

AN APPLE®
FORKl·DS

I I JI .
- J

AN APPLE®
FOR KIDS

Sharon Boren

dilithium Press
Beaverton, Oregon

© 1984 by dilithium Press. All rights reserved.

No part of this book may be reproduced in any form or by
any means, electronic or mechanical, including photo­
copying, recording or by any information storage and re­
trieval system without permission in writing from the
publisher, with the following exceptions, any material may
be copied or transcribed for the nonprofit use of the pur­
chaser, and material (not to exceed 300 words and one
figure) may be quoted in published reviews of this book.

Where necessary, permission is granted by the copyright
owner for libraries and others registered with the Copyright
Clearance Center (CCC) to photocopy any material herein
for a base fee of $1.00 and an additional fee of $0.20 per
page. Payments should be sent directly to the Copyright
Clearance Center, 21 Congress Street, Salem, Massachu­
setts O 1 970.

10 9 8 7 6 5 4 3

Library of Congress Cataloging in Publication Data

Boren, Sharon, 1956-
An Apple for kids .

Includes index.

2

Summary, Introduces the essentials of Basic computer
programming on the Apple computer.

1. Apple computer-Programming-Juvenile literature.
2. Basic (Computer program language) (1. Apple com­
puter-Programming. 2. Basic (Computer program lan­
guage)3. Computers. 4. Programrning(Computers))I. Title .
QA76.8.A66B67 1984 001.64'2 83-18908
ISBN 0-88056-11 9-X (pbk.)

Cover and art by Marty Urman

Printed in the United States of America

dilithium Press
8285 S.W. Nimbus
Suite 151
Beaverton, Oregon 97005

iv

TABLE OF CONTENTS

Introduction

Component One

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

There's an Apple in Our Classroom!
The Apple 's Keyboard
Turning On the Apple
Using the Apple's Special Function Keys
Fixing Typing Mistakes
Inside the Apple
The Apple 's Monitor and Disk Drive
Apple's Peripherals

Component Two

Chapter 9 Play a Game with the Apple
Chapter 10 Teaching the Apple to Do Your Homework
Chapter 11 The Apple as a Calculator
Chapter 12 Arithmetic with Many Numbers
Chapter 13 Teaching Your Apple Simple Tricks
Chapter 14 Printing Whole Equations

Component Three

Chapter 15 A First Program
Chapter 16 Easy Graphics
Chapter 1 7 Formatting Screen Output
Chapter 18 A Shortcut
Chapter 1 9 Getting Out the Bugs
Chapter 20 Using the Disk Drive

Component Four

Chapter 21 Remarks
Chapter 22 Color on the Screen
Chapter 23 Colored Lines
Chapter 24 Flow Diagramming
Chapter 25 More About Flow Charts
Chapter 26 Double Detours

v

1

3

4
5

12
14
18
28
30
32

35

36
42
43
45
48
52

53

54
58
60
66
68
73

77

78
80
85
90
95
97

Chapter 27 Loop de Loop
Chapter 28 Putting It All Together

Component Five

Chapter 29 More About Memory
Chapter 30 Using Variables
Chapter 31 Using Variables in Equations
Chapter 32 Important Iniormation
Chapter 33 Strings
Chapter 34 What Types of Numbers Does the Apple Like?

Component Six

Chapter 35 FOR-NEXT Looping
Chapter 36 Stepping
Chapter 3 7 A Counter
Chapter 38 Timing It
Chapter 39 Blinkers
Chapter 40 Fast Graphics

Component Seven

Chapter 41 INPUT
Chapter 42 IF-THEN
Chapter 43 Alphabetizing
Chapter 44 READ-DATA
Chapter 45 Problem-Solving Programming
Chapter 46 Conversions

Component Eight

Chapter 4 7 TAB
Chapter 48 Moving Around the Screen
Chapter 49 Motion Pictures
Chapter 50 Random Numbers and Integers
Chapter 51 Writing Game Programs
Chapter 52 You Are A Creative Programmer!

Afterword

Appendix A

Initializing New Disks

vi

99
101

107

108
111
115
118
121
124

127

128
134
137
141
145
146

149

150
156
165
167
177
183

185

186
188
193
198
203
207

208

209

AppendixB

Common Error Messages

AppendixC

BASIC Commands, Statements, and Functions Used in this Book

AppendixD

Reserved Words in Applesoft BASIC

AppendixE

Lo Res Graphics Colors

Glossary

Index

vii

210

212

215

216

217

227

ACKNOWLEDGEMENTS

My thanks go to many people who have offered me support and inspiration in
writing this book:

To Alan, my husband and "business manager," who gave me the courage and
confidence to become an author.

To Jack Turner, for his expert advice.

To all of the young " computer wizards" and brave teachers for whom An Apple
in the Classroom and An Apple tor Kids were written.

An I mportant Note

The publisher and the authors have made every effort to ensure that the computer
programs and programming information in this publication are accurate and
complete. However, this publication is prepared for general readership, and
neither the publisher nor the authors have any knowledge about or ability to
control any third party's use of the programs and programming information. There
is no warranty or representation by either the publisher or the authors that the
programs or programming information in this book will enable the reader or user
to achieve any particular result.

viii

INTRODUCTION

An Apple for Kids is part of a three-book set designed to teach children and
beginning programmers how to program a microcomputer in the BASIC com­
puter language. Although this book is geared specifically for the Apple micro­
computer, it can be easily adapted for use with other microcomputers as well.

Written at approximately a fourth grade reading level, An Apple for Kids
consists of eight components of approximately six chapters each. You become
familiar with the keyboard and Apple operation in the first components, and
learn how to write your own BASIC programs as you progress through the books.
By the time you have completed the last component you will have the skills
needed to write game programs, simple graphics, teaching programs, and
programs that solve problems. All programming techniques introduced can be
easily understood by the average sixth grade student.

How to use this book: Read through the chapters and try the examples on your
computer. At the end of some chapters there are notes on worksheets ' 'to do.''
(For example, you'll see "to do: Programmer's Pastime #11. ")Sometimes these
activity worksheets are included at the end of chapters so you may try your hand
at writing your own programs. These programming worksheets were taken from
the second book in the set An Apple in the Classroom: Activity Workbook . Solu­
tions to the activities can be found in the Teacher's Guide (the third book in the
set) which also contains detailed lesson plans for each chapter and additional
information and ideas for using this material as a computer programming curric­
ulum. An Apple for Kids is the student text in this set . Both the Activity Workbook
and the Teacher's Guide can be ordered from the card at the back of the book.

2

CHAPTER 1
There's an Apple
In Our Classroom! 4

CHAPTER2
The Apple's Keyboard 5

CHAPTER3
Turning on the Apple 12

CHAPTER4
Using the Apple's Special
Function Keys 14

CHAPTERS
Fixing Typing Mistakes 18

CHAPTER6
Inside the Apple 28

CHAPTER7
The Apple's Monitor and
Disk Drive 30

CHAPTERS
Apple's Peripherals 32

3

Monitor

Keyboard

It may not be the usual kind of apple that sits on
the teacher 's desk, but it 's an apple nevertheless.
It's not a type of fruit, and it wouldn't taste very
good if you tried to eat it! What kind of an apple is
it? Our apple is a microcomputer made by Apple
Computer, Inc. We will begin to see more Apple
microcomputers in the classroom in the future!

What is a microcomputer? Simply stated, it 's a
small, portable computer that anyone can learn
to use . Microcomputers can teach you lessons in
school, help you with hard assignments, or even
be your partner in playing a game. What 's even
more important is that you can learn to control a
microcomputer and make it do whatever you
want! M icrocomputers are a fun and valuable
tool to have in a classroom.

Our Apple microcomputer has four basic parts :

1 . keyboard (punch keys with letters, numbers,
and signs)

2. T. V. screen (We will also call it a monitor.)
3. disk drive
4. brain (The Apple 's insides, including its

memory.)

Let's learn about the parts of the Apple so w e
can use it in our work and play!

Inside the keyboard is the brain.

This is what part of the Apple's brain looks like­
a flat metal board with many electrical circuits
and little bug-like things called chips . Some
chips are used for memory so the Apple can re­
member what y ou tell it.

4

(CHAPTER ~ The Apple's Keyboard

I RESET

I 0 I ~ I REPT I RETURN

I I I I I I BEGLL I H CTRL A S 0 F . .

I SHIFT I z I x I c I v I B I ~ I ? I SHIFT

S P A C E

Apple][and Apple][+ Keyboard

ESC I 1 ~ ; I ! I ~ I ~ I ~ ; 9 0 I ~ I : I DELETE I RESET I

TAB I Q I w I E I R I T I y I u I I I 0 I p I ~ I ~ I ~
CONTROL I A I s I 0 I F I G I H I J I K I L I I .. I RETURN

SHIFT I z I x I c I v I B I N I M I < I > ? I SHIFT

Apple lie Keyboard

The Apple has a keyboard very much like a
typewriter. You can punch:

1. letters
2. numbers
3. function keys (I SHFI I . I RETURN I . ~ , 0 , and more)
4. special symbols keys (+, - , * , $, =, ! , and

more)
5. edit keys (+- , -+ , J. , and more)

5

LETTERS

I 1 I ~ I : I : I ~ I : I 7 I 8 I 9 I 0 I * I RESET

ESC
1

.~
1
~

1
E

1
R

1
i

1
y

1
u Jf .. :r-:· ~;. I: ~~;1 REPT 1 RETURN

SHIFT

I CAPS I -
LOCK -

I CTRL l A I s I D I f I B~L , . ~ ,l ·-J 0 I-K :' l ::.- ~ ',. l 7 I ~ I -+

I SHIFT I z I x I c ··· I v· I ,e:. I:: ~ ''. 1: .. , M , , < I > I ? I SHIFT

I POWER I I s p A c E I

@ #

2 3

Apple)[and Apple)[+ Keyboard

\

RETURN

SHIFT

S P A C E

Apple ne Keyboard

Letter keys on the Apple's keyboard are in the
same places as letter keys on a typewriter. To
type a letter, press the key.

The Apple J[e keyboard has a I CAPSLooc I key. When
this key is depressed capital letters are printed.
When this key is in its up position, lower case
letters are printed.

6

NUMBERS

I ~ I ~ :;J : I : I ~ I : I 7 I ~ ~', J '0 I * I RESET

ESC I Q I w I E I R I T I y I u I I 0 I ~ I REPT I RETURN

I CTRL I A I s I D I F I B~LL I H I J I K I L I ~ I +- I -+

I SHIFT I z I x I c I v I B I ~ I M I < I > I ? I SHIFT

I POWER I I s p A c E I
Apple ll and Apple ll + Keyboard

ESC I I
@

I ~:~',;~i:[::1t !,"' I %

I
A &

I * I. ~ '1,;_';,1 1 2 5 6 7. 8

TAB I Q I w I E I R I T I y I u I I I 0 I
CONTROL I A I s I D I F I G I H I J I K I L I

SHIFT I I I I I I I
<

I
>

z x c v B N M

CAPS I - I lo l l•I s p A c E LOCK

Apple lie Keyboard

Number keys are also found in the same places
as number keys on a typewriter. To type a
number. press the key. When zero is typed, it is
printed like this : <Zl . The computer does this so it
won't get zero (<Zl) mixed up with the capital 0 .

7

p

I
+-

-
I

+

I I

I
..

?

I
-+ I

I DELETE I I RESET I
J I I I 1 \

I RETURN I
SHIFT I
i t I

FUNCTION KEYS

I
!

I
..

I

1 2 3

ESC I Q I w I E

I -> CJRL I A I
I' s~~FT;,, I

~::. ., ::./ . z I
I POWER I I

r.~ - 1 @ # $
1 2 3 4

I TAB I Q I w I E I
I COff!ROL I A I s I D I

I / SHIFT . I z I x I c

It~~~ I -
I iol

I
$

I
%

I
&

I I l I I * I RESeT I 4 5 6 7 8 9 0

I I I I I I I
@

I REPT I RETURN I R T y u 0 p

I I I B~LL I I I I I
+

I I I +-
s D F H J K L I

I I
/\

I I
<

I
>

I
? ,. 'S1tw1> ~:;I x c v 8 N M

s p A c E I
Apple 11 and Apple ll + Keyboard

I
%

I 5

R I T

F I

I v

s

/\

I
& * I

-

I
+ I DELETE I l)f ;~~~'I 6 7 8 9 0 .

I I I I I I
[

I
J

I
I

I y u I 0 p [] \

I I I I I I
..

I' 8ErURN I G H J K L

I I I I
<

I
> ?

I SHIFT . l 8 N M

p A c E l•I +- I i i I
Apple lie Keyboard

Each function key does a special job. They are
very important keys. You will learn more about
these keys later.

8

SPECIAL SYMBOL KEYS

RESET

RETURN I

- 1-1

S P A C E

Apple 11 and Apple 11 + Keyboard

TAB

CONTROL I I H I J I K I L J ', ; I ·: I RETURN I
SHIFT

Joi S P A C E

Apple lie Keyboard

The Apple has many special symbol keys.
They are used for doing math and punctuating
sentences that you write. Some special symbol
keys are used as shortcuts in operating the Apple.
To type a special symbol, press the key and you
will get the symbol at the bottom of the key.

Notice that some special symbols a re found at
the top of certain keys. To type these symbols, you
will need to press I SlflfT I and hold it down while you
press-the key with the special symbol you want.
The B key tells the Apple to print what is at the
top of a key.

9

EDIT KEYS

3

$
4

%
5

&

6 7

CTRL I A I s I D I F I B~LL I H I J I K I L

SHIFT I z I x I c I v I B I ~ I M I < I >

S P A C E

Apple II and Apple l! + Keyboard

CONTROL I A I s I D I F I G I H I J I K I L I

Apple lie Keyboard

RESET I
REPT I RETURN I

I RETURN

SHIFT

The edit keys help us fix mistakes that are typed
on the screen. You will learn how to use these
keys in Chapter 5.

10

Before you can work and play with the Apple.
you must learn how to get the Apple started. You
must also learn how to use the many different
keys on the Apple 's keyboard.

Let 's review how to type:

a number

To type 4. press OJ .
a special symbol

To type S, press B and hold it down. Then press
OJ.

to do: Exploring the Apple's Keyboard# 1

11

Let'5 review how
1D type a number
and a specia I
symbol.

(CHAPTER 3) Turning on the Apple

Follow these directions to turn on the Apple and
get it ready to work with you.

1 . Turn the volume all the way down on the
monitor.

2. Turn on the monitor.
3. Flip the On-Off switch on the back of the Ap­

ple . (It 's at the lower left.) You will hear a beep
as the Apple is turned on. This is how it says
hello and tells you it is ready. As the Apple is
warming up, you may see some of the char­
acters that the Apple can type flash across the
screen. The power lamp on the left side of the
Apple's keyboard should now be on.

4 . The Apple 's screen should say:

r Apple 11

This means the Apple you are using is called
an Apple II (Apple two).

5. Press B and hold it down as you press EJ .
The Apple will beep again and the screen will
show:

The first symbol (]) is called the prompt. The
prompt tells you which computer language
the Apple understands. Computers can't un­
derstand English, so you will have to learn
computer languages to communicate with
computers.

12

The (]) prompt means that the language the
Apple II will understand now is Applesoft
BASIC . All microcomputers understand BASIC.
Applesoft BASIC is one type of BASIC made
especially for the Apple .

The blinking white square next to the
prompt is the cuzsor. When the Apple is wait­
ing for you to type, the cursor will blink. The
cursor also shows you where the Apple will
print on the screen when you type on the
keyboard.

6. Now the Apple is ready for you to tell it what to
do in Applesoft BASIC. You will begin to learn
Applesoft BASIC in a later chapter.

BASIC means
Beginners
All-Purpose
Symbolic,
Insrruct1on
Code

13

c CHAPTER 4) ~s:':i!!': :::•e's special

2.

I ~ I ~ I ; I ! I ~ I : I ~ I ~ I ! I 0 I 7 I : I RESET 1

I EsE~~, 1 a I w I E I R I 1 I v I u I 1 I o I ~ I REPT I RETURN

I CTRL I A I s I D I F I B~LL I H I J I K I L I ~ I +- I -+

f,8:8"1FT] z I x I c I v I e I ~ I M I < I > I ? l<bsHiFT

I POWER I I s p A c E I

SPACE

Apple][and Apple JI+ Keyboard

* ALWAYS press I RETURN !when you have finished typ­
ing a line. Pressing I RETURN I tells the Apple that
you are done.

* The Apple puts what you have typed into its
memory.

* Pressing I RETURN I also tells the Apple to put the
cursor on the next line of the screen.

This is the long bar at the bottom of the keyboard.
It is not labeled. Pressing the space bar tells the
computer to skip a space . You must press this bar
between words or numbers that you type .

Otherwiseyourtypingwilllooklikethis !

Hold this key down as you press another key and
the Apple will print the symbol that you see at the
top of the key. There is one case where this won't
work: If you press I SltfT I and the I ~ I key, the word
BELL will not be printed on the screen.

14

68

CTRL means control. This key is always used to­
gether with another key-just like the B key is
always used with another key. Hold down B
while you press another key, and something spe­
cial will happen. You will learn how to use
B with certain keys later.

ESC stands for escape. The very first computers
that were built used this key to ''escape'' or break
out of a program that the computer was doing.
This key would make the computer stop . The Ap­
ple 's 0 key does not do this, but it can do many
other things which you will learn about later.
Unlike B and B , the 0 key is never held
down while pressing another key. Always press
0 and let go before you press another key.

REPT means repeat. Hold the 8 key down while
you hold down another key. The Apple will re­
peat the symbol on the other key by printing it
over and over . To stop the repeated printing, let
go of one or both keys. For example, if you want
the Apple to quickly print a line of Z's, hold dow n
both the 8 and[] keys and w atch it go!

I RESET I is a very important key. Whatev er the Apple
may be doing, if you press B and I RESET I. every­
thing will stop. When the computer is doing a
program, it has control. You have to wait for it to
finish . By pressing Band~ . the program will
stop and you will again have control over the
computer.

15

For the Apple][e

I ESC I !

I ~ I #

I
$

I 1 3 4

l (,rA~,:"'I
'-;· ;· ·· , Q lw I E I R

A I s I D I F

SHIFT I z I x I c I

%

I
/\

I
& * 1- + I DELETE I I RESET I 5 6 7 8 9 0

I T I y I u I I 0 I p I \

I G I H I J I K I L I I I RETURN

I I I I
<

I ~ I
?

v B N M
SHIFT

S P A C E i

Apple lie Keyboard

The Apple Ile has some extra function keys that
the Apple II computers don't have.

The B key only works if the program you are
running lets you use it. This key. when pressed,
will move the cursor eight spaces to the right.

I OOHTROl I is the same as~ on the Apple lL

The I ~ I key was explained in Chapter 2. When
this key is up, letters typed will be printed in lower
case. The B key must be pressed to print capital
letters. When! ~ lisdepressed, only capital letters
will be printed. It is a good idea to always keep
this key in the down position. Many programs
only recognize capital letters.

The @] key is called open apple. Likewise. [!] is
called closed apple or solid apple. These spe­
cial purpose keys do special things. If you don't
have paddles attached to your Apple,@] can be
used for paddle #0 and 00 for paddle# 1 . Paddles
are hand controls used with many game pro­
grams. (see chapter 8)

16

By pressing @] I COllTln 11 RESET I (all together) the Apple
will be restarted when the power is already on.
This is called a system reset or warm boot. If you
can't get the Apple to stop what it is doing by
pressing I aJHTROl 11 RESET I , try these three keys .

Note

The Apple He does not have a~ key. Instead,
every key automatically does repeated printing
if you hold it down for more than one second.

to do: Exploring the Apple 's Keyboard #2

17

(CHAPTER 5) Fixing Typing Mistakes

If you type something wrong, the Apple won't
understand you. That's why it's important to cor­
rect your typing mistakes.

The Apple lets you know when it doesn't under­
stand you. If you spell a word wrong or forget to
speak in BASIC, the Apple will beep and the
screen will say:

r? SYNTAX ERROR

SYNTAX ERROR is an error message. There are
many types of error messages. SYNTAX ERROR is
the Apple's way of saying, " I don't understand
you. Please try again. ''

By using the edit keys, you can fix any typing
mistakes bet ore you press I RETURN I . This helps to
keep you from getting so many SYNTAX ERROR
messages.

The c:J key is called left-arrow and the c:J key
is called right-arrow. These two keys move the
cursor to the left or right so you can fix typing
mistakes. Let's see how they work .

We typed a message to the Apple but spelled it
wrong.

The message on Apple 's screen shows:

r I HELLO APZLE :o:

18

The message in Apple's memory
says:

We need to change the Zin APZLE to a P. We
would press c:J three times to make the cursor
move backward three spaces to the Z.

Screen

, ' r l HELLO APiZJll:

When we backed the cursor over the LE to get to
the Z, the letters Land E did not get erased from the
screen. We still see them printed on the screen.

BUT the letters L and E did get erased in the
Apple's memory. It we were to look inside the
memory, we would see:

Memory

To correct the mistake, type a P over the Z. Now
the screen and memory would show:

Screen Memory

, ' r l HEllO APPILJE

19

Screen

To put the LE back into the Apple's memory we
use the c:J key. This key moves the cursor to the
right. If we press c:J two times, the cursor will type
over the LE and put it back into the Apple's
memory.

Memory r] HELLO APPLE :o:

Screen

Now our mistake has been corrected both on
the screen and inside the memory. Always re­
member to correct your mistakes this way.

There are more tricks in correcting typing mis­
takes. If you use ~with c:J , you will be able to
backspace faster. If you use B with c:J , the
cursor will type over what is printed more quickly.

Use 8 0 to erase a whole line from Apple's
memory. Let's say we typed HELLO APPLE, but
decided to change it to HOWDY PARTNER in­
stead. The screen and memory would show:

Memory r] HELLO APPLE :o:

Screen

Press 8 0 and the cursor will go to the begin­
ning of the next line. We will still see our message
on the screen, but it will be erased from the
memory.

Memory

] HELLO APPLE \
]''o ' , ~

20

The Apple printed a \ after HEUO APPLE . This \
means that we want to forget about this message
and type something else on the next line.

Now type the right message:

Screen Memory

] HEUO APPLE \
]HOVVDYPARTNER ' o '

; '

By using 0 with four keys, you can move the
cursor anywhere on the screen without erasing
any writing from the screen or from the memory.
We call these keys CURSOR CONTROL KEYS.

CURSOR CONTROL KEYS

r:::;; ~s,;;;, 1 a 1 w 1 E 1 R 1 T 1 y 1 u 1-~ .. ::;.~1'1 0 1 ~ 1 REPT 1 RETURN

I CTRL I A I s I D I F I B~LL I H l!'~l;~i~~~~I g"~~ " I L I ~ I ~ I ~
I SHIFT I z I x I c I v I B I ~ t:I~' I < I > I ? I SHIFT

I POWER I I s p A c E I

Apple JI and Apple JI+ Keyboard

The four keys you will use with 0 are 8 , 0 ,
0 , 0 . Notice how these keys are arranged on
the keyboard. They form a type of directional
keypad.

Since I is on top, ~ ~ moves the cursor up.
Since Mis on the bottom, ~ ~ moves the cursor down.
Since J is on the left, ~ GJ moves the cursor to the left .
Since K is on the right, ~ ~ moves the cursor to the right.

21

Always remember to press~ and let it go before
you press the next key.

Here are some ways you can use the cursor
control keys to correct a typing mistake :

1 . Find your mistakes on the screen.

SOMEWHEREX
OVEN THE
RAINBOW 'o' , ..

2. Move the cursor to your first mistake .

" It
SOMEWHERE[XJ
OVEN THE "t "
RAINBOW-+--+

Use~G]andi=J.

3. Press the space bar to erase the mistake. You '11
have to press it twice.

.. ,
SOMEWHERE 0 , ..
OVEN THE
RAINBOW

22

4. Press 0 and move the cursor to your second
mistake .

S01'(1EvyHERE i
OVEINI .__ THE .__ , ~

RAINBOW
Use 0GJ and Q.

5. Type over your mistake twice .

SOMEWHERE .. ,
OVER ,D, THE
RAINBOW

6. Press 0 and move the cursor back to where
you will type next.

SOMEWHERE
OVER i THE
RAINBOW
' , I D .__ • , ..

23

[]
[]

When you turn on the Apple, it is in direct or
immediate mode. A mode is a way of acting­
somewhat like a mood. (For example, if you are
in a tired mode, you may yawn a lot.) When the
Apple is in direct or immediate mode, you have
direct control over it. It will do what you tell it to do
immediately.

When you press 0 , the Apple goes into edit
mode. Edit means to correct mistakes. When the
Apple is in edit mode, it is ready to move the
cursor around the screen with I, J, K. and M so you
can correct mistakes. You must press a key twice
to type over a mistake. The first time you press the
key, nothing happens on the screen. A message
is sent to the Apple that tells it you want out of edit
mode. The second time the key is pressed, the
Apple will print on the screen.

To get out of the edit mode and back into direct
mode, press any key except 0 , L J, K, M, 8 ,
B, orB.

moves the cursor to the left and erases writing
from the memory, but not from the screen.

moves the cursor to the right and retypes what is
on the screen and puts it back into memory.

moves the cursor to the beginning of the next line.
It erases the old line from memory. but not from
the screen. It leaves a \ on the screen.

puts the Apple into edit mode so you can use L J,
K, and M as cursor control keys . These keys will
not erase anything from the screen or the
memory.

24

For the Apple][e

TAB I Q I w I E

CONTROL I A I s I D

S P A C E

Apple He Keyboard

The QJ key is called the down arrow. It moves
the cursor down one line on the screen without
erasing any typing. The QJ key is the up arrow. It
moves the cursor up one screen line, again with­
out erasing any typing. The[LJkey only works when
you are running certain programs.

The QJ key can be used in place of 0 and 0 .
The I orure I key deletes unwanted characters but

only works in certain programs. If you press I DElm I
while typing on the screen, a checkerboard cur­
sor pattern will be printed.

The B key is also called a cursor control key
because it moves the cursor 8 spaces to the right
when pressed.

You may use QJ when you are typing on the
screen in direct mode. This key may not work it
you are running a program.

I onm I , B , and QJ will only work it a program
you are running allows them to work. They do not
work in direct mode.

to do: Exploring the Apple 's Keyboard #3, #4, #5
Screen Game# l , #2, #3, #4

25

I RETURN

SHIFT

t

(Screen Game #I computer safari)

1 . Turn the Apple on and get it ready.

2. Clear the screen and send the cursor home.

3. Type five * on the screen. Which two keys
did you press?

DD
4. Draw what is shown on the screen.

Screen

r
Pretend this is the wild forest .

5. Type: LION Type: % (Can you figure out
how?)
What did you press to type the % ?

D D
6. Draw what is shown on the screen.

Screen

r
Pretend the % are the lion's eyes watching
you.

26

7. Type 12 more* .

8. Press 0 . Press GJ once . Press GJ 22 times.
The cursor should go to the beginning of the
next line .

9. Type 10 *. Type: ELEPHANT Type : %
Type three more * .

10. Go to the beginning of the next line by using
0 andGJ and GJ .
(Follow step 8 to help you remember.)

11 . Type three *. Type : TIGER Type : %
Type 13 more * .

12. Go to the beginning of the next line.

13. THE HUNT BEGINS!!! Without erasing any­
thing, move the cursor to the eyes(%) of each
animal. Then erase the % .

If you erase anything besides the % , you get
eaten and lose!

14. Which animals did you capture? ___ _

27

(CHAPTER 6) Inside the Apple

[-!I
1..L- - - =:- --~j

Inside the keyboard is the CPU (central process­
ing unit) or " main brain" of the Apple . You can
look at the brains of your Apple by removing the
keyboard lid (only with permission, of course!).
You will see many flat metal circuit boards with
small black chips sitting on them. These chips
may look like strange insects with many legs, but
they are really for storing information and carry­
ing out tasks that you ask the computer to do.

The CPU is made up of four main parts:

1. Memory
2. Control
3. Arithmetic and Logic Unit
4. I/O (input/output) pathways

When you type something on the keyboard,
the characters you type are stored in the key­
board memory. If you press I fETIJRH I , those charac­
ters will be taken out of keyboard memory and
put into one of the Apple's main memory chips
called RAM. RAM stands for Random Access
Memory.

Memory is measured by bytes. A byte is the
space it takes to store one character. A character
can be a letter, number, special symbol, or even
a blank space. Your Apple's RAM may be able to
store from 49,952 to 65,536 or more characters.
This is about as many letters as you would find in
a 50-page book.

If a computer 's RAM holds 49,952 bytes, we say
it is a 48K computer. K stands for kilobyte. Since
kilo means ''thousand, '' we could say a kilobyte
is about a thousand bytes. (Actually, a kilobyte is
1,024 bytes.) Some Apples have even more K of
RAM, but most have 48K or 64K. The more K of
RAM, the more characters or data a computer
can hold, and the more it can do!

If you tell the computer to solve some arithmetic
or make a decision, the computer will do this in
the arithmetic and logic unit of the CPU.

28

Input is any information that you put into the
computer. When you type on the keyboard. you
are putting input into the computer. When you
run a program from a disk, the program becomes
input because it is put into the computer from the
disk drive. Output is information that the com­
puter gives you, or puts out. You may need to
know the answer to a math equation. First you
type the equation on the keyboard (give the
computer the input). Then the computer giv es
you the answer, which is the output . You can see
the computer's output on the screen, or the com­
puter can print it on a printer. The 1/0 pathways
(Input/Output pathways) send messages from the
computer to the screen or disk drive or printer, or
vice versa. These messages will usually be some
form of input or output.

The fourth part of the CPU is the control. The
control is like a policeman directing traffic. When
you type information or data on the keyboard,
the control sends it to the memory or to the arith­
metic and logic unit. After the arithmetic and
logic unit has solv ed a problem, the control sends
the answer through the I/O pathways to the
screen or some other output device such as a
printer or a disk drive.

El ' EJ
Printer -

t

EJ- Disk Drive
0

- Keyboard

Screen

29

Printer

t

B=
Disk Drive

Keyboard

!
Screen

(CHAPTER 7) T~eAp~le'sMonitorand
Disk Drive

When you learn how to play a game you must
follow a set of directions. The same is true for com­
puters. The Apple cannot work or play with you,
or even communicate with you, unless it has di­
rections to follow.

We call the set of directions computers use a
program. Computer programs are written by
people. People who write computer programs for
a living or as a hobby are called computer
programmers. As you work through this book,
you will learn how to program the Apple, and
perhaps some day you'll become a computer
programmer!

The Apple learns programs in two ways:

1 . You type the program on the keyboard. The
Apple copies the program from the keyboard
and stores it in memory. In this way, it under­
stands and remembers the program.

2. The Apple can also get the program from a
disk on which the program is recorded. It cop­
ies the program from the disk and stores it in
memory where it will understand and re­
member the program.

The Apple can only remember one program at
a time. Every time you want to RUN (or do) a
different program, you must first erase the old
program from the Apple's memory. Then you
can LOAD the new program into memory. The
Apple 's memory is erased by typing NEW and
pressing I RETURN I .

When a programmer types in a program for the
Apple, he or she uses the keyboard and the
monitor screen. The programmer can see what is
being typed by looking at the screen. When the
Apple answers a question or plays a game, this
also can be seen on the screen.

30

Does the Apple's monitor remind you of your
T.V. at home? Both screens are made with a
cathode ray tube. This tube lets you see num­
bers, words, and images on the screen. The Ap­
ple's monitor may sometimes be called a CRT
(cathode ray tube) because of its screen.

Because each microcomputer can hold only
one program at a time in its memory, programs
must be stored elsewhere . One of the best places
to store microcomputer programs is on a disk
(also called a diskette). A disk is small and flat
and looks like a floppy record. It is made out of
magnetic material and can store many com­
puter programs at once. One disk can store more
than 143,000 bytes of information.

In order for the Apple to copy programs from a
disk, a disk drive is needed. The disk is slipped
into the disk drive where it spins like a record .
Inside the disk drive is a head (think of it as being
like the needle on a record player), which can
read and write information to and from the disk.
The computer can move the head to any point on
the disk to access any program, just like you can
move the needle on a record player to play any
song on the record. A special program called the
disk operating system (or DOS) controls the disk
drive.

The type of disk that the Apple uses is a 5 14-inch
floppy disk or diskette. (We will usually just call it
disk for short.) You never really see the disk be­
cause it is enclosed in a protective envelope. You
should NEVER remove the disk from this enve­
lope! A fingerprint, cigarette smoke, or even a
speck of dust can ruin a disk and all the programs
that were stored on it. You can see part of the disk
through openings in the envelope . Be careful that
you never put your fingers near the openings.
These openings allow the disk drive head to
reach the surface of the disk. You will leam how
to use disks and operate the disk drive later.

31

(CHAPTER 8) Apple's Peripherals

Many different types of equipment can be at­
tached to a computer to do many types of jobs.
These pieces of equipment for computers are
called peripherals.

A disk drive is a peripheral because it stores
and reads extra programs for the Apple. A cassette
tape recorder does the same thing. You could at­
tach a special cassette tape recorder to the Apple
and read and store extra programs on cassette
tapes.

Another important peripheral is a printer.
Whenever the Apple answers a question or prints
something on the screen, it is displaying output .
Output is information that computers give to peo­
ple . Screen output is only temporary. It has to be
erased from the screen so the computer can show
new output or so the programmer can type on the
keyboard. To save output on paper, a peripheral
such as a printer is needed. The computer prints
output on printer paper so the programmer can
keep it forever. Output printed on paper is called
a hard copy because it can be kept forever.

A graphics tablet is a fun peripheral to have. A
graphic is a picture or design that you can draw.
The graphics tablet lets you create pictures and
designs on the Apple in color (if you have a color
monitor). In this way you can create beautiful
computer art.

32

If you play games on your Apple, then you
might have game control peripherals called
paddles or joysticks. These peripherals help you
move game pieces around the screen and shoot
at objects in the program. Game controls may
also be used in programs that create computer
art .

There are many other types of peripherals to
use with the Apple . Some are music synthesizers
that help you write songs. Other peripherals can
help control your living environment. They can
be hooked up to a heating source in your house,
such as your furnace, and control the inside tem­
perature. Some peripherals-called modems­
are hooked into the telephone lines and can
' 'call up' ' other computers. In the future, you will
see many other peripherals that allow computers
to do more and more incredible things.

to do: Component 1 Fun Page

33

34

CHAPTER9
Play a Game with the Apple 36

CHAPTER 10
Teaching the Apple to Do Your
Homewo~ 42

CHAPTER 11
The Apple as a Calculator 43

CHAPTER 12
Arithmetic with Many Numbers 45

CHAPTER 13
Teaching Your Apple
Simple Tricks 48

CHAPTER 14
Printing Whole Equations 52

35

(CHAPTER 9) Play a Game with the Apple

Playing a game with the Apple can be both fun
and challenging . Most game programs are
stored on disks. The first thing you will do is LOAD
the program into the Apple's RAM. Depending
on the program and the disk, there are two ways
to do this.

First Way

If the disk has only one program on it, follow
these directions:

1 . Open the disk drive door.
2. Carefully insert the disk. The label should be

facing up and you should have your thumb
on the label. Make sure you put the disk in
very straight.

3. Close the door to the disk drive .
4. Turn down the volume on the monitor.
5 . Tum on the monitor.
6. Turn on the Apple.
7. The disk drive will make whirring and click­

ing noises as the program is loaded.
8. After the program has been loaded, the

game should begin.

Second Way

If the disk has many programs stored on it, fol­
low these directions:

1 . Open the disk drive door.
2. Carefully insert the disk with your thumb on

the label . Make sure the label is facing up
and that you put the disk in very straight .

3. Close the door to the disk drive.
4 . Turn the volume down on the monitor.
5. Turn on the monitor.

36

6. Turn on the Apple.
7. The disk drive will make a whirring and

clicking noise as the disk is getting the com­
puter ready .

8. When it is ready, the screen should say:

DOS VERSION 3.3 08/25/80
APPLE II PLUS OR ROM CARD SYSTEM MASTER

(LOADING INTEGER INTO LANGUAGE CARD)
1 "o' , ..

9. Type: CATALOG I RETURN I
The disk drive will again whir and click. The
screen will show a catalog (listing) of the pro­
grams and information that are stored on the
disk. If there isn't a space between the cursor
and the last program listed, press any key
and the rest of the programs in the catalog
will be displayed on the screen.

10. Look for a program called MENU. If the cata­
log does not list MENU, then read through
instruction number 12 and skip to number 15.

11. The screen might show something like this :

DISK VOLUME 254
* A006HELLO
* B 050 INTBASIC
*I OlOMENU
* I 019 HAMMURABI
* A047 LEMONADE
1 "o' , ..

37

12. You will see asterisks (*) and the letters A , B,
or L as well as numbers next to the name of
each program.

* means that the program is locked on the
disk and can't be accidentally erased.

A means that the program is w ritten in Ap­
plesoft BASIC.

B means that the program is w ritten in
binary machine language. Computers
understand this language better than
people because it is made mostly of
numbers and symbols.

I means that the program was written in
integer BASIC. This w as the first BASIC
written for the Apple.

006 The numbers tell how much space each
program is taking up on the disk.

13. Type: RUN MENU I RETURN I
14. The disk drive will whir and click and the

screen will show:

I INTEGER I
3MENU
4 HAf.AMURABI
I APPLESOIT I
1 HEU.O
5LEMONADE
I BINARY I
2INTBASIC

The menu organizes the catalog programs
into the languages in which they were writ­
ten. The numbers stand for the order in which
the programs are stored on the disk.

At the bottom of the screen are the instruc­
tions for using the menu. They say:

C-CATALOG ANOTHER DISK ESC-EXIT

L4-LOAD PROGRAM #4
R4-RUN PROGRAM #4 WHICH?

38

It you don't want any of the programs on
this disk, then you would press GJ I RETURN I .

If you want to leave (exit) the menu, press
0 and start over again.

If you want to load program number 4,
which is HAMMURABI, you would type L4
I RElURN I . HAMMURABI would be loaded into
RAM. Then you would have to type: RUN
I RETURN I for the program to begin.

If you want to load and run program 4
(HAMMURABI), type: R4 I RET\.IRll I . The program
will be loaded and will run (begin).

Before the Apple can do a program, the
program must be loaded into the Apple 's
RAM. Then the Apple will know the direc­
tions for doing the program. When the Apple
starts doing the program instructions, we say
the Apple is RUNNING the program. You can
see that it is easier to run a program, than to
load and then run it.

Now you know how to use the menu. Using
the menu is only one way of loading and
running a program.

15. If your catalog does not list a menu, just run
the program you would like the Apple to do.
Let's say you would like to run the program
called LEMONADE. Type: RUN LEMONADE
I RElURN I .

The program called LEMONADE will be
loaded into RAM and will begin.

39

Third Way

If you plan to write your own programs and
then save them on a disk (which you will learn to
do later), you must first get the disk drive set up
and ready. To set up the disk drive, a special
program called the DISK OPERATING SYSTEM
(DOS) must be in the Apple 's memory. The DOS
controls all of the disk drive activities. Putting DOS
into memory is called booting the disk. This is
done to get the Apple and disk drive ready to
work together . Some disks with programs a l ­
ready have DOS on them. (They load in DOS with
the program.) If you are writing your own pro­
grams, you must first boot the disk with the special
DOS program that is on the disk called the system
master. Here is how you boot the disk with DOS:

1 . Open the disk drive door.
2. Carefully insert the System Master disk .
3. Close the door to the disk drive .
4 . Tum down the volume on the monitor.
5 . Turn on the monitor.
6. Tum on the Apple .
7. The disk drive will whir and click and the

screen will say:

DOS VERSION 3. 3 08/25/80
APPLE II PLUS OR ROM CARD SYSTEM M A STER

(LOADING INTEGER INTO LANGUAGE CARD)
1 'o' , ..

8. Now the Apple and the disk drive are ready to
work together, and you may start typing your
programs.

40

Caution
Once a program has been loaded from the

disk, you may remove the disk from the disk drive
and put it back into the envelope. The program
will stay in RAM until you type NEW or load a new
program or tum off the computer. NEVER remove
the disk if the red light on the disk drive is ON!

1 . Insert the disk with the game you want to play
or the program you want to run.

2. Tum on the monitor and Apple.
3. If the game/program doesn't start right away,

type CATALOG.
4. Type : RUN (name of program).

41

(CHAPTER IOU Teaching the Apple to Do
Your Homework

1. addition

2. subtraction

3. multiplication

4. division

5. square root

6. powers

Have you ever dreamed of having a computer
that could do your homework for you? It 's possi­
ble! You can teach the Apple to do your math
assignments for you. The Apple can figure out
your math and give you the correct answers
about a billion times faster than you can!

Here are six kinds of arithmetic that the Apple
can do for you:

Our Symbol Applesoft BASIC Symbol Example

+ + 2+2=4

4-2= 2

x * 2*3=6

I 6/2=3

102 /\ 10/\2= 100

./25 SQR() SQR(25)=5

42

(CHAPTER 11) The Apple as a Calculator

You can use the Apple as a calculator to do the
six kinds of arithmetic mentioned in Chapter 1 O.
You will ask the Apple to print the answer to any
arithmetic equation you type on the keyboard.
The BASIC command you will use is PRINT.

1. To add 25+35, type: PRINT 25+351 RETURN I.
(Always remember to press I RETURN I after you
have typed an equation.)

r] PRINT 25+35
60
J "o'

2. To subtract 60- 12, type: PRINT 60- 12 ~ .

r
] PRINT 60-12
48
J "o'

3. To multiply 50x5, type: PRINT 50*5~.

r] PRINT 50*5
250
1 "o'

4 . Todivide90+3 , type:PRINT90/3~ .

r
j PRINT 90/3
30
1 "o'

5. To find the square root of 100, type: PRINT
SQR(100) I RETURN I .

r] PRINT SQR(100)
10
J "o '

43

6. To find the second power of 4 (42), type: PRINT
4A2 I RETURN I .

r
] PRINT 4/\2
16
]''o ' , '

Notice that you do not type an equal sign (=)
when you do arithmetic on the Apple .

When you use the Apple as a calculator, it is
called direct mode programming because the
Apple gives you the answer directly after you
press I RETURN I .

to do: Programmer's Pastime# 1

44

(CHAPTER 12) Arithmetic with Many
Numbers

The Apple can do more than one kind of arith­
metic in the same equation. When the Apple
deals with many numbers and many types of
arithmetic at once, it follows a certain order. Let 's
look at an equation to see what that order is.

EQUATION: 5*(6-2)+9/3A2

1 . PARENTHESES are done first.

2. POWERS are next.

3. MULTIPLICATION, DIVISION, and SQUARE ROOTS
are third. (The numbers to the left are done tirst,
then the numbers to the right.)

4. ADDITION and SUBTRACTION are performed
last, together. (The numbers to the left are done
first, then the numbers to the right.)

5*(6-2)+9/3A2 PARENTHESES

1st

5* 4 +9/3A2 POWERS ..._,,_,
2nd

what the Apple does

6-2=4

3A2=9

5*4=20
9/9= 1

20+ 1 =21

5 * 4 +9/9 MULTIPLICATION and DIVISION (left to right)
~ ..._,,_,

3rd 4th

20 + 1 ADDffiON (and SUBTRACTION) (left to right)

last

answer = 21

45

Here's a saying that might help you remember
the order in which the Apple does arithmetic .

Please P stands for PARENTHESES
Pay P stands for POWERS
My Dear M stands for MULTIPLICATION

D stands for DMSION
Square

Aunt Sally

remember-SQUARE ROOTS are
done third too!
A stands for ADDmON
S stands for SUBTRACTION

There is a shortcut for getting the answers to
many short equations. If you want answers to:

1. 99* 66
2. 74+47
3. 89-78
4 . 4/\2

Type: PRINT 99* 66, 74+47, 89-78, 4A2 I RETURN I
Use commas to separate each equation.

You can type up to 255 characters in one PRINT
statement . (Remember that spaces and commas
are characters too!) The Apple will beep when
you type the 248th character to warn you that
you are approaching the limit . If you type more
than 255 characters for one PRINT statement, the
Apple will print a \ and cancel the line and you
must start over!

to do: Programmer's Pastime #2, #3, #4, #5

46

(PROGRAMMER'S PASTIME #2)

In what order does the Apple perform arithmetic
in equations?

_____________ are done first .

--------------are second.

_______ and _______ are

________ are done third, (left to right).

______ and ______ are done
last (left to right).

How would you type each equation to get an­
swers from the Apple?

1. 457+99 x 6

2. "'64-2

3. 26+22

4 . 777 x 555+222

5. 83 - 16

6. v'22+88

7 . .J49+765

8. 98+88x66+24

Show how you would type the equations above
using only one PRINT statement.

47

(CHAPTER l3) 1'.,eaching_Your Apple
Sunple Tricks

... ~ /
':~ .. ··~. ij'

~: ~(9~·; ':{/~
.:::::::. />~;.">/)

...... -....

: ! . -
· ... <. : .. • .• ·:

t._ : ~ ..

You can use the PRINT command to teach your
Apple some simple tricks. First, teach the Apple
how to print its own name.

Type: PRINT ''Apple II'' I RETURN I

] PRINT \\APPLE II I I

APPLE II
1 "o' , "

Notice that the data you want the Apple to print
must be put inside quotation marks. Since you
want the Apple to print APPLE IL the words Apple
II must have quotation marks around them.

The Apple is in direct mode because it obeyed
your command and printed Apple II directly after
you pressed I RETURN I .

Let 's teach the Apple to get tricky and flash on
and off when it prints its name. Use the FLASH
command before the PRINT command like this.

Type: FLASH
PRINT ' 'Apple II'·

] FLASH
' tJ'

] PRINT " APPLE II"
tJ' '
' tJ'
APPLE II

J' ~

' tJ'
] D

tJ' '

Remember to press I RETURN I after each line .

48

To get the screen to stop flashing, use the com­
mand NORMAL. This will make the screen nor­
mal again.

] FLASH
' ,

] PRINT " APPLE II" ,,. ,,.
APPLE II ,,. ,
] NORMAL , '
1 'o' , ..

When you type on the keyboard, the Apple
prints white characters on a black background.
You can make the Apple print the inverse (or
opposite) of this by using the INVERSE command.
INVERSE will make the Apple print black charac­
ters on a white screen.

] INVERSE

[I] PRINT " APPLE II"

I APPLEII

OJ:o:

To get the screen back to normal printing, type
the command NORMAL.

INVERSE

[I] PRINT "APPLE II"

I APPLE II I
[I] NORMAL

1 'o' , ..

to do: Programmer's Pastime #6

49

I

L_

~ I •••• \ I
I ••

I

I
I

_ _ _J

(PROGRAMMER'S PASTIME #6)

1. Write down what you would type to make the
Apple print your name.

Try it on the Apple to make sure it works.

2. What would you type to get the Apple to print
your name in inverse?

Try it on the Apple.

3. What would you type to make the Apple print
your name and make it flash?

Try it.

4. Make the Apple flash a message. then print it
normally, and then print the message a third
time in inverse. Write down the directions for
doing this.

50

(CHAPTER 14) Printing Whole Equations

You have learned how to use the PRINT com­
mand to make the Apple print the answer to an
arithmetic equation.

In this chapter, you will learn how to teach the
Apple to print both the equation and the answer.

To make the Apple print an equation, put
quotation marks around the equation like this :

PRINT "4+3="

The Apple will print exactly what is inside the
quotation marks.

1 PRINT \ \ 4 + 3 = 11

4+3=
1 'o' , '

Let 's make the Apple print the equation and
the answer. Type: PRINT " 4 + 3 =

/1 4 + 3

1 PRINT " 4+3= II 4+3
4+3=7
1 'o' , '

Notice that the answer-side of the equation 4+3
does not have quotation marks. When quotation
marks are not used, the Apple will print the an­
swer(which, in this case, is 7).

When you use '' '', the Apple will print what is
inside.

2. When you print an equation without '' '', the
Apple will print the answer.

to do: Programmer's Pastime #7
Component 2 Fun Page

51

CHAPTER 15
A First Program 54

CHAPTER 16
Easy Graphics 58

CHAPTER 17
Formatting Screen Output 60

CHAPTER 18
A Shortcut 66

CHAPTER 19
Getting Out the Bugs 68

CHAPTER20
Using the Disk Drive 7 3

52

(CHAPTER I~ A First Program

You have learned that computers can't think or
act for themselves. They must be told what to do
by people. A computer needs to follow a set of
clearly written directions in order to complete
even a very simple task . The set of directions that
a computer must follow is called a program.
Computer programs are written by people in
computer languages such as BASIC.

There can be many steps in a computer pro­
gram. The steps must be in the right order or the
program will not work correctly. Each step in a
program is written as one line on the screen. The
beginning of each line must have a line number
to help the programmer and the computer know
what is to be done first, second, and so on.

It is best to use line numbers in steps of 10 like
this:

10
20
30
40
etc.

This way, it you forget to put in a step, there are
nine numbers between each line number in
which to add the missing step. Example:

10
20
30
15

You can add line number 15 for the missing step if
the step needs to come second in the program. It 's
OK to put step 15 last because the Apple sorts
through all of the line numbers and puts them into
the right order .

53

Never label your line numbers like this :

1
2
3
etc.

You wouldn't be able to fix your program if any
steps were forgotten.

When typing a program on the keyboard, be
sure to press I RETURN I after every line. This enters the
line into memory, and moves the cursor to the
next screen line.

You have learned how to make the Apple print
the answer to math problems, and y ou know
how to make the Apple print whole math equa­
tions as well . The BASIC command that tells the
Apple to write something is PRINT. There is a short­
cut for the PRINT command. Instead of typing the
word PRINT, you need only type a question mark.

Command Shortcut

PRINT ?

When you tell the Apple to print a message,
you must type quotation marks around the mes­
sage, like this:

? ''TIIlS IS A MESSAGE''

The Apple will print whatev er you put inside
quotation marks. If you put gobbledygook inside
quotation marks, the gobbledygook will be
printed.

] ? " GOBBLEDYGOOK"
GOBBLEDYGOOK
1 "o' , ..

54

Direct Mode

J ? \'GOBBLEDYGOOK', I RETURN I
GOBBLEDYGOOK
J "o' , ..

So tar, you have used the PRINT command in
direct mode. After pressing I RrnJRN I , the Apple prints
the message on the screen. When you put a line
number in front ot the PRINT command, the Apple
goes into programming mode. After pressing
I RETURN I , nothing happens. To make the Apple print
your message, you must also type the command
RUN and press I RrnJRH I .

Programming Mode

J 10 ? \'GOBBLEDYGOOK' , I RETURH I
J RUN I RETURN I
GOBBLEDYGOOK
J "o ' , ..

The RUN command tells the computer to do your
program. Whenever line numbers are used, the
Apple goes into programming mode and you
must remember to use the RUN command to
make the program happen. NEVER put a line
number in front ot the RUN command.

There are three other BASIC commands that
should be used in the programs you write : NEW,
HOME, and END.

You may remember that NEW is the command
that erases the Apple's memory. You should type
NEW and press I RETURN I betore typing a new pro­
gram. This will cause any old programs that were
once in memory to be erased. NEW is NEVER used
with a line number. Use NEW only in direct mode.

HOME is the BASIC command that erases the
screen and sends the cursor "home." The cursor's

55

home is the top left corner of the screen. A prompt
appears with the cursor so the Apple is ready to
accept commands or a program. HOME works in
direct mode and programming mode. When you
type HOME in direct mode, the screen is erased
and the cursor is sent home directly after you press

When you use HOME in a program after a
line number, the screen is not cleared until the
Apple runs the program.
program.

Direct Mode

the Apple prints

, ' r 1 'o'

Programming Mode

r] IOHOMEl - 1
* RUN I RETURN I

the Apple prints

The END statement comes at the end of every
program that you write. It tells the Apple that the
program is over and there are no more instruc­
tions to follow. END should be the last statement of
your program. It is only used in programming
mode.

This is how you would write a simple program
using NEW, HOf\AE, PRINT, END, and RUN.

You type

]NEW
] 10 HOf\AE
] 20? "GARBAGIO"
] 30 END
]RUN

The Apple Prints

GARBAGIO
1 'o' , '

to do: Programmer'sPastime#8, #9, #10, #11

56

{!ROGRAMMER'S PASTIME # 1 y
Sounding Off

You learned how to make the Apple beep by
pressing EJ G. Now you can write programs that
make the Apple beep by using the PRINT state­
ment. In your program, type:

(line number) PRINT '' 11

in between the quotation marks, press EJ G.

1. Run this program to see how it works.

NEW
10 HOME
20 PRINT \'I CAN MAKE THE APPLE BEEP' I

30 PRINT \\ El G II
40END

2. Write a program that will make the Apple
print the following message. Run your pro­
gram on the Apple.

MARY HAD A LITfLE
(beep)
LITfLE
(beep)
LITfLE
(beep)
MARY HAD A LITfLE
(beep)
ITS FLEECE WAS WHITE AS SNOW

57

(CHAPTER I~ Easy Graphics

Program.

NEW
lOHOME
20 ? ''000000 K Kii
30? "O 0 K K II

40? "O 0 KK
50? " O 0 K K II

60? ''000000 K Kii
70END

It 's tun to watch the Apple draw pictures on the
screen. You can write programs to make the Ap­
ple draw pictures and graphics by using the
PRINT statement. For example:

Output

000000 K K
0 0 K K
0 0 KK
0 0 K K
000000 K K
J "o' , ..

Type the program on the keyboard so it ap­
pears on the screen the way you would like it to
look. You will have to put the spaces in the right
places. If you want the Apple to make one whole
line of the screen blank. type a PRINT statement
with nothing after it. like this:

(line number) PRINT or (line number) ?

Study this program, which prints a flag that re­
sembles the American flag. Notice how the PRINT
statements are used to make whole lines blank.

58

Program

10 HOlv1E
20 ?"* * * * * * * * * * ##,,

30 ? \ \ * * * * * * * * * *
40 ?"* * * * * * * * * * ##,,

50 ? \ \ * * * * * * * * * *
60 ?" * * * * * * * * * * ##,,

70 ?
80 ?"##,,

90 ?
100 ?"##,,

110?
120?"##,,

130?
140?"##,,

150 END

Output

* * * * * * * * * * ##

********** * * * * * * * * * * ##

********** * * * * * * * * * * ##

to do: Programmer's Pastime# 12, # 13

59

(CHAPTER 17) Formatting Screen Output

Type

1PRINT2+2, 3+3, 4+41 ~ I

Type

A format is a plan for the arrangement of some­
thing. Formatting screen output on the Apple
means writing programs so the screen output is
arranged a certain way when the program
is run.

In Chapter 12, you learned how to make the
Apple print the answer to more than one equa­
tion in one PRINT statement by using commas like
this :

output

(~·o· I , ,
6 8

The Apple prints the answers on one screen line.
This works the same way with words . You must

remember to put quotation marks around the
words you want the Apple to print.

output

1? " READY", "SET", " GO" I R£TUAA I READY
1 'o '

SET GO

, '

Notice that each word in the output is sepa­
rated on the screen by many spaces. The com­
mas cause this to happen. The Apple 's screen
has three print zones. The first and second print
zones can hold 16 characters. The third print zone
holds 8 characters. Because 16+ 16+8=40, this
means you can type 40 characters on one line
across the Apple's screen.

60

Screen

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16: 1 2 3 4 5 6 7 8 910 1112 13 14 1516 1 2 3 4 5 6 7 8
I
I
I
I
I
I
I
I
I
I

FIRST PRINT ZONE 1 SECOND PRINT ZONE

When commas are used in a PRINT statement,
each piece of output will be printed in a separate
print zone.

Type r I? "HELLO". "1HERE"

Output

1 2 3 4 5 6 7 8 9 10

H E L L 0

.. ,
l 0 , ..

11 12 13 14 15 16 1 2 3

T H E

4 5

R E

THIRD PRINT ZONE

6 7 8 9 10 11 12 13 14 15

FIRST PRINT ZONE SECOND PRINT ZONE

The word HEllO was printed in the first print
zone because it is the first word in the PRINT state­
ment. The second word, THERE. was printed in the
second print zone because of the comma
before it .

[HELLO/ ~

61

16

Output

1 2 3 4 5 6 7 8 9 10 11

5 + 5 =

' ,]• D , '

FIRST PRINT ZONE

Commas in PRINT statem ents will affect num ­
bers and equations in the same w ay.

Type r J? "5+5~ ". 5+5

12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0

SECOND PRINT ZONE

The equation 5+5= was printed in the first print
zone because it comes first in the PRINT statem ent .
The answer, 10, was printed in the second print
zone because of the comma before it.

62

Instead of using commas and making the
screen output spaced out, you can use semi­
colons (;) in a PRINT statement to make the output
different. When semi-colons are used in a PRINT
statement, the output is not spaced out in sepa­
rate print zones. The Apple prints the output in the
next screen column.

Type r I ? " HELLO", "TilERE"

Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 .

H E L L 0 T H E R E

.. ,
D , ..

FIRST PRINT ZONE SECOND PRINT ZONE

Type r I? " 5+5= ", 5+5

Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12

5 + 5 = 1 0

I
.. ,
D , ..

FIRST PRINT ZONE SECOND PRINT ZONE

63

13 14 15 16

Output

1 2 3 4 5 6 7 8 9 10 11

2 * 2 = 4

2 * 2 =

' ,
1 0 ,,

FIRST PRINT ZONE

12

Remember that a PRINT statement with nothing
after it leaves a blank line on the Apple's screen.

Type

13

]NEW
] lOHOME
1 20 ? \ \ 2 * 2 = I I/ 2 * 2
130 ?
140 ? ''2*2= 11

1 2*2
] SO END
]RUN

14 15 16 1 2 3 4 5

4

6 7 8 9 10 11 12 13 14 15 16

SECOND PRINT ZONE

1 . A comma tells the Apple to go to the next print
zone and then begin printing.

2. A semi-colon holds the cursor at the end ot the
last thing printed. Then it prints the next thing
in the very next column.

to do: Programmer's Pastime# 14, # 15

64

(_PROGRAMMER'S PASTIME # 15)

Ralph wants to run a program that will make
Apple print the following output:

Output

*** SMASHEDTOGETHER

OR

SPACED
???
]''o ' , '

APART

He can't get his program lines in the right order to
make the program work! Put the program lines
below in the correct order with the correct line
numbers so the program will print what Ralph
wants.

Ralph's Program

? "???"

?

HOME

? \'SMASHED' I; \'TOGETHER' I

? "OR"

END

?***II
? "SPACED", "APART"

?

65

Correct Order

10

20

30

40

50

60

70

80

90

(CHAPTER 1 s)_ A_sh_or1_c_u1 _ ___ _

Type

] lOHOME

As a computer programmer, you should always
be looking for useful shortcuts that will make writ­
ing programs easier.

You can use colons (:) to shorten your pro­
grams. Put colons between statements so you can
have many statements on one program line.

Output

ONE
] 20 ? "ONE" : ? "TWO" : ? "BUCKLE MY" :

? "SHOE"
TWO
BUCKLE MY
SHOE] 30END
J''o" .. '

Using this shortcut, you can take a long pro-
gram such as this:

lOHOME
20FLASH
30? "FLASH GORDON"
40INVERSE
50 ? ''STRIKES AGAIN!' '
60NORMAL
70END

and shorten it to this:
lOHOME
20 FLASH : ? ''FLASH GORDON' ':INVERSE:

? ''STRIKESAGAIN!'':NORMAL
30END

Output

~ 4

FLASH GORDON
~ ~

I STRIKES AGAIN
1 'o' , '

to do: Programmer's Pastime #16, #17

66

(PROGRAMMER'S PASTIME #I~
Using what you have learned about commas,
semi-colons, and colons, write a program that
will print a Christmas tree. Give the Christmas tree
ornaments in inverse and rows of lights that flash.

You might begin your program like this:

Type

] lOHOME
120 ? "
130 ? "
140? "
150 ? "

* xxx
xxxxx

xxxxxxx

"

":FLASH
'':NORMAL

Write your program on the lines below. Run
your program on the Apple to make sure it works.

67

Output

* xxx
.. xxxxx ,;-

xxxxxxx , ..

(CHAPTER 19) Getting Out the Bugs

Writing a computer program can be a long pro­
cess. It often takes many tries before a program­
mer gets a program to work properly. This is be­
cause there can be bugs in the program. No,
there aren't little insects climbing around inside
the computer. Bugs are mistakes that you and
computer programmers can make in writing a
program.

Some examples of bugs might be:

1 . Forgetting to type a punctuation mark.

Typing 10 ? HI" instead of 1 O ? "HI"

2. Spelling a command wrong.

Typing 30 ED instead of 30 END

3. Putting the steps of your program in the wrong
order.

10? "WRITE" instead of 10 HOME
20 HOME 20? "WRITE"
30END 30END

It is very important to check your program for
bugs before you run it or save it on a disk. To
check your program instructions, type :

LIST I RrnJPJj I
The Apple will list all of the instruction lines in your
program on the screen. Now you can check
each instruction for bugs. 11 you find a bug, you
can get rid of it by fixing the instruction.

Once you find a bug in your program retype
the line with the bug the correct way and press
I RETURN I . The old line will be replaced with the new
line. List the program again to make sure the bug
was fixed.

68

Example:

Type

] LIST

Output

] LIST
lOHOME

I Here's the btxJj

20 ? ''AMESSTAKE''
30END 'i

l Type

] 20 ? ''A MISTAKE'' I RETURH I
] LIST

1 "o' , ..

Output

] LIST
lOHOME
20 ? ''A MISTAKE''
30END
1 "o' , ..

There is another way that you can fix program
bugs on the Apple . If you want to erase a whole
program line, type the line number and press
I RETURH I

Example:

Type

] LIST
lOHOME
20 ? "DEBUG"
30 ERASE TIITS LINE
40END
1 "o' , ..

Type

] 30 I RETURH I

Even after you think you have correct~d all o1
the bugs in your program, you may tind more
bugs after you run your program on the Apple .
The best way to tind and fix all o1 the bugs in a
program is to take turns running and listing the
program. If you tind more bugs in the program
listing, use the tricks you just learned to fix them.

69

Check by Listing Again

] LIST
lOHOME
20 ? " DEBUG"
40END
l "o' , ..

Type

1 LIST 40' 60 I RETURN I

Type r]LIST 701 - 1

Type

1 LIST .40 I RETIJIVj I

If you are working on a long program, you may
not want to list the whole thing. You can list cer­
tain parts of a program by typing:

LIST 40' 60 I RETURN I
In this example, the Apple will list lines 40 through
60.

Output

] LIST 40,60
40? " TO FETCH"
50? " A PAIL"
60? " OF WATER"
1 "o' , ..

To list only one program line, type:

LIST 70 I RETURN I
Output

] LIST 70
70? "THE END"
J "o' , ..

To list all of the programs up to a certain point.
type:

LIST ' 40 I RETURN I

70

Output

] LIST .40
lOHOME
20? ' 'JACK&JILl.. ''
30? ' 'WENT UP THE HILL' '
40? ' 'TO FETCH' '
1 "o' , ..

To list all program lines past a certain point,
type:

LIST 40' I RETURN I
Type Output

] LIST 40' I RETURN I] LIST 40,
40 ? ''TO FETCH' '
50? " A PAIL"
60? "OF WATER"
70? " THE END"
BO END
1 'o ' , ..

The entire process ot getting rid ot program
bugs is called debugging. Don't let program
bugs ''bug you'' because now you know how to
fix them!

~ I

71

Computer Errors

There are three types of errors you may run
across as you work with computers. Sometimes
the Apple will tell you what your error is. Other
times you will have to figure out yourself what the
error is and where it happened.

User Errors. A user error happens when you-the
user-make a typing mistake or fail to communi­
cate with the Apple in Applesoft BASIC.

Program Errors. A program error occurs when
there are bugs in your program. You will have to
debug your program to correct the errors.

Computer Errors. A computer error could hap­
pen if not all of the computer's equipment is
hooked up properly. These errors can be very
complicated, but they rarely occur.

To find out what certain errors mean, tum to
Appendix Bat the back of this book.

Command

1. UST

2. UST 70

What Happens

All program lines are listed.

Only line 70 is listed.

3. UST 40,60 Lines 40 through 60 are listed.

4. UST ,40

5. UST 40,

All lines up to and including line 40
are listed.

All lines from 40 to the end of the
program are listed.

to do: Programmer's Pastime# 18

72

(CHAPTER 2cD Using the Disk Drive

Now that you are writing some interesting pro­
grams. you will want to SA VE them so you can
run them and enjoy them over and over. The
place to store programs is on a disk. Once a pro­
gram is saved on a disk, you can load the pro­
gram into the computer and run it whenever you
like.

If you are saving a program on a brand new
disk, tum to Appendix A , Initializing New Disks .
New disks have to be initialized or set up so
programs can be saved on them.

If your disk is already initialized or contains a
few programs, you may be able to store additional
programs if the disk isn't totally full. Follow these
instruc;tions:

1 . Type your program on the Apple's keyboard.
2. Run your program to make sure it works . De­

bug the program to fix any mistakes.
3. Put the disk on which you want to save your

program in the disk drive and close the door.
4. Type: SAVE I RETURN I.

(Type the name of your program
in the blank.)

5. The disk drive will whir as the program is
saved on the disk. When the red light on the
disk drive goes out and the whirring stops, the
saving process will be finished.

6. Type: CATALOG I RETURN I .
7. If the saving process worked properly, you

should see the name of your progrc;:rm listed in
the c;atalog with all of the other programs that
are stored on the disk.

73

Erasing a Program

If you decide that you no longer want to keep a
program on a disk, you may erase the program
tram the disk. Follow these instructions:

1 . Insert the disk with the program you want to
erase into the disk drive. Close the door.

2. Type: DELETE I RETURN I .
(Type the name of the
program here.)

3. The disk drive will erase the program.
4. Type: CATALOG to make sure your program

got erased. It it did, you will not see it listed in
the catalog.

Lock
You may save some very important programs

on a disk someday. You will w ant to make sure
that these programs can 't get accidentally
erased tram the disk . Use the LOCK command to
protect these programs. To lock a program on a
disk, follow these instructions:

1 . Insert the disk with the program you want to
lock into the disk drive. Close the door.

2. Type: LOCK I RETURN I .
(Type the name of the p rogram
here.)

3. The disk drive will lock the program.
4 . Type: CATALOG. Lookforyourprogramin the

catalog listing. It your program name now has
an asterisk (*)in tront of it, you will know that it
is locked safely on the disk.

74

Renmning

You can change the name of any program that
is saved on a disk. To rename a program, first
make sure that it is not locked. Then tallow these
instructions:

1 . Insert the disk with the program you wish to
rename. Close the door.

2. Type: RENAME I REMN I.
first blank second blank

Type the old name in the first blank. Type the
new name that you wish the program to have
in the second blank.

3. The disk drive will rename the program.
4. Type: CATALOG. Make sure your program

has been correctly renamed.

Naming Rules

There are certain rules you must tallow when
naming a program.

A program name:

1 . can be up to 30 characters long (this includes
numbers and spaces between words):

2. must start with a letter:
3. cannot have a comma in it.

75

Review

To Type

1. Save a program: SAVE
(program name)

2. Erase a program: DELETE
(program name)

3. Lock a program: LOCK
(program name)

4. Renameaprogram: RENAME _ _ _ ____ _

to do: Programmer's Pastime # 19, #20
Component 3 Fun Page

76

(old name) (new name)

CHAPTER21
Remarks 78

CHAPTER22
Color on the Screen 80

CHAPTER23
Colored Lines 85

CHAPTER24
Flow Diagramming 90

CHAPTER25
More About Flow Charts 95

CHAPTER26
Double Detours 97

CHAPTER27
Loop de Loop 99

CHAPTER28
Putting it all Together 101

77

(cHAPTER2J)~Re_m_ar_~~~~~-
As you begin writing more complicated pro­
grams, you will want to make sure they can be
easily read and understood by others who may
read them. Writing your programs so they are
easy to read is good programming style.

One style technique is the use of REMARK state­
ments-REM for short. This is called program doc­
umentation, which means noting what is
happening in your program. For example:

10 REM PRINT MY NAME
20HOME
30? "EGBERT"
40END

Each REM statement describes the purpose of
the statements following it. Since line 30 prints a
name, the REM statement in line 10 says:

10 REM PRINT MY NAME

When the program is run, the Apple will ignore
the REM statement. REM tells the computer to ig­
nore what is written on that line and go on to the
next line number. The Apple will list REM state­
ments, but it will not run them.

78

Use REM statements at the beginning of your
programs to tell the name of your program or
what it does. You can also show that you are the
author of the program.

For example:

10 REM SPACE ATI ACK
20 REM TRY TO SHOOT DOWN THE ALIENS
30 REM WRITTEN BY JOE COOL, 1980

It is also helpful to use REM statements to de­
scribe each main section of your program. For
example:

10 REM PRINTING EQUATIONS
20 REM WRITTEN BY CHARLIE BROWN. 1981
30 REM ADDffiON
40? "6+6= II 6+6
50 ? \\ 6 + 7 = II 6 + 7
60 REM MULTIPLICATION
70? "6*6= II 6*6
80 ? \\ 6 * 7 = II 6 * 7
90END

In the program above. we used REM statements
to:

1 . introduce the program:
2. show the beginning of the addition section of

the program:
3. show the beginning of the multiplication sec­

tion of the program.

Be careful that you do not use too many REM
statements in your programs. Too many can clut­
ter the program, making it more difficult to read.
Too many can also waste screen space and use
up memory. As you practice writing programs
you will become more aware of where REM state­
ments should be placed.

to do: Programmer's Pastime #21

79

Ji

(CHAPTER 22) Color on the Screen

If your Apple has a color monitor, you will enjoy
drawing screen pictures with little colored blocks.
This is called lo res graphics.

Remember that the Apple's screen has 40
columns. This means you can type 40 characters
across one line of the screen. The Apple's screen
also has 40 rows on which graphics can be
drawn. The screen columns and rows are la­
beled from 0 to 39.

Think of the Apple's screen as a big grid of rows
and columns. Each little grid block can be col­
ored to make a picture.

To build pictures with colored blocks, first type:

GR I RfTURN I
GR stands for graphics. Typing GR and pressing
I RETURN I puts the Apple into graphics mode.

When the Apple is in graphics mode, all of the
screen can be used for making pictures except
the very bottom of the screen. The Apple saves
the bottom four rows for writing. When you type in
graphics mode, the writing will appear on the
bottom four screen lines. This space is called a
text window.

80

Columns

0 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

10

11

12

13

14

15

16

17

18

19

20

21

Rows 22

23

24

25

26

'D

28

29

30

31

32

33

34

35

36

37

38

39

Text Window

81

Once the Apple is in graphics mode, you must
tell it what color to draw with first. There are 16
colors in lo res graphics. The colors are labeled
with the numbers 0 through 15. The command for
setting color is:

COLOR=5 (or some other number from 0 to
15), I RETURN I .

Now that the color is set you must tell the Apple
where to draw the colored block. Type:

PLOT 0, 0 I RETURN I
This tells the Apple to put the colored block on the
screen where column 0 and row 0 meet.

PLOT 0,39 would put the block where column 0
and row 39 meet.

When using the PLOT command, make sure
the first number is for the column and the second
number is for the row.

PLOT (column) (row)

You can change the color at any time by
typing:

COLOR =~~(_a_n_y_n_u_mb~_er_rr_o_m~O_t_o_l_5~)~-

To get back into direct mode from graphics
mode, type :

TEXT I RET1JRN I
The graphics window of the screen will fill up with
characters . Type :

HOME

to clear the screen.

82

Columns

PLOT 0,0 0 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 - •

10

11

12

13

14

15

15

17

Rows
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

PLOT 0,39 38 - 39 •
Review

Command

GR

COLOR=(numberfrom Oto 15)

PLOT (column),(row)

TEXT

What Happens

The Apple goes into graphics mode.

The color is set .

The colored block is placed on the screen.

The Apple goes back to direct mode.

to do: Programmer's Pastime #22, #23

83

(PROGRAMMER'S PASTIME #2~

Example:

COLOR= 0

1. COLOR= 1

2. COLOR= 2

3. COLOR= 3

4. COLOR= 4

5. COLOR= 5

6. COLOR= 6

7. COLOR= 7

8. COLOR= 8

9. COLOR= 9

10. COLOR= 10

11. COLOR= 11

12. COLOR = 12

13. COLOR= 13

14. COLOR= 14

15. COLOR= 15

Rainbow Colors

Experiment with the COLOR= and PLOT com­
mands in graphics mode to find out what all of
the 16 colors are .

PLOTO,O COLOR O=black

PLOT_,_ COLOR l=

PLOT_,_ COLOR 2=

PLOT _,_ COLOR 3=

PLOT _ ,_ COLOR 4=

PLOT_,_ COLOR 5=

PLOT_,_ COLOR 6=

PLOT_,_ COLOR 7=

PLOT_,_ COLOR 8=

PLOT _ ,_ COLOR 9=

PLOT_,_ COLORlO =

PLOT _ ,_ COLOR 11 =

PLOT_,_ COLOR12=

PLOT _ ,_ COLOR13=

PLOT_,_ COLOR14=

PLOT _,_ COLOR15=

84

(CHAPTER 23) Colored Lines

You can make colored graphics on the Apple
screen much easier if you draw with lines instead
ot with the colored blocks.

Let's say you decided to draw an orange line
across the screen at row 10. You could type:

]GR
]COLOR=9
] PLOT 0, 10
] PLOT l, 10
] PLOT 2, 10

and so on until you typed PLOT 39, 10. This would
take a long time to do!

There is an easier way to draw the same
orange line across row 10. Use a graphic com­
mand called lllJN to draw across the screen. Hin
HLIN stands tor horizontal. LIN stands tor line .
Horizontal means across. Type:

]GR
]COLOR=9
] HUN 0,39 at 10

After typing these three statements, the Apple will
quickly print an orange horizontal line across the
screen. HUN 0,39 at 10 means draw a line across
the screen from column 0 to 39 at row 10.

You can also make lines that go up and down
on the screen. These lines are called vertical
lines. Vertical means up and down. Use the VLIN
command to draw these lines. V stands tor ver­
tical. LIN stands for line. To draw a vertical line
down the center of the screen type:

VLIN0,39at 19

The line will be drawn down the screen from row
0 to row 39 at column 19.

85

Rows

Columns

o 1 2 3 • s 6 1 a 9 10 11 12 13 ' ' ts 16 11 ta 19 20 21 22 23 2• 25 26 21 25 29 30 31 32 33 3' 35 36 37 35 39

10
tt

12
1---+--+--+---+--+--+--+--+--+--+--+--+--+--+--+---+---+---+-

13

14
l-+-+-+-+-+-+-+-+--1--1--1--+--+---+---+--+--+--+-

15
l-+-+-+-+-+-+-+-+-+--+--+--+--+--t--t--+-+-+-

16
l-+-+-+-+-+-+-+-+--1--1--+--+--+---+---+--+--+-+-

17
t-t-t-+-+-+-+-+-+-+--+--+--+--t--t--+-+-+-+-

1 a
t-t-+-+-+-+-+-+-+-+--+--+--t--t--t--t--+-+-+­

t 9
l-+-+-+-+-+-+-+-+--1--1--+--+--+---+---+--+--+-+-

20
t-t-+-+-+-+-+-+-+-+--+--+--t--t--t--t--+-+-+-

21

22
1---+--+--+---+--+--+--+--+--+--+--+--+--+--+---+---+---+--+-

23
t-t-+-+-+-+-+-+-+-+--+--+--+--t--t--+-+-+-+-

24
l-+-+-+-+-+-+-+-+--1--1--+--+--+---+---+--+--+-+-

25
t-+-+-+-+-+-+-+-+-+--+--+--t--t--t--+-+-+-+-

26
l-+-+-+-+-+-+-+-+--1--1--+--+--+---+--+--+--+-+-

27
t-+-+-+-+-+-+-+-+-+--+--+--t--t--t--+-+-+-+-

25
l-+-+-+-+-+-+-+-+-+--+--+--+--+---+--+--+--+-+-

29
l--+--+---+--+--+--+--+--+--+--+--+--+--+--+---+---+---+--+-

30

31

32

33

3'

35

36

37

35

39

HUN 0,39AT10
VLIN 0,39 AT 19

86

Using lllJN and VLIN you can make the Apple
draw lines of any length up and down and across
the screen. To make a small pink cross in the
center of the screen, type :

]GR
] COLOR= 11
]lllJN 17,21at19
]VLIN 17,21 at19

Rows

Columns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39

10
l-+-t--t-+--t-+--+-+-i--+-+--+-t-+--+--t-+--t-+--+-+-1--+-+--+-t-+--+--t-+--t-+--+-+-1--+-+-+-l-l

11
t-+--+--t-+-t--t--t-+-it-t--t--r-t-t--+--t-+-t--t--t-+-it-t--t--r-t-t--+--t-+--t--t--t-+-il-t--t--t-1-1

12
l-+-t--t-+--t-+--+-+-i--+-+--+-t-+--+--t-+--t-+--+-+-1--+-+--+-t-+--+--t-+--t-+--t-+-11-t--+--t-1-!

13
l-+-t--t-+--t-+--+-+-i--+-+--+-t-+--+--t-+--t-+--+-+-1--+-+--+-t-+--+--t-+--t-+--+-+-1--+-+-+-l-l

14
1-+--t--+-+-t--+--t--+-ll-l--t-+-t-+--t--+-+-t--+--t--+-11-!--t-+-t-+--t--+-+-t--+--t--+-1--+--t-+-l-I

15
l-+-t--t-+--t-+--+-+-i--+-t--r-t-+-t--t-+-t--t--t-+-it-t--+--+-t-+--+--t-+--t-+--t-+-11-t--+--t-1-!

16
l-+-t--t-+--t-+--+-+-i--+-+--+-t-+--+--t-+--t-

17
l-4-l--4--+--t-+--+-+-1--+-l--l-~-l--4-+--t-

18
1-+-t--t-+--tl-t--t-+-i--+-t--r-t-t-t--t-..... _

19
l-+--l--l-4--1-4--1-4--11-'--+-4-'-l---l--l-.jlllllll!-

20
l-+-t--t-+--t--t--t-+-it-t--t--r-t-t-t--t-+-t-

21
l-+-t--t-+--t-+--+-+-i--+-+--+-t-+--+--t-+--t-

22
l-4-l--4--+--t-+--+-+-1--+-l--l-~-l--4-+--t-+--+-+-1--+-+--+-~-l--4-+--t-+--+-+-1--+-+-+-l-l

23
l-+-t--t-+--t-+--+-+-i--+-+--+-t-+--+--t-+-t--t--t--t--11-t--t--r-t-+-t--t-+-t-+--t-+-il-t--t--t-I-!

2•
l-4-l--4--+--t-+--+-+-1--+-+--+-t-+--+--t-+--t-+--+-+-1--+-+--+-t-+--+--t-+-t-+--+-+-1--+-+--+-l-l

25
l-+-t--t-+--tl-t--t--t-t-t--t--r-t-t-t--t-+-t--t--t-+-it-t--t--r-t-t--+--t-+-t--t--t-+-il-t--t--t-1-1

26
l-+-t--t-+--t-+--+--+---+-+--+-t-+--+--t-+--t-+--t-+-it-t--+--+-t-+--+--t-+-t-+--t--t--11-t--+--t-1-!

27
l-+--l--l-~-l--4--+--t-+--+-+---+-l--+-t-+--+--t-+--t-+--+-+-1--+-+--+-t-+-l--t-+-t-+--+-+--t-t

28
--+-+--+-t-t--+--t-+--tl-t--t--t-t-t--t--r-t-t--+--t-+-t--t--t-+-it-t--t--r-t-t--+--t-+-t--t--t-+-t-t

29
--+-+--+-t-+--+--t-+--t-+--+-+---+-+--+-t-+--+--t-+--t-+--+-+-1--+-+--+-t-+-l--t-+-t-+--+-+--t-t

JO
l---4--1--1-~-l--4-+--t-+--+-+-1---4--+--+-t-+--+--t-+--t-+--l-+-l--+-+--+-~-l--4-+--t-+--+-+--t-t

31
t-t--t--r-t-t--t--t-+--t--t--t--t-t-t--t--r-t-t--+--t-+-t--t--t-+-it-t--t--r-t-t--+--t-+-t--t--t-+-i-t

32
--+-+--+-t-+-+--t-+--t-+--+--+---+-+--+-t-t--+--t-+--t-+--+-+-1--+-+--+-t-+--+--t-+-t-+--t-+--t-t

33
1---4--+--+-t-+-+--4-+--t-+--+-+---+-+--+-t-+--+--t-+-t-+--+-+-i--+-+--+-t-+-+--t-+-t-+--+-+--t-t

34
,_..-+--+-+-+-+--+--+--t---+--+--+-,_..-+--+-+-+-+--+--+--t---+--+--+--<>--+--+--+-+-+-+---+-+-+--+--+--+--t-t

35
--+-+--+-t-+-+--t-+--t-+--+--+---+-+--+-t-t--+--t-+-tl-t--t-+-it-t--+--+-t-+--+--t-+-t-+--t-+-1-t

36
1---4--+--+-t-+-+--t-+--t--+-+-+---+-+--+-t-+--+--t-+-t-+--+-+-i--+-+--+-t-+-+--t-+-t-+--+-+--t-t

37
l-l--t--+-t-+--t--+-+-t--+--t-+-l-l--+-+-t-+--t--+-+-t--+--t--+-ll-l--t-+-t-+--t--+-+-t--+-+--t-1f-i

38
--+-+--+-t-t-+--t-+--t-+--+--+-t-t--+--r-t-t--+--t-+-t--t--t-+-it-t--t--r-t-t--+--t-+-t--t--t--t-1-t

39

HUN 17,21AT19
VLIN 17,21AT19

87

If you try to put a new color over another color
already on the screen, the new color takes over. If
you type:

]COLOR=l3
] HLIN 5, 10 at 20

a short yellow line will be drawn.
If you change the color and type the same

thing, the new color will take over.

]COLOR=3
] HLIN 5, 10 at 20

Now a short purple line is drawn over the short
yellow line.

If you want to erase the drawing on the screen
and do something new, just type :

GR I RETURN I
All graphics on the screen will be erased.

Error Messages

There are two common error messages that you
may discover when using lo res graphics:

1 . ?ILLEGAL QUANTITY ERROR
2. ?SYNTAXERROR

It you use a number larger than 39 you will get an
ILLEGAL QUANTITY ERROR message. Remember
that you can only use numbers between 0 and 39
for PLOT statements. If you type a command
wrong like PLAT 4,4 instead of PLOT 4,4, you will
get a SYNTAX ERROR message .

What Happens
Draws a horizontal line.

VLIN Draws a vertical line .

GR Erases the graphics screen.
(Also puts the Apple into graphics
mode.)

to do: Programmer's Pastime #24, #25, #26, #27

88

<!-ROGRAMMER'S PASTIME #2~
Use IIl...IN and VLIN to make a colored border
around the Apple 's screen. Inside the border,
make the Apple draw a large, colored set of your
initials. Write the instructions in program form on
the lines below. Use REM statements.

89

~HAPTER 2-0 Flow Diagramming

When you learn how to play a game, you must
read a set of instructions. These instructions are
written in a clear and orderly step-by-step man­
ner. If the instructions are mixed up and out of
order, you won't understand how to play the
game.

The same is true for computers. When you write
a program to teach the Apple a trick or to solve a
problem for you, the instructions in your program
must be in a clear, step-by-step order. If you don't
plan your program steps carefully, the Apple will
not understand what to do.

There is a process that you can use when you
write a program that will help you write your steps
clearly and in the correct order. This process is
called flow diagramming.

An algorithm (al' go rith m) is a step-by-step
method you use to solve a problem. Every prob­
lem has a certain algorithm that you can use to
solve it. For example:

Problem

Your front door is locked.

Algorithm

1 . Find your key.
2. Put the key into

the door lock.
3. Tum the key.
4. Open the door.

By following the algorithm, you can solve the
problem of being locked out of your house .

90

When you do flow diagramming, you must
show how the algorithm works by putting it into
flow chart form. Here is how you could write an
algorithm in a flow chart.

(START)
l

Find your key

l

Put the key into
the door lock

l

Turn the key

l

Open the door

l

(STOP)

A flow chart is a diagram that shows all of the
steps of an algorithm in the correct order. The
arrows in a flow chart show how the steps are
connected.

91

· ~

- ~ l he orrows
show which
s-ep:> 1ou
mus, qo ro

Below is a flow chart that shows an algorithm on
how to brush your teeth. Think about which steps
at the side of the flow chart would fit in the blank
boxes.

(START)
!

Get out your
toothbrush and
toothpaste

Put toothpaste
on your
toothbrush

(~_S_TO_P~)

92

Missing Steps

Brush your teeth.

Wet your brush.

Unscrew toothpaste cap.

Notice that the boxes in a flow chart have ditfer­
ent shapes. What shape are the START and STOP
boxes? We usually begin a flow chart with a (Sr'AAT)
instruction and end with a 8 instruction.

The boxes that tell you to do something a re
shaped like rectangles. They are called process­
ing boxes.

Shape

(__ ~) START or STOP box

PROCESSING box

Let's practice writing algorithms and putting
them into flow chart form.

to do: Programmer's Pastime #28, #29, #30

93

~ROGRAMMER'S PASTIME #3~
Design an algorithm for making a peanut butter
and banana sandwich. Write your algorithm in
flow chart form.

94

(CHAPTER 25) More About Flow Charts

Sometimes there will be a step in a flow chart that
asks a question. A question in a flow chart is writ­
ten in a diamond-shaped box. This is called a
decision box.

Algorithm/Flow Chart on How to Watch a TV
Program

(START

i
Find out which
channel the
program is on

i

Turn on TV

i

i Yes

Watch your
program

i

(STOP

)

No

)

l
Change
channels

J

In this flow chart a decision must be made. The
decision box asks the question: ''Is the TV on the
correct channel?''

c
95

If the answer is yes, you will follow the main
path of the flow chart . If the answer is no, you will
take a detour and follow a different path. During
the detour, there is another task to do-change
the channel. Notice how the detour comes back
to the main part of the flow chart before it ends.

When there is one detour from a decision box in
a flow chart, the flow chart is said to have a
single-alternative decision step.

Shape

DECISION box

to do: Programmer's Pastime #31 , #32, #33

One DETOUR from a
DECI SIQ\J BOX is a
SINGLE-ALTERNATIVE
DECISION STEP

96

(CHAPTER 26) Double Detours

Sometimes a flow chart will have a decision box
that has a detour for both the yes and no answers.
If the answer is yes, a certain task is done. If the
answer is no, a different task is done.

Algorithm/Flow Chart on How to Fly a Kite

Run into the
wind

No

(START)
.!.

Tie kite string
to kite

.!.

Take kite to a
big open field

.!.

Hold the kite
downwind

.!.

Hold the string
and let go
of the kite

.!.

Flythe kite

C~_S_TO_P ___)

97

Yes Let out more
string

This flow chart asks the question, ''Is the kite
going up in the air?' ' If the answer is yes, you take
a detour that tells you to ''Let out more string. '' If
the answer is no, you will take a different detour
that tells you to ''Run into the wind.''

Whenever there are two detours from a deci­
sion box in a flow chart, the flow chart is said to
have a double-alternative decision step.

to do: Programmer's Pastime #34, #35

Two DETOURS frorn a
DECISION OOX 1s o
DOUBLE-/\LTERNATIVE
DECISION STEP

98

(CHAPTER 27) Loop de Loop

Sometimes you will need to use an algorithm that
repeats a certain step over and over . When you
make a flow chart for such an algorithm, use a
loop arrow to show that the step is repeated.

Algorithm/Flow Chart on How to Tie Your Shoes

(START)
!

Put on
both shoes

!
Make sure
laces
are straight

!

Tighten up
laces

! LOOP

Tie laces

!

Go to other shoe

After tying one shoe, the flow chart tells you to
go to the other shoe. The loop arrow takes you
back to the second step. Now you repeat the steps
as you tie the other shoe. The problem with this
flow chart is it will never end! You are told over
and over to keep going back to the other shoe to
retie it!

Looping is handy because it helps to keep the
flow chart short. Imagine how long this flow chart
would be if a loop wasn't used.

99

At this rate
I'll be tying
my shoes
forever.

l

Looping also works nicely with a decision step.
This flow chart can be improved by using a sin­
gle-alternative decision step.

(START)
!

Put on
both shoes

!
Make sure
laces
are straight

!

Tighten up laces

!

Tie laces

!

Is
the other

shoe
tied

?

! Yes

You're done!

!

(STOP)

No

LOOP

Goto other
shoe

Now you go through the flow chart twice. Once
to do the first shoe and again to do the other shoe.
The first time through the flow chart the answer is
no, and you follow the loop detour. The second
time through the flow chart the answer is yes, and
you are done.
to do: Programmer's Pastime #36, #37

100

(CHAPTER 28) Putting it a11 Together

Now that you know how to change an algorithm
into a flow chart, you must learn how to change a
flow chart into a program that the Apple can
understand.

Tell the Apple to print over and over:

COMPUTING IS FUN
I CAN WRITE PROGRAMS!

The algorithm and flow chart will look like this:

(START)
i

I
HOME

I
i

PRINT
"COMPUTING
IS FUN"

i

LOOP

i
PRINT "I CAN
WRITE
PROGRAMS!"

Because we want the Apple to print something
over and over again we will need to use a loop.
Notice that this flow chart never stops; the loop
goes on forever.

101

8 • •

This is how you would write the flow chart as a
BASIC program:

10 REM USING A LOOP
20HOME
30? " COrvrPUTING IS FUN"
40?
50? ' 'I CAN WRITE PROGRAMS! I I

60GOTO 30

Line 60 is where the loop happens. The com­
mand to loop in this program is GOTO. After the
command GOTO is the number of the line that
you want the Apple to go back to.

A shorter way to write the program is:

10 REM USING A LOOP
20HOME
30? " COrvrPUTING IS FUN"

:?:?"I CAN WRITE PROGRAMS!"
40GOTO 30

Try another one:

Flowchart Program

(START)

i

HOME I

PRINT "THE
APPLE ISA
STAR"

?"*"

102

10 REM ANOTHER LOOPER
20HOME
30 ? \'THE APPLE IS A ST AR 11

40? \\ * II
50GOT040

Programs with a GOTO loop will never end
once they are run. As long as the Apple is
plugged in and is being fed electricity, it will keep
doing the GOTO loop over and over and over. To
get the Apple to stop a GOTO loop, press ~ C.
The Apple will stop the loop and print:

BREAK IN 40 (or some other number)

The BREAK message means that the program
was broken into and stopped when the Apple was
performing the instruction in line number 40.

The flow charts in this chapter used an instruc­
tion step in a box of a different shape. PRINT in­
structions or statements should be put in a special
box. PRINT boxes look like this :

1 . GOTO tells the Apple to loop to a certain line in
the program.

2. Press~ C to stop the run of a program with a
GOTO loop.

to do: Programmer's Pastime #38, #39, #40, #41
Component 4 Fun Page

103

~ROGRAMMER'S PASTIME #4D
Write a lo res graphics program that will make
the Apple draw the Apple logo, clear the screen,
draw it again, clear the screen, and so on, over
and over. Use the grid on the next page to help
you.Thelogolookslikethis:

Write your program on the lines below.

104

Columns

0 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

10

11

12

13

14

15

16

17

18

19

Rows 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

105

106

CHAPTER29
More About Memory 108

CHAPTER30
Using Variables 111

CHAPTER31
Using Variables in Equations 115

CHAPTER32
Important Information 118

CHAPTER33
. Strings 12 1
CHAPTER34

What Types of Numbers Does the
Apple Like? 124

107

(CHAPTER 29) More About Memory

Address

Contents

In Chapter 6 you learned that the Apple has a
memory. The memory is what makes the Apple
powerful. Without a big memory, the Apple
wouldn 't be much more than the average
calculator.

You learned that in1ormation " put into" the Apple
(called INPUT) is stored in RAM (random access
memory). The bigger the RAM, the more input the
Apple can hold, and the more it can do. The input
is usually made up of programs or files. Files are
not usually programs, but lists of in1ormation that
you want the computer to store and use. A file might
contain a list of names and addresses of all your
friends. The computer could take addresses from
the file and print address labels when you write
letters to your friends.

How does the Apple store input in its memory
(RAM)? Think of the Apple's memory as having
thousands of tiny electronic mailboxes. Each mail­
box has its own address, and can store information.
The information can be a number, letter, word, or
even a sentence.

When you write programs in BASIC, it is helpful
to store in1ormation in the memory mailboxes.
When you know where information is being stored
in memory, you can refer to it and use it at any
time. One way to store in1ormation in memory mail­
boxes is to use the LET statement.

lOHOME
20LETX= 54

The LET statement tells the Apple to pick an
empty mailbox in RAM and call it X. X becomes
the address of the mailbox.

108

This LET statement also tells the Apple to put the
number 54 inside the mailbox. Thus, 54 becomes
the contents of the mailbox.

The number 54 is stored safely away in mailbox
X. It will stay there until you change it to some­
thing dtiferent or erase the memory by typing NEW
or turning off the computer.

You can use many different letters or even let­
ters and numbers as the address of a memory
mailbox. For example, you can type:

lOHOME
20LETB=32
30LETP= 1
40LET QZ= 14
50 LET S8= 100

Because the mailbox address can have so
many various names and contents, the address is
called a variable. In the program above, B, P, QZ,

and S8 are all variables. Each variable address
stores a number as the contents of the mailbox.

To store a letter or word as the contents of a
mailbox, you will use a different type of variable
address. You'll leam about these variables later.

There are three different ways to write variables
that store numbers:

1 . a single letter
2. two letters
3. one letter and one digit

(the letter must go first)

Example

z
AZ
B9

109

Address

Contents

Sometimes you might see variables that have
longer names. When the Apple reads a variable,
however, it only looks at the first two characters.
You could use the word FUN as a variable, but the
Apple would read it as FU. If you used two differ­
ent variables, JKl andJK2, theApplewouldread
both as just JK. Using long variable names can
become confusing and mess up your program. It
is best to use only the three types of variables listed
below.

Safe variables to use:

1 . a single letter
2. two letters
3. a single letter and a single digit

(in that order)

to do: Programmer's Pastime #42

110

T
TV
T7

(CHAPTER 30) Using Variables

Variables are very handy to use in a program.
They allow you to store information or data and
then refer back to it later in the program. For this
reason, you will be using variables when you
write programs. Since the contents of variables
can be easily changed, this is another good rea­
son to use them in programs.

In the program below, two variables are de­
fined. The program refers back to the variables to
have their contents printed.

Program

10 REM USING VARIABLES
20HOME
30LETX=5
40LETY=7
50?X
60 ?"IS THE CONTENTS OF X"
70?Y
80 ?''IS THE CONTENTS OF Y''
90END

Output

5
IS THE CONTENTS OF X
7
IS THE CONTENTS OF Y
J "o" , ..

111

What Happens

5 is assigned as the contents of X.
7 is assigned as the contents of Y.
PRINT the contents of X.

PRINT the contents of Y.

Program

If you tell the Apple to? X (PRINT X), the Apple
will print 5 because 5 is the contents ot mail­
box X.

If you tell the Apple to ? "X" (PRINT " X"), the
Apple will print X because X is inside quotation
marks.

You can use commas and semi-colons to
change how the output will look.

Output

10 REM COMMAS & SEMI-COLONS
WITH VARIABLES

20HOME
30LETX=5
40LETY=7
SO?X,
60 ?''IS THE CONTENTS OF X''
70?Y;
80? ' 'IS THE CONTENTS OF Y''
90END

5 IS THE CONTENTS OF X
7 IS THE CONTENTS OF Y
1 'o' , '

You can use colons with LET statements the
same way you would use them with PRINT state­
ments to shorten a program.

Program

10 REM A SHORTCUT
20HOME
30LETX= 5: LETY=7
40? X, : ? ' 'IS THE CONTENTS OF X"
50? Y; : ? ''IS THE CONTENTS OF Y' '
60END

112

output

5 IS THE CONTENTS OF X
7 IS THE CONTENTS OF Y
1 'o' ,

You should always try to write your programs so
they are as short as possible and easy to read.
You should also make sure that the output is easy
to read.

Use a blank space inside quotation marks in a
PRINT statement when you also use a semi-colon.
(~ will mean blank space. Make a blank space
by pressing the space bar when you see a~.) For
example:

Program
50 ? y; : ? \'IS THE CONI'ENTS OF Y' I
60? Y; : ? "~IS THE CONI'ENTS OF Y"

Output
7 IS THE CONTENTS OF Y
7 IS THE CONTENTS OF Y

This last version will make the program short,
and both the program and the output will be easy
to read.

Program

10 REM A BETTER VERSION
20HOlv1E
30LET X=5: LETY=7
40? X; : ? "~IS THE CONI'ENTS OF X": ?
50? Y; :? "~IS THE CONI'ENTS OF Y"
60END

to do: Programmer's Pastime #43, #44

113

Output

5 IS THE CONI'ENTS OF X
7 IS THE CONI'ENTS OF Y
1 "o' , ..

l

~ROGRAMMER'S PASTIME #44)

Rewrite each program to make it shorter.

1. lOHOME
201..ETC= 10
30LETD=5
40?C
50? ''IS TWICE AS MUCH AS''
60 ? 0
70END

2. lOHOME
20LET S= 1
30LETT=2
40LETU=3
50? ''COUNTING' '
60?S
70?T
80?U
90END

3. lOHOME
201..ETVl = 15
30LETV2= 30
40?Vl
50 ? ''IS HALF OF''
60 ?V 2
70 END

11 4

Using Variables in
Equations (cHAPTER3l)

~~~~~~~~~~~~~~~~ 

You can use variables in programs to do math 
equations. 

Program 

10 HOtv1E 
20LET A=5: LETB=6 
30? A+B 
40END 

output 

The Apple adds the contents of A to the contents 
of B and prints the answer. 

You can use quotation marks and a semi-colon 
to make the Apple print the whole equation. 

Program 

lOHOtv1E 
20LET A=5: LETB= 6 
30? ''A+B=lzS'': A+B 
40END 

Program 

lOHOME 
20LET A=5: LETB= 6 

OR 

30 ? A \\ + II B \\ = l2S"; A+ B 
40END 

115 

OUtput 

1 'o ' r
A+B= 11 

, ' 

output 

1
5+6 = 11 
1 'o' , ' 



Program 

10 HO:tvIE 
20LETX=3: LETY=9: LETZ= 12 
30? "X+ y +Z=fzV'; X+ y +z 
40? ''Z-Y-X=lzS''; Z- Y -X 
50? ''X*Z/Y =lzS' ' ; X*Z/Y 
60END 

Program 

lOHO:tvIE 

Using variables in equations can be very help­
ful, especially if you need to do many equations 
with the same numbers. 

Output 

X+Y+Z= 24 
Z-Y-X= 0 

To print the equations using the number values 
instead of the variables, use quotation marks 
differently. 

Output 

20LETX=3: LETY=9: LETZ= 12 
30 ? x \ \ + ''Y \ \ + ' 'Z \ \ = l2S I'; x + y + z 

3+9+ 12= 24 
12-9-3= 0 

40? Z" - "Y" - "X" = lzS"; Z- Y -X 
50? X" * "Z" / " Y" =lzS"; X*Z/Y 
60END 

Q 
- --
30 

You learned that a variable can have a num­
ber value. A variable can also have another 
variable 's value as its value if the other variable 
has already been introduced by a LET statement 
in the program. 

lOHOME 
20LETQ=30 
30LETR=Q 

The contents of R will be the same as 
the contents of Q. 

116 



A variable can also have an equation as its 
contents. 

Program 

lOHOME 
20LETF=7+8 
30?F 
40END 

Output 

A variable can have an equation and a vari­
able as its contents. 

Program 

lOHOME 
20LETW=l0 
30LETV=W+5 
40?V 
50END 

Output 

1 . The LET statement assigns a value to a 
variable. 

2. ? "X" will print X. 
3. ? X will print the value or contents of X. 

to do: Programmer's Pastime #45, #46 

117 



(CHAPTER 32) Important Information 

Program. 

lOHOME 
20LETU= 10 : LETV=20 
30?U+V 

is correct. 

There are some important things to remember 
about using LET statements. 

1 . The variable must always come before the 
value (contents) in the LET statement . 

10 LET S = 40 is correct . 
10 LET 40 = S is wrong. The Apple will not 

understand. 

2. In a program. you must always put a LET state­
ment before the statement that tells the Apple 
to print the variable . 

10 LET S=40 
20 ? S is correct. 

10? s 
20 LET S = 40 is wrong. The Apple will print 0. 

If the Apple sees a variable in a program that 
has not been introduced by a LET statement. the 
Apple will automatically give that variable a 
value of zero . 

In the second program above, line 10 tells the 
Apple to print the value of S. Since there was no 
LET statement before line 10 to introduce S, the 
Apple gives S a value of zero . Even though the 
next line in the program tells the Apple that S=40, 
the Apple will still think that the value of S is zero 
because the PRINT statement comes before the 
LET statement. 

Output 

118 



Program 

lOHOME 
20?U+V 
30 LET U = 10 : LET V = 20 

is wrong. 

Output 

When you introduce the same variable more 
than once in a program, the Apple will always 
remember the last thing it was told. 

Program Output 

lOHOME 

p·o· 20LET K= 1 
30LETK=2 
40?K 

, ' 

50END 

This program used a LET K statement two times. 
The Apple only remembers that K = 2 because it 
was the last LET K statement. The order o1 the 
statements told the Apple to change the value o1 
K1rom 1 to 2. 

Program 

lOHOME 
20LETK= 1 
30?K 
40LETK=2 
50?K 
60END 

Output 

In this program the Apple printed the first value o1 
Kand then the second value . 

to do: Programmer's Pastime #47, #48 

119 



~ROGRAMMER'S PASTIME #4~ 

Program 

1. lOHOME 
20 LET PJ = 17: LET J2=34: 

LET J4=PJ+J2 
30?J4 
40END 

2. lOHOME 
20LETB=2 
30?B 
40LETB= 100 
50?B 
60END 

3. lOHOME 
20LETE6=3: LETE7= 12 

Read each program. Then write what the Apple 
would print as the output. Check your answers by 
running the programs. 

Output 

30? " PRODUCT", "QUOTIENT" 
40 ?E6*E7 I E7/E6 
50END 

4. lOHOME 
20LETM= 16 : LETN = 14 
30?M+N 
40LETN= 12 

120 



(CHAPTER 33)_ s_tnn_gs ___ _ 
Until now, the variables you have been using in 
programs have had numbers as their value or 
contents. For example, X=42. 

A variable like Xis called a numeric variable 
because its value is a number. You learned that 
there are three ways to safely use a numeric vari­
able in a program: 

1 . a single letter 
2. two letters 
3. one letter and one digit 

x 
XY 
X6 

You are now ready to store numbers with let­
ters, words, special characters, and even whole 
sentences in a variable. This type of variable is 
called an alphanumeric or sh'ing variable . A 
string variable can also be written safely in three 
ways: 

1 . a single letter followed by a S AS 
2. two letters followed by a $ CC$ 
3. a letter and a digit (in that order) D7$ 

followed by a $ 

You will also introduce a string variable with a 
LET statement like this: 

10 LET GS= ' 'HEY YOU! " 

The contents of a string variable must be en­
closed in quotation marks. 

ALPHANUMERIC 
means letters 
and numbev-s. 
NUMERIC means 
numbers on l 'y . 

121 



Flow Chart 

C~ _ _ HO_M_E _ ___ ) 
i 

LET A$= "I SAW 4" 
LET B$ ="RUBBER BABY" 
LET C$ = " BUGGY 

BUMPERS" 

? "HOW MANY" 

? s$~ ?C$ 

-- i 
? "DID YOU SEE? 

(~ _ _ EN_D_~) 

This program shows how you can use string 
variables . 

Program 

lOHOME 
20LET AS= " ISAW 4" 
30 LET BS= ''RUBBER BABY'' 
40 LET CS= "BUGGY BUMPERS" 
50 ? AS : ? BS : ? CS 
60 ? ''HOW MANY'' 
70?BS: ?CS 
80 ? ' 'DID YOU SEE?' I 
90END 

Output 

ISAW4 
RUBBER BABY 
BUGGY BUMPERS 
HOW MANY 
RUBBER BABY 
BUGGY BUMPERS 
DID YOU SEE? 
]''o ' 

~ .. 

to do: Programmer's Pastime #49, #50 

122 



Q»ROGRAMMER'S PASTIME #5~ 
Each program contains one or more rnistake(s). 
Find the mistake(s), circle the line number where 
you found the mistake(s), then write the statement 
the correct way in the space to the right. 

Program 
1. 10 LET AZ$= "YES" 

20LETBY$=NO 
30? AZ$, BY$ 
40END 

2 . lOHOME 
20 LET TS= ''THE TIME'' 
30 LET us= ' 'IS NOW' I 

40?T , U 
SO END 

3. lOHOME 
20?J$: ?KS 
30 LET JS = "UP, UP" : 

LET K$ ="ANDAWAY" 
40END 

4 . lOHOME 
20 LET "PARTRIDGE IN" =PS 
30LET " APEARTREE"=T$ 
40?P$, TS 
SO END 

Conection 

123 



Ge AP E 340 What Types of Numbers H T R ~ Does the Apple Like? 

So far, you have probably asked the Apple to 
work mainly with whole numbers (0, l, 2, 3 . . . ). 
The Apple can also handle negative numbers 
( -1, -2, -3 . .. ). 

The Apple can work with decimals (0.09, 1.25, 
etc .) but cannot understand fractions (V2, Yii). If 
you need the Apple to do some math that in­
volves fractions, you must change the fractions 
into their decimal equivalents or write them as 
division equations. 

For example: 

Change 1/2 to its decimal equivalent by dividing 
or just type it as 1/2 . 

. 5 
2JT.5 = . 5 1/2 = .5 

1 0 

0 

Change 1/4 to its decimal equivalent by dividing 
or just type it as 1/4 . 

. 25 
4) 1.00= .25 1/4 = .25 

8 
20 
20 

0 

Change 2/3 to its decimal equivalent by dividing 
or just type it as 2/3 . 

. 66 
3)2.00= .66 213 = .66 

1 8 

20 
18 
2 

10 V2 would have to be typed as 10. 5. 

8 v.i would have to be typed as 8. 25. 

62h would have to be typed as 6.66. 

124 



The Apple lets you use numbers with up to nine 
digits. Ii you use a number with more than nine 
digits, the Apple may not be able to work with 
it accurately. It may give you a wrong answer. 
This means that the smallest numbers the Apple 
can use accurately are 0. 000000001 and 
- 999999999. The largest number the Apple can 
use accurately is 999999999. 

If you want to use numbers that are larger or 
smaller than this, the Apple will change them 
into something called E notation. This stands for 
exponential notation and it is the same thing as 
scientific notation. 

If you want to use a number that has 12 digits, 
such as 420, 000, 000, 000, the Apple will print it as 
4. 2E + 11 . The E + 11 means that the decimal point 
belongs 11 more places to the right. 

4. 2E + 11 means 4 . 2 0 0 0 0 0 O 0 0 0 0 
1 2 3 4 5 6 7 8 9 10 1 ~ 

The decimal point should go here. 

The number 0.0000009876 would be printed as 
9.876E-07. The E-07 means that the decimal 
point belongs 7 more places to the left. 

9.876E-07means(~· 8 7 6 

The decimal p~ 

E Not at ion .5tands 
fer "Exp~;ient1a I 
Notation lt is <A 
helpful shortcut y(XA 
()'.ln /earn to use. 

125 



This is 
our Apple! 

Don't get worried about E notation because 
you will only have to use it when you are dealing 
with numbers that have more than 9 digits. 

to do: Programmer's Pastime #51 
Component 5 Fun Page 

126 



CHAPTER35 
FOR-NEXT Looping 

CHAPTER36 
Stepping 

CHAPTER37 
A Counter 

CHAPTER38 
Timing It 

CHAPTER39 
Blinkers 

CHAPTER40 
Fast Graphics 

127 

128 

134 

137 

141 

145 

1"46 



(CHAPTER 35) FOR-NEXT Looping 

Flow Chart 

( START ) 
! 

I 
HOME 

I 
! 

I 
FORZ=1 T07 

I 
! 

? " HI 
THERE!" 

! 

NEXTZ 

! 

( STOP ) 

Loop 
is done 
?times. 

Another type of loop you will use in programming 
is the FOR- NEXT loop. It is used to create counter­
con trolled loops in a program. A counter­
controlled loop allows you to repeat program in­
structions a certain number of times. For 
example : 

Program Output 

10 REM 7 TIMES 
20HOME HI THERE! 
30FORZ=lT07 HI THERE! 
40 ?" HI THERE! " HI THERE! 
50NEXTZ HI THERE! 
60END HI THERE! 

HI THERE! 
HI THERE! 
1 'o' , .. 

128 



The FOR-NEXT loop tells the Apple to count to 
seven and print HI THERE! each time. The loop 
part of the program is: 

r--- 40 ? ''HI THERE! '' This loop is done 7 times. 
30FORZ=lT07 ~ 

L__ 50NEXTZ 

The variable Z does the counting. Its first value is 1 . 
NEXT Z means go back to the beginning of the 
loop and give Z the next value, which is 2. The 
Apple keeps doing the loop until Z is 7, and it has 
printed HI THERE! for the seventh time. Then the 
loop is over and the Apple goes on to the next 
program line. 

Any statements in between the FOR statement 
and the NEXT statement are called the body of 
the loop. These statements are done each time 
the program loops. 

30FORZ=l T07 +-• ---~ 

40 ? ''HI THERE!'' Loop I Loop 
Body 

50NEXTZ 

Notice that the body of the loop is always in­
dented. This is good programming style because 
it makes the loop easier to read and understand. 
Please practice this when you write programs 
with FOR-NEXT loops. 

Let's trace the program to see exactly how the 
FOR-NEXT loop works. 

129 

• • 



Program Trace 

Program What Happens Contents of z 
10 REM 7 TIMES REM is ignored. 
20HOME Screen is cleared. m [ 30FORZ=l TO 7 z is 1. 

First 40 ? " HI THERE!" HI THERE! is printed once. Loop 
50NEXTZ Go back to line 30. 

30 FOR Z = 1 TO 7 Zis 2. m Second [ 40 ? ''HI THERE! '' HI THERE! is printed again. 
· Loop 50 NEXT Z Go back to line 30. 

[ 30FORZ=l TO 7 Zis 3. m Third 40 ? "HI THERE!" HI THERE! is printed a third 
Loop time. 

50NEXTZ Go back to line 30. c· 30FORZ=l TO 7 Z is 4. ffi Fourth 40 ? "HI THERE! " HI THERE! is printed a fourth 
Loop time . 

50NEXTZ Go back to line 30. 

[ 30FORZ=l TO 7 Zis 5. m Fifth 40 ? "HI THERE! " HI THERE! is printed a fifth 
Loop time. 

50NEXTZ Go back to line 30. 

[ 30FORZ=l TO 7 Zis 6. m · Sixth 40 ? "HI THERE! " HI THERE! is printed a sixth 
Loop time. 

50NEXTZ Go back to line 30. 

[ 30FORZ=l TO 7 Z is 7. m Seventh 40 ? ''HI THERE! '' HI THERE! is printed a sev-
Loop enth time. 

50NEXTZ Since Z is 7, go on to the next 
program line. 

60END End the program. Put the 
prompt and cursor back on 
the screen. 

130 



You can also write the program so Z prints its 
contents each time the loop is done. 

Flow chart Program 

( ) 10 REM PRINTZ EACH LOOP 
START 20HOME 

i 30FORZ= 1TO5 

I I 

40 ?Z 
HOME 

50NEXTZ 
60END i 

I 
FORZ=1 TOS 

I 
i 

?Z Loop 
is done 
St imes. 

i 

NEXTZ 

i 

( STOP ) 
The variable used in a FOR-NEXT loop can b e 

any kind of numeric variable . 

131 

output 

1 
2 
3 
4 
5 
I 'o' , ' 



Flow Chart 

( START ) 
! 

I 
HOME 

I 
! 

I 
FOR L=1 T05 

I 
! 

? L "FEET IS" 
L* .3048 
"METERS" 

t 

NEXTL 

! c STOP ) 

A FOR-NEXT loop is handy to use in a program 
that converts or changes one type of measure­
ment into another. The following program con­
verts feet into meters. 

Program Output 

10 REM CONVERT FEET 
INTO METERS 1 FEET IS . 3048 METERS 

20HOME 2 FEET IS . 6096 METERS 
30FORL=l T05 3 FEET IS . 9144 METERS 
40 ? L "FEET IS" 4 FEET IS 1 . 21 92 METERS 

L * . 3048 " METERS II 5 FEET IS 1.524 METERS 
50NEXTL 1 'o ' , ' 
60END 

Each time the loop is done in this program, the 
Apple multiplies the current value of L by 0.3048. 
The current value of L stands for feet and the 
answer to the multiplication stands for meters. 

132 



A FOR-NEXT loop also allows a program to do 
arithmetic and use a new number each time the 
loop is done. The loop in the following program 
causes the numbers 5, 6, and 7 to be printed, 
multiplied by 2, and divided by 2. 

Flow Chart Program 

( START ) 10 REM LOOP ARITHMETIC 
20HOME 

i 30FORM=5TO 7 

I I 
40 ?M 

HOME 
50 ?M*2 
60 ?M/2 i 

I 
FORM~5T07 I 

70NEXTM 
80END 

i 
?M 
?M*2 
? M/2 

! 

NEXTM 

! 

c STOP ) 
In a loop, every FOR statement must have a 

NEXT statement after it somewhere in the 
program. 

to do: Programmer's Pastime #52, #53, #54, #55 

133 

Output 

5 
10 
2.5 
6 
12 
3 
7 
14 
3.5 
J 'o' .. ' 



(CHAPTER3~~~e_P_Pm_s~~~~-

Program. 

When you were younger you learned to count in 
pattemssuchas: 5, 10, 15, 20 ... (byfives), or: 10, 
20, 30, 40 ... (bytens). 

The Apple can learn this trick too. If you want 
the Apple to count in a certain pattern, use the 
STEP statement. For example: 

STEP 5 tells the Apple to count by fives. 
STEP 10 tells the Apple to count by tens. 

The STEP statement goes on the same line as the 
FOR statement. Study the following programs: 

Output 

10 REM COUNT BY F1VES 
20HOME (l) 

5 
10 
15 
20 
25 

30 FOR W = (l) TO 25 STEP 5 
40 ?W 
50NEXTW 
60END 

1 "o' , ' 

10 REM COUNT BY F1VES 
20HOME 1 
30 FOR W = 1 TO 25 STEP 5 6 

40 ?W 11 
50NEXTW 16 
60END 21 

1 'o ' , ' 

How are the two programs different? If you want 
the Apple to count by fives, you must make the 
FOR statement say: 

FOR W = !Zl to 25 STEP 5 

When the loop begins, W=!Zl. 5+!Zl=5, so the first 
number the Apple will print is !Zl and the next 
number is 5. 

134 



In the second program, W = 1 . When the Apple 
starts printing, 1 will be printed first . Then the Ap­
ple adds 5 to 1 and prints 6 as the next number. In 
this program the Apple is not counting by fives, 
but is adding 5 to each number beginning with 1 . 
The last number printed was 21. Because 
21 +5=26, whichismorethan25, the Apple won't 
print 26. 

The Apple can also count backwards. 

Program 

10 REM COUNTING BACKVV ARDS 
20HOME 
30 FOR R=5 TO 1 STEP -1 
40 ?R 
50NEXTR 
60END 

OUtput 

5 
4 
3 
2 
1 
J "o' , " 

R starts counting at 5. The step of - 1 makes R 
count backwards, subtracting 1 each time. 

135 



Program 

10 REM BLAST OFF 
20HOJv1E 

You can write some fun programs by using the 
STEP statement. 

Output 

30? ''ST AND BY FOR BLAST OFF'' 
40FORD=5TO 1 STEP -1 

STAND BY FOR BLAST OFF 
5SECONDS 
4SECONDS 

50 ? D: "l25SECONDS" 
60NEXTD 
70? \'BLAST OFF! 11 

80END 

Program 

10 REM PRINTING WORDS 
20HOJv1E 
30 FOR P=20 TO 5 STEP -5 

3SECONDS 
2SECONDS 
1 SECONDS 
BLASTOFF! 
1 'o ' .. .. 

Backward stepping can also be used to print 
words a certain number of times. 

output 

40 ? "GOING BACKWARDS" 

GOING BACKWARDS 
GOING BACKWARDS 
GOING BACKWARDS 
GOING BACKWARDS 
1 'o ' 

50NEXTP 
60END .. .. 

GOING BACKWARDS is printed four times be­
cause it takes four runs of the loop to go from 20 to 
5 in steps of -5. 

to do: Programmer's Pastime #56, #57 

136 



(CHAPTER 37)_ A_c_ou_nt_er _ ___ _ 

Sometimes it is handy to use a counter in your 
program to help you keep track of how many 
times you have done a loop. For example: 

Program 

10 REM LOOPING 
20HOME 
30LETN=O 
40? ''BUZZ OFF'' 
50?N 
60GOT020 

Output 

BUZZ OFF 
0 
BUZZ OFF 
0 
BUZZ OFF 
0 

This program has a never-ending loop that prints 
BUZZ OFF and O over and over. If you could get the 
Apple to print: 

BUZZ OFF 
1 
BUZZ OFF 
2 
BUZZ OFF 
3 

you would know how many times the Apple has 
done the loop and printed BUZZ OFF. To do this, 
you must put a counter in the program. The coun­
ter is a variable. 

137 

• • 



Flowchart 

( START ) 
! 

I 
HOME 

I 
! 

I 
LETN = O 

I 
! 

? "BUZZ OFF" 

! 

LET N= N+1 

! 

?N 

! 

GOTO 

Line 
Loop Number 

1 30 
1 40 
1 50 
1 60 
1 70 

2 40 
2 50 
2 60 
2 70 

In this program, the counter is the variable N. 

Program output 

10 REM A COUNTER 
20HOME 
30LETN=O 
40? ''BUZZ OFF'' 
50LETN=N+ 1 
60?N 
70GOT040 

Program Trace 

What Happens 

N is introduced as 0. 
BUZZ OFF is printed once. 
Counter adds 1 to N . 
Value of N is printed. ( 1) 
Go to line 40. 

BUZZ OFF 
1 
BUZZ OFF 
2 
BUZZ OFF 
3 
BUZZ OFF 
4 

BUZZ OFF is printed a second time. 
Counter adds 1 to N. 
Value of N is printed. (2) 
Go to line 40. 

.. . and so on. 

138 

Contents 
ofN 

0 
0 
1 
1 
1 

1 
2 
2 
2 



The statement that makes the value of N in­
crease by 1 each time the loop is done is: 50 LET 
N = N + 1. This statement must be in the loop body. 
It is called the counter. After running the program, 
you will need to press C to stop the run. At the 
end of the run. you can look at the last number 
printed and know how many times the Apple has 
printed BUZZ OFF. 

You can also use a counter in a FOR-NEXT loop. 

Flowchart 

( START ) 
i 

I 
HOME 

I 
i 

I 
LETC=O 

I 
i 

FORG=1TO10 

i 

? "TERRIFIC" 

i 

LETC=C+1 

i 

?C 

i 

NEXTG 

Program 
10 REM FOR-NEXT 

COUNTER 
20HOME 
30LETC=O 
40FORG= l TO 10 
50 ? "TERRIFIC II 
60 LETC=C+l 
70 ?C 
80NEXTG 
90END 

139 

Output 

TERRIF1C 
1 
TERRIF1C 
2 
TERRIF1C 
3 

TERRIF1C 
10 
J 'o ' , ' 



You must be vecy careful when you use more 
than one variable in a program. In the previous 
program, the variable C stands for the counter. The 
variable G stands for the FOR-NEXT loop. It is impor­
tant to keep these variables separate so you can 
better understand what the program is doing. 

Another word of warning: some BASIC words 
are reserved. This means you cannot use the first 
two letters of these words as variables. Some of 
these BASIC words are : GR, IF, and TO. If you use 
these commands as variables, the Apple will 
print a SYNTAX. ERROR. 

1 . Use the variable C for the counter. 
2. Use the variable FL for the FOR-NEXT loop. 

to do: Programmer's Pastime #58 

140 



(CHAPTER38)~Ti_m_in_si_t ~~~~ 
You have learned how to tell the Apple to clear 
the screen in both direct and program modes by 
using the HOME command. In your programs, 
you have used HOME as one of the very first pro­
gram commands. You can also use HOME in the 
middle of a program or toward the end . For 
example: 

Program 

10 REM CLEAR IT TWICE 
20HO:ME 
30? ''MY NAME IS APPLE'' 
40HOME 
50? "WHAT'S YOURS?" 
60END 

Output 

MY NAME IS APPLE 

(screen is cleared) 

WHAT'S YOURS? 
1 'o' , ' 

When you run this program, you will notice that 
the Apple writes MY NAME IS APPLE and then 
clears the screen so fast that you can barely read 
it. Computers work thousands of times faster than 
people. This is usually very helpful, but some­
times people want them to slow down a bit. 

Use a FOR-NEXT time loop in line 35 to use up 
time and make the Apple wait before going on to 
the next program instruction in line 40. 

Program 

10 REM MAKE IT WAIT 
20HOME 
30? ''MY NAME IS APPLE' ' 
35 FOR TL= 1TO1000: NEXT TL 
40HOME 
50 ? ''WHAT'S YOURS?'' 

141 

Output 

MY NAME IS APPLE 
(Apple counts to 1000) 
(screen is cleared) 

WHAT'S YOURS? 
1 "o' , .. 



Program 

The time loop in line 35 makes the program stop 
running while the Apple counts to 1000. When 
the Apple has finished counting, the program 
continues. 

The colon shortcut is used to write a FOR-NEXT 
time loop . The colon separates FOR from NEXT so 
the time loop can be written on one program line. 
In a FOR-NEXT time loop, there is no loop body. 

Ii you want the Apple to wait longer, change 
1000 in the time loop to a larger number. If you 
want the Apple to move faster and not wait so 
long, change 1000 to a smaller number. 

Speeding 

Besides making the Apple wait in the middle of 
a program, you can make it print on the screen 
more slowly. The SPEED statement is used to slow 
down the printing. 

Output 

10 REM CONTROllING THE SPEED 
20HOME NORMAL SPEED 

VERY SLOW 30? " NORMAL SPEED" 
40SPEED=3 
50? \'VERY SLOW' I 
60 SPEED= 255 
70END 

1 'o' , .. 

In this program, the message NORMAL SPEED is 
p$ted at the Apple 's normal fast speed. It looks 
like both words are printed on the screen at the 
same time. The SPEED statement in line 40 
changes the printing speed and slows it down. 
When the message.Jn line 50 is printed, each 
letter is slowly pririted on the screen. Line 60 is 
very important. It puts the printing speed back to 
normal when the program is over. 

The printing speed can be set using any 
number from Oto 255. 255 is the normal printing 
speed; 0 is the slowest. 

to do: Programmer's Pastime #59, #60 

142 



(PROGRAMMER'S PASTIME #6~ 
Read each flow chart . Using a SPEED statement, 
write a program for each flow chart. 

Flowchart Program 

l. ( START ) 
! 

Clear Screen 

! 

Slowest Speed 

! 

? "SLOW" 

! 

Normal Speed 

! 

? "OK" 

! 

( STOP ) 

143 



Flow Chart Program 

2. ( START ) 
t 

Clear Screen 

t 

Slow Speed 

t 

? "NOW YOU 
SEE IT" 

t 

Clear Screen 

t 

Normal Speed 

t 

? "NOW YOU 
DON'T" 

144 



(CHAPTER 39) Blinkers 
~~~~~~~~~~~~~~~~~~ 

You can use the FOR-NEXT time loop to make
things blink on and off the Apple's screen. For
example:

Program

lOREMBLINK
20HOME

Output

30FOR1L= 1 TO 500: NEXT 1L
40? " WOW"
50GOT020

The secret to the blinking is in lines 30 and 50. In
line 30, FOR 1L= 1TO500 makes the Apple wait a
short time. In line 40, WOW is printed. In line 50,
the Apple goes back to line 20 and clears the
screen.

BLINK OFF: lines 20 and 30
BLINK ON: line 40

To make output blink, you must have a FOR­
NEXT time loop and a GOTO or FOR-NEXT loop.

You can make something blink faster by
changing 500 to a smaller number. You can
make output blink more slowly by changing 500
to a larger number.

You can also make output blink in a lo res
graphics program. Try it!

to do: Programmer's Pastime #61, #62

~@~®~~®®@®®®®@~@©®®®®®©®~

~ • • I •• •• •• • • • B
r-' I I ta t • • t • t • (!)
@ ' • • • f • • • • '
(';:.. • • • • • • • • • 0 @
V!J t ' e ,e • e ' II e
~I I •• e t t f t t t I e

• • • 0 • • • 0 0

® •:toe ••, •: <!)
~ ••• • • • • • • • • ©
'O • • • • • •
® • • • •• •• •• 0 ® Oo • t t • ~

®0©®@©®®©6®®®®©0®~®@~©©6~

145

(CHAPTER ~ Fast Graphics

FOR-NEXT loops can make programming lo res
graphics faster and easier. The program below
quickly tills the graphics screen with one color. If
you are drawing a screen picture, this could be
used as your background.

10 REM FILl..ING THE BACKGROUND
20GR
30COLOR=9
40 FOR BG=O TO 39
50 HLIN 0,39 AT BG
60NEXTBG
70END

The FOR-NEXT loop draws horizontal lines
across the screen until the whole screen is filled
with color. The loop variable, BG, stands for the
rows. Its value starts at 0 (for row 0), and increases
by one each time the loop is done. For example:

BG
FIRST time through the loop, line 50 reads HLIN 0,39 AT O
SECOND time through the loop, line 50 reads HLIN 0,39 AT 1
THIRD time through the loop, line 50 reads HLIN 0,39 AT 2
and so on.

146

The next program uses FOR- NEXT loops in the
same way to make grass and sky.

lOREMGRASS
20GR
30COLOR=l2
40 FOR G= 18 TO 39
50 HLIN0,39ATG
60NEXTG
70REMSKY
80COLOR=6
90FOR S=O TO 17

100 HLIN 0,39 AT S
l lONEXT S
120END

Grass is drawn on the
screen tram row 18 to
row 39.

The sky is drawn on the
screen tram row 0 to
row 17.

The next program uses a FOR- NEXT loop to
draw a pink cross on the screen:

10 REM PINK CROSS
20GR
30COLOR=ll
40FORI= lOTO 20
50 PLOT 15,I
60 PLOTI,15

(Draws vertical line.)
(Draws horizontal line.)

70NEXTI
80END

The first time through the loop, the Apple will PLOT
15, 10 and 10, 15. The second time through the
loop, the Apple will PLOT 15, 11 and 11 , 15. The
third time through the loop, the Apple will PLOT
15, 12 and 12, 15. And so on.

Using FOR-NEXT loops in your programs will
often save you a lot of time, especially when you
are writing graphics programs!

to do: Programmer's Pastime #63
Component 6 Fun Page

147

J

148

CHAPTER41
INPUT 150

CHAPTER42
IF-THEN 156

CHAPTER43
Alphabetizing 165

CHAPTER44
READ-DATA 167

CHAPTER45
Problem-Solving Programming 179

CHAPTER46
Conversions 185

149

(cHAPTER40~1n_pu_t ~~~~-

Program

lOREMINPUT
20HOME
30 ? ''HOW OLD ARE YOU' I
40INPUT A

In your dealings with the Apple so far, you have
typed programs on the keyboard and then sat
back and watched them run. The only way you
have given input to the computer is by typing
programs on the keyboard.

By using an INPUT statement in your program,
you can interact with the program while it is run­
ning. The INPUT statement makes the computer
stop the program and ask you for information or
data. When the INPUT statement is used, the pro­
gram becomes an interactive program because
the user can now interact with the computer.

Put an INPUT statement in your program at a
point where you want the Apple to stop the pro­
gram and ask for data or information. The Apple
will stop the program at the INPUT statement and
print a ? and flashing cursor. This means that the
computer expects you to type something on the
keyboard. What you type will probably be the
answer to a question. After you type the input, the
Apple will continue running the program.

An INPUT statement usually comes after a ques­
tion has been asked in the program. For
example:

Output

HOW OLD ARE YOU
? "o' , ..

Line 40 is the INPUT statement: 40 INPUT A. A is
the variable where the number you answer with
is stored.

150

Program

lOREMINPUT
20HOME
30? ''HOW OLD ARE YOU' I
40INPUT A
50 ? "YOU AREli' II A "li'YEARS OLD"
60END

Output

HOW OLD ARE YOU
? 12 .- you type
YOU ARE 12 YEARS OLD
J 'o' , '

If the answer to the question is to be a word or
alphanumeric data, a string variable must be
used. For example:

Program

lOREMINPUT
20HOME
30? ' 'WHAT IS YOUR NAME''
40INPUTN$
50 ? "HI THEREli' II N$
60END

151

Output

WHAT IS YOUR NAME
? HARRY .- you type.
HI THERE HARRY
J 'o' , '

When you make a flow chart for a program
with an INPUT statement, you will use a new
shape:

Be sure to write the word INPUT inside this box
because the box will also be used for another
statement, which you will leam about later.

Output

HOWAREYOU
? HNE .-- you type.
I 'M GLAD YOU'RE HNE
1 "o' , "

The Apple stops the program at the INPUT state­
ment in line 40. A ? and flashing cursor are
printed on the screen as the Apple waits for you to
type in your response . Once you have typed your
answer and pressed I RETURN I . the program will con­
tinue running. Your response is stored in A$, and
printed in line 50.

152

Notice that the question mark is printed on the
screen line after the question. There is a trick to
make the ? be printed after the question on the
same line: use a semi-colon after the question.
Remember that a semi-colon holds the cursor
after the last thing printed, and then prints the
next thing in the very next column.

Program

10 REM INPUT WITH ;
20HOME
30? ''HOW ARE YOU'';
40INPUT AS
50 ? "YOU'RE1;2S " AS
60END

Output

HOW ARE YOU? TERRIBLE
YOU'RE TERRIBLE
1 'o' , '

1. If the answer (the input) will be a number,
use a numeric variable with your INPUT
statement:

INPUTX

2. If the answer (the input) will be a word or other
alphanumeric data, use a string variable with
your INPUT statement:

INPUT XS

If you use the wrong variable, the Apple will
type:

?REENTER

3. Put a semi-colon after your question.

PRINT ''DO YOU LIKE ME'';

to do: Programmer's Pastime #64, #65, #66

153

~you type.

~ROGRAMMER'S PASTIME #6~

Flowchart

It is fun to use INPUT statements in lo res graphics
programs. You could have the INPUT statement
ask for a color or a location at which to draw
something. Read the program below and run it
on the Apple . The program draws a pattern on
the top half of the screen. Write a program that
draws a mirror image of the pattern on the bottom
half of the screen.

lOREMPATTERN
20GR
30FORJ=OTO 19
40 ? " PICK A NUMBER< 1-15> ":
50 INPUTN
60 COLOR=N
70 HLIN J,39-J AT J
80NEXT J
90END

Write your own program here:

Program

154

This program uses INPUT statements to ask the
user where he or she wants to draw a horizontal
line and what color the line should be. Run this
program on the Apple to see what it does.

10 REM DRAW A HORIZONTAL LINE
20HOME
30GR
40? ''WHAT COLOR LINE? CHOOSE A

NUMBER< 1-15> " ;
SOINPUTC
60COLOR=C
70? ''WHICH COLUMN SHOULD THE LINE

START AT <0-39> 11

;

80INPUT A
90? " AT WHICH COLUMN SHOULD THE LINE

END <0-39> '';
lOOINPUTB
110? ' 'ATWHICHROWSHOULDTHELINEBE

DRAWN <0-39> '';
120INPUTR
130 HLIN A,B AT R
140GOT040

Write your own program below that uses INPUT
statements to ask the user where to draw a ver­
tical line and in what color.

155

(cHAPTER42)~1r_-T_HE_N~~~~-
So far you have learned how to program the
Apple to print things on the screen and make
pictures and designs in lo res graphics. You also
know how to make the Apple do math equa­
tions. Computers work mainly with numbers.
They were invented to do long and tedious arith­
metic thousands of times faster than humans can.
In this way, computers have saved people count­
less hours of work.

Computers can do other things as well.

1 . They can compare letters and
numbers:

2. They can make a decision and
then do the right task:

Example

Does X come before Yin the
alphabet? Is 97 bigger than 98?

IF XS=' 'YES'' THEN PRINT ''HEUO ''

You now have the skills to set up a flow chart for
these types of problems. The flow chart on the
next page will have the Apple make a decision
and then do the right task based on your input:

156

i No

? "WAIT UNTIL
DINNER"

(~_s_T_oP __)

Yes

I
? "EAT"

Notice the decision box in the flow chart.
Whenever the program asks a question, the deci­
sion box is used. Also notice that a single-alter­
native decision step is used. If the answer to the
question is no, continue going straight in the flow
chart. If the answer is yes, take a detour and then
skip to the end of the program. The GOTO state­
ment makes the program jump to the end.

157

Program
10 REM DECISIONS, DECISIONS
20HOME
30? " ARE YOU HUNGRY";
40INPUT AS
50 IF AS= " YES" 1HEN

?" EAT" :GOTO 70
60? "WAIT UNTIL DINNER"
70END

Yes

Flowchart

(____ s-r._AR_T_)

i

I HOME I

? "ARE YOU A
BOY? TYPE
YES OR NO"

i

CNPUTB$

i No

? "ARE YOU A
GIRL? TYPE
YES OR NO"

i

CNPUTG$

Does
G$= "NO"

?

i No

? " I LIKE
GIRLS!"

Yes

Here is another example:

Program

10 REM USING IF-THEN
20HOME
30? ''ARE YOU ABOY?''
40? ''TYPE YES OR NO''
50INPUTB$
60 IF BS = "YES II THEN 130
70? ''ARE YOU A GIRL?' '
80? "TYPE YES OR NO"
90INPUTG$

100IFG$= ''NO' ' THEN 30
110? ''I LIKE GIRLS!''
120GOTO 140
130? ''ILlKE BOYS!' '
140END

---+ GOTO STOP ? "I LIKE
BOYS!"

158

---+ (STOP)

Output

ARE YOU A BOY?
TYPE YES OR NO
?YES
I LIKE BOYS!
1 "o' , ..

ARE YOU A BOY?
TYPE YES OR NO
?NO
ARE YOU A GIRL?
TYPE YES OR NO
? YES
I LIKE GIRLS!
1 "o' , ..

ARE YOU A BOY?
TYPE YES OR NO
?NO
ARE YOU A GIRL?
TYPE YES OR NO
?NO
ARE YOU A BOY?
TYPE YES OR NO
? }

program goes
back to the
beginning

.-... you type

- you type

.-... you type

.-... you type

.-... you type

This program and flow chart have two single­
altemative decision steps and one jump using a
GOTO. Depending on the answers .(input) to the
questions, the Apple is told to go to a certain line
in the program in the IF-THEN statement .

IF BS= ''YES'' THEN 130 means if BS is YES, then
skip to line 130.
IF BS is NO, then go on to the next program
line .

IF GS= ' 'NO'' THEN 30 means if GS is NO, then
go back to line 30.
IF GS is YES, then go on to the next program
line.

159

Here is another example:

Flowchart Program

(START) 10 REM GOLF ANYONE?
20 ? ''DO YOU UKE GOLF?

! YES OR NO"
? " DO YOU 30INPUTG$
LIKE GOLF?

40IFG$= ''NO" THEN 70 YES OR NO"
50? ''!LIKE GOLF TOO''

! 60GOTO 80

(NPUTG$
70? ''I DON'T LIKE

GOLF EITHER 11

80END
!

Yes Does
G$= "NO"

?

! No

? " I LIKE
GOLF TOO"

!

GOTO STOP

!
? " I DON'T
LIKE GOLF
EITHER"

!

(STOP)

160

Output

DO YOU LIKE GOLF?
YES OR NO
?YES
I LIKE GOLF TOO
1 'o' , ..

DO YOU LIKE GOLF?
YES OR NO
?NO
I DON'T LIKE GOLF EITHER
1 'o' , ..

~you type.

~you type.

If the answer (input) to the question, ' 'Do you like
golt?" is no (GS =NO), then the Apple jumps to
line 70 and prints I DON'T LIKE GOLF EITHER. If the
answer to the question is yes, then the Apple goes
on to the next program line Oine 50) and prints I
LIKE GOLF TOO. The next line (line 60) tells the
Apple to jump to line 80 (END); otherwise, the
Apple will also print I DON'T LIKE GOLF EITHER if it
goes on to line 70. GOTO 80 is needed to make the
Apple skip over line 70.

161

When the Apple sees an IF-THEN statement, it is
told to make a comparison. You can use many
different signs other than the equal sign when
asking the Apple to compare two things. Here is a
list of comparison signs and what they mean:

Sign Meaning Example
= equal 4+5=6+3
> greater than 88>2
< less than 6<46
>= greater than or equal to 33>=32
<= less than or equal to 4<=4
<> not equal to 65< > 800

Use the IF-THEN statement when making a
comparison in a program. For example:

IF-THEN Statement
IF A>BTHEN? A

IF AS< =SS THEN 20

Meaning
If the value of A is greater
than the value of B, then
print A.

If the contents of A$ are
less than or equal to the
contents of S$, then
GOTO line 20 in the
program.

Notice that both IF and THEN are written in the
same statement on the same line.

162

Questions in now chart decision boxes must be
changed into IF-THEN statements for the program.

Program

IF A=4 THEN ___ _

IF Z> = 66 THEN ___ _

Sometimes you may have to write the comple­
ment (opposite) of the flow chart question for the
IF-THEN statement. In this case you will use the
sign that has the opposite meaning. Example:

Flowchart

~
~

Complement in the
program

IFE < > FTHEN ___ _

IF Q$> = DS THEN __ _

IF Y$ < > "NO II THEN -

163

Flowchart

(START)
i

I
HOME

I
i

? "DO YOU
LIKE GOLF?
YES OR NO"

i

(NPUTG$

i

i Yes

? "I LIKE
GOLF TOO"

i

GOTO STOP

i

? "I DON'T LIKE
IT EITHER"

i

(STOP)

No

Program

lOHOME
20 ? ''DO YOU LIKE GOLF?

YES OR NO"
30INPUTGS
40 IF GS<> "YES" THEN 70
50? ''I LIKE GOLF TOO' '
60GOTO 80
70? "I DON'T LIKE IT EITHER"
80END

Output

DO YOU LIKE GOLF? YES OR NO
?YES
I LIKE GOLF TOO
1 'o ' , ..

DO YOU LIKE GOLF? YES OR NO
?NO
I DON'T LIKE GOLF EITHER
1 'o ' , "

+-you type.

+-you type.

to do: Programmer's Pastime #67, #68, #69

164

c CHAPTER 43) Alphabetizing

Did you know that the Apple has the ability to
compare letters in string variables and alpha­
betize the words? The Apple already understands
that :

A < B<C ... <Y<Z

A is smaller than B, which is smaller than C,
which is smaller than D, and so on, all the way to
Z. In other words, A is the smallest letter because it
comes first in the alphabet, and Z is the largest
letter because it comes last. A word that begins
with A is smaller than a word that begins with Z.

Keeping this in mind, you can write a short
program to alphabetize two words. For example:

Flowchart

(START

!

I
HOME

!

LETA$
="LOVED"

!

)

I

Program

10 REM ALPHABETIZE
TWO WORDS

20HOME
30 LET AS = "LOVED"
40 LET BS= "GREAT"
50 IF AS < BS TIIEN 80
60?BS:? AS
70GOT090
80? AS: ?BS
90END

OUtput

GREAT
LOVED
J 'o' , '

LETB$
= "GREAT"

You must program the Apple to print the
smallest word before the largest word.

!

Is
A$ < B$

?

! No

?8$
?A$

Yes

--+ GOTOSTOP

165

?A$
? 8$

I
- (___ s_To_ P_)

Flowchart

(START)
i

I
HOME

I
i

LETA$
="PAUL"

i

LET8$
= "PAULA"

i

Is Yes
A$ < 8$

?

i No

? 8$ ------+
?A$

The Apple can also alphabetize words that
have the same letters, such as PAUL and PAULA.
Both words begin with P-A-U-L, but PAULA has an
extra letter at the end. The Apple knows that the
rule for this situation is: The shortest word comes
first . For example:

Program Output

10 REM ALPHABETIZE
TWO LIKE WORDS PAUL

20HOME PAULA
30LET AS=''PAUL'' 1 "o'

; ..
40 LET BS=' 'PAULA''
50 IF AS <BS THEN 80
60?BS : ? AS
70GOT090
80? AS: ?BS
90END

I
GOTO STOP

?A$
------+ (STOP) ?8$

This type of algorithm is only useful for alpha­
betizing two words. If you needed to alphabetize
more than two words, you would have to use a
different type of algorithm called a sorting
algorithm.

to do: Programmer's Pastime #70

166

(CHAPTER 4-0 READ-DATA
~~~~~~~~~~~~~~~~~ 

Another programming trick that can save you 
and the computer time is the use of READ-DATA 
statements. 

The READ statement and the DATA statement 
go together in a program. These two statements 
make it possible for you to place data in your 
program as you type it on the keyboard, or even 
while you are running the program. 

This is handy because you can use the same 
program many times. Instead of writing and typ­
ing the program over again for different data, 
you merely change the information in the DATA 
statement . The program below adds four 
numbers: 

Flowchart Program output 

( ) 10REMADD4 rfh START NUMBERS 
i 20HOME 

I 
HOME 

I 
30 READ A ,B,C,D 
40 DATA 6, 7,8, 9 
50 ?A+B+ C + D i 
60END 

READ 
A,B,C,D 

i 
? 
A+B+C+D 

i 

( STOP ) 

167 



If you want to use the same program to add four 
different numbers, just change the DATA state­
ment in line 40. Example : 

40 DATA 10, 11, 12, 13 

output 

r (~o' 
, ' 

The READ box looks just like the INPUT box in a 
flow chart. You must label the box as READ or 
INPUT so it is not confusing. 

The READ box looks juBt- like 
the INPUT box in a flow chart: 
You must label ihe b?l< READ 
or INPUT .xY we aon·t ger confused. 

READ 
or 

INPUT 

168 



You can also add more data to a DATA state­
ment. Example: 

Flowchart 

( __ sr._J\R_r ___ ) 
! 

READ 
A$,B$ , C$ 

? 
A$,B$,C$ 

GOTO READ 

( STOP ) 

Program 

lOREMDATA WITH 
WORDS 

20HOME 
30 READ A$ ,B$ ,C$ 
40? A$ , B$ , C$ 
50GOT030 
60 DATA " I" I "LIKE" I 

"YOU" I " YOU'RE" I 
" MY" I "FRIEND" 

70END 

In line 30 the Apple is told to READ enough data 
to fill up the three variables A$, B$, and C$ . The 
Apple looks for a DATA statement in the program 
and finds one in line 60. It ' 'gobbles' ' up the first 
three pieces of data it finds ("I", "LIKE", "YOU") 
and assigns them to A$, BS, and CS . 

30READ A$, B$ , C$ 

60DATA \'I' I 
I " LIKE" I "YOU" 

You can think of this data as being used up. 

169 

Output 

I 
YOU'RE 

LIKE 
MY 

YOU 
FRIEND 

?OUTOFDATAERRORIN 30 
]''o ' , .. 



rA$\ 
~ 

Lill 
~ 

In line 40, the Apple prints the contents of AS, 
BS , and CS . Line 50 tells the Apple to go back to 
line 30 and read three new pieces of data. The 
Apple finds " YOU'RE", "MY", "FRIEND" in the 
DATA statement and again assigns them to AS , 
BS , and CS . These are the new values of AS, BS, 
and CS . "I" , "LIKE", and " YOU" have been 
erased from the Apple's memory. 

30READ A$, BS , CS 

60DATA . .. " YOU'RE" I " MY" I " FRIEND" 

The second time through, the Apple prints the 
new contents of AS , BS, and CS when it gets to line 
40. Again, line 50 tells the Apple to go back to line 
30. Because there is no more new data to gobble 
up in the DATA statement, the Apple prints: 

?OUTOFDATAERRORIN 30 

This is the Apple's way of saying, " There's no 
more data to read into AS , BS , and CS! '' 

Remember that you can type up to 255 charac­
ters for one line number. This includes the line 
number, statement, data, and even blank 
spaces and commas. If you have more data for a 
DATA statement than 255 characters, you may 
use more than one DATA statement in your 
program. 

The Apple treats all of the data in a program as 
one big list. The READ statement has a pointer 
that goes through this data list and gobbles up 
any new data. 

170 



The DATA statement can be placed anywhere 
in a program. There is only one thing you must 
look out for. You must have the data in your DATA 
statement in the correct order. For example, ti you 
want the program to print: r HI THERE P Af. 

the data "HI" "THERE" and "PAL" must be in this 
order in the DATA statement. If they are out of 
order. this is what might happen: 

Program 

10 REM DATA our OF ORDER 
20HOME 
30READLS. MS. NS 
40 ?LS, MS, NS 
50 DATA "PAL", "THERE", "HI" 
60END 

Output 

You must also make sure that the data in the 
DATA statement is separated by commas. Any 
data not separated by commas will be lumped 
together as one piece of data. 

171 

THERE HI 

ff the data ·1n your 
DATA 5tatement is 

not in order. it c.an 
really mess up yoor 
program/ 



If you have three variables to read, the Apple 
will gobble up data in groups of three . Any left­
over pieces of data will not be printed. For 
example: 

Prog1am Data used Output 

10 REM LEFTOVERS 
20HOME 
30READX, Y, Z 
40 ? X, Y, Z 

1st time: 2, 4, 6 
2nd time : 8, 10, 12 
left over: 13, 14 

2 
8 

4 
10 

6 
12 

50GOTO 30 
60 DATA 2,4,6,8, 10, 12, 13, 14 
70END 

The data 13 and 14 are not 
printed because +hey mal<e 
up a gra.ip of two. The READ 
statement asks for a group 
of three pieces of data . 

?OUT OF DATA ERROR IN 30 
' , 

] ,D, 

You may ask, "Is there any way I can get the 
program to end without printing the ?Our OF 
DATA error message?" The answer is "Yes!" You 
need to: 

1 . Put some dummy data at the end of your 
DATA statement. (Dummy data is data that 
you want the Apple to read as a signal that the 
pointer is at the end of the data list .) 

2. Use an IF-THEN statement that directs the Ap­
ple to the end of the program as soon as it 
READS the dummy data. 

172 



Flowchart Program 

( ) lOREMDUMMYDATA 
START 20HOME 

J. 30 DATA 48,6,8.5, 9, 

I HOME 
I 

-999,-999 
40 READ Q,U 
50 IF Q= -999 THEN 80 ! 

(READQ, U 

I 

60?Q,U 
70GOT040 
80END 

i 

Yes 

i No 

?Q,U 

i 

GOTO READ 

i 

( STOP ) 

In the program, -999 was used as the dummy 
data. When you choose dummy data, select 
something you know you probably won't be 
using for data. For example, it is very unlikely that 
-999 would be data that you would want to use 
in a program. 

The IF-THEN statement in line 50 of the program 
asks, " Does Q= -999?" after each gulp of data is 
read. When Q finally equals - 999, the Apple is 
directed to the END of the program. 

173 

Output 

48 6 
8.5 9 
1 'o' , ' 



Flowchart 

( START ) 
.J. 

I 
HOME 

I 
.J. 

I 
FOR N= 1 T03 

I 
.J. 

( READP,Q 

I 
.J. 

? P* Q 

.J. 

NEXT 

.J. 

( STOP ) 

It is important to have dummy data for each 
variable that the Apple will read. For example, if 
you have five v ariables in y our READ statement 
you must have five pieces of dummy data at the 
end of the DATA statement. Each variable must 
have data read into it every time or the Apple will 
print the ?OlIT OF DA TA message at the end of the 
program's output . 

If you don't want to use dummy data in y our 
program, you can use a FOR- NEXT loop instead. 

Program 

10 REM FOR-NEXT LOOP 
20HOME 
30FORN= 1TO3 
40 READP,Q 
50 ?P * Q 
60 NEXTN 
70 DATA 0,2,4,6,8, 10 
80END 

• 

174 

• 

Output 

0 
24 
80 
1 "o' 

; .. 



The FOR-NEXT statements make the program 
loop three times. During the first loop, 0 and 2 are 
read into P and Q. In the second loop, the Apple 
reads 4 and 6, and during the third loop 8 and 10 
are read. Because the loop is done only three 
times, the computer goes to line 80 and the pro­
gram ends. 

1. It 's OK to have both numeric and string vari­
ables in the same READ statem ent. As a g ood 
programming practice, just make sure any 
data in the DATA statement that goes with the 
string variables has quotation marks around it. 

Example: 30 READ C, DS, E, FS 

40DATA 10 ,"KEN", 3 , " MITSY" 

If the data doesn't match up to your variables, 
you '11 get a SYNTAX ERROR message . 

2. You can't use an equation like 5 - 2 as data in 
a DATA statement. You must list only single 
numbers ( 5, 18, 343, etc.) or the Apple will give 
you a SYNTAX ERROR message. 

to do: Programmer's Pastime #71, #72, #73, #74, 
#75 

175 



{!ROGRAMMER'S PASTIME #7~ 
Use what you know about READ-DATA state­
ments to write programs for the following tasks . 

1. Write a program that multiplies three 
numbers. 

Flowchart Program 

2. Write a program that lists the names of your 
friends. 

Flowchart Program 

176 



c CHAPTER 45~ Problem-Sc:>lving 
Programming 

By now you have discovered that the Apple is a 
friend who can keep you company when you 
are bored, entertain you, and help you do your 
work. The most important thing the Apple can do 
for you, however, is to help you solve difficult 
problems. 

So far you have learned how to program the 
Apple to do many things. You have learned most 
of the BASIC commands and algorithms neces­
sary to write problem-solving programs. In this 
chapter you will learn how to put all of these 
valuable tools to use in order to teach the Apple to 
solve problems. 

Before the Apple can give you the answer to a 
problem, there are many things that you must 
plan for in writing a good program. 

Problem 

Joe went to the store to buy some goldfish. He 
has $4.83 to spend. The fish bowl costs $2 .25. 
Sand for the bottom of the bowl costs 49¢ a bag. 
Fish food is 60¢ for 4 ounces. The goldfish cost 80¢ 
each or two for $1 . 35. If Joe buys all of the sup­
plies, how many fish can he afford to buy? 

1. Think about the problem: 

a. What exactly is the 
problem? 

b . Do I understand the 
problem? 

c . What kind of answer do I 
want? 

d . What do I need to know in 
order to find out the 
answer? 

Can Joe buy one or two goldfish? 

The answer should be one or two goldfish. 

I need to know how much money Joe will 
have left over after buying the supplies . 
Then I will know how many fish he can 
buy . 

177 



2. Make a data table: 

a . What variables will I need 
to use in the program and 
what will they stand for? 

b. Input variables are 
variables that you already 
know the value of. 

c. Output variables are the 
answers that the Apple 
will give you. 

d. Program variables are 
variables that are used in the 
program to do other things. 

3. Algorithm: 

a. Break the problem into 
smaller parts. 

b. Figure out the step-by-step 
process you will use to 
solve the problem. Decide 
what operations you will 
use ( +, - ./,and so on). 

Data Table 
Input Variables 

T =total $ that Joe can spend 
FB=cost of fish bowl 

S =cost of sand 
FF= cost of fish food 

G 1 =cost of 1 goldfish 
G2 =cost of 2 goldfish 

Output Variables 
TC=total cost of FB+S+FF 

L =money left after buying the 
supplies 

=4.83 
=2.25 
= .49 
= .60 
= .80 
=1 .35 

There are no program variables in this 
program. 

1 . Find out the TC by adding FB + S +FF. 
2. Find out L by subtracting T - TC . 
3. Find out if Lis enough to buy one or two 

goldfish . Ask: 

Is L> =Gl? 
Is L> =G2? 

4. Tell how many goldfish Joe can buy 
and how much money he would have 
after buying both the supplies and the 
goldfish. 

178 



4. Flow chart: 

( 

I 

a. Write the algorithm in flow 
chart form. 

START ) 
! 

LETT=4.83 

I 
! 

PRINT "JOE 
HAS" T 
"DOLLARS" 

! 
LET FB=2.25 
LETS = .49 
LETFF= .60 

i 

LET TC = 
FB + S+FF 

! 
PRINT "FISH 
SUPPLIES 
COST' ' TC 

! 

LET L=T-TC 
PRINT "JOE CAN 
BUY 2 GOLDFISH" 
PRINT "JOE WILL 

! HAVE" L- G2 
PRINT "JOE ' 'DOLLARS LEFT' I 
HAS" L "LEFT 
OVER" j Yes 

! 

$ LETG1 = .80 --+ 

LETG2= 1.35 
2 

PRINT "JOE CAN 
BUY 1 GOLDFISH" 
PRINT "JOE WILL 
HAVE" L-G1 
" DOLLARS LEFT" 

j Yes 

No 
--+ ~ 1 

179 

No 
--+ 

STOP 

PRINT "JOE 
CAN'T AFFORD 
ANY FISH" 



5. Coding: 

a. Write a BASIC program for the flow chart. 

10 LET T=4.83 
20? "JOE HAS" T "DOLLARS" 
30 LET FB= 2 .25 : LETS= .49 : LET FF= .60 
40 LET TC= FB + S +FF 
50 ? "FISH SUPPLIES COST" TC 
60LETL=T-TC 
70? "JOE HAS" L "LEFT OVER" 
80 LET G 1 = . 80 : LET G2 = 1 . 35 
90 IF L> =G2 THEN 130 

100 IF L> = G 1 THEN 150 
110? ''JOE CAN'T AFFORD ANY FISH'' 
120 GOTO 160 
130? "JOE CAN BUY 2 GOLDFISH" : ? "AND 

HAVE" L-G2 "DOLLARS LEFT" 
140GOTO 160 
150 ? "JOE CAN BUY 1 GOLDFISH" : ? "AND 

HAVE" L-Gl "DOLLARS LEFT" 
160END 

6. Debugging: 

a. Pretend you are a computer. Follow the di­
rections in your program to make sure it 
works. This is called tracing the program. 

b. Run the program on the Apple to check for 
bugs. 

c. Does the program do what you wanted it 
to do? 

180 

I think T 
see a bug 



7. Revising: 

a . Is there a better or shorter 
way to write your 
program? 

b . Can you use better 
programming style? 

c. Can you design your 
output better? 

Yes. We can write the program using 
READ-DATA statements. 

Ye.s. We can use REMARKS. 

Yes. We can clear the screen and leave 
spaces between the printing. 

10 REM CALCULATING PURCHASE OF GOLDFISH & SUPPLIES 
20HOME 
30 READT, FB, S, FF, Gl, G2 
40 DATA 4.83, 2.25, .49, .60, .80, 1.35, 99, 99, 99, 99, 99, 99 
50 IFT=99THEN 60 
60 ? "JOE HAS" T " DOLLARS" 
70 LETTC=FB+S+FF 
80 ? 
90 ? "FISH SUPPLIES COST" TC 

100 LETL=T-TC 
110 ? 
120 ? "JOE HAS" L "LEFT OVER" 
130 IF L> =G2 THEN 170 
140 IF L> =Gl THEN 190 
150 ? " JOE CAN'T AFFORD ANY F1SH" 
160 GOTO 200 
170 ? "JOE CAN BUY 2 GOLDFISH AND HA VE" L-G2 "DOLLARS LEFT" 
180 GOTO 200 
190 ? \\JOE CAN BUY 1 GOLDFISH AND HA VE I' L-G 1 \'DOLLARS LEFT' ' 
200 END 

181 



Using the READ-DATA statements may be the 
best way to write this program. Why? If the price 
of goldfish or supplies goes up, you can change 
the DATA statement and the program will be 
updated. 

You can write good problem-solving programs 
for the Apple to solve if you follow these seven 
steps. 

1 . THINK about the problem 
2. DATA TABLE for input, output, and program 

variables 
3. ALGORITHM-How can I solve the problem, 

step by step 
4 . FLOW CHART 
5 . CODE the flow chart into a BASIC program 
6. DEBUG 
7. REVISE the program to make it the best 

to do: Programmer's Pastime #76 

182 



(CHAPTER 46)_ c_on_v_em_·_ons _ _ __ _ 
The Apple can be especially good at running a 
program that helps you convert one thing to an­
other. Convert means to change, so a conversion 
is changing information to a different type . For 
example, you can convert : 

inches to feet decimals to fractions 
feet to meters miles to kilometers 

You can program the Apple to make the con­
version and then print a table that shows how the 
two types of conversions are equal to each other. 
For example: 

Flowchart 

( __ sr._AR_r~) 
.J. 

I HOME I 

PRINT THE 
HEADING 

Use a FOR­
NEXTloopto 
make I (inches) 
start with 1 
and goto 24 

NEXT 

(~_s_ro_P_) 

Program 

10 REM CONVERTING INCHES 
TO FEET 

20HOME 
30? " INCHES", "FEET" : ? 
40FORI= 1TO24 
50 ? 1,1/12 
60NEXTI 
70END 

183 

Output 

INCHES FEET 
1 .083333 
2 .16666667 
3 .25 
4 .333333 
5 .41666667 
6 .5 
7 .583333 
8 .66666667 
9 .75 
10 .833333 
11 .91666667 
12 1 

24 2 
1 "o' , .. 



The output of this program shows how inches 
compare to feet. You can tell from the program 
that: 

1 inch = O. 083333 of a foot 
3 inches= 0. 25 or Y4 of a foot 
6 inches=0 .5 or V2 of a foot 

12 inches= 1 foot 

Line 30 prints the heading for the output . The 
heading of a program is usually printed first in the 
output. It explains the meaning of the numbers 
that follow. The heading in the program is: 

INCHES FEET 

The heading tells you that the numbers listed un­
der INCHES are inches, and the numbers listed 
under FEET mean feet . 

Conversion programs are very easy to write . 
They are short because they use FOR-NEXT loops . 
The most important part of this type of program is 
the conversion equation. This equation tells the 
Apple how to convert from one thing to another. 
The conversion equation in the INCHES to FEET 
program is I/ 12. This tells the Apple that to find 
feet it must divide the number of inches (I) by 12. 

To write a good conv ersion p rogram, re­
member to include : 

1. aheading 
2. a FOR-NEXT loop that decides which numbers 

to start and end with on the conversion output 
and decides how many times the program 
will loop. 

3. conversion equation 

to do: Programmer'sPastime#77, #78, #79 
Component7FunPage 

184 



CHAPTER47 
TAB 188 

CHAPTER48 
Moving Around the Screen 190 

CHAPTER49 
Motion Pictures 1 95 

CHAPTER SO 
Random Numbers and Integers 200 

CHAPTER51 
Writing Game Programs 205 

CHAPTER52 
You are a Creative Programmer! 209 

185 



(CHAPTER 47)_ TA_s ___ _ 
You have learned how to control where some­
thing is printed on the Apple's screen by using 
commas and semi-colons. There is a function, 
called TAB, that you can use to control the screen 
output. A function is an operation that the com­
puter does automatically, like a small built-in 
program. 

The TAB function is used only in PRINT state­
ments, like this: 

10? TAB( 10); "* * *II 
You have learned that the Apple's screen has 

40 rows and 40 columns labeled from 0 to 39. This 
is true only when the Apple is in graphics mode. 
When the Apple is in direct mode it still has 40 
columns, but it has only 24 rows. The columns are 
labeled 1 through 40 and the rows are labeled 1 
through 24. 

The TAB function tells the Apple to move the 
cursor across the screen to column 10 and begin 
printing in column 10. 

** * 

I 2 3 • 5 5 7 8 9 10 ti 12 13 1• 15 16 17 18 

Columns 

PRINT T AB(20): '' * * * '' 
will make the Apple begin printing in the 20th 
screen column. 

The TAB function above tells the Apple to move 
the cursor across the screen to column 10 and begin 
printing in column 10. 

186 



When you use the TAB function in a PRINT state­
ment, you must remember to put a semi-colon 
after the last parenthesis. 

PRINT TAB(25); "$" 

This function will cause a $ to be printed in column 
25. 

The number inside the parentheses of a TAB 
function can be a variable . You must. however, 
introduce the variable in the program before you 
use it in a TAB function. For example: 

lOHOME 
20LETZ=33 
30 ? T AB(Z); "!" 

You may also use more than one TAB function 
in a PRINT statement. For example: 

20? TAB(lO); "* *"; TAB(l5); "%%" 

This function causes the Apple to print an * in 
columns 10 and 11 and a% in columns 15 and 16. 
Notice how the two TAB functions are separated 
by a semi-colon. 

You can have lots of fun designing output by 
using TAB. 

to do: Programmer's Pastime #80, #81 

187 

This p-ograrn causes an ! 
to be µ-intea in column 33. 



(CHAPTER 48) Moving Around the Screen 

There is another function that works very much 
like the TAB function . SPC is the space-over func­
tion. It is also used in a PRINT statement, like this: 

10? SPC(lO); ''PRINTHERE'' 

The SPC function tells the Apple to make 10 
blank spaces on the screen and then print what is 
inside the quotation marks. Notice that the SPC 
function also must have a semi-colon after the 
second parenthesis. 

You can use more than one SPC function in a 
PRINT statement. For example: 

10? SPC(5); "HERE"; SPC(5); "THERE" 

H E R E T H E R E 

1 2 3 • 5 6 7 8 9 10 11 12 13 1• 15 16 17 18 19 20 21 22 23 2• 25 26 

The SPC functions above tell the Apple to space 
over five columns and print HERE in the next col­
umn. Then the Apple must make five screen 
spaces before printing THERE. 

There are two other statements that let you pro­
gram the Apple to print anywhere on the screen. 
VTAB moves the cursor vertically (up and down), 
and HTAB moves the cursor horizontally (across 
the screen). 

188 



Remember that when the Apple is in direct 
mode, the screen is made up of 40 columns la­
beled 1 through 40 and 24 rows labeled 1 through 
24. 

The Apple's Screen in Direct Mode 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

10 
1-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-1f-I 

11 
t-t--t--+-t-t-+---t-+-t-t--+-+-it-t--t--+-t-t-+---t-+-t-t--+-+-it-t--t--+-+-+-+---t-+-t-t--+-+-if--1 

12 

Rows 13 
1-1--+--+-+-+---+---+-+-t---+--+-+-11-1--+--+-+-+---+---+-+-t---+--+-+-11-+-+--+-+-+---+---+-+-t---+--+-+-1f-I 

14 

15 
1-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-1f-I 

16 
1-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-1f-I 

17 
t-t--t--+-+-+---+---t-+-t---+--+-+-il-+-+--+-+-+-+---t-+-t---+--+-+-1-+-+--+-+-+---+---t-+-t---+--+-+-1f-I 

18 
1-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-1f-I 

19 
t-t--t--+-+-+-+---t-+-t-t--+-+-it-t--t--+-+-+-+---t-+-t-t--+-+-t-t--+--+-+-+---+---t-+-t---+--+-+-if--1 

20 
1-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-1f-I 

21 
t--+--+--+-+--+--+--+-+-+-+--+--+--<t--+--+--+-+--+--+--+-+-+-+--+--+-1-+--+--+-+-+--+--+-+-+-+--+--+--<f-< 

22 
1-+-+--+-+-+---+---t-+-t---+--+-+-11-+-+--+-+-+-+---t-+-t---+--+-+-1-+-+--+-+-+---+---t-+-t---+--+-+-1f-I 

23 
1-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-11-+-+--+-+-+---+---l-+-t---+--+-+-1f-I 

24 

Columns 

189 



10 

11 

12 

13 

1 ~ 

16 

17 

16 

19 

20 

21 

22 

23 

24 

PRINT AT ROW 15 

You can use VT AB with a PRINT statement to 
make the Apple print on a certain screen line (at 
a certain row). For example: 

lOHOME 
20VTAB 15: ? "PRINT AT ROW 15" 
30END 

You can use HTAB with a PRINT statement to 
make the Apple print a certain number of spaces 
over on the screen-beginning in a certain col­
umn. For example: 

lOHOME 
20HTAB5:? "START PRINTING IN COLUMN 5" 
30END 

190 



I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 

S T A R T P R I N T I N G I N C 0 L U M N 5 

You can use both VT AB and HT AB in a PRINT 
statement to make Apple print at a certain loca­
tion on the screen. For example: 

10 

II 

12 

Rows 13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

lOHOME 
20 VTAB 15: HTAB 5:? "DOWN 15, OVER 5" 
30END 

Columns 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 ·34 35 36 37 38 39 40 

0 0 WN 1 5 0 v E R 5 

191 



Function/ 
Statement 

TAB 

SPC 

HTAB 

VTAB 

Example 

?TAB(lO); "Z" 

? SPC(lO); " Z" 

HTAB 10:? " Z" 

VTAB 10:? " Z" 

Notice that HTAB and VTAB come before the 
PRINT statement. A colon(:) separates the HTAB 
and VTAB and the ? . 

In direct mode, the Apple has only 24 screen 
rows. You cannot use 0 with HTAB or VfAB. The 
smallest number you can use is 1. The largest 
number you can use for HTAB is 40, and the largest 
number you can use for Vf AB is 24. If you use a 
wrong number, the Apple will print an ILLEGAL 
QUANTITY error message. 

Moving around the screen 

What Happens 

Z is printed in the ninth column. 

The Apple makes 10 blank spaces and 
then prints Zin the next column. 

The Apple counts over 10 spaces and then 
prints Z in column 10. 

The Apple counts down 1 O rows and prints Z 
inrow 10. 

to do: Programmer's Pastime #82, #83 

192 



(CHAPTER 49) Motion Pictures 

You can have lots of tun writing programs that 
move graphics across the screen. An easy way to 
do this is to use strings and add them together. 
Run the program below to see how this works: 

10 REM A MOVING STAR 
20HOME 
30 LET BS = \\ II : LET SS = \\ * II 
40VTAB 12 
50FORL=1TO39 
60 HTABL 
70 FOR TL= 1TO100: NEXTTL 
80 ?BS+SS1 
90NEXTL 

lOOEND 

A blank space is stored in BS, and the * is stored 
in SS. The VT AB 12 statement makes the star 
move across the screen at row 12. The FOR-NEXT 
loop does many things. The value of L increases 
from 1 to 39. The HT AB L statement makes the * 
move from column 1 to column 39 across the 
screen. The FOR-NEXT time loop slows down the 
movement. The trick to the movement is in line 
80. In order to make a graphic move, it must be 
erased after it is printed, and then printed again 
in the next column. This can be done by adding 
the two strings together. BS +SS means that BS and 
then SS will be printed in that order each time the 
loop is done. This is what moves the * (in SS) 
across the screen. 

The example below shows how the movement 
is created. 

* 
~* 

l:?S* 
~* 
~* 

l:?S* 
The lzS is the blank that erases the star as it moves 
along. 

193 



You can make a word move across the screen 
by changing the contents of SS. Make the follow­
ing change and run the program again. 

30 LET BS= "16" : LET SS= " MO\fII\J' ON" 

You can change how fast the graphic moves 
by changing the FOR-NEXT time loop. 

The following program makes the word HI 
move down the screen from the top to the bottom. 

10 REM FALLING 
20HOME 
30 LET BS= "1616": LET MS= "HI" 
40FORL= 1TO24 
50 ?BS 
60 HTAB 10 
70 VTABL 
80 ?MS; 
90 HTAB 10 

100 FOR TL= 1TO100: NEXT TL 
l lONEXTL 
120END 

The contents of BS must have two blank spaces 
because the word HI in M S is made of two letters. 

You can also make moving pictures in lo res 
graphics. Instead of using a string variable that 
contains a blank space, you will use the com­
mand COLOR= 0 to make the screen black and 
erase the graphic. The following program makes 
a ball roll down a set of stairs . Run it on the Apple. 

194 



Flowchart 

c START ) 
J. 

GR I 
J. 

REM Draw stairs I 
J. 

Select stair color I 
J. 

FORS=1 T039 I 
J. 

HLIN 1,SATS I 
J. 

NEXTS I 
J. 

REM Rolling ball 
Draw ball 

J. 
FORB=OT038 

1 

I 

I 

I 

I 

I 

1 
Select ball color 

J. 
PLOTB+1, B 

J. 

~ 0 

J. No 

REM Erase ball 
on higher stair 

J. 
Color=O (black) 

J. 
PLOTB+1, B-1 

J. 
FOR-NEXT time loo 

J. 

Does 
B=38 

J. No 

Set ball color 

PLOTB+2, B 

REM Erase ball 
on higher stair 

I 

I Color=O (black) _I 

J. 

LI _P_LO_T_B_+,1,_B __ I 
J. 

Yes 

Yes 

L__ ________ I NEXTB I 
L. ---- J.:------

( _____ ST_O_P _~) +-------' 

195 



Program 

10 REM BALL ROLLING DOWN 
STAIRS 

20GR 
30 REM DRAW STAIRS 
40COLOR=6 
50FORS= 1TO39 
60 HLIN l,SAT S 
70NEXTS 
80 REM ROLLING BALL 
90 REM DRAW BALL 

100 FOR B=O TO 38 
110 COLOR= 1 
120 PLOT B+ l, B 
130 IF B=O THEN 170 
140 REM ERASE BALL ON HIGHER 

STAIR 
150 COLOR=O 
160 PLOT B+ l, B- 1 
170 FOR TL= 1TO150: NEXT TL 
180 IF B = 38 THEN 250 
190 REM REDRAW BALL 
200 COLOR= 1 
210 PLOTB+2, B 
220 REM ERASE BALL ON HIGHER 

STAIR 
230 COLOR=O 
240 PLOTB+ l, B 
250NEXTB 
260END 

196 



To make moving graphics in direct mode: 

Use string variables. One string variable must 
contain a blank space(s). 

To make moving graphics in lo res graphics 
mode: 

Use the color commands. COLOR= O erases a 
graphic. 

to do: Programmer's Pastime #84 

197 



(CHAPTER so) Random Numbers 
and Integers 

RND(1) is a 
random number 
between 0 and I 

The word random means ''having no pattern or 
special purpose.'' Therefore, random numbers 
are a list of numbers that are not in any particular 
order or for any particular purpose . .An example 
of a list of random numbers might be: 7, 43, -6, 
O. 7, 413. There is no order or number pattern in 
this list, and the numbers listed have no special 
purpose or meaning. 

Random numbers are often used in two types of 
computer programs: 

1. teaching programs, also called CAI (Com­
puter-Aided Instruction) 

2. games and simulations* 

You will use the RND function to create random 
numbers in a program. For example: 

10 REM CREATE RANDOM NUMBERS 
BETWEEN 0 AND 1 

20HOME 
30FORL=1TO10 
40 LET X=RND(l ) 
50 ?X 
60NEXTL 
70END 

The program you just read tells the Apple to 
print any number between 0 and 1 ten times . The 
Apple will pick numbers randomly each time. 
There will be no order to the numbers. Each time 
you run the program, the Apple will print a differ­
ent list of numbers. 

If you want the Apple to print a list of numbers 
between 0 and 10 randomly, you would change 
the RND function to: 

LET X=RND(l) * 10 

·A simulation is a real-life " game." It imitates 
something the way it would really happen. 

198 



If you want the Apple to print a list of random 
numbers between 0 and 100 you would change 
the RND function to: 

LETX=RND(l)* 100 

If you are writing a game program, you will 
probably not want O to be a random number­
especially if the game is simulating the roll of a 
die. To print any random number between 1 and 
10 l , change the RND function to: 

LET X= 1+RND(l)*100 

This causes the lowest possible number to be 
1.00000001 and the highest possible number to 
be 100. 999999. 

An integer is a whole number. Numbers like 
0.25 and 6.32 are not whole numbers-they are 
decimals. You can use the INT function to create 
whole numbers or integers in a program. 

For example: 

Program. 

10 REM CONVERTING DECIMALS TO 
INTEGERS 

20HOME 
30? "DECIMAL", "INTEGER" 
40 FOR X= 1TO5 STEP .5 
50 ? X, INT(X) 
60NEXTX 
70END 

Output 

DECIMAL 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 

Notice that the integer for the decimal 1.5 is 1. 
The integer for the decimal 2.5is 2, and so on. The 
INT function rounds the decimal down to the 
nearest integer. You could also say that the INT 
function ''chops off'' or truncates anything to the 
right of the decimal point. 

199 

A die is 
one of a 
pair of dice 

INTEGER 
1 
1 
2 
2 
3 
3 
4 
4 
5 

we CHOP OFF 23 
because fr 1s io 
il1e nghr of tile 
aoc1mal ~nt 

INT(3. 23)=3 



Sometimes you will want the Apple to print ran­
dom numbers that are only integers. To do this, 
you will use both the RND and INT functions. For 
example: 

10 REM ROLL IT 
20HOME 
30FORL=1TO10 
40 LET X=INT(l +RND(l)*6) 
50 ?X 
60NEXTL 
70END 

This program tells the Apple to print a random 
integer between 1 and 6. The smallest possible 
number would be 1 and the highest possible 
number would be 6. 

Let's say you want the Apple to print a random 
integer between and including 2 and 12. The INT 
and RND function should say: 

LET X=INT(2+RND(l)* 11) 
i 

The smallest number that will be printed. 

To create random integers between and includ­
ing 50 and 85, use: 

LET X=INT(50+RND(l)*36) 
i 

smallestnumber 85-50=35 35+1=36 

The formula for creating random integers be­
tween A and B (where A is the smallest integer 
and B is the largest) is : 

INT(A+RND(l)*(B-A+ 1)) 
To create random integers between 26 and 77, 

use the formula like this: 

LET X=INT(A+RND(l)*(B-A+ 1)) 
i ' '\ 

LETX= INT(26+RND(l)*(77-26+ 1)) 
'---v----J 

i< 
LET X=INT(26+RND(l)*52) 

200 



Here is an example of how to use the INT and 
RND functions in a CAI program that gives the 
student practice in adding integers. 

Program 

10 REM PRACTICE ADDING 
20HOME 
30 LET A 1 = INT(RND( 1) * 100) 
40 LETA2=INT(RND(1) * 100) 
50 ? AS \\+' I A2 \ \ ='I ; 

60INPITT S 
70 LET T=Al + A2 

80 IF T = S THEN 110 

90? "NOPE. TRY AGAIN" 

100GOT050 

110? " RIGHT ON! " 
120GOTO 20 

What happens 

A random integer for A 1 is created. 
A random integer for A2 is created. 
The equation for the student to do is printed. 
The student types his or her answer. 
The Apple calculates the answer to the 
equation. 
The student's answer is compared to the correct 
answer. If S=T go to line 110. 
If the student's answer is wrong. the Apple tells 
the student. 
The program goes back to line 50 and the same 
equation is given to the student. 
The Apple tells the student he or she is right. 
Goes to the beginning of the program, picks 
new random integers, and starts all over again. 

Run this program to see how it works on the 
Apple . 

The placement of parentheses in RND and INT 
functions is very important. 

If the parentheses are in the wrong places, the 
program won't run properly. 

to do: Programmer's Pastime #85. #86, #87, #88, 
#89,#90 

201 



C!-ROGRAMMER'S PASTIME #8~ 

Flowchart 

Make a flow chart and write a program that will 
print l O random decimals between l and 100 and 
then print the integer tor each. 

Program 

202 



c CHAPTER s1) Writing Game Programs 

Playing computer games can be an enjoyable 
recreational experience. One of the rewards of 
learning how to program a computer is being 
able to write game programs. 

There are basically three types of computer 
games: 

1. mathematical games: games involving 
numbers and/or solving arithmetic or mathe­
matical problems. 

2. recreational games: many different games 
could fall in this category . I think of Space 
Invaders and Dungeons and Dragons as rec­
reational games. 

3. simulations: games that imitate real-life situa­
tions. For example, Sell Lemonade. 

In writing a game program, you must be sure 
the program will be user friendly. This means 
that the program is easy for anyone to use. 

A program that is user friendly should: 

1 . give clear directions; 
2. have easy-to-read screen output; 
3. be free of bugs and not be ''broken'' easily 

during the run; 
4. have fun or interesting graphics; 
5. communicate with the player (tell the player 

how they are doing through messages or 
scores). 

You have learned all of the programming tech­
niques needed to write a good game program. 
Study the following game program to get an idea 
of how a user-friendly game should be written. 

203 



Flowchart 

c START 

! 

I 
HOME 

! 
Have the Apple 
pick a random 
integer, N, 
between 1 and 
100. 

! 
PRINT same 
heading and 
directions 

! 

! 
(1NPUTG 

! 

<$> Yes 
+---- N 

! 
No ! 

TEXT: HOME 

~ ! 
N 

? "YOU ARE 
RIGHT! ! No 

TRY AGAIN?" 

~ ! 
(1NPUTQ$ 

N 

! 

Yes Is No 
----+ 

0$ ="YES" 
? 

204 

) 

I 

Yes 
----+ 

Yes 
----+ 

----+ 

Data table 

Program Variables 

N =random number 

Input Variables 
G=number guessed b y 

p layer 
Q$ =player's answ er to 

the question, 
" TRY AGAIN?" 

No Output Variables. 

? "TOO HIGH. 
GUESS AGAIN" 

? ' 'TOOLOW. 
GUESS AGAIN" 

( STOP ) 



Program 

10 REM * * GUESS A NUMBER GAME * * 
20HOME 
30 REM * * CHOOSE A RANDOM NUMBER * * 
40LETN=INT(l +RND(l)* 100) 
50 REM * * BEGIN GAME * * 
60HTAB(l0): VTAB(5): ? "GUESS A NUMBER 

GAME" 
70HTAB(2) : VTAB(8): ? "GUESS A NUMBER 

BETWEEN 1 AND 100'' 
80INPUTG 
90 IF G=N THEN 120 

100 IF G > N THEN? ' 'TOO HIGH. GUESS AGAIN.' ': 
GOT080 

l lOIFG<NTHEN? ''TOOLOW. GUESS AGAIN.'': 
GOTO 80 

120 REM * * CORRECT GUESS * * 
130 REM * * GRAPHIC * * 
140 GR: COLOR=2 
150 PLOT 22, 17 : PLOT 24, 17 
160COLOR=13 
170 PLOT 23, 19 
180 COLOR= 11 
190 PLOT 20,20 : PLOT 21,21 : PLOT 22,22 : PLOT 

23,22: PLOT 24,22: PLOT 25,21 : PLOT 26,20 
200FORT=l TO lOOO:NEXTT 
210 REM * * CONGRATULATE THE PLAYER * * 
220 TEXT: HOME 
230 HTAB 5: VTAB 5:? "YOU ARE RIGHT! TRY 

AGAIN''; 
240INPUTQ$ 
250 IF Q$ = ''YES' ' THEN 20 
260 HTAB 8: VTAB 8:? "THANKS FOR PLAYING." 

PLAYING.'' 
270END 

205 



1 . Clear Directions: 
2. East-To-Read Output: 
3. Free of Bugs: 

4. Fun, Interesting 
Graphics: 

5. Messages to the Player: 

Does this program have the five elements of a 
good program? 

lines 60-70 
The HTAB and VTAB statements do this. 
There is one possible bug. Look at lines 230 through 
250. 

If the user types yes, the game will start over 
again. If the user types no or even a mistake 
(like QYES) the program will end. The program 
should be written so that if something other 
than yes or no is typed, the Apple will go back 
to line 230 and print the question, TRY AGAIN 
another time instead of ending the program. 
This technique is called accident proofing user 
responses. 

A happy face is printed when the number is 
guessed. 
Lines 100 and 110 tell the player if the guess is too 
high or too low. 

Line 230 congratulates the player for guessing 
correctly. 

Line 260 thanks the player for playing. 

Run this prograll! so you can see firsthand how 
it works. Maybe you will have some suggestions 
on how to make the program even better! 

to do: Programmer's Pastime #91 

206 



. ·-

rCHAPTER sa"\ __ vo_u_A_r_e _a _c _re_at_iv_e __ _ ~ :J Programmer! 

You have learned how to use the Apple as a 
calculator and a problem-solving tool. You know 
that the Apple can also help you with your creative 
projects. Computer art and design can be amaz­
ing. You have the basic skills needed to create in­
teresting graphics. 

Another creative outlet for computers is anima­
tion and sound generation. Did you know that 
people program computers to make music and 
even to talk? 

Now that you know how to create visual pictures 
and designs, it is hoped that you will continue 
to learn more about computer animation and 
sound. The possibilities of what you can do with 
your Apple are endless! 

Use your imagination ... explore ... try new 
things! Your Apple is your friend, a tool, and a key 
to your future! 

to do: Component 8 Fun Page 

'-------) 
207 



AFTERWORD 

Congratulations I 
You are now a veteran computer programmer! 

You've come a long way! 
You now have the skills needed to write pro­

grams in BASIC to control a computer. You know 
how to use the computer to solve your problems 
(problem-solving programming) and to entertain 
yourself and others (recreational programming). 
The skills you have learned enable you to create 
designs and new ideas on the computer (creative 
programming). You should be very proficient at 
programming the computer to do just about 
anything! 

Sure, there are still many more BASIC program­
ming techniques to learn. Some of them are com­
plicated but others are shortcuts that will make 
your programming easier! 

Once you are a pro at communicating in 
BASIC, there are other computer languages wait­
ing for you-PASCAL, LOGO. and PILOT, to name 
just a few. 

The world of computers is certainly exciting 
and fascinating. It is the world of the future . Don't 
you feel lucky to be a part of it now? 

208 



Initializing New Disks 

1 . Boot the disk with the system master disk. 
2. Type the following greeting program on the 

keyboard: 
lOREMHELLO 
20 REM GREETING PROGRAM 
30? ' '(student's name)'S DISK' ' 
40? ''INITIALIZED ON (date) FOR 

(memory size )K APPLE II'' 
50NEW 

3. Put the new uninitialized disk into drive 1 . 
4. Type : INIT HELLO 
5 . The disk drive will make grinding noises as the 

disk is initialized and prepared for storing 
programs. 

6 . Any time CATALOG is typed, the Apple will 
display the names of the programs currently 
stored on the disk. 

209 



&:i.~·.i;~;.i~.t~.J~'.iif1~ii~\~~!!;~~'.~~~W~i~:[~i~}~ APPENDIX B ~~~ .. =:_-::_~~,;·;_~---~-~:·~,:~_-.~.:~::_~_-_·:~:--;~--:-"'~~:::--~-:~,~-=;,-.~:-•.:~·=:,:_::_·_:_-.::· __ :=~:,·_,~_::·.~--~~-,_::-:::::.;:_::·: ___ '.~;_:·:: __ :··,·~.·:~--:_:·::.~.·~~'._-.·._·.·~··~'.-~:··:::-~··_:·~.-_:_:,:_:=:r~·:·_.:~·,·,::,·,·:;_,·_::·.~,'::~.·.:_ .. ·_._'._,_'.:~:~'.·_:_· __ :·::·:.~:_:::_:_·==.·:~·--.~ .. ~:· . . ,:.·_.:··:~---::,:_:_;.~-::··:.::,:~:_:_:-:~_=.-_·_:--.~-~:..:'.:::,_::::;:_ .. =·.: __ :=:_·.-,·-~-~:·--=~-~;~;;.-::_~_-:_~---:_:·:::~·::·!:·:~-._-:~:~~:--~::··:.!:.:_::·~_-_·-... ~_:··:·=~_:,-._~-.:·:_·.:.,_·-~--=?._ .. ·.·:~-'-_,i:: 
:1~ri.N0:t.mrtfitif~t~1~;1~\~1~\W1£B~: ;~5.:;.:. :-~~-· --•_ -::--'~~ /~~--- ~~- ~ 

Common Error Messages 

Apple Error Messages: 

1 . SYNTAX ERROR: This common error message 
is caused by misspelled words, incorrect 
punctuation, extra characters, and so on. It 
also occurs when a BASIC word is not used. 

2. OUT OF MEMORY ERROR: This occurs when 
all of the available RAM memory is used up. 
The program entered may be too long. 

3. TYPE MISMATCH ERROR: This error message 
will occur when you try to input a number 
into a string variable, or a word or letter into a 
numeric variable . 

4. UNDEF'D STATEMENT ERROR: In your pro­
gram, the Apple was told to go to a line 
number that does not exist. 

5. CAN'T CONTINUE ERROR: You have tried to 
continue the program (using CONT) when no 
program existed, after an error happened. or 
after a change has been made in the 
program. 

6. DIVISION BY ZERO ERROR: The Apple cannot 
divide a number or expression by zero . 

7. FORMULA TOO COMPLEX ERROR: A pro­
gram line may have more than two IF- THEN 
statements. 

8. ILLEGAL QUANTITY ERROR: A number value 
is too big or too small. 

9. NEXT WITHOUT FOR ERROR: The program­
mer forgot to put a FOR statement that 
matches the NEXT statement in the loop. 

10. OUT OF DATA ERROR: No more data is avail­
able for the READ statement. 

11 . OVERFLOW ERROR: The number entered or 
calculated is too large or small. 

12. STRING TOO LONG ERROR: The user tried to 
add strings that together had more than 255 
characters. 

210 



DOS Error Messages: 

1 . DISK FULL: The disk is full and no more pro­
grams or information can be stored on it. 

2. FILE LOCKED: You have tried to save, delete, 
or rename a locked program. 

3. FILE NOT FOUND: You tried to load or run a 
program that does not exist on the disk. Often 
you have merely misspelled the name of the 
program. 

4. I/OERROR(INPUT/OUTPUTERROR): Youhave 
tried to save a program to the disk or load or 
run a program from the disk and it is not 
working properly. This is often caused by the 
disk drive door being left open, the disk not 
being initialized, or the disk being defective. 

5. LANGUAGENOTAVAILA.BLE: You have tried 
to load or run a program that was written in a 
language that the Apple does not have in 
memory. For example, to run a program writ­
ten in Integer BASIC. the system master disk 
must first be booted. 

6. SYNTAX ERROR: A command to the disk 
drive was misspelled or incorrectly written. 

7. WRITE PROTECTED: You have tried to save or 
delete a program on a disk that is write pro­
tected. Disks are write protected so you will 
not accidentally write over valuable pro­
grams. Remove the tab that covers the open­
ing on the side of the disk. 

211 



J¥;i~ii;.;!~9~Jl.It.if.rt~~:;~t~~~~~ APPENDIX C ,:~:_:,-._::·_.:···.··::::._:·· .. ·:·~: __ .=·_:·_::=·.:~,_::_·:::~.~,:-:;::.=:,:_·.·.~--:·~'..-.i.·::.~--·.~ .. '.·:·'_:_ .. ·_:··:_,·_ .. :.~_~_;:_:_:: ___ :_;··.-: ··:; .·:._ .. ::_:~'.:::·:·:·:·=~:: ___ ::_::_:~.~_-.. '.~.: __ .'::,_:;_:::-·:t ... :.·::;:;.:_~;::'.~;_::· .. :·.':·;.::··=·····.~:_=:_.~_.:· .. ·::.:~·:~_.::_;:_:_.::·:·,:_:,·: .. '._.~:·::·_,:··_._.:: __ :···.:_,·_:~-:=_:_·:;··:;:·.:_,:_:_:·.·.·_'._;:.::·=·::·:,;_,'_,~.,_~··:·:: __ ;:_;::·_·::_,,_·.-_::;_·_::·:···_:.~_;'::·:·:;·::._:::··:::.:.::-:::;.: .. :_~.-.·,·:'-:_·_; .. ;:.~~-:.'_~:.::·_:_::._:·_:·~:·:·_;_:: . . :_~-=-~.·::_-_:_.~_:_:_·:(_ .. ·;·:_ 

~1r~rZ#.i~f r:~~t~~{f ji1f.(ig~f~~ ·_ -~--· : - -~ · -_ ·· . .-: 

Command, 
Statement, 
or Function 

BRUN 

CATALOG 

COLOR= 

DATA 

DELETE 

END 

FLASH 

FOR-NEXT 

GOTO 

GR 

HLIN 

HOME 

HTAB 

BASIC Commands, Statements and Functions 
Used in This Book 

Puzpose 
Runs a program written in 
binary machine language from 
the disk. 

Shows a listing of all programs 
stored on a disk. 

Assigns the color for lo res 
graphics. 

Holds data for the variables in 
the READ statement. 

Erases a program from the disk. 

Makes a program stop at the 
end. 

Makes the output flash on the 
screen. 

Creates a loop in a program. 

Tells the computer to go to a 
certain location in the program. 
One way to jump or create a 
loop. 

Puts the Apple in lo res graphics 
mode. Erases the graphics 
screen. 

A lo res graphic command that 
draws a horizontal line on the 
screen. 

Clears the screen and sends the 
cursor to the upper left comer of 
the screen. 

Moves the cursor to a certain 
column on the screen. 

212 

Example 

BRUN (program name) 

CATALOG 

COLOR=(number 
between 0 and 15) 

DATA 4, 72, "Y" 

DELETE (program name) 

END 

FLASH 

FORZ= 1 TO lONEXT Z 
NEXT Z 
GOTO (line number) 

GR 

HLIN (column,column) 
at(row) 

HOME 

HTAB (column) 



Command, 
Statement, 
or Function Purpose Example 

IF-THEN Conditional transfer . If IF Z= 10 THEN ? "HI " 
something, then do something IFZ= 11 THEN 500 
else. 

INIT Initializes a disk. INITHELLO 

INPUT Tells the computer to ask the INPUT A , BS 
user to type in input. 

INT Tells the Apple to print a whole ?INT(P) 
number (integer). ?INT(4.69) 

INVERSE Causes the output to be printed INVERSE 
in inverse. 

LET Assigns a value to a variable . LETP= 100 

LIST Tells the computer to list the LIST 
statements of the program in 
memory. 

LOAD Loads a program from the disk. LOAD (program name) 

LOCK Protects a program on a disk LOCK (program name) 
from being accidentally erased. 

NEW Erases the memory. NEW 

NEXT See FOR-NEXT 

NORMAL Changes flash or inverse screen NORMAL 
modes back to normal. 

PLOT Displays a point on the lo res PLOT ( column,row) 
screen. 

PRINT Tells the computer to print PRINT AS OR? " HI" 
output . 

READ-DATA Tells the computer to use data READ ZS. X 
from the DATA statement for the 
value of certain variables. 

REM Allows remarks or REM ADDING NUMBERS 
documentation to be written 
into the program without 
affecting how the program runs. 

213 



Command, 
Statement, 
or Function Purpose Example 

RENAME Changes the name of a RENAME (old name, 
program that is already stored new name) 
on a disk. 

RND Tells the computer to pick a LETR= 1+RND(l)* 10 
random number. 

RUN Executes the program in RUN 
memory. 

SAVE Stores the program in memory SA VE (program name) 
on the disk . 

SPC Moves the cursor over a certain ? SPC(5): " HELLO" 
number of spaces before 
printing. 

SPEED Changes the speed with which SPEED=(number 
output is printed. between 0 and 255) 

TAB Moves the cursor to a certain ? TAB(9): "HELLO" 
column on the screen before 
printing. 

TEXT Returns the screen mode to TEXT 
direct mode from graphics 
mode. 

VERIFY Checks a program to make sure VERIFY (program name) 
it has been correctly copied and 
saved from the program in 
memory. 

VLIN A lo res graphic command that VLIN (row ,row) at 
draws a vertical line on the (column) 
screen. 

VTAB Moves the cursor to a certain VTAB(row) 
row on the screen. 

214 



Reserved Words in Applesoft BASIC 

You cannot use any of these words or abbreviations as variables. 

A F L R T 
AND FLASH LEFI'S READ TAB( 
ASC FN LEN RECALL TAN 
AT FOR LET REM TEXT 
ATN FRE LIST RESTORE THEN 

c G 
LOAD RESUME TO 

CALL GET 
LOG RETURN TRACE 

CHRS GO SUB 
LOMEM: RIGHTS u 

RND 
CLEAR GOTO M 

ROT= 
USR 

COLOR= GR MIDS 
RUN v 

CONT 
H N VAL cos s 
HCOLOR = NEW VLIN 

D HGR NEXT 
SAVE VTAB 

DATA HGR2 NORMAL 
SCALE= 

DEF HIMEM: NOT 
SCRN( w 

DEL HLIN NOTRACE 
SGN WAIT 

DIM HOME 
SHLOAD x 

0 SIN 
DRAW HP LOT 

ON SPC( 
XPLOT 

HTAB XDRAW E ONERR SPEED= 
END I OR SQR 
EXP IF p STEP 

IN# 
PDL 

STOP 
INPUT 

PEEK 
STORE 

INT 
PLOT STRS 

INVERSE POKE 
POP 
POS 
PRINT 
PR# 

215 



Lo Res Graphics Colors 

O Black 
1 Magenta 
2 Darkblue 
3 Purple 
4 Darkgreen 
5 Gray 1 
6 Medium blue 
7 Lightblue 
8 Brown 
9 Orange 

10 Gray 2 
11 Pink 
12 Light green 
13 Yellow 
14 Aquamarine 
15 White 

·216 



GLOSSARY 

A 
Access: Getting information from a certain place. 
Address: A label that tells where information is stored in the computer's memory. 
Algorithm: A step-by-step method used to solve a problem. 
Alphanumeric or string variable: A variable that stands for letters, numbers, or 

special characters. It is labeled like a numeric variable but must be followed 
by a dollar sign($). 

ALU (Arithmetic and Logic Unit): The part of the CPU (computer's "brain") 
where arithmetic and logical decisions are made. 

Animation: Programming the computer to make graphics and figures move 
across the screen. 

Apple II: A microcomputer made by Apple Computer, Inc. 
Applesoft BASIC: A version of the BASIC computer language. It is the language 

used most widely with the Apple II . 

B 
BASIC: (Beginner's All-Purpose Symbolic Instruction Code): A fairly simple, 

popular computer language used mainly with microcomputers. 
Binary machine language: A computer language made up of numbers and 

symbols. It is easy for computers, but difficult for people, to understand. 
Booting: Putting DOS (Disk Operating System) into the computer's RAM (memory) 

is called booting the disk. 
Brain: The central processing unit (CPU) and memory bank, which make up the 

internal circuitry of the computer. 
BREAK message: The message that is displayed on the screen after the run of a 

program has been stopped. The message tells you at which program line the 
run was stopped or ''broken. '' 

Bugs: Mistakes found in a program that were made when the program was 
written. 

Byte: The space it takes to store one character of information in the computer's 
memory. 

c 
Calculator: A mechanical or electronic device that carries out logical and 

arithmetic calculations. It is not as powerful, nor does it have as many ca­
pabilities, as a computer. 

2 17 



CAPS LOCK: A key found on the Apple He keyboard. When this key is depressed 
capital letters are printed. When this key is in its up position lower case letters 
are printed. 

Cassette tape recorder: A device that can be attached to a computer to read 
and store programs to and from cassette tapes. Disk drives are often used in 
place of cassette recorders because they are faster and more reliable. 

CATALOG: A disk command that causes the Apple to list all of the programs 
stored on the disk. 

Cathode ray tube (CRT): A tube found in a television screen or monitor that 
allows the viewer to see images on the screen. Some mini- and microcom­
puters are called CRTs because of their screen. 

Character: A letter, number, special symbol, or even a blank space. 
Chip: A integrated circuit on a wafer slice that does certain jobs in the CPU. 

Different chips do different things, such as storing information in memory, 
sending messages, and doing arithmetic. 

Closed apple: (also called solid apple) This key on the Apple He keyboard is 
used with the CONTROL and RESET keys to activate the system's built-in self­
test. 

Coding: Writing the BASIC program from a flow chart. 
COLOR= : The BASIC command that tells the computer which color to use when 

in lo res graphics mode. 
Complement: The opposite of a question or sign. For example, the opposite of > 

is<. 
Computer-Aided Instruction (CAI}: Using computers for teaching purposes. 
Computer error: An error or problem in the computer system or hardware. 
Computer language: Sets of words and symbols used to communicate with a 

computer. 
Contents: The data stored at a memory address. 
Control: The part of the CPU that makes sure all of the program statements are 

done in the right order. 
CONTROL: This Apple He key functions in the same manner as the CTRL key on 

the Apple H. 
Conversion equation: A program equation that converts one type of informa­

tion to another. 
Convert: Change one type of measurement or information into another type so 

a comparison can be made. 
Counter: 1. A variable whose value increases consecutively in order to count 

how many times a certain instruction is done. A counter is often found inside a 
loop and controls how many times a loop is done. 2. A program technique 
that is used to keep track of the number of times a loop is done. 

Counter-controlled loop: A programming loop that is done a certain number of 
times. 

218 



CPU (Central Processing Unit: The circuitry that makes up the "brain" of the 
computer. 

CTRL: The CONTROL key. Holding this key down while pressing another key will 
cause a certain function to occur. 

CUrsor: The blinking square on the computer screen. It tells you that the com­
puter is waiting for you to give it information or instructions. It also shows you 
where the next character will be printed on the screen. 

CUrsor control keys: The keys that allow the cursor to be moved around the 
screen without changing the writing on the screen or information that is in the 
memory. 

D 
Data: Information. 
Data table: A table that helps the programmer identify the different variables 

that will be used in a program. This is important because it helps the program­
mer remember what the variables stand for and what they do in the program. 

Debugging: The process of finding and correcting program bugs (errors). 
Decision box: The diamond-shaped box in a flow chart that represents a deci­

sion to be made. 
DELETE: The disk drive command that erases a program from the disk, and a key 

found on the Apple Ue keyboard which deletes mistakes if allowed by the 
program which is currently running. 

Direct mode: The mode the Apple is in when it is first turned on. A command is 
immediately carried out by the computer after it is typed and I Rfll)Rlj I is pressed. 
This mode is also called immediate mode or typing mode. 

Disk: A flat, floppy object made of magnetic material on which programs and 
information are stored. The disk itself is covered by a flat plastic cover, which 
protects it. 

Disk drive: A device used to store computer information and programs on 
floppy disks. It is also used to send information and programs from a disk to the 
computer memory. 

Disk Operating System (DOS): Computer instructions that control the operation 
of the disk drive. 

Double-alternative decision step: A situation in a flow chart in which there are 
two detours from a decision box. 

Dummy data: Data that is read as a signal to the computer that the pointer is at 
the end of the data list . 

E 
E (Exponential) notation (also called scientific notation): A short way to repre­

sent very large or very small numbers. 
Edit keys: The left and right arrow keys, which move the cursor to the left or right 

across the screen. 

219 



Edit mode: A screen mode that allows the user to move the cursor around the 
screen with the cursor control keys. Pressing ESC puts the Apple into edit mode. 

END: The last statement in a program. 
Error messages: The Apple's way of telling you that it did not understand the 

input . 
ESC: The ESCAPE key. Pressing this key puts the Apple into the screen editing 

mode whereby the cursor can be moved around the screen without affecting 
the screen output or memory. There is also a way to clear the screen and send 
the cursor ''home'' using the ESC key. 

F 
Files: Lists of in.formation that the computer has stored in its memory or on a disk. 

Sometimes programs are called files. 
FLASH: The BASIC command that causes the screen output to flash . 
Flow chart: A diagram that shows all of the steps of an algorithm in the correct 

order . 
Flow diagramming: The process of illustrating parts of programs in a clear, step­

by-step manner. 
Format: A plan for the arrangement of something. Formatting screen output 

means writing programs so the screen output is arranged a certain way. 
FOR-NEXT: Two BASIC programming statements that work together to allow 

counter-controlled loops to be made. 
FOR-NEXT time loop: A FOR-NEXT loop with no body that is used to make the 

computer pause in the printing of output on the screen. 
Function: An operation that the computer does automatically, like a built-in 

small program. 
Function keys: Keys that control the mechanical operation of the keyboard 

such as 8 , ~ , 0 , ~ , I RfSET I , and I RETURN I . 
G 
GOTO: The BASIC statement that tells the computer to go to a certain location in 

the program. It is used to create a program jump or loop. It can be written as 
GOTO or GO TO. 

GR: The BASIC command that puts the Apple into lo res graphics mode. 
Graphic: A picture or design made by a computer. 
Graphics mode: The screen mode that allows you to plot blocks and lines of 

color on the screen. Forty columns and rows of the screen are available for 
making graphics. 

Graphics tablet: A device (peripheral) that can be attached to a computer to 
allow you to draw freehand graphics. 

220 



H 
Hard copy: Output printed on paper by a printer. 
Head: Part of the disk drive that reads and gets information from the disk. 
Heading: Program output that labels or explains the information that follows it . 
HLIN: A BASIC command for lo res graphics that draws a horizontal line on the 

screen. 
Home: The upper left comer of the screen is called the cursor's home. 
HOME: The BASIC command that clears the screen and sends the cursor to the 

"home" position. This command may be used in either direct mode or pro­
gramming mode. 

Horizontal: A horizontal line goes across the screen from left to right. 
HTAB: The BASIC command that moves the cursor to a certain column on the 

screen. 

I 

IF-THEN: A BASIC program statement used to make comparisons and decisions. 
illegal Quantity Error: An error that indicates that a number too big or too small 

was used in a command or program statement . 
Initialize: Setting up a new blank disk so programs can be saved on it. 
IJO Pathways (Input/Output Pathways): Channels with which the computer 

transfers information and instructions. 
Input: Any iniormation that is put into the computer. 
INPUT: A BASIC program statement that allows data to be typed into the pro­

gram while the program is running . 
Input variables: Variables that the programmer already knows the value of 

before the program is run on the computer. 
INT: The program function used to create whole numbers (integers) in a 

program. 
Integers: Whole numbers (no fractions or decimals). 
Integer BASIC: The first type of BASIC that was written for the Apple microcom­

puter. Most programs nowdays are written in Applesoft BASIC. 
Interactive program: A program that allows you to interact with the computer 

by typing data into the program while the program is running. In this type of 
program, the computer usually asks questions, and you must type in the 
answers. 

Inverse: Reversed in order or nature. 
INVERSE: The BASIC command that causes screen output to be printed in inverse 

(black characters on a white background instead of white characters on a 
black background). 

221 



K 
K: Kilobyte. 
Keyboard: The part of the computer used to type in information (input) to the 

computer memory. 
Keyboard memory: Memory that stores characters typed on the keyboard. The 

characters are transferred to RAM when I RfTURN I is pressed. 
Kilobyte: One thousand bytes. The quantity by which computer memory is 

measured. 

L 
LET: The program statement that assigns a value to a variable. 
Letter keys: The keys that cause a letter of the alphabet to be typed on the 

screen. 
Line number: Any number between 1 and 63999 that comes before a program 

statement. 
LIST: The BASIC command that causes the computer to list all of the statements of 

the program that is currently in memory. 
Lo res graphics (low resolution graphics): Using a low resolution screen mode 

to plot colored blocks and lines on a 40-row by 40-column screen. 
LOAD: The BASIC command used to bring programs from a disk into the com­

puter's RAM (memory). 
LOCK: The disk drive command that protects a program on a disk from being 

accidentally erased. 
Locked: Locking a program on a disk keeps it from being accidentally erased. 
Loop: A program situation whereby a sequence of steps are repeated. A loop is 

represented in a flow chart by an arrow that shows a jump to another location. 
Loop body: The program statements between the FOR and NEXT statements in a 

loop . 

M 
Memory: A part of the CPU that is used for storing data-or information-and 

program instructions. 
Menu: A program on a disk that organizes the catalog listing of programs by the 

languages in which they were written. 
Microcomputer: A small, portable computer that is inexpensive and easy to 

use. 
Modem: A device (peripheral) that can be attached to a computer to allow 

communication between computers in different locations through the tele­
phone lines. 

222 



N 
NEW: The BASIC command that erases or clears the computer's memory. 
NORMAL: The BASIC command that changes a flashing or inverse screen mode 

back to the normal direct mode. 
Number keys: The keys that cause the numbers (0-9) to be printed on the screen. 

0 
Open apple: A key found on the Apple )[e keyboard which can be used as 

paddle control #0 or as a system reset with the CONTROL and RESET keys. 
Out of Data Error: An error message caused by a READ-DATA statement with 

which the computer is telling you that there is no more data for the READ 
statement to read. 

Output: Information that the computer puts out. 
Output variables: Variables that will hold the answers that the computer calcu­

lates in the program. The values of these variables are not known until the 
program has been run. 

p 

Paddles and joysticks: Game control devices that can be attached to the 
computer. 

Peripheral: A piece of equipment that can be attached to a computer to do a 
certain job. 

PLOT: The BASIC command that displays a point on the lo res graphics screen. 
Pointer: An electronic device that marks the location of the data being read 

from a data list. 
Powers (also called exponents): Using exponentiation in mathematics. 
PRINT: The BASIC statement that tells the computer to print something on the 

screen. The computer will print information inside quotation marks exactly as 
they appear. A question mark(?) may be used as a shortcut instead of typing 
the word PRINT. 

Printer: A device that can be attached to a computer to print output on paper. 
Print zones: The three sections that mal.:e up the Apple's screen area. 
Processing box: The rectangular-shaped box in a flow chart that represents 

something to be done. 
Program: The set of instructions written in a computer language that tells the 

computer what to do. 
Programmer: A person who writes computer programs. 
Program documentation: A good programming technique in which REM (RE­

MARK) statements are used to note and clarify what is happening in a 
program. 

Program errors: An error in a computer program. 

223 



Progrmnming mode: A state of computer operation in which statements typed 
on the computer 's screen are placed in the RAM (memory) when I RETURN I 
is pressed. These statements must have line numbers and are stored in mem­
ory as part of a program until the RUN command is typed. 

Prompt: The symbol that appears at the beginning of new screen lines after I RETURN I 
is pressed. It tells which computer language the computer is operating in. 

R 

RAM (Random Access Memory): A type of computer memory. When the com­
puter is first turned on, RAM is empty and the user may store programs and 
information there . When the computer is turned off, all information and pro­
grams in RAM are lost because the RAM is erased. 

Random numl:>ers: Lists of numbers that are in no particular order and have no 
particular purpose. 

READ-DATA: Two BASIC programming statements that w ork together to cause 
the computer to place data in a program as it is typed on the keyboard. This 
feature allows you to use the same program over and over again with different 
data. 

REM: The REMARK statement, which allows comments to be placed in the 
program for program documentation. These statements are ignored by the 
computer and are used only to note what is happening in the program. 

RENAME: The disk drive command that changes the name of a program al­
ready stored on a disk. 

REPT: The REPEAT key. Holding this key down while pressing another key will 
cause repeated keystrokes to occur. 

Reserved words: Some BASIC commands and statements are reserved. This 
means that you cannot use these words or even the first two letters as variables 
in a program. See Appendix D for a list of the reserved words. 

RESET: This key, when pressed, stops any computer activity and immediately 
returns control to you in direct mode. Sometimes CTRL and RESET must be 
pressed together to make this happen. 

RETURN: The key that makes the cursor move to the next screen line and enters 
any information from the previous line into memory (RAM). 

RND: The program function used to create random numbers in a program. 
RUN: The BASIC command that tells the computer to " do" the program. 
Run: What happens w hen the computer " does" a program. 

224 



s 
SA VE: The disk command that copies the program in RAM and transfers it to the 

disk to be stored. 
Screen: The display portion of a television or monitor in which intormation from 

the computer (output) and instructions typed on the keyboard (input) are 
shown. 

SHIFT: The key that when pressed while holding down another key will print the 
symbol at the top of the key that is being held down. 

Simulation: A computer program that imitates a real-life situation. 
Single-alternative decision step: A situation in a flow chart in which there is 

one detour from a decision box. 
Sorting algorithm: An algorithm that can sort and alphabetize a list of more than 

two words. 
SPC (space-over function): The BASIC function that moves the cursor a certain 

number of spaces before printing. 
Special symbol keys: Symbol keys used for doing math and punctuating sen­

tences. For example +, ! , = , #,etc. 
SPEED= : The BASIC command that changes the speed at which output is printed 

on the screen. 
Square root: Using the square root function in mathematical equations. 
STEP: A program statement that allows counter-controlled loops to be counted in 

a certain pattern (for example, by fives, by tens, and even in reverse order). 
Style: Using a variety of techniques to develop easy-to-read programs. 
Syntax error: A type of error message that tells you there is a word spelled wrong, 

a word that the computer does not recognize (not a BASIC word), or incorrect 
punctuation. 

System master: A disk that comes with the Apple and contains the DOS program 
plus many other helpful programs. 

System reset: (see warm boot) 

T 
TAB: A BASIC program function used to control screen output and an Apple )[e 

key that, when pressed, moves the cursor right eight spaces if the program 
being run allows this. 

TEXT: The BASIC command that returns the screen mode from lo res graphics 
mode to direct mode. 

Text window: The eight rows (four screen lines) set aside at the bottom of the lo res 
graphics screen for text. When you type, the input will appear in the text 
window. 

225 



Trace: The act of working through a program in the same way that the computer 
would to see exactly how the program works . 

Truncate: To remove any numbers to the right of the decimal point, thus chang­
ing the number from a decimal to an integer. 

u 
User error: An error you make when you make a mistake or forget to communi-

cate with the computer in BASIC. 
User-friendly: A program that is easy and enjoyable to use. 

v 
Variable: A name given to a value that is also the memory address of where the 

value is stored in memory. A variable's value can be changed (varied). 
Vertical: A vertical line goes up and down the screen from top to bottom. 
VLIN: A BASIC command for lo res graphics that draws a vertical line on the 

screen. 
VTAB: The BASIC command that moves the cursor to a certain row on the screen. 

w 
Warm boot: Restarting the Apple ][e computer system while the power is still on. 

This is accomplished by pressing open apple, CONTROL, and RESET together. 

226 



INDEX 

Access .. 
Addition . 
Address . 
Algorithm 
Alphabetizing . 
Alphanumeric variable (see string variable) 
ALU (Arithmetic Logic Unit) 
Animation . . . . 
Apple II . ... . 
Applesott BASIC 
Arithmetic . . . . 
Arithmetic Logic Unit (see ALU) 

BASIC . . .. . 
Blank space . 
Body, loop .. 
Booting . . . . 
Brain . ... . 
Break message . 
Bugs 
Byte .. .. . .. . 

CAI (Computer-Aided Instruction) 
Calculator . . . . . . . . 
CAPS LOCK ... ... . 
Cassette tape recorder 
CATALOG .. .. . 
Cathode ray tube 
Character .. . 
Chip ..... . 
Closed apple . 
Colon .. . .. . 
COLOR= .. . 
Color graphics 
Commas . ... 
Comparison . . 
Comparison signs 
Complement . . . 
Computer-Aided Instruction (see CAI) 
Computer errors 
Contents .. 
Control . .. . 
CONTROL .. 
Conversions . 
Conversion equation 
Convert 
Counter 

. . . . ... 31 

. 42. 43. 45, 46 
. . 108 
... 90 
165-166 

... 28 
193-197 

. .. 4 

.. 13 
42-46 

. 13. 53, 212-214 
113, 195- 199 

.. . 99 

. .. 40 

. . 4, 28 
. 103 
68-72 

. . 28 

. 198, 201 
43 
.6 
32 
37 
31 
28 

. . 4, 28 

. . . 17 
66, 11 2, 142 

. .. . . . 82 

.. . . 80-83 
46, 60-62, 112 

162 
162 
163 

227 

. 71 
109 

28. 29 
. . 16 

183-184 
. . 184 

. 132. 183 

. 137-140 



Counter-controlled loops . . . . 
CPU (Central Processing Unit) . 
Creative programming . . . . 
CRT (see cathode ray tube) 
Cursor ....... . 
Cursor control keys 

Data .. . .. .. . . 
DATA (see READ-DATA) 
Debugging . 
Decimals ... 
Decision box 
DELETE . ... 
Direct mode . 
Disk ... . . . 
Disk drive . . 
Diskette (see disk) 
Disk operating system (see DOS) 
Division .... .. .... . ... . 
Double-alternative decision step 
DOS (disk operating system) . 
Dummy data 

E notation . . 
Edit keys . . . 
Edit mode .. 
END ..... . 
Equations .. 
Erasing a program 
Error message . . . 
Errors . . ...... . 
Exponential notation (see E notation) 

Files . . ... . 
FLASH ... . 
Flow chart .. 
Flow diagramming 
Format . . . .... . 
FOR-NEXT . .... . 
FOR-NEXT time loop. 
Fractions ... . 
Function ... . 
Function keys . 

Game programming 
GOTO .. 
GR . . .. .... .. . 
Graphics .. . .... . 
Graphics programming 
Graphics tablet . . . . . . 

228 

128 
. 28 
207 

. 13 
21-24 

29, 111 

. 68-72 

. . 124 
95, 157 
. 25, 74 

. . . 24, 44, 48, 56 

. . ... 31 , 36-41 
. 4, 32, 36-41, 73-76 

. 42, 43, 45, 46 
.. 98 
31, 40 

172 

125 
. 5, 10, 18-21 
. ..... 24 
.... 55, 56 
. 51, 115-117 
...... 74 

. 18, 88, 212-213 

. . .... 68-72 

. 108 

. . 48 
90-98 
90-98 
60-64 

128-133 
. 141, 145 
. . . 124 
. . . 188 

5, 8, 14-17 

198, 203-206 
. 102, 103, 145 

. . 80, 88 
32, 51-59 

80-83 
. . .. 32 



Hard copy .... . 
Head. disk . . .. . 
Heading .. . . . . 
HLIN ..... . . . 
HOME .... . 
HTAB ..... . 

IF-THEN .... 
Immediate mode 
Initializing disks . 
Input ... . ... . 
INPUT ......... . 
INT .......... . 
Integer (see INT) 
Interactive programming 
INVERSE ......... . 

Joystick ..... . 

K (see kilobyte) 
Keyboard .... 
Keyboard memory . 
Kilobyte ..... 

LET ....... . 
Letter keys . . . . 
Line number 
LIST .. 
LOAD . . .. . 
LOCK ... . . 
Lo res graphics . 
Loop ... 

Memory. 
Menu . .. . . . . 
Microcomputer . . . . . . . 
Modem . . . .... . . . 
Monitor .. . .... . . . 
Movement. on-screen . . 
Multiplication . 

NEW . .... . 
NORMAL . . . . 
Number keys . . 
Numeric variables . 

Open apple ..... 
Order. arithmetic . . 
Output ....... . 

Paddles .. .. 
Parentheses . . 
Peripherals 
Pointer ..... 

. 32 

. 31 
184 

. . . .. . 85 

. 56-57. 141 
188-192 

156-164 
. .. 24 
73. 211 
29, 108 
150-153 
199-201 

150 
49 

33 

. . 4-11 
28 

. .. 28 

108- 1 09. 118- 11 9 
. .... 6 
.... 53 
. . 68-7 1 
30. 36-41 
. . . . 74 

80-83. 216 
. . . . 99-103 

4. 19-2 L 28. 108-110 
37 

. ... . . 4 

. ... . 33 

. . 4, 30-31 

. . 193-197 
. 42. 43. 45. 46 

. .... 30, 55 

. ... .. . 49 
... . .. .. 7. 11 

. 109. 121. 137- 140. 150. 172 

229 

. . . . 17 
45-46 
29.32 

17.33 
45-46 
32-33 

170 



Powers . 
PRINT .. 
Printer . 
Print zones . 
Problem solving 
Program . . . .. 
Program documentation . 
Program errors .... 
Programmer . . . . . 
Programming mode . 
Program name . 
Prompt . .... 

Question mark 
Quotation marks . 

RAM .... . . . . 
Random numbers (see RND) 
READ-DATA .... . . 
REM . . . .. . .. . . 
Remarks (see REM) 
RENAME . . .. . 
Reserved words 
Return key . 
RND 
RUN . 

SAVE 
Scientific notation (see E notation) 
Screen grid 
Semi-colon 
SHIFT . . .. 
Simulation . 
Single-alternative decision step . 
Sorting algorithm . . 
SPC . .... . . . .. . 
Special symbol keys . 
SPEED .. .. 
Square roots . . . . . 
STEP . .. . .. . .. . 
String concatenation 
String variables . 
Style .. . .. 
Subtraction . . 
Syntax error . . 
System master 
System reset . 

TAB .... . . 
TEXT . .. . . 
Text window 
Trace . . . 
Truncate .. . 

230 

. ... 42, 43, 45, 46 
43-44, 51, 54, 60-64 

.. . 32 
. . 60-64 
. 177-182 
30, 53-56 

78 
71 
30 
55 
75 
12 

54 
. 48-49, 52, 55, 115-116 

28, 36, 108 

167-175 
78-79 

. . 75 
. 140, 217 
. . 14, 54 
. 198-201 

. 30, 38-39, 41, 55 

. . . . ... 73 

60, 80-81 , 188 
63, 64, 112, 113, 153 

. . 9, 14 
198-203 
. . . 96 
. . 166 

. 190, 194 
. 9, 11 

. . 142 

. 42, 43 
134- 136 
. . 195 

. 121-122, 151. 153, 193-197 
. . . . . .. 78 
. 42, 43, 45, 46 

18 
40 
17 

16, 188-189, 192 
. 82 
. 80 
129 
199 



Turning on the Apple . 
TV screen ... . ... . 

User errors . . 
User friendly 

Variables .. 
VLIN 
VTAB .... 

Warm boot 

Zero ..... 

12 
. 4 

71 
203 

. 108-117, 137, 193-194 
. .. ' 85 
. 188-192 

17 

. 7 

231 



MORE! 
An Apple in the Classroom 

Activity Workbook 

Complete with 91 tear-out worksheets to go with each chapte~ of the student text, AN APPLE 

FOR KIDS, this workbook provides practice and reinforcement for skills learned. Most of the activities 

can be done as seat work without the computer, and students will only need the computer to check 
their work. 

ISBN 0-88056-120-3 91 worksheets 

$5.95 

An Apple in the Classroom 
Teacher's Guide 

175 pages/170 illustrations 

The teacher's guide features 91 worksheets, complete with answers. Additional information and 

hints for teachers are provided. Information on how to convert the material to other brands of 

microcomputers and how to use the curriculum is also discussed. 

ISBN 0-88056-118-1 $14.95 90 pages 

BILL TO: 

NOTE: For every 25 

copies of AN APPLE FOR KIDS 

student texts ordered, receive 

one teacher's guide free! 

SHIP TO: (if other than bill to) 

Name:~------------­

School: 

Name: _____________ _ 

School: 
Address: ____________ ~ Address: _ ___________ ~ 

City, State Zip: 

Mail order to: 

City, State, Zip: _________ _ 

Phone number _____ Date ___ P.O. No. ----

dilithium Press 

___ An Apple for Kids. Student Text $9.95 
ISBN 0-88056-119-X 

___ An Apple in the Classroom 
Activity Workbook $5.95 

___ An Apple in the Classroom 
Teacher's Guide $14.95 

Check here if your order is over 25 
copies of An Apple for Kids to receive 
a free copy of the teacher's guide. 

P.O. Box 606 
Beaverton, OR 97075 

To expedite your order, phone 800-547-1842 
or (inside Oregon) 646-2713 



dilithium Software 
P.O. Box 606 
Beaverton, OR 97075 

PLACE 
STAMP 

HERE 



An Apple For Kids is written by a teacher who 
wants to teach enthusiastic kids computer 
operation and programming in BASIC. Using 
an individualized, self-paced approach, this 
book encourages kids to be creative program­
mers as well as learn good programming 
techniques. 

Full of illustrations and activities to make the 
learning process fun, An Apple For Kids is writ­
ten for the 3rd to 8th grade student. It focuses on 
problem solving, higher order thinking skills 
and creativity. Approximately 80 activity 
worksheets are included to make this a fresh, 
instructive and fun approach to learning 
programming. 

Teachers manuals and student workbooks are 
available to accompany An Apple For Kids. 


