
K
887.5
044
986

TK 7887.5 .044 1986
Oleksy, Jerome E.
Apple instrumentation and control.

/ t>-3-~-

1.!111.MJ_f__/o
'-! 7i/. 'IJ

DATE DUE

~ _,,,
• • • : 1.J\... u.
,~ · .- , · r\ i · ·, ~~o
t : t"\\L: \J , \.J i ~

Apple® Instrumentation and
Control: Circuits and Software

Apple® Instrumentation
and Control:

Circuits and Software

JEROME E. OLEKSY

A Reston Book
Prentice-Hall, Inc.

Englewood Cliffs, New Jersey 07632

lRC COPY
..._ _________________ National College

Rapid City, SD

Library of Congress Cataloging in Publication Data
Oleksy, Jerome E.

Apple Instrumentation and control.
1. Computer interfaces. 2. Apple computer.

I. Title.
TK7887.5.044 1986 001.64' 4 85-2348
ISBN 0-8359-9222-5

Apple® is a registered trademark of Apple Computer, Inc.

© 1986 by Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

All rights reserved. No part of this book may be reproduced
in any way, or by any means, without permission in writing
from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

A Reston Book
Published by Prentice-Hall, Inc.
A Division of Simon & Schuster, Inc.
Englewood Cliffs, NJ 07632

CHAPTER 1

CHAPTER2

CHAPTER 3

CHAPTER 4

CONTENTS

Introduction to Apple Interfacing 1
1-1 The Hardware 2
1-2 The Signals 5
1-3 The Software 9

Parallel 1/0 13
2-1 Memory-mapped I/O 14
2-2 Output Latches 16
2-3 Input Buffers 20
2-4 Centronics-type Printer Interface 24
2-5 Programmable Interface Chips 26

Interfacing Power Control Devices 33
3-1 Solid-state relays 34
3-2 Using Triacs for Power Control 36
3-3 Programmable Controllers 40

Interfacing to Analog Inputs 47
4-1 Single-input AID Conversion 48
4-2 Using Graphics to Display Physical

Quantities 52
4-3 Multiple Analog Inputs 55

v

vi Contents

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

Structuring Your Applications Programs 61
5-1 Define and Design 62
5-2 Writing the Code 65
5-3 Testing and Debugging 70
5-4 Documentation 72
5-5 Maintenance 73

Using Basic and Machine Language Effectively 75
6-1 When to Use BASIC-When to Use Machine

Language 76
6-2 Entering Machine-language Programs into

RAM 78
6-3 Saving and Loading Machine-language

Programs with Discs 82
6-4 Calling Machine-language Subroutines from

Within a BASIC Program 83

Using the Computer as a Storage Scope 89
7-1 Bare Bones Storage Scope 90
7-2 Using a Triggered Sweep 97

Using the Computer as a Waveform Generator 101
8-1 Using a Digital-to-Analog Converter 102
8-2 Using BASIC to Generate Sinewaves 105
8-3 Generating other Waveforms 110
8-4 Generating Higher Frequencies 119

CHAPTER 9 Serial 1/0 121
9-1 Communicating with Distant Devices 122
9-2 Format for Serial Transmission 125
9-3 Off-the-shelf UART 128
9-4 Using the UART 133
9-5 RS 232 C Interface 145

CHAPTER 10 IEEE 488 Bus 149
10-1 Bus Overview 150
10-2 The TMS9914A GPIB Controller 156
10-3 Connecting the Apple to the IEEE Bus 161

PREFACE

Interfacing a computer to real-world loads results in making
the computer do what you want it to do. You can make the
computer measure several input quantities, such as voltage, tem
perature, or fluid level. Then, based on the results of these
measurements, your computer can control an industrial process, or
simply control a home appliance. Apple computer owners have a
very powerful and flexible system available to them. This book will
show you how to make use of that system.

The projects given in this book will teach you how to interface
to parallel loads, such as printers and switches and motors, and to
serial ports, such as those used in communicating over long
distances. It will teach you how to use your computer as a
measuring instrument, such as a DVM, a storage scope, or a
waveform generator. But most importantly, it will teach you how to
interface to almost any device you choose. In other words, rather
than being a collection of "ten things to do with your computer,"
this book will teach you how to do your own interfacing to a wide
variety of devices.

In addition to the hardware aspects of interfacing, this book
will demonstrate the best of both software worlds: high-level
language and machine language. In order to keep the size of the
book reasonable, I will not attempt to teach BASIC. Nor will I teach

vii

viii Preface

assembly language programming. But instead I will show how the
two languages are tied together in practical applications programs.
You will learn why BASIC is better for some purposes, but machine
language is better for others.

From my industrial experience as a supervisor of a hardware
and software design group, I have learned the need for good
software design techniques. I will show by a few examples how you
can painlessly design software that is not only very readable but
also easily modified to cope with any later changes that may arise.

The book will present several projects that you can build,
usually for just a few dollars worth of parts. These parts can be
assembled on a printed circuit board to plug into one of the Apple's
slots. The format for each application will include:

1. A general discussion of the application-what, why, how
2. Hardware details
3. Software details
4. Suggestions for modification
This book will be valuable to serious hobbyists, as well as to

engineers and technicians who use computers on the job, or who
have a need to know about computer interfacing. It will also be
valuable to schools teaching computer technology, both from the
theoretical aspect, as well as for the many lab projects that can be
derived from it.

Lastly, a copy of all BASIC and machine language programs
listed in this book is available without documentation on a DOS 3.3
16 sector diskette. Write to the author c/o INTRON Company, 12932
Carpenter Rd., Garfield Hts., Ohio 44125.

Jerome E. Oleksy

Apple® Instrumentation and
Control: Circuits and Software

CHAPTER 1

Introduction to
Apple Interfacing

Interfacing a computer refers to tying the computer to external
devices and/or systems. That is what this book is all about. We will
discuss how to connect your Apple computer to lamps, motors,
switches, printers, AID and DIA converters, and much more. We
will also talk about how to use your Apple®* as a test instrument,
such as a DVM, a storage scope, and a waveform generator. Finally,
we will discuss how to build a general purpose serial interface so
that you can tie your Apple to a wide variety of commercial
equipment.

Besides the hardware aspects of interfacing, we will discuss
the software involved in making your computer do what you want
it to do. In addition to creating many useful, ready-to-run pro
grams, we will develop good programming procedures so that
your programs will be not only readable, but easy to modify. If you
save all of the programs listed in this book on disc, you will have
created a library of useful routines that can be incorporated into
different applications programs later.

This chapter will give you a general overview of what parts of
the computer we will be using, what the control signals do, and
what the symbols mean. The hardware and software in this book
will run on Apple® II, II +, and Ile** computers.

1-1
THE HARDWARE

This book will not attempt to duplicate or replace the vast amount
of technical information and specifications already contained in
your Apple Reference Manual. Instead, we will indicate which
signals are to be used for each project and which memory addresses
to use. You should keep the Reference Manual handy whenever you
do any interfacing. Whenever you want to modify a project
significantly, be sure to consult your Reference Manual to deter
mine such things as qiaximum loading on any signal line, max
imum current to be drawn from a given power supply, and range of
addresses affected.

"'Apple® is a registered trademark of Apple Computer, Inc., Sunnyvale, California.
,.,. Apple® II, II Plus, and Ile are registered trademarks of Apple Computers, Inc.

2

1-1 The Hardware 3

0 2 3 4 5 6 7

Peripheral connectors

Top View
of Mother Board

FRONT

Figure 1-1
Location of Apple peripheral connectors

If you remove the cover of your Apple computer, you will see
the interface connectors (slots) along the back of the mother board.
These slots are numbered 0 through 7, as shown in figure 1-1.
(Apple Ile does not have a slot 0.) We will be using these peripheral
slots to interface the computer to outside world devices. Generally,
slot 1 is used to connect to a printer, and slot 6 is used to connect to
floppy disc drives. The remainder of the slots are general purpose
and we will use different ones from time to time.

All of the peripheral connectors are tied to the micro
processor's address bus, data bus, and control bus. The connector
pinout is shown in figure 1-2. Interface cards having 50 pin-edge
connectors with 100 mil spacing are plugged into the slots and
communicate with the MPU via the various buses. A wide variety
of interface cards are commercially available, but often the commer
cial card is an expensive overkill for a simple project you wish to
handle. So we will be using custom-built interface cards for our
projects. You can purchase high quality, bare, prototype, printed
circuit cards such as the Apple A2B0001X Hobby/Prototyping board
or the VECTOR 4609 board. Both of these boards are specifically
designed to plug into your Apple with your custom-built circuit on
it. They allow you to use wire wrap or point-to-point connections

GND 26 25 +SV

DMAIN 27 24 DMAOUT

INTIN 28 23 INT OUT

NMI 29 22 OMA

IRQ 30 21 ROY

RES 31 20 l/OSTROBE

INH 32 19 N.C.

-12V 33 18 FWJ

-5V 34 17 A15

N.C. 35 16 A14

7M 36 15 A13

03 37 14 A12

4> 1 38 13 A11

USER 1 39 12 A10

4> 0 40 11 A9

DEVICE SELECT 41 10 A8

07 42 9 A7

06 43 t 8 AS

05 44 7 AS

04 45 6 A4

03 46 5 A3

02 47 4 A2

01 48 3 A1

DO 49 2 AO
Figure 1-2
Peripheral connector pinout +12V 50 1 1/0 SELECT

FRONT TOP VIEW

4

Front

Component Side

Figure 1-3
Hobby/prototype board

1-2 The Signals 5

Chips -
Components

• QQ --c:J-
-----....-..i~ +--Edge connector

JI ' Pin 1 Pin 25

to build your prototype. Figure 1-3 shows a typical prototype board
with a few components mounted on it.

Since the 6502 microprocessor uses memory-mapped input/
output (1/0), Apple reserves certain memory locations for 110
devices. Figure 1-4 shows the memory map of the Apple computer.
Note that a 4K block of memory, from $COOO to $CFFF, is reserved
for 1/0. (The dollar sign ($) signifies a hexadecimal number.) The
peripheral connectors are decoded by the Apple to respond to
addresses within that range. We will discuss the specific addresses
for each connector in later chapters.

1-2
THE SIGNALS

As was stated, the peripheral connector links the peripheral card to
the MPU via a host of signal lines. Table 1-1 gives a brief description
of the peripheral signals. Your Apple Reference Manual gives this
table in greater detail, but it is repeated here for your convenience.
Most of the signals are self-explanatory, but we will discuss a few
here.

Address lines AO-A15 are output lines from the 6502 micro
processor. The MPU outputs the address of the memory location it
wants to talk to when doing a read or a write. These lines can be
used on the peripheral card to decode a particular address, for
example, to activate a printer. Similarly, data lines D0-07 connect to

6 CHAPTER 1 Introduction to Apple Interfacing

Decimal Hex
65535 FFFF

53248 0000
49152 cooo

32768 8000

16348 4000

0 0000

Figure 1-4
Apple memory map

12K
System
RO Ms

4K 1/0

16K
RAM

16K
RAM

16K
RAM

the MPU and are used to transfer 8 bits of data or instruction to or
from the MPU.

The power supply lines will be used to power our interface
cards. If you modify any of the circuits given in the book, be sure
not to exceed the maximum current rating of any supply. And be
careful to double check your interface card for possible wiring
errors before plugging into the connector or possible damage or
malfunction of the computer may result. __ __

Note that some of the signal names, such as NMI and IRQ,
have overbars. The overbars indicates that the signals are active LOW.
An active LOW signal is one that operates when the level is LOW (at
ground potential). If a signal name is not overbarred, that signal is
active HIGH. An active HIGH signal activates something or causes
some event to occur when the level is HIGH (logic one).

To expand on the previous point for a moment, refer to figure
1-5. The gates shown in the figure are drawn to MIL SPECS
(military specifications). This form of symbol is used by most
manufacturers of computer equipment and clearly describes what

Signal

1/0 SELECT

AO-A15
R/W
SYNC

110 STROBE

RDY
DMA

INT OUT
DMAOUT
+Sv

GND
DMAIN
INT IN
NMI
IRQ
RES
INH

-12v

-5v

COLOR REF

7M
Q3
<l>l
USER 1

<l>O
DEVICE SELECT

DO-D7
+12v

1-2 The Signals 7

TABLE 1-1
Peripheral Connector Signal Description

Description

This line, normally HIGH, becomes LOW when the MPU
references page $Cn, where n is the slot number.

Buffered address bus.
Read/Write signal.
On peripheral connector 7 only, connected to video

timing generator's SYNC signal.
This line goes LOW during <l>O when the address bus

contains an address between $C800 and $CFFF.
RDY input on 6502.
Pulling this line LOW disables the 6502's address bus and

halts the MPU.
Daisy-changed interrupt output to lower priority devices.
Daisy-changed DMA output to lower priority devices.
+ 5v power supply. 500 ma is available for all peripheral

devices.
System ground.
Daisy-chained input from higher priority devices.
Daisy-changed input from higher priority devices.
Nonmaskable interrupt.
Interrupt request.
System reset input.
When this line is pulled LOW, all ROMs on Apple board

are disabled
-12v power supply. Maximum current for all peripheral

boards is 200 ma.
- 5v power supply. Maximum current for all peripheral

boards is 200 ma.
On connector 7 only, this pin is connected to color

refrence signal.
7 MHz clock.
2 MHz asymmetrical clock.
MPU's phase one clock.
This line, when pulled LOW, disables all internal I/O

address decoding.
MPU's phase 0 clock.
This line becomes active LOW on each peripheral

connector when the address bus is holding an address
between $C0n0 and $COnF, where n is the slot number
plus $8.

Buffered bidirectional data bus.
+ 12v power supply. Maximum current for all peripheral

boards is 250 ma.

8 CHAPTER 1 Introduction to Apple Interfacing

Device Select

Figure 1-5

Go~
Ready~

Go~
Enable~

Pulse~
Trig~

Enable

Gate symbols showing use of signal names

each gate does. For example, look at AND gate A. You will recall
that an AND gate has a HIGH output only when both of its inputs
are HIGH. The fact that no bubbles appear on any line indicates
active HIGH inputs and an active HIGH output. The signal names
are consistent with the symbol. Signal GO and signal READY must
both be HIGH in order for output signal START to be HIGH.

NAND gate B has a bubble on its output. The output of this
gate will be LOW when both inputs are HIGH. Notice that the
input signals do not have overbars, but the output signal RUN does
have an overbar. This signifies that when GO and ENABLE are both
high, RUN will be LOW.

Likewise, gate C, which is also a NAND gate, is drawn in its
OR form. This form more clearly shows that if either PULSE or
TRIG is LOW, output STROBE will be HIGH.

Finally, NOR gate D will have its output signal ENABLE active
HIGH when DEVICE SELECT is LOW and AO is HIGH. The
inverter on the AO line makes the input of gate D LOW when AO is
HIGH.

Now, let's get back to table 1-1. Three contro~als that are
commonly used to activate peripheral cards are 1/0 SELECT, 1/0
STROBE, and DEVICE SELECT. Signal 1/0 SELECT is active LOW

whenever the MPU references an address in the range $Cn00
through $CnFF, where n is the slot number. For example, 1/0
SELECT (pin 1) of slot 4 will be LOW whenever the MPU references
any location in the range $C400 through $C4FF. But pin 1 of all
other slots will be inactive HIGH at those times. 1/0 SELECT can be

1-3 The Software 9

used to enable a block of 256 bytes of memory, such as ROM, on a
peripheral card. This ROM could contain a specific driver sub
routine to handle the 1/0 operation. By having the subroutine on
ROM, the user does not have to tie up RAM to hold the routine.
And remember, since this area of memory is reserved specifically
for this particular 1/0 slot there will not be any interference with
any other information stored elsewhere in memory.

Signal line 1/0 STROBE goes active LOW whenever the MPU
references any address in the 2K byte range from $C800 through
$CFFF. It is common to all slots. This signal can also be used to
activate some on-board memory. But if you use 1/0 STROBE, be
sure none of the commercial cards that you may have are also using
some of that address range. Otherwise, your card and the other
card may both be activated at the same time, causing contention on
the data bus.

DEVICE SELECT is a control signal that we will use fre
quently. As explained in table 1-1, DEVICE SELECT goes LOW
whenever the MPU references an address between $C0n0 and
$COnF, where n is the slot number + 8. For example, DEVICE
SELECT will be LOW when the MPU outputs any address between
$C090 and $C09F, which are the 16 lowest addresses assigned to slot
1. Similarly, DEVICE SELECT will be LOW whenever the MPU
outputs an address between $COAO and $COAF, the lowest 16
addresses assigned to slot 2, and so on. We can use
DEVICE SELECT along with address lines AO-A3 to specify any
one of 16 different I/O devices for any given slot. You will see the
details of how this signal is used in several applications throughout
this book.

1-3
THE SOFTWARE

It is assumed that you understand the BASIC programming lan
guage. In this book you will find many complete BASIC programs
that are ready to run. You will also learn how to develop your own
efficient and clear programs so that they can be easily read and
modified later.

10 CHAPTER 1 Introduction to Apple Interfacing

JLIST

10000 REM * HEX TO DEC CONVERT *
10010
10020 INPUT "ENTER HEX VALUE ••• ";HEX$
10030 SIZE = LEN <HEX$)
10040 DECIMAL = 0
10050 FOR A = 1 TO SIZE
10060 DIGIT$= MID$ <HEX$,A,1>
10070 IF ASC <DIGIT$) > = 48 AND ASC <DIGIT$) < = 57 THEN AMOUNT = (16 A <S
IZE - A>> * < ASC <DIGIT$> - 48)
10080 IF ASC <DIGIT$) > = 65 AND ASC <DIGIT$) < = 70 THEN AMOUNT = (16 A <S
IZE - A>> * < ASC <DIGIT$) - 55)
10090 DECIMAL = DECIMAL + AMOUNT
10100 NEXT A
10110 PRINT "$";HEX$;" = ";DECIMAL
10120 END

JRUN
ENTER HEX VALUE ••• 2E
$2E = 46

RUN
ENTER HEX VALUE ••• 300
$300 = 768

JRUN
ENTER HEX VALUE ••• COA2
$COA2 = 49314

Figure 1-6
Hex-to-decimal converter listing

You will use machine language (machine code) in some of the
applications. Complete machine language listings will be given in
the text for any routines used. So if you are not familiar with
machine language programming, do not worry. All the information
you need to enter the routine and make it work will be given.

In some of the applications, you will be using hexadecimal or
binary numbers as well as decimal numbers. You may have to
convert from hexadecimal to decimal or from decimal to hex
adecimal if you wish to change some addresses from those given in
the listings. A couple of simple BASIC routines can aid you in
converting if you do not know how. Figure 1-6 shows the listing of a
routine to convert from hexadecimal to decimal. It also shows a few
sample runs of the program. When you run the program, you will

JLIST

5 REM * DECIMAL TO BIN CONVERT *
10 DIM 8(16>
20 INPUT "DECIMAL =? ";V
30 FOR N = 1 TO 16
40 Q = V I 2
50 Ql = INT (Q)
60 S<N> = (Q - Ql) * 2
70 v = Ql
80 NEXT N
90 PRINT
95 PRINT "BINARY= II

100 FOR N = 16 TO 1 STEP - 1
110 PRINT S <N>;

1-3 The Software 11

115 IF N = 5 OR N = 9 OR N = 13 THEN PRINT 11 11
;

120 NEXT N

JRUN
DECIMAL =? 45

BINARY=
0000 0000 0010 1101

JRUN
DECIMAL =? 49153

BINARY=
1100 0000 0000 0001

lRUN
DECIMAL =? 32767

BINARY=
0111 1111 1111 1111

Figure 1-7
Decimal-to-binary converter listing

be asked to enter a hexadecimal value of up to several digits. The
computer will then calculate and print the decimal equivalent of
the hexadecimal value. For example, if you enter the hexadecimal
value 2E, the computer will print the decimal value 46. If you enter
the hexadecimal value 300, the computer will print the decimal
value 768, and so on.

12 CHAPTER 1 Introduction to Apple Interfacing

Figure 1-7 shows the listing for a decimal to binary conversion.
You can enter any decimal value up to 65,535 and the computer will
print out the binary equivalent of that number. Note in the sample
run that the binary number is printed out to 16 digits and that the
digits are arranged in groups of four. This is done so that you can
easily change the binary value to its hexadecimal equivalent if you
want to. For example, in the second sample run, the user entered
the decimal value 49153, and the computer printed out the binary
value

1100 0000 0000 0001.

You can mentally convert this binary number to the hex
adecimal number $C001.

CHAPTER 2

Parallel 1/0

We frequently want to pass information into or get data out of our
computer. The fastest and most common way of doing this is by
passing the data in 8-bit bytes, each byte representing a character, a
number, a control code, or something similar. When all 8 bits are
transferred at the same time, the process is referred to as parallel 110
(parallel input/output). The circuits or devices that actually pass the
data are called I/O ports. This chapter discusses some typical ways
of building I/O ports.

2-1
MEMORY-MAPPED 1/0

Since the Apple computer uses a 6502 microprocessor as its MPU,
all input/output ports are memory mapped. That is, whenever the
computer has to read information from an input device, for
example, a bank of switches, it does the same operation as if it were
reading from a memory location. Similarly, whenever the computer
must send information to an output port, such as a group of
indicator lamps, it performs a write operation exactly as if it were
writing into memory. The interface hardware, therefore, must
make the corresponding input or output device "look like" a
memory location to the computer.

The programmer can specify the address of the memory
location to be written into by using the POKE command. For
example, if you want to store the decimal value 14 in memory
location 862, you simply use the following line in your program:

POKE 862, 14

The largest value you can store in any one memory location is
255 decimal, corresponding to $FF, since the memory locations are
8 bits wide.

Following are three different structures you can use with the
POKE command:

10 POKE 862, 14

14

2-1 Memory-Mapped 1/0 15

10 LET MEM = 862
20 POKE MEM, 14

10 LET MEM = 862
20 LET N = 14
30 POKE MEM, N

The third structure is the most general and the most self-docu
menting way. We will discuss program documentation more in
later chapters.

The output device address must not be the same as that used
by any actual RAM or ROM location. Otherwise, confusion will
result from two devices (memory and the output port) both being
enabled at the same time. Normally, some portion of a computer's
total memory space is allocated to 1/0 devices so that the aforemen
tioned problem does not arise.

The Apple computer has reserved memory addresses from
$COOO to $CFFF (49152 to 53247) for I/O space or additional user
memory. As mentioned in chapter 1, Apple also has provided
special interface control signals at each interface slot to aid in I/O
decoding. A suitable control signal for our output latch is DEVICE
SELECT. DEVICE SELECT is active LOW for 16 addresses for each
slot as shown in table 2-1.

TABLE 2-1
Peripheral Slot 1/0 Locations Enabled By DEVICE SELECT

Slot Address Range

O* C080-C08F 49280-49295
1 C090-C09F 49296-49311
2 COAO-COAF 49312-49327
3 COBO-CO BF 49328-49343
4 COCO-COCF 49344-49359
5 CODO-CODF 49360-49375
6 COEO-COEF 48376-49391
7 COFO-COFF 49392-49407

~lot 0 is available on Apple II and Apple II+, but not on the Apple Ile. On the older models,
slot 0 is normally used for a language card or ROM card, whose function is built into the
main circuit board of the lie.

16 CHAPTER 2 Parallel 1/0

2-2
OUTPUT LATCHES

Figure 2-1 shows a simple way to build an output port that looks
like a memory location to the computer. The actual output device is
a 74LS373 octal latch chip. The 74LS373 latches data from the data
bus at the instant the signal labeled LATCH ENABLE is driven
high. The signal LATCH ENABLE is generated by a device decoder,
which can simply be a few gates or decoder chips driven by the
address bus and the control bus. Latching of the output data is

7 4LS373 Octal Latch

D7
18

8D
19

80 D7

D6
17

7D 70
16

06

05
14

SD 60
15

DS
From 13

SD 12
Apple D4 SQ D4 Latched output:

data bus
03

8
40

9 to peripherals
40 03

D2
7

3D 30
6

02

D1
4

2D 20
5

01

DO
3

1D 1Q
2

DO

G Oc

11

=
Device

Decoder _n_
Latch Enable

Figure 2-1
Parallel output port

2-2 Output Latches 17

+v

Load
74LS373

1K
07 70 70

Power
Transistor

From 06 60 60

clata bus
05 50 SQ =

04 40 40

Figure 2-2
Using a power transistor to deliver more current to a load

necessary because the data is only present on the data bus for about
500 ns while the computer is writing to memory. Immediately after
the write operation, the MPU uses the data bus to fetch the next
instruction. But the output data must remain stable as long as it is
needed. The latches retain the data as if it were stored in memory
until the next time LATCH ENABLE goes HIGH.

Our latch provides TTL-compatible outputs to drive other
circuits. If more output current is needed than is available from the
latch, you can connect a power transistor, like the one shown in
figure 2-2, to each latch output. When the latch output goes HIGH,
the power transistor turns on, applying power to the load. This
method can also be used to interface loads that must operate with a
higher de voltage than the normal + Sv of the latch.

As a very simple interfacing example, suppose we build our
output latches on a circuit board using only the hardware shown in
figure 2-3. This circuit uses a pair of 74LS175 quad latches, which
have both Q and Q outputs. The outputs of the latch chips drive the
LEDs to display the ·data that was on the data bus when the LATCH
ENABLE went HIGH. Notice that the Q outputs of the latches are
used rather than the Q outputs. The reason is that the latch outputs
can sink (return to ground) up to 16ma of output current, but they
cannot source (supply) much current. So when the Q output is
latched HIGH (logic 1), the Q output goes LOW, pulling the cathode

Apple
lnt(,rface +5V

Connector ALL
2200

+5V~c __ (2) 74LS175

GND~
+5

16
=

07
4 3

10 10

06
5

20
6

20

05
12 11

3D 30

D4
13 14

4D 40
8

c CLR

= 9 +5

16

03
4 3

1D 10

02
5 6

20 20

01
12 11

30 30

DO
13

40
14

40
8

c CLR
= 9

Device Select
1 2

74LS04 I
Figure 2-3
Display drivers

18

Vee
+5V~--

GND~

AO

A1

A2

A3

Apple =
Interface
Connector

23
>-------1A

22
~---------119

21
~---------11C

20
~---------11D

Device Select

Figure 2-4

+5

24

74154
Decoder

12

Decoding 16 unique addresses for each slot

2-2 Output Latches 19

110 Addresses
for slot 4

0 >---==~ coco 49344
1 ~~---... COC1 49345
2 COC2 49346
3 COC3 49347

4 COC4 49348

5 COC5 49349

6 COC6 49350

7 COC7 49351
a coca 49352

9 COC9 49353

10 COCA 49354
11 COCB ~3~
12 cocc 49356
, 3 coco 49357

14 COCE 49358
15 17 DEV 5 COCF 49359

of the corresponding LED to ground and causing it to light. Each
LED has a series resistor to limit the current through it to about 10 to
15ma.

Note also that the CLEAR inputs of the latch chips are
connected to an R-C network which acts as a power-up reset. This
ensures that all Q outputs are in the off (LOW) state when the
computer is first powered up.

20 CHAPTER 2 Parallel 1/0

Suppose we plug the card into slot 4 of our Apple. We can now
display data on the LEDs by executing the BASIC instruction

POKE 49344, N

where N is the value we want to display and 49344 is the address of
slot 4.

At the instant the computer executes the POKE (store) instruc
tion, the signal on pin 41 of that slot, called DEVICE SELECT, is
pulled active (LOW) for about 500 ns. This drives the output of the
74LS04 HIGH, thus enabling the latches and causing data from the
data bus to appear on the LEDs.

If we plug our card into slot 5 instead of slot 4, we simply
change the instruction to POKE 49360,N. In other words, our
hardware will work in any slot (1-7). We simply must tell the
computer which slot to send the data to by giving the slot's
appropriate address.

Here is a simple routine to output a binary count from
00000000 to 11111111 at a 1-second counting rate to the LEDs con
nected to the card in slot 5:

10 FOR N = 0 TO 255
20 POKE 49360, N
30 FORD = 1 TO 760 : NEXT D
40 NEXT N

Line 30 inserts a time delay of approximately 1 second. You can
change the delay period by simply changing the final value for D.

As was mentioned, DEVICE SELECT is LOW for 16 addresses
in each slot, so the latch in slot 4 actually responds to any address
from 49344 to 49359. If you want to have several 110 devices
connected to slot 4, you can further decode the 1/0 address by using
address lines A3-Ao, as shown in Figure 2-4. each of the 16 devices
will then have a unique address.

2-3
INPUT BUFFERS

Whenever we want to input a byte of data to our computer, we
memory map an input port and use the PEEK command, as if we
were reading from memory. For example, if you want to read the

+5V

T
74LS244

Vee
Input ~ ~ ~ ~ ~ ~ ~ ~ 20 Switches

2 18

17 3

4 16

15 -4- 5
~ to

6 I 14
Apple

L data

~
bus

13

8

11

10

= l 1G 2G

--
T19

41
Device Select

N
Figure 2-5

~ Using an octal buffer to input switch data

22 CHAPTER 2 Parallel 1/0

value of the data byte in memory location 768, you simply use the
following line in your program:

LET N = PEEK (768)

After execution, the variable N will contain the value of the
data byte in memory location 768. For better program documenta
tion, you can use a label for the memory location, such as:

LET TEMP = 7 68
LET N = PEEK (TEMP)

Our interfacing job will be to make our input port "look like" a
memory location to our computer.

A very simply input device is shown in figure 2-5. The
74LS244 octal buffer is used to connect the input data (from
switches, keybord, etc.) to the Apple data bus. The 74LS244 is a
tristate buffer, meaning that its outputs can be at a HIGH level, at a
LOW level, or in the high-impedance state. Driving the lG and 2G
control inputs LOW enables the chip so that the buffers connect the
inputs to the data bus. But when the lG and 2G inputs are inactive
(HIGH), all buffer outputs are in their high-impedance states and
effectively disconnect the inputs from the data bus. This action is
necessary so that the computer can use the data bus for other
operations. In other words, the lG and 2G inputs are only driven
active at the instant the computer wants to read in new data.
Otherwise, the lG and 2G inputs are kept inactive.

In figure 2-5 we see that the switch inputs will only be
connected to the data bus while DEVICE SELECT is LOW. So if we
have the buffer mounted on a p-c card located in slot 4, all we have
to do to get the switch data into our computer is to execute the
following line of code:

LET N = PEEK (49344)

When this line is executed, DEVICE SELECT (pin 41) of slot 4
goes LOW for about 500 ns, during which time the computer
expects to read a value from memory. That value can be used later
in the program.

Figure 2-6 shows a simple way to build both an input port and
an output port on the same p-c card and have them respond to
different addresses. When DEVICE SELECT and A0 are both LOW
(address 49344 for slot 4), the input buffer will be enabled. But when

Apple
Interface
Bus

Vee
+SV~--

GND~
07

06

05

04

03

01

DO

Ao

Figure 2-6

6 IC-3

Latch Enable

* For 7 402, connect pin 14
to +SV, pin 7 to GND.

Complete parallel 1/0 port

18

3

16

5

14

7

12

9

18

17

14

13

8

7

4

3

Buffer
1 En8tii9

+5 74LS244
Inputs

20
IC.1 2 07

17 06

4 05

r 15 04

6 03

13 02

8 01

11 DO

Outputs

+5 20 74LS373

80 IC-2 80
19 07

70 70 16 06

60 15 05
60

50 50
12 04

40 40 9 03

6 02 30 30

20 20
5 01

10 2 DO

oc

23

24 CHAPTER 2 Parallel 1/0

DEVICE SELECT is LOW and A0 is HIGH (address 49345), the
output latch will be enabled. The following lines of program will
input data from the switches and output the same data to the
output latches:

10 LET BYTE = PEEK (49344)
20 POKE 49345, BYTE

By using an address decoder like the one shown in Figure 2-3,
you can have up to 16 1/0 ports in one slot in any combination of
inputs and outputs.

2-4
CENTRONICS-TYPE PRINTER
INTERFACE

One common application for a parallel 1/0 port is as the connection
to a printer. And a commonly used type of interface is the
Centronics TM* type interface. Centronics printers were some of the
first entries into the inexpensive printer market, and hence their
interface circuitry became somewhat of a standard. Figure 2-7
shows how to convert our parallel 1/0 port of figure 2-6 into a
Centronics-type interface. That is, by adding a chip we will be able
to communicate with Centronics-type printers.

Two lines are used to read the printer status before sending a
byte to the printer. The status signals is called BUSY and OUT
PAPER. If either of these two signals is active (HIGH), no data
should be sent to the printer. But if both signals are inactive (LOW),
the data byte to be sent to the printer should be latched into the
output port and, simultaneously, a DATA STROBE signal should
be sent to the printer.

Figure 2-7 shows that the status signals appear on input lines
D7 and D6 of the input buffer (IC-1 of figure 2-6) and that the data
output lines come from the latch. In addition, a 74121 one-shot
generates a short (about 500 ns), LOW signal called DATA STROBE
each time new data is latched into IC-2 of figure 2-6.

•centronics "" is a trademark of Centronics Data Computer Corp.

2-4 Centronics-Type Printer Interface 25

From
Fig. 2-6

To {
D7

IC-1 Pin 2

Buffer Inputs Pin 17
D6

Pin 19
D7

Pin 16
D6

Pin 15
D5

From
IC-2 Pin 12

D4

Latch Outputs
Pin 9

D3

Pin 6
D2

Pin 5
D1

Pin 2
DO

+5

14 From
IC-3 _ ____,..._ __ s __ B 7 4121

Pin 13
Latch Enable 3

=

Figure 2-7

A2

A1

=
7

Centronics-type printer interface

Busy
-E

Outpaper
E

>

>

>

>

>

>

)'1

>

R
20K

c
10r200PF

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1

Data o

C>
C>

C>
C>
C>
C>
C>
C>
C>
C>

Data Strobe
Q"._..-.»----------1

Lr
---+I ~r~.5µs

To
Printer

Although a machine code routine is more efficient for this type
of output, we can send bytes to the printer using BASIC. Figure 2-8
shows the listing of a program to send the contents of memory
locations 768 through 800 to the printer. Note that the addresses of
the FIRST and LAST bytes to be printed are defined in the

26 CHAPTER 2 Parallel 1/0

JLIST

2 REM ** CENTRONICS PRINTER OUTPUT ROUTINE **
10 LET FIRST = 768
20 LET LAST = 800
30 LET BUFF = 49344
40 LET PRNTR = 49345
50 GOSUB 1000
60 END
1000 FOR MEM = FIRST TO LAST
1010 STS = PEEK <BUFF>
1020 IF STS > 63 GOTO 1010
1030 LET BYTE = PEEK <MEM>
1040 POKE PRNTR,BYTE
1050 NEXT MEM
1060 RETURN

Figure 2-8
Centronics printer output routine

initialization portion of the program, as are the addresses of the 1/0
ports. Lines 1010 and 1020 check to see that status bits 07 and 06 are
both LOW before sending the next byte to the printer.

The output routine is used as a BASIC subroutine, which can
be called whenever we want to send a message to the printer. Before
calling the subroutine, of course, the user must define locations
FIRST and LAST.

2-5
PROGRAMMABLE INTERFACE
CHIPS

Since so much parallel 1/0 is done with buffers and latches,
manufacturers of interface chips (ICs) make large-scale, program
mable chips that can combine the functions of several chips. We
will discuss using the MOS Technology 6520 Peripheral Interface
Adapter (PIA), which is one of the simpler programmable chips. By
learning how to use the PIA, you will get a good insight into using
many other types of programmable interface chips. Figure 2-9
shows the pinouts of the 6520.

0
Vss 40

PAO 39

PA1 38

PA2 37

PA3 36

PA4 RS1 35

PAS 34

8 PAS DO 33

9 PA7 01 32

10 PBO 02 31

11 PB1 03 30

12 PB2 04 29

13 PB3 05 28

14 PB4 06 27

15 PBS 07 26

16 PBS E 25

17 PB7 CS1

18 CS2

19 cso

20 'Cc fWI

Figure 2-9
Pin assignments of the 6520 and 6820

27

Apple Interface Bus

+SV~
GND~ +SV

Handshaking

D7

D6

D5

D4

D3

D2

D1

DO

AO

A1

D7 Vee CA2 CA 1

D6 PA7

~PA6 D5 PAS

D4

D3

D2

D1

DO

~Ao _____,.RSO

">-A_l _____ R$1

CAA
PA4

I PA3
PA2
PA1
PAO

PB7H----------+
PB6H----------+ +SV n--....._ __ _.. CSO
PB5H----------+

CS1~PB4
~-----------t1CS2~PB31+-----------..

PB21+-----------..
">-------+I E -1 _C_R_B_I PB1 H-------_..

">------------M RI#
PBOt+-----------..

~----------.w Reset

iRQe Vss CB2 CB 1

Fig 2-10 L-----..a. Handshaking

Figure 2-10
PIA connections to the interface bus

28

Port
A

Port
B

2-5 Programmable Interface Chips 29

The 6520, which is just like the Motorola 6820 PIA, has two 8-
bit ports, called port A and port B. Each bit line in each port can be
configured to act as an input or an output line. In other words, you
can program the PIA to act as one 8-bit input port (input buffer)
and one 8-bit output port (latch). Or you can make a few of the lines
of port A act as inputs and the remainder as outputs, in any
combination. The same can be done with port B. In addition, some
of the address decoding is done on board the chip, thereby reducing
external gating. The single PIA chip can easily replace all three
chips of figure 2-6.

Figure 2-10 shows the internal registers in the PIA. Note that
each port has a peripheral register (PRA or PRB), which connects to
the 1/0 pins; a data direction register (DORA or DDRB), which tells
each pin whether to act as an input or output; and a control register
(CRA or CRB), which is used to select various options.

Before you can use the PIA, you must tell it how you want it to
operate. That is, you must send it a few program bytes to configure
it to your application. To program the PIA, first clear all registers to
zero using the system RESET. Second, you must send each data
direction register a direction byte. Any bit in the direction register
that is a zero (0) will make the corresponding bit line act as an
input. Similarly, a one (1) in any position in the data direction
register will make the corresponding data line act as an output pin.
For example, sending the bit pattern 01101110 to the data direction
register of port A will make bit lines PA7, PA4, and PAO act as input
lines and lines PA6, PAS, PA3, PA2, and PAl act as latch outputs.
See figure 2-11.

To place the direction byte into the data direction register of
port A, you can use the POKE command, storing the direction byte
into the memory location assigned to DORA. Although there are six
registers in the PIA, there are only four unique addresses to which
the PIA responds. The peripheral register and the data direction
register of port A both respond to the same address. Which register
is actually chosen depends on the state of bit 2 in control register A.
The same is true for port B. Table 2-2 shows how the register select
(RS) inputs are used to select the various registers.

After writing the direction byte to the data direction register
of port A, bit 2 of CRA must be set in order to gain access to
peripheral register A, and hence to the 110 pins.

30 CHAPTER 2 Parallel 1/0

These
Determ

PIA

l _[
PAA l l l l l l l I J

DORA I 0 11 11 I 0 11 11 11 I 0 I
Bits/'
lne Direction

CAA I I I I 11
~

Must be set to gain
access to PRA

I I

Figure 2-11
PIA initialization example

RS1

0
0
0
1
1
1

X =Don't Care

RSO

0
0
1
0
0
1

TABLE 2-2
PIA Register Selection

Control
Register Bit

CRA-2 CRB-2

1
0
x
x
x
x

x
x
x
1
0
x

.... 9
~8

7

...,.6
....-5

4

3

.... 2
~

........ ..

........ -....

_
__... ..
__... ...

PA7
PA6
PAS
PA4
PA3
PA2
PA1
PAO

Location Selected

Peripheral Register A
Data Direction Register A
Control Register A
Peripheral Register B
Data Direction Register B
Control Register B

2-5 Programmable Interface Chips 31

As an example of an initialization sequence, let's suppose that
we want to configure port A as an input port and port B as an
output port. Let's also suppose that the PIA is mounted on a p-c
card plugged into slot 4 and that it is wired as shown in figure 2-10.
Here is the initialization routine:

30 POKE 49344, 0 : REM MAKE PORT A AN INPUT PORT
40 POKE 49345, 4 : REM SET BIT 2 OF CRA
50 POKE 49346, 255 : REM MAKE PORT BAN OUTPUT PORT
60 POKE 4934 7, 4 : REM SET BIT 2 OF CRB

Line 30 is not really necessary if the initialization follows a
hardware reset. But the chip can be reinitialized at any time
without a hardware reset. Keep in mind, however, that you must
dear bit 2 of each control register before you can send a byte to its
data direction register.

Once the chip is initialized, it acts just like an input buffer at
49344 and an output latch at 49346. You use the PEEK and POKE
commands to access the data registers, just as if they were separate
chips, like those in figure 2-6.

The PIA can also generate interrupt requests and perform
handshaking with peripheral devices. However, we will postpone
any application of these features until after we have discussed
machine code programming.

CHAPTER 3

Interfacing
Power Control

Devices

Besides being able to tie our computer to TTL loads, we can
control ac power loads, such as lamps, motors, and heaters.
However, we must use some interface circuitry that will allow us to
turn the high-voltage ac loads on and off without damaging the
low-voltage circuits in our computer. This chapter will discuss
using commercially available control circuitry as well as less
expensive circuits you can build yourself. We will also discuss
using the computer as a simple, programmable controller, like
those used in industrial automation applications such as assembly,
welding, food packaging, and paint spraying.

3-1
SOLID-STATE RELAYS

Electromagnetic relays have been used for years to enable low
voltage circuitry to control the turn on and turn off of high-voltage
or high-power loads. But magnetic relays have many undesirable
characteristics, such as contact bounce, sticking of contacts, and
sensitivity to vibration. Solid-state relays have overcome most of
these bad features and still allow control of high-power loads. A
typical solid-state relay and its equivalent circuit are shown in
figure 3-1. As you can see, the input control voltage can be
anywhere from 3 volts to 32 volts de. When the control voltage is
applied, the solid-state relay is in its ON state. When ON, the
output circuit effectively acts like a closed switch and can carry
several amperes, depending on the model number. When in its OFF
state, the solid-state relay can withstand ac line voltages of 240 volts
without damage.

Figure 3-2 shows a simple interface between a computer and
an ac load (lamp). Note that the control input terminal of the solid
state relay connects to the Q output of a latch. The latch is the same
as was discussed in chapter 2. When the Q output goes HIGH (Q
goes LOW), the solid-state relay turns on, completing the circuit
between the lamp and the ac line. The lamp current can be quite
high, perhaps 10 amps or more, but the latch only has to output a
control current of about 4 ma to activate the relay. In addition, no
high veltage is ever coupled back to the latch or computer circuitry.
The input section of the solid-state relay is optically coupled to the

34

Input Terminals
3-32 voe Output Terminals

Up to 75 Amps

(A) Physical Package Less Than 211 x 3"

3

4

Figure 3-1
Solid-state relay

Data Bus
from

Computer

~
Figure 3-2

Light
Sensitive
Switch

(B) Equivalent Circuit

+5V
3

Output
Latch

a
4

74
175 Solid state

relay

2

1

Load

2

120 VAC

Output latch drives SSR, which controls load current

35

36 CHAPTER 3 Interfacing Power Control Devices

output, so there is never any direct electrical connection between
its input and output sections. Although a separate solid-state relay
is needed for each load that is being controlled, you can control up
to 8 solid-state relays with a single octal latch.

3-2
USING TRIACS FOR POWER
CONTROL

The solid-state relay is an excellent power control device, although
it is somewhat expensive. You can build a less expensive control
circuit using a bidirectional ac switch, commonly called a TRIAC.
figure 3-3A shows a TRIAC being used in a circuit to control the
current through a lamp. The TRIAC's three terminals are labeled Tl,
T2, and Gate. Without going into a lot of theory about the TRIAC,
let's see how it is used in this circuit.

In figure 3-3A, switch Sl is open so the Gate is returned to Tl
through resistor R2. In this condition, the TRIAC is off and acts like
an open switch so no load current flows. In figure 3-3B, switch Sl is
closed. With Sl closed, the Gate is pulled toward T2 on the next half
cycle of the line voltage. When a voltage is applied between the
Gate and Tl, the TRIAC fires (turns on suddenly). It continues to
conduct until the ac line voltage falls to zero. If 51 remains closed,
the TRIAC fires again on the next half cycle of the line voltage. The
firing and turning off continues until 51 is opened. As far as the
load is concerned, the TRIAC simply acts as if it were a closed
switch. But when Sl is opened, no voltage is applied between the
Gate and Tl. Therefore, as soon as the ac line voltage falls to zero
the next time, the TRIAC shuts off. The waveforms of figure 3-3C
illustrate the operation of the TRIAC.

Now let's see how we can tie the TRIAC to our computer.
Figure 3-4 shows how Sl and Rl of figure 3-3 are replaced by an
optoisolator. The optoisolator, a Clairex CLM8000, is a small, 4-
terminal device containing an LED and a photoconductive cell. The
photoconductive cell has a high resistance (SOOK ohms) when dark
but becomes a low resistance (about 400 ohms) when the LED
shines on it. So to turn on the TRIAC from our computer, we simply
tie the cathode end of the LED to the Q output of our latch. When
we want to fire the TRIAC, we output a byte to the latch, which will

R1
10K

S1

R2
2K

R1

S1

R2

Gate

T2

Triac

(A) Triac not conducting

(8) Triac conducting

S1 S1 S1

120 VAC

120 VAC

Open Closes Open p ~ #A I/"- /"-
\...Jf ~ ~\...J

Triac fires, Tnac turns off
load current flows

(C) Waveforms

Figure 3-3
Controlling load current with a triac 37

38 CHAPTER 3 Interfacing Power Control Devices

Data Bus
from

Computer

+5

CLM 8000
1 son Optoisolator

a lTte -+-----+._-______ _

74
175

Figure 3-4

R2
2K

Interfacing a triac to a latch with an optoisolator

AC Receptacle

Triac

Lamp

120 Vac

make the signal LITE go active (LOW). The TRIAC will remain on
until we make LITE go inactive (HIGH) again.

Figure 3-5 shows the listing of a program to make the
computer control the duration of the ON time of a lamp, say for use
as an exposure timer in a darkroom. Of course, the same program
and circuitry could be used to control weld time, paint-spray time,
and so on. Lines 60-80 control the time duration. Line 70 causes a
time delay of about 1 second each time it is executed. To change the
increments of the delay to 0.1 second, simply change line 70 to :
FOR T = 1 TO 70: NEXT T.

Another inexpensive and easy-to-use device is the Motorola
MOC3010 optocoupler, shown in figure 3-6. The MOC3010 has a
built-in TRIAC intended for 120-vac operation, but it can only carry
a load current of 100 ma. To use it in a low, power-high voltage
application, simply connect the TRIAC to the load as in figure 3-4.
Then drive the LED from the latch output, as before. Note that there
is no gate connection on the MOC3010. If you want to use the
MOC3010 to drive a higher power circuit, connect it as shown in
figure 3-7. Notice that the heavy line current flows through a power
TRIAC, which is turned on when the small TRIAC in the MOC3010
fires.

3-2 Using Triacs For Power Control 39

JLIST

10 REM *** TIMER CONTROL ***
20 LET TIMER = 49345
25 HOME
30 PRINT "ENTER TIME DURATION IN SECS"
40 PRINT "TIMING WILL START WHEN YOU PRESS RETURN 11

45 PRINT
50 INPUT "DURATION => II; D
55 POl<E TIMER,1
60 FOR s = 1 TO D
70 FDR T = 1 TO 700: NEXT T
80 NEXT s
90 POl<E TIMER,O
100 GOTO 25

Figure 3-5
Timer control listing

4

2 5

3 6

Figure 3-6
MOC3010 optocoupler

One other point to notice about figure 3-7 is the use of resistor
R3 and capacitor Cl across the power triac. These components are
necessary to ensure that the TRIAC is properly turned off when
working into an inductive load, such as the motor.

R1
150

40 CHAPTER 3 Interfacing Power Control Devices

+5

MOC3010

6 R2 R3

180 1.2K

2 4
C1
0.2

Figure 3-7
Using the MOC3010 to interface to a high-current load

3-3
PROGRAMMABLE
CONTROLLERS

Motor

Power
Triac 120 VAC

Programmable controllers (PCs) are used in industry to control any
process that can be automated, such as packaging, assembly,
material handling, measuring, painting, and welding. The deci
sions as to what is to be done are essentially made by a computer,
which

1. Scans several inputs to determine their states.
2. Performs logic operations on the inputs to decide what is

to be done next.
3. Turns outputs on or off accordingly.

Basically, the PC simplifies the hard-wired logic used pre
viously in automation. By using a PC, less wiring is needed,
changes are easier to make, and more complex tasks can be
performed. A method of diagramming an automatic control system
called a ladder diagram has been in use for many years and is
commonly used with PCs. A typical ladder diagram is shown in
figure 3-8. The vertical lines at each side are connected to the ac
power mains, 120 vac in this case. Then each individual circuit
connected to the mains are shown as individual rungs on a ladder.
L1 represents the load for rung l, L2 is the load for rung 2, and so

3-3 Programmable Controllers 41

on. Normally, only one load is allowed for each rung. The switches
in series with each load determine whether the load is turned on or
off.

Let's examine the ladder diagram more carefully. In order for
power to be applied to Ll, either switches 51 and 52 or switches 53
and 52 must be closed. The following simple logic equation
describes the rung:

L1 = 51 AND 52 OR 53 AND 52

Our programmable controller first scans input switches 51,
52, and 53, then performs the logic, and finally turns L1 on or off
accordingly. The circle around L1 simply means that it is an output.
In reality, it may be a lamp, a motor, a heater, or any type of power
load. To turn L1 on, our computer simply has to set a bit in a latch,

S1 S2

SS R1

o~--1;H'

Figure 3-8
Ladder diagram

120 VAC

L2

I li-----l

Rung
--- 1

2

3

4

42 CHAPTER 3 Interfacing Power Control Devices

which drives an optoisolator, which turns on a triac connected to
the load.

The inputs to the computer can be a variety of switches. For
example, Sl is an ordinary toggle switch, possibly a starter switch.
S2 is shown as a normally open limit switch, whereas S3 is a
normally closed limit switch. S4 in rung 3 is a momentary push
button. The same switch may be examined more than once by the
computer to control more than one rung.

The output of rung 3, called Rl, represents a control relay.
Control relays were common with hard-wired logic, but the relay
may not actually exist in the PC system. A relay is shown in the
ladder diagram to help you understand the operation, but no real
load R1 has to exist. R1 is simply a variable that the computer keeps
track of, whose state will be used to solve other rungs. R1 is shown
as a latching relay. That is, if S3 is closed and someone presses S4,
R1 will energize. Contacts of Rl bridge S4, so even when S4 is
released, Rl remains in the ON state. To make R1 drop out, S3 has to
be opened. Rl also has a set of contacts in rung 4. The slash line
through the contacts indicates normally closed contacts, that is,
contacts that will be closed when the relay is deenergized.

Now let's see how we can use the Apple computer to solve the
rung equations. We can perform logic operations in BASIC with the
Apple. For example, if we execute the equation L1 = Sl AND S2 OR
S3 AND S2, the variable L1 will be assigned the value of 1 either if Sl
and S2 are nonzero or if S3 and S2 are nonzero. Otherwise, L1 will
be zero. The result of a logic operation will always be either a 1 or a
0. Figure 3-9 shows the listing of a program that can be used to
control the system whose ladder diagram is shown in figure 3-8.
Although the input and output portions of the program are not
shown here, before the equations can be solved, the computer must
have values for all inputs. Study the listing until you see the
correspondence between the listing and the ladder diagram.

Notice that an output can also be examined to determine the
conditions for another rung. For example, L2 is examined in rung 4.
If L2 is on (true), contacts L2 in rung 4 will be closed. Our control
program can also contain subroutines, for example to generate time
delays that can be used to control weld time.

To help crystallize our understanding of using the Apple as a
tiny, programmable controller, let's study a typical application, the

3-3 Programmable Controllers 43

JLIST

1 REM ********************************
2 REM * CONTROL PROGRAM FOR FIG. 3-8 *
3 REM ********************************
1 (> REM *-Jf•* DO INITIALIZATION ***
1 (>(> REM *** SCAN INPUT SWITCHES ***
199 REM *** BUILD RUNGS ***
200 Ll = Sl AND S2 OR 83 AND 52
210 L2 = Sl OR 82
220 R1 = S4 AND 53 OR R1 AND 83
230 L3 = S5 AND NOT Rl AND L2
299 REM *** DO OUTPUT ***
399 GOTO 100: REM * LOOP AGAIN *
Figure 3-9
Control program for circuit of figure 3-8

Automatic Driller of figure 3-10. In this appliction, one hole is
automatically drilled in each part moving along a conveyor. Here is
how it works: The conveyor motor is turned on and parts are placed
on the conveyor line. When a part hits limit switch 51, the conveyor
motor (CM) is turned off. A clamp (CL) is energized, which holds
the part for drilling. Then a motor is energized to move the drill
carriage forward (DCF). At the same time, the drill motor (DM) is
also turned on, and drilling begins. Drilling continues until the
carriage hits limit switch 52, indicating that the desired depth has
been reached. The DCF motor is turned off, and another motor DCR
is turned on to reverse the direction of the drill carriage. When the
drill carriage is fully retracted, it hits limit switch 53, causing DCR
and DM to turn off. The clamp (CL) is released, and the conveyor
motor (CM) is turned on again to move out the drilled part and
bring in another part.

The laddder diagram for the Automatic Driller is shown in
figure 3-11, and the program listing is shown in figure 3-12. We
assume that we have an input buffer and an output latch in slot 5, as
in chapter 2. In the actual system wiring, the switches do not connect
to the ac line. They are simply single-input switches, like those in
figure 2-5, and they are periodically examined to see if they are
open or closed. Also, in the actual system, the loads CM, CL, and so

44 CHAPTER 3 Interfacing Power Control Devices

INPUTS

CM
Conveyor

Motor

LJ

S1 Normally open limit switch,
Closes when part detected

S2 Normally open limit switch,
Closes when drill is at depth

S3 Normally closed limit switch,
Opens when carriage is retracted

S4 Start switch

Figure 3-10
Automatic driller

Cl
Clamp

Ag limit Switch

OUTPUTS

l 1 Conveyor Motor

L2 Clamp

l3 Drill Carriage Forward

L4 Drill Carriage Reverse

LS Drill Motor

Conveyor

S4

~()
START

on, do not connect directly to switches Sl, and so on. The loads are
connected to the Apple through optoisolators, and they are turned
on and off by triacs, as shown in figure 3-4.

Referring to the program listing, we first initialize by telling
the computer the address we want assigned to our input and output
ports. Line 100 begins the input section. We get the switch data in
line 120. The switches are wired to the input buffer in slot 5 such
that Sl is brought in on data line 0, 52 on data line 1, 53 on data line
2, and 54 on data line 3. The value obtained for V in line 120 is a
decimal number representing the binary combination of switches
Sl through 54. But we must separate the individual bits represent
ing the open or closed switches. So lines 130 through 180 perform a

3-3 Programmable Controllers 45

Start
S4 S1 L1

er' o-r:-o-==-::::J o ~
41 __ _,.}fJ

S2 S1

--R-41 ~O
S1 L2

~

L3

S4 R1 83
er' o~-..1 ~"'1" "'-----4

L4

DCF LS

OCR

Figure 3-ll
Ladder diagram for automatic driller

decimal-to-binary conversion and place values into an array in such
a way that S(l) will be 0 if open and 1 if closed. A similar conversion
is performed for the other switches.

Line 200 of the program listing begins construction of the
rungs. Then the output routine begins at line 300. First, we
assemble an output value called BYTE by doing a binary-to-decimal
conversion of all load bits. We then POKE this value to the output
port called DRILLER, which latches outputs HIGH or LOW, de-

46 CHAPTER 3 Interfacing Power Control Devices

JLIST

1 REM *****************************
2 REM * AUTOMATIC DRILLER *
3 REM * <C> 1983 BY J. OLEKSY *
4 REM *****************************
10 LET SWITCHES = 49344
20 LET DRILLER = 49345
30 DIM SCB>
100 REM *** GET SWITCH DATA AND PUT INTO ARRAY ***
120 LET V = PEEK <SWITCHES>
130 FOR N = 1 TO 8
140 Q = V I 2
150 Q1 = INT (Q)
160 SCN> = CQ - Q1) * 2
170 v = Ql
180 NEXT N
199 REM *** BUILD RUNGS ***
200 Ll = SC4> AND NOT SCl> OR 8<4> AND Rl AND NOT L2
210 Rl = S<2> AND SC1> OR Rl AND 8(1)
220 L2 = S<l> AND NOT Rl OR SC1> AND Rl AND SC3>
230 L3 = S<4> AND L2 AND NOT Rl
240 L4 = 9(4) AND Rl AND 9(3)
250 LS = L3 OR L4
299 REM *** DO OUTPUT ***
300 BYTE = LB * 128 + L7 * 64 + L6 * 32 + LS * 16 + L4 * 8 + L3 * 4 + L2 * 2 + L
1 * 1
310 POKE DRILLER,BYTE
320 GOTO 100: REM * LOOP AGAIN *

Figure 3-12
Automatic driller listing

pending on which loads should be energized. Finally, we jump
back to line 100 to begin another input routine. The process repeats
itself over and over.

Since we have only one input port and one output port, we can
handle up to 8 inputs and 8 outputs. If more inputs and outputs are
required, we can build additional input buffers and output latches,
giving them each a different address. Each time we read from an
input port, we must do steps similar to those in lines 120 through
180 to assign a 1 or 0 bit to each switch. And, each time we do an
output, we must assemble a new output bit pattern like we did in
line 300. Since a considerable amount of time is spent in these
conversions, if a large number of 1/0 points is needed, it would be
better to use a language other than BASIC. In a later chapter we will
see how to use machine code routines for fast I/O. But if you only
need to control a few 1/0 points, or you do not need high speed, the
techniques shown in figure 3-12 will work sufficiently. The BASIC
control program is easy to read and easy to modify.

CHAPTER 4

Interfacing
to Analog Inputs

So far, we have discussed transferring digital information into and
out of the computer. But there are many applications where the
information we handle is analog rather than digital. That is, the
information we deal with is a parameter like temperature, pres
sure, velocity, or some other physical quantity. The value of that
parameter may be anywhere within a continuous range of values
from some minimum to some maximum value.

Whenever we want to input such a physical parameter, we
normally use a transducer to change the quantity into a voltage.
Then we feed the voltage to an analog-to-digital (AID) converter,
which changes the specific value of voltage into a digital value
(binary number) that the computer can input through a parallel
port (input buffer).

Similarly, whenever the computer must output an analog
voltage, for example, to control the speed of a motor, we do a digital
to-analog (DI A) conversion. That is, the digital value representing
the output voltage is fed by the computer to an output port (latch).
The output port feeds a DIA converter, which changes the digital
number into a corresponding de voltage.

In this chapter, we will examine a few simple AID converters.
We will also look at a few typical applications, such as monitoring
temperature, pressure, and liquid level.

4-1
SINGLE-INPUT A/D
CONVERSION

There are a variety of off-the-shelf devices that can be used to
convert an analog voltage into a digital value. From the user's point
of view, two of the most important characteristics of these devices
are conversion time (how long it takes to convert an analog voltage
into a digital number) and resolution (how many bits are in the
digital number). We will first look at an ADC0804, which is a
simple, inexpensive, 8-bit AID converter with a conversion time of
100 microseconds.

The 0804, shown in figure 4-1, has an on-board clock to keep
its internal operation going. All you have to do is connect an
external R-C network (Rl-Cl) to pins 4 and 19. When connected as

48

Vee
+5V~--

GND~
07

06

05

D4

D3

02

01

DO

Device
Select

FWI

Figure 4-1

1/6 74LS04

Single-input AID converter

11

12

13

14

15

16

17

18

D7

DO

4-1 Single-Input AID Conversion · 49

_1 +5V

-fd2
20

4

ADC0804

+5

VREF/2
9
--

8 10

C1
150 pF

R2
1K

R3
1K

1
+5V

l
Vin = ~-'-··

l(
Pot used to

simulate input
voltage

shown, the 0804 will convert a de input voltage in the range of 0 to
+ 5 volts into a digital value from 00 to FF hex (0-255 decimal).

Since the 0804 is an 8-bit device, it effectively divides the
maximum voltage (+ 5v) by 256, and outputs the closest approxima
tion of that voltage (within 1 part in 256). A 10-bit AID will give the
closest approximation within 1 part in 1024, and so on. So you
choose an AID with 8, 10, 12, or 14 bits resolution, depending on the
degree of accuracy you require.

50 CHAPTER 4 Interfacing to Analog Inputs

Referring back to figure 4-1, when you want to start a con
version, yo~al the 0804 to begin by driving its chip select (CS)
and write (WR) inputs active (LOW). After about 100 µs, the digital
representation of the analog voltage at its + V input can be read on
its data outputs by driving CS and RD active (LOW). When CS is
inactive, its data outputs are in the high-impedance state (tristate),
so the data output lines can be connected directly to the computer's
data bus. No buffers are needed.

Potentiometer R4 is used to obtain a variable de input voltage
for test purposes. R4 does not have to be mounted on the pc card
inside the computer. Simply connect a pair of wires to +Vin and
GND, and lead them out of the rear of the computer. The lead from
+Vin can then be connected to the test pot or to any source of de
input voltage you wish to measure. Do not let +Vin exceed + Sv.

National Semiconductor Corporation recommends that a 2.5-
volt reference diode be used at input pin 9 for greater accuracy. But
the simple voltage divider shown works reasonably well if you do
not need a high degree of precision.

Let's assume that the 0804 is wired to a card plugged into slot 4
of the Apple. The following program segment will cause a number
corresponding to the voltage at the + V input to be displayed on the
computer screen:

10 POKE 49344, 0
20 LET V = PEEK (49344)
30 PRINT V

Line 10 starts the conversion. Line 20 reads in the value.
Although the chip requires approximately 100 µs between the

start conversion signal and the time the conversion is complete,
BASIC is slow enough that we do not need any time delays between
the two instructions. In a later chapter we will see how to use the
interrupt (INTR) output of the chip as a conversion complete signal.
We will use that signal when running machine code programs,
which execute much faster than BASIC.

The number displayed on the screen can easily be modified to
represent the voltage by multiplying it by a scaling factor, such as:

30 VOLTS = V * 5/255
40 PRINT VOLTS

4-1 Single-Input A/D Conversion 51

JLIST

5 REM *** SIMPLE DVM DEMO ***
10 HOME
20 VTAB 10: HTAB 22
:30 PRINT "VOL TS"
40 Pm:::E 49344!' 0
50 LET V = PEEK <49344>
60 Vl = V * 5 I 255
70 IF Vl < 1 THEN GOSUB 300
80 IF Vl = > 1 THEN GOSUB 200
90 VTAB 10: HTAB 15
:I. (H) PR I NT VOL TS; II II

110 FOR D = 1 TO 125: NEXT D
120 IF VOLTS > 4A99 GOTO 10
130 GOTO 40
200 VOLTS= (INT ((Vl * 100) + A5)) I 10(
210 RETURN
300 VOLTS= INT <<Vl * 1000) + .5)) I 10'
:310 RETURN

Figure 4-2
Simple DVM demo

We can use the Apple as a simple digital voltmeter by using the
0804 in slot 4 and running the program listed in figure 4-2.

The program causes the voltage at the slider of pot R4 to be
read in and displayed in the middle of the screen. The subroutines
at lines 200 and 300 round off the voltage to three significant figures
or less before displaying its value. If less than 3 digits are being
displayed, three blank spaces are printed after the voltage value to
erase any possible carry over from a previous display. The program
is in a continuous loop from line 130 to line 40, but if the input
voltage becomes greater than 4.99 volts, line 120 causes a jump back
to line 10, which clears the screen each time it is executed. The
result is that the value 5 VOLTS flashes on and off, acting as an
over-range indicator.

Of course, our simple DVM can only measure positive de
voltages between 0 and + Sv. If you want to measure higher
voltages or negative or ac voltages, you have to modify the input to

52 CHAPTER 4 Interfacing to Analog Inputs

the 0804, as is done with ordinary voltmeters. For example, to
measure an ac voltage, first rectify the ac, then feed the rectified
and filtered de to the 0804. You can use software to do any required
scaling, for instance, to display rms rather than peak values. To
measure a negative voltage, feed the input analog voltage through
an op amp wired as an inverter, then pass it on to the 0804.

4-2
USING GRAPHICS TO
DISPLAY PHYSICAL
QUANTITIES

Our digital voltmeter displays numbers corresponding to a mea
sured voltage. But sometimes it is more useful to graphically
display the value of some physical parameter. Figure 4-3 shows the
listing of a program that will take the digital value of the input
voltage from our AID converter and display it as a vertical bar
graph. The length of the bar is proportional to the magnitude of the
input voltage. Although low-resolution graphics are used here for
simplicity, high-resolution graphics can also be used.

If you wire the AID converter as in figure 4-1 and bring out the
input leads and connect them to a pot, you will see that the height
of the vertical bar is dependent on the pot setting. Of course, rather
than use a pot, the input voltage can be generated by a temperature
sensor, a light sensor, a strain gage, or whatever you choose. You
simply have to modify the voltage generating source to give a de
voltage between 0 and +5 volts. Then you can display that
parameter as a bar graph.

In the next section, we will discuss how to monitor several
analog inputs with a single AID converter. By using a different
color for each of the bar graphs, an interesting display of several
parameters can be viewed simultaneously.

Let's look at an application using an AID converter to control a
graphics display. Suppose we want to build a display system to be
used in a chemical plant where fluids are stored in tanks. The
display should be built so that the plant supervisor can view the
fluid level in several tanks simultaneously. Rather than simply
connecting several meters on a wall, we decide to use a graphics

4-2 Using Graphics To Display Physical Quantities 53

JLIST

100 REM
110 REM
120 REM
130 GR

*** VERT BAR GRAPH ***
* NEED AID CONVERTER *
* IN SLOT 4 *

14·0 COLOR=: 7
150 POKE 49344,0
160 V - PEEK (49344)
170 Y = CV I 255) * (- 39) + 39
180 Y = INT <Y>
190 VLIN 39,Y AT 25
200 COLOR= 0
210 IF Y < = 0 GOTO 140
220 VLIN Y - 1,0 AT 25
230 GOTO 140

Figure 4-3
Vertical bar graph of de input voltage

display showing each tank and its contents. We can use different
colors for each different chemical for easy identification.

All we need is a level sensor in each tank that gives a voltage
corresponding to the level of the fluid inside. We can scale the
voltage up or down to get a 0-Sv range. Then we feed the voltage to
our AID converter. We display the voltage graphically, in a manner
similar to the bar graph mentioned earlier.

Figure 4-4 shows the listing of a program that constructs the
shape of a tank then fills it with the color of fluid specified by the
user. As the fluid level changes, the tank can be seen to fill and
empty accordingly. Although only one tank is shown, the same idea
can be used to display several tanks. In addition, the program can
be modified to display fill and drain pipes to show the complete
system.

The program begins with an initialization subroutine at line
250, which prompts the user to input some dimensions. The user
specifies the position of the left side, the right side, as well as the
top and bottom of the tank. Next the user specifies the colors to be
used for the tank and for the fluid.

On returning from the user input subroutine, the low-resolu
tion graphics mode is activated, and construction of the tank

54

JUST

10 REM ***********************
20 REM * FLUID LEVEL MONITOR *
30 REM * J. OLEKSY 1984 *
40 REM ***********************
49 REM
50 REM *** INITIALIZE ***
51 REM
55 LET TNK = 49344
60 GOSUB 250: REM --GET DIMENSIONS--
70 GR
80 GOSUB 340: REM --BUILD TANK--
89 REM
90 REM *** GET LEVEL ***
91 REM
1 00 POKE TNI<, 0
110 V PEEK <TNK>
120 Y = <V I 255) * CTP - BTTM> + BTTM
130 Y = INT <Y>
139 REM
140 REM *** ADJUST LEVEL ***
141 REM
150 COLOR= Cl
160 FOR X = LFTSD TO RGTSD
170 VLIN BTTM - 1,Y AT X
180 NEXT X
190 COLOR= 0
200 FOR X = LFTSD TO RGTSD
210 IF Y < = TP GOTO 230
220 VLIN Y - 1,TP AT X
230 NEXT X
240 GOTO 100: REM --LOOP AGAIN--
249 REM
250 REM *** GET DIMENSIONS ***
251 REM
260 PRINT "ENTER TAN••:: LIMITS"
270 INPUT "LEFT SIDE? <2-35>";LFTSD
280 INPUT "RIGHT SIDE? <4-37:>" ;RGTSD
290 INPUT "TOP? <0-20> ";TP
300 INPUT "BOTTOM? <5-39> ";BTTM
310 INPUT "FLUID COLOR? <0-7:>";C1
320 INPUT "TANK COLOR? <0-7>";C2
330 RETURN
339 REM
340 REM *** BUILD TANK ***
341 REM
350 COLOR= C2
360 PLOT LFTSD - 2,TP
370 PLOT RGTSD + 2,TP
380 FOR S = TP TO BTTM
390 PLOT LFTSD - 1,S
400 PLOT RGTSD + 1,S
410 NEXT S
420 FOR B = LFTSD TO RGTSD
430 PLOT B,BTTM
440 NEXT B
450 RETURN

Figure 4-4
Fluid-level monitor listing

4-1 Multiple Analog Inputs 55

begins in the subroutine at line 340. Once the tank is built, the
program returns to a continuous loop beginning at line 100 and
ending at line 240. The loop begins with an input routine to get the
level of the fluid (read from the AID converter). Line 120 scales the
digital value of the input so that the height of the fluid displayed is
proportional to the voltage read in from the sensor.

Next, the tank is filled with the fluid, beginning from the left
side and going to the right side, and from the bottom to the height
Y. Blank space is painted from the level Y to the top of the tank.
Then the loop repeats over and over again. Typing CTRL-C will exit
the loop.

Try using the program by connecting a pot to the AID
converter input leads as was done in the bar graph demonstration.
Vary the pot and you will see the tank fill and empty.

4-3
MULTIPLE ANALOG INPUTS

Whenever we want to monitor several analog inputs, we can use a
multiplexed AID converter, such as the ADC0809. The 0809 has
eight analog inputs. One of those inputs is digitized, depending on
a 3-bit address code applied to its channel-select inputs. A simple
hookup between the 0809 and the Apple is shown in figure 4-5.

The conversion time for any one channel is 100 microseconds,
just like the 0804. Unlike the 0804, the 0809 does not have an on
board clock, so the Apple <1>1 signal is fed to a flip flop, giving a
converter clock frequency of about 500 kHz, which is typical for the
0809.

To start conversion, the address of the desired channel must be
applied to inputs A, B, and C. Note that address lines~' A1 and A2

are used in this case. This is consistent with the fact that
DEVICE SELECT is active for the lowest 16 addresses for any slot.
The address bits are applied while the computer is doing a write
(POKE) to the address of the desired channel. When write and
DEVICE SELECT go active, the output of gate 2 goes HIGH. The
rising edge of this signal at the START input of the converter resets
the chip. The falling edge of the same pulse, applied to the address
latch enable (ALE) input of the 0809, latches in the three address bits
and begins conversion.

112 74LS74

~ +SV --

GND~
D 5 SOOKHz

Q

3
411 38 a 6 +5V

.1

10
(c2

11 20

21 CLK Vee 5
ln7 07 07

20 4
06 ln6

19 3
05 AOC0809 lnS

18 2
04 ln4 Analog

8 Inputs
03 ln3

15 28
ln2 02

14 27
01 ln1

17 26
DO DO lnO

25 A

24 12
A1 B +V ref +5.000

23 c
6

START
16

-V ref

ALE =

Rm EOC GNO

7 13

Gates all in 74LS02* NC =
*Note; Pin 7 is GND,Pin 14 is Vee

on 74LS02 and 74LS74.

Figure 4-5
ADC0809 8-bit AID converter with multiplexed inputs

56

4-1 Multiple Analog Inputs 57

After about 100 µs, the digital equivalent of the selected input
can be read on the tristate data output pins of the ADC0809 by
driving output enable (OE) HIGH. A simple routine to read in and
display the analog values on inputs 0, l, and 2 of the 0809 is as
follows:

100 POKE 49344, 0
110 LET VO = PEEK (49344)
120 POKE 49345, 0
130 LET Vl = PEEK (49345)
140 POKE 49346, 0
150 LET V2 = PEEK (49346)
160 PRINT VO, Vl, V2

(Card plugged into slot 4)
Line 100 starts conversion for channel 0, and line 110 reads in

its digital value. Similarly, line 120 starts conversion for channel 1,
and line 130 reads in its digital value, and so on. Actually, you do
not have to specify a different address for each PEEK instruction.
Lines 110, 130, and 150 could all use PEEK(49344). It is only
necessary to specify the address of each channel in a POKE
command. The address latched in by the POKE command is the
address of the channel you will read from with the next PEEK
command.

Figure 4-6 shows the listing of a simple data logging program.
This program samples three analog input channels approximately
once every 10 seconds and prints the values of voltages measured.
The interval between measurements is controlled by the time delay
in line 170. If you want to change the time interval, simply change
the maximum value for D. A more accurate way to control the time
interval between samples is to use a clock/calendar chip that
generates pulses or interrupts each time a sample is to be taken.

Line 30 defines a scaling function that takes the input value
from the AID converter and changes it to a value between 0 and 5
with no more than three significant figures. Line 90 specifies the
number of events to be recorded, which in this case is 10. You can
obtain a hard copy printout of the measured values by simply
having your printer turned on and typing PR#l before typing
RUN. Figure 4-7 shows a sample run of the program. Input voltages
were arbitrarily changed during the run for demonstration
purposes.

.JL...1.01

10 REM DATA LOGGING
15 LET ADC = 49344
20 PRINT "EVENT 11

;
11 VO 11

;
11 V1 11

;
11 v2 11

25 PRINT
30 DEF FN SCV> = INT <<<V * 5 I 255> * 100> + .5) I 100
90 FOR T = 1 TO 10
100 POKE 49344,0
110 V = PEEK <ADC>
115 VO = FN S<V>
120 POKE 49345,0
130 V = PEEK <ADC>
135 Vl = FN SCV>
140 POKE 49346,0
150 V = PEEK <ADC>
155 V2 = FN SCV>
160 PRINT T;
162 PRINT TAB< 10>VO;
164 PRINT TAB< 20>V1;
166 PRINT TAB< 30>V2
170 FOR D = 1 TO 7000: NEXT D
180 NEXT T

Figure 4-6
Listing for data logging routine

JRUN

EVENT VO

1 1.82
2 2.08
3 2a ~~1
4 2.49
5 2.67
6 2 .. 88
7 3.08
8 :3a 33
9 3.82
10 4u(>4

Figure 4-7

V!

1..51
2.27
2.98
3a55
4
4.86
5
4.9
:3. 8
2.75

Sample run of data logging routine
58

V2

1.96
2.35
2 .. 57
2.8
3.04
3a39
3 .. 59
3.9
4.16
4. 4c'

4-1 Multiple Analog Inputs 59

The input voltages could come from sensors that measure
physical parameters, such as wind speed, temperature, pressure,
or humidity. In that case, suitable scaling factors would have to be
used for each input, and appropriate headings would have to be
printed on the hard copy.

AID converters are also available with 16 multiplexed chan
nels. Two such devices are the ADC0816 and ADC0817, which
perform similarly to the 0809.

CHAPTER 5

Structuring Your
Applications

Programs

Although this book is primarily hardware oriented, this chapter
will briefly discuss some software design principles. Too many
hardware designers neglect to use good software design practices.
The result is programs that are difficult to read and understand and
almost impossible to modify without a great deal of effort. The
common opinion is if a program "works," that is all that matters.
And the quicker one can get it to work, the better. There is some
truth in that. After all, if a program is written, say for a program
mable controller that turns motors on and off at some intervals, and
if it does the job, what more could be asked? But what happens if
the number of motors to be controlled is changed, if the time
intervals are changed, or if other input conditions must be exam
ined before a decision is made to run or not to run? The result might
be a complete rewriting of the program or just a simple modifica
tion to the existing program, depending on the readability and
flexibility of the original software.

Industry has recognized for years that too much time and
money is wasted in redesigning poorly planned programs. Pro
gram writers must remember that writing the code for a system,
whether in high-level or machine language, is only one part of the
software development effort. The whole spectrum of software
development has been said to include all of the following:

Definition and design
Coding
Debugging and testing
Documentation
Maintenance

Writing program code can be integrated effectively into the
entire operation if adequate planning is done in the beginning. Part
of that planning includes an organized approach to coding, often
called top-down design or structured programming. This chapter will
discuss some aspects of a structured approach.

5-1
DEFINE AND DESIGN

Before we can begin to build any system, whether it is a program
mable controller, a data-logging weather station, or whatever, we

62

5-1 Define and Design 63

must define what the system should do. Many small system designs
gradually evolve into finished products. But often the system is so
large that several people, even different design teams, may work on
different parts of the system simultaneously. In this case, it is
necessary to clearly outline, or block diagram, the entire system. It
is at this point, early in the design phase, that decisions must be
made as to what the limits of the system are, what hardware
software tradeoffs will be made, and so on. For instance, if a
keyboard is needed to input some values, should a software
encoded keyboard or a keyboard controller chip be used? The
software keyboard will probably be less expensive, but it will also
probably be slower. Which is more important for this particular
application? This and similar decisions should be made early in the
design phase with both hardware and software personnel giving
their opinions. Even if you are designing the entire system on your
own, consider the options before proceeding. Sound decisions
made early can save headaches later.

Some things to consider in the definition phase are: What
inputs and outputs must the system have? Will the hardware
inputs be parallel binary information, which can be brought in
through an input buffer, or will you need a serial input or an AID
converter? What outputs are needed? Will you have to drive motors
and lamps by means of triacs, or will you need a DIA converter or
maybe just a graphics display?

For example, let's define the Fluid Level Monitor program that
we discussed in chapter 4. Our objective is to continually keep
track of the level of fluid in a tank. Let's assume the tank will have a
float gage that will produce a de output voltage between 0 and + Sv,
depending on the level in the tank. When the tank is empty, the
gage output will be Ov, and +Sv will be its output when the tank is
full. So the input to our computer will be through an AID
converter.

The only output we need now is a graphics display for the
plant supervisor to watch. However, we want to prompt the user to
enter values for the tank dimensions, as well as for the colors of the
tank and the fluid. We do this with an eye to the future, in case we
later decide to show more than one tank at a time on the screen.

Now that the system requirements have been defined, you can
proceed to the design phase. You would not begin a hardware
design from the bottom up by saying, "I think I'll use a 7400 and

64 CHAPTER 5 Structuring Your Applications Programs

connect pin 3 to pin 4, and then " In other words, you would not
start at the lowest level without having some overall plan to work
from. You probably would start by drawing an overall block
diagram of the system then gradually refine the block diagram into
smaller and smaller chunks as you get deeper into the design. This
process is called top-down design. Good software is designed in a
similar manner. You begin with an overall plan, or outline, and
gradually refine it into smaller and smaller modules as you get
deeper into it.

One approach to designing software is to draw a flowchart
describing what things are to be done and the order in which they
are to be done. Unfortunately, many people do not like to write
flowcharts first. This may be partially because to draw the
flowchart well, you must have most of the details worked out in
your mind beforehand. In addition, it is not very easy to change the
flowchart many times without ending up with an unreadable mess.
In practice, most good flowcharts are generated after the software is
written to help the reader or troubleshooter understand the pro
gram. But there is an easy way for you to plan your program
without a flowchart. You simply write an outline for the program,
just as you would write an outline for a theme paper or a chapter
for a book.

The outline for your program can consist of a series of one-line
REM statements. Each REM statement will later be used to intro
duce and describe a subroutine that will do some small part of the
overall task. By breaking up your large program into several small
chunks (subroutines), you can easily write, test, and debug each of
these parts, just as you can easily test and debug small modules in
a large electronic system. Each module can be written, tested, and

JL.IST

10 REM
20 REM
30 REM
40 REM
50 REl"I

Figure 5-1

*** FLUID LEVEL MONITOR ***
--GET TANK DIMENSIONS--

--BUILD TANK--
--GET FLUID LEVEL--

--ADJUST FLUID LEVEL DISPLAY--

Fluid-level monitor outline

5-2 Writing the Code 65

stored until needed. After several modules have been written, they
can be linked together and tested.

The outline for the Fluid Level Monitor program is shown in
figure 5-1. For now, do not worry about line numbers or how many
lines of code will be required for each part. The outline is simply
written to indicate what things are to be done and in what order
they are to be done. We can fill in more of the details later.

5-2
WRITING THE CODE

Some programming languages such as PASCAL lend themselves to
good program structuring. One reason is that they read almost like
plain English language and they do not use cryptic variable names
like Al and V2. In addition, PASCAL uses a main driver, or control,
section of program that calls procedures to be performed as they are
needed. We can set up our BASIC programs in a structured format
by using the same principles. We can write a short driver program
that calls subroutines to perform the individual small tasks.

Most programmers are aware that subroutines are used for a
series of instructions which are executed more than once in a
program. By using the subroutine, the code for that routine is
written only once, and it may be accessed any time it is needed by
using the command GOSUB NN. The last instruction in a sub- ·
routine must always be RETURN. When RETURN is executed, the
program control returns to the line following the one that called
the subroutine.

Subroutines have other valuable features besides eliminating
the rewriting of code. They make the program more readable
(better documentation), they aid in testing and debugging, and
they make the overall program easier to write.

To illustrate these points, let's expand our outline of figure 5-1,
as shown in figure 5-2. Notice that the major outline steps of lines
20, 30, 40, and 50 have become parts of what is called the main
driver. They control the order in which the subroutines (which
actually do the tasks) are called. The main driver controls the entire
program execution. All other sections of the program are subordinate
to the main driver. All subroutine calls and branches return to the

66 CHAPTER 5 Structuring Your Applications Programs

JLIST

10
15
20
25
30
40
50
60
100
110
120
190
200
210
220
2<70
1000
1010
1020
1090
1200
1210
1220
1290

REM *** FLUID LEVEL MONITOR ***
REM *** MAIN DRIVER ***
GOSUB 1000: REM --GET TANK DIMENSIONS--
GR
GOSUB 1200: REM --BUILD TANK-
GOSUB 100: REM --GET FLUID LEVEL--
GOSUB 200: REM --ADJUST FLUID LEVEL DISPLAY-
GOTO 'lO

REM *** GET FLUID LEVEL ***
REM a.get value from AID converter
REM a •• and scale it for graphics display
RETURN
REM *** ADJUST FLUID LEVEL DISPLAY ***
REM QQpaint in fluid from bottom
REM ••• to height Y
RETURN

REM *** GET TANK DIMENSIONS ***
REM a.ask user to enter values
REM Naafor sides~ top~ and bottom of tank
RETURN
REM *** BUILD TANK ***
REM .• construct sides and bottom of tank
REM .a.using lo-res graphics
RETURN

Figure 5-2
Defining the subroutines of the fluid-level monitor

main driver. So by reading through the main driver subroutine
calls, the reader can get an overview of what the entire program
does. Only when the reader wants to know exactly how a certain
part of the program is done does he or she have to read through the
actual subroutine code.

Reading through the main driver of figure 5-2, we see that first
a subroutine (GOSUB 1000) is called which asks the user to input
position values for the top, bottom, and sides of the tank. After
returning from that subroutine, the low-resolution graphics mode
is set and the next subroutine is called, which draws the shape of
the tank. Then, on returning to line 40, the next subroutine is
called (GOSUB 100), which reads in an input from the AID

5-2 Writing the Code 67

converter and scales it for the graphics display. Then line 50 calls
the subroutine that fills the tank to the proper level with the color
representing the fluid. The GOTO 40 puts the program in a
continuous loop, getting the new fluid level and adjusting the
graphics display accordingly. (To get out of the loop, hit RESET or
CTRL-C.)

A couple of points should be noted here. The order in which
the tasks are done depends on the order in which the subroutines
are called, not on the line numbers of the subroutines themselves.
Whenever Applesoft BASIC®* calls a subroutine, it searches for the
starting line number beginning with the lowest numbers. There
fore, it is able to find low-numbered lines faster than high
numbered lines. So whenever you have subroutines that are called
frequently or must be executed quickly, use low line numbers.
Seldom called subroutines or subroutines that can execute slowly,
say for displaying user prompts, can be assigned higher line
numbers with no detrimental effects. This is why the GET FLUID
LEVEL and ADJUST subroutines are placed at lower line numbers
than the other two subroutines.

Having refined our original outline to the level of figure 5-2,
we can proceed to write and test the actual subroutines. Since it
usually does not matter with which subroutine you start, do the
easy ones first. If you can not quite figure out how to handle a
certain part of the program, put it off until later. Often your mind
will subconsciously work on the problem, and you will find a
solution eventually. Also, simply working on another part of the
program might give you an idea for the difficult part.

Figure 5-3 shows the listing for the complete FLUID LEVEL
MONITOR program in a reasonably well-documented form. Notice
that while REM statements are used to set off each subroutine for
clarity, few plain-language REM statements or comments are used
overall. Although comments should be used if they will aid the
reader, it is possible to use coding techniques that make the
program almost self-documenting. For example, notice the use of
variable names in the GET TANK DIMENSIONS subroutine. Line
1015 assigns the variable name LFTSD to the user's input for the left
side limit. The contraction LFTSD is formed by simply dropping the
vowels from the words LEFT SIDE. By using the contraction, the

Applesoft BASIC® is a registered trademark of Apple Computer, Inc.

68

JLIST

10 REM *** FLUID LEVEL MONITOR ***
12 LET TNK = 49344
14 REM
15 REM *** MAIN DRIVER ***
16 REM
20 GOSUB 1000: REM --GET TANK DIMENSIONS--
25 GR
30 GOSUB 1200: REM --BUILD TANK--
40 GOSUB 100: REM --GET FLUID LEVEL--
50 GOSUB 2~): REM --ADJUST FLUID LEVEL DISPLAY--
60 GOTO 40
99 REM
100 REM *** GET FLUID LEVEL ***
101 REM
110 POKE TNl<~O

115 V PEEK <TNK>
120 Y = <V I 255) * <TP - BTTM> + BTTM
125 Y = INT <Y>
190 RETURN
199 REM
200 REM *** ADJUST FLUID LEVEL DISPLAY ***
201 REM
210 COLOR= C1
215 FOR X = LFTSD TO RGTSD
220 VLIN BTTM - l~Y AT X
225 NEXT X
230
235
:24(1
24::'i
250
29(1
999
1000
1001
1010
1015
1(>20
1025
1 o::.o
1035
1(>40
1090
1199
1200
1201
1210
1215
1220
1225
12:3(>
1235
1240
1245
:12~50

1255
1290

coum= o
FOR X = LFTSD TO RGTSD
IF Y ~ TP GOTO 250
VLIN Y - 1,TP AT X
NEXT X
RETURN
HEM

REM *** GET TANK DIMENSIONS ***
REM
PRINT "ENTER T<·~NK LIMITS"
INPUT "LEFT SIDE? <2··--55>"; LFTSD
INF'UT "RIGHT SIDE? = .. 4-37.::";RGTSD
I NF'UT II TOP? <: (1-20 :: II; TP
INPUT II BOTTOM"'? : 5-39 .·'· II TTM
I NPLIT II FLUID COL OF:? < 1)-- II :; c 1
l NPUT II T ANL COLOR"? ::: (1-7 :; C2
RETURN
REM
REM *** BUILD TANK ***
REM
COLOf;:::=: C2
PLOT LFTSD - 2.TP
PLOT RGTSD + 2.TP
FOR S ~ TP TO BTTM
PL.OT LFTSD - l~S

PLOT HGTSD + 1.S
NEXT S
FOR B = LFTSD TO RGTSD
PLOT B.BTTM
NEXT 8
RETUf~N

Figure 5-3
Complete listing of the fluid-level monitor

5-2 Writing the Code 69

reader will easily see where that variable is used in other parts of
the program, and he or she will more easily follow the program
flow than if single-letter or alphanumeric variable names are used.
Be careful in choosing variable names that you avoid the use of
reserved words. Often, dropping the vowels solves the problem for
you. For example, line 115 gets the value of the fluid level from the
AID converter. The actual line reads V = PEEK(TNK). The word
tank was abbreviated TNK because if the entire word TANK were
used, Apple would interpret that word as a trig function TAN K. In
general, using descriptive names for variables will make your
program much easier to read.

Using names is also very helpful when referring to 110 ports.
For example, line U equates TNK with the 1/0 address 49344 (slot 4
base address). If sometime later you decide to move the card to
another slot, you simply have to change line 12. On the other hand,
if you had used the address 49344 in every line that caused an input
or output, you would have to search through the entire program
listing and change every line referring to the old address.

Before leaving the topic of design, let's discuss a few more
general points. In the old days of programming, when hardware
was very expensive and rather slow, programs were given merit on
their speed and conciseness. If program A ran faster than program
B or took up less memory space than program B, A was considered
a better program. That is not the case any more, or at least it should
not be. Hardware is less expensive and much faster today than it
was several years ago. But the programs are more complex and
extensive, which makes debugging and maintenance time consum
ing and expensive. So keep it simple~on't be tricky. A program that
is written simply and clearly is far easier to debug and modify than
a tricky program. Avoid the temptation to show how clever you are.
You will be appreciated much more by those who have to use and
modify your program if you use a clear, organized approach.

Of course, there will be times when a certain section of a
program must run fast, for example, when you need to rapidly
update a display or to input and store a few hundred samples of
some rapidly changing voltage. At these times, you may have to
resort to tricks to gain the needed speed. Just remember to include
a few comments or REM statements to explain to the reader exactly
what you are doing. Whenever you need to do fast 1/0, the best way

70 CHAPTER 5 Structuring Your Applications Programs

is to call a machine-language subroutine to handle that part of the
program. In the next chapter we will discuss how to use BASIC and
machine code within the same program. Essentially, though, we
will still use the main driver/subroutine format, keeping our
programs readable.

Remember to save your programs frequently. Get into the habit
of saving your current file on the disc every 15 minutes or so and
every time you get up to get a cup of coffee or answer the phone.
The few seconds taken to save your file will prevent a lot of anguish
if there is a momentary power failure or if someone else sits down at
the terminal while you are gone. Also be sure to make at least one
backup disc with duplicates of all of your files. It is a good idea to
rotate the two discs at least daily. That is, use disc A as your
primary disc on Monday, Wednesday, and Friday, and use disc B on
the other days. This will prevent an unhappy surprise if one of the
discs is defective.

5-3
TESTING AND DEBUGGING

After you write a subroutine, you will want to test and debug it. You
do not have to wait until all of the subroutines are finished. You can
test each one independently, although sometimes it is just as well to
link two or more together for testing. For example, suppose we
want to test the program of figure 5-3. A good place to start would
be to test the GET TANK DIMENSIONS and BUILD TANK sub
routines at the same time. We could easily do this by putting a
STOP instruction, say at line 35. When we type RUN, the program
will ask us for the tank limits, and then it will construct the tank.
After we are sure that this section of the program works, we can
remove the STOP statement. We will want to try different values for
the dimensions to make sure that all desired values will work. This
aspect of testing, sometimes called program validation, checks to see
that all permissible values of inputs work.

It is often a good idea to insert traps after the user inputs to
prevent the program from ''bombing" because of bad values. For
example, line 1015 prompts the user to enter the position of the left
side of the tank. The prompt also shows the limits of the left side. If

5-3 Testing and Debugging 71

the user wants to input a value outside those limits, we want to
prompt him or her to input a new value. This can be accomplished
by inserting a new line in our program, such as

1018 IF LFTSD <2 OR LFTSD >35GOTO1015

Similarly, we can put traps after each INPUT line. Also
consider using default values, in case the user does not want to be
bothered entering specific numbers or does not care what the actual
value is. Figure 5-4 shows an expanded version of the GET TANK
DIMENSIONS subroutine with traps after each input statement. It
also includes default values.

To test the GET FLUID LEVEL subroutine without using the A/
D converter input, we can delete lines 110 and 115 and put in a new
line as follows:

115 INPUT 11 V= II; v
When you run the program, you will be prompted to input the

value of V, which would normally come from the AID converter.
You will then enter a value between 0 and 255. If you wish, you can
also put in a temporary line such as:

126 PRINTY

to see if the calculations of lines 120 and 125 are correct.

JLIST

1000 REM *** GET TANK DIMENSIONS ***
1001 REM
1005 INPUT "WANT TO ENTER NEW TANK DIMENSIONS? <VIN>";A$
1006 IF A$ = "V" GOTO 1010
1007 LFTSD = 2:RGTSD = 37:TP = O:BTTM = 39:C1 = 2:C2 = 7: REM DEFAULT VALUES
1008 GOTO 1090
1010 PRINT "ENTER TANK LIMITS"
1015 INPUT "LEFT SIDE? <2-35>";LFTSD
1018 IF LFTSD < 2 OR LFTSD > 35 GOTO 1015
1020 INPUT "RIGHT SIDE? <4-37>";RGTSD
1023 IF RGTSD < 4 OR RGTSD > 37 GOTO 1020
1025 INPUT "TOP? <0-34> ";TP
1028 IF TP < 0 OR TP > 34 GOTO 1025
1030 INPUT "BOTTOM? <5-39> ";8TTM
1033 IF BTTM < 5 OR BTTM > 39 GOTO 1030
1035 INPUT "FLUID COLOR? <0-7>";C1
1038 IF Cl < 0 OR Cl > 7 GOTO 1035
1040 INPUT "TANK COLOR? <0-7>";C2
1043 IF C2 < 0 OR C2 > 7 GOTO 1040
1090 RETURN

Figure 5-4
Adding traps and user options

CHAPTER 6

Using BASIC and
Machine Language

Effectively

In the previous chapters, we have used only BASIC language.
BASIC is quite powerful and easy to use, but it is also rather slow. In
many applications, our computer must execute certain sections of a
program as rapidly as possible. The best way of getting the
computer to operate fast is to use machine language rather than
BASIC.

The purpose of this chapter is not to teach machine-language
programming but rather to show how to combine the use of
machine-language subroutines with a BASIC driver to give us the
best of both software worlds. Sufficient directions will be given in
this chapter for you to enter and execute a few machine-language
routines even if you are totally unfamiliar with the techniques. But
if you want to eventually write your own machine-language
programs, you should study one of the many books on the subject,
which can be found in any good computer store or mail-order book
store.

6-1
WHEN TO USE BASIC-WHEN
TO USE MACHINE LANGUAGE

Since BASIC is much easier to write and to read than machine
language, the controlling or executive program should usually be
written in BASIC. Let's look at a few examples of where to use
BASIC.

Use BASIC in the initialization part of a program when you
assign names to variables and 110 ports, as was discussed in an
earlier chapter. Remember, using names for variables and 1/0 ports
makes your program much easier to read and modify.

Whenever menus are to be displayed to the user, BASIC should
be your choice. While it is possible to print messages on the screen
using machine language, why do things the hard way? With BASIC
it's a snap.

Whenever the user is requested to input information by means
of the keyboard, again BASIC is the simplest language to use. Since
the user is extremely slow in response compared to the computer,
there is no need for fast 110 here. Also be sure to use BASIC traps
and user prompts, as was demonstrated in an earlier chapter.

76

6-1 When to Use BASIC-When to Use Machine Language 77

Any number crunching or mathematics, other than simple addi
tion, subtraction, or comparison, should also be done in BASIC.

Outputs to ordinary printers and inputs from disc drives are
extremely easy tasks using BASIC. Since the printer or disc drive is
probably slower than the BASIC programs controlling them, no
advantage would be gained by going to machine language.

Finally, fixed or slowly moving graphics can be easily generated
by BASIC using the techniques explained in your computer's
reference manual or tutorial text. Only when higher-speed, moving
graphics are needed will you have to go to machine language.
(Programming high-speed graphics requires considerable expertise
in the use of machine language and will not be discussed here.)

So when should you use machine language? Whenever you need
a certain section of the program to execute at high speed. For
example, in chapter 4 we used an AID converter to measure the
value of some voltage source. We then displayed the value of that
voltage numerically on the video screen, much the same as is done
by a DVM. But suppose our input voltage is rapidly changing. To
view a rapidly changing waveform, you normally use a scope. In
fact, in chapter 7 we will see how to build a storage scope with the
computer. Under the control of a fast machine-language sub
routine, we will sample the output of the AID converter hundreds
of times each second and store the instantaneous values of voltage
in successive memory locations. Then upon returning from the
high-speed input routine, we will use BASIC to display the
instantaneous values graphically, giving us a trace similar to what
we would see on a real-time scope.

Similarly, we can generate any desired waveform in real time
by POKING the instantaneous values of the voltage waveform into
successive memory locations. Then we can call a machine-language
subroutine that rapidly outputs these values successively to a DI A
converter, thereby generating the desired waveform.

Another use of a fast-output routine is tone generation. If you
did all of the steps in the Applesoft Tutorial, you learned how to
make the built-in speaker tick or buzz. But you can get practically
any audio frequency tone out of the speaker. All you have to do is
toggle it on and off at a sufficiently high rates of speed. BASIC
cannot do this fast enough-but machine language can. Machine
language can do jobs like toggling a speaker hundreds of times faster
than BASIC. Therefore, much higher frequency tones are possible.

78 CHAPTER 6 Using BASIC and Machine Language Effectively

Whether you are aware of it or not, every program you run
calls machine-language subroutines located within the Apple's
monitor ROM. These subroutines quickly do the myriad of tasks
needed to calculate, display, print, or do whatever must be done to
make the program work. The calling of these subroutines is
transparent to the BASIC programmer, who is only concerned with
the BASIC program. Nevertheless, many ROM-based subroutines
are called even for the simplest BASIC operation. The real advan
tage in calling your own specialized machine-language subroutine
at a critical point in the program is that your subroutine is custom
designed to do a specific task. Since your custom routine does not
usually have to call many other routines to accomplish its task, it
executes very fast.

6-2
ENTERING MACHINE
LANGUAGE PROGRAMS INTO
RAM

Most machine-language programs, especially longer ones, are first
written in assembly language using an assembler program. When
using an assembler, the programmer does not need to look up the
actual op codes for each instruction, but rather he or she simply
types in the mnemonics for each instruction and the assembler
converts the mnemonics into the corresponding machine codes.

You may want to become familiar with assembly-language
programming if you intend to develop many of your own spe
cialized programs or subroutines. There are several good texts on
this rather advanced subject, so it will not be covered here.
However, a programmer does not need an assembler if the machine
code listing is already available. For the applications discussed in
this book, the complete assembly- and/or machine-language pro
grams will be given. So all we need to discuss is how to enter the
machine code into memory and how to run it.

As described in the Apple's Reference Manual, the monitor has
routines to allow easy entry of machine code directly into RAM.
The first thing you do is get into the monitor mode by typing

CALL -151

6-2 Entering Machine-Language Programs Into RAM 79

You should then see an asterisk (*) prompt, indicating that you are
in the monitor.

Next, type in the hex address of the RAM location where you
want to enter the first byte of the program. Then type a colon,
followed by the hexadecimal byte you want in that location. Then
hit the space bar once, and type in the byte you want in the next
location. You do not need to type in each new address-it automat
ically increments each time a new byte is entered. You can continue
to type in up to 85 bytes as you enter your program. If more than 85
bytes are needed, you simply type in the address of the first of a
group of bytes and enter the bytes as before. The last byte of the
program should be 60 (RTS). When you have typed in the final
byte, hit RETURN and your program will be entered in RAM.

For example, let's enter a short machine-code routine into
RAM starting at location 0300 hex. First, type

CALL -151

Then when you see the asterisk prompt, type

*0300: AO 00 AD 30 CO 88 DO 04 C6 01 FO 08 CA DO
F6 A6 00 4C 02 03 60

and hit RETURN.
The program is now in RAM. To examine the program in

RAM, and also to see the use of the monitor's disassembler, type

300L

The L stands for LIST. You should now see a listing of your
program on the video screen, which looks like figure 6-1. This
listing is generated by the disassembler in the Apple. The dis
assembler converts the op codes of the machine code program into
their corresponding mnemonics and prints the program in a more
readable format.

Let's look at the listing. The leftmost column shows the hex
address where each op code is stored, the second column shows the
op code, and the third/fourth column shows the operand (value to
be operated on) or the operand address. For example, in this listing
the op code AO in memory location $0300 stands for Load Register
Y, shown as LOY in the mnemonic field. The value 00 is to be
loaded into the Y register, so the operand is 00. On the second line
of the listing, we see that in location $0302 we have the byte AD,
which is the op code for the load accumulator (LDA) instruction.

80 CHAPTER 6 Using BASIC and Machine Language Effectively

ltl ltl
Ul I.fl
QI QI
!... !...
"O "O
"O "O
<I: <I:
....... u

I.fl QJ "O "O
Ill "O c c c
Ill 0 tti 0 tti
!... tl !... e !...
"O Ill QJ Ill
"O a. a. c a.
<I: 0 0 E 0

o:::::oo- {~10 00 LDY #$00
0302- AD 30 co LDA $C030
0305- 88 DEY
0306- DO 04. BNE $030C
0308- C6 01 DEC $01
030A- FO 08 BEQ $0314
030C- CA DEX
0300- DO F6 BNE $0305
030F- A6 00 LDX $00
0311- 4C 02 03 JMP $0302
0314- 60 RTS
0315- 68 PLA
03:L6- 28 PLF'
0317- 60 RTS
0:::::1s- 00 BRI<
0319- 00 BRI<
031P1- 00 BRI<
0:3;1BM- 00 BHK
031C- 00 BR~=::
0310- 00 BF~I<

Figure 6-1
Disassembled listing of machine code program

The next two bytes, 30 and CO, give the address of the byte to be
loaded into the accumulator. Note that the computer expects to find
the low byte first then the high byte. However, in the operand/
address field following the mnemonic field, the addresses are
shown with high byte first for easy reading. You can see that it is
much easier to read through the disassembled listing than it is to

6-2 Entering Machine-Language Programs Into RAM 81

read through the original machine-code program you keyed in.
Your last program byte 60 is in memory location 0314. Any bytes
LISTed after that are simply values that were already in RAM before
you entered your program.

When run, this program generates a tone in the Apple's
speaker. Prior to running the program, you must store a pitch
parameter (number) in memory location 0000 and a duration
parameter in memory location 0001. You can do this either through
BASIC POKE commands or while in the monitor (asterisk prompt),
just as you entered the program above. For example, if you type

*00: C3 CO

then hit RETURN, you will hear a middle Con the musical scale
when you run the program.

Figure 6-1 shows that first the Y register is cleared then the
speaker is toggled. The program then branches back and forth
decrementing the Y and the X registers. Each time the X register
goes to zero, it is reloaded with the pitch parameter and the speaker
is toggled. Each time the Y register goes to zero, the duration
parameter is decremented. When the duration parameter (contents
of 0001) goes to zero, the program returns to th~ driver that called it.
Therefore, each time you run the routine, you must load memory
location 0001 with a duration value.

To run this short program, type

*300G

The G stands for GO. If your program runs correctly, you should
hear a tone for a short time. You can experiment with changing the
pitch and duration parameters on your own. Table 6-1 shows the
approximate correspondence between the pitch parameters for an
Apple II+ and the notes of the musical scale. The values are shown
in decimal, the way you would enter them from BASIC.

Machine-language programs are often less forgiving than
BASIC. Since a minor error can easily cause the program to bomb,
it is usually a good idea to double check your program after
entering it to make sure you entered it correctly. If it does bomb or
you observe strange things happening, first try typing CTRL-C.
This should bring the computer back to BASIC. If CTRL-C does not
work, hit the RESET button. If the computer still does not respond,
you may have to shut down and start up again.

82 CHAPTER 6 Using BASIC and Machine Language Effectively

TABLE 6-1
Pitch Parameters to Be Used with Routine of Figure 6-1

Pitch Value

c 195
D 175
E 155
F 146
G 130
A 115
B 103
C2 98

Let's assume that your program runs OK. To get out of the
monitor mode and back to BASIC, type CTRL-C.

Machine-language programs can be stored in any area of RAM
not used by the computer either for BASIC or for its own internal
housekeeping. A convenient area for small routines is in page
three, except for the upper 16 locations from $03FO to $03FF. The
Apple uses those locations for itself. Locations $0300 through $03EF
(decimal 768 to 1007) are available for user RAM.

6-3
SAVING AND LOADING
MACHINE-LANGUAGE
PROGRAMS WITH DISCS

Once you have entered your machine-code program in RAM, you
will want to save it on disc. (Assume that you have already returned
to BASIC by typing CTRL-C.) The format for saving a machine
language program already in RAM is

BSA VE filename, A$ aaaa, L$

where the hexadecimal digits following the letter A give the
starting address of the program, and the digits following the L give
the length of the program in bytes. These are not optional; you
must supply them.

For example, suppose we want the sound-generating routine
mentioned in section 6-2 saved with the filename SOUNDGEN.

6-4 Calling Machine-Language Subroutines 83

This program starts at $0300 and is $15 (21 decimal) bytes long. To
save the program simply type

BSAVE SOUNDGEN, A$300,L$15

and hit RETURN. The program will be saved as a binary file and
will be listed in the disc's catalog as a B file.

You have the option of specifying either the address or the
length, or both, in decimal. For example, BSAVE SOUNDGEN,
A$300,L21 or BSAVE SOUNDGEN, A768,L21 will also work.

To load a previously saved binary program into the same area
of memory from which it was originally saved, simply type

BLOAD f i 1 ename

You can load a binary file into a different area in memory by
typing

BLOAD f i 1 ename, A$ aaaa

where the hexadecimal digits following the A specify the address
where you want to begin loading your file. This feature allows you
to accumulate a library of useful machine-language subroutines
from which to choose for use in particular applications. You can
easily load them anywhere you choose, without regard to where
they initially resided. Again, you can optionally specify the ad
dress in hexadecimal or in decimal.

6-4
CALLING MACHINE·
LANGUAGE SUBROUTINES
FROM WITHIN A BASIC
PROGRAM

You learned how to load and run a machine-language program
using monitor commands. Now we will look at an effective way of
using machine-language subroutines controlled by a BASIC driver.

Assume that the machine-language program SOUNDGEN is
already loaded into RAM starting at $300 (768 decimal). Figure 6-2
is the listing of a simple BASIC program that calls the machine
language subroutine. Notice that the program begins in BASIC,

84

JLIST

10 REM ** MACHINE LANG CALL DEMO **
20 DUR = 200: REM DURATION PARAMETER
30 INPUT "ENTER PITCH 11 ;PITCH
40 POl<E O,PITCH
50 POKE 1,DUR
60 CALL 768
70 GOTO 30

Figure 6-2
BASIC program that calls a machine language routine

JLIST

10 REM ** MACHINE LANG CALL DEMO **
15 SOUNDGEN = 768
20 DUR = 200: REM DURATION PARAMETER
30 INPUT "ENTEF~ PITCH II; PITCH
40 POKE O,PITCH
50 POl<E 1 , DUR
60 CALL SOUNDGEN
70 GOTO 30

Figure 6-3
Calling a subroutine by name

JLIST

10 REM ** MACHINE LANG CALL DEMO **
12 0$ = CHR$ <4>: REM CHR$<4> IS CTRL-D
13 PRINT D$;"BLDAD SOUNDGEN,A768"
15 SOUNDGEN = 768
20 DUR = 200: REM DURATION PARAMETER
30 INPUT "ENTER PITCH ";PITCH
40 Pm<E O, PITCH
50 F'Ol<E 1,DUR
60 CALL SOUNDGEN
70 GOTO 30

Figure 6-4
Loading a binary file from within a BASIC program

6-4 Calling Machine-Language Subroutines 85

jumps to the machine-language subroutine, and returns to BASIC.
The CALL 768 works similarly to a GOSUB instruction, except that
the address of the first instruction (768) is specified rather than a
BASIC statement number.

When you run the program, you will be prompted to enter a
PITCH parameter. You should then key in a number between 1 and
255 and hit RETURN. The computer will play a note corresponding
to the value you keyed in. If you wish, you can alter the DURation
parameter as well.

To pass a value from BASIC to the machine-language sub
routine, we first execute the BASIC instruction POKE 0, PITCH
(line 40). After the CALL instruction is executed, the machine
language instruction LOX $00 loads our PITCH value into the X
register to be used in the subroutine.

When the CALL instruction is executed, the return address of
the next BASIC instruction is automatically pushed onto the stack.
This also happens for a GOSUB instruction. The last instruction of
the machine-language subroutine must be return from subroutine
(RTS). When the RTS is executed, program control returns to
BASIC.

To make the program more readable (self-documenting), you
can use a subroutine name rather than the starting address in the
CALL instruction, as is shown in figure 6-3. Line 15 equates the
subroutine name SOUNDGEN with the starting address 768. Then
line 60 calls SOUNDGEN by name.

The program of figure 6-3 assumes that the machine code was
already loaded in RAM. But we can have our BASIC program load
the machine-language program when we run it by embedding DOS
commands within the BASIC program. (See figure 6-4.)

When line 13 is executed, the computer will load the binary file
SOUNDGEN from the disc into RAM, starting at location 768
decimal. Then the remainder of the program will run as before.

Figure 6-5 shows the complete listing for a program to
generate simple tunes with the Apple. It demonstrates the use of a
BASIC driver, which first loads the machine-language subroutine
then calls various subroutines as they are needed. Study this
program to see the interaction of the various parts. You can
enhance the program by passing a duration parameter for each
tone, as well as a pitch parameter.

86

JLIST

1
2
3

REM
REM
REM

* * * MUSIC MAKER *

4 REM
5 REM
6 REM
7 REM
10 REM

* * * J. OLEKSY 1964 *
* *

12 0$ = CHR$ <4>: REM CHR$<4> IS CTRL-D
13 PRINT O$;"BLOAD SOUNDGEN,A768"
15 SOUNDGEN = 768
20 DUR = 200: REM DURATION PARAMETER
25
100
101
102
110
120
130
140
150
160
170
500
501
502
510
519
520
522
523
524
530
531
532
534
540
550
555
560
571
572
573
574
575
576
577
578
600

GOSUB 500
REM
REM ** PLAY NOTES **
REM
FOR N = 1 TO 50

PITCH = S <N>
IF PITCH = 0 THEN END
POKE O,PITCH
POKE 1,DUR
CALL SOUNDGEN
NEXT N
REM
REM ** GET USER INPUTS **
REM
DIM S<50)
PRINT
PRINT " KEYBOARD NUMBERS 1 THROUGH B"
PRINT "CORRESPOND TO NOTES ON MUSICAL SCALE"
PRINT 11 C,D,E,F,G,A,B,C2 RESPECTIVELY"
PRINT
PRINT " ENTER THE NOTES YOU WANT PLAYED"
PRINT
PRINT II

PRINT
TYPE 0 AFTER THE LAST NOTE 11

FOR N = 1 TO 50
INPUT P
IF P = 0 GOTO 600
ON P GOTO 571,572,573,574,575,576,577,578

S<N> = 195: NEXT N
S<N> = 175: NEXT N
S<N> = 155: NEXT N
S<N> 146: NEXT N
S<N> 130: NEXT N
S<N> = 115: NEXT N
S<N> 103: NEXT N
S<N> 98: NEXT N

RETURN

Figure 6-5
Program to play simple tunes

6-4 Calling Machine-Language Subroutines 87

JLIST

10 REM ** APPLE ORGAN **
20 MEM = 0
25 MUSIC = 768
30 PRINT "ENTER NOTES"
40 GET N
50 ON N GOTO 210,220,230,240,250,260,270,280,290
60 POKE MEM,V
63 POl<E 1,200
100 CALL MUSIC
105 GOTO 40
210 V = 195: GOTO 60
220 V = 175: GOTO 60
230 V = 155: GOTO 60
240 V = 146: GOTO 60
250 V = 130: GOTO 60
260 V - 115: GOTO 60
270 V = 103: GOTO 60
280 V = 98: GOTO 60

Figure 6-6
Apple organ listing (assumes MC routine of Figure 6-1 in RAM)

A variation of the MUSIC MAKER program is shown in figure
6-6. This program, called APPLE ORGAN, allows you to play the
number keys on the keyboard as if they were keys on an organ. As
in the MUSIC MAKER program, the duration of each note is fixed.

Often a machine-language subroutine is used to obtain infor
mation that will be used later in the BASIC program, for example, a
byte read from an input port. So the information obtained by the
machine-language routine must be passed back to the BASIC
driver. The act of transferring information back and forth between
various segments of a program is known as passing parameters.

One simple and effective way of passing parameters, which we
have already seen, is to use certain designated RAM locations that
are accessible by all program segments. For example, we could
designate memory location 0000 as our temporary "mailbox." If our
machine-language program must transfer the byte from the ac
cumulator back to the BASIC program, we simply execute the
machine-language instruction.

88 CHAPTER 6 Using BASIC and Machine Language Effectively

STA $00

prior to doing the return from subroutine. Then once we are back in
BASIC, we execute an instruction such as

LET BYTE = PEEK (0)

The BASIC variable BYTE will then have the value that was in
the accumulator. If more than a single byte must be passed, we
simply reserve as many memory locations as necessary to hold our
parameters. We will use this method in the next chapter.

CHAPTER 7

Using the Computer
as a Storage Scope

We have all used oscilloscopes to view waveforms in real time,
that is, as they are happening. But sometimes the waveform we
want to view occurs only occasionally, such as a transcient pulse.
Or perhaps the waveform we want to view is not periodic, and we
cannot sync on any portion of it to allow viewing. An example of
this is the signals on the data bus of any microprocessor as a
program is being run. Since the data on the bus is changing
frequently and the pattern is not repetitive, we see garbage on the
scope.

But if we can somehow store the transient pulse as it occurs,
then we can "play it back" later for viewing. The storage scope allows
us to do just that. In this chapter we will discuss using the
computer as a simple storage scope. We will use an AID converter
to digitize instantaneous values of a waveform, and we will store
them in memory. After storing enough values, we will have the
computer plot the stored values to reconstruct the original
waveform.

7-1
BARE BONES STORAGE
SCOPE

Figure 7-1 shows a very simple setup to demonstrate our storage
scope. We use the ADC0804 that we studied in chapter 4. If you do
not remember what the 0804 does, you can review chapter 4 as
needed.

Notice that an ac signal generator is capacitively coupled to the
+ V input so that the ac voltage is superimposed on a de level. The
slider of the pot connected to the + Sv supply should be adjusted to
about midrange as a starting value. The ac signal generator should
be adjusted for an output signal of about 2v p-p, at a frequency of a
few hundred hertz. With the input values adjusted in this manner,
the total signal voltage applied to the + V input is within the
normal range of the ADC, and each time a sample is taken the total
input voltage will be converted to a number between 0 and 255.

Note also that the interrupt (INTR) output (pin 5) of the 0804 is
connected to the interrupt request (IRQ) input (pin 30) of the edge
connector. The INTR output of the ADC goes LOW to signal when

90

co
-'

+SV

+5V~-
GND~

011 42 >_= ___ _:_'_JI

.1

(c2
11 107

20
vcc

12

06~ 13

05~ ADC0804

04
,.----.......,,

15

16

17
01

~DO --~

Device
Select CS

AiWI 18~~RD

WR

INTR

al

Figure 7-1
Circuit for storage scope

10

V· -· 7 m

=

+5V

C1
150 pF

~

S R2
1K

R3
1K

Signal wire
routed out through
back of computer

Fig 7-1

EXTERNAL COMPONENTS

ac Superimposed on
de level

~-

~-F

AC Signal-Generator

92 CHAPTER 7 Using the Computer as a Storage Scope

conversion is complete. INTR gets reset (goes inactive HIGH again)
when the processor reads data from the ADC.

Assuming that we have the hardware set up as needed, with
the ADC0804 card plugged into slot 4, let's examine the program
shown in figure 7-2. During initialization we BLOAD the machine
language program FILBUF, whose assembly-language listing is
shown in figure 7-3. We will discuss FILBUF later. For now let's
continue on with the BASIC program.

Line 50 equates the name BUFFER with address 3072 ($0COO).
BUFFER is an area in free RAM where we will store our samples of
digitized input voltage. We will save 255 samples in memory
locations 3072 through 3327.

Line 60 tells our BASIC program where to find the machine
language subroutine FILBUF.

Line 70 POKEs values into locations 1022 ($03FE) and 1023
($03FF). These values, called the interrupt vector, tell the computer
where to go ($0320) to find the interrupt service routine.

The use of interrupts requires explanation. Recall that in
chapter 4. we were using only BASIC to access the ADC. Since
BASIC operates relatively slowly, we did not have to wait for the
0804 to tell us when the conversion was complete. We simply
POKEd the WR input of the chip to start conversion, then we
immediately did a PEEK at the same address, assuming that the
conversion was complete. But if we need to get many successive
samples and we want to get them as quickly as possible, we use a
machine-language subroutine to get them. However, the machine
language routine can read in the sample, store it in memory, and be
ready to read in the next sample before the ADC has completed the
next conversion. So the best way to handle the timing problem is to
have the ADC tell the computer when its conversion is complete by
requesting an interrupt.

Here is how the Apple handles an interrupt request:

1. The interrupting device (the ADC) requests an interrupt
by pulling the interrupt request (IRQ) line (pin 30) LOW.

2. The processor finishes its current instruction and then
tests the interrupt mask (I) flag in its flag register. If the
mask is set, the processor ignores the interrupt request
and continues on with its present program.

JLIST

10 REM ********************
12 REM * STORAGE SCOPE *
14 REM * J. OLEKSY 1984 *
18 REM ********************
19 REM
20 REM *** INIT ***
21 REM
30 0$ = "": REM CTRL-D
40 PRINT 0$"BLOAD FILBUF"
50 BUFFER = 3072
60 FILBUF = 768
70 POKE 1022,32: POKE 1023,03: REM
99 REM

REM *** MAIN DRIVER ***
REM

* INTERRUPT VECTOR *
100
101
110
120

CALL FILBUF: REM * GET fNPUTS FROM ADC *
HGR : HCOLOR= 7

130
140
150
160
499
500
501
510
520
530
540
550
560
570
580
590
595
699
700
701
710
720
730
740
750
760
770
799
800
801
810
815
820
830
840
850
860
870
880
890

GOSUB 700: REM
GOSUB 500: REM
GOSUB aoo: REM
GOTO 110: REM
REM

* PLOT AXES *
* PLOT WAVEFORM *
* GET USER INPUT *

* REPEAT LOOP *
REM *** PLOT WAVEFORM ***
REM

MEM BUFFER
x = 0
Y = PEEK CMEM>

HPLOT X,Y
FOR X = 1 TO 254

MEM = MEM + 1
Y = PEEK CMEM>

HPLOT TO X,Y
NEXT X
RETURN
REM
REM *** PLOT AXES ***
REM
FOR X = 0 TO 250 STEP 10
HPLOT x,eo
NEXT X
FOR Y = 0 TO 160 STEP 10
HPLOT O,Y
NEXT Y
RETURN
REM
REM
REM

*** USER INPUT ***
INVERSE
VTAB 23
PRINT "HIT SPACEBAR FOR NEW TRACE"
PRINT : PRINT "TYPE GI TO QUIT"
GET A$
PRINT : PRINT : PRINT
NORMAL
IF A$ = 11 Q11 GOTO 890
RETURN
TEXT : HOME : END

Figure 7-2
BASIC listing for storage scope

93

SOURCE FILE: FILBUF
0000: 1 ************************
0000: 2 * *
0000: 3 * FILBUF *
0000: 4 * *
0000: 5 * J. OLEKSY 1984 *
0000: 6 * *
0000: 7 * FILBUF READS VOLTAGE *
0000: 8 * VALUES FROM AID CONV *
0000: 9 * IN SLOT 4 AND STORES *
0000: 10 * THEM IN 255 MEMORY *
0000: 11 * LOCATIONS STARTING *
0000: 12 * AT $0COO * 0000: 13 * * 0000: 14 ************************

NEXT OBJECT FILE NAME IS FILBUF.OBJO
0300: 15 ORB $300
coco: 16 CNVRTR EQU $COCO
ocoo: 17 BUFFER EQU $C>COO
0300:08 18 FILBUF PHP ;SAVE REGISTERS
0301:48 19 PHA
0302:98 20 TVA
0303:48 21 PHA
0304:8A 22 TXA
0305:48 23 PHA
0306:A2 00 24 LOX #0 ;POINT TO FIRST LDC
0308:80 co co 25 STA CNVRTR ;START CONVERSION
0308:58 26 CLI
030C:EO FF 27 LOOP CPX #$FF ;ENOUGH SAMPLES?
030E:DO FC 28 BNE LOOP ; IF NOT-LOOP ABAIN
0310:78 29 SEI ;YES,ENOUGH-GO BACK TO DRIVER
0311:68 30 PLA ;RESTORE REGISTERS
0312:AA 31 TAX
0313:68 32 PLA
0314:A8 33 TAY
0315:68 34 PLA
0316:28 35 PLP
0317:60 36 RTS
0318: 37 ************************
0318: 38 * *
0318: 39 * INTERRUPT SERVICE * 0318: 40 * ROUTINE *
0318: 41 * *
0318: 42 ************************

NEXT OBJECT FILE NAME IS FILBUF.OBJ1
0320: 43 ORG $320
0320:AD co co 44 INTSRV LDA CNVRTR ;GET SAMPLE
0323:8D co co 45 STA CNVRTR ;START NEXT CONVERSION
0326:9D 00 oc 46 STA BUFFER,X •SAVE SAMPLE
0329:E8 47 INX ;POINT TO NEXT BUFFER POS
032A:58 48 CLI
0328:40 49 RTI

*** SUCCESSFUL ASSEMBLY: NO ERRORS

Figure 7-3
Assembly listing for FILBUF

94

7-1 Bare Bones Storage Scope 95

3. If the I flag is not set, the processor pushes its accumulator,
flag register, and program counter contents onto the stack.
It then sets the I flag to prevent further interrupts.

4. Next the processor loads the program counter low byte
from 1022 ($03FE) and the program counter high byte from
1023 ($03FF).

5. The computer then effectively jumps to the address now
loaded in the program counter and fetches its next instruc
tion. The two bytes in locations 1022 and 1023, called the
interrupt vector, must have been loaded by the programmer
with the starting address of the interrupt service routine
prior to any interrupt requests.

6. The last instruction in the interrupt service routine must
be ReTurn from Interrupt (RTI). When the RTI instruction
is decoded, the processor pulls bytes off the stack, thus
restoring the accumulator, flag register, and program
counter to what they were prior to the interrupt request.

7. Finally, the program resumes where it left off prior to the
interrupt.

Looking at our BASIC program again, our main driver starts at
line 100. We first call the machine-language subroutine FILBUF,
which fills the buffer with 255 samples of the input waveform. Then
the Hi-res graphics mode is set and the BASIC subroutine at line
700 plots our axes. Next the routine at line 500 is called, which
takes successive values from the buffer, plots them, and connects
the plotted points together, thus reconstructing the original wave
form that was stored in memory. The user is then asked if a new
trace is desired. If the spacebar is hit, a new waveform is sampled,
stored, and displayed. If nothing is done, the previous waveform
remains on the screen.

Figure 7-3 shows the assembly-language listing for FILBUF. It
begins by EQUating the names CNVRTR and BUFFER to the
addresses of the ADC and memory buffer, respectively. It then
pushes all registers onto the stack so no problems will be encoun
tered when returning to the main driver. Next the X index register
is cleared, and the ADC is given a "start conversion" signal by the
instruction on line 25. The interrupt mask is cleared so that
interrupts will be acknowledged.

96 CHAPTER 7 Using the Computer as a Storage Scope

The next two instructions, CPX and BNE, hold the processor
in a tight test loop while waiting for interrupt. When a conversion
is complete, the interrupt request causes the program counter to be
loaded with $0320, the starting address of the interrupt service
routine. (Remember that the address $0320 was POKEd into $03FE
and $03FF in line 70 of the BASIC program.) The service routine,
starting at line 44, loads the accumulator with the digitized value of
the input voltage and starts a new conversion. It then stores the
present value in the buffer location whose base address is $0COO,
using the X register contents as an index. Next the index register is
incremented to point to the next available location, the interrupt
mask is cleared, and the processor returns to where it left off in the
test loop. Note that the interrupt mask must be cleared each time we
return from interrupt so that the next interrupt can be
acknowledged.

The interrupt process is repeated 255 times, and each time a
new sample is stored in the buffer. When the X register contents
reach $FF, the program falls through, sets the interrupt mask to
prevent further interrupts, and restores all registers to what they
were prior to calling FILBUF. Then control returns to BASIC at line
120.

You do not need an assembler to run the program. Simply
enter the machine code for the subroutine using the method
described in chapter 6. The machine code dump is shown in figure
7-4 for your convenience.

When you run this program, experiment with the level adjust
pot and with the amplitude and frequency adjustments on the
signal generator to see their effects on the display.

·*-300 .. 32B

0300-~ 08 48 98 48 BA 48 A2 00
0:3os-- SD co co 58 EO FF DO FC
0310- 78 68 AA 68 AS 68 28 60
0318- 00 00 00 00 00 00 00 00
0320- AD co co SD co co 9D 00
0328- oc EB 58 40

Figure 7-4
Machine code listing for FILBUF

7-1 Using a Triggered Sweep 97

7-2
USING A TRIGGERED SWEEP

In the STORAGE SCOPE program covered in section 7-1, the
computer began taking in samples as soon as the spacebar was hit.
This may be satisfactory for some simple uses, but just as with a
real-time scope, we may want to have some trigger circuit begin
sampling the input waveform when the input signal crosses some
critical value or when some external event occurs. We will now add
a few components to our AID converter sampling system that will
cause sampling to begin only after a trigger signal occurs.

The circuit of figure 7-5 shows the necessary modifications for
using an external trigger. We will refer to this process as a triggered
sweep, as in a real-time scope. Note that the input signal is applied
to a comparator, as well as to the ADC. With the slope switch in the
position shown, whenever the input voltage (total value of ac + de)
is less positive than the voltage at the slider of the trigger level pot,
the output of the comparator is LOW. Then when the input voltage
gets more positive than the trigger level setting, the comparator
output switches HIGH. We use the transition from LOW to HIGH
to clock the 74LS74 D-type flip-flop. The flip-flop output is used as
a flag to tell the computer to begin sampling.

Besides adding the extra hardware, we will need another
subroutine to handle the trigger flag. Figure 7-6 shows how the
BASIC program is modified to use the new subroutine. Line 45
BLOADS the machine-language subroutine TRIGCK, which checks
for the TRIGGER FLAG. Line 65 tells BASIC where TRIGCK is located,
and line 110 calls TRIGCK instead of calling FILBUF. The remainder
of the BASIC program is identical to that of figure 7-2. All lines
beyond 500 are omitted from this listing for simplicity, but they are
identical to those in figure 7-2. Also, the machine-language pro
gram FILBUF is used as before.

Now let's take a look at figure 7-7, the assembly-language
listing for the TRIGCK subroutine. This subroutine is called by line
110 of the BASIC driver instead of FILBUF being call~d. TRIGCK
arms the trigger circuit by clearing the trigger flag. The processor
does this by writing to address COCl in line 18. If you examine the
hardware diagram of figure 7-5, you will see that when
DEVICE SELECT is active LOW and Al is HIGH, which is the case

co
CD +SV~ce

GND~

Figure 7-5
Triggered-sweep modifications

+5V

AC Signal Generator

EXTERNAL COMPONENTS

Trigger
level

JLIST

10 REM ********************
11 REM * TRIGGERED SWEEP *
12 REM * STORAGE SCOPE *
14 REM * J. OLEKSY 1984 *
18 REM ********************
19 REM
20 REM *** !NIT ***
21 REM
30 0$ = "": REM CTRL-D
40 PRINT D$"BLOAD FILBUF"
45 PRINT D$"BLOAD TRIGCK"
50 BUFFER = 3072
60 FILBUF = 768
65 TRIGCK = 816

7-1 Using a Triggered Sweep 99

70 POKE 1022,32: POKE 1023,03: REM * INTERRUPT VECTOR *
99 REM
100 REM *** MAIN DRIVER ***
101 REM
110 CALL TRIGCK: REM * GET SAMPLES *
120 HGR : HCOLOR= 7
130 GOSUB 700: REM * PLOT AXES *
140 GOSUB 500: REM * PLOT WAVEFORM *
150 GOSUB 800: REM * GET USER INPUT *
160 GOTO 110: REM * REPEAT LOOP *
499 REM
500 REM *** PLOT WAVEFORM ***

Figure 7-6
Storage scope listing with triggered-sweep modifications

when the processor writes to COCl, the output at pin 6 of the 7432
goes LOW. Also, since WR is active LOW, the output at pin 8 of the
7432 goes LOW, thus clearing the flip flop.

Next, the listing of TRIGCK shows that the processor polls the
TRIGGER FLAG by loading the accumulator from FLAG (COCl). Note
that when the processor reads from COCl, pin 6 of the 7432 enables
the tristate inverter (3), which places the complement of the Q side
of the flip flop on data line 07. The processor reads the data bus
and, if bit 7 is not set reads the flag over and over again. When the
input signal causes the fip flop to set, the TRIGGER FLAG will go
HIGH. When the processor reads a HIGH TRIGGER FLAG, it takes the
next instruction from line 21, which causes a jump to subroutine
FIBUF. FILBUF works exactly the same as before. After 255 samples
of the input waveform are stored, FILBUF returns to TRIGCK,
which then returns to BASIC. Of course to use TRIGCK, you must
first BSAVE it on disc.

100 CHAPTER 7 Using the Computer as a Storage Scope

SOURCE FILE: TRIGCK
0000: 1 ************************
0000: 2 * *
0000: 3 * TRIGCK *
0000: 4 * * 0000: 5 * POLLS FOR TRIGGER *
0000: 6 * FLAG * 0000: 7 * *
0000: 8 * DESTROYS:NOTHING * 0000: 9 * CALLS: FILBUF *
0000: 10 * OUTPUTS:NOTHING * 0000: 11 * * 0000: 12 ************************

NEXT OBJECT FILE NAME IS TRIGCK.OBJO
0330: 13 ORG $330
COC1: 14 FLAG EQU $COC1
0300: 15 FILBUF EQU $300
0330:08 16 PHP
0331:48 17 PHA
0332:80 C1 co ta CL RF LG STA FLAG ;RESET TRIGGER FLAG
0335:AD Cl co 19 POLL LOA FLAG ;FLAG SET?
0338:10 FB 20 BPL POLL ;NO-POLL AGAIN
033A:20 00 03 21 JSR FILBUF ;YES-GET SAMPLES
0330:68 22 PLA
033E:28 23 PLP
033F:60 24 RTS ;BACK TO BASIC

*** SUCCESSFUL ASSEMBLY: ND ERRORS

Figure 7-7
Assembly language listing for TRIGCK

Referring back to figure 7-5 for a moment, the three inverters
could all be in the same package, for example, parts of a 74LS240 or
a similar chip. The only one that must be tristate is inverter 3,
whose output is connected to the data bus. The ac signal generator,
slope switch, de level adjust, and trigger level pot must all be
mounted outside the computer. The remainder of the circuitry can
be mounted on the card in slot 4. The hardware will work in any
available slot, but remember to change the addresses of FLAG and
CNVRTR by changing the EQUates in the FILBUF and TRIGCK
routines if you use a different slot. With the hardware and software
given in these examples, input signals with frequencies up to a few
hundred hertz can be stored and displayed.

CHAPTER 8

Using the Computer
as a Waveform

Generator

In chapter 7 we saw how to read in many instantaneous values of
voltage from an analog-to-digital converter so that we could "store"
an input waveform in memory. Now we will see how to use the
computer to generate a real-time waveform by using a digital-to
analog converter. The DAC produces a de output voltage that is
proportional to its binary inputs. The process of outputing de
voltages or real-time waveforms has many applications in testing
and sound synthesis.

8-1
USING A DIGITAL-TO-ANALOG
CONVERTER

A digital-to-analog converter (also called a DIA converter or DAC) is
used whenever we want to generate a voltage proportional to some
digital value. One simple off-the-shelf DAC is the DAC0801, whose
diagram is shown in figure 8-1. The DAC0801 has 8 digital inputs
and, therefore, generates a de output voltage corresponding to the
digital inputs with a resolution of 1 part in 256. It has a fast settling
time of about 100 nanoseconds.

The actual value of output voltage depends on the way the chip
is wired. When wired as shown, the output voltage is adjustable
from Ov to a full-scale value up to lOv or so with binary inputs from
00 to $FF, respectively. A simple hookup to the computer is
obtained by driving the DAC inputs from the outputs of a latch
located in any suitable slot. The latch is needed to keep the digital
inputs of the DAC constant while the computer does other things.
By POKEing various values to the DAC, corresponding values of de
output voltage will be developed at the output (pin 6) of the 741 op
amp. The 0801 output (pin 4) actually produces an output current
that is proportional to the digital inputs. Therefore, the 741 op amp
is used to convert the output current into an output voltage.

Before we can use the circuit, we must calibrate the DAC's
output for zero and full scale. Let's assume that the DAC's inputs
are connected to the outputs of a latch chip in slot 4. (See chapter 2
for the latch circuit.) To zero the output we simply type

POKE 49345, 0

102

""' a
w

Digital Inputs
from latch

I

I D7 06 DS D4 D; D2 D1 DO I

1~~K Ms: I 6 1 1 I s I 9 I 10 I 11 I 1 /se

+12V
~ ,4

R2 I
7.SK

./'\./'-

= 15~J16
(.1 01

-12V

Figure 8-1
Digital-to-analog converter

DAC 0801
/2

113 i · =
+12V

I

R3
+12V Zero

Adj.

6
-12V

Full Scale Calib.

R6

I 2

3

104 CHAPTER 8 Using the Computer as a Waveform Generator

JLIST

5 REM *** OUTPUTTING DC LEVELS ***
10 LET DAC = 49345
20 INPUT 11 ENTER DESIRED OUTPUT VOLTAGE C0-5V>";V
25 PRINT
30 LET BYTE = V * 255 I 5
40 POKE DAC~BYTE
50 GOTO 20

Figure 8-2
Listing for outputting de levels with DAC in slot 4

Then, using a voltmeter or scope connected to pin 6 of the 741, we
adjust the zero adjust pot R3 until the output reads zero volts.

To calibrate for full scale we type

POKE 49345, 255

We will now see the output voltage rise to some positive value.
We simply adjust the full-scale calibration pot R6 until the output
reads exactly the full-scale value we want, say + Sv. After adjusting
the full-scale value, we should go back and check zero again and,
finally, adjust the full-scale value again since the two adjustments
are interactive. The calibration procedure is the same regardless of
the full-scale value you want. Using the zero and full-scale ~djust
ments as shown ensures accuracy without having to use precision
resistors. ·

Let's assume that you have the DAC circuit adjusted for a full- .
scale output of + Sv. The program of figure 8-2 can be used to
output any desired de voltage from 0 to + Sv. Line 30 scales the
value of BYTE for your selected de output voltage. Of course, you
must modify this line if you decide to use a different full-scale
value.

One application of this circuit could be to use the de voltage to
control the speed of a de motor, say for a chart recorder. For
example, the user could be asked to input the desired chart speed,
say in millimeters/second. Then the program could convert the
user's input into an appropriate digital value and send it to the
DAC, which in turn drives a power amp connected to the chart
drive motor. Once the speed byte is latched in, the computer is free
to do other things.

8-2 Using BASIC to Generate Sine Waves 105

JLIST

10 REM *** SAWTOOTH WAVE GENERATOR *** 20 LET DAC = 49345
30 FOR LEVEL = 0 TO 255
40 POl<E DAC!ILEVEL
50 NEXT LEVEL
60 GOTO 30

Figure 8-3
Listing to generate sawtooth waves

Rather than outputing constant de values, we can generate a
staircase waveform by periodically outputing higher and higher
values to the DAC. A simple program to do this is shown in figure
8-3. Or we can easily change the saw-tooth waveform into a
symmetrical, triangular wave by adding the following lines:

52 FOR LEVEL = 254 TO 1 STEP -1
54 POKE DAC, LEVEL
56 NEXT LEVEL

Finally, we can stretch out each step of the waveform by adding a
suitable time delay after each POKE command.

In general, the DAC allows us to output a time-varying voltage
or a de voltage, whose value depends on a byte that we store in an
outp~t latch.

8-2
USING BASIC TO GENERATE
SINE WAVES

Besides simple staircase waveforms, we can generate practically
any desired waveform to output through the DAC. All we have to
do is use the powerful mathematical capabilities of BASIC to
calculate the instantaneous values of the waveform then output
these values to the DAC.

For example, we can generate a sine wave by calculating a
number of instantaneous values of the waveform using the
equation

V = A* SIN(T)

106 CHAPTER 8 Using the Computer as a Waveform Generator

where V = instantaneous value
A = maximum amplitude of the wave
T = angle in radians

All we have to do is put the calculation in a loop in which the
value of T varies in small steps from 0 to 2 pi radians. As we
calculate each value for V, we store it in memory to be recalled later,
much like we did in the Storage Scope program.

Figure 8-4 shows the listing of such a program. It calculates
100 instantaneous values for V and stores them in a buffer. After all
values have been stored, the plotting routine is called, which takes
the values from the buffer and displays them on the screen. This
program does not send any values to the DAC, but it does
demonstrate the mathematical construction of a sine wave.

Notice that most of this program is identical to the Storage
Scope program of figure 7-2. To change the Storage Scope program
into a Sine Wave Generator program:

1. Load the Storage Scope program into the computer.
2. Delete lines 10 through 70.
3. Retype new lines 10 and 50.
4. Change line 110 as shown.
5. Change the Plot Waveform subroutine (line 500) as shown.
6. Change line 720 as shown.
7. Add the new subroutine that starts at line 1000.

(Notice how easy it is to use a library of existing subroutines to
build new applications programs. In this example, we used much of
a program already stored on disc. All we did was to add a little and
change a little.)

When you run the program, you will be asked to enter a
maximum value for the sine wave. After hitting RETURN, you will
notice a pause while the computer calculates 100 values for the sine
wave and POKEs them into the buffer. Then you will see the
waveform plotted on the CRT screen.

The User Input subroutine at line 800 gives the viewer the
option of viewing the waveform as long as desired, of generating a
new waveform, or of quitting the program.

The Sine Wave Calculation subroutine (line 1000) takes the
user input for maximum amplitude of the sinewave and calculates

JLIST 0,999

10 REM *** SINEWAVE GENERATOR ***
50 BUFFER = 768
99 REM
100 REM *** MAIN DRIVER ***
101 REM
110 GOSUB 1000: REM * SINWAVE CALCULATIONS *
120 HGR : HCOLOR= 7

* PLOT AXES * 130 GOSUB 700: REM
140 GOSUB 500: REM
150 GOSUB 800: REM
160 GOTO 110: REM
499 REM

* PLOT WAVEFORM *
* GET USER INPUT *

* REPEAT LOOP *

5~) REM *** PLOT WAVEFORM ***
501 REM
505 START = O:FINISH = 99
510 MEM BUFFER
520 X ::: STAFH
530 Y = 159 - PEEK <MEM> * .623
540 HPLOT X,Y
550 FOR X = START TO FINISH
560 Y = 159 - PEEK <MEM> * .623
570 HPLOT TO X,Y
580 MEM = MEM + 1
583 NEXT X
585 IF START 100 THEN RETURN
590 START = lOO:FINISH 199:MEM
592 GOTO 550
595 RETURN
699 REM
700 REM *** PLOT AXES ***
701 REM
710 FOR X = 0 TO 250 STEP 10
720 HPLOT X,159
730 NEXT X
740 FOR Y = 0 TO 160 STEP 10
750 HPLOT O,Y
760 NEXT Y
770 RETURN
799 REM
800 REM *** USER INPUT ***
801 REM
810 INVERSE
815 VTAB 23

BUFFER

820 PRINT "HIT SPACEBAR FOR NEW TRACE"
830 PRINT : PRINT "TYPE Q TO QUIT"
840 GET A$
850 PRI~T : PRINT : PRINT
860 NORMAL
870 IF A$ = "Q" GOTO 890
880 RETURN
890 TEXT : HOME : END
999 REM

Figure 8-4
Listing for sine wave generator

107

108 CHAPTER 8 Using the Computer as a Waveform Generator

JLIST 1000!12000

1000 REM *** SINEWAVE CALCULATIONS ***
1001 REM
1010 MEM = BUFFER
1020 PRINT "PEAK-TO-PEAK AMPLITUDE? <0-5V>
1030 INPUT Al
1040 FOR T = 0 TO 360 I 57.2958 STEP 360 I 5729D58
1050 V = 128 + 25.4 * Al * SIN CT>
1060 V = INT CV>
1070 POKE MEM,V
1080 MEM = MEM + 1
1090 NEXT T
1095 RETURN

Figure 8-4 (continued)

100 values for V in steps of 3.6 degrees. You can use different
increments to plot more or less than 100 points. Line 1050 scales and
offsets the value for V so that plotting will begin at the middle of
the plotting screen when V = Ov.

Now that we can calculate and store sufficient instantaneous
values to construct a sine wave, let's add a subroutine to output
these values to a DAC. Figure 8-5 shows the new program.

Lines 820 and 830 prompt the user to select a new waveform or
to generate a real-time waveform with the DAC. The user thus has
an opportunity to see the waveform on the computer CRT before
outputing it. When the user is satisfied with the shape, he/she
types R to go to the real-time generation mode.

The Real-Time Generation subroutine (line 200) causes values
to be taken from the memory buffer and sent out to the DAC in a
continuous loop. The DAC's output is the sine wave riding on a de
level of + 2.5v. This assumes that the DAC is adjusted for a full
scale output of + 5v, as described in section 8-1. You can vary the
zero level and full-scale output level of the circuit of figure 8-1 by
adjusting the two pots.

To stop sine wave generation, type CTRL-C, which will stop
the program.

JLIST O, 799

10 REM *** REALTIME SINEWAVE GENERATOR ***
50 BUFFER = 768
60 DAC = 49345
99 REM
100 REM *** MAIN DRIVER ***
101 REM
110 GOSUB 1000: REM * SINWAVE CALCULATIONS *
120 HGR : HCOLOR= 7
130 GOSUB 700: REM * PLOT AXES *
140 GOSUB 500: REM * PLOT WAVEFORM *
150 GOSUB BOO: REM * GET USER INPUT *
155 IF A$ = 11 R" THEN GOSUB 200: REM * BEGIN REALTIME GEN *
160 GOTO 110: REM * REPEAT LOOP *
199 REM
200 REM *** REALTIME GENERATION ***
201 REM
210 FOR MEM = BUFFER TO BUFFER + 99
220 V = PEEK <MEM>
230 POKE DAC,V
240 NEXT MEM
250 GOTO 210
499 REM
500 REM *** PLOT WAVEFORM ***
501 REM
505 START = O:FINISH = 99
510 MEM = BUFFER
520 X = START
530 Y = 159 - PEEK <MEM> * .623
540 HPLOT X,Y
550 FOR X = START TO FINISH
560 Y = 159 - PEEK <MEM> * .623
570 HPLOT TO X,Y
580 MEM = MEM + 1
583 NEXT X
585 IF START = 100 THEN RETURN
590 START = 100:FINISH = 199:MEM = BUFFER
592 GOTO 550
595 RETURN
699 REM
700 REM *** PLOT AXES ***
701 REM
710 FOR X = 0 TO 250 STEP 10
720 HPLOT X,159
730 NEXT X
740 FOR Y = 0 TO 160 STEP 10
750 HPLOT O,Y
760 NEXT Y
770 RETURN
799 REM

Figure 8-5
Real-time sine wave generator 109

110 CHAPTER 8 Using the Computer as a Waveform Generator

J LI ST 800, 2000

800 REM *** USER INPUT ***
801 REM
810 INVERSE
815 VTAB 23
820 PRINT "HIT SPACEBAR FOR NEW TRACE"
830 PRINT : PRINT "TYPE R FOR REALTIME GENERATOR"
840 GET A$
850 PRINT : PRINT : PRINT
860 NORMAL
880 RETURN
999 REM
1000 REM *** SINEWAVE CALCULATIONS.***
1001 REM
1010 MEM = BUFFER
1020 PRINT "PEAK-TO-PEAK AMPLITUDE? <0-5V>"
1030 INPUT Al
1040 FOR T = 0 TO 360 I 57.2958 STEP 360 I 5729.58
1050 V = 128 + 25.4 * Al * SIN <T>
1060 V = INT <V>
1070 POKE MEM,V
1080 MEM = MEM + 1
1090 NEXT T
1095 RETURN

Figure 8-5 (continued)

8-3
GENERATING OTHER
WAVEFORMS

We are not limited to generating only sine waves with our DAC. We
can generate almost any desired waveform simply by using the
appropriate equations to calculate the instantaneous values. Figure
8-6 shows the listing of a program that can generate sine waves,
triangular waves, rectangular waves, or complex waves, according
to the user's option.

Actually, a complex wave is any nonsinusoidal wave. But we
are using the term complex here to specifically refer to a waveform
constructed from a fundamental sine wave plus a variety of other
sine waves that are harmonically related to the fundamental sine
wave.

JLIST 0,699

10 REM **********************
12 REM * WAVEFORM GENERATOR *
14 REM * J. OLEKSY 1984 *
18 REM **********************
50 BUFFER = 768
60 DAC ::;;: 49345
99 REM
100 REM *** MAIN DRIVER ***
101 REM
110 GOSUB 900: REM * GET WAVEFORM CHOICE *
115 ON CHOICE GOSUB 1000,2000,3000,4000
120 HGR : HCOLOR= 7
130 GOSUB 700: REM * PLOT AXES *
140 GOSUB 500: REM * PLOT WAVEFORM *
150 GOSUB 800: REM * GET USER INPUT *
155 IF A$ = "R" THEN GOSUB 200: REM * BEGIN REALTIME GEN *
160 GOTO 110: REM * REPEAT LOOP *
199 REM
200 REM *** REALTIME GENERATION ***
201 REM
210 FOR MEM = BUFFER TO BUFFER + 99
220 V = PEEK <MEM>
230 POKE DAC,V
240 NEXT MEM
250 GOTO 210
499 REM
500 REM *** PLOT WAVEFORM ***
501 REM
505 START = O:FINISH = 99
510 MEM = BUFFER
520 X = START
530 Y = 159 - PEEK <MEM> * .623
540 HPLOT X,Y
550 FOR X = START TO FINISH
560 Y = 159 - PEEK <MEM> * .623
570 HPLOT TO X;Y
580 MEM = MEM + 1
583 NEXT X
585 IF START = 100 THEN RETURN
590 START = 100:FINISH = 199:MEM = BUFFER
592 GOTO 550
595 RETURN
699 REM

Figure 8-6
Listing for waveform generator

111

JLIST 700, 1999

700
701
710
720
730
740
75(1
760
770
799
800
801
810
815
820
830
840
850
860
880
899
900
901
910
920
930
940
942
944
946
948
950
960
970
980
990
999
1000
1001
1010
1020
1030
1040
1050
1060
1070
1080
1090
1095
1999

112

REM *** PLOT AXES ***
REM
FOR X = 0 TO 250 STEP 10
HPLOT X,159
NEXT X
FOR Y = 0 TO 160 STEP 10
HPLOT O,Y
NEXT Y
RETURN
REM
REM *** USER INPUT ***
REM
INVERSE
VTAB 23
PRINT "HIT SPACEBAR FOR NEW TRACE"
PRINT : PRINT "TYPE R FOR REALTIME GENERATOR"
GET A$
PRINT : PRINT : PRINT
NORMAL
RETURN
REM
REM *** GET WAVEFORM CHIOCE ***
REM
TEXT : HOME
PRINT : PRINT TAB< 6)"*** WAVEFORM GENERATOR***":
PRINT "WAVEFORM TYPES": PRINT 11

-------- -----"

PRINT TAB (1(>)" <1) SINEWAVE"
PRINT TAB< 10>"<2> TRIANGULAR WAVE"
PRINT TAB< 10)"(3) RECTANGULAR WAVE"
PRINT TAB< 1(>)" (4) COMPLEX WAVE"
PRINT: PRINT TAB< 10)"(0) EXIT PROGRAM"
PRINT : INPUT "CHOOSE ONE ==> .. ;CHOICE
IF CHOICE = 0 THEN 990
IF CHOICE < 0 OR CHOICE > 4 THEN 900
RETURN
HOME : VTAB 10: PRINT "GOODBYE FOR NOW": END
REM

REM *** SINEWAVE CALCULATIONS ***
REM

MEM = BUFFER
PR I NT II PEAK-TO-PEAK AMPLITUDE? <0-5V) II

INPUT Al
FOR T = 0 TO 360 I 57.2958 STEP 360 I 5729.58

V = 127 + 25.4 * Al * SIN <T>
V = INT <V>

POKE MEM,V
MEM = MEM + 1

NEXT T
RETURN
REM

Figure 8-6 (continued)

PRINT PF

8-3 Generating Other Waveforms 113

JLIST 2000,3999

2000 REM *** TRIANGULAR WAVE CALC ***
2001 REM
2010 MEM = BUFFER
2020 PRINT : INPUT "MAX AMPLITUDE? C0-5V>";V1
2030 INPUT "ENTER% POSITIVE DUTY CYCLE Cl TO 99)";P
2040 VM = V1 * 255 I 5
2045 REM * POS SLOPE CALC *
2050 FOR N = 0 TO P
2060 V = VM * N I P
2070 POKE MEM,V
2080 MEM = MEM + 1
2090 NEXT N
2095 REM * NEG SLOPE CALC *
2100 FOR M = 1 TO 100 - P
2110 V = VM - VM * <MI (100 - P>>
2120 POKE MEM,V
2130 MEM = MEM + 1
2140 NEXT M
2150 RETURN
2999 REM
3000 REM *** RECTANGULAR WAVE ***
3001 REM
3005 MEM = BUFFER
3010 PRINT : INPUT "ENTER POSITIVE DUTY CYCLE <1 TO 99)";DUTY
3020 INPUT "MAX AMPLITUDE? C0-5V) 11

; A1
3030 V1 = Al * 255 I 5
3040 FOR N = 1 TO DUTY
3050 POKE MEM,V1
3060 MEM = MEM + 1
3070 NEXT N
3080 FOR M = DUTY + 1 TO 100
3090 POKE MEM,O
3100 MEM = MEM + 1
3110 NEXT M
3120 RETURN
3999 REM

Figure 8-6 (continued)

When using the COMPLEX WAVE subroutine, you will be
asked to enter the amplitude of the fundamental, or lowest,
frequency component of the waveform. Then you will enter the
amplitude of each harmonic as a percentage of the fundamental
amplitude. Keep in mind, however, that peak instantaneous ampli
tude of the total waveform must not be greater than + Sv nor less

114 CHAPTER 8 Using the Computer as a Waveform Generator

JLIST 4000, 5000

4000 REM *** COMPLEX WAVE ***
4001 REM
4005 MEM = BUFFER
4010 PRINT : INPUT "PEAK-TO-PEAK AMPLITUDE OF FUNDAMENTAL? <0-5V> ";A1
4020 PRINT : PRINT "YOU WILL NOW ENTER THE AMPLITUDES"
4022 PRINT 11 OF HARMONICS 2 THROUGH 7 11

4024 PRINT 11 IF NOT PRESENT, ENTER 0"
4026 PRINT : PRINT "ENTER AMPLITUDE AS A PERCENTAGE OF"
4028 PRINT " THE FUNDAMENTAL, SUCH AS .5 FOR SOY., ETC."
4030 PRINT : INPUT "2ND HARMONIC AMPLITUDE? ";A2
4032 INPUT "3RD HARMONIC AMPLITUDE? ";A3
4034 INPUT 11 4TH HARMONIC AMPLITUDE? ";A4
4036 INPUT "5TH HARMONIC AMPLITUDE? ";A5
4038 INPUT "6TH HARMONIC AMPLITUDE? ";A6
404(> INPUT "7TH HARMONIC AMPLITUDE? " ; A 7
4050 PRINT : PRINT "CALCULATING ••• , • <PLEASE WAIT>"
4060 REM * BEGIN CALCULATIONS *
4070 FOR T = 0 TO 360 I 57.2958 STEP 360 I 5729.58
4080 V = 127 + 25.4 * A1 * < SIN <T> + A2 * SIN <2 * T> + A3 * SIN (3 * T> + A
4 * SIN <4 * T> +AS* SIN <5 * T> + A6 * SIN <6 * T> + A7 * SIN <7 * T>>
4090 V = INT <V>
4100 POKE MEM,V
4110 MEM = MEM + 1
4120 NEXT T
4130 RETURN

Figure 8-6 (continued)

than Ov or you will get an error message when trying to POKE that
value into memory. You can omit any harmonics you do not want in
the output. For example, if you want a wave composed of only odd
harmonics, simply enter a 0 (zero) for the amplitude of each even
harmonic.

The subroutine uses all harmonics up to the seventh. You can
modify it to include more harmonics. The computer takes several
seconds to do all the calculations because the equation gets rather
long. But it is fun to play around with a variety of harmonics to see
what the resultant waveform will look like. (See figure 8-7 for
sample runs of this program.)

Notice that subroutines at lines 200, 500, 700, 800, and 1000 are
exactly the same as in the listing of figure 8-5. All we have to do is
modify the MAIN DRIVER and add subroutines at lines 900, 2000,
3000, and 4000. Once again, the point is that an existing applica
tions program can be easily modified if it is made up of organized
subroutines using a top-down approach.

JRUN

*** WAVEFORM GENERATOR ***

WAVEFORM TYPES

< 1> SI NEWAVE
(2) TRIANGULAR WAVE
(3) RECTANGULAR WAVE
<4> COMPLEX WAVE

<O> EXIT PROGRAM

CHOOSE ONE ==> 1
PEAK-TO-PEAK AMPLITUDE? (0-SV>
?4
HIT SPACEBAR FOR NEW TRACE

TYPE R FOR REALTIME GENERATOR

Figure 8-7
Sample runs of waveform generator
(A) Sine wave
(B) Triangular wave
(C) Rectangular wave
(D) Complex wave

115

JRUN

*** WAVEFORM GENERATOR ***

WAVEFORM TYPES

< 1> SI NEWAVE
<2> TRIANGULAR WAVE
<3> RECTANGULAR WAVE
<4> COMPLEX WAVE

CO> EXIT PROGRAM

CHOOSE ONE ==> 2

MAX AMPLITUDE? <0-5V>3
ENTER h POSITIVE DUTY CYCLE (1 TO 99)80
HIT SPACEBAR FOR NEW TRACE

TYPE R FOR REALTIME GENERATOR

Figure 8-7 (continued)

116

JRUN

*** WAVEFORM GENERATOR ***

WAVEFORM TYPES

< 1> SI NEWAVE
<2> TRIANGULAR WAVE
<3> RECTANGULAR WAVE
<4> COMPLEX WAVE

(0) EXIT PROGRAM

CHOOSE ONE ==> 3

ENTER POSITIVE DUTY CYCLE <1 TO 99)25
MAX AMPLITUDE? <O-SV> 4.5
HIT SPACEBAR FOR NEW TRACE

TYPE R FOR REALTIME GENERATOR

Figure 8-7 (continued)

117

JRUN

*** WAVEFORM GENERATOR ***

WAVEFORM TYPES

(1> SI NEWAVE
<2> TRIANGULAR WAVE
(3) RECTANGULAR WAVE
<4> COMPLEX WAVE

<O> EXIT PROGRAM

CHOOSE ONE ==> 4

PEAK-TO-PEAK AMPLITUDE OF FUNDAMENTAL? <0-5V> 3

YOU WILL NOW ENTER THE AMPLITUDES
OF HARMONICS 2 THROUGH 7

IF NOT PRESENT, ENTER 0

ENTER AMPLITUDE AS A PERCENTAGE OF
THE FUNDAMENTAL, SUCH AS .5 FOR 50%, ETC.

2ND HARMONIC AMPLITUDE? 0
3RD HARMONIC AMPLITUDE? .333
4TH HARMONIC AMPLITUDE? 0
5TH HARMONIC AMPLITUDE? .2
6TH HARMONIC AMPLITUDE? 0
7TH HARMONIC AMPLITUDE? .14

CALCULATING ••••• <PLEASE WAIT>
HIT SPACEBAR FOR NEW TRACE

TYPE R FOR REALTIME GENERATOR

Figure 8-7 (continued)

118

8-4 Generating Higher Frequencies 119

8-4
GENERATING HIGHER
FREQUENCIES

By now you will have noticed that the real-time waveforms we can
generate are all quite low in frequency. But, as you have probably
guessed, we can increase the output frequency by using a machine
code subroutine to output our instantaneous values to the DAC.

Figure 8-8 shows the disassembled machine-code (MC) listing
for an output routine. Using this routine, you can output any of the
four types of waveforms at frequencies of about 660Hz. The MC
routine must first be loaded into memory, then it must be called at
the appropriate time. You can easily modify the program in figure

·M-384L

0384- A2 00 LDX #$00
0386- BD 00 03 LDA $0300!1X
0389- SD Cl co STA $COC1
038C- EB INX
0380- EO 64 CF'X #$64
038F- DO F5 BNE $0386
0391- 4C 84 0:3 JMP $0384
0394- 00 BRI<
0395- 00 BRI<
0396- 00 BRI<
0397- 00 BRI<
0398- 00 BRK
0399- 00 BRK
039A- 00 BRK
039B- 00 BRI<
039C- 00 BRK
039D- 00 BRI<
039E- 00 BRK
039F- 00 BRI<
03AO- 00 BRI<

Figure 8-8
Disassembled listing of MC routine to output higher frequencies

120 CHAPTER 8 Using the Computer as a Waveform Generator

8-6 to use the MC routine (assuming that the MC routine is already
loaded in memory) by adding the following lines:

70 FASGEN = 900
205 CALL FASGEN

Refer back to chapter 6 if you forgot how to load MC programs.
When you type R for the real-time generator, the MC routine

will be called and will do the same job as the original BASIC
subroutine at line 200, but much faster.

You can get even higher output frequencies if you are willing
to accept lower resolution, that is, less points per wave. For
example, by inserting four additional INX instructions following
the one in location $38C, every fifth calculated point will be sent
out to the DAC, giving a total of 20 points per waveform rather than
100. This will increase the output frequency to a little over 2 mHz.

Finally, you can slow down the output frequency by inserting
a small time delay between each output instruction.

CHAPTER 8

Serial 1/0

The fastest way to transfer a data byte from one point to another is
to send the entire 8-bit byte all at once. In other words, transfer all 8
bits in parallel, like we did in earlier chapters. This scheme works
well if the sender and the receiver are not too far apart. If they are
far apart, transmission problems occur that we do not have to
consider at close range. To avoid these transmission problems, serial
(one bit at a time) transmission is used. In this chapter we will
discuss the concepts of serial data transmission and typical serial
1/0 circuits used with computers.

9-1
COMMUNICATING WITH
DISTANT DEVICES

If you have studied any communications theory, you probably have
heard of transmission lines and impedance matching. Briefly
stated, every transmission line (wire or cable used to send and
receive signals) has a characteristic impedance. The characteristic
impedance is a function of the physical geometry of the transmis
sion line, that is, coax cable, ribbon lead, and so on, and includes
the wire size and spacing as well. For example, ribbon cable used to
connect a TV to its antenna typically has a characteristic impedance
of 300 ohms.

An infinitely long transmission line will "look like" a pure
resistance equal to its characteristic impedance, as seen by the
driving source. While we do not work with infinitely long lines, the
transmission line will still look like its characteristic impedance if
the receiving end of the line is terminated in a load resistance equal
to the characteristic impedance of the line. The line is then said to
be properly terminated, or we say that the load is matched to the line
impedance. If the load does not match the line impedance, some of
the signal sent down the line may be reflected back and interfere
with new signals being sent. The result is that the total signal seen
at the receiving end is a composite of the reflected signal superim
posed on the incoming signal. Of course, this makes the total signal
different from what it should be and can cause problems of
misinterpretation or false triggering.

122

9-1 Communicating With Distant Devices 123

So why didn't we have to consider matching impedances in
any circuit we built thus far? It turns out that reflections only
become a problem when the line is some appreciable fraction of a
wavelength long, say Y4 wave or more. We can calculate the
wavelength of a signal using the equation

W = V/F

where W = wavelength of the signal
V = velocity of wave (typically equal to the speed of light,

or 300,000,000 meters/second)
F = frequency of signal

For example, what is the wavelength of a 60 Hz signal?

W = V I F = 300,000,000 I 60 = 5,000,000 meters,
or about 3100 miles

So we do not have to worry about reflections until the line
becomes several hundred miles long. But what if the signal fre
quency is 300 MHz? Then the wavelength becomes

W = V I F = 300,000,000 I 300,000,000 = 1 meter

So a line even a fraction of a meter long will give us trouble if
not properly terminated.

You might be thinking that we really do not use frequencies
that high in our computer. But according to Fourier's theory, any
wave can be shown to be made up of a fundamental signal and a
number of harmonics. Square waves or pulses, for example, contain
many many odd harmonics. So whenever we try to send a rec
tangular pulse down a transmission line, the fast leading and
trailing edges of the pulse contain component frequencies that can
easily extend upwards of 100 MHz. This means that if our transmis
sion line is just a few meters long, we might have reflections that
can interfere with the received signal unless the line is properly
terminated.

Here is where the problem comes in. It is very difficult to
match impedances in logic circuits. For one thing, the input
impedance of a gate, for example, is not even a constant value, but it
changes depending on whether the input signal is a HIGH or LOW
level. However, we can avoid the difficulty by simply lowering the
bandwidth of frequencies we transmit. We can do this by slowing

124 CHAPTER 9 Serial 1/0

Tx
Clock

Source

Figure 9-1

Cable

One-way serial communications link

Rx
Clock

Oest.

down the rise and fall times of the pulses. And, if we stretch out
each pulse for a longer duration, the pulse will still be quite
rectangular, even though the rise and fal 1 times are lowered
drastically.

Rather than put circuitry on each of eight lines to lengthen the
rise and fall times, and also tie up the computer while waiting for
long duration pulses, the technique of serial data transmission was
developed. The general idea is shown in figure 9-1. The source
(some logic circuit) wants to send a byte to the destination (some
other logic circuit). So the source transfers a byte in parallel to a
shift register. The shift register is then clocked by the transmitter
(Tx) clock, and the data byte shifts out one bit at a time. The Tx
clock operates at some low frequency, typically 300 Hz, which
makes each pulse at least 1/300 second long, rather than a fraction of
a microsecond. The output of the serial-shift register feeds a line
driver, which could simply be an op amp whose output rise and fall
times (slew rates) are quite long compared to the rise and fall times
of the logic circuits. The line driver feeds the transmission line,
which may be several meters long. At the end of the transmission
line is another linear circuit, called a line receiver, which could
simply be another op amp or some other transistor amplifier
circuit. (The input impedance of this receiver circuit is quite
constant as opposed to the input impedance of a logic circuit.) The

9-2 Format for Serial Transmission 125

output of the line receiver feeds into a serial in-parallel out-shift
register, which is clocked at the same rate as the transmitter shift
register. So as the data bits are being clocked out of the transmitter,
they are being clocked into the receiver. Once the received byte is in
the receiver shift register, it is transferred in parallel into the
destination circuit.

Although the transmission of each byte takes much longer this
way, we are assured that the byte we send is the byte that will be
received.

9-2
FORMAT FOR SERIAL
TRANSMISSION

In order for the receiver to understand each transmitted character, a
definite format must exist for each transmitted character. The
commonly used format for asynchronous serial data transmission is
shown in figure 9-2. Part A of the figure shows the waveform that
would be observed at the transmitter output pin (shown as TxData
in figure 9-1) if the circuit were transmitting the byte 47 hex, which
is the ASCII code for the letter G. This form of transmission is
called asynchronous because no clock or sync characters are sent with
the data.

When the transmitter is powered up but is not sending any
characters, it outputs a constant HIGH level. The transmitter is
then said to be marking time, so the HIGH level is known as a mark.
Then when transmission begins, the transmitter (serial-shift regis
ter) outputs a LOW start bit. Following the start bit, we see the 8 bits
of the byte 47 hex, with the LSB leaving the shift register first as it
would for a shift right register. Following the MSB, the transmitter
inserts an even parity bit. Parity bits are used to ensure error-free
communications. If even parity is used, as shown here, then the
total number of logic HIGHs of the character plus the parity bit
must be an even number. The receiver, of course, checks each
received character for even parity. If it ever detects an odd number of
logic HIGHs in any character, an error flag is set. Finally, the
transmitter inserts a HIGH stop bit to signal the end of the character.

0 I

0

126 CHAPTER 9 Serial 1/0

I

.....

al en
....J

I+- 1 sec

0 0 0
I

(A) Transmitting 47H at 300 Baud using 8 bits/character,
even parity, and one stop bit.

al en
....J

0 0 0 0 0

al en
:i

0
.... 1

! , , ,.J,,1-

--r

(B) Sending ASCII Character B using 7 bits/character,
odd parity, one stop bit.

Figure 9-2

~ ~,

Format for asynchronous serial transmission of characters

Once the character format is decided upon, each character
must be transmitted exactly the same way. That is, each transmitted
character must have a LOW start bit, followed by the 8 character bits

9-2 Format for Serial Transmission 127

(LSB first), followed by an even parity bit, and terminated by a
HIGH stop bit. Then the transmitter can either mark time, if no
other characters are going to be immediately transmitted, or it can
send another start bit for the next character.

Some features of the transmission format can be changed
when setting up a system. For example, the system users may
decide that 7 bits per character are sufficient, particularly for
sending ASCil characters. Or odd parity may be chosen or perhaps
no parity bit at all. Also, in older teletype (TTY) systems, 2 stop bits
were required to allow for settling time. In the next topic, we will
see how these options are chosen by the user. Two things that are
not optional, however, are the first bit sent must be a LOW start bit
and the last bit sent must be a HIGH stop bit. As another example,
figure 9-2B shows the waveform you would see at the transmitter
output if you were transmitting the ASCII character B (42 hex) using
7 bits per character, odd parity, and one stop bit.

Besides the requirement that the transmitter and the receiver
must agree on the format for each character, the two must also agree
on the frequency, or rate, at which the bits are being shifted. Again
we have some options, but there are some standard bit rates (called
baud rates) that are in common use. Older TTY systems commonly
use 110 baud (that is llOHz) as the shifting frequency. Modems
(modulator-demodulators) that are used to link computers to other
computers over telephone lines typically use either 300 baud or
sometimes 1200 baud for higher speed communications. The com
monly used baud rates are 110, 150, 300, 600, 1200, 2400, 4800, 9600,
and 19.2K baud.

The baud rate refers to the rate at which the bits are being
shifted out of the transmitter (and into the receiver). For example, if
you were transmitting a character having a start bit, 7 bits per
character, even parity, and one stop bit, you would be sending a
total of 10 bits per transmitted character. Then if you were transmit
ting at 300 baud, each bit would take 1/300 second to shift out. So
the total time to transmit one complete character would be 10 x
1/300 = 1/30 second. In other words, you would be sending 30
characters per second. This is sometimes abbreviated 30 cps. On the
other hand, at 9600 baud, the rate commonly used to link com
puters to programmable controllers, each character takes approx
imately one millisecond to transmit. The format is the same at

128 CHAPTER 9 Serial 1/0

higher baud rates as at lower rates, but long messages are transmit
ted much faster.

The clock signals for the transmitter and receiver are some
times derived by dividing the system clock down to the proper
frequency and sometimes obtained from separate crystal-con
trolled clock chips. These special chips, called baud-rate generators,
usually have some method (like using jumper wires or switches) of
obtaining any of the standard baud rates. We will use one of these
baud-rate generators in a later section.

9-3
OFF-THE-SHELF UART

As you have probably guessed by now, in order to insert start bits,
stop bits, and parity bits and shift the character out one bit at a
time, several small-scale chips would be needed. In addition, at
least an equal amount of hardware would be needed in the receiver
section. Fortunately, IC manufacturers, such as Motorola and Intel,
make a single chip UART (universal asynchronous receiver trans
mitter). The UART incorporates all of the necessary hardware to
format and transmit or receive characters serially. In addition, it has
several status flags that are used for error checking and other
housekeeping chores. Motorola's UART is called an MC6850
Asynchronous Communications Interface Adaptor, or ACIA.

As with other Motorola interface chips, the 6850 is memory
mapped into the system, which means that the MPU talks to the
chip as though it were talking to a memory location. After ini
tialization, whenever the MPU wants to send a byte to some
receiver, the MPU simply stores a byte in the transmit data (TxData)
register. The UART then takes care of formatting the character with
start bit, stop bit, and parity bit and shifts it out at the proper rate.
Meanwhile, the MPU is free to do other things. Likewise, when the
UART detects an incoming character, it shifts the character in one
bit at a time, checks for any errors, and informs the MPU that a
character is present, either by generating an interrupt request or by
setting a flag. The MPU can get the character (with start bit, parity
bit, and stop bit already stripped off) by simply reading from the
receive data (RxData) register, just as if it were reading from

9-3 Off-the-Shelf UART 129

memory. Note that the MPU is not delayed by the slow incoming
character.

Let's take a look at the 6850 chip. Figure 9-3A shows the
diagram of the 6850 ACIA and figure 9-3B shows the pinouts.
Notice that there are four internal registers which the MPU can
access. These are the transmit data, receive data, status, and control
registers. The transmitter data register and the control register are
write-only registers, while the receive data and the status registers
are read-only registers. For this reason, only two address locations
are assigned to the UART. When the register select pin (RS) is LOW,
the MPU talks to the control or status register. But when RS is
HIGH, the MPU accesses the TxData or RxData register. The chip
select pins must all be active before the 6850 can be accessed.

Notice that like the 6821 PIA, the 6850 communicates with the
MPU by means of the 8-bit data bus and that it has a few address
lines and control lines which link it to the MPU. On the output side
of the ACIA (right side), you will see the TxData output pin and the
RxData input pin. In addition to these, there are three modem
control/handshake pins called RTS, CTS, and DCD. These control
lines will be discussed in detail later.

Like the PIA again, the ACIA must be initialized before it can
be used. That is, you must write a byte into its control register to
tell the ACIA how you want it to operate. You must tell the ACIA
what format you want to use for each character. That is, you must
tell it how many bits per character, whether or not you want to use
parity, and how many stop bits you want. Bits 4, 3, and 2 of the
control byte are used for this purpose, as shown in table 9-1.

Bit 7 of the control byte must be set if you want the ACIA to
generate an interrupt request when a received character is ready. If
bit 7 is not set, no interrupt request will be generated, but a flag in
the status register will still be set when a character comes in.

Bits 6 and 5 are used to control the transmitter interrupt
request, as well as to make the RTS control line HIGH or LOW. This
is also shown in table 9-1. A transmitter interrupt will be requested
(if desired) when the TxData register is empty and the transmitter
is ready to accept the next character. If you wish, rather than using
an interrupt request, you can simply poll the status register to
determine whether the TxData register is empty or not. We will
discuss the status register in more detail later.

~

w a

Data Bus Bus
Bus Control

Figure 9-3
Motorola MC6850 ACIA

DO- DO -.
D1 - D1 -.
D2-D2 -.
D3-D3 -.
04- D4
D5-D5

-.
D6-D6 -.
D7- D7 -.
AO-RS -.
A3-CSO -.

~TxJ Receive Data Reg

Transmit Data Reg .--- RxD

-c~ Control Reg 1-oco
Status Reg

ATS

TxJ
RxC

(A)

24

2 23
Asynchronous 3

serial
data 4

22

D1h21

5 20

6 19
7 18
8
9

Modem 10

controls 11

12

_j17 16

15

14

13

(B)

Data
rate

clocks

9-3 Off-the-Shelf UART 131

TABLE 9-1
ACIA Control Register Bits

Bit 7
Receive Bit 6 & Bit 5 Bit 4, Bit 3, & Bit 2 Bit 1 & Bit 0

Interrupt Transmit Control Word Select Counter Divide
Enable Select

0-Disabled 00-RTS=low 000 - 7 bits, even 00 - + 1
1-Enabled Transmit parity, 2 stop 01 - + 16

interrupt bits 10-+64
disabled 001 - 7 bits, odd 11 - Master

01-RTS=low parity, 2 stop reset
Transmit bits
interrupt 010 - 7 bits, even
enabled parity, 1 stop bit

10-RTS =high 011 - 7 bits, odd
Transmit parity, 1 stop bit
interrupt 100 - 8 bits, no
disabled parity, 2 stop

11-RTS=low bits
Transmit 101 - 8 bits, no
interrupt parity, 1 stop bit
disabled 110 - 8 bits, even
Transmits a parity, 1 stop bit
break level on 111 - 8 bits, odd
transmit data parity, 1 stop bit
output

Finally, bits 1 and 0, called the counter divide select bits, are
used to reset the chip and to determine the clock divide ratio, as
shown in table 9-1. Notice that there is no hardware reset pin on the
ACIA. So to reset the chip, you simply write ls into bit positions 1
and 0 of the control register. This allows you reset and reinitialize
the ACIA without shutting down the computer, as would be the
case for a hardware reset.

The dock divide ratio requires explanation. You probably have
wondered how the transmitter and receiver clocks stay syn
chronized, since no sync signals are sent. Even if the two clocks
operate on the same frequency, it would appear that a slight phase
shift between the two might cause the receiver to try to shift in a bit
near the rising or falling edge of a transition, thereby possibly
getting an occasional false bit. This problem is solved by making
the receiver sample clock operate at 16 times the baud rate. This is

~

w
N

O>
c
~ Q)

ro E
Rx' :E i=

Data

Rx
clock

Low levk1 on
Ax Data sensed
on positive-going
Rx clock

Figure 9-4

Start bit

\Rx Data tested again
8 clock pulses later
to determine valid
start bit

Waveforms of RxData and RxClock

First data bit Second data bit

~ I Rx Data sampled every 16
clock pulses thereafter as
data is shifted in.

9-3 Off-the-Shelf UART 133

shown in figure 9-4. Let's assume that the transmitter is marking
time, as shown in the figure. The receiver continually samples the
incoming signal, waiting for a start bit. As long as the receiver
senses a HIGH mark level, it continues to sample. But as soon as the
receiver senses a LOW level on the incoming line, an internal
divide-by-eight counter in the receiver is enabled, and the receiver
ticks off eight of its own clock periods. The incoming signal is then
sampled again. If the receiver still senses a LOW incoming level, it
assumes it is a valid start bit and not just a noise pulse. The receiver
then enables an internal divide-by-16 counter and ticks off 16 dock
pulses. On the 16th pulse, and every 16th pulse thereafter, the
receiver shifts in the incoming signal. Notice that the incoming signal
is thereby sampled near the center of the bit position. By using this
scheme, the receiver automatically resynchronizes its shifting rate
for each new incoming character. In fact, using this method, even if
the transmitter and receiver clocks were operating at slightly
different frequencies (up to a few percent), good communications
would still be maintained.

So in most applications, the Rx clock (coming from the baud
rate generator) operates at 16 times the actual baud rate (b~t-shift
rate). In other words, to receive at 300 baud, the Rx clock input
frequency is set at 16 x 300 = 4800 Hz, and a dock divide ratio of 16
is chosen on initialization. The Tx dock and Rx dock are both
divided by the clock divide ratio. The dock input pins are usually
tied together and fed from a single baud-rate generator.

Let's now put together a control byte to set up the ACIA as
follows: Rx Interrupt enabled, RTS LOW, Tx Interrupt disabled, 7
bits per character, even parity, one stop bit, and a divide-by-16 dock
ratio. The control byte should be 89 hex, as shown in figure 9-5.
Prior to sending this control byte, however, we must send the chip a
master reset; that is, we should store 03 into its control register.

9-4
USING THE UART

Now let's discuss using the ACIA to send and receive characters
with the Apple computer. Figure 9-6 shows how the ACIA can be
hooked up to the Apple using one of the interface slots. Notice that

134 CHAPTER 9 Serial 110

7 6 5 4 3 2 0

1 0 0 1 0 1

+16 Clock

•------------ Rx INT Enabled

Figure 9-5
Control byte loaded into ACIA control register

the data lines and control lines connect to the MPU much like those
of the PIA. For purposes of testing the ACIA without any line
drivers or receivers, or without any other sender or receiver, jumper
wires are connected between pins 6 and 2 and between pins 5, 23,
and 24, as shown in figure 9-6. We will remove these jumpers later.

Note the use of the AY-5-8116 baud-rate generator chip. This
chip has an on-board clock, which uses the externally connected
5.0688 MHz crystal. By making the TA through T0 inputs HIGH or
LOW according to table 9-2, we can generate any desired standard
baud rate. We do this by means of a minidip switch mounted on the
interface board. The actual output frequency of the AY-5-8116 chip is
16 times the desired baud rate, as was explained earlier. Let's
assume that we have the switches set for a baud rate of 300, that is,
switches 1 and 3 are open and switches 2 and 4 are closed. Let's also
assume that we have the circuit of figure 9-6 built on a card plugged
into slot 2.

Figure 9-7 shows the listing of a simple test program written
entirely in BASIC. This program will allow us to transmit a single
character over and over, so that we can view the TxData output pin
with a scope to see if the transmitter is working properly. It will
also allow us to test the receiver section of the UART to see if it is
working.

Lines 20 through 35 equate the various registers of the ACIA
with corresponding addresses of slot 2. Then line 40 resets the chip.

5.0688 MHz
XTAL +5V

DI All

+5V 1K Baud rate
Select switches

TA
1

STT

~
3

TB
15

FR
14

4
TC

13 10K TD
Apple Interface Bus 5

AY-5-8116 Vee
+SV~--- 6 Baud rate generator = 7

GND~ 8 Ft
17

+12V~--- = 11

+5V =
-12V~---

15 Vee 12 3

D7 D7 TxC
16

D6 D6 TxD
6

17
D5 D5 2

18 RxD
D4 D4

D3
19 D3

20
02 D2

21
D1 MC6850 D1

ACIA Connect Jumpers
22

DO here for testing DO

8 cso

+5V CS1
Device
Select CS2

AO
11

RS
ATS

14
E CTS 410 40

-~ R/W 18 R/W

7
IRQ

GND

=

Figure 9-6
Hookup of ACIA to Apple 135

136 CHAPTER 9 Serial 1/0

Divisor Select

DCBA

0000
0001
0010
0 0 11
0100
0 101
0110
0 111
1000
1001
101 0
1 0 1 1
1100
1 1 0 1
1 1 1 0
1 1 1 1

TABLE 9-2
Divisor Select Inputs for Baud-Rate Generator

Desired
Baud Rate

50
75

110
134.5
150
300
600

1200
1800
2000
2400
3600
4800
7200
9600

19200

Line 50 sets up a temporary buffer, called DBUF in RAM. We will
make more of this buffer in a later version of the program.

Once in the MAIN DRIVER, we immediately go to a sub
routine to initialize the ACIA, as was described in a previous
section. Since the initialization is menu driven, all you have to do is
choose the transmit and receive parameters you want to use. The
subroutine will assemble the control byte for the control register
and POKE it into the proper location.

Upon returning to the MAIN DRIVER, we go to the sub
routine at line 2000, which asks you to input the character to be
sent. All you have to do is hit any character on the keyboard and
that character will be converted into ASCII code and POI<Ed into
DBUF.

Next, we go to the subroutine at line 3000 and transmit the
character. Note that lines 3005 and 3007 make up a polling routine
to check whether or not the TxData register is empty and ready for
the next character. Actually, only bit 1 of the status register should
be checked. But, assuming that no other flags are set, the value of
the flags will equal 2 when the TxData register is empty. Table 9-3

JLIST O, 1400

10 REM *** UART TEST ***
11 REM
20 LET TRNSMT = 49313
25 LET RCVR = 49313
30 LET CTRLREG = 49312
35 LET STSREG = 49312
40 POKE CTRLREG,3: REM
SO DBUF = 768

RESET

99 REM
100 REM *** MAIN DRIVER ***
101 REM
110 GOSUB 1000: REM * INIT *
120 GOSUB 2000: REM * GET MESSAGE *
130 GOSUB 3000: REM * TRANSMIT CHARACTER *
140 GOSUB 4000: REM * RECEIVE CHARACTER *
150 GOTO 130
999 REM
1000 REM *** USER SELECTIONS FOR UART INIT ***
1001 REM
1010 REM
1020 TEXT : HOME
1030 PRINT : PRINT TAB< 6) "*** UART INITIALIZATION ***": PRINT
1040 PRINT "USE VALUE WITH ASTERISK * FOR DEFAULT"
1050 PRINT
1060 PRINT : PRINT "RECEIVER INTERRUPT"
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

PRINT "-------- ---------"
PRINT
PRINT TAB (4> "* <O> DISABLED"
PRINT TAB (6)" < 1> ENABLED"
PRINT : INPUT "CHOOSE ONE ==>";C7
PRINT : PRINT : PRINT "TRANSMIT CONTROL"
PRINT "-------- -------"
PRINT: PRINT TAB< 1)"* <O> RTS LOW, TX INT DISABLED"
PRINT TAB< 3)"(1) RTS LOW, TX INT ENABLED"
PRINT TAB< 3)"<2> RTS HIGH, TX INT DISABLED"
PRINT TAB< 3)"(3) RTS LOW, TX INT DISABLED, BREAK"
PRINT : INPUT "CHOOSE ONE ==> ";C6
PRINT : PRINT : PRINT "WORD SELECT"
PRINT "---- ------"
PRINT : PRINT TAB< 3)"(0) 7 BITS, EVEN PAR, 2 STOP BITS"
PRINT TAB< 3)" (1> 7 BITS, ODD PAR, 2 STOP BITS"
PRINT TAB< 1>"* <2> 7 BITS, EVEN PAR, 1 STOP BIT"
PRINT TAB< 3)"(3) 7 BITS, ODD PAR, 1 STOP BIT"
PRINT TAB (3>" <4> 8 BITS, NO PAR, 2 STOP BITS''
PRINT TAB< 3)" <:S> 8 BITS, NO PAR, 1 STOP BIT"
PRINT TAB< 3)"(6) 8 BITS, EVEN PAR, 1 STOP BIT"
PRINT TAB< 3>"<7> 8 BITS, ODD PAR, 1 STOP BIT"
PRINT : INPUT "CHOOSE ONE ==>";C4

1300 BYTE = C7 * 128 + C6 * 32 + C4 * 4 + 1
1310 POKE CTRLREG,BYTE
1320 RETURN

Figure 9-7
UART test listing

PRINT

137

138 CHAPTER 9 Serial 1/0

JLIST 1400,5000

1999 REM
2000 REM *** GET USER MESSAGE ***
2001 REM
2005 PRINT "ENTER CHARACTER TO BE SENT": PRINT
2010 GET C$
2020 POKE DBUF, ASC <Ct>: REM *CONVERT CHARACTER TO ASCII *
2035 PRINT C$;
2045 PRINT : PRINT
2050 RETURN
2999 REM
3000 REM *** TRANSMIT ONE BYTE ***
3001 REM
3005 FLAGS= PEEK <STSREG>: REM * TXDATA EMPTY?*
3007 IF FLAGS < 2 GOTO 3005
3010 D = PEEK <DBUF>
3020 POKE TRNSMT,D
3030 RETURN
3999 REM
4000 REM *** RECEIVE ONE BYTE ***
4001 REM
4010 FLAGS= PEEK <STSREG>: REM * RXDATA FULL?*
4020 IF FLAGS < 3 GOTO 4010
4030 R = PEEK <RCVR>

·. 4040 L$ = CHR$ <R>: REM * CHANGE ASCII TO PRINTABLE CHARACTER *
4050 PRINT L$
4060 RETURN

Figure 9-7 (continued)

shows all of the flags in the status register. In this routine, we are
only interested in bit 1. If bit 1 is set, we send the character to the
TxData register and return.

Next, the subroutine at line 4000 is called, which polls the
status register for RxData register full (flag bit 0). Line 4020 actually
tests for TxData register empty and RxData full simultaneously.
When a received character is found, it is read in, changed from
ASCII to an Applesoft printable character, and printed on the CRT
screen.

Upon returning to the MAIN DRIVER again, the transmit and
receive operations are repeated endlessly. This allows you to
observe the TxData output pin with a scope to see the format of the
character. You should see a pattern similar to those in figure 9-2,
depending on your choice of characters and transmit format. To
stop the program, hit CTRL-C.

Figure 9-8 shows a sample run of the program in figure 9-7.
Now let's consider a more powerful and practical program, as

shown in the listing of figure 9-9. This program, called SERIAL
I/O, allows you to communicate with other computers using a serial

9-3 Off-the-Shelf UART 139

TABLE 9-3
ACIA Register Contents

Buffer Address

RS. R/W RS. R/W
Transmit Receive

Data Data Data
Bus Register Register RS· R/W RS • R/W Status
Line (Write (Read Control Register Register (Read
Number Only) Only) (Write Only) Only)

0 Data bit Data bit 0 Counter divide Receive data
oa select 1 (CRO) register full

(RDRF)
1 Data bit 1 Data bit 1 Counter divide Transmit data

select 2 (CRl) register empty
(TORE~

2 Data bit 2 Data bit 2 Word select 1 Data carrier
(CR2) detect {DCD)

3 Data bit 3 Data bit 3 Word select 2 Clear to send
(CR3) (CTS)

4 Data bit 4 Data bit 4 Word select 3 Framing error
(CR4) (FE)

5 Data bit 5 Data bit 5 Transmit control Receiver overrun
1 (CRS) (OVRN)

6 Data bit 6 Data bit 6 Transmit control Parity error (PE)
2 (CR6)

7 Data bit 7 Data bit 7 Receive Interrupt
interrupt request (IRQ)
enable (CR7)

channel. You will notice that the set up and transmit portions of the
program are very similar to those used in the figure 9-7 listing. But
this program includes a machine-language interrupt service rou
tine that is used whenever a character is received. The machine
language routine listing is shown in figure 9-10.

In general, the X register is used as the received character
pointer (RECPTR), while the Y register is used as the displayed
character pointer (DISPTR). Whenever a character is received, it is
stored in a BUFFER. Then later, in the BASIC part of the program,
the Y register is compared to the X register. If the two are equal, the
computer knows that no new characters have to be displayed. But if
Y does not equal X, it knows that it must display a character. The
character is displayed by the subroutine at line 2000. Then the Y

140

:JF.:UN

*** UART INITIALIZATION ***

USE VALUE WITH ASTERISK * FOR DEFAULT

RECEIVER INTERRUPT

·If- (0) DI Sl:iBLED
(1) ENABLED

CHOOSE ONE ==>O

. .,. (0)

(l)

(2)
C:::;)

RTS LOW~ TX INT DISABLED
RTS LOW, TX INT ENABLED
RTS HIGH, TX INT DISABLED
RTS LOW, TX INT DISABLED, BREAK

CHOOSE ONE ==> 0

WORD SELECT

((I) ? BITS, EVEN PAR, 2 STOF' BITS
(1) 7 BITS!' ODD PAR, 2 STOP BITS

* (2) 7 BITS, EVEN PAR, 1 STOP BIT
(3) 7 BITS, ODD F'Af;:' 1 STOP BIT
(4-) 8 BITS, NO PAH, 2 STOP BITS
(5) 8 BI TS!, NO PAR, 1 !:HOP BIT
(/.:,) 8 BITS, EVEN F'AR, 1 STOP BIT
en 8 BITS!, ODD PAR, 1 STOP BIT

CHOOSE ONE ==>2
ENTER CHARACTER TO BE SENT

E

E
E
E
E
E
r-

BREAK IN 4050

Figure 9-8
Sample run of UART test

lLIST C>, 111C>

10 REM ********************
12 REM * SERIAL I/O *
14 REM * J. OLEKSY 1984 *
16 REM ********************
18 REM
20 LET TRNSMT = 49313
25 LET RCVR = 49313
30 LET CTRLREG = 49312
35 LET STSREG = 49312
40 POKE CTRLREG,3: REM * RESET UART *

LET ERRFLAG = 253: POKE ERRFLAG,O
LET BUFFER = 24576

45
50
55
60

LET RECPTR = 254: POKE RECPTR,O
LET DISPTR = 255: POKE DISPTR,O

65 LET KYBD = 49152
80 POKE 1C>19,76: POKE 1020,00: POKE 1021,03: REM *INT VECTOR*
85 0$ = 1111

: REM CTRL-D
90 PRINT D$"BLOAD SERIN.OBJO"
95 LET TFLAG = 252
99 REM
100 REM *** MAIN DRIVER ***
101 REM
110 GOSUB 1000: REM * INIT UART *
115 HOME : PRINT CHR$ (12>: PRINT "READY": PRINT : PRINT
120 XREG = PEEK <RECPTR>:YREG = PEEK <DISPTR>
130 IF YREG < > XREG THEN GOSUB 2000: REM * DISPLAY A CHARACTER *
140 K = PEEK <KYBD>: REM *KEY PRESSED?*
150 IF K > 127 THEN GOSUB 3000: REM * SEND A CHARACTER *
160 GOTO 120
999 REM
1000 REM *** USER SELECTIONS FOR UART INIT ***
1001 REM
1020 TEXT : HOME : PRINT CHR$ <12>
1030 PRINT : PRINT TAB< 6) "*** UART INITIALIZATION ***": PRINT
1040 PRINT "USE VALUE WITH ASTERISK * FOR DEFAULT"
1050
1060
1070
1080
1090
1100
1110

PRINT
PRINT : PRINT "RECEIVER INTERRUPT"
PRINT "-------- ---------"
PRINT
PRINT TAB< 6)" <OJ DISABLED"
PRINT TAB< 4>"* <1> ENABLED"
PRINT : INPUT "CHOOSE ONE ==>";C7

Figure 9-9
Serial 1/0 program

PRINT

141

142 CHAPTER 9 Serial 1/0

JLIST 1120, 5000

1120 PRINT : PRINT : PRINT "TRANSMIT CONTROL"
1130 PRINT "-------- -------"
1140 PRINT : PRINT TAB< 1>"* (0) RTS LOW, TX INT DISABLED"
1150 PRINT TAB< 3)"(1) RTS LOW, TX INT ENABLED"
1160 PRINT TAB< 3>"<2> RTS HIGH, TX INT DISABLED"
1170 PRINT TAB< 3)"(3) RTS LOW, TX INT DISABLED, BREAK"
1180 PRINT : INPUT "CHOOSE ONE ==> "; C6
1190 PRINT : PRINT : PRINT "WORD SELECT"
1200 PRINT "---- ------"
1210 PRINT : PRINT TAB< 3)"(0) 7 BITS, EVEN PAR, 2 STOP BITS"
1220 PRINT TAB< 3>"<1> 7 BITS, ODD PAR, 2 STOP BITS"
1230 PRINT TAB< 1>"* <2> 7 BITS, EVEN PAR, 1 STOP BIT"
1240 PRINT TAB< 3)"(3) 7 BITS, ODD PAR, 1 STOP BIT"
1250 PRINT TAB< 3>"<4> 8 BITS, NO PAR, 2 STOP BITS"
1260 PRINT TABC 3)"(5) 8 BITS, NO PAR, 1 STOP BIT"
1270 PRINT TAB< 3>"<6> 8 BITS, EVEN PAR, 1 STOP BIT"
1280 PRINT TAB< 3)"(7) 8 BITS, ODD PAR, 1 STOP BIT"
1290 PR I NT : INPUT "CHOOSE ONE == >" ; C4
1300 BYTE = C7 * 128 + C6 * 32 + C4 * 4 + 1
1310 POKE CTRLREG,BYTE
1320 RETURN
1999 REM
2000 REM *** DISPLAY A CHARACTER ***
2001 REM
2005 EF = PEEK <ERRFLAG>
2007 IF EF = 255 THEN INVERSE
2010 R = PEEK <BUFFER + YREG>
2020 LS = CHRS <R>
2030 PRINT LS;
2035 NORMAL
2040 VREG = YREG + 1: IF YREG = 256 THEN YREG 0
2050 POKE DISPTR,YREG
2060 RETURN
2999 REM
3000 REM *** SEND A CHARACTER ***
3001 REM
3010 FLAGS= PEEK <STSREG>: REM *TORE EMPTY?*
3020 IF FLAGS < 2 GOTO 3010
3025 POKE TFLAG,128
3030 GET C$
3040 POKE TRNSMT, ASC (C$)
3050 RETURN

Figure 9-9 (continued)

register is incremented, and the program returns to line 150 to scan
the keyboard again. In this manner, the display pointer "chases"
the received character pointer around in the BUFFER, which is 256
bytes wide.

Here is how the receiver portion of the program works. Line 80
POI<Es a nonmaskable interrupt (NMI) vector into locations 1019,
1020, and 1021. Then line 90 loads the MC routine from disc. The
user must choose option 1 for the receiver interrupt when presented
with the menu. Then, whenever a character comes into the receiver,

9-3 Off-the-Shelf UART 143

]

SOURCE FILE: SERIN
NEXT OBJECT FILE NAME IS

0300:
6000:
COA1:
COAl:
COAO:
OOFE:
OOFD:
OOFC:
0300:

1
2 BUFFER
3 TRNSMT
4 RCVR
5 STSREG
6 RECPTR
7 ERFLAG
8 TFLAG
9 *

ORG
EQU
EQU
EQU
EQU
EQU
EQU
EQU

10 INTSERV PHA
11 TXA
12 PHA
13 LOX

CO 14 LOA

0300:48
0301:8A
0302:48
0303:A6 FE
0305:AD AO
0308:29 70
030A:DO 22
030C:AD Al
030F:9D 00
0312:A5 FC
0314:30 OD
0316:AD AO
0319:29 02
031B:FO F9
031D:BD 00 60
0320:80 Al CO
0323:A9 00
0325:85 FC
0327:E8
0328:86 FE
032A:68
032B:AA
032C:68

15 AND
16 BNE

CO 17 INCH LOA
60 18 STA

19 LOA
20 BMI

CO 21 ECHO LOA
22 AND
23 BEG!
24 LDA
25 STA
26 CLRFLG LDA
27 STA
28 INX
29 STX
30 PLA
31 TAX
32 PLA

0320:40 33 RTI
032E:A9 FF 34 ERROR LOA
0330:85 FD 35 STA
0332:4C OC 03 36 JMP

SERIN.OBJO
$300
$6000
$COA1
$COA1
$COAO
$00FE
$00FD
$00FC

RECPTR
STSREG
#$70
ERROR
RCVR
BUFFER,X
TFLAG
CLRFLG
STSREG
#02
ECHO
BUFFER,X
TRNSMT
#0
TFLAG

RECPTR

#$FF
ERFLAG
INCH

*** SUCCESSFUL ASSEMBLY: ND ERRORS

Figure 9-10
Assembly listing of receive routine

;SAVE REGISTERS

;GET POINTER
;CHECK ERROR FLAGS

;NO ERRORS,GET CHAR
;SAVE IT
;SEE IF WE SENT CHAR
;IF SO, DON'T ECHO
;CHECK TORE

;GET CHAR BACK
;AND ECHO

;POINT TO NEXT BUFFER LDC
;SAVE POINTER
;RESTORE REGISTERS

;RETURN TO BASIC

a norunaskable interrupt is generated. The Apple immediately
jumps to location 1019 ($03FB) for its first instruction of the
interrupt-service routine. The instruction at 1019 is a JMP to
location $0300 for the first instruction.

Generally, the program remains in a loop within the MAIN
DRIVER that continually checks whether any characters are to be

144 CHAPTER 9 Serial 1/0

displayed and whether a key has been pressed. Whenever a
character is received, a nonmaskable interrupt is generated, which
causes control to go over to the machine-code routine, which will
get the character and put it in a BUFFER.

Examining the interrupt-service routine of figure 9-10, we see
that first the accumulator and X registers are saved on the stack.
Then the X register is loaded from memory location $00FE (called
RECPTR) so as to point to a location in the received-character
buffer. Then the contents of the status register (STSREG) are loaded
into the accumulator and tested for error conditions. According to
table 9-3, bits 4, 5, and 6 must be tested for error conditions.

Bit 4, framing error, will be set if the ACIA does not see a logic
HIGH stop bit appearing in the proper number of bit positions from
the LOW start bit, depending on the user's initialization. An error
here indicates either a break condition or that the sender and
receiver are using different formats or different baud rates.

Bit 5 is set if a previously received character was overwritten by
another received character before being read by the receiver rou
tine. Actually, the receiver of the ACIA is buffered so that when a
character is received into the serial-shift register, it is loaded into
another register where it can wait to be read by the MPU while
another character is being shifted into the serial shift register. But if
a second character is completely shifted in before the first character
is read by the MPU, the first character is lost. The ACIA then sets
the receiver overrun flag.

Bit 6 is a parity-error flag.
All three possible error conditions are checked, and if any

error is found, the routine branches to an ERROR routine, which
sets an error flag by storing $FF into memory location 253, which
will be tested by the BASIC display program.

After checking for errors, the received character is stored in the
BUFFER and then ECHOed back to the transmitter, which is usual
in serial communications. However, if the character was originated
by our own keyboard and then received after being echoed back by
the other end, we obviously do not want to echo it back again. So
the TRANSMIT routine (in BASIC) sets a flag (TFLAG) in memory
location $00FC whenever it sends a byte. Our MC receive routine
checks to see if TFLAG is set before echoing the character. Then,
after restoring the X register and accumulator values, the RTI

9-4 RS 232 C Interface 145

instruction returns control back to BASIC after pulling the flags
back off the stack.

This entire program can be tested using the circuit of figure
9-6.

9-5
RS 232 C INTERFACE

Line drivers and line receivers are used to round off the leading
and trailing edges of rectangular pulses and to get a more constant
impedance on the line, as was mentioned earlier. We will now look
at some commonly used line drivers and receivers.

It was realized years ago that some standardization was
necessary if equipment obtained from different manufacturers was
to be compatible. So the Electronic Industries Association (EIA)
recommended the use of certain features of serial communications,
which came to be essentially an industry standard. This standard
is called RS 232 C and is found on a wide variety of equipment.
Generally speaking, if a manufacturer claims that his equipment is
RS 232 C compatible, then it should be able to communicate with
other RS 232 C equipment.

RS 232 C specifies the electrical, mechanical, and functional
characteristics of a serial port, sometimes called a data interchange.
Some of the electrical specifications are: (1) Transmitters must be
able to withstand opens or shorts on the line without damage;
(2) receivers must tolerate input signals up to + or - 25 volts
without damage; and (3) the input impedance of the receiver must
be not less than 3K ohms nor more than 7K ohms. Other specifica
tions are completely described in the EIA standard. We will not
discuss these here, especially since RS 232 C circuitry can be
purchased in IC form without the user having to worry about the
details.

Figure 9-11 shows some RS 232 C line drivers and receivers
connected to the ACIA output. The MC1488 and MC1489 chips are
commonly available from Motorola. Notice that the M0488 line
driver is connected to + 12 and -12 volt power supplies. This
increases the amplitude of the signal on the line, thereby increasing
the signal-to-noise ratio in a noisy atmosphere. Figure 9-12 shows

146 CHAPTER 9 Serial 1/0

+12
RS232C

Connector

13

TxD
6

2

12

NC

2
RxD

3
3

10

ATS 4

NC

5

NC

8

MC6850
ACIA 7

=

Figure 9-n
Line drivers and line receivers

what the output signal of the line driver looks like when driven
from the TxD output of the ACIA. Notice that the signal is 24 volts
peak-to-peak, rather than just 5 volts. Also notice that the signal is
inverted; that is, a logic HIGH of 5 volts at the TxD output appears
as a -12 volt level at the line-driver output. Therefore, the logic one
or "mark" level on the line is always -12 volts. (Some circuits use
15-volt supplies, but the idea is the same.) Besides giving a larger
amplitude signal, the line drivers round off the leading and trailing
edges of the pulses to eliminate the ringing and reflection prob
lems discussed earlier.

+5

T x D Output o
of ACIA

+12v ·-j-

Output of
MC ,1488
pin 11 0

Mark

1
' '
' ' ' ' ' ' '
' '
' ' ' :r
' ' ' ' ' ' ' ' '

-12v

I Mark

Figure 9-12
M0488 line driver output

9-4 RS 232 C Interface 147

l
1111-

' I

' I

' I
I
I
I

' '

r
..,..,

\..

Usually, the RS 232 C connection is made through a 25-pin, D
type connector, as shown in figure 9-13. The pin assignments are
also standard. The figure shows the female connector, which would
normally be used for the data terminal, which is analogous to the old
TTY equipment. At the other end (controlling end), the equipment
is called the data set. The pin connections for the TxD and RxD of
the data set are reversed from those of the data terminal.

Although a complete description of RS 232 C is not possible
here, let's discuss some of the protocol of communications on the
interchange. Whenever the data set is powered up and on line, it
outputs a + 12 v level on pin 6 of the connector, which is marked
DSR (data set ready). Likewise, when the data terminal is on line, it
outputs a + 12 v on pin 20, which is marked DTR (data terminal
ready).

148 CHAPTER 9 Serial 1/0

Signal
Gnd

oco DSR

ATS

CTS -- Rx Data

Tx Data

@®@®®©0©©~®©Q)
@@@@@@@@®@®@

OTA

Figure 9-13

Protective
Gnd

25-pin D-type connector commonly used for RS 232 C interface (female
end)

Whenever the data terminal wants to transmit a message, it
must request permission by making RTS (pin 4) of the connecto.!_gQ__
active. The ACIA output pin connected to that pin is marked RTS
for that reason. So when you want to transmit, you make RTS (pin 5
of the ACIA) go active LOW. If the data set gives permission to
transmit, it will make CTS (clear to send) go active. On the ACIA, if
CTS is not active, the transmitter will be disabled. Likewise, if DCD
is not active, the receiver will be disabled, so pin 8 of the connector
must be at + 12 v for the receiver to operate.

Since not all RS 232 C links use the RTS, CTS, DTR, and DCD
lines, you should read the particular specifications of any system to
which you are connecting.

The simplest communications link would consist of using only
the TxD, RxD, and ground lines of the connector. If the system to
which you are connecting does not use CTS and DCD, be sure to
make the CTS and DCD inputs of the ACIA both LOW or the chip
will not transmit or receive. One way to do this is to jumper
together pins 4, 5, and 8 of the D-type connector. This way, when
you make RTS LOW on initialization, you also make CTS and DCD
active, so that the transmitter and receiver of your ACIA are both
enabled.

CHAPTER 10

IEEE488 Bus

In chapter 9, we discussed the RS 232 C interface. The RS 232 C is
basically the industry standard in serial communications. We will
now study the IEEE 488 bus, which has become somewhat the
industry standard parallel-interface scheme for tying instrumenta
tion to a computer. The IEEE 488 bus was originally developed by
Hewlett-Packard, who owns the patent on the system. It is also
known as the HPIB (Hewlett-Packard Interface Bus) and the GPIB
(General Purpose Interface Bus). After we examine the bus's struc
tu~e and the types of signals and commands used on it, we will
look at how we can tie our computer to it to control some test
equipment.

10-1
BUS OVERVIEW

The IEEE 488 bus allows up to 15 instruments to be tied to a single
controller (usually the computer) simultaneously by means of three
sets of lines, or buses. These buses are the data bus (8 lines), the
interface management bus (5 lines), and the handshaking bus (3
lines). Maximum length of the bus is 20 m if several instruments are
used, but the maximum distance between any two devices is 4 m.
Maximum data transfer rate is 1 megabyte/sec, but in practice it is
usually much slower.

Figure 10-1 shows the interconnection of various instruments
to the buses. Notice that there are three types of devices that can be
tied to the buses. They are classified as talkers, listeners, and
controllers. Examples of talkers are voltmeters, AID converters, and
frequency counters. Listeners may be instruments such as printers,
chart recorders, or signal generators. Some devices can be both
talkers and listeners, such as a programmable DMM. The control
ler is usually a computer that monitors and directs activity on the
bus. The controller can talk or listen to any one of the devices by
means of standard commands. In addition, the controller can tell
one of the devices (a talker) to send information to one or more of
the other devices (listeners). That is, one device can send informa
tion directly to another device without relaying the information
through the computer.

150

L

~
DATA BUS (Blines)

~
....
.La.
IL..
II..L... nu

Talk
Devices_.

(Vohmeter)

Figure 10-1
IEEE 488 Interface Bus

10-1 Bus Overview 151

,..-- a e us H ndshak B

11
I •
II v

_-..

T
I...

III
Listen

(Printer)

r--- Management Bus

11
J_ _....

I I :r :a: . III...
~ TIII

Talk, Listen,
Control

(MPU)

J 0101-DIOB

DAV
NAFD
NDAC

IFC
AlN
SRO
REN
EOI

To ensure reliable communications between the various de
vices, a well-organized set of control and handshake signals are
used. Table 10-1 shows the name and purpose of each line of the
bus. The eight data lines DIOl through DI08 carry the message bits
as well as address information, while the other two buses carry
control or status information. The control and status information is
transferred by means of an interlocked sequence of signals, which
means that one event in the sequence must finish before the next
one can begin. For example, let's assume that the voltmeter wants to
send some information to the printer. Figure 10-2 shows the timing
diagrams for the handshake and data buses:

1. The voltmeter holds DAV HIGH and samples the NRFD
line to make sure that the printer is ready for data. If th~
printer is not ready for data, it holds NRFD active LOW

2. When the printer is ready, the printer pulls NRFD HIGH.
3. Sensing that NRFD is HIGH, the voltmeter then places its

data on the data bus and makes DAV go LOW to indicate to
the printer that data is available. The printer, in the
meantime, was holding NDAC LOW.

4. When the printer senses DAV going LOW, it makes NRFD
go LOW.

152 CHAPTER 10 IEEE 488 Bus

TABLE 10-1

Signal Name

DI01-DI08
DAV

NRFD

NDAC

IFC

ATN

SRQ

REN

EOI

DI01 - 0108

NRFO

Functions of the IEEE 488 Bus Lines

Description

Data bus lines.
DATA VALID. Pulled LOW by talker to inform listeners that
data has been placed on DIO lines.
NOT READY FOR DATA. Pulled LOW by all listeners.
Released by each listener when it becomes ready to receive
data.
NOT DATA ACCEPTED. Pulled LOW by all listeners.
Released by each listener when it has accepted data.
INTERFACE CLEAR. Driven LOW by controller to bring all
interface lines to known state.
ATTENTION. Driven LOW by controller to gain the attention
of devices on bus and to signify that address/control
information is on the bus.
SERVICE REQUEST. Pulled LOW by any device needing
service. Similar to interrupt request.
REMOTE ENABLE. Pulled LOW by controller to ensure that
remote control is in effect. For example, front panel controls
can be disabled by REN.
END OR IDENTIFY. Pulled LOW by talker to inform listeners
that current byte on data bus is the last byte to be transferred.
Pulled LOW by controller together with ATN to initiate a
parallel poll sequence.

BYTE 1 BYTE 2

DATA VALID DATA VALID

NDAC----------------

Figure 10-2
Timing diagrams for data and handshake lines

10-1 Bus Overview 153

5. Then, when the printer inputs the data, the printer pulls
NDAC HIGH, thus informing the voltmeter that data has
been accepted.

6. Sensing that data has been accepted, the voltmeter then
pulls DAV HIGH again. The process is repeated each time
a new data byte is to be transferred.

The signal lines DAV, NRFD, and NDAC are all open collector
lines used for handshaking between talkers and listeners. Since
they are open collector lines, several instruments may be simul
taneously tied to each line, and the data transfer rate will be
controlled by the slowest device. Figure 10-3 shows the timing
diagrams when several listeners are activated at the same time.

The problem now arises as to how does the talker know that it
has permission to talk and how does any individual device know
whether or not it should listen? The control signals, issued by the
controller, are what direct talkers to talk and listeners to listen. The
following is a typical sequence showing how this is accomplished:
On power up, the controller takes control of the bus and sends out
an IFC signal on the management bus. This places all devices in a

DAV-----------

Some Listeners\ _________ /
Ready

Some
Ready

rT·/-~ Ali \ rr·7· All
NRFD ___ f_l_ Ready -----------l--~-- Ready

Some
Accepted

NDAC
tT7"!' All \

__________ f__._f ...;·:.-f -6 Accepted __ ----

Figure 10-3
Timing diagrams when several listeners are on the bus

154 CHAPTER 10 IEEE 488 Bus

known state, with no one talking and no one expecting data. Then,
if there are several instruments on the bus, the controller polls the
bus to watch for an active SRQ signal. The SRQ signal is equivalent
to an interrupt request. In fact, an instrument can be programmed
to generate an interrupt request on receipt of an SRQ, if desired.

Let's suppose that our DVM has completed conversion and has
data for the printer. The DVM pulls SRQ LOW. The controller (after
determining that the DVM is the source of the SRQ) makes ATN go
LOW to gain the attention of all devices on the bus. It then outputs
a LISTEN command, specifying the address of the listener. The
command is issued on the DIO lines and is of the form XOlAAAAA,
where the AAAAA specifies a 5-bit address of the listener. This
address is effectively hardwired into the listener, and when the
listener detects its own address in the command, it enters the listen
mode. Next, the controller issues a TALK command on the DIO
lines, which is of the form XlOAAAAA. The talker (our DVM) then
begins the sequence of NRFD-DAV-NDAC handshaking and data
transfer to the printer, as discussed previously.

Meanwhile, the controller was in the standby state, monitor
ing the bus but not taking part in the transfer of data. When the
transfer of data is complete, the talker sends an EOI signal on the
management bus. The controller, on detecting the EOI, takes
control again and sends an UNTALK command (XlOlllll) followed
by an UNLISTEN command (XOllllll) on the DIO lines. The talker
stops talking and the listener stops listening so the bus is now
available for other transfers.

Table 10-2 shows the format for the various interface message.
While we will not discuss all of the possible messages here, we will
study enough of them to make a small system work effectively. For
a thorough discussion of all the commands, refer to the IEEE 488
specifications. Not all of the commands are used in every applica
tion, particularly in smaller systems. In fact, there may be some
differences in the way some systems handle certain events. For
example, the response to the SRQ is not standardized. In some
systems it may initiate a parallel polling sequence to establish the
source of the request; while in other systems, it may cause an
immediate jump to a particular service routine.

One important point is that the IEEE 488 bus uses negative logic.
This means that a TRUE (logic 1) signal appears on the bus as a

10-1 Bus Overview 155

TABLE 10-2
IEEE 488 Interface Messages

Command

ADDRESSED COMMAND GROUP
DEVICE CLEAR
GROUP EXECUTE TRIGGER
GOTO LOCAL
LISTEN ADDRESS GROUP
LOCAL LOCKOUT
MY LISTEN ADDRESS
MY TALK ADDRESS
MY SECONDARY ADDRESS
OTHER SECONDARY ADDRESS
OTHER TALK ADDRESS
PRIMARY COMMAND GROUP
PARALLEL POLL CONFIGURE
PARALLEL POLL ENABLE
PARALLEL POLL DISABLE
PARALLEL POLL UNCONFIGURE
SECONDARY COMMAND GROUP
SELECTED DEVICE CLEAR
SERIAL POLL DISABLE
SERIAL POLL ENABLE
TAKE CONTROL
TALK ADDRESS GROUP
UNLISTEN
UNTALK
UNIVERSAL COMMAND GROUP

Symbol

ACG
DCL
GET
GTL
LAG
LLO
MLA
MTA
MSA
OSA
OTA
PCG
PPC
PPE
PPD
PPU
SCG
soc
SPD
SPE
TCT
TAG
UNL
UNT
UCG

DIO 1-8*

oooxxxxx
X0010100
XOOOlOOO
XOOOOOOl
XOlXXXXX
X0010001
XOlAAAAA
XlOAAAAA
xnsssss
SCG.MSA
TAG.MTA
ACG+UCG+LAG+TAG
XOOOOlOl
XllOSPPP
XlllDDDD
X0010101
XllXXXXX
XOOOOlOO
XOOllOOl
XOOllOOO
XOOOlOOl
XlOXXXXX
XOllllll
XlOlllll
XOOlXXXX

•o Logical zero (HIGH level on GPIB), 1 Logical one (LOW level on GPIB), X Don't care
(received messagei

LOW voltage (0 volts), while a FALSE (logic 0) signal appears on the
bus as a HIGH (> 2v) level. This does not mean that you must invert
all of your thinking about what is going on at the computer end.
But on the bus lines themselves, the voltage levels are the opposite
of what you would measure on your computer bus. For example, if
your computer outputs the byte 00110100, it will appear on the IEEE
bus as HHLLHLHH, where H represents >2v and L represents Ov
as measured with a voltmeter. IC manufacturers such as Motorola
and Texas Instruments make IEEE 488 compatible chips that take
care of the inversions for you. The interface circuits are TTL
compatible and use a single + Sv power supply.

156 CHAPTER 10 IEEE 488 Bus

SHIELD SRO NDAC DAV 0104 DI02

ATN IFC NRFD EOI DI03 DI01

GND GND GND REN 0107 DIO&
11 9 7

LOGIC GNO GND GND 0108 0106

ONO 10 8 8

Figure 10-4
Standard IEEE connector

Many instrument manufacturers build instruments capable of
tying into the IEEE 488 bus. These instruments use standard 24-pin
connectors, such as the one shown in figure 10-4.

10-2
THE TMS9914A GPIB
CONTROLLER

It is possible to interface the computer to the IEEE 488 bus using
simple buffers and latches, just as it would be possible to control
serial communications with buffers and latches. But doing so
would require a great deal of computer time and software to
monitor and generate control and handshake signals, not to men
tion a handful of hang-on chips. We saw that by using a program
mable interface chip, such as Motorola's ACIA, we can free the
computer from all of the formatting, control signal generation, and

10-2 The TMS9914A GPID Controller 157

DATA DUFFERS
BUS 75160

IEEE.-BS
GPIB

BUFFERS
75151

BUS OR
MANAGE· 75152

MENT

oc

Figure 10-5

ADDRESS
SWITCHES

fii

DATA
DUS

TMS9914A
GPIB

TE

BUS
MAN·
AGE·

MENT

we

Typical TMS9914A application
(Courtesy of Texas Instruments, Inc.)

DATA AND
PROGRAM
MEMORY

WfDDIN

D0-07

DBIN

MPU

AO-A14

timing problems. Similarly, by using a chip specifically designed to
interface to the IEEE bus, we make the computer's job much
simpler. One very popular chip, made by Texas Instruments, is the
TMS9914A General Purpose Interface Bus Controller. The chip is
normally memory mapped into the system, for example, in one of
the computer's peripheral slots. Using this chip, the computer
simply talks to or reads from a few memory locations to send or
receive data. Handshaking is done automatically without tying up
computer time. More importantly, as mentioned before, the com
puter can direct one device to talk to one or more other devices
without having to relay the information.

Figure 10-5 shows the TMS9914A in a typical application. An
IEEE 488 compatible instrument, such as a DVM, would have an
interface board with all of the circuitry shown in the figure. The
MPU, of course, also controls some of the hardware that makes the
DVM do its job. The onboard data and program memory contains
firmware that makes the MPU control the DVM functions, as well
as the TMS9914A functions and initialization. Each instrument
must initialize its own TMS9914A on power up. The 75160 and 75161

158 CHAPTER 10 IEEE 488 Bus

TABLE 10-3
TMS9914A Read registers

(Courtesy of Texas Instruments, Inc.)

ADDRESS
REGISTER NAME

BIT ASSIGNMENT

RS2 RS1 RSO 00 01 D2 D3 D4
0 0 0 Int Status 0 INTO INT1 Bl BO ENO

0 0 1 Int Status 1 GET ERR UNC APT DCAS

0 1 0 Addross Status REM LLO ATN LPAS TPAS

0 1 1 Bus Status ATN DAV NDAC NRFD EOI
1 0 0

1 0 1

1 1 0 Cmd Pasa Thru 0108 0107 0106 0105 0104

1 1 1 Data In 0108 0107 0106 0105 0104

D5 DB D7

SPAS RLC MAC

MA SRQ IFC

LADS TAOS ulpa

SRQ IFC REN

0103 0102 0101

0103 0102 0101

•The TMS99t4A host interface dato tnea w~I remain in tho high impedance steto when those register locations are llddrossod. An Addtosa Switch

Regi$tor mav therefor• be included in the addreas spoco of tho device •t theao locations Csoo Sactlon t .51.

TABLE 10-4
TMS9914A Write registers

(Courtesy of Texas Instruments, Inc.)

ADDRESS
REGISTIR NAME

BIT ASSIGNMENT

RS2 RS1 RSO DO D1 D2 D3 D4
0 0 0 Int Mask 0 Bl BO ENO

0 0 1 Int Mask 1 GET ERR UNC APT DCAS

0 1 0 xx xx xx xx MK

0 1 1 Auxiliary Cmd cs X)C xx f4 f3

1 0 0 Address edpa dal dat AS A4

1 0 1 Serial Poll SB rsvl SS S5 54

1 1 0 Parallel Poll PPB PP7 PPS PP5 PP4

1 1 1 Data Out 0108 0107 0106 0105 0104

D5 DB

SPAS RLC

MA SRQ
)C)C xx

f2 f1

A3 A2

S3 52

PP3 PP2

0103 0102

•This address is not decoded bv tho TMS 9914A. A write to this loc1t1on will hllve no elfoct on the device, as tf a write had not occurred.

D7

MAC

IFC

xx

fO

A1

51

PP1
0101

chips are specifically designed to interface to the IEEE bus. And the
direction of data flow through these buffers is controlled by the TE
and CONT outputs of the TMS99I4A.

Communications between the MPU and the TMS99I4A are
accomplished via I3 memory-mapped registers in the TMS99I4A.
Once the chip is enabled by an address decoder, one of the specific
registers is selected by means of address bits applied to 3 register
select pins, RS2, RSI, and RSO, in the same manner that various
registers in the PIA and ACIA were selected. However, 6 of the
registers are read only, and 7 registers are write only. Table I0-3
shows the function of the read registers, and table I0-4 shows the
function of the write registers. We will discuss the operation and
purpose of a few of these registers.

Whenever the MPU wants to read in a byte from the GPIB, the
MPU makes RS2, RSI, and RSO all HIGH thereby selecting the data
in register and does a read operation (LDA). But when the MPU

10-2 The TMS9914A GPID Controller 159

wants to send a byte out to the GPIB, it makes the register-select
pins all HIGH and does a write operation (STA), thereby selecting
the data out register.

It was mentioned in the previous section that each talker and
listener on the IEEE bus is given a 5-bit address to identify it and
that this address is somehow hardwired into the device. You can
appreciate the need for these device addresses to be user change
able so that you can buy instruments from different manufacturers
and not have to worry about address conflicts. Here is how it is
usually done. Each instrument, our DVM for example, has a 5-
position dip switch located on the rear panel of the instrument. The
user sets the switch to any address (except 11111) that he or she
wants the device to respond to. Then on power up, an initialization
routine in the instrument's ROM causes the MPU to read from the
address switches. The MPU then writes this 5-bit address into the
address register (100) of the TMS9914A. Thereafter, whenever that 5-
bit address appears on the DIO lines, the instrument knows that it
should respond. For example, suppose that the DVM address
switches are set to 01000. When the controller issues the TALK
command X1001000, the DVM recognizes its address and begins
talking. The general form of the TALK command, as shown in table
10-2, is XlOAAAAA, where the AAAAA specify the particular
device that is to respond.

Registers 000 and 001 are used for interrupt status and control.
If you want an interrupt request to be generated when an input
byte is available, you set the BI bit in the int mask 0 register. This
corresponds to the receive data register full interrupt on the ACIA.
Similarly, if you want an interrupt request to be generated when the
output register is ready to accept the next output byte, you set the
BO bit of register 0. This corresponds to the transmit data register
empty interrupt in the ACIA. If you do not want interrupts to be
generated, the corresponding BI and BO bits in the int status 0
register can be polled to see whether an input byte is present or the
output register is ready. The END bit in the int status register is
used to detect the end of a message. It gets set when the TMS9914A
detects an EOI signal on the management bus. The int mask 0
register is not cleared by either a hardware or software reset. It will
come up in a random state on power up. Therefore, part of the
initialization routine must write the desired interrupt mask into it.
The same thing must be done for int mask 1 register.

160 CHAPTER 10 IEEE 488 Bus

TABLE 10-5
TMS9914A Auxiliary Commands

(Courtesy of Texas Instruments, Inc.)

c/s f4 f3 f2 f1 fO MNEMONIC

011 0 0 0 0 0 swrst

0/1 0 0 0 0 1 deer

na 0 0 0 1 0 rhdf

0/1 0 0 0 1 1 hdfa

0/1 0 0 1 0 0 hdfe

no 0 0 1 0 1 nbaf

011 0 0 1 1 0 fget

011 0 0 1 1 1 rt!

na 0 1 0 0 0 feoi

0/1 0 1 0 0 1 Ion

011 0 1 0 1 0 ton

no 0 1 0 1 1 gts

no 0 1 1 0 0 tea

na 0 1 1 0 1 tcs

011 0 1 1 1 0 rpp

0/1 0 1 1 1 1 sic

0/1 1 0 0 0 0 are

na 1 0 0 0 1 rqc

na 1 0 0 1 0 rlc

0/1 1 0 0 1 1 dai

na 1 0 1 0 0 pts

0/1 1 0 1 0 , std I

0/1 1 0 , 1 0 shdw

0/1 1 0 1 1 1 vatdl

0/1 1 1 0 0 0 rsv2

FEATURES

Softwaro rosot

Release DAC holdoff

Release RFD holdoff

Holdoff on all dota

Holdoff on EOI only

New byte avoiloble false

Force group execute trigger

Return to loco!

Send EOI with next byte

Listen only

Talk only

Go to standby

Take control asynchronously

Take control synchronously

Requeat parallel poll

Send interface clear

Send remote enable

Requeat control

Release control

Disable all interrupts

Pass through next secondary

Short Tl settling time

Shadow handshake

Very short T1 delay

Request Service Bit 2

The auxiliary command register (011) is used to enable and
disable most of the selectable features of the TMS9914A and to
initiate many of its actions. Table 10-5 shows how the desired
features are selected by writing various bit patterns into this
register. Bits f4-f0 are the 5 least significant bits of this register. The
column labeled ds indicates that the function will be set (enabled)
when a 1 is written into the most significant position of the register,
and writing a 0 into the MSB will clear (disable) the feature. For
example, let's assume that we are using the TMS9914A as a system
controller. Suppose we want to send an INTERFACE CLEAR pulse
out on the management bus. We do this by first writing the bit
pattern lXXOllll to the auxiliary command register. This sets IFC
active. Then, after a short time delay of perhaps 1 ms, we send the
bit pattern OXXOllll to the same register. This second byte causes
the TMS9914A to make the IFC command line inactive. Of course,
not all of the possible commands are used in every application. But
we will see how several other commands are used in a practical
application in the next section.

10-3 Connecting the Apple to the IEEE 488 Bus 161

Although, as mentioned previously, negative logic is used on
the GPIB lines themselves, the connections between the MPU and
the TMS9914A use conventional positive logic. That is, the bit
patterns shown in the tables are the same bit patterns that the MPU
must output to the TMS 9914A. For example, to set the IFC active,
the MPU would execute an instruction like LDA #$8F, then store
the accumulator (STA) to the auxiliary command register address of
the TMS9914A. To make IFC inactive, the MPU does a LDA #$OF
then stores it to the same address.

10-3
CONNECTING THE APPLE TO
THE IEEE 488 ·aus
Interfacing the Apple computer to the IEEE 488 bus can be accom
plished using the TMS9914A along with its buffers, the 75160 and
75161, as shown in figure 10-6. These three chips can be mounted
on a simple prototype card and the card can be plugged into any
suitable slot. Note that Apple data bus line D7 connects to pin 17 of
the TMS9914A, marked DO. DO of the TMS9914A is the most
significant bit of the device. This is in agreement with the designa
tions in tables 10-3 and 10-4. By using DEVICE SELECT as the chip
enable and feeding RS2, RSI, and RSO from A2, Al, and AO as
shown, the TMS9914A will respond to 8 consecutive addresses
issued by the Apple. For example, if we placed the card in slot 4, the
address range of the interface will extend from 49344 ($COCO) to
49351 ($COC7). The chip also needs an external clock input, so <l>l of
the Apple clock (pin 38) is used.

Since the best way to understand the Apple-to-GPIB interface
is through an example, we will discuss connecting the Apple to a
Keithley Model 192 Programmable DMM. The Model 192 is exter
nally programmable via the GPIB for selection of function (DCV,
ACV, or K ohms), range, rate of data capture, and several other
features. It has the standard IEEE 488 connector on the rear panel,
as well as the 5-bit dip switch for address selection. To select the
desired features of the DMM, the controller issues a LISTEN
command using the address bits of the DMM. Then the DMM is
sent several bytes of data telling it what to do. After sending all of
the required bytes, the controller sends an UNLISTEN command,

162 CHAPTER 10 IEEE 488 Bus

APPLE PERIPHERAL CONNECTOR +5V
Vet;

+5V~-- .01

r~ GND~
40

NC 1

07

06

05

04

03

02

01

DO

IRO

Device Select

vcc

NC 39

17
DO MSB

16 01

15
02

14
03

13 04 TMS
9914A

12
05

11
06

10
07 LSB

INT

>------o1.....1W'E
OBIN

>-----<JI~

>-------<"'IREm

>-------RS1

~----6--4ASO GND
20

Figure 10-6
IEEE 488 Bus/ Apple interface

+5V
75160 IEEE 488

2 20 Connector

0108
31 12 08 vcc 9 16 0108

0107
32 13 88 8

15 DI07
0106

33 14
07 87 7

14 0106
0105 34 15

06 86 6
13 0105

0104
35 16 05 85 5

4 04 84 0104
0103

36 17
03 83

4
3 0103

0102 37 18
02

3 0102 82 2 2
0101 38 19

01 81 1 0101

TEGNDPE
10 11

TE 21

+5V

CONT~3_o ___ ~ ~
11 1

DC TE 20 =
vcc

SRo,_2_9 ___ 1__.2 SRO REN1-2-----< 17 REN

ATN
28 13

ATN IFC 3 9 IFC

EOI
27 14

EOI NDAC 4 8 NDAC

DAV
26 15

DAV NRFD 5 7 NRFD
NRFD

25 16
NRFD DAV 6 6 DAV

NDAC
24 17

NDAC EOI 7 5 EOI
IFC

23 18
IFC ATN 8 11 ATN

RE
22 19

REN SRO 9 10 SRO

GND

75161 10

18
19
20
21
22
23
24

followed by a TALK command, again using the address bits of the
DMM. The DMM then responds by outputting data on the DIO
lines according to the selected format. If no format is selected by the
user, the DMM defaults to the predetermined format, which is de
volts on the 2000 volt range. We will use the default mode for our
first example.

Figure 10-7 shows the listing for a BASIC program to commu
nicate with the DMM via the IEEE 488 bus. While the program can
and often is written in assembly language, we will use BASIC for
simplicity.

10-3 Connecting the Apple to the IEEE 488 Bus 163

JLIST

10 REM *** SIMPLE IEEE-488 DEMO ***
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM *
15 REM * MAP REGISTERS OF 9914 *
20 STTUS = 49344
25 CMD = 49347
30 DID = 49351
35 DMMT = 72: REM DMM TALK ADDRESS
100 REM * !NIT CONTROLLER *
110 POKE CMD,128: REM SET SWRST
120 POKE CMD,147: REM DISABLE INTERRUPTS
130 POKE CMD,O: REM CLEAR SWRST
140 POKE CMD,12: REM TAKE CONTROL
150 POKE CMD,143: REM SEND IFC
160 POKE CMD,15: REM RESET IFC
170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDBY
190 POKE CMD,137: REM SET UP 9914 TO LISTEN
200 REM * INPUT ROUTINE *
210 S = PEEK <STTUS>
220 IF S < 32 THEN GOTO 210: REM POLL BI
230 BYTE= PEEK <DIO>: REM GET CHARACTER
240 C$ = CHR$ <BYTE>
245 PRINT C$;
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
255 END

JRUN
NDCV+0005.753E+O

Figure 10-7
Listing of simple IEEE 488 demo

The program begins by assigning labels to the various ad
dresses of the TMS9914A chip of figure 10-6. We will place the
interface card in slot 4. If you use any other slot, be sure to change
lines 20, 25, and 30 accordingly. Line 35 equates the label DMMT as
the DMM talk address. For this example, the DIP switch on the rear
of the DMM is set at 01000. So, according to Table 10-2, when the
controller wants to tell the DMM to talk, the controller outputs a
byte on the DIO lines corresponding to the MTA message
XlOAAAAA. Since the DIP switch is set at 01000, the MTA message
is XlOOlOOO. The X in the address is a don't care bit so we set it LOW,
forming the byte 01001000 ($48), which is equivalent to 72 in
decimal.

Next we begin the initialization of the TMS9914A. Line 110
POI<Es the auxiliary command register with the value 128 (10000000
in binary), causing a software reset (see table 10-5). This is the usual

164 CHAPTER 10 IEEE 488 Bus

first command on power up. While in the software reset state, the
TMS9914A is usually sent the desired interrupt masks. We will not
use interrupts in this example, so we POKE the auxiliary command
register with 147 (10010011) to disable all interrupts. Line 130 clears
the software reset. Line 140 tells our TMS9914A to act as the
controller for the bus. Lines 150 and 160 cause the IFC line to be
pulsed active LOW for a short time. If you do this in a machine
language routine, be sure to include a time delay (perhaps 1 ms)
between the time that IFC goes LOW until it goes HIGH again.
BASIC is slow enough that we do not have to include the delay. Line
170 causes the controller to output the byte $48 (01001000), thus
establishing the DMM as a talker. Line 190 tells the TMS9914A to
listen, while waiting for the data from the DMM.

The DATA INPUT routine, starting at line 200, polls the status
register to see if BI (byte in) is HIGH. When BI goes HIGH, the
status byte will be 00100000, as can be seen in table 10-3. The
decimal equivalent of the status byte is 32. So when BI goes active,
the data is read in from the DIO lines, changed to a printable
character, and printed on the Apple's CRT. Then the status byte is
checked to see if END is active, which indicates the end of the
message. The END bit of the status byte is set when the talker
makes its EOI handshake line active while sending its last byte. If
END is not active, the program loops back to input the next byte.
When END is detected (status byte 00101000 or 40 in decimal), the
program falls through.

The RUN of the program, shown at the bottom of figure 10-7,
shows that the Model 192 DMM sends 16 bytes of data (followed by
a carriage return-line feed). The format of the data string is shown

(Function (Display !Exponent(Terminator

I ~ c I v I + I 1 I 2 I 3 I . I 4 I 5 I 6 I 1 I E I + I 0 I CAI LF I
N =Normal
0 =Overflow
Z =Zeroed

Data Format: 16 Bytes + Terminator

Figure 10-8
Data format for Keithley Model 192 DMM

10-3 Connecting the Apple to the IEEE 488 Bus 165

JLIST

10 REM *** SIMPLE IEEE-488 DEMO ***
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM *
15 REM * MAP REGISTERS OF 9914 *
20 STTUS = 49344
25 CMD = 49347
30 DID = 49351
35 DMMT = 72: REM DMM TALK ADDRESS
100 REM * INIT CONTROLLER *
110 POKE CMD.128: REM SET SWRST
120 POKE CMD~147: REM DISABLE INTERRUPTS
130 POKE CMD,O: REM CLEAR SWRST
140 POKE CMD,12: REM TAKE CONTROL
150 POKE CMD,143: REM SEND IFC
160 POKE CMD,15: REM RESET IFC
170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDBY
190 POKE CMD,137: REM SET UP 9914 TO LISTEN
2~) REM * INPUT ROUTINE *
210 S = PEEK CSTTUS>
220 IF S < 32 THEN GOTO 210: REM POLL BI
230 BYTE= PEEK <DIO>: REM GET CHARACTER
240 C$ = CHR$ <BYTE>
245 PRINT C$;
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
260 FOR D = 1 TO 7~)0: NEXT D
270 GOTO 140

lRUN
NDCV+0008.819E+O

NDCV+OOQ9.414E+O

NDCV+0010.585E+O

NDCV+0011.551E+O

BREAK IN 260

Figure 10-9
Listing of simple IEEE 488 demo for periodic sampling

in figure 10-8. In some installations, we might want periodic
readings from the DMM, for instance, once every 10 seconds or
once every half hour. Figure 10-9 shows a simple modification of
the previous program in which the computer inputs the data string
from the DMM then after some time delay (line 260) asks for
another reading.

In the programs of figures 10-7 and 10-9, the front panel
controls of the DMM selected the function, range, and so on. But

166 CHAPTER 10 IEEE 488 Bus

TABLE 10-6
IEEE 488 Programming for the Keithley Model 192 DDM

Feature ASCII

FUNCTION

RANGE

ZERO

TRIGGER

RATE

DELAY

BUFFER

MODE

EOI

TERMINATOR

FO = DCV
Fl= ACV
F2 = K OHMS
RO= AUTO
Rt = 0.2
R2 = 2
R3 = 20
R4 = 200
RS = 2000
R6 = 20 M OHMS
ZO =OFF
Zl =ON
TO = Cont. on TLK
Tl = One shot on TLK
T2 = Cont. on GET
T3 = One shot on GET
T4 = Cont. on X
TS = One shot on X
SO = 4 ms integration (4 ~ d)
St - SB various rates
WO= 0
Wt = 10 ms
QO = Clear
Qt = Store 100 readings
MO= SRQ OFF
Ml= SRQ ON
KO= SEND
Kl = DO NOT SEND
Y(LF) = CF LF
Y(CR) = LF CR
Y() = Any ASCII
Y(DEL) = None

X =EXECUTE
U = Send status bytes

Note: Default = FORSZOTOS2W1QOXOMOY(LF)

one of the powerful features of a programmable DMM, like the
Keithley Model 192, is that the function, range, rate of capture, and
so on, can be programmed from a remote computer. Here is how

10-3 Connecting the Apple to the IEEE 488 Bus 167

the remote programming works. On power up, the DMM is put
into the LISTEN mode, rather than the TALK mode. The computer
then sends control bytes (a string of ASCII characters) to the DMM
to tell it how it is to operate. After initialization, the DMM is placed
in the TALK mode, as before, and sends data to the listener(s).

Table 10-6 shows the various features that can be remotely
controlled in the Keithley Model 192. By sending the ASCII bytes
FlR4, for example, the DMM is told to place its internal function
selector in the ac volts position and its range switch on the 200-volt
scale. Only those features that you wish to change must be sent to
the DMM. The default values are shown at the bottom of the table.

Figure 10-10 shows the program listing that allows you to
remotely program the DMM. Notice that the major portion of the
program is the same as that of figure 10-7. The title line (line 10) is
changed, a new line (line 40) equates the DMM listen address to 40
decimal (00101000), and line 165 has been added to call a subroutine
to initialize the DMM. Otherwise, the program is identical to that
of figure 10-7 up to line 255.

The subroutine at line 300 first sets the remote enable line
active, then tells the DMM to listen. Next it puts the controller in
standby and makes the TMS9914A a talker. The code from lines 350
through 400 allow the user to enter the bytes to the be sent to the
DMM, as described in table 10-6. The character X is used to
terminate the message and to trigger the DMM to activate the
features sent to it. Although the Keithley Model 192 recognizes the
character X as an execute command, other instruments might not.
A typical remote programming sequence might include having the
controller send the remote device a string of ASCII characters, and
along with the last character sending an EOI signal, indicating the
end of message. The EOI can be sent along with the last character
by writing the command 08 to the auxiliary command register, as
shown in table 10-5.

Getting back to the program of figure 10-10, once the message
terminator is sent, the program falls through to line 410, where the
TMS9914A is told to stop talking and take control again. The DMM
is taken out of the listen mode, and the program returns to line 170
in the main driver. From there on, execution is the same as that of
figure 10-7.

JLIST

10 REM *** IEEE 488 DEMO USING REMOTE PROGRAMMING ***
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM *
15 REM * MAP REGISTERS OF 9914 *
20 STTUS = 49344
25 CMD = 49347
30 DID = 49351
35 DMMT = 72: REM DMM TALK ADDRESS
40 DL = 40: REM DMM LISTEN ADDRESS
100 REM * !NIT CONTROLLER *
110 POKE CMD~128: REM SET SWRST
120 POKE CMD,147: REM DISABLE INTERRUPTS
130 POKE CMD,O: REM CLEAR SWRST
140 POKE CMD,12: REM TAKE CONTROL
150 POKE CMD,143: REM SEND IFC
160 POKE CMD,15: REM RESET IFC
165 GOSUB 300: REM INIT DMM
170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDBY
190 POKE CMD,137: REM SET UP 9914 TO LISTEN
200 REM * INPUT ROUTINE *
210 S = PEEK <STTUS>
220 IF S < 32 THEN GOTO 210: REM POLL BI
230 BYTE= PEEK CDIO>: REM GET CHARACTER
240 C$ = CHR$ <BYTE>
245 PRINT C$;
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
255 END
300 REM * INIT DMM FOR REMOTE OPERATION *
310 POKE CMD,144: REM SEND REMOTE ENABLE
320 POKE DIO,DL: REM TELL DMM TO LISTEN
330 POKE CMD,11: REM GO TO STANDBY
340 POKE CMD,138: REM SET UP 9914 AS TALKER
350 REM * SEND MESSAGE *
360 PRINT "ENTER MESSAGE CHARACTERS, TERMINATE WITH X"
365 PRINT
370 GET M$
380 POKE DID, ASC CM$)
390 PRINT M$;
400 IF M$ < > 11 X11 GOTO 370: REM CHECK IF LAST CHARACTER
405 PRINT
410 POKE CMD,10: REM TELL 9914 TO STOP TALKING
420 POKE CMD,12: REM TAKE CONTROL AGAIN
430 POKE DI0,63: REM SEND UNLISTEN COMMAND
440 RETURN

Figure 10-10
Listing of IEEE 488 demo using remote programming

168 CHAPTER 10 IEEE 488 Bus

10-3 Connecting the Apple to the IEEE 488 Bus 169

::!RUN
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X

FOP~~:x

f\IDCV+ .I. :t.. ~5602:::::E+O

:JF~UN
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X

FlX
NACV+00.00992E+O

JRUN
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X

F2F~'.4·X

OOHM+400"0000E+3

Listing 10-lO(b)

The sample RUNs at the end of the program listing were
obtained using a de input to the Model 192. Various features were
selected in the different RUNs to show how the DMM is affected.

There are a wide variety of other instruments, made by several
different manufacturers, that are IEEE compatible. Instruments
such as frequency counters and signal generators can be remotely
programmed and told to talk to other instruments. As you can see,
the IEEE 488 bus is a very powerful and flexible means of tying
together a variety of test equipment for automatic testing or data
acquisition.

INDEX

A
ACIA 128
Analog to digital conversion 48-59

multiple input 55-59
single input 48-52
using to control graphics display 52-55

Assembly language 78
Asynchronous transmission 125

B
BASIC, use of 65, 76-77

fixed or slowing moving graphics 77
initialization 76
input 76
inputs from disk drives 77
mathematics 77
menus 76
outputs to printers 77
to generate since waves 105-110

Baud rate 127

171

172 Index

c
Centronics-type printer interface 24
Control register 29
Conversion complete signal 50, 90

D
Data direction 29
Decimal to hexidecimal conversion 10-12
Digital to analog conversion 102-105

H
Hexidecimal to decimal conversion 10-11

I
IEEE 488 interface bus 150-169

overview 150-156
connecting the Apple to 161-169
TMS9914A GPIB controller 156-161

Input buffers 20-24
Interface card 3-4
Interface connectors 3
Interrupts 92, 95

M
Machine language 77-78

calling subroutines from BASIC program 83-88
entering into RAM 78-82
loading programs 83
saving programs 82
use of 77-78

Memory mapped I/O 14-15

0
Output latches 16-20

p
Parallel output port 16
Pascal 65
Peripheral connector pinout 3-4
Peripheral connector signals 6-8, 15

Peripheral register 29
PIA internal registers

control 29
data direction 29
peripheral 29

Program validation 70
Programmable controllers 40-46
Programmable interface chips 26-31

control register 29
data direction register 29

Index 173

MOS Technology 6520 Peripheral Interface Adapter (PIA) 26
Motorola 6820 PIA 29
peripheral register 29

R
RS 232 C interface 145-148

s
Serial transmission 122

ACIA 128
asynchronous 125
baud rate 127
formats 125-128
off-the-shelf UART 128-133
RS 232 C interface 145-148
UART, use of 133-144

Solid state relays 34-36
Storage scope, using the computer as 90-100
Structured programming 62-73

T

defining 62-63
designing 63-65
documentation 72-73
maintenance 73
testing and debugging 70-72
top-down design 64
writing the code 65-70

TMS9914A GPIB controller 156-161
Top-down design (see Structured programming)

174 Index

Traps 70
TRIACS, using for power control 36-39
Triggered sweep 97-100

u
UART 128-144

v
Variable names 67

w
Waveform generation 102-120

Complex waves 110-118
digital to analog conversion 102-105
higher frequencies 119-120
using BASIC to generate sine waves 105-110

other Reston titles of interest ...

68 SCIENTIFIC AND ENGINEERING PRO
GRAMS FOR THE APPLE II AND Ile
by Joseph J. Carr

\Nith emphasis on the practical, this author draws on his years of
engineering experience to give the reader 68 helpful scientific and
engineering programs designed for the Apple II and Ile.The bulk of the
problems selected are from electronic engineering, with sub-emphasis
on bio-medical and radio engineering. Some techniques are applicable
to many other disciplines as well. The Statistical Section includes stan
dard formulas as well as one additional non-standard formula that may
be especially useful.

BASIC PROGRAMS FOR
ELECTRICAL CIRCUIT ANALYSIS
by Theodore Bogart, Jr.

A collection of computer programs for troubleshooting a broad range
of circuit problems. The author uses BASIC throughout, but requires
no prior knowledge of BASIC throughout, but requires no prior
knowledge of BASIC programming because he thoroughly explains
each program individually. Useful subroutines provided include
universal gTaph plotting and the capacity for generating graphic
dis pays.

ELECTRONIC INSTRUMENTATION
AND MEASUREMENTS ~
by David A. Bell

Provides excellent explanations of instrument operation along with
scores of worked-out examples. The author carefully explains the
operation, performance charncteristics, and applications of electronic
instruments and test equipment. Numerous practical examples supple
ment the broad discussion of measuring techniques.

A Reston Book
Prentice-Hall. Inc.
Englewood Cliffs, NJ. 07632 0- 8 359- 9222- 5

