extra disk, place it in the drive where the computer expects to
find the program and see what happens. Enter

LOAD DISK COMMANDS SAMPLE1 <RETURN>

In this case the spelling is correct, but the disk being searched does not contain
the program. You will get the message

FILE NOT FOUND

The RUN Command

Command

Example

Purpose

Rules for Use

RUN program name,Snumber,Dnumber,Vnumber (DOS format)
RUN (Applesoft format)

RUN PAYROLL PROGRAM,D1
The system locates the program named PAYROLL PROGRAM on the disk in
drive 1, loads it into memory, and runs it.

The DOS version of the RUN command copies a program from the disk into memory
and then starts executing it. If you want to execute a program without looking at or
changing the code, use the RUN command.

The DOS RUN command both loads and executes the program, while the LOAD
command shown previously only brings the program into memory.

The Applesoft version of the RUN command is used to execute the program
currently in memory and does not load a program from the disk.

(The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

llustration
of the Rules

DOS Control Commands / 19

1. If the RUN command is used without any parameters, the program currently
in memory is executed. RUN by itself is an Applesoft command and does not
involve any disk operations.

2. If RUN is followed by a program name, the name must be spelled exactly as it
was originally recorded or the program is not run.

If you have just LOADed a program, RUN it by entering
RUN <RETURN>
Otherwise, both load and run a program by entering
RUN DISK COMMANDS SAMPLE1 <RETURN>
(use drive number if needed).
After you have entered the RUN command, the screen will clear and the four

lines of information from the program will be displayed (see sample screen). Remember,
the program was written and saved in the SAVE command section.

COMMAND
. GIVES PROGRAM A NAME
. COPIES IT TO DISK SO THAT IT CAN

BE USED AGAIN.

If the program did not work as expected, go back to the SAVE command and
start over or attempt to correct the code and rerun the program.

The RENAME Command

Command

Example

RENAME current program name,new program name,Snumber,Dnumber,
Vnumber

RENAME PAYROLL PROGRAM,PAYROLL PROG,D1
The system locates the name PAYROLL PROGRAM in the disk library and then
changes it to PAYROLL PROG.

20 / Applesoft BASIC Toolbox

Purpose

Rules For Use

lllustration
of the Rules

The RENAME command can be used to change the names of either programs or
files.

(The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. The first name must be exactly the same as the current name on the disk.

2. The second parameter represents the new name for the program or file. The
new name should not exist on the disk or else the renaming process causes two
files with the same name to be on one diskette. If a disk contains more than
one file with the same name, you can only access the first of the two files.

For the RENAME, LOCK, UNLOCK, and DELETE commands the terms file and
program are synonomous. These four DOS commands treat text files the same as
program files. Normally the term file is used to describe a text file, while the term
program is used to describe a file of instructions.

The name assigned to the program was fairly long. Let’s give the program a shorter
name by entering

RENAME DISK COMMANDS SAMPLE1,DISK INST EX1 <RETURN>

(use drive number if required).

The disk will whirl, and when the cursor returns, the name has been changed.
If you get an error message such as FILE NOT FOUND check your work and try, try
again.

To see if the RENAME instruction worked, list the catalog by entering

CATALOG <RETURN>

The new name DISK INST EX1 will be somewhere in the catalog listing.

The LOCK Command

Command

Example

LOCK program name,Snumber,Dnumber,Vnumber

LOCK PAYROLL PROG,D1
The system finds the program named PAYROLL PROG in the disk library (cat-
alog) and flags the program as being protected.

DOS Control Commands / 21

Purpose Programs: The LOCK command allows you to tag a program as protected, and the
computer does not allow it to be DELETEd, or RENAMEJ, or another program
SAVEd under the same name.

Text Files: The LOCK command also allows you to tag a data file as protected,
and the computer does not allow it to be DELETEd or RENAMEd. The computer
also prevents a program from creating a new file with the same name or writing new
records to the locked file. A text file which is locked can ONLY BE READ. If you
try to write to a LOCKed file, the program is canceled and an error message is
displayed.

Rules for Use (The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. The RUN, LOAD, and CATALOG commands are not affected by the LOCK
command.

2. The SAVE, RENAME, and DELETE commands cannot be used on a file or
program name once it has been LOCKed.

3. Before the SAVE, RENAME, or DELETE command can be used with a file or
program name which is locked, the UNLOCK command must be used.

lllustration Let’s pretend the program you are using is worth protecting. Lock it by entering
of the Rules

LOCK DISK INST EX1 <RETURN>

The disk will whirl, and the blinking cursor will appear with no messages
displayed. If you get an error message, check the spelling, make sure you have the
correct disk in the correct drive, and try again.

To check your work, use the CATALOG command to list the disk directory.
You should get the following entry.

*A 002 DISK INST EX1
1 Asterisk indicates locked Applesoft program

Now try to destroy the program by any of the following methods:
1. SAVEing a program with the same name. Enter

SAVE DISK INST EX1 <RETURN>

You will get the following message:

FILE LOCKED

22 | Applesoft BASIC Toolbox

2. RENAMEing the program. Enter
RENAME DISK INST EX1,WILL NOT WORK
You will get the following message:
FILE LOCKED
3. DELETEing the program. Enter
DELETE DISK INST EX1
You will get the following message:
FILE LOCKED

In theory the only way to destroy a LOCKed program is to destroy the disk.

The UNLOCK Command

Command

Example

Purpose

Rules for Use

UNLOCK program name,Snumber,Dnumber,Vnumber

UNLOCK PAYROLL PROG,D1

The system finds the program in the disk library and then removes the flag
indicating that it is protected.

The UNLOCK command allows you to change your mind and remove the protection
provided by the LOCK command.

(The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. Think twice before you UNLOCK a file or program. Once the program is unlocked,
it can be destroyed by accidentally saving a program under that same name or
mistakenly deleting the program.

2. You can tell which files are unlocked by using the CATALOG command. If the
file is locked there is an asterisk (*) at the far left of the screen. When no
asterisk appears in front of the program or file name, the information is
unprotected.

lllustration
of the Rules

DOS Control Commands / 23
The program you placed on the- disk is not worth protecting. Use the UNLOCK
command to remove the protection of the program so it may be deleted. Enter
UNLOCK DISK INST EX1 <RETURN>
Use the CATALOG command to check whether the asterisk was removed. Enter
CATALOG <RETURN>

The program name will be listed in the catalog without an asterisk in the leading
character position.

A 002 DISK INST EX1
1 Blank character indicates file is not locked

The DELETE Command

Command

Example

Purpose

Rules For Use

DELETE program name,Snumber,Dnumber,Vnumber

DELETE PAYROLL PROG,D1
The system removes the program name from the disk library. The program is
lost and the space it occupied freed.

The DELETE command allows you to remove currently unwanted programs or files
from the disk. I stress currently because after you delete a program you may change
your mind.

(The rules for Snumber, Dnumber, and Vnumber have been omitted; see the SAVE
command.)

1. Make sure you want to delete the file or program before entering the command.

2. Spell the name correctly, and make sure you use the name of the program or
file you intend to delete.

3. Double check. Think twice. Is there a backup copy? Are you sure you want to
DELETE the file? If so, press RETURN.

24 / Applesoft BASIC Toolbox
lllustration Since the program does not really do anything useful and you will not need it
of the Rules anymore, delete it by entering

DELETE DISK INST EX1 <RETURN>

To make sure the program has been deleted, use the CATALOG command.
Enter

CATALOG <RETURN>

The name DISK INST EX1 should no longer be in the catalog listing.

Other DOS Commands

The following DOS commands are used in special situations. For further information
on these commands, see the APPLE DOS Manual.

BSAVE f,Aa,Ln,Snumber,Dnumber,Vnumber

Where:
f = FILENAME
Aa = A is followed by the starting address in memory from which the data is to be
copied
Ln = L is followed by a value indicating the number of bytes to be copied to the
disk

The BSAVE command is used to create a disk file containing the contents of a specific
area of memory. It can be used to save a high-resolution graphics picture or to save
a machine language routine which has been POKEJ into a specific memory location.

BLOAD f,Aa,Snumber,Dnumber,Vnumber
Where:
f = FILENAME

Aa = Ais followed by the starting address in memory into which the data is to be
copied

DOS Control Control Commands / 25

The BLOAD command is used to load a disk file into a specific area of memory. It
can be used to load a high-resolution graphics picture into the first or second high-
resolution screen area or to load a machine language routine which can later be
executed by the CALL instruction.

BRUN f,Aa,Snumber,Dnumber,Vnumber
Where:

f = FILENAME
Aa = A s followed by the starting address in memory into which the data is to be
copied

The BRUN command is used to load a disk file into a specific area of memory and
then branch to that address to start execution of a machine language program.

EXEC filename

The EXECute command is used to run a text file consisting of DOS commands and
lines of BASIC code. The commands in the text file operate as if they had been
entered from the keyboard. Use of the EXEC and TEXT file allows a stream of
programs and processing steps to be linked together in such a way that the operator
need only know how to turn the computer on and enter data.

3.

Instruction

The HOME Instruction

HOME

Purpose The HOME instruction is used to clear the screen and position the cursor in the upper
left hand corner of the screen.

Rules for Use

lllustration
of the Rules

26

1.

The instruction may be used in either immediate execution mode or program
execution mode. Immediate execution mode means the instruction is executed
when the RETURN key is pressed. To enter an instruction in immediate exe-
cution mode, leave off the statement number.

HOME <RETURN>

The screen is cleared immediately upon pressing RETURN.

Use the HOME instruction in immediate execution mode to clear the screen
and position the cursor when entering new programs.
Program execution mode means the instruction is not executed until it is encoun-
tered during the execution of a program. Any statement which starts with a line
number is only executed after a RUN command has been given.

NEW <RETURN>
1000 HOME <RETURN>
RUN <RETURN>

The screen is not cleared until after the RUN command is entered.

Use the HOME instruction in the program execution mode to clear the
screen and position the cursor during program execution.
The HOME instruction has no effect on program or the contents of memory.
Only the screen and cursor are affected by the instruction.
The HOME instruction has no effect when writing data to a hard copy printer.
The instruction is only used in conjunction with the display screen.

Key in the following program, or load and list the program by entering

LOAD HOME SAMPLET <RETURN>
LIST <RETURN>

NEW

HOME

1000

1010

“1020-1080

1090

The HOME Instruction / 27

When keying in the program, remember to press RETURN after each line. Also,
when keying in the REMarks instruction do not key a blank following the keyword
REM. Applesoft will generate a blank for you when the program is listed.

NEW

HOME

1000 REMHOME SAMPLE1

1010 HOME : REMCLEARS SCREEN AT START OF PROGRAM
1020 PRINT "THE PURPOSE OF THE HOME INSTRUCTION"
1030 PRINT "IS TO:"

1040 PRINT "1. CLEAR THE SCREEN"

1050 PRINT "2. POSITION THE CURSOR"

1060 PRINT

1070 PRINT "PRESS ANY KEY AND WATCH THE HOME"
1080 PRINT "INSTRUCTION IN ACTION"

1090 GET X$: REMSTOPS PROGRAM UNTIL KEY PRESSED
1100 HOME: REMCLEARS SCREEN AT END

1110 END

Before keying in a new program, use the NEW instruction to clear the computer’s
memory. The computer should always be cleared before keying in a program.

When LOADing or RUNning the program from disk, it is not necessary to use
the NEW instruction since both commands automatically clear memory.

If you are keying in the program yourself, you can use the HOME instruction in
immediate execution mode to clear the screen and position the cursor at the upper
left hand corner.

The first line of all programs in this text uses the REMarks instruction to give the
name of the program. By following this standard you can list line 1000 after making
changes and find out the name of the program in order to properly SAVE it on the
disk.

The second line of the program uses the HOME instruction in program execution
mode to clear the screen and position the cursor at the upper left hand corner of the
screen. The colon following the keyword HOME separates the HOME instruction
from the REMarks instruction. REMarks is used in this example to document the
program and indicate what the HOME instruction is to accomplish.

Lines 1020 through 1080 print a series of messages on the screen which tell what
the HOME instruction does and request that you press a key in order to see the HOME
instruction in action.

The GET instruction accepts one character from the keyboard. It is used in this
example to cause the computer to stop while you read the message. When you have

28 / Applesoft BASIC Toolbox

1100

1110

read the message and responded by pressing any key, the computer continues to the
next statement.

Note: To simplify the example the operator was allowed to press any symbolic key.
In actual practice you should code your programs to ask for a specific response from
the operator.

After you have pressed a key, the computer executes the HOME instruction on line
1100. The instruction clears the screen at the end of the program and positions the
cursor in the upper left hand corner.

The END instruction stops execution of the program. Once the END instruction is
encountered no further instructions are executed.

Exercise 1: The HOME Instruction in Program Execution Mode
1. After you have keyed in the program, enter

HOME <RETURN>
LIST <RETURN>

Check the listing against the sample listing. Make sure you didn’t make any
mistakes.
2. Once you are sure the program is keyed correctly, enter

RUN

(but don’t press RETURN yet).
Now watch the screen and see what happens when you press RETURN.
The screen will clear because of the HOME instruction on line 1010:

1010 HOME: REM CLEARS SCREEN AT START OF PROGRAM

The information from the PRINT instructions will be displayed starting at the
top of the screen. If you encounter a syntax error, correct the line in error and
start over at step 1.

A SYNTAX ERROR occurs when you key in an instruction without fol-
lowing the coding rules for that instruction.

For example, if you misspell an instruction—HOEM instead of HOME—
the machine cannot recognize the instruction and cancels the program. To let
you know what went wrong, the computer displays the message SYNTAX
ERROR along with the statement number which was in error.

The HOME Instruction / 29

After you have read the information on the screen, press any key and the HOME
instruction on line 1100 will be executed. The screen will be cleared and the
cursor repositioned.

Again, if you encountered a syntax error, correct the code and start over
at step 1.

Exercise 2: The HOME Instruction in Immediate Execution Mode

1.

List the program by entering
LIST <RETURN>

At this point your screen will have the program displayed just as you entered
it. Use the HOME instruction to clear the screen by entering

HOME <RETURN>

(but don’t press RETURN yet!). Now watch what happens to the screen when
you press RETURN. The screen will be cleared, but the program will still be
in the computer’s memory.

To prove that the program is still there, enter

LIST <RETURN>

Just like magic the program will reappear. (If your magic fails start over by
returning to the first page of the HOME instruction and trying again.)

30

Instruction

Purpose

Rules for Use

lllustration
of the Rules

The NEW Instruction

NEW

The NEW instruction is used to clear (erase) the current program in memory and
ready the computer for a new program.

Note that you should always use the NEW instruction with care. Do not destroy
a new program before SAVEing it on the disk.

Normally the very first line you enter before keying in a program is the NEW
instruction. The instruction is executed immediately when you press RETURN and
clears memory so you can enter a new program.

You do not see any change in the screen when entering the NEW instruction,
but believe it: Any program in memory is gone. If you want to keep the program
you have keyed in or keep a program you have made changes to, make sure you
SAVE the program prior to entering the NEW instruction.

Unless you are sure of what you are doing, only use the NEW instruction in
immediate execution mode. If the instruction is used in the program execution mode,
the program is self-destructing (see Exercise 3).

1. The NEW instruction should only be used before entering a new program or,
if you are sure of what you are doing, as the VERY LAST instruction of a
program to erase memory.

2. The NEW instruction clears the computer’s memory but does not change any-
thing displayed on the screen.

3. If the NEW instruction is used during execution of the program it destroys the
program.

Key in the following program. Remember to press RETURN after each of the entries.

NEW

HOME

1000 HOME

1010 REMA VERY SHORT SAMPLE PROGRAM
1020 END

Note: Do not key a blank between REM and A. Machine will insert a blank for you.

NEW

HOME

1000

1010

1020

The NEW Instruction / 31

When you key in the NEW instruction without any statement number, memory is
immediately cleared. The screen image remains unchanged.

When you key in the HOME instruction without any statement number, the screen
is cleared and the cursor is positioned in the upper left hand corner of the screen.
Memory remains unchanged.

The first line of the program is the HOME instruction, which clears the screen and
positions the cursor.

The second instruction uses the REMarks instruction to tell you this is a very short
program. (As if you could not tell.)

The third and last instruction in the program ENDs the execution of the program.

Exercise 1: Mixing Lines of Code, or Why Use the NEW Instruction?
1. To see the three lines of code you typed, enter
LIST <RETURN>

2. Now let’s assume you want to enter another program but forget to first use the
NEW instruction to clear memory. Enter the following three lines:

1005 REMNEW LINE NUMBERS ARE MERGED IN WITH OLD LINE NUMBERS
1010 REMMATCHING LINE NUMBERS REPLACE OLD LINE NUMBERS
1015 REMTHE RESULT IS A MIX UP OF TWO PROGRAMS

3. To see how these lines are treated, enter
LIST <RETURN>
You will see the following mixed lines of code:

1000 HOME

1005 REM NEW LINE NUMBERS ARE MERGED WITH OLD LINE NUMBERS
1010 REM MATCHING LINE NUMBERS REPLACE OLD LINE NUMBERS
1015 REM THE RESULT IS A MIX UP OF TWO PROGRAMS

1020 END

Notice that the new line numbers 1005 and 1015 are merged with the existing

32 / Applesoft BASIC Toolbox

program, while the new line number 1010 replaces the previous line of code
with the same number.

The example shows you why it is important to clear memory before enter-
ing a new program. If you do not clear memory, chances are very good the
new program you key in will be merged with the previously used program,
resulting in a mell-of-a-hess.

Exercise 2: 'The NEW Instruction in Inmediate Execution Mode

1.

Once more, the very first line entered before keying in a new program is the
NEW instruction. The instruction is executed when you press RETURN and
clears memory so you can enter a new program.

The NEW instruction destroys the program in memory but does not change
anything displayed on the screen. (But believe it: Any program in memory is
gone. Make sure you SAVE your work before typing in NEW.)

Let’s start by clearing the screen and listing the current program in mem-
ory. Enter

HOME <RETURN>
LIST <RETURN>

The screen should now contain the five lines previously entered:

1000 HOME

1005 REM NEW LINE NUMBERS ARE MERGED WITH OLD LINE NUMBERS
1010 REM MATCHING LINE NUMBERS REPLACE OLD LINE NUMBERS
1015 REM THE RESULT IS A MIX UP OF TWO PROGRAMS

1020 END

Now to clear memory enter
NEW <RETURN>

The screen will not change, but the program you entered will be gone.
If you don’t believe it, enter

LIST <RETURN>

Now see, I told you the program would be gone.

The NEW Instruction / 33

Exercise 3: The NEW Instruction in Program Execution Mode.

The NEW instruction should very seldom, if ever, be used in program execution
mode. If the NEW instruction is used it will be the last instruction executed, since
it erases the program.

Key in the following program, or load and list the program by entering

LOAD NEW SAMPLE2 <RETURN>

LIST

1.

<RETURN>

NEW

HOME

1000 REMNEW SAMPLE2

1010 HOME : REMCLEARS SCREEN AT START

1020 PRINT "THE PURPOSE OF THE NEW INSTRUCTION"

1030 PRINT "IS TO:"

1040 PRINT "1. CLEAR THE COMPUTER MEMORY"

1050 PRINT "2. PREPARE THE COMPUTER FOR NEW PROGRAM"
1060 PRINT

1070 PRINT "PRESS ANY KEY AND WATCH THE NEW"

1080 PRINT "INSTRUCTION DESTROY THE COPY OF"

1090 PRINT "THIS PROGRAM."

1100 PRINT : PRINT

1110 PRINT TV 3 3 3 3 3 I I I I I W I IR RRRN
1120 PRINT "YOU ONLY GET TO WATCH THIS ONCE"

1130 PRINT "AS THIS PROGRAM WILL SELF DESTRUCT"

1140 GET X$: REMSTOPS PROGRAM UNTIL A KEY IS PRESSED
1150 HOME : REMCLEARS SCREEN AT END

1160 NEW : REMCLEARS MEMORY - USE WITH CARE

If you keyed in the program yourself, you may want to SAVE it on disk, as that
was a lot of work for only one run. It is important to remember that THIS
PROGRAM SELF-DESTRUCTS! To save the program enter

SAVE NEW SAMPLE2 <RETURN>
Enter
RUN

(but don’t press RETURN yet). Now watch what happens when you press RETURN.
The screen will clear when the HOME instruction on line 1010 is executed.
After the screen is cleared, lines 1020 through 1130 will PRINT a description
of what the NEW instruction does and what the program will do.
After you have read the information, press any key. Allowing the operator to
press any key is not a good programming technique. It is used here to keep the
code short and simple. Later examples will show how to check for a specific
response such as: C to continue, Q to quit, or a space for a general response.

34 / Applesoft BASIC Toolbox

Once a key is pressed the HOME instruction on line 1150 is executed,
clearing the screen and repositioning the cursor to the upper left hand corner.
The NEW instruction on line 1160 clears the computer’s memory and destroys
the program you have just entered.

If you want to repeat the process, too bad; the program is gone. If you don’t
believe it enter

LIST <RETURN>

All you will see is a blank screen.

The LIST Instruction

LIST: Format 1

Instruction

Purpose

Rules for Use

LIST (Format 1)

There are several formats used in conjunction with the LIST instruction. The
first format allows you to LIST the entire program, while the other format allows
you to LIST portions of the program.

The LIST instruction provides a method of displaying an instruction or a group of
instructions.

1. When the LIST instruction is entered, the program in memory is listed starting
with the first statement and continuing until either the entire program is listed
or the listing operation is interrupted by you.

a. To temporarily stop the listing, press CONTROL-S; i.e., press the CON-
TROL key and the S key at the same time. To continue the listing, press
any key other than CONTROL-RESET. (Note: For APPLE II and APPLE
I+ users, the CONTROL key is labeled CTRL.)

b. To cancel the listing, press CONTROL-C; i.e., press the CONTROL key
and the C key at the same time. This cancels the LIST instruction, and you
may now enter other instructions.

2. A problem exists with the LIST instruction on some APPLE II and APPLE I1 +
computers. If the listing operation goes to the end of the program, the next
instruction you key in may be treated as an invalid entry. If you do allow the
listing to go to the end, just press the RETURN key once to clear the computer
before entering any further instructions.

Note: The computer lists the program at a rate faster than most people can follow.
You may want to slow the computer down by using the SPEED instruction (see The
SPEED Instruction, p. 49).

35

36 / Applesoft BASIC Toolbox

lllustration
of the Rules

Key in the following program:

NEW

1000 REMLIST SAMPLEl
1010 HOME

1020 INPUT AANUMBER
1030 PRINT AANUMBER
1040 END

After entering the program, key in
LIST<RETURN>

If the cursor is in the middle of screen, the four statements will be listed starting
at the current location of the cursor. If the cursor is at the bottom of the screen, each
of the four statements will be listed on line 24. As each new statement is displayed,
all previously displayed statements will be moved up one line. The upward move-
ment of the lines is referred to as scrolling.

The program is too small to allow you to practice the use of the CONTROL-S
and the CONTROL-C options, so add the following remarks to the end of the pro-
gram, or load the program by entering

LOAD LIST SAMPLE1 <RETURN>
LIST <RETURN>

Note: If you get the message SYNTAX ERROR after entering the first instruction,
just rekey the instruction and continue. Remember APPLE II and APPLE II + users
sometimes get a syntax error on the first line entered after listing the entire program.

1050 REMQUICKEST FINGERS IN THE WEST
1060 REMREM STANDS FOR REMARKS
1070 REM

1080 REM

1090 REM

1100 REM

1110 REMAVERAGE FINGERS

1120 REM

1130 REM

1140 REM

1150 REM

1160 REMSLOW FINGERS

1170 REMDON'T GET IN GUN FIGHTS
1180 REM

1190 REM

1200 REM

1210 REM

1220 REM

1230 REMYOU NEED LOTS OF PRACTICE
1240 REM

1250 REMWHAT HAPPENED TO THE TOP LINE?

The LIST Instruction / 37

Now that all the instructions have been entered, run through the following

exercises to practice the use of the LIST instruction.

Exercise 1: Using CONTROL-S

1.

Enter
LIST

(but do not press RETURN yet).

With your left hand position one finger over the CONTROL key and one finger
over the S key.

With your right hand press RETURN, and then see how quickly you can stop
the listing by pressing CONTROL-S. Did the listing stop? If so, continue, if
not, go back to step 1 of this exercise.

Once you have gotten the listing to stop, you can restart it by pressing almost
any key. The most convenient key is the space bar.

Practice starting and stopping the listing by

a. Entering
LIST <RETURN>
b. Pressing CONTROL-S to stop the listing and the space bar to start the

listing again
c¢. How many times can you start/stop the listing for the sample program?

Fair

0 = Very poor Poor 2
5 = I don’t believe it

1 =
3 = Good 4 = Very good

Exercise 2: Using CONTROL-C

1.

Enter
LIST

(but do not press RETURN yet).

With your left hand position one finger over the CONTROL key and one finger
over the C key.

With your right hand press RETURN, and see how quickly you can stop the
listing by pressing CONTROL-C. Did it stop? If so, continue; if not, go back
to step 1 of this exercise.

38 / Applesoft BASIC Toolbox

4. Now try to restart the listing by pressing any key. Remember that once the LIST
instruction is canceled with the use of CONTROL-C, it cannot be restarted. If
you want to temporarily stop the listing, use CONTROL-S. If you want to cancel
the listing, use CONTROL-C.

LIST: Format 2

Instruction LIST statement number
or LIST statement number,statement number
or LIST statement number-statement number
or LIST statement number,
or LIST statement number-

Sample LIST 1000 List line 1000
LIST 1000,2000 List lines from 1000 through 2000
LIST 1000-2000 List lines from 1000 through 2000
LIST 2000, List program starting at line 2000
LIST 2000- List program starting at line 2000

Rules for Use 1. If only one statement number is used, only that statement is listed. If the
statement number does not exist within the program, then nothing is displayed.
2. [If a group of lines are to be displayed, the first statement number indicates the
starting point for the LIST operation, while the second number indicates the
ending point for the LIST operation. Neither statement number need exist within
the program, but there must be some statements within the range of the two
numbers for any instructions to be displayed.
3. If you wish to list the program starting at a certain instruction and continuing
to the end of the program you may use a dash instead of a second statement

number.

4. For Applesoft either the dash (-) or comma (,) may be used when listing seg-
ments of the program.

5. For group listings CONTROL-S and CONTROL-C may be used to interrupt the
listing.

lllustration In all the following exercises the HOME instruction is entered prior to the listing
of the Rules operation. It is not necessary to always use the HOME instruction prior to listing
part of a program. The HOME instruction is used in the examples so you always

start off with a clear screen.

The LIST Instruction / 39

The following exercises assume the LIST program is still in memory. If the
program is not currently in memory, reload the program by entering

LOAD LIST SAMPLE1

Exercise 3: Using LIST With an Existing Statement
1. Enter

HOME <RETURN>
LIST 1030 <RETURN>

Was the following instruction displayed?
1030 PRINT AANUMBER
If so, continue; if not, try again from step 1 of this exercise.

2. Try listing other single statements in the program by entering the LIST instruc-
tion followed by an existing line number.

Exercise 4: Using LIST With a Nonexistent Statement
1. Enter

HOME <RETURN>
LIST 1035 <RETURN>

Since there is no statement 1035, none will be listed.

Exercise 5: Using LIST With a Range of Statements

LIST statement number,statement number
or LIST statement number-statement number

1. Enter

HOME <RETURN>
LIST 1000,1040 <RETURN>

40 / Applesoft BASIC Toolbox

Were the following instructions displayed?

1000 REM LIST SAMPLEl
1010 HOME

1020 INPUT AANUMBER
1030 PRINT AANUMBER
1040 END

If so, continue; if not, try again from step 1 of this exercise.

Try listing other parts of the program by entering the LIST instruction followed
by a range of statement numbers. Use either the comma or the dash to separate
the two statement numbers.

Exercise 6: Using LIST With a Range of Nonexistent Statements

LIST statement number,statement number

or LIST statement number-statement number

1.

Enter
HOME <RETURN>
LIST 000,2000 <RETURN>

Were all the program instructions displayed? If so, continue; if not, try again
from step 1 of this exercise.
Enter

LIST 1035,1095 <RETURN>

The lines from 1040 to 1090 will be listed. When the numbers used in the list
statement do not exist, the computer lists the statements within the numeric
range.
Enter

LIST 2000,3000 <RETURN>
No instructions will be listed. Why?

If you don’t know why, LIST the entire program and check to see what the
highest statement number is.

Exercise 7: LIST Statements From Any Point to the End of the Program.

LIST statement number-

or LIST statement number,

1.

The LIST Instruction / 41

This time don’t type in HOME. Leave all the information on the screen and see
where it goes. Enter

LIST 1035- <RETURN>

The statements from 1040 to the end of the program will be listed. Notice that
statement 1035 does not exist. Therefore, the computer starts the listing at the
next higher statement number. The dash (-) following the statement number
instructs the computer to list to the end of the program.

Enter

LIST 1035, <RETURN>

The same instructions will be listed. Applesoft allows you to use either the
dash or the comma to separate statement numbers or to indicate a continued
list operation. Some versions of BASIC do not accept the comma as a valid
separator in the LIST operation.

42

Instruction

Purpose

Rules for Use

Illustration
of the Rules

The DEL Instruction

Format 1: statement number or DEL statement number
Format 2: DEL statement number,statement number

There are two formats used in conjunction with the DELete instruction. The
first format allows you to delete a single line, while the second format allows you
to delete a group of lines.

The DELete instruction provides a method of removing one or more statements from
your program.

1. When entering the instruction think twice. Are you sure you want to delete the
lines? Did you make a typing mistake? Check the first and the last number to
make sure you entered them correctly. Press RETURN only after you are sure
you want to delete the statement(s).

2. When a range of line numbers is deleted, the two statement numbers must be
separated by a comma. Unlike the LIST instruction which may use either a
comma or a dash as a separator, the DELete instruction only recognizes the
comma.

Right: DEL 1200,1300
Wrong: DEL 1200-1300

3. Do not confuse the DELete instruction with the DELETE command. The DELete
instruction is used to remove one or more lines from the program in memory
and has no effect on the disk. The DELETE command erases an entire program
from the disk and has no effect on the program in memory.

In order to see how to use the DELete instruction, key in 10 or more lines of code.
(This do-nothing program is not included on the program disk.)

1000 REM DEL SAMPLE1

1010 REM

... Add lines 1020 through 1070
1080 REM

1090 REM

The DEL Instruction / 43

Once the instructions have been entered, SAVE the code on the disk so it can
be reused during the exercises that follow. Enter

SAVE DEL SAMPLE1 <RETURN>

After saving the program, enter the following instructions so that you can see the
line numbers while running through the exercises. Enter

HOME <RETURN>
LIST <RETURN>

Exercise 1: Deleting a Single Line

The easiest way to delete a single line is to simply enter the line number. Delete line
1000 by entering

1000 <RETURN>

By typing in the line number without anything following it, you tell the machine to
delete that line.

Another way to delete just one line is to type in DEL followed by the line
number. Delete line 1010 by entering

DEL 1010 <RETURN>
Now, to prove both lines are gone, try listing the deleted lines. Enter
LIST 1000-1010 <RETURN>

No statements were displayed. If you want a line back after it has been deleted,
you must retype the line.

Exercise 2: Deleting Segments of Code

To delete more than one line, enter the DEL instruction followed by the starting and
ending statement numbers to be deleted.
Delete lines 1020 though 1050 by entering

DEL 1020,1050 <RETURN>

The starting and ending statement numbers do not have to exist within the
program. When nonexisting statement numbers are used, the lines between the two

44/ Applesoft BASIC Toolbox
numbers are deleted. Delete the remaining code by entering a very low line number
and a very large line number. Enter

DEL 1,32000 <RETURN>

Exercise 3: Common Mistakes Made When Using the DEL Instruction
For the DELete instruction you must use a comma as a field separator and must
include the starting statement number.

Enter the following instructions and see what happens. Each should end with
a SYNTAX ERROR.

Try to use the dash as a separator. Enter
DEL 1000-2000 <RETURN>

Try to delete from a specific line number to the end of the program. Enter

DEL ,2000 <RETURN>

Now to prove that the DELete instruction has no effect on the original copy of
program, try the following instructions. Enter

LIST <RETURN>

to see that there is nothing left of the program that was in memory. Enter
LOAD DEL SAMPLE1 <RETURN>

to load the original copy from disk into memory. Enter

LIST <RETURN>

to see that the original copy is still intact.

Instruction

Example

Purpose

Rules for Use

The REM Instruction

REM any group of symbols

1000 REM PROGRAM NAME
1010 REM USE A REMARKS STATEMENT TO GIVE THE NAME
1020 REM OF THE PROGRAM.

The REMarks instruction allows the programmer to include comments within the
program to document what the code is supposed to accomplish or to make notes for
later reference. The REMarks instruction can also be used to describe the meaning
of short abbreviated variable names.

1. The REM instruction can be used on a line by itself or following any instruction.

2. Once the REM instruction is used, no additional instructions can be coded for
that line number.

3. Strong suggestions:

a. Use the REMarks instruction while writing your program to document the
logic. You will be surprised at how much it will help when you are trying
to debug your program, especially if a few days have passed since you
last worked on it.

b. Put a data name dictionary at the end of your program defining each
variable name and giving any additional information about the variable
which will help clarify the program. (See the data name dictionary at the
end of the REMarks program.)

4. For readability of your listing you may wish to limit remark entries to 22
characters per line number.

5. A large number of REMark entries within the code being executed will slow
down the computer (somewhat). But think which is more important, your ability
to understand and make changes to the program or the minor difference in
execution speed.

45

46 | Applesoft BASIC Toolbox

llustration
of the Rules

Key in the following program, or load and list the program by entering

LOAD REM SAMPLE1
LIST

If you are keying in the program yourself, do not press the space bar after typing
in REM. It will not mess up the operation of the program but will cause two spaces
to print following the keyword REM instead of one.

The REM instruction generates a space automatically between the keyword REM
and the first character typed. The space does not show up until the instruction is
listed. If you type a space following the REM the listing will end up with two spaces,
the one generated by the REM instruction and one entered by you.

Key in the example REM program exactly as shown.

If you key in any of the programs following this example you will have to
remember NOT to key in the space following REM. To make the programs easier
to read they are listed showing the generated space.

NEW

HOME

1000 REMREM SAMPLEl

1010 HOME

1020 INPUT "ENTER HOURS WORKED = '";AAHOURS
1030 INPUT "ENTER HOURLY WAGE "; ABWAGE
1040 ACGOSS = AAHOURS * ABWAGE: REMCALCULATES GROSS WAGE ONLY
1050 PRINT "TOTAL GROSS WAGE = ";ACGOSS
1060 END

1070 REM1234567890123456789012

1080 REMDATA NAME DICTIONARY

1090 REMAAHOURS

1100 REM NUMBER HOURS WORKED

1110 REMABWAGE

1120 REM HOURLY WAGE

1130 REMACGOSS

1140 REM GROSS WAGE = AAHOURS

1150 REM * ABWAGE

1160 REM ACGROSS CANNOT BE

1170 REM USED BECAUSE "GR" IS

1180 REM AN APPLESOFT RESERVE

1190 REM WORD

The program is really too simple for such extensive remarks, but hopefully you
will gain an idea of how to use the REM instruction to assist in documenting your
program.

The program is set up to allow the operator to enter the number of hours worked
and the hourly wage. After the two values are entered, the program computes and
prints out the gross wage.

Rule 1.

1000

1040

Rule 2.

The REM Instruction / 47

The REM instruction can be used on a line by itself or following an instruction.

A standard practice you may wish to use is to enter a name or basic program
description as the first line of code. Notice that no space is entered between REM
and REM SAMPLE1. Later when the program is listed, the computer will insert a
space for you.

The REM instruction may be used on a line by itself as on line 1000, or it may be
used following other instructions as shown on line 1040. A colon is used to separate
multiple instructions on one line.

Once the REM instruction is used, no additional instructions may be coded for that
line number.
Run the program by entering

RUN <RETURN>

The computer will clear the screen and display the message
ENTER HOURS WORKED = ?

In response to the question mark, enter
40 <RETURN>

Immediately after you press RETURN, the computer will display a second message
asking you to enter the hourly wage. In response to the second message, enter

6.75 <RETURN>
The computer will then display the message
TOTAL GROSS WAGE = 270

Did you see how the HOME instruction on line 1010 cleared the screen before
executing the rest of the program? Let’s see what happens if you change the program
and put the HOME instruction after a REMarks entry. Key in the following two lines
of code:

1000 REMREM SAMPLE1 : HOME <RETURN>
1010 <RETURN>

48 | Applesoft BASIC Toolbox

1000

1010

1080-1180

When you type in a new line with the same number as an existing line, the new
entry replaces the old entry. Typing in 1000 REM REM SAMPLE1 : HOME replaces
1000 REM REM SAMPLE1.

By typing in a line number with no instruction following it, you are deleting the
statement with the matching line number. Typing in 1010 deletes the instruction
1010 HOME.

Now list the program and then run it again by entering

LIST <RETURN>
RUN <RETURN>

What happened to the program listing which was on the screen?

The screen did not clear prior to displaying the first message because the HOME
instruction on line 1000 was taken as part of the REM instruction and not as an
individual instruction. Remember, once the REMarks instruction is used, you must
start a new line to enter instructions.

Incorrect: 1000 REMREM SAMPLE1 : HOME
Correct: 1000 REMREM SAMPLE1
1010 HOME

Lines 1080 through 1180 show how you can use the REM instruction to document
the data names used in a program. Applesoft allows you to use up to 238 characters
in a name but only recognizes the first two characters. Since the computer only
looks at the first two characters, I normally use a technique of assigning each variable
name a unique two-character alphanumeric prefix followed by a descriptive name.
By using a unique two-character prefix you are assured that the machine will not
treat what you consider to be two variables as only one variable.

The data name dictionary can give the name of the variable, a description of
what the name stands for, and, if necessary, how the variable is used. Notice how
the variable name starts immediately after the keyword REM but when the name is
described, two spaces are used following REM. When you key in two blanks before
describing the name, the first two letters of the variable name are easier to see.
Remember Applesoft only recognizes the first two characters, and these two char-
acters are what you should be concerned with.

For readability of your listing, you may wish to limit remark entries to 22
characters per line number.

When a program is keyed in, Applesoft uses all 40 columns of each line.
However, when Applesoft lists a program, it reformats each line.

The code looks fine while being entered but is harder to read when listed.

When you limit your remarks to 22 characters, they are easier to read.

Instruction

Example

Purpose

Rules for Use

lllustration
of the Rules

The SPEED Instruction

SPEED = number

SPEED = 200
The speed at which I normally list programs.

The SPEED instruction is used to slow the computer down. I have found the instruc-
tion helpful in two situations. First, when listing a program, you may use the speed
instruction to slow down the rate at which the computer displays the instructions,
making the code easier to read. Second, when writing programs which display
information on the screen, you may use the SPEED instruction to slow down the
rate at which the information is displayed. This may make it easier for the user to
read the information and can produce a visual effect which catches the eye of the
operator.

1. The number used in conjunction with the SPEED instruction may range from
0 to 255. The slowest speed is 0, with increasing rates up to the normal speed
of 255.

2. Once the speed is set to a rate other than 255, the computer remains at the
slower rate until either another SPEED instruction is executed or the computer
is RESET (turned off and then back on).

3. The SPEED instruction affects only the rate at which data is transmitted to the
output devices (that includes the screen, printer, and disk drives).

Key in and run the following program, or run the program by entering
RUN SPEED SAMPLE1 <RETURN>

(Remember, if you are keying in the program, do not enter the space following the
keyword REM.)

49

50 / Applesoft BASIC Toolbox

1090

1100

1110

1120

1130

1140

NEW

1000 REM SPEED SAMPLEl

1010 HOME

1020 REM 1234567890123456789012

1030 REM

1040 REM USE THE SPEED INST. TO

1050 REM SLOW DOWN THE COMPUTER

1060 REM TO HELP VIEW WHAT IS

1070 REM HAPPENING ON SCREEN.

1080 REM

1090 AANUMBER% = 255

1100 SPEED= AANUMBER%

1110 PRINT ">>>";

1120 AANUMBER%} = AANUMBERZ - 1

1130 IF AANUMBER% = 20 THEN PRINT: PRINT TAB(15)"SLOW ISN'T
IT": PRINT

1140 IF AANUMBER%) > -1 GOTO 1100

1150 SPEED= 255

1160 PRINT

1170 PRINT "THAT'S ALL FOLKS!"

1180 END

The program starts out displaying the greater than sign at a rate of 255 (fastest
rate) and each time through the loop slows down by a value of 1 until the rate of 0
(slowest rate) is finally reached.

The counter AANUMBER% is given a starting value of 255.

Line 1100 sets the speed to the current value of AANUMBER%. The first time
through the loop AANUMBER% contains 255. The second time through the loop
AANUMBER% contains a value of 254. The third time through the loop AANUM-
BER% contains a value of 253, etc. See line 1120, which subtracts 1 from AAN-
UMBER% each time through the loop.

This line prints the greater than signs, which soon fill the screen.

The current value of AANUMBER% is decreased by 1 each time through the loop.
Since AANUMBER% is used by the SPEED instruction on line 1100, the computer
continues to slow down.

The IF instruction was put in just for the fun of it. You need a break from the
monotony of all the greater than signs.

The IF instruction checks to see when AANUMBER% has reached a value of —1.
When —1 is reached the program ends. Do not try to set the SPEED instruction to
a value less than O.

1150

Rule 1.

Rule 2.

The SPEED Instruction / 51

The SPEED instruction resets the speed of the computer back to its normal level. If
this instruction had not been included you would have had trouble continuing to use
your system at a SPEED of 0.

Now that you have seen how the instruction works, let’s look at the rules.

The number used to set the SPEED instruction must range from 0 to 255.
Using the immediate execution mode, type in the following instruction and see
what happens. Enter

SPEED = -1 <RETURN>

(remember in the immediate execution mode no statement numbers are used).
You will receive an

?ILLEGAL QUANTITY ERROR

message. The computer will not accept the value less than O for the SPEED instruc-
tion. Now try it again with SPEED = 256 and see what happens. You will get
another ?ILLEGAL QUANTITY ERROR message.

Once the speed is set to a rate other than 255, the computer remains at the slower
rate until either another SPEED instruction is executed or the computer is RESET
(turned off and then back on).

Reload the SPEED SAMPLE1 program by keying in

LOAD SPEED SAMPLE1 <RETURN>

Before running the program, read the following paragraph.

While the program is running, position your fingers over CONTROL-C. When
the message SLOW ISN'T IT comes on, press the CONTROL-C. The computer will
beep and indicate that a BREAK in the program has occurred. After you have used
CONTROL-C to cancel the program, type in LIST and see how slowly the computer
lists the program.

Now type in

RUN <RETURN>

CONTROL-C (while message is being displayed)
LIST <RETURN> (after canceling the program)

To reset the speed enter

SPEED = 255

52 / Applesoft BASIC Toolbox

Rule 3 The SPEED instruction affects only the rate at which data is transmitted to the screen,
printer, and disk drives.
Key in and run the following program, or run the program by entering

RUN SPEED SAMPLE2

NEW

1000 REM SPEED SAMPLE2

1010 HOME : SPEED= 255

1020 PRINT "PRESS ANY KEY AND SEE HOW FAST THE"

1030 PRINT " COMPUTER COUNTS TO 100.": PRINT : GET X1$
1040 AACOUNTER = AACOUNTER + 1

1050 IF AACOUNTER < 100 GOTO 1040

1060 PRINT "DONE COUNTING TO 100": PRINT : PRINT

1070 SPEED= 0

1080 PRINT "PRESS ANY KEY AND SEE HOW FAST THE"

1090 PRINT " COMPUTER COUNTS TO 100.": PRINT : GET X1$
1100 ABCOUNTER = ABCOUNTER + 1 '

1110 IF ABCOUNTER < 100 GOTO 1100

1120 PRINT "DONE COUNTING TO 100"

1130 SPEED= 255

1140 END

- Did you notice that the computer took the same length of time to do the arith-
metic and only the speed of the display was affected?

9.

Assigning Variable
Names

Format String Names: AAname$ Must end with dollar sign
Integer Names: AAname% Must end with percent sign
Real Names: AAname Cannot end with $ or % sign

Example

Rules for Use

String Name: AANAMES$ = “JOHN JONES”
Integer Name: AANUMBER% = 45
Real Name: AANUMBER = 45.5

1.

7.

Applesoft allows you to use up to 238 characters in a variable name but only
recognizes the first two characters. That means you can use long names to
describe variables, but Applesoft only recognizes the first two characters. The
remaining characters serve only to document the program so you can remember
how the variable is used.

Variable names must start with an alphabetic character.

A variable name may NOT contain embedded reserve words such as GOTO,
PRINT, LIST, GET, PUT, NOT, OR, AND, etc.

Names ending with a dollar sign (§$) are treated as alphanumeric variables or
string variables. String variables may contain any character, with each character
taking 1 byte of memory.

Names ending with a percent sign (%) are treated as integer variables. Integer
variables may only contain whole numbers between —32767 and +32767.
The values are stored in binary taking up 2 bytes for each variable.

Names ending with characters other than a percent sign or a dollar sign are
treated as real numbers. Real variables may contain any number from

—1000000000000000000000600000000000000000 to
+100000000000000000000000000006000000000.

Although the computer keeps track of the decimal to 38 places, only the nine
most significant digits are stored in memory.

When real numbers have a fractional value between -.01 and .01 they are
expressed in scientific notation.

53

54 / Applesoft BASIC Toolbox

lllustration
of the Rules

Rule 1.

1030

1040

1050

1060

The following illustrates the primary rules for assigning variable names.

Only the first two characters of the variable name are recognized by Applesoft.
Key in and run the following program, or run the program by entering

RUN NAMES SAMPLE1 <RETURN>

NEW

1000 REM NAMES SAMPLEl

1010 HOME

1020 REM

1030 COUNTERL = 25

1040 COUNTER2 = 50

1050 PRINT "COUNTER 1 = ";COUNTER1
1060 PRINT "COUNTER 2 = ";COUNTER2

1070 END

The following will occur:

Line 1030 sets COUNTER1 to a value of 25. As far as the computer is concerned,
the instruction actually reads

1030 CO = 25

COUNTER?2 is set to a value of 50. Notice COUNTER1 and COUNTER2 both start
with the same two characters. As far as the computer is concerned, the instruction
actually reads

1040 CO = 50

Line 1050 prints the current value in COUNTER1, which is 50. You might think the
value should be 25, since line 1030 sets COUNTER1 equal to 25. But look at line
1040, which sets the field CO to a value of 50.

Line 1060 prints the current value in COUNTERZ2, which is 50.

You consider COUNTER1 and COUNTER2 two distinct variables but both start
with the same two characters. The computer treats these two names as one variable
called CO.

To correct the program you have to start over with new variable names.

Key in and run the following program, or run the program by entering

RUN NAMES SAMPLE2 <RETURN>

1030

1040

1050

1060

Rule 2.

Rule 3.

Assigning Variable Names / 55

NEW

1000 REM NAMES SAMPLE2

1010 HOME

1020 REM

1030 AACOUNTER1 = 25

1040 ABCOUNTER2 = 50

1050 PRINT "COUNTER 1 = ";AACOUNTERIL
1060 PRINT "COUNTER 2 = ";ABCOUNTER2

1070 END

The following will occur:
The variable AA is set to a starting value of 25.
The variable AB is set to a starting value of 50.

Line 1050 prints a descriptive heading followed by the current value in the variable
AA.

Line 1060 prints a descriptive heading followed by the current value in the variable
AB.

Hopefully you see the importance of creating variable names in which the first
two characters are unique.

The format used for this book consists of a two character prefix followed by a
descriptive name. The two character prefix is normally assigned in an alphabetic
sequence of AA, AB, AC, AD, AE, etc. The purpose of the two character prefix is to
ensure that each variable name within the program is unique.

Variable names must start with an alphabetic character.

If you attempt to use a name which starts with a number, Applesoft treats the
number as a separate entry. Applesoft interprets the entry 1ABC as the number 1
followed by the variable ABC.

The variable name may not contain embedded reserve words such as GOTO, PRINT,
GET, LIST, PUT, NOT, OR, AND, etc.

A reserve word consists of any name which Applesoft uses as part of its
instruction set. Since these words have a special meaning to the Applesoft inter-
preter, you can NEVER use any of the words as variable names or even have the
words embedded within the names you create.

Key in the program shown below, or load and list the program by entering

LOAD NAMES SAMPLE3 <RETURN>
LIST <RETURN>

56 / Applesoft BASIC Toolbox

1040

1050

1060

1070

NEW

1000 REM NAMES SAMPLE3
1010 HOME

1020 REM

1040 HAND$ = "LEFT"
1050 NORTH$ = "UP"

1060 FORTH = 4
1070 FIFTH = §
1080 END

When you list the program you will find the following occurs:

HAND $ = “LEFT”
The variable name HAND$ comes out H AND $ because AND is an Applesoft reserve
word and cannot be part of a variable name.

N OR TH$ = “UP”

The variable name NORTH$ comes out N OR TH$ because OR is an Applesoft reserve
word and cannot be part of a variable name.

FORTH = 4
The variable name FORTH lists out as F OR TH because OR is an Applesoft reserve
word and cannot be part of a variable name.

FIFTH=5
The variable FIFTH lists out as F IF TH because IF is an Applesoft reserve word and
cannot be part of a variable name.

Attempt to run the program and see what occurs.

You will get a syntax error on line 1040. Since the variable name is broken
into several parts, the instruction does not conform to any format that Applesoft
can recognize. If Applesoft cannot interpret an instruction, it stops the program on
that line of code and gives you the error message

SYNTAX ERROR ON LINE number

It is up to you to analyze why the syntax error occurred and to correct the
problem.

In this case you have to create new variable names.

Before continuing you should make sure you understand the following definitions.

Variable: Field Name: Data Name: These terms are synonymous. They refer
to the use of symbolic names (another synonym), to which the computer assigns an
area of memory. When you use the symbolic name, the computer locates its memory
address and uses the value in the area as directed by the instruction. For example,

AANUMBER = AANUMBER + 1

Rule 4.

Assigning Variable Names / 57

The computer locates the area of memory allocated to AANUMBER, increments the
value in that area by 1, and then stores the new value back in the same area of
memory.

Alphanumeric variable: String variable: An alphanumeric variable may contain
any symbol you can key into the computer. The variable may contain both alphabetic
and numeric symbols. For example

AASTREET$ = /123 FIRST STREET"

The variable AASTREET$ contains both numbers 123 and letters FIRST.
Constant: A constant is a self-defining term which remains the same during the
execution of the program. For example, in the instruction

AANUMBER = AANUMBER + 1

The value 1 is a constant (not a symbolic name) and cannot be changed during
execution of the program. There are two types of constants used in programming:
numeric and alphanumeric. Numeric constants consist of the symbols plus (+),
minus (—), 0 through 9, and the decimal point and are not enclosed within quotation
marks. Alphanumeric constants, or string constants, consist of any character or
group of characters enclosed within quotations marks ‘123 FIRST STREET".

Creating workable data names (variables) is not difficult.

1. Make up a meaningful name and assign it a two character prefix.

2. Check to see if you can recognize any embedded keywords. If you find an
embedded keyword, change the characters to eliminate it, but try to keep a
meaningful name.

3. As a sure check, code the name in a statement and LIST the statement. If the
variable name is listed exactly as you typed it, then the name does not contain
any embedded keywords. If the computer inserts blanks, you have used a
reserve word and must try again.

Names ending with a dollar sign ($) are treated as alphanumeric variables, or string
variables.
More rules for string variables:

a. String variables must end in a dollar sign.

b. Strings constants must be enclosed within quotation marks.

c. String variables cannot be used for arithmetic even if the variable contains only
numeric characters.

d. When using the LET (=) instruction, string variables may only be used with
other string variables or string constants.

58 / Applesoft BASIC Toolbox

1060-1090

1150

Key in the following program and attempt to run it, or attempt to run the
program by entering

RUN NAMES SAMPLE4 <RETURN>

NEW

1000 REM NAMES SAMPLE4

1010 HOME

1020 REM 1234567890123456789012
1030 REM

1040 REM STRING VARIABLES CAN
1050 REM CONTAIN ANY CHARACTER
1060 AANAME$ = "ALPHANUMERIC STRINGS ARE ENCLOSED"
1070 ABNAME$ = "WITHIN QUOTES. "
1080 PRINT AANAME$

1090 PRINT ABNAME$

1100 REM

1110 REM CANNOT DO ARITHMETIC
1120 REM WITH STRING VARIABLES
1130 REM EVEN IF THEY CONTAIN
1140 REM NUMBERS

1150 ABNUMBER$ = "123.45"

1160 ABNUMBER$ = ABNUMBER$ + 1
1170 PRINT ABNUMBER$

1180 PRINT ABNAME$

1190 REM

1200 REM ONLY ALPHANUMERIC

1210 REM STRINGS CAN BE USED
1220 REM WITH STRING VARIABLES
1230 ACDTE$ = 103067

1240 ACDTE$ = "10/30/67"

1250 PRINT "ACDTE$ = ";ACDTE$
1260 END

The following will occur when you attempt to run the program:

The variables AANAMES$ and ABNAMES$ are set equal to the string constants fol-
lowing the equal sign. The contents of the two variables will be displayed by the
PRINT instructions on lines 1080 and 1090.

Notice that the string names end in a dollar sign, the first two characters are
different, and the alphanumeric constants are enclosed within quotation marks. The
alphanumeric constant was divided into two parts so it could be displayed on two
separate lines. '

The string variable ABNUMBERS is set equal to the string constant “123.45”. Since
the number is enclosed within quotation marks, it is considered a string constant.
The computer stores the value in character format, taking up 6 bytes of memory.
By character format I mean that the symbols 1, 2, 3, point (.), 4, and 5 are stored

1160

Assigning Variable Names / 59

using a binary pattern that the computer assigns to characters which are to be
displayed or read from the keyboard. The binary pattern for printing the characters
123.45 is not the same as the binary pattern used by the computer for representing
the number 123.45 in arithmetic operations. Since the string variable is stored in
character format, the computer cannot use the variable for arithmetic operations.

Did you notice the variable ABNUMBER$ and ABNAMES$ both start with the
same two characters? Guess what happens to the old value in ABNAME$ when
ABNUMBERS is set equal to “123.45”? The old value is gone, and both ABNUM-
BER$ and ABNAMES refer to the value “123.45”. Remember, you may think of the
variables as two separate areas in memory, but since they start with the same two
characters, the computer treats the two names as one variable called AB$.

Applesoft allows you to use names which start with the same two characters if
the names represent different types of variables. That is, the names can start with
the same two letters if one name represents a string name (AANAMES$), one an
integer name (AANAME%), and one a real name (AANAME).

If you try to run the program, you will get the following error message for line
1160:

?TYPE MISMATCH ERROR IN 1160

The computer is trying to tell you it will not allow you to mix apples and oranges.
You cannot add the numeric 1 to a string variable. In fact, you cannot do any
arithmetic with string variables. To correct the program, delete the invalid line by
entering

1160 <RETURN>

At this point the screen should contain the following lines:

ALPHANUMERIC STRINGS ARE ENCLOSED
WITHIN QUOTES.

?TYPE MISMATCH ERROR IN 1160
>1160

Now attempt to run the program again by entering
RUN <RETURN>

Don’t worry if you get another error message. Keep reading.

60/ Applesoft BASIC Toolbox

1170-1180 Lines 1170 and 1180 are provided to show you that the computer treats the two

1230

1240

names ABNAMES$ and ABNUMBERS as one variable. On your screen you should
have four lines displayed followed by an error message. The first two lines show
the contents of variables AANAME$ and ABNAMES$ prior to line 1150. The second
two lines show the contents of ABNUMBER$ and ABNAMES$ after the execution of
line 1150.

On your second attempt to run the program you will get the following error message:
?TYPE MISMATCH ERROR IN 1230

Line 1230 causes the error message because in addition to not being able to do
arithmetic with string variables you cannot set a string variable equal to a numeric
constant. To correct the program delete the line by entering

1230 <RETURN>

At this point the screen should contain the following lines.

ALPHANUMERIC STRINGS ARE ENCLOSED \
123.45

123.45

?TYPE MISMATCH ERROR IN 1230
>1230

___/_\

Run the program again; this time you should not get any errors.

The variable ACDTES$ is set equal to a string constant representing the date October
30, 1967. This is mainly just another example of working with strings; but do you
know why the name ACDTE$ was used instead of ACDATE$?

If so, skip on to the next example; if not, key in the following:

NEW

HOME

1000 ACDATES$ = ““10/30/67"
LIST

The computer separates ACDATES$ into ACD AT E$. The word AT is an Apple-
soft reserve word and cannot be used within variable names. To correct this and
still have a fairly descriptive name, the A was dropped.

Rule 5.

1070

1080

1100

1110

1120

Assigning Variable Names / 61

Names ending with a percent sign (%) are treated as integer variables. Integer
variables may only contain whole numbers between — 32767 and +32767.
Key in the following program and run it, or run the program by entering

RUN NAMES SAMPLES5 <RETURN>

NEW

1000 REM NAMES SAMPLES

1010 REM 1234567890123456789012
1020 HOME

1030 REM

1040 REM INTEGERS RANGE BETWEEN
1050 REM -32767 AND +32767

1060 REM

1070 AAMINUSE = - 32760

1080 ABPLUS% = + 32760

1090 PRINT "LOW VALUE","HIGH VALUE"
1100 AAMINUS% = AAMINUSE - 1
1110 ABPLUS% = ABPLUS% + 1

1120 PRINT AAMINUS%, ABPLUS%
1130 GOTO 1100

The variable AAMINUS% is set to a starting value of —32760. Since the objective
is to show you that integers cannot contain a number less than — 32767, a number
close to the limit was chosen so only a few lines would have to be displayed on the
screen.

The variable ABPLUS% is set to a starting value of +32760. Again, since the
objective is to show you that integers cannot contain a number greater than 32767,
a number close to the limit was chosen.

The variable AAMINUS% is set equal to the current value of AAMINUS% minus 1.
The first time through the instruction, AAMINUS% contains — 32760 (see line 1070).
After execution of the instruction, AAMINUS% contains —32761.

First pass: AAMINUS% = —32760 — 1 = — 32761
Second pass: AAMINUS% = —32761 — 1 = —32762
Third pass: AAMINUS% = —32762 — 1 = —32763

etc. (see screen)

The variable ABPLUS% is set equal to the current value of ABPLUS% plus 1. This
is the same format as line 1100, except that instead of counting down with a negative
1, the computer is counting up with a positive 1.

The PRINT instruction displays the contents of the variables AAMINUS% and
ABPLUS%.

62 / Applesoft BASIC Toolbox

1130

1110-1130

The GOTO instruction tells the computer to go back to line 1100 and start over from
that point.

The program continues counting (looping) until the variable AAMINUS% attempts
to exceed the value of —32767. Once — 32767 is exceeded, the computer displays
the following error message:

?ILLEGAL QUANTITY ERROR IN 1100

So the rule for using an integer variable is: If there is a chance that the value
will exceed +32767 or —32767, do not use an integer name.

Before leaving integer variables let’s look at one more example of how integer
variables work when used with real numbers or in arithmetic operations.

When an integer name is used to the left of the equal sign, the answer is
truncated to a whole number and placed in the integer variable.

Key in the following program and run it, or run the program by entering

RUN NAMES SAMPLE6 <RETURN>

NEW

1000 REM NAMES SAMPLE6

1010 HOME

1020 REM

1030 REM 1234567890123456789012
1040 REM IF INTEGER NAMES ARE
1050 REM USED TO THE LEFT OF
1060 REM EQUAL SIGN THE ANSWER
1070 REM WILL BE TRUNCATED TO
1080 REM A WHOLE NUMBER AND PUT
1090 REM INTO THE INTEGER FIELD
1100 REM

1110 AAWHOLEZ =
1120 AAREAL =1
1130 ABLINEZ = 1
1140 REM

1150 PRINT "LINE" TAB(8)"INTEGER" TAB(20)"REAL"

1160 AAWHOLEZ = 1.5 * AAWHOLEZ

1170 AAREAL = 1.5 * AAREAL

1180 PRINT TAB(2)ABLINE% TAB(8)AAWHOLE% TAB(20)AAREAL
1190 AAWHOLEZ = AAWHOLEZ + 1

1200 AAREAL = AAREAL + 1

1210 ABLINE% = ABLINE% + 1

1220 IF ABLINE% < 22 GOTO 1160

1230 END

1

The program begins by setting all three variables equal to 1. The variable AAWHOLE%
is used to illustrate integers. The variable AAREAL is used to illustrate real numbers.
And the variable ABLINE% is used to print a line number on the screen so you and
I will have a common point of reference in the narrative which follows.

1150

1160

1170

1180

1190-1210

1220

Assigning Variable Names /63

This prints a heading at the top of the screen to identify each column of numbers.

The current value in AAWHOLE% is multiplied by 1.5, and the answer is truncated
to a whole number before being placed back into AAWHOLE%.

The current value in AAREAL is multiplied by 1.5, and the answer is placed back
into AAREAL.

After the new values are computed, the three values are printed.

Just for the fun of it, all three variables are incremented by 1. There is really no
point in incrementing AAWHOLE% and AAREAL other than to show you that real
and integer numbers may be mixed on the right side of an equation.

The IF instruction provides a way to stop the program. I have arbitrarily decided to
stop the program when the value in ABLINE% becomes equal to 22 (close to a full
screen).

If you have not run the program, run it now and see if you get the same results
as shown in the following screen:

//IE;E INTEGER REAL *‘\\\
1 1 1.5
2 3 3.75
3 6 7.125
4 10 12.1875
5 16 19.71125
6 25 31.171875
7 39 48.2578125
8 60 73.8867188
9 91 112.330078
10 138 169.995117
11 138 256 . 492676
12 313 386.239014
13 471 580.85852
14 708 872.787781
15 1063 1310.68167
16 1596 1967.52251
17 2395 2952 .78376
18 3594 4430.67564
19 5392 6647 .51346
20 8089 9972.77019
21 12135 14960 . 6553

64 / Applesoft BASIC Toolbox

Line 1

Line 9

Line 13

The LINE numbers displayed on the screen are used in the following explana-
tion. There are several points I would like you to understand about the numbers
which have been displayed.

LINE INTEGER REAL
1 1 1.5

Integer numbers do not contain decimal positions. Real numbers may contain dec-
imal positions.

LINE INTEGER REAL
9 91 112.330078

When printing numbers Applesoft does not automatically align the values printed
according to decimal points.

For real numbers only the nine MOST SIGNIFICANT digits are kept. Notice
that as the number of digits in front of the decimal increases, the number of digits
behind the decimal decreases.

LINE INTEGER REAL
13 471 580.85852

Look closely at the real number. Only eight digits are printed. Applesoft automati-
cally suppresses any leading or trailing zeros.

Names which end in any character other than a percent sign or dollar sign are treated
as real numbers. Real numeric variables may contain any number from

—100000000000000000000000000000000000000 to
+100000000000000000000000000000000000000.

Even though there are 38 zeros following the leading 1, the APPLE cannot
actually store that many digits. The APPLE can store only the nine most significant
digits, but keeps track of where the decimal is located, up to + 38 or — 38 positions.

Key in the following program and run it, or run the program by entering

RUN NAMES SAMPLE7 <RETURN>

Look over the code and try to get an idea of what each line does before reading
the detailed explanation of each instruction.

1080

1090

1100

1110

Assigning Variable Names / 65

NEW

1000 REM NAMES SAMPLE7

1010 HOME

1020 REM

1030 REM ONLY 9 SIGNIFICANT
1040 REM DIGITS ARE STORED FOR
1050 REM EITHER WHOLE OR

1060 REM FRACTIONAL NUMBERS.
1070 REM

1080 AAREAL = .999999999

1090 ABLINE% = 1

1100 PRINT "LINE" TAB(8)"REAL"
1110 SPEED= 150

1120 PRINT ABLINE% TAB(8)AAREAL
1130 AAREAL = AAREAL * 10

1140 ABLINEZ = ABLINEj + 1

1150 GOTO 1120

1160 END

Since the program terminated with an error and the SPEED instruction is used
within the program, enter the following instruction to get the computer back to its
normal speedy self:

SPEED = 255 <RETURN>

The field AAREAL is set equal to the fractional value .999999999. The number was
chosen for a couple of reasons. First, it shows you that only the nine most significant
digits are kept. Second, it shows you a problem with computers when you use binary
arithmetic. When you do arithmetic with binary numbers, sometimes a small numeric
error occurs. The error, which is common to all computers using binary arithmetic,
is referred to as a rounding error.

The variable ABLINE% is used as a counter to provide a line number for
the information being displayed. Line 1090 assigns the variable an initial value
of 1.

This line prints the headings for the two variables to be displayed. The first column
is a line number, which will provide you with a reference point in the following
discussion. The second column shows the real number, which illustrates the rules
being discussed.

To make it easier for you to see the information as it is displayed on the screen, the
SPEED instruction is used to slow down the computer. Since the program ends
abnormally, you need to reset the SPEED.

66 / Applesoft BASIC Toolbox

1120

1130

1140

1150

This line prints the current contents of ABLINE% and then tabs over to column 8§ of
the screen before printing the contents of AAREAL.

Line 1130 gives a new value to the variable AAREAL. Each time the instruction is
executed, the current value of AAREAL is multiplied by 10 and the new answer
replaces the old value in AAREAL. Essentially, the decimal is moved one position
to the right each time the instruction is executed.

The instruction increments the line counter and places the new value back into the
original variable.

The GOTO instruction sends the logic back to line 1120, where the contents of the
two fields ABLINE% and AAREAL are to be printed.

If you have not run the program, run it now and watch the values which are
displayed. Since there are more than 24 lines to be displayed, not all the data will
fit on the screen at one time.

The last of the screen appears as follows:

31 9.99999999E +29
32 9.99999999E + 30
33 9.99999999E + 31
34 9.99999999E + 32
35 9.99999999E + 33
36 9.99999999E + 34
37 9.99999999E + 35
38 9.99999999E + 36
39 1E+38

?0VERFLOW ERROR IN 1140

_

Let’s look at some of the lines displayed in more detail.

LINE REAL
1 .999999999
2 10

When you run the program the first line prints out .999999999 as expected.
The second line is supposed to display 10 * .999999999. The computer should display
9.99999999 but instead prints out 10. The computer circuitry decided the value is

Assigning Variable Names / 67

close enough to 10 and rounded it off. At line 14 you see that the computer changes
its mind and brings back the 9s. These mistakes are called rounding errors and are
caused because of the way the computer stores numbers.

LINE REAL
9 100000000

10 1E+09

1 1E+10

12 1E+11

13 1E+12

14 9.99999999E + 12
15 9.99999999E + 13

Lines 9 and 10 show a change in the way the real number is displayed. Once
the number of positions to the left or right of the decimal is greater than nine, the
number is converted to scientific notation. When a number is displayed in scientific
notation, the value is represented using the format of

n.nnnnnnnnE + ee

The numeric portion of the number is always displayed with one whole digit in
front of the decimal followed by up to eight digits after the decimal.

The E always separates the number from the exponent and is followed by either
a plus or minus sign. If a plus sign follows the E, then the decimal is to be moved
to the right ee positions.

1E+09 = 1000000000.
9.99999999E + 12 = 9999999990000.

Remember that the computer can store only the nine most significant digits.
If a minus sign follows the E, the decimal is moved to the left as indicated by
the exponent ee.

1E-09
9.99999999E — 12

.000000001
.000999999999

Look closely at the way the decimal moves:

9.99999999E + 12 9999999990000. (Results in 13 digits)
9.99999999E - 12 = .000999999999 (Results in 12 digits)

The last few lines on the screen point out what happens when you exceed the limits
of a real variable.

68/ Applesoft BASIC Toolbox

Rule 7.

LINE REAL
38 9.99999999E + 36
39 1E+38

?0VERFLOW ERROR IN 1140

The computer can keep track of the decimal down to — 38 positions or up to
+ 38 positions. When you attempt to use a number larger than 38 decimal positions
to the right or left, the program cancels with an overflow error message.

Run the program as many times as needed until you feel you understand that
the computer

1. Only stores the nine most significant digits
2. Converts the number to scientific notation if it exceeds nine.significant digits
to the left or right of the decimal

When real numbers have a fractional value between —.01 and + .01, they are
expressed in scientific notation.

You should already have a fairly good idea of what scientific notation is, but
if you want to see how it is used with very small numbers or negative numbers, run
the following program. Enter

RUN NAMES SAMPLE8 <RETURN>

NEW

1000 REM NAMES SAMPLES

1010 HOME

1020 REM 1234567890123456789012

1030 REM

1040 REM NUMBERS BETWEEN —.01

1050 REM AND +.01 ARE SHOWN IN

1060 REM SCIENTIFIC NOTATION.

1070 REM

1080 AAPLUS =1

1090 ABMINUS = - 1

1100 ACLINEZ =1

1110 PRINT "LINE" TAB(8)"PLUS" TAB(25)"MINUS"
1120 REM

1130 PRINT ACLINEZ TAB(8)AAPLUS TAB(25)ABMINUS
1140 AAPLUS = AAPLUS * .1

1150 ABMINUS = ABMINUS * .1

1160 ACLINE%} = ACLINEZ + 1

1170 IF ACLINE < 21 GOTO 1130

1180 END

Assigning Variable Names /69

The program displays the following screen:

LINE PLUS MINUS
1 1 -1
2

.1 -.1

3 .01 -.01

4 1E-03 —1E-03

5 1E-04 —1E-04

6 1E-05 —1E-05

4 1E-06 —1E-06

8 1E-07 —1E-07

9 1E-08 —1E-08

10 1E-09 —1E-09

11 1E-10 -1E-10

12 1E-11 —1E-11

13 9.99999999E-13 —9.99999999E-13
14 9.99999999E-14 —9.99999999E-14
15 9.99999999E~-15 —9.99999999E-15
16 9.99999999E-16 —9.99999999E-16
17 9.99999999E-17 —9.99999999E-17
18 9.99999999E-18 —9.99999999E-18
19 9.99999999E-19 —9.99999999E-19
20 9.99999999E-20 —9.99999999E-20

Lines 1 through 4 illustrate Rule 7:

LINE PLUS MINUS

1 1 -1

2 A -1

3 .01 =01

4 1E-03 —1E-03

The numbers 1, .1, and .01 are displayed correctly, but when the number
becomes a decimal value between —.01 and + .01, the value is displayed in sci-
entific notation.

The computer makes another rounding error between line 12 and line 13.

LINE PLUS MINUS
12 1E-11 -1E-11
13 9.99999999E-13 —9.99999999E-13

10.

The INPUT Instruction

INPUT: Format 1

70

Instruction INPUT VN1,VN2,VN3,VN4,...
(where VN = Variable Name)
Example INPUT AAEMPNUM%,ABEMPNAME$,ACHOURLYWAGE
The example INPUT instruction reads three values from the screen. The first value
is a whole number (percent sign) representing the EMPloyee’s NUMber. The second
value is a string variable (dollar sign) and contains the EMPloyee’s NAME. The third
variable is a real number (no percent or dollar sign) and contains the HOURLY
WAGE earned by the employee.
In response to the question mark displayed by the INPUT instruction, the oper-
ator keys in three variables as follows:
?1234,JOHN SMITH,5.75
The leading question mark is generated by the INPUT instruction. The whole
number 1234 corresponds to the variable AAEMPNUM%. JOHN SMITH is a string
value (alphanumeric value) matching the variable ABEMPNAMES$. The value 5.75
is a real number corresponding to the variable ACHOURLYWAGE.
Purpose This format of the INPUT instruction accepts one or more input values from the
device being used for entering information (keyboard or disk).
INPUT: Format 2
Instruction INPUT “‘string to be displayed”;VN1,VN2,VN3, VN4,VNS5,...

(where VN = Variable Name)

Example

Purpose

Rules for Use
(General)

lllustration
of the Rules

Rule 1.

The INPUT Instruction / 71

INPUT “ENTER YOUR DATE OF BIRTH IN MM/DD/YY FORMAT ";AADTE$

The message ENTER YOUR DATE OF BIRTH IN MM/DD/YY FORMAT is dis-

played on the screen. The cursor ([) is positioned immediately following the mes-
sage. In response, the operator keys in the date as requested. For example, 02/11/
47 would be keyed in for February 11, 1947.

The second format of the INPUT instruction combines the display feature of the
PRINT instruction with the data entry operation of the INPUT instruction.

The keyword INPUT must be followed by one or more names.

The type of data keyed in must match the type of variable name defined; i.e.,
numeric characters for numeric variables and alphanumeric characters for string
variables. '

The number of variables keyed in must match the number of variables defined
in the INPUT instruction.

When keying in the data, each variable must be separated by a comma. No
variable may contain an embedded comma.

Only one string constant may be printed.

The string constant must be coded immediately after the keyword INPUT, and
the constant must be followed by a semicolon.

!

The following illustrates the primary rules for the INPUT instruction.

The keyword INPUT must be followed by one or more names.

Key in the following program:

NEW

1000 HOME

1010 INPUT AANUMBER
1020 PRINT AANUMBER
1030 END

After keying in the program run it, and enter the data as indicated below.
Once you have entered RUN and pressed RETURN the following occurs.

A question mark appears in the upper left corner of the screen. The question
mark is generated by the INPUT instruction unless the display option is used.
The cursor (]) is positioned immediately following the question mark.

?]

72 | Applesoft BASIC Toolbox

2.

3.

Since AANUMBER represents a real number, which may contain a decimal
point use only the digits O through 9 and the decimal point, in response to the
question mark. For example, key in any one of the following

123
or 123.45
or 9876543.21

The number you key in will be displayed on the second line of the screen.

In order to further understand the use of the INPUT instruction, run through

the following exercises using the program just entered.

Exercise 1: Using the Plus Sign

1.

Enter

RUN <RETURN>
+123.45 <RETURN>

Notice that when the number is displayed, the plus sign is not shown. Positive
numbers are not shown with a sign.

Exercise 2: Using the Minus Sign

1.

Enter

RUN <RETURN>
—123.45 <RETURN>

Notice that when the number is displayed, a leading minus sign is included.
Applesoft recognizes either leading plus or minus signs but only prints negative
signs.

Exercise 3: Suppression of Zeros

1.

Enter

RUN <RETURN>
123.0 <RETURN>

Rule 2.

The INPUT Instruction / 73

2. Notice that the decimal and the 0 are not shown. Applesoft drops off nonsig-
nificant digits. Nonsignificant digits consist of any leading or trailing zeros
which are not needed for specification of a numeric value. For example, the
number 000200.0300 has three leading nonsignificant zeros and two trailing
nonsignificant zeros. The two zeros following the 2 and the one zero preceding
the 3 are position holders and must be included to represent the number cor-
rectly. The number would print out as

200.03

Exercise 4: Entering a Value of Zero
1. Enter

RUN <RETURN>
000.00 <RETURN>

2. Notice that for a value of zero, only one digit is printed no matter how many
zeros were entered.

Try entering some numbers on your own until you are comfortable with how

Applesoft treats numeric values entered with the INPUT instruction. Just enter RUN
and then key in your number.

The type of data keyed in must match the type of name defined; i.e., numeric
characters for numeric variables and alphanumeric characters for string variables.

Use the program you keyed in earlier to see what happens when you accidentally
enter alphabetic data when the computer is expecting numeric data.

Exercise 5: Entering Alphabetic Data for Numeric Variables
1. Enter
RUN <RETURN>

2. A question mark will appear in the upper left corner. In response to the question
mark, key in the value

ABC <RETURN>

74 | Applesoft BASIC Toolbox

3.

The letters you key in will be rejected because the program is expecting a number
to be entered. Applesoft will reject the letters and display the message

?REENTER

The program will continue to reject any nonnumeric value you key in.
Key in a valid number to end the program.

Now modify the program you have keyed in to accept a string value. This can

be done by typing in the following two statements:

1010 INPUT AASTRING$
1020 PRINT AASTRING$S

The two statements keyed in replace the previous statements with the same line

numbers. To see that the changes were made correctly, type in

LIST <RETURN>

Exercise 6: Entering Alphanumeric Data

1.

w

Enter
RUN <RETURN>

In response to the question mark, type in your name.
Notice that your name is printed exactly as you keyed it.

Exercise 7: Entering Numeric Values for String Variables

1.

Enter

RUN <RETURN>
+12.34 <RETURN>

Notice that the number is printed exactly as you keyed it (including the plus
sign). Applesoft treats the value entered as a string (alphanumeric value) and
not as a number. You cannot perform arithmetic operations with a string.

Rule 3.

The INPUT Instruction / 75

Exercise 8: Nonsignificant Digits in String Variables

1.

Enter
RUN - <RETURN>
000200.0300 <RETURN>

Since the number is treated as a string variable, it will be printed exactly as
you entered it with each character of the string taking up one memory location.
Again, you cannot perform arithmetic operations with a string. String numeric
values may be coverted to numeric format by using the VALue function (see
p. 149).

The number of variables keyed in must match the number of variables defined on
the INPUT instruction.

Key in the following program to be used with the exercises below.

NEW

1000 HOME

1010 INPUT AANUMBER, ABNUMBER, ACNUMBER
1020 PRINT AANUMBER, ABNUMBER, ACNUMBER
1030 END

Exercise 9: Entering Multiple Numeric INPUT Variables

1.

Enter
RUN <RETURN>
123,456,789 <RETURN>

Notice that after pressing return, all three numbers are displayed on one line
with spaces separating each number. Applesoft automatically tabs to certain
columns on the screen unless otherwise instructed.

Exercise 10: Entering Too Few Variables

1.

Enter

RUN <RETURN>

76 / Applesoft BASIC Toolbox

2.

In response to the question mark, type in only two numbers separated by one
comma. For example,

123,456 <RETURN>

Notice that after pressing RETURN, a question mark appears on the next line,
indicating that insufficient data was entered.

In response to the new question mark, type in

789 <RETURN>

Now all three numbers will be displayed.

Exercise 11: Entering Too Many Variables

1.

Enter

RUN <RETURN>

In response to the question mark, key in the following set of numbers:
12,34,56,78 <RETURN>

Notice that the message EXTRA IGNORED is displayed, indicating that more
variables were entered than requested. Only the first three values are displayed.

Exercise 12: Omitting a Variable

1.

Enter
RUN <RETURN>

In response to the question mark, type in the following numbers separated by
two commas as shown

123,,456 <RETURN>
Notice that after pressing RETURN three numbers are displayed. By using the

two commas in a row, you accomplish the same thing as entering a O for the
second variable (123,0,456).

The INPUT Instruction / 77

Rule 4. When keying in the input, separate each variable with a comma. No variable may
contain an embedded comma.

Key in the following program and use it for the exercises that follow:

NEW

1000 HOME

1010 INPUT AANUMBER, AASTRING$
1020 PRINT AANUMBER, AASTRING$
1030 END

Exercise 13: Entering Commas in Numeric Variables

1‘

Enter

RUN <RETURN>
12,345.67, YEARLY SALARY <RETURN>

The message EXTRA IGNORED will be displayed, indicating that more varia-
bles were entered than requested. The comma in the number 12,345.67 is
treated as a variable separator.

When entering large numbers, do not key in commas.
Notice that since 345.67 followed the comma, it was treated as the second
variable and placed in AASTRINGS$.

RUN the program again but this time enter the values correctly as

12345.67,YEARLY SALARY <RETURN>

Exercise 14: Entering Commas in String Variables

1.

Enter

RUN <RETURN>
123,COLUMBUS, OHIO <RETURN>

Notice that the message EXTRA IGNORED is displayed, indicating that more
variables were entered than requested. The comma after COLUMBUS was treated
as a variable separator. The word OHIO was ignored.

78 / Applesoft BASIC Toolbox

3.

RUN the program again, but this time enter the values without embedded
commas. Type in

123,COLUMBUS OHIO <RETURN>

Rule 5. Only one string constant may be printed.

Key in the following program:

NEW

1000 HOME

1010 REM LINE 1020 CONTAINS AN ERROR

1020 INPUT "EMPLOYEE NUMBER";AAEMPNUM, "EMPLOYEE NAME" ; AAEMPN
AME$

1030 PRINT "EMPLOYEE NUMBER

1040 PRINT "EMPLOYEE NAME

1050 END

" AAEMPNUM
"AAEMPNAME$

After keying in the program, check your work, then enter RUN to test the

program.

1.

The following will occur:

You will get a syntax error on line 1020, indicating that the INPUT instruction
is incorrectly formatted. The rule states that only one string constant may be
displayed and it must precede all variable names. If you look at line 1020 you
will see that the programmer tried to display two messages:

“EMPLOYEE NUMBER" and “"EMPLOYEE NAME"
To correct the program, enter the following two lines of code:

1010 INPUT “EMPLOYEE NUMBER = ";AAEMPNUM
1020 INPUT “EMPLOYEE NAME = ";AAEMPNAME$

Now that the program has been corrected, run it again.

The first line will be displayed, and the program will wait until you enter the
employee number. After you enter the employee number, the second line will
be displayed, and the computer will wait for you to enter the employee name.
Once you have entered the number and name, lines 1030 and 1040 will display
the two values.

When you use format 1 of the INPUT instruction, the computer displays a

question mark. The question mark indicates to the computer operator that data is to
be entered. When using format 2 of the INPUT instruction, the computer displays
the message within quotes and does not display the question mark.

The INPUT Instruction / 79

Format 1: INPUT AANUMBER Displays as ?[
Format 2: INPUT “NUMBER = "";AANUMBER Displays as NUMBER = [
The symbol [shows the position of the cursor.

When the programmers use the display option of the INPUT instruction, the
person entering the data knows what to enter. By aligning the values to be entered
and preceding them with an equal sign, the programmer improves readability of the
data being entered.

The string constant must be listed immediately after the keyword INPUT, and the
constant must be followed by a semicolon.

This rule will not be discussed in detail. If you want to test it out on your own,
make the following changes to the existing code and try to run the program.

First try

1010 INPUT “EMPLOYEE NUMBER = “AAEMPNUM
This change will result in a syntax error because the semicolon was left off

following the constant.
Second try

1010 INPUT AAEMPNUM:;" = EMPLOYEE NUMBER”’

~ This change will result in a syntax error because the variable name is coded
before the constant.

11.

80

Instruction

Example

Purpose

Rules for Use

The PRINT Instruction

PRINT VN1,VN2,VN3,VN4,VNS,...
(where VN = Variable Name)

A comma, semicolon, TAB(number) function, or SPC(number) function may be
used to separate the names. Each option results in different spacing.

PRINT AAEMPNUMBER SPC(3) ABEMPNAME$ SPC(3) ACHOURSWORKED
Displays as

1234 YOUR NAME 40
™1 "1 Three spaces between each variable

The PRINT instruction causes the value in each of the three variables to be displayed.
The SPC(3) causes three blanks to be displayed between each variable.

The PRINT instruction is used to display information on the CRT (Cathode Ray
Tube) screen. The instruction is also used to transfer information from memory to
the disk and printer.

1. The keyword PRINT may be followed by one or more variable names and/or
constants.

2. Ifacomma is used as a separator, default tab settings are used by the computer.

3. If no symbol or a semicolon is used as a separator, no spacing occurs.

4. If TAB(number) or SPC(number) functions are used, the computer tabs to the
column indicated by the value within parentheses or spaces over the number
of columns specified by the number within parentheses.

5. When keying in the PRINT instruction, a question mark may be used in place
of the word PRINT. The computer converts the question mark to the word

The PRINT Instruction / 81

PRINT for you. This does not affect execution of your program but is simply a
shorthand method of entering the word PRINT.

lllustration The following illustrates the primary rules for the PRINT instruction.

of the Rules

Rule 1. The keyword PRINT may be followed by one or more variable names and/or constants.
Key in and run the following program, or run the program by entering

RUN PRINT SAMPLE1

NEW

1000 REM PRINT SAMPLEl

1010 HOME

1020 PRINT " 1 2 3 4";

1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 150

1050 PRINT "NUMBER = ",AANUMBER

1060 AANUMBER = AANUMBER + 1

1070 IF AANUMBER < 18 THEN 1050

1080 SPEED= 255

1090 END

After the program is run, the screen will appear as follows:

1 2 3 4 \
6545678901234567890 12345678901234567890

QMBER 17 /

NUMBER = 0
NUMBER = 1
NUMBER = 2
NUMBER = 3
NUMBER = 4
NUMBER = 5
NUMBER = 6
NUMBER = 7
NUMBER = 8
NUMBER = 9
NUMBER = 10
NUMBER = 11
NUMBER = 12
NUMBER = 13
NUMBER = 14
NUMBER = 15
NUMBER = 16

82 / Applesoft BASIC Toolbox

1020-1030 Lines 1020 and 1030 display headings at the top of the screen so you can see which
column the TAB operation has skipped to. The semicolon is required any time
column 40 is used in a PRINT operation and single spacing is desired. If the semi-
colon had been omitted from line 1020, the headings would have been double spaced
as follows:

1 2 3 4

1234567890123456789012345678901234567890

Anytime more than 40 characters are displayed, character 41 is printed in the
first column of the next line.

Now comes the hard part: to explain where character 41 comes from and why
it causes the machine to double space, when one would think it should single space.

Following each PRINT instruction which DOES NOT end with a semicolon is
an invisible symbol called the carriage return character. When the display screen
encounters the carriage return character, it automatically skips to the next line.

1030 PRINT “1234567890123456789012345678901234567890"
Invisible carriage return character 1

If the computer has already printed the last visible character in column 40 of
the first line, then the invisible carriage return character is printed in column 1 of
the second line. Even though you cannot see it, it is there.

When the carriage return character is printed, it serves to terminate any addi-
tional printing for that line and positions the cursor at the start of the next line (line
3). The next PRINT instruction ends up printing the second line of heading on the
third line of the screen.

With semicolon:

1 2 3 4
1234567890123456789012345678901234567890

1040

1050

1060

1070

The PRINT Instruction / 83

Without semicolon:

1 2 3 4

f
1234567890123456789012345678901234567890

(Where the 1 indicates the position of the invisible carriage return character.)
If you followed the explanation, fine; if not, just remember that when column
40 of the screen is used:

1. Ending with semicolon results in single spacing.
2. Not ending with a semicolon results in double spacing.

The SPEED instruction is used to slow down the rate at which data is printed on the
screen. This makes it easier for you to follow what is being displayed on the screen.

When the PRINT instruction is followed by a constant, “NUMBER = “, the string
between the quotation marks is displayed on the screen exactly as coded. When the
PRINT instruction is followed by a variable name, AANUMBER, the current value
of that variable is printed. The first time line 1050 is executed, a value of 0 is printed
for AANUMBER. This is because Applesoft sets all numeric variables to a value of
0 at the start of the program. The second time line 1050 is executed, a value of 1
is printed (see line 1060).

The current value of AANUMBER is replaced with the sum of the current value of
AANUMBER plus 1. After the first execution of line 1060, AANUMBER contains
the value 1. Remember AANUMBER started off with a value of 0 so

AANUMBER + 1
Old value (0) + constant (1)

AANUMBER
New value (1)

The IF instruction tests the new value of AANUMBER to see if it is less than 18.
When the statement is true, that is, the value in AANUMBER is less than 18, logic
flow goes back to line 1050, where the PRINT instruction is executed again. This is
called a program loop, as lines 1050, 1060, and 1070 are executed over and over
until AANUMBER is equal to 18.

84 / Applesoft BASIC Toolbox

1080 After the program has completed its normal cycle (loop), the speed is reset to 255
so that any further operations are displayed at the normal speed.

Rule 2. If a comma is used as a separator, default tab settings are used by the computer.
The default tab settings for your APPLE are

1 2 3 4
1234567890123456 7890123456789012 34567890
AREA111111111111 AREA222222222222 AREA3333

1. First area = columns 01 to 16.
The PRINT instruction starts in column 1.

2. Second area = column 17 to 32.
The first comma causes the computer to tab over to column 17 unless something
has been printed in column 16. If data has already been printed in or past
column 16, the comma causes a skip to the next tab position (column 33).

3. Third area = column 33 to 40.
The second comma causes the third value to be printed starting in column 33
unless something printed in columns 24 through 32.

The purpose of the following program is to show you what the automatic tab
functions are for and how the comma works when used with the PRINT instruction.
Key in and run the following program, or run the program by entering

RUN PRINT SAMPLE2

NEW

1000 REM PRINT SAMPLE2

1010 HOME

1020 PRINT " 1 2 3 4",

1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 150

1050 PRINT "TABl","TAB2","TAB3"

1060 SPEED= 255

1070 END

1050 The PRINT instruction displays the strings TAB1, TAB2, and TAB3. Since each string
is separated by a comma, the computer uses the automatic tab function. The position
at which the T prints represents the default tab position for your machine. The T in
each word starts in columns 1, 17, and 33.

The PRINT Instruction / 85

There are, however, disadvantages which limit the usefulness of the automatic
tab function. The following program is provided to illustrate two of the problems.
Key in and run the following program, or run the program by entering

RUN PRINT SAMPLE3

NEW

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

REM PRINT SAMPLE3

HOME

PRINT " 1 2 3 4";

PRINT "1234567890123456789012345678901234567890"

SPEED= 200

PRINT "FIRST","SECOND","THIRD","FOURTH", "FIFTH"

PRINT : PRINT

PRINT "FIRST 1234567890","SECOND","THIRD", "FOURTH","FIFTH"
SPEED= 255

END

After you run the program the screen will appear as follows:

1 2 3 4 \
1234567890123456789012345678901234567890

FIRST SECOND THIRD
FOURTH FIFTH

FIRST 1234567890 SECOND
THIRD

/—\

FOURTH FIFTH

1050 The first PRINT instruction demonstrates the wraparound function of the automatic

1070

tab operation. The words FIRST, SECOND, and THIRD are printed on one line, while
the words FOURTH and FIFTH are printed on the next line down. If the number of
variables separated by commas exceeds the number of default tab settings, a new
line is started. This can be an advantage or a disadvantage depending on how you

design your program.

The next PRINT instruction demonstrates how the default tab reacts when a value is
printed which is longer than the area covered by the automatic tab function. Notice
that the value we wanted to print at the SECOND position is printed in the third

86 / Applesoft BASIC Toolbox

Rule 3.

column, while the THIRD value is printed at the start of the next line. Anytime the
area allotted by the automatic tab function is filled or exceeded, the computer auto-
matically goes to the next tab location.

The automatic tab operation for the third area works a little differently in that
the computer skips to the next line if any value is printed in columns 24 through
32.

If a semicolon is used as a variable separator, no spacing occurs between variables
or between separate PRINT instructions.

The following program shows several examples of the use of the comma and
semicolon. It should give you a clear understanding of the difference between the
two characters.

Key in and run the following program, or run the program by entering

RUN SEMICOLON SAMPLE1

NEW

1000 REM SEMICOLON SAMPLEl

1010 HOME

1020 PRINT " 1 2 3 4";

1030 PRINT "1234567890123456789012345678901234567890"
1040 SPEED= 200

1050 PRINT "ENTER YOUR NAME PLEASE"

1060 INPUT AANAME$

1070 PRINT

1080 PRINT "ENTER YOUR AGE PLEASE"

1090 INPUT ABAGE

1100 PRINT AANAME$, ABAGE

1110 PRINT

1120 PRINT AANAME$; ABAGE

1130 PRINT

1140 PRINT "NAME = ";AANAME$,"AGE = ";ABAGE
1150 PRINT

1160 PRINT "NAME = ";
1170 PRINT AANAME$
1180 PRINT 'AGE = '
1190 PRINT ABAGE
1200 SPEED= 255

1210 END

1050-1060

1070

1080-1090

1100

1120

The PRINT Instruction / 87

For the name JOHN JONES the screen would appear as follows:

1 2 3 4
//:;;4567890123456789012345678901234567890 *‘\\\

ENTER YOUR NAME PLEASE
?JOHN JONES

ENTER YOUR AGE PLEASE
725

JOHN JONES 25
JOHN JONES25
NAME = JOHN JONES AGE = 25

NAME = JOHN JONES
AGE = 25

N _J

The PRINT instruction gives you a prompt to let you know what to enter. The INPUT
instruction causes a question mark to be displayed and waits until you have entered
your name.

The PRINT instruction by itself causes a blank line to be displayed and is one way
to create double spacing.

The PRINT instruction prompts you to enter your age, while the INPUT instruction
reads what is keyed.

This PRINT instruction shows the difference between the automatic tab function and
the semicolon. Depending on the length of your name, your age is printed in either
the second or the third tab location.

The PRINT instruction shows that NO positions are skipped when the semicolon is
used to separate variable names or constants. Notice that your age follows imme-
diately after the last character of your name. You normally would not print two
variables this way because it makes the data difficult to read.

88 / Applesoft BASIC Toolbox

1140

1160-1190

Rule 4

This line provides another example of how to use the semicolon and comma when
displaying constants and variable names. The semicolon is used to separate an
identifying title from the variable name

“NAME = ";AANAMES$

The instruction also shows the use of the comma as a separator to provide automatic
tabulation between the name and age.

The semicolon may be used to separate constants and variable names as shown
but is optional and serves only to make the instruction more readable. The instruction
could have been written as

1040 PRINT “NAME = "AANAMES$,”AGE = "ABAGE

Notice that in this case the semicolons are omitted between the constants and variables.

Lines 1160 through 1190 show that if a PRINT instruction ends with a semicolon,
the next information displayed occurs on the same line following the last character
printed. The semicolon suppresses starting a new line and suppresses repositioning
the cursor.

Lines 1160 and 1170 cause one line to be printed.

NAME = JOHN JONES

Lines 1180 and 1190 use the same concept to print your age; they generate
only one line.

AGE = 25

Since lines 1170 and 1190 do not end with a semicolon a new line is started
following each PRINT instruction.

If TAB(number) or SPC(number) functions are used, the computer TABs to the
column indicated by the value within parentheses or SPaCes over the number of
columns specified by the number within parentheses.

The following program illustrates the difference between the TAB and the SPC
functions.

1050

1070

The PRINT Instruction / 89

Key in and run the following program, or run the program by entering

RUN TAB & SPC SAMPLE1

NEW

1000 REM TAB & SPC SAMPLEl

1010 HOME

1020 PRINT " 1 2 3 4";

1030 PRINT "1234567890123456789012345678901234567890"

1040 SPEED= 100

1050 PRINT "COLUMN 1"; TAB(10);"COLUMN 10"; TAB(30);"COLUM
N 30"

1060 PRINT:PRINT

1070 PRINT "COLUMN 1"; SPC(10);"COLUMN 19"; SPC(30);"NEW L
INE, COLUMN 18"

1080 SPEED= 255

1090 END

When the program is run, the screen will appear as follows:

1 2 3 4 \
//:;;4567890123456789012345678901234567890

COLUMN 1 COLUMN 10 COLUMN 30

COLUMN 1 COLUMN 19
NEW LINE, COLUMN 18

——//’f_—\

Line 1050 demonstrates how the TAB function of the PRINT instruction may be used
to position data across the screen at fixed locations by printing the word COLUMN
starting in column 1, column 10, and column 30.

The semicolons between each of the strings constants and the tab functions are
are optional. The instruction may be coded without the semicolons as follows

PRINT “COLUMN 1" TAB(10) “COLUMN 10" TAB(30) “COLUMN 30"

Line 1070 demonstrates how the SPC function may be used to skip a specific number
of spaces.

Use of the SPC function does not cause the data to be printed in fixed columns
on the screen unless all the variables printed are a fixed length.

The SPC function causes the computer to skip the number of print positions
specified before continuing to display information. The position on the screen where
the new information is displayed depends on where the last character of data was
printed prior to the SPC operation.

Before going on to the next rule, let’s look at two more programs using the
TAB and SPC functions.

90 / Applesoft BASIC Toolbox

The first example shows the use of a variable name with the TAB function and

the wraparound effect of printing past the end of a line.
Key in and run the following program, or run the program by entering

RUN TAB SAMPLE2

NEW

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130

REM TAB SAMPLEZ2

HOME

REM

REM VALUE FOR TAB FUNCTION
REM MUST BE BETWEEN 1 AND
REM 40.

REM

SPEED= 175

AANUMBER = 1

PRINT TAB(AANUMBER); AANUMBER
AANUMBER = AANUMBER + 1

IF AANUMBER < 41 THEN 1090
SPEED= 255

END

After you run the program, the screen will appear as follows:

The PRINT Instruction / 91

1090 This line shows how a variable may be used with the TAB function to change the

1100

1110

position at which data is printed during each loop through the program.
Notice that statement number 1080 gives AANUMBER a starting value of 1,
so when line 1090 is executed for the first time, the computer TABs to position 1.
Do not try to use a value of 0 or a value greater than 40 in the TAB instruction.

This line adds 1 to the current value of AANUMBER each time it is executed.

The IF on line 1110 tests to see if the program has reached the limit of 40, which is
the maximum for setting the TAB function. If you try to TAB to a value greater than
40, an error occurs. If you want to see what happens, remove line 1110. Just type
in the number 1110 and rerun the program.

Before you go on, notice what happens to the numbers printed on the last two
lines. Since there is not enough room for the value to be printed on the current line,
the computer prints the excess data on the next line starting at the leftmost position.

The last TAB example shows what happens when the program attempts to TAB
to a specific column when that column has already been bypassed.
Key in and run the following program, or run the program by entering

RUN TAB SAMPLE3

NEW

1000 REM TAB SAMPLE3

1010 HOME

1020 REM

1030 PRINT " 1 2 3 4";
1040 PRINT "1234567890123456789012345678901234567890"
1050 SPEED= 255

1060 PRINT "DATA GOES PAST COLUMN TWENTY";TAB(19);
1070 PRINT "TAB OPERATION WILL BE IGNORED"

1080 PRINT

1090 PRINT "NOTICE HOW THE DATA RAN TOGETHER"

1100 PRINT "NO TAB OCCURRED BETWEEN TWENTY AND TAB"
1110 SPEED= 255

1120 END

After the program is run, the screen will appear as follows:

1 2 3 4
1234567890123456789012345678901234567890

DATA GOES PAST COLUMN TWENTYTAB OPERATIO
N WILL BE IGNORED

NOTICE HOW THE DATA RAN TOGETHER

NO TAB OCCURRED BETWEEN TWENTY AND TAB

-]

92 / Applesoft BASIC Toolbox

1060-1070

When data has already been printed past the column indicated by the TAB operation,
the TAB operation is ignored. Normally this is not a problem since you know how
large the data is and set the TAB operation accordingly. But if you use the TAB
function and it does not seem to work, check the length of the data already printed
against the TAB setting.

Since the semicolon is used on line 1060 following the TAB operation, the next
information printed (line 1070) follows immediately behind the information printed
by line 1060.

12.

Instruction

Example

Purpose

Rules for Use

lllustration
of the Rules

Rule 1.

The GOTO Instruction

GOTO statement number

1000 PRINT NUMBER

1010 IF NUMBER > 100 THEN END
1020 NUMBER = NUMBER + 1
1030 GOTO 1000

The GOTO instruction is used to change the flow of instruction execution from the
current location (line) to the line number specified by the GOTO instruction.

1. The statement number used in the GOTO instruction must exist within the
program.

2. The GOTO instruction is considered unconditional GOTO when used by itself
and conditional when used as part of an IF instruction.

The following illustrates the primary rules for the GOTO instruction.

The statement number used in the GOTO instruction must exist within the program.
Key in the following program, or load and list the program by entering

LOAD GOTO SAMPLE1

LIST

NEW

1000
1010
1020
1030
1040
1050

REM GOTO SAMPLEl

HOME

PRINT "THE GOTO INSTRUCTION ALLOWS YOU TO"
PRINT "BRANCH BACKWARD OR FORWARD IN YOUR"
PRINT "PROGRAM."

GOTO 1021

93

94 / Applesoft BASIC Toolbox

Rule 2.

After entering the program, type RUN to execute it. The following will occur:

1. Lines 1020, 1030, and 1040 will each display one line.
2. When line 1050 is encountered, the computer will display the following error
message:

?UNDEF’'D STATEMENT ERROR IN 1050

The machine gives you an error message because there is no statement num-
bered 1021.
To correct the program, enter

1050 GOTO 1020

Don’t rerun the program yet! Read on.

Look over the logic and see what is going to happen.

First lines 1010, 1020, 1030, 1040, and 1050 will be executed. When the
computer executes the GOTO instruction on line 1050 the logic cycle will go back
to statement 1020 and continue at that point. How does this cycle of 1020, 1030,
1040, 1050, 1020, 1030, etc. stop? It doesn’t. The program is in what is called an
endless loop. The only way to stop it is to interrupt the program by keying CON-
TROL-C or CONTROL-RESET or by pulling the plug (although it won’t hurt, please
don’t pull the plug).

Now, type in RUN and execute the program. Be prepared to press the CON-
TROL-C to stop the loop.

The GOTO instruction is considered unconditional when used by itself and condi-
tional when used as part of an IF instruction.
Key in and run the following program, or run the program by entering

RUN GOTO SAMPLE2

NEW

1000 REM GOTO SAMPLE2

1010 HOME

1020 SPEED= 150

1030 COUNTER = 1

1040 PRINT "COUNTER = "COUNTER
1050 COUNTER = COUNTER + 1
1060 IF COUNTER > 20 GOTO 1080
1070 GOTO 1040

1080 SPEED= 255

1090 END

1030

1040

1050

1060

The GOTO Instruction / 85

The program will display the following rather unexciting screen:

COUNTER = 1 ﬁ-\\\\
COUNTER = 2
COUNTER = 3
COUNTER = 4
COUNTER = 5
COUNTER = 6
COUNTER = 7
COUNTER = 8
COUNTER = 9
COUNTER = 10
COUNTER = 11
COUNTER = 12
COUNTER = 13
COUNTER = 14
COUNTER = 15
COUNTER = 16
COUNTER = 17
COUNTER = 18
COUNTER = 19
COUNTER = 20

N\ /

The COUNTER is initialized to a starting value of 1. If a numeric variable is not
given a starting value, Applesoft starts it off with a value of 0.

The PRINT instruction displays the string “COUNTER =" on the screen followed
by the current value of COUNTER. The first time through the loop, COUNTER has
a value of 1; the second time the line is executed, a value of 2 is printed, and so
forth.

COUNTER is reset to the current value of COUNTER plus 1. Basically this is a
method of counting on the computer.

Line 1060 provides a sample of how to use the GOTO within an IF instruction to
create a conditional branch instruction. The GOTO is also an example of a forward
GOTO. If the statement is true, logic flow branches to line 1080 further down
(forward) in the program.

For this program the IF instruction is used to provide a way to end the looping
cycle. When COUNTER reaches a value of 21, a conditional branch transfers logic
forward in the program to statement 1090, where the program ends.

86 / Applesoft BASIC Toolbox

1070

1090

Line 1070 creates an unconditional branch backward to line 1040. Every time line
1070 is executed, logic flow loops back to line 1040 and starts executing the instruc-
tions sequentially from that point. Since this GOTO causes logic to branch back to
an earlier statement, it is called a backwards GOTO.

The only way to get around or past an unconditional branch is to use another
GOTO instruction to change the flow of logic and bypass the unconditional GOTO
(see line 1060).

The END instruction is the last logical instruction to be executed. Once the END is
encountered, no further instructions are executed by the computer. Control passes
back to the computer operator (you).

The following terms were used in the preceding narrative. Make sure you
understand the terms and how they relate to the use of the GOTO instruction.
Unconditional GOTO: when a GOTO instruction is used by itself.

Conditional GOTO: when a GOTO instruction is used within an IF instruction.

Forward GOTO: when a GOTO is used to branch futher down in the program code.

Backward GOTO: when a GOTO is used to branch upward to an earlier instruction.

13.

Instruction

Example

Purpose

The ON GOTO
Instruction

ON number GOTO statement numbers

1000 INPUT “ENTER NUMBER OF MONTH = ";MTH

1010 ON MTH GOTO 1040, 1050, 1060, 1070, 1080, 1090,
1100, 1110, 1120, 1130, 1140, 1150

1020 REM MTH < 1 OR > 12

1030 PRINT “ERROR IN MONTH VALUE":END

1040 PRINT “JANUARY":END

1050 PRINT “FEBRUARY"’:END

1060 PRINT “MARCH":END

1070 PRINT "APRIL":END

1080 PRINT “"MAY"":END

1090 PRINT “JUNE":END

1100 PRINT “JULY":END

1110 PRINT "AUGUST":END

1120 PRINT “SEPTEMBER":END

1130 PRINT "OCTOBER":END

1140 PRINT “"NOVEMBER":END

1150 PRINT “"DECEMBER":END

If the value of MTH is 1, 2, 3, 4,5, 6, 7, 8,9, 10, 11, or 12, the ON GOTO
instruction causes logic flow to branch and print the correct name of the month. If
the value of MTH is less than 1, or greater than 12, an error message printed.

The ON GOTO instruction is used to change the sequence of instruction execution
based on the value of the number following the keyword ON. The instruction com-
bines the IF and GOTO instructions into one statement.

97

98 / Applesoft BASIC Toolbox

Rules for Use

lllustration
of the Rules

Instead of having to code 12 IFs with 12 GOTOs,

IF MTH = 1 GOTO 1040
IF MTH = 2 GOTO 1050
IF MTH = 3 GOTO 1060

IF MTH = 12 GOTO 1150

you may code one instruction to test for all 12 values:

ON MTH GOTO 1040,1050,1060,1070,1080,1090,1100,1110, 1120,1130,1140,1150

The statement numbers used with the ON GOTO instruction must exist within
the program.

The name or equation following the keyword ON may be either an integer or
a real value. If the variable contains a real value, any decimal positions are
ignored.

The value of the number or arithmetic expression following the keyword ON
must not be negative or exceed 255. If the value is outside the computer’s
allowable range, an error message is displayed and the program terminated.
Each statement number following the keyword GOTO corresponds to a test for
the value of 1, 2, 3, 4, 5, etc.

If the number being evaluated is O or is greater than the number of statements
listed, logic flow falls through the ON GOTO and continues with the next
sequential statement.

Key in the following program, or load and list the program by entering

LOAD ON GOTO SAMPLE1

LIST

1000 REM ON GOTO SAMPLE1l

1010 HOME

1020 VTAB 10

1030 PRINT "ENTER A NUMBER FROM 1 TO 10.": PRINT

1040 PRINT "ENTER 11 TO TERMINATE THE PROGRAM.'": PRINT

1050 INPUT " = ";AANUMBER

1060 PRINT

1070 ON AANUMBER GOTO 1100,1120,1100,1120,1100,1120,1100,112
0,1100,1120,1170

1080 PRINT "NUMBER NOT WITHIN SPECIFIED RANGE."

1090 GOTO 1130

1100 PRINT "YOU ENTERED AN ODD NUMBER."

1000-1060

1070

1080-1090

1130-1160

The ON GOTO Instruction / 99

1110 GOTO 1130

1120 PRINT "YOU ENTERED AN EVEN NUMBER."
1130 VTAB 23

1140 PRINT "PRESS ANY KEY TO CONTINUE.";
1150 GET X1$

1160 GOTO 1000

1170 HOME

1180 PRINT "THAT'S ALL FOLKS!"

1190 END

Lines 1000 through 1060 clear the screen, position the cursor, and display what the
program expects the operator to do.

Depending on the value entered by the operator, the ON GOTO instruction either
branches to one of the 11 statement numbers or falls through to line 1080. If 1, 3,
5, 7, or 9 is entered, logic flow branches to line 1100. For the value 2, 4, 6, 8, or
10, logic flow branches to line 1120. If the operator enters an 11, logic flow branches
to line 1170. Should the operator enter a value of 0 or a value from 12 to 255, logic
flow falls through to line 1080.

Notice that the same statement number may be used in several different posi-
tions. In the example all the odd numbers are associated with statement 1100, and
all the even numbers are associated with statement 1120.

Lines 1080 and 1090 display an error message and then return to the start of the
program if a value of 0 or a value from 12 to 255 is entered.

After the appropriate message is displayed, the operator is given a chance to read
the message and press a key. After any key is pressed, the program starts over and
gives the operator another chance to enter a number.

To help illustrate the rules, use the program to carry out the following exercises.

Exercise 1: Entering Real Numbers
RUN the program and enter

45
The computer will truncate the .5 and treat the number as an integer value of

4. The message “YOU ENTERED AN EVEN NUMBER.” will be printed. Press any
key and continue to the next exercise.

100 / Applesoft BASIC Toolbox

Exercise 2: Entering Numbers Outside the Specified Range

The ON GOTO instruction is set up to handle the values from 1 to 11. Enter a value
of 0 or a value from 12 to 255 and see what happens. Enter

12

Logic flow will fall through the ON GOTO instruction and execute line 1080,
which displays the message

NUMBER NOT WITHIN SPECIFIED RANGE.

Press any key and continue to the next exercise.

Exercise 3: Entering Invalid Numbers

Entering a negative value or a value greater than 255 results in an error message
and cancellation of the program. Enter — 1. You will get the error message

?ILLEGAL QUANTITY ERROR IN statement number

To prevent this from happening, you should always precede each ON GOTO instruc-
tion with an IF instruction to make sure the value entered is within the expected
range.

1050 INPUT ' = ';AANUMBER

1060 PRINT

1065 IF AANUMBER < 1 OR AANUMBER > 11 THEN
print error message & start over

1070 ON AANUMBER GOTO ...

I

14.

Instruction

Example

Purpose

Rules for Use

lllustration
of the Rules

1050-1060

The END Instruction

END

2000 PRINT “NORMAL END OF PROGRAM" : END
or
2000 END

The END instruction is used to terminate program execution. Once encountered, no
further instructions are executed.

1. The END instruction can be located on any line of the program as long as it is
the last logical instruction executed.

2. More than one END instruction may be used in a program, but once one is
encountered, no further instructions are executed.

3. The program may be continued by using the CONT instruction (see p. 228).

Key in and run the following program, or run the program by entering

RUN END SAMPLE1

NEW

1000 REM END SAMPLEl

1010 HOME

1020 PRINT "ENTER A NUMBER BETWEEN 1 & 5"
1030 INPUT " = ";AANUMBER

1040 ON AANUMBER GOTO 1050, 1070,1080,1090

1050 PRINT "BETWEEN 1 & 5 PLEASE"

1060 PRINT "PRESS ANY KEY AND TRY AGAIN":GET X$:GOTO 1000
1070 PRINT "END #2":END

1080 PRINT "END #3":END

1090 PRINT "END #4":END

The program is coded to accept only the numbers 2, 3, or 4 as acceptable entries.
Any other number causes an error message to be displayed (line 1050) indicating
that an invalid number was entered. Line 1060 displays an error message before

101

102 / Applesoft BASIC Toolbox

1070-1090

branching back to line 1000 to allow you to enter the number correctly. The GET
X$ instruction on line 1060 causes the computer to pause while you read the messages.

This is the objective of the program, the END instruction. Before executing the END
instruction and stopping the program, a message is displayed indicating which log-
ical END path was taken. Once the END instruction is executed, no further instruc-
tions are processed.

Did you notice that several instructions are coded on the same line, separated
by a colon? This is common practice for experienced programmers because the
computer can execute the code a little faster and the program takes less memory.
The examples in the text limit the number of instructions entered on one line to make
it easier to read and easier for the beginning programmer to follow. Advanced
programmers may code as many instructions for one statement number as the pro-
gram logic allows. The only physical limit is that each line entered cannot exceed
255 characters.

Some experienced programmers object to having more than one END instruction
in a program. They believe all logic paths should come to a single common END.
Let’s change this program to conform to their standards by modifying lines 1070,
1080, and 1090 and adding a new line.

Key in the following code, LIST the program, and then RUN it.

1070 PRINT “END #2":GOTO 1100
1080 PRINT “END #3":GOTO 1100
1090 PRINT “END #4":GOTO 1100
1100 END

If you run the modified program, you cannot tell any difference between the
two methods of coding. The only difference is the programmer’s opinion about
which is the most logical method of coding.

15.

Instructions

Purpose

Example

Rules for Use

The Screen Control
Instructions

VTAB number from 1 to 24
HTAB number from 1 to 40
NORMAL

INVERSE

FLASH

The screen control instructions of VTAB, HTAB, NORMAL, INVERSE, and FLASH
are used to position data and direct attention to specific areas of the screen.

1000 INVERSE: PRINT “DARK LETTERS ON LIGHT BACKGROUND"
1010 FLASH: PRINT “"ALTERNATING LIGHT AND DARK DISPLAY"
1020 NORMAL: PRINT “LIGHT LETTERS ON DARK BACKGROUND"
1030 VTAB 10: HTAB 20: PRINT "“X": REM MIDDLE OF SCREEN

1. VTAB is used to position the cursor on any one of the vertical lines of the
screen. The number following the VTAB instruction must be from 1 to 24,
corresponding to the 24 lines on the screen. Any number outside this range
results in the following error message:

?ILLEGAL QUANTITY ERROR

2. HTAB is used to position the cursor at any one of the 40 positions on a line.
The number following the HTAB instruction may range from 1 to 255. If a
value greater than 40 is used, the cursor wraps around to the next line. For this
book we will consider the HTAB to have a maximum value of 40, corresponding
to the character position of each line. Any number less than 1 or greater than
255 results in the following error message:

?ILLEGAL QUANTITY ERROR

3. NORMAL refers to the normal mode of using white characters on a black
background (or green characters on a black background, depending on the type
of screen you are using). The instruction is used following either a FLASH or
an INVERSE operation to place the computer back into its NORMAL mode.

103

104 / Applesoft BASIC Toolbox

lllustration
of the Rules

1020

1030

1040

4. INVERSE refers to the use of black characters on a white background or (black
characters on a green background). This format is commonly used to indicate
error messages or to highlight data as it is being entered.

5. FLASH refers to the changing between NORMAL mode and INVERSE mode in
a rapid manner. The screen shows the data in NORMAL format followed by
the same data shown in INVERSE format. This rapid change causes a flashing
image on the screen.

Let’s start with some very simple examples to demonstrate the NORMAL and INVERSE
instructions.

The first program illustrates how to use the INVERSE and NORMAL instruc-
tions. Key in and run the following program, or run the program by entering

RUN SCREEN SAMPLE1

NEW

1000 REM SCREEN SAMPLEl
1010 HOME

1020 SPEED= 150

1030 INVERSE

1040 FOR NUMBER = 0 TO 30
1050 PRINT TAB(40)" "
1060 NEXT

1070 NORMAL

1080 SPEED= 255

1090 PRINT "THAT'S ALL FOLKS!"
1100 END

For those of you who don’t run the program, here is what it does. The screen
clears and starts to display a solid white line. As the program continues, a solid
white line is printed on every other line of the screen (horizontal prison bars). Once
the screen is full, the program continues to display alternating white and black lines
until 30 white lines have been displayed.

The SPEED instruction slows down the output to the screen so you can watch the
cursor move across the screen.

The INVERSE instruction tells the computer that all further information displayed
on the screen is to use black letters on a white background. Since this program is
only printing blanks, each line displayed is entirely white.

The FOR/NEXT instruction sets up a looping process. The FOR/NEXT loop causes
30 lines to be displayed on the screen. After the first 12 lines are displayed, the
screen scrolls up one line at a time as each new line is displayed. Since the line

1050

1060

1070

The Screen Control Instructions / 105

displayed prints a character in column 40 and no ending semicolon is used, each
PRINT instruction results in double spacing.

The PRINT instruction TABs to position 40 and prints a single blank. To reach
position 40 the computer prints a blank in every position up to column 40 and then
prints the blank enclosed within quotes (“ ”). This operation causes the line to be
cleared to spaces, and since the program is in the INVERSE mode, the spaces show
up as a white line.

Are you ready for another try at the invisible carriage return character and why
the screen double spaces?

Since the PRINT instruction does not end with a semicolon, the computer
attaches a carriage return character to the information being displayed. When the
carriage return character is displayed, the cursor is positioned to the first of the next
line. You cannot see this character, but it is there and it is printed.

1050 PRINT TAB(40) “ ”* Invisible carriage-return character
)

The PRINT instruction puts a blank in column 40, and the invisible carriage
return character in column 1 of the next line. Since the printing of the carriage return
character causes the cursor to be repositioned to the next line, the net effect is double
spacing or the screen. In the screen below, the 1 shows where the carriage return
is printed.

— inverse line —

1 = invisible carriage return character
— inverse line -

1 = invisible carriage return character

— inverse line —

The keyword NEXT forms the other half of the FOR/NEXT instruction. Each time
the keyword NEXT is encountered, the variable listed in the FOR instruction is
incremented. After the variable is incremented, it is tested against the limit specified
in the FOR instruction. In this case if NUMBER is less than or equal to 30, the
instructions between the keyword FOR and keyword NEXT are executed again. If
NUMBER is greater than 30, logic falls through to line 1070.

The computer is instructed to display all the information following this instruction
in NORMAL mode. If the program does not reset the display to NORMAL, all
information displayed after the end of the program is in the INVERSE mode.

106 / Applesoft BASIC Toolbox

1080 The SPEED is reset so your display screen operates at its normal fast pace after the
program ends.
Now that you have seen the INVERSE instruction in action, change line 1030
by entering

1030 FLASH

Be ready to cover your eyes!
Enter

RUN <RETURN>

The FLASH instruction causes the computer to alternate between white letters
on a black background and black letters on a white background. It is a very good
way to get the operator’s attention and to cause temporary blindness.

You have seen two short examples of INVERSE and FLASH; now let’s look at
a more complete program. '

The following program uses the VTAB, HTAB, NORMAL, INVERSE, and FLASH
instructions to show you how to highlight messages. The program is very simple.
Its single purpose is to introduce the use of the screen instructions. The program
requests that you enter a number greater than 1000, less than 32768, and divisible
by 3.

1. If you guess a number which is divisible by 3, the program displays a message
in FLASH screen format.

2. If your number is not divisible by 3, the program displays a message using
INVERSE screen format.

3. If you enter a number less than 1001, the computer displays an error message
in INVERSE screen format.

To terminate the program enter 0 in response to the INPUT instruction.
Key in and run the following program, or run the program by entering

RUN SCREEN SAMPLE2

NEW

1000 REM SCREEN SAMPLE2

1010 HOME

1020 REM

1030 REM NORMAL, INVERSE, FLASH

1040 REM

1050 SPEED= 150

1060 PRINT "GUESS A NUMBER GREATER THAN 1000 AND": PRINT
1070 PRINT " LESS THAN 32768 WHICH IS DIVISIBLE": PRINT
1080 PRINT " BY 3"

1090 PRINT "KEY IN A VALUE OF ZERO TO QUIT"

1100 VTAB 15: HTAB 10

1110
1120

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590

The Screen Control Instructions / 107

INPUT "GUESS = ";AAGUESS

IF AAGUESS = 0 THEN SPEED= 255: HOME : PRINT "THAT'S
ALL FOLKS!"™ : END

IF AAGUESS < 1001 OR AAGUESS > 32767 THEN 1400
ABWHOLE% = AAGUESS / 3

ACREAL = AAGUESS / 3

ADDECIMAL = ACREAL - ABWHOLE}

IF ADDECIMAL > 0 GOTO 1300

REM
REM CORRECT NUMBER MESSAGE

REM

VTAB 20: HTAB 1: FLASH

PRINT TAB(35)" "

PRINT " GREAT GUESS "
PRINT TAB(35)" "

GOSUB 1510 REM CLEAR MES

GOTO 1100

REM
REM INCORRECT GUESS MES

REM

VTAB 20: HTAB 1: INVERSE
PRINT TAB(39)" "

PRINT "CANNOT DIVIDE";
NORMAL

PRINT " "AAGUESS" ";
INVERSE

PRINT TAB(30)"BY 3 ",
PRINT TAB(39)" "

GOSUB 1510: REM CLEAR MES
GOTO 1100

REM
REM OUTSIDE OF RANGE MES

REM

VTAB 20: HTAB 1: INVERSE

PRINT TAB(39)" "

PRINT " VALUE ENTERED < 1001 OR > 32767 "
PRINT TAB(39)" "

GOSUB 1510: REM CLEAR MES

GOTO 1100

REM
REM SUBROUTINE TO CLEAR
REM MESSAGE AREA

REM

NORMAL

PRINT "PRESS ANY KEY TO TRY AGAIN"
GET X$

VTAB 20: HTAB 1

FOR X = 1 TO 160: PRINT " ";: NEXT
VTAB 15: HTAB 18: PRINT " "
RETURN

Run the program and enter several numbers to see what happens on the screen.
Use the following numbers to test and view each of the routines in the program.

108 / Applesoft BASIC Toolbox

1100

1110

1120

1130

1140

1. Enter 1000 to test the out-of-range error routine.
2. Enter 1001 to test the not divisible by 3 error routine.
3. Enter 1002 to test the divisible by 3 message.

After you have seen the various messages, read through the explanation to see
how the program skipped around on the screen.

The VTAB instruction positions the cursor on the fifteenth line. The horizontal
position of the cursor remain unchanged. That is, if the cursor is in column 20 before
the VTAB, it is still in column 20 after the VTAB is executed, but on line 15.

The HTAB instruction is used to position the cursor at the tenth column on the
current line.

Since the cursor is positioned on line 15 in the tenth column, the message GUESS
= is displayed starting at that point. The cursor blinks following the message
GUESS = until you enter a number.

By using the VTAB and HTAB instructions, you can display data at various
points on the screen, making it easier for the operator to read and input data.

This group of instructions tests to see if you entered zero. Before the program is
ended the speed is reset, the screen is cleared, and an ending message is displayed.

Just to see if you can follow directions, the IF instruction tests whether the number
entered is within the limits requested. This is called an edit check. The lower range
is important only to this program, but the value of 32767 is significant. Since the
program uses an integ>r variable in the calculation process, the value entered is
tested to make sure it does not exceed the maximum integer value which can be
stored by the computer. Remember, an integer variable cannot store a number greater
than 32767 (see p. 53).

If you enter a number less than 1001 or greater than 32767, logic flow branches
to line 1400, where a message is printed indicating the mistake.

Applesoft does not have an instruction which provides the programmer with the
remainder of an integer division operation. In order to know whether the value in
AAGUESS is divisible by 3, you must divide by 3 and check the remainder. A
remainder of O indicates that it is divisible by 3. Any other value indicates that the
number is not divisible by 3. The first step in this process is to find the whole number
of times 3 goes into AAGUESS. Line 1140 gives the integer answer to dividing
GUESS by 3. Lines 1150, 1160, and 1170 complete the process by finding out if
there is a remainder of 0. Notice that ABWHOLE% is an integer variable (ends with
a percent sign). For example, in integer format, 1004 / 3 = 34, and 1005/ 3 =
35.

1150

1160

1170

1180-1210

1220

1230

1250

The Screen Control Instructions / 109

The division operation finds out the number of times 3 goes into AAGUESS and the
answer is stored in the real number format (includes decimal positions). For example,
in real format, 1004 / 3 = 34.666667, and 1005/ 3 = 35.0000.

When the integer portion of the answer is subtracted from the real portion, only the
decimal value remains. If the decimal value is O the guess is divisible by 3. If the
decimal portion of the answer is greater than O the guess is not divisible by 3. So
for AAGUESS = 1004, 34.666667 — 34 = .666667, indicating that AAGUESS
is not divisible by 3. If AAGUESS = 1005, 35.0 — 35 = .0, indicating that
AAGUESS is divisible by 3.

If the decimal portion of the answer is greater than 0, logic flow branches to line
1300, where a message indicating a bad guess is displayed. If ADDECIMAL is equal
to 0, logic flow drops down to the next section of code which FLASHes a message
indicating that you selected a number divisible by 3.

In this program all the messages in response to the INPUT operation are printed
starting on line 20 of the screen. The VTAB 20 instruction positions the cursor on
line 20 but does not change the horizontal position.

The HTAB 1 instruction positions the cursor to column 1 of the current line.
At this point the HTAB instruction could be left out. On line 1110 you enter a number
and press the RETURN key. When the RETURN key is pressed, the computer auto-
matically positions the cursor to the first column of the next line. Since we want the
cursor in column 1, the HTAB instruction is not really needed. It is coded in this
example to help you remember that usually the VTAB and HTAB instructions are
used together.

The FLASH instruction tells the computer that all further information displayed
on the screen is to alternate between white letters on a black background and black
letters on a white background.

I suggest a limited application of this instruction as it is hard on your eyes!

This instruction prints a line of 35 blanks. Since the screen is in FLASH mode, the
line alternates between an all white line and an all black line.

The PRINT instruction displays the GREAT GUESS message. Since the computer is
in FLASH mode, the message alternates in patterns of white and black.

The GOSUB is a new instruction which will be covered later in greater detail. The
instruction is somewhat like the GOTO instruction and causes the logic flow to branch
to line 1510. But unlike the GOTO instruction, the GOSUB (GO TO SUBROUTINE)
remembers where it branched from, and upon completing the subroutine returns to
the instruction following the GOSUB (line 1260).

110 / Applesoft BASIC Toolbox

1260

1270-1300

1310-1370

1380

1390

1490-1530

1540

1550

The term subroutine, routine, or module refers to a set of instructions which
are independent of the main body of the program. The subroutine may be executed
from many different parts of the program, saving the programmer from having to
repeat coding at different locations of the program.

For this program there are three different messages to be displayed. After
displaying each message, the computer pauses and lets the operator read the message.
Once the operator has responded, the subroutine clears lines 20 through 23. Since
the process is common to all three messages, the code for clearing the lines is written
once and then executed in each routine by using the GOSUB instruction.

After logic flow returns from the subroutine, the GOTO on line 1260 causes logic
flow to branch back to line 1100, where another guess is accepted.

The INVERSE instruction tells the computer that all further information is to be
displayed in black letters with a white background.

For this message the CANNOT DIVIDE and BY 3 parts of the line are printed in
INVERSE mode, while the actual number guessed is printed in NORMAL mode. In
order to change back and forth between NORMAL and INVERSE, each part of the
line must be printed separately. Notice the semicolon at the end of lines 1320 and
1340.

The instruction 1340 PRINT” "AAGUESS” ”; causes the value in AAGUESS
to be printed in normal mode with two leading and two trailing blanks.

Once the message has been displayed, logic flow branches to the subroutine, which
is responsible for waiting for a response from the operator and clearing lines 20 to
23.

After the subroutine has waited for a key to be pressed, cleared lines 20 to 23 of the
screen, and returned, line 1390 causes logic flow to go back to line 1100, where
another guess is accepted.

The subroutine starts off by setting the computer to the NORMAL display mode no
matter what mode the computer is in prior to entering the subroutine.

This is the common message for all three logic routes taken by the program: correct
guess, incorrect guess, or error in number entered. By putting the code in a common
subroutine, the programmer need only write it once.

The GET instruction is used to cause the computer to wait until a key is pressed.
After a key is pressed logic flow continues to the next line of code.

1560

1570

1580

1590

The Screen Control Instructions / 111

The VTAB and HTAB instructions are used to position the cursor prior to clearing
lines 20 through 23.

The FOR/NEXT instruction is used in conjunction with the PRINT instruction to clear
four lines starting at line 20. This is done by printing 160 spaces (160 characters/
40 characters per line = 4 lines).

This is not the best way to clear the lines, but it does produce a nice visual
effect as the cursor moves from left to right across the screen. '

Before the subroutine returns to the main portion of the program, it clears the old
guess. It does this by displaying ten spaces starting at the same position where the
old guess was entered. ’

This is the last instruction of the subroutine and indicates to RETURN to the instruc-
tion following the calling GOSUB. (The term calling GOSUB refers to the GOSUB
which caused logic flow to brach to this routine.)

Methods of Clearing a Line

The following code represents four ways to blank out a line:

1. PRINT” < 40 blanks > ",

2. FOR NUMBER = 1 TO40: PRINT " *; : NEXT

3. PRINT TAB(40)" ";

4. CALL -868

PRINT " < 40 blanks > "

The first example requires the programmer to count over 40 spaces. This means the
programmer must not only count correctly but must do all the work in writing out
the blank line.

FOR NUMBER = 1 TO 40 : PRINT " "; : NEXT
The second method requires the computer to loop through the FOR/NEXT statement
40 times. This is easier on the programmer but makes the computer work harder.

Don’t forget the semicolon at the end of the PRINT instruction.

PRINT TAB(40)" “;

112 / Applesoft BASIC Toolbox

The third method lets the computer TAB over to column 40, eliminating the need
to count the number of blanks or repeat the loop. As the computer TABs over to
column 40, it uses blanks as a fill character, erasing the current characters on the
line. When column 40 is reached, one blank is printed. This one blank is necessary
to get the computer to TAB correctly. Notice that the statement ends with a semi-
colon. The semicolon is required or else two lines end up being used instead of one.

CALL —868

The fourth method shown uses a CALL instruction to clear the line. The CALL

instruction is similar to the GOSUB instruction in that the CALL causes logic flow

to branch to a machine language subroutine and then return after the subroutine is

done. In this case the CALL executes a machine language subroutine starting at

address — 868. The machine language code is part of the APPLE’s operating system.
This method is quick but presents several problems.

1. The CALL — 868 clears the line to NORMAL mode. That is, the CALL blanks
out the line in the black background mode. You may want to have the back-
ground displayed in either the INVERSE or the FLASH mode. For either of these
two cases the CALL will not work.

2. The CALL instruction address works only on the APPLE computer. If your
Applesoft program is to be converted to another computer, this instruction will
have to be replaced.

3. The person reading the code may not understand the CALL instruction as easily
as the PRINT TAB(40)” “'; instruction. The PRINT instruction is easier to main-
tain and read than the CALL —868.

16.

Instructions

Example

Purpose

Rules for Use

The GOSUB/RETURN
Instructions

GOSUB statement number
RETURN

1000 GOSUB 2000:REM FORMAT SCREEN
1010 ...

......

2000 REM FORMAT SCREEN ROUTINE
2010 ...

......

2100 RETURN

The GOSUB instruction branches to line 2000, where a subroutine clears and formats
the screen. After the screen has been formatted, logic flow RETURNS to the instruc-
tion following the GOSUB. Since the REM instruction following the GOSUB is a
nonexecutable instruction, logic flow continues to line 1010.

1.

1.

The GOSUB instruction allows the programmer to code a set of related instruc-
tions once and execute those instructions from many different points of the
program.

When this technique is used, the size of the program is reduced and the
length of time the programmer spends coding is decreased.

Also, some routines which are used in a program are common to other

programs. Once the routine is coded as an independent module, it can be copied
as needed from program to program.
The GOSUB instruction allows the programmer to break the program into
smaller, more workable units, which are easy to understand and code. After
coding each segment or module, the programmer may then use GOSUB instruc-
tions to execute the modules in a specific sequence.

This is an important concept. Originally you benefit because it is simpler
to code smaller program modules. Later, if you try to modify the program, you
will find the smaller modules much easier to change.

Each routine executed by way of a GOSUB instruction must end with the
RETURN instruction.

113

114 / Applesoft BASIC Toolbox

If you exit a routine without going through the RETURN instruction use the
POP instruction (see p. 125) to remove the RETURN address from the GOSUB
stack table.

2. GOSUBs may be nested (GOSUB within GOSUB within GOSUB). Each group
of instructions, or routine, executed by way of the GOSUB instruction must
end with a RETURN instruction. It is important that you make sure you always
exit a routine by way of the RETURN instruction.

If you want to exit a routine without executing all the instructions within
the routine, use a GOTO instruction to branch to the matching RETURN instruc-
tion for that routine. When you always use the matching RETURN to exit a
module, the chain of GOSUBSs is not broken.

1000 GOSUB 2000: REM EXECUTE SUBROUTINE
1010 ...

2000 REM SUBROUTINE

2010 ... instructions

2020 IF ... GOTO 2200: REM CONDITIONAL GOTO
2030 ... instructions you want to skip over

2200 RETURN

lllustration The following example does not process anything but shows how the GOSUB works
of the Rules and shows the basic program structure which can be used to develop any program.
The program is broken down into four parts:

DRIVE ROUTINE
BEGINNING ROUTINE
MAIN ROUTINE
ENDING ROUTINE

Lines 1030 to 1100
Lines 1120 to 1180
Lines 1200 to 1250
Lines 1270 to 1320

Look over the listing and see if you can follow the lines indicating the sequence in
which the instructions are executed.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

REM GOSUB SAMPLEl

REM 1234567890123456789012
REM
REM DRIVE ROUTINE

REM EXECUTE BEGINNING ROUTINE

GOSUB 1120

7

The GOSUB/RETURN Instructions / 115

REM EXECUTE MAIN ROUTINE
GOSUB 1200

REM EXECUTE ENDING ROUTINE
GOSUB 1270: END

REM
REM
HOME =

PRINT "BEGINNING ROUTINE"
REM INSERT INSTRUCTIONS TO
REM BE EXECUTED ONCE AT
REM BEGINNING OF PROGRAM
REM
RETURN

REM

PRINT "MAIN ROUTINE" -

REM INSERT INSTRUCTIONS TO
REM BE EXECUTED REPEATEDLY
REM UNTIL THE END OF PROG
REM
RETURN

REM
PRINT "ENDING ROUTINE" -

REM INSERT INSTRUCTIONS TO
REM BE EXECUTED ONCE AT
REM THE END OF THE PROG
REM

RETURN
REM

When logic flow encounters line 1050, the GOSUB instruction causes the pro-
gram to branch (GOTO) to line 1120. Before the computer branches, it stores the
address of the next instruction (in this case line 1060) in a GOSUB stack table.
When the computer encounters a RETURN instruction, it uses the address from the
stack table as the RETURNing point.

1050 GOSUB 1120 —Address of next instruction is placed in GOSUB stack

1060 REM ...

1120 HOME

1180 RETURN

table, then logic jumps to line 1120

116 / Applesoft BASIC Toolbox

Once the RETURN is encountered, the computer returns to the address last placed
in the GOSUB stack.

The computer stores the address of the next instruction in the stack table each
time a GOSUB is executed. To make the sample easier to follow, statement numbers
are used to represent the instruction address.

That is, when there is an instruction on the same line as the GOSUB, the
computer stores the address of the instruction following the GOSUB.

2000 GOSUB 3000 : PRINT "STORES ADDRESS OF NEXT INSTRUCTION"
1 Stores address of PRINT instruction

To make the following explanation simpler each GOSUB is coded on a separate
line, and line numbers are used in place of the return address.

But it is important that you understand that the GOSUB returns to the next
sequential instruction and not to the next line number.

The GOSUB differs from the GOTO in that the GOTO does not cause the
computer to save a return address. With the GOSUB the computer remembers where
you want logic flow to return.

As indicated by the remarks in the BEGINNING ROUTINE, its purpose is to
execute all the instructions which are necessary to get the program started. The
beginning routine instructions are only executed once. After the RETURN instruction
on line 1080 is executed, logic flow returns to line 1060 of the DRIVE ROUTINE.

When the computer returns to line 1060, logic flow continues down to line
1070, where the second GOSUB is executed.

1070 GOSUB 1200 ——— 1200 PRINT “MAIN ROUTINE”
1080REM ..
A 1250 RETURN

When the second GOSUB is executed, the computer stores statement number
1080 in the stack table and then branches to line 1200. After the instructions within
the MAIN ROUTINE are executed and the RETURN instruction is encountered, logic
flow returns to line 1080.

For this example the MAIN ROUTINE is only executed once. In a real situation
you use a GOTO or FOR/NEXT instruction to repeat the MAIN ROUTINE until a
condition exists which indicates ending the routine (such as reaching the end of the
file). When the ending condition is encountered, logic flow is allowed to fall through
to the RETURN instruction.

Once the computer is back in the DRIVE ROUTINE the GOSUB on line 1090
is executed, causing the computer to save the address of the END instruction in the
stack table and then branch to line 1270.

The GOSUB/RETURN Instructions / 117

1090 GOSUB 1270: END 1270 PRINT “ENDING ROUTINE"

Once the RETURN instruction is executed, logic flow returns to the END next
instruction following the GOSUB.

The purpose of the ENDING ROUTINE is to provide an area in which to locate
instructions which are executed once prior to ending the program.

This structure of BEGINNING, MAIN, and ENDING ROUTINE is shown in more
detail in the disk programs. Once you learn how to break a programming problem
into units and code these units separately, your programs will be easier to write and
easier to change.

Now run the program and see if the information displayed on the screen is what
you expected.

The second GOSUB example is an extension of the first but demonstrates the
use of nested GOSUBs (a GOSUB within a GOSUB).

For this example two additional routines have been added. To simplify the
code, both routines display a single line indicating what they are suppose to do. In
a complete program the instructions for formatting the screen would be coded in
the first routine, and the instructions for reading the data would be coded in the
second routine.

In order to give you a better idea of how the routines are repeated, a counter
is used to cycle through the program five times.

Look over the following listing and see if you can follow the logic sequence,
then run the program and watch the screen. Enter '

RUN GOSUB SAMPLE2

1000 REM GOSUB SAMPLE2

1010 REM 1234567890123456789012
1020 REM
1030 REM DRIVE ROUTINE

1040 REM EXECUTE BEGINNING ROUTINE
1050 GOSUB 1120

1060 REM EXECUTE MAIN ROUTINE

1070 GOSUB 1210

1080 REM EXECUTE ENDING ROUTINE
1090 GOSUB 1300

1100 END
1110 REM
1120 HOME
1130 PRINT "BEGINNING ROUTINE"
1140 REM INSERT INSTRUCTIONS TO
1150 REM BE EXECUTED ONCE AT
1160 REM BEGINNING OF PROGRAM
1170 REM

118 / Applesoft BASIC Toolbox

1180 LIMIT = 5
1190 RETURN
1200 REM
1210 PRINT "MAIN ROUTINE"

1220 REM PRINT SCREEN ROUTINE
1230 GOSUB 1370

1240 REM READ SCREEN ROUTINE
1250 GOSUB 1420

1260 NUMBER = NUMBER + 1

1270 IF NUMBER < LIMIT THEN 1210
1280 RETURN

1290 REM
1300 PRINT "ENDING ROUTINE"
1310 REM INSERT INSTRUCTIONS TO
1320 REM BE EXECUTED ONCE AT
1330 REM THE END OF THE PROG
1340 REM

1350 RETURN

1360 REM
1370 PRINT "PRINT SCREEN ROUTINE"
1380 REM INSERT INSTRUCTIONS TO
1390 REM DISPLAY SCREEN

1400 RETURN

1410 REM
1420 PRINT "READ SCREEN ROUTINE"
1430 REM INSERT INSTRUCTIONS TO
1440 REM READ DATA FROM SCREEN
1450 RETURN

1460 REM

The DRIVE ROUTINE consists of basically the same code as in GOSUB SAMPLE1.

The BEGINNING ROUTINE consists of the same code but with one line added.
Line 1180 sets the variable LIMIT to a starting value of 5.

The MAIN ROUTINE has been changed to show the use of nested GOSUB
instructions.

The first GOSUB within the MAIN ROUTINE causes logic flow to branch to
the PRINT SCREEN ROUTINE. Since the MAIN ROUTINE is executed by way of the
GOSUB instruction on line 1070, the second GOSUB results in what is called a
nested GOSUB, that is, the use of a GOSUB within a routine executed by way of a
GOSUB.

When the first GOSUB is executed, Applesoft puts the address of the instruction
to which it is suppose to return into the first location of a special table (called a
stack).

Stack
1070 GOSUB 1210 Statement 1 = 1080
1080 ... Statement 2 = Null value

Statement 3 = Null value

The GOSUB/RETURN Instructions / 119

When the second GOSUB is executed, Applesoft puts the return address into
the second location of the stack table. The stack table works using a LIFO sequence
(Last In, First Out).

Stack
1230 GOSUB 1370 Statement 1 = 1080
1240 ... > Statement 2 = 1240

Statement 3 = Null value

Applesoft continues to place return addresses at the end of the table each time
a new GOSUB is encountered.

Each time a RETURN is encountered, the last entry placed in the table serves
as the RETURN address. By using the LIFO method, Applesoft can continue to nest
GOSUBs, and as long as you follow the rules, Applesoft returns to the correct
instruction.

After execution of the RETURN on line 1400, Applesoft removes the statement
number from the second entry of the table and branches back to that statement.
After the second entry is removed, the stack table contains only the one statement
number which is the return address for the MAIN ROUTINE.

Stack
1400 RETURN Statement 1 = 1080
........ Statement 2 = Null value
Statement 3 = Null value

When the GOSUB on line 1250 is executed, Applesoft places the address of
the instruction following the GOSUB into the second location of the table.

Stack
1250 GOSUB 1420 Statement 1 = 1080
1260 ... — Statement 2 = 1260

Statement 3 = Null value

When the RETURN on line 1450 is executed, the last address placed in the
stack is removed and used as the returning point for logic flow.

Stack
1450 RETURN Statement 1 = 1080
........ Statement 2 = Null value
Statement 3 = Null value

120/ Applesoft BASIC Toolbox

The process of inserting the return address and removing the return address
continues through five loops of the MAIN ROUTINE. On the fifth time through, logic
flow drops through the IF on line 1270 and encounters the RETURN at the end of
the MAIN ROUTINE. At this point there is only one number in the stack table. The
value is removed from the table and used as the return address.

1080

: Stack
1280 RETURN Statement 1 = Null value
........ Statement 2 = Null value

The next instruction to be executed is line 1080. When the GOSUB on line
1090 is executed, the return address of 1100 is placed in the stack, and then logic
flow branches to line 1300. Upon completion of the ENDING ROUTINE, the return
address is removed from the table, and logic flow ends on line 1100 with the END
instruction.

17.

Instruction

Example

Purpose

The ON GOSUB
Instruction

ON number GOSUB statement numbers

1000 INPUT “ENTER NUMBER OF MONTH = ";MTH

1010 IF MTH < 1 OR MTH > 12 THEN GOSUB 1160:GOTO 1030

1020 ON MTH GOSUB 1040,1050,1060,1070,1080,1090,1100,
1110,1120,1130,1140,1150

1030 END :

1040 PRINT “JANUARY":RETURN

1050 PRINT “"FEBRUARY":RETURN

1060 PRINT “MARCH":RETURN

1070 PRINT “APRIL":RETURN

1080 PRINT "MAY”:RETURN

1090 PRINT “JUNE":RETURN

1100 PRINT “JULY”:RETURN

1110 PRINT "AUGUST":RETURN

1120 PRINT “SEPTEMBER":RETURN

1130 PRINT “OCTOBER":RETURN

1140 PRINT “NOVEMBER":RETURN

1150 PRINT “DECEMBER":RETURN

1160 PRINT "ERROR IN MONTH VALUE":RETURN

If the value of MTH is 1, 2, 3,4, 5,6, 7, 8, 9, 10, 11, or 12, the ON GOSUB
instruction causes logic flow to branch and print the correct name of the month. If
the value of MTH is less than 1 or greater than 12, line 1010 causes an error message
to be printed. After the name of the month is printed, logic flow returns to line 1030,
and the program ends.

The ON GOSUB instruction is used to change the flow of instruction execution
based on the value of the number following the keyword ON. The instruction com-
bines the features of the IF and GOSUB instructions into one statement.

Instead of having to code 12 IFs with 12 GOSUBSs,

121

122 / Applesoft BASIC Toolbox

Rules for Use

INustration
of the Rules

IF MTH = 1 GOSUB 1040
IF MTH = 2 GOSUB 1050
IF MTH = 3 GOSUB 1060

IF MTH = 12 GOSUB 1150

you may code one statement to test for all 12 values:

ON MTH GOSUB 1040,1050,1060,1070,1080,1090,1100,1110,

Key

1120,1130,1140,1150

The statement numbers used with the ON GOSUB instruction must exist within
the program.

The name or equation following the keyword ON may be either an integer or
a real value. If the variable contains a real value, any decimal positions are
ignored.

The value of the number or arithmetic expression following the keyword ON
must not be negative or exceed 255. If the value is outside the computer’s
allowable range, an error message is displayed and the program terminated.
Each statement number following the keyword GOSUB corresponds to a test
for the value of 1, 2, 3, 4, 5, etc.

If the number being evaluated is O or is greater than the number of statements
listed, logic flow falls through the ON GOSUB and continues with the next
sequential statement.

Each routine executed using the ON GOSUB instruction must end with the
RETURN instruction.

in the following program, or load and list the program by entering

LOAD ON GOSUB SAMPLE1

LIST

1000 REM ON GOSUB SAMPLE1l

1010 HOME

1020 VTAB 10

1030 PRINT "ENTER A NUMBER FROM 1 TO 10.": PRINT

1040 PRINT "ENTER 11 TO TERMINATE THE PROGRAM.": PRINT

1050 INPUT " = ";AANUMBER

1060 PRINT

1070 IF AANUMBER < 1 OR AANUMBER > 11 THEN GOSUB 1130:GOTO 1 090

1080 ON AANUMBER GOSUB 1150,1170,1150,1170,1150,1170,1150,1170,
1150,1170,1190

1090 VTAB 23

1100 PRINT "PRESS ANY KEY TO CONTINUE.";

1110 GET X1$

1070

1080

1090-1120

1190-1220

The ON GOSUB Instruction / 123

1120 GOTO 1000

1130 PRINT "NUMBER NOT WITHIN SPECIFIED RANGE."
1140 RETURN

1150 PRINT "YOU ENTERED AN ODD NUMBER."
1160 RETURN

1170 PRINT "YOU ENTERED AN EVEN NUMBER."
1180 RETURN

1190 HOME

1200 PRINT "THAT'S ALL FOLKS!"

1210 END

1220 REM DID NOT RETURN ON LAST GOSUB

Before the ON GOSUB instruction is executed, the value entered is checked to see
if it is within the specified range. To be on the safe side, precede each ON GOSUB
and ON GOTO instruction with an IF instruction. When you test the value to be used
prior to the GOSUB or GOTO operation, there is no chance for an illegal value to
cause the program to abnormally terminate.

Depending on the value entered by the operator, the ON GOSUB instruction branches
to one of the 11 statement numbers. Since the IF instruction on line 1070 has already
tested for any value outside the 11 numbers, the instruction is guaranteed a match.
If1, 3,5, 7, or 9 is entered, logic flow branches to line 1150. For the value 2, 4,

-6, 8, or 10, logic flow branches to line 1170. If the operator enters an 11, logic flow

branches to line 1190.

Notice that the same statement number may be used in several different posi-
tions. In the example all the odd numbers are associated with statement 1150, and
all the even numbers are associated with statement 1170.

After the appropriate message is displayed, the operator is given a chance to read
the message and press a key. After any key is pressed, the program starts over and
gives the operator another chance to enter a number.

This section of code prints a message when an 11 is entered to terminate the program.
Notice that when the program terminates, no RETURN is used. Since lines 1190 to
1220 are the last instructions to be executed by the program, the RETURN is omitted,
and the program is terminated without returning to the calling GOSUB. Normally
each GOSUB operation should have a matching RETURN instruction. Do not get
into the practice of breaking the GOSUB/RETURN structure.

To help illustrate the rules, run the program and enter the following values.

1. Enter a real number with a decimal point, let’s say 4.5. The computer will
truncate the .5 and treat the number as an integer value of 4. The message YOU
ENTERED AN EVEN NUMBER. will print out. Press any key to continue the
program.

124/ Applesoft BASIC Toolbox

2.

Enter a number outside the acceptable range, such as zero. Since zero is not
within the range of the numbers requested, the IF instruction on line 1070 will
intercept the number and branch to line 1130. The message NUMBER NOT
WITHIN SPECIFIED RANGE. will be displayed. Press any key to continue the
program.

Enter an odd or an even number within the acceptable range. If you enter an
odd number, the ON GOSUB will cause logic flow to branch to statement 1150.
If you enter an even number, the ON GOSUB will cause logic flow to branch
to line 1170. In either case a message will be displayed, and logic flow will
return to line 1090. Press any key to continue the program.

To terminate the program, enter 11. After terminating the program, delete line
1070 by entering

1070 <RETURN>

Run the program again and enter a negative value or a value greater than 255.
Since the value was not checked prior to being used in the ON GOSUB instruc-
tion, the program will be terminated with an ILLEGAL QUANTITY error message.

Remember that when using either the ON GOSUB or the ON GOTO instruc-

tions, any negative number or value greater than 255 abnormally terminates the
program.

18. The POP Instruction

Instruction POP

Example 1000 GOSUB 2000
r—>1010

3050 POP

3060 REM REMOVES ONE RETURN ADDRESS FROM THE GOSUB STACK.
— 3070 RETURN

3080 REM RETURN WILL GO BACK TO LINE 1010 BECAUSE POP

3090 REM REMOVED ONE RETURN ADDRESS.

Purpose The POP instruction is used to remove the last instruction address placed in the
GOSUB stack. If for some reason you DO NOT want to RETURN to the instruction
following the calling GOSUB, the POP instruction can be used to remove the last
return address placed in the GOSUB stack table.

Rules for Use 1. Prior to execution of a POP instruction, at least one GOSUB instruction must
have been executed or the program ends with error code 22 (RETURN WITH-
OUT GOSUB).
2. After the POP instruction is executed, logic flow continues to the next instruc-
tion. No return or branching is associated with the POP instruction.

lllustration For the following GOSUBSs, three addresses are located in the GOSUB stack. To
of the Rules make the example easier to illustrate, statement numbers are used, but remember
that the machine actually uses the address of the next instruction.

125

126 / Applesoft BASIC Toolbox

1000 GOSUB 2000 Stack

1010 > Statement 1 = 1010
2000 GOSUB 3000 Statement 2 = 2010
2010 / Statement 3 ="3630-
3000 GOSUW

3010

4000 POP

4010 RETURN

The POP instruction on line 4000 removes the last address from the GOSUB
stack, leaving only two return addresses:

Statement 1 = 1010
Statement 2 = 2010
Statement 3 = Cleared by POP

When the RETURN instruction on line 4010 is executed, program logic returns
to statement 2010 since it is now the last address in the GOSUB stack.

19.

Instruction

Example

Purpose

Rules for Use

The LET Instruction

Formula

LET variable name = 4 Variable

Constant

LETA =8B

Sets variable A equal to the value of B.

LET A$ = "ALPHA" + "NUMERIC”

Sets A$ equal to the value ALPHANUMERIC.

To copy data from one variable to another.

To connect two or more strings into one string and store the results in the
variable to the left of the equal sign.

To calculate a numeric value based on a formula and store the answer in the
variable to the left of the equal sign.

The LET instruction has many options. The discussion of the LET instruction

is divided into four sections. Each subsection is divided further into a detailed
explanation of each parameter and symbol to be used.

1.

General rules in using the LET instruction

a. The keyword LET is optional in Applesoft.

b. Only one variable name is allowed to the left of the equal sign.

c. The type of variable to the left of the equal sign must match the type of
value produced by the equation on the right side of the equal sign.

Numeric operations using the LET instruction

a. + (plus) For addition

b. — (minus) For subtraction or negation

¢. * (asterisk) For multiplication

d. / (slash) For division

e. " (caret) For exponentiation

f. () Left and right parentheses for sequence of execution

127

128/ Applesoft BASIC Toolbox

lllustration
of the Rules

3. Numeric operations using the LET Applesoft functions
Note: To help illustrate the formats of the various functions variable names are
used. The names X and Y are used to show the location where either a
numeric constant, numeric variable, or numeric equation must appear.
The name A$ is used to show where either a string constant or string
variable must appear.

a. ABS(X)
b. ASC(A$)

INT(X)
LEN(A$)
RND(X)
SGN(X)
VAL(AS$)

S0

Fow

LEFT$(A$,X)
MID$(A$,X,Y)

TR W

RIGHT$(A$,X)
+

a0

e. CHR$(X)

f. STR$(X)

References the absolute value of X

References the ASCII (American Standard Code for
Information Interchange) numeric value of the first
character of the variable A$

References the integer portion of the real number X
References the number of characters in the variable A$
Returns a random number based on the value of X
Returns a —1, 0, or +1 depending on the value of X
References the numeric value of A$

others SIN(X); COS(X); TAN(X); ATN{X); SQR(X); EXP(X); LOG(X)
tring operations using the LET string functions

References the X leftmost characters of A$
References the middle of A$ starting at location X and
continuing for Y characters

References the X rightmost characters of A$

Can be used with string functions to CONNECT groups
of alphanumeric characters together; the process of con-
necting two strings is called concantenation

Returns the ASCII character corresponding to the numeric
value of X

Returns the numeric value of X in string format

General Rules for Using the LET Instruction

la. The keyword LET is optional in Applesoft.

1b. Only one variable name is allowed to the left of the equal sign.

1c. The type of variable name to the left of the equal sign must match the type of
value produced by the equation on the right side of the equal sign.

Key in and run the program, or run the program by entering

RUN LET SAMPLE1

1000 REM LET SAMPLEl

1010 HOME
1020 REM

1030 REM FOR APPLESOFT "LET" IN
1040 REM THE LET INSTRUCTION IS

1070-1080

1090

1100-1140

Rule 1c.

Example

The LET Instruction / 129

1050 REM OPTIONAL

1060 REM

1070 LET AANUMBER = 5

1080 ABNUMBER = 40

1090 ACNUMBER = ADNUMBER = AENUMBER = AANUMBER * ABNUMBER

1100 PRINT "AANUMBER = "; AANUMBER
1110 PRINT "ABNUMBER = "; ABNUMBER
1120 PRINT "ACNUMBER = "; ACNUMBER
1130 PRINT "ADNUMBER = " ; ADNUMBER
1140 PRINT "AENUMBER = " ; AENUMBER

1150 END

The first LET instruction shows the standard format with the keyword LET followed
by the variable name to be changed, the equal sign, and the equation to be evaluated
in developing the answer.

Except for statement 1070, none of the programs used in this book include the
keyword LET.

Line 1070 sets AANUMBER equal to 5, while line 1080 sets ABNUMBER equal
to 40.

This line shows how you might mistakenly attempt to set several variables equal to
the same value with a single LET instruction. Logically, the instruction is trying to
set the variables ACNUMBER, ADNUMBER, and AENUMBER equal to the results
of multiplying AANUMBER by ABNUMBER, but when the instruction is executed,
Applesoft sets ALL variables to zero.

To correctly set all variables to the same value, use multiple LET instructions.
First compute the answer, and then set the other variables equal to the results.

1090 ACNUMBER = AANUMBER * ABNUMBER: ADNUMBER = ACNUMBER:
AENUMBER = ACNUMBER

Lines 1100 through 1140 print the contents of each of the variables used in the
example, proving that variables AC, AD, and AE were set to zero.

The type of variable name to the left of the equal sign must match the results produced
by the equation on the right side of the equal sign.

STRINGNAME$ = STRING FUNCTION
REALNAME = ANY ARITHMETIC OPERATION
INTEGERNAME% = ANY ARITHMETIC OPERATION to be truncated

Key in the following program, or load and list the program by entering

130 / Applesoft BASIC Toolbox

1020-1060 String names are initialized to the value indicated by the alphanumeric string to the
right of the equal sign. Alphanumeric constants (string constants) must be enclosed
in quotation marks. Even if the value to be placed in a string variable consists of
all numbers, the value must still be enclosed within quotation marks.

1070-1100

LOAD LET SAMPLE2

LIST

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360

Lines 1080 and 1090 are examples of mismatch errors. Attempt to run the program

REM LET SAMPLE2

HOME

REM CORRECT STR SAMPLES
AASTRING$ = "APPLES"

ABMTH$ = "SEPTEMBER"

ACDTE$ = "12/28/81"

REM

REM INCORRECT STR SAMPLES
ADVLUE$ = 1234

AEDTE$ = 122881

REM

REM CORRECT REAL SAMPLES
AANUMBER = 1234.56

ABDTE = 122881

REM

REM INCORRECT REAL SAMPLES
ACVLUE = "$123.45"

ADDTE = 12/28/81

REM

REM CORRECT INT SAMPLES
AANUMBERE = 1234

ABDTE% = 1281:REM MONTH AND YEAR
REM

REM INCORRECT INT SAMPLES
ACVLUE% = 123.45
ADDTEZ = 122881
REM

PRINT "AASTRING$
PRINT "ABMTH$
PRINT "ACDTE$
PRINT "AANUMBER
PRINT "ABDTE
PRINT "ADDTE
PRINT "AANUMBER%
PRINT "ABDTE%
PRINT "ACVLUE%
END

""AASTRING$
"ABMTH$
"ACDTE$
""AANUMBER
"ABDTE
"ADDTE
"AANUMBER%
"ABDTE}
"ACVLUE%

and you will get the following message

?TYPE MISMATCH ERROR IN 1080

1110-1140

1150-1180

1190-1220

1230-1260

The LET Instruction / 131

The computer is trying to tell you that you cannot mix variables. You cannot give
an alphanumeric variable a numeric value or give a numeric variable an alphanumeric
value.

Delete the lines in error by entering

DEL 1070,1100
LIST

Lines 1110 to 1140 provide correct examples of how to set a numeric variable to a
numeric value. In this case the numeric variables and values represent what are
called real numbers. The real number set includes whole numbers such as 23, 500,
1001, etc., as well as numbers with decimal portions such as .045, 12.45, 1001.15,
etc. In other words, real numbers may or may not have a decimal portion whereas
integers may only contain whole numbers. Most arithmetic is done with real numbers.

Lines 1150 to 1180 provide examples of incorrect attempts to set a numeric variable
name equal to a specific value. In line 1160 there is another TYPE MISMATCH
error: a numeric variable cannot be set equal to a string value enclosed within
quotation marks.

In line 1170 the value to the right of the equal sign is not interpreted as a date
but causes ADDTE to be set to a value of .00529101. The computer interprets the
equation

ADDTE = 12/28/ 81

as 12 divided by 28 = .42857143 (see first slash), then .42857143 divided by 81
= .00529101 (see second slash).
This mistake does not result in a syntax error but does result in a logic error.
To eliminate these lines, enter

DEL 1150, 1180
LIST

Lines 1190 to 1220 provide correct examples of how to set an integer variable equal
to an initial value. An integer variable is indicated by a percent sign used as the last
character of the name. Integer variables may only contain positive or negative whole
numbers. You may wonder why ABDTE% was set equal to a different date (value)
than in previous examples. The largest whole number which can be stored in an
integer variable is (+, —) 32767. The numeric date 122881 used on lines 1050 and
1130 is too large and would result in an error message.

Line 1240 does not result in a syntax error but is logically incorrect. Applesoft sets

132 / Applesoft BASIC Toolbox

ACVLUE% equal to the integer portion of the real number 123.45. After execution
of line 1240, ACVLUE% contains the whole number 123. If the programmer wants
to truncate the decimal positions, this instruction is valid. If the programmer expects
to keep the decimal positions, then a logic error has occurred.

Line 1250 shows what happens if you attempt to store a value larger then
+32767 or smaller than —32767. If you try to run the program the following
message is displayed

?ILLEGAL QUANTITY ERROR IN 1250
To delete this line enter

1250
LIST

At this point all the syntax errors should be out of the program. RUN the
program and review the output to make sure you understand the following concepts:

STRING Variables

1. String variable names always end with a dollar sign.

2. String variables are always treated by the computer as alphanumeric even when
they contain only numbers.

3. String constants MUST be enclosed within quotation marks.

4. String variables cannot be used in arithmetic operations.

REAL Variables

1. Real variable names end with either a numeric digit or with an alphabetic
character (A1, A2, AB, AC, etc).

2. Real variables contain numeric values with possible decimal positions.

3. Real constants MUST NOT be enclosed within quotation marks and may or
may not contain a decimal position (123 or 123.0).

4. Real variables can be used in any type of arithmetic operation.

INTEGER Variables

1. Integer variables always end with a percent sign.

2. Integer variables contain only whole numbers. No decimal positions can be
stored.

3. Integer constants MUST NOT be enclosed within quotation marks.

4. Integer variables can be used in any type of arithmetic operation.

The LET Instruction / 133

Basic Numeric Operation in Applesoft

For numeric operations use the following symbols:

.+ For addition

— For subtraction

* For multiplication

/ For division

“ For exponentiation

. () Left and right parentheses for sequence of execution

1
2
3
4
5
6

The examples of add, subtract, multiply and divide are very simple. You may
want to look over the first four examples and execute only one before moving on to
the example on exponentation.

Addition

To add, use the plus (+) sign. The following program asks you to input two numbers
and then displays the two numbers and the answer in an equation format.
Key in and run the following program, or run the program by entering

RUN ADD SAMPLE1
NEW
1000 REM ADD SAMPLEl
1010 HOME
1020 REM
1030 REM + FOR ADDITION
1040 REM
1050 PRINT "ADD EXAMPLE +"
1060 PRINT
1070 INPUT "FIRST NUMBER = "; AANUMBER

1080 INPUT "SECOND NUMBER= " ; ABNUMBER

1090 ACANSWER = AANUMBER + ABNUMBER

1100 PRINT:PRINT

1110 PRINT AANUMBER" + "ABNUMBER" = "ACANSWER
1120 END

1090 When using the LET instruction, each variable to the right side of the equal sign
MUST be separated by an arithmetic symbol.
The value of the variable to the left of the equal sign is replaced by the new

134 / Applesoft BASIC Toolbox

amount calculated on the right of the equal sign. Again, only one variable is allowed
to the left of the equal sign.

In this case the number you enter for AANUMBER is added to the number
entered for ABNUMBER and the results stored in ACANSWER.

Subtraction

To subtract use the minus (—) sign. The following program uses the same logic as

the add example. If you decide to load the program, run it several times, entering

various combinations of numbers so you get positive, negative, and zero results.
Key in and run the following program, or run the program by entering

RUN SUBTRACT SAMPLE1

Remember, once the program is loaded, you only need to key RUN and press
RETURN to execute it again.

NEW

1000 REM SUBTRACT SAMPLEl

1010 HOME

1020 REM

1030 REM - FOR SUBTRACT

1040 REM

1050 PRINT "SUBTRACT EXAMPLE -"

1060 PRINT

1070 INPUT "FIRST NUMBER = ";AANUMBER
1080 INPUT "SECOND NUMBER= " ; ABNUMBER
1090 ACANSWER = AANUMBER - ABNUMBER
1100 PRINT:PRINT

1110 PRINT AANUMBER" — "ABNUMBER" = "ACANSWER
1120 END

Multiplication

To multiply use the asterisk (*) character. Again, the following program follows the
logic of the addition example. You may want to execute it to see how quickly you
can exceed the limit of nine significant characters. Remember, the computer only
stores the nine most significant digits. Multiply a five digit number by another five
digit number and see if all the resulting digits are kept.

For example, try

55555 * 55555
You would expect

55655 * 55555 = 3086358025

The LET Instruction / 135

But you will get

55555 * 55555 = 3.08635803E + 09

Key in and run the following program, or run the program by entering

RUN MULTIPLY SAMPLE1

NEW

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

Division

REM MULTIPLY SAMPLEl

HOME

REM

REM * FOR MULTIPLY

REM

PRINT "MULTIPLY EXAMPLE *"

PRINT

INPUT "FIRST NUMBER = "; AANUMBER
INPUT "SECOND NUMBER= '"; ABNUMBER
ACANSWER = AANUMBER * ABNUMBER
PRINT: PRINT

PRINT AANUMBER" * "ABNUMBER" = "ACANSWER
END

To divide use the slash (/) character. When dividing you must be careful to make
sure that the divisor is not zero. The computer CANNOT divide by zero (nor can
anyone else). Run the following sample, enter zero as the second number, and see
what happens. Key in and run the following program, or run the program by entering

RUN DIVIDE SAMPLE1 .

NEW

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

REM DIVIDE SAMPLEl

HOME

REM

REM / FOR DIVISION

REM

PRINT "DIVIDE EXAMPLE /"

PRINT

INPUT "DIVIDEND " ; AANUMBER
INPUT "DIVISOR "' ; ABNUMBER
ACANSWER = AANUMBER / ABNUMBER
PRINT:PRINT

PRINT AANUMBER" / "ABNUMBER" = "ACANSWER
END

In order to avoid the division by zero error, you may want to use an |F instruction
to check the value of a divisor prior to dividing.

136 / Applesoft BASIC Toolbox

1085 IF ABNUMBER = 0 THEN ACANSWER = 0: GOTO 1110

Exponentiation

To raise a number to a specific power (exponentiation), use the caret (+) character.

For the APPLE II and APPLE II +, the character is keyed as SHIFT-N, (see the
symbol above the N key).

For the APPLE Ile, the symbol is the SHIFT-6 key.

When using the exponentiation feature, it is very easy to exceed the limits of
the computer. The first program follows the same format as the previous numeric
examples.

Key in and run the following program, or run the program by entering

RUN EXPONENTIATION SAMPLE1

NEW

1000 REM EXPONENTIATION SAMPLEL

1010 HOME

1020 REM

1030 REM ~ FOR EXPONENTIATION

1040 REM

1050 PRINT "EXPONENTIATION EXAMPLE "
1060 PRINT

1070 INPUT "NUMBER = "; AANUMBER
1080 INPUT "POWER = "; ABNUMBER

1090 ACANSWER = AANUMBER " ABNUMBER

1100 PRINT:PRINT

1110 PRINT AANUMBER" " "ABNUMBER" = "ACANSWER
1120 END

The second exponentiation program prints out the powers of 2 until the limi-
tations of the computer are exceeded. Since the program uses the SPEED instruction
and ends in an error, you must reset the speed after program termination. Enter
SPEED = 255 in response to the ending error message.

Key in and run the following program, or run the program by entering

RUN EXPONENTIATION SAMPLE2

NEW
1000 REM EXPONENTIATION SAMPLE2
1010 HOME

1020 REM

1030 REM PROGRAM WILL END IN
1040 REM ERROR AFTER 126 LOOPS.
1050 REM

1060 AANUMBER
1070 ABNUMBER

1
2 N AANUMBER

The LET Instruction / 137

1080 PRINT " 2 TO THE POWER OF "AANUMBER" = "AENUMBER
1090 AANUMBER = AANUMBER + 1
1100 GOTO 1070

1060 AANUMBER is set to an initial value of 1. The first time statement 1080 is executed,

1070

a value of 2 is printed. Each time through the loop, AANUMBER is incremented by
1 to continually increase the factor for exponentiation.

The field ABNUMBER is set to 2 raised to the power indicated by the current value
of AANUMBER. When AANUMBER gets to 127, the answer exceeds the limits of
the computer and you get the following error message

?OVERFLOW ERROR IN 1080

Parentheses

Parentheses are used to override the standard sequence of arithmetic operations. The
computer computes the answer to an equation by carrying out the individual arith-
metic functions in the following order UNLESS PARENTHESES ARE USED.

1. Exponentiation is performed first if present. The computer scans the equation
for the caret () starting at the left side of the equation and proceeding to the
right.

2. Muttiplication and division are performed next. The computer scans the equa-
tion from left to right looking for either an asterisk (*) or a slash (/). When
either one is found the operation is carried out.

3. Addition and subtraction are performed last. The computer scans the equation
from left to right looking for either a plus sign or a minus sign. When one is
found, the operation is carried out.

When parentheses are used, the computer begins the sequence described above,
scanning the innermost set of parentheses first. When ALL arithmetic operations
are completed in the innermost parentheses, the next level of parentheses is scanned.
The process continues from innermost parentheses to outermost parentheses until
all the calculations are completed.

For example

GG = AA + BB * (CC/DD — EE) "FF
where

AA = 35,BB = 10,CC = 22,DD = 2,EE = 8, FF = 4

138 / Applesoft BASIC Toolbox

Answer
GG =845

First, the innermost equation (CC / DD — EE) is solved. The value in CC is
divided by DD (22 /2 = 11). The value of EE is then subtracted from the quotient
of the division operation (11 - 8 = 3).

Second, the result of the inner parentheses is carried to the power of FF 3 " 4
= 81). Remember, if no parentheses are present exponentiation is done first.

Third, the value in BB is multiplied by the value calculated to this point (10 *
81 = 810).

Last, the value in AA is added to the value calculated to this point, and the
results stored in GG (35 + 810 = 845).

The variable GG ends up with a value of 845.

Example 1: Parentheses

The following example demonstrates the difference between using and not using
parentheses.
Key in and run the following program, or run the program by entering

RUN PARENTHESES SAMPLE1

NEW

1000 REM PARENTHESES SAMPLE1l
1010 HOME

1020 REM

1030 REM () FOR OVERRIDING SEQ
1040 REM OF EXECUTION

1050 REM

1060 PRINT "PARENTHESES EXAMPLE"

1070 PRINT

1080 INPUT "FIRST NUMBER = ";AANUMBER
1090 INPUT "SECOND NUMBER = "; ABNUMBER

1100 PRINT : PRINT

1110 PRINT "WITH PARENTHESES"

1120 ACANSWER = (AANUMBER + AANUMBER) * ABNUMBER — (ABNUMBER /
AANUMBER)

1130 PRINT "ANSWER = "ACANSWER

1140 PRINT : PRINT

1150 PRINT "WITHOUT PARENTHESES"

1160 ACANSWER = AANUMBER + AANUMBER * ABNUMBER - ABNUMBER /
AANUMBER

1170 PRINT "ANSWER = "ACANSWER

1180 END

The statements 1120 and 1160 perform the same arithmetic operations but in
different sequences.

The LET Instruction / 139

Did you notice the difference when you ran the program? If not, run the program
again to see how the use of parentheses changes the sequence in which the arithmetic
operations are performed.

Arithmetic Functions in Applesoft

Rules for Use

Applesoft has a set of predefined functions which allows the programmer to manip-
ulate numeric variables, convert numbers stored in string format to numeric format,
and perform the basic trigonometry operations.

These functons are listed below. The trigonometry functions are self explana-
tory (if you know trigonometry) and are not covered in detail. The other numeric
functions are covered in alphabetic order.

1. ABS(X) Returns the absolute value of X

2. ASC(AS$) Returns the ASCII numeric value of the first character of the
variable A$

3. INT(X) Returns the integer portion of the real number X

4. LEN(AS$) Returns the number of characters in the variable A$

5. RND(X) Returns a random number based on the value of X

6. SGN(X) Returns a value of —1, 0, or + 1 depending on the value of
X

7. VAL(A$) Returns the numeric value of A$

8. Trigonometry and basic math functions

ATN (X) Used to retrieve the arctangent, in radians, of X
COS (X) Used to retrieve the cosine, in radians, of X
EXP (X) Used to retrieve e (2.718279) to the power of X
LOG (X) Used to retrieve the natural logarithm of X

SIN (X) Used to retrieve the sine, in radians, of X

SQR (X) Used to retrieve the square root of X

TAN (X) Used to retrieve the tangent, in radians, of X

ABS(X)

ABSolute is an Applesoft function which is used to convert numbers to their absolute
value.

1. The variable or expression used within the parentheses must be numeric.
2. If the value within the parentheses is negative, the sign is changed to positive.
If the value within the parentheses is positive, the sign remains unchanged.

140 / Applesoft BASIC Toolbox

Example:

Rules for Use

This function is very simple, and no program is provided. You may wish to
test the instruction out in the immediate mode by keying in the following instructions:

PRINT “ABSOLUTE -123 = "ABS(-123) <RETURN>
displays as

ABSOLUTE -123 = 123
PRINT "ABSOLUTE + 123 = “"ABS(+ 123) <RETURN>

displays as

ABSOLUTE +123 = 123

ASC(X$)

The American Standard Code for Information Interchange (ASCII) is the binary
coding system used by the APPLE. The ASC function allows the program to convert
a single ASCII symbol into its corresponding ASCII numeric value.

Letter A = Numeric value of 65
Letter B = Numeric value of 66
(see Appendix A, p. 508)

The function has limited programming application but does come in handy
when you need to know the numeric value of a specific key or combination of keys.

1. The value within parentheses must be a string value.

2. If the string contains more than one character only the first character of the
string is converted.

3. The ASCII code returned is from 0 to 127.

Key in and run the following program, or run the program by entering
RUN ASC SAMPLE1

NEW

1000 REM ASC SAMPLEl

1010 HOME

1020 REM

1030 PRINT "PRESS ANY KEY AND THE COMPUTER WILL"
1040 PRINT "SHOW YOU THE CORRESPONDING ASCII"
1050 PRINT "NUMERIC VALUE."

The LET Instruction / 141

1060 PRINT

1070 PRINT "PRESS KEY = ";

1080 GET X$

1090 PRINT X$

1100 AANUMBER = ASC (X$)

1110 PRINT "ASCII VALUE = "AANUMBER

1120 PRINT

1130 PRINT "PRESS Q TO QUIT"

1140 PRINT "PRESS ANY OTHER KEY TO CONTINUE"

1150 GET X$

1160 IF X$ < > "Q" GOTO 1000
1170 PRINT

1180 PRINT "THAT'S ALL FOLKS!"
1190 END

While running the program, press some of the control keys to see the corre-
sponding numeric value. The numeric value for CONTROL-D is one that you should
memorize, as it is used extensively when working with the disk /O commands. The
CONTROL-D combination of keys has an ASCII value of 4.

INT(X)

INTeger is an Applesoft function used to truncate the decimal portion of a real
number.
Key in and run the following program, or run the program by entering

RUN INT SAMPLE1

NEW

1000 REM INT SAMPLEl

1010 HOME

1020 REM

1030 PRINT "ENTER A NUMBER WITH MORE THAN TWO"
1040 PRINT "DECIMAL POSITIONS. EXAMPLE: 123.456"
1050 PRINT

1060 PRINT "THE PROGRAM WILL ROUND THE NUMBER"
1070 PRINT "TO TWO DECIMAL POSITIONS"

1080 PRINT

1090 INPUT "NUMBER=" AANUMBER

1100 ABNUMBER = (INT((AANUMBER + .005) * 100) / 100)
1110 PRINT "NUMBER=" ABNUMBER

1120 VTAB 15

1130 PRINT "PRESS Q TO QUIT"

1140 PRINT "PRESS ANY OTHER KEY TO CONTINUE"
1150 GET X$

1160 IF X$ <> "Q" GOTO 1000

1170 HOME

1180 PRINT "THAT'S ALL FOLKS!"

1190 END

142 / Applesoft BASIC Toolbox

1100 The innermost parenthesis is cleared by adding .005 to the value in AANUMBER.

Example

Once the value has been rounded, the number is shifted two decimal positions to
the left by multiplying the intermediate result by 100. After the number has been
shifted, the INTeger function truncates the decimal positions, and the decimal is
shifted back to the right by dividing the value by 100.

For example if you enter 123.456, the following occurs:

1. 123.456 + .005 = 123.461

2. 123.461 * 100 = 12346.1

3. INT(12346.1) = 12346

4. 12346/ 100 = 123.46 Answer truncated and rounded
LEN(A$)

LENgth is a very handy function when working with I/O operations. The function
works only with string variables and returns a value equal to the number of characters
in the string variable.

PRINT "NAME IS ” LEN(AANAMES$) " CHARACTERS LONG"”
where

AANAMES$ = "“JOHN DOE”

prints

NAME IS 8 CHARACTERS LONG

In the following example, the LENgth function is used to control the TAB operation.
By using the length of each variable entered with the TAB operation, all the variables
are aligned on the right (right justified) when PRINTed.

The program is set up to work with either integer numbers or real numbers,
but no allowance has been made to align decimal points.

Key in and run the following program, or run the program by entering

RUN LEN SAMPLE1

NEW

1000 REM LEN SAMPLEl

1010 HOME

1020 REM

1030 INPUT "FIRST NUMBER ", AANUMBER
1040 INPUT "SECOND NUMBER = " ; ABNUMBER
1050 ACANSWER = AANUMBER - ABNUMBER
1060 PRINT

1070-1090

1100

1110

1120

The LET Instruction / 143

1070 ADTBSET LEN (STR$ (AANUMBER))

1080 AETBSET LEN (STR$ (ABNUMBER))

1090 AFTBSET LEN (STR$ (ACANSWER))

1100 PRINT TAB(20 — ADTBSET)AANUMBER

1110 PRINT TAB(20 — AETBSET - 2)"- "ABNUMBER
1120 PRINT TAB(20 — AFTBSET - 2)"= "ACANSWER
1130 PRINT : PRINT

1140 PRINT "PRESS SPACE BAR TO REPEAT LOOP"
1150 PRINT "PRESS ANY OTHER KEY TO END PROGRAM"

1160 GET X$

1170 IF X$ = " " GOTO 1000
1180 HOME

1190 PRINT "THAT'S ALL FOLKS!"
1200 END

~The program does the same as previous arithmetic examples, but when the
output is printed the numbers are right justified (aligned on the right side).

Lines 1070 to 1090 compute the length of each of the variables entered. Later these
lengths are used to TAB over the appropriate number of spaces. There are actually
two functions being executed on each line. First, the number is converted to a string
(see p. 153). The conversion is necessary because numbers are stored in a condensed
form (binary) and the LENgth function only works on values stored in the string
format (ASCII code). Second, the LENgth of the string is determined. The length
includes the decimal point if present and the minus sign if present.

Assume AANUMBER has a starting value of 123. The computer subtracts the length
of AANUMBER from 20 (20 — 3 = 17). The first character of AANUMBER is
printed in column 17, second character in column 18, and third character in column
19. The same process is used for lines 1110 and 1120.

Again, to help explain the instruction, assume ABNUMBER has a starting value of
123. The computer subtracts the length of ABNUMBER from 20 to allow for the
number of digits to be printed. The instruction also subtracts an additional 2 to allow
for the two positions taken up by the minus sign and blank which precede the number
20 — 3 —2 = 15).

Column 1234567890123456789
Line 1100 prints 123
Line 1110 prints - 123

The minus sign prints in column 15. The space following the minus sign prints in
column 16 with the number printing in columns 17 through 19.

The answer in this case is 0 (123 — 123). Using the value of O the length of
ACANSWER is 1 (length of a single 0). The computer subtracts 1 from 20 and also

144 / Applesoft BASIC Toolbox

1130-1170

Rules for Use

subtracts an additional 2 to allow for the two positions taken up by the equal sign
and the space which precede the answer (20 — 1 — 2 = 17). The equal sign prints
in column 17 with a space following in column 18. The 0 is right aligned in column
19.

Column 1234567890123456789

Line 1100 prints 123
Line 1110 prints - 123
Line 1120 prints = 0

Lines 1130 to 1170 are used to allow you to repeat the program as many times as
you want to see how the program right-aligns various numbers. Try entering com-
binations of positive and negative numbers and numbers with and without decimal
points. When you want to quit, press any key except the space bar.

RND(X)

RaNDom is an Applesoft function which returns a random number. The type of
value returned by the function varies with the value of the variable within the
parentheses. The value within the parentheses is referred to as the seed.

The random number generator may be used in games to provide a means of
selecting a logic path through the program which is not the same with each execution
of the game.

In scientific or statistical applications, the RND function may be used to elim-
inate bias in data or to generate test data.

1. The RND function does not actually generate a true random set of numbers.
The same pattern is generated each time the machine is turned on. Within this
fixed pattern the numbers are random.

2. RND(X) returns a value between O and 1. If you wish to have the number in
larger units, multiply the function by a power of 10, for example,

AARANDOM = INT(RND(X) * 10)

produces numbers from O to 9.

If you wish to have values from O to a specific number then multiply the
random function by a value 1 greater than the maximun number you want
returned. For example, to get a range from 0 to 6 multiply the random function
by 7.

AARANDOM = INT(RND(1) * 7)

3. If the value within parentheses (seed) is greater than 0 a random number is
returned.

lllustration
of the Rules

Rule 1.

Rule 2.

Rule 3.

The LET Instruction / 145

4. If the seed is 0, Applesoft returns the last random number generated. In other
words RND(0) gives you the value from the last RND(X) instruction executed.

5. If the seed is negative, Applesoft returns a fixed sequence of numbers. The
sequence generated depends on the value of the negative number. That is, for
a —1 there is a fixed series of numbers generated, for a —2 there is a fixed
series of numbers generated, etc.

The following illustrates the primary rules for the RND function.

The RND function returns a fixed pattern of numbers each time the computer is
turned on.

The value returned by RND(X) is between 0 and 1.

A positive seed results in a random number.
If you do not have the program disk, key in and save the following program
before continuing.

NEW

1000 REM RND SAMPLEl

1010 HOME

1020 REM

1030 PRINT "RANDOM NUMBER"
1040 SPEED = 100

1050 FOR AANUMBER = 1 TO 20
1060 PRINT RND(1)

1070 NEXT

1080 SPEED= 255

1090 PRINT "THAT'S ALL FOLKS!"
1100 END

SAVE RND SAMPLE1

Before running the program turn the computer off and then back on. After
turning the computer on enter:

RUN RND SAMPLE1

The values generated will be equal to one of the following columns depending
on which machine you are using.

146 / Applesoft BASIC Toolbox

APPLE II APPLE IIe
RANDOM NUMBER RANDOM NUMBER
.973136996 .281730746
.103117626 876072276
.0177148333 .225704465
.T79343355 .403810008
.551834438 .458575223
.617419111 .290037373
.960296981 .716005434
.547150891 .78042385

Notice that all the numbers range between 0.000000000 and 1.000000000.
Now turn the computer off and then back on. After turning the computer on
enter:

RUN RND SAMPLE1

You will get the same pattern as before.

Each time you run the program after turning the machine on you will get the
same set of numbers.

Now run the program again, but without resetting the machine. Enter:

RUN

Each time you re-run the program you will obtain a different set of numbers.
But, each time the computer is turned on, the pattern starts over with the same
sequence of numbers being generated.

To overcome this problem execute the following subroutine before using the

RND function.
5000 REM
5010 REM RANDOM SUBROUTINE
5020 POKE - 16368,0:X1 = PEEK (- 16384):Rl1 = PEEK (78):R2 =

PEEK (79): POKE 204,Rl: POKE 205,R2
5030 RETURN
5040 REM

The subroutine resets the memory addresses used by the computer to generate
the random numbers. It only needs to be executed once after turning the computer
on. To test the subroutine key in and save the following program.

NEW

1000 REM RND SAMPLE2

1010 HOME

1020 GOSUB 5000 : REM EXECUTE RANDOM SUBROUTINE
1030 PRINT "RANDOM NUMBER"

Rule 4.

The LET Instruction / 147

1040 SPEED = 100

1050 FOR AANUMBER = 1 TO 20
1060 PRINT RND(1)

1070 NEXT

1080 SPEED= 255

1090 PRINT "THAT'S ALL FOLKS!"

1100 END

5000 REM

5010 REM RANDOM SUBROUTINE

5020 POKE - 16368,0:X1 = PEEK (- 16384):Rl1 = PEEK (78):R2 =

PEEK (79): POKE 204,Rl: POKE 205,R2
5030 RETURN
5040 REM

SAVE RND SAMPLE2

To show you that the subroutine generates a different set of numbers each time
the machine is turned on, go through the same process of turning the machine off
and then back on. After turning the machine on enter:

RUN RND SAMPLE2

The numbers generated will not match the values displayed earlier.
Execute this subroutine once at the start of any program which uses the RND
function.

If the seed contains a value of 0, Applesoft returns the last random number generated.
In other words, RND(0) gives you the value from the last RND(X) instruction executed.
Key in and run the following program, or run the program by entering

RUN RND SAMPLE3

NEW

1000 REM RND SAMPLE3

1010 HOME

1020 REM

1030 PRINT "RANDOM # RND (1)" TAB(20) "RANDOM # RND (0)"
1040 SPEED= 100

1050 FOR AANUMBER = 1 TO 20

1060 PRINT RND (1) TAB(20) RND (0)
1070 NEXT

1080 SPEED= 255

1090 PRINT "THAT'S ALL FOLKS!"

1100 END

In this example two matching columns of numbers are printed. The first column
consists of a set of random numbers generated using a seed of 1. The second column
is an exact duplicate of the first column because the RND(0) function is used.

148 / Applesoft BASIC Toolbox

The use of the RND(0) function is somewhat limited, but you should know that
it is available and how to code the instruction.

If a negative seed is used the RND function returns a fixed sequence of numbers.
The sequence generated depends on the value of the negative number. That is, for
a —1 there is a fixed series of numbers generated, for a —2 there is a fixed series
of numbers generated, etc.

Key in and run the following program, or run the program by entering

RUN RND SAMPLE4

NEW

1000 REM RND SAMPLE4

1010 HOME

1020 REM

1030 SPEED= 150

1040 PRINT "RANDOM SERIES FOR —-1"
1050 PRINT

1060 PRINT "FOR -1 SEED = "; RND (-1)
1070 FOR AANUMBER = 1 TO 8

1080 PRINT RND(+1)

1090 NEXT

1100 PRINT

1110 PRINT "FOR -1 SEED = ";RND (-1)
1120 FOR AANUMBER = 1 TO 8

1130 PRINT RND(+1)

1140 NEXT

1150 SPEED= 255

1160 END

After running the program, look at the first eight rows to see what numbers
were generated. After you have looked at the first eight rows, compare the values
to the second set of eight rows shown at the bottom of the screen. The two groups
should be exactly alike.

Although the numbers for each negative value appear to be random, you get
the same sequence each time you use a specific negative value as the seed.

Why would you want a fixed sequence of random numbers? When testing a
program using the RND function you may want to use a negative number so you can
generate a fixed set of values which will produce predictable results.

Since you know what the fixed set of numbers is going to be, you can check
the results of your program to see if it executed correctly. Once your program works
correctly with the fixed set of values, you can change the negative seed to a positive
seed and use the random numbers generated.

SGN(X)

The SiGN function returns either —1, 0, or +1 depending on the value of the
variable within the parentheses. The function has limited applications, but you should
know that it is available and how it operates.

1060

1070

1080

The LET Instruction / 149

Key in and run the following program or run the program by entering
RUN SGN SAMPLE1

NEW

1000 REM SGN SAMPLE1l

1010 HOME

1020 REM

1030 PRINT "ENTER ANY NUMBER": PRINT

1040 INPUT " = ";AANUMBER

1050 PRINT

1060 ABNUMBER = SGN (AANUMBER)

1070 ABNUMBER = ABNUMBER + 1

1080 ON ABNUMBER GOTO 1110, 1130

1090 PRINT "NUMBER WAS NEGATIVE"

1100 GOTO 1150

1110 PRINT "NUMBER WAS ZERO"

1120 GOTO 1150

1130 PRINT "NUMBER WAS POSITIVE"

1140 GOTO 1150

1150 PRINT : PRINT

1160 PRINT "PRESS SPACE BAR TO REPEAT LOOP"
1170 PRINT "PRESS ANY OTHER KEY TO END PROGRAM"

1180 GET X$

1190 IF X$ = " " GOTO 1000
1200 HOME

1210 PRINT "THAT'S ALL FOLKS!"
1220 END

The variable ABNUMBER is setto —1, 0, or + 1 depending on the value you enter.
If you enter a negative number, ABNUMBER is set to —1; 0 sets ABNUMBER to 0;
a positive number sets ABNUMBER to + 1. The function SGN only returns one of
these three values. The program uses the SGN function to determine the sign of the
number you enter and then branches to print the appropriate message.

The value in ABNUMBER is increased by 1 so the ON count GOTO instruction can
be used. After 1 is added to ABNUMBER, the possible values are 0, 1, and 2.

Since the value returned by the SGN function is increased by 1, the computer falls
through to line 1090 for a negative number, branches to line 1110 for a value of 0,
or branches to line 1130 for a positive value.

VAL(X$)

The VALue function is used to convert a string variable into numeric format so the
number can be used in arithmetic operations.

150 / Applesoft BASIC Toolbox

Rules for Use

lllustration
of the Rules

1130

1. The value within parentheses must be a string.

2. The computer returns a numeric value equal to the value of the numbers present
at the start of the string. If the string contains nonnumeric characters, only the
leading numeric characters are used to determine the value returned. The com-
puter recognizes leading plus and minus signs as being part of the numeric
character set.

3. If the first symbol is a nonnumeric character, the computer returns a value of
zZero.

Key in and run the following program or run the program by entering

RUN VAL SAMPLE1

1000 REM VAL SAMPLEl

1010 HOME

1020 REM

1030 PRINT "ENTER NUMBERS AND LETTERS IN ANY"
1040 PRINT "COMBINATION."

1050 PRINT

1060 PRINT "THE COMPUTER WILL REPLY WITH THE"
1070 PRINT "NUMBERS YOU ENTERED UP TO THE FIRST"
1080 PRINT "NONNUMERIC CHARACTER."

1090 PRINT

1100 PRINT "IF THE FIRST CHARACTER YOU ENTER"
1110 PRINT "IS NONNUMERIC A ZERO VALUE IS RETURNED."
1120 PRINT

1130 INPUT "ENTER VALUE = '";AASTRING$

1140 PRINT

1150 AANUMBER = VAL (AASTRING$)

1160 PRINT "LEADING NUMBER WAS: "AANUMBER

1170 PRINT

1180 PRINT "PRESS Q TO QUIT"

1190 PRINT "PRESS ANY OTHER KEY TO TRY AGAIN"

1200 GET Q$

1210 IF Q% < > "Q" GOTO 1000
1220 HOME

1230 PRINT "THAT'S ALL FOLKS!"
1240 END

While running the program enter some of the following values:

123ABC456 Returns a value of 123
—123ABC456 Returns a value of — 123
ABC-123DEF Returns a value of 0

The value you enter is stored as an alphanumeric string (see dollar sign on AASTR-
ING$). Each character you enter takes one byte in memory.

1150

The LET Instruction / 151

The VAL function is used to convert the string of characters you enter into a numeric
value. Leading plus or minus signs are interpreted correctly.

You should get in the practice of always using string variables with the INPUT
instruction and then converting the strings to numbers by using the VAL function.
By following this practice you can keep the program from being canceled when the
operator accidently presses a nonnumeric key while entering a numeric value. But
using string names with the INPUT instruction does not correct the operator’s mis-
take. If the operator enters 123.AS instead of 123.45 the VAL function returns a
numeric value of 123, not 123.45. The use of string variables only prevents the
program from being canceled, it is not a substitute for editing (checking) the values
entered by the operator.

String Functions in Applesoft

Example

When you work with string variables (alphanumeric data), it is often necessary to
break the data into parts. The LEFT$, MID$, and RIGHT$ functions are Applesoft’s
way of manipulating string values.

Note: The following examples contain variable names which are completely
spelled out. Some of these names contain embedded Applesoft keywords and will
not work if used in a program. They are spelled out in the examples to help you
understand the instructions.

LEFT$(variable$,number)
1 L S— Second parameter

First parameter

The LEFT$ function allows the program to reference the leftmost characters of the
variable indicated by the first parameter. The number of characters to be referenced
is indicated by the number in the second parameter.

MONTH$ = LEFT$(DATE$,2)

The variable MONTHS is set equal to the left two positions of the DATE$. If DATE$
= "013182", then MONTH$ = “01".

MID$(variable$,starting character,number of characters)

The MID$ function allows the program to reference any part of a variable. The
variable name to be referenced is placed in the first of the three parameters. The

152 / Applesoft BASIC Toolbox

Example

Example

Example

Example

second parameter indicates the starting position. The third parameter indicates how
many characters are to be referenced.

DAY$ = MID$(DATES$,3,2)

The variable DAY$ is set equal to the characters within the DATES starting with
the third character and continuing for two positions. If DATE$ = ""013182", then
DAY$ = "31".

RIGHT$(variable$,number)

The RIGHT$ function allows the program to reference the rightmost portion of a
variable. The variable name to be referenced is placed in the first parameter. The
second parameter indicates how many positions of the variable are to be used.

YEAR$ = RIGHT$(DATES$,2)

The variable YEARS$ is set equal to the rightmost two characters of the DATE$.
If DATE$ = "“013182", then YEAR$ = ""82".

Plus Sign (+)

The plus sign can be used with string functions to CONNECT, NOT ADD, groups
of alphanumeric characters together.

DATE$ = MONTH$ + DAYS$ + YEAR$

The variable DATES is set equal to the combined characters of MONTHS$, DAYS$,
and YEARS. If MONTHS$ = 01", DAY$ = 31", and YEAR$ = ""82", then DATE$
would equal “013182”.

CHR$(number)

The CHR$ (CHaRacter) function has a somewhat limited application and requires
understanding of how characters are stored in the computer. The CHR$ function
returns the ASCII character corresponding to the numeric value within the paren-
theses (see Appendix A, p. 508).

1000 D$ = CHR$(4)
1010 REM RETURNS THE CHARACTER CORRESPONDING TO THE
1020 REM CONTROL-D KEY. THIS SYMBOL IS USED WHEN READING

1030 REM DATA FROM THE DISK OR WRITING INFORMATION
1040 REM TO THE DISK.

Example

Rules for Use

The LET Instruction / 153

1000 L$ = CHR$(12)

1010 REM RETURNS THE CHARACTER CORRESPONDING TO THE

1020 REM CONTROL-L KEY. THIS SYMBOL IS USED WITH PRINTER
1030 REM TO POSITION THE PAPER AT THE TOP-OF-PAGE.

STR$(numBer)

The STR$ (STRing) function converts numbers to string format (each symbol takes
up one byte). This is helpful when printing numbers or writing numbers to disk.

WAGE = 15000
WAGE$ = STR$(WAGE)

The variable WAGE contains a numeric value of 15000 and can be used in
arithmetic operations. The variable WAGE$ contains the same characters but is
stored by the computer in string format (one symbol, 1 byte).

LEFT$(variable$,number) Function

1. The first parameter must be a string.
2. The second parameter must have a value greater than 0 and less than 256.

To illustrate how the LEFT$ works, the following program asks you to type in
your name. After you have typed in your name and pressed RETURN, the computer
slowly prints the name using a pattern consisting of the first character, then the first
two characters, then the first three characters, etc.

Key in and run the following program, or run the program by entering

RUN LEFT$ SAMPLE1

NEW

1000 REM LEFT$ SAMPLEl

1010 HOME

1020 SPEED= 100

1030 PRINT "ENTER YOUR FULL NAME"
1040 INPUT AANAME$

1050 HOME

1060 FOR ABNUMBER = 1 TO LEN (AANAME$)
1070 PRINT LEFT$(AANAME$, ABNUMBER)
1080 NEXT

1090 PRINT

1100 PRINT "THAT'S ALL FOLKS!"
1110 SPEED= 255

1120 END

154 / Applesoft BASIC Toolbox

The screen below shows the output for JOHN JONES. The caret (*) symbol is
used to represent a blank when the printing of a blank might not be immediately
obvious (see fifth line down).

J \
Jo
JOH

JOHN

JOHN"

JOHN J
JOHN JO
JOHN JON
JOHN JONE
JOHN JONES

THAT'S ALL FOLKS!

__//N

1060-1080 The FOR instruction will not be covered in detail until later. A brief explanation is

1070

provided now to help you understand the program.

The LENgth function allows the programmer to ask the computer how many
characters are in a string. The keyword LENgth is followed by a string name within
parentheses. The computer calculates the length of the string and substitutes the
value in the position of the LEN function.

1060 FOR ABNUMBER = 1 TO LEN(AANAMES$)
Instructions
1080 NEXT

The FOR instruction causes the program to repeat all the instructions between
the keyword FOR and the keyword NEXT until the value in ABNUMBER is greater
than the LENgth of the variable AANAMES.

For example, if you enter JOHN JONES, the variable AANAMES$ is 10 char-
acters long. This means line 1070 is executed 10 times. The FOR instruction
automatically adds 1 to the variable ABNUMBER each time the keyword NEXT is en-
countered. At the end of the tenth execution, the loop is broken, and program flow
continues to the statement following the keyword NEXT.

The PRINT instruction displays the LEFT$ portion of AANAMES$. The number
of characters displayed depends on the value in ABNUMBER. Since the value in
ABNUMBER varies each time line 1080 is executed, you see your name printed
starting with the first character and continuing until your entire name is printed.

Rules for Use

The LET Instruction / 155

MID$(variable$,starting character,number of characters)

This MIDdle function allows you to access the middle or any part of a string variable.

W=

. The first parameter must be a string.
The second parameter must have a value greater than 0 and less than 256.
. The third parameter must have a value from 0 to 255. Notice this operand may

contain a value of 0.

Key in and run the following program or run the program by entering

RUN MID$ SAMPLE1

NEW

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190

1200
1210
1220
1230
1240
1250
1260

REM MID$ SAMPLE1l

HOME

REM

REM TAB IN PRINT STATEMENT

REM MAY NOT BE AN INTEGER OR
REM ZERO VALUE.

REM

REM STARTING LOCATION FOR

REM MID$, LEFT$, & RIGHT$

REM CAN NOT BE ZERO.

REM

SPEED= 100

PRINT "ENTER YOUR FULL NAME"
INPUT AANAME$:
HOME

ABNUMBER = 1

ACSIZE = LEN (AANAME$)

ADHALF = ACSIZE / 2

AENUMBER = 1

PRINT TAB(ABNUMBER) MID$ (AANAME$, ABNUMBER, ACSIZE -
ABNUMBER - ABNUMBER + 2)
ABNUMBER = ABNUMBER + AENUMBER
IF ABNUMBER > ADHALF THEN AENUMBER = - 1
IF ABNUMBER > 0 GOTO 1190
PRINT

PRINT "THAT'S ALL FOLKS!"
SPEED= 255

END

Before reading what each line of the program does, run the program to see the
output. The program requests that you enter your name, and then program logic
prints it out in an hourglass format.

For the name JOHN JONES the screen would appear as follows:

156 / Applesoft BASIC Toolbox

1020-1100

1150

1160

1170

1180

JOHN JONES \
OHN JONE

HN JON
N JO
J
N JO
HN JON
OHN JONE
JOHN JONES

-]

Did you get your name in an hourglass format as shown in the sample screen?
If not, check the program for typing errors and try again.

Lines 1020 to 1100 show a technique you may want to copy. As you learn by trial
and error, you may want to make notes in the program so you remember things
which work or do not work.

The variable ABNUMBER is used to control how many characters of your name are
to be printed, where the portion of your name starts printing, and when the program
ends.

The variable ABNUMBER is initialized to a starting value of +1. Later
ABNUMBER is incremented, causing the value to increase until it reaches a point
equal to % the total number of characters in your name. When it is equal to % of the
number of characters in your name, then the value decreases by 1 down to 0. When
ABNUMBER reaches O the program ends.

The variable ACSIZE is set equal to the LENgth of your name. This value is used in
conjunction with ABNUMBER to determine how many characters of your name are
printed.

The variable ADHALF is used to determine when the lines being displayed have
shortened to the halfway point of your name and should start lengthening back to
the full name.

The variable AENUMBER starts with a value of + 1. The value of AENUMBER is
added to ABNUMBER each time through the main loop to control the position on
the line where the characters are printed (see line 1200). When the value of ABNUM-
BER becomes greater than % the size of your name, AENUMBER is reset to a value
of —1 (see line 1210).

1190

First Line

Second Line:

Seventh Line

The LET Instruction / 157

The program was developed to illustrate how the MID$ instruction works. So we
are now at the instruction which is the key to the program’s operation. The MID$
function allows you to reference a MIDdle portion of the string variable indicated
by the first operand, AANAMES. The starting location is indicated by the second
operand, ABNUMBER. The third operand indicates the number of characters, includ-
ing the starting location, which are to be referenced. In this example the third operand
consists of the formula

(ACSIZE - ABNUMBER - ABNUMBER + 2)

To help illustrate how the instruction works, let’s work through an example
using the formula with the name JOHN D. SMITH. For this name the value in ACSIZE
is 13.

For the first line ABNUMBER contains a value of 1 so the results are

ACSIZE — ABNUMBER - ABNUMBER + 2
Number of characters = 13 - 1 - 1 + 2
Answer = 13 characters

By adding the 2 you offset the starting value of 1 in ABNUMBER and end up
displaying the entire name on the first and last line.

JOHN D. SMITH

For the second time through the loop, ABNUMBER contains a value of 2, so the
results are

ACSIZE — ABNUMBER - ABNUMBER + 2
Number of characters = 13 - 2 - 2 + 2
Answer = 11 characters

The middle 11 characters of the name are printed, with the screen now showing
two lines:

JOHN D. SMITH
OHN D. SMIT

For the seventh time through the loop ABNUMBER will contain a value of 7, so the
results are

ACSIZE — ABNUMBER — ABNUMBER + 2
Number of characters = 13 - 7 - 7 + 2
Answer = 1 character

158 / Applesoft BASIC Toolbox

1200

1210

1220

Rules for Use

In this case if the 2 had not been added, the answer would have been — 1, and
the program would have been canceled since the third parameter of the MID$ func-
tion cannot be negative. By adding the +2 we eliminate the chance of having a
negative value.

The seven printed lines appear as follows—a caret symbol (+) is used to show
blank positions which may not be obvious to the reader.

JOHN D. SMITH
OHN D. SMIT
HN D. SMI
N D. SM
"D. S

If you can think of a better way to achieve the same results, try it. That’s part
of the game of programming.

The current value of ABNUMBER is incremented or decremented depending on
whether AENUMBER contains +1 or —1.

When the value in ABNUMBER is greater than ADHALF, the variable AENUMBER
is set to — 1. For those of you who try to make the program more readable by saying
equal to instead of greater than, remember that ABNUMBER is counting in whole
numbers, while ADHALF may contain a .5 because of an odd number of characters
in a name. The program would not work with an equal test if the name contained
an odd number of characters.

Be careful when comparing variables and using the equal sign.

If the value of ABNUMBER is greater than 0, the program has not completed all the
necessary loops, and logic flow returns to statement 1190. When ABNUMBER
reaches a value of 0, logic flow drops through the IF, and the program ends.

RIGHT$(variable$,number)

1. The first parameter must be a string.
2. The second parameter must have a value greater than O and less than 256.

The RIGHT$ function allows you to access any portion of a string starting from
the right side of the variable.

The program that follows asks you to enter your name and then prints the name
starting with the rightmost characters. The name is printed in a pattern consisting

The LET Instruction / 159

of the rightmost character, then the two rightmost characters, and then the three
rightmost characters, etc.
Key in and run the following program, or run the program by entering

RUN RIGHT$ SAMPLE1

NEW

1000 REM RIGHT$ SAMPLEL

1010 HOME

1020 SPEED= 100

1030 PRINT "ENTER YOUR FULL NAME"

1040 INPUT AANAME$

1050 HOME

1060 FOR ABNUMBER = 1 TO LEN (AANAME$)

1070 PRINT TAB(LEN (AANAME$) — ABNUMBER + 1) RIGHT$ (AANAME$,
ABNUMBER)

1080 NEXT

1090 PRINT

1100 PRINT "THAT'S ALL FOLKS!"

1110 SPEED= 255

1120 END

Before reading what each line of the program does, run the program to see the
output. You will have to enter your name when the program requests it. The screen
below shows the output for JOHN D. SMITH.

2 I

ITH
MITH
SMITH
"SMITH
. SMITH
SMITH
SMITH
SMITH
SMITH
SMITH
Jo SMITH

-

When you ran the program, did your name print out in the same pattern as that
of Mr. SMITH? If so, continue; if not, debug what you keyed in and try again

>

o
L T I
Z2Zz=Z2=
v Bviivielelv]

1060-1080 The FOR/NEXT instruction sets up a loop which is executed repeatedly until the
value in ABNUMBER is greater than the LENgth of the name you keyed in.

160/ Applesoft BASIC Toolbox

1070 The PRINT instruction consists of two parts. The first part TABs to the correct spot
so the characters to be printed are aligned correctly starting from the right side. The
position is computed by subtracting the number of characters which will be printed
(ABNUMBER) from the LENgth of the name. For the very first time through the
loop, the subtraction results in a value of 0. Since the value portion of the TAB
operation cannot contain a 0, a + 1 is added to correct for this condition.

The second part prints the results of the RIGHT$ function. The number of
positions printed is indicated by the value of ABNUMBER. Since the ABNUMBER
ranges from 1 to the number of characters in your name, the program prints one line
for each character in your name. Each line printed displays an increasing portion of
your name until the entire name is displayed.

Using the STRING$ Functions Together: LEFT$, MID$, and RIGHT$

In the following example, the three string functions are used to convert a date entered
in YY/MM/DD format to MM/DD/YY format.

Before running the program look over the code to see if you can follow the
logic and predict what will happen.

Key in the program or load and list the program by entering

LOAD STRING FUNCTIONS SAMPLE1
LIST

NEW

1000 REM STRING FUNCTIONS SAMPLEl

1010 HOME

1020 REM

1030 REM PROG TO CONVERT DATE

1040 REM FROM YY/MM/DD FORMAT

1050 REM TO MM/DD/YY FORMAT

1060 REM

1070 PRINT "ENTER ANY DATE IN YY/MM/DD FORMAT"
1080 INPUT AADTE$

1090 ABMTH$ = MID$ (AADTE$,4,2)

1100 ACDAY$ = RIGHT$ (AADTE$,2)

1110 ADYEAR$ = LEFT$ (AADTES$,2)

1120 IF ABMTH$ < "01l" OR ABMTH$ > "12" GOTO 1260
1130 IF ACDAY$ < "Ol" OR ACDAY$ > "31" GOTO 1260
1140 IF ADYEAR$ < "00" OR ADYEAR$ > "99" GOTO 1260
1150 AEDTE$ = ABMTH$ + "/" + ACDAY$ + "/" + ADYEAR$
1160 HOME

1170 PRINT "PROGRAM CONVERTED DATE FROM YY/MM/DD"
1180 PRINT TAB(27)"TO MM/DD/YY"

1190 PRINT

1200 PRINT "ADDTE$ = "AADTE$
1210 PRINT "ABMTH$ = "ABMTH$
1220 PRINT "ACDAY$ = "ACDAY$

1230 PRINT "ADYEAR$ "ADYEAR$

1090-1110

1120-1140

1150

1260-1310

The LET Instruction / 161

1240 PRINT "AEDTE$ = "AEDTE$

1250 END

1260 INVERSE

1270 PRINT "DATE MUST BE IN YY/MM/DD FORMAT"
1280 PRINT "PRESS ANY KEY AND TRY AGAIN"
1290 NORMAL

1300 GET X$

1310 GOTO 1000

Lines 1090 through 1110 break the data entered into smaller parts and assign more
descriptive names. If you are going to reference part of the variable only once, there
is no need to assign it a separate name. For example, if you were not going to edit
(check) the date entered, you could code one line to rearrange the date:

AEDTE$ = MID$(AADTES$,4,2) + "/" + RIGHT$(AADTE$,2) +
"I" + LEFT$(AADTES$,2)

If you are going to use a portion of a variable more than once, you should
assign it a more descriptive name. By assigning it a more descriptive name, you
make the code easier to read and increase the execution speed of the computer. The
computer can interpret a single name faster than it can analyze the MID$, RIGHTS,
or LEFT$ functions.

Lines 1120 through 1140 check (edit) the data to see that what is entered conforms
to what is requested. This is not a complete edit, as ACDAYS$ is only checked for
less than 01 or greater than 31. No consideration is given to which month the days
correspond to. If any of the three variables are in error, logic branches to line 1270,
where an error message is displayed prior to restarting the program.

There is a specific reason for using string values in the edit checks rather than
converting the data entered to numeric format by use of the VALue function. If
1A1BAA were entered and the VALue function used in the edit check, the machine
would not catch the data entry error.

VAL(ABMTH$) would result in 1 with letter ignored
VAL(ACDAYS$) would result in 1 with letter ignored
VAL(ADYEARS$) would result in 00 with both letters ignored

This line rearranges the information into MM/DD/YY format. The plus sign is the
only connector allowed when working with strings. The sign is interpreted by the
computer as meaning ‘connect these alphanumeric values’. The computer does NOT
add the strings, but only connects two or more variables into a larger single variable.

Lines 1260 through 1310 make up an error routine. If you enter a date which does
not pass the edit instructions on lines 1120, 1130, or 1140, the program branches
to this routine.

162 / Applesoft BASIC Toolbox

Now, hopefully, you have a basic understanding of what the program is doing.
Go through the following exercises and study the logic flow through the program.

Exercise 1: Entering an Incorrect Date

Run the program, and in response to the input message, enter an incorrect date,
such as

AA/AA/AA

You will receive an error message shown in the bright inverse format.
After you have seen enough of the error message, press any key, and this time
enter what you think is a valid date, such as

81/12/30

Exercise 2: Entering a Logically Incorrect Date

Enter a date which is logically incorrect but which will pass the limited edit tests,
such as 81/02/30. You and I know there is no February 30, but the computer does
not catch this error because it is not programmed to do so.

CHR$(X) Function

The CHaRacter function returns the ASCII character corresponding to the numeric
code indicated by the variable within parentheses (see Appendix A, p. 508). For
example,

LETTER$ = CHR$(65): REM PLACES A ‘A’ IN THE LETTER$
LETTER$ = CHR$(66): REM PLACES A ‘B’ IN THE LETTER$
LETTER$ = CHR$(67): REM PLACES A 'C’' IN THE LETTER$

The ASCII value for the letter A is the number 65. The ASCII value for the
letter B is 66, and C is 67. Any number between 0 and 127 has a corresponding
ASCII symbol. The symbol may be an upper case letter, a lower case letter, a number,
or a control symbol used in data communications.

The following program displays the numbers between 0 and 127 with their
matching ASCII printable character set. The ASCII code runs from 0 to 127, but
unless you have an APPLE Ile or additional hardware on your APPLE II, the lower
case characters (values above 95) will be repeated as upper case. Also, you may be
surprised at the first screen displayed, because the numbers between 0 and 32 do not
have a matching printable character. The numbers between 0 and 32 are used for
control functions (operations for controlling the computer).

The LET Instruction / 163

Key in and run the following program, or run the program by entering

RUN CHR$ SAMPLE1

NEW

1000 REM CHR$ SAMPLEl

1010 REM ASCII NUMERIC VALUES

1020 HOME

1030 REM

1040 REM ASCII CHARACTERS FOR

1050 REM NUMBER 10 & 13 ARE

1060 REM NOT DISPLAYED AS THEY

1070 REM CAUSE THE SCREEN TO

1080 REM SKIP EXTRA LINES.

1090 REM

1100 REM ASCII CHARACTER FOR

1110 REM MAKING THE SOUND IS

1120 REM NUMBER 7.

1130 REM

1140 PRINT "NUMBER = SYMBOL NUMBER = SYMBOL"
1150 AANUMBER = 2

1160 FOR ABNUMBER = 1 TO 32

1170 HTAB (AANUMBER)

1180 IF ACNUMBER = 10 OR ACNUMBER = 13 THEN PRINT ACNUMBER:
GOTO 1200

1190 PRINT ACNUMBER TAB(AANUMBER + 11) CHR$ (ACNUMBER)
1200 ACNUMBER = ACNUMBER + 1

1210 IF ABNUMBER = 16 THEN VTAB 2:AANUMBER = AANUMBER + 20
1220 NEXT

1230 IF ACNUMBER > 127 GOTO 1280

1240 PRINT

1250 PRINT "PRESS ANY KEY TO SEE REMAINING SYMBOLS"
1260 GET X$

1270 GOTO 1000

1280 PRINT

1290 PRINT "THAT'S ALL FOLKS!™

1300 END

Before reading what each line of the program does, run the program to get a
basic idea of what is displayed. The program displays four screen images. At the
end of the first three displays, you need to press a key to get the program to continue.

Each screen shows a set of numbers and the matching ASCII printable char-
acters. On the first screen you cannot see the characters printed. The numbers from
0 to 31 are used for CONTROL functions and are not printable. The second screen
shows the numeric value of the special symbols and numeric keys. The third screen
shows the numeric value of each of the upper case letters.

The fourth screen repeats the special symbols and numeric values unless you
have an APPLE Ile or your APPLE is equipped to recognize the lower case letters.
The APPLE Il and APPLE 11+ use only the first 96 bit patterns to represent control
functions, special symbols, numbers, and upper case letters.

164 / Applesoft BASIC Toolbox

1180

1190

1210

Some of the ASCII codes below 32 are used to control the functions of the display
screen and other devices. If the ASCII code for 10 or 13 is displayed, it causes the
screen to skip extra lines. To prevent this, the IF instruction tests for these values
and displays the numbers 10 and 13 but not the corresponding ASCII character.

Line 1190 is the key to the whole program. It uses the CHR$ function to convert
the numeric value of ACNUMBER to the related ASCII code. Since ACNUMBER
varies from O to 127 as the program is executed, all the 128 combinations of the
ASCII code are converted and displayed.

This IF test is to see if all the values for the first column have been printed. If the
first column has been displayed, then the second column is started. Before the second
column is started, the cursor is repositioned by use of the VTAB instruction. The
VTAB instruction moves the cursor back up to the second line of the screen. Next,
20 is added to AANUMBER so that the cursor will be tabbed over to column 22 the
next time line 1170 is executed.

Normally you use the CHR$ function when working with the disk or the printer,
or any time you are defining control characters within your program. That is, any
time you need to use a symbol which is keyed by pressing the CONTROL key and
another key at the same time, you should use the CHR$ function to define that
character. Do not include CONTROL key symbols within the text of your programs.

For example, when you define control characters to use with the disk or printer,
define the special characters with the CHR$ function.

To define a CONTROL-D for use when working with disk files.

Wrong: D$ = ““:REM CONTROL-D BETWEEN QUOTES.
Right: D$ = CHR$(4):REM CONTROL-D

To define a CONTROL-L for use when working with printers.

Wrong: L$ = "":REM CONTROL-L BETWEEN QUOTES.
Right: L$ = CHR$(12): REM CONTROL-L

There are two reasons for using the CHR$ function instead of keying in the
special character.

1. If you key in the control character, it does not show up on the screen, and you
cannot be sure you entered it correctly. Notice that in the examples above you
cannot see the CONTROL-D or the CONTROL-L because they are not printable
characters.

2. Ifyou try to run a listing of a program on a printer and special control characters
are used in the program, the actions taken by the printer may be very surprising.
The printer will be funny to watch, but your listing will most likely be unreadable.

A more complete example of the CHR$ function is given with the sample
disk programs.

The LET Instruction / 165

STR$(X) Function

The STRing function converts the number enclosed within parentheses from a numeric
format to an alphanumeric format.
Key in and run the following program, or run the program by entering

RUN STR$ SAMPLE1

NEW

1000 REM STR$ SAMPLEl

1010 HOME

1020 REM

1030 REM STR$ CONVERTS NUMERIC
1040 REM VALUE TO STRING FORMAT
1050 AANUMBER = 1.00

1060 PRINT "NUMBER","STRING"
1070 PRINT

1080 FOR ABNUMBER = 1 TO 20
1090 PRINT AANUMBER, STR$ (AANUMBER)
1100 AANUMBER = AANUMBER + .1
1110 NEXT

1120 END

The program counts from 1 to 2.9 in increments of .1. The left column contains

the numeric version, while the right column contains the string version. The first
part of the screen appears as follows:

NUMBER STRING \

1 1

1.1 1.1
1.2 1.2
1.3 1.3
1.4 1.4
1.5 1.5
1.6 1.6
1.7 1.7

Do you see any difference?

Even though the values in the two columns look exactly alike when printed,
they are not stored in the computer in the same format. Remember you can do
arithmetic with numeric variables but CANNOT do arithmetic with string variables.

Let’s look at a second example, which shows a practical application of this
STR$ function.

Applesoft has no easy way to align decimal points when printing numbers. If
the numbers being printed do not contain exactly the same number of digits to the
left and right of the decimal, then the decimals are not aligned correctly.

166 / Applesoft BASIC Toolbox

Example

Example

Example

Example

For example: Should Print as Print as
123.45 123.45
23.40 234
.50 .5
1.00 1

The following program contains a subroutine which converts a number from
numeric format to string format in order align the decimals.

Before looking at the program let’s consider the four possible situations the
subroutine must handle in order to align the the decimal positions.

1. A whole number is entered with no significant digits following the decimal.
The subroutine must add a decimal and two zeros.

Enter 12345, 12345.0, or 12345.00
Computer prints as 12345
Subroutine prints as 12345.00

2. A number is entered with just one decimal position. The subroutine must add
a trailing 0.

Enter 12345.6 or 12345.60
Computer prints as 12345.6
Subroutine prints as 12345.60

3. A number is entered with two decimal positions, and no trailing zeros are
needed.

Enter 12345.67
Computer prints as 12345.67
Subroutine prints as 12345.67

4. A number is entered with three or more decimal positions, and the extra decimal
positions need to be truncated.

Enter 12345.6789
Computer prints as 12345.6789
Subroutine prints as 12345.68

To see the subroutine in action, key in and run the following program, or run
the program by entering

1100-1130

The LET Instruction / 167

RUN STR$ SAMPLE2

NEW

1000 REM STR$ SAMPLE2

1010 REM

1020 HOME

1030 REM

1040 REM THE PROGRAM EDITS NUMBERS ENTERED TO PRINT OUT DECIMAL
ALIGNED.

1050 REM

1060 REM EACH NUMBER IS TRUNCATED OR EXTENDED TO TWO DECIMAL
POSITIONS.

1070 REM

1080 REM THE NUMBER RETURNED BY THE SUBROUTINE IS 11 CHARACTERS
LONG.

1090 REM

1100 PRINT "ENTER NUMBER < THAN OR = TO 9999999.98"

1110 VTAB 3: CALL -958

1120 INPUT " = ";AANUMBER

1130 GOSUB 1230

1140 PRINT

1150 PRINT "ANSWER = '"ABNUMBER$"'"
1160 PRINT

1170 PRINT "PRESS Q TO QUIT"

1180 PRINT "PRESS ANY OTHER KEY TO CONTINUE"

1190 GET X$

1200 IF X$ = "Q" THEN HOME : PRINT "THAT'S ALL FOLKS!": END
1210 GOTO 1110

1220 REM
1230 REM EDIT NUMBER SUBROUTINE
1240 ABNUMBER = AANUMBER + .005

1250 ABNUMBER$ = RIGHT$ (" " + STR$ (INT (ABNUMBER
* 100) / 100),11)

1260 IF MID$ (ABNUMBER$,9,1) = "." THEN 1290

1270 IF MID$ (ABNUMBER$,10,1) = "." THEN ABNUMBER$ = RIGHT$

(ABNUMBER$ + "0",11): GOTO 1290
1280 ABNUMBER$ = RIGHT$ (ABNUMBER$ + ".00",11)
1290 RETURN
1300 REM

The subroutine uses three variables.

AANUMBER = The number to be converted. The value to be converted is
placed in AANUMBER before executing the subroutine.

ABNUMBER = A work variable used by the subroutine so the original value
of AANUMBER is not destroyed.

ABNUMBERS$ = The 11 byte, two decimal string answer returned by the
subroutine.

Line 1100 prints the headings for the screen. After the message is displayed, state-
ment 1110 positions the cursor on the third line and clears the remainder of the

168 / Applesoft BASIC Toolbox

1150

1240

screen. The instruction CALL —958 calls a prewritten APPLE machine language
subroutine at address — 958 which clears the screen from the current cursor position
to the end of the screen.

Two call addresses you may want to remember are

CALL —868 Clears to the end of the line
CALL —958 Clears to the end of the screen

(See the CALL instruction for additional addresses of machine languages subroutines.)

After the lower portion of the screen has been cleared, you are asked to enter
a number (line 1120). Once you have entered a number and pressed RETURN, logic
flow branches to the subroutine to convert the number you entered into string format.

After the number is converted, line 1150 prints the results. Notice the use of double
and single quotes to highlight the answer.

The first line of the subroutine adds .005 to the number in order to round it up or
down as needed. Now what did I mean by ‘round up or down’? If you enter a
negative value, it should be rounded down. A positive value should be rounded up,
and a value of 0 should not be rounded.

Let’s look at what happens for each situation.

Why the program adds .005 to a negative number in order to round down is
the hardest to explain. To start with you must know that the INTeger function auto-
matically changes negative values to the next lower negative whole number when
truncating decimals (something the manuals don’t say even in fine print).

INT (—1.0) Gives a value of —1
INT (-1.1) Gives a value of —2
INT (—1.9) Gives a value of —2

Notice the INTeger function is NOT rounding. It is changing the negative value
to the next lower whole number.

To compensate for this automatic change in negative values, a positive .5 is
added (for this example only, the subroutine uses .005 to round to the correct cent).

INT(-1.0 + .5) = (—0.5) Gives a value of —1
INT(-1.1 + .5) = (—0.6) Gives a value of —1
INT(-1.9 + .56) = (—1.4) Gives a value of —2

Hopefully you follow the logic of how adding a positive number causes the
negative value to be rounded correctly. If not, just use the subroutine with the
knowledge it works with negative numbers.

If you enter a value of 0, a .5 is still added but is truncated later when the value
is converted to a string.

1250-1280

The LET Instruction / 169

INT (0.0 + .5) = (0.5) Gives a value of 0
If you entered a positive value, then the number is rounded up by adding .5.

INT (1.0 + .5) = (1.5) Gives a value of 1
INT (1.9 + .5) = (2.4) Gives a value of 2

Now for the big one! Once the number has been rounded, any excess decimal
positions must be truncated. Line 1250 converts the number to a string and truncates
any excess decimal positions which might exist. To see how the instruction works,
let’s take it in parts.

(INT (ABNUMBER * 100) / 100)

First, the function in the inner parentheses multiplies the number entered by
100, moving the decimal two positions to the right. After the decimal has been
moved to the right, the INTeger function is used to drop off any excess decimal
positions. Once the decimal positions have been dropped, the decimal point is moved
back to the left by dividing the number by 100. For example:

Multiply: 12345.6789 * 100 = 1234567.89
INteger: 1234567
Divide: 12345.67

RIGHTS (' ' + STR$ (INT (ABNUMBER * 100) / 100),11)

After any excess decimal positions have been truncated, the STRing function
converts the number into alphanumeric form. The value is now in string format and
takes up 11 bytes of memory.

Unfortunately, the conversion process does not ensure that there are two dec-
imal positions. Any nonsignificant digits (trailing zeros) are truncated by Applesoft.
If the decimal portion of the number is O (.00) or contains only a single digit (.n0),
the trailing zeros are dropped.

To overcome the problem, lines 1260 though 1280 test to see where the decimal
point is located and adds on one or two ending zeros as required.

Keep this subroutine in mind. Anytime you need a routine to print numbers
with decimal alignment, here is a solution.

If you decide to use the subroutine, you may want to change the variable name
prefixes from AA, AB, and AB$ to some other characters so the names do not conflict
with variable names within your program.

20.

170

Instruction

Example

Purpose

Rules for Use

The IF Instruction

(Simple IF Format)

constant constant
IF 4 variable name relationship variable name
expression indicator expression

THEN statement(s)
GOTO statement number
IF AGE > 21 THEN PRINT ““OF VOTING AGE”

To allow the programmer to ask questions and thereby take different logical paths
through the program.

1. The value of the first operand is compared with the value of the second operand.
If the question is true, the computer executes the instructions following the
keyword THEN. If the question is false, all instructions included with the IF are
skipped.

2. The allowable relationship indicators are:

a. < for ALESS THANB

b. > for AGREATER THAN B

¢. = for AEQUALTOB

d. <> for ANOT EQUAL TO B

e. <= for ALESS THAN OR EQUAL TO B

f. => for AEQUAL TO OR GREATER THAN B

3. The value preceding the relationship indicator must be of the same type as the
value following the relationship indicator (numeric to numeric; string to string).

4. If the GOTO statement is the only instruction following the IF, then either the
keyword GOTO or THEN may be used.

For example,

IFA> B GOTO 1000

The IF Instruction / 171

may also be worded as

IF A> B THEN 1000

lllustration If you have been reading the text from the start, you have seen the IF instruction
of the Rules used in most of the examples, but let’s look at a few programs in which various
combinations of the simple IF format are used.
Key in and run the following program, or run the program by entering

RUN IF SAMPLE1

1000
1010
1020
1030
1040
1050
1060

1070

1080
1090

1100

1110

1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

REM IF SAMPLEl

HOME

SPEED= 150

PRINT "ENTER TWO NUMBERS AND THE COMPUTER"
PRINT "WILL TELL YOU WHICH IS THE LARGEST"
PRINT

INPUT "FIRST NUMBER = ";AANUMBER$: AANUMBER =
VAL (AANUMBER$)
INPUT "SECOND NUMBER = "; ABNUMBER$: ABNUMBER = VAL
(ABNUMBER$)
PRINT

IF AANUMBER > ABNUMBER THEN PRINT "THE FIRST NUMBER IS
GREATER THAN THE ": PRINT "SECOND NUMBER.": GOTO 1120
IF AANUMBER = ABNUMBER THEN PRINT "THE FIRST NUMBER IS
EQUAL TO THE": PRINT "SECOND NUMBER.": GOTO 1120

PRINT "THE FIRST NUMBER IS LESS THAN THE": PRINT "SECOND
NUMBER. "

PRINT

PRINT "PRESS Q TO QUIT."

PRINT "PRESS C TO CONTINUE.";

GET X1%

IF X1$ = "C" THEN 1000

IF X1$ <> "Q" THEN 1150

PRINT

PRINT "THAT'S ALL FOLKS!"

SPEED= 255

END

The first program is super simple but does show several examples of the basic
format of the IF instruction.

1060-1070 Lines 1060 and 1070 allow the operator to enter the two numbers to be compared.
The numbers are entered in string format and converted to numeric format in order
to avoid REENTER errors should the operator enter a value which contains a non-
numeric character.

1090 The first IF compares the two input variables to see whether AANUMBER is greater

172 / Applesoft BASIC Toolbox

1100-1110

1120-1170

than ABNUMBER. If the statement is true, all instructions on line 1090 following
the keyword THEN are executed. If the statement is false, all instructions on line
1090 following the keyword THEN are skipped, and logic flow continues to the line
1100.

Following the IF clause the keyword THEN is used as a separator between the
conditional test and the instructions to be executed. For all instructions following
the keyword THEN, a colon (:) is used as a separator. Again, notice that each
statement is separated by a colon. The computer requires the word THEN and the
colons to be able to tell where one instruction stops and the next one starts.

The second IF instruction uses the same format as the first IF, but tests for an EQUAL
TO condition.

If the statement is true, the appropriate message is displayed. If the statement
is false, logic flow continues to line 1110. '

Notice that for the last condition, LESS THAN, no IF is needed. Since the tests
for GREATER THAN and EQUAL TO have already been made, this leaves the
LESS THAN condition as the only possibility.

Lines 1120 through 1170 cause the program to pause and wait for the operator to
enter either a C to continue or a Q to quit. If any key other than C or Q is pressed,
the program ignores the entry and waits until one of the correct characters is entered.
The GET instruction accepts one character from the keyboard. The symbol is
placed in the string variable called X1$. The value in X1$ is tested to see if the
program is to continue or quit.
There are three points to consider relating to the use of strings in an IF instruction.

1. String variables are compared bit by bit.

2. String constants are enclosed between quotation marks, and therefore use of
quotation marks within the string requires special handling.

3. You should always compare equal size strings.

First, strings are compared by bit pattern on a logical basis. For example, if
the letter A is compared to the letter Q, the following bit patterns would be used:

A = 1000001 The bit pattern of A is less than the bit pattern of Q. Notice
the third bit from the left. A contains a 0 bit, while Q contains
Q = 1010001 . .
a 1 bit, making it greater.

Second, the first operand is a string name X1$ while the last operand is a
constant with a value of Q. Constants can be used in either the first or the second
operand. Numeric constants may consist of any numeric equation. Alphanumeric
constants may consist of any of the 128 different bit patterns which can be stored
by the computer.

The IF Instruction / 173

Since the quotation mark is used to indicate the start and end of a string constant,
there is a problem in including quotation marks within the constant. If you want to
use a quote between quotation marks you must key two quotation marks for every
quote you want to appear. For example,

PRINT "*"*"TWO QUOTES = 1"""
prints as
"TWO QUOTES = 1"

The outside set of quotes defined the string constant, the two quotes immediately
following and preceding the outside quotes are treated as a single set of quotes.

Third, the strings must be of equal length in order for a valid comparison to
be made. For example if “ABC"’ were compared with “ABC"’, the longer string would
be greater than the shorter string even though they contain the same leading char-
acters. The APPLE does not recognize trailing blanks as being neutral characters.

Notice on line 1170 that two relational indicators (< >) are used. The IF
instruction tests for both a LESS THAN condition and a GREATER THAN con-
dition. If either condition exists, logic flow branches to line 1150 and waits for the
operator to enter an acceptable character.

With Applesoft, instead of saying NOT >, NOT <, or NOT =, the condition is
worded in a positive format using the two symbols corresponding to the NOT test.

NOT > same as < =
NOT < same as = >
NOT = same as < >

The next example is rather long for what it is intended to accomplish. The
example shows the comparison of numeric variables, numeric constants, and numeric
expressions.

Key in and run the following program, or run the program by entering

RUN IF SAMPLE2

NEW

1000 REM IF SAMPLE2

1010 HOME

1020 SPEED= 150

1030 PRINT "1. IF NUMERIC VARIABLE <=> CONSTANT"

1040 PRINT

1050 INPUT "ENTER ANY NUMBER = " ; AANUMBER

1060 IF AANUMBER > 25 THEN PRINT AANUMBER" GREATER THAN CONSTANT
25": GOTO 1090

1070 IF AANUMBER = 25 THEN PRINT AANUMBER" EQUAL TO
CONSTANT 25":
GOTO 1090

174 / Applesoft BASIC Toolbox

1060-1080

1140-1160

1080 PRINT AANUMBER" LESS THAN CONSTANT 25"

1090 PRINT

1100 PRINT

1110 PRINT "2. IF VARIABLE NAME <=> VARIABLE NAME"
1120 PRINT

1130 INPUT "ENTER ANY NUMBER = "; ABNUMBER

1140 IF AANUMBER > ABNUMBER THEN PRINT "FIRST NUMBER
"AANUMBER " IS GREATER THAN SECOND": PRINT "NUMBER
"ABNUMBER:GOTO 1170
1150 IF AANUMBER = ABNUMBER THEN PRINT "FIRST NUMBER
"AANUMBER " IS EQUAL TO SECOND":PRINT "NUMBER
"ABNUMBER: GOT01170

1160 PRINT "FIRST NUMBER "AANUMBER" IS LESS THAN SECOND": PRINT
"NUMBER " : ABNUMBER
1170 PRINT : PRINT
1180 PRINT "3. IF EXPRESSION <=> EXPRESSION"
1190 PRINT
1200 INPUT "ENTER ANY NUMBER = ";ACNUMBER
1210 IF AANUMBER * ABNUMBER > AANUMBER + ABNUMBER *
ACNUMBERTHEN PRINT AANUMBER" * "ABNUMBER" > "AANUMBER" +
"ABNUMBER" * " ACNUMBER: GOTO 1240

1220 IF AANUMBER * ABNUMBER = AANUMBER + ABNUMBER * ACNUMBER
THEN PRINT AANUMBER" * "ABNUMBER" = "AANUMBER" +
"ABNUMBER" * " ACNUMBER: GOTO 1240

1230 PRINT AANUMBER" * "ABNUMBER" < "AANUMBER" + "ABNUMBER"
* " ACNUMBER

1240 PRINT : PRINT

1250 PRINT "THAT'S ALL FOLKS!"

1260 SPEED= 255

1270 END

The first sequence of instructions requests you to enter a number which will be
compared to a numeric constant of 25.

When using numeric constants, no quotation marks are used. The numeric constant
may contain any numeric symbol along with a leading plus or minus sign. Common
sense indicates that if an integer name is used, the constant value should not have
a decimal point. For example, do not use IF AANUMBER% = 12.34 since there is
no way the integer variable can contain a decimal value. Also, numeric constants
CANNOT be compared to string variables unless the STR$ or VAL functions are
used to make the two variables of the same type.

The program is not very functional but does provide an example of mixing
variables within the IF instruction. Line 1130 asks you to enter a second number.
The number is compared with the first number and an appropriate message printed.

The IF instructions on line 1140 and 1150 show how to compare two numeric
variables. Normally you do not want to mix the types of numeric variables. Integer
variables should only be compared with other integer variables and real values should
only be compared with other real values.

The IF Instruction / 175

1210-1230 The last group of instructions shows how an arithmetic expression can be used
within the IF instruction. An arithmetic expression may be compared with another
arithmetic expression, a numeric variable, or numeric constant.

From an efficiency standpoint, you should not code an equation twice as done
for lines 1210 and 1220. The computer has to calculate the values twice, and if the
program were to be changed, the programmer would have to remember to change
both statements. Whenever the results of an arithmetic expression are used more
than once, calculate the value and give it a variable name.

The third example shows how the word NOT can be used preceding the first
operand of the IF instruction to reverse the meaning of the question. I would suggest
that you do not use negative questions. It is harder for the person reading the code
to follow the logic and make coding changes.

Key in and run the following program, or run the program by entering

RUN IF SAMPLE3

1000 REM IF SAMPLE3

1010 HOME

1020 SPEED= 150

1030 PRINT "THE WORD NOT CAN BE USED PRECEDING"

1040 PRINT "THE IF CLAUSE TO REVERSE THE RESULTS"

1050 PRINT "OF THE CONDITIONAL TEST."

1060 PRINT : PRINT

1070 PRINT "NOT (A>B)

1080 PRINT "NOT (A=B)

1090 PRINT "NOT (A<B)

1100 PRINT : PRINT

1110 INPUT "ENTER FIRST NUMBER ' ;AANUMBER

1120 INPUT "ENTER SECOND NUMBER " ; ABNUMBER

1130 PRINT

1140 IF NOT (AANUMBER > ABNUMBER) THEN PRINT "FIRST NUMBER =
OR < SECOND NUMBER": GOTO 1170

1150 IF NOT (AANUMBER = ABNUMBER) THEN PRINT "FIRST NUMBER <
OR > SECOND NUMBER": GOTO 1170

1160 PRINT "FIRST NUMBER = OR > SECOND NUMBER"

1170 PRINT TAB(5)AANUMBER TAB(25)ABNUMBER

1180 PRINT : PRINT

1190 PRINT "PRESS Q TO QUIT"

1200 PRINT "PRESS ANY OTHER KEY TO TRY AGAIN"

1210 GET Q$

1220 IF NOT (Q$ = "Q") THEN 1000

1230 PRINT

1240 PRINT "THAT'S ALL FOLKS!"

1250 SPEED= 255

1260 END

LESS THAN OR EQUAL TO"
LESS THAN OR GREATER THAN"
GREATER THAN OR EQUAL TO"

1070-1090 Lines 1070 through 1090 display some variations on the use of the NOT. You should
look at these lines and see if you follow how the computer interprets the use of the
NOT for each example.

176 / Applesoft BASIC Toolbox

1140-1160

1210-1220

Instruction

Rules for Use

lllustration
of the Rules

Lines 1140 through 1160 compare the values and display the related message. Notice
that the NOT precedes the test and the entire test MUST be within parentheses.

Line 1220 shows one more example of how the NOT may be used to change the
interpretation of the equal sign. If the value in Q$ is less than or greater than Q,
logic flow branches to statement number 1000

(Compound IF format)

OR
THEN basic statements
GOTO statement number

1. Two or more simple “questions” may be combined by using AND or OR.

a. If AND is used to connect two or more simple questions all the questions
must be true for the compound question to be considered true.

b. If OR is used to connect two or more simple questions, only one of the
simple questions needs to be true for the compound question to be true.

c. When both AND and OR are used to connect simple questions the AND
takes precedence, tying the two questions together and treating them as
one statement. Any statement following an OR is treated independently of
the other statements.

For example,

IF question 1 {AND} question 2

IFA>BANDA>CORB = CTHEN ...

The IF question is considered true only if A is greater than both B and C,
or B is equal to C. The AND between the first two questions combines the
two clauses. The OR indicates that one should consider the last question
independent of any prior question.
2. Whenever the AND and the OR are used together, parentheses may be used to
override the default relationships of the AND and OR connectors.

la. If AND is used to connect two or more simple questions, all the questions must
be true for the compound question to be considered true.

IF GRADEPOINT < 2.0 AND HOURSEARNED < 10 AND PROBATION$ =
"YES" THEN PRINT “TERMINATE STUDENT"

1b.

1c.

The IF Instruction / 177

In this statement all the individual questions must be true in order for the
message TERMINATE STUDENT to be printed. The grade point average must
be less than 2.0, the hours earned by the student must be less than 10, and the
student must currently be on probation. If any one of the three questions is
false, the entire IF is considered false, and the message is not printed. Notice
that both numeric variables and string variables are combined in the question,
but numeric variables are still compared with numeric constants and string
variables are still compared with string constants.

If OR is used to connect two or more simple questions, only one of the simple
questions needs to be true for the compound question to be true.

IF GRADEPOINT < 2.0 OR HOURSEARNED < 10 OR PROBATIONS$ = "YES"”
THEN PRINT “"TERMINATE STUDENT”

In the above IF only one of the individual questions need be true in order for
the message TERMINATE STUDENT to be printed. The grade point average
may be less than 2.0, or the hours earned by the student may be less than 10,
or the student may currently be on probation. If any one of the three questions
is true, the IF is considered true, and the message is printed. If all the statements
are false, the message is not printed.

When both AND and OR are used to connect simple questions within one IF,
the AND takes precedence, tying the two questions together and treating them
as one statement. Any statement following an OR is treated independently of
the other statements.

IF GRADEPOINT < 2.0 AND HOURSEARNED < 10 OR PROBATION$ = "YES”
THEN PRINT "TERMINATE STUDENT"”

There are two ways that the message can be printed. If the grade point average
is less than 2.0 and the hours earned are less than 10, the message is printed.
The message is also printed if the student is on probation. Notice that the AND
is the stronger of the connectors and ties the first two questions together. The
question following the OR is considered independently of the first two questions.

Whenever the AND and the OR are used together, parentheses may be used to
override the default relationships of the AND and OR connectors.

IF GRADEPOINT < 2.0 AND (HOURSEARNED < 10 OR PROBATIONS =
""YES") THEN PRINT “TERMINATE STUDENT"

For this example parentheses are used to change the way in which the machine
examines the question. For this version of the question, there are several ways

178 / Applesoft BASIC Toolbox

the message can be printed. First, the grade point must be less than 2.0 for the
computer to consider either of the last two questions.

Only if the grade point average is less than 2.0 does the machine check
the hours earned to see if they are less than 10. If the hours are less than 10,
the message is printed without considering the value of probation. If the hours
earned are NOT less than 10, the computer checks the value in probation for
a YES. If probation contains YES the message is printed.

If both the last two questions are false, the message is not printed.

When parentheses are used, the AND is tied to both questions within the
parentheses. The same statement could be written without parentheses as follows:

IF GRADEPOINT < 2.0 AND HOURSEARNED < 10 OR
GRADEPOINT < 2.0 AND PROBATIONS$ = “YES"
THEN PRINT “TERMINATE STUDENT”

21.

The FOR/NEXT
Instruction

Instruction FOR number1 = parameter1 TO parameter2 STEP parameter3
... instructions to be executed ...
NEXT number1

Example

Where

1.

1.

Numberl is a numeric variable which serves as a counter during execution of

the FOR/NEXT loop.

The variable starts with the value indicated by parameterl and is incre-
mented by the value of parameter3 each time the keyword NEXT is encountered.

When the value in numberl is less than or equal to the value in parameter2,
logic flow automatically branches back to the FOR instruction and executes the
instructions between the FOR and the NEXT instruction again. (An exception
to this statement is given in Example 2.)

When the value in numberl exceeds the value in parameter2, the FOR/
NEXT loop ends, and the instructions following the keyword NEXT are executed.
Parameterl is the starting value placed in number1 each time the FOR instruc-
tion is encountered in the logic flow of the program.

Parameter2 is the comparison value which indicates when to stop the FOR/

NEXT loop. When the value of numberl is greater than the value of parameter2,

the FOR/NEXT cycle is broken, and logic flows to the instruction following the

keyword NEXT.

Note: Since number] is not compared with parameter2 until the keyword NEXT
is encountered, the instructions between the FOR and the NEXT are
executed at least once.

Parameter3 is AN OPTIONAL NUMBER which indicates the value to be added

to numberl each time the keyword NEXT is encountered. The value may be

positive or negative and affects how many times the FOR/NEXT instructions

are executed. The default value is 1.

Counting from 1 to 10 (STEP 1 is optional):

1000 FOR N1 = 1 TO 10 STEP 1
1010 PRINT N1
1020 NEXT

179

180 / Applesoft BASIC Toolbox

Purpose

Rules for Use

lllustration
of the Rules

Exercise 1

The example FOR/NEXT loop is executed 10 times, printing out the numbers 1, 2,
3,4,5,6,7,8,9,and 10.

2.

Counting backward from 10 to 1:

1000 FOR N1 = 10 TO 1 STEP -1
1010 PRINT N1
1020 NEXT

The example FOR/NEXT loop is executed 10 times, printing out the numbers
10,9,8,7,6,5,4,3,2,and 1.

The FOR/NEXT instruction allows the programmer to set up a repetitive loop in
which the FOR indicates the start of the loop and the NEXT indicates the end of the
loop.

1.
2.
3

In Applesoft the variable used as a counter (numberl) must be a real number.
Parameters 1, 2, and 3 may be real numbers, integers, or equations.

The variables represented by numberl and parameter2 may vary during exe-
cution of the FOR/NEXT instructions. Once the FOR instruction has started,
changing the values of numberl and parameter2 affects the number of times
the instructions within the FOR/NEXT loop are executed.

The values represented by parameter] and parameter3 are used to initialize
the counter and to give an incrementing value. Once the FOR instruction has
started, changing the values for parameter! or parameter3 does not change the
number of times the instruction executes.

Since the comparison between the counter (numberl) and the limit (parameter2)
is not made until the keyword NEXT is encountered, the instructions between
the FOR and NEXT are executed at least once.

The value following the keyword STEP (parameter3) may be either a positive
or a negative number. If positive, the conditional test generated by the keyword
NEXT tests for (numberl > parameter2). If negative, the conditional test gen-
erated by the keyword NEXT tests for (numberl < parameter2).

The following exercise shows the basic format of the FOR/NEXT loop with the
variable AA used as the counter and numeric constants used for the first and the
second parameter.

Key in and run the following program:

NEW

HOME

The FOR/NEXT Instruction / 181

1000 FOR AA =1 TO 10

1010 PRINT "AA = "AA

1020 NEXT .

1030 PRINT "FOR/NEXT INSTRUCTION DONE"
1040 END

The variable AA is set to 1 when line 1000 is encountered. After AA is set to
the starting value, the instructions between the FOR and the NEXT are executed at
least once.

When the keyword NEXT is encountered, the value in AA is incremented by
the value following the keyword STEP or by 1 if no STEP value is specified. After
AA is incremented, the new value of AA is tested against the limit of 10.

‘ START ’

FOR AA =1

INSTRUCTIONS
TO BE EXECUTED

\/]’\

NEXT
AA = AA + 1

NO
ENTER

YES

INSTRUCTIONS
FOLLOWING NEXT

182 / Applesoft BASIC Toolbox

Exercise 2

Exercise 3

If the value of AA is greater than the 10, logic flow continues down to the next
line (line 1030). If the value in AA is less than or equal to 10, logic flow branches
back to the first instruction following the FOR instruction (line 1010). Each time
the keyword NEXT is encountered, the value in AA is STEPed up by 1 and tested
against 10.

For this example line 1010 is executed 10 times, after which line 1030 is
executed, indicating the end of the FOR/NEXT instruction group.

The flowchart on the previous page shows the cycle of the FOR/NEXT instruction.

The second exercise shows that all the parameters in the FOR/NEXT instruction
can be variables and the STEP value does not have to be 1 (notice DD = 2).

Key in and run the following program:

NEW

HOME

1000 BB = 1: CC = 10: DD = 2

1010 FOR AA = BB TO CC STEP DD

1020 PRINT "AA = "AA

1030 NEXT

1040 PRINT "FOR/NEXT INSTRUCTION DONE"
1050 END

The variables BB, CC, and DD are set to their starting value by line 1000. When
the FOR/NEXT instruction is first encountered, the variable AA is set to the current
value of BB. The FOR/NEXT loop continues until the value in AA is greater than the
value in CC. Each time the keyword NEXT is encountered, AA is incremented by
the current value of DD (in this case 2).

The loop is executed five times (AA = 1; AA = 3; AA = 5; AA = 7; AA =
9). When AA reaches a value of 11, the loop is terminated, since 11 is greater than
the current value of CC.

In the third exercise, a negative value is used to decrement the starting value of the
FOR/NEXT instruction.

Key in and run the following program:

NEW

HOME

1000 BB = 10: CC =1: DD = - 1

1010 FOR AA = BB TO CC STEP DD

1020 PRINT "AA = "AA

1030 NEXT

1040 PRINT "FOR/NEXT INSTRUCTION DONE"
1050 END

The FOR/NEXT Instruction / 183

The variable AA starts off with a value of 10. Each time through the FOR/NEXT
loop a negative 1 is added to AA causing the value in AA to decrease in increments
of 1(10,9,8,7,6,5,4,3,2,1). When the value in AA is LESS THAN the value in CC,
the FOR/NEXT loop is terminated.

Since a negative value is used to decrement the counter, the computer tests for
a LESS THAN condition to indicate termination of the FOR/NEXT loop.

Nested FOR/NEXT Instructions

Rules for Use

Sometimes you want to use a FOR/NEXT instruction within another FOR/NEXT
instruction. The use of loops within loops is referred to as nested loops or nested
FOR/NEXT instructions.

1. When you nest FOR/NEXT instructions, the inner FOR/NEXT instruction MUST
be contained entirely within the outer FOR/NEXT instruction.

Right Wrong
FORAA = 1T0 20
instructions
FORBB = 1 TO 30
instructions

FORAA =1T0 20
instructions
FORBB = 1TO 30
instructions

i

NEXT BB NEXT AA
instructions instructions
NEXT AA — NEXT BB

To help you read the nested FOR/NEXT instructions, the inner sets are indented.
Unfortunately, Applesoft suppresses leading spaces, so using spaces to indent
does not work. Some programmers use colons to show indentation (see example
program which follows).

2. Although it is not required by Applesoft, the variable may be included with
the NEXT instruction to help the programmer remember which variable is being
used. The APPLE always matches the inner FOR with the inner NEXT.

3. Values for the inner set of FOR/NEXT instructions are reset each time an outer
FOR/NEXT causes them to be executed again. That is, each time an inner FOR/
NEXT sequence is completed and the outer FOR/NEXT instruction causes the
inner group to be executed again, values for the inner FOR/NEXT are reset.

4. Nested FOR/NEXT loops should always exit by way of the keyword NEXT. That
is, you should not terminate a FOR/NEXT loop by branching around the NEXT

184 / Applesoft BASIC Toolbox

1060

1070

1080

instruction. Terminating the FOR/NEXT loop without going through the NEXT
instruction may or may not cause problems in your program depending on the
logic sequence and the statements being used.

The following program shows three levels of nested FOR/NEXT instructions.
It prints nine random numbers on the screen in the same location, giving the appear-
ance of a slot machine.

After the ninth number is printed, the computer skips to the next column on
the screen and starts printing nine more random numbers. When one entire line is
full, the program skips to the next line and starts the whole process over.

The program takes 4 or 5 minutes to completely fill the screen. After the first
few lines, you may want to press CONTROL-C to cancel the program.

You should look at line 1090 carefully to see how the counters are used as part
of the VTAB and HTAB instructions.

Key in and run the following program, or run the program by entering

RUN FOR NEXT SAMPLE2

NEW

1000 REM FOR NEXT SAMPLE2
1010 HOME

1020 REM

1030 REM NESTED FOR NEXT
1040 REM STATEMENTS.

1050 REM

1060 FOR Al = 1 TO 24

1070 :: FOR A2 =1 TO 40

1080 :::: FOR A3 =1 TO0 9

1090 :::::: VTAB Al : HTAB A2
1100 :::::: A4 = RND (A3)

1110 :::::: PRINT INT (A4 * 10);
1120 ::::NEXT A3

1130 ::NEXT A2
1140 NEXT Al
1150 END

The first FOR/NEXT instruction sets up the outermost loop, which corresponds to
the 24 lines on the screen. The outermost loop is executed 24 times.

The second FOR/NEXT instruction sets up the middle loop, which corresponds to
the number of characters on a line. The middle loop is executed 960 times, once for
each character position on the line times the number of lines on the screen (24 * 40
= 960).

The third FOR/NEXT instruction sets up the innermost loop, which causes nine
random numbers to be printed in the same character position on the screen. When

1090

1100

1110

1120

1130

1140

The FOR/NEXT Instruction / 185

the numbers are printed in the same screen position, they appear to be rotating like
the symbols on slot machines. When random digits are used, there is no pattern to
the numbers printed on the screen.

You may want to use this technique in developing games or creating various
visual effects on the screen.

The innermost loop is executed 8,640 times (24 * 40 * 9 = 8,640).

The VTAB instruction positions the cursor to the current value of A1. Since A1 is
the counter corresponding to lines 1 through 24, the VTAB positions the cursor each
time the innermost loop is executed.

The HTAB instruction positions the cursor to the current value of A2. Since A2
is the counter corresponding to columns 1 through 40, the HTAB positions the cursor
at the column to be used each time the inner loop is executed. Since the value in
A2 remains the same during execution of the inner loop, the cursor stays in the same
print position and displays nine random numbers. Each time the middle loop is
executed, the value of A2 is changed and the cursor is moved one column to the
right.

Each time the outer loop increments A1, the middle loop resets A2 to a starting
value of 1, causing the cursor to be repositioned to the first column.

Using the current value of A3 as a seed for the RND function, a random number is
generated and placed in the variable A4. Random values consist of nine digit numbers
between .000000000 and 1.0.

The random number A4 is multiplied by 10 to shift the decimal one position to the
right. After the multiplication, the numbers range from 0.00000000 to 9.99999999.
When the INT function is used, the decimal positions are truncated, resulting in a
number ranging from O to 9.

This is the matching NEXT instruction for the innermost FOR instruction. In Apple-
soft the variable following the keyword NEXT is optional. When working with single
FOR/NEXT loops the variable is normally left off. When working with nested FOR/
NEXT loops the variable is normally included to help clarify which counter is being
varied. Including the variable name as part of the NEXT instruction does slow down
the execution speed of the FOR/NEXT instruction.

This is the matching NEXT instruction for the middle FOR instruction. Each time
the instruction is encountered, A2 is incremented by 1 and the resulting value is
tested to see if it is greater than 40.

This is the matching NEXT instruction for the outermost FOR instruction. Each time
this instruction is encountered, A1 is increased by 1 and the resulting value is tested
to see if it is greater than 24. When a value of 25 is reached, the program ends.

22.

186

The Screen Editing
Functions

When you want to make changes to a program, you have two ways in which to
modify statements.

1. Retype the entire statement.
2. List the statement and use the screen editing keys to modify the statement.

There are 10 keys with which you must be familiar when editing Applesoft
statements. The keys include the following:

1. ESC key, the key pressed prior to any cursor movement using the A, B, C, D,
J, K, I, and M keys.

After the ESC key is pressed, the letters A, B, C and D are used to move the
cursor one position. After any of the four keys is pressed, the computer automatically
exits edit mode and returns to normal data entry format.

2. A moves the cursor one column to the left.
3. B moves the cursor one column to the right.
4. C moves the cursor up one row.

5. D moves the cursor down one row.

After the ESC key is pressed, the letters J, K, |, and M may be keyed repeatedly
to move the cursor. To break out of the edit mode and return to normal data entry
format, press any key other than J, K, |, or M. APPLE Ile users should not press the
arrow keys to attempt to break out of the edit mode. Use the space bar or some other
symbol key.

6. J moves the cursor to the left.
7. K moves the cursor to the right.
8. | moves the cursor up.

9. M moves the cursor down.

While changing a line, if you decide the changes should not be included in the
program, press the CONTROL and X keys at the same time to cancel the current line
being entered.

The Screen Editing Functions / 187

10. CONTROL-X deletes the line currently being entered.

Applesoft provides for full screen editing to make changes to the program.
That is, by using the J, K, |, and M keys you can move the cursor around on the
screen without destroying the data on the screen. Once the cursor is positioned to
the statement you wish to edit, you may press a key to break the cursor movement
function and proceed to change, insert, or delete characters.

Making changes to statements which contain information between quotation
marks is rather involved. Editing the REMarks instruction can also be difficult. To
start off, let’s see how to change, insert, and delete characters from a simple LET
instruction.

Enter the following instructions:

NEW
HOME
1000 LET NUMBER = NUMBER + 1

Let’s assume you want to change the word NUMBER to N1. The following
steps allow you to change the U to a 1 and delete the unwanted characters.

1. List the instruction you wish to edit.
LIST 1000 <RETURN>
The line will be listed out as
1000 LET NUMBER = NUMBER + 1

1 The cursor will be positioned in the second column two or three lines below
the instruction listed. The line position will vary depending on the length and
type of instruction listed.

2. Press the ESC key. The ESC key tells the computer to enter edit mode so you
can use the J, K, |, and M keys to move the cursor.

3. Press the | key two times to position the cursor over the 0 in the second column
of the statement number.

1000 LET NUMBER = NUMBER + 1
1 Cursor should be over the 0

4. Press the J key one time to move the cursor over to the start of the statement
number.

1000 LET NUMBER = NUMBER + 1
1 Cursor should be over the 1

188 / Applesoft BASIC Toolbox

Note: All the characters passed over while in edit mode are ignored. That is, the
characters passed over using the J, K, |, and M keys are NOT included in the
statement.

5. Press the space bar and the cursor will not move, but the movement function

associated with the edit keys will be broken. Now press the right arrow key
until the cursor is positioned over the U in NUMBER.

1000 LET NUMBER = NUMBER + 1
1 Cursor should be over the U

6. Key in the number 1 and press the space bar four times. By entering 1 and the
blanks, you have changed the variable NUMBER to N1. Now move the cursor
over to the next U by using the right arrow key. All the characters passed over
with the arrow key are included in the statement just as if you had retyped
them.

Repeat the process of entering a 1 followed by four spaces. After changing the

second variable, use the right arrow key to move the cursor over the + 1.

1000 LET N1 = N1 + 1]
1 Cursor should be over the blank following
the 1.

7. Now press RETURN to complete the process. To make sure the change was
made correctly LIST the statement. Line 1000 should appear as

1000 LET N1 = N1 + 1

You have now been through the process of changing and deleting characters.
To change characters, type the new characters over the old. To delete characters,
use the space bar to blank them out. Applesoft automatically reformats the lines
after the RETURN key is pressed.

For the sake of the example, let’s say you have changed your mind after pressing
RETURN and want to change N1 back to NUMBER. This requires you to insert the
value UMBER in place of the 1.

To insert characters into the line use the following steps:

1. List the instruction to be changed:
LIST 1000

2. Position the cursor by using the ESC, |, and J keys. Press the ESC key once.
Press the | key two times to position the cursor at the second column of the
statement number. Press the J key once to position the cursor at the first column
of the statement number.

3. Press the space bar to break the edit function.

The Screen Editing Functions / 189

Using the right arrow key, move the cursor over the characters to the 1 in N1.

1000 LET N1 = N1 + 1
1 Cursor should be over the 1

Press the ESC key once to enter edit mode. Press the | key to move the cursor
up one line. Press the space bar once to break out of the edit mode and then
enter the letter U. Now finish the word by entering the letters MBER. The screen
should appear as shown below, with the cursor following the letter R.

UMBER [Cursor should be after R
1000 LET N1 = N1 + 1

The cursor needs to be moved back to the blank following the number 1. To
move the cursor, press the ESC key once, press the M key to move the cursor
down one line, and press the J key until the cursor is back to the blank following
the number 1.

UMBER
1000 LET N1 = N1 + 1
1 Cursor should be here

Since the number 1 is to be deleted, we do not want to include it in the data to
be kept. Press the space bar one time to break out of edit mode and the right
arrow key four times to move the cursor to the second 1.

UMBER
1000 LET N1 = N1 + 1
1 Cursor should be here

Now you need to repeat the process done earlier to enter the UMBER. Go back
to step 5 and repeat the process. When you finish step 6, the screen should
appear as shown below, and the cursor should be positioned at the blank fol-
lowing the second 1.

UMBERUMBER
1000 LET N1 = N1 + 1
1 Cursor should be here

Finish the editing process by pressing the space bar and then using the right
arrow key to move the cursor over the + 1. You must move the cursor to the
end of the line in order to include the remainder of the statement. After posi-
tioning the cursor, press the RETURN key to enter the statement. To check your
work, list the statement. The newly edited instruction should appear as

190 / Applesoft BASIC Toolbox

1000 LET NUMBER = NUMBER + 1

If you do not get the same answer, rekey the instruction and start over from
scratch. This is a lot of work to edit such a small statement, but the knowledge of
how to use the edit function will be invaluable when working with long statements.

You now know how to change, insert, and delete characters on a simple LET
instruction by using the editing keys to move the cursor around. You should practice
the editing operation until it becomes second nature to you.

Editing Statements Which Contain Values
Within Quotes

When editing statements which contain information within quotation marks, you
must be careful because of the margins generated by Applesoft. For example if you
key in

1000 PRINT 1 PRESS THE ESCAPE KEY"

and list the instruction, Applesoft breaks the instruction up and list it on two separate
lines as follows:

1000 PRINT "1 PRESS THE ESCAPE K
EY"

Applesoft breaks the line between the letters K and EY because the line extends
past the margin Applesoft uses for displaying instructions. The margin is between
the thirtieth and the fortieth column. Whether or not the break occurs depends on
whether key words or programmer supplied information is encountered in this area.

For the sake of the example, let’s change the statement to read

1000 PRINT "1 PRESS THE ESCAPE KEY ONCE"
To add the new word, use the following steps:

1. List the instruction and move the cursor to the first position of the statement

3.

The Screen Editing Functions / 191

by pressing ESC once, | three times, and J once. The cursor MUST be at the
very beginning of the line over the first digit of the statement number.

Use the space bar to break out of edit mode and the right arrow key to move
the cursor over to the space following the letter K.

1000 PRINT "1 PRESS THE ESCAPE K
EY" 1 Cursor should be here

Do not move the cursor all the way across the margin following the letter
K. Remember, using the right arrow key is just like retyping the symbols it
passes over.

There are blanks between the K on the first line and the £Y on the next
line. If you use the arrow key to move the cursor over the blanks, they will be
included as part of the statement because they are between quotation marks!
To get the cursor to the next line, first press the ESC key. Once in the edit mode,
use the K key to position the cursor over the letter E. APPLE II and APPLE
I1+ users should press both the REPT and the K key to move the cursor.

1000 PRINT "1 PRESS THE ESCAPE K
EY"

1 Cursor should be here

Once the cursor is over the E, press the space bar once to break out of edit
mode and the right arrow key two times to move the cursor to the last quotation
mark. With the cursor on the quotation mark, enter a space and ONCE". Do
not forget the ending quotation mark. After entering a blank, the word ONCE,
and a quotation mark, the screen should appear as follows:

1000 PRINT "1 PRESS THE ESCAPE K
EY ONCE"

1 Cursor should be here

Press RETURN to enter the instruction, and then list the instruction to see if
you entered it correctly.

Be careful when editing data enclosed within quotation marks.
Now that you know how to do it the hard way, you should know that there is

a shorter, easier method.

192 / Applesoft BASIC Toolbox

The instruction POKE 33,33 places the number 33 (second operand) into mem-

ory location 33 (first operand). Memory location 33 indicates to the computer the
number of columns used on the screen. By resetting the screen to 33 columns, you
override the way in which Applesoft breaks up the instructions when they are dis-
played. Instead of being broken up between lines, the instructions are displayed
without any breaks. Enter the following instruction, and follow through the steps
to do the same edit as before. Enter

HOME
NEW
1000 PRINT "1 PRESS THE ESCAPE KEY"”

1.

After entering the instruction, key in the following three instructions.

HOME
POKE 33,33
LIST

Although it is not required you should enter HOME prior to resetting the screen
margins to clear the garbage out of the right margin.
The screen will display the instruction using only the first 33 columns.

1000 PRINT "1 PRESS THE ESCAPE K

EY"

To edit the statement, press the ESC key once. Use the | and J keys to
position the cursor over the 1 in statement 1000. Once the cursor is positioned,
use the space bar to break out of edit mode and the right arrow key to move
the cursor to the last quotation mark. Watch closely as the cursor moves from
column 33 to column 1. Since only 33 columns are being used, the cursor
moves to the second line without any problem. With the cursor over the quo-
tation mark, enter a space and ONCE"”. Do not forget the leading blank or
trailing quotation mark.

After changing the statement, key in the following three instructions to reset
the screen to 40 columns:

HOME HOME
POKE 33,40 or TEXT
LIST LIST

To reset the screen, use the POKE or the TEXT instruction. The POKE instruction
places a value of 40 back in memory location 33. The TEXT instruction auto-
matically sets the screen back to normal mode. After resetting the screen, LIST
the statement to see if it was entered correctly. The screen should appear as
follows:

The Screen Editing Functions / 193

1000 PRINT "1 PRESS THE ESCAPE K
EY ONCE"

POKE memory location 33 with the value 33 prior to editing any of the following:

1. A statement which has data within quotes
2. A REM instruction which extends beyond one line
3. A DATA instruction which extends beyond one line.

With some practice the whole process becomes easy—believe me, it does.

Just remember, if what you are editing is within quotation marks or is a REM
instruction, do not use the arrow keys to move the cursor over the margins. Use the
editing keys J, K, I,and M, or use the POKE instruction to change the margin settings.

When editing the REMarks instruction, you must be aware of the problems not
only with margins but also with the generated blank following the keyword REM.

When you enter the REMarks instruction, it is normally keyed without a space
following the keyword REM.

1000 REMGENERATES ONE BLANK

When you list the REMark statement, a blank is generated between the keyword
REM and the first letter of the remarks.The blank causes a small problem when
editing a REM instruction. If you edit the REM instruction and use the arrow keys
to move the cursor over the blank following the keyword REM, the blank is included
as part of the remarks entry. When the remarks instruction is listed, Applesoft
generates a second blank to separate the keyword REM from the leading blank or
what it considers the start of the remarks.

To prevent the extra blank from being generated, use the following procedure.

1. Key in the following statement and list it.

1000 REMGENERATES ONE BLANK
LIST

The statement will be displayed as
1000 REM GENERATES ONE BLANK

Notice the blank inserted by the computer between the REM and GENERATES.
2. Press the ESC key and align the cursor over the first digit of the statement
number by pressing | twice and J once.
3. Use the space bar to break out of edit mode and the right arrow to position the
cursor over the letter R of REM.

194 / Applesoft BASIC Toolbox

4. Now type in a single space followed by the letters REM (REM).

5. The cursor should now be over the top of the G in GENERATES.

6. Use the right arrow and repeat key to move the cursor to the blank following
the letter K, and press RETURN. Do not go past the end of the statement. Any
blanks passed over by the cursor will be included in the REMarks statement
whether or not you can see them.

7. List the line and you will see a single blank between the REM and the word
GENERATES.

Editing Lines With Multiple Instructions

For most of the programs in this book each instruction is put on a line by itself to
make the programs more readable and easier to follow. Applesoft executes faster
and the programs take up less memory if several instructions are coded for one
statement number. Because many programmers want efficiency in speed of execution
and in memory usage, they code numerous instructions for one statement number.
The technique makes the program run a little faster and take up less memory, but
the technique does make it more difficult to read and modify the code.

Type in the line below, which shows four instructions for one statement number.
The instructions are samples of how you might accumulate the total hours worked
(TAHRSWK), total gross pay (TBGROSS), total net pay (TCNET), and total taxes
(TDTAX). Remember, Applesoft only uses the first two characters of the name. This
is the reason for the TA, TB, TC, and TD.

1000 TAHRSWK = TAHRSWK + AAHRSWK: TBGROSS = TBGROSS +
ABGROSS: TCNET = TCNET + ACNET: TDTAX = TDTAX + ADTAX

Now LIST the instruction. It should appear as follows (notice the spaces within
the variable names):

1000 TAHRSWK = TAHRSWK + AAHRSWK:
TB GR 0SS = TB GR 0SS + AB GR

0SS:TCNET TCNET + ACNET:TD
TAX = TDTAX + ADTAX

A statement such as this is where the editing feature really comes in handy.
When we created the names TBGROSS and ABGROSS, we did not realize the names
include the Applesoft command for GRaphics. The letters GR stand for low reso-

The Screen Editing Functions / 195

lution graphics and make up an Applesoft reserve word, which can only be used as
an instruction. We must correct the error by changing TBGROSS to TBSUM and
ABGROSS to ABSUM.

Use the following steps to modify the statement:

List the statement.

Press the ESC key and move the cursor to the first position of the statement
number. This should take five presses of the | key and one press of the J key.
Use the space bar to break out of edit mode and the right arrow key to position
the cursor over the blank following the first TB. Do not worry about moving
the cursor over the blank spaces in the margin. Type in SUM. The line should

appear as

TBSUM OSS = TB GR 0SS + AB GR
1 Cursor should be here

Using the space bar, blank out the letters OSS so that the line appears as

TBSUM = TB GR OSS + AB GR
1 Cursor should be here

Using the right arrow key, move the cursor to the blank following the next TB
and type in SUM. The line should appear as

TBSUM = TBSUM OSS + AB GR
1 Cursor should be here

Using the space bar, blank out the letters OSS. The line should appear as

TBSUM = TBSUM + AB GR
1 Cursor should be here

Using the right arrow key, move the cursor to the blank following the AB and
type in SUM. The line should appear as

TBSUM = TBSUM + ABSUM
1 Cursor should be here

Using the right arrow key, move the cursor to the OSS on the next line and
blank out the three characters by using the space bar. The two lines should
appear as

TBSUM = TBSUM + ABSUM
:TCNET = TCNET + ACNET:TD
1 Cursor should be here

186 / Applesoft BASIC Toolbox

9. Use the right arrow key to move the cursor to the end of the fourth line and
press RETURN. Remember, you must go to the end of the statement prior to
pressing RETURN.

10. List the line again to see if the information was entered correctly. The statement
should appear as

1000 TAHRSWK = TAHRSWK + AAHRSWK:
TBSUM = TBSUM + ABS UM: TCNE
T = TCNET + ACNET:TDTAX = TD

TAX + ADTAX

Look at the code closely. Do you notice another problem? The variable name
ABSUM includes the Applesoft reserve word ABS (ABSolute) and therefore cannot
be used. Give up and key in 1000 to delete the line.

. I

Summary of Edit Keys and POKE Functio

1. ESCkey used to engage the edit keys

2. J used to move the cursor to the left one column

3. K used to move the cursor to the right one column

4. | used to move the cursor up one row

5. M used to move the cursor down one row

6. POKE 33,33 used to change the width of the screen to 33 columns prior to
editing one or more lines.

7. POKE 33,40 used to change the width of the screen back

or TEXT to 40 columns after the editing process is over.
8. PROBLEMS
a. Most people have problems when learning how to edit variables when data
is contained between quotation marks. Be careful not to include the blanks
making up the margin.
b. Be careful when editing the REMarks instruction.

23.

Instruction

Example

Purpose

Rules for Use

lllustration
of the Rules

The GET Instruction

GET variable name

GET ANSWERS Retrieves a single string character
GET NUMBER Retrieves a single numeric digit

To retrieve one keystroke from the keyboard.

To save the operator from having to press the RETURN key when only one
character of information is to be entered.

To cause the program to stop until the operator is ready and presses a key.

Numeric variable names can only accept numeric values. String variable names
can accept any key except CONTROL-RESET.

The computer waits for a key to be pressed. Once a key is pressed, the computer
continues processing. The operator does not need to press the RETURN key.
If a key is pressed prior to execution of the GET instruction, the symbol is
placed in the keyboard buffer (storage area). When the GET instruction is
executed the character is retrieved from the single character buffer. If more
than one key is pressed prior to execution of the GET instruction, only the last
key pressed is accepted.

The symbol entered by way of the GET instruction is not automatically displayed
on the screen. If you want the symbol to appear on the screen, you must PRINT
the symbol as part of your program logic.

If your program is using both the GET instruction and DOS commands, you
must cause a RETURN symbol (CHR$(13) to be PRINTed at some point between
using the GET instruction and execution of a DOS command. The RETURN
symbol is generated by any PRINT operation which does not end in a semicolon.

The same program is used to illustrate the first five rules. Rule 5 is not covered in
this section but is covered in Section II, on disk file usage.

Key in and run the following program, or run the program by entering

RUN GET SAMPLE1

197

198 / Applesoft BASIC Toolbox

NEW

1000 REM GET SAMPLEl

1010 HOME

1020 SPEED= 150

1030 PRINT "PRESS ANY KEY OTHER THAN CONTROL-RESET"
1040 GET X$

1050 PRINT

1060 IF X$ < "!" OR X$ > "~ THEN 1090

1070 PRINT "YOU PRESSED THE "X$" KEY"

1080 GOTO 1110

1090 PRINT "YOU PRESSED AN UNPRINTABLE KEY"

1100 PRINT "THE ASC II VALUE FOR THE KEY IS " ASC (X$)
1110 PRINT : PRINT

1120 PRINT "NOW PRESS A NUMERIC KEY"

1130 GET AANUMBER

1140 PRINT

1150 PRINT "YOU KEYED THE NUMBER "AANUMBER

1160 PRINT : PRINT

1170 PRINT "THE NEXT GET INSTRUCTION IS CODED AS:"
1180 PRINT

1190 PRINT " GET AANUMBER"

1200 PRINT

1210 PRINT "ATTEMPT TO ENTER A NONNUMERIC VALUE"
1220 PRINT "INTO THE NUMERIC FIELD."

1230 PRINT

1240 PRINT "THE PROGRAM WILL CANCEL WITH A SYNTAX"
1250 PRINT "ERROR."

1260 SPEED= 255

1270 GET AANUMBER

1280 PRINT "YOU ENTERED A NUMBER WHEN YOU WERE TO"
1290 PRINT "ENTER A NONNUMERIC VALUE. TRY UNTIL"
1300 PRINT "YOU GET IT RIGHT."

1310 GOTO 1270

The program consists of three parts. The first part illustrates tt i
instruction with a string variable. The second illustrates the use ¢
numeric variable.The third illustrates what happens when a nonnum
for a numeric variable name and what happens when several keys a.c-ptecsan.
to execution of the GET instruction.

1030 You may enter any key with the GET instruction except CONTROL-RESET. When
CONTROL-RESET is pressed, it causes the computer to be reset, canceling your
program.

1040 The variable following the GET instruction should always be a string variable. If
you want a number entered, use a string variable, edit the the value entered, and
convert the entry to a numeric value by using the VAL function.

1060-1100

1110-1150

1160-1270

The GET Instruction / 199

1240 GET X$
1241 IF X$ < 70" OR X$ > ““9" THEN GOTO error routine
1242 NUMBER = VAL(X$)

The value you enter is compared to the bit pattern of the first and last printable
characters. If the key pressed is a nonprintable character, logic branches to line 1090
and prints an appropriate message. If the character is printable, logic falls through
the IF and prints the character entered. Either way logic flow ends up at line 1110.

Did you that notice the character entered by the GET instruction on line 1040
is not printed until line 1070? Remember, a symbol entered by way of the GET
instruction is not automatically printed. If you do not code an instruction to PRINT
the symbol, it does not show up on the screen.

The GET instruction on line 1130 retrieves one numeric character. If you code a
numeric name following the GET instruction, any key entered other than a numeric
character causes the program to terminate and the message ?SYNTAX ERROR to be
displayed.

In the third section of the program you see what happens when a nonnumeric value
is entered in response to a GET instruction that uses a numeric variable name.

As indicated earlier, once you have pressed a nonnumeric character in response
to a request for a numeric value, the computer immediately cancels the program and
displays the message

?SYNTAX ERROR
To prevent this type of error from happening, always use a string variable with

the GET instruction.

Exercise 1: Entering Characters
Enter

RUN <RETURN>

Follow the instructions displayed on the screen. The program will terminate with
an error message if you follow the instructions correctly.

Exercise 2: Entering CONTROL-RESET
Enter

RUN <RETURN>

200 / Applesoft BASIC Toolbox

In response to the first message, press the CONTROL and RESET keys at the same
time. The computer will beep and the program will be cancel.

CONTROL-RESET is the only key I have encountered which the GET instruction
does not accept. You may want to use the following program to see if there are any
other keys which cannot be used with the GET instruction.

1000 HOME: GET X1$: PRINT " =(""X1$")"": GOTO 1000

Remember that some symbols such as CONTROL-C, CONTROL-S, CONTROL-D,
etc. do not print.

Exercise 3: Entering a Character Into the Buffer

Before running the program again to illustrate Rule 4, modify the code by keying
in

DEL 1120,1310 <RETURN>

The delete instruction will eliminate the last two GET instructions and leave
only the first section of the program.

If you accidentally press a key before the computer executes the GET instruc-
tion, the last key pressed is kept in the keyboard’s buffer (a memory area) and used
as the input character for the GET instruction. If the operator correctly anticipates
the character which is to be entered, processing can continue without any error. If
the operator does not key in the correct response, hopefully the program edits the
input and catches the error before continuing.

Now run the program again. As the program is printing out the message on
line 1030, press several keys. When the computer finishes printing the message, the
last character you press will automatically be accepted by line 1040 (GET instruc-
tion). Key in

RUN <RETURN>
(press several keys)

The last character pressed will be printed by line 1070. The other characters will be
lost.

Using GET to Accept a Yes/No Response

One of the most common ways you will use the GET instruction is to accept a yes/
no response or a continue/stop response. When using the GET instruction to accept

The GET Instruction / 201

a specific character you should test the symbol entered for each acceptable value.
If an acceptable value is not entered, make the operator reenter the character.

The following lines show how to code a yes/no response using the GET instruction.

1000 HOME

1010 PRINT "PRESS Y FOR YES"

1020 PRINT "PRESS N FOR NO";

1030 GET X1$: PRINT X1$;

1040 IF X1$ = "Y" THEN 1090

1050 IF X1% = "N" THEN 1110

1060 PRINT "PRESS ANY KEY AND TRY AGAIN!"
1070 GET X1$

1080 GOTO 1000

1090 REM INSTRUCTIONS FOR YES RESPONSE
1100 REM

1110 REM INSTRUCTIONS FOR NO RESPONSE
1120 REM

The basic logic for accepting a response from the operator consists of the

following steps:

—
.

Display the responses which are acceptable.

Use the GET instruction to retrieve the character and the PRINT instruction to
display the character entered.

Warning: Printing symbols on line 24 can cause problems. If a character
is printed on line 24 and not followed by a semicolon, it causes the screen
to scroll. If the operator presses the RETURN key in response to the GET
instruction and the symbol is printed on line 24, the screen scrolls whether
or not a semicolon is used. These problems can be eliminated by editing
the values prior to printing or by not displaying responses on line 24.
Test the character entered for ALL the acceptable values. Do not test for one
value and let program logic fall through for the other values as shown by the
following code:

1030 GET X1$: PRINT X1$;

1040 IF X1$ = “N” THEN 1110

1050 REM FALL THROUGH FOR YES RESPONSE
1060 REM

1070 REM INSTRUCTIONS FOR NO RESPONSE

If no acceptable value is entered, let the operator know by having the program
display an error message. Have the program wait for the operator to read the
message and then start the process over.

24.

202

Instruction

Example

Purpose

The DIM Instruction

DIM NAME(number,number,number,...)

Note: Although the DIMension instruction may be used to define multiple arrays,
this book only illustrates single entry arrays. Multiple levels are defined when
more than one number (called a subscript) is used within parentheses.

Single dimension: DIM NAME(subscript1)
Double dimension: DIM NAME(subscript1,subscript2)
Triple dimension: DIM NAME(subscript1,subscript2, subscript3)

Arrays are also referred to as: tables, matrixes, and lists. For this book, the terms
array or table will be used.

DIM MTHLYSALES(11)

FORN1 =0TO 11

INPUT “MONTHLY SALES = "; MTHLYSALES(N1)
NEXT

The DIMension instruction creates 12 variables which are accessed by using the
name MTHLYSALES followed by a number within parentheses. The subscript (num-
ber within parentheses) may range from O to 11. The FOR/NEXT instruction shows
how you might vary the subscript in order to load a value into each of the 12 variables
making up the table.

The DIMension instruction allows the programmer to define large groups of related
variables with one general name. Each individual variable is then uniquely refer-
enced by the number following the general name. Without the DIMension instruction
many problems would be impossible to code.

Rules for Use 1. IfaDIMinstruction is used in the program to define an array, the DIM instruction

must be executed once prior to any instruction which uses the array or else a
REDIM’D ARRAY error occurs. (There is one exception, see Rule 5.)

The DIM Instruction / 203

BEGINNING ROUTINE Put the DIM instruction at the start of the program in
DIM TABLE(100) a segment of code which is executed only once.
MAIN ROUTINE Arrays are also referred to as tables, matrixes, and
........ lists.

2. The maximum number of subscripts or levels is 88. I cannot imagine how
anyone could come close to this limit.

TABLENAME (subscript1,subscript2,subscript3,subscript4,
....subscript88)

Most programmers never get beyond three levels of subscripts:

TABLENAME (subscript1,subscript2,subscript3)

Do not confuse the maximum number of subscripts with the maximum number of
array entries. The maximum number of array entries is limited only by the memory

size of your computer.

3. Since the computer starts counting at 0, all DIMension definitions and subscripts
. are relative to 0.

DIM MTHLYSALES (11) Defines 12 variables from O to 11
MTHLYSALES (0) References the first entry in the array
MTHLYSALES (1) References the second entry in the array
MTHLYSALES (11) References the twelfth entry in the array

Because of the difference between the way humans count and the way com-
puters count, many programmers ignore the first entry of a table, entry (0), and start
with entry (1).

Even though the sample programs use entry (0) I would suggest that you define
and access table entries in human terms.

In human terms the earlier example would be defined as:

DIM MTHLYSALES (12)
The DIMension instruction defines 12 variables from 1 to 12 (actually defines 13,
from O to 12, but who cares?).

Use 1 as the starting point for accessing the table.

MTHLYSALES(1) = 25000.00 : REM JANUARY SALES

204 / Applesoft BASIC Toolbox

4. Memory usage
a. Integer array entry 2 bytes per entry
b. Real array entries S bytes per entry
¢. String array entries 3 bytes per entry + length of the string

For more information on memory allocation and usage related to the DIM instruction,

see the APPLE programming manuals.

5. If an array name is used in a program and no DIM instruction is specified for
that name, Applesoft automatically generates 10 entries for the array. This
means if you are going to use arrays with 10 or fewer entries, you do not have
to define them with a DIM instruction.

lllustration The following program shows how to define, load, and sort an array with up to 100
of the Rules entries. This program may be useful to you as a model if you plan to write any code
which sequences data.

1000 REM DIM SAMPLEl
1010 HOME

1020 DIM NUMBER(99)

1030 REM
1040 REM ENTER VALUES

1050 PRINT "ENTER FROM 2 TO 100 NUMBERS"

1060 PRINT

1070 PRINT "ENTER Q TO QUIT"

1080 VTAB S5: HTAB 1

1090 CALL - 958

1100 INPUT " = ";NUMBER$: NUMBER = VAL(NUMBER$)
1110 IF LEFT$(NUMBER$) = "Q" THEN 1160

1120 NUMBER(N1) = NUMBER

1130 N1 = N1 + 1

1140 IF N1 > 99 THEN 1160

1150 GOTO 1080

1160 REM
1170 REM REPLACEMENT SORT

1180 HOME

1190 PRINT "SORTING NUMBERS": PRINT

1200 PRINT "THE LENGTH OF TIME DEPENDS ON THE": PRINT
1210 PRINT "NUMBER OF VALUES ENTERED."

1220 N3 = N1 -1

1230 FOR N1 = 0 TO N3 - 1

1240 FOR N2 = N1 + 1 TO N3

1250 IF NUMBER(N1) < = NUMBER(N2) THEN 1290

1260 NUMBER = NUMBER(N1)

1270 NUMBER(N1) = NUMBER(NZ2)

1280 NUMBER(NZ2) NUMBER

1290 NEXT
1300 NEXT
1310 REM

1320 REM PRINT NUMBERS
1330 N2 = 0

1000-1020

1030-1150

1120-1130

1160

The DIM Instruction / 205

1340 HOME

1350 FOR N1 = 0 TO N3

1360 PRINT NUMBER(N1)

1370 N2 = N2 + 1

1380 IF N2 < 20 THEN 1430

1390 PRINT "PRESS ANY KEY TO CONTINUE"
1400 GET X1§

1410 N2 = 0

1420 HOME

1430 NEXT

1440 PRINT "THAT'S ALL FOLKS!"
1450 END

The DIM instruction defines a table of 100 elements with the general name of
NUMBER. In order to work with any one of the 100 elements, the label NUMBER
must be followed by either a number or a variable ranging from 0 to 99.

Lines 1030 through 1150 are responsible for accepting up to 100 numbers from the
operator. The input operation is terminated when the operator has entered 100 num-
bers or has entered a Q. The CALL —958 instruction is used to clear the lower portion
of the screen after each entry. The CALL instruction is used to clear the screen rather
than clearing just one line, since mistakes made by the operator during the entry
process can result in the computer’s displaying messages on several lines.

You should look closely at lines 1120 and 1130. Since N1 starts off with a value of
0 the first time though the loop, the first number entered is placed in the area
NUMBER(0). After each number is placed in the table, the value of N1 is incremented
to point to the next available table location.

REM -------mmecmmeomeenene

1170 REM REPLACEMENT SORT

1220 N3 = N1 -1

1230 FORN1 = 0 TON3 - 1

1240 FORN2 = N1 + 1 TON3

1250 IF NUMBER(N1) < = NUMBER(N2) THEN 1290

1260 NUMBER = NUMBER(N1)
1270 NUMBER(N1) = NUMBER(N2)
1280 NUMBER(N2) = NUMBER
1290 NEXT

1300 NEXT

Basically the sort consists of two FOR/NEXT loops. The inner loop is respon-
sible for doing the comparisons and switching the variables, while the outer loop
resets the counters and determines how many times the inner loop is executed.

To help explain the logic, let’s use the following table values:

206 / Applesoft BASIC Toolbox

1220

1230-1300

1240-1290

1250-1280

Value
NUMBER (0) = 00123
NUMBER (1) = 09876
NUMBER (2) = 00001
NUMBER (3) = 00022

N3 = N1-1

At the time the sort routine is entered, N1 is 1 greater than the number of entries
loaded into the table. Line 1220 sets N3 equal to the exact number of values entered.
The value in N3 is used during the sort process to limit the number of comparisons
which must be done in order to sequence the numbers. For the data in this example,
the value of N3 is equal to 3. Remember, all the subscripts are relative to 0 so the
value of 3 indicates that four numbers were entered.

The last sentence emphasizes why many programmers ignore entry 0 when
using tables.

Lines 1230 and 1300 form the outer FOR/NEXT loop. The outer loop must be
executed 1 less time than the number of entries to be sorted (see the N3 — 1).

1230 FOR N1 = 0 TON3 — 1

Lines 1240 and 1290 form the inner FOR/NEXT loop. The inner loop must be
executed a varying number of times depending on whether this is the first, second,
third, fourth, etc. pass through the sorting process. But no matter which pass is
being made, the starting point of the inner loop is 1 greater than the starting point
of the outer loop (see the N1 + 1).

1240 FOR N2 = N1 + 1 TO N3

Lines 1250 through 1280 make up the actual comparison and flipping process. For
the four numbers, the comparison process takes the following steps.

The value in NUMBER (0) is compared with the value in NUMBER (1), see
line 1250. For the sample data, 00123 is less than 09876, so the numbers are not
flipped.

Value
NUMBER (0) = 00123 Unchanged
NUMBER (1) = 09876 Unchanged
NUMBER (2) = 00001
NUMBER (3) = 00022

The DIM Instruction / 207

The value in NUMBER (0) is then compared with the value in NUMBER (2).
If the value in NUMBER (0) is greater than the value in NUMBER (2), the two
values are flipped. Since 00123 is greater than 00001, the two numbers are flipped
(see lines 1260-1280). The flipping process is accomplished by saving NUMBER
(0) in the hold area called NUMBER. The value in NUMBER (2) is then placed
into the NUMBER (0). After the value in NUMBER (2) has been moved, the value
which was saved in NUMBER is placed into NUMBER (2).

Value
NUMBER (0) = 00001 Flipped
NUMBER (1) = 09876 Unchanged
NUMBER (2) = 00123 Flipped
NUMBER (3) = 00022

The process is repeated until the value in NUMBER (0) has been compared
with all the values in the table. After completion of the first iteration of the inner
loop, the lowest value is in the first entry of the table: NUMBER (0).

After the first entry has been compared to all the other entries in the table, the
outer FOR/NEXT instruction sets N1 up by 1, and the process of comparing the
second entry with all the other table entries is carried out. If you follow the inner
loop, you will see that during the second execution, two flip operations take place.
First, 09876 and 00123 are flipped:

Value
NUMBER (0) = 00001 No longer used in comparison
NUMBER (1) = 00123 Flipped
NUMBER (2) = 09876 Flipped
NUMBER (3) = 00022

After NUMBER (1) and NUMBER (2) have been flipped, the new value in
NUMBER (1) is compared with NUMBER (3), resulting in another flip.

Value
NUMBER (0) = 00001 No longer used in comparison
NUMBER (1) = 00022 Flipped
NUMBER (2) = 09876
NUMBER (3) = 00123 Flipped

Once NUMBER (1) has been compared with all the other entries in the table,
the outer loop sets N1 up by 1, and the process of comparing the NUMBER (2) to
all the other table entries is carried out. If you follow the inner loop one more time,
you will see that during the third execution, one flip occurs. The value 09876 in
NUMBER (2) is compared with 00123 in NUMBER (3), causing the values to be
exchanged.

208 / Applesoft BASIC Toolbox

. Value
NUMBER (0) = 00001 No longer used in comparison
NUMBER (1) = 00022 No longer used in comparison
NUMBER (2) = 00123 Flipped
NUMBER (3) = 09876 Flipped

Since there are only four entries in the table, N1 is now equal to 1 less than
the number of entries, and the sort is completed.

Look through the code again and see how the sorting takes place. The outer
loop of the REPLACEMENT sort takes one less pass (execution) than the number
of entries in the table (4 — 1 = 3). The number of times the inner loop is executed
may be computed by the following formula:

TT-1)/2

where T = number of table entries.
For the example, the inner loop is executed six times:

4(4-1)/2=6
If the table contains all 100 entries, the inner loop is executed 4950 times:

100 (100 — 1) / 2 = 4950.

You can see why it takes several minutes for the computer to sort the table
when it is completely full.

After the numbers are sorted, lines 1310 through 1430 display the values in
groups of 20.

To see how the sorting program works, execute the following steps. First run
the program by entering
RUN DIM SAMPLE1

The screen will clear and the following messages will be displayed:

ENTER FROM 2 TO 100 NUMBERS

ENTER Q TO QUIT
=7?

In response to the question mark, enter some numbers. The program must have
at least two numbers in order to work. For this example enter the following numbers:

The DIM Instruction / 209

=3

=33

=4

=2

= 88

=Q To terminate data entry process

After you enter a Q, the input routine will terminate and the sorting process
will begin. During the sort, the following message is displayed:

SORTING NUMBERS
THE LENGTH OF TIME DEPENDS ON THE
NUMBER OF VALUES ENTERED.

After the sort is done, the five numbers are printed out in ascending order as
follows:

THAT'S ALL FOLKS!

25.

210

Instruction

Example

Purpose

Rules for Use

The READ/DATA/
RESTORE Instructions

The READ and DATA instructions must be used together. The RESTORE instruction

is an optional instruction used to reset the pointer indicating the next variable to be
read.

READ variable1,variable2,variable3,variabled4,...
DATA value1,value2,value3,values,...

RESTORE

READ INTEGER%,REAL,STRING$
DATA 25,10.5,'JOHN JONES'

The READ and DATA instructions provide a method of initializing variables to a
starting value. The two instructions are especially helpful in loading arrays (DIMen-
sion entries).

Some programmers use the READ and DATA instructions in place of the INPUT
instruction for entering data. With very few exceptions, this is not a good technique
and should be avoided. When data are constant and only coded in one program, use
the READ and DATA instructions. When data are subject to change or used by more
than one program, create a disk file and use the INPUT instruction to read the data
from disk. If the data change with each program, every time the program is run,
code a routine in the program to allow the operator to INPUT the data.

The RESTORE instruction allows the programmer to reset the data pointers so
the next time the READ instruction is executed, the first DATA entry is reread.

1. If the READ instruction is used, there must be at least one DATA instruction in

the program.

Each value within the DATA instruction MUST be separated by a comma.

. The value in the DATA instruction must match the type of name used in the
READ instruction, string values for string names and numeric names for numeric
values.

4. Variable types may occur in any sequence within the READ and DATA instruc-

tions as long as the usage between the two instructions matches.

w

The READ/DATA/RESTORE Instructions / 211

1000 READ STRINGS$,INTEGER%,REAL
1010 DATA JOHN JONES, 25,5.25

A program can contain any number of READ instructions and DATA instruc-
tions. The number of READ instruction and the number of DATA instructions
do not have to match. Each time a READ instruction is encountered, the next
sequential data element is read.

1000 READ STRING$
1010 READ INTEGER%
1020 READ REAL

2000 DATA JOHN JONES
2010 DATA 25,5.25

If more variable names are used in the READ instruction(s) than there are values
in the DATA instruction(s), an

OUT OF DATA ERROR IN ####
occurs and the program is canceled.

If more values are specified in the DATA instruction than are read by the READ
instruction, the excess values are ignored.

For the very first value of the DATA instruction, a leading comma specifies a
zero or null value (null means no value).

1000 READ N1,N2

1010 DATA ,25

1020 REM N1 WILL BE SET TO ZERO
1030 REM N2 WILL BE SET TO 25

For the very last value of the DATA instruction, a trailing comma specifies
a zero or null value.

1000 READ NAMES$,AGE ,ADDRESS$
1010 DATA JOHN JONES, 25,

1020 REM NAME$ = JOHN JONES

1030 REM AGE = 25

1040 REM ADDRESS$ = null value

Notice that the comma at the end of the DATA instruction is necessary to
indicate the absence of the last value.

For other than the first or the last value, a zero or null string may be
specified by using two consecutive commas.

212 / Applesoft BASIC Toolbox

lilustration
of the Rules

1000 READ NAME$,AGE,ADDRESS$

1010 DATA JOHN JONES, 4953 WAGON WHEEL DR
1020 REM NAME$ = JOHN JONES

1030 REM AGE = 0

1040 REM ADDRESS$ = 4953 WAGON WHEEL DR

8. String values MUST be within quotation marks if leading or trailing blanks are
to be included as part of the string value.

The first program consists of a date conversion subroutine which you may want to
use in some of your programs. The program starts off by loading the name of each
month into an array, and the maximum number of days for each month into a second
array. The program is not set up to catch all types of data entry errors.

1000 REM READ DATA SAMPLEl

1010 HOME

1020 GOSUB 1210: REM EXECUTE ONLY ONCE

1030 PRINT "ENTER THE DATE IN MMDDYY FORMAT"
1040 INPUT " = ";DTE$

1050 GOSUB 1100: REM EDIT AND CONVERSION ROUTINE
1060 VTAB 10: PRINT DTE$

1070 END
1080 REM
1090 REM EDIT AND CONVERT DATE

1100 MM = VAL (LEFT$ (DTE$,2))

1110 IF MM < 1 OR MM > 12 THEN 1180

1120 DD = VAL (MID$ (DTE$,3,2))

1130 IF DD < 1 OR DD > DD(MM) THEN 1180

1140 YY = VAL (RIGHT$ (DTE$,2))

1150 IF YY < O OR YY > 99 THEN 1180

1160 DTE$ = MM$(MM) + " " + STR$ (DD) + ", 19" + RIGHT$ (DTE$,2)
1170 RETURN

1180 DTE$ = "ERROR"

1190 RETURN

1200 REM
1210 REM BEGINNING ROUTINE
1220 DIM MM$(12),DD(12)
1230 REM
1240 REM READ ALPHA MONTH NAME

1250 FOR N1 = 1 TO 12: READ MM$(N1): NEXT

1260 DATA " JANUARY"," FEBRUARY"," MARCH", " APRIL",
" MAY"," JUNE", " JuLy"," AUGUST",
"SEPTEMBER"," OCTOBER"," NOVEMBER"," DECEMBER"

1270 REM

1280 REM READ NUMERIC DAY VALUE

1290 FOR N1 = 1 TO 12: READ DD(N1): NEXT

1300 DATA 31,29,31,30,31,30,31,31,30,31,30,31
1310 REM
1320 RETURN

1000-1020

1030-1070

1080-1190

1200-1220

1230-1320

The READ/DATA/RESTORE Instructions / 213

Before a date is accepted and converted into an alphanumeric format, the instructions
related to loading the name of each month and the number of days in each month
must be executed. These instructions must be executed only once at the start of the
program. If you copy the subroutine, make sure you locate the code related to loading
the array so it will only be executed once.

After the name of the month and the number of days are loaded, lines 1030 through
1070 accept a date from the operator and convert the numeric date into alphabetic
format.

Notice that the date is accepted from the operator as a string and not as a
number. As a general rule, use strings for entering all data. Convert string format
values to numeric format by using the VAL function.

Lines 1080 through 1150 edit the date entered to make sure it conforms to the
MMDDYY format requested and each section of the date is within the specified
limits. If the data entered fails any one of the tests, logic flow branches to line 1180,
where a value of ERROR is returned in response to the conversion process. If the
data entered passes all the tests, logic flow falls through to line 1160, where the
various parts making up the date are connected to form the alphabetic date.

Line 1130 uses the numbers read into the second array to check the value
entered for the day. The number entered for the day is compared against the maximum
value for the specific month. The value in MM is used within parentheses to point
to the array entry.

1130 IF DD < 1 OR DD > DD(MM) THEN 1180

Notice that the value of MM is edited prior to its use. If the value to be used
as a pointer is entered by the operator, it should always be edited before being used.
If the value to be used is generated by program code, there is no need to check the
number.

Line 1220 defines the two arrays to be used in the program. The first array is used
to store the string names of each month, while the second array is used to store the
maximum number of days for each month. Applesoft does not allow the programmer
to give starting values to the variables defined by the DiMension instruction. Any
starting value other than a null value for string variables or a zero value for numeric
variables must be loaded into each array entry.

Lines 1230 through 1320 make up the portion of the program which is related to
the use of the READ and DATA instructions. The first loop reads the names of each
month into the MM$ array. The second loop reads the number of days for each month
into the DD array.

The two loops could be combined into one single operation. The single loop
version of the code is as follows:

214 / Applesoft BASIC Toolbox

1240 REM READ ALPHA MONTH NAME AND NUMERIC DAY VALUE
1250 FOR N1 = 1 TO 12: READ MM$(N1),DD(N1): NEXT
1260 DATA " JANUARY",31,” FEBRUARY",29,"” MARCH",31,

" APRIL",30,” MAY”,31,” JUNE",30,

" JULY”,31,” AUGUST”,31,”SEPTEMBER",30,

" OCTOBER",31,” NOVEMBER",30,” DECEMBER",31

Notice that since a string variable and a numeric variable are both read by the same
statement, the DATA instruction must format the values in the same sequence as
they are read.

Exercise 1: Entering a Valid Date

To check out the program and see how the program works, run the program using
the following steps:

1. Enter
RUN READ DATA SAMPLE1 <RETURN>
2. Inresponse to the ENTER THE DATE message, key in your birthday.

ENTER THE DATE IN MMDDYY FORMAT
= 112244

3. Assoon as you press the RETURN key, the computer will display the converted
date in alphanumeric format:

NOVEMBER 22, 1944

Exercise 2: Enter an Invalid Date
To see what happens when an invalid date is entered, use the following steps:

1. Since the program is still in memory just enter RUN and press RETURN.
2. In response to the ENTER THE DATE message, key in any of the following
invalid dates:

130182, 093182, 0101-1, or 000000

3. As soon as you press the RETURN key, the computer will display the word
ERROR. If you are using the program as a subroutine within a larger program,
the returned value should be tested for an error condition in order to tell if the
user enters a valid date.

The READ/DATA/RESTORE Instructions / 215

2000 GOSUB convert date
2010 IF DTE$ = “"ERROR" THEN ...invalid date
2020 ...valid date

The second example shows how to use the RESTORE instruction to cause the
values in the DATA instruction to be reread. Whenever you want to reuse the values
included in the DATA instruction, the RESTORE instruction should be used.

The program asks you to enter the cost of merchandise and then multiplies the
cost by 10 different markup percentages. The program can be reexecuted any number
of times using the same values in the DATA instruction.

Key in the program, or load and list the program by entering

LOAD RESTORE SAMPLE1
LIST

1000 REM RESTORE SAMPLE1l

1010 HOME

1020 INPUT "ENTER COST OF MERCHANDISE = ";CST
1030 HOME

1040 PRINT "COST OF MERCHANDISE = ";CST

1050 PRINT

1060 PRINT "% MARKUP SALES PRICE"

1070 FOR N1 =1 TO 10

1080 READ MARKUP

1090 DATA .05, .15, .20, .25, .35, .45, .50, .60, .75, .90
1100 PRICE = (MARKUP + 1) * CST

1110 PRINT TAB(3);MARKUP + 1 TAB(15)PRICE
1120 NEXT

1130 PRINT : PRINT

1140 PRINT "PRESS C TO CONTINUE"

1150 PRINT "PRESS Q TO QUIT"

1160 GET X1$

1170 IF X1$ = "C" THEN RESTORE : GOTO 1000
1180 IF X1$ = "Q" THEN HOME : END

1190 GOTO 1160

1080-1090 The READ instruction retrieves a new markup percentage each time it is executed.

1170

The first time through, the cost is multiplied by 1.05. The tenth time through the
loop, the cost is multiplied by 1.90.

If the operator enters a C to continue the program, the RESTORE instruction on line
1170 resets the pointer. Once the DATA pointer is reset and the READ instruction
is encountered, the first DATA value is reread.

Run the program and enter several values to see the RESTORE instruction in
action.

26.

216

Instructions

Purpose

Rules for Use

The TRACE/NOTRACE
Instructions

Immediate Execution Mode:

TRACE
NOTRACE

Program Execution Mode:

1000 TRACE
1010 NOTRACE

The TRACE and NOTRACE instructions are debugging instructions which can help
you follow the logic flow through your program. Depending on how you use TRACE
and NOTRACE, the instructions can be very helpful in providing you with the state-
ment number of each line executed or can be overwhelming by listing too many
statement numbers and flooding you with too much information.

1. Use the keyword TRACE in either immediate or program execution mode to
start the trace process. Use the keyword NOTRACE in either immediate or
program execution mode to terminate the trace process.

2. Each statement number executed is displayed along with other data on the screen
and therefore messes up any screen design format. If you are using the HOME,
VTAB, or HTAB instructions to clear the screen or reposition the cursor, the
statement numbers displayed by the TRACE function will be difficult to follow.
Either slow the computer down with the SPEED command or use PR#1 to print
all data displayed (if you have a printer).

3. The TRACE function can only be turned off by using the NOTRACE instruction
or by resetting the machine. The LOAD and RUN instructions do not reset the
TRACE operation.

4. The TRACE function cannot be used in a program which uses DOS instructions
unless it is turned off prior to a DOS instruction and back on after a DOS
instruction.

2000 NOTRACE Turns trace off before DOS operation
2010 PRINT D$;”"READ SEQUENTIAL FILE"

2020 INPUT A1RECORD$

2030 TRACE Turns trace on after DOS operation

The TRACE/NO TRACE Instructions / 217

Ilustration The first program is very short and is intended to show you how the TRACE/NOTRACE
of the Rules instructions work in immediate-execution mode. The program results in an endless
loop and must be terminated by pressing CONTROL-C.

HOME

NEW

1000 REM TRACE SAMPLEl

1010 REM MAIN ROUTINE

1020 IF EOF$ = "YES" THEN END
1030 GOTO 1010

TRACE

Exercise 1: TRACE and NOTRACE in Immediate Execution Mode

Key in the short program. After the program has been entered, key in the TRACE
instruction. Now RUN the program and watch how fast the screen fills up with
statement numbers.

The new lines on the screen will appear as follows, starting with statement
number 1000.

RUN

#1000 #1010 #1020 #1030 #1010 #1020 #103
0 #1010 #1020 #1030 #1010 #1020 #1030 #1
010 #1020 #1030 #1010 #1020 #1030 #1010

BREAK IN ####

Notice that the cycle repeats in an endless loop. To cancel the program, press
CONTROL-C.

After canceling the program, enter NOTRACE in order to terminate the TRACE
process.

The second example shows how to use the TRACE instruction in the program
execution mode and how to turn the trace process off and on within the program to
cut down on the number of line numbers displayed. The program also uses the PRINT
instruction as a debugging tool to help the programmer know which part of the
program is being executed.

1000 REM TRACE SAMPLE2

1010 HOME

1020 REM MAIN ROUTINE

1030 PRINT "START OF OUTER LOOP"
1040 FOR N1 =1 TO 5

1050 PRINT "START OF INNER LOOP"
1060 FOR N2 = 1 TO 5

1070 TRACE

1080 REM INNER FOR/NEXT INSTRUCTION
1090 NOTRACE

1100 NEXT

218 / Applesoft BASIC Toolbox

Exercise 2: TRACE and NOTRACE in Program Execution Mode

1110 PRINT "END OF INNER LOOP"
1120 NEXT
1130 PRINT "END OF OUTER LOOP"
1140 END

Study the code and run the program by entering

RUN TRACE SAMPLE2

The following screen image will be displayed:

START OF OUTER LOOP
START OF INNER LOOP

#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP

#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP

#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP

#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
START OF INNER LOOP

#1080 #1090 #1080 #1090 #1080 #1090 #108
0 #1090 #1080 #1090 END OF INNER LOOP
END OF OUTER LOOP

to display routine names or values within specific variables.

\—“/\

1070-1090 The TRACE and NOTRACE instructions are used in the innermost loop in order to
limit the number of statement numbers displayed. Whenever you have a problem
following what is happening in a block of code, use the TRACE and NOTRACE
instructions to display the statements which are executed. Use the PRINT instruction

27.

Instruction

Example

Purpose

Rules for Use

lllustration
of the Rules

The PEEK Instruction

variable = PEEK (address)

PRINT “"ERROR CODE = ";PEEK (219) * 256 + PEEK (218)
Prints the error number related to an ONERR condition.
FOR N1 = 0 TO 50: N2 = PEEK (— 16336): NEXT

Causes a short noise from the APPLE’s speaker.

The PEEK instruction is used to retrieve the contents of a byte of memory. The
instruction returns a decimal number equal to the value stored at the specified address
or flips a memory address switch.

1. The variable or expression following the keyword PEEK must be in parentheses
and must be an address within the limits of the computer being used.

2. Many of the addresses used in the PEEK and POKE instructions act as program
switches. If the memory address is designated as a switch, either PEEKing or
POKEing the address has the same effect of flipping the switch. Normally the
shorter POKE instruction is used.

1000 REM NOISE ERROR ROUTINE

1010 HOME
1020 PRINT "ENTER A NUMBER BETWEEN 100 AND 1000"
1030 INPUT " = ";NUMBER

1040 IF NUMBER < 100 OR NUMBER > 1000 THEN 1000
1050 GOSUB 1090: REM MAKE NOISE

1060 END

1070 REM

1080 REM NOISE SUBROUTINE

1090 FOR N1 = 0 TO NUMBER: N2 = PEEK (— 16336): NEXT : RETURN
1100 REM

Note: For another method see the CALL — 1052 instruction.

219

220 / Applesoft BASIC Toolbox

1070-1100

Line 1090 makes up the entire NOISE SUBROUTINE. The length of the noise is
dependent on the value of NUMBER. If you use this instruction, you can substitute
a numeric constant for NUMBER and simplify the operation.

1090 FOR N1 = 0 TO 100: X = PEEK (—16336): NEXT

To get some idea of the noise and how long a FOR/NEXT loop you like, run
the program and enter a variety of numbers from 100 to 1000. Enter:

RUN NOISE ERROR ROUTINE
100

RUN

500

RUN

1000

Some Useful PEEK Addresses

PEEK (36)

PEEK (37)

PEEK (219) * 256

+ PEEK (218)

PEEK (222)

PEEK (—16336)

Some of the useful PEEK addresses are given below. For a more detailed listing of
addresses to PEEK see the APPLE programming reference manual.

The memory address is used to store the current horizontal position of the cursor.
The value ranges from O for the leftmost column to 39 for the rightmost column.

The memory address is used to store the current vertical position of the cursor. The
value ranges from O for the first line to 23 for the bottom line.

The memory locations 219 and 218 are used to store the line number of the statement
which caused an error condition to occur.

The memory address which contains the decimal number representing the type of
error that occurred. A list of these numbers and the matching error message is
included under the description of the ONERR GOTO instruction (see ONERR, p.
225).

This causes the speaker to produce a short click. For the click to be noticeable, the
PEEK must be used in a FOR/NEXT loop and repeated several times (see CALL
—1052, p. 242).

28.

Instruction

Example

Purpose

Rules for Use

lllustration
of the Rules

The POKE Instruction

POKE address,number

1000 REM RESET SCREEN SIZE

1010 HOME

1020 POKE 33,20: REM SETS THE WIDTH OF LINE TO 20 CHARACTERS
1030 POKE 32,10: REM SETS LEFT MARGIN TO START IN COLUMN 10
1040 POKE 34,4: REM SETS THE TOP MARGIN TO LINE 5

1050 POKE 35,20: REM SETS THE BOTTOM MARGIN TO LINE 20

The five instructions clear the screen and reset the size of the screen to a 20 character
by 20 row format centered in the middle of the display unit. The instructions must
be executed in program mode or else the outside margins are not clear.

The POKE instruction is used to place a numeric value in a byte of memory or to
flip a switch at a specific memory address.

1. The variable or expression following the keyword POKE must consist of a
machine address within the range of the computer and must be followed by a
variable name or constant. The value of the variable name or numeric constant
must be between 0 and 255.

2. Many of the addresses used in the PEEK and POKE instructions act as program
switches. If the memory address is designated as a switch, either PEEKing or
POKEing the address has the same effect of flipping the switch. Normally the
shorter POKE instruction is used.

Exercise 1: Changing the Text Window

The first exercise modifies the text window, showing you how the POKE instruction
works. The second exercise resets the window back to the normal mode.
Enter the following instructions and then run the program:

221

222 [Applesoft BASIC Toolbox

NEW

1000 HOME

1010 POKE 33,20
1020 POKE 32,10
1030 POKE 34,4
1040 POKE 35.20
RUN

Sets the width of the line to 20 characters
Sets the left margin to start in column 10
Sets the top margin to line 5

Sets the bottom margin to line 20

After the program has been run, enter the following single line program in the
immediate execution mode:

FOR N1 = 1 TO 200: PRINT N1;: NEXT

The middle of the screen will fill with the numbers from 1 to 200. As the twentieth
line is filled, the text window will scroll up for each new line displayed.

Exercise 2: Resetting the Text Window

The easy way to reset the text window is to press CONTROL-RESET or enter the
TEXT command. The long way to reset the text is to rePOKE each memory address
with the correct value as follows:

Long way:

HOME

POKE 32,0

POKE 33,40
POKE 34,0

POKE 35,23
HOME

Short way:

TEXT

Optional

Sets the left margin to start in column 0
Sets the width of the line to 40 characters
Sets the top margin to line 0

Sets the bottom margin to line 23

After resetting the window, enter the same command as used earlier and test
the new setting of the text window.

FOR N1 = 1 TO 200: PRINT N1;: NEXT

The POKE Instruction / 223

Some Useful POKE Addresses

POKE 32,number

POKE 33,number

There are a large number of addresses which can be used with the POKE instruction
when working with high resolution graphics or machine language.

For a more detailed listing of addresses used with the POKE instruction, see
the APPLE programming reference manual.

Memory location 32 contains a number from 0 to 39 indicating the starting column
(leftmost column) to be used when displaying information on the screen. The left
margin of the screen can be changed by POKEing a new value into memory location
32. Before the screen format is changed, the HOME command should be used to
clear the screen or garbage may be left in the margins.

The left margin does not change until the cursor is repositioned to a new line.
Also, the instruction does not change the width of the screen, which is controlled
by memory location 33. When changing the size of the screen, either run a small
program or use a single line of code in immediate execution mode as follows:

HOME : POKE 32,number : POKE 33,number : POKE 34,number : POKE 35,number
: HOME

The instructions: clear the screen, reset the screen size, and reposition the cursor to
the new location. The instructions must be executed as one line of code. If you
execute each instruction individually, garbage will be left on the screen.

Memory location 33 contains a number from 1 to 40 indicating the length of the
lines to be displayed on the screen. A value of O cancels Applesoft.

For printing Applesoft programs, POKE 33,33 causes the third tab field to be
ignored and can be used when making hard copies of Applesoft programs to print
a full 80 columns.

To print a full 80 columns, enter

HOME Optional

POKE 33,32 After the listing is done enter
PR#1

LIST

POKE 40,33

For editing Applesoft statements, POKE 33,33 causes the automatic formatting
feature to eliminate extra spaces which are normally generated. Whenever you are
using the edit keys to make changes to either remarks or lines containing string
constants, the POKE instruction helps simplify the editing process.

224 / Applesoft BASIC Toolbox

POKE 34,number

POKE 35,number

POKE 33,33

LIST statement to be changed
... Make changes

POKE 33,40

Memory location 34 contains a value from O to 23 indicating the starting line on
the screen to be used as the top margin. Needless to say, the top margin should not
be set below the bottom margin.

Memory location 35 contains a value from 0 to 23 indicating the ending line on the
screen to be used as the bottom margin. The bottom margin should not be set higher
than the top margin.

29.

Instruction

Example
Purpose

Rules for Use

The ONERR GOTO
Instruction

ONERR GOTO statement number

1000 REM BEGINNING ROUTINE
1010 ONERR GOTO 3000

3000 REM ERROR ROUTINE

The ONERR instruction allows the programmer to intercept an error situation and
handle the recovery process within the program. By coding a special error routine,
the programmer may terminate the program in an orderly fashion, give the operator
special instructions, or restart the program.

1. If an error occurs prior to execution of an ONERR GOTO instruction, the
program displays the statement number in error and the related error message.
Once an ONERR GOTO instruction has been executed and an error occurs, the
computer branches to the instruction indicated by the statement number follow-
ing the keyword GOTO.

2. Any number of ONERR GOTO instructions may be used in a program, but only
the statement number associated with the last ONERR instruction is kept.

ONERR GOTO 2000
If an error occurs, logic flow branches to
statement 2000

ONERR GOTO 3000
Execution of a second ONERR statement changes
the code so that if an error occurs, logic flow
branches to statement 3000

3. When an error occurs, the pointers associated with the FOR/NEXT instruction
and the stacks associated with the GOSUB instruction are cleared (destroyed).
4. Some of the related memory addresses are the following:
222 Contains a decimal number between O and 255 indicating the type of
error which occurred (see program listing).
216 Bit 7 of memory address 216 acts as a switch, indicating whether or not

225

226 / Applesoft BASIC Toolbox

218

The error subroutine shown in the following program provides a check for all
the Applesoft errors. The program does not check for the DOS errors. See the DOS
manual for DOS error values. There is really no advantage to using the subroutine
unless you wish to change the wording of the error messages or wish to display

an ONERR instruction has been encountered. If you wish to turn off an

ONERR instruction, execute the instruction POKE 216,0.

and 219 Memory addresses 218 and 219 contain the line number on

which the error occurred.

some special instructions to the operator.

1000
1010.
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

1260

1270
1280
1290
1300

The only lines which may need explaining are those using the PEEK instruction.

REM ONERR SAMPLEl
ONERR GOTO 1040

HOME
A = X$: REM CAUSES MISMATCH ERROR

REM

ONERR SUBROUTINE
VTAB 21: HTAB 1: CALL — 958
El = PEEK (222)
E2 = PEEK (219) * 256 + PEEK (218)

"LINE="E2" ERROR="El

0 THEN PRINT "NEXT WITHOUT FOR": GOTO 1290

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
GOTO
THEN

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
1290
PRINT

"SYNTAX ERROR": GOTO 1290

"RETURN WITHOUT GOSUB": GOTO 1290
"OUT OF DATA": GOTO 1290

"ILLEGAL QUANTITY": GOTO 1290

"OVERFLOW ERROR": GOTO 1290

"OUT OF MEMORY": GOTO 1290
"UNDEFINED STATEMENT": GOTO 1290
"BAD SUBSCRIPT": GOTO 1290
"REDIMENSIONED ARRAY": GOTO 1290
"DIVISION BY ZERO": GOTO 1290
"TYPE MISMATCH": GOTO 1230
"STRING TOO LONG": GOTO 1290
"FORMULA TOO COMPLEX": GOTO 1290
"UNDEFINED FUNCTION": GOTO 1290
"BAD RESPONSE TO AN INPUT

"CONTROL-C INTERRUPT ATTEMPTED":

PRINT "UNDETERMINED ERROR"

REM INCLUDE SPECIAL INSTRUCTIONS TO OPERATOR?

PRINT

IF El =

IF El = 16
IF El = 22
IF E1 = 42
IF E1 = 53
IF E1 = 69
IF E1 =77
IF E1 = 90
IF E1 = 107
IF E1 = 120
IF El1 = 133
IF El1 = 163
IF E1 = 176
IF E1 = 191
IF El = 224
IF E1 = 254
STATEMENT" :
IF E1 = 255
GOTO 1290
REM

END

1070 E1 = PEEK (222)
1080 E2 = PEEK (219) * 256 + PEEK (218)
1090 PRINT "LINE ="E2” ERROR="E1

The ONERR GOTO Instruction / 227

The first PEEK instruction sets E1 equal to the error number stored in memory
location 222. The second PEEK instruction sets E2 equal to the line number which
caused the error. Since the APPLE stores the numbers in reverse format and using
the hexadecimal numbering system, the instruction may look a little complicated.
Just use the instruction as shown, and it will give you the line number of the statement
in error.

Note: After an error occurs, you can continue execution of the program at the
start of the instruction which caused the error by using the RESUME instruc-
tion. In actual practice the RESUME instruction is not used since the GOSUB
stacks and FOR/NEXT pointers are destroyed whenever an error occurs (see
Rule 3).

2000 ONERR GOTO 3000

........

3100 RESUME

30.

228

Instruction

Purpose

Rules for Use

lliustration
of the Rules

The STOP/CONTinue
Instructions

Program Execution Mode: 1000 STOP
Immediate Execution Mode: CONT

By allowing the use of the CONTinue instruction with the END or STOP instructions,
Applesoft provides the programmer with a way to pause while the operator reads
messages on the screen.

Note: For all the programs in this book the GET instruction is used in place of
the CONT instruction to cause the programs to pause for a response from the
operator. Since the STOP and CONT instructions result in messages being
displayed they cannot be used with formal screen designs.

—
.

The CONTinue instruction can only be used in the immediate execution mode.

2. The CONTinue instruction can be used when the program has been halted either
by the STOP instruction, by the END instruction, or by the operator’s pressing
CONTROL-C. Note that the CONT instruction does not work if the operator
presses CONTROL-C in response to an INPUT instruction.

3. Once the program pauses in response to either the STOP, the END, or the

CONTROL-C, the CONT command must be the next entry entered or the con-

tinuation process most likely will not work.

One program will be used to illustrate all the rules related to using the CONTinue
instruction. Most of the program consists of print instructions to indicate what to
do at each step. Look at how the STOP and END instructions are used on lines 1030
and 1060.

1000 REM CONT SAMPLEL

1010 HOME: SPEED= 150

1020 PRINT "1. TYPE IN ‘CONT' TO CONTINUE"

1030 STOP: PRINT

1040 PRINT "VERY GOOD": PRINT: PRINT

1050 PRINT "2. TYPE IN 'CONT' TO CONTINUE"

1060 END: PRINT

1070 PRINT "VERY GOOD": PRINT: PRINT

1080 PRINT "3. PRESS CONTROL-C WHILE NUMBERS ARE"
1090 PRINT " BEING DISPLAYED. TYPE IN ‘CONT*'"
1100 PRINT " TO TRY TO CONTINUE AFTER CONTROL-C."

The STOP/CONTinue Instructions / 229

1110 FOR N1 = 1 TO 100: PRINT N1;: NEXT: PRINT

1120 PRINT "VERY GOOD": PRINT: PRINT

1130 PRINT "4. TYPE IN 'CONT' TO TRY TO CONTINUE"
1140 PRINT " AFTER ERROR MESSAGE IS DISPLAYED."
1150 SPEED = 255

1160 FOR N1 = 1 TO 999999: N1% = 2 * (N1% + 1): NEXT
1170 REM PROGRAM ENDS IN AN ERROR

Run the program by entering
RUN CONT SAMPLE1

After the program has displayed the first message and paused, go through
Exercises 1 through 5 to see how the CONTinue instruction works in various situations.

Exercise 1: CONTinuing in Response to the STOP Instruction
Lines 1020 through 1040 relate to the first exercise.

1020 PRINT ”1. TYPE IN ‘CONT' TO CONTINUE"
1030 STOP: PRINT
1040 PRINT "VERY GOOD”: PRINT: PRINT

After the message on line 1020 is displayed, type in CONT and press RETURN.
The PRINT instruction on line 1030 causes a blank line to be displayed followed by
the VERY GOOD message and two additional blank lines. The PRINT instruction on
line 1030 is important for you to note. The instruction is the second statement on
line 1030 and is executed after you key in the CONT instruction. This is an important
point. The CONT instruction picks up with the next instruction immediately follow-
ing the STOP.

The lines on the screen related to this exercise will appear as

1. TYPE IN 'CONT' TO CONTINUE
BREAK IN 1030
CONT

VERY GOOD

Exercise 2: CONTinuing in Response to the END Instruction
Lines 1050 through 1070 relate to the second exercise.

230/ Applesoft BASIC Toolbox

1050 PRINT “2 TYPE IN ‘CONT’ TO CONTINUE"
1060 END: PRINT
1070 PRINT “VERY GOOD”: PRINT: PRINT

After the message on line 1050 is displayed, type in CONT and press RETURN.
The END instruction does not cause a break message to be displayed. The program
simply ends with a blinking cursor on the screen.

The lines on the screen related to this exercise will appear as

2. TYPE IN 'CONT' TO CONTINUE
CONT

VERY GOOD

The difference between the STOP and END instruction is that the STOP prints
a message while the END does not.

Exercise 3: CONTinuing in Response to a CONTROL-C Termination
Lines 1080 through 1120 relate to the third exercise.

1080 PRINT “3. PRESS CONTROL-C WHILE NUMBERS ARE"
1090 PRINT " BEING DISPLAYED. TYPE IN ‘CONT"”

1100 PRINT "TO TRY TO CONTINUE AFTER CONTROL-C”
1110 FORN1 = 1 TO 100: PRINT N1;: NEXT: PRINT

1120 PRINT "VERY GOOD": PRINT: PRINT

In order to provide you with time to press the CONTROL-C, line 1110 displays
the numbers from 1 to 100 at a SPEED of 150. While the numbers are being dis-
played, press CONTROL-C to cancel the program. Without entering anything else,
enter CONT to continue the program. The program will start up right where it left
off in the middle of the FOR/NEXT loop.

When you pressed CONTROL-C.

1. The current statement was canceled.
2. You entered CONTinue.
3. The program restarted right where you interrupted it.

The STOP/CONTinue Instructions / 231

The lines on the screen related to this exercise will appear as

3. PRESS CONTROL-C WHILE NUMBERS ARE
BEING DISPLAYED. TYPE IN 'CONT'

TO TRY TO CONTINUE AFTER €ONTROL-C.

12345678910111213141516... Depends on where you interrupted program
BREAK IN 1110

CONT

2526272829303132333435... Depends on where you interrupted program
VERY GOOD

Exercise 4: Trying to Continue in Response to an Error Message
Lines 1130 through 1170 relate to the fourth exercise.

1130 PRINT “4. TYPE IN ‘CONT’ TO TRY TO CONTINUE"
1140 LPRINT "AFTER ERROR MESSAGE IS DISPLAYED."”
1150 SPEED = 255

1160 FOR N1 = 1 TO 999999: N1% = 2 * (N1% + 1): NEXT
1170 REM PROGRAM ENDS IN AN ERROR

Line 1160 results in an error message, since the equation results in a value too
large to be stored in the integer field N1%. In response to the error message, type
in CONT and press RETURN. After you enter CONTinue, a second error message
will be displayed, indicating that the program cannot continue. The lines on the
screen related to this exercise will appear as

4. TYPE IN 'CONT' TO TRY TO CONTINUE
AFTER ERROR MESSAGE IS DISPLAYED.

?ILLEGAL QUANTITY ERROR IN 1160

CONT
?CAN'T CONTINUE ERROR

Exercise 5: Trying to Continue After Something Other Than CONT Has Been
Entered Following a Program Pause

Run the program again, but this time in response to the first message, enter a new
statement and then enter the word CONT as follows:

232 / Applesoft BASIC Toolbox

1000 REMNEW STATEMENT
CONT

When you entered the new statement, you voided the program’s ability to con-
tinue. Any attempt to continue after program modification or cancellation of an
INPUT instruction results in the CAN‘T CONTINUE ERROR.

The lines on the screen related to this exercise will appear as

1. TYPE IN 'CONT' TO CONTINUE
1000 REMNEW STATEMENT
CONT

?CAN'T CONTINUE ERROR

31.

Instruction
Example

Purpose

Rules for Use

The FRE (0) Instruction

variable = FRE (0)
N1 = FRE (0)

The FREe instruction is used to condense memory by eliminating unused areas of
string memory. The instruction also returns the amount of free memory available
after storage is condensed.

If a program uses a large number of strings variables, Applesoft automatically
reorganizes memory when there is no longer any free space available for assigning
new values.

The length of time the machine takes to condense string memory depends on
the number of string variables used and whether or not large tables have been used
(DIM instruction).

By using the FRE instruction, the programmer can control the time and position
within the program when memory is condensed.

1. The FRE instruction must be specified in an equation format
X = FRE (0)

The variable to the left of the equal sign is set equal to the number of free bytes
left after storage is condensed.

2. The value following the keyword FRE is required and must be in parentheses.
Although the value of the parameter is ignored, it must be included and must
be either an equation or a constant which can be interpreted by Applesoft. To
save time and effort, code the instruction as FRE (0).

3. If your program uses high resolution graphics, you must use the FRE command
to ensure that the high resolution pages are not destroyed.

Three examples are used to help illustrate the FRE instruction and show how
string memory is used. The first example shows how strings are stored in memory
before and after execution of the FRE instruction. The second example uses a sub-
routine which determines when the FRE instruction should be executed. The third
example illustrates the difference between freeing memory when no DIMension

233

234/ Applesoft BASIC Toolbox

entries are used (DIM O entries), when a small table is used (DIM 100 entries), and
when a large table is used (DIM 500 entries).

For more information on how the APPLE uses memory, see the APPLE pro-
gramming reference manual.

Before getting started with the first example, let‘s review how the machine
associates values with variable names.

Each variable name has an associated address which points to the area of
memory where the related data is stored.

Type of Variable Name Address

Real number N1 2000 Address remains constant; value in mem-
ory location changes
Integer Number N1% 2100 Address remains constant; value in mem-

ory location changes
String Variable NAMES$ 10000 Value of address changes to reflect loca-
tion of new string

For numeric variables, the area of memory remains constant, and the value
within the memory area is changed as calculations are done.

For string variables, the address associated with the name changes each time
the value of the string is changed.

Example 1: FREeing Memory

The first program fills up approximately 30 bytes of memory, displays how the 30
bytes look before using the FRE instruction, frees string memory, and then redisplays
the 30 bytes.

The objective of the program is to show you how the machine allocates string
memory and what happens after you use the FRE instruction.

1000 REM FRE SAMPLEl
1010 REM
1020 HOME
1030 FOR N1 = 1 TO 20:X1$ = STR$ (N1):NEXT

1040 LOW = PEEK (112) * 256 + PEEK (111)

1050 HIGH = PEEK (116) * 256 + PEEK (115) - 1

1060 PRINT " LOW = "LOW" HIGH = "HIGH

1070 FOR N1 = LOW TO HIGH: PRINT CHR$ (PEEK (N1));: NEXT
1080 PRINT : PRINT : PRINT

1090 N1 = FRE (0)

1100 X1$ = "CONSTANT"

1110 PRINT "OLD LOW = "LOW" HIGH = "HIGH

1030

1040

The FRE (0) Instruction / 235

1120 FOR N1 = LOW TO HIGH: PRINT CHR$ (PEEK (N1));: NEXT
1130 LOW = PEEK (112) * 256 + PEEK (111)

1140 PRINT : PRINT : PRINT "NEW LOW = "LOW

1150 END

Look over the code before running the program. After you run the program,
the screen should appear as follows. The memory addresses vary depending on the
memory size of the machine and the software being used.

LOW = 34754 HIGH = 34784 \
2019181716151413121110987654321

OLD LOW = 34754 HIGH = 34784
2019181716151413121110987654420

NEW LOW = 34783

_/“\

Line 1030 generates 20 string values ranging from 1 to 20. As the numeric value of
N1 changes so does the string value of X1$. But while N1 is stored in a fixed area
of memory, the string X1$ continues to be reassigned new areas of memory each
time it changes. At the end of the FOR/NEXT loop, X1$ is equal to 20. All the
previous string values are garbage, taking up memory.

LOW = 34754 HIGH = 34784
2019181716151413121110987654321

[——-- garbage strings -
current value of X1§

Take time to study the way the machine stores each string. First a string value
of 1 is stored in memory location 34784. Next a string value of 2 is stored in memory
location 34783. Each new string value is stored in a lower and lower memory
address. Remember, the machine uses string memory starting at the high addresses
and working down. Finally a value of 20 is placed in memory addresses 34754 and
34755.

Line 1040 finds the low address of string memory (address where last string value
was stored). This value changes each time a string is placed into memory. Since the

236 / Applesoft BASIC Toolbox

1050

1060-1080

1090

1100

instruction is executed after the FOR/NEXT loop, the address points to the last string
placed into memory (the ‘20°).

To find the starting location of string memory, use the PEEK instruction along
with memory locations 112 and 111.

Remember, the APPLE stores numbers in a format that appears backward to
us. In order to convert the hexadecimal number to base 10, the high address (most
significant digit) is multiplied by 256 and added to the value in the low address (least
significant digit).

The high end of string memory starts 1 byte below the HIMEM (High MEMory) area
of the machine. The high memory address varies with the size of the computer and
the type of programs being run, but the value can be retrieved by PEEKing into
memory locations 115 and 116.

In order to convert the hexadecimal number to base 10, the most significant
digit is multiplied by 256 and added to the least significant digit. Then 1 is subtracted
from the value in order to show the address of the last (highest) byte of string
storage.

Lines 1060 through 1080 display the contents of each memory location starting at
the lowest memory location and working upward to the highest memory location.
The PEEK instruction is used to retrieve the binary value in each memory location,
while the CHR$ function is used to convert the binary number to printable character
format.

Only the last two characters of the approximately 30 memory locations used reflect
the current value of X1$. The FRE instruction condenses string memory by moving
the active string values into high memory, changing the pointers associated with
each string, and finally changing the address in location 112 and 111 to reflect the
new start of string memory.

Line 1100 is included in the program to point out how the APPLE works with
constants and equal string values. If you study the program and screen closely, you
will see that even though X1$ is set equal to the string CONSTANT, the value does
not appear in the printout of string memory. To conserve memory space, the address
associated with X1$ is set equal to the address of the constant within the Applesoft
program.

1100 X1$ = “CONSTANT” : Y1$ = X1$: 21$ = X1$
X1$ pointer

Y1$ pointer
Z1$ pointer

1110-1140

The FRE (0) Instruction / 237

The last part of the line is included to illustrate what happens whenever a string
variable is set equal to another variable. When a string is set equal to another
variable, only the string’s pointer is changed. The value is not duplicated in string
memory. Assuming that CONSTANT starts in memory location 2000, all three
variables will point to memory location 2000 after execution of line 1100.

Address in
Variable Pointer
X1$ 2000
Y1$ 2000
1% 2000

So, whenever you assign a string name to a constant or assign several string
names to the same value, no additional memory is used.

Lines 1110 through 1140 show the content of memory after the FRE instruction has
been used. At the time the FRE instruction was executed, X1$ was equal to 20. Since
the 20 was the only active string value in memory, it was moved to the highest string
address. After condensing memory, the machine reset the address in locations 112
and 111 to reflect the starting address of string memory.

OLD LOW = 34754 HIGH = 34784
20‘191817161514131211109876544%0

NEW LOW = 34783

The 4 preceding the 2 is not a typing mistake. If you play around with the FRE
instruction, you will find that the character preceding the next available string address
is always duplicated.

OLD LOW = 34754 HIGH = 34784
2019181716151413121110987654420

Next available string
address should have
remained a 3
but changed to character in preceding byte
(only the APPLE knows why)

Exercise 2:

The second example shows how to use the FREE MEMORY SUBROUTINE and
emphasizes once more how string memory is allocated.

238 / Applesoft BASIC Toolbox

The program creates an endless loop consisting of two operations. The first
part of the loop assigns a string value to a variable. The second part of the loop
executes the FREE MEMORY SUBROUTINE to see if there is still room to continue
the program. If there is plenty of memory available, the loop continues. If the start
of string storage falls below 16384 (end of high resolution page 1), then the FRE
MEMORY SUBROUTINE displays a message to the operator and executes the FRE
instruction.

Make sure to let the program keep running until it pauses and displays a mes-
sage. For the system I am using, the loop is executed 483 times. After the program
frees memory and you respond by pressing the space bar, the program starts the
endless loop again. To cancel the program, press CONTROL-C.

Key in and run the following program, or run the program by entering

RUN FRE SAMPLE2.

1000 REM FRE SAMPLE2
1010 REM
1020 HOME
1030 FILLER$ = "........

1040 ADDRESS = PEEK (112) * 256 + (111)

1050 VTAB 10: HTAB 10

1060 PRINT "FROM "ADDRESS" TO "ADDRESS + 20" "
1070 VTAB 11: HTAB 10

1080 PRINT " "

1090 VTAB 12: HTAB 10

1100 STRING$ = RIGHT$ (FILLER$ + STR$ (NUMBER),20)
1110 PRINT STRING$

1120 GOSUB 1160: REM CHECK AMOUNT OF MEMORY LEFT
1130 NUMBER = NUMBER + 1

1140 GOTO 1040

1150 REM
1160 REM FREE MEMORY ROUTINE

1170 STARTING = PEEK (112) * 256 + PEEK (111): IF STARTING >
16384 THEN 1240

1180 VTAB 23: HTAB 1: INVERSE

1190 PRINT " FREEING MEMORY - PLEASE WAIT" TAB(38)" "

1200 STARTING = FRE (0)

1210 PRINT " DONE - PRESS SPACE BAR TO CONTINUE ";: NORMAL
1220 GET X1$: IF X1$ < > " " THEN 1220
1230 VTAB 23: HTAB 1: PRINT TAB(39)" ": PRINT TAB(39)" ";

1240 RETURN
1250 REM

The FRE (0) Instruction / 239

Each time the variable STRINGS$ is assigned a new value, the memory addresses
used are displayed along with the string value. The program produces a screen like
the following.

FROM 34785 TO 34805

Press CONTROL-S to stop the program periodically so you can see the memory
addresses being displayed. Start the program back up by pressing any key.

You should use the FREE MEMORY SUBROUTINE in any program which does
a large amount of string processing. The subroutine has the following advantages:

1. It does not free memory until the space is needed.
2. While it is freeing memory, it lets the operator know what is going on.

To use the subroutine, simply include it in your program and use a GOSUB to
branch to the first line.

Example 3:

The last FRE example shows how slow the machine is when freeing memory if large
dimension entries are used.

Look over the f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>