



















































































































































































































































































































































































































































































152 CHAPTER 10 IEEE 488 Bus

TABLE 10-1
Functions of the IEEE 488 Bus Lines

Signal Name Description

DIO1-DIO8 Data bus lines.

DAV DATA VALID. Pulled LOW by talker to inform listeners that
data has been placed on DIO lines.

NRFD NOT READY FOR DATA. Pulled LOW by all listeners.
Released by each listener when it becomes ready to receive
data.

NDAC NOT DATA ACCEPTED. Pulled LOW by all listeners.
Released by each listener when it has accepted data.

IFC INTERFACE CLEAR. Driven LOW by controller to bring all
interface lines to known state.

ATN ATTENTION. Driven LOW by controller to gain the attention
of devices on bus and to signify that address/control
information is on the bus.

SRQ SERVICE REQUEST. Pulled LOW by any device needing
service. Similar to interrupt request.

REN REMOTE ENABLE. Pulled LOW by controller to ensure that
remote control is in effect. For example, front panel controls
can be disabled by REN.

EOI END OR IDENTIFY. Pulled LOW by talker to inform listeners

that current byte on data bus is the last byte to be transferred.
Pulled LOW by controller together with ATN to initiate a
parallel poll sequence.

DI01 - DI08 @(

NRFD

NDAC

BYTE 1 BYTE 2

DATA VALID )@X DATA VALID X%

/7 {r/_

Figure 10-2

Timing diagrams for data and handshake lines
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5. Then, when the printer inputs the data, the printer pulls
NDAC HIGH, thus informing the voltmeter that data has
been accepted.

6. Sensing that data has been accepted, the voltmeter then
pulls DAV HIGH again. The process is repeated each time
a new data byte is to be transferred.

The signal lines DAV, NRFD, and NDAC are all open collector
lines used for handshaking between talkers and listeners. Since
they are open collector lines, several instruments may be simul-
taneously tied to each line, and the data transfer rate will be
controlled by the slowest device. Figure 10-3 shows the timing
diagrams when several listeners are activated at the same time.

The problem now arises as to how does the talker know that it
has permission to talk and how does any individual device know
whether or not it should listen? The control signals, issued by the
controller, are what direct talkers to talk and listeners to listen. The
following is a typical sequence showing how this is accomplished:
On power up, the controller takes control of the bus and sends out
an IFC signal on the management bus. This places all devices in a

DIO1 - Dloamx DATA VALID 7
Z.

DAV

Some Listeners \ / Some

Ready Ready

NRFD

Some
Accepted

B /_A“_\____
§ &3¢ A
NDAG §§ 4 ccepted

Figure 10-3
Timing diagrams when several listeners are on the bus
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known state, with no one talking and no one expecting data. Then,
if there are several instruments on the bus, the controller polls the
bus to watch for an active SRQ signal. The SRQ signal is equivalent
to an interrupt request. In fact, an instrument can be programmed
to generate an interrupt request on receipt of an SRQ, if desired.

Let’s suppose that our DVM has completed conversion and has
data for the printer. The DVM pulls SRQ LOW. The controller (after
determining that the DVM is the source of the SRQ) makes ATN go
LOW to gain the attention of all devices on the bus. It then outputs
a LISTEN command, specifying the address of the listener. The
command is issued on the DIO lines and is of the form X0IAAAAA,
where the AAAAA specifies a 5-bit address of the listener. This
address is effectively hardwired into the listener, and when the
listener detects its own address in the command, it enters the listen
mode. Next, the controller issues a TALK command on the DIO
lines, which is of the form XIOAAAAA. The talker (our DVM) then
begins the sequence of NRFD-DAV-NDAC handshaking and data
transfer to the printer, as discussed previously.

Meanwhile, the controller was in the standby state, monitor-
ing the bus but not taking part in the transfer of data. When the
transfer of data is complete, the talker sends an EOI signal on the
management bus. The controller, on detecting the EOI, takes
control again and sends an UNTALK command (X1011111) followed
by an UNLISTEN command (X0111111) on the DIO lines. The talker
stops talking and the listener stops listening so the bus is now
available for other transfers.

Table 10-2 shows the format for the various interface message.
While we will not discuss all of the possible messages here, we will
study enough of them to make a small system work effectively. For
a thorough discussion of all the commands, refer to the IEEE 488
specifications. Not all of the commands are used in every applica-
tion, particularly in smaller systems. In fact, there may be some
differences in the way some systems handle certain events. For
example, the response to the SRQ is not standardized. In some
systems it may initiate a parallel polling sequence to establish the
source of the request; while in other systems, it may cause an
immediate jump to a particular service routine.

One important point is that the IEEE 488 bus uses negative logic.
This means that a TRUE (logic 1) signal appears on the bus as a
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TABLE 10-2
IEEE 488 Interface Messages
Command Symbol DIO 1-8*
ADDRESSED COMMAND GROUP ACG 000XXXXX
DEVICE CLEAR DCL X0010100
GROUP EXECUTE TRIGGER GET X0001000
GO TO LOCAL GTL X0000001
LISTEN ADDRESS GROUP LAG X0IXXXXX
LOCAL LOCKOUT LLO X0010001
MY LISTEN ADDRESS MLA X01AAAAA
MY TALK ADDRESS MTA X10AAAAA
MY SECONDARY ADDRESS MSA X11SSSSS
OTHER SECONDARY ADDRESS OSA SCG.MSA
OTHER TALK ADDRESS OTA TAG.MTA
PRIMARY COMMAND GROUP PCG ACG+UCG+LAG+TAG
PARALLEL POLL CONFIGURE PPC X0000101
PARALLEL POLL ENABLE PPE X110SPPP
PARALLEL POLL DISABLE PPD X111DDDD
PARALLEL POLL UNCONFIGURE PPU X0010101
SECONDARY COMMAND GROUP SCG X1IXXXXX
SELECTED DEVICE CLEAR SDC X0000100
SERIAL POLL DISABLE SPD X0011001
SERIAL POLL ENABLE SPE X0011000
TAKE CONTROL TCT X0001001
TALK ADDRESS GROUP TAG X10XXXXX
UNLISTEN UNL X0111111
UNTALK UNT X1011111
UNIVERSAL COMMAND GROUP UCG X001XXXX

*0 Logical zero (HIGH level on GPIB), 1Logical one (LOW level on GPIB), XDon’t care
(received message).

LOW voltage (0 volts), while a FALSE (logic 0) signal appears on the
bus as a HIGH (> 2v) level. This does not mean that you must invert
all of your thinking about what is going on at the computer end.
But on the bus lines themselves, the voltage levels are the opposite
of what you would measure on your computer bus. For example, if
your computer outputs the byte 00110100, it will appear on the IEEE
bus as HHLLHLHH, where H represents >2v and L represents Ov
as measured with a voltmeter. IC manufacturers such as Motorola
and Texas Instruments make IEEE 488 compatible chips that take
care of the inversions for you. The interface circuits are TTL-
compatible and use a single +5v power supply.
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SHIELD SRQ NDAC DAV DI04 DIO2

ATN IFC | NRFD | EOI D103 | DIO1

©

GND | GND | GND | REN | DIO7 | DIOS
1" -] 7

LOGIC GND GND GND DtO8 DIOS
GND 10 8 8

Figure 10-4
Standard IEEE connector

Many instrument manufacturers build instruments capable of
tying into the IEEE 488 bus. These instruments use standard 24-pin
connectors, such as the one shown in figure 10-4.

10-2
THE TMS9914A GPIB
CONTROLLER

It is possible to interface the computer to the IEEE 488 bus using
simple buffers and latches, just as it would be possible to control
serial communications with buffers and latches. But doing so
would require a great deal of computer time and software to
monitor and generate control and handshake signals, not to men-
tion a handful of hang-on chips. We saw that by using a program-
mable interface chip, such as Motorola’s ACIA, we can free the
computer from all of the formatting, control signal generation, and
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DATA AND
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DATA 00-07
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BUS 78160 | DATA L
BUS wE 1o
TMS914
ceiB
e IN
IEEE 488 e oBIN o8
aPiB ot
BUFFERS Aso
75161 | BUS as1
BUS or | man p
”:";:?" 75162 | AGE. e _l
MENT
CONT  TE
o t ApDREss | ADDRess ) ao-a1e
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Figure 10-5
Typical TMS9914A application
(Courtesy of Texas Instruments, Inc.)

timing problems. Similarly, by using a chip specifically designed to
interface to the IEEE bus, we make the computer’s job much
simpler. One very popular chip, made by Texas Instruments, is the
TMS9914A General Purpose Interface Bus Controller. The chip is
normally memory mapped into the system, for example, in one of
the computer’s peripheral slots. Using this chip, the computer
simply talks to or reads from a few memory locations to send or
receive data. Handshaking is done automatically without tying up
computer time. More importantly, as mentioned before, the com-
puter can direct one device to talk to one or more other devices
without having to relay the information.

Figure 10-5 shows the TMS9914A in a typical application. An
IEEE 488 compatible instrument, such as a DVM, would have an
interface board with all of the circuitry shown in the figure. The
MPU, of course, also controls some of the hardware that makes the
DVM do its job. The onboard data and program memory contains
firmware that makes the MPU control the DVM functions, as well
as the TMS9914A functions and initialization. Each instrument
must initialize its own TMS9914A on power up. The 75160 and 75161
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TABLE 10-3
TMS9914A Read registers
(Courtesy of Texas Instruments, Inc.)

ADDRESS BIT ASSIGNMENT

RS2 RS1 RSO REGISTER NAME Do o1 02 D3 b4 06 D8 D7
o ] (] tnt Status O INTO INTY 8l B8O END SPAS RLC MAC
] [+] 1 Int Status 1 GET ERR UNC APT DCAS MA SRQ IFC
] 1 o] Addross Status REM LLo ATN LPAS | TPAS | LADS | TADS ulpo
[+] 1 1 Bus Status ATN DAV | NDAC | NRFO €0l SRQ IFC REN
1 ] 4] ¢ .
1 o 1 *
1 1 ] Cmd Pass Thru olos D107 DI06 DIOS DI04 DI03 D102 0101
1 1 1 Data in 0108 0107 0106 DiO5 DI04 DI03 DI02 DI01

*The TMS9814A host interface dats tnes will remain in the high impedance stete whon those register locetions are sddressod. An Address Switch
Registor may therefore be included in the address space of the devica 81 these locations {sea Section 1.5).

TABLE 10-4
TMS9914A Write registers
(Courtesy of Texas Instruments, Inc.)

ADDRESS BIT ASSIGNMENT

AS2 RS1 RSO REGISTER NAME DO D1 D2 D3 04 2] 1] D7
] [+ [+] Int Mask O 8! 80 END SPAS RLC MAC
4] o 1 Int Mask 1 GET ERR UNC APT DCAS MA SRQ {FC
[+] 1 [} . xx XX XX 33 XX XX xx xx
1] 1 1 Auxitiary Cmd cs XX XX 14 3 12 11 10
1 o 4} Address edpa dal dat A5 A4 A3 A2 Al
1 4] 1 Serial Poll se rsvl S6 S5 sS4 Ss3 Ss2 St
1 1 o Paratie! Poll PPB PP7 PP6 PPS PP4 PP3 PP2 PP
1 1 1 Data Out DIO8 Di07 DI06 0105 0104 DIO3 DIO2 0101

“This address is not docoded by the TMS 9914A. A write to this kocation will have no effect on the device, as if 8 write had not occurred.

chips are specifically designed to interface to the IEEE bus. And the
direction of data flow through these buffers is controlled by the TE
and CONT outputs of the TMS9914A.

Communications between the MPU and the TMS9914A are
accomplished via 13 memory-mapped registers in the TMS9914A.
Once the chip is enabled by an address decoder, one of the specific
registers is selected by means of address bits applied to 3 register-
select pins, RS2, RS1, and RS0, in the same manner that various
registers in the PIA and ACIA were selected. However, 6 of the
registers are read only, and 7 registers are write only. Table 10-3
shows the function of the read registers, and table 10-4 shows the
function of the write registers. We will discuss the operation and
purpose of a few of these registers.

Whenever the MPU wants to read in a byte from the GPIB, the
MPU makes RS2, RS1, and RS0 all HIGH thereby selecting the data
in register and does a read operation (LDA). But when the MPU
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wants to send a byte out to the GPIB, it makes the register-select
pins all HIGH and does a write operation (STA), thereby selecting
the data out register.

It was mentioned in the previous section that each talker and
listener on the IEEE bus is given a 5-bit address to identify it and
that this address is somehow hardwired into the device. You can
appreciate the need for these device addresses to be user change-
able so that you can buy instruments from different manufacturers
and not have to worry about address conflicts. Here is how it is
usually done. Each instrument, our DVM for example, has a 5-
position dip switch located on the rear panel of the instrument. The
user sets the switch to any address (except 11111) that he or she
wants the device to respond to. Then on power up, an initialization
routine in the instrument’s ROM causes the MPU to read from the
address switches. The MPU then writes this 5-bit address into the
address register (100) of the TMS9914A. Thereafter, whenever that 5-
bit address appears on the DIO lines, the instrument knows that it
should respond. For example, suppose that the DVM address
switches are set to 01000. When the controller issues the TALK
command X1001000, the DVM recognizes its address and begins
talking. The general form of the TALK command, as shown in table
10-2, is XI0AAAAA, where the AAAAA specify the particular
device that is to respond.

Registers 000 and 001 are used for interrupt status and control.
If you want an interrupt request to be generated when an input
byte is available, you set the BI bit in the int mask 0 register. This
corresponds to the receive data register full interrupt on the ACIA.
Similarly, if you want an interrupt request to be generated when the
output register is ready to accept the next output byte, you set the
BO bit of register 0. This corresponds to the transmit data register
empty interrupt in the ACIA. If you do not want interrupts to be
generated, the corresponding BI and BO bits in the int status 0
register can be polled to see whether an input byte is present or the
output register is ready. The END bit in the int status register is
used to detect the end of a message. It gets set when the TMS9914A
detects an EOI signal on the management bus. The int mask 0
register is not cleared by either a hardware or software reset. It will
come up in a random state on power up. Therefore, part of the
initialization routine must write the desired interrupt mask into it.
The same thing must be done for int mask 1 register.
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TABLE 10-5
TMS9914A Auxiliary Commands
(Courtesy of Texas Instruments, Inc.)

cls 14 13 f2 11 ] MNEMONIC FEATURES

on [ [}) o] ] [}] swrst Software reset

on (o] (o] V] 2} 1 dacr Release DAC holdoff

na [+] o 0 1 [+} rthdf Release RFD holdoff

on o o o] 1 1 hdfa Hotdoff on sil data

on 0 [s] 1 0 V] hdfe Holdoff on EOI only

na o] [+] 1 ] 1 nbaf New byte available false
on 0 o] 1 1 ] fget Force group execute trigger
071 0 0 1 1 1 (5] Roturn to local

na (4] 1 o] 0 o] feoi Send EQI with next byte
on [+] 1 o] o 1 lon Listen only

on V] 1 [} 1 (4] ton Taik only

na V] 1 0 1 1 gts Go to standby

na o] 1 1 [»] o tca Take control asynchronously
na o] 1 1 [+] 1 tes Take control synchronousty
on 0 1 1 1 0 Pp Reguest paratle! poll

on (o} 1 1 1 1 sic Send interface cloar

on 1 o] 0 0o 0 sro Send remote enabte

na 1 [s] o] o] 1 rqe Requast control

ne 1 o 0 1 [0} ric Relsase control

on 1 o 0 1 1 dai Disable all interrupts

na 1 o 1 0 4] pts Pass through next secondary
on 1 o] 1 V] 1 atd! Short Tt settling time

on 1 o 1 1 ] shdw Shadow handshake

01 1 o] 1 1 1 vstd! Very short T1 delay

(73] 1 1 [+] 0 0 rsv2 Request Service Bit 2

The auxiliary command register (011) is used to enable and
disable most of the selectable features of the TMS9914A and to
initiate many of its actions. Table 10-5 shows how the desired
features are selected by writing various bit patterns into this
register. Bits f4-f0 are the 5 least significant bits of this register. The
column labeled ¢/s indicates that the function will be set (enabled)
when a 1is written into the most significant position of the register,
and writing a 0 into the MSB will clear (disable) the feature. For
example, let’s assume that we are using the TMS9914A as a system
controller. Suppose we want to send an INTERFACE CLEAR pulse
out on the management bus. We do this by first writing the bit
pattern 1XXO01111 to the auxiliary command register. This sets IFC
active. Then, after a short time delay of perhaps 1 ms, we send the
bit pattern 0XX01111 to the same register. This second byte causes
the TMS9914A to make the IFC command line inactive. Of course,
not all of the possible commands are used in every application. But
we will see how several other commands are used in a practical
application in the next section.
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Although, as mentioned previously, negative logic is used on
the GPIB lines themselves, the connections between the MPU and
the TMS9914A use conventional positive logic. That is, the bit
patterns shown in the tables are the same bit patterns that the MPU
must output to the TMS 9914A. For example, to set the IFC active,
the MPU would execute an instruction like LDA #8$8F, then store
the accumulator (STA) to the auxiliary command register address of
the TMS9914A. To make IFC inactive, the MPU does a LDA #$OF
then stores it to the same address.

10-3
CONNECTING THE APPLE TO
THE IEEE 488 BUS

Interfacing the Apple computer to the IEEE 488 bus can be accom-
plished using the TMS9914A along with its buffers, the 75160 and
75161, as shown in figure 10-6. These three chips can be mounted
on a simple prototype card and the card can be plugged into any
suitable slot. Note that Apple data bus line D7 connects to pin 17 of
the TMS9914A, marked D0. DO of the TMS9914A is the most
significant bit of the device. This is in agreement with the designa-
tions in tables 10-3 and 10-4. By using DEVICE SELECT as the chip
enable and feeding RS2, RS1, and RSO from A2, Al, and A0 as
shown, the TMS9914A will respond to 8 consecutive addresses
issued by the Apple. For example, if we placed the card in slot 4, the
address range of the interface will extend from 49344 ($C0C0) to
49351 ($COC?7). The chip also needs an external clock input, so ®1 of
the Apple clock (pin 38) is used.

Since the best way to understand the Apple-to-GPIB interface
is through an example, we will discuss connecting the Apple to a
Keithley Model 192 Programmable DMM. The Model 192 is exter-
nally programmable via the GPIB for selection of function (DCV,
ACV, or K ohms), range, rate of data capture, and several other
features. It has the standard IEEE 488 connector on the rear panel,
as well as the 5-bit dip switch for address selection. To select the
desired features of the DMM, the controller issues a LISTEN
command using the address bits of the DMM. Then the DMM is
sent several bytes of data telling it what to do. After sending all of
the required bytes, the controller sends an UNLISTEN command,
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Figure 10-6
IEEE 488 Bus/Apple interface

followed by a TALK command, again using the address bits of the
DMM. The DMM then responds by outputting data on the DIO
lines according to the selected format. If no format is selected by the
user, the DMM defaults to the predetermined format, which is dc
volts on the 2000 volt range. We will use the default mode for our
first example.

Figure 10-7 shows the listing for a BASIC program to commu-
nicate with the DMM via the IEEE 488 bus. While the program can
and often is written in assembly language, we will use BASIC for
simplicity.
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ILIST

10 REM %% SIMPLE IEEE-488 DEMO #*%¥

12 REM * INTERFACE TD KEITHLEY MOD 192 DMM =*
15 REM * MAFP REGISTERS OF 2914 *

20 STTUS = 49344

25 CMD = 49347

30 DIO = 49351

35 DMMT = 72: REM DMM TALK ADDRESS

100 REM * INIT CONTROLLER #*

110 FOKE CMD,128: REM SET SWRST

120 POKE CMD,147: REM DISARLE INTERRUPTS
130 POKE CMD,0: REM CLEAR SWRST

140 FOKE CMD,12: REM TAKE CONTROL

130 POKE CMD, 143: REM SEND IFC

160 FOKE CMD,15: REM RESET IFC

170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 FOKE CMD,11: REM GO TO STANDEY

190 FPOKE CMD,137: REM SET UP 9914 TO LISTEN
200 REM * INPUT ROUTINE *

210 § = PEEK (STTUS)

220 IF § < 32 THEN GOTO 210: REM FOLL BI
230 BYTE = PEEK (DIO): REM GET CHARACTER
240 Cs = CHR$ (BYTE)

245 PRINT Css

250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
255 END

IRUN
NDCV+0005. 7S3E+0

Figure 10-7

Listing of simple IEEE 488 demo

The program begins by assigning labels to the various ad-
dresses of the TMS9914A chip of figure 10-6. We will place the
interface card in slot 4. If you use any other slot, be sure to change
lines 20, 25, and 30 accordingly. Line 35 equates the label DMMT as
the DMM talk address. For this example, the DIP switch on the rear
of the DMM is set at 01000. So, according to Table 10-2, when the
controller wants to tell the DMM to talk, the controller outputs a
byte on the DIO lines corresponding to the MTA message
X10AAAAA. Since the DIP switch is set at 01000, the MTA message
is X1001000. The X in the address is a don’t care bit so we set it LOW,
forming the byte 01001000 ($48), which is equivalent to 72 in
decimal.

Next we begin the initialization of the TMS9914A. Line 110
POKEs the auxiliary command register with the value 128 (10000000
in binary), causing a software reset (see table 10-5). This is the usual



164 CHAPTER 10 IEEE 488 Bus

first command on power up. While in the software reset state, the
TMS9914A is usually sent the desired interrupt masks. We will not
use interrupts in this example, so we POKE the auxiliary command
register with 147 (10010011) to disable all interrupts. Line 130 clears
the software reset. Line 140 tells our TMS9914A to act as the
controller for the bus. Lines 150 and 160 cause the IFC line to be
pulsed active LOW for a short time. If you do this in a machine-
language routine, be sure to include a time delay (perhaps 1 ms)
between the time that IFC goes LOW until it goes HIGH again.
BASIC is slow enough that we do not have to include the delay. Line
170 causes the controller to output the byte $48 (01001000), thus
establishing the DMM as a talker. Line 190 tells the TMS9914A to
listen, while waiting for the data from the DMM.

The DATA INPUT routine, starting at line 200, polls the status
register to see if BI (byte in) is HIGH. When BI goes HIGH, the
status byte will be 00100000, as can be seen in table 10-3. The
decimal equivalent of the status byte is 32. So when BI goes active,
the data is read in from the DIO lines, changed to a printable
character, and printed on the Apple’s CRT. Then the status byte is
checked to see if END is active, which indicates the end of the
message. The END bit of the status byte is set when the talker
makes its EOI handshake line active while sending its last byte. If
END is not active, the program loops back to input the next byte.
When END is detected (status byte 00101000 or 40 in decimal), the
program falls through.

The RUN of the program, shown at the bottom of figure 10-7,
shows that the Model 192 DMM sends 16 bytes of data (followed by
a carriage return-line feed). The format of the data string is shown

l Function | Display |Exponent| Terminator

|N|D]c|v|+|1|2|3|.|4|5|s|7|E|+|o|0R|LF|

N = Normal
O = Qverflow
Z = Zeroed

Data Format: 16 Bytes + Terminator

Figure 10-8
Data format for Keithley Model 192 DMM
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JLIST

10 REM ##* SIMFLE IEEE~-488 DEMD *#%x

12 REM * INTERFACE TO KEITHLEY MOD 192 DMM =
15 REM * MAF REGISTERS OF 9914 *

20 STTUS = 49344

25 CMD = 49347

30 DIO = 49351

35 DMMT = 72: REM DMM TALEKE ADDRESS

100 REM * INIT CONTROLLER *

110 POKE CMD,128: REM SET SWRST

120 POKE CMD,147: REM DISABLE INTERRUPTS
130 POKE CMD,0: REM CLEAR SWRST

140 FOKE CMD,12: REM TAKE CONTROL

150 POKE CMD,143: REM SEND IFC

160 POKE CMD, 13: REM RESET IFC

170 FOKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDEY

190 POKE CMD,137: REM SET UFP 9914 TO LISTEN
200 REM % INPUT ROUTINE #*

210 § = PEEK (S8TTUS)

220 IF S < 32 THEN GOTO 210: REM FPOLL EI
230 BYTE = PEEK (DIO): REM GET CHARACTER
240 Cs = CHRs$ (BYTE)

245 PRINT C%$s

250 IF § < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
260 FOR D = 1 TO 7000: NEXT D

270 GOTO 140

JIRUN
NDCV+0008.81%E+0

NDCV+0009.414E+0
NDCV+0010.385E+0

NDCV+0011.551E+0

BREAK IN 260

Figure 10-9
Listing of simple IEEE 488 demo for periodic sampling

in figure 10-8. In some installations, we might want periodic
readings from the DMM, for instance, once every 10 seconds or
once every half hour. Figure 10-9 shows a simple modification of
the previous program in which the computer inputs the data string
from the DMM then after some time delay (line 260) asks for
another reading.

In the programs of figures 10-7 and 10-9, the front panel
controls of the DMM selected the function, range, and so on. But
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TABLE 10-6
IEEE 488 Programming for the Keithley Model 192 DDM

Feature ASCIlI

FUNCTION F0 = DCV

F1 = ACV

F2 = K OHMS
RANGE RO = AUTO

R1 = 0.2

R2 =2

R3 = 20

R4 = 200

R5 = 2000

R6 = 20 M OHMS
ZERO Z0 = OFF

Z1 = ON
TRIGGER TO = Cont. on TLK

T1 = One shot on TLK

T2 = Cont. on GET

T3 = One shot on GET

T4 = Cont. on X

T5 = One shot on X
RATE S0 = 4 ms integration (4 % d)

S1 — S8 various rates
DELAY W0 =0

W1 = 10 ms
BUFFER Q0 = Clear

Q1 = Store 100 readings
MODE MO = SRQ OFF

M1 = SRQ ON
EOI K0 = SEND

K1 = DO NOT SEND
TERMINATOR Y(LF) = CFLF

Y(CR) = LF CR

Y( ) = Any ASCII

Y(DEL) = None

X = EXECUTE

U = Send status bytes

Note: Default = FOR5Z0T0S2W1QOXOMOY/(LF)

one of the powerful features of a programmable DMM, like the
Keithley Model 192, is that the function, range, rate of capture, and
so on, can be programmed from a remote computer. Here is how
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the remote programming works. On power up, the DMM is put
into the LISTEN mode, rather than the TALK mode. The computer
then sends control bytes (a string of ASCII characters) to the DMM
to tell it how it is to operate. After initialization, the DMM is placed
in the TALK mode, as before, and sends data to the listener(s).

Table 10-6 shows the various features that can be remotely
controlled in the Keithley Model 192. By sending the ASCII bytes
FIR4, for example, the DMM is told to place its internal function
selector in the ac volts position and its range switch on the 200-volt
scale. Only those features that you wish to change must be sent to
the DMM. The default values are shown at the bottom of the table.

Figure 10-10 shows the program listing that allows you to
remotely program the DMM. Notice that the major portion of the
program is the same as that of figure 10-7. The title line (line 10) is
changed, a new line (line 40) equates the DMM listen address to 40
decimal (00101000), and line 165 has been added to call a subroutine
to initialize the DMM. Otherwise, the program is identical to that
of figure 10-7 up to line 255.

The subroutine at line 300 first sets the remote enable line
active, then tells the DMM to listen. Next it puts the controller in
standby and makes the TMS9914A a talker. The code from lines 350
through 400 allow the user to enter the bytes to the be sent to the
DMM, as described in table 10-6. The character X is used to
terminate the message and to trigger the DMM to activate the
features sent to it. Although the Keithley Model 192 recognizes the
character X as an execute command, other instruments might not.
A typical remote programming sequence might include having the
controller send the remote device a string of ASCII characters, and
along with the last character sending an EOI signal, indicating the
end of message. The EOI can be sent along with the last character
by writing the command 08 to the auxiliary command register, as
shown in table 10-5.

Getting back to the program of figure 10-10, once the message
terminator is sent, the program falls through to line 410, where the
TMS9914A is told to stop talking and take control again. The DMM
is taken out of the listen mode, and the program returns to line 170
in the main driver. From there on, execution is the same as that of
figure 10-7.



ILIST

10

12

15

20

29

Z0

ite]

40

100
110
120
130
140
150
160
165
170
180
190
200
210
220
230
240
245
250
285
J00
310
20
330
F40
F50
260
365
370
380
390
400
405
410
420
430
440

REM *%x IEEE 488 DEMO USING REMOTE FROGRAMMING **#*
REM * INTERFACE TO KEITHLEY MOD 192 DMM *
REM * MAP REGISTERS OF 9914 =

STTUS = 49344

CMD = 49347

DID = 49331

DMMT = 72: REM DMM TALK ADDRESS
DL = 40: REM DMM LISTEN ADDRESS

REM % INIT CONTROLLER %
FOKE CMD,128: REM SET SWRST
FOKE CMD,147: REM DISABLE INTERRUFTS
FOKE CMD,0: REM CLEAR SWRET
FOKE CMD,12: REM TAKE CONTROL
FOKE CMD,14%: REM SEND IFC
FOKE CMD, 15: REM RESET IFC
B50SUR F00: REM  INIT DMM
FOKE DIO,DMMT: REM TELL DMM TO TALK
FOKE CMD,11: REM GO TO STANDBY
FOEE CMD,137: REM SET UP 9914 TO LISTEN
REM * INFUT ROUTINE %
S = PEEEK (8TTUS)
IF 8§ ¢ 32 THEN GOTO 210: REM FOLL BI
BYTE = PEEK (DIO): REM GET CHARACTER
C¢ = CHR$ (BYTE)
FRINT C%3;
IF 8§ < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
END
REM * INIT DMM FOR REMOTE OFERATION *
FOKE CMD,144: REM SEND REMDTE ENAELE
FOKE DIO,DL: REM TELL DMM TO LISTEN
FOKE CMD,11: REM GO TO STANDEY
FOKE CMD,138: REM SET UF 9914 AS TALEKER
REM * SEND MESSAGE *
FRINT "ENTER MESSAGE CHARACTERS, TERMINATE WITH X"
FRINT

GET M$

FOKE DIO, ASC (M%)

PRINT M$;

IF M$ < > "X" GOTOD 370: REM CHECK IF LAST CHARACTER
FRINT

POKE CMD,10: REM TELL 9914 TO STOP TALKING
FOKE CMD, 12: REM TAKE CONTROL AGAIN

FOKE DIO,463: REM SEND UNLISTEN COMMAND
RETURN

Figure 10-10
Listing of IEEE 488 demo using remote programming

168 CHAPTER 10 IEEE 488 Bus
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JRLIN

ENTER MESSAGE CHARACTERS, TERMINATE WITH X
FORZEX

MDCV L L L SH0Z2TEE+O

IRLIN

ENMTER MESSAGE CHARACTERS., TERMINATE WITH X
F1X

NACV+00. 00F9ZE+D

IRLIN

ENTER MESSAGE CHARACTERS, TERMINATE WITH X

FaRaX
OOHMA+400 , OOOOE+TE

Listing 10-10(b)

The sample RUNs at the end of the program listing were
obtained using a dc input to the Model 192. Various features were
selected in the different RUNs to show how the DMM is affected.

There are a wide variety of other instruments, made by several
different manufacturers, that are IEEE compatible. Instruments
such as frequency counters and signal generators can be remotely
programmed and told to talk to other instruments. As you can see,
the IEEE 488 bus is a very powerful and flexible means of tying
together a variety of test equipment for automatic testing or data
acquisition.
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