

152 CHAPTER 10 IEEE 488 Bus

TABLE 10-1

Signal Name

DI01-DI08
DAV

NRFD

NDAC

IFC

ATN

SRQ

REN

EOI

DI01 - 0108

NRFO

Functions of the IEEE 488 Bus Lines

Description

Data bus lines.
DATA VALID. Pulled LOW by talker to inform listeners that
data has been placed on DIO lines.
NOT READY FOR DATA. Pulled LOW by all listeners.
Released by each listener when it becomes ready to receive
data.
NOT DATA ACCEPTED. Pulled LOW by all listeners.
Released by each listener when it has accepted data.
INTERFACE CLEAR. Driven LOW by controller to bring all
interface lines to known state.
ATTENTION. Driven LOW by controller to gain the attention
of devices on bus and to signify that address/control
information is on the bus.
SERVICE REQUEST. Pulled LOW by any device needing
service. Similar to interrupt request.
REMOTE ENABLE. Pulled LOW by controller to ensure that
remote control is in effect. For example, front panel controls
can be disabled by REN.
END OR IDENTIFY. Pulled LOW by talker to inform listeners
that current byte on data bus is the last byte to be transferred.
Pulled LOW by controller together with ATN to initiate a
parallel poll sequence.

BYTE 1 BYTE 2

DATA VALID DATA VALID

NDAC----------------

Figure 10-2
Timing diagrams for data and handshake lines

10-1 Bus Overview 153

5. Then, when the printer inputs the data, the printer pulls
NDAC HIGH, thus informing the voltmeter that data has
been accepted.

6. Sensing that data has been accepted, the voltmeter then
pulls DAV HIGH again. The process is repeated each time
a new data byte is to be transferred.

The signal lines DAV, NRFD, and NDAC are all open collector
lines used for handshaking between talkers and listeners. Since
they are open collector lines, several instruments may be simul­
taneously tied to each line, and the data transfer rate will be
controlled by the slowest device. Figure 10-3 shows the timing
diagrams when several listeners are activated at the same time.

The problem now arises as to how does the talker know that it
has permission to talk and how does any individual device know
whether or not it should listen? The control signals, issued by the
controller, are what direct talkers to talk and listeners to listen. The
following is a typical sequence showing how this is accomplished:
On power up, the controller takes control of the bus and sends out
an IFC signal on the management bus. This places all devices in a

DAV-----------

Some Listeners\ _________ /
Ready

Some
Ready

rT·/-~ Ali \ rr·7· All
NRFD ___ f_l_ Ready -----------l--~-- Ready

Some
Accepted

NDAC
tT7"!' All \

__________ f__._f ...;·:.-f -6 Accepted __ ----

Figure 10-3
Timing diagrams when several listeners are on the bus

154 CHAPTER 10 IEEE 488 Bus

known state, with no one talking and no one expecting data. Then,
if there are several instruments on the bus, the controller polls the
bus to watch for an active SRQ signal. The SRQ signal is equivalent
to an interrupt request. In fact, an instrument can be programmed
to generate an interrupt request on receipt of an SRQ, if desired.

Let's suppose that our DVM has completed conversion and has
data for the printer. The DVM pulls SRQ LOW. The controller (after
determining that the DVM is the source of the SRQ) makes ATN go
LOW to gain the attention of all devices on the bus. It then outputs
a LISTEN command, specifying the address of the listener. The
command is issued on the DIO lines and is of the form XOlAAAAA,
where the AAAAA specifies a 5-bit address of the listener. This
address is effectively hardwired into the listener, and when the
listener detects its own address in the command, it enters the listen
mode. Next, the controller issues a TALK command on the DIO
lines, which is of the form XlOAAAAA. The talker (our DVM) then
begins the sequence of NRFD-DAV-NDAC handshaking and data
transfer to the printer, as discussed previously.

Meanwhile, the controller was in the standby state, monitor­
ing the bus but not taking part in the transfer of data. When the
transfer of data is complete, the talker sends an EOI signal on the
management bus. The controller, on detecting the EOI, takes
control again and sends an UNTALK command (XlOlllll) followed
by an UNLISTEN command (XOllllll) on the DIO lines. The talker
stops talking and the listener stops listening so the bus is now
available for other transfers.

Table 10-2 shows the format for the various interface message.
While we will not discuss all of the possible messages here, we will
study enough of them to make a small system work effectively. For
a thorough discussion of all the commands, refer to the IEEE 488
specifications. Not all of the commands are used in every applica­
tion, particularly in smaller systems. In fact, there may be some
differences in the way some systems handle certain events. For
example, the response to the SRQ is not standardized. In some
systems it may initiate a parallel polling sequence to establish the
source of the request; while in other systems, it may cause an
immediate jump to a particular service routine.

One important point is that the IEEE 488 bus uses negative logic.
This means that a TRUE (logic 1) signal appears on the bus as a

10-1 Bus Overview 155

TABLE 10-2
IEEE 488 Interface Messages

Command

ADDRESSED COMMAND GROUP
DEVICE CLEAR
GROUP EXECUTE TRIGGER
GOTO LOCAL
LISTEN ADDRESS GROUP
LOCAL LOCKOUT
MY LISTEN ADDRESS
MY TALK ADDRESS
MY SECONDARY ADDRESS
OTHER SECONDARY ADDRESS
OTHER TALK ADDRESS
PRIMARY COMMAND GROUP
PARALLEL POLL CONFIGURE
PARALLEL POLL ENABLE
PARALLEL POLL DISABLE
PARALLEL POLL UNCONFIGURE
SECONDARY COMMAND GROUP
SELECTED DEVICE CLEAR
SERIAL POLL DISABLE
SERIAL POLL ENABLE
TAKE CONTROL
TALK ADDRESS GROUP
UNLISTEN
UNTALK
UNIVERSAL COMMAND GROUP

Symbol

ACG
DCL
GET
GTL
LAG
LLO
MLA
MTA
MSA
OSA
OTA
PCG
PPC
PPE
PPD
PPU
SCG
soc
SPD
SPE
TCT
TAG
UNL
UNT
UCG

DIO 1-8*

oooxxxxx
X0010100
XOOOlOOO
XOOOOOOl
XOlXXXXX
X0010001
XOlAAAAA
XlOAAAAA
xnsssss
SCG.MSA
TAG.MTA
ACG+UCG+LAG+TAG
XOOOOlOl
XllOSPPP
XlllDDDD
X0010101
XllXXXXX
XOOOOlOO
XOOllOOl
XOOllOOO
XOOOlOOl
XlOXXXXX
XOllllll
XlOlllll
XOOlXXXX

•o Logical zero (HIGH level on GPIB), 1 Logical one (LOW level on GPIB), X Don't care
(received messagei

LOW voltage (0 volts), while a FALSE (logic 0) signal appears on the
bus as a HIGH (> 2v) level. This does not mean that you must invert
all of your thinking about what is going on at the computer end.
But on the bus lines themselves, the voltage levels are the opposite
of what you would measure on your computer bus. For example, if
your computer outputs the byte 00110100, it will appear on the IEEE
bus as HHLLHLHH, where H represents >2v and L represents Ov
as measured with a voltmeter. IC manufacturers such as Motorola
and Texas Instruments make IEEE 488 compatible chips that take
care of the inversions for you. The interface circuits are TTL­
compatible and use a single + Sv power supply.

156 CHAPTER 10 IEEE 488 Bus

SHIELD SRO NDAC DAV 0104 DI02

ATN IFC NRFD EOI DI03 DI01

GND GND GND REN 0107 DIO&
11 9 7

LOGIC GNO GND GND 0108 0106

ONO 10 8 8

Figure 10-4
Standard IEEE connector

Many instrument manufacturers build instruments capable of
tying into the IEEE 488 bus. These instruments use standard 24-pin
connectors, such as the one shown in figure 10-4.

10-2
THE TMS9914A GPIB
CONTROLLER

It is possible to interface the computer to the IEEE 488 bus using
simple buffers and latches, just as it would be possible to control
serial communications with buffers and latches. But doing so
would require a great deal of computer time and software to
monitor and generate control and handshake signals, not to men­
tion a handful of hang-on chips. We saw that by using a program­
mable interface chip, such as Motorola's ACIA, we can free the
computer from all of the formatting, control signal generation, and

10-2 The TMS9914A GPID Controller 157

DATA DUFFERS
BUS 75160

IEEE.-BS
GPIB

BUFFERS
75151

BUS OR
MANAGE· 75152

MENT

oc

Figure 10-5

ADDRESS
SWITCHES

fii

DATA
DUS

TMS9914A
GPIB

TE

BUS
MAN·
AGE·

MENT

we

Typical TMS9914A application
(Courtesy of Texas Instruments, Inc.)

DATA AND
PROGRAM
MEMORY

WfDDIN

D0-07

DBIN

MPU

AO-A14

timing problems. Similarly, by using a chip specifically designed to
interface to the IEEE bus, we make the computer's job much
simpler. One very popular chip, made by Texas Instruments, is the
TMS9914A General Purpose Interface Bus Controller. The chip is
normally memory mapped into the system, for example, in one of
the computer's peripheral slots. Using this chip, the computer
simply talks to or reads from a few memory locations to send or
receive data. Handshaking is done automatically without tying up
computer time. More importantly, as mentioned before, the com­
puter can direct one device to talk to one or more other devices
without having to relay the information.

Figure 10-5 shows the TMS9914A in a typical application. An
IEEE 488 compatible instrument, such as a DVM, would have an
interface board with all of the circuitry shown in the figure. The
MPU, of course, also controls some of the hardware that makes the
DVM do its job. The onboard data and program memory contains
firmware that makes the MPU control the DVM functions, as well
as the TMS9914A functions and initialization. Each instrument
must initialize its own TMS9914A on power up. The 75160 and 75161

158 CHAPTER 10 IEEE 488 Bus

TABLE 10-3
TMS9914A Read registers

(Courtesy of Texas Instruments, Inc.)

ADDRESS
REGISTER NAME

BIT ASSIGNMENT

RS2 RS1 RSO 00 01 D2 D3 D4
0 0 0 Int Status 0 INTO INT1 Bl BO ENO

0 0 1 Int Status 1 GET ERR UNC APT DCAS

0 1 0 Addross Status REM LLO ATN LPAS TPAS

0 1 1 Bus Status ATN DAV NDAC NRFD EOI
1 0 0

1 0 1

1 1 0 Cmd Pasa Thru 0108 0107 0106 0105 0104

1 1 1 Data In 0108 0107 0106 0105 0104

D5 DB D7

SPAS RLC MAC

MA SRQ IFC

LADS TAOS ulpa

SRQ IFC REN

0103 0102 0101

0103 0102 0101

•The TMS99t4A host interface dato tnea w~I remain in tho high impedance steto when those register locations are llddrossod. An Addtosa Switch

Regi$tor mav therefor• be included in the addreas spoco of tho device •t theao locations Csoo Sactlon t .51.

TABLE 10-4
TMS9914A Write registers

(Courtesy of Texas Instruments, Inc.)

ADDRESS
REGISTIR NAME

BIT ASSIGNMENT

RS2 RS1 RSO DO D1 D2 D3 D4
0 0 0 Int Mask 0 Bl BO ENO

0 0 1 Int Mask 1 GET ERR UNC APT DCAS

0 1 0 xx xx xx xx MK

0 1 1 Auxiliary Cmd cs X)C xx f4 f3

1 0 0 Address edpa dal dat AS A4

1 0 1 Serial Poll SB rsvl SS S5 54

1 1 0 Parallel Poll PPB PP7 PPS PP5 PP4

1 1 1 Data Out 0108 0107 0106 0105 0104

D5 DB

SPAS RLC

MA SRQ
)C)C xx

f2 f1

A3 A2

S3 52

PP3 PP2

0103 0102

•This address is not decoded bv tho TMS 9914A. A write to this loc1t1on will hllve no elfoct on the device, as tf a write had not occurred.

D7

MAC

IFC

xx

fO

A1

51

PP1
0101

chips are specifically designed to interface to the IEEE bus. And the
direction of data flow through these buffers is controlled by the TE
and CONT outputs of the TMS99I4A.

Communications between the MPU and the TMS99I4A are
accomplished via I3 memory-mapped registers in the TMS99I4A.
Once the chip is enabled by an address decoder, one of the specific
registers is selected by means of address bits applied to 3 register­
select pins, RS2, RSI, and RSO, in the same manner that various
registers in the PIA and ACIA were selected. However, 6 of the
registers are read only, and 7 registers are write only. Table I0-3
shows the function of the read registers, and table I0-4 shows the
function of the write registers. We will discuss the operation and
purpose of a few of these registers.

Whenever the MPU wants to read in a byte from the GPIB, the
MPU makes RS2, RSI, and RSO all HIGH thereby selecting the data
in register and does a read operation (LDA). But when the MPU

10-2 The TMS9914A GPID Controller 159

wants to send a byte out to the GPIB, it makes the register-select
pins all HIGH and does a write operation (STA), thereby selecting
the data out register.

It was mentioned in the previous section that each talker and
listener on the IEEE bus is given a 5-bit address to identify it and
that this address is somehow hardwired into the device. You can
appreciate the need for these device addresses to be user change­
able so that you can buy instruments from different manufacturers
and not have to worry about address conflicts. Here is how it is
usually done. Each instrument, our DVM for example, has a 5-
position dip switch located on the rear panel of the instrument. The
user sets the switch to any address (except 11111) that he or she
wants the device to respond to. Then on power up, an initialization
routine in the instrument's ROM causes the MPU to read from the
address switches. The MPU then writes this 5-bit address into the
address register (100) of the TMS9914A. Thereafter, whenever that 5-
bit address appears on the DIO lines, the instrument knows that it
should respond. For example, suppose that the DVM address
switches are set to 01000. When the controller issues the TALK
command X1001000, the DVM recognizes its address and begins
talking. The general form of the TALK command, as shown in table
10-2, is XlOAAAAA, where the AAAAA specify the particular
device that is to respond.

Registers 000 and 001 are used for interrupt status and control.
If you want an interrupt request to be generated when an input
byte is available, you set the BI bit in the int mask 0 register. This
corresponds to the receive data register full interrupt on the ACIA.
Similarly, if you want an interrupt request to be generated when the
output register is ready to accept the next output byte, you set the
BO bit of register 0. This corresponds to the transmit data register
empty interrupt in the ACIA. If you do not want interrupts to be
generated, the corresponding BI and BO bits in the int status 0
register can be polled to see whether an input byte is present or the
output register is ready. The END bit in the int status register is
used to detect the end of a message. It gets set when the TMS9914A
detects an EOI signal on the management bus. The int mask 0
register is not cleared by either a hardware or software reset. It will
come up in a random state on power up. Therefore, part of the
initialization routine must write the desired interrupt mask into it.
The same thing must be done for int mask 1 register.

160 CHAPTER 10 IEEE 488 Bus

TABLE 10-5
TMS9914A Auxiliary Commands

(Courtesy of Texas Instruments, Inc.)

c/s f4 f3 f2 f1 fO MNEMONIC

011 0 0 0 0 0 swrst

0/1 0 0 0 0 1 deer

na 0 0 0 1 0 rhdf

0/1 0 0 0 1 1 hdfa

0/1 0 0 1 0 0 hdfe

no 0 0 1 0 1 nbaf

011 0 0 1 1 0 fget

011 0 0 1 1 1 rt!

na 0 1 0 0 0 feoi

0/1 0 1 0 0 1 Ion

011 0 1 0 1 0 ton

no 0 1 0 1 1 gts

no 0 1 1 0 0 tea

na 0 1 1 0 1 tcs

011 0 1 1 1 0 rpp

0/1 0 1 1 1 1 sic

0/1 1 0 0 0 0 are

na 1 0 0 0 1 rqc

na 1 0 0 1 0 rlc

0/1 1 0 0 1 1 dai

na 1 0 1 0 0 pts

0/1 1 0 1 0 , std I

0/1 1 0 , 1 0 shdw

0/1 1 0 1 1 1 vatdl

0/1 1 1 0 0 0 rsv2

FEATURES

Softwaro rosot

Release DAC holdoff

Release RFD holdoff

Holdoff on all dota

Holdoff on EOI only

New byte avoiloble false

Force group execute trigger

Return to loco!

Send EOI with next byte

Listen only

Talk only

Go to standby

Take control asynchronously

Take control synchronously

Requeat parallel poll

Send interface clear

Send remote enable

Requeat control

Release control

Disable all interrupts

Pass through next secondary

Short Tl settling time

Shadow handshake

Very short T1 delay

Request Service Bit 2

The auxiliary command register (011) is used to enable and
disable most of the selectable features of the TMS9914A and to
initiate many of its actions. Table 10-5 shows how the desired
features are selected by writing various bit patterns into this
register. Bits f4-f0 are the 5 least significant bits of this register. The
column labeled ds indicates that the function will be set (enabled)
when a 1 is written into the most significant position of the register,
and writing a 0 into the MSB will clear (disable) the feature. For
example, let's assume that we are using the TMS9914A as a system
controller. Suppose we want to send an INTERFACE CLEAR pulse
out on the management bus. We do this by first writing the bit
pattern lXXOllll to the auxiliary command register. This sets IFC
active. Then, after a short time delay of perhaps 1 ms, we send the
bit pattern OXXOllll to the same register. This second byte causes
the TMS9914A to make the IFC command line inactive. Of course,
not all of the possible commands are used in every application. But
we will see how several other commands are used in a practical
application in the next section.

10-3 Connecting the Apple to the IEEE 488 Bus 161

Although, as mentioned previously, negative logic is used on
the GPIB lines themselves, the connections between the MPU and
the TMS9914A use conventional positive logic. That is, the bit
patterns shown in the tables are the same bit patterns that the MPU
must output to the TMS 9914A. For example, to set the IFC active,
the MPU would execute an instruction like LDA #$8F, then store
the accumulator (STA) to the auxiliary command register address of
the TMS9914A. To make IFC inactive, the MPU does a LDA #$OF
then stores it to the same address.

10-3
CONNECTING THE APPLE TO
THE IEEE 488 ·aus
Interfacing the Apple computer to the IEEE 488 bus can be accom­
plished using the TMS9914A along with its buffers, the 75160 and
75161, as shown in figure 10-6. These three chips can be mounted
on a simple prototype card and the card can be plugged into any
suitable slot. Note that Apple data bus line D7 connects to pin 17 of
the TMS9914A, marked DO. DO of the TMS9914A is the most
significant bit of the device. This is in agreement with the designa­
tions in tables 10-3 and 10-4. By using DEVICE SELECT as the chip
enable and feeding RS2, RSI, and RSO from A2, Al, and AO as
shown, the TMS9914A will respond to 8 consecutive addresses
issued by the Apple. For example, if we placed the card in slot 4, the
address range of the interface will extend from 49344 ($COCO) to
49351 ($COC7). The chip also needs an external clock input, so <l>l of
the Apple clock (pin 38) is used.

Since the best way to understand the Apple-to-GPIB interface
is through an example, we will discuss connecting the Apple to a
Keithley Model 192 Programmable DMM. The Model 192 is exter­
nally programmable via the GPIB for selection of function (DCV,
ACV, or K ohms), range, rate of data capture, and several other
features. It has the standard IEEE 488 connector on the rear panel,
as well as the 5-bit dip switch for address selection. To select the
desired features of the DMM, the controller issues a LISTEN
command using the address bits of the DMM. Then the DMM is
sent several bytes of data telling it what to do. After sending all of
the required bytes, the controller sends an UNLISTEN command,

162 CHAPTER 10 IEEE 488 Bus

APPLE PERIPHERAL CONNECTOR +5V
Vet;

+5V~-- .01

r~ GND~
40

NC 1

07

06

05

04

03

02

01

DO

IRO

Device Select

vcc

NC 39

17
DO MSB

16 01

15
02

14
03

13 04 TMS
9914A

12
05

11
06

10
07 LSB

INT

>------o1.....1W'E
OBIN

>-----<JI~

>-------<"'IREm

>-------RS1

~----6--4ASO GND
20

Figure 10-6
IEEE 488 Bus/ Apple interface

+5V
75160 IEEE 488

2 20 Connector

0108
31 12 08 vcc 9 16 0108

0107
32 13 88 8

15 DI07
0106

33 14
07 87 7

14 0106
0105 34 15

06 86 6
13 0105

0104
35 16 05 85 5

4 04 84 0104
0103

36 17
03 83

4
3 0103

0102 37 18
02

3 0102 82 2 2
0101 38 19

01 81 1 0101

TEGNDPE
10 11

TE 21

+5V

CONT~3_o ___ ~ ~
11 1

DC TE 20 =
vcc

SRo,_2_9 ___ 1__.2 SRO REN1-2-----< 17 REN

ATN
28 13

ATN IFC 3 9 IFC

EOI
27 14

EOI NDAC 4 8 NDAC

DAV
26 15

DAV NRFD 5 7 NRFD
NRFD

25 16
NRFD DAV 6 6 DAV

NDAC
24 17

NDAC EOI 7 5 EOI
IFC

23 18
IFC ATN 8 11 ATN

RE
22 19

REN SRO 9 10 SRO

GND

75161 10

18
19
20
21
22
23
24

followed by a TALK command, again using the address bits of the
DMM. The DMM then responds by outputting data on the DIO
lines according to the selected format. If no format is selected by the
user, the DMM defaults to the predetermined format, which is de
volts on the 2000 volt range. We will use the default mode for our
first example.

Figure 10-7 shows the listing for a BASIC program to commu­
nicate with the DMM via the IEEE 488 bus. While the program can
and often is written in assembly language, we will use BASIC for
simplicity.

10-3 Connecting the Apple to the IEEE 488 Bus 163

JLIST

10 REM *** SIMPLE IEEE-488 DEMO ***
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM *
15 REM * MAP REGISTERS OF 9914 *
20 STTUS = 49344
25 CMD = 49347
30 DID = 49351
35 DMMT = 72: REM DMM TALK ADDRESS
100 REM * !NIT CONTROLLER *
110 POKE CMD,128: REM SET SWRST
120 POKE CMD,147: REM DISABLE INTERRUPTS
130 POKE CMD,O: REM CLEAR SWRST
140 POKE CMD,12: REM TAKE CONTROL
150 POKE CMD,143: REM SEND IFC
160 POKE CMD,15: REM RESET IFC
170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDBY
190 POKE CMD,137: REM SET UP 9914 TO LISTEN
200 REM * INPUT ROUTINE *
210 S = PEEK <STTUS>
220 IF S < 32 THEN GOTO 210: REM POLL BI
230 BYTE= PEEK <DIO>: REM GET CHARACTER
240 C$ = CHR$ <BYTE>
245 PRINT C$;
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
255 END

JRUN
NDCV+0005.753E+O

Figure 10-7
Listing of simple IEEE 488 demo

The program begins by assigning labels to the various ad­
dresses of the TMS9914A chip of figure 10-6. We will place the
interface card in slot 4. If you use any other slot, be sure to change
lines 20, 25, and 30 accordingly. Line 35 equates the label DMMT as
the DMM talk address. For this example, the DIP switch on the rear
of the DMM is set at 01000. So, according to Table 10-2, when the
controller wants to tell the DMM to talk, the controller outputs a
byte on the DIO lines corresponding to the MTA message
XlOAAAAA. Since the DIP switch is set at 01000, the MTA message
is XlOOlOOO. The X in the address is a don't care bit so we set it LOW,
forming the byte 01001000 ($48), which is equivalent to 72 in
decimal.

Next we begin the initialization of the TMS9914A. Line 110
POI<Es the auxiliary command register with the value 128 (10000000
in binary), causing a software reset (see table 10-5). This is the usual

164 CHAPTER 10 IEEE 488 Bus

first command on power up. While in the software reset state, the
TMS9914A is usually sent the desired interrupt masks. We will not
use interrupts in this example, so we POKE the auxiliary command
register with 147 (10010011) to disable all interrupts. Line 130 clears
the software reset. Line 140 tells our TMS9914A to act as the
controller for the bus. Lines 150 and 160 cause the IFC line to be
pulsed active LOW for a short time. If you do this in a machine­
language routine, be sure to include a time delay (perhaps 1 ms)
between the time that IFC goes LOW until it goes HIGH again.
BASIC is slow enough that we do not have to include the delay. Line
170 causes the controller to output the byte $48 (01001000), thus
establishing the DMM as a talker. Line 190 tells the TMS9914A to
listen, while waiting for the data from the DMM.

The DATA INPUT routine, starting at line 200, polls the status
register to see if BI (byte in) is HIGH. When BI goes HIGH, the
status byte will be 00100000, as can be seen in table 10-3. The
decimal equivalent of the status byte is 32. So when BI goes active,
the data is read in from the DIO lines, changed to a printable
character, and printed on the Apple's CRT. Then the status byte is
checked to see if END is active, which indicates the end of the
message. The END bit of the status byte is set when the talker
makes its EOI handshake line active while sending its last byte. If
END is not active, the program loops back to input the next byte.
When END is detected (status byte 00101000 or 40 in decimal), the
program falls through.

The RUN of the program, shown at the bottom of figure 10-7,
shows that the Model 192 DMM sends 16 bytes of data (followed by
a carriage return-line feed). The format of the data string is shown

(Function (Display !Exponent(Terminator

I ~ c I v I + I 1 I 2 I 3 I . I 4 I 5 I 6 I 1 I E I + I 0 I CAI LF I
N =Normal
0 =Overflow
Z =Zeroed

Data Format: 16 Bytes + Terminator

Figure 10-8
Data format for Keithley Model 192 DMM

10-3 Connecting the Apple to the IEEE 488 Bus 165

JLIST

10 REM *** SIMPLE IEEE-488 DEMO ***
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM *
15 REM * MAP REGISTERS OF 9914 *
20 STTUS = 49344
25 CMD = 49347
30 DID = 49351
35 DMMT = 72: REM DMM TALK ADDRESS
100 REM * INIT CONTROLLER *
110 POKE CMD.128: REM SET SWRST
120 POKE CMD~147: REM DISABLE INTERRUPTS
130 POKE CMD,O: REM CLEAR SWRST
140 POKE CMD,12: REM TAKE CONTROL
150 POKE CMD,143: REM SEND IFC
160 POKE CMD,15: REM RESET IFC
170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDBY
190 POKE CMD,137: REM SET UP 9914 TO LISTEN
2~) REM * INPUT ROUTINE *
210 S = PEEK CSTTUS>
220 IF S < 32 THEN GOTO 210: REM POLL BI
230 BYTE= PEEK <DIO>: REM GET CHARACTER
240 C$ = CHR$ <BYTE>
245 PRINT C$;
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
260 FOR D = 1 TO 7~)0: NEXT D
270 GOTO 140

lRUN
NDCV+0008.819E+O

NDCV+OOQ9.414E+O

NDCV+0010.585E+O

NDCV+0011.551E+O

BREAK IN 260

Figure 10-9
Listing of simple IEEE 488 demo for periodic sampling

in figure 10-8. In some installations, we might want periodic
readings from the DMM, for instance, once every 10 seconds or
once every half hour. Figure 10-9 shows a simple modification of
the previous program in which the computer inputs the data string
from the DMM then after some time delay (line 260) asks for
another reading.

In the programs of figures 10-7 and 10-9, the front panel
controls of the DMM selected the function, range, and so on. But

166 CHAPTER 10 IEEE 488 Bus

TABLE 10-6
IEEE 488 Programming for the Keithley Model 192 DDM

Feature ASCII

FUNCTION

RANGE

ZERO

TRIGGER

RATE

DELAY

BUFFER

MODE

EOI

TERMINATOR

FO = DCV
Fl= ACV
F2 = K OHMS
RO= AUTO
Rt = 0.2
R2 = 2
R3 = 20
R4 = 200
RS = 2000
R6 = 20 M OHMS
ZO =OFF
Zl =ON
TO = Cont. on TLK
Tl = One shot on TLK
T2 = Cont. on GET
T3 = One shot on GET
T4 = Cont. on X
TS = One shot on X
SO = 4 ms integration (4 ~ d)
St - SB various rates
WO= 0
Wt = 10 ms
QO = Clear
Qt = Store 100 readings
MO= SRQ OFF
Ml= SRQ ON
KO= SEND
Kl = DO NOT SEND
Y(LF) = CF LF
Y(CR) = LF CR
Y() = Any ASCII
Y(DEL) = None

X =EXECUTE
U = Send status bytes

Note: Default = FORSZOTOS2W1QOXOMOY(LF)

one of the powerful features of a programmable DMM, like the
Keithley Model 192, is that the function, range, rate of capture, and
so on, can be programmed from a remote computer. Here is how

10-3 Connecting the Apple to the IEEE 488 Bus 167

the remote programming works. On power up, the DMM is put
into the LISTEN mode, rather than the TALK mode. The computer
then sends control bytes (a string of ASCII characters) to the DMM
to tell it how it is to operate. After initialization, the DMM is placed
in the TALK mode, as before, and sends data to the listener(s).

Table 10-6 shows the various features that can be remotely
controlled in the Keithley Model 192. By sending the ASCII bytes
FlR4, for example, the DMM is told to place its internal function
selector in the ac volts position and its range switch on the 200-volt
scale. Only those features that you wish to change must be sent to
the DMM. The default values are shown at the bottom of the table.

Figure 10-10 shows the program listing that allows you to
remotely program the DMM. Notice that the major portion of the
program is the same as that of figure 10-7. The title line (line 10) is
changed, a new line (line 40) equates the DMM listen address to 40
decimal (00101000), and line 165 has been added to call a subroutine
to initialize the DMM. Otherwise, the program is identical to that
of figure 10-7 up to line 255.

The subroutine at line 300 first sets the remote enable line
active, then tells the DMM to listen. Next it puts the controller in
standby and makes the TMS9914A a talker. The code from lines 350
through 400 allow the user to enter the bytes to the be sent to the
DMM, as described in table 10-6. The character X is used to
terminate the message and to trigger the DMM to activate the
features sent to it. Although the Keithley Model 192 recognizes the
character X as an execute command, other instruments might not.
A typical remote programming sequence might include having the
controller send the remote device a string of ASCII characters, and
along with the last character sending an EOI signal, indicating the
end of message. The EOI can be sent along with the last character
by writing the command 08 to the auxiliary command register, as
shown in table 10-5.

Getting back to the program of figure 10-10, once the message
terminator is sent, the program falls through to line 410, where the
TMS9914A is told to stop talking and take control again. The DMM
is taken out of the listen mode, and the program returns to line 170
in the main driver. From there on, execution is the same as that of
figure 10-7.

JLIST

10 REM *** IEEE 488 DEMO USING REMOTE PROGRAMMING ***
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM *
15 REM * MAP REGISTERS OF 9914 *
20 STTUS = 49344
25 CMD = 49347
30 DID = 49351
35 DMMT = 72: REM DMM TALK ADDRESS
40 DL = 40: REM DMM LISTEN ADDRESS
100 REM * !NIT CONTROLLER *
110 POKE CMD~128: REM SET SWRST
120 POKE CMD,147: REM DISABLE INTERRUPTS
130 POKE CMD,O: REM CLEAR SWRST
140 POKE CMD,12: REM TAKE CONTROL
150 POKE CMD,143: REM SEND IFC
160 POKE CMD,15: REM RESET IFC
165 GOSUB 300: REM INIT DMM
170 POKE DIO,DMMT: REM TELL DMM TO TALK
180 POKE CMD,11: REM GO TO STANDBY
190 POKE CMD,137: REM SET UP 9914 TO LISTEN
200 REM * INPUT ROUTINE *
210 S = PEEK <STTUS>
220 IF S < 32 THEN GOTO 210: REM POLL BI
230 BYTE= PEEK CDIO>: REM GET CHARACTER
240 C$ = CHR$ <BYTE>
245 PRINT C$;
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE
255 END
300 REM * INIT DMM FOR REMOTE OPERATION *
310 POKE CMD,144: REM SEND REMOTE ENABLE
320 POKE DIO,DL: REM TELL DMM TO LISTEN
330 POKE CMD,11: REM GO TO STANDBY
340 POKE CMD,138: REM SET UP 9914 AS TALKER
350 REM * SEND MESSAGE *
360 PRINT "ENTER MESSAGE CHARACTERS, TERMINATE WITH X"
365 PRINT
370 GET M$
380 POKE DID, ASC CM$)
390 PRINT M$;
400 IF M$ < > 11 X11 GOTO 370: REM CHECK IF LAST CHARACTER
405 PRINT
410 POKE CMD,10: REM TELL 9914 TO STOP TALKING
420 POKE CMD,12: REM TAKE CONTROL AGAIN
430 POKE DI0,63: REM SEND UNLISTEN COMMAND
440 RETURN

Figure 10-10
Listing of IEEE 488 demo using remote programming

168 CHAPTER 10 IEEE 488 Bus

10-3 Connecting the Apple to the IEEE 488 Bus 169

::!RUN
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X

FOP~~:x

f\IDCV+ .I. :t.. ~5602:::::E+O

:JF~UN
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X

FlX
NACV+00.00992E+O

JRUN
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X

F2F~'.4·X

OOHM+400"0000E+3

Listing 10-lO(b)

The sample RUNs at the end of the program listing were
obtained using a de input to the Model 192. Various features were
selected in the different RUNs to show how the DMM is affected.

There are a wide variety of other instruments, made by several
different manufacturers, that are IEEE compatible. Instruments
such as frequency counters and signal generators can be remotely
programmed and told to talk to other instruments. As you can see,
the IEEE 488 bus is a very powerful and flexible means of tying
together a variety of test equipment for automatic testing or data
acquisition.

INDEX

A
ACIA 128
Analog to digital conversion 48-59

multiple input 55-59
single input 48-52
using to control graphics display 52-55

Assembly language 78
Asynchronous transmission 125

B
BASIC, use of 65, 76-77

fixed or slowing moving graphics 77
initialization 76
input 76
inputs from disk drives 77
mathematics 77
menus 76
outputs to printers 77
to generate since waves 105-110

Baud rate 127

171

172 Index

c
Centronics-type printer interface 24
Control register 29
Conversion complete signal 50, 90

D
Data direction 29
Decimal to hexidecimal conversion 10-12
Digital to analog conversion 102-105

H
Hexidecimal to decimal conversion 10-11

I
IEEE 488 interface bus 150-169

overview 150-156
connecting the Apple to 161-169
TMS9914A GPIB controller 156-161

Input buffers 20-24
Interface card 3-4
Interface connectors 3
Interrupts 92, 95

M
Machine language 77-78

calling subroutines from BASIC program 83-88
entering into RAM 78-82
loading programs 83
saving programs 82
use of 77-78

Memory mapped I/O 14-15

0
Output latches 16-20

p
Parallel output port 16
Pascal 65
Peripheral connector pinout 3-4
Peripheral connector signals 6-8, 15

Peripheral register 29
PIA internal registers

control 29
data direction 29
peripheral 29

Program validation 70
Programmable controllers 40-46
Programmable interface chips 26-31

control register 29
data direction register 29

Index 173

MOS Technology 6520 Peripheral Interface Adapter (PIA) 26
Motorola 6820 PIA 29
peripheral register 29

R
RS 232 C interface 145-148

s
Serial transmission 122

ACIA 128
asynchronous 125
baud rate 127
formats 125-128
off-the-shelf UART 128-133
RS 232 C interface 145-148
UART, use of 133-144

Solid state relays 34-36
Storage scope, using the computer as 90-100
Structured programming 62-73

T

defining 62-63
designing 63-65
documentation 72-73
maintenance 73
testing and debugging 70-72
top-down design 64
writing the code 65-70

TMS9914A GPIB controller 156-161
Top-down design (see Structured programming)

174 Index

Traps 70
TRIACS, using for power control 36-39
Triggered sweep 97-100

u
UART 128-144

v
Variable names 67

w
Waveform generation 102-120

Complex waves 110-118
digital to analog conversion 102-105
higher frequencies 119-120
using BASIC to generate sine waves 105-110

other Reston titles of interest ...

68 SCIENTIFIC AND ENGINEERING PRO­
GRAMS FOR THE APPLE II AND Ile
by Joseph J. Carr

\Nith emphasis on the practical, this author draws on his years of
engineering experience to give the reader 68 helpful scientific and
engineering programs designed for the Apple II and Ile.The bulk of the
problems selected are from electronic engineering, with sub-emphasis
on bio-medical and radio engineering. Some techniques are applicable
to many other disciplines as well. The Statistical Section includes stan­
dard formulas as well as one additional non-standard formula that may
be especially useful.

BASIC PROGRAMS FOR
ELECTRICAL CIRCUIT ANALYSIS
by Theodore Bogart, Jr.

A collection of computer programs for troubleshooting a broad range
of circuit problems. The author uses BASIC throughout, but requires
no prior knowledge of BASIC throughout, but requires no prior
knowledge of BASIC programming because he thoroughly explains
each program individually. Useful subroutines provided include
universal gTaph plotting and the capacity for generating graphic
dis pays.

ELECTRONIC INSTRUMENTATION
AND MEASUREMENTS ~
by David A. Bell

Provides excellent explanations of instrument operation along with
scores of worked-out examples. The author carefully explains the
operation, performance charncteristics, and applications of electronic
instruments and test equipment. Numerous practical examples supple­
ment the broad discussion of measuring techniques.

A Reston Book
Prentice-Hall. Inc.
Englewood Cliffs, NJ. 07632 0- 8 359- 9222- 5

