Sharon Boren

An Apple For KldS

[
- v) 4 -‘-..l

AN APPLE"
FOR KIDS

AN APPLE"
FOR KIDS

Sharon Boren

dP

dilithium Press
Beaverton, Oregon

© 1984 by dilithium Press. All rights reserved.

No part of this book may be reproduced in any form or by
any means, electronic or mechanical, including photo-
copying. recording or by any information storage and re-
trieval system without permission in writing from the
publisher, with the following exceptions: any material may
be copied or transcribed for the nonprofit use of the pur-
chaser, and material (not to exceed 300 words and one
figure) may be quoted in published reviews of this book.

Where necessary, permission is granted by the copyright
owner for libraries and others registered with the Copyright
Clearance Center (CCC)to photocopy any material herein
for a base fee of $1.00 and an additional fee of $0.20 per
page. Payments should be sent directly to the Copyright
Clearance Center, 21 Congress Street, Salem, Massachu-
setts 01970.

10 @ 8 7 6 5 4 3 2 |
Library of Congress Cataloging in Publication Data

Boren, Sharon, 1956-
An Apple for kids.

Includes index.

Summary: Introduces the essentials of Basic computer
programming on the Apple computer.

1. Apple computer—Programming—Juvenile literature,
2. Basic (Computer program language) (1. Apple com-
puter—Programming. 2. Basic (Computer program lan-
guage) 3. Computers. 4. Programming (Computers)) . Title.
QA76.8.A66B67 1984 001.642 83-18908
ISBN 0-88056-119-X (pbk.)

Cover and art by Marty Urman
Printed in the United States of America
dilithium Press

8285 S.W. Nimbus

Suite 1561
Beaverton, Oregon 97005

iv

TABLE OF CONTENTS

Introduction

Component One

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

OO0 b W —

Chapter @
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20

Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26

There's an Apple in Our Classroom!

The Apple’s Keyboard

Turning On the Apple

Using the Apple’s Special Function Keys
Fixing Typing Mistakes

Inside the Apple

The Apple’s Monitor and Disk Drive
Apple’s Peripherals

Component Two

Play a Game with the Apple

Teaching the Apple to Do Your Homework
The Apple as a Calculator

Arithmetic with Many Numbers

Teaching Your Apple Simple Tricks
Printing Whole Equations

Component Three

A First Program

Easy Graphics
Formatting Screen Output
A Shortcut

Getting Out the Bugs
Using the Disk Drive

Component Four

Remarks

Color on the Screen
Colored Lines

Flow Diagramming
More About Flow Charts
Double Detours

12
14
18
28
30
32

35

36
42
43
45
48
52

53

54
58
60
66
68
73

77

78
80
85
90
95
97

Chapter 27 Loop de Loop
Chapter 28 Putting It All Together

Chapter 29
Chapter 30
Chapter 31
Chapter 32
Chapter 33
Chapter 34

Component Five

More About Memory

Using Variables

Using Variables in Equations
Important Information
Strings

What Types of Numbers Does the Apple Like?

Component Six

Chapter 35
Chapter 36
Chapter 37
Chapter 38
Chapter 39
Chapter 40

FOR-NEXT Looping
Stepping

A Counter

Timing It

Blinkers

Fast Graphics

Component Seven

Chapter 41
Chapter 42
Chapter 43
Chapter 44
Chapter 45
Chapter 46

INPUT

IF-THEN

Alphabetizing

READ-DATA

Problem-Solving Programming
Conversions

Component Eight

Chapter 47
Chapter 48
Chapter 49
Chapter 50
Chapter 51
Chapter 52

TAB

Moving Around the Screen
Motion Pictures

Random Numbers and Integers
Writing Game Programs

You Are A Creative Programmer!

Afterword

Appendix A
Initializing New Disks

99
101

107

108
111
115
118
121
124

127

128
134
137
141
145
146

149

150
156
165
167
177
183

185

186
188
193
198
203
207

208

209

Appendix B 210

Common Error Messages

Appendix C 212
BASIC Commands, Statements, and Functions Used in this Book

Appendix D 215
Reserved Words in Applesoft BASIC

Appendix E 216
Lo Res Graphics Colors

Glossary 217

Index 227

ACKNOWLEDGEMENTS

My thanks go to many people who have offered me support and inspiration in
writing this book:

To Alan, my husband and “'business manager,” who gave me the courage and
confidence to become an author.

To Jack Turner, for his expert advice.

To all of the young “‘computer wizards'' and brave teachers for whom An Apple
in the Classroom and An Apple for Kids were written.

An Important Note

The publisher and the authors have made every effort to ensure that the computer
programs and programming information in this publication are accurate and
complete. However, this publication is prepared for general readership, and
neither the publisher nor the authors have any knowledge about or ability to
control any third party’s use of the programs and programming information. There
is no warranty or representation by either the publisher or the authors that the
programs or programming information in this book will enable the reader or user
to achieve any particular result.

viii

INTRODUCTION

An Apple for Kids is part of a three-book set designed to teach children and
beginning programmers how to program a microcomputer in the BASIC com-
puter language. Although this book is geared specifically for the Apple micro-
computer, it can be easily adapted for use with other microcomputers as well.

Written at approximately a fourth grade reading level, An Apple for Kids
consists of eight components of approximately six chapters each. You become
familiar with the keyboard and Apple operation in the first components, and
learn how to write your own BASIC programs as you progress through the books.
By the time you have completed the last component you will have the skills
needed to write game programs, simple graphics, teaching programs, and
programs that solve problems. All programming techniques introduced can be
easily understood by the average sixth grade student.

How to use this book: Read through the chapters and try the examples on your
computer. At the end of some chapters there are notes on worksheets ''to do.””
(For example, you'll see "'to do: Programmer’s Pastime #11."") Sometimes these
activity worksheets are included at the end of chapters so you may try your hand
at writing your own programs. These programming worksheets were taken from
the second book in the set An Apple in the Classroom: Activity Workbook. Solu-
tions to the activities can be found in the Teacher’s Guide (the third book in the
set) which also contains detailed lesson plans for each chapter and additional
information and ideas for using this material as a computer programming curric-
ulum. An Apple for Kids is the student text in this set. Both the Activity Workbook
and the Teacher’'s Guide can be ordered from the card at the back of the book.

CHAPTER 1

There’'s an Apple

In Our Classroom!
CHAPTER 2

The Apple’s Keyboard
CHAPTER 3

Turning on the Apple
CHAPTER 4

Using the Apple’s Special

Function Keys
CHAPTER S

Fixing Typing Mistakes
CHAPTER 6

Inside the Apple
CHAPTER 7

The Apple’s Monitor and

Disk Drive
CHAPTER 8

Apple’s Peripherals

12

14
18
28

30
32

CCH APTER D El;:;:r’os :I::!Apple In Our

Monitor

Keyboard

It may not be the usual kind of apple that sits on
the teacher’s desk, but it's an apple nevertheless.
It's not a type of fruit, and it wouldn't taste very
good if you tried to eat it! What kind of an apple is
it? Our apple is a microcomputer made by Apple
Computer, Inc. We will begin to see more Apple
microcomputers in the classroom in the future!

What is a microcomputer? Simply stated, it's a
small, portable computer that anyone can leamn
to use. Microcomputers can teach you lessons in
school, help you with hard assignments, or even
be your partner in playing a game. What's even
more important is that you can learn to control a
microcomputer and make it do whatever you
want! Microcomputers are a fun and valuable
toolto have in a classroom.

Our Apple microcomputer has four basic parts:

1. keyboard (punch keys with letters, numbers,
and signs)

2. T.V.screen (We will also call it a monitor.)

3. disk drive

4, brain (The Apple’s insides, including its
memory.)

Let’s learn about the parts of the Apple so we
can use it in our work and play!
Inside the keyboard is the brain.

. Tt oo g R

This is what part of the Apple ‘s brain looks like—
a flat metal board with many electrical circuits
and little bug-like things called chips. Some
chips are used for memory so the Apple can re-
member what you tell it.

4

(CHAPTER 92) The Apple’s Keyboard

! # $ % & (% =
t 2|3 |als|s6lz 9 W
B g Pl e ba e bl REPT | RETURN
BELL +
O | A ls|nleleln]a TR
SHIFT ; 1
z | x|clv |8 | N|m g s SHEET
POWER 5 P A C B
Apple Il and Apple ll+ Keyboard
! @ # $ % A & * () +
= P - A e e R B o " | DELETE RESET
TAB] I
WL E IR I T PR o el
eowmniL (o hee | ol 6 | 6 | ka3 | & RETURN
< >
SHIFT el b o 1 | o bl 2 SHIFT
CAPS | -
LOCK | - (j SPACE ‘ 2

Apple lle Keyboard

The Apple has a keyboard very much like a
typewriter. You can punch:

1. letters

2. numbers

3. functionkeys([sw |, [wew]|, [on], [|, and more)

4, specialsymbolskeys(+,—,*%,S$,=,!,and
more)

5. editkeys(+« ,— .l ,and more)

LETTERS

EER T AT E R IR EEE *1 = | Reser
ije e |« |8 |6 r|n|®|0]:]-
a2
CTRL i
SHIFT il
POWER

ESC ; (f § i 0;" ’; 3‘ : N _ | DELETE RESET
]
RETURN
SHIFT SHIFT
i 3 S PACE & |-

Apple lle Keyboard

Letter keys on the Apple’s keyboard are in the
same places as letter keys on a typewriter. To
type aletter, press the key.

The Apple lle keyboard hasa key. When
this key is depressed capital letters are printed.
When this key is in its up position, lower case
letters are printed.

NUMBERS

i * -
4 : RESET
ESC @ | REPT | RETURN
o |w/|E|R|[T]|Y]|U]|1 P
BELL A+
P i gl o) eelimal me] o b x ' e i
A < ?
MWEEl 2zl x|l lelm] s o il
POWER SPATCE
Apple Il and Apple ll+ Keyboard
Pl =
ESC| , " | DELETE RESET
TAB B
g el e | el ol v imall o] 8 P Tl 8
- 3TN R R SR (R e RETURN
< ?
SHIFT ~ 1 A R R P ; SHIFT
CAPS | - P
LocK | - (3 S Bhk & E «€ - LT

Apple lle Keyboard

Number keys are also found in the same places
as number keys on a typewriter. To type a
number, press the key. When zero is typed, it is
printed like this: 0. The computer does this so it
won't get zero (0) mixed up with the capital O.

FUNCTION KEYS

! T R
1 ol wmsl il v wale |
@
B L R| T |y |u| 1 |o]eP
BELL o B
o] EElrme) sl 4o B2l Eal
A < > ?
v]l w5 e L
POWER SPACE

Apple Il and Apple ll+ Keyboard

< | = ? L ,,
S L O S T . I] ,_
$EATE & -|- ||
Apple lle Keyboard

Each function key does a special job. They are
very important keys. You will learn more about
these keys later.

SPECIAL SYMBOL KEYS

| RESET

ESC

REPT | RETURN

CTRL

SHIFT

POWER S PACE

Apple Il and Apple I+ Keyboard

ESC

DELETE

RESET

TAB

CONTROL

.| RETURN

SHIFT

4 X C v B N M

SHIFT

3 SPACE

LOCK

CAPS }

Apple lle Keyboard

The Apple has many special symbol keys.
They are used for doing math and punctuating
sentences that you write. Some special symbol
keys are used asshortcuts in operating the Apple.
To type a special symbol, press the key and you
will get the symbol at the bottom of the key.

Notice that some special symbols are found at
the top of certain keys. To type these symbols, you
will need to press and hold it down while you
press the key with the special symbol you want.
The key tells the Apple to print what is at the
top of akey.

EDIT KEYS

! # $ | % | & () % | =
RESET
HEEEPRETYERE LN TETR -
ESC @ REPT RETURN
Q w E R T Y 1] | 0 P
BELL *
GTRL A S D F G H J K L i
A < > ?
SHFT | o | x e | v || N|m]|, | .|| S
POWER S PACE

Apple Il and Apple I+ Keyboard

! @ # $ % A & * () -
Bl v e la | alslelvis = | HESEY
TAB Cpig
Q w E R T Y 1] | 0 P [1 \
CONTROL A s 0 F 6 H J K L ; . RETURN
< > ?
ST et e el m el o] o] 0 SHIET
CAPS | -~
LocK | - (j SPACE
Apple lle Keyboard

The edit keys help us fix mistakes that are typed
on the screen. You will learn how to use these
keysin Chapter 5.

Before you can work and play with the Apple,
you must learn how to get the Apple started. You
must also learn how to use the many different
keys onthe Apple’s keyboard.

Let'sreview how to type:

anumber
To type 4, press[i] .

aspecial symbol

To type S, press and hold it down. Then press
€]

to do: Exploring the Apple’s Keyboard #1

Let’s review how
o type a number
and a special
symbol.

11

CCHAPTER 3) Turning on the Apple

Follow these directions to turn on the Apple and
get it ready to work with you.

L.

Turn the volume all the way down on the
monitor.

2. Tum on the monitor.
o

Flip the On-Off switch on the back of the Ap-
ple. (It's at the lower left.) You will hear a beep
as the Apple is turned on. This is how it says
hello and tells you it is ready. As the Apple is
warming up, you may see some of the char-
acters that the Apple can type flash across the
screen. The power lamp on the left side of the
Apple’s keyboard should now be on.

The Apple’s screen should say:

Apple ll

This means the Apple you are using is called
an Apple Il (Apple two).

. Press[«m | and hold it down as you press :

The Apple will beep again and the screen will
show:

Y &

1.0,
The first symbol (]) is called the prompt. The
prompt tells you which computer language
the Apple understands. Computers can't un-
derstand English, so you will have to leamn
computer languages to communicate with
computers.

12

The (]) prompt means that the language the
Apple II will understand now is Applesoft
BASIC. All microcomputers understand BASIC.
Applesoft BASIC is one type of BASIC made
especially for the Apple.

The blinking white square next to the
prompt is the cursor. When the Apple is wait-
ing for you to type. the cursor will blink. The
cursor also shows you where the Apple will
print on the screen when you type on the
keyboard.

. Now the Apple is ready for you to tell it what to
do in Applesoft BASIC. You will begin to leam
Applesoft BASIC in a later chapter.

[—BA&IC means
Beginners
All-Purpose
Symbolic
Insfruction
Code

|

-

@HAPTER 4) }-’us‘,:‘gi‘;‘:;;gle’s Special

A < > ?
] B N M I
POWER S PACE

L. RETURN
& SPACE
- SHIFT

Apple Il and Apple I+ Keyboard

* ALWAYS press [=w |when you have finished typ-
ing a line. Pressing tells the Apple that
you are done.

* The Apple puts what you have typed into its
memory.

* Pressing also tells the Apple to put the
cursor on the next line of the screen.

This is the long bar at the bottom of the keyboard.
It is not labeled. Pressing the space bar tells the
computer to skip a space. You must press this bar
between words or numbers that you type.

Otherwiseyourtypingwilllooklikethis!

Hold this key down as you press another key and
the Apple will print the symbol that you see at the
top of the key. There is one case where this won 't
work: If you press and the [% | key, the word
BELL will not be printed on the screen.

14

CTRL

ESC

REPT

RESET

.
P g

3

L —

m!

o

CTRL means control. This key is always used to-
gether with another key—just like the key is
always used with another key. Hold down
while you press another key, and something spe-
cial will happen. You will learn how to use
with certain keys later.

ESC stands for escape. The very first computers
that were built used this key to “'escape’ or break
out of a program that the computer was doing.
This key would make the computer stop. The Ap-
ple’s[=] key does not do this, but it can do many
other things which you will learn about later.
Unlike and . the key is never held
down while pressing another key. Always press
@ and let go before you press another key.

REPT means repeat. Hold the[= | key down while
you hold down another key. The Apple will re-
peat the symbol on the other key by printing it
over and over. To stop the repeated printing, let
go of one or both keys. For example, if you want
the Apple to quickly print aline of Z’s, hold down
both the [|and [: | keys and watch it go!

is a very important key. Whatever the Apple
may be doing, if you press and , every-
thing will stop. When the computer is doing a
program, it has control. You have to wait for it to
finish. By pressing | o= |and | == |, the program will
stop and you will again have control over the
computer.

p00.
h’
14

P

15

Forthe Apple lle

ESC | . _ | DELETE RESET

S
WA E LR] T e L E o LT X

RETURN

< > ?
BHIEY z X A] B N M ; ! SHIER

SPACE “ - =11]1

Apple lle Keyboard

The Apple Ile has some exira function keys that
the Apple Il computers don't have.

TAB The key only works if the program you are
running lets you use it. This key, when pressed,
will move the cursor eight spaces to the right.

CONTROL is the same as| «« |on the Apple 1.

bk The [#] key was explained in Chapter 2. When
this key is up, letters typed will be printed in lower
case. The[s~ |key must be pressed to print capital
letters. When [& |is depressed, only capital letters
will be printed. It is a good idea to always keep
this key in the down position. Many programs
only recognize capital letters.

&

The [&] keyiscalled open apple. Likewise, [&] is
called closed apple or solid apple. These spe-
cial purpose keys do special things. If you don't
have paddles attached to your Apple, [¢ |can be
used for paddle #0 and [& |for paddle #1. Paddles
are hand controls used with many game pro-
grams. (see chapter 8)

&

16

By pressing [G] (all together) the Apple
will be restarted when the power is already on.

This is called a system reset or warm boot. If you
can't get the Apple to stop what it is doing by

pressing . try these three keys.
Note

The Apple lle does not have af« |key. Instead,
every key automatically does repeated printing
if you hold it down for more than one second.

to do: Exploring the Apple’s Keyboard #2

17

(CHAPTER 5) Fixing Typing Mistakes

If you type something wrong, the Apple won't
understand you. That’s why it’s important to cor-
rect your typing mistakes.

The Apple lets you know when it doesn 't under-
stand you. If you spell a word wrong or forget to
speak in BASIC, the Apple will beep and the
screen will say:

? SYNTAX ERROR

SYNTAX ERROR is an error message. There are
many types of error messages. SYNTAX ERROR is
the Apple’s way of saying, 'l don't understand
you. Please try again.”’

By using the edit keys, you can fix any typing
mistakes before you press . This helps to
keep you from getting so many SYNTAX ERROR
messages.

The| - |key is called left-arrow and the [- | key
is called right-arrow. These two keys move the
cursor to the left or right so you can fix typing
mistakes. Let’s see how they work.

We typed a message to the Apple but spelled it
wrong.

The message on Apple’s screen shows:

] HELLO APZLE O

18

The message in Apple’s memory
Says:

HELLO APZLE

We need to change the Z in APZLE to a P. We
would press three times to make the cursor
move backward three spaces to the Z.

Screen

|HELLO AP[ZILE

When we backed the cursor over the LE to get to
the Z, the letters Land Edid not get erased from the
screen. We still see them printed on the screen.

BUT the letters L and E did get erased in the
Apple’s memory. If we were to look inside the
memory, we would see:

Memory

HELLO APZ

To correct the mistake, type a P overthe Z. Now
the screen and memory would show:

Screen Memory

] HELLO APPILE
HELLO APP

19

Screen

To put the LE back into the Apple’s memory we
use the [- | key. This key moves the cursor to the
right. If we press two times, the cursor will type
over the LE and put it back into the Apple’s
memory.

Memory

] HELLO APPLE [

Screen

HELLO APPLE

Now our mistake has been corrected both on
the screen and inside the memory. Always re-
member to correct your mistakes this way.

There are more tricks in comrecting typing mis-
takes. If you use [w | with [~ | , you will be able to
backspace faster. If you use with , the
cursor will type over what is printed more quickly.

Use [x] to erase a whole line from Apple’s
memory. Let’s say we typed HELLO APPLE, but
decided to change it to HOWDY PARTNER in-
stead. The screen and memory would show:

Memory

JHELLO APPLE [0

Screen

HELLO APPLE

Press [] and the cursor will go to the begin-
ning of the next line. We will still see our message
on the screen, but it will be erased from the
Memory.

Memory

] HELLO APPLE\

1B

20

The Apple printed a \ after HELLO APPLE. This \
means that we want to forget about this message
and type something else on the next line.

Now type the right message:
Screen Memory
JHELLO APPLE \ o
]|HOWDY PARTNER (], HOWDY PARTNER

By using [= | with four keys, you can move the
cursor anywhere on the screen without erasing
any writing from the screen or from the memory.
We call these keys CURSOR CONTROL KEYS.

CURSOR CONTROL KEYS

! - # $ 0/0 & ' () ES =

1 2 3 4 5 6 7 8 9 0 i

RETURN

CTRL

SHIFT SHIFT

POWER S PACE

Apple Il and Apple I+ Keyboard

The four keys you will use with [« |are [/], [1],
[<].[#]. Notice how these keys are arranged on
the keyboard. They form a type of directional
keypad.

Since Iis on top, [= | [+ | movesthe cursorup.

Since M is on the bottom, [= | [v | moves the cursor down.
Since Jis on the left, EX moves the cursor to the left.
Since Kisontheright, [= | [« | movesthe cursorto the right.

21

!

Always remember to press| = |and let it go before
you press the next key.

Here are some ways you can use the cursor
control keys to correct a typing mistake:

1. Find your mistakes on the screen.

SOMEWHEREX
OVENTHE
RAINBOW [

2. Move the cursor to your first mistake.

SOMEWHEREX]_
OVEN THE]I
RAINBOW — —

Use & |[«]and[1] .

3. Pressthe space bar to erase the mistake. You'll
have to press it twice.

SOMEWHERE [,
OVEN THE
RAINBOW

22

4. Press[= | and move the cursor to your second
mistake.

SOMEWHERE L
OVE. « THE «
RAINBOW

Use [|[v]and[.] .

5. Type over your mistake twice.

SOMEWHERE
OVER 00 THE
RAINBOW

6. Press[=] and move the cursor back to where
you will type next.

SOMEWHERE
OVER | THE
RAINBOW
%D'<— l

e

23

CTRL

ESC

When you turn on the Apple, it is in direct or
immediate mode. A mode is a way of acting—
somewhat like a mood. (For example, if you are
in a tired mode, you may yawn a lot.) When the
Apple is in direct or immediate mode, you have
direct control overit. It willdo what you tellitto do
immediately.

When you press , the Apple goes into edit
mode. Edit means to correct mistakes. When the
Apple is in edit mode, it is ready to move the
cursor around the screen withl, J, K, and M so you
can correct mistakes. You must press a key twice
to type over a mistake. The first time you press the
key, nothing happens on the screen. A message
is sent to the Apple that tells it you want out of edit
mode. The second time the key is pressed, the
Apple will print on the screen.

To get out of the edit mode and back into direct

mode, press any key except|[= |, 1, J, K, M, ;
,or [] .

moves the cursor to the left and erases writing
from the memory, but not from the screen.

moves the cursor to the right and retypes what is
on the screen and puts it back into memory.

moves the cursor to the beginning of the next line.
It erases the old line from memory, but not from
the screen. It leaves a \ on the screen.

puts the Apple into edit mode so you can use I, J,
K., and M as cursor control keys. These keys will
not erase anything from the screen or the
memory.

24

For the Apple lle

Apple lle Keyboard

The []| key is called the down arrow. It moves
the cursor down one line on the screen without
erasing any typing. The | 1 |key is the up arrow. It
moves the cursor up one screen line, again with-
out erasing any typing. The[{ |key only works when
you are running certain programs.

The[:]key can be used in place of [= |and [«] .

The [== | key deletes unwanted characters but
only works in certain programs. If you press | e |
while typing on the screen, a checkerboard cur-
sor pattern will be printed.

The [] key is also called a cursor control key
because it moves the cursor 8 spaces to the right
when pressed.

You may use when you are typing on the
screen in direct mode. This key may not work if
YyOou are running a program.

. [%] . and [1] will only work if a program
you are running allows them to work . They do not
woIk in direct mode.

to do: Exploring the Apple’s Keyboard #3, #4, #5
Screen Game #1, #2, #3, #4

25

I (@ | #]85 | %[A& %] (] S
B¢yl 2|3 |a|s|6|7]|8]a]o0 TEEE | | RESET
e EE

o lwlEelrnlrlylu]u]ofe 1|\
71 [R S R (N [P S v RETURN

T I R R SHIFT
CAPS | -
e | 3 SPACE € - bt

(Screen Game #1 computer Satari)

1. Tumnthe Apple on and getit ready.
2. Clearthe screen and send the cursor home.

3. Type five * on the screen. Which two keys
did you press?

4, Draw what is shown on the screen.

Screen

Pretend this is the wild forest.

5. Type: LION Type: % (Can you figure out
how?)
What did you press to type the % ?

6. Draw what is shown on the screen.
Screen

Pretend the % are the lion’s eyes watching
you.

26

10.

11.

12
13.

14.

Type 12 more *.

Press[=] . Press[« |once. Press[.]22 times.
The cursor should ¢go to the beginning of the
nextline.

Type 10 *. Type: ELEPHANT Type: %
Type three more *.

Go to the beginning of the next line by using
and[«]and[.].

(Follow Step 8 to help you remember.)

Type three k. Type:TIGER Type: %
Type 13 more :*.

Go to the beginning of the nextline.

THE HUNT BEGINS!!! Without erasing any-
thing, move the cursor to the eyes (%) of each
animal. Then erase the %.

If you erase anything besides the %. you get
eaten and lose!

Which animals did you capture?

(CHAPTER 6) Inside the Apple

MEMORY
SIS
ARITHMETIC _

‘ & LOGIC UNTT }
‘ 1/0 >

Inside the keyboard is the CPU (central process-
ing unit) or "main brain’’ of the Apple. You can
look at the brains of your Apple by removing the
keyboard lid (only with permission, of course!).
You will see many flat metal circuit boards with
small black chips sitting on them. These chips
may look like strange insects with many legs, but
they are really for storing information and carry-
ing out tasks that you ask the computer to do.
The CPU is made up of four main parts:

Memory

Control

Arithmetic and Logic Unit
I/O (input/output) pathways

gl ol

When you type something on the keyboard,
the characters you type are stored in the key-
board memory. If you press , those charac-
ters will be taken out of keyboard memory and
put into one of the Apple’s main memory chips
called RAM. RAM stands for Random Access
Memory.

Memory is measured by bytes. A byte is the
space it takes to store one character. A character
can be a letter, number, special symbol, or even
ablank space. Your Apple’s RAM may be able to
store from 49,952 to 65,536 or more characters.
This is about as many letters as you would find in
a 50-page book.

If a computer’'s RAM holds 49,952 bytes, we say
it is a 48K computer. K stands for kilobyte. Since
kilo means "'thousand,’” we could say a kilobyte
is about a thousand bytes. (Actually, akilobyte is
1,024 bytes.) Some Apples have even more K of
RAM, but most have 48K or 64K. The more K of
RAM, the more characters or data a computer
can hold, and the more it can do!

If you tell the computer to solve some arithmetic
or make a decision, the computer will do this in
the arithmetic and logic unit of the CPU.

28

Input is any information that you put into the
computer. When you type on the keyboard, you
are putting input into the computer. When you
run a program from a disk, the program becomes
input because it is put into the computer from the
disk drive. Output is information that the com-
puter gives you, or puts out. You may need to
know the answer to a math equation. First you
type the equation on the keyboard (give the
computer the input). Then the computer gives
you the answer, which is the output. You can see
the computer’s output on the screen, or the com-
puter can print it on a printer. The I/0O pathways
(Input/Output pathways) send messages from the
computer to the screen or disk drive or printer, or
vice versa. These messages will usually be some
form of input or output.

The fourth part of the CPU is the control. The
controlis like a policeman directing traffic. When
you type information or data on the keyboard,
the control sends it to the memory or to the arith-
metic and logic unit. After the arithmetic and
logic unit has solved a problem, the control sends
the answer through the I/O pathways to the
screen or some other output device such as a
printer or a disk drive.

MEMORY } =—— | CONTROL: -~ | pRiTHMETIC

& LOGIC UNIT :
Printer =— <——— Disk Drive
! /O
~—— Keyboard
Screen

29

Printer

|

1/0

Screen

<—— Disk Drive

-—— Keyboard

The Apple’s Monitor and
(CHAPTER 7) TheApr:

When you learn how to play a game you must
follow a set of directions. The same is true for com-
puters. The Apple cannot work or play with you,
or even communicate with you, unless it has di-
rections to follow.

We call the set of directions computers use a
program. Computer programs are written by
people. People who write computer programs for
a living or as a hobby are called computer
programmeirs. As you work through this book,
you will learn how to program the Apple, and
perhaps some day youll become a computer
programmer!

The Apple learns programs in two ways:

1. You type the program on the keyboard. The
Apple copies the program from the keyboard
and stores it in memory. In this way, it under-
stands and remembers the program.

2. The Apple can also get the program from a
disk on which the program is recorded. It cop-
ies the program from the disk and stores it in
memory where it will understand and re-
member the program.

The Apple can only remember one program cit
a time. Every time you want to RUN (or do) a
different program, you must first erase the old
program from the Apple’s memory. Then you
can LOAD the new program into memory. The
Apple’s memory is erased by typing NEW and
pressing [e | .

When a programmer types in a program for the
Apple, he or she uses the keyboard and the
monitor screen. The programmer can see what is
being typed by looking at the screen. When the
Apple answers a question or plays a game, this
also can be seen on the screen.

30

Does the Apple’s monitor remind you of your
T.V. at home? Both screens are made with a
cathode ray tube. This tube lets you see num- *
bers, words, and images on the screen. The Ap-
ple’s monitor may sometimes be called a CRT
(cathode ray tube) because of its screen.

Because each microcomputer can hold only
one program at a time in its memory, programs
must be stored elsewhere. One of the best places
to store microcomputer programs is on a disk
(also called a diskette). A disk is small and flat
and looks like a floppy record. It is made out of
magnetic material and can store many com-
puter programs at once. One disk can store more
than 143,000 bytes of information.

In order for the Apple to copy programs from a
disk, a disk drive is needed. The disk is slipped
into the disk drive where it spins like a record.
Inside the disk drive is a head (think of it as being
like the needle on a record player), which can
read and write information to and from the disk.
The computer can move the head to any point on
the disk to access any program, just like you can
move the needle on a record player to play any
song on the record. A special program called the
disk operating system (or DOS) controls the disk
drive.

The type of disk that the Apple usesis a 5%-inch
floppy disk or diskette. (We will usually just call it
disk for short.) You never really see the disk be-
cause it is enclosed in a protective envelope. You
should NEVER remove the disk from this enve-
lope! A fingerprint, cigarette smoke, or even a
speck of dust can ruin a disk and all the programs
that were stored on it. You can see part of the disk
through openings in the envelope. Be careful that
you never put your fingers near the openings.
These openings allow the disk drive head to
reach the surface of the disk. You will learn how
to use disks and operate the disk drive later.

31

(CHAPTER 8) Apple’s Peripherals

Many different types of equipment can be at-
tached to a computer to do many types of jobs.
These pieces of equipment for computers are
called peripherals.

A disk drive is a peripheral because it stores
and reads extra programs for the Apple. A cassette
tape recorder does the same thing. You could at-
tach a special cassette tape recorder to the Apple
and read and store exira programs on cassette
tapes.

Another important peripheral is a printer.
Whenever the Apple answers a question or prints
something on the screen, it is displaying output.
Output is information that computers give to peo-
ple. Screen output is only temporary. It has to be
erased from the screen so the computer can show
new output or so the programmer can type on the
keyboard. To save output on paper, a peripheral
such as a printer is needed. The computer prints
output on printer paper so the programmer can
keep it forever. Output printed on paper is called
a hard copy because it can be kept forever.

A graphicstabletis afun peripheral to have. A
graphic is a picture or design that you can draw.
The graphics tablet lets you create pictures and
designs on the Apple in color (if you have a color
monitor). In this way you can create beautiful
computer art.

32

If you play games on your Apple, then you
might have game control peripherals called
paddles or joysticks. These peripherals help you
move game pieces around the screen and shoot
at objects in the program. Game controls may
also be used in programs that create computer
art.

There are many other types of peripherals to
use with the Apple. Some are music synthesizers
that help you write songs. Other peripherals can
help control your living environment. They can
be hooked up to a heating source in your house,
such as your furnace, and control the inside tem-
perature. Some peripherals—called modems—
are hooked into the telephone lines and can
“call up’’ other computers. In the future, you will
see many other peripherals that allow computers
to do more and more incredible things.

to do: Component 1 Fun Page

33

34

CHAPTER 9

Play a Game with the Apple
CHAPTER 10

Teaching the Apple to Do Your

Homework
CHAPTER 11

The Apple as a Calculator
CHAPTER 12

Arithmetic with Many Numbers
CHAPTER 13

Teaching Your Apple

Simple Tricks
CHAPTER 14

Printing Whole Equations

35

36

42
43
45

48
952

(CHAPTER 9) Play a Game with the Apple

Playing a game with the Apple can be both fun
and challenging. Most game programs are
stored on disks. The first thing you will do is LOAD
the program into the Apple‘'s RAM. Depending
on the program and the disk, there are two ways
to do this.

First Way

If the disk has only one program on it, follow
these directions:

|
/3

2 P e a

o

Open the disk drive door.

Carefully insert the disk. The label should be
facing up and you should have your thumb
on the label. Make sure you put the disk in
very straight.

Close the door to the disk drive.

Turn down the volume on the monitor.

Turn on the monitor.

Turn on the Apple.

The disk drive will make whirring and click-
ing noises as the program is loaded.

After the program has been loaded, the
game should begin.

Second Way

If the disk has many programs stored on it, fol-
low these directions:

L
2.

Open the disk drive door.

Carefully insert the disk with your thumb on
the label. Make sure the label is facing up
and that you put the disk in very straight.
Close the door to the disk drive.

Turn the volume down on the monitor.

Turn on the monitor.

36

b 3

10.

11.

Turn on the Apple.

The disk drive will make a whirring and
clicking noise as the disk is getting the com-
puter ready.

When it is ready, the screen should say:

/DOS VERSION 3.3 08/25/80
APPLEIIPLUSORROMCARD SYSTEM MASTER

(LOADING INTEGER INTO LANGUAGE CARD)
] JD\

. Type: CATALOG [e |

The disk drive will again whir and click. The
screen will show a catalog (listing) of the pro-
grams and information that are stored on the
disk. If there isn't a space between the cursor
and the last program listed, press any key
and the rest of the programs in the catalog
will be displayed on the screen.

Look for a program called MENU. If the cata-
log does not list MENU, then read through
instruction number 12 and skip to number 15.
The screen might show something like this:

(" DISK VOLUME 254
+ AOO6 HELLO
% B 050 INTBASIC
%1 010 MENU
%1 019 HAMMURABI
% A0A7 LEMONADE
I~ EL

37

12,

13.
14.

You will see asterisks () and the letters A, B,
or I, as well as numbers next to the name of
each program.

¥ meansthatthe programislocked onthe
disk and can't be accidentally erased.

A meansthat the program is written in Ap-
plesoft BASIC.

B means that the program is written in
binary machine language. Computers
understand this language better than
people because it is made mostly of
numbers and symbols.

I means that the program was written in
integer BASIC. This was the first BASIC
written for the Apple.

006 The numbers tell how much space each
program is taking up on the disk.

Type: RUN MENU | renm |

The disk drive will whir and click and the

screen will show:

fI INTEGER |

3 MENU

4HAMMURABI

| APPLESOFT |

1 HELLO

5 LEMONADE
BINARY

2INTBASIC

The menu organizes the catalog programs
into the languages in which they were writ-
ten. The numbers stand for the order in which
the programs are stored on the disk.

At the bottom of the screen are the instruc-
tions for using the menu. They say:

C—CATALOG ANOTHER DISK ESC—EXIT

L4—LOAD PROGRAM #4
R4—RUN PROGRAM #4 WHICH?

38

15.

If you don't want any of the programs on
this disk, then you would press [< | :

If you want to leave (exit) the menu, press
and start over again.

If you want to load program number 4,
which is HAMMURABI, you would type L4
. HAMMURABI would be loaded into
RAM. Then you would have to type: RUN
for the program to begin.

If you want to load and run program 4
(HAMMURABI), type: R4 . The program
will be loaded and will run (begin).

Before the Apple can do a program, the
program must be loaded into the Apple’s
RAM. Then the Apple will know the direc-
tions for doing the program. When the Apple
starts doing the program instructions, we say
the Apple is RUNNING the program. You can
see that it is easier to run a program, than to
load and then run it.

Now you know how to use the menu. Using

the menu is only one way of loading and
running a program.
If your catalog does not list a menu, just run
the program you would like the Apple to do.
Let’s say you would like to run the program
called LEMONADE. Type: RUN LEMONADE
:

The program called LEMONADE will be
loaded into RAM and will begin.

Third Way

If you plan to write your own programs and
then save them on a disk (which you will learn to
do later), you must first get the disk drive set up
and ready. To set up the disk drive, a special
program called the DISK OPERATING SYSTEM
(DOS) must be in the Apple’s memory. The DOS
controls all of the disk drive activities. Putting DOS
into memory is called booting the disk. This is
done to get the Apple and disk drive ready to
work together. Some disks with programs al-
ready have DOS on them. (They load in DOS with
the program.) If you are writing your own pro-
grams, you must first boot the disk with the special
DOS program that is on the disk called the system
master. Here is how you boot the disk with DOS:

1. Open the disk drive door.

Carefully insert the System Master disk.

Close the door to the disk drive.

Turn down the volume on the monitor.

Turn on the monitor.

Turn on the Apple.

The disk drive will whir and click and the
screen will say:

O O 1D

DOS VERSION 3.3 08/25/80
APPLEIIPLUS ORROMCARD SYSTEM MASTER

(LOADING INTEGER INTO LANGUAGE CARD)
10
8. Now the Apple and the disk drive are ready to

work together, and you may start typing your
programs.

40

Caution

Once a program has been loaded from the
disk, you may remove the disk from the disk drive
and put it back into the envelope. The program
will stay in RAM until you type NEW or load anew
program or turn off the computer. NEVER remove
the disk if the red light on the disk drive is ON!

1. Insert the disk with the game you want to play
or the program you want to run.

Turn on the monitor and Apple.

If the game/program doesn 't start right away,
type CATALOG.

4. Type: RUN (name of program).

SXS

41

Teaching the Apple to Do
@HAPTER l@ Your Homework

& o = W R

. addition

subtraction
multiplication
division
square root

powers

Have you ever dreamed of having a computer
that could do your homework for you? It's possi-
ble! You can teach the Apple to do your math
assignments for you. The Apple can figure out
your math and give you the correct answers
about a billion times faster than you can!

Here are six kinds of arithmetic that the Apple
can do for you:

OurSymbol Applesoft BASIC Symbol Example

+ & 24+2=4

- - 4-2=2

. - 2%3=6

- / 6/2=3
102 A 10A2=100
V25 SQR() SQR(25)=5

42

(CHAPTER 1 D The Apple as a Calculator

You can use the Apple as a calculator to do the
six kinds of arithmetic mentioned in Chapter 10.
You will ask the Apple to print the answer to any
arithmetic equation you type on the keyboard.
The BASIC command you will use is PRINT.

1. Toadd 25+35, type: PRINT 25+ 35 [renm | .
(Always remember to press after you
have typed an equation.)

] PRINT 25+ 35
60

® &

|]

& hS

2. Tosubtract 60—12, type: PRINT 60— 12 [rewm | .

] PRINT 60—12
48
1.5

&£ N

¢

3. To multiply 50x5, type: PRINT 505 \

] PRINT 505
250
] JD\

4, To divide 90+ 3, type: PRINT 90/3 '

] PRINT 90/3
30
1.0

& A Y

&

5. To find the square root of 100, type: PRINT
SQR(100) [newm | .

] PRINT SQR(100)
10

% 4

] ?D\

43

6. To find the second power of 4 (42), type: PRINT
4N2 2

] PRINT 4A2
0
1.0,

Notice that you do not type an equal sign (=)
when you do arithmetic on the Apple.

When you use the Apple as a calculator, it is
called direct mode programming because the
Apple gives you the answer directly after you

press .

to do: Programmer’s Pastime #1

(CHAPTER 12) prthmetic with Many

The Apple can do more than one kind of arith-
metic in the same equation. When the Apple
deals with many numbers and many types of
arithmetic at once, it follows a certain order. Let's
look at an equation to see what that order is.

EQUATION: 5%(6—2)+9/3A2

what the Apple does

1. PARENTHESES are done first. 6—-2=4
2. POWERS are next. 3N2=9
3. MULTIPLICATION, DIVISION, and SQUARE ROOTS 5x4=20
are third. (The numbers to the left are done first, Q/9=1
then the numbers to the right.)
4. ADDITION and SUBTRACTION are performed 20+1=21
last, together. (The numbers to the left are done
first, then the numbers to the right.)

5%(6—2)+9/3A2 PARENTHESES

1st
5% 4 +9/3A2 POWERS
—
2nd
5% 4 +9/9 MULTIPLICATION and DIVISION (left to right)
S S
3rd 4th
20 + 1 ADDITION (and SUBTRACTION) (lett to right)
last
answer = 21

45

Here's a saying that might help you remember
the order in which the Apple does arithmetic.

Please P stands for PARENTHESES

Pay P stands for POWERS

My Dear M stands for MULTIPLICATION
D stands for DIVISION

Square remember—SQUARE ROOTS are
done third too!

Aunt Sally A stands for ADDITION
S stands for SUBTRACTION

There is a shortcut for getting the answers to
many short equations. If you want answers to:

1. 99:%66
2. 74+47
3. 89-78
4. 402

Type: PRINT 99:x 66, 74+47, 89—-78, 472
Use commas to separate each equation.

You can type up to 255 characters in one PRINT
statement. (Remember that spaces and commas
are characters too!) The Apple will beep when
you type the 248th character to warn you that
you are approaching the limit. If you type more
than 255 characters for one PRINT statement, the
Apple will print a \ and cancel the line and you
must start over!

to do: Programmer’s Pastime #2, #3, #4, #5

46

(PROGRAMMER'’S PASTIME #2)

In what order does the Apple perform arithmetic

in equations?
are done first.
are second.
and are
are done third, (left to right).
and __ are done
last (left to right).
How would you type each equation to get an-
swers from the Apple?
1. 4574+99x%x6
2. J64-2
3. 26+22
4. 777x555+222
5. 83-16
6. V22+88
7. NA9+765
8. 98+88x66+24

Show how you would type the equations above
using only one PRINT statement.

47

(CHAPTER 13) Teaching Your Appie

You can use the PRINT command to teach your
Apple some simple tricks. First, teach the Apple
how to print its own name.

Type: PRINT "Apple I

] PRINT “*APPLETI"”
APPLETI
1.0

Notice that the data you want the Apple to print
must be put inside quotation marks. Since you
want the Apple to print APPLE II, the words Apple
II must have quotation marks around them.

The Apple is in direct mode because it obeyed
your command and printed Apple Il directly after
you pressed :

Let’s teach the Apple to get tricky and flash on
and off when it prints its name. Use the FLASH
command before the PRINT command like this.

Type: FLASH
PRINT “"Apple 1"’

&] FLASH

N Z

Remember to press after each line.

48

To get the screen to stop flashing, use the com-
mand NORMAL. This will make the screen nor-
mal again.

(" 1RLAsH
"1 PRINT “APPLETI"
_APPLENI.
']” NORMAL

A3 #

JE

¢ b3

When you type on the keyboard, the Apple
prints white characters on a black background.
You can make the Apple print the inverse (or
opposite) of this by using the INVERSE command.
INVERSE will make the Apple print black charac-
ters on a white screen.

] INVERSE
(1] PRINT “APPLEIl"’

D)=y

To get the screen back to normal printing, type
the command NORMAL,

(" INVERSE
(1] PRINT “‘APPLEI"

APPLE I
1] NORMAL

1.0 r

to do: Programmer’s Pastime #6

49

(PROGRAMMER'’S PASTIME #6)

1. Write down what you would type to make the
Apple print your name.

Try it on the Apple to make sure it works.

2. What would you type to get the Apple to print
your name in inverse?

Try it on the Apple.

3. What would you type to make the Apple print
your name and make it flash?

Try it.
4. Make the Apple flash a message, then print it
normally, and then print the message a third

time in inverse. Write down the directions for
doing this.

50

@HAPTER 14) Printing Whole Equations

You have learned how to use the PRINT com-
mand to make the Apple print the answer to an
arithmetic equation.
In this chapter, you will learn how to teach the
Apple to print both the equation and the answer.
To make the Apple print an equation, put
quotation marks around the equation like this:

PRINT "'4+3=""

The Apple will print exactly what is inside the
quotation marks.

] PRINT "'4+43="
43
] ‘?D%

Let’s make the Apple print the equation and
the answer. Type: PRINT "'4+3=""4+3

]PRINT “'4+3=""4+3
4+3=7
10

Notice that the answer-side of the equation 4+ 3
does not have quotation marks. When quotation
marks are not used, the Apple will print the an-
swer (which, in this case, is 7).

1. Whenyouuse "' ", the Apple will print what is
inside.

2. When you print an equation without ** ', the
Apple will print the answer.

to do: Programmer’s Pastime #7
Component 2 Fun Page

51

CHAPTER 15

A First Program
CHAPTER 16

Easy Graphics
CHAPTER 17

Formatting Screen Output
CHAPTER 18

A Shortcut
CHAPTER 19

Getting Out the Bugs
CHAPTER 20

Using the Disk Drive

52

54
58
60
66
68
73

(CHAPTER 15) AfisstProgram

You have learned that computers can’t think or
act for themselves. They must be told what to do
by people. A computer needs to follow a set of
clearly written directions in order to complete
even a very simple task. The set of directions that
a computer must follow is called a program.
Computer programs are written by people in
computer languages such as BASIC.

There can be many steps in a computer pro-
gram. The steps must be in the right order or the
program will not work correctly. Each step in a
program is written as one line on the screen. The
beginning of each line must have aline number
to help the programmer and the computer know
what is to be done first, second, and so on.

It is best to use line numbers in steps of 10 like
this:

10
20
30
40
etc.

This way, if you forget to put in a step, there are
nine numbers between each line number in
which to add the missing step. Example:

10
20
30
15

You can add line number 15 for the missing step if
the step needsto come second inthe program. Ii's
OK to put step 15 last because the Apple sorts
through all of the line numbers and puts them into
the right order.

53

Never label your line numbers like this:

1
2
3
etc.

You wouldn't be able to fix your program if any
steps were forgotten.

When typing a program on the keyboard, be
sure to press after every line. This enters the
line into memory, and moves the cursor to the
next screen line.

You have learned how to make the Apple print
the answer to math problems, and you know
how to make the Apple print whole math equa-
tions as well. The BASIC command that tells the
Apple to write something is PRINT. There is a short-
cut for the PRINT commmand. Instead of typing the
word PRINT, you need only type a question mark.

Command Shortcut
PRINT ?

When you tell the Apple to print a message,
you must type quotation marks around the mes-
sage, like this:

? "'THISIS A MESSAGE"’

The Apple will print whatever you put inside
quotation marks. If you put gobbledygook inside
quotation marks, the gobbledygook will be
printed.

1? "GOBBLEDYGOOK "’
GOBBLEDYGOOK
I \DI

s *

54

Direct Mode

So far, you have used the PRINT command in
direct mode. After pressing ,the Apple prints
the message on the screen. When you put a line
number in front of the PRINT command, the Apple
goes into programming mode. After pressing
, nothing happens. To make the Apple print
your message, you must also type the command

RUN and press .
Programming Mode

1? “"GOBBLEDYGOOK "
GOBBLEDYGOOK
[

L4 b

110? "GOBBLEDYGOQOK"’

| RUN [z

GOBBLEDYGOOK

15
The RUN command tells the computer to do your
program. Whenever line numbers are used, the
Apple goes into programming mode and you
must remember to use the RUN command to
make the program happen. NEVER put a line
number in front of the RUN command.

There are three other BASIC commands that
should be used in the programs you write: NEW,
HOME, and END.

You may remember that NEW is the command
that erases the Apple’s memory. You should type
NEW and press before typing a new pro-
gram. This will cause any old programs that were
oncein memory to be erased. NEW is NEVER used
with aline number. Use NEW only in direct mode.

HOME is the BASIC command that erases the
screen and sends the cursor “"home.” The cursor’s

55

home is the top left corner of the screen. A prompt
appears with the cursor so the Apple is ready to
accept commands or a program. HOME works in
direct mode and programming mode. When you
type HOME in direct mode, the screen is erased
and the cursor is sent home directly after you press

When you use HOME in a program after a
line number, the screen is not cleared until the
Apple runs the program.

program.
Direct Mode Programming Mode
]HOME] 10HOME
% RUN
the Apple prints the Apple prints
W= L

4 -

The END statement comes at the end of every
program that you write. It tells the Apple that the
program is over and there are no more instruc-
tions to follow. END should be the last staterment of
your program. It is only used in programming
mode.

This is how you would write a simple program
using NEW, HOME, PRINT, END, and RUN.

Youtype The Apple Prints
(] NEW é GARBAGIO

] 10 HOME 1O

120 ? “"GARBAGIO*

130 END

] RUN

todo: Programmer’s Pastime #8, #9, #10, #11

56

(PROGRAMMER’S PASTIME #11)

Sounding Off

You learned how to make the Apple beep by
pressing G. Now you can write programs that
make the Apple beep by using the PRINT state-
ment. In your program, type:

(line number) PRINT ™ **
in between the quotation marks, press G

1. Run this program to see how it works.

NEW

10 HOME

20 PRINT "'ICAN MAKE THE APPLE BEEP"’
30 PRINT ™ G

40 END

2. Write a program that will make the Apple
print the following message. Run your pro-
gram on the Apple.

MARY HAD A LITTLE

(beep)

LITTLE

(beep)

LITTLE

(beep)

MARY HAD A LITTLE

(beep)
ITS FLEECE WAS WHITE AS SNOW

57

(CHAPTER 16) zosy Graphics

It's fun to waich the Apple draw pictures on the
screen. You can write programs to make the Ap-
ple draw pictures and graphics by using the
PRINT statement. For example:

Program Output

NEW

10 HOME (000000 K K
20 2000000 K K’ o) O K K
3070 84 ¥ T * o) O KK
4070 O KK o) O K K
5070 O K Kk “ 000000 K K
602000000 K K’ 1.0

70 END

Type the program on the keyboard so it ap-
pears on the screen the way you would like it to
look. You will have to put the spaces in the right
places. If you want the Apple to make one whole
line of the screen blank, type a PRINT statement
with nothing after it, like this:

(line number) PRINT or (line number)?

Study this program, which prints a flag that re-
sembles the American flag. Notice how the PRINT
statements are used to make whole lines blank.

58

Program

10
20
30
40
50
60
70
80
Q0

HOME

DV sk sk sk sk sk sk sk ok sk sk HHBBBEHHHHBEBBRRBRBRBEBRRGEERHBGRHE BB
R R e e W g X
R R I I I I I W i iddiaddddadddaadsssdadsddddsddissddadssdss i
TR kR E R L EE s
DV sk sk ok sk sk sk sk sk sk sk FHBHFHBBRRBREREHRBBBBRBRBRARRERGRRRHRRRBIHR
?

VN RERAARERARERRER RSB ARRRARAR RSB ARRARRARARARRRARRRRAARARAAAS
?

100 ? " ###FHREH A BRAREAHARRAARHRAERAREERAHRAAERBRAAARBAABAASARRA A AR
110 ?

120 ? " ###HAHEARAAHHRRRARARARABRARERRRRRR AR AR ARARHABRRARARRRAAAAAS
130 ?

140 ? " ###FAFGAAABHRARRARAAARAAASAEARRRARRAAABABAAAAA AR AR R AAAAR AR AAE
150 END

Ouiput

/’

sk sk sk sk sk sk sk sk sk sk AAHFAAAAAERAHRRBARARAAEAREARAARARARRAAAAAARAAARAAHE
ok ook sk sk sk ok sk sk sk
% sk sk sk sk sk sk sk sk sk AHHAHAHHARHRARRRRABBHRARAAAAAARRRRARA AR AR RARRAAAAA
ok sk sk sk sk ok sk sk sk
sk sk sk sk sk sk sk sk sk sk H#HAFAAHAABRAEARRABBEARBGRRARRRABERBRRAS A ARARAARRAH

G ddaddddddadi s sdddsdddyiddiiddaddddddaadii i aaddddddddd
g gadaddddsdddsgdiadadddddddidd s s dddddddd
i ddddddddaddddaddddadidssdssdaddddddigsddddddsddddddddidddddiddddsssd
(i ddadadddiddsappaggsddsdsddssassspddddddapiddiddddsdadissdd

* &

i

L 2

to do: Programmer’s Pastime #12, #13

59

@HAPTER l7> Formatting Screen Output

A format is a plan for the arrangement of some-
thing. Formatting screen output on the Apple
means writing programs so the screen output is
arranged a certain way when the program
is run.

In Chapter 12, you leamed how to make the
Apple print the answer to more than one equa-
tion in one PRINT statement by using commas like
this:

Type Ouiput

]PRINT 2+2, 3+3, 4+4 [rewm | 4 6 8

The Apple prints the answers on one screen line.

This works the same way with words. You must
remember to put quotation marks around the
words you want the Apple to print.

Type Ouiput
1? "READY"’, “"SET"", "GO enm | READY SET GO
1.0

Notice that each word in the output is sepa-
rated on the screen by many spaces. The com-
mas cause this to happen. The Apple’s screen
has three print zones. The first and second print
zones can hold 16 characters. The third print zone
holds 8 characters. Because 16+ 16+8=40, this
means you can type 40 characters on one line
across the Apple’s screen.

60

Screen

T T
ﬁz 345678 910111213141516] 1 2 3 4 5 6 7 8 910111213141516] 1 2 3 4 5 6 78\
I

FIRST PRINT ZONE SECOND PRINT ZONE THIRD PRINT ZONE

When commas are used in a PRINT statement,
each piece of output will be printed in a separate
print zone.

Type

12 HELLQ", " THERE"

Ouiput
(1 2| 3| 4| 5| 6| 7| 8| 9[10|11|12[13[14|15(16| 1| 2| 3| 4| 5] 6| 7| 8| 9[10]11|12[13[14]15(16
HIE[L|L]|O T(H|E|R|E
|
FIRST PRINT ZONE SECOND PRINT ZONE

The word HELLO was printed in the first print
zone because it is the first word in the PRINT state-
ment. The second word, THERE, was printed inthe
second print zone because of the comma
before it.

61

Commas in PRINT statements will affect num-
bers and equations in the same way.

Type

]?5+5="",5+5

Output

(1 2 3| 4| 5 6| 7| 8| 9|10|11|12(13|14|15]|16) 1| 2| 3| 4| 5| 6| 7| 8| 9(10|11|12|13|14|15|16
5|+|5]|= 1410
N &
e

FIRST PRINT ZONE SECOND PRINT ZONE

The equation 5+5= was printed in the first print
zone because it comes first in the PRINT statement.
The answer, 10, was printed in the second print
zone because of the comma before it.

62

Instead of using commas and making the
screen output spaced out, you can use semi-
colons (;) in a PRINT statement to make the output
different. When semi-colons are used in a PRINT
statement, the output is not spaced out in sepa-
rate print zones. The Apple prints the outputin the
next screen column.

Type

1? "HELLO"’; ““'THERE"

FIRST PRINT ZONE

Type

]1?V5+5=";5+5

SECOND PRINT ZONE

FIRST PRINT ZONE

63

SECOND PRINT ZONE

12

Rememberthat a PRINT statement with nothing
after it leaves a blank line on the Apple’s screen.

Type

(" INEW

] I0HOME

1202 2%2="", 22
1307

JADR " 282", 22
] 50END

]RUN

FIRST PRINT ZONE SECOND PRINT ZONE

1. A comma tellsthe Apple to go to the next print
zone and then begin printing.

2. A semi-colon holds the cursor at the end of the
last thing printed. Then it prints the next thing
in the very next column.

to do: Programmer’s Pastime #14, #15

64

(PROGRAMMER'S PASTIME #15)

Ralph wants to run a program that will make
Apple print the following output:

Output

(ok ok
SMASHEDTOGETHER
OR

SPACED APART
??7?

I

He can’t get his program lines in the right order to
make the program work! Put the program lines
below in the cormrect order with the correct line
numbers so the program will print what Ralph

wants.

Ralph’s Program Correct Order
TR 10
? 20
HOME 30
? “'SMASHED"’; “*TOGETHER "’ 40
?"OR" 50
END 60
2V kkx 70
PV SPACED", 'APART"’ 80
7 Q0

65

(CHAPTER 13) A Shortcut

As a computer programmer, you should always
be looking for useful shoricuts that will make writ-
ing programs easier.

You can use colons (:) to shorten your pro-
grams. Put colons between statements so you can
have many statements on one program line.

Type Output
(] lIOHOME (" ONE
]20?"ONE": ? "TWO"*: ? “BUCKLE MY": TWO
? “"SHOE" BUCKLE MY
] 30END SHOE
1.0

"\;;—-;- |
~ \‘}“.,"’

1
F)]
o 3
o]

£\

Using this shortcut, you can take a long pro-
gram such as this:

10 HOME

20 FLASH

30? “"FLASH GORDON"’
40 INVERSE

50 ? "'STRIKES AGAIN!"’
60 NORMAL

70END

and shorten it to this:

10 HOME

20 FLASH: ? "'FLASH GORDON'":INVERSE:
? ""STRIKES AGAIN!"":NORMAL

30END

Output

"FLASH GORDON

[STRIKES AGAIN]
1.0

todo: Programmer’s Pastime #16, #17

66

(PROGRAMMER’S PASTIME #16)

Using what you have leamed about commas,

semi-colons, and colons, write a program that

will print a Christmas tree. Give the Christmastree

ornaments in inverse and rows of lights that flash.
You might begin your program like this:

Type Output

(" 1 10HOME 4 %
1207 * i XXX
1307 XXX 2 XXXXX
1407 XXXXX ** FLASH):0.0.0.6:0.0:¢
1507 XXXXXXX ':NORMAL 4

Write your program on the lines below. Run
your program on the Apple to make sure it works.

67

(CHAPTER 19) Getting Out the Bugs

Writing a computer program can be a long pro-
cess. It often takes many tries before a program-
mer gets a program to work properly. This is be-
cause there can be bugs in the program. No,
there aren't little insects climbing around inside
the computer. Bugs are mistakes that you and
computer programmers can make in writing a
program.
Some examples of bugs might be:

1. Forgetting to type a punctuation mark.

Typing 10 ?HI"’ instead of 107 ""HI"
2. Spelling a command wrong.
Typing 30ED instead of 30 END
3. Putting the steps of your program in the wrong
order.
10? "WRITE"" instead of 10 HOME
20HOME 207 “"WRITE""
30END 30END

It is very important to check your program for
bugs before you run it or save it on a disk. To
check your program instructions, type:

LIST

The Apple will list all of the instruction lines in your
program on the screen. Now you can check
each instruction for bugs. If you find a bug, you
can get rid of it by fixing the instruction.
. Once you find a bug in your program retype
et the line with the bug the comrect way and press
. The old line will be replaced with the new
line. List the program again to make sure the bug
was fixed.

68

Example:
Type Output

(] LIST (] LIST Eere‘s the bug !
10 HOME 5

20?7 " AMESSTAKE"’

30END

1o

Type Output

(1207 A MISTAKE"* [wom | (" LT

JLIST 10 HOME
207 A MISTAKE”
30END
1O

& *

There is another way that you can fix program
bugs on the Apple. If you want to erase a whole
program line, type the line number and press

Example:
Type Type Check by Listing Again
(] LIST (] 30 4 1LIST

10 HOME 10 HOME

207 “"DEBUG"’ 20?7 "'DEBUG"’

30 ERASE THIS LINE 49 END

49 END 1.0

] ID\

Even after you think you have corrected all of
the bugs in your program, you may find more
bugs after you run your program on the Apple.
The best way to find and fix all of the bugs in a
program is to take turmns running and listing the
program. If you find more bugs in the program
listing, use the tricks you just learned to fix them.

69

Type

If you are working on a long program, you Imay
not want to list the whole thing. You can list cer-
tain parts of a program by typing:

LIST 40,60

Inthisexample, the Apple willlistlines 40 through
60.

Output

(] LIST 40,60 [rewm |

Type

(" LIST 40,60

407 “TO FETCH"
507 “APAI"
607 “"OF WATER"”
1.0

To list only one program line, type:

LIST 70
Ouiput

] LIST 70 e |

Type

] LIST 70
79 ?,“TI-{E END"’
] éD\
To list all of the programs up to a certain point,
type:
LIST ,40
Ouiput

(" LIST , 40 [

(" LIST .40

10 HOME

207 “JACK & JILL"

307 “WENT UP THE HILL"
407 “TO FETCH"

10

70

To list all program lines past a certain point,

type:
LIST 40,

Type Ouiput

(" | LIST 40, [] (" 11T 40,
407? ""TO FETCH"”’
507 "APAIL”
607 ""OF WATER"’
709 THE END**
8? E}\ID
Dai

The entire process of getting rid of program
bugs is called debugging. Don't let program
bugs "'bug you’’ because now you know how to

/7
f

H>
)/
B

231

Computer Errors

There are three types of errors you may run
across as you work with computers. Sometimes
the Apple will tell you what your error is. Other
times you will have to figure out yourself what the
error is and where it happened.

User Errors. A user error happens when you—the
user—make a typing mistake or fail to communi-
cate with the Apple in Applesoft BASIC.

Program Errors. A program error occurs when
there are bugs in your program. You will have to
debug your program to correct the errors.

Computer Errors. A computer error could hap-
pen if not all of the computer’'s equipment is
hooked up properly. These errors can be very
complicated, but they rarely occur.

To find out what certain errors mean, turmn to
Appendix B at the back of this book.

L\ﬂ/

Command What Happens

1. LIST All program lines are listed.
2. LIST70 Only line 70 is listed.

3. LIST 40,60 Lines 40 through 60 are listed.
4

. LIST ,40 Alllines up to and including line 40
are listed.

5. LIST 40, All lines from 40 to the end of the
program are listed.

to do: Programmer’s Pastime #18

72

CCHAPTER 2@ Using the Disk Drive

Now that you are writing some interesting pro-
grams, you will want to SAVE them so you can
run them and enjoy them over and over. The
place to store programs is on a disk. Once a pro-
gram is saved on a disk, you can load the pro-
gram into the computer and run it whenever you
like.

If you are saving a program on a brand new
disk, turn to Appendix A, Initializing New Disks.
New disks have to be initialized or set up so
programs can be saved on them.

If your disk is already initialized or contains a
few programs, you may be able to store additional
programs if the disk isn't totally full. Follow these
instructions:

1. Type your program on the Apple’s keyboard.
2. Run your program to make sure it works. De-
bug the program to fix any mistakes.
3. Put the disk on which you want to save your
program in the disk drive and close the door.
4. Type: SAVE ;
(Type the name of your program
in the blank.)

5. The disk drive will whir as the program is
saved on the disk. When the red light on the
disk drive goes out and the whirring stops, the
saving process will be finished.

6. Type: CATALOG [rem | .

7. If the saving process worked propeirly, you
should see the name of your program listed in
the catalog with all of the other programs that
are stored on the disk.

73

Erasing a Program

If you decide that you no longer wantto keep a
program on a disk, you may erase the program
from the disk. Follow these instructions:

1. Insert the disk with the program you want to
erase into the disk drive. Close the door.

2. Type: DELETE [rerum | .
(Type the name of the
program here.)

The disk drive will erase the program.

Type: CATALOG to make sure your program
got erased. If it did, you will not see it listed in
the catalog.

& ow

Lock

You may save some very important programs
on a disk someday. You will want to make sure
that these programs can’t get accidentally
erased from the disk. Use the LOCK command to
protect these programs. To lock a program on a
disk, follow these instructions:

1. Insert the disk with the program you want to
lock into the disk drive. Close the door.

2. Type:LOCK [em] .
(Type the name of the program
here.)

3. The disk drive will lock the program.

4. Type: CATALOG. Look for your program in the
catalog listing. If your program name now has
an asterisk (*)in front of it, you will know that it
is locked safely on the disk.

74

Renaming

You can change the name of any program that
is saved on a disk. To rename a program, first
make sure that it is not locked. Then follow these
instructions:

1. Insert the disk with the program you wish to
rename. Close the dooir.
2. Type: RENAME

fistblank second blank

Type the old name in the first blank. Type the
new name that you wish the program to have
in the second blank.

The disk drive will rename the program.
Type: CATALOG. Make sure your program
has been correctly renamed.

Ll

Naming Rules

There are certain rules you must follow when
naming a program.

A program name:

1. can be up to 30 characters long (this includes
numbers and spaces between words);

2. must start with a letter;

3. cannot have a commainit.

75

Review

To Type
1. Save a program: SAVE

(program name)
2. Erase a program: DELETE

(program name)

3. Lock a program: LOCK

(program name)
4. Rename aprogram: RENAME ’

(old name) (new name)

to do: Programmer’s Pastime #19, #20
Component 3 Fun Page

76

CHAPTER 21

Remarks
CHAPTER 22

Color on the Screen
CHAPTER 23

Colored Lines
CHAPTER 24

Flow Diagramming
CHAPTER 25

More About Flow Charts
CHAPTER 26

Double Detours
CHAPTER 27

Loop de Loop
CHAPTER 28

Putting it all Together

77

78
80
85
Q0
25
Q7
Q9
101

(CHAPTER 21) Remarks

As you begin writing more complicated pro-
grams, you will want to make sure they can be
easily read and understood by others who may
read them. Writing your programs so they are
easy to read is good programming style.

One style technique is the use of REMARK state-
ments—REM for short. This is called program doc-
umentation, which means noting what is
happening in your program. For example:

10 REM PRINT MY NAME
20 HOME

30 ? "EGBERT"
40END

Each REM statement describes the purpose of
the statements following it. Since line 30 prints a
name, the REM statement in line 10 says:

10 REM PRINT MY NAME

When the program is run, the Apple will ignore
the REM statement. REM tells the computer to ig-
nore what is written on that line and go on to the
next line number. The Apple will list REM state-
ments, but it will not run them.

stands for

REMARK

78

Use REM statements at the beginning of your
programs to tell the name of your program or
what it does. You can also show that you are the
author of the program.

For example:

10 REM SPACE ATTACK
20 REM TRY TO SHOOT DOWN THE ALIENS
30 REM WRITTEN BY JOE COOL, 1980

It is also helpful to use REM statements to de-
scribe each main section of your program. For
example:

10 REM PRINTING EQUATIONS

20 REM WRITTEN BY CHARLIE BROWN, 1981
30 REM ADDITION

407 6+6=""6+6

507V6+7="6+7

60 REM MULTIPLICATION
707V6%6=""56%6

80?"6x7=""6%x7

Q0 END

Inthe program above, we used REM statements
fo:

l. introduce the program:;

2. show the beginning of the addition section of
the program;

3. show the beginning of the multiplication sec-
tion of the program.

Be caretful that you do not use too many REM
statements in your programs. Too many can clut-
ter the program, making it more difficult to read.
Too many can also waste screen space and use
up memory. As you practice writing programs
you will become more aware of where REM state-
ments should be placed.

to do: Programmer’s Pastime #21

79

(CHAPTER 2 2) Color on the Screen

If your Apple has a color monitor, you will enjoy
drawing screen pictures with little colored blocks.
This is called lo res graphics.

Remember that the Apple’s screen has 40
columns. This means you can type 40 characters
across one line of the screen. The Apple’s screen
also has 40 rows on which graphics can be
drawn. The screen columns and rows are la-
beled from 0to 39.

Think of the Apple’s screen as a big grid of rows
and columns. Each little grid block can be col-
ored to make a picture.

To build pictures with colored blocks, first type:

GR
GR stands for graphics. Typing GR and pressing
puts the Apple into graphics mode.

When the Apple is in graphics mode, all of the
screen can be used for making pictures except
the very bottom of the screen. The Apple saves
the bottom four rows for writing. When you type in
graphics mode, the writing will appear on the
bottom four screen lines. This space is called a
text window.

80

Columns

0 1 2 3 4 5 6 7 8 9 10 1 12 13 1415 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 B 9

Rows =

88838

=4

88 288

Q9

Text Window

81

Once the Apple is in graphics mode, you must
tell it what color to draw with first. There are 16
colors in lo res graphics. The colors are labeled
with the numbers O through 15. The command for
setting color is:

COLOR=5 (or some other number from O to
15), | rewm | |
Now that the coloris set, you must tell the Apple
where to draw the colored block. Type:

PLOT 0,0 [ewm]

This tells the Apple to put the colored block on the
screen where column 0 and row 0 meet.

PLOT 0,39 would put the block where column 0
and row 3?2 meet.

When using the PLOT command, make sure
the first number is for the column and the second
number is for the row.

PLOT (column) ‘ (row)

You can change the color at any time by
typing:
COLOR = (any number from Oto 15)

To get back into direct mode from graphics
mode, type:

TEXT [renm]

The graphics window of the screen will fill up with
characters. Type:

HOME
to clear the screen.

82

Columns

pLOT0,0 0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 3
e 0
Rows .
::
PLOT 0,39 =
— 39
Review
Command What Happens
GR The Apple goes into graphics mode.
COLOR=(number from 0to 15) The coloris set.
PLOT (column),(tow) The colored block is placed on the screen.
TEXT The Apple goes back to direct mode.

to do: Programmer’s Pastime #22, #23

83

(PROGRAMMER’S PASTIME #22)

Rainbow Colors

Experiment with the COLOR= and PLOT com-
mands in graphics mode to find out what all of
the 16 colors are.

Example:
COLOR= 0 PLOTO0.0 COLOR 0=black

1. COLOR=1 PLOT__,___ COLOR l=
2. COLOR= 2 PLOT_, _ COLOR 2=
3. COLOR= 3 PLOT__, _ COLOR 3=
4. COLOR= 4 PLOT__,__ COLOR 4=
5, COLOR=5 PLOT_. . COLOR 5=
6. COLOR= 6 PLOT__, _ COLOR 6=
7. COLOR= 7 PLOT__..__. COLOR 7=
8. COLOR= 8 PLOT__.,. = COLOR 8=
9. COLOR= 9 PLOT_,___ COLOR 9=
10. COLOR=10 PLOT_,__ COLOR 10=
11. COLOR=11 PLOT___. _ COLORIl=
12. COLOR=12 PLOT___., _ <COLOR]2=
13. COLOR=13 PLOT_.___ COLOR13=
14. COLOR=14 PLOT__,_ COLOR l4=
15. COLOR=15 PLOT__.,__ COLOR15=

84

(CHAPTER 23) Colored Lines

You can make colored graphics on the Apple
screen much easier if you draw with lines instead
of with the colored blocks.

Let’s say you decided to draw an orange line
across the screen at row 10. You could type:

]GR

] COLOR=9
1PLOTO0,10
]PLOT 1,10
]PLOT 2,10

and so on until you typed PLOT 39,10. This would
take along time to do!

There is an easier way to draw the same
orange line across row 10. Use a graphic com-
mand called HLIN to draw across the screen. Hin
HLIN stands for horizontal. LIN stands for line.
Horizontal means across. Type:

1GR
] COLOR=9
J|HLIN 0,39 at 10

After typing these three statements, the Apple will
quickly print an orange horizontal line across the
screen. HLIN 0,39 at 10 means draw a line across
the screen from column 0 to 39 at row 10.

You can also make lines that go up and down
on the screen. These lines are called vertical
lines. Vertical means up and down. Use the VLIN
command to draw these lines. V stands for ver-
tical. LIN stands for line. To draw a vertical line
down the center of the screen type:

VLIN 0,39 at 19

The line will be drawn down the screen from row
Otorow 39 at column 19.

85

Columns

0 1 2 3 4 5 6 7 B 9 10 91 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35 ¥ ;7 8 B

Rows

HLIN 0,39 AT 10
VLIN 0,39 AT 19

Using HLIN and VLIN you can make the Apple
draw lines of any length up and down and across
the screen. To make a small pink cross in the
center of the screen, type:

]GR

]COLOR=11
JHLIN 17,21 at 19
JVLIN 17,21 at 19

Columns

0 1 2 3 4 5 6 7 & 910 11 12 13 14 15 16 17 18 19 20 21 2 23 24 25 26 27 28 20 0 31 2 3 M 35 ¥ I 3B’ N

Rows *

28 BB

8 8 98 8 2 88

HLIN 17,21 AT 19
VLIN 17,21 AT 19

87

If you try to put a new color over another color
already on the screen, the new color takes over. If

you type:
] COLOR=13
JHLIN 5,10 at 20

a short yellow line will be drawn.
If you change the color and type the same
thing, the new color will take over.

] COLOR=3
JHLIN 5,10 at 20

Now a short purple line is drawn over the short
yellow line.

If you want to erase the drawing on the screen
and do something new, just type:

GR
All graphics on the screen will be erased.

Error Messages

There are two common error messages that you
may discover when using lo res graphics:

1. ?ILLEGAL QUANTITY ERROR
2. 7SYNTAXERROR

If you use a number larger than 39 you will get an
ILLEGAL QUANTITY ERROR message. Remember
that you can only use numbers between 0 and 39
for PLOT statements. If you type a command
wrong like PLAT 4,4 instead of PLOT 4,4, you will
get a SYNTAX ERROR message.

What Happens
Draws a horizontal line.

Draws a vertical line.

Erases the graphics screen.

(Also puts the Apple into graphics
mode.)

to do: Programmer’s Pastime #24, #25, #26, #27

88

(PROGRAMMER’S PASTIME #25)

Use HLIN and VLIN to make a colored border
around the Apple’s screen. Inside the border,
make the Apple draw a large, colored set of your
initials. Write the instructions in program form on
the lines below. Use REM statemenits.

89

CHAPTER 24) Flow Diagramming

When you learn how to play a game, you must
read a set of instructions. These instructions are
written in a clear and orderly step-by-step man-
ner. If the instructions are mixed up and out of
order, you won't understand how to play the
game.

The same is true for computers. When you write
a program to teach the Apple atrick or to solve a
problem for you, the instructions in your program
must be in a clear, step-by-step order. If youdon't
plan your program steps carefully, the Apple will
not understand what to do.

There is a process that you can use when you
write a program that will help you write your steps
clearly and in the correct order. This process is
called flow diagramming.

An algorithm (al’ gorithm) is a step-by-step
method you use to solve a problem. Every prob-
lem has a certain algorithm that you can use to
solve it. For example:

Problem Algorithm

Your front door is locked. 1. Find your key.
2. Put the key into
the door lock.
3. Turn the key.
4. Open the door.

By following the algorithm, you can solve the
problem of being locked out of your house.

Q0

When you do flow diagramming, you must
show how the algorithm works by putting it into
flow chart form. Here is how you could write an
algorithm in a flow chart.

C START)

1

Find your key

i

Put the key into
the door lock

{

Turn the key

!

Open the door

i

(STOP)

A flow chart is a diagram that shows all of the
steps of an algorithm in the correct order. The
arrows in a flow chart show how the steps are
connected.

91

Below is a flow chart that shows an algorithm on
how to brush your teeth. Think about which steps

at the side of the flow chart would fit in the blank
boxes.

(START) Missing Steps

Brush your teeth.

Get out your

toothbrush and Wet your brush.
toothpaste

1 Unscrew toothpaste cap.

i

Put toothpaste
on your
toothbrush

i

5
(stop)

you

92

Notice thatthe boxes in a flow chart have differ-
ent shapes. What shape are the START and STOP
boxes? We usually begin a flow chart with a (sm)
instruction and end with a (s») instruction.

The boxes that tell you to do something are
shaped like rectangles. They are called process-
ing boxes.

Shape
C) START or STOP box

PROCESSING box

Let’s practice writing algorithms and putting
them into flow chart form.

to do: Programmer’s Pastime #28, #29, #30

(PROGRAMMER’S PASTIME #30)

Design an algorithm for making a peanut butter
and banana sandwich. Write your algorithm in
flow chart form.

94

@HAPTER 2@ More About Flow Charts

Sometimes there will be a step in a flow chart that
asks a question. A question in a flow chart is writ-
ten in a diamond-shaped box. This is called a
decision box.

Algorithm/Flow Chart on How to Waich a TV
Program

(START)

i

Find out which
channel the
program is on

i

Turnon TV

No
channel l
?
Change
| Yes channels
Watch your) J

program

C STlOP)

In this flow chart a decision must be made. The
decision box asks the question: ''Is the TV on the
correct channel?”’

If the answer is yes, you will follow the main
path of the flow chart. If the answer is no, you will
take a detour and follow a different path. During
the detour, there is another task to do—change
the channel. Notice how the detour comes back
to the main part of the flow chart before it ends.

When there is one detour from a decision box in
a flow chart, the flow chart is said to have a
single-altermnative decision step.

Shape

DECISION box

to do: Programmer’s Pastime #31, #32, #33

Pl

"

=
P

One DETOUR from a
DECISION BOX is a
SINGLE-ALTERNATIVE

-

4

——
(18
=l

L

96

@HAPTER 26) Double Detours

Sometimes a flow chart will have a decision box
that has a detour for both the yes and no answers.
If the answer is yes, a certain task is done. If the
answer is no, a different task is done.

Algorithm/Flow Chart on How to Fly a Kite

(START)

1

Tie kite string
to kite

i

Take kite to a
big open field

i

Hold the kite
downwind

!

Hold the string
and let go
of the kite

Yes Let out more
string

Run into the No
wind

Fly the kite

.

7

This flow chart asks the question, ''Is the kite
going upinthe air?”’ If the answer is yes, you take
a detour that tells you to ''Let out more string.”’ If
the answer is no, you will take a different detour
that tells you to ''Run into the wind.”’

Whenever there are two detours from a deci-
sion box in a flow chart, the flow chart is said to
have a double-altemative decision step.

to do: Programmer’s Pastime #34, #35

L £

mET@J; T‘.fYJmaLw
DECISION BOX isa
DOUBLE -ALTERNATIVE

DECISION STEP

(CHAPTER 27) LoopdeLoop

Sometimes you will need to use an algorithm that
repeats a certain step over and over. When you
make a flow chart for such an algorithm, use a
loop arrow to show that the step is repeated.

Algorithm/Flow Chart on How to Tie Your Shoes

(START)

!

Put on
both shoes
|
Make sure
laces i
are straight
9 At this rate
{ 'l be Tying
] ©) my Shoes
Tighten up Y forever.
laces =
! LOOP x A
Tie laces
l
Go to other shoe | —————

After tying one shoe, the flow chart tells you to
go to the other shoe. The loop arrow takes you
back tothe second step. Now you repeat the steps
as you tie the other shoe. The problem with this
flow chart is it will never end! You are told over
and over to keep going back to the other shoe to
retie it!

Looping is handy because it helps to keep the
flow chart short. Imagine how long this flow chart
would be if aloop wasn 't used.

Q9

Looping also works nicely with a decision step.
This flow chart can be improved by using a sin-

gle-altemative decision step.
(START)
1!
Put on
both shoes
{
Make sure

laces
are straight

i

Tighten up laces

i LOOP

Tie laces

No Go to other
shoe

You’re done!

i

< STOP)

Now you go through the flow chart twice. Once
to do the first shoe and again to do the other shoe.
The first time through the flow chart the answer is
no, and you follow the loop detour. The second
time through the flow chart the answer is yes, and
you are done.
to do: Programmer’s Pastime #36, #37

100

(CHAPTER 28) Putting it all Together

Now that you know how to change an algorithm
into a flow chart, you must learn how to change a
flow chart into a program that the Apple can
understand.

Tell the Apple to print over and over:

COMPUTING IS FUN
I CAN WRITE PROGRAMS!

The algorithm and flow chart will look like this:

(START)

i

HOME

i

PRINT
“COMPUTING | «—

i

PRINT a
blank line LOOP

i

PRINT “I CAN
WRITE
PROGRAMS!”

Because we want the Apple to print something
over and over again we will need to use a loop.
Notice that this flow chart never stops: the loop
goes on forever.

101

This is how you would write the flow chart as a
BASIC program:

10 REM USING A LOOP

20 HOME

30? "COMPUTING IS FUN"

407

50 ? "TCAN WRITE PROGRAMS!"’
60 GOTO 30

Line 60 is where the loop happens. The com-
mand to loop in this program is GOTO. After the
command GOTO is the number of the line that
you want the Apple to go back to.

A shorter way to write the program is:

10 REM USING A LOOP
20 HOME
30? "COMPUTING IS FUN"
:2:7"'1 CAN WRITE PROGRAMS!"

40 GOTO 30
Try another one:
Flow chart Program
10 REM ANOTHER LOOPER
C ST?RT) 20HOME
307 “'THE APPLEIS A STAR"
HOME 407" *
50 GOTO 40
L
PRINT “THE
APPLEISA

STAR”

i

?u *”

102

Programs with a GOTO loop will never end
once they are run. As long as the Apple is
plugged in and isbeing fed electricity, it willkeep
doing the GOTO loop over and over and over. To
get the Apple to stop a GOTO loop, press]
The Apple will stop the loop and print:

BREAK IN 40 (or some other number)

The BREAK message means that the program
was broken into and stopped when the Apple was
performing the instruction in line number 40.

The flow charts in this chapter used an instruc-
tion step in a box of a different shape. PRINT in-
structions or statements should be put in a special
box. PRINT boxes look like this:

1. GOTO tellsthe Apple to loop to acertain line in
the program.

2. Press[| C to stop the run of a program with a
GOTO loop.

to do: Programmer’s Pastime #38, #39, #40, #41
Component 4 Fun Page

103

(PROGRAMMER’S PASTIME #41)

Write a lo res graphics program that will make
the Apple draw the Apple logo, clear the screen,
draw it again, clear the screen, and so on, over
and over. Use the grid on the next page to help

you. The logo looks like this: !
light green
rI

yellow l:L

Write your program on the lines below.

104

Columns

0 1+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35 36 37 3B B/

@ ® ~w o » oA W N

Rows 20

2

8

«@

88 28BER

“
4

g

8

1056

106

CHAPTER 29

More About Memory

CHAPTER 30
Using Variables
CHAPTER 31

Using Variables in Equations

CHAPTER 32

Important Information

CHAPTER 33
Strings
CHAPTER 34

What Types of Numbers Does the

Apple Like?

107

108
111
115
118
5241

124

(CHAPTER 20) More About Memory

Address i
Contents | D%

In Chapter 6 you learned that the Apple has a
memory. The memory is what makes the Apple
powerful. Without a big memory, the Apple
wouldn’'t be much more than the average
calculator.

You learned that information “'put into” the Apple
(called INPUT) is stored in RAM (random access
memory). The bigger the RAM, the more input the
Apple can hold, and the more it can do. The input
is usually made up of programs or files. Files are
not usually programs, but lists of information that
you want the computer to store and use. A file might
contain a list of names and addresses of all your
friends. The computer could take addresses from
the file and print address labels when you write
letters to your friends.

How does the Apple store input in its memory
(RAM)? Think of the Apple’s memory as having
thousands of tiny electronic mailboxes. Each mail-
box has its own address, and can store information.
The information can be a number, letter, word, or
even a sentence.

When you write programs in BASIC, it is helpful
to store information in the memory mailboxes.
When you know where information is being stored
in memory, you can refer to it and use it at any
time. One way to store information in memory mail-
bozxes is to use the LET statement.

10 HOME
20LET X=54

The LET statement tells the Apple to pick an
empty mailbox in RAM and call it X. X becomes
the address of the mailbox.

108

This LET statement also tells the Apple to put the
number 54 inside the mailbox. Thus, 54 becomes
the contents of the mailbox.

The number 54 is stored safely away in mailbox
X. It will stay there until you change it to some-
thing different, or erase the memory by typing NEW
or turning off the computer.

You can use many different letters or even let-
ters and numbers as the address of a memory
mailbox. For example, you can type:

10 HOME /\

20 LET B=232 \ﬂ /ﬁ /§\ Riftass
SOLETP=1 ' Ezu‘r 0 t‘ ‘O Contents
A0LETQZ=14 : j%

50LET S8=100 :

i N F
%Mw"’ Vw)‘/bﬁ?

Because the mailbox address can have so
many various names and contents, the address is
called a variable. In the program above, B, P, QZ,
and S8 are all variables. Each variable address
stores a number as the contents of the mailbox.

To store a letter or word as the contents of a
mailbox, you will use a different type of variable
address. You'll learn about these variables later.

There are three different ways to write variables
that store numbers:

Example
1. asingle letter Z
2. two letters AZ
3. one letter and one digit BQ

(the letter must go first)

109

Sometimes you might see variables that have
longer names. When the Apple reads a variable,
however, it only looks at the first two characters.
You could use the word FUN as a variable, but the
Apple would read it as FU. If you used two differ-
ent variables, JK1 and JK2, the Apple would read
both as just JK. Using long variable names can
become confusing and mess up your program. It
is best to use only the three types of variables listed
below.

Safe variables to use:

. asingle letter T
2. two letters vV
a single letter and a single digit T7
(in that order)

[a—

s

to do: Programmer’s Pastime #42

110

@HAPTER 30) Using Variables

Variables are very handy to use in a program.
They allow you to store information or data and
then refer back to it later in the program. For this
reason, you will be using variables when you
write programs. Since the contents of variables
can be easily changed., this is another good rea-

son to use them in programs.

In the program below, two variables are de-
fined. The program refers back to the variables to

have their contents printed.

Program

10 REM USING VARIABLES
20HOME

30LET X=5

40LETY=7

507X

60 ?"'ISTHE CONTENTS OF X"’
G S 4

80 ?"'ISTHE CONTENTSOF Y"’
QOEND

Output

What Happens

5is assigned as the contents of X.
7 is assigned as the contents of Y.
PRINT the contents of X.

PRINT the contentsof Y.

(s

ISTHE CONTENTS OF X
7

IS\TI-,IE CONTENTSOFY
] él:,\‘e.

111

If you tell the Apple to ? X (PRINT X), the Apple
will print 5 because 5 is the contents of mail-
box X.

If you tell the Apple to ?"X" (PRINT"X"), the
Apple will print X because X is inside quotation
marks.

You can use commas and semi-colons to
change how the output will look.

Program Output

10 REM COMMAS & SEMI-COLONS
WITH VARIABLES 5 IS THE CONTENTS OF X

20 HOME 715 THE CONTENTSOF Y

30LETX=5 10

40LETY=7

507X,

60 ?"'IS THE CONTENTS OF X"

70?Y;

807 "'ISTHE CONTENTSOF Y

Q0 END

You can use colons with LET statements the
same way you would use them with PRINT state-
ments to shorten a program.

Program Output
10 REM A SHORTCUT
20 HOME 5 IS THE CONTENTS OF X
30LETX=5.LETY=7 7 1S THE CONTENTS OF Y

407X, : ? “'ISTHE CONTENTS OF X"’ ¢

50?Y; :?"ISTHE CONTENTSOF V"’

60 END

i

112

You should always try to write your programs so
they are as short as possible and easy to read.
You should also make sure that the output is easy
to read.

Use a blank space inside quotation marks in a
PRINT statement when you also use a semi-colon.
(b will mean blank space. Make a blank space
by pressing the space bar when yousee a B.) For

example:

Program Ouiput

507?Y; :?VISTHE CONTENTSOF Y 7 IS THE CONTENTS OF Y
60?Y; . ?"BISTHE CONTENTSOF Y"’ 7 IS THE CONTENTS OF Y

This last version will make the program short,
and both the program and the output will be easy

toread.

Program Output

10 REM A BETTER VERSION

20 HOME 5IS THE CONTENTS OF X
30LET X=5:LETY=7 7}5;1‘HECONTENTSOFY
407?X; .? V' BISTHE CONTENTSOF X"": ? 1.0

507?Y.; .7 "BISTHE CONTENTSOFY"’

60 END

to do: Programmer’s Pastime #43, #44

(PROGRAMMER’S PASTIME #44)

Rewrite each program to make it shorter.

1. 10HOME
20LETC=10
30LETD=5
407C
50 ? "'IS TWICE ASMUCH AS"’
607D
70END

2. 10HOME
20LET S=1
30LET T=2
40LETU=3
50 ? "COUNTING"’
6078
702T
80?U
Q0END

3. 10HOME
20LETV1=15
30LET V2=30
407V1
507? "ISHALF OF"’
60?V2
70 END

SR

9

1

114

(CHAPTER 3D g;iung i\::‘sriables in

You can use variables in programs to do math
equations.

Program Output
10 HOME _

20 LET A=5; LETB=6 11
307 A+B im)
40END

The Apple adds the contents of A to the contents
of B and prints the answer.

You can use quotation marks and a semi-colon
to make the Apple print the whole equation.

Program Output
10 HOME
20LET A=5: LETB=6 Pt+}3= 11
30?7 A+B=p’; A+B |
40 END
OR
Program Output
10 HOME
20LET A=5.LETB=6 5:lr<§= 11
30?A\|+I‘IB|\=bl1;A+B l'D‘

40END

115

Using variables in equations can be very help-
ful, especidally if you need to do many equations
with the same numbers.

Program Output
10HOME

20LET X=3, LET Y=9; LET Z=12 X+Y+2Z= 24
307 "X+Y+Z=P"; X+Y+Z Z-Y-X= 0
40?7"Z-Y-X=B",Z-Y-X X*Z/Y=4

507 " X*Z/Y=Y" X*ZIY im)

60END

To print the equations using the number values
instead of the variables, use quotation marks

differently.
Program Output
10 HOME
20LET X=3;LET Y=9.LETZ=12 3+9+12= 24
302X+ Y +2" =B X+ Y+Z 12-9-3= 0
4022 ="Y" = "X =P 2-Y~X 3'12/9= 4
502Xk Z)Y =B X%ZIY 1.0
40 END

You learned that a variable can have a num-
ber value. A variable can also have another
variable’s value as its value if the other variable
has already been introduced by a LET statement
in the program.

10 HOME
20LET Q=30
30LETR=Q

The contents of R will be the same as
the contentis of Q.

116

A variable can also have an equation as its
contents.

Program Output
10 HOME

SOTLET E=7 48 15
30?F 1.0
40 END

A variable can have an equation and a vari-
able as its contents.

Program Output
10 HOME

20LETW=10 1§)
30LETV=W+5 1.8
40?7V

S50END

1. The LET statement assigns a value to a
variable.

? X" will print X.

3. ? X will print the value or contents of X.

B

to do: Programmer’s Pastime #45, #46

117

(CHAPTER 32) Important Information

Program

10 HOME
20LETU=10:LETV=20
30?7U0+V

is correct.

There are some important things to remember
about using LET statements.

1. The variable must always come before the
value (contents) in the LET statement.

10LET S=40 is correct.
10LET 40=S is wrong. The Apple will not
understand.

2. Inaprogram, you must always put a LET state-
ment before the statement that tells the Apple
to print the variable.

10LET S=40
2075 is correct.

1075
20LET S=40 iswrong. The Apple will print O.

If the Apple sees a variable in a program that
has not been introduced by a LET statement, the
Apple will automatically give that variable a
value of zero.

In the second program above, line 10 tells the
Apple to print the value of S. Since there was no
LET statement before line 10 to introduce S, the
Apple gives S a value of zero. Even though the
nextline in the program tells the Apple that S=40,
the Apple will still think that the value of S is zero
because the PRINT statement comes before the
LET statement.

Output

30

® &

1 0O

L4 bl

118

Program Output
10 HOME

20?2U0+V ﬂ‘ .
30LETU=10:LETV=20 1,0

is wrong.
When you introduce the same variable more

than once in a program, the Apple will always
remember the last thing it was told.

Program Output
10 HOME

20LETK=1

30LETK=2 1 O
407K

50END

This program used a LET K statement two times.
The Apple only remembers that K=2 because it
was the last LET K statement. The order of the
statements told the Apple to change the value of
Kfrom 1to 2.

Program Outiput
10 HOME

20LETK=1
30?K
40LETK=2
507K
60END

In this program the Apple printed the first value of
K and then the second value.

I—‘M'_'

O

F
by

to do: Programmmer’s Pastime #47, #48

119

(PROGRAMMER’S PASTIME #47)

Read each program. Then write what the Apple
would print as the output. Check your answers by
running the programs.

Program

1.

10 HOME

LET J4=PJ+J2
30?J4
40END

10 HOME
20LETB=2
307B

40LET B=100
507B
60END

10 HOME
20LETE6=3: LETE7=12

30? "PRODUCT"’, "QUOTIENT"’

40?E6xE7 ,E7/E6
S50END

10 HOME
20LETM=16:LETN=14
30?M+N

40LETN=12

Outiput
=

120

(CHAPTER 33) strings

Until now, the variables you have been using in
programs have had numbers as their value or
contents. For example, X=42.

A variable like X is called a numeric variable
because its value is a number. You learned that
there are three ways to safely use a numeric vari-
able in a program:

1. asingle letter X
2. two letters XY
3. one letter and one digit X6

You are now ready to store numbers with let-
ters, words, special characters, and even whole
sentences in a variable. This type of variable is
called an alphanumeric or string variable. A
string variable can also be written safely in three

ways:

1. asingle letter followed by a $ AS

2. two letters followed by a $ CCs

3. aletter and a digit (in that order) D78
followed by a $

You will also introduce a string variable with a
LET statement like this:

10LET GS="HEY YOU!"”

The contents of a string variable must be en-
closed in quotation marks.

ALPHANUMERIC
means letters
and numbers.
NUMERIC means
numbers only .

This program shows how you can use string

variables.
Flow Chart Program
C HOME) 10 HOME
20LET AS="ISAW 4"
LETAS="1 S;W 30 LET BS = “"RUBBER BABY"’
= X 4,, - AN Y ‘e
LETB§="HUBBERBABY” | oot o= BUCGYBUMEERS
LET C$ = “BUGGY 507 AS$:?BS:?2CS
BUMPERS” 407 "“HOW MANY"’
U 707 BS : ?2CS
? A$ 807 "'DID YOU SEE?"’
?B$ 90 END
2 C$
2 “HOW MANY”’
(" 1sAW 4
/\ - | RUBBERBABY
! BUGGY BUMPERS
?B$ HOW MANY
1S RUBBER BABY
! DID YOU SEE?
? “DID YOU SEE? 1

m to do: Programmer’s Pastime #49, #50

122

(PROGRAMMER’S PASTIME #50)

Each program contains one or more mistake(s).
Find the mistake(s), circle the line number where
you found the mistake(s), then write the statement
the cormrect way in the space to the right.

Program Correction
1. 10LET AZS=""YES’’
20LET BYS=NO
30?7 AZS , BYS

40 END

2. 10HOME
20LET T$=""THE TIME""
30LET US="ISNOW"
40?T,U
S50END

3. 10HOME
20?J$:?K$
30LET JS=""UP, UP"" .
LET KS="AND AWAY"’
40END

4. 10HOME
20LET "PARTRIDGE IN"'=P$
30LET "APEARTREE"'=T$
40?PS, TS
S50END

123

What Types of Numbers
(CHAPTER 34) e ¥res ol ifume

So far, you have probably asked the Apple to
work mainly with whole numbers (O, 1, 2, 3. . .).
The Apple can also handle negative numbers
(=1, =2, =3 ::)

The Apple can work with decimals (0.09, 1.25,
etc.) but cannot understand fractions (Y2,). If
you need the Apple to do some math that in-
volves fractions, you must change the fractions
into their decimal equivalents or write them as
division equations.

For example:

Change 2 to its decimal equivalent by dividing
or just type it as 1/2.

5

21.0=5 Y%=5
10
0

Change Y4 to its decimal equivalent by dividing
or just type it as 1/4.

4)?(2)8;25 Va= 25
_8
20
20
0
Change %4 to its decimal equivalent by dividing
or just type it as 2/3.

.66

3)2.00=.66 %=.56
18
20
18
2

10%2 would have to be typed as 10.5.
8% would have to be typed as 8.25.

6% would have to be typed as 6.66.
124

The Apple lets you use numbers with up to nine
digits. If you use a number with more than nine
digits, the Apple may not be able to work with
it accurately. It may give you a wrong answer.
This means that the smallest numbers the Apple
can use accurately are 0.000000001 and
- 999999999, The largest number the Apple can
use accurately is 999999999.

If you want to use numbers that are larger or
smaller than this, the Apple will change them
into something called E notation. This stands for
exponential notation and it is the same thing as
scientific notation.

If you want to use a number that has 12 digits,
such as 420,000,000,000, the Apple will print it as
4.2E+11.The E+ 11 means that the decimal point
belongs 11 more places to the right.

42E+1lmeans 4 . 20000000000,
1234567891011’)
The decimal point should go here.
The number 0.0000009876 would be printed as
?.876E—-07. The E—07 means that the decimal
point belongs 7 more places to the left.

9.876E—07 means 0000009 . 876
7654321

The decimal point should go here.

E Notation stands
for "Exponentig]
Notation” It1s &
nelpful shortcut you
can learn o ysé

125

Don't get worried about E notation because
you will only have to use it when you are dealing
with numbers that have more than 9 digits.

to do: Programmer’s Pastime #51
Component 5 Fun Page

This is
our Appie/

126

CHAPTER 35

FOR-NEXT Looping

CHAPTER 36
Stepping
CHAPTER 37
A Counter
CHAPTER 38
Timing It
CHAPTER 39
Blinkers
CHAPTER 40

Fast Graphics

127

128
134
137
14]
145
146

(CI-IAPTER 3@ FOR-NEXT Looping

Flow Chart

C START)

HOME

!

FORZ=1TO7

!

¢l
THERE!"

[’

i

NEXT Z

(stop)

Loop
is done

7 times.

Anothertype ofloop you will use in programming
isthe FOR-NEXT loop. It is used to create counter-
controlled loops in a program. A counter-
controlled loop allows you to repeat program in-
structions a certain number of times. For
example:

Program Output

10 REM 7 TIMES 7

20 HOME HI THERE!

SOEORZ=1TO 7 HI THERE!

40 ?VHITHERE!"’ HI THERE!

S50NEXT Z HI THERE!

60 END HI THERE!
HI THERE!
HI THERE!
Bz

128

The FOR-NEXT loop tells the Apple to count to
seven and print HI THERE! each time. The loop
part of the program is:

30FORZ=1TO7 —
40 ? “"HITHERE!"" This loop is done 7 times.
S0NEXT Z _

The variable Z does the counting. Iisfirst valueis 1.
NEXT Z means go back to the beginning of the
loop and give Z the next value, which is 2. The
Apple keeps doing the loop until Z is 7, and it has
printed HI THERE! for the seventh time. Then the
loop is over and the Apple goes on to the next
program line.

Any statements in between the FOR statement
and the NEXT statement are called the body of
the loop. These statements are done each time
the program loops.

30FORZ=1TO7
40 ? ""HI THERE!"’
SO0NEXTZ

Notice that the body of the loop is always in-
dented. This is good programming style because
it makes the loop easier to read and understand.
Please practice this when you write programs
with FOR-NEXT loops.

Let’s trace the program to see exactly how the
FOR-NEXT loop works.

Loop

Body Losp

129

Program
10 REM 7 TIMES
20 HOME
Bt E 30FORZ=1TO 7
s 40 ? ““HI THERE!"'
Lriop 50 NEXT Z
SOFORZ=1TO 7
fjg"”d [40 7 “HITHERE!"
. =P 50 NEXT Z
— 30FORZ=1TO 7?7
Third 40 ? ““‘HI THERE!"’
Loop
— S50NEXTZ
— SO FPORZ=]1TO 7
Fourth 40 ? “"HITHERE!"’
Loop
— S50NEXTZ
— S0FORZ=1TO 7
Fifth 40 ? “HITHERE!""
Loop
— S0NEXT Z
— 30FORZ=1TO7
- Sixth 40 ? “'‘HI THERE!"’
Loop
— S50NEXT Z
— DFORZ=1TO 7
Seventh 40 ? “I‘H TI'IER.EI i
Loop
— S0NEXTZ
60 END

Program Trace

What Happens

REM is ignored.

Screen is cleared.

Zis 1,

HI THERE! is printed once.
Go back to line 30.

Zis 2.
HI THERE! is printed again.
Go back to line 30.

Zis 3.

HI THERE! is printed a third
time.

Go back to line 30.

Zis 4.

HI THERE! is printed a fourth
time.

Go back to line 30.

Zis 5. 5
HI THERE! is printed a fifth

time.

Go back to line 30.

Zis 6.

HI THERE! is printed a sixth
time.

Go back to line 30.

2157, 3
HI THERE! is printed a sev-

enth time.

Since Zis 7, go onto the next

program line.

!
N "”“)
1

n

|
oN aiN FNHN w N

~NON

End the program. Put the
prompt and cursor back on
the screen.

130

Contents of Z

You can also write the program so Z prints its
contents each time the loop is done.

Flow chart Program Outiput
() 10 REM PRINT Z EACH LOOP 7
START 20 HOME 1
_ 30FORZ=1TO5 2
40 Yz 3
HENE 50 NEXT Z 4
T 60 END 5‘)
LB
FORZ=1TO5 | «——
1
?Z Loop
is done
/ 5 times.
1
NEXT Z —_—

Case)

The variable used in a FOR-NEXT loop can be
any kind of numeric variable.

131

A FOR-NEXT loop is handy to use in a program
that converts or changes one type of measure-
ment into another. The following program con-

verts feet into meters.
Flow Chart Program Output
(10 REM CONVERT FEET -
START) INTO METERS 1 FEETIS .3048 METERS
! 20 HOME 2FEETIS .6096 METERS
30FORL=1TO5 3FEETIS .9144 METERS
HOME 40 9L “FEETIS"” AFEETIS 1.2192 METERS
; L .3048 ““METERS"’ SFEETIS 1.524 METERS
50 NEXT L)
FORL=1TO5 60END
1
2 L “FEETIS”
L%.3048
!
NEXT L

i

(stop)

Each time the loop is done in this program, the
Apple multiplies the current value of L by 0.3048.
The current value of L stands for feet and the
answer to the multiplication stands for meters.

A FOR-NEXT loop also allows a program to do
arithmetic and use a new number each time the
loop is done. The loop in the following program
causes the numbers 5, 6, and 7 to be printed,
multiplied by 2, and divided by 2.

Flow Chart Program Output
C‘ e o 10REMLOOP ARITHMETIC -
20 HOME 5
! 30 FORM=5TO 7 10
40 M 2.5
HOME 50 7Ms%2 6
- 60 ?7M/2 12
70 NEXT M 3
FORM=5TO7 80END 7
14
1 3‘.\5)
M 1,0,
2 M2
l
NEXT M

¢ STlOP)

In a loop, every FOR statement must have a
NEXT statement after it somewhere in the
program.

to do: Programmer’s Pastime #52, #53, #54, #55

133

(CHAPTER 36) stepping

When you were younger you learned to count in
patterns such as: 5, 10, 15, 20. . .(by fives), or: 10,
20, 30, 40. . .(by tens).

The Apple can learn this trick too. If you want
the Apple to count in a certain pattemn, use the
STEP statement. For example:

STEP 5 tellsthe Apple to count by fives.
STEP 10 tells the Apple to count by tens.

The STEP statement goes on the same line asthe
FOR statement. Study the following programs:

Program Output
10 REM COUNT BY FIVES 7
20 HOME 1)
30FORW=0TO 25STEP 5 5
40 W 10
S0 NEXT W 156
60END 20
25
i
10 REM COUNT BY FIVES
20 HOME (4
30 FOR W= 1 TO 25 STEP & 6
40 TW 11
50 NEXT W 16
60 END 21
1.0

How are the two programs different? If you want
the Apple to count by fives, you must make the
FOR statement say:

FOR W=01to 25 STEP 5
When the loop begins, W=0. 5+0=35, so the first
number the Apple will print is @ and the next
numberis 5.

134

In the second program, W=1. When the Apple
starts printing, 1 will be printed first. Then the Ap-
ple adds 5to 1 and prints 6 as the next number. In
this program the Apple is not counting by fives,
but is adding 5 to each number beginning with 1.
The last number printed was 21. Because
21+5=26, which ismore than 25, the Apple won't
print 26.

The Apple can also count backwards.

Program Output
10 REM COUNTING BACKWARDS

20 HOME .
30FORR=5TO 1 STEP -1
40 7R

S0NEXTR

60END

%

=N Wb O

¢

R starts counting at 5. The step of —1 makes R
count backwards, subtracting 1 each time.

135

You can write some fun programs by using the

STEP statement.
Program Output
10 REM BLAST OFF e
20 HOME STAND BY FOR BLAST OFF
30? “*'STAND BY FOR BLAST OFF"’ 5 SECONDS
40FORD=5TO 1 STEP —1 4 SECONDS
50 ?D; "BSECONDS" 3 SECONDS
60 NEXT D 2 SECONDS
70? "'BLAST OFF!"’ 1 SECONDS
80 END BI:AST OFF!
] /Ds
Backward stepping can also be used to print
words a certain number of times.
Program Ouiput
10 REM PRINTING WORDS 7
20 HOME GOING BACKWARDS
30FORP=20TO 5STEP -5 GOING BACKWARDS
40 ? "GOING BACKWARDS"’ GOING BACKWARDS
S50 NEXT P QOI}\IG BACKWARDS
60END 1.0

GOING BACKWARDS is printed four times be-
cause it takes four runs of the loop to go from 20to
5insteps of - 5.

to do: Programmer’s Pastime #56, #57

136

CHAPTER 37) A Counter

Sometimes it is handy to use a counter in your
program to help you keep track of how many
times you have done aloop. For example:

Program Output

10 REM LOOPING

20 HOME (" BUZZ OFF

30LETN=0 0

40 ? “'BUZZ OFF"’ BUZZ OFF

507N 0

60 GOTO 20 BUZZ OFF
0

This program has a never-ending loop that prints
BUZZ OFF and Oover and over. If you could get the
Apple to print:

(" BUZZ OFF
1
BUZZ OFF
2
BUZZ OFF
3

L]

you would know how many times the Apple has
done the loop and printed BUZZ OFF. To do this,
you must put a counter in the program. The coun-
teris a variable.

137

Flow chart

(START)

i

HOME

4
LETN=0

!
? “BUZZ OFF"

{
LETN=N+1

{
?N

)
GOTO

Line
Loop Number

1 30
1 40
| 50
1 60
1 70
2 40
2 50
2 60
2 70

In this program, the counter is the variable N.

Program Output
10 REM A COUNTER #
20 HOME BUZZ OFF
SOLET N=0 |
40 ? “'BUZZ OFF"’ BUZZ OFF
S0LETN=N+1 2
607N BUZZ OFF
70GOTO 40 3
BUZZ OFF
4
Program Trace
What Happens
N is intfroduced as 0.
BUZZ OFF is printed once.

Counter adds 1 to N.
Value of N is printed. (1)
Go to line 40.

BUZZ OFF is printed a second time.
Counter adds 1 to N.

Value of N is printed. (2)

Go to line 40.

.. .and so on.

138

Contents
of N

NN = ———00

The statement that makes the value of N in-
crease by | each time the loop is done is: 50 LET
N=N+1. This statement must be in the loop body.
It is called the counter. After running the program,
you will need to press C to stop the run. At the
end of the run, you can look at the last number
printed and know how many times the Apple has
printed BUZZ OFF.

You can also use a counter in a FOR-NEXT loop.

Flow chart Program Ouiput
() 10 REM FOR-NEXT -
START COUNTER TERRIFIC
4 20 HOME 1
30LET C=0 TERRIFIC
FSOME 40FORG=1TO 10 2
;i 50 7 TERRIFIC" TERRIFIC
40 IETC=C#l 3
LETC=0 A e .
80 NEXT G, .
1 90 END .
FORG=1T0 10| «—— .
]
? “TERRIFIC”
!
LETC=C+1
]
?¢C
l
NEXT G ———

139

You must be very careful when you use more
than one variable in a program. In the previous
program, the variable C stands for the counter. The
variable G stands for the FOR-NEXT loop. It is impor-
tant to keep these variables separate so you can
better understand what the program is doing.

Another word of warming: some BASIC words
are reserved. This means you cannot use the first
two letters of these words as variables. Some of
these BASIC words are: GR, IF, and TO. If you use
these commands as variables, the Apple will
print a SYNTAX ERROR.

1. Use the variable C for the counter.
2. Use the variable FL for the FOR-NEXT loop.

to do: Programmer’s Pastime #58

140

@HAPTER 38) Timing It

You have learned how to tell the Apple to clear
the screen in both direct and program modes by
using the HOME command. In your programs,
you have used HOME as one of the very first pro-
gram commands. You can also use HOME in the
middle of a program or toward the end. For
example:

Program Output
10 REM CLEAR IT TWICE

20HOME MY NAME IS APPLE
30?7 "MY NAMEIS APPLE"’

40 HOME (screenis cleared)
50?7 "WHAT'S YOURS?"’
60END

WHAT'S YOURS?
1O

When you run this program, you will notice that
the Apple writes MY NAME IS APPLE and then
clears the screen so fast that you can barely read
it. Computers work thousands of times faster than
people. This is usually very helpful, but some-
times people want them to slow down a bit.

Use a FOR-NEXT time loop in line 35 to use up
time and make the Apple wait before going on to
the next program instruction in line 40.

Program Ouiput

10 REM MAKE IT WAIT

20 HOME /MY NAME IS APPLE
307" "MYNAME IS APPLE"’ (Apple counts to 1000)
35 FOR TL=1 TO 1000: NEXT TL (screenis cleared)

40 HOME

50 ? "WHAT'S YOURS?"'

(" WHAT'S YOURS?
1.0

141

' The timeloopinline 35 makesthe program stop
E running while the Apple counts to 1000. When
the Apple has finished counting, the program
continues.

The colon shortcut is used to write a FOR-NEXT
time loop. The colon separates FOR fromn NEXT so
the time loop can be written on one program line.
In a FOR-NEXT time loop, there is no loop body.

If you want the Apple to wait longer, change
1000 in the time loop to a larger number. If you
want the Apple to move faster and not wait so
long, change 1000 to a smaller number.

Speeding

Besides making the Apple wait in the middle of
a program, you can make it print on the screen
more slowly. The SPEED statement is used to slow

down the printing.
Program Output
10 REM CONTROLLING THE SPEED
20 HOME NORMAL SPEED
307 ""NORMAL SPEED"’ VERY SLOW
40 SPEED=3 I[H
507 “'VERY SLOW"’
60 SPEED=255
70END

In this program, the message NORMAL SPEED is
printed at the Apple’s normal fast speed. It looks
like both words are printed on the screen at the
same time. The SPEED statement in line 40
changes the printing speed and slows it down.
When the message in line 50 is printed, each
letter is slowly printed on the screen. Line 60 is
very important. It puts the printing speed back to
normal when the program is over.

The printing speed can be set using any
number from 0 to 255. 255 is the normal printing
speed; Ois the slowest.

to do: Programmer’s Pastime #59, #60

142

(PROGRAMMER’S PASTIME #60)

Read each flow chart. Using a SPEED statement,
write a program for each flow chart.

Flow chart Program

1 (START)

i

Clear Screen

i

Slowest Speed

1

? “SLOW”

|

i

Normal Speed

143

Flow Chart Program

2 (START)
i

Clear Screen

l

Slow Speed

i

? “NOW YOU

SEEIT”

/

i

Clear Screen

i

Normal Speed

l

? “NOW YOU
DON'T”

/—
|

144

(CHAPTER 39) sukers

You can use the FOR-NEXT time loop to make
things blink on and off the Apple’s screen. For

example:

Program Output

10 REM BLINK

20 HOME “wow”

30 FOR TL=1 TO 500: NEXT TL
407 "WOW"
50 GOTO 20

The secret to the blinking is in lines 30 and 50. In
line 30, FOR TL=1 TO 500 makes the Apple wait a
short time. In line 40, WOW is printed. In line 80,
the Apple goes back to line 20 and clears the
screen.

BLINK OFF: lines 20 and 30
BLINK ON: line 40
To make output blink, you must have a FOR-
NEXT time loop and a GOTO or FOR-NEXT loop.
You can make something blink faster by
changing 500 to a smaller number. You can
make output blink more slowly by changing 500
to alarger number.
You can also make output blink in a lo res
graphics program. Try it!

to do: Programmer’s Pastime #61, #62

@

PPIPCOLPCOLPOPIORECVWLICTI®®

==
L]
L]
°
L]
®
L
@
L
o

QoPPCPPP®

®
@h@@@@@@m@){

r
®

PPeEeLePPLEEPeEL PO @)

145

(CHAPTER 40) Fast Graphics

FOR-NEXT loops can make programming lo res
graphics faster and easier. The program below
quickly fills the graphics screen with one color. If
you are drawing a screen picture, this could be
used as your background.

10 REM FILLING THE BACKGROUND
20GR

30 COLOR=9

40 FORBG=0TO 39

50 HLIN 0,39 AT BG

60 NEXT BG

70END

The FOR-NEXT loop draws horizontal lines
across the screen until the whole screen is filled
with color. The loop variable, BG, stands for the
rows. Its value starts at 0 (for row 0), and increases
by one each time the loop is done. For example:

BG
FIRST time through the loop, line 50 reads HLINO,39 ATO
SECOND time through the loop, line 50 reads HLIN 0,39 AT 1
THIRD time through the loop, line S0reads HLIN 0,39 AT 2
and so on.

The next program uses FOR-NEXT loops in the
same way to make grass and sky.

10 REM GRASS

20GR

30 COLOR=12

40FORG=18TO 39 Grass isdrawn on the

50 HLIN 0,39 AT G screen fromrow 181to

60 NEXT G row 39.

70 REM SKY

80 COLOR=6

Q0FOR S=0TO 17 The sky is drawn on the
100 HLIN 0,39 AT S screen fromrow Oto
110NEXTS row 17.
120 END

The next program uses a FOR-NEXT loop to
draw a pink cross on the screen:

10 REM PINK CROSS

20GR

30 COLOR=11

40FORI=10TO 20

50 PLOT 15,1 (Draws vertical line.)
60 PLOTIL 15 (Draws horizontal line.)
70NEXT I

80END

The first time through the loop, the Apple willPLOT
15,10 and 10,15. The second time through the
loop, the Apple will PLOT 15,11 and 11,15. The
third time through the loop, the Apple will PLOT
15,12and 12,15. And so on.

Using FOR-NEXT loops in your programs will
often save you a lot of time, especially when you
are writing graphics programs!

to do: Programmer’s Pastime #63
Component 6 Fun Page

147

148

CHAPTER 41

INPUT 150
CHAPTER 42

[F-THEN 156
CHAPTER 43

Alphabetizing 165
CHAPTER 44

READ-DATA 167
CHAPTER 45

Problem-Solving Programming 179
CHAPTER 46

Conversions 185

149

(CHAPTER41) mout

Program
10 REM INPUT
20HOME

30? "HOW OLD ARE YOU"*
40 INPUT A

In your dealings with the Apple so far, you have
typed programs on the keyboard and then sat
back and watched them run. The only way you
have given input to the computer is by typing
programs on the keyboard.

By using an INPUT statement in your program,
you can interact with the program while it is run-
ning. The INPUT statement makes the computer
stop the program and ask you for information or
data. When the INPUT statement is used, the pro-
gram becomes an interactive program because
the user can now interact with the computer.

Put an INPUT statement in your program at a
point where you want the Apple to stop the pro-
gram and ask for data or information. The Apple
will stop the program at the INPUT statement and
print a ? and flashing cursor. This means that the
computer expects you to type something on the
keyboard. What you type will probably be the
answer to a question. After you type the input, the
Apple will continue running the program.

An INPUT statement usually comes after a ques-
tion has been asked in the program. For
example:

Output

HOW OLD ARE YOU
(ym

Line 40 is the INPUT statement: 40 INPUT A. A is
the variable where the number you answer with
is stored.

150

Program Outiput

10 REM INPUT

20 HOME HOW OLD ARE YOU

30? “HOW OLD ARE YOU"’ 212 ~ you type
40 INPUT A YOU ARE 12 YEARS OLD

50 ? “'YOU AREp *’ A “'BYEARS OLD"’ 1o

60 END

If the answer to the question is to be a word or
alphanumeric data, a string variable must be
used. For example:

Program Output

10 REM INPUT

20 HOME WHAT IS YOUR NAME

307? “""WHATIS YOUR NAME" ?HARRY + you type.
40 INPUT N$ HI THERE HARRY

50 ? “'HI THERE} "’ NS 1EL

60 END

151

When you make a flow chart for a program
with an INPUT statement, you will use a new

shape:
(INPUT

Be sure to write the word INPUT inside this box
because the box will also be used for another
statement, which you will leam about later.

Flow chart Program Output
() 10 REM INPUT
START 20 HOME HOW ARE YOU
‘ 307 “HOW ARE YOU"’ ? FINE < you type.
40 INPUT AS I'M GLAD YOU'RE FINE
HEOME 507 “I'M GLAD 10
. YOU'RElS " AS
60 END
2 “HOW ARE
YOU"
!
ra
INPUT A$
I
?“I'M GLAD
YOU'RE" A%

i

(stop)

The Apple stops the program at the INPUT state-
ment in line 40. A ? and flashing cursor are
printed on the screen asthe Apple waits for you to
type in your response. Once you have typed your
answer and pressed . the program will con-
tinue running. Your response is stored in AS, and
printed in line 50.

162

Notice that the question maik is printed on the
screen line after the question. There is a trick to
make the ? be printed after the question on the
same line: use a semi-colon after the question.
Remember that a semi-colon holds the cursor
after the last thing printed, and then prints the
next thing in the very next column.

Program Ouiput

10 REM INPUT WITH ;

20 HOME HOW ARE YOU? TERRIBLE « you type.
30? “"HOW ARE YOU"; YOU'RE TERRIBLE

40INPUT A$ =y

507 ""YOU'REPR “* AS

60END

1. If the answer (the input) will be a number,
use a numeric variable with your INPUT
statement:

INPUT X

2. Ifthe answer (the input) will be a word or other
alphanumeric data, use a string variable with
your INPUT statement:

INPUT XS
If you use the wrong variable, the Apple will
type:
?REENTER
3. Put a semi-colon after your question.
PRINT "'DO YOU LIKE ME"";

to do: Programmer’s Pastime #64, #65, #66

153

(PROGRAMMER'’S PASTIME #66)

Flow chart

It is fun to use INPUT statements in lo res graphics
programs. You could have the INPUT statement
ask for a color or a location at which to draw
something. Read the program below and run it
on the Apple. The program draws a pattern on
the top half of the screen. Write a program that
draws a mirrorimage of the pattern on the bottom
half of the screen.

10 REM PATTERN

20GR

30FOR J=0TO 19

40 ? "'PICK ANUMBER< 1-15>";
50 INPUT N

60 COLOR=N

70 HLIN J,39-J AT J

80 NEXT J

QO0END

Write your own program here:

Program

154

This program uses INPUT statements to ask the
user where he or she wants to draw a horizontal
line and what color the line should be. Run this
program on the Apple to see what it does.

10 REM DRAW A HORIZONTAL LINE
20 HOME
30GR
40?7 "WHAT COLOR LINE? CHOOSE A
NUMBER < 1-15>";
SOINPUT C
60 COLOR=C
70 ? "“WHICH COLUMN SHOULD THE LINE
START AT <0-39>"';
80 INPUT A
90 ?**AT WHICH COLUMN SHOULD THE LINE
END <0-39>"';
100 INPUT B
1107 AT WHICH ROW SHOULD THE LINE BE
DRAWN <0-39>";
120 INPUTR
130HLIN A.BATR
140 GOTO 40

Write your own program below that uses INPUT
statements to ask the user where to draw a ver-
tical line and in what color.

155

(CHAPTER 42) w-men

So far you have leamed how to program the
Apple to print things on the screen and make
pictures and designs in lo res graphics. You also
know how to make the Apple do math equa-
tions. Computers work mainly with numbers.
They were invented to do long and tedious arith-
metic thousands of times faster than humans can.
Inthisway, computers have saved people count-
less hours of work.
Computers can do other things as well.

Example
1. They can compare letters and Does X come before Y in the
numbers: alphabet?Is 97 bigger than 987
2. They can make a decision and IF X$="YES"* THEN PRINT ""HELLO"’

then do the right task::

You now have the skills to set up a flow chart for
these types of problems. The flow chart on the
next page will have the Apple make a decision
and then do the right task based on your input:

156

Flow chart

(START)

i

HOME

!

? “AREYOU
HUNGRY”’

!

4
INPUT A$

Yes

? “WAIT UNTIL

DINNER” ?VEAT”

o D) |

Notice the decision box in the flow chart.
Whenever the program asks a question, the deci-
sion box is used. Also notice that a single-alter-
native decision step is used. If the answer to the
question is no, continue going straight in the flow
chart. If the answer is yes, take a detour and then
skip to the end of the program. The GOTO state-
ment makes the program jump to the end.

157

Program

10 REM DECISIONS, DECISIONS

20HOME

307 " ARE YOU HUNGRY"";

40 INPUT AS

S50IF AS=""YES" THEN
?"EAT".:GOTO 70

60?7 "WAIT UNTIL DINNER"

70END

Yes

Flow chart

(smar)

!

HOME

!

? “ARE YOU A
BOY? TYPE
YES ORNO”

' !
v
INPUT B$

?“AREYOUA
GIRL? TYPE
YES OR NQO”

i

&
INPUT G$

i

1 No

? “I LIKE
GIRLS!”

Here is another example:

Program

10 REM USING IF-THEN
20 HOME
30?7 ""ARE YOU A BOY?"”
407? "TYPE YESORNO"’
S50 INPUT BS
60IF BS=""YES'' THEN 130
70? “"ARE YOU A GIRL?"
80?7 "TYPE YESOR NO*’
Q0 INPUT GS$

100IF G$="NO’' THEN 30

1107 “'TLIKE GIRLS!"’

120 GOTO 140

130 ? "I LIKE BOYS!"”

140 END

GOTO STOP

? “ILIKE
BOYS!”

¥ STOP

158

Output

e ARE YOU A BOY?

TYPE YESORNO

?7YES « you type
[LIKE BOYS!

=

4 ARE YOU A BOY?

TYPE YES OR NO

?7NO « you type
ARE YOU A GIRL?

TYPE YES OR NO

?YES < you type
I LIK'E GIRLS!

10

rd *

/ARE YOU A BOY?

TYPE YES OR NO

?NO < you type
ARE YOU A GIRL?

TYPE YES ORNO

?NO « you type
ARE YOU A BOY?

TYPE YESORNO program goes
? } back to the

beginning

This program and flow chart have two single-
altermative decision steps and one jump using a
GOTO. Depending on the answers (input) to the
questions, the Apple is told to go to a certain line
in the program in the [F-THEN statement.
IFBS=""YES"'THEN 130 meansif BSis YES, then
skip to line 130.
IF BS is NO, then go on to the next program
line.
IFG$="NO"' THEN 30 means if G$ is NO, then
go back to line 30.
IF GS is YES, then go on to the next program
line.

159

——— | LIKEGOLF

Here is another example:

Flow chart

C START j
i

?“DOYOU
LIKE GOLF?
YES OR NO”

!

i
INPUT G$

Yes

T1LIKE
GOLF TOO”

e

|

GOTO STOP

i
?“IDON'T

EITHER”

160

Program

10 REM GOLF ANYONE?

207 "'DO YOU LIKE GOLF?
YESORNO™

30 INPUT GS$

40TF G$="NO'* THEN 70

50 ? "I LIKE GOLF TOO"

60 GOTO 80

707 "1DON'T LIKE
GOLFEITHER"

80END

Ouiput

(" DO YOU LIKE GOLF?

YESORNO

TYES + you type.
[LIKE GOLF TOO

155

L

i DO YOU LIKE GOLF?

YESORNO

?NO < you type.
I E)QN ‘T LIKE GOLF EITHER

1.0

If the answer (input) to the question, ‘Do you like
golf?”’ is no (GS=NO), then the Apple jumps to
line 70 and prints] DON'T LIKE GOLF EITHER. If the
answer to the question is yes, then the Apple goes
on to the next program line (line 50) and prints I
LIKE GOLF TOO. The next line (line 60) tells the
Apple to jump to line 80 (END); otherwise, the
Apple will also print | DONT LIKE GOLF EITHER if it
goesontoline 70. GOTO 80is needed to make the
Apple skip over line 70.

161

When the Apple sees an IF-THEN statement, it is
told to make a comparison. You can use many
different signs other than the equal sign when
asking the Apple to compare two things. Hereisa
list of comparison signs and what they mean:

Sign Meaning Example
= equal 44+5=6+3
> greater than 88>2

< lessthan 6<46

== greater than or equal to 33>=32
= less than or equal to 4<=4

g not equalto 65< >800

Use the IF-THEN statement when making a
comparison in a program. For example:

IF-THEN Statement Meaning

I[FA>BTHEN? A Ifthe value of A is greater
than the value of B, then
print A.

IF AS< =SS THEN 20 If the contents of AS are
less than or equal to the
contents of S$, then
GOTO line 20in the
program.

Notice that both IF and THEN are written in the
same statement on the same line.

162

Questions in flow chart decision boxes must be
changed into IF-THEN statements for the program.

Flow chart Program

IF A=4THEN

IF Z>=66 THEN

Sometimes you may have to write the comple-
ment (opposite) of the flow chart question for the
IF-THEN statement. In this case you will use the
sign that has the opposite meaning. Example:

Flow chart Complement in the
program

IFE< >FTHEN

IF Q$>=DS$ THEN

IFYS <> "NO"THEN __

163

Flow chart Program

() 10 HOME
START 207 DO YOU LIKE GOLF?
! YESORNO"
30INPUT G$
FCHE 40TF GS$ < > “YES'* THEN 70
1 507 ' LIKE GOLF TOO"’
60 GOTO 80
?“DOYOU < y ri
LIKE GOLE? 707 "1 DON'T LIKE IT EITHER
Bl el
/ - Output
INPUT G$ 7
DO YOU LIKE GOLF? YES OR NO
¥ TYES « you type.
I LIKE GOLF TOO
i35
No
1 Yes
? ILIKE DO YOU LIKE GOLF? YES OR NO
GOLETIR0 ?NO « you type.
/ I DON'T LIKE GOLF EITHER
] JDﬁ
GOTO STOP
to do: Programmer’s Pastime #67, #68, #69
l

2 “| DON'T LIKE | ———
IT EITHER”

/

i

——(stop)

164

(CHAPTER 43) Aphabetizing

Did you know that the Apple has the ability to
compare letters in string variables and alpha-
betize the words? The Apple already understands
that:

A<B<C...<Y¥<?Z

A is smaller than B, which is smaller than C,
which is smaller than D, and so on, all the way to
Z.In otherwords, A isthe smallest letter because it
comes first in the alphabet, and Z is the largest
letter because it comes last. A word that begins

with A is smaller than a word that begins with Z. Byl e
Keeping this in mind, you can write a short m\\\\‘
program to alphabetize two words. For example: g
Flow chart Program Ouiput
() 10 REM ALPHABETIZE
START TWO WORDS GREAT
20 HOME LOVED
S0LET AS$="1L.OVED" 1.0
HEME AOLET B$ ="“GREAT"”
I 50IF AS <BS THEN 80
607?BS:?AS
LETA$ 70 GOTO 90
="LOVED 80?AS$:?BS
l QO END
LET B$ You must program the Apple to print the
="GREAT smallest word before the largest word.
!
Is
AS <BS$ Yes
?
1 No
?B$? A$.
2 AS — | GOTOSTOP 2B% (sTOP)

165

The Apple can also alphabetize words that
have the same letters, such as PAUL and PAULA.
Both words begin with P-A-U-L, but PAULA has an
extra letter at the end. The Apple knows that the
rule for this situation is: The shortest word comes

first. For example:

Flow chart Program Output
C) 10 REM ALPHABETIZE
START TWO LIKE WORDS PAUL
{ 20 HOME PAULA
30LET AS$="PAUL" 1’0

HOME A0LET BS ="“PAULA"

: 501IF AS < BS THEN 80

607BS : ? AS

LETAS 70 GOTO 90
="PAUL 807 AS:?BS

T 9OEND
LET B$
— “PAULA”

1

Is

A$ <B$ ¥es

?

1 No
? BS 27 AS &
e ——| GoToSTOP = (STOP)

|

This type of algorithm is only useful for alpha-
betizing two words. If you needed to alphabetize
more than two words, you would have to use a
different type of algorithm called a sorting

algorithm.

to do: Programmer’s Pastime #70

166

(CHAPTER 44) rean-pam

Another programming trick that can save you
and the computer time is the use of READ-DATA
statements.

The READ statement and the DATA statement
go together in a program. These two statements
make it possible for you to place data in your
program as you type it on the keyboard, or even
while you are running the program.

This is handy because you can use the same
program many times. Instead of writing and typ-
ing the program over again for different data,
you merely change the informnation in the DATA
statement. The program below adds four
numbers:

Flow chart Program Output
(START) 10REM ADD 4
NUMBERS
! 20 HOME
30READ A,B.C.D
FOME 40DATA 6.7.8,9
T 50?A+B+C+D
/ C 60END
READ
A,B,C,D
?
A+B+C+D

i

(stop)

167

If you want to use the same program to add four
different numbers, just change the DATA state-
ment in line 40. Example:

40DATA 10,11,12,13
Ouiput

46

A3 &

] ID\

The READ box looks just like the INPUT box in a
flow chart. You must label the box as READ or
INPUT so it is not confusing.

The READ box looks just like

the INPUT box in a flow chart:
You must label the box READ

or INPUT so we don't ger confused.

168

You can also add more data to a DATA state-
ment. Example:

Flow chart Program Output
10 REM DATA WITH
C START) WORDS (1 LIKE YOU
! 20 HOME YOU'RE MY FRIEND
30READ AS,BS.CS 5
HOME 407 AS. BS. CS].QEIIJ:T OF DATA ERROR IN 30
T 50GOTO 30 s
P 60DATA 1", “'LIKE"’,
READ “YOU™, “YOU'RE",
A$,B$,C$ = “MY”, “FRIEND"’
1 70END
7
A$, B$,C$
4
GOTO READ —

!

(sor)

Inline 30the Apple is told to READ enough data
to fill up the three variables AS, BS, and CS. The
Apple looks for a DATA statement in the program
and finds one in line 60. It “'gobbles’’ up the first
three pieces of data it finds (*'I"’, V'LIKE"", ""'YOU"")
and assigns them to AS, BS, and CS.

30READ AS, BS, C$

Ab Bé Cé
60 DATA e LERe . TOUe I LKE'| [*You

You can think of this data as being used up.

169

In line 40, the Apple prints the contents of AS,
BS, and CS$. Line 50 tells the Apple to go back to
line 30 and read three new pieces of data. The
Apple finds “"YOU'RE”, "MY"’, “"FRIEND" in the
DATA statement and again assigns them to AS,
BS, and C$. These are the new values of AS, BS,
and C$. "I, “"LIKE"”, and "'YOU" have been
erased from the Apple’s memory.

30READ As, BS, Cs$

60DATA. .. "YOU'RE” , "MY"" , "FRIEND”

The second time through, the Apple prints the
Ap B¢ C$ new contentsof AS, BS, and C$ whenitgetstoline
“YOURE” *MY” "FRIEND 40. Again, line 50tellsthe Apple to go back to line

30. Because there is no more new data to gobble
up in the DATA statement, the Apple prints:

?70UT OF DATA ERRORIN 30

This is the Apple’s way of saying, ''There’s no
more data to read into AS, BS, and CS$!”’

Remember that you can type up to 255 charac-
ters for one line number. This includes the line
number, statement, data, and even blank
spaces and commuas. If you have more data for a
DATA statement than 255 characters, you may
use more than one DATA statement in your
program.

The Apple treats all of the data in a program as
one big list. The READ statement has a pointer
that goes through this data list and gobbles up
any new data.

170

The DATA statement can be placed anywhere
in a program. There is only one thing you must
look out for. You must have the data in your DATA
statement in the correct order. For example, if you
want the program to print:

HI THERE PAL

the data “HI" “THERE" and “PAL" must be in this
order in the DATA statement. If they are out of
order, this is what might happen:

Program Output

10 REM DATA OUT OF ORDER
20 HOME PAL
30READLS, MS, N$ 1,0
407LS, MS$, N$

50 DATA “'PAL", “"THERE'’, ""HI"

60 END

LY &
LAY

You must also make sure that the data in the
DATA statement is separated by commas. Any
data not separated by commas will be lumped
together as one piece of data.

171

THERE HI

If the data in your
DATA statement is
not in order., it can
really mess up your
program/

If you have three variables to read, the Apple
will gobble up data in groups of three. Any left-
over pieces of data will not be printed. For

example:
Program Data used Output
10 REM LEFTOVERS Isttime: 2,4, 6 e
20 HOME 2nd time: 8, 10, 12 2 4 6
30READX,Y,Z left over: 13, 14 8 10 12
407?X.Y.Z o
50 GOTO 30]OEIIJT OF DATA ERROR IN 30
60DATA 2,4,6,8,10,12,13,14 o
70END

You may ask, ''Is there any way I can get the
program to end without printing the ?0UT OF
DATA error message?’’ The answer is "'Yes!’' You
need to:

1. Put some dummy data at the end of your
DATA statement. (Dummy data is data that
you wantthe Apple toread as asignal that the
pointer is at the end of the data list.)

2. Use an IF-THEN statement that directs the Ap-
ple to the end of the program as soon as it
READS the dummy data.

The data 13 and 14 are not
printed because they make
up a group of two. The READ
statement asks for a group

of three pieces of data.

Flow chart Program

10 REM DUMMY DATA

C START) 20 HOME

4 30DATA 48,6,8.5,9,
—~999,-999

40 READ QU

50 IF Q= —999 THEN 80

60?2Q,U

70 GOTO 40

80END

Yes

— | GOTO READ

i

s)

In the program, —999 was used as the dummy
data. When you choose dummy data, select
something you know you probably won't be
using for data. For example, itis very unlikely that
—-999 would be data that you would want to use
in a program.

The IF-THEN statement in line 50 of the program
asks, ''Does Q= —999?"" after each gulp of data is
read. When Q finally equals —999, the Apple is
directed to the END of the program.

173

0 O

Flow chart

(START)
i

HOME

i

FORN=1TO3

i

o~
READ P.Q

i

?7PxQ

/

l

NEXT

(stop)

It is important to have dummy data for each
variable that the Apple will read. For example, it
you have five variables in your READ staterment,
you must have five pieces of dummy data at the
end of the DATA statement. Each variable must
have dataread into it every time or the Apple will
print the 20UT OF DATA message at the end of the
program's output.

If you don't want to use dummy data in your
program, you can use a FOR-NEXT loop instead.

Program Ouiput
10 REM FOR-NEXT LOOP

20 HOME 0
30FORN=1TO3 24
40 READP.Q 89)
50 ?2PxQ I
60NEXTN

70DATA0,2,4,6,8,10

«— B80END

174

The FOR-NEXT statements make the program
loop three times. During the first loop, 0 and 2 are
read into P and Q. In the second loop, the Apple
reads 4 and 6, and during the third loop 8 and 10
are read. Because the loop is done only three
times, the computer goes to line 80 and the pro-
gram ends.

1. It's OK to have both numeric and string vari-
ables in the same READ statement. As a good
programming practice, just make sure any
data in the DATA statement that goes with the
string variables has quotation marks around it.

Example: 30 READ C; DS, E, FS
40 DATA 10 'KEN'', 3 , "MITSY"”

If the data doesn 't match up to your variables,
you'll get a SYNTAX ERROR message.

2. You can't use an equation like 5 - 2 as data in
a DATA statement. You must list only single
numbers (5, 18, 343, etc.) or the Apple will give
you a SYNTAX ERROR message.

to do: Programmer’s Pastime #71, #72, #73, #74,
#75

175

(PROGRAMMER’S PASTIME #75)

Use what you know about READ-DATA state-
ments to write programs for the following tasks.

1. Write a program that multiplies three
numbers.

Flow chart Program

2. Write a program that lists the names of your
friends.

Flow chart Program

176

(CHAPTER 45) probiemSelving

By now you have discovered that the Apple is a
friend who can keep you company when you
are bored, entertain you, and help you do your
work. The most important thing the Apple can do
for you, however, is to help you solve difficult
problems.

So far you have learned how to program the
Apple to do many things. You have learned most
of the BASIC commands and algorithms neces-
sary to write problem-solving programs. In this
chapter you will learn how to put all of these
valuable toolsto use in order to teach the Apple to
solve problems.

Before the Apple can give you the answer to a
problem, there are many things that you must
plan for in writing a good program.

Problem

Joe went to the store to buy some goldfish. He
has $4.83 to spend. The fish bowl costs $2.25.
Sand for the bottom of the bowl costs 49¢ a bag.
Fish food is 60¢ for 4 ounces. The goldfish cost 80¢
each or two for $1.35. If Joe buys all of the sup-
plies, how many fish can he afford to buy?

1. Think about the problem:

a. What exactly is the Can Joe buy one or two goldfish?
problem?

b. Do Iunderstand the
problem?

c. What kind of answerdo The answer should be one or two goldfish.
want?

d. What doIneed to know in I need to know how much money Joe will
order to find out the have left over after buying the supplies.
answer? Then I will know how many fish he can

buy.

177

2. Make a data table:

a. What variables will | need
to use in the program and
what will they stand for?

b. Input variables are
variables that you already
know the value of.

c. Output variables are the
answers that the Apple
will give you.

d. Program variables are
variables that are used in the
program to do other things.

3. Algorithm:

a. Break the problem into
smaller parts.

b. Figure out the step-by-step
process you will use to
solve the problem. Decide
what operations you will
use (+,—,/, and so on).

Data Table
Input Variables

T=total $ that Joe can spend =483
FB=cost of fish bowl =2.25
S=cost of sand = .49
FF=cost of fish food = 60
Gl=cost of 1 goldfish = .80
G2=cost of 2 goldfish =1.35

Output Variables
TC=total cost of FB+S+FF
L=money left after buying the
supplies
There are no program variables in this
program.

Find out the TC by adding FB+S+FF.
Find out L by subtracting T-TC.

Find out if L is enough to buy one ortwo
goldfish. Ask:

IsL>=Gl1?
Is L>=G27?

4. Tell how many goldfish Joe can buy
and how much money he would have
after buying both the supplies and the
goldfish.

Ll

178

4. Flow chart:

a. Write the algorithm in flow

chart form.

(START)

1

LET T=4.83

!

PRINT “JOE
HAS” T
“DOLLARS”

_/

i

LET FB=2.25
LETS = .49
LETFF= .60

!
LETTC=
FB+S+FF

i

PRINT “FISH
SUPPLIES

i

LETL=T-TC

i

PRINT “JOE

HAS” L “LEFT

'

LETG1= .80
LET G2=1.35

ot |
PRINT “JOE CAN PRINT “JOE CAN
BUY 2 GOLDFISH" BUY 1 GOLDFISH”
PRINT “JOE WILL PRINT “JOE WILL
HAVE” L-G2 HAVE” L-G1
“DOLLARS LEFT” “DOLLARS LEFT”

Yes

Yes

Q

179

PRINT “JOE
CAN'T AFFORD
ANY FISH”

5. Coding:

a. Write a BASIC program for the flow chart.

10LETT=4.83

207 "JOEHAS"' T ""'DOLLARS"

30LET FB=2.25 . LET S= .49 : LET FF=.60

40 LET TC=FB+S+FF

50 ? "'FISH SUPPLIES COST"" TC

60LETL=T-TC

70? " JOEHAS" L ""LEFT OVER"

80LET G1=.80:LETG2=1.35

90 IF L>=G2 THEN 130

100 IF L>=G]1 THEN 150

1107 " JOE CAN'T AFFORD ANY FISH"

120 GOTO 160

130 ? ""JOE CAN BUY 2 GOLDFISH"' : ? "AND
HAVE" L—-G2 "DOLLARSLEFT*

140 GOTO 160

1560 ? ""JOE CAN BUY 1 GOLDFISH'* : ? “"AND
HAVE"” L-GI "DOLLARS LEFT"

160 END

6. Debugging:

a. Pretend you are a computer. Follow the di-
rections in your program to make sure it
works. This is called tracing the program.

b. Run the program on the Apple to check for
bugs.

c. Does the program do what you wanted it
to do?

I +ink T
see a bug

78 ReVlsmg :

a. Isthere a better or shorter Yes. We can write the program using
way to write your READ-DATA statements.
program?

b. Can you use better Yes. We can use REMARKS.
programming style?

c. Can you design your Yes. We can clear the screen and leave
output better? spaces between the printing.

10 REM CALCULATING PURCHASE OF GOLDFISH & SUPPLIES
20 HOME
30 READT, FB, S, FF, G1, G2
40 DATA 4.83, 2.25, .49, .60, .80, 1.35, 99, 99, 99, 99, 99. 99
50 [F T=99 THEN 60
60 ?""JOEHAS"” T "DOLLARS"
70 LET TC=FB+S+FF
80 ?
Q0 ? V'FISH SUPPLIES COST "’ TC
100 LETL=T-TC
110 s
120 ? "*JOEHAS" L "'LEFT OVER"
130 IF L>=G2 THEN 170
140 IF L>=GI1 THEN 190
150 ? ' JOE CAN'T AFFORD ANY FISH"
160 GOTO 200
170 ? **JOE CAN BUY 2 GOLDFISH ANDHAVE"' L-G2 ""'DOLLARS LEFT"’
180 GOTO 200
190 ? "' JOE CAN BUY 1 GOLDFISH ANDHAVE"' L—G1 "DOLLARS LEFT"
200 END

Using the READ-DATA staterments may be the
best way to write this program. Why? If the price
of goldfish or supplies goes up, you can change
the DATA statement and the program will be
updated.

You can write good problem-solving programs
for the Apple to solve if you follow these seven
steps.

1. THINK about the problem

2. DATA TABLE for input, output, and program
variables

3. ALGORITHM—How can [solve the problem,

step by step

FLOW CHART

CODE the flow chart into a BASIC program

DEBUG

REVISE the program to make it the best

>3O n s

to do: Programmer’s Pastime #76

182

@HAPTER 49 Conversions

The Apple can be especially good at running a
program that helps you convert one thing to an-
other. Convert means to change, so a conversion
is changing information to a different type. For
example, you can convert:

inches to feet decimals to fractions
feet to meters miles to kilometers

You can program the Apple to make the con-
version and then print a table that shows how the
two types of conversions are equal to each other.
For example:

Flow chart Program

C) 10 REM CONVERTING INCHES
START TO FEET
{ 20 HOME
307 INCHES", "FEET & 7
KNG 40FORI=1TO 24
T 50 2LH12
60 NEXT I
PRINT THE 70 END
HEADING
1
Use a FOR-
. NEXT loop to
make | (inches)
start with 1
and goto 24
]
PRINT
| (inches)
1
L——— | NEXT

!

C STOP)

183

Output

/'HQCHES FEET
1 .083333
2 16666667
3 25
4 333333
5 41666667
o} D
7 .583333
8 66666667
Q D
10 .833333
11 91666667
12 1
24 2
1o

A

The output of this program shows how inches
compare to feet. You can tell from the program
that:

linch =0.083333 of afoot

Jinches=0.25or % of a foot

6inches=0.5 or %2 of a foot
12 inches=1 foot

Line 30 prints the heading for the output. The
heading of a program is usually printed first in the
output. It explains the meaning of the numbers
that follow. The heading in the program is:

INCHES FEET

The heading tells you that the numbers listed un-
der INCHES are inches, and the numbers listed
under FEET mean feet.

Conversion programs are very easy to write.
They are short because they use FOR-NEXT loops.
The most important part of this type of program is
the conversion equation. This equation tells the
Apple how to convert from one thing to another.
The conversion equation in the INCHES to FEET
program is I/12. This tells the Apple that to find
feet, it must divide the number of inches (I) by 12.

To write a good conversion program, re-
member to include:

1. aheading

2. aFOR-NEXT loop that decides which numbers
to start and end with on the conversion output
and decides how many times the program
will loop.

3. conversion equation

to do: Programmer’s Pastime #77, #78, #79
Component 7 Fun Page

184

CHAPTER 47

TAB 188
CHAPTER 48

Moving Around the Screen 190
CHAPTER 49

Motion Pictures 195
CHAPTER 50

Random Numbers and Integers 200
CHAPTER 51

Writing Game Programs 205
CHAPTER 52

You are a Creative Programmer! 209

185

(CHAPTER 47) s

You have learned how to conirol where some-
thing is printed on the Apple’s screen by using
commas and semi-colons. There is a function,
called TAB, that you can use to control the screen
output. A function is an operation that the com-
puter does automatically, like a small built-in

program.
6 The TAB function is used only in PRINT state-
: ments, like this:

10 ? TAB(10); sk 5k

You have learmed that the Apple’s screen has
40 rows and 40 columns labeled from 0 to 39. This
is true only when the Apple is in graphics mode.
When the Apple is in direct mode it still has 40
columns, but it has only 24 rows. The columns are
labeled | through 40 and the rows are labeled 1
through 24.

The TAB function tells the Apple to move the
cursor across the screen to column 10 and begin
printing in column 10.

LR ES

tl2l3lalstelzlialolwiniizialuvislielirieg

Columns

PRINT TAB(20); "'# % %"

will make the Apple begin printing in the 20th
screen column.

The TAB function above tells the Apple to move
the cursor across the screen to column 10 and begin
printing in column 10.

186

When you use the TAB function in a PRINT state-
ment, you must remember to put a semi-colon
after the last parenthesis.

PRINT TAB(25); "'$"
This function will cause a $ to be printed in column
25,

The number inside the parentheses of a TAB

function can be a variable. You must, however,

introduce the variable in the program before you
use it in a TAB function. For example:

10 HOME
20LETZ=33
30?TAB®Z); *'1"’
You may also use more than one TAB function
in a PRINT statement. For example:

20 ? TAB(10); " x"; TAB(15); "% %"

This function causes the Apple to print an * in
columns 10and 11 and a % in columns 15and 16.
Notice how the two TAB functions are separated
by a semi-colon.

You can have lots of fun designing output by
using TAB.

to do: Programmer’s Pastime #80, #81

187

!
5%

This program causes an
1o be printed in column

(CHAPTER 4.8) Moving Around the Screen

There is another function that works very much

like the TAB function. SPC is the space-over func-

tion. It is also used in a PRINT statement, like this:
10? SPC(10); "'PRINT HERE"*

The SPC function tells the Apple to make 10
blank spaces on the screen and then print what is
inside the quotation marks. Notice that the SPC
function also must have a semi-colon after the
second parenthesis.

You can use more than one SPC function in a
PRINT statement. For example:

10 ? SPC(5); “'HERE"’; SPC(5); ""'THERE"

H[E|R|E T|H|E|R|E

th2b 3l 4l 516l 7lalolwinliallisleiviivliigloi2onl2izzizalsls

The SPC functions above tell the Apple to space
over five columns and print HERE in the next col-
umn. Then the Apple must make five screen
spaces before printing THERE.

There are two other statements that let you pro-
gram the Apple to print anywhere on the screen.
VTAB moves the cursor vertically (up and down),
and HTAB moves the cursor horizontally (across
the screen).

188

Remember that when the Apple is in direct
mode, the screen is made up of 40 columns la-
beled | through 40 and 24 rowslabeled | through

24,

Rows

® N O oA W N -

10
1
12

14
15
16
7
18
19

2
2
23
24

The Apple’s Screen in Direct Mode

2% 4 8 8 T 8B @&

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Columns

189

R I R A

10
1"
12
13
14
15
16
17
18
19

21

2

You can use VTAB with a PRINT statement to
make the Apple print on a certain screen line (at
a certain row). For example:

10 HOME
20 VTAB 15; ? “'PRINT ATROW 15"
30END

PRINT AT ROW 15

You can use HTAB with a PRINT statement to
make the Apple print a certain number of spaces
over on the screen—beginning in a certain col-
umn. For example:

10 HOME
20HTABS; ? "'START PRINTING IN COLUMN 5"
30END

190

1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 16 177 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 M 35 36 I 38 39 40

S|IT(A|R|T| |P|R[I|N|T[I|N|G [[N| |[C[O[L|U[M|N] |5

You can use both VTAB and HTAB in a PRINT
statement to make Apple print at a certain loca-
tion on the screen. For example:

10 HOME
20VTAB 15: HTAB5: ? "'DOWN 15, OVER 5"
30 END
Columns
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 "34 35 36 37 38 39 40
1
2
3
4
5
6
T
8
9
10
n
12
Rows =
14
15 plolw|n] [1]5 o|VI[E[R] |5
16
17
18
19
20
21
2
2
24

191

Notice that HTAB and VTAB come before the
PRINT statement. A colon (:) separates the HTAB
and VTABand the ? .

In direct mode, the Apple has only 24 screen
rows. You cannot use 0 with HTAB or VTAB. The
smallest number you can use is 1. The largest
number you can use for HTAB is 40, and the largest
number you can use for VTAB is 24. If you use a
wrong number, the Apple will print an ILLEGAL
QUANTITY error message.

Moving around the screen

Function/
Statement Example What Happens
TAB ? TAB(10); “'Z2"’ Z is printed in the ninth column.
SPC 25PC(10); "2 The Apple makes 10 blank spaces and
then prints Z in the next column.
HTAB HTAB 10:.7?"“'Z"’ The Apple counts over 10 spaces and then
{ prints Z in column 10.
VTAB VTAB10:?"Z" The Apple counts down 10 rows and prints Z
inrow 10.

to do: Programmer’s Pastime #82, #83

192

(CHAPTER 49) Motion Pictures

You can have lots of fun writing programs that
move graphics across the screen. An easy way to
do this is to use strings and add them together.
Run the program below to see how this works:

10 REM A MOVING STAR
20HOME
30LETBS="" "":LETSS= ""%"
40 VTAB 12
S50FORL=1TO 39
60 HTABL
70 FORTL=1 TO 100: NEXT TL
80 ?BS +58;
QONEXTL
100 END

Ablank spaceisstored in BS, and the : is stored
in SS. The VTAB 12 statement makes the star
move across the screen at row 12. The FOR-NEXT
loop does many things. The value of L increases
from 1 to 39. The HTAB L statement makes the :*
move from column | to column 39 across the
screen. The FOR-NEXT time loop slows down the
movement. The trick to the movement is in line
80. In order to make a graphic move, it must be
erased after it is printed, and then printed again
in the next column. This can be done by adding
the two strings together. BS + S$ means that BS and
then S$ will be printed in that order each time the
loop is done. This is what moves the * (in SS)
across the screen.

The example below shows how the movement
is created.

%

B %

B
B
Bx
B

The B is the blank that erases the star as it moves
along.

193

You can make a word move across the screen
by changing the contents of SS. Make the follow-
ing change and run the program again.

30 LET BS="p" : LET S$="MOVIN' ON"’

You can change how fast the graphic moves
by changing the FOR-NEXT time loop.

The following program makes the word HI
move down the screen from the top to the bottom.

10 REM FALLING

20HOME

30 LET BS="pB'": LET MS$="HI"
40FORL=1TO 24

S0 ?BS

60 HTAB 10

70 VTABL

80 ?7MS;

Q0 HTAB 10
100 FORTL=1TO 100: NEXT TL
110NEXTL
120 END

The contents of BS must have two blank spaces
because the word HI in MS$ is made of two letters.

You can also make moving pictures in lo res
graphics. Instead of using a string variable that
contains a blank space, you will use the com-
mand COLOR=0 to make the screen black and
erase the graphic. The following program makes
aball roll down a set of stairs. Run it on the Apple.

194

Flow chart

!

Select ball color

{

PLOTB+1,B

(START)
GR
!
REM Draw stairs

i

Select stair color

i

FORS=1TO39

! No

!

HLIN1,SAT S

REM Erase ball
on higher stair

i

i

NEXT S

Color=0 (black)

i

i

REM Rolling ball
Draw ball

PLOT:B+1, B~1

!

!

FOR-NEXT time loop | <

Yes

FORB=0TO 38

Set ball color

i

PLOTB+2,B

i

REM Erase ball
on higher stair

i

Color=0 (black)

i

PLOTB+1,B

i

NEXT B

i

C

STOP

195

Yes

Program

10 REM BALL ROLLING DOWN
STAIRS
20GR
30 REM DRAW STAIRS
40 COLOR=6
50FORS=1TO 39
60 HLIN 1,SATS
70NEXT S
80 REM ROLLING BALL
90 REM DRAW BALL
100 FORB=0TO 38
110 COLOR=1
120 PLOTB+1,B
130 I[FB=0THEN 170
140 REM ERASE BALL ON HIGHER
STAIR
150 COLOR=0
160 PLOTB+1,B-1
170 FORTL=1 TO 150: NEXT TL
180 IF B=38 THEN 250
190 REM REDRAW BALL
200 COLOR=1
210 PLOT B+2, B
220 REM ERASE BALL ON HIGHER
STAIR
230 COLOR=0
240 PLOTB+1,B
250 NEXT B
260 END

196

To make moving graphics in direct mode:

Use string variables. One string variable must
contain a blank space(s).

To make moving graphics in lo res graphics
mode:

Use the color commands. COLOR=0 erases a
graphic.

to do: Programmer’s Pastime #84

197

@HAPTF.R 5@ BN

RND() 15 a

1| random number
| between Oand | \
3

K

The word random means "having no pattern or
special purpose.’’ Therefore, random numbers
are a list of numbers that are not in any particular
order or for any particular purpose. An example
of a list of random numbers might be: 7, 43, -6,
0.7, 413. There is no order or number pattern in
this list, and the numbers listed have no special
purpose or meaning.

Random numbers are often used in two types of
computer programs:

1. teaching programs, also called CAI (Com-
puter-Aided Instruction)
2. games and simulations*®

You will use the RND function to create random
numbers in a program. For example:

10 REM CREATE RANDOM NUMBERS
BETWEEN O AND 1

20 HOME

30FORL=1TO 10

40 LET X=RND(1)

50 ?7X

60NEXTL

70END

The program you just read tells the Apple to
print any number between 0 and 1 ten times. The
Apple will pick numbers randomly each time.
There will be no order to the numbers. Each time
you run the program, the Apple will print a differ-
ent list of numbers.

If you want the Apple to print a list of numbers
between 0 and 10 randomly, you would change
the RND function to:

LET X=RND(1) 10

‘A simulation is a real-life “game.” It imitates
something the way it would really happen.

198

If you want the Apple to print a list of random
numbers between 0 and 100 you would change
the RND function to:

LET X=RND(1)#* 100

If you are writing a game program, you will
probably not want 0 to be a random number—
especially if the game is simulating the roll of a
die. To print any random number between 1 and
101, change the RND function to:

LET X=1+RND(1)# 100

This causes the lowest possible number to be
1.00000001 and the highest possible number to
be 100.999999.

An integer is a whole number. Numbers like
0.25 and 6.32 are not whole numbers—they are
decimals. You can use the INT function to create
whole numbers or integers in a program.

For example:

Program Output
10 REM CONVERTING DECIMALSTO DECIMAL
INTEGERS 1

20HOME 1.5
30? "'DECIMAL"’, "'INTEGER" 2
40 FOR X=1TO 5STEP .5 2.5
50 ? X, INT(X) 3
60NEXT X 3.5
70END 4

4.5

5

Notice that the integer for the decimal 1.5is 1.
The integer forthe decimal 2.5is 2, and so on. The
INT function rounds the decimal down to the
nearest integer. You could also say that the INT
function "‘chops off”’ or truncates anything to the
right of the decimal point.

199

A die is

oneof a

pair of dice \.G
i

=7

CD:&-#CQCQL\JL\J»—-»—-E
0!
(]
el

e —
|we CHOP OFF 23 l
| because it 15 1o
e right of e
gecimal poir.

Sometimes you will want the Apple to print ran-
dom numbers that are only integers. To do this,
you will use both the RND and INT functions. For
example:

10 REM ROLL IT

20 HOME

30FORL=1TO 10

40 LET X=INT(l +RND(1)%6)
500 92X

60 NEXT L

70 END

This program tells the Apple to print a random
integer between 1 and 6. The smallest possible
number would be 1 and the highest possible
number would be 6.

Let’s say you want the Apple to print a random
integer between and including 2 and 12. The INT
and RND function should say:

LET X=INT(2+RND(1)*11)
T

The smallest number that will be printed.

To create random integers between and includ-
ing 50 and 85, use:

LETX=INT(STO+RND(1)*36)

smallest number 85—-50=35 35+1=36

The formula for creating random integers be-
tween A and B (where A is the smallest integer
and Bis the largest) is:

INT(A+RND(1)%(B—A+1))
To create random integers between 26 and 77,
use the formula like this:

LET X=IN'1‘(£T\+RND(1)*(B—A+ 1))
xoox

LET X=INT(26+RND(1)*(77—26+1))
e =

LET X=INT(26+RND(1)#52)

200

Here is an example of how to use the INT and
RND functions in a CAI program that gives the
student practice in adding integers.

Program What happens

10 REM PRACTICE ADDING

20 HOME

30LET Al=INT(RND(1)*100) A random integer for Al is created.
40 LETA2=INT(RND(1):* 100) A random integer for A2 is created.

50?7AS"+"" A2V ="', The equation for the student to do is printed.
60 INPUT S The student types his or her answer.
70LETT=Al+A2 The Apple calculates the answer to the
equation.
80IFT=STHEN 110 The student’s answer is compared to the cormrect
answer. If S=Tgotoline 110.
@07? "NOPE. TRY AGAIN"’ If the student’s answer is wrong, the Apple tells
the student.
100 GOTO 50 The program goes back to line 50 and the same
equation is given to the student.
1107? “"RIGHT ON!"" The Apple tells the student he or she is right.
120 GOTO 20 Goes to the beginning of the program, picks

new random integers, and starts all over again.

Run this program to see how it works on the
Apple.

The placement of parentheses in RND and INT
functions is very important.

If the parentheses are in the wrong places, the
program won't run properly.

to do: Programmer’s Pastime #85, #86, #87, #88,
#89, #90

201

@ROGRAMMER’S PASTIME #89)

Make a flow chart and write a program that will
print 10 random decimals between 1 and 100 and
then print the integer for each.

Flow chart Program

202

(CHAPTER 5]) Writing Game Programs

Playing computer games can be an enjoyable
recreational experience. One of the rewards of
learming how to program a computer is being
able to write game programs.

There are basically three types of computer
games:

1. mathematical games: games involving
numbers and/or solving arithmetic or mathe-
matical problems.

2. recreational games: many different games
could fall in this category. I think of Space
Invaders and Dungeons and Dragons ds rec-
reational games.

3. simulations: games that imitate real-life situa-
tions. For example, Sell Lemonade.

In writing a game program, you must be sure
the program will be user friendly. This means
that the program is easy for anyone to use.

A program that is user friendly should:

1. give clear directions;

2. have easy-to-read screen output;

3. be free of bugs and not be "‘broken’ easily
during the run;

4. have fun or interesting graphics:

5. communicate with the player (tell the player
how they are doing through messages or
scores).

You have learned all of the programming tech-
niques needed to write a good game program.
Study the following game program to get an idea
of how a user-friendly game should be written.

203

Yes

PRINT happy

i

TEXT : HOME

{

? “YOU ARE
RIGHT!
TRY AGAIN?”

/—

i

/ INPUT Q$

Q$="YES”

Yes

Flow chart

(smar)
{

HOME

1

Have the Apple
pick a random
integer, N,
between 1 and
100.

i

PRINT same

heading and

i

Ask player to
make a guess

/

!
/INPUT G
1

? “THANKS
FOR PLAYING”’

204

Data table
Program Variables
N=random number
Input Variables

G=number guessed by
player
QS =player’s answer to
the question,
"TRY AGAIN?"

No Output Variables.

? “TOO HIGH.
GUESS AGAIN”

|

? “TOO LOW.
GUESS AGAIN”

_/—
— {)

STOP

Program

10 REM 3 *x GUESS A NUMBER GAME 3
20 HOME
30REM s s CHOOSE A RANDOM NUMBER 3 s
40 LET N=INT(1 +RND(1): 100)
50REM 3 * BEGIN GAME :
60 HTAB(10): VTAB(5): ? ""GUESS A NUMBER
GAME"’
70HTAB(2) : VTAB(8): ? ""GUESS A NUMBER
BETWEEN 1 AND 100"
80 INPUT G
Q0 IF G=N THEN 120
100IF G>N THEN ? "'"TOO HIGH. GUESS AGAIN."":
GOTO 80
110IFG<N THEN ? "'TOO LOW. GUESS AGAIN."":
GOTO 80
120 REM 3 s CORRECT GUESS s
130 REM 3 sk GRAPHIC 3 %
140 GR: COLOR=2
150PLOT 22,17 : PLOT 24,17
160 COLOR=13
170PLOT 23,19
180 COLOR=11
190PLOT 20,20 : PLOT 21,21 : PLOT 22,22 : PLOT
23,22 :PLOT 24,22 : PLOT 25,21 : PLOT 26,20
200FORT=1TO 1000: NEXT T
210 REM 3 sk CONGRATULATE THE PLAYER 3k 3
220 TEXT: HOME
230 HTAB 5: VTAB 5:? “YOU ARE RIGHT! TRY
AGAIN";
240 INPUT Q$
250TF QS =""YES’* THEN 20
260 HTAB 8: VTAB 8:? “"THANKS FOR PLAYING."”
PLAYING."
270END

205

1. Clear Directions:
2. East-To-Read Output:
3. Free of Bugs:

4. Fun, Interesting
Graphics:
5. Messages to the Player:

Does this program have the five elements of a
good program?

lines 60-70

The HTAB and VTAB statements do this.

There is one possible bug. Look at lines 230 through
280.

If the user types yes, the game will start over
again. If the user types no or even a mistake
(like QYES) the program will end. The program
should be written so that if something other
than yes or no istyped, the Apple will go back
to line 230 and print the question, TRY AGAIN
another time instead of ending the program.
This technique is called accident proofing user
responses.

A happy face is printed when the number is
guessed.

Lines 100 and 110 tell the player if the guess is too
high or too low.

Line 230 congratulates the player for guessing
correctly.

Line 260 thanks the player for playing.
Run this program so you can see firsthand how
it works. Maybe you will have some suggestions
on how to make the program even better!

to do: Programmer’s Pastime #91

206

(CHAPTER 52) 7o oo e

You have leamed how to use the Apple as a
calculator and a problem-solving tool. You know
that the Apple can also help you with your creative
projects. Computer art and design can be amaz-
ing. You have the basic skills needed to create in-
teresting graphics.

Another creative outlet for computers is anima-
tion and sound generation. Did you know that
people program computers to make music and
even to talk?

Now that you know how to create visual pictures
and designs, it is hoped that you will continue
to learn more about computer animation and
sound. The possibilities of what you can do with
your Apple are endless!

Use your imagination. . .explore. . .fry new
things! Your Apple is your friend, atool, and akey
to your future!

to do: Component 8 Fun Page

207

AFTERWORD

Congratulations!

You are now a veteran computer programmer!
You've come a long way!

You now have the skills needed to write pro-
grams in BASIC to control a computer. You know
how to use the computer to solve your problems
(problem-solving programming) and to entertain
yourself and others (recreational programming).
The skills you have learned enable you to create
designs and new ideas on the computer (creative
programming). You should be very proficient at
programming the computer to do just about
anything!

Sure, there are still many more BASIC program-
ming techniques to learn. Some of them are com-
plicated but others are shortcuts that will make
your programming easier!

Once you are a pro at communicating in
BASIC, there are other computer languages wait-
ing for you—PASCAL, LOGO, and PILOT, to name
just afew.

The world of computers is certainly exciting
and fascinating. It is the world of the future. Don'‘t
you feel lucky to be a part of it now?

208

2l

APPENDIX A

Initializing New Disks

. Boot the disk with the system master disk.
. Type the iollowing greeting program on the

keyboard:

10 REM HELLO

20 REM GREETING PROGRAM

30 ? “'(student’s name)’S DISK"”

40 ? “'INITIALIZED ON (date) FOR

(memory size)Kk APPLEII"’

50 NEW
Put the new uninitialized disk into drive 1.
Type: INIT HELLO
The disk drive will make grinding noises asthe
disk is initialized and prepared for storing
programs.
Any time CATALOG is typed, the Apple will
display the names of the programs currently
stored on the disk.

209

APPENDIX B

Common Error Messages

Apple Error Messages:

ER

10.

Ll

12,

SYNTAX ERROR: This common error message
is caused by misspelled words, incorrect
punctuation, extra characters, and so on. It
also occurs when a BASIC word is not used.
OUT OF MEMORY ERROR: This occurs when
all of the available RAM memory is used up.
The program entered may be too long.

. TYPE MISMATCH ERROR: This error message

will occur when you try to input a number
into a string variable, or a word or letterinto a
numeric variable.

UNDEF'D STATEMENT ERROR: In your pro-
gram, the Apple was told to go to a line
number that does not exist.

CAN'T CONTINUE ERROR: You have tried to
continue the program (using CONT) when no
program existed, after an error happened, or
after a change has been made in the
program.

DIVISION BY ZERO ERROR: The Apple cannot
divide a number or expression by zero.

. FORMULA TOO COMPLEX ERROR: A pro-

gram line may have more than two IF-THEN
statements.

. ILLEGAL QUANTITY ERROR: A nurmber value

is too big or too small.

NEXT WITHOUT FOR ERROR: The program-
mer forgot to put a FOR statement that
matches the NEXT statement in the loop.

OUT OF DATA ERROR: No more data is avail-
able for the READ statement.

OVERFLOW ERROR: The number entered or
calculated is too large or small.

STRING TOO LONG ERROR: The user tried to
add strings that together had more than 255
characters.

210

DOS Error Messages:

1.

2!

DISK FULL: The disk is full and no more pro-
grams or information can be stored on it.
FILE LOCKED: You have tried to save, delete,
oI rename a locked program.

FILE NOT FOUND: You tried to load or run a
program that does not exist on the disk. Often
you have merely misspelled the name of the
program.

I/O ERROR (INPUT/OUTPUT ERROR): You have
tried to save a program to the disk or load or
run a program from the disk and it is not
working properly. This is often caused by the
disk drive door being left open, the disk not
being initialized, or the disk being defective.
LANGUAGE NOT AVAILABLE: You have tried
to load or run a program that was written in a
language that the Apple does not have in
memory. Forexample, to run a program writ-
ten in Integer BASIC, the system master disk
must first be booted.

. SYNTAX ERROR: A command to the disk

drive was misspelled or incorrectly written.
WRITE PROTECTED: You have tried to save or
delete a program on a disk that is write pro-
tected. Disks are write protected so you will
not accidentally write over valuable pro-
grams. Remove the tab that covers the open-
ing on the side of the disk.

A

211

APPENDIX C

Command,
Statement,
or Function

BRUN

CATALOG

COLOR=

DATA

DELETE
END

FLASH

FOR-NEXT
GOTO

HOME

HTAB

Used in This Book

Purpose

Runs a program written in
binary machine language from
the disk.

Shows a listing of all programs
stored on a disk.

Assigns the color for lo res
graphics.

Holds data for the variables in
the READ statement.

Erases a program from the disk.

Makes a program stop ct the
end.

Makes the output flash on the
screen.

Creates a loop in a program.

Tells the computertogoto a
certain location in the program.
One way to jump or create a
loop.

Puts the Apple in lo res graphics
mode. Erases the graphics
screen.

A lo res graphic command that
draws a horizontal line on the
screen.

Clears the screen and sends the
cursor to the upper left corner of
the screen.

Moves the cursor to a certain
column on the screen.

212

BASIC Commands, Statements and Functions

Example
BRUN (program name)
CATALOG

COLOR=(number
between 0 and 15)

DATA 4,72, "'Y"

DELETE (program name)
END

FLASH

FORZ=1TO 10 NEXT Z
NEXT Z

GOTO (line number)

GR
HLIN (column,column)
at (row)

HOME

HTAB (column)

Command,
Statement,
or Function

IF-THEN

LOAD
LOCK

NORMAL

PLOT

PRINT

READ-DATA

Purpose

Conditional transfer. If
something, then do something
else.

Initializes a disk.
Tells the computer to ask the
user to type in input.

Tells the Apple to print a whole
number (integer).

Causes the output to be printed
ininverse.

Assigns a value to a variable.

Tells the computer to list the
statements of the program in
memory.

Loads a program from the disk.
Protects a program on a disk

from being accidentally erased.

Erases the memory.
See FOR-NEXT

Changes flash or inverse screen
modes back to normal.

Displays a point on the lo res
screen.

Tells the computer to print
output.
Tells the computer to use data

from the DATA statement for the
value of certain variables.

Allows remarks or
documentation to be written
into the program without

affecting how the program runs.

213

Example

IFZ=10THEN ? ""HI"'
IFZ=11 THEN 500

INIT HELLO
INPUT A, BS

?INT(P)
2 INT(4.69)

INVERSE

LETP=100
LIST

LOAD (program name)
LOCK (program name)

NEW

NORMAL

PLOT (column,row)

PRINT ASOR ? “'HI"’

READZS, X

REM ADDING NUMBERS

Command,
Statement,
or Function

RENAME

RUN

SAVE

SPC

SPEED

TAB

TEXT

VTAB

Purpose

Changes the name of a
program that is already stored
on a disk.

Tells the computer to pick a
random number.

Executes the program in
memory.

Stores the program in memory
on the disk.

Moves the cursor over a certain
number of spaces before
printing.

Changes the speed with which
output is printed.

Moves the cursor to a certain
column on the screen before
printing.

Returns the screen mode to

direct mode from graphics
mode.

Checks a program to make sure
it has been correctly copied and
saved from the program in
memory.

A lo res graphic command that
draws a vertical line on the
screen.

Moves the cursor to a certain
row on the screen.

214

Example

RENAME (old name,
new name)

LETR=1+RND(1)* 10
RUN
SAVE (program name)

? SPC(5): "HELLO"

SPEED =(number
between 0 and 255)

?TAB(9); "HELLO"

TEXT

VERIFY (program name)

VLIN (row,row) at
(column)

VTAB (tow)

APPENDIX D

Reserved Words in Applesoft BASIC

You cannot use any of these words or abbreviations as variables.

A
AND
ASC
AT
ATN

C

CALL
CHRS
CLEAR
COLOR=
CONT
COS

DATA
DEF
DEL
DIM
DRAW

END
EXP

F
FLASH
FN
FOR
FRE

G

GET
GOSUB
GOTO
GR

H
HCOLOR=
HGR
HGR2
HIMEM:
HLIN
HOME
HPLOT
HTAB

I

IF

IN#
INPUT
INT
INVERSE

L

LEFTS
LEN

LET

LIST
LOAD
LOG
LOMEM:

M
MIDS

N

NEW
NEXT
NORMAL
NOT
NOTRACE

o

ON
ONERR
OR

P

PDL
PEEK
PLOT
POKE
POP
POS
PRINT
PR#

215

R

READ
RECALL
REM
RESTORE
RESUME
RETURN
RIGHTS
RND
ROT=
RUN

S

SAVE
SCALE=
SCRN(
SGN
SHLOAD
SIN

SPC(
SPEED=
SR

STOP
STORE
STRS

T

TAB(
TAN
TEXT
THEN
TO
TRACE

U
USR

v
VAL
VLIN
VTAB

APPENDIX E

Lo Res Graphics Colors

0 Black

1 Magenta

2 Dark blue

3 Purple

4 Dark green
5 Grayl

6 Medium blue
7 Lightblue

8 Brown

@ Orange

10 Gray 2

11 Pink

12 Lightgreen
13 Yellow

14 Aquamarine
15 White

216

GLOSSARY

A

Access: Getting information from a certain place.

Address: Alabel that tells where information is stored in the computer’'s memory.

Algorithm: A step-by-step method used to solve a problem.

Alphanumeric or string variable: A variable that stands for letters, numbers, or
special characters. Ii is labeled like a numeric variable but must be followed
by a dollar sign (S).

ALU (Arithmetic and Logic Unit): The part of the CPU (computer’s "‘brain’)
where arithmetic and logical decisions are made.

Animation: Programming the computer to make graphics and figures move
across the screen.

Apple II: A microcomputer made by Apple Computer, Inc.

Applesoft BASIC: A version of the BASIC computer language. It is the language
used most widely with the Apple II.

B

BASIC: (Beginner’s All-Purpose Symbolic Instruction Code): A fairly simple,
popular computer language used mainly with microcomputers.

Binary machine language: A computer language made up of numbers and
symbols. It is easy for computers, but difficult for people, to understand.

Booting: Putting DOS (Disk Operating System)into the computer’'sRAM (memory)
is called booting the disk.

Brain: The central processing unit (CPU) and memory bank, which make up the
internal circuitry of the computer.

BREAK message: The message that is displayed on the screen atter the run of a
program has been stopped. The message tells you at which program line the
run was stopped or “‘broken.”’

Bugs: Mistakes found in a program that were made when the program was
written.

Byte: The space it takes to store one character of information in the computer’s
memory.

C

Calculator: A mechanical or electronic device that carries out logical and
arithmetic calculations. It is not as powerful, nor does it have as many ca-
pabilities, as a computer.

217

CAPS LOCK: A key found on the Apple lle keyboard. When this key is depressed
capital letters are printed. When this key is in its up position lower case letters
are printed.

Cassette tape recorder: A device that can be attached to a computer to read
and store programs to and from cassette tapes. Disk drives are often used in
place of cassette recorders because they are faster and more reliable.

CATALOG: A disk command that causes the Apple to list all of the programs
stored on the disk.

Cathode ray tube (CRT): A tube found in a television screen or monitor that
allows the viewer to see images on the screen. Some mini- and microcom-
puters are called CRTs because of their screen.

Character: A letter, number, special symbol, or even a blank space.

Chip: A integrated circuit on a watfer slice that does certain jobs in the CPU.
Ditferent chips do different things, such as storing information in memory,
sending messages, and doing arithmetic.

Closed apple: (also called solid apple) This key on the Apple lle keyboard is
used with the CONTROL and RESET keys to activate the system'’s built-in self-
test.

Coding: Writing the BASIC program from a flow chart.

COLOR=: The BASIC command that tells the computer which color to use when
in lo res graphics mode.

Complement: The opposite of a question or sign. For example, the opposite of >
is <.

Computer-Aided Instruction (CAI): Using computers for teaching purposes.

Computer error: An error or problem in the computer system or hardware.

Computer language: Sets of words and symbols used to communicate with a
computer.

Contents: The data stored at a memory address.

Control: The part of the CPU that makes sure all of the program statements are
done in the right order.

CONTROL: This Apple le key functions in the same manner as the CTRL key on
the Apple .

Conversion equation: A program equation that converts one type of informa-
tion to another.

Convert: Change one type of measurement or information into another type so
a comparison can be made.

Counter: 1. A variable whose value increases consecutively in order to count
how many times a certain instruction is done. A counter is often found inside a
loop and controls how many times a loop is done. 2. A program technique
that is used to keep track of the number of times a loop is done.

Counter-controlled loop: A programming loop that is done a certain number of
times.

218

CPU (Central Processing Unit: The circuitry that makes up the "'‘brain’’ of the
computer.

CTRL: The CONTROL key. Holding this key down while pressing another key will
cause a certain function to occur.

Cursor: The blinking square on the computer screen. It tells you that the com-
puter is waiting for you to give it informnation or instructions. It also shows you
where the next character will be printed on the screen.

Cursor control keys: The keys that allow the cursor to be moved around the
screen without changing the writing on the screen or information that is in the
memory.

D

Data: Information.

Data table: A table that helps the programmer identify the different variables
that will be used in a program. This is important because it helps the program-
mer remember what the variables stand for and what they do in the program.

Debugging: The process of finding and cormrecting program bugs (errors).

Decision box: The diamond-shaped box in a flow chart that represents a deci-
sion to be made.

DELETE: The disk drive command that erases a program from the disk, and akey
found on the Apple lle keyboard which deletes mistakes if allowed by the
program which is currently running.

Direct mode: The mode the Apple is in when it is first turned on. A command is
immediately carried out by the computer after it is typed and is pressed.
This mode is also called immediate mode or typing mode.

Disk: A flat, floppy object made of magnetic material on which programs and
information are stored. The disk itself is covered by a flat plastic cover, which
protects it.

Disk drive: A device used to store computer information and programs on
floppy disks. It is also used to send information and programs from a disk to the
computer memory.

Disk Operating System (DOS): Computer instructions that control the operation
of the disk drive.

Double-alternative decision step: A situation in a flow chart in which there are
two detours from a decision box.

Dummy data: Data that is read as a signal to the computer that the pointer is at
the end of the data list.

E

E (Exponential) notation (also called scientific notation): A short way to repre-
sent very large or very small numbers.

Edit keys: The left and right arrow keys, which move the cursor to the left or right
across the screen.

219

Edit mode: A screen mode that allows the user to move the cursor around the
screen with the cursor control keys. Pressing ESC puts the Apple into edit mode.

END: The last statement in a program.

Error messages: The Apple’s way of telling you that it did not understand the
input.

ESC: The ESCAPE key. Pressing this key puts the Apple into the screen editing
mode whereby the cursor can be moved around the screen without affecting
the screen output or memory. There is also a way to clear the screen and send
the cursor ""home’’ using the ESC key.

F

Files: Lists of information that the computer has stored in its memory or on a disk.
Sometimes programs are called files.

FLASH: The BASIC command that causes the screen output to flash.

Flow chart: A diagram that shows all of the steps of an algorithm in the correct
order.

Flow diagramming: The process of illustrating parts of programs in a clear, step-
by-step manner.

Format: A plan for the arrangement of something. Formatting screen output
means writing programs so the screen output is arranged a certain way.

FOR-NEXT: Two BASIC programming statements that work together to allow
counter-controlled loops to be made.

FOR-NEXT time loop: A FOR-NEXT loop with no body that is used to make the
computer pause in the printing of output on the screen.

Function: An operation that the computer does automatically, like a built-in
small program.

Function keys: Keys that control the mechanical operation of the keyboard

such as[ser], [en], [a], [wr], [mer], and [] .
G

GOTO: The BASIC statement that tells the computer to go to a certain location in
the program. It is used to create a program jump or loop. It can be written as
GOTO or GO TO.

GR: The BASIC command that puts the Apple into lo res graphics mode.

Graphic: A picture or design made by a computer.

Graphics mode: The screen mode that allows you to plot blocks and lines of
color on the screen. Forty columns and rows of the screen are available for
making graphics.

Graphics tablet: A device (peripheral) that can be attached to a computer to
allow you to draw freehand graphics.

220

H

Hard copy: Output printed on paper by a printer.

Head: Part of the disk drive that reads and gets information from the disk.

Heading: Program output that labels or explains the information that follows it.

HLIN: A BASIC command for lo res graphics that draws a horizontal line on the
screen.

Home: The upper left corner of the screen is called the cursor’s home.

HOME: The BASIC command that clears the screen and sends the cursor to the
"home"’ position. This command may be used in either direct mode or pro-
gramming mode.

Horizontal: A horizontal line goes across the screen from left to right.

HTAB: The BASIC command that moves the cursor to a certain column on the
screen.

I

IF-THEN: A BASIC program statement used to make comparisons and decisions.

Nllegal Quantity Error: An error that indicates that a number too big or too small
was used in a command or program statement.

Initialize: Setting up a new blank disk so programs can be saved on it.

I/O Pathways (Input/Ouiput Pathways): Channels with which the computer
transfers information and instructions.

Input: Any information that is put into the computer.

INPUT: A BASIC program statement that allows data to be typed into the pro-
gram while the program is running.

Input variables: Variables that the programmer already knows the value of
before the program is run on the computer.

INT: The program function used to create whole numbers (integers) in a
program.

Integers: Whole numbers (no fractions or decimals).

Integer BASIC: The first type of BASIC that was written for the Apple microcom-
puter. Most programs nowdays are written in Applesoft BASIC.

Interactive program: A program that allows you to interact with the computer
by typing data into the program while the program is running. In this type of
program, the computer usually asks questions, and you must type in the
answers.

Inverse: Reversed in order or nature.

INVERSE: The BASIC command that causes screen output to be printed in inverse
(black characters on a white background instead of white characters on a
black background).

221

K

K: Kilobyte.

Keyboard: The part of the computer used to type in information (input) to the
computer memory.

Keyboard memory: Memory that stores characters typed on the keyboard. The
characters are transferred to RAM when is pressed.

Kilobyte: One thousand byvtes. The quantity by which computer memory is
measured.

L

LET: The program statement that assigns a value to a variable.

Letter keys: The keys that cause a letter of the alphabet to be typed on the
screen.

Line number: Any number between 1 and 63999 that comes before a program
statement.

LIST: The BASIC command that causes the computer to list all of the statements of
the program that is currently in memory.

Lo res graphics (low resolution graphics): Using a low resolution screen mode
to plot colored blocks and lines on a 40-row by 40-column screen.

LOAD: The BASIC command used to bring programs from a disk into the com-
puter’'s RAM (memory).

LOCK: The disk drive command that protects a program on a disk from being
accidentally erased.

Locked: Locking a program on a disk keeps it from being accidentally erased.

Loop: A program situation whereby a sequence of steps are repeated. A loop is
represented in a flow chart by an arrow that shows a jump to another location.

Loop body: The program statements between the FOR and NEXT statementsin a
loop.

M

Memory: A part of the CPU that is used for storing data—or information—and
program instructions.

Menu: A program on a disk that organizes the catalog listing of programs by the
languages in which they were written.

Microcomputer: A small, portable computer that is inexpensive and easy to
use.

Modem: A device (peripheral) that can be attached to a computer to allow
communication between computers in different locations through the tele-
phone lines.

292

N

NEW: The BASIC command that erases or clears the computer’s memory.

NORMAL: The BASIC command that changes a flashing or inverse screen mode
back to the normal direct mode.

Number keys: The keys that cause the numbers (0-9) to be printed on the screen.

o

Open apple: A key found on the Apple lle keyboard which can be used as
paddle control #0 or as a system reset with the CONTROL and RESET keys.

Out of Data Error: An error message caused by a READ-DATA statement with
which the computer is telling you that there is no more data for the READ
statement to read.

Output: Information that the computer puts out.

Output variables: Variables that will hold the answers that the computer calcu-
lates in the program. The values of these variables are not known until the
program hasbeen run.

P

Paddles and joysticks: Game conirol devices that can be attached to the
computer.

Peripheral: A piece of equipment that can be attached to a computer to do a
certain job.

PLOT: The BASIC command that displays a point on the lo res graphics screen.

Pointer: An electronic device that marks the location of the data being read
from a data list.

Powers (also called exponents): Using exponentiation in mathematics.

PRINT: The BASIC statement that tells the computer to print something on the
screen. The computer will print information inside quotation marks exactly as
they appear. A question mark (?) may be used as a shortcut instead of typing
the word PRINT,

Printer: A device that can be attached to a computer to print output on paper.

Print zones: The three sections that malie up the Apple’s screen area.

Processing box: The rectangular-shaped box in a flow chart that represents
something to be done.

Program: The set of instructions written in a computer language that tells the
computer what to do.

Programmer: A person who writes computer programs.

Program documentation: A good programming technique in which REM (RE-
MARK) statements are used to note and clarify what is happening in a
program.

Program errors: An error in a computer program.

223

Programming mode: A state of computer operation in which statements typed
on the computer’s screen are placed in the RAM (memory) when
is pressed. These statements must have line numbers and are stored in mem-
ory as part of a program until the RUN command is typed.

Prompt: The symbol that appears at the beginning of new screen lines after
is pressed. It tells which computer language the computer is opercting in.

R

RAM (Random Access Memory): A type of computer memory. When the com-
puter is first turned on, RAM is empty and the user may store programs and
information there. When the computer is turned off, all informnation and pro-
grams in RAM are lost because the RAM is erased.

Random numbers: Lists of numbers that are in no particular order and have no
particular purpose.

READ-DATA: Two BASIC programming statements that woik together to cause
the computer to place data in a program as it is typed on the keyboard. This
feature allows you to use the same program over and over again with different
data.

REM: The REMARK statement, which allows comments to be placed in the
program for program documentation. These statements are ignored by the
computer and are used only to note what is happening in the program.

RENAME: The disk drive command that changes the name of a program al-
ready stored on a disk.

REPT: The REPEAT key. Holding this key down while pressing another key will
cause repeated keystrokes to occur.

Reserved words: Some BASIC commands and statements are reserved. This
means that you cannot use these words or even the first two letters as variables
in a program. See Appendix D for a list of the reserved words.

RESET: This key, when pressed, stops any computer activity and immediately
returns control to you in direct mode. Sometimes CTRL and RESET must be
pressed together to make this happen.

RETURN: The key that makes the cursor move to the next screen line and enters
any information from the previous line into memory (RAM).

RND: The program function used to create random numbers in a program.

RUN: The BASIC command that tells the computer to "'do’’ the program.

Run: What happens when the computer “‘does’” a program.

224

S

SAVE: The disk command that copies the program in RAM and transfers it to the
disk to be stored.

Screen: The display portion of a television or monitor in which information from
the computer (output) and instructions typed on the keyboard (input) are
shown.

SHIFT: The key that when pressed while holding down another key will print the
symbol at the top of the key that is being held down.

Simulation: A computer program that imitates a real-life situation.

Single-alternative decision step: A situation in a flow chart in which there is
one detour from a decision box.

Sorting algorithm: An algorithm that can sort and alphabetize a list of more than
two words.

SPC (space-over function): The BASIC function that moves the cursor a certain
number of spaces before printing.

Special symbol keys: Symbol keys used for doing math and punctuating sen-
tences. Forexample +, !, = , #, eilc.

SPEED = : The BASIC command that changes the speed at which outputis printed
on the screen.

Square root: Using the square root function in mathematical equations.

STEP: A program statement that allows counter-controlled loops to be counted in
a certain pattern (for example, by fives, by tens, and even in reverse order).

Style: Using a variety of techniques to develop easy-to-read programs.

Syntax error: A type of error message that tells you there is a word spelled wrong,
a word that the computer does not recognize (not a BASIC word), or incorrect
punctuation.

System master: A disk that comes with the Apple and contains the DOS program
plus many other helpful programs.

System reset: (see warm boot)

y

TAB: A BASIC program function used to control screen output, and an Apple lie
key that, when pressed, moves the cursor right eight spaces if the program
being run allows this.

TEXT: The BASIC command that returns the screen mode from lo res graphics
mode to direct mode.

Text window: The eight rows (four screen lines) set aside at the bottom ofthe lo res
graphics screen for text. When you type, the input will appear in the text
window.

225

Trace: The act of working through a program in the same way that the computer
would to see exactly how the program works.

Truncate: To remove any numbers to the right of the decimal point, thus chang-
ing the number from a decimal to an integer.

U

User error: An error you make when you make a mistake or forget to communi-
cate with the computer in BASIC.
User-friendly: A program that is easy and enjoyable to use.

v

Variable: A name given to a value that is also the memory address of where the
value is stored in memory. A variable’s value can be changed (varied).

Vertical: A vertical line goes up and down the screen from top to bottom.

VLIN: A BASIC command for lo res graphics that draws a vertical line on the
screen.

VTAB: The BASIC command that moves the cursor to a certain row on the screen.

w

Warm boot: Restarting the Apple lle computer system while the power is still on.
This is accomplished by pressing open apple, CONTROL, and RESET together.

226

INDEX

ACCOSS « amu swys sm5 s E5 § 8% 5 FH T 585 FAE SmE % e 31
AGHHON 5 i a5 T3 S5 5 5o o esle o w bl 42, 43, 45, 46
BOIATOSS 55,5 G50 8 Sim e ot s s s o s ko o o (R G 108
AIGOTHRAIA. & 4 o vir wovs v s v b e o e Q0
Alphabetizing. 165-166
Alphanumeric variable (see string variable)

ALU (Arithmetic Logic Unit) 28
ARIMEHOn "% ¢ vv s v sws pEa G Bab 8 F s 193-197
ADPIEAI S e i 59T T F Bl b ne e e n e 4
AOPIGSORBABIC & 5 100 » v wos »imw s b by i 8 & 13
Arithmetic i 42-46
Arithmetic Logic Unit (see ALU)

13] 13, 53, 212-214
BloMK:SPACES. « « v wis vwis sw s voms diwa « ww w e 113, 195-199
BOAVAOOD s vy & v ot g v s s o 8 WA % BaE 99
BOOHNG:: « 555 s w6 d afis sis 505 §06 5 08 § 65 0§ 40
BICHD g s 5% 5 65 7 €5 s Fis s0:5 5eha wond & 508 dind 4,28
Breakmessage it 103
LI CT S R R T o il s o6l i wfom sy B e Rl E i 68-72
BYIEE, o7 55 555 WoBuci g Bhad Bod wiey 2. adaeiie 28
CAI (Computer-Aided Instruction) 198, 201
CAICUIAIOR « o & as s sms v 943 §5% 6708 S 508 § 889 ¢ 43
CAPSILOEKS w5 5 6 (5 i i 8 8 5 55 5,8 5 50 i B 7S 6
Cassettetaperecorder 32
CATATEIE oo v vooin vt s e mom > s i ot d s s w e 37
Cathoderaytube 31
CHATACIOT .+ ' v swn siole s & Boes 688 8w lopisdoga 28
CHID. siwiv svvs nawn nuws 598 5 %5 § 6504 050 Soruips 4,28
Closed:apPle: . ;ww smws vies $m s ¥ BH 8 PEE L8 6 5 pe 17
COlOM Iy 5 vu 5 emy RME YRS Y5 i A bwmE BB 66, 112, 142
CEEERE 55 5 (@0 Vms nme s & mw 5 w5 Gl ey oy 82
Colorgraphics 80-83
COMIMAS « v 0 « vown vwis v v ve & 05 s 46, 60-62, 112
COMPATISON. « v ars vann rm s wms 5w o o s o sl ams 162
COMDATISOREIENS: « oo wms s sws s sals sms oahs s 162
CommPleTnONt ; vy s vus v FE s @ BE EoE 5 AR 163
Computer-Aided Instruction (see CAI)

COMPUBTIOITONS & i v it swii 595 595 §.60 8 45§ 6w o0 71
COMBIMS = i 5 ¥.55 5 G s nime somm momm 5o o s b e 109
CODIODI. 7 55 515 ool om0 ook ot Eon 6 o o g 28, 29
CONTREIT 1l o o » S s os e o or w0 o G 5 Gl el ey s 16
Conversions v v v i e 183-184
Conversionequation 184
COMVOIT . v v swwn v wi s gad S vy 2ops & 0 132, 183
COUNIOT iy wmin smn v a & sms sMs wimE ¥ b own 137-140

Counter-controlled loops 128

CPU (Central Processing Unit) 28
Creative programming oo .. 207
CRT (see cathode ray tube)

(101 07o) gy SR e Y e LT T 13
Cursorconfrolkeys, 21-24
OIS 49 068 09 8 g omm @ Bas a8 54 §E S §W A B 29,111
DATA (see READ-DATA)

PeDUGGIDG « vov sins 2mu ¢ S 6 § 3 836 Rme £6 A 68-72
POCINEIS: = 553 685 T @ biwmi i sas & on &n b d 124
ROCIEIONBOE ¢ o0 w6 3 niw s i m @i s & s ot 95, 157
BELETE .4 a8 & 557 50 @ 50000 & T B B e Be 2ot 5 coraii 25,74
Directmode. 24, 44, 48, 56
PISK o 6 5 s wowa s s wrein 8 530 @ g a8 £ E 80 31, 36-41
DISKANVE o 5 v s smy wms gwe @ 40 % w5 s 4, 32, 36-41, 73-76

Diskette (see disk)
Disk operating system (see DOS)

BEHSION: o5 2% o % sl o e d e o 4 s 42, 43, 45, 46
Double-alternative decisionstep 98
DOS (disk operating system). 31, 40
Dummy Aetter ... o sow 0 cwm s van v s G g e B a F 172
ENOalon oov s smavms s a5 5 36 5 955 088 sad 1a 125
EQILEOUS : w v vt vm s 9 s 06 50 b & i 4 W @ 5,10, 18-21
BOEINOAE) & o o5 o m@ @ 20 @l % ael s 4 bt e e w0 om0 o 24
ENTDG. o0 & 6l folg A 50 A e 1 ol s o son 0 5 55 o1 st 1 v 55, 56
EUAHONS. 4 ¢ v oo oo s s o s s o g @ 56 6 50 51, 115-117
Ercsing: cC PIOGRCIN. .« w5 5 % & % a0 9 63 8 8@ % 3§55 o % b 74
EXYOrMESSATE w5 v wiv am s o 5o 5 6% 5 843 5% 18, 88, 212-213
BITOIS s s B e G di e ¥ S Rl 6 e & ws d s 68-72
Exponential notation (see E notation)

EIEE: 15oax o Ais [@) 5 B b e o e e o 500 6 o (o) (3 ot 3L e ity 108
FLASH. o« v woms oo s m i a5 o 504 ¥ %8 & 4 %6 a0 5 4 & s @ 48
Flownehatl . . « oo vos von g s a6 9 6 8wk § 86 @ 5 & 90-98
Flow diagramming .« ¢ vmu v o5 4 605 smm & 65 & 90-98
FOIPAL : s s vms s masma i i 0805 6T 405 5.0 a0k 60-64
PERINEXTE 25 i i & Aka s S0 5 GENE & @l Sl B 20 B 2 o 128-133
FOR-NEXT timeloop. 141, 145
ErACHONS « v s v s womn s opm wowm v o6 m v @ ws 556 9w a5 124
FRNGION. & i 0 n woow @ @ o, 5 e 6 i 30 G 50 f 8 5% & G0 5 s 188
PURCHORKOYS & v v viow smv simm o wn 5 6 e & @8 s 5. 8, 14-17
Game programming . . .« - o .. ovh . e s ey 198, 203-206
SOTO: ¢ sms s ms SR L At G T DS R BE & i 102, 103, 145
BR s s @i ins bams as S6E SR bR 5 S & 80, 88
GrEBRIEE . wc sin Bawhaam omk on b e o ma b 32, 51-59
Graphics programming 80-83
Graphlestablet. . . . c oo swa v ma s wwms wwe v 5w 32

228

Head, :QSKa fild s vov ww s w05 siwd 55 e 5 a s 5 e s 31
HOAAMT . om0 v s w508 S @iy 996 5065 & @8 €6 & &0 184
HITNSN o s 5 i 4 @i s §9 5 Fma 5AE § @5 §uig one v 85
HOMERS = 3 25 550 i 5ol s mod 5 s 5 @ ol 56-57, 141
BB S0 o 6 S n o 1 o0 omrms B 5 78 G B 5 e G 188-192
TEETHENL G R i vy oo § 0803 3 iy o 00) TP 156-164
Immediglemede: ... w4 sww v i d sww v E s BB 24
Initicilizingellsks . o v we 5o s gws sz sw s s was 73, 211
INPUL o s 5 s wm s sew s imm s 5@ 5@ o 5§ e 29,108
L e e R A 150-153
INT o, 5t R - o B % T AP % STl 4TS 199-201
Integer (see INT)

Interactive programming 150
LN NS T o s el R S L L T 49
JOYSHCK . o 5 o' ma wm 5 v acs @ 5is & 55 & & sha et 33
K (see kilobyte)

EOUBOGTA ., ..o - oo im0 e me w5 0 ot st 0 ok i 4-11
KSYDOArd MBIORY .« o o o o x5 oo e o w i v v b v e & w0 w0 % 28
KIOETE) o v e v ot v i % 9 s ol S8 % 00 o 0wl 28
LET M s o v 5 8 & 6d B & 9 8 8 6 6 6 108-109, 118-119
LONeTKOVSAE Bt s 5 s 55 s s 5 5 ms me &S 6 AR & %0 55 6
TANOPUMAROE 5 5 5 i 5 55 5 8 5 5 615 b e G R S e 53
BIST ., o dinis cousis o Rl (AT S o2 s o) SIS 8 ST TEfnd A 0 68-71
BRI o oice 620 5 dded o1 it 7 5ot ARETIITE 56 8 o S e Dol 30, 36-41
G ol A e T T IR LN IR T 74
LOTOSIEARRIES s o'y ¢ w5 s wa i w s B9 d B s f s 80-83, 216
LOOPE wr apal S 5 G5 6 5 AR €W e s 99-103
Memory, 4, 19-21, 28, 108-110
PASTINITE M o 7 w0 & 5w o s @ e 0 B b 0 iy & 8 5 5 om SRR o 37
Microcomputer. 4
MOHEIRN . « s o m s wifs S0 5 & 5l b1 § 05 SATAR DART TR oY 33
MEDHOT & ¢ v sas s s s s § g & % w6 5w s & 4, 30-31
Movement,on-screen 193-197
Multiplication 42, 43, 45, 46
FEW 5o, S 8 S GAE v s s 0w 5 G o o MIEIGEYS 30, 55
INEORNABTL . o oo oot i d 2wl s s @ o & s @@ E 8o 49
NUIMBOEKOYS: . . v v «ws wwn vare vwis 5me o @ s 0w s T 11
Numeric variables 109, 121, 137-140, 150, 172
OpeniaPRIe < « 5 v v s #5:is v s Ew s 55 s 5 0w 17
Order, arthmelic. < ui: vos 555 5 w6 §5 6 6 wa ¥ % 45-46
CPO St o s siis G @5 SRS S B R R B 29, 32
57 (o (o] 7= R U N I R T 17, 33
PATONINOSOS . . . v v v v s womn o soas s w v s 45-46
PEHBHAITIS, .06 rm s wom o 4 0 & 6w @ md) i g d e 4 32-33
BOMIEE s 7 Toke o5 40 w) S @ i 4 W 5B e 5 e a8 e 170

POWEYS s s wnig o ww smis swis dims 599& 5 8 8 o0 42, 43, 45, 46

PRINE : w o ciis vz 9583 s85 5k § 55 5 43-44, 51, 54, 60-64
BEITHOT 5 55508 Gow somm somom omoa soma s bl n o e ooms ¥ 32
Printzones. 60-64
Problemsolving 177-182
PIOGEQII o v oo v v o oo s o s & s & 6wl 6 &y s 30, 53-56
Program documentation 78
PrOYrcInOITOrS o & s s s s v @3 598 5 @ 4 & #568 o0 71
PIOGOIAHDIIOY « o v vms sms 205 28 2.6 0 59 o wm e s 30
Programmilng MOE0+ oo voms s ninn s s e 55
PrOOraOM NAME . .+ v v v v e vt e v v e v e e e v e 75
PROTADIL cvin i s amrn sws wm s sms ® e o st s ta WS 12
Question:mark . « ¢ w s 5w sws sma FEs § vE 5 EE G 5 54
Quotationmarks 48-49, 52, 55, 115-116
RAM 6 655 % 50 wome o simm o mo 5ma 2 sl 28, 36, 108
Random numbers (see RND)

READ-DATA o e e 167-175
BEMI ..l s s swmn mama aoms woma ool i g ien 78-79
Remarks (see REM)

RENAME v s g s aws smi sms 585 1m0 nedas s o 75
Reservedwordsuuvu... 140, 217
Returnkey. 14, 54
BNBELL SR Mol . o fwim wios woms wirs dfha wios % 198-201
RUN. . . . e e 30, 38-39, 41, 55
SAVE: v vis sms vmwa s wd « s nwa vy S £Ea T B 73
Scientific notation (see E notation)

Sereen oid & ¢ v s v i s v vEs B B 60, 80-81, 188
Semi-colon 63. 64,112,113, 153
BEIETE . s nime nan® 5ot Sromih T8I w ol mbko A0 5 9, 14
SIUIGHON . « v oviv wv v v v o wms vk s b E 198-203
Single-alternative decisionstep 96
Sorting algorithm A G E G S 166
SPE wwov b snms 5% 208 5 0 H s £ wE F A T e 190, 194
Specialsymbolkeys., 9,11
SEEEDL & w56 0655 5 168 5 b5 3 Hmd nimd 5 nwms ol 142
SEUCHETOONS . o ¢ vvw momn romin oo m o i Ol G T, 42, 43
S T R TN L L T 134-136
Stringconcatenation. 0w v v v e v b e e 195
String variables. 121-122, 151, 158, 193-197
SIWIer o o vw s vmis s mms sm 5 ¢ SRR B W ¥t 78
SUBHAEHON: & 556 vws s s 0% 3 T8 S5 E 503 42, 43, 45, 46
OYDIGRINEN: i shs i m s 2 s 5 0 m e 050 Pas B e 18
Systemmaster 40
SYBIOMI YO58 « & 0 v vns e v s s e m e e e e 157
TRBIEE, s i 5 % 5 5 530 Bem w9 0w B o e 4 16, 188-189, 192
LEXL 7 fos o s 1% 255 S ma oo § 5 5ed Ehelm g S 1o A 82
ToXtWINAOW' & u « cw v vwy vies vows yomu 5 @@ s & 56 &9 4 80
TYECEN: ¢ c9s oo & vas S s s SmE da0 § Bars ¢ s 129
TIMRGEHE: . & ¢ w5 snis 563 §26 $EH 4@ % dmy £a5 55 199

TVECEBOIL &« v wowov s v s i o8 0 & 60 5 5 s o s 8 4
VEOTETION . & & wiis IS S 9 ST FRA § 55 5 Ew B RS Ua 71
UseT'IFOnALY ;v v 5w oms wms mom e smw oow e a el 203
Varigbles 108-117, 137, 193-194
N el Lon s 1 2] ol s i ssn e 3 s o v) s 4 @) 8 85
NTEABST « v v e v s s s 5w d a8 0% 4 o6& & & & 188-192
WA BOOL # v v s o v 2 T E 55 o ® fuf b & & s # 5 & 17
LOTEYS i I S5 M T R L soe ok s o o o s G2 o o on o v 0 i 4 b 7

231

MORE!

An Apple in the Classroom
Activity Workbook

Complete with 91 tear-out worksheets to go with each chapter of the student text, AN APPLE
FOR KIDS, this workbook provides practice and reinforcement for skills learned. Most of the activities
can be done as seat work without the computer, and students will only need the computer to check
their work.

ISBN 0-88056-120-3 91 worksheets 175 pages/170 illustrations
$5.95

An Apple in the Classroom
Teacher’s Guide

The teacher’s guide features 91 worksheets, complete with answers. Additional information and
hints for teachers are provided. Information on how to convert the material to other brands of
microcomputers and how to use the curriculum is also discussed.

ISBN 0-88056-118-1 $14.95 90 pages

NOTE: For every 25
copies of AN APPLE FOR KIDS
student texts ordered, receive
one teacher’s guide free!

— — — — e s e —— — —— ——————— i o St S . o o, S S, i o o T . o o W . . .

BILL TO: SHIP TO: (if other than bill to)
Name: Name:
School: School:
Address: Address:
City, State Zip: City, State, Zip:
Phone number Date P.O. No.

An Apple for Kids, Student Text $9.95
ISBN 0-88056-119-X

An Apple in the Classroom
Activity Workbook $5.95

An Apple in the Classroom
Teacher's Guide $14.95

Check here if your order is over 25
copies of An Apple for Kids to receive

Mail order to: dilithium Press a free copy of the teacher’s guide.
P.O. Box 606
Beaverton, OR 97075

To expedite your order, phone 800-547-1842
or (inside Oregon) 646-2713

S ———— — ——— — —— — —— — — — — — — — — ———— ——————— —— ——— — —— — — — —— — i — — —————

PLACE
STAMP
HERE

dilithium Software

P.O. Box 606
Beaverton, OR 97075

i “
450

78700995

5

An Apple For Kids is written by a teacher who
wants to teach enthusiastic kids computer
operation and programming in BASIC. Using
an individualized, self-paced approach, this
book encourages kids to be creative program-
mers as well as learn good programming
techniques.

Full of illustrations and activities to make the
learning process fun, An Apple For Kids is writ-
ten for the 3rd to 8th grade student. It focuseson
problem solving, higher order thinking skills
and creativity. Approximately 80 activity
worksheets are included to make this a fresh,
instructive and fun approach to learning
programming.

Teachers manuals and student workbooks are
available to accompany An Apple For Kids.

ISBN D-8805b-119-X

>>%9.95

f[3 dilithium Pres:

