
























































































































































































































































































































152 CHAPTER 10 IEEE 488 Bus 

TABLE 10-1 

Signal Name 

DI01-DI08 
DAV 

NRFD 

NDAC 

IFC 

ATN 

SRQ 

REN 

EOI 

DI01 - 0108 

NRFO 

Functions of the IEEE 488 Bus Lines 

Description 

Data bus lines. 
DATA VALID. Pulled LOW by talker to inform listeners that 
data has been placed on DIO lines. 
NOT READY FOR DATA. Pulled LOW by all listeners. 
Released by each listener when it becomes ready to receive 
data. 
NOT DATA ACCEPTED. Pulled LOW by all listeners. 
Released by each listener when it has accepted data. 
INTERFACE CLEAR. Driven LOW by controller to bring all 
interface lines to known state. 
ATTENTION. Driven LOW by controller to gain the attention 
of devices on bus and to signify that address/control 
information is on the bus. 
SERVICE REQUEST. Pulled LOW by any device needing 
service. Similar to interrupt request. 
REMOTE ENABLE. Pulled LOW by controller to ensure that 
remote control is in effect. For example, front panel controls 
can be disabled by REN. 
END OR IDENTIFY. Pulled LOW by talker to inform listeners 
that current byte on data bus is the last byte to be transferred. 
Pulled LOW by controller together with ATN to initiate a 
parallel poll sequence. 

BYTE 1 BYTE 2 

DATA VALID DATA VALID 

NDAC----------------

Figure 10-2 
Timing diagrams for data and handshake lines 
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5. Then, when the printer inputs the data, the printer pulls 
NDAC HIGH, thus informing the voltmeter that data has 
been accepted. 

6. Sensing that data has been accepted, the voltmeter then 
pulls DAV HIGH again. The process is repeated each time 
a new data byte is to be transferred. 

The signal lines DAV, NRFD, and NDAC are all open collector 
lines used for handshaking between talkers and listeners. Since 
they are open collector lines, several instruments may be simul­
taneously tied to each line, and the data transfer rate will be 
controlled by the slowest device. Figure 10-3 shows the timing 
diagrams when several listeners are activated at the same time. 

The problem now arises as to how does the talker know that it 
has permission to talk and how does any individual device know 
whether or not it should listen? The control signals, issued by the 
controller, are what direct talkers to talk and listeners to listen. The 
following is a typical sequence showing how this is accomplished: 
On power up, the controller takes control of the bus and sends out 
an IFC signal on the management bus. This places all devices in a 

DAV-----------

Some Listeners\ .... _________ / 
Ready 

Some 
Ready 

rT·/-~ Ali \ rr·7· All 
NRFD ___ .... f_l_ Ready -----------l--~-- Ready 

Some 
Accepted 

NDAC 
tT7"!' All \ 

__________ ........ f__._f ...;·:.-f -6 Accepted __ ----

Figure 10-3 
Timing diagrams when several listeners are on the bus 
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known state, with no one talking and no one expecting data. Then, 
if there are several instruments on the bus, the controller polls the 
bus to watch for an active SRQ signal. The SRQ signal is equivalent 
to an interrupt request. In fact, an instrument can be programmed 
to generate an interrupt request on receipt of an SRQ, if desired. 

Let's suppose that our DVM has completed conversion and has 
data for the printer. The DVM pulls SRQ LOW. The controller (after 
determining that the DVM is the source of the SRQ) makes ATN go 
LOW to gain the attention of all devices on the bus. It then outputs 
a LISTEN command, specifying the address of the listener. The 
command is issued on the DIO lines and is of the form XOlAAAAA, 
where the AAAAA specifies a 5-bit address of the listener. This 
address is effectively hardwired into the listener, and when the 
listener detects its own address in the command, it enters the listen 
mode. Next, the controller issues a TALK command on the DIO 
lines, which is of the form XlOAAAAA. The talker (our DVM) then 
begins the sequence of NRFD-DAV-NDAC handshaking and data 
transfer to the printer, as discussed previously. 

Meanwhile, the controller was in the standby state, monitor­
ing the bus but not taking part in the transfer of data. When the 
transfer of data is complete, the talker sends an EOI signal on the 
management bus. The controller, on detecting the EOI, takes 
control again and sends an UNTALK command (XlOlllll) followed 
by an UNLISTEN command (XOllllll) on the DIO lines. The talker 
stops talking and the listener stops listening so the bus is now 
available for other transfers. 

Table 10-2 shows the format for the various interface message. 
While we will not discuss all of the possible messages here, we will 
study enough of them to make a small system work effectively. For 
a thorough discussion of all the commands, refer to the IEEE 488 
specifications. Not all of the commands are used in every applica­
tion, particularly in smaller systems. In fact, there may be some 
differences in the way some systems handle certain events. For 
example, the response to the SRQ is not standardized. In some 
systems it may initiate a parallel polling sequence to establish the 
source of the request; while in other systems, it may cause an 
immediate jump to a particular service routine. 

One important point is that the IEEE 488 bus uses negative logic. 
This means that a TRUE (logic 1) signal appears on the bus as a 
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TABLE 10-2 
IEEE 488 Interface Messages 

Command 

ADDRESSED COMMAND GROUP 
DEVICE CLEAR 
GROUP EXECUTE TRIGGER 
GOTO LOCAL 
LISTEN ADDRESS GROUP 
LOCAL LOCKOUT 
MY LISTEN ADDRESS 
MY TALK ADDRESS 
MY SECONDARY ADDRESS 
OTHER SECONDARY ADDRESS 
OTHER TALK ADDRESS 
PRIMARY COMMAND GROUP 
PARALLEL POLL CONFIGURE 
PARALLEL POLL ENABLE 
PARALLEL POLL DISABLE 
PARALLEL POLL UNCONFIGURE 
SECONDARY COMMAND GROUP 
SELECTED DEVICE CLEAR 
SERIAL POLL DISABLE 
SERIAL POLL ENABLE 
TAKE CONTROL 
TALK ADDRESS GROUP 
UNLISTEN 
UNTALK 
UNIVERSAL COMMAND GROUP 

Symbol 

ACG 
DCL 
GET 
GTL 
LAG 
LLO 
MLA 
MTA 
MSA 
OSA 
OTA 
PCG 
PPC 
PPE 
PPD 
PPU 
SCG 
soc 
SPD 
SPE 
TCT 
TAG 
UNL 
UNT 
UCG 

DIO 1-8* 

oooxxxxx 
X0010100 
XOOOlOOO 
XOOOOOOl 
XOlXXXXX 
X0010001 
XOlAAAAA 
XlOAAAAA 
xnsssss 
SCG.MSA 
TAG.MTA 
ACG+UCG+LAG+TAG 
XOOOOlOl 
XllOSPPP 
XlllDDDD 
X0010101 
XllXXXXX 
XOOOOlOO 
XOOllOOl 
XOOllOOO 
XOOOlOOl 
XlOXXXXX 
XOllllll 
XlOlllll 
XOOlXXXX 

•o Logical zero (HIGH level on GPIB), 1 Logical one (LOW level on GPIB), X Don't care 
(received messagei 

LOW voltage (0 volts), while a FALSE (logic 0) signal appears on the 
bus as a HIGH (> 2v) level. This does not mean that you must invert 
all of your thinking about what is going on at the computer end. 
But on the bus lines themselves, the voltage levels are the opposite 
of what you would measure on your computer bus. For example, if 
your computer outputs the byte 00110100, it will appear on the IEEE 
bus as HHLLHLHH, where H represents >2v and L represents Ov 
as measured with a voltmeter. IC manufacturers such as Motorola 
and Texas Instruments make IEEE 488 compatible chips that take 
care of the inversions for you. The interface circuits are TTL­
compatible and use a single + Sv power supply. 



156 CHAPTER 10 IEEE 488 Bus 

SHIELD SRO NDAC DAV 0104 DI02 

ATN IFC NRFD EOI DI03 DI01 

GND GND GND REN 0107 DIO& 
11 9 7 

LOGIC GNO GND GND 0108 0106 

ONO 10 8 8 

Figure 10-4 
Standard IEEE connector 

Many instrument manufacturers build instruments capable of 
tying into the IEEE 488 bus. These instruments use standard 24-pin 
connectors, such as the one shown in figure 10-4. 

10-2 
THE TMS9914A GPIB 
CONTROLLER 

It is possible to interface the computer to the IEEE 488 bus using 
simple buffers and latches, just as it would be possible to control 
serial communications with buffers and latches. But doing so 
would require a great deal of computer time and software to 
monitor and generate control and handshake signals, not to men­
tion a handful of hang-on chips. We saw that by using a program­
mable interface chip, such as Motorola's ACIA, we can free the 
computer from all of the formatting, control signal generation, and 
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DATA DUFFERS 
BUS 75160 

IEEE.-BS 
GPIB 

BUFFERS 
75151 

BUS OR 
MANAGE· 75152 

MENT 

oc 

Figure 10-5 

ADDRESS 
SWITCHES 

fii 

DATA 
DUS 

TMS9914A 
GPIB 

TE 

BUS 
MAN· 
AGE· 

MENT 

we 

Typical TMS9914A application 
(Courtesy of Texas Instruments, Inc.) 

DATA AND 
PROGRAM 
MEMORY 

WfDDIN 

D0-07 

DBIN 

MPU 

AO-A14 

timing problems. Similarly, by using a chip specifically designed to 
interface to the IEEE bus, we make the computer's job much 
simpler. One very popular chip, made by Texas Instruments, is the 
TMS9914A General Purpose Interface Bus Controller. The chip is 
normally memory mapped into the system, for example, in one of 
the computer's peripheral slots. Using this chip, the computer 
simply talks to or reads from a few memory locations to send or 
receive data. Handshaking is done automatically without tying up 
computer time. More importantly, as mentioned before, the com­
puter can direct one device to talk to one or more other devices 
without having to relay the information. 

Figure 10-5 shows the TMS9914A in a typical application. An 
IEEE 488 compatible instrument, such as a DVM, would have an 
interface board with all of the circuitry shown in the figure. The 
MPU, of course, also controls some of the hardware that makes the 
DVM do its job. The onboard data and program memory contains 
firmware that makes the MPU control the DVM functions, as well 
as the TMS9914A functions and initialization. Each instrument 
must initialize its own TMS9914A on power up. The 75160 and 75161 
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TABLE 10-3 
TMS9914A Read registers 

(Courtesy of Texas Instruments, Inc.) 

ADDRESS 
REGISTER NAME 

BIT ASSIGNMENT 

RS2 RS1 RSO 00 01 D2 D3 D4 
0 0 0 Int Status 0 INTO INT1 Bl BO ENO 

0 0 1 Int Status 1 GET ERR UNC APT DCAS 

0 1 0 Addross Status REM LLO ATN LPAS TPAS 

0 1 1 Bus Status ATN DAV NDAC NRFD EOI 
1 0 0 

1 0 1 

1 1 0 Cmd Pasa Thru 0108 0107 0106 0105 0104 

1 1 1 Data In 0108 0107 0106 0105 0104 

D5 DB D7 

SPAS RLC MAC 

MA SRQ IFC 

LADS TAOS ulpa 

SRQ IFC REN 

0103 0102 0101 

0103 0102 0101 

•The TMS99t4A host interface dato tnea w~I remain in tho high impedance steto when those register locations are llddrossod. An Addtosa Switch 

Regi$tor mav therefor• be included in the addreas spoco of tho device •t theao locations Csoo Sactlon t .51. 

TABLE 10-4 
TMS9914A Write registers 

(Courtesy of Texas Instruments, Inc.) 

ADDRESS 
REGISTIR NAME 

BIT ASSIGNMENT 

RS2 RS1 RSO DO D1 D2 D3 D4 
0 0 0 Int Mask 0 Bl BO ENO 

0 0 1 Int Mask 1 GET ERR UNC APT DCAS 

0 1 0 xx xx xx xx MK 

0 1 1 Auxiliary Cmd cs X)C xx f4 f3 

1 0 0 Address edpa dal dat AS A4 

1 0 1 Serial Poll SB rsvl SS S5 54 

1 1 0 Parallel Poll PPB PP7 PPS PP5 PP4 

1 1 1 Data Out 0108 0107 0106 0105 0104 

D5 DB 

SPAS RLC 

MA SRQ 
)C)C xx 

f2 f1 

A3 A2 

S3 52 

PP3 PP2 

0103 0102 

•This address is not decoded bv tho TMS 9914A. A write to this loc1t1on will hllve no elfoct on the device, as tf a write had not occurred. 

D7 

MAC 

IFC 

xx 

fO 

A1 

51 

PP1 
0101 

chips are specifically designed to interface to the IEEE bus. And the 
direction of data flow through these buffers is controlled by the TE 
and CONT outputs of the TMS99I4A. 

Communications between the MPU and the TMS99I4A are 
accomplished via I3 memory-mapped registers in the TMS99I4A. 
Once the chip is enabled by an address decoder, one of the specific 
registers is selected by means of address bits applied to 3 register­
select pins, RS2, RSI, and RSO, in the same manner that various 
registers in the PIA and ACIA were selected. However, 6 of the 
registers are read only, and 7 registers are write only. Table I0-3 
shows the function of the read registers, and table I0-4 shows the 
function of the write registers. We will discuss the operation and 
purpose of a few of these registers. 

Whenever the MPU wants to read in a byte from the GPIB, the 
MPU makes RS2, RSI, and RSO all HIGH thereby selecting the data 
in register and does a read operation (LDA). But when the MPU 
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wants to send a byte out to the GPIB, it makes the register-select 
pins all HIGH and does a write operation (STA), thereby selecting 
the data out register. 

It was mentioned in the previous section that each talker and 
listener on the IEEE bus is given a 5-bit address to identify it and 
that this address is somehow hardwired into the device. You can 
appreciate the need for these device addresses to be user change­
able so that you can buy instruments from different manufacturers 
and not have to worry about address conflicts. Here is how it is 
usually done. Each instrument, our DVM for example, has a 5-
position dip switch located on the rear panel of the instrument. The 
user sets the switch to any address (except 11111) that he or she 
wants the device to respond to. Then on power up, an initialization 
routine in the instrument's ROM causes the MPU to read from the 
address switches. The MPU then writes this 5-bit address into the 
address register (100) of the TMS9914A. Thereafter, whenever that 5-
bit address appears on the DIO lines, the instrument knows that it 
should respond. For example, suppose that the DVM address 
switches are set to 01000. When the controller issues the TALK 
command X1001000, the DVM recognizes its address and begins 
talking. The general form of the TALK command, as shown in table 
10-2, is XlOAAAAA, where the AAAAA specify the particular 
device that is to respond. 

Registers 000 and 001 are used for interrupt status and control. 
If you want an interrupt request to be generated when an input 
byte is available, you set the BI bit in the int mask 0 register. This 
corresponds to the receive data register full interrupt on the ACIA. 
Similarly, if you want an interrupt request to be generated when the 
output register is ready to accept the next output byte, you set the 
BO bit of register 0. This corresponds to the transmit data register 
empty interrupt in the ACIA. If you do not want interrupts to be 
generated, the corresponding BI and BO bits in the int status 0 
register can be polled to see whether an input byte is present or the 
output register is ready. The END bit in the int status register is 
used to detect the end of a message. It gets set when the TMS9914A 
detects an EOI signal on the management bus. The int mask 0 
register is not cleared by either a hardware or software reset. It will 
come up in a random state on power up. Therefore, part of the 
initialization routine must write the desired interrupt mask into it. 
The same thing must be done for int mask 1 register. 
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TABLE 10-5 
TMS9914A Auxiliary Commands 

(Courtesy of Texas Instruments, Inc.) 

c/s f4 f3 f2 f1 fO MNEMONIC 

011 0 0 0 0 0 swrst 

0/1 0 0 0 0 1 deer 

na 0 0 0 1 0 rhdf 

0/1 0 0 0 1 1 hdfa 

0/1 0 0 1 0 0 hdfe 

no 0 0 1 0 1 nbaf 

011 0 0 1 1 0 fget 

011 0 0 1 1 1 rt! 

na 0 1 0 0 0 feoi 

0/1 0 1 0 0 1 Ion 

011 0 1 0 1 0 ton 

no 0 1 0 1 1 gts 

no 0 1 1 0 0 tea 

na 0 1 1 0 1 tcs 

011 0 1 1 1 0 rpp 

0/1 0 1 1 1 1 sic 

0/1 1 0 0 0 0 are 

na 1 0 0 0 1 rqc 

na 1 0 0 1 0 rlc 

0/1 1 0 0 1 1 dai 

na 1 0 1 0 0 pts 

0/1 1 0 1 0 , std I 

0/1 1 0 , 1 0 shdw 

0/1 1 0 1 1 1 vatdl 

0/1 1 1 0 0 0 rsv2 

FEATURES 

Softwaro rosot 

Release DAC holdoff 

Release RFD holdoff 

Holdoff on all dota 

Holdoff on EOI only 

New byte avoiloble false 

Force group execute trigger 

Return to loco! 

Send EOI with next byte 

Listen only 

Talk only 

Go to standby 

Take control asynchronously 

Take control synchronously 

Requeat parallel poll 

Send interface clear 

Send remote enable 

Requeat control 

Release control 

Disable all interrupts 

Pass through next secondary 

Short Tl settling time 

Shadow handshake 

Very short T1 delay 

Request Service Bit 2 

The auxiliary command register (011) is used to enable and 
disable most of the selectable features of the TMS9914A and to 
initiate many of its actions. Table 10-5 shows how the desired 
features are selected by writing various bit patterns into this 
register. Bits f4-f0 are the 5 least significant bits of this register. The 
column labeled ds indicates that the function will be set (enabled) 
when a 1 is written into the most significant position of the register, 
and writing a 0 into the MSB will clear (disable) the feature. For 
example, let's assume that we are using the TMS9914A as a system 
controller. Suppose we want to send an INTERFACE CLEAR pulse 
out on the management bus. We do this by first writing the bit 
pattern lXXOllll to the auxiliary command register. This sets IFC 
active. Then, after a short time delay of perhaps 1 ms, we send the 
bit pattern OXXOllll to the same register. This second byte causes 
the TMS9914A to make the IFC command line inactive. Of course, 
not all of the possible commands are used in every application. But 
we will see how several other commands are used in a practical 
application in the next section. 
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Although, as mentioned previously, negative logic is used on 
the GPIB lines themselves, the connections between the MPU and 
the TMS9914A use conventional positive logic. That is, the bit 
patterns shown in the tables are the same bit patterns that the MPU 
must output to the TMS 9914A. For example, to set the IFC active, 
the MPU would execute an instruction like LDA #$8F, then store 
the accumulator (STA) to the auxiliary command register address of 
the TMS9914A. To make IFC inactive, the MPU does a LDA #$OF 
then stores it to the same address. 

10-3 
CONNECTING THE APPLE TO 
THE IEEE 488 ·aus 
Interfacing the Apple computer to the IEEE 488 bus can be accom­
plished using the TMS9914A along with its buffers, the 75160 and 
75161, as shown in figure 10-6. These three chips can be mounted 
on a simple prototype card and the card can be plugged into any 
suitable slot. Note that Apple data bus line D7 connects to pin 17 of 
the TMS9914A, marked DO. DO of the TMS9914A is the most 
significant bit of the device. This is in agreement with the designa­
tions in tables 10-3 and 10-4. By using DEVICE SELECT as the chip 
enable and feeding RS2, RSI, and RSO from A2, Al, and AO as 
shown, the TMS9914A will respond to 8 consecutive addresses 
issued by the Apple. For example, if we placed the card in slot 4, the 
address range of the interface will extend from 49344 ($COCO) to 
49351 ($COC7). The chip also needs an external clock input, so <l>l of 
the Apple clock (pin 38) is used. 

Since the best way to understand the Apple-to-GPIB interface 
is through an example, we will discuss connecting the Apple to a 
Keithley Model 192 Programmable DMM. The Model 192 is exter­
nally programmable via the GPIB for selection of function (DCV, 
ACV, or K ohms), range, rate of data capture, and several other 
features. It has the standard IEEE 488 connector on the rear panel, 
as well as the 5-bit dip switch for address selection. To select the 
desired features of the DMM, the controller issues a LISTEN 
command using the address bits of the DMM. Then the DMM is 
sent several bytes of data telling it what to do. After sending all of 
the required bytes, the controller sends an UNLISTEN command, 
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APPLE PERIPHERAL CONNECTOR +5V 
Vet; 

+5V~-- .01 

r~ GND~ 
40 

NC 1 

07 

06 
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03 
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01 
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16 01 

15 
02 

14 
03 
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12 
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10 
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20 

Figure 10-6 
IEEE 488 Bus/ Apple interface 
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25 16 
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REN SRO 9 10 SRO 

GND 

75161 10 
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24 

followed by a TALK command, again using the address bits of the 
DMM. The DMM then responds by outputting data on the DIO 
lines according to the selected format. If no format is selected by the 
user, the DMM defaults to the predetermined format, which is de 
volts on the 2000 volt range. We will use the default mode for our 
first example. 

Figure 10-7 shows the listing for a BASIC program to commu­
nicate with the DMM via the IEEE 488 bus. While the program can 
and often is written in assembly language, we will use BASIC for 
simplicity. 
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JLIST 

10 REM *** SIMPLE IEEE-488 DEMO *** 
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM * 
15 REM * MAP REGISTERS OF 9914 * 
20 STTUS = 49344 
25 CMD = 49347 
30 DID = 49351 
35 DMMT = 72: REM DMM TALK ADDRESS 
100 REM * !NIT CONTROLLER * 
110 POKE CMD,128: REM SET SWRST 
120 POKE CMD,147: REM DISABLE INTERRUPTS 
130 POKE CMD,O: REM CLEAR SWRST 
140 POKE CMD,12: REM TAKE CONTROL 
150 POKE CMD,143: REM SEND IFC 
160 POKE CMD,15: REM RESET IFC 
170 POKE DIO,DMMT: REM TELL DMM TO TALK 
180 POKE CMD,11: REM GO TO STANDBY 
190 POKE CMD,137: REM SET UP 9914 TO LISTEN 
200 REM * INPUT ROUTINE * 
210 S = PEEK <STTUS> 
220 IF S < 32 THEN GOTO 210: REM POLL BI 
230 BYTE= PEEK <DIO>: REM GET CHARACTER 
240 C$ = CHR$ <BYTE> 
245 PRINT C$; 
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE 
255 END 

JRUN 
NDCV+0005.753E+O 

Figure 10-7 
Listing of simple IEEE 488 demo 

The program begins by assigning labels to the various ad­
dresses of the TMS9914A chip of figure 10-6. We will place the 
interface card in slot 4. If you use any other slot, be sure to change 
lines 20, 25, and 30 accordingly. Line 35 equates the label DMMT as 
the DMM talk address. For this example, the DIP switch on the rear 
of the DMM is set at 01000. So, according to Table 10-2, when the 
controller wants to tell the DMM to talk, the controller outputs a 
byte on the DIO lines corresponding to the MTA message 
XlOAAAAA. Since the DIP switch is set at 01000, the MTA message 
is XlOOlOOO. The X in the address is a don't care bit so we set it LOW, 
forming the byte 01001000 ($48), which is equivalent to 72 in 
decimal. 

Next we begin the initialization of the TMS9914A. Line 110 
POI<Es the auxiliary command register with the value 128 (10000000 
in binary), causing a software reset (see table 10-5). This is the usual 
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first command on power up. While in the software reset state, the 
TMS9914A is usually sent the desired interrupt masks. We will not 
use interrupts in this example, so we POKE the auxiliary command 
register with 147 (10010011) to disable all interrupts. Line 130 clears 
the software reset. Line 140 tells our TMS9914A to act as the 
controller for the bus. Lines 150 and 160 cause the IFC line to be 
pulsed active LOW for a short time. If you do this in a machine­
language routine, be sure to include a time delay (perhaps 1 ms) 
between the time that IFC goes LOW until it goes HIGH again. 
BASIC is slow enough that we do not have to include the delay. Line 
170 causes the controller to output the byte $48 (01001000), thus 
establishing the DMM as a talker. Line 190 tells the TMS9914A to 
listen, while waiting for the data from the DMM. 

The DATA INPUT routine, starting at line 200, polls the status 
register to see if BI (byte in) is HIGH. When BI goes HIGH, the 
status byte will be 00100000, as can be seen in table 10-3. The 
decimal equivalent of the status byte is 32. So when BI goes active, 
the data is read in from the DIO lines, changed to a printable 
character, and printed on the Apple's CRT. Then the status byte is 
checked to see if END is active, which indicates the end of the 
message. The END bit of the status byte is set when the talker 
makes its EOI handshake line active while sending its last byte. If 
END is not active, the program loops back to input the next byte. 
When END is detected (status byte 00101000 or 40 in decimal), the 
program falls through. 

The RUN of the program, shown at the bottom of figure 10-7, 
shows that the Model 192 DMM sends 16 bytes of data (followed by 
a carriage return-line feed). The format of the data string is shown 

(Function ( Display !Exponent( Terminator 

I ~ c I v I + I 1 I 2 I 3 I . I 4 I 5 I 6 I 1 I E I + I 0 I CAI LF I 
N =Normal 
0 =Overflow 
Z =Zeroed 

Data Format: 16 Bytes + Terminator 

Figure 10-8 
Data format for Keithley Model 192 DMM 
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JLIST 

10 REM *** SIMPLE IEEE-488 DEMO *** 
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM * 
15 REM * MAP REGISTERS OF 9914 * 
20 STTUS = 49344 
25 CMD = 49347 
30 DID = 49351 
35 DMMT = 72: REM DMM TALK ADDRESS 
100 REM * INIT CONTROLLER * 
110 POKE CMD.128: REM SET SWRST 
120 POKE CMD~147: REM DISABLE INTERRUPTS 
130 POKE CMD,O: REM CLEAR SWRST 
140 POKE CMD,12: REM TAKE CONTROL 
150 POKE CMD,143: REM SEND IFC 
160 POKE CMD,15: REM RESET IFC 
170 POKE DIO,DMMT: REM TELL DMM TO TALK 
180 POKE CMD,11: REM GO TO STANDBY 
190 POKE CMD,137: REM SET UP 9914 TO LISTEN 
2~) REM * INPUT ROUTINE * 
210 S = PEEK CSTTUS> 
220 IF S < 32 THEN GOTO 210: REM POLL BI 
230 BYTE= PEEK <DIO>: REM GET CHARACTER 
240 C$ = CHR$ <BYTE> 
245 PRINT C$; 
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE 
260 FOR D = 1 TO 7~)0: NEXT D 
270 GOTO 140 

lRUN 
NDCV+0008.819E+O 

NDCV+OOQ9.414E+O 

NDCV+0010.585E+O 

NDCV+0011.551E+O 

BREAK IN 260 

Figure 10-9 
Listing of simple IEEE 488 demo for periodic sampling 

in figure 10-8. In some installations, we might want periodic 
readings from the DMM, for instance, once every 10 seconds or 
once every half hour. Figure 10-9 shows a simple modification of 
the previous program in which the computer inputs the data string 
from the DMM then after some time delay (line 260) asks for 
another reading. 

In the programs of figures 10-7 and 10-9, the front panel 
controls of the DMM selected the function, range, and so on. But 
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TABLE 10-6 
IEEE 488 Programming for the Keithley Model 192 DDM 

Feature ASCII 

FUNCTION 

RANGE 

ZERO 

TRIGGER 

RATE 

DELAY 

BUFFER 

MODE 

EOI 

TERMINATOR 

FO = DCV 
Fl= ACV 
F2 = K OHMS 
RO= AUTO 
Rt = 0.2 
R2 = 2 
R3 = 20 
R4 = 200 
RS = 2000 
R6 = 20 M OHMS 
ZO =OFF 
Zl =ON 
TO = Cont. on TLK 
Tl = One shot on TLK 
T2 = Cont. on GET 
T3 = One shot on GET 
T4 = Cont. on X 
TS = One shot on X 
SO = 4 ms integration (4 ~ d) 
St - SB various rates 
WO= 0 
Wt = 10 ms 
QO = Clear 
Qt = Store 100 readings 
MO= SRQ OFF 
Ml= SRQ ON 
KO= SEND 
Kl = DO NOT SEND 
Y(LF) = CF LF 
Y(CR) = LF CR 
Y( ) = Any ASCII 
Y(DEL) = None 

X =EXECUTE 
U = Send status bytes 

Note: Default = FORSZOTOS2W1QOXOMOY(LF) 

one of the powerful features of a programmable DMM, like the 
Keithley Model 192, is that the function, range, rate of capture, and 
so on, can be programmed from a remote computer. Here is how 
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the remote programming works. On power up, the DMM is put 
into the LISTEN mode, rather than the TALK mode. The computer 
then sends control bytes (a string of ASCII characters) to the DMM 
to tell it how it is to operate. After initialization, the DMM is placed 
in the TALK mode, as before, and sends data to the listener(s). 

Table 10-6 shows the various features that can be remotely 
controlled in the Keithley Model 192. By sending the ASCII bytes 
FlR4, for example, the DMM is told to place its internal function 
selector in the ac volts position and its range switch on the 200-volt 
scale. Only those features that you wish to change must be sent to 
the DMM. The default values are shown at the bottom of the table. 

Figure 10-10 shows the program listing that allows you to 
remotely program the DMM. Notice that the major portion of the 
program is the same as that of figure 10-7. The title line (line 10) is 
changed, a new line (line 40) equates the DMM listen address to 40 
decimal (00101000), and line 165 has been added to call a subroutine 
to initialize the DMM. Otherwise, the program is identical to that 
of figure 10-7 up to line 255. 

The subroutine at line 300 first sets the remote enable line 
active, then tells the DMM to listen. Next it puts the controller in 
standby and makes the TMS9914A a talker. The code from lines 350 
through 400 allow the user to enter the bytes to the be sent to the 
DMM, as described in table 10-6. The character X is used to 
terminate the message and to trigger the DMM to activate the 
features sent to it. Although the Keithley Model 192 recognizes the 
character X as an execute command, other instruments might not. 
A typical remote programming sequence might include having the 
controller send the remote device a string of ASCII characters, and 
along with the last character sending an EOI signal, indicating the 
end of message. The EOI can be sent along with the last character 
by writing the command 08 to the auxiliary command register, as 
shown in table 10-5. 

Getting back to the program of figure 10-10, once the message 
terminator is sent, the program falls through to line 410, where the 
TMS9914A is told to stop talking and take control again. The DMM 
is taken out of the listen mode, and the program returns to line 170 
in the main driver. From there on, execution is the same as that of 
figure 10-7. 
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10 REM *** IEEE 488 DEMO USING REMOTE PROGRAMMING *** 
12 REM * INTERFACE TO KEITHLEY MOD 192 DMM * 
15 REM * MAP REGISTERS OF 9914 * 
20 STTUS = 49344 
25 CMD = 49347 
30 DID = 49351 
35 DMMT = 72: REM DMM TALK ADDRESS 
40 DL = 40: REM DMM LISTEN ADDRESS 
100 REM * !NIT CONTROLLER * 
110 POKE CMD~128: REM SET SWRST 
120 POKE CMD,147: REM DISABLE INTERRUPTS 
130 POKE CMD,O: REM CLEAR SWRST 
140 POKE CMD,12: REM TAKE CONTROL 
150 POKE CMD,143: REM SEND IFC 
160 POKE CMD,15: REM RESET IFC 
165 GOSUB 300: REM INIT DMM 
170 POKE DIO,DMMT: REM TELL DMM TO TALK 
180 POKE CMD,11: REM GO TO STANDBY 
190 POKE CMD,137: REM SET UP 9914 TO LISTEN 
200 REM * INPUT ROUTINE * 
210 S = PEEK <STTUS> 
220 IF S < 32 THEN GOTO 210: REM POLL BI 
230 BYTE= PEEK CDIO>: REM GET CHARACTER 
240 C$ = CHR$ <BYTE> 
245 PRINT C$; 
250 IF S < 40 GOTO 210: REM IF NOT END, GET NEXT BYTE 
255 END 
300 REM * INIT DMM FOR REMOTE OPERATION * 
310 POKE CMD,144: REM SEND REMOTE ENABLE 
320 POKE DIO,DL: REM TELL DMM TO LISTEN 
330 POKE CMD,11: REM GO TO STANDBY 
340 POKE CMD,138: REM SET UP 9914 AS TALKER 
350 REM * SEND MESSAGE * 
360 PRINT "ENTER MESSAGE CHARACTERS, TERMINATE WITH X" 
365 PRINT 
370 GET M$ 
380 POKE DID, ASC CM$) 
390 PRINT M$; 
400 IF M$ < > 11 X11 GOTO 370: REM CHECK IF LAST CHARACTER 
405 PRINT 
410 POKE CMD,10: REM TELL 9914 TO STOP TALKING 
420 POKE CMD,12: REM TAKE CONTROL AGAIN 
430 POKE DI0,63: REM SEND UNLISTEN COMMAND 
440 RETURN 

Figure 10-10 
Listing of IEEE 488 demo using remote programming 
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::!RUN 
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X 

FOP~~:x 

f\IDCV+ .I. :t.. ~5602:::::E+O 

:JF~UN 
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X 

FlX 
NACV+00.00992E+O 

JRUN 
ENTER MESSAGE CHARACTERS~ TERMINATE WITH X 

F2F~'.4·X 

OOHM+400"0000E+3 

Listing 10-lO(b) 

The sample RUNs at the end of the program listing were 
obtained using a de input to the Model 192. Various features were 
selected in the different RUNs to show how the DMM is affected. 

There are a wide variety of other instruments, made by several 
different manufacturers, that are IEEE compatible. Instruments 
such as frequency counters and signal generators can be remotely 
programmed and told to talk to other instruments. As you can see, 
the IEEE 488 bus is a very powerful and flexible means of tying 
together a variety of test equipment for automatic testing or data 
acquisition. 
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engineering experience to give the reader 68 helpful scientific and 
engineering programs designed for the Apple II and Ile.The bulk of the 
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by Theodore Bogart, Jr. 
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Provides excellent explanations of instrument operation along with 
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