USING THE
MACINTOSH
TooLBOX WITH C

SECOND EDITION

Fred A. Huxham David Burnard
Jim Takatsuka

2 . —— —
8% HOB =

Cohcise Introduction & Reference

Create Full Scale Applications

A

Macintosh Quick Toolbox Reference

QuickDraw

GrafPort Routines

void InitGraf (Ptr globalPtr);
void OpenPort (GrafPtr port);
void InitPort (GrafPtr port);
void ClosePort (GrafPtr port);
void SetPort (GrafPtr port);
void GetPort (GrafPtr *port);
void GrafDevice (int device);
void SetPortBits (BitMap *bm);
void PortSize(int width, height);

void MovePortTo(int leftGlobal, topGlobal):;

void SetOrigin(int h,v);
void SetClip(RgnHandle rgn);
void GetClip(RgnHandle rgn);
void ClipRect (Rect *r);
void BackPat (Pattern *pat);

Cursor Handling

void InitCursor():

void SetCursor (Cursor *crsr);
void HideCursor();

void ShowCursor();

void ObscureCursor();

Pen and Line Drawing
void HidePen();
void ShowPen();
void GetPen (Point *pt);
void GetPenState (PenState *pnState);
void SetPenState (*PenState *pnState);
void PenSize(int width, height);
void PenMode (int mode) ;
void PenPat (Pattern *pat);
void PenNormal ()
void MoveTo(int h,v);
void Move (int h,v);
void LineTo(int h,v);
void Line(int h,v);

Text Drawing
void TextFont (int font);
void TextFace (int style);
void TextMode (int mode) ;
void TextSize(int size);

void SpaceExtra(long extra);

void DrawChar (char ch);

void DrawText (Ptr textBuf; int
firstByte, byteCount) ;

int CharWidth(char ch);

int StringWidth(Str255 *s);

int TextWidth(Ptr textbuf; int
firstByte, byteCount) ;

void GetFontInfo (FontInfo *info);

Color

void ForeColor (long color);
void BackColor (long color);
void ColorBit (int whichBit):;

Calculations with Rectangles
void SetRect (Rect *r; int
left, top, right, bottom) ;
void OffsetRect (Rect *r; int dv,dh);
void InsetRect (Rect *r; int dv,dh);
char SectRect (Rect *srcl, *src2, *destRect) ;
void UnionRect (Rect *gsrcl, *src2, *destRect) ;
char PtInRect (Point pt; Rect *r);
void Pt2Rect (Point ptl,pt2; Rect *dstRect):;
void PtToAngle (Rect *r; Point pt; int *angle);
char EqualRect (Rect *rectl, *rect2);
char EmptyRect (Rect *r);

Graphic Operations on Rectangles
void FrameRect (Rect *r);
void PaintRect (Rect *r);
void EraseRect (Rect *r);
void InvertRect (Rect *r);
void FillRect (Rect *r; Pattern *pat);

Graphic Operations on Ovals
void FrameOval (Rect *r);
void PaintOval/(Rect *r);
void EraseOval (Rect *r);
void InvertOval (Rect *r);
void FillOval (Rect *r; Pattern *pat);

Graphic Operations on Rounded-Corner
Rectangles

void FrameRoundRect (Rect *r; int
ovalWidth, ovalHeight);

void PaintRoundRect (Rect *r; int
ovalWidth, ovalHeight) ;

void EraseRoundRect (Rect *r; int
ovalWidth, ovalHeight);

void InvertRoundRect (Rect *r; int
ovalWidth, ovalHeight) ;

void FillRoundRect (Rect *r; int
ovalWidth, ovalHeight; Pattern *pat);

Graphic Operations on Arcs and Wedges

void FrameArc (Rect *r; int
startAngle, arcAngle) ;

void PaintArc(Rect *r; int
startAngle, arcAngle) ;

void EraseArc(Rect *r; int
startAngle, arcAngle) ;

void InvertArc(Rect *r; int
startAngle, arcAngle) ;

void FillArc(Rect *r; int
startAngle, arcAngle; Pattern *pat);

Calculations with Regions
RgnHandle NewRgn();
void OpenRgn();
void CloseRgn (RgnHandle dstRgn);
void DisposeRgn (RgnHandle rgn);
void CopyRgn (RgnHandle srcRgn,dstRgn);
void SetEmptyRgn(RgnHandle rgn);
void SetRectRgn(RgnHandle rgn; int

left, top, right,bottom) ;
void RectRgn (RgnHandle rgn; Rect *r);
void OffsetRgn(RgnHandle rgn; int dv,dh);
void InsetRgn(RgnHandle rgn; int dv,dh);
void SectRgn(RgnHandle

srcRgnA, srcRgnB, dstRgn) ;
void UnionRgn (RgnHandle

srcRgnA, srcRgnB, dstRgn) ;
void DiffRgn(RgnHandle

srcRgnA, srcRgnB, dstRgn) ;
void XorRgn(RgnHandle srcRgnA, srcRgnB,dstRgn);
char PtInRgn(Point pt; RgnHandle rgn);
char EqualRgn(RgnHandle rgnA, rgnB);
char EgaualRgn(RgnHandle rgnA, rgnB);
char EmptyRgn (RgnHandle rgn); .

Graphic Operations on Regions

void FrameRgn (RgnHandle rgn);
void PaintRgn(RgnHandle rgn);
void EraseRgn(RgnHandle rgn);
void InvertRgn(RgnHandle rgn);
void FillRgn(RgnHandle rgn; Pattern *pat);

Bit Transfer Operations ,
void ScrollRect (Rect *r; int dv,dh; RgnHandle
updateRgn) ;
void CopyBits (BitMap *srcBits, *dstBits; Rect
*srcRect, *dstRect; int mode; RgnHandle
maskRgn) ;

Pictures

PicHandle OpenPicture (Rect *picFrame);

void PicComment (int kind, dataSize; Handle
dataHandle) ;

void ClosePicture():;

void DrawPicture (PicHandle myPicture; Rect
*dstRect) ;

void KillPicture (PicHandle myPicture);

Calculations with Polygons
PolyHandle OpenPoly();
void ClosePoly():
void KillPoly (PolyHandle poly);
void OffsetPoly(PolyHandle poly; int dv,dh);

Graphic Operations on Polygons

void FramePoly (PolyHandle poly);
void PaintPoly (PolyHandle poly):
void ErasePoly (PolyHandle poly):
void InvertPoly (PolyHandle poly);
void FillPoly (PolyHandle poly; Pattern *pat);

Calculations with Points
void AddPt (Point srcPt, *dstPt);
void SubPt (Point srcPt, *dstPt);
void SetPt (Point *pt; int h,v);
char EqualPt (Point ptl,pt2);
void LocalToGlobal (Point *pt);
void GlobalToLocal (Point *pt);

Miscellaneous Routines

int Random();

char GetPixel(int h,v);

void StuffHex (Ptr thingPtr;Str255 *s);

void ScalePt (Point *pt; Rect
*srcRect, *dstRect) ;

void MapPt (Point *pt;Rect *srcRect, *dstRect);

void MapRect (Rect *r, *srcRect, *dstRect);

void MapRgn(RgnHandle rgn; Rect
*srcRect, *dstRect) ;

void MapPoly (PolyHandle poly; Rect
*srcRect, *dstRect) ;

"USING THE
'MACINTOSH
TOOLBOX with C

Second Edition

Fred A. Huxham
David Burnard
Jim Takatsuka

@.\;X® SAN FRANCISCO « PARIS - DUSSELDORF « SOEST

Acquisitions Editor: Dianne King

Supervising Editor: Joanne Cuthbertson

Copy Editor: Gina Jaber

Editor (First Edition): Geta Carlson

Technical Editor: Dan Tauber

‘Word Processors: Scott Campbell and Chris Mockel
Book Designer & Chapter Art: Suzanne Albertson
Technical Illustrations: Jeff Giese

Screen Graphics: Sonja Schenk

Typesetters: Charles Cowens and Suzanne Albertson
Proofreader: Vanessa Miller

Indexer: Paul Geisert

Cover Designer: Thomas Ingalls + Associates
Cover Photographer: Michael Lamotte

Macintosh is a trademark licensed to Apple Computer, Inc.

MC68000 is a trademark of Motorola, Inc.

Apple, Switcher, Resource Compiler, Resource Editor, QuickDraw, Finder, Inside Macintosh, and Lisa are
trademarks of Apple Computer, Inc.

Mac C is a trademark of Consulair Corporation.

MacDraw and MacPaint are trademarks of Apple Computer, Inc.

MacWrite is a trademark of Encore Systems and Apple Computer, Inc.

Think C is a trademark of Symantec Corp.

Word and Excel are trademarks of Microsoft Corp.

" Jazz is a trademark of Lotus Development Corp.

MacDraft is a trademark of Leonard G. Barton.

Fedit is a trademark of John Mitchell.

SetFile 2.0 and BaseTool Desk Accessories © 1985 Fred, Sam, and Dave Software.

SYBEX is a registered trademark of SYBEX, Inc.
SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX assumes no respon-
sibility for its use, nor for any infringements of patents or other rights of third parties which would result.

First Edition copyright 1986 SYBEX Inc.

Copyright©1989 SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA 94501. World rights reserved. No part
of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without prior agreement and written permission of
the publisher.

Library of Congress Card Number: 89-62280
- ISBN: 0-89588-572-7
* Manufactured in the United States of America

1098765

To our parents:

Fred and Marjorie Huxham
Carl and Dorsey Burnard
Walter and Gail Takatsuka

Acknowledgments

Our sincere thanks to Steve Rimmer for his time in preparing this
revision. Writing this book was quite an experience for the three of us and
there were a lot of people who helped us through. We’d like to thank Wil-
liam Adams, Reese Jones, Raines Cohen, Nicole Kowalski, Don Yost, and
Steve Costa for their encouragement and support throughout the course of
this project. We’d also like to thank everyone who showed up at the BMUG
Developers Group meetings at UC Berkeley and at our classes at Lawrence
Livermore National Laboratories for keeping us on our toes by proving that
even the simplest of examples can be laden with bugs.

World-famous desk accessory author Sam Roberts of Fred,
Sam, and Dave Software proved to be a lot of help (and great fun) in the
realization of this book. Our C guru, Peter Moore, made some valuable
contributions in proofreading a lot of the example routines and sample
source code. Steve Capps and Larry Kenyon provided technical assis-
tance on some of the more esoteric workings of the file system, for
which we are very grateful.

Finally, JT would like to extend a special “mahalo” to Rick
Iwamoto and Robert Antonio for doing a terrific job holding down the
fort while he was writing. FH also would like to thank Jennifer Iscol for
being his best friend throughout the ups and downs of the book. Without
all of these people, this book would never have made it out in any
reasonable period of time. Once again, we would like to thank them all
very much.

Fred, Dave, and Jim

Contents
at a Glance

O O ~N O O & W N =

-t wh h b
wWw NN = O

O W >

Introduction

The Macintosh Toolbox and the User Interface
Using the Event Manager

An Introduction to the Window Manager
Using the Menu Manager

Drawing with QuickDraw

Memory Management

Using Multiple Windows

Text Editing with the Toolbox

Resources

Controls

Alerts and Dialogs

The Macintosh File System

Finishing Touches

C Calling Conventions

Error Codes and Reserved Resource Types
ASCII Chart of the Macintosh System Font

Index

XVi

18
42
76

100

162

184

208

278

204

324

362

454

472

498

510

514

Table
of Contents

Introduction

How to Use This Book

. Conventions Used in This Book

The Macintosh Toolbox and C
Additional Background Information

The Macintosh Toolbox and the User Interface

Characteristics of a Good Macintosh Application
The Macintosh User Interface

User Interface Conventions

Summing Up

Using the Event Manager

Types of Events

Event Records

The Event Queue -

Priority of Events

Event Masks _

Using the Event Manager Routines

A Sample Main Event Loop Program

Xvi

L N W W

NP W

18

20
24
33
34
35
36

Xii

3 An Introduction to the Window Manager

Types of Windows

Components of a Window

Window Manager Data Types and Structures
Windows and GrafPorts

Using the Window Manager

A Sample Program: Using Events and Windows

4 Using the Menu Manager

Anatomy of Menus

Menu Manager Types and Structures
Creating Menus

Choosing from Menus

A Sample Program for Windows and Menus

5 Drawing with QuickDraw

QuickDraw Basics—The Coordinate Plane, Points,

and Rectangles

GrafPorts—Drawing Environments for QuickDraw

The GrafPort Data Structure and Routines
The QuickDraw Drawing Verbs

Drawing Rectangles

Drawing Ovals

Drawing Rounded-Comer Rectangles

Defining and Drawing Angles, Arcs, and Wedges

Defining and Drawing Polygons

Defining, Manipulating, and Drawing Regions
Defining and Drawing Pictures

Bit Transfer Operations

Cursors

42

44
46
48
49
50
70

76

77
78
80
90
93

100

103
112
126
134
135
136
137
138
140
143
148
150
151

A Sample Program for QuickDraw

Memory Management

The Macintosh Memory Map
Using the Memory Manager

Using Multiple Windows

Activate Events
Update Events
Programming Techniques

A Programming Example: Using Double-Clicks to

Resize Windows

Text Editing with the Toolbox

The Appearance of Text on the Screen

TextEdit Data Structures

Using TextEdit

Advanced Techniques

A Sample Program Using TextEdit

Resources

Organization of Resources

The Role of the Resource Manager
A Look at the System Resource File
Using Resources

Creating Resources

Resource Power

Xiii

155

162

164
171

184

186
188
194

200

208

210
213
217
236
251

278

279
282
284
286
288
293

Xiv

10

11

12

Controls

Buttons

Check Boxes

Radio Buttons

Scroll Bars

Highlighted, Active, and Inactive Controls
Part Codes

The Control Record Data Structure

Control Manager Routines

A Sample Program for the Control Manager

Alerts and Dialogs

Types of Dialogs and Alerts

The Contents of Dialog and Alert Boxes
DialogRecord Data Type

Dialog and Alert Resource Types

Using Alert and Dialog Routines

A Sample Program Using Alerts and Dialogs

The Macintosh File System

Volumes

Files

The Standard File Interface
The File Manager

Using t_he Low-Level File Manager Routines

Programming Examples
A Sample Program Illustrating the Macintosh File System

294

296
297
297
298
300
302
303
304
314

324

325
328
332
333
339
352

362

363
365
367
374
381
415
428

13

Finishing Touches

Creating Your Own Icon
Supporting Desk Accessories from Your Application
Menu Icons

C Calling Conventions

Error Codes and Reserved Resource Types

ASCII Chart of the Macintosh System Font

Index

454

455
462
470

472

498

510

514

Xv

Xvi

Introduction

Using the Macintosh Toolbox with C is the first book written
especially for C programmers on the Macintosh. While there have been
implementations of C for the Macintosh for several years now, it is only
recently that they have really caught up with the Pascal development
environments which were originally created for the Mac. The latest gen-
eration of C compilers, and in particular Think C, the package which
this book is based upon, are professional quality compilers which can
produce complex applications every bit as good as those written under
the Pascal Workshop system originally designed for Mac developers.

The difficulty in using C which is experienced by many pro-
grammers new to the Macintosh is that the Mac’s extensive Toolbox
was written expressly to be used with Pascal. There are many subtle dif-
ferences in the ways that C and Pascal work, and these complicate the
interface between a C language program and the Mac’s firmware. More
than this, though, the documentation for the Toolbox, the voluminous
Inside Macintosh books, explains the Toolbox in Pascal terms. One
must be quite familiar with Pascal in order to use Inside Macintosh to
program the Mac in C.

In addition, Inside Macintosh is huge, running to five volumes
as of this writing, and quite expensive. It’s more of a reference book
than a tutorial. It doesn’t lend itself to simply sitting down and cranking
out an application.

Programmers wishing to learn C on the Macintosh will prob-
ably be frustrated by a lack of sample source code, even though C has
been extant on the Mac for several years now. There is little of it around,
and what there is tends to be very specific and exotic. As with most
programs released into the public domain, the source code one finds is
rarely commented as well as it might be, making it less than ideal as a
learning tool. Furthermore, each of the various C compilers released for
the Mac have implemented the language a bit differently. Source code
written for, say, Aztec C will probably present you with some subtle
lexical twists if you try to use it with Think C.

Having faced all of these problems ourselves, Using the Macin-
tosh Toolbox with C was created to help you learn the essentials of

Xvii

Macintosh programming without bogging you down with too much in-
formation. Each chapter in this book explains the implementation of a
fundamental element of the Macintosh user interface, including all the
important data structures and how to use the Toolbox routines related to
that aspect of the interface. Numerous examples of the Toolbox routines
are provided throughout each of the chapters, as well as source code for
several applications.

This book will not replace Inside Macintosh. You will probably
eventually want to buy a copy of it. There are all sorts of subjects which
are simply not within the scope of this book, and you may want to know
about them one day. However, Using the Macintosh Toolbox with C will
tell you everything you need to know about writing basic, workable
Macintosh applications in much less time than it would have taken you
to puzzle through Inside Macintosh to learn the same things.

Contemporary Mac programmers may take heart in knowing
that Inside Macintosh is now available in relatively low cost paper
bound volumes. The original books came only in a prohibitively expen-
sive hard bound edition.

How to Use This Book

Using the Macintosh Toolbox with C is designed to be a Macin-
tosh programmer’s guide. Its chapters are meant to be read in sequence,
with each chapter building upon what was previously discussed. By the
time you reach the end, you will have learned all the fundamentals of
programming the Macintosh user interface. The sample programs in-
cluded in this book also provide a good reference to use when you begin
creating your own applications.

Unlike other computers, the Macintosh does not lend itself to
compiling fragments of code to see what they do. A Mac program must
be a complete application which, as you’ll see while you work your way
through the book, is quite an elaborate thing. As such, you can’t just
type in the example functions and complle them though you can type in
the complete applications.

xviii

Conventions Used in This Book

All the programming examples in this book are written in
Think C for the Macintosh, which is a product of Symantec. They will
work on most C compilers for the Macintosh, but you should be aware
that no two Macintosh C implementations are exactly the same. As the de-
velopers of C compilers for the Mac have grown more proficient at
optimizing their products, the divergences between the various lan-
guages have grown more noticeable.

If you are familiar with C these differences should not be too
difficult to work around. If you are new both to C and to the Macintosh,
we strongly recommend that you start with Think C. It’s bad enough
trying to find your own programming bugs; you’ll find learning C a
great deal easier if you’re not trying to isolate compiler problems at the
same time.

Throughout the book, all Macintosh Toolbox functions will be
printed in boldface and in a special program font. This same program font,
minus the boldface, will be used in all examples and sample programs,
as well as for various names associated with the Toolbox. That way,
anything associated with programming will clearly stand out from the
rest of the text. Finally, any special terms related to the Macintosh or its
user interface will be printed in italics.

The Macintosh Toolbox and C

As we noted previously, the Macintosh Toolbox was originally
intended to be used with programs written in Pascal or in native 68000
assembly language cooked up to look like Pascal. In order to success-
fully write C programs in this Pascal environment, it’s necessary to
become more than usually familiar with the subtle distinctions between
these two languages. While it’s not normally essential to understand
how C passes arguments to a function, for example, just to be able to
program in C, having this sort of “inside information” is very helpful
when using C on the Macintosh.

Xix

Before we begin our discussion of how to write an application
with the Macintosh Toolbox, we must briefly cover a few important
points concerning the relationship between the Toolbox and C. The first
point concerns the various simple data types which C will be using and,
as such, passing to the Toolbox.

The second point is that the Toolbox is very much enamored of
complex data types. If you are familiar with C, you will know that un-
der C these are called “structs”. Think C defines well over a hundred
specialized structs as unique Macintosh data types. An important part of
mastering the use of the Toolbox, then, is in understanding how to use
these data types effectively.

The third point is that Pascal is a slightly more obliging lan-
guage than C tends to be, and it takes care of a lot more of the low level
things that languages do. There are drawbacks to this, too, which will
become clear as you proceed through this book. What is important,
however, is that a C programmer must take great care in using the ap-
propriate data types and using them correctly.

The Simple Data Types used by the Toolbox and C

Experienced users of C will be familiar with its basic data types
and will probably think of them in certain fixed ways. For example, an
int is usually thought of as having 16 bits.

In fact, the abstract definition of C, Kernighan and Ritchie’s
The C Programming Language, does not specify the sizes of data types.
They are allowed to be whatever is natural for the environment the lan-
guage is implemented for. In this case, it is convenient for the creators of
Macintosh C compilers to use the same conventions as does Macintosh
Pascal wherever possible, to allow for the least amount of data type con-
version when a C program goes to call the Toolbox.

The basic data types for Macintosh Pascal as they relate to the
Toolbox are shown in Figure I.1. Figure 1.2 shows the simple data types
for C and their sizes. These values are specific to Think C. For example,
some Macintosh C compilers use 32 bit ints. This can cause trouble in
using source code written for a different C compiler if the author of the
program counted on having 32 bit ints and the compiler you’re using
only supports 16 bit ints.

XX

The Think C data sizes are much the same as the data sizes used
in IBM PC based C compilers, which does make porting PC code to the
Macintosh a great deal easier. Note that a long integer and a pointer to a
long integer are the same size. This will return to haunt you again and
again.

Type Name Storage Size
character CHAR 1 bytet
flag BOOLEAN 1 bytet
integer INTEGER 2 bytes
long integer Longint 4 bytes
pointer Ptr 4 bytes

1 An individual character or flag requires 2 bytes.
In a packed array, each character or flag requires
only 1 byte.

Figure !.1: The Basic Data Types of the Toolbox

Type Name Storage Size
character char 1 byte

flag char 1 byte

short integer short 2 bytes

integer int 2 bytes

long integer long 4 bytes

pointer char * 4 bytes

floating point float 4 bytes

double floating point double 10 bytes £

1 not really a data type
1 12 bytes if 68881 option is on

Figure 1.2: The Basic Data Types of Think C

xxi

Strings

The sizes of data types under Think C have been thoughtfully
chosen, and rarely become an issue except in exotic circumstances. One
of the things which does lead to innumerable difficulties in this area,
however, is the difference between a string in Pascal and one in C.

Under Pascal, a string consists of some number of characters
preceded by an index byte, that is, by a number which defines how long
the rest of the string is. The string “Think C” is 7 bytes long, so if you
wanted to define it as a Pascal style string under C you would write this:

“\007Think C”

If you passed this to a Toolbox function which expected to see a
string, this would be interpreted correctly.

Under C, strings are represented as some characters followed
by a terminating zero byte, or “null”. When you define a string under C
you do not explicitly define the null, any more than you need define the
index byte under Pascal. The language puts it there for you.

If you pass a Toolbox function a C string when it expects a Pas-
cal string, very strange things may happen. For example, the string
“Think C”, when passed to a Toolbox function as it stands, would be
regarded by the Toolbox as being 84 bytes long. If you are wondering
how 84 crept into the discussion, observe that the ASCII value of the
. letter “T” is 84. A Pascal function passed a C string will use the first
character of the string as its index byte.

Think C gives you two very elegant ways of converting be-
tween C strings and Pascal strings. First of all, if you want to define
a string which you know is to be passed to a Toolbox routine, that is, a
Pascal string, you would do this:

“\pThink C”

The “\p” tells Think C to treat this as a Pascal string, and to put
an index byte in front of it.

Second, there are two library functions provided by the com-
piler to convert existing strings between these two conventions. You can

xXii

use CtoPstr to make a C string into a Pascal string and PtoCstr to make a
Pascal string into a C string. It’s worth noting that these functions ac-
tually change the strings which they are given as arguments, rather than
copying their arguments to new strings.

It is very, very important to know which sort of string a function
expects to be passed when you go to use it. Passing the wrong sort of
string will at best make your program misbehave, and will frequently
crash your Macintosh, necessitating a reboot. All of the Toolbox func-
tions expect Pascal strings. All of the C functions provided by Think C,
with the exception of PtoCstr, of course, expect C strings.

If a Toolbox function returns a string, you must convert it back
to a C string before you use it with any C functions.

There is an additional catch to using strings from C with the
Toolbox. Under Pascal, a string is a specific complex data type called
Str255. As you might expect, this allots 255 bytes of string space for each
string. Under C, a string is an array of however many chars the program-
mer feels like allocating. The Toolbox, which thinks it’s dealing with a
Pascal program, will assume that it can increase the size of a string
passed to it as much as it needs to, so long as the string remains within
255 bytes.

When you define string variables in your C programs which
will be passed to Toolbox routines that might change their sizes, make
very sure that you have allocated enough space to allow for any contin-
gency. When in doubt, allocate 256 bytes. This is the largest possible
Pascal string plus one byte for either the Pascal index byte or the C null
terminator byte, as is applicable.

Alternately, you can use one of the data types which Think C
provides for Pascal compatibility. A variable of the type Str255 can be
defined in your C program to behave just like an Str255 variable in Pascal.

In this book, when you see a Toolbox function specified as re-
quiring an Str255 variable as an argument, this is a key that it requires a
Pascal style string.

Toolbox Data Structures

The Macintosh utilizes over a hundred complex data types. A
complex data type is a collection of simple data types bundled together

xXxiii

into one new variable. Under most C environments this is a fairly ad-
vanced practice. However, because the Toolbox uses complex data
types for even the simplest functions, it’s important for Macintosh C
programmers to know about them from the start.

Here’s an example of how complex data structures work. The
Toolbox provides us with a function which draws rectangles on the
screen. It’s called FrameRect. In order to define where a rectangle will go
on the Mac’s screen, we must specify four numbers. These are the num-
ber of dots down from the top for the upper horizontal line, the number
of dots in from the left for the left vertical line, the number of dots down
from the top for the lower horizontal line and the number of dots in from
the left for the right vertical line.

The obvious way to handle this would be to pass FrameRect four
ints. In fact, the Toolbox doesn’t do things this way. Instead, it defines a
new data type called Rect. A Rect is a collection of four ints called top,
left, bottom and right, in that order.

Under C, if r is a variable of the type Rect, then r.top is the integer
which defines the position of the top line of the rectangle. You might say
r.top = 100 to assign it a specific value.

There are many more complex data types associated with the
Toolbox, most of which contain combinations of differing simple data
types. It’s not unusual to find complex data types which contain other
complex data types.

The Toolbox data types are defined in header files included
with Think C. Assuming that you include the headers as the Think C
manual says you should, you can always assume that these complex
data types are “on tap” when you need them.

Calling the Toolbox from C

Under Think C, the Macintosh Toolbox appears to your
programs just like any other library of functions. In order to call it, you
simply assume that all those functions are there and the compiler does
the rest.

The biggest single headache in learning to program the Mac-
intosh C in C is getting the calls to the Toolbox right. They are very

xxiv

confusing at times, because C expects us to do a few things by hand
which Pascal handles automatically.

In addition, the Toolbox includes a few curves of its own. This
is the first and perhaps the trickiest curve. In some cases, you will pass
a number to a Toolbox function expecting it to do something with the
number. In other cases, the Toolbox will wish to be able to modify the
number as it exists in the calling function. Under Pascal, the compiler
takes care of this by knowing whether or not each Toolbox function
might wish to be able to modify its arguments.

In technical terms, when we wish to simply give a number to a
Toolbox function, we pass the value of the number. The compiler pushes
the number onto the stack and calls the Toolbox function in question.
The Toolbox peeks at the number on the stack to see what it is and does
whatever it’s supposed to do. When the Toolbox function returns, the
number on the stack is thrown away by the calling function.

If the Toolbox function expects to actually modify the number
it’s passed, things are handled differently. In this case, we must tell the
Toolbox where the number is in the original calling function so that it
can go and change its contents. This is called passing by reference. What
we actually do is push the address in memory where the number is onto
the stack, rather than the number itself, before we call the Toolbox.

All sorts of terrible things will happen if a particular Toolbox
function thinks it’s going to be passed the address of a number and you
pass it the number instead. It will interpret the number as an address and
usually modify some totally unrelated memory location. If this happens
to be part of your program or something else important, your Macintosh
will usually crash.

You might be wondering how to tell when a Toolbox function
expects to be passed an argument by value and when it expects to be
passed an argument by reference. The answer is in knowing a little bit of
Pascal. Under Pascal, if a function is declared as, for example,

Function(i : integer);

this is a function which expects to have i passed by value. On the other
hand, if it was

Function(VAR i : integer);

this function expects to have i passed by reference.

The notation for passing arguments under C is very similar to
that of Pascal. In the first case, you would call the above hypothetical
Toolbox function like this to pass it an argument by value.

Function(i);
In the second case, you would do this to pass it one by reference.
Function(&i);

As you work through this book, you will have no difficulty
recognizing how arguments are passed to the Toolbox for the functions
discussed herein, as the notation will all be in C. If a function is
described like this, it indicates passing by value.

Function (i)
int i;

If it’s described like this, its argument is being passed by reference.

Function (i)
int *i;

However, you will want to keep this point in mind for when you start
delving into uncharted territory, and using the functions described in
Inside Macintosh.

When you are passing a complex data type to a Toolbox func-
tion, there is no choice between passing it by value and passing it by
reference. Under Think C, nothing bigger than four bytes is ever passed
by value. If, for example, we wanted to pass a Rect variable to FrameRect,
we would always pass the address of the Rect, not the Rect itself. This a
typical call to FrameRect.

FrameRect (&xr);

There is an interesting exception to this. One of the commonly
used complex data types which the Toolbox defines is Point, which con-
tains two integers. This specifies the horizontal and vertical coordinates
of something, such as the point at which the mouse was clicked. Now,

XXVi

this is a complex data type but it’s only four bytes long. As such, under
Think C you are expected to break the rules and pass Point variables by
value, that is, without the “&” operator, unless the Point is actually going
to be modified by the Toolbox function in question.

Pointers and Handles

The final area of potential confusion for C programmers on the
Macintosh concerns pointers and handles. The Macintosh is especially
fond of handles, a phenomenon which rarely crops up on most other
common microcomputers.

The function of a pointer will be fairly obvious from its name.
It tells a program where to look for something. In real terms, a pointer
contains the location in memory where the first byte of the thing it
points to lives.

If i is an integer and p is a pointer to an integer, then if we say
p = &i, p will point to the integer i. If we subsequently say *p = 6, then i will
contain the value six.

Under C, pointers are “type checked.” This means that if p is
declared to be a pointer to an int, for example, and you attempt to make
it point to a Rect variable without telling C what you’re doing, the com-
piler will complain. In practice, a pointer to an int and a pointer to a Rect
are both four byte numbers, but C tries to keep you from making ob-
vious mistakes by preventing you from, for example, trying to make a
Rect variable equal to six.

This part is pretty simple. If it doesn’t make perfectly lucid
sense just yet, don’t worry. You’ll find that you understand it intuitively
before you’re even part way through this book.

A handle is a pointer to a pointer to a thing. If i is an integer, and
p is a pointer to an integer and h is a handle to an integer, then we would
do this to make h into a handle to i. :

P &i;
h = &p;

This doesn’t take a lot of work to understand. What is a little
mysterious is why anyone might want to do it.

On the Macintosh, the position of things in memory is left up to
the Mac itself much of the time. If you ask the Mac to give you some

Xxvii

memory to store data in, the Mac can’t suddenly take your memory
away from you later on, but it is allowed to move it around behind your
back wherever it feels like doing so. It might do this if it’s trying to allo-
cate a big block of memory by combining several smaller, unused areas
of memory.

When the Toolbox moves your chunk of memory around, it
cannot know where in your program pointers into the memory might lie.
As such, it has you deal with the memory through a handle. The handle
lives in your program, and points to a pointer. The Mac knows where the
pointer is. If it elects to move your memory, it will change where the
pointer points to. However, your handle will know where the pointer is,
and so you will still be able to find your memory.

Although it might not sound like one, this is a simple example
of handles on the Macintosh.

It’s very important to differentiate between handles and
pointers. It’s also very important not to attempt to use the pointer a
handle points to as you would a pointer which you have defined, be-
cause the Macintosh might change where it points to without telling you
about it.

This is discussed in detail in Chapter 6.

Additional Background Information

In addition to the background information we have already out-
lined, there is some further information that you will need before you
begin to learn about the Toolbox in the first chapter.

Toolbox Naming Conventions

The functions, constants and data types which are used with the
Toolbox follow a more or less standardized naming convention. When
you write the functions which will comprise your own applications, you
should attempt to either stick to this convention or devise one of your
own which is equally readable. There are those Macintosh programmers
who deliberately adopt a different naming style to make it easy to spot

Xxviii

which functions are Toolbox calls and which are calls to parts of their
own code.
Here’s a quick summary of how Toolbox names are formed.

= First, as a general rule a Toolbox name is comprised of two or
more descriptive words with the first letter of each word capital-
ized. For example, we have FrameRect, MyFileFilter, FixRound and
so on (shown here in the bold faced program font we will use for
functions throughout this book). In a few cases, a single word is
sufficiently descriptive, such as Create or Munger. If it is not ob-
vious from its name what Munger does, don’t worry. The
description of this function isn’t much help either.

= The names of Toolbox data structures and their associated
pointers and handles are named using the same conventions, such
as EventRecord, WindowPtr and ControlHandle (shown here in the pro-
gram font we will use for data structures, variables and the names
of constants throughout this book).

= Individual field names from the Toolbox data structures begin
with a lower case letter. For example, the where field of an Event-
Record or the portRect of a GrafPort.

= All of these conventions can be abandoned whenever Apple feels
like it. So, for example, we have TEGetText, PBEject, noErr and so
on.

Pascal is not case sensitive. We could write FRAMERECT rather
than FrameRect under Pascal without upsetting the compiler. C is case
sensitive. FRAMERECT and FrameRect are two unique names under C.
This is important to remember if you are attempting to transliterate a
Pascal program to C. It’s also the cause of a particularly frustrating
group of compiler errors, wherein you know that a Toolbox function or
data type exists but the compiler fails to recognize it. Check it again—
you have probably capitalized the name incorrectly.

XXix

Other Predefined Constants

Under Pascal, there are many situations wherein things are
either true or false. To pass a true argument to a function, for example,
you simply pass the word TRUE. This is a predefined constant under Pas-
cal, and its actual value is never used.

In fact, the TRUE and FALSE behave under Pascal exactly as they
would under C. A value of zero is false. Everything else is true. As such,
of you are told to pass a false value to a Toolbox function, pass zero. If
you are told to pass a true value, pass something other than zero. A good
choice is 0xff.

Under Pascal, a pointer which points to location zero is said to
point to NIL, or be a “nil pointer.” Under C, we would say that it points to
NULL.

Suggested Reading

The best place to start to learn C is by reading the book which
started it all, The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie, published by Prentice-Hall, Inc. The second edition
of this book is now available, covering all the recent and proposed chan-
ges to C. If you get through K&R and the book you’re holding now you
will probably be able to do without any other general purpose C books.

Sooner or later you should acquire all five volumes of Inside
Macintosh, published by Addison-Wesley, Inc. The first three deal with
the basic Macintosh, and all of the code in this book is drawn from them.
The latter two volumes handle the upgrades to the newer Macintosh ver-
sions, the hierarchical file system, the Mac II and so on. If you’re a bit
short of cash, you can get by with the first three.

The Macintosh Toolbox
and the User Interface

Using the Macintosh is very easy. There is something unique
about a computer that seems to make users comfortable right away. The
user’s sense of control over Macintosh applications seems to develop
more quickly than with applications designed for other computers.

Most users take the operation of the Macintosh for granted.
They know it’s an easy machine to use and they enjoy being able to
learn new applications quickly. We as application programmers, how-
ever, need to be more aware of just what it is that makes a Macintosh
application “Mac-like.”

We know, of course, that the key to the Macintosh’s uniqueness
is its user interface. It is through the interface that the user interacts with
the computer and the computer communicates with the user. The quality
of the mediation between user and computer provided by the interface is
especially important when you have, on the one hand, a computer as
sophisticated as the Macintosh and its 68000 series processor and, on
the other hand, users who are much more interested in getting their work
done efficiently than in knowing about the inner workings of the
machine or program they’re using.

In this chapter, we will introduce you to the Macintosh’s user
interface by looking at the role and operation of its basic elements and
by reviewing a few conventions that apply to each. We will begin by dis-
cussing the qualities of a user friendly, and hence of a Mac-like,
application.

2 Using the Macintosh Toolbox with C

=== CH1

Characteristics of a Good Macintosh
Application

The user interface that Apple created for the Macintosh repre-
sents a significant advance in user friendliness. The designers of the
Macintosh wanted their machine to appeal to as wide an audience as
possible. Since that meant primarily an audience of nonprogrammers,
many of whom had never before used a computer, the new design had to
be easy to learn and use.

You can achieve an overall effect of user friendliness in your
Macintosh application by ensuring that it contains three characteristics:
responsiveness, permissiveness, and consistency.

A “responsive” application should produce direct results from a
user’s actions. When the user selects an icon, it should become high-
lighted. When the user boldfaces a word in a word processor, the word
should appear boldfaced on the screen. It is this kind of direct response
that gives the person using the application a sense of control over what
he or she is doing. It’s frustrating for a user to execute a command in an
application and be left wondering whether anything really happened. As
much as possible, the effects of a command should be shown directly,
encouraging the user to move on to the next task.

The “permissiveness” of an application refers to the ability of
the user to move quickly and freely between features without having to
go through a lot of intermediate steps. For example, issuing a print com-
mand in a word processor should not be too much harder than issuing
a command to boldface text, and the user should be able to jump from
one to the other as directly as possible. Using an application should be-
come an intuitive process, encouraging spontaneity. The designers of
the Macintosh felt that the person using the application should have to
worry less about using the application than about completing the task
at hand.

Finally, the Macintosh’s designers felt that the most important
characteristic of an application is “consistency.” When users move from
one application to another, they shouldn’t be forced to learn an entirely
new interface. Clearly, if application control does not vary greatly be-
tween programs, the time spent learning to use a new program will be
minimized.

The Macintosh Toolbox and the User Interface

3

The overall intention behind giving your application these char-
acteristics is to make the user more comfortable with the program he or
she is using. It is the implementation of these characteristics that makes
Macintosh applications truly Mac-like. For example, Macintosh menus
eliminate the task of memorizing a great many keyboard commands.
Spontaneity is encouraged because all the user’s options are right there
at the top of the screen—readily available but not in the way. When the
user selects a menu from the menu bar, the menu responds by displaying
its menu items. What is more, the operation of menus remains consistent
from one Macintosh application to another. Through the use of win-
dows, menus, controls, alerts, dialogs, and all the other familiar aspects
of the interface, Apple provides the Macintosh user with a simple yet
powerful environment in which to work.

The Macintosh User Interface

To ensure implementation of their user interface, Apple provided
programmers with two resources. The first, Inside Macintosh’s “User In-
terface Guidelines,” offers recommendations on the operation of the
user interface in a Macintosh application. An outline of the operation of
menus, windows, and the like is provided, as well as some general sug-
gestions as to the appearance and flow of an application.

In general, the “User Interface Guidelines” recommend a
copious use of graphics. Whenever possible, commands, features, and
parameters of an application should be presented as graphics objects on
the screen. The pattern palette in MacPaint, dialog boxes, icons, and
menus are familiar examples of the use of graphics.

Because using the standard Macintosh interface necessarily
meant doing a lot of complicated graphics, Apple provided the second
resource, the Toolbox ROM. Residing in the Macintosh ROM are the
fundamental routines needed for implementing the user interface.
Through the use of these routines, something as vital to the user inter-
face as displaying a window—a task that would normally require quite
of bit of coding—is as simple as passing a few parameters to one of the
Toolbox routines.

4 Using the Macintosh Toolbox with C

=== CH1

Technically speaking, the Macintosh ROM is divided into two
sections. The operating system portion of the ROM contains routines for
memory management, file management, handling system errors, han-
dling external devices, and so on. The User Interface Toolbox contains
the routines that are used to actually build the user interface. These in-
clude routines for implementing windows, menus, QuickDraw, and
TextEdit. Over time, the two sections of the ROM have become collec-
tively known simply as the Toolbox.

Of course, using the ROM routines to create an application is
the primary topic of this book. In the subsequent chapters, we don’t
make a distinction between the operating system and user interface
Toolbox. Although we discuss routines from each section of the ROM,
we refer to all ROM routines as “Toolbox” routines.

User Interface Conventions

Because many of the broader guidelines of the user interface—
single- and double-clicking, for example—are very familiar to all but
the newest Macintosh users, we will not go through an exhaustive
coverage of the user interface. Instead we’ll look at some of the more
subtle behaviors and conventions associated with each of the major user
interface elements that we, as application programmers, need to be con-
scious of. This review will provide us with a common ground of ideas
about how a Macintosh application is supposed to work and about when
certain features and behaviors should be implemented.

Windows

Windows in a Macintosh application can contain a variety of
things. Examples include information generated by the program (for ex-
ample, status messages from a compiler) and alert and dialog messages; in
the case of desk accessories, a window can even embody an entire pro-
gram. By far the most common use for windows, however, is to contain
application documents. Documents range in kind from text files produced
on a word processor to pictures produced on a graphics program to the

The Macintosh Toolbox and the User Interface 5

transcripts of a bulletin board session on a terminal program.

To accommodate the many uses of document files, the Mac-
intosh operating system has predefined a special style of document
window, familiar to anyone who has ever used MacWrite. Because
this window is such an integral part of nearly every Macintosh ap-
plication, it needs to be capable of a variety of behaviors. The user
should be able to open or close it, move it, resize it, hide it, and put it
in front of or behind other windows. The graphics features associated
with these behaviors are all designed into the Macintosh’s predefined
document window. The behaviors themselves, however, must be
programmed into the application, as we will describe. Although the
following discussion pertains specifically to the document window,
most of the behaviors are directly applicable to other window styles.

Opening and Closing Windows

Windows are usually opened either by a menu command or
automatically by the application. As we’ll see in Chapter 3, the place-
ment of the window when it is opened is determined by the application.
When the user closes a window (if in fact the application wants to allow
the window to be closed), the user should have the option of clicking
in the close box in the upper left-hand corner of the window. If the ap-
plication doesn’t support closing a window with the close box, the close
box should, of course, be omitted from the window so as not to create
confusion.

The Active Window

Although an application may be capable of having several win-
dows open on the desktop, the user can only work with a single window
at any given time. This window, called the active window, must always
be the frontmost window and should be easily recognizable as the win-
dow with the highlighted title bar. By the same token, an inactive
window must have the title bar unhighlighted and cannot be the
frontmost window. To make an inactive window active, the user should
be able to click on that window once and have the window activate it-
self, highlighting the title bar and bringing it to the front. Whichever
window was previously active should be deactivated (that is, the title
bar should be unhighlighted to avoid confusing the user).

6 Using the Macintosh Toolbox with C

=== CH1

Moving and Resizing Windows

When an application allows the creation of multiple windows,
the desktop can become cluttered very quickly. To help the user keep the
desktop “clean” and in order, the application should allow the user to
move and resize the windows on the desktop. To allow for resizing,
document windows should have a grow icon in the lower right-hand
corner. The programmer can also set a maximum and minimum size for
the window. This would help the user to avoid problems such as mak-
ing the window too small to redraw the grow icon in the bottom-right
corner or too large to completely fit on the screen. If a window cannot
be resized, as is the case in some applications that allow only a single
window, the size box should be omitted.

Resizing a window goes hand in hand with moving it. Since the
primary purpose of both resizing and moving is desktop organization,
achieving that goal would be difficult if one function were implemented
and not the other. When the user clicks the mouse in the title bar and
drags, the window should move. The application can specify the boun-
daries to which the window can be moved. Such boundaries are a
helpful addition to an application because they prevent the window
from being moved completely off the screen.

Scroll Bars in Windows

Document windows can also have scroll bars. Scroll bars make
it easier for the user to look through a document too long to fit in a single
screen. They should be implemented whenever there is a possibility of
creating such a document.

As shown in Figure 1.1, scroll bars should support moving
through a document in three ways. First, the user should be able to scroll
smoothly in either direction by clicking in the scroll bar’s arrows.
Second, the user should be able to page through the document one
screenful at a time by clicking in the gray area on either side of the scroll
box. And finally, the user should be able to go to any portion of the
document by positioning the scroll bar thumb (scroll box) directly.

The Macintosh Toolbox and the User Interface 7

Menus

Although they’re not the only means of controlling an applica-
tion, menus are by far the most common. There are a few conventions
for menu layout and operation that you’ve undoubtedly seen in other ap-
plications but may not have recognized as conventions. The more
important of these conventions will be described next.

Presenting Menu Commands

Menu commands can be divided into two categories: verbs and
adjectives (or actions and attributes). Verb commands, as their classifi-
cation implies, actually do something, such as print or copy. Adjective
commands, on the other hand, describe a certain state or attribute of an
object. Adjective commands can be further distinguished as either ac-
cumulating attributes or mutually exclusive attributes. An attribute is
accumulating when it can be added to other attributes, as when the user
can boldface and italicize text. Attributes are mutually exclusive when
they can only exist by themselves, as when the user is invited to either
show or hide a window.

As you’ve probably noticed in the applications you use, the
menu itself can be divided into groups, indicated by a gray line spanning
the width of the menu. Whenever a menu contains a large number of
commands, you should use this type of grouping to create a logical sub-
set of commands within a particular menu.

Arrow
i

Scroll Bar
Thumb

Figure 1.1: The Operation of Scroll Bars

8 Using the Macintosh Toolbox with C

- cH.1

Another important convention for the visual organization of
menus is to divide attributes—either accumulating, exclusive, or both—
into respective groups in order to emphasize their relationship.
Figure 1.2 shows a hypothetical menu for paragraph formatting. Notice
how related attributes are grouped together. The Style menu shown later
in the chapter (in Figure 1.5) is an example of an instance in which it is
all right to have accumulating attributes grouped with an exclusive at-
tribute. Often, however, grouping accumulating and exclusive attributes
together will result in a confusing menu. The Style menu is a special
case in that the function of each selection is clear.

The state of an attribute, in turn, can be indicated in several
ways. If the grouped attributes are mutually exclusive (that is, only one
option is available at a time), the command that’s in effect can be
preceded by a check mark (as is done in the Font menu we’ll be talking
about shortly). You can also use check marks to identify accumulating
attributes, where any number of attributes from a particular group can
be in effect at the same time. In this case, whichever attributes are
selected will be marked by a check mark. If there are only two mutually
exclusive choices, the command can be simply toggled. In other words,
the text of the menu item will change from something like “Show Item”
to something like “Hide Item.”

If a menu selection will require further information when it is
chosen, the command should be followed by an ellipsis (. ..). A good
example is the “Print . ..” item in the File menu. When selected, this
command puts up a dialog box requesting further information about

| Format

Align Left 8N
Align Center M
Align Right S8R
Justify 8J

Single Space
Double Space
Open Space

Figure 1.2: A Paragraph Format Menu

The Macintosh Toolbox and the User Interface 9

such matters as print resolution and number of copies needed.

If an option isn’t available at a certain time, the application can
dim the corresponding menu command so that it cannot be selected. For
example, if the user has not opened any documents, there is obviously
no document to close. In that case, you should disable the Close option
in your File menu.

Menu items can also have keyboard equivalents. In other
words, the application can allow the user to select certain menu items
from the keyboard without having to use the mouse. When a keyboard
equivalent exists for a menu item, you should make sure that this is in-
dicated in that item by displaying to the right of the item the Command
key symbol (38) followed by the equivalent key character.

Some Standard Menus

There are three standard menus on the Macintosh that should be
present in all applications that support menus. You’ll find that this
convention has been adhered to rather strictly by all but the most spe-
cialized programs. Some copy programs, for instance, don’t use these
menus because the entire application serves only a single purpose.

The Apple Menu If your application supports desk accessories (and it
should), the names of all available desk accessories should reside in the
Apple menu. This should be the leftmost menu and the title should be
the Apple symbol (ASCII character hex 14). If you include an “About
...” window in your application, the command calling it out should be
the first item in the Apple menu.

The File Menu This menu should contain all the commands dealing
with general file management, including actions such as opening, clos-
ing, saving, and quitting. A typical File menu is pictured in Figure 1.3.
As you can see from this figure, if your application allows printing,
those commands also go into the File menu.

10 Using the Macintosh Toolbox with C

=== CH.1

The Edit Menu Probably the single most important factor in maintain-
ing consistency from application to application is represented by the Edit
menu. If an application is going to support desk accessories, the edit menu
must appear exactly as shown in Figure 1.4. Since the Undo, Cut, Copy,
and Paste commands are passed to desk accessories by the system accord-
ing to relative position in the menu and not according to the command
itself, following the conventional Edit menu format will ensure com-
patibility with any desk accessory that needs to make use of these
commands. The keyboard equivalents for these commands also need to be
exactly as shown in Figure 1.4, again to ensure compatibility with all desk
accessories.

| File

New

Bpen..

Close

Save

Save fis...
Page Setup...
Print...

Quit

Figure 1.3: File Menu from MacWrite

Undo 82
Cut %R
Copy 88C
Paste 8
Clear %B
Show Clipboard

Figure 1.4: The Edit Menu

The Macintosh Toolbox and the User Interface 11

Font-Related Menus

There are a few other menus that are applicable only to word
processors and other applications that allow the user to change text fonts
and alter font appearance. With the increasing availability of mass
storage devices for the Macintosh, the feasibility of listing all the avail-
able fonts in a single menu is diminishing since now there is the
possibility of having a dozen or more fonts installed in the system. If
you decide not to use these menus for displaying fonts and font options,
try to come up with a method that’s as intuitive as possible. In other
words, use an interface feature that is familiar to Macintosh users (a
dialog box, perhaps). Remember that the whole idea behind the user in-
terface is to make applications as easy to use as possible. In this case,
you want to add flexibility without sacrificing ease of use.

The Font Menu A Font menu should always list the fonts that are cur-
rently available to the user. It is from this menu that the user will select
which font he or she wants to use. A check or other mark should be used
to indicate which selection is the active one.

The Style Menu The Style menu should contain the commands
shown in Figure 1.5. All the commands except Plain Text are ac-
cumulating attributes and should be marked when active. When
selected, the Plain Text command should override any other option.

vPlain Text %P
Bold %B

/telic 81
Underline 8U
Olultiilinle] %0
Shadomw %S
Superscript $H
Subscript 8L

Figure 1.5: The Style Menu

12 Using the Macintosh Toolbox with C

=== CH.1

Keyboard equivalents for the style enhancements are optional.
If you do decide to use keyboard equivalents, however, convention dic-
tates that they be the same keyboard equivalent characters as those used
in Figure 1.5.

The FontSize Menu The FontSize menu should list the possible sizes
of the active font. The sizes that are currently installed in the system
should be listed in outline letters as shown in Figure 1.6.

Although the font may be scaled to a size that is not installed in
the system, it will not look as good as one of the installed sizes since the
computer will need to improvise a bit in displaying and printing it. If
there is limited room in the menu bar, the name of this menu can be
shortened to simply “Size” or else the contents of the FontSize menu
can be appended to the Font or Style menu.

Controls

Controls are graphics objects that can be manipulated by the
mouse. Resembling the control dials on household appliances, controls
in a Macintosh application provide an additional method of issuing
commands. Examples of the four basic types of controls—buttons,
check boxes, radio buttons, and dials—are shown in Figure 1.7. Let’s
take a look at each of these four basic types.

FontSize
9 peinl
10
vi2
14
10
24
36
48
22

Figure 1.6: A Typical FontSize Menu

The Macintosh Toolbox and the User Interface 13

Buttons

Although buttons can be any shape you wish to make them,
they are usually small boxes or rectangles labeled with text. Appearing
for the most part inside dialog and alert boxes, their function is usually
to allow the user to confirm an option or to initiate an action. Thus in
many dialog boxes, buttons indicate to the computer both that the user is
ready to move on and in which direction. For example, when a dialog
box comes up in MacPaint asking whether the user wants to save chan-
ges, three buttons are present: Yes, No, and Cancel. The user must select
one of these choices before moving on.

Check Boxes and Radio Buttons

Check boxes and radio buttons differ from the buttons we have
just described in that they act more like simple switches, either turning
an option on or off. Check boxes allow the user to select between ac-
cumulating attributes: any number of check boxes grouped together can
be on or off at a given time. Radio buttons, on the other hand, are for
selecting mutually exclusive attributes. They function just like the chan-
nel select buttons on a car radio: only one radio button in a group can be

Check Boxes Radio Buttons
X Bozo
[JBusy

@ High
O standard

QO Draft

X Inited

Buttons

Dials

Figure 1.7: Sample Controls

14 Using the Macintosh Toolbox with C

- - .- CH.1

“on” at a time, and selecting one radio button automatically turns “off”
any other button that is on.

Dials

Dials are used to indicate the value, level, or magnitude of
something. They usually display their values graphically in an analog
fashion, much like the dials on equipment and appliances. Some dials
also allow the user to change their values by dragging or clicking with
the mouse. A common example of a dial used by many Macintosh
programs is the scroll bar. In a RAM disk program, for example, the
scroll bar can serve as the size indicator of the disk, with the scroll bar
thumb showing the current amount of RAM allocated to the disk. The
user can then change the amount of memory allocated to the RAM disk
by moving the scroll bar thumb with the mouse.

Dialog Boxes

When menu commands require more information before they
can be executed, the application should use dialog boxes to prompt the
user for further input. Dialog boxes contain check boxes, radio buttons,
and text fields through which the application can gather the information
it requires.

Dialog boxes fall into two classes. A modal dialog box forces
the user to acknowledge it before he or she can move on. No other part
of the application can be accessed while the modal dialog box is dis-
played. Modeless dialog boxes, the other category of dialog boxes,
allow the user to perform other operations in the application without
having to close the dialog box. Figure 1.8 shows two familiar dialog
boxes—one modal, the other modeless.

The Macintosh Toolbox and the User Interface 15

ImagelUriter (Standard or Wide)

Quality: @ High QO standard QO Draft

Page Range: @ Al O From: | I To: | | l Cancel |

Copies:
Paper Feed: @ Continuous Q Cut Sheet

Modal Dialog Box

E[I==———— Find
Find what ||

Fing Neit ® Whole Word Q Partial Word

Modeless Dialog Box

L

Figure 1.8: Modal and Modeless Dialog Boxes

Alerts

Alerts are messages from the application to the user. Although
these messages are generally error messages, they are also often used to
caution users when they are about to do something drastic, such as eras-
ing a disk. They provide a consistent and informative way to warn the
user that something is wrong.

The simplest form of alerts is a beep. Beeps are used when a
minor and relatively obvious error occurs. Clicking the mouse outside
of a modal dialog box is an example of such an error. Alert boxes, on the
other hand, are very similar to modal dialog boxes and serve to actually
stop users from proceeding until they have read and responded to the
message contained in the alert box. The only way for users to proceed is
by clicking in one of the buttons that are always a part of the alert box.
Figure 1.9 shows a sample alert box.

16 Using the Macintosh Toolbox with C

=== CH.1

"Missing link" not found

Figure 1.9:

A Sample Alert Box

Summing Up

This about wraps up our overview of the user interface. In the
subsequent chapters, you will learn how to manipulate the various
aspects of the interface we have discussed here and how to tie them all
together to create your own application. As you think about this applica-
tion, keep in mind that you shouldn’t feel compelled to limit yourself to
existing Mac features. It never hurts the appeal of an application to have
a clever new feature as part of its interface.

All the same, it’s important that you try to make every feature of
your application as Mac-like in style as possible. In particular, you
should be sure that features shared by all applications, such as menus
and windows, work the same way as they do in well-known Macintosh
applications so as not to confuse the user. The rule of thumb is that if
you’re going to use a feature that’s already a part of the user interface,
do it exactly as it’s done in other programs.

Using the
Event Manager

Now that we’ve discussed the Macintosh user interface, and
have gotten a general idea of what’s in the Toolbox ROM, we are ready
to examine some of the Toolbox procedures and functions in detail. The
first section of the Toolbox we will examine is the Event Manager.

A thorough understanding of events is essential to writing
Macintosh applications because events are the backbone or guiding
force behind a Macintosh application program. Unlike applications that
run on other microcomputers and that are typically sequential in nature,
with the program code going from point A to point B, a Macintosh ap-
plication is constantly responding to various types of events. It is for this
reason that the Macintosh is said to be an event-driven computer. Events
are generated by the user, by the other Toolbox managers (which we
will discuss in subsequent chapters), by device drivers, and even by the
application itself.

A typical Mac application has a main event loop that repeatedly
checks for events that need to be processed. Each time through the loop,
the application, using Event Manager routines, analyzes the events
awaiting processing, and then responds accordingly. A sample main
event loop is given at the end of the chapter.

In this chapter we will first learn about the various types of
events and how or why they are generated. Then we will take an in-
depth look at an event record, the information each of its fields contains,
and how and why our application uses this data structure. We will study
the event queue, the priority of different events, and event masks. Fi-
nally, we will examine each of the different Event Manager routines to
see how they work and how our application can use them.

20 Using the Macintosh Toolbox with C

=== CH.2

Types of Events

It’s always good to know what you’re looking for before you go
searching for something. For this reason, it’s important to know what
types of events our application may need to respond to. Figure 2.1
shows all the different event types. In the sections that follow are
descriptions of the 16 event types and the manner in which each is
generated. Twelve of them are predefined, while the other four are left
for each application to define and use in any manner it chooses.

Null Events

An application will continuously poll the Event Manager for
events to respond to. If there are no events to process, the Event
Manager will return to the application a null event.

Mouse-Down and Mouse-Up Events

Mouse events are very simple. When you press the mouse but-
ton, a mouse-down event is generated. Releasing the button creates a
mouse-up event.

Event type Event Code
Nuil nullEvent =0
Mouse-down mouseDown =1
Mouse-up mouseUp =2
Key-down keyDown =3
Key-up keyUp =4
Auto-key autoKey =5
Update updateEvt =6
Disk-inserted diskEvt =7
Activate activateEvt =8
Network networkEvt =9
Device driver driverEvt =10
Application defined app1Evt =11
Application defined app2Evt =12
Application defined app3Evt =13
Application defined app4Evt =14

Figure 2.1: Event Types and Event Codes

Using the Event Manager 21

Key-Down, Auto-Key, and Key-Up Events

Pressing a character key on the keyboard or on the keypad
generates a key-down event; releasing the key generates a key-up event;
and holding the key down creates auto-key events. The character keys
consist of all the keys on the Macintosh keyboard or keypad except for
the modifier keys: Shift, Caps Lock, Command, and Option. Modifier
keys do not generate a character; instead, they modify the character
generated when it is held down in conjunction with a character key. For
example, striking the s key generates a lowercase “s,” while striking the
s key with the Shift key held down generates a capital “S.” (In order for
an application to detect if one of the modifier keys is being held down,
it will need to examine the modifiers field of the event record. We will dis-
cuss event records in a moment.)

After each key-down event occurs, the application takes into
consideration two auto-key time variables: the auto-key threshold and
the auto-key rate. The auto-key threshold indicates how long in ticks
(sixtieths of a second) a character key must be held down in order to
generate an auto-key event. After the first auto-key event, if the key con-
tinues to be held down for the number of ticks specified by the auto-key
rate, another auto-key event is generated. The initial values for the auto-
key threshold and the auto-key rate are 16 ticks and 4 ticks, respectively.
These values are easily changed using the Control Panel desk accessory.

Disk-Inserted Events

Inserting a disk into the internal or external drive generates a
disk-inserted event. One other source of disk-inserted events is hard disk
software. Hard disk drives are often divided into several smaller parti-
tions called volumes. Each volume is treated like a separate floppy disk.
Mounting a hard disk volume is analogous to inserting a floppy disk into
one of the drives. When the hard disk user mounts a hard disk volume,
the mounting software will generate a disk-inserted event and send it
to the Event Manager.

The next two event types, activate and update, are generated by
the Window Manager.

22 Using the Macintosh Toolbox with C

=== CH2

Activate and Update Events

It is a very common situation on the Macintosh to have multiple
overlapping windows on the screen at once. Most activate and update
events stem from this multiple window situation. Anytime the user
moves any of the windows, we can count on activate and update events
being generated.

Activate events are generated by the Window Manager when-
ever an inactive window becomes active or an active window becomes
inactive. Update events are also generated by the Window Manager
whenever any part of a window’s contents region needs to be drawn or
redrawn.

Since we haven’t studied windows yet, it may not be clear what an
active or inactive window is, or what a window’s content region is. We’ll
learn about these aspects of windows in Chapter 3 and in Chapter 7. Until
then, look at Figure 2.2 for a pictorial explanation of activate and update
events.

Device Driver Events

The serial ports, disk drives, and printers all have device drivers
that can generate device driver events. For example, if our application
uses the serial drivers, it can request the driver to post a device driver
event whenever the driver detects a change in the hardware handshake
status or whenever a break occurs. Our application could then, upon
detecting the device driver event, put up an error message or perform
some other appropriate action.

Network Events

A network event may be generated by the AppleTalk Manager.
Network events are a highly specialized topic. For more information,
refer to the AppleTalk Manager documentation in /nside Macintosh.

Using the Event Manager 23

Application-Defined Events

An application may define four event types of its own. The ap-
plication will generate these events itself, and then send them to the
Event Manager with the routine PostEvent. The routine PostEvent will be
described later in this chapter.

Startup

18 items 1400K in disk 4874K available
[ECI==—— Word Processing =—=————
[14 items 1196K in disk 4816K available
Sy g
& @ &
[Edit MacYrite Write 45 Paint 1.5
i] <&
I <9, When the user clicks the mouse in the
D rear window, Startup, the following events
Switcher 4.0 Toolbox Draw 1.7 PostScript fi are generated:
= tu 1. A deactivate event is generated for the
g"D Startup front window, Word Processing.
18 items 1388K in disk 4886K available

§§§§§§%§§§§§§§§§§§%§§§§§§§§§§§§§§§§§§Z_§§§§§§§§§§§

Switcher 4.0 Toolbox Draw 1.7 PostScript

2. An activate event is generated for the
Startup window.

3. An update event is generated for the
portion of the Startup window that
was previously obscured by the Word
Processing window. The updated area
is indicated by the gray shading.

Figure 2.2:

Activate and Update Events

24 Using the Macintosh Toolbox with C

-— - .- CH.2

Event Records

Each time an event occurs, information particular to the event is
placed by the Event Manager into an event record. The information
stored in an event record consists of

1. The type of event that occurred (for example, mouse-down, key-
up, disk-inserted, and so on).

2. A message about the event explaining, for example, which key
was pressed, or which drive the disk was inserted into.

3. When the event took place.
4. The location of the mouse at the time of the event.

5. Information regarding the status of the modifier keys, the status
of the mouse button, and for activate events, whether the window
involved is being activated or deactivated.

Let’s examine the structure of an event record:

struct ER {
short what;
long message;
long when;
Point where;
short modifiers;

}:

#define EventRecord struct ER

The five fields of the event record contain the five pieces of information
we have just listed. We will now examine each of the five fields in
depth, beginning with the what field.

The what Field

The what field contains an event code identifying the type of event.
(For a list of all the event codes see Figure 2.1.) These event code constants
are normally predefined in header files supplied with your compiler.

Using the Event Manager 25

Besides being the first field of an event record, it is typically the first
field an application examines when it is processing events. The contents
of the what field have a direct effect on the application’s next action. For
example, if an application detects a disk-inserted event, its next move
might be to find out which drive the disk was inserted into, whereas if the
same application detects a mouse-down event, its next move would
probably be to figure out the location of the mouse-down event.

The message Field

Once an application has determined the type of event that oc-
curred by examining the what field, it can examine the message field to
gain more information about the event. The information stored in the
event message field changes depending on the event code for that par-
ticular event record (see Figure 2.3).

Event Message for Null, Mouse-Down, and Mouse-Up Events

For null, mouse-down, and mouse-up events, the event message
contains no information.

Event type Contents of the event message
Nul Not Used
Mouse-down Not Used
Mouse-up Not Used
Key-down ASCII character code and key code in low order word
Key-up ASCII character code and key code in low order word
Auto-key ASCII character code and key code in low order word
Update Pointer to the window that needs to be updated
Disk-inserted Drive number in the lower 16 bits, MountVol resut code in

the upper 16 bits

Activate Pointer to window that needs to be activated or deactivated
Network See the AppleTalk documentation
Device driver See the particular driver's documentation
Application defined Anything the programmer wants
Application defined Anything the programmer wants
Application defined Anything the programmer wants
Application defined ! Anything the programmer wants

Figure 2.3: Event Message Contents

26 Using the Macintosh Toolbox with C

=== CH2

Event Message for Keyboard Events

For keyboard events, the lower eight bits (0-7) of the event
message contain the integer ASCII character code of the key (or modi-
fier/key combination) that was pressed or released. The next eight bits
of the message (8-15) contain the integer key code of the key or com-
bination that was pressed or released (see Figure 2.4).

In most cases, the upper 16 bits of the message are not used.
However, the Macintosh II has a facility which allows it to be connected
to multiple keyboards. In this case, the third eight bits of the message
(16-23) contain information which allows an application to determine
which of several keyboards a particular character has come from. This
can usually be ignored.

The character code returned in the event message is the ASCII
code that is generated internally by the key or combination of keys
pressed. See Appendix C for a complete table of the ASCII character
codes. The key code returned is an integer that represents which physi-
cal key that was struck. See Figure 2.5 for the key code values of the
standard U.S. keyboard and keypad.

To get an idea of how character codes and key codes differ, let’s
consider the event message for two different key-down events, the first
for pressing the e key and the second for pressing Shift-e. For the
first event, the event message would contain the character code for “e”
and a key code value of 14 (decimal). For the second event, the event
message would contain the character code for “E” and the same key
code value of 14 (decimal). Observe that for the two key-down events,

31 24 23 16 15 8 7 0

reserved ADB address virtual ASCII
key code character

Figure 2.4: Event Message for Keyboard Events

Using the Event Manager 27

K

35 12 13 14 15 17 16 1A 1C 19 1D 18 18 33

0.4 R R A 5l
l=_Te T e T T o T2 T (M-l) (TR
o
T

39 A 37 2A 2A__ 7B 7€ D 7E

Apple Standard Keyboard

32 12 13 14 15 17 16 IA 1C 19 1D 1B 18 33
Clear .
4D01]]42

47 1|[a8

AERERE
59 1||s8 1||5C I|]46
T4 Y5 Y6 N+
56 11[57 |{]s8 |{]4E
(el > 3 Eoter

I IIIIIIIIIIIIEI
‘.2A

Maclintosh Plus Keyboard

69 68 71 7F7F
7A Y178 1Y]63 Y76 60 1Y[67 TY[62 Y64 65 1Y[6D 1YT67 Y[6F e M NN o o
Fr l||F2 I||F3 1]|F4 F5 L||F6 ||[F7 [||F8 F9 [{[F10l [F11l]|F12 F13l||F14l||F15 num caps scroll
lock lock lock

72 73 74

R
ETET I EEFE LI
)k ok v o o E

M@@ﬂ@ﬂ@@@@l@l

(30) (35)

Apple Extended Keyboard

Figure 2.5: Key Code Values for U.S. Standard Keyboard and Keypad

28 Using the Macintosh Toolbox with C

=== CH2

while the character codes were different, the key code values remained
the same. The character code is linked to the character generated, which
for the first event was “e” and for the second event “E.” The key code is
linked to the actual key on the keyboard that is struck, which for both
events was the fourth key over on the second row from the top of the
keyboard, or 14 (decimal). If an application is placing text from the key-
board onto the screen, it will use the character code value from the event
message. If an application uses the keyboard for something other than
inputting text—for example, as a music keyboard—and is only con-
cerned with the actual key that is struck, it will examine and use the key
code value. In short, just remember that when any of the modifier
keys—the Shift, Caps Lock, or Option key—is held down with a char-
acter key, the character code changes, but the key code always remains
the same.

To make it easier for us to get at the character code and key
code values, we can use the following constant masks, which are
provided by Think C.

#define charCodeMask 0x000000FF
#define keyCodeMask 0x0000FFO00

We can use these constant masks in the following manner:

theASCIICode = theEvent.message & charCodeMask;
theKeyCode = theEvent.message & keyCodeMask;

Event Message for Update and Activate Events

For update and activate events, the event message contains a
pointer to the window that needs to be updated. The application passes
the window pointer to update or activate handling routines. (These
routines are discussed in Chapter 7, the chapter on multiple windows.)

Event Message for Disk-Inserted Events

For disk-inserted events, the event message contains two pieces
of information. The lower 16 bits (0-15) contain the drive number, in-
dicating which disk drive the disk-inserted event took place in. The
internal drive is equal to 1 and the external drive is equal to 2. The upper

Using the Event Manager

29

16 bits (16-31) contain the File Manager result code from MountVol (see
Figure 2.6).

If the drive number returned is greater than 2, the disk-inserted
event took place on a disk drive connected to either the modem or
printer port. Whenever a disk-inserted event takes place, the system im-
mediately tries to mount the volume by calling the File Manager
function MountVol, which returns the value stored in the upper 16 bits of
the event message. The value indicates whether or not the volume was
successfully mounted. Our application should check the result code and
display some sort of error message if the value returned is anything
other than zero. See Figure 2.7 for the possible result codes returned by
MountVol.

We can define our own constant masks to simplify the task of
getting at the drive number and MountVol result code.

31 1615 0
| Result code from Mountvol Drive number |

Figure 2.6: Event Message for Disk-Inserted Events

Result Code Meaning

0 = noErr No error.

-60 = badMDBErr The disk's master directory is bad. The volume must be reinitialized.

-58 = extFSErr The file system identifier is nonzero, or the path reference number
is greater than 1024.

-36 = ioEmr Disk input/output error.

-41 = mFullEr The system heap (memory) is full.

-57 = noMacDskErr Not a Macintosh volume; the disk does not have a Macintosh format
directory.

-56 = nsDrvEmr The indicated drive number does not match any in the drive queue.

-50 = paramErr Bad drive number; parameters do not specify an existing volume, and

there is no default volume.
-55 = volOnLinErr The specified volume is already mounted and on line.

Figure 2.7: Possible Results from the File Manager Function MountVol

30 Using the Macintosh Toolbox with C

f#define drvNumMask O0x0000FFFF
f#{define resultCodeMask OxFFFF0000

We can use these masks in the following manner:

theDrive = theEvent.message & drvNumMask;
theResult = theEvent.message & resultCodeMask;

The when Field

Each time an event is generated, the number of ticks (sixtieths
of a second) since the system was started up is placed in the when field.
If our application implements a stopwatch feature, it could simply check
for mouse-down events in the start button and the stop button of the
stopwatch. The elapsed time for the application to display would equal
the difference between the values stored in the when fields of each event
record.

The where Field

The location of the mouse, in global coordinates, is placed in
the where field of the event record each time an event is generated. The
location of the mouse is very important to an application when handling
mouse-down events. The location determines the next course of action
an application will take. If the mouse is clicked in a window, the ap-
plication should, using Window Manager routines, determine where in
the desktop the mouse was clicked (these are covered in Chapter 3). If it
is clicked in a menu, control should be passed to menu routines (covered
in Chapter 4). If it is clicked in a control, alert or dialog box, control
should be passed to control, alert and dialog handling routines (the
topics of Chapters 10 and 11).

Using the Event Manager 31

The modifiers Field

For certain types of events, simply knowing the event code is
not enough information for an application to respond accurately. By ex-
amining the modifiers field, an application can determine the status of the
modifier keys and the status of the mouse button; and in the case of an
activate event, the modifiers field indicates whether the window involved
is being activated or deactivated. Let’s take a look at some examples of
when and why an application would have to examine the modifiers field.

One of the features of the Macintosh is that an application
may have keyboard equivalents for its various menu items. Basically,
a keyboard equivalent is a combination of keys, usually the Com-
mand key and a character key, that when struck simultaneously,
execute the particular menu item they are assigned to. As an example,
it is customary for the menu item “Paste” to have a keyboard equiv-
alent of Command-v. An application, by examining the what and
message fields of an event record, may know that a key-down event has
occurred and, for example, that the key struck was the v key. But the
application also needs to know if the Command key was held down or
not. This is one thing the application can find out by examining the
modifiers field. If the Command key was held down, the application
should execute a Paste command; otherwise, it should respond to a
simple v keystroke.

For mouse-down events, the application needs to know whether
or not the shift key is being held down. Shift-clicking often indicates
something quite different from a simple mouse click. Once again, the
application could obtain this additional information by examining
the modifiers field of the event record. A diagram of the modifiers field is
shown in Figure 2.8.

To simplify the process of reading the modifiers field, we can use
the masks shown in Figure 2.9. For the modifier key flags (bits 8-11), a
value of 1 indicates that the key is down. As we saw earlier, if our pro-
gram uses menus and it detects a key-down event, it should check to see
if the user is also holding down the Command key. A Command and
character-key event generally indicates that the user is selecting a menu
item by hitting its keyboard equivalent.

32 Using the Macintosh Toolbox with C

=== cH2

15 13

1211109 8 7 6 10

I

1 if Control key down, 0 if not
1 if Option key down, 0 if not
1 if Caps Lock key down, 0 if not

1 if Shift key down, 0 if not
1 if Command key down, 0 if not

1 if mouse button up, 0 if not

Figure 2.8: Diagram of Modifiers Field

activeFlag
btnState
cmdKey
controlKey
shiftkey
alphal.ock
optionKey

Figure 2.9: Modifiers Field Masks and Their Values

The following code block
respond to key-down events:

char charhit;
case keyDown:
/* assign the ASCII character

shows how our application might

code of the key hit to charhit*/

charhit = theEvent.message & charCodeMask;
/* determine whether or not the command key

was also held down */

if (theEvent.modifiers & cmdkey) {
/* respond to a command-character key event....

pass the information
} else {
}

to menu handling routines */

Note that it is not necessary for the status of the Shift, Caps

Lock or Option keys to be checked

when an application responds to a

Using the Event Manager

33

key-down event. When any of these three keys is held down along with
a character key, the character code is appropriately changed. For key-
down events, it is usually only necessary to check the status of the
Command key.

The control key bit of the modifiers field only applies to the Apple
Extended and Macintosh II keyboards, as these are the only keyboards
with control keys. Your application will probably want to ignore the
possible existence of a control key since it cannot be assumed to be
available on all Macs.

When any type of event occurs, our application can check the
status of the mouse button by examining bit 7 of the modifiers field. For
the mouse button (bit 7), a value of 0 (zero) indicates the mouse button
is down.

When an activate event is generated, an application would look
to the message field for a pointer to the window affected, and then it
would look to bit 0 of the modifiers field to see whether the window is
being activated or deactivated. A value of 1 in bit 0 indicates the window
is being activated. When our application begins dealing with multiple
windows in Chapter 7, the importance of activate events will become
more evident.

The Event Queue

Whenever an event is generated, information about the event is
placed in an event record. Once the information is placed in the event
record, the Event Manager places the event record into the event queue.
The event queue is part of the Event Manager. The application doesn’t
have to do anything to set it up or prepare it for events. The first events
placed in the queue are generally the first events returned when an ap-
plication polls the queue for events to process.

Let’s take a closer look at how events are returned from the
event queue.

34 Using the Macintosh Toolbox with C

-_-— . CH.2

Priority of Events

When an application retrieves events from the event queue,
they are generally returned in the order they were generated. Because
some events have a higher priority than others, however, they disrupt
first-out action of the event queue. When the Event
Manager is polled, it will return the highest priority event available ac-

the standard first-in

cording to the order shown in Figure 2.10.

An application asks, "Hey Event Manager, give me the next event."

The Event Manager responds according to the following algorithm

Yes
Are there any pending '
activate events? Return an activate event

defined events in the event
queue?

No
Are there any mouse-down,
mouse-up, key-down, key-up Yes Return one of the named
disk-inserted, network, events in FIFO order
device driver, or application-

A

No

auto-key

Yes]
Are there any pending ———b&eturn an auto-key event
events?

A

No

window need

Yes
Do the contents of any ‘——{Return an update event)
to be redrawn?

No

Return a null event

Figure 2.10: Priority of Events Returned by the Event Manager

Using the Event Manager

35

Activate and update events are not actually placed in the event
queue. When an application polls the Event Manager, the Event
Manager checks for any pending activate events before going to look in
the event queue. For update events, if no higher priority event is avail-
able, the Event Manager will examine, from front to rear, all windows to
see if any of their content regions need to be redrawn. If such a window
is found, an update event is generated and returned to the application.
The application can then pass information about the update event to the
update handling routines covered in Chapter 7.

Event Masks

Many Event Manager routines have an event mask parameter.
The event mask indicates to the function or procedure which different
event types the routine applies to. An event mask is a 16-bit integer with
one bit for each event type (see Figure 2.11). If a bit is set to 1, the event
type for that bit is active, and the routine applies to it.

For each individual event type, there is a constant event mask
defined (see Figure 2.12). To specify multiple event types, we can simp-
ly add event masks together. For example, passing an event mask of
(mDownMask + autoKeyMask + driverMask) to a function or procedure would
indicate to the particular routine to only act upon mouse-down, auto-
key, and device driver events.

application-defined not used
device driver mouse-down
network mouse-up
reserved for future use ‘————————— key-down
activate '———— key-up
disk-inserted auto-key
update

Iisha]sfi2 11 Jofs Jsf7]e Is]s I3 l2] 1] o]

Figure 2.11:

Event Mask Diagram

36 Using the Macintosh Toolbox with C

=== cH2

Event Type

all event types
mouse-down
mouse-up
key-down

key-up

auto-key

update
disk-inserted
activate

network

device driver
application-defined
application-defined
application-defined
application-defined

Event Mask & Value

everyEvent
mDownMask
mUpMask
keyDownMask
keyUpMask
autoKeyMask
updateMask
diskMask
activMask
networkMask
driverMask
app1Mask
app2Mask
app3Mask
app4Mask

-1

2

4

8

=16
=32
=64
=128
=256

= 1024
= 2048
= 4096
= 8192
= 16384
= -32768

Figure 2.12: Event Mask Values

Using the Event Manager Routines

The Event Manager has routines to manipulate event records
and to read the mouse location and its button status, and a routine to see
how long the system has been running. In the following sections, we
will examine each of these routines in order to see how they work and

how they might fit into a Macintosh application.

Manipulating Event Records

A Macintosh application must constantly poll the Event
Manager for events to respond to. To do this, most applications have a
main event loop containing a GetNextEvent call (see the end of the chap-
ter for a sample main event loop). According to the priority of events
and the eventMask specified, GetNextEvent returns, in theEvent parameter,

an event record of the next available event.

char GetNextEvent (eventMask, theEvent)

int eventMask;
EventRecord *theEvent;

Using the Event Manager 37

If the event is stored in the event queue, it is removed. Events that are
not specified in the eventMask but that are present in the event queue are
left there. The function value returned by GetNextEvent is true if an event
is returned in theEvent, and false if a null event is returned. The function
also returns a false value when the system wants to intercept and
respond to theEvent. The system will intercept activate, update, and key-
board events when they correspond to desk accessories and when the
desk accessory is able to handle the event.

If our application has a need to see what events are waiting to be
processed, but doesn’t want to alter the contents of the event queue, we
can use the function EventAvail.

char EventAvail (eventMask, theEvent)
int eventMask;
EventRecord *theEvent;

EventAvail works exactly like GetNextEvent except that if the event is
stored in the event queue, it is not removed.

If our application uses its own particular event type, it will need
to post the event to the event queue using the function PostEvent.

short PostEvent (eventCode, eventMsgq)
int eventCode;
long eventMsg;

The eventCode and the eventMsg parameters indicate the event type and
event message of the event being posted to the queue. The other fields of
the event record (when, where, and modifiers) are filled in automatically
by the Event Manager with the current time, mouse location, and
modifiers field information.

To get rid of events as opposed to posting them, our application
can call the procedure FlushEvents.

FlushEvents (eventMask, stopMask);
int eventMask;
int stopMask;

FlushEvents removes all the events from the event queue that are
specified in the eventMask. It removes all the events indicated up to the
first event specified in the stopMask. For example, if we called Flush-

38 Using the Macintosh Toolbox with C

=== CH.2

Events with an eventMask of mDownMask and a stopMask of keyDownMask, all
of the mouse-down events up to the first key-down event would be
removed from the queue. If we specified a stopMask value of O instead,
all the mouse-down events would be removed.

Note: Apple has, in its technical documentation, defined Flush-
Events twice, with each definition having a different number of arguments.
Think C uses the more common definition, as illustrated above. Some
development systems call FlushEvents in a different manner. Instead of
passing two int arguments, an application will pass a long with the event-
Mask in the low order word and stopMask in the high order word. Keep
this in mind if you use source code which originates with a different ver-
sion of C.

Before your application enters the main event loop for the first
time, its a good idea for the program to call FlushEvents with an eventMask
of everyEvent and a stopMask of 0. This will clear the event queue of any
stray mouse-downs or keystrokes that were clicked or typed to the
Finder.

Mouse Routines

If we are interested in the location of the mouse at any particular
time, even when an event has not occurred, we can call the procedure
GetMouse.

GetMouse (mouseLoc)
Point *mouseloc;

After calling GetMouse, the variable mouseLoc will contain the
position of the mouse in the coordinate system of the current grafPort.
(We will learn about grafPorts in Chapter 5. For now, you can think of a
grafPort as the current window.)

To check and see whether the mouse button is currently up or
down, we can use the functions Button or StillDown.

char Button();

The function Button returns a true value if the mouse button is
down, and a false value if the button is up.

Using the Event Manager 39

The function StillDown is generally called after a mouse-down event.
char StillDown();

It returns the same values as Button, but under the following cir-
cumstances. If the mouse button is currently down and there are no
pending mouse events in the queue, a true value is returned. Under any
other circumstances, a false value will be returned. The advantage of
StillDown is that it indicates whether or not the button is still down from
its original pressing. The result of StillDown is used in conjunction with a
number of window handling routines that we will look at in the next
chapter.

Time Routines

It is possible to find out how long it has been since the system
was started up by calling TickCount.

long TickCount ();

The long integer returned by TickCount is the number of ticks
(sixtieths of a second) that have occurred since the system was started
up. If our application implemented a clock or timer—as in a game for
example—it might have a TickCount call somewhere in its main event
loop. This call would allow the application to update the clock every
time through the loop.

Escape from the Main Event Loop

One last thing we’ll need to know is how to get out of the main
eventloop, in other words, how to let the user exit from an application. The
toolbox provides the procedure ExitToShell specifically for this purpose.

ExitToShell () ;

The procedure ExitToShell quits the current application and returns to the
Finder.

40 Using the Macintosh Toolbox with C

==="Ch.2

The other way to do this is to simply allow the loop to cease
looping. The program will then fall through to the end of itself and re-
start the Finder. You may prefer to exit this way for a number of reasons.
If the value which the eventloop tests is a global variable, you can signal
the end of the program from multiple locations within your code by
simply setting this global variable false.

A commonly used name for this variable is alive. When alive is no
longer true, your program will no longer be alive.

A Sample Main Event Loop Program

The following is a sample main event loop. The loop has switch
statements for each possible event type, except for application defined
events. In practice, your application’s main event loop will typically not
have switch statements for every event type, but rather only those that
your application wants to respond to. Inside of each case, you would in-
sert the appropriate routines to respond to the event detected.

It’s time to move on to another essential feature of Macintosh
applications—namely, windows.

Using the Event Manager 41

EventRecord event;
while (TRUE) {
if (GetNextEvent (everyEvent, &event)) {
switch (event.what) {
case mouseDown: /* mouse-down event */
break;
case mouseUp: /* mouse-up event */
break;
case keyDown: /* key-down event */
break;
case keyUp: /* key-up event */
break;
case autoKey: /* auto-key event */
break;
case updateEvt: /* update event */
break;
case diskEvt: /* disk-inserted event */
break;
case activateEvt: /* activate event */
break;
case networkEvt: /* network event */
break;
case driverEvt: /* device driver event */
break;
case nullEvent: /* no events are pending */
}
}
}

An Introduction to the
Window Manager

Windows like those shown in Figure 3.1 are perhaps the single
most striking feature of the Macintosh. Windows serve primarily as a
means for organizing the display of information on the desktop, allow-
ing the program user to rapidly access information organized in a
natural extension to an office desk environment. It is important that we
begin the topic of windows early, to emphasize their fundamental im-
portance in the Toolbox. Now that we understand how the Macintosh
uses events to react to the world around it, an examination of windows
will provide a convenient setting for our first elementary programming

examples.
Information about Figure 3.1
LaserDraw)
5 items 362K in disk 37K available |o:
Kind:
Size: @ T
Where: _ XS ‘o -
Created] S{ELJ=—= Window Figures
Modified Name size K
D figure 3.1 2%«
@ Locke se{ D figure 3.4 8K
D figure 35 2K_
2:41:08 AMCL T &

Figure 3.1: Windows on the Desktop

44 Using the Macintosh Toolbox with C

=== CH.3

We begin our discussion of windows with an introduction to the
Toolbox procedures used to perform basic window operations. The
Window Manager contains commands for creating, manipulating, and
destroying windows. In this chapter we will not attempt a complete dis-
cussion of the Window Manager but will instead offer a description of
the features needed to construct a program using a single window. For
many types of applications—namely games and utilities—a single win-
dow is sufficient. Including desk accessories or dialog windows in an
application is a more complex process because it involves overlapping
windows. At this time, however, it is important to concentrate our ef-
forts on the processes involved in creating, dispbsing, moving, and
resizing a single window. In Chapter 7 we will return to the Window
Manager to discuss the more difficult subject of manipulating multiple
windows.

When the MultiFinder is running, even a single application
such as the one described in this chapter, may have to contend with mul-
tiple windows. The other windows belong to different applications that
are running concurrently. The methods of responding to this are beyond
the scope of this book.

Types of Windows

Before we can begin to discuss how an application interacts
with the Window Manager, we must first discuss windows themselves.
The Toolbox contains the definitions for six types of windows; in addi-
tion, you may choose to define your own custom window styles. These
predefined window types are shown in Figure 3.2. The window types
are actually constants that are defined in the Window Manager header
file included with your development system. Figure 3.3 lists, for each
predefined window style, the type name and the window definition ID,
along with its assigned value. The names of the standard window types
suggest the usual ways in which these types are used, as document win-
dows and dialog and alert boxes.

An Introduction to the Window Manager 45

The two types of document windows, documentProc and noGrow-
DocProc, are nearly identical, the only difference being that the former
can be resized, while the latter cannot. The rounded document window,
rDocProc, is often used for desk accessories; the radii of curvature can be
varied by adding a constant, from 1 to 7, to the definition ID (see Fig-
ure 3.4). The remaining windows types are commonly used for dialogs

and alerts.

documentProc noGrowDocProc rDocProc
=]
dBoxProc plainDBox altDBoxProc
Figure 3.2: Predefined Window Styles
Window Type window ID
Document window documentProc =0
Dialog box dBoxProc =1
Plain dialog box plainDBox =2
Alternative dialog box altDBoxProc =3
Fixed size document window noGrowDocProc =
Rounded document window rDocProc =16

Figure 3.3: Window Types and Definition IDs

46 Using the Macintosh Toolbox with C

- - .- CH.3

windowlD radii
rDocProc 16,16
rDocProc+ 1 4,4
rDocProc + 2 6,6
rDocProc + 3 8,8
rDocProc+ 4 10,10
rDocProc + 5 12,12
rDocProc+ 6 20,20
rDocProc+ 7 24,24

Figure 3.4: Radii of Curvature for rDocProc Windows

Components of a Window

An individual window can be divided into distinct regions.
These regions are illustrated in Figure 3.5 and are described in the fol-
lowing sections.

Title Bar (Drag Region)

The frame containing the window’s title, if there is one, is
known as the title bar. This area is used for dragging the window with
the mouse. Dialog and alert boxes have no title bar and thus cannot be
moved like document windows. To conform with the “User Interface
Guidelines,” the title bar of the active, or frontmost, window should al-
ways be highlighted, while for inactive windows the title bar should
remain unhighlighted.

Close Box (Go-Away Region)

The close box is the small square in the upper left-hand corner
of document windows. The close box, which is optional, can be used to
notify the application that the user is finished with a window and that it
should be put away. Alerts and many dialogs do not contain close boxes
since they are not designed to be put away by the user.

An Introduction to the Window Manager

close box (go away region) title bar

\ésg Document Window S|

scroll bar

content region size box (grow region)

Figure 3.5: Parts of a Document Window

Size Box (Grow Region)

The small icon in the lower right hand corner of many docu-
ment windows is the size box. The presence of such a grow region
indicates that the size of the window may be adjusted with the mouse,
although as we shall see later in this chapter, the size box need not be
visible to resize a window.

Content Region

The content region is the interior of the window where text or
graphics will be drawn. For inactive windows, the grow region becomes
part of the content region. Under normal circumstances when a mouse-
down event occurs in the content region of an inactive window, the
application should instruct the Window Manager to make it become
the active window.

48 Using the Macintosh Toolbox with C

- cH.a

Structure Region

The structure region is defined by the sum of all the parts of a
window we have just discussed. The role of the structure region is to in-
dicate the total size of the window on the desktop. When an application
moves overlapping windows, the structure regions of the frontmost win-
dows are used by the Window Manager to determine which portions of
the underlying windows must be redrawn.

Window Manager Data Types and Structures

As is the case for nearly all of the sections within the Tool-
box, the Window Manager has its own internal types of variables and
data structures. Associated with each and every window in the system is
a structure known as a WindowRecord, which contains information unique
to the window. The box entitled “Window Manager Data Structures”
contains the definitions of the data type WindowRecord and several as-
sociated data types, which can be found in the header files of your
development system.

The storage for a WindowRecord must be nonrelocatable and can
easily be allocated by the application itself as a local variable. In addition,
the Window Manager can obtain the necessary memory. The contents of
a nonrelocatable object, like a WindowRecord, can be accessed through a
pointer, in this case a variable of type WindowPeek. To refer to a window as
an entity on the desktop, use the variable type WindowPtr.

Most of the fields in a WindowRecord used by the operating sys-
tem are rarely directly manipulated by the application. The refCon field,
however, is designed for use by the application and can contain any
32-bit value the application decides to associate with a particular win-
dow (a pointer or handle to a related data structure might be kept here).
The updateRgn field is also read by many applications, as it contains a
handle to the region describing which portions of a window need to be
redrawn. The uses of the updateRgn will be discussed when we return to
the Window Manager in Chapter 7.

An Introduction to the Window Manager 49

struct

}i

#define
typedef
typedef

WR |
GrafPort
int

char
char

char

char
RgnHandle
RgnHandle
RgnHandle
Handle
Handle
Handle
int
Handle
struct WR
PicHandle
long

WindowRecord struct WR
WindowRecord *WindowPeek;
GrafPtr

Window Manager Data Structures

port; /* grafPort for window */
windowKind; /* creator of window */

visible; /* TRUE if visible */

hilited; /* TRUE if hilighted */
goAwayFlag; /* TRUE if has go-away region */
spareFlag; /* system use */

strucRgn; /* handle to structure region */
contRgn; /* handle to content region */
updateRgn; /* handle to update region */
windowDefProc; /* window definition function */
dataHandle; /* data for definition function */
titleHandle; /* handle to title string */
titleWidth; /* width of title in pixels */
controlList; /* control list for window */
nextWindow; / next window in window list */
windowPic; /* picture for drawing window */
refCon; /* reference value for application */

WindowPtr; /*a GrafPtr is a QuickDraw data type*/

Windows and GrafPorts

When drawing text or graphics in a window, an application
must inform the Toolbox where to draw by referring to the window as a
grafPort, a type of graphics device. Choosing a particular grafPort is
similar to sending a printer file to one of several printers and plotters
connected to a computer. Since the Macintosh can support multiple win-
dows on the screen, the Toolbox must know which window the
upcoming drawing commands should be carried out in. It is not neces-
sary for the window you wish to modify to be the active window on the
desktop, indeed, the window may not even be visible while you are
drawing into it. We will discuss grafPorts further in Chapter 5, when we
focus on QuickDraw.

50 Using the Macintosh Toolbox with C

=== CH.3

To inform the Macintosh Toolbox which window it should
begin drawing into, use the procedure

SetPort (gp)
GrafPtr gp;

The parameter passed to SetPort is a pointer to the data contained in the
grafPort that is assigned to the window that the Toolbox should begin
drawing in. If you study the structure of a WindowRecord, you will see that
the WindowPtr is in fact the GrafPtr of the window.

The procedure GetPort returns in its parameter a pointer to the
current grafPort, which is the same as the WindowPtr of the window where
a drawing command last took place.

GetPort (gp)
GrafPtr *gp;

The following is a short example that uses GetPort to obtain a copy of the
current grafPort.

/* locally defined variables - GrafPtr for current grafPort */
GrafPtr currentGrafPtr;
/* get current GrafPtr - pass location of currentGrafPtr */

GetPort (¤tGrafPtr);

We will make use of this example in Chapter 7 when dealing with mul-
tiple windows.

Using the Window Manager

Before you can use any of the Window Manager’s routines, it
must be initialized with the procedure

InitWindows () ;

An Introduction to the Window Manager 51

which draws the desktop and an empty menu bar. InitWindows also re-
serves storage for the desktop (a variable of type GrafPort) and makes the
desktop the current grafPort. If you wish to draw on the desktop or alter
any of the default settings such as background pattern, refer to Chapter 5
where the actual contents of a GrafPort are discussed.

Creating a New Window

As you’ll see in many of the following chapters, there are two
ways to create most of the things on the Macintosh which involve sig-
nificant amounts of static storage. The most obvious way to create a new
window is to define it with Toolbox calls from your program. The less
obvious way is to define it as a program resource.

Chapter 9 of this book includes a complete description of how
to create and utilize resources. We’ll touch on the process here, how-
ever, as it pertains to the Window Manager.

Let’s begin with the easy way to create a window, a Toolbox
call from your program. To create a new window on the desktop, call the
function

WindowPtr NewWindow (wStorage,boundsRect, title, visible, procID,
behind, goAwayFlag, refCon)
WindowPeek wStorage;

Rect *boundsRect ;
Str255 *title;
char visible;

int proclD;
WindowPtr behind;

char goAwayFlag;
long refCon;

Let’s examine each of the parameters of NewWindow in detail.

wStorage Parameter

When the window is created, the Window Manager will place
the WindowRecord at the location pointed to by the wStorage parameter.
If the value NULL is passed, NewWindow will request space from the
Memory Manager instead. In most cases the application should supply

52 Using the Macintosh Toolbox with C

- .- .. CH.3

storage directly, by setting wStorage to the address of a WindowRecord
declared in the application. We will see in Chapters 6 and 7 how to re-
quest this space directly from the Memory Manager. A good rule of
thumb is to allow NewWindow to allocate the storage for windows that
appear only briefly, such as dialogs or alerts.

boundsRect Parameter

The boundsRect parameter points to a variable of type Rect con-
taining the bounding rectangle, in global coordinates (see boxed
discussion of global coordinates). The coordinates are global and as
such specify not only the size of the window but also its position on the
desktop. The area enclosed by the boundsRect becomes the content region
of the window. For rounded or plain document windows, the bounding
rectangle does not include the region occupied by the title bar. One must
consider the additional area occupied by the title bar when drawing win-
dows, especially when placing them near the menu bar (the height of the
menu bar is 20 pixels).

titte Parameter

The title for the window, pointed to by title, is passed as a Pascal
string. The title parameter may also be specified as a C string, but it must
first be converted to a Pascal string before being passed to NewWindow. It
is important to recall from our earlier discussion of C to Pascal string

The coordinates used on the Macintosh desktop are referred to as global coor-
dinates. In this Cartesian system the top left corner of the screen is the origin, the
point (0,0), while the lower right hand corner of the screen, on a standard Macin-
tosh, is the point (512,342). Any point on the desktop, even though it may not fit
on the current screen, can be expressed in this system of coordinates as a horizon-
tal and vertical offset from the origin at (0,0). To define a rectangle, one needs two
points corresponding to the top-left and bottom-right comers of the rectangle.
Coordinate systems, points and rectangles are discussed in greater detail in Chap-
ter 5, the QuickDraw chapter.

Macintosh Global Coordinates

An Introduction to the Window Manager

53

conversion that if the string will be reused (for example to recreate the
title if the window has been closed), you must make certain to reconvert
the string to C format. NewWindow requests the Memory Manager to
make a private relocatable copy of the string and places a handle to it in
the titleHandle field of the WindowRecord. The title parameter will be ig-
nored for windows that cannot have titles.

If you simply want to pass a fixed string for this argument, you
can define it by 'using the special Think C Pascal string notation, like
this:

“\pUntitled”

Note that even if your window is not a type which has a title,
you must have an argument here. It should be an empty string, but it
should be an empty Pascal string. This would be written as “\p”.

visible Parameter

The visible parameter is a Boolean value that determines whether
the window should appear on the desktop or remain hidden. Windows
are often created in an invisible state, so that the contents can be drawn
before the window appears on the desktop. Pass a true value here to
make the window visible.

procID Parameter

The type of window to draw is specified by the proclD parameter.
Pass one of the window definition IDs shown in Figure 3.2.

behind Parameter

To place the new window underneath an existing window on
the desktop, set the behind parameter to the WindowPtr of the existing win-
dow. Alternatively, the new window can be placed either in front of or
behind all other windows by passing a value of (WindowPtr)-1L
or (WindowPtr)OL, respectively. Note that casting the values to type
WindowPtr is mandatory in C, since the internal representation of an in-
teger may not be the same as that for a pointer.

54 Using the Macintosh Toolbox with C

- .- cH.a

goAwayFlag Parameter

The parameter goAwayFlag determines whether the window
will be drawn with a close box. You must pass a true - nonzero - value
if the window should contain a close box, or a false value if it should
not. This parameter will be ignored if the window style does not in-
clude a close box.

refCon Parameter

As we mentioned earlier, each WindowRecord contains a 32-bit
value, the refCon field, for use by the application program. This value
may be initialized by passing the desired value as the refCon parameter in
a call to NewWindow. Subsequent chapters will provide examples of pos-
sible ways in which an application can use the refCon field.

An Example: Creating a New Window from C

The following function entitled MakeAWindow creates a new win-
dow on the desktop and makes it the current grafPort. Before creating the
window, the routine must create a bounding rectangle for the window
and convert the title string to the (Pascal) format used by the Toolbox.

WindowPtr MakeAWindow () /* MakeAWindow () */
{
/* locally defined variables */

Rect myBoundsRect ;
char *myTitle;

/* initialize bounding rectangle

- use SetRect from QuickDraw

- SetRect (&émyBoundsRect, left, top, right, bottom);
*/

SetRect (&myBoundsRect, 50, 60, 150, 260);

/* initialize pointer with C string constant */
myTitle = “My Window Title”;

/* create myWindow

An Introduction to the Window Manager 55

- convert title with CtoPstr()

- window ID = rDocProc (rounded document window)
- visible & in front of all other windows

- with go-away region

- use global WindowRecord myWindowRec

- allocate storage locally */

myWindowPtr = NewWindow (&émyWindowRec, &myBoundsRect,
CtoPstr (myTitle), Oxff, rDocProc, (WindowPtr) -1L,
Oxf£, OL);

PtoCStr (myTitle); /* reconvert to C string */

SetPort (myWindowPtr); /* set current port to myWindow */
return myWindowPtr;

Notice that the routine has assumed the WindowRecord is a global
variable. For now this is acceptable, but in a real application it would be
better to keep this and other Toolbox structures in a separate block of
memory requested explicitly from the Memory Manager. We will see
just how to do this in Chapter 6.

Creating a New Window as a Resource

Think C comes with a program called RMaker. This is a re-
source compiler. In effect, it is a special language for writing data
definitions in. Because the Macintosh uses so many kinds of complex
data, having a streamlined way of defining them is important to writing
efficient programs.

Under Think C, the compiler will automatically link a compiled
resource file with the same name as your program. If your program is
called MyProgram.C, Think C will look for a file called MyProgram.
Rsrc and include it in the compilation process if it’s found. The com-
plete details of this procedure can be found in Chapter 9.

In order to create a window as a resource, you must write a
resource file which contains the window definition in RMaker’s lan-
guage, transfer to RMaker, compile the resource file, transfer back to
Think C and then compile your program. Again, a more complete ex-
planation of this process can be found in Chapter 9.

56 Using the Macintosh Toolbox with C

=== CH.3

Despite the obvious complexity of using resources rather than
using C language calls, (for those circumstances where you have a
choice) using resources is preferable when you get into writing large ap-
plications. It gives the Macintosh a lot more flexibility in managing its
memory.

In addition, resources can be modified after your program has
been compiled. The ResEdit program, which also comes with Think C,
allows you to extract any resource, make changes to it, and return it to
your program. An advanced technique along these lines allows applica-
tions to modify their own resources, for example, to allow users to
configure the size and placement of windows to their liking. At various
places in Inside Macintosh, Apple hints at this not being a very good
idea, but it’s widely used in professional application development just
the same.

This is the RMaker definition for a window:

TYPE WIND

,128
Untitled
100 120 200 450
Visible GoAway

0
0

Let’s see what each of these lines does.
The TYPE Field

The first line tells RMaker what sort of resource this is. There is
a list of the common resource types in Appendix D of the Think C user’s
manual. RMaker will deal with the rest of the fields in this resource in a
way which is appropriate to the TYPE field. All resource types are ex-
actly four characters long.

The Reference Number

This is the number which your program will use to call this win-
dow. It can be any integer you want. It is allowable to have multiple
resources in the same file with the same numbers so long as you don’t
have multiple resources of the same type and the same number. Later on

An Introduction to the Window Manager 57

in this resource file you might define a MENU resource numbered 128.

The title

This is the title which will appear in the window, assuming that
the window you are defining is of a type which supports a title. Even if
it is not, you must put some text on this line. You can alter the title from
within your program later on by using the SetWTitle and GetWTitle Tool-
box functions.

RMaker automatically generates this title as a Pascal style string.

The Bounding Rectangle

This defines where the window will appear on your screen, in global
coordinates. These numbers appear in the order top, left, bottom, right.

The Visible Field

This tells the window manager that the window is to be visible
and that it is to have a GoAway box.

The Window Type

This defines which of the six basic window types this is to be.
The zero on this line means that this will be a document window with a
size box. Consult Figures 3.2 and 3.3 for the other window types and
their appropriate numbers.

The refCon

This is the same as the refCon argument in NewWindow above.

Calling a Window Resource from C

If the definition of a window resource seems complicated, it is
at least partially offset by the C language call for a window resource,
which is much simpler.

58 Using the Macintosh Toolbox with C

=== CcH.3

WindowPtr GetNewWindow (windowID, wStorage, behind)
int windowID;
WindowPeek wStorage;
WindowPtr behind;

The windowID in this example would be 128. In order to make the
window appear in front of all the other windows on the screen, which is
usually what you will want to do, pass —1L for the behind argument.

Disposing of Windows

Windows should be disposed of as soon as they are no longer
needed by the application. Disposing of a window decreases the amount
of overhead the operating system incurs while manipulating multiple
windows; in addition, any memory requested from the Memory
Manager will be released.

Two Toolbox functions exist for disposing of windows:

DisposeWindow (theWindow)
WindowPtr theWindow;

CloseWindow (theWindow) ;
WindowPtr theWindow;

DisposeWindow should be used if NewWindow requested space from the
Memory Manager so that the memory can be released. In the case where
storage for the WindowRecord is handled entirely by the application, use
CloseWindow, which does not attempt to release the memory occupied by
the WindowRecord. Attempting to release the storage occupied by a vari-
able declared in the application will result in a system error.

Window Display Routines

The Window Manager includes procedures to alter the ap-
pearance and front-to-back ordering of windows on the Desktop.
Several of these routines are designed to be called by other Window
Manager routines and are rarely used directly by the application. We

An Introduction to the Window Manager

59

will exclude many of these nonessential routines here. Refer to Inside
Macintosh for a complete description of these routines.

The Order of Windows on the DeskTop

It is often necessary for an application to determine which win-
dow is active. The function FrontWindow returns the WindowPir of the
active window, or NULL if there is no active window.

WindowPtr FrontWindow ()

The following example uses FrontWindow to determine whether
a mouse-down event has occurred in an active or inactive window. The
example assumes that the Event Manager has returned a mouse-down
event for the window theMouseWindow:

/* given the non-NULL WindowPtr theMouseWindow */

if(FrontWindow() == theMouseWindow) {
/* mouse-down in active window */
} else {
/* mouse-down in inactive window */

}

Such a test should always be performed for mouse-down
events. If the event occurred in an inactive window, it will need to be
activated. (An exception to this rule is discussed later in this chapter in
the section on moving windows.)

To change the active window when more than one window is
present, as when a mouse-down event occurs in the content region of an
inactive window, call the SelectWindow procedure, as follows:

SelectWindow (theWindow)

WindowPtr theWindow;

This procedure first unhighlights the previously active window, moves the
specified window in front of all other windows, and then highlights it.
SelectWindow also generates activate events for the appropriate windows.

For windows that are created as invisible or are subsequently
made invisible, call ShowWindow:

60 Using the Macintosh Toolbox with C

== cH.3

ShowWindow (theWindow)
WindowPtr
theWindow;

This procedure makes the window visible. Conversely, to make
a visible window invisible, call HideWindow:

HideWindow (theWindow)
WindowPtr theWindow;

Calling HideWindow for the active window will make the frontmost
remaining window active. A subsequent call to ShowWindow will make
the window visible again, but will not bring it to the front. If no other
windows are present on the desktop, ShowWindow will make the window
active.

The Window Title

The title of a window may be changed by using the procedure
SetWTitle, where the title parameter is a pointer to a Pascal string:

SetWTitle (theWindow, title)
WindowPtr theWindow;
Str255 *title;

When converting a C string for use in SetWTitle, remember to
reconvert to a C string before reusing the string. Alternatively, the string
pointer can be declared as a global and the string converted to Pascal
format one time only at the beginning of the application. The following
example shows how to change the title of an existing window. The new
title is in C string format:

/* locally defined variables */

WindowPtr theWindow;
Sstr255 *newTitle;

/* initialize the pointer with a C string constant */
newTitle = “A Different Title”;

/* set the new title */

An Introduction to the Window Manager 61

SetWTitle (theWindow, CtoPstr (newTitle));

/* restore string to C format - so newTitle string
can be reused */

PtoCstr (newTitle) ;

At times it may be useful to directly manipulate the title string
of a window. GetWTitle returns a pointer to the title string of the window
specified by theWindow.

GetWTitle (theWindow, title)
WindowPtr theWindow;
Str255 *title;

It is important to recall from our earlier discussion of a Window-
Record that the title string is stored in a relocatable block. Since GetWTitle
returns a pointer to the string, any operations on the title should be
performed immediately in case the string is relocated. The Memory
Manager contains several procedures that permit safe access to the
string in this situation (see Chapter 6).

The Size Box

If the size of a window can be adjusted, then it should have a size
box. While the operation of enlarging or shrinking the window is handled
by the window definition in the operating system, the need to highlight and
unhighlight the size box must be handled by the application.

The procedure DrawGrowicon should be called when the Event
Manager reports an activate or update event for a window with a size box.

DrawGrowIcon (theWindow)
WindowPtr theWindow;

Of the predefined window types, only document windows can
be resized. For active document windows DrawGrowlcon redraws the size
box, and the outlines of the scroll bars. If the window 1is inactive Draw-
Growlcon redraws the outlines of the scroll bar and size box and removes
the size box icon to indicate that the window cannot be resized.

62 Using the Macintosh Toolbox with C

=== CH3

More complete use of the window’s content region can be made
by not displaying the size box. This can be especially important when
using many small windows. If the size box is not displayed, however,
the user may not realize that the window can be resized.

Manipulating Windows with the Mouse

The Macintosh mouse is the primary tool for manipulating win-
dows on the desktop. The mouse can be used to activate, move, resize,
and close windows. When the Event Manager function GetNextEvent
reports a mouse-down event, the application must first determine where
the event occurred. A mouse-down event could occur in a window,
in the menu bar, or in several other places. For mouse-down events in
windows, the response of the application will depend on where in the
window the event took place.

Determining the Location of a Mouse-Down Event

Given the global coordinates of the mouse-down event, the
routine FindWindow will return the WindowPtr of the window, if any, in
which the event occurred.

int FindWindow (thePt, whichWindow)
Point thePt;
WindowPtr *whichWindow;

Recall that under Think C, Points are passed by value rather than
by reference much of the time. The whichWindow parameter is actually the
address of the WindowPtr being passed. If w is a WindowPtr, you would use
&w here.

FindWindow also returns one of the predefined constants, listed
in Figure 3.6, to indicate the location of the mouse-down. These values
should be defined in the header file for the Window Manager. After call-
ing FindWindow, the parameter whichWindow will point to the WindowPtr of
the window that the mouse event occurred in. If the mouse event did not
occur in a window, the pointer will be set to NULL. The application can
use the value returned by FindWindow to call routines to handle the dif-
ferent contexts in which a mouse-down event can occur.

An Introduction to the Window Manager 63

Location of mouse-down

none of the following

in menu bar

in system window - usually a desk accessory
in content region

in drag region

in grow region - active windows only

in go-away region - active windows only

windowCode
inDesk =0
inMenuBar =1
inSysWindow =2
inContent =3
inDrag =4
inGrow =5
inGoAway =6

Figure 3.6: Constants Returned by FindWindow

The following example demonstrates the general method for

separ: ating mouse-down events:

/* locally defined variables */

WindowPtr whichWindow;
EventRecord theEvent;
short windowCode;

/* This example is from a portion of the

- application’s main event loop

- we begin at part of the switch on the event type

- returned by GetNextEvent */

case mouseDown:

/* pass location of where field in EventRecord theEvent
- returns WindowPtr in whichWindow */

windowCode = FindWindow (theEvent .where,

case inDesk:

/* actions appropriate for the Desktop */

break;
case inMenuBar:

/* actions appropriate for the menu bar */

break;
case inSysWindow:

&whichWindow) ;
switch (windowCode) { /* where did event occur? */

/* actions appropriate for a system window */

break;

64 Using the Macintosh Toolbox with C

-— - - CH.3

case inContent:
/* actions appropriate for content region */
break;
case inDrag:
/* actions appropriate for the drag region */
break;
case inGrow:
/* actions appropriate for the grow region */
break;
case inGoAway:
/* actions appropriate for
the go-away region */
break;

}

Every application that uses the mouse will include a section of
code similar to this example. In upcoming chapters we will discuss how
to handle mouse-down events that occur in the menu bar (Chapter 4), in
the content region of a window (Chapter 7), and in system windows
(Chapter 13). Mouse-down events that occur on the desktop are gener-
ally ignored (the finder is one exception to this rule, as it places icons on
the desktop). In the remainder of this chapter we discuss the routines
that are used to handle the parts of a window where a mouse-down event
can occur.

Using the Go-Away Region

If FindWindow reports that the event occurred in the go-away
region, the user is probably trying to close the window. However, the
window should not be closed until the mouse button has been released.
If the mouse was still in the go-away region when the button was re-
leased, the window should be closed. The function TrackGoAway
simplifies this process

char TrackGoAway (theWindow, thePt)
WindowPtr theWindow;
Point thePt;

Pass TrackGoAway the WindowPtr of the window in question and
the global coordinates of the mouse-down event. TrackGoAway takes
control until the mouse button is released and will highlight or unhigh-
light the go-away region depending on the mouse location. The value

An Introduction to the Window Manager 65

returned by TrackGoAway will be true if the mouse button was released in
the go-away region and false otherwise.
The following demonstrates the use of TrackGoAway:

/* locally defined variables */

WindowPtr theWindow;
EventRecord theEvent;
char stillInGoAway;

/* portion of switch statement following FindWindow ()
- is the user trying to close the window? */

case inGoAway:
stillInGoAway = TrackGoAway (theWindow, &theEvent.where);
if(stillInGoAway) {
/* Do housekeeping and close/dispose of window */

}

break;

Depending on the nature of the application, closing a window
may signify additional actions, such as saving the contents of the win-
dow to a disk file. The “User Interface Guidelines” provide information
about the actions appropriate to various types of applications.

Dragging a Window with the Mouse

When FindWindow returns the constant inDrag, the user is at-
tempting to move the window designated by the whichWindow parameter.
To allow the window to move, the application should call the following
procedure:

DragWindow (theWindow, startPt, boundsRect)
WindowPtr theWindow;
Point startPt;
Rect *boundsRect;

Here WindowPtr is the pointer to the window to be moved and startPt is
the location of the mouse-down event in global coordinates. The bounds-
Rect parameter contains a pointer to a rectangle specifying a delimiting
region on the desktop, outside of which the window (actually, the
mouse) cannot be moved during a call to DragWindow. The bounding

66 Using the Macintosh Toolbox with C

== CH.3

rectangle prevents the window from being dragged off the desktop or
under the menu bar where the user cannot recover it.

DragWindow takes control and waits for the mouse button to be
released. During this time a gray outline of the window follows the
movement of the mouse. Once the button is released, DragWindow calls
the procedure MoveWindow to place the window at the new location. Un-
less the window is already active or the Command key is being held
down, DragWindow activates the window by passing a true value as the
front parameter to MoveWindow. Activation takes place after the window
is moved to the new location.

To actually move the window and its contents, DragWindow calls
the procedure MoveWindow. The application can move a window without
using the mouse by calling MoveWindow itself. The parameters are the
WindowPtr for the window to be moved, the new location of the upper left
hand comer of the content region (in global coordinates), and whether
or not the window should become the active window once the move is
completed.

MoveWindow (theWindow, hGlobal, vGlobal, front)
WindowPtr theWindow;
int hGlobal, vGlobal;
char front;

The following example illustrates the use of DragWindow. The
bounding rectangle in this example is determined from the actual size of
the screen stored in a Toolbox global variable. This enables the example
to work properly on the differing screen sizes of the Macintosh and the
Macintosh II (as well as on future models of the Macintosh).

/* Toolbox global variable: pointer to QuickDraw globals
- global if InitGraf called in this program file

- screen size is contained in QuickDraw globals*/
external struct QDVar *QD;

/* locally defined variables */

WindowPtr theWindow;
EventRecord theEvent;
Rect dragBoundsRect;

/* initialize dragBoundsRect

An Introduction to the Window Manager 67

typically inset four pixels from menubar, sides

and bottom of screen

SetRect (&dragBoundsRect, limLeft, limTop, limRight, limBottom);
InitGraf returns QD, pointer to QuickDraw globals
QD->screenBits.bounds is bounding Rect for screen */

/* Set drag bounding rectangle to screen size -4 pixels, allow 20
pixels for menubar */

SetRect (&dragBoundsRect,

QD->screenBits.bounds.left +4,
QD->screenBits.bounds.top +24,
QD->screenBits.bounds.right —4,
QD->screenBits.bounds.bottom -4);

/* portion of switch statement following FindWindow() */

case inDrag:

DragWindow (whichWindow, theEvent.where, &dragBoundsRect);
break;

Remember, if the mouse-down occurs in the title bar of an inac-

tive window, the application must not activate the window itself.
DragWindow will take care of highlighting if necessary, depending on the
current state of the window and, for inactive windows, the state of
the Command key.

Resizing Windows: Using the Mouse to Determine the New Size

When FindWindow reports a mouse-down in the size box of the

active window, the user is attempting to resize the window. The applica-
tion can use the function GrowWindow to obtain the new window size.
Pass the appropriate WindowPtr indicated by FindWindow, the global coor-
dinates of the mouse-down event, and a pointer to a rectangle describing
the limiting sizes of the window. This limiting rectangle is constructed
as follows: the maximum (minimum) vertical extent is contained in the
top (bottom) field, and the maximum (minimum) horizontal extent is
contained in the left (right) field.

long GrowWindow (theWindow, startPt, sizeRect)

WindowPtr theWindow;
Point startPt;
Rect *sizeRect;

68 Using the Macintosh Toolbox with C

CH.3

GrowWindow takes control and waits for the mouse button to be
released. While the mouse button is held down, a gray outline (the “grow”
image) of the window expands and contracts to follow the movement of
the mouse. When the mouse button is released, GrowWindow returns as
its value the new size determined from the position of the mouse. The
size is returned as two short (16-bit) integers packed into a single long
(32-bit) integer (see Figure 3.7).

The high-order word of the value returned by GrowWindow con-
tains the vertical size in pixels (the low-order word contains the
horizontal size). If the size selected by the user is the same as the current
size of the window, a value of NULL will be returned. Figure 3.8 shows
the appearance of a window being resized during a call to GrowWindow.

The Toolbox provides two functions to extract the short integers
from the long value returned by GrowWindow: HiWord and LoWord. These

31 16 15 0

I vertical size I horizontal size |

Figure 3.7: The Window Size Returned by GrowWindow

E[J=—— Untitled
This window is being resized¢

height

'y
. 2

width

Figure 3.8: Resizing a Window Using GrowWindow

An Introduction to the Window Manager

69

functions take the long (32-bit) value as a parameter and return the ap-
propriate int (16-bit) values.

int HiWord(x)
long x;

int LoWord(x)
long x;

Resizing Windows: Redrawing the Window at the New Size

To change the size of the window to the dimensions specified
by GrowWindow, the application should call the SizeWindow procedure:

SizeWindow (theWindow, width, height, fUpdate)
WindowPtr theWindow;
int w, h;
char fUpdate;

The calling parameters are the WindowPtr of the window to be resized, the
desired width and height, in pixels, of the window’s content region, and
a flag to indicate whether SizeWindow should accumulate any new area
into the update region for the window. If both width and height of the
new size are zero, as would be the case if GrowWindow previously
returned a value of NULL, the size of the window is not changed. Set-
ting fUpdate to a true value instructs SizeWindow to automatically modify
the window’s update region, which is what is normally done. In some
cases it is convenient for the application itself to maintain the update
region, for instance if the window contains a QuickDraw picture (this is
covered briefly in Chapter 7).

Here is an example using GrowWindow and SizeWindow in con-
junction to modify the size of a window:

/* locally defined variables */

WindowPtr theWindow;
EventRecord theEvent;
Rect limitRect;
long newSize;

/* initialize limitRect

70 Using the Macintosh Toolbox with C

-_ .- .- cH.3

determines max and min window dimensions

- typically based on screen size or other

- program constraint

SetRect (&limitRect, minHoriz, minVert, maxHoriz, maxVert);*/

SetRect (&limitRect, 80, 40, 500, 300);
/* portion of switch statement following FindWindow */

case inGrow:
newSize = GrowWindow (whichWindow, theEvent.where,
&limitRect);
SizeWindow(whichWindow, LoWord(newSize),
HiWord(newSize), Oxff);
break;

The maximum size of a window can be based either on the ac-
tual size of the screen or on a constraint imposed by the application
itself. It is best not to make any assumptions about the size of the screen
since it’s of a different size on the Macintosh II, and will probably un-
dergo further changes in future Macs.

A Sample Program: Using Events
and Windows

This concludes our discussion of the routines comprising the
Toolbox Window Manager for the time being. We will resume the dis-
cussion of windows in Chapter 7, which covers more advanced aspects
of using the Window Manager: handling update and activate events,
maintaining the update region, using the refCon field of the WindowRecord,
and other miscellaneous items.

The first complete program we are presenting begins on the fol-
lowing page. It includes nearly everything we have learned in this and
the previous chapter, and as such will serve as an excellent chance to
review the Event and Window Managers. The program consists of a
single procedure, main. The first part of main initializes the Toolbox,

An Introduction to the Window Manager

n

changes the cursor shape from the watch to the familiar arrow, empties
the event queue, and sets up the rectangles used to limit window move-
ment and window size.

The second part of the procedure main is the event loop which
begins with the GetNextEvent function. The example uses key-down
events in conjunction with the Command key to create a window, close
the window, make the window visible or invisible, change the window’s
title, and return to the Finder. Mouse-down events are screened to deter-
mine where they occurred, and if appropriate are used to unhighlight the
window, highlight the window, drag the window, resize the window, and
close the window using the go-away region. All other types of events
are ignored.

In order to make this sample program complete, we have had to
borrow a few routines from QuickDraw and the Memory Manager,
which are the topics of Chapters 5 and 6. Portions of the program that
use routines from these chapters include comments that indicate we are
anticipating material we have not yet covered.

/* Window & Event Manager Sample Program */

#include
#include
#include
#include

<EventMgr.h>
<WindowMgr.h>
<Pascal.h>
<stdio.h>

/* Program begins here */

main()

{

/* main() */

/* declare local variables */

EventRecord
WindowRecord
WindowPtr
RgnHandle
Rect

Rect

short

static char
char

long

theEvent;

theWindowRec;

theWindow, whichWindow;

contRgnHnd;

myBoundsRect, dragBoundsRect, limitRect;
tempRect ; . /* Not
windowCode, stillInGoAway, wType;
*myTitle, *newTitle;

c;

newSize;

/* string conversion utilities */

listed in Book! */

72 Using the Macintosh Toolbox with C

=== CH.3
InitGraf (&thePort); /* Initialize QuickDraw *x/
InitFonts();
InitWindows () ; /* Initialize the Window Manager */
InitCursor(); /* Set cursor to arrow style
otherwise will remain watch */
FlushEvents (everyEvent, 0); /* Empty event queue of
stray or leftover events */
SetRect (&myBoundsRect, 50, 50,300, 150) ; /* initialize myBoundsRect */

/* initialize dragBoundsRect - limits movement of window
- for use with Mac & MacXL
- InitGraf returns QD (thePort), pointer to QuickDraw globals
~ QD->screenBits.bounds is bounding Rect for screen */

SetRect (&dragBoundsRect,
screenBits.bounds.left +4,
screenBits.bounds.top +24,
screenBits.bounds.right -4,
screenBits.bounds.bottom -4);

/* initialize limitRect - limits size of window */
SetRect (&limitRect, 60, 40,

screenBits.bounds.right - screenBits.bounds.left -4,
screenBits.bounds.bottom - screenBits.bounds.top -24);

theWindow = NULL;
/* Begin event loop */
while (1) {
if (GetNextEvent (everyEvent, &theEvent)) {
switch (theEvent.what) {
case keyDown:
if (! (theEvent.modifiers & cmdKey)) break; /* if Command-key not down
ignore key-down */

c = theEvent.message & charCodeMask; /* char code in lower 8 bits */

if(c=="'q" || c =='Q")
ExitToShell() ; /* quit program, return to Finder */

if (theWindow == NULL) { /* if no window, look for 'M’
and create new window */

if(c == 'm’ || c == 'M") {
/* create theWindow - use local storage for WindowRecord */

myTitle = "\pMy Window Title"; /* static string myTitle */

wType = documentProc + 8;

An Introduction to the Window Manager 73

theWindow = NewWindow (&theWindowRec, &myBoundsRect,
myTitle, Oxff, wType,
(WindowPtr) -1, Oxff, 0);

DrawGrowIcon (theWindow) ; /* draw size box and
scroll bar outlines */
} else SysBeep(l);

} else {
/* a window already exists, try various window commands */
switch(c) {
case 'x':
case ‘X': /* Close theWindow
don’t dispose of storage */

CloseWindow (theWindow) ;
theWindow = NULL;

break;

case ’s’:
case ’S': /* make theWindow visible */

ShowWindow (theWindow) ;

DrawGrowIcon (theWindow) ; /* draw size box and */
break; /* scroll bar outlines */
case 'h':
case 'H': /* make theWindow invisible */

HideWindow (theWindow) ;
break;

case 't’:
case ‘T’: /* change the title of theWindow */

newTitle = "\pA Different Title"; /* Pascal static string */
SetWTitle (theWindow, newTitle); /* set the new title */
break;
default:
break;
}
}

break;

case mouseDown: {

74 Using the Macintosh Toolbox with C

=== CH.3

/* where did mouse-down occur? */
windowCode=FindWindow (theEvent .where, &whichWindow) ;
switch (windowCode) ({

case inDesk: /* on the desktop */
if (theWindow != NULL) { /* if theWindow exists... */
HiliteWindow (theWindow, 0) ; /* unhilight window */
DrawGrowIcon (theWindow) ; /* hide the size box */
}
break;
case inMenuBar: /* do nothing */
SysBeep(1) ;
break;
case inSysWindow: /* do nothing */
SysBeep (1) ;
break;
case inContent: /* hilight window */

HiliteWindow (whichWindow, Oxff);

DrawGrowIcon (theWindow) ; /* draw size box and */
break; /* scroll bar outlines */
case inDrag: /* drag window */

DragWindow (whichWindow, theEvent .where, &dragBoundsRect) ;
/* can you see why this is needed */

DrawGrowIcon (theWindow) ; /* draw size box and */
break; /* scroll bar outlines */
case inGrow: /* resize window */

newSize = GrowWindow (whichWindow,theEvent .where,
&limitRect) ; /* get new size from user */

SizeWindow (whichWindow, LoWord(newSize),
HiWord(newSize), 0); /* redraw window to newSize */

/* Erase inside of window and
- redraw size box and scroll bar outlines
- try commenting out this section to see what happens

- refer to QuickDraw for definition of a -Region- */

contRgnHnd = theWindowRec.contRgn; /* get handle to content
region of theWindow */

An Introduction to the Window Manager 75

tempRect = (*contRgnHnd)->rgnBBox;
/* Memory Manager - copy rect as
EraseRect may compact heap */
/* More efficient than lock/unlock */
EraseRect (&tempRect) ; /* erase window, parameter is
bounding Rect of content */
DrawGrowIcon (theWindow); /* draw size box and */
break; /* scroll bar outlines */

case inGoAway: /* in close box */
stillInGoAway = TrackGoAway (whichWindow,theEvent.where);
/* is mouse still in close box? */
if (stillInGoAway) {
CloseWindow (whichWindow); /* Yes, close window */
theWindow = NULL;
}

break;

/* Treat ZoomBox: Erase inside of window and
- redraw size box and scroll bar outlines
- Note the alternate way to erase content
- (GrafPorts portRect) -
- refer to QuickDraw for definition of a -GrafPort- */

case inZoomIn:

case inZoomOut:
if (TrackBox (whichWindow, theEvent .where, windowCode)) {
GrafPtr curPort;

contRgnHnd = theWindowRec.contRgn;
tempRect = (*contRgnHnd)->rgnBBox;
EraseRect (&tempRect) ;

GetPort (&curPort) ;
SetPort (whichWindow) ;
ZoomWindow (whichWindow, windowCode, 0);
DrawGrowIcon (theWindow) ;
SetPort (curPort);
}
break;
}
break;
}

default:
break;

}
}

/* end of procedure main() */

Using the Menu Manager

After events and windows, the next most fundamental element
of a Macintosh application is the use of menus. Menus are the central
control element of nearly all Macintosh applications and one of the
more distinctive elements of the Macintosh user interface. To use menus
effectively in an application, we’ll first need to be able to create them.
That means defining their titles and contents and deciding on the ap-
pearance of each menu item. Next we’ll need to insert the menus into
the application—that is, actually make them show up on the top of the
screen. Finally we’ll need to know how to tell the rest of the program
which menu item (if any) was selected and what to do as a result.

Anatomy of Menus

Before we examine the functions provided by the Menu
Manager we should take some time to go over the nomenclature of
menus (see Figure 4.1). At the top of the Macintosh screen in all menu-
driven applications (which comprise the majority of Macintosh
applications) is the thin white strip called the menu bar. The menu bar
measures 20 pixels high and is bordered on the bottom by a thin black
line. Up to 16 menus may reside in the menu bar at any given time but
with titles of average length, 10 to 12 menus are usually the most that
will fit. Text in the menu bar is always in the system font and the system
font size.

Menus themselves consist of a vertical list of menu items inside
a shadowed rectangle. The text of the menu items, like that of the title in
the menu bar, is always in the system font and system font size. Despite

78 Using the Macintosh Toolbox with C

=== CH.4

Menu Titles
N
r TN
MenuBar [& File JJXI§] View Special
ado p: Y4 1
;|
Cut %K 3
Copy s8C 4
Paste E1) \ Menu with
Clear 5 9items
select Al %A ‘75
show Clipboard 8
9 J

Figure 4.1: Menu Parts

the font limitations, however, you do have the flexibility to vary the ap-
pearance of menu items. Besides the standard type style enhancements
(boldface, italics, and so on), an icon can be added to the left side of the
item and a check mark or other symbol can be used to indicate that
an item has been selected. Each menu item can also show a keyboard
equivalent at the right, indicated by the Command key symbol (<)
together with the appropriate keyboard character. A maximum of
20 items will fit in a menu. Because of the size of icons, menu items
with icons count as two items.

Menu Manager Types and Structures

All the information required by the system about a particular
menu is stored in a menu record. A menu record is defined as data type
Menulinfo and is referred to by an application through a menu handle. Be-
cause the Menu Manager takes care of all the manipulation within menu
records, it isn’t necessary to be familiar with the exact field names.
However, knowing the structure of a menu record, as shown in the box
“Menu Manager Data Structures,” helps in understanding the Menu
Manager.

Using the Menu Manager 79
LR N |
Menu Manager Data Structures
struct MenuRecord
{
int menulD; /* menu ID */
int menuWidth; /* menu width in pixels */
int menuHeight; /* menu height in pixels */
Handle menuProc; /* Handle to menu definition procedure */
long enableFlags; /* tells if menu items are enabled or not */
Str255 menuData; /* menu title (and other stuff) */
)i
#define MenulInfo struct MenuRecord
typedef MenuRecord * MenuPtr;
typedef * MenuHandle;

The first field of the menu record is filled by a unique menulD
that identifies the menu to the Menu Manager. The menulD is assigned
by the programmer and can be any positive integer, as long as the
ID is unique within the program. Negative menulDs are reserved for
the system.

The next two fields hold the menu’s width and height measured
in pixels. These fields are set and used by the Menu Manager and the
programmer never has to worry about their contents.

The menuProc field contains a handle to the menu definition pro-
cedure, which defines the appearance of the menu as well as the location
of its menu items and how they react to being selected. This field
defaults to the standard menu definition procedure, which is the proce-
dure that defines the menus you’re accustomed to seeing. A good
example of a custom menu is the fill-pattern menu in MacDraw. Since
custom menus are beyond the scope of this discussion, you need not
worry about the menuProc field.

The enableFlags field contains a long word whose bits correlate
to the items of the menu in question. Beginning at bit 1, each bit cor-
responds to a menu item. If a bit is set, then the corresponding item is
enabled; if it’s clear, the item is disabled. Bit O toggles the status of the
entire menu.

Finally, the menuData field consists of a variable length data string
which contains information about the menu’s text. The menu title, as well
as the text and other parts of the individual menu items are stored here.

80 Using the Macintosh Toolbox with C

- .- .- CH.4

The other important pool of information on which the Menu
Manager draws is the menu list. The menu list contains the handles, in
order, to all the menus that will appear in the menu bar. Space for the
menu list is automatically allocated by the Menu Manager upon in-
itialization. The data structure for the menu list is not really important.
The thing to remember about the menu list is that its contents determine
the contents of the menu bar.

Creating Menus

Before using the Menu Manager, we need to initialize Quick-
Draw (InitGraf), the Font Manager (InitFonts),the Window Manager
(InitWindows), and of course the Menu Manager (InitMenus). The concep-
tual outline for creating menus in your application, as well as the
accompanying code, is very simple. For each menu, you need to create
a new menu record, fill in the menu items along with the desired enhan-
cements, and add them to the menu list. After all the menus are set up,
they are put into the application by drawing the menu bar.

We will first look at creating a menu through C calls, then as a
resource file.

Creating a New Menu Record from C

For every new menu you want to create, a call needs to be made
to NewMenu as follows:

MenuHandle NewMenu (menuID, menuTitle)
int menulD;
Str255 *menuTitle;

When passed a menulD and menuTitle, this function creates an
empty menu record and returns a handle to it. Henceforth, whenever the
Menu Manager refers to this menu, it is actually referring to the as-
sociated menu record. The new menu record is not yet added to the
menu list.

Using the Menu Manager 81

Filling the Menus with ltems

Next, the menus need to be filled with items. This can be done
in two ways. The first, AppendMenu, adds the items indicated by a data
string to the menu designated by theMenu, as follows:

AppendMenu (theMenu, data)
MenuHandle theMenu;
Str255 *data;

The data string passed to AppendMenu consists of the actual menu items
separated by a semicolon or carriage return. A left parenthesis preceding
an item disables it. One or more spaces can be used to indicate a blank
item, while a hyphen (-) used as an item instructs the Menu Manager to
draw a dividing line across the width of the menu. It is a good policy to
always disable the dividing line; that way a user won’t get confused
when trying to select it.

The data string can also specify any enhancements to particular
menu items. Through the use of metacharacters, the programmer can
tell the Menu Manager exactly how to modify each menu item. The
metacharacters themselves do not appear in the menu. Figure 4.2 lists
the recognized metacharacters.

Meta-Character Meaning
; or Return Separates Items
A When followed by an icon number, adds that icon
to the item

| When followed by a character, marks the item
with that character

< When followed by B, |, U, O, or S, sets the character
style of that item

/ When followed by a character, sets that character
as the item's keyboard equivalent

(When precedes an item, disables that item

Figure 4.2: Metacharacters

82 Using the Macintosh Toolbox with C

==™= CH4

For example, the code

NewMenu (myMenu, “\pMy Menu”);
AppendMenu (myMenu, “\p<BFirst; Second/J; <UThird; (-;Fifth”);

will create a menu that looks like the one shown in Figure 4.3. Remem-
ber that the disabled dividing line counts as an item.

The other way to fill items into a menu is with the procedure
AddResMenu.

AddResMenu (theMenu, theType)
MenuHandle theMenu;
ResType theType;

This procedure searches all open resource files for the resource type
specfied by theType (see Chapter 9 for more on resources). It then ap-
pends the names of all resources found to the menu indicated by theMenu.
The resource names found appear in the menu as enabled items, without
icons or marks and in the normal character style. AddResMenu will not
add any resources whose names begin with a period (.) or a percent
sign (%). In our sample program at the end of this chapter, we use
AddResMenu to set up the desk accessory menu.

DeskMenu=NewMenu (DeskID, “\p\024”);
AddResMenu (DeskMenu, ’'DRVR’);

The “\024” above is the octal code for the Apple character in
the system font and serves as the title of the menu.

[& File OurMenu

First
Second 38J
Third

Fifth

Figure 4.3: Sample Menu Using AppendMenu

Using the Menu Manager 83

The Menu Manager also allows you to add a resource type to
the middle of a menu with the procedure InsertResMenu:

InsertResMenu (theMenu, theType, afterItem)
MenuHandle theMenu;
ResType theType:;
int afterItem;

InsertResMenu works in the same way as AddResMenu except that it adds
the resource names after the item specified by the afterltem parameter. If
afterltem is zero, the names are inserted before the first menu item. If it’s
greater than the number of menu items, the resource names are added to
the end of the menu.

Note that AddResMenu and InsertResMenu, unlike AppendMenu,
cannot make use of metacharacters. Because of this, the Menu Manager
provides functions that perform enhancements equivalent to those done
by the metacharacters. Since it’s not really practical to recreate an
AppendMenu data string every time you want to change the appearance of
a menu item, these functions can also be used during the course of a pro-
gram to alter the appearance of a menu item.

Changing Menu Items and Their Appearance

Menu items can be dynamically changed by the program with
the Setitem function as follows:

SetItem(theMenu, item, itemString)

MenuHandle theMenu;
int item;
Str255 *itemString;

Setitem replaces the menu item whose item number is item to the string
given by itemString. This is handy when you want to switch between two
choices like “Show clipboard” and “Hide clipboard.”

Enabling and Disabling Menus and ltems

Menus and their items can also be enabled and disabled by the
application. Enableltem and Disableltem both take the same parameters

84 Using the Macintosh Toolbox with C

=== CH.4

and allow the programmer to prevent the user from making inap-
propriate menu choices from the application. The item parameter
indicates which menu item to enable or disable. If item is zero, the entire
menu is enabled or disabled.

EnableItem (theMenu, item)
MenuHandle theMenu;
int item;

DisableItem (theMenu, item);
MenuHandle theMenu;
int item;

A good example of using the enable/disable toggle is when an
application doesn’t have any documents open. Since there are no docu-
ments open, it doesn’t make much sense to select Close from the File
menu. To remind the user of this, we can disable the Close command
until a document is opened. Then we can call Enableltem to enable the
Close command, allowing it to be selected.

Marking Menu Items

For menus that contain accumulating attributes, it’s usually a
good idea to mark items with a check mark when they are selected. To
accomplish this, the Menu Manager provides this procedure:

CheckItem(theMenu, item, checked)
MenuHandle theMenu;
int item;
char checked;

The checked field determines whether the item indicated by the menu
handle and item number should be checked or not. If a true value is
passed, Checkitem will mark the item. If checked is false, the item will be
unmarked.

You aren’t limited to using a check mark as the marking charac-
ter. The procedure SetitemMark will allow you to specify exactly which
character you wish to use to mark the menu item.

SetItemMark (theMenu, item, markChar)
MenuHandle theMenu;

Using the Menu Manager

85

int item;
int markChar;

This procedure will mark the indicated menu item with whichever char-
acter is specified by markChar, allowing you to use any character from
the system font. All you need to do is pass the code for the character to
SetltemMark in the markChar parameter (a code chart for the system font is
provided in Appendix C). Some of the more unique characters of the
system font and their character codes are shown in Figure 4.4.

To determine which character is being used to mark a menu
item, the procedure GetltemMark returns in its markChar parameter the
ASCII code for the marking character.

GetItemMark (theMenu, item, markChar)
MenuHandle theMenu;
int item;
char *markChar;

If there is no marking character, markChar will be equal to zero (the
ASCII code for the NULL character). This procedure can also be
used to determine which way to toggle the mark next to a menu
item. For instance, whenever the Bold option for text enhancement
is selected from the Style menu of your application, you’ll need to
determine whether the item was previously marked or not and then
do the opposite. In the example program at the end of this chapter,
we use GetltemMark for this purpose. After calling the procedure, we
check to see if markChar is nonzero. If it is, we know the menu was
already marked and we need to un-mark it. Of course, the method
used to determine whether an item is marked or not is entirely up to

Character ASCII Value
noMark 0
commandMark $11
checkMark $12
diamondMark $13
appleMark $14

Figure 4.4: Special Mark Characters

86 Using the Macintosh Toolbox with C

=== CH4

the programmer and is usually very dependent upon what the applica-
tionisdoing.

Changing the Typestyle of Menu ltem

The Menu Manager also allows you to change the text style of
menu items as the application proceeds. SetltemStyle takes the menu item
indicated by the menu handle and item number passed to it and changes
the character style of the item’s text to that indicated by chStyle.

SetItemStyle (theMenu, item, chStyle)
MenuHandle theMenu;
int item;
Style chsStyle;

In Think C, the variable type Style is already defined for you in the
QuickDraw.h header file. You might want to look into this header file to
see how the various typeface effects are named. For example, bold
typeface is indicated by the variable bold (see Figure 4.5). Thus, in code
SetltemStyle would look like this:

SetItemStyle (theMenu, item, bold);

Variable Value
bold 1
italic 2
underline 4
outline 8
shadow 16
condense 32
extend 64

Figure 4.5: Sample Style Variables

Using the Menu Manager 87

Adding Menus to the Menu Bar

When all the menus have been set up, they need to be added to
the menu list. This is done through the function InsertMenu.

InsertMenu (theMenu, beforelID)
MenuHandle theMenu;
int beforelD;

InsertMenu will add the menu specified by theMenu to the menu list and
put it before (to the left of) the menu whose ID is specified by the
beforelD parameter. If the beforelD is zero, InsertMenu just adds the given
menu to the end of the menu list. If theMenu already exists in the menu
list or the menu list is full, InsertMenu will do nothing. It doesn’t make a
difference if you insert each menu as you define it or define all your
menus and then insert them. The important thing to note is that Insert-
Menu needs to be called for each menu. If you define a menu but don’t
insert it, it won’t show up in the menu bar.

Removing Menus from the Menu List

The reciprocal function of InsertMenu is DeleteMenu. This proce-
dure will remove the menu specified by menulD from the menu list but
will not deallocate the memory it occupies.

DeleteMenu (menuID)
int menulD;

If you are through using a particular menu and wish to free the memory
occupied by its menu record, you need to call DisposeMenu:

DisposeMenu (theMenu)
MenuHandle theMenu;

It’s important to remember to call DeleteMenu before disposing
of its menu record and to be careful not to use the menu handle of the
disposed menu.

88 Using the Macintosh Toolbox with C

=== CH4

Creating a New Menu Record as a Resource

As you saw in the Window Manager, resource definitions in-
volve a lot less work than do creating things from C. You do have to
employ RMaker to use them, of course.

This is a menu definition as written into an RMaker file. All of
the preceding metacharacters.and other menu phenomena can be used in
a menu defined as a resource.

TYPE MENU
,128

File

Open

Close

‘Save As...

Save

(-

Printer setup
Print

(_

Transfer
Quit

The first line tells RMaker what type of resource this is. In this
case, it’s a MENU resource. Note that resource names are case sensitive.
The resource MENU is different from the resource Menu.

The next line is the resource number, 128 in this case.

The line after that is the name of the menu. This is the text
which will appear on the menu bar.

The rest of this definition contains the various menu items. The syn-
tax of these is the same as they would be had you created this menu using
calls to AppendMenu, except that rather than separating the menu items with
semicolons we put each on its own line.

The definition for this menu extends down to the first blank line
in the resource file.

One of the things you might have noticed in the discussion about
metacharacters, particularly in Figure 4.2, was the reference to including an
icon in menus. This is something which is only practical to do using a
resource file. As you will see in greater detail in Chapter 9, you can define
an icon as a resource. If that icon’s resource number is between 257 and
265, you can make it appear in a menu right next to the item.

Using the Menu Manager 89

You can create a menu item with reference to an icon with
AppendMenu, but not the icon itself.
This is a menu with an icon in it.

TYPE MENU
,129

Edit

Undo

(_

Cut

Copy
Paste

Clear
(_
~lOptions

The Options item will have icon 257 beside it, assuming that
there is a resource definition for this icon. The number of the icon
specified with the “A” metacharacters is 256 plus the number after the
metacharacters. The number after the metacharacter can be 1 through 9.

Using Resource Menus

Having defined some menus in a resource file, you must still
tell your program to use them. The Menu Manager provides this func-
tion to do this:

MenuHandle GetMenu (number)
int number;

For example, to get a handle to the above menu, you would do this:
handle = GetMenu(129);

With a handle to each of your menus, usually stored in an array
of MenuHandles, you would use InsertMenu to add them to the menu bar.

90 Using the Macintosh Toolbox with C

=== CH.4

Drawing the Menu Bar

The last step in setting up your menus is to draw the menu bar.
Not surprisingly, this is done through the command DrawMenuBar.

DrawMenuBar ()

No parameters are required. DrawMenuBar simply redraws the menu bar,
displaying all menus that were in the menu list. A call needs to be made
to DrawMenuBar whenever any menus are added or deleted from the
menu list; otherwise, any changes the application made to the menu bar
won’t show up.

Choosing from Menus

Once the menu bar has been drawn, the application is ready to
deal with menu selection. Thanks to the Menu Manager, this is an ex-
tremely simple task. When GetNextEvent detects a mouse-down event in
the menu bar, all that’s required is a call to MenuSelect.

long MenuSelect (startPt)
Point startPt;

Once it has been passed the point of the mouse-down event,
MenuSelect takes control of the application, tracking the mouse, pulling
down menus, and highlighting enabled menu items under the cursor
until it encounters a mouse-up event. When the mouse button is released
over a highlighted menu item, MenuSelect returns menuResult, a long word
containing in its high-order word the menulD of the selected menu and in
its low-order word the item number within that menu. It also highlights
(that is inverts the text of) the menu title. If no choice is made, Menu-
Select returns zero in the high-order word and the low-order word is
undefined.

Handling the keyboard equivalents of menu items is no more
difficult than handling regular menu selections. When there is a key-
down event modified by the Command key, pass the key character to the

Using the Menu Manager 91

function MenuKey. MenuKey will then determine whether that particular
key is the equivalent of any active menu item. If so, it returns the same
long word result as MenuSelect and highlights the menu title. If the key
doesn’t correspond to any menu items, the menu result is the same as a
nonselection from MenuSelect (see Figure 4.6).

So what do we do now that the menu and the item have been
selected? The easiest thing to do is pass the menu result to a function
that switches first on the menu ID, and then on the item number to deter-
mine what task to carry out. For example, we can have a function that
would look something like this:

doMenu (menuResult)
long menuResult;
(;
short menuID, itemNumber;
menuID=HiWord (menuResult) ;
itemNumber= menuResult;
switch (menuID) { /* which menu was selected? */
case theRightID:
switch (itemNumber) {
/* which item in the menu was selected?*/
case theRightItem:
DoSomething() ;

Our function would first decipher which menu was selected, then which
item was selected, and then tell the application to go and do whatever
it’s supposed to.

After a selection is made with either MenuSelect or MenuKey, the
menu’s title is highlighted. The menu title will remain that way until
the application tells the Menu Manager to return the text to its original
form. To do this, the application needs to call

HiliteMenu (menuID)
short menulD;

with a menulD of zero. HiliteMenu highlights the title of the menu indi-
cated by the given menu ID. If that title is already highlighted, this

92 Using the Macintosh Toolbox with C

- .= CH.4

Menu IDs
Al

r N

101 102 103 104 105
[& Fite I[P view special]
(1] vado *2

Cut *€H
#C
s

startPt

Menu ltem <
Numbers

3

4

5| Paste
g | Clear
7 Select All %A
8
9

Show Clipboard

MenuSelect (startPt) or MenuKey ('c’) return a menuResult:

3t 1615 0
[menuD=103 | itemNum=4 |
Hi Word Lo Word

Figure 4.6: MenuSelect and MenuKey (above) and MenuResult (below)

procedure won’t do anything. Because only one menu title can be high-
lighted at a time, HiliteMenu will unhighlight any menu previously
highlighted. If the menu ID doesn’t exist in the menu bar, HiliteMenu
simply unhighlights whichever menu is highlighted. Thus, since by con-
vention a menu ID cannot be zero, the call

HiliteMenu(0);

will unhighlight any highlighted menu title.

When menu items are added to a menu using either AddResMenu or
InsertResMenu, the rest of your program has no way of knowing exactly
how many items will be added. More importantly, your application
won’t know the identity of each menu item simply by its item number.

Using the Menu Manager

93

Thus, using MenuSelect will not work correctly. In this case, you need to
use the procedure Getltem.

GetItem(theMenu, item, itemString)
MenuHandle theMenu;
int item;
Str255 *itemString;

This procedure will return the text of the item given by the menu handle
and item number. A word of caution is in order here. This is one of those
sticky places where C and Pascal strings can get mixed up if you’re not
careful. Getltem returns a Pascal string.

At this point, we don’t really know how to do anything with a
text string returned from a menu selection. We’ll look in depth at deal-
ing with desk accessory menus in Chapter 13.

A Sample Program for Windows and Menus

Now we get to take a look at what we’ve learned to do with
menus. You’ll notice that we’ve written a couple of new procedures.
The first, SetUpMenus, does exactly that; it creates new menu records and
appends items to each of the menus we create. The second, doMenu, takes
the result of a mouse down event in the menu bar, decides which menu
item was selected, and carries it out. Aside from these two procedures,
the code is essentially the same as the code we saw in Chapter 3. As far
as this example program goes, nearly everything we need for dealing
with menus is in these two procedures.

One other point to notice is in the case of a key down event. If
the key was pressed along with the Command key, we pass the character
associated with the key to MenuKey and then pass the MenuKey result to
our new procedure doMenu.

That about wraps up our introduction to menus. We now know
how to create and implement menus in our code. As we mentioned ear-
lier, we’ll discuss desk accessory menus in Chapter 13.

It’s time to draw pictures—on to QuickDraw.

94 Using the Macintosh Toolbox with C

== CH4

/* Include Header Files - contains Toolbox data types & constants */

#include <EventMgr.h>
#include <WindowMgr.h>
#include <MenuMgr.h>
#include <Pascal.h>
#include <stdio.h>

/* Menu Stuff */

#define Desk_ID 100

#define File_ ID 101

#define Our_ID 102

#define BMUG_ID 103

#define My ID 104

MenuHandle DeskMenu;

MenuHandle FileMenu;

MenuHandle OurMenu;

MenuHandle BMUGMenu;

MenuHandle MyMenu;

EventRecord theEvent;

WindowRecord theWindowRec; /* Don’t Fragment the Heap */
WindowPtr theWindow,whichWindow;

Rect windowR, legalR, 1imitR;
short windowcode, still_InGoAway;

char c;

long markChar;

long newSize;

/* Procedure to set up menus and add them to the menu list */
SetUpMenus ()

{

/* Desk Accessory Menu */

DeskMenu = NewMenu (Desk_ID,"\p\24");
AddResMenu (DeskMenu, ’'DRVR’);
InsertMenu (DeskMenu, 0);

/* File Menu */

FileMenu = NewMenu (File_ID,"\pFile"):

AppendMenu (FileMenu, "\pOpen Window/M;Close Window/X;Quit/Q");
InsertMenu (FileMenu,0);

DisableItem (FileMenu, 2);

/* Our Menu */

OurMenu = NewMenu (Our_ID, "\pOur Menu");

AppendMenu (OurMenu, "\pHide Window/H;Show Window/S;
New Window Title; (-;Show BMUG;Hide BMUG");
InsertMenu (OurMenu, 0);

DisableItem (OurMenu, 6);

Using the Menu Manager 95

/* BMUG Menu */
BMUGMenu = NewMenu (BMUG_ID, "\pBMUG");
AppendMenu (BMUGMenu, "\pDevelopers Group"):

/* Sample Menu */

MyMenu = NewMenu (My_ID, "\pMy Menu");

AppendMenu (MyMenu, "\p<BFirst;Second/J;<UThird; (-;Fifth");
InsertMenu (MyMenu,O0);

DrawMenuBar () ;

}
/* Program begins here */

main () /* main() */
{
InitGraf (&thePort); /* Initialize QuickDraw */
InitFonts();
InitWindows () ;
InitCursor();

FlushEvents (everyEvent, 0);
InitMenus () ;

SetUpMenus () ;

theWindow = NULL;

SetRect (&windowR, 50, 50,300,150) ;
SetRect (&legalR,5,5,505,335);
SetRect (&1imitR, 50,10,500,330);

while (1) {
if (GetNextEvent (everyEvent, &theEvent)) {
switch (theEvent.what) {

case keyDown:
¢ = theEvent.message & charCodeMask;
if (theEvent.modifiers & cmdKey) ({
doMenu(MenuKey (c)):
HiliteMenu(0) ;
}
break;

case mouseDown:
windowcode=FindWindow (theEvent .where, &whichWindow) ;
switch (windowcode) {
case inDesk:
if ((whichWindow = FrontWindow()) '= 0)
HiliteWindow (whichWindow, 0);
break;

96 Using the Macintosh Toolbox with C

=== CH.4

case inMenuBar:

doMenu (MenuSelect (theEvent .where)) ;
break:;

case inSysWindow:
SysBeep (1) ;
break;

case inContent:
HiliteWindow (whichWindow, Oxff);
break;

case inDrag:
DragWindow (whichWindow, theEvent .where, &legalR) ;
break;

case inGrow:
newSize = GrowWindow(whichWindow, theEvent .where,
&1limitR) ;
SizeWindow (whichWindow, LoWord (newSize),
HiWord (newSize),0);
/* newSize is split into short
ints for width and height */
break;

case inGoAway:
still InGoAway = TrackGoAway (whichWindow,
theEvent .where) ;
if (still_InGoAway) ({
CloseWindow (whichWindow) ;
theWindow = NULL;
EnableItem(FileMenu,1);
DisableItem(FileMenu, 2);
}
break;
case inZoomln:
case inZoomOut:
" if (TrackBox (whichWindow, theEvent .where, windowcode)) {
GrafPtr curPort;
GetPort (&curPort) ;
SetPort (whichWindow) ;
ZoomWindow (whichWindow, windowcode,0);
SetPort (curPort) ;
}
break;

break;
default:
break;

Using the Menu Manager 97

doMenu (menuResult)

long menuResult;

{
short menulD, itemNumber, wType:;
menulD = HiWord (menuResult);
itemNumber = LoWord (menuResult);

switch (menulD)
{
case File_ 1ID:
switch (itemNumber)
{

case 1l:
wType = documentProc + 8;
theWindow = NewWindow (&theWindowRec, &windowR, "\pHi Mom!",
O0xff,wType, (WindowPtr) -1,0xff,0);
DisablelItem (FileMenu, 1);
EnableItem (FileMenu, 2);
break;
case 2:
CloseWindow (theWindow) ;
theWindow = NULL;
DisableItem (FileMenu, 2);
EnableItem (FileMenu, 1);
break;
case 3:
ExitToShell();
break;
}
break:;
case Our_ID:
switch (itemNumber) {
case 1:
if (theWindow) HideWindow (theWindow) ;
break;
case 2:
if (theWindow) ShowWindow (theWindow) ;
break;
case 3:
if (theWindow) SetWTitle (theWindow,"\pA New Title");
break;
case 5:
InsertMenu (BMUGMenu, 0);
EnableItem (OurMenu, 6);
DisableItem (OurMenu, 5);

98 Using the Macintosh Toolbox with C

=== CH4

DrawMenuBar () ;
break;

case 6:

DeleteMenu (BMUG_ID) ;
EnableItem (OurMenu, 5);
DisableItem (OurMenu, 6);
DrawMenuBar () ;
break;

}

break;

case Desk_ID:
break;

case My ID:
GetItemMark (MyMenu, itemNumber, &markChar) ;
if (markChar) CheckItem(MyMenu, itemNumber,0);
else CheckItem(MyMenu, itemNumber,0);
break;

}
HiliteMenu (0) ;

Drawing with QuickDraw

Quickdraw is responsible for everything we see on a Macintosh
screen. We can use it to draw and manipulate lines, shapes such as rec-
tangles, ovals and rounded-corner rectangles, and more complicated
structures such as polygons, regions, and pictures. QuickDraw also
provides our means of displaying text, specifying the state and shape of
the cursor, and defining patterns that are used to paint areas of the
screen. Figure 5.1 shows some examples of the things QuickDraw is
capable of drawing.

In addition to being used directly by an application, QuickDraw
is also called by many of the other Toolbox Managers. The Window
Manager calls it to draw windows, the Menu Manager calls it to draw
menus, the Control Manager calls it to draw controls, and so on (see
Figure 5.2).

here's some text

ZY
SQD P ¢
&
i

Figure 5.1: Lines, Shapes, and Text Drawn by QuickDraw

102 Using the Macintosh Toolbox with C

=== CH.5

(binary) (decimal) (hexadec) (clear] (32-bit)

Figure 5.2: Windows, Menus, and Controls Drawn by QuickDraw

We’re studying QuickDraw at this point of the book for a num-
ber of reasons. In the previous four chapters, we’ve learned how to
create a very simple Macintosh application complete with menus and a
single window. If we were interested in programming an arcade-type
game, what we’ve already learned, combined with the information dis-
cussed in this chapter, is probably sufficient to get the game up and
running. The information in this chapter is also a helpful prerequisite for
many parts of the chapters yet to come. What we will cover in this chap-
ter about grafports, which are the basis of the Mac’s multiple-window
interface, will be helpful not only when dealing with QuickDraw, but
also when we get to Chapter 7, which shows us how to implement
multiple windows. This chapter will also cover fonts and their char-
acteristics, which will be helpful when we get to Chapter 8—Text
Editing with the Toolbox. In general, knowing what QuickDraw does
and how it does it is helpful when studying any of the Macintosh ROM
Managers that draw on the screen.

Drawing with QuickDraw 103

QuickDraw Basics—The Coordinate Plane,
Points, and Rectangles

Before we can effectively discuss or use the any of the Quick-
Draw routines, there are a few underlying concepts and data structures
that we must know about. The coordinate plane, the place where things
are drawn, as well as points and rectangles—locations and areas we
specify in the plane to draw at or in—are all discussed here as a prereq-
uisite to what we will learn in the rest of the chapter.

The Coordinate Plane

When using various QuickDraw routines, an application will
have to specify a location to place or draw an object, or a distance to
move it. The application specifies these locations or distances with
regard to the coordinate plane. The coordinate plane is similar to the
real-number plane you learned about in high school geometry. There are
however, three important dissimilarities:

All coordinates in the plane are integers.

2. The horizontal and vertical coordinates range from —32768
to +32767.

3. Horizontal values increase from left to right while vertical values
increase from top to bottom, as shown in Figure 5.3.

It is very important to remember that vertical coordinates in-
crease downward, unlike the traditional number plane. On the
Macintosh, if we want something to move downward, we must increase
its vertical coordinate. As is shown in Figure 5.3, the origin (0,0), is in
the middle of the coordinate plane.

104 Using the Macintosh Toolbox with C

=== CH.5

(-32768,-32768)

(0,0)

(32767,32767)

Figure 5.3: The Coordinate Plane

Defining and Manipulating Points

The most basic way to indicate a location in the coordinate
plane is by specifying a horizontal and a vertical coordinate—that is, a
point—in the plane. We refer to a point as (h,v)—that is, horizontal
coordinate, vertical coordinate—ijust as we would specify (x,y) in the
real number plane. There is a data structure of type Point defined in
QuickDraw that applications will use to indicate locations in the plane.

struct pt {
int v;
int h;
}:
typedef struct pt Point;

Each pixel on the screen can be thought of as a Point. Since there are
65,536 vertical lines and 65,536 horizontal lines in the drawing plane,
there are 65,536 times 65,536, or 4,294,967,296 unique points. On a
normal, monochrome Macintosh screen, however, there are only 512
vertical lines and 342 horizontal lines, or 175,104 pixels. The Mac’s
screen is actually a small window into a very large coordinate plane. We
will see that it is possible, even easy, to move the plane around behind
the Mac screen to view different portions of the plane. Figure 5.4 shows

Drawing with QuickDraw 105

this relationship of the large plane to the small screen.

Our drawing is not limited to the Mac screen. It is very easy to
draw off screen and is sometimes very advantageous to do so. An ap-
plication might, for example, want to draw pictures off screen ahead of
when they are needed so that when the time comes for one to be dis-
played, there will be no noticeable hesitation in the program. The
drawing will be displayed instantly since it has already been calculated
and drawn.

Defining Points

To assign horizontal and vertical coordinates to a variable of
type Point, we use the procedure SetPt:

SetPt(pt,h,Vv)
Point *pt;
int h,v;

The integers h and v specify the horizontal and vertical coordinates to be
assigned to the Point pt. For example, the call

Point samplePoint;
SetPt (&samplePoint, 20, 25) ;

(-32768,-32768)

(0,0)

(32767,32767)

Figure 5.4: The Mac Screen in the Coordinate Plane

106 Using the Macintosh Toolbox with C

-—-— . CH.S

would assign the location (20,25) to the Point samplePoint.

Manipulating Points

To determine if two Points are equal, we use the Boolean func-
tion EqualPt: '

char EqualPt (ptA, ptB)
Point pta, ptB;

The function returns a true value if the points ptA and ptB are the
same or a false one if they are not.

To add or subtract points, an application can use the procedures
AddPt or SubPt. /

AddPt (srcPt,dstPt)

Point srcPt, *dstPt;
SubPt (srcPt, dstPt)

Point srcPt, *dstPt;

AddPt adds srcPt to dstPt, and the result is placed in dstPt. SubPt subtracts
srcPt from dstPt and places the result in dstPt. For example, if srcPt were
(10,10) and dstPt were (90,60) and we made the call

AddPt (srcPt, &dstPt)
dstPt would now equal (100,70). If we were then to call

SubPt (srcPt, &dstPt)

dstPt would once again equal (90,60). The value stored in srcPt is never
affected.

Notice that the destination points in these calls are passed by
reference but the source points are not.

Changing a Point’s Coordinate System

A point’s coordinates are always expressed in terms of its coor-
dinate plane. It is possible for an application to have a number of
coordinate planes. QuickDraw, when dealing with multiple coordinate

Drawing with QuickDraw 107

planes, or grafPorts, always keeps track of two. It keeps track of the active
or local coordinate system, the one that is currently being drawn into, as
well as the global coordinate system, the one that has its origin (0,0) at
the top-left comer of the Mac screen.

An application can convert a point from its local coordinate sys-
tem to the global coordinate system and then back again with the two
routines LocalToGlobal and GlobalToLocal. The routine LocalToGlobal takes
a point expressed in the active coordinate system and converts its coor-
dinates to the global coordinate system.

LocalToGlobal (pt)
Point *pt;

The routine GlobalToLocal converts points in the opposite direction.
GlobalToLocal takes a point expressed in the global coordinate system
and converts its coordinates to the local coordinate system.

GlobalToLocal (pt)
Point *pt;

Many of the other Toolbox Managers have routines that require
a point parameter to be expressed in local coordinates, while others re-
quire it to be expressed in global coordinates. As a result, the two
routines LocalToGlobal and GlobalToLocal are used quite often, even if an
application isn’t using QuickDraw routines.

Defining and Manipulating Rectangles

Rectangles are another important basic part of QuickDraw and
of the other Toolbox Managers that draw anything on the screen. In
QuickDraw, Rectangles are the underlying structure used to draw rec-
tangles themselves, as well as rounded-corner rectangles and ovals.
Rectangles are also used, as was shown in Chapter 3, to indicate a
window’s size and location on the screen. We will see in future chapters
how rectangles are used to specify the size and location of controls and
alert and dialog boxes.

108 Using the Macintosh Toolbox with C

-— - .- CH.5

An application specifies a rectangular area of the coordinate
plane with two Points, or four coordinates. The two Points or four coor-
dinates indicate the top-left and bottom-right corners of the rectangle
(see Figure 5.5).

Rectangles have an associated data structure of type Rect
defined as follows:

union rect {
struct {
Point ToplLeft, BottomRight;
}:
struct {
int top, left, bottom, right;
};
};
typedef union rect Rect;

Note once again that the Rect can be defined as either two values of type
Point—TopLeft and BottomRight—or as four individual coordinates:
top, left, bottom, and right.

Defining Rectangles
To define a Rect we can use the procedure SetRect:

SetRect (r, left, top, right, bottom))
Rect *r;
int left, top, right, bottom;

TopLeft top

left right

BottomRight
bottom

Figure 5.5: Diagram of a Rect

Drawing with QuickDraw 109

SetRect assigns to the Rect r the coordinates left, top, bottom, and right.
This is best shown with an example. The call

Rect sampleRect;
SetRect (&sampleRect, 10, 20, 80, 100);

defines sampleRect to be a rectangle with a top left coordinate of (10,20)
and bottom-right coordinate of (80,100).

We can also define a rectangle as the intersection of two rec-
tangles. If we have two rectangles, and we want to know if and where
they intersect, we can call the function SectRect:

char SectRect (srcRectA, srcRectB, dstRect)
Rect *srcRectA, *srcRectB, *dstRect;

If the two rectangles, srcRectA and srcRectB intersect, the function returns
a true value, and the rectangle that is the intersection of the two is placed
in dstRect. If the rectangles do not intersect, the function returns a false
value, and the Rect dstRect is set to (0,0,0,0). Rectangles that intersect in
only a line or a point are not considered intersecting because their inter-
section encloses no bits. Also, if we have two rectangles A and B, we can
determine their intersection and then set rectangle A to the rectangle that
is A and B’s intersection—we just call SectRect with rectangle A as both a
source and destination Rect.

A third way to define a rectangle is to indicate it as the rectangle
that is the union of two specified rectangles. If we have two rectangles
and would like to find a Rect that encloses them, we can call the proce-
dure UnionRect.

UnionRect (srcRectA, srcRectB, dstRect)
Rect *srcRectA, *srcRectB, *dstRect;

The smallest rectangle that encloses srcRectA and srcRectB is returned in dest-
Rect. Also, if we have two rectangles A and B we can determine their
bounding rectangle and set rectangle A to be the bounding rectangle—we
just call UnionRect with rectangle A as both a source and destination Rect.
The last way we can define a rectangle is by specifying two
Points. If we have two Points, and wish to find the smallest rectangle that

110 Using the Macintosh Toolbox with C

- - . CH.5

encloses them, our application can use the procedure Pt2Rect.

Pt2Rect (ptA, ptB, destRect)
Point ptA, ptB;
Rect *destRect;

If ptA was (10,20) and ptB was (90,50) and we made the call
Pt2Rect (ptA, ptB, &resultRect) ;

resultRect would be set to the rectangle with coordinates (10,20,90,50).

Moving Rectangles

To move the rectangle around in the coordinate plane, we can
use the procedure OffsetRect.

OffsetRect (r,dh,dv)
Rect *x;
int dh, dv;

The rectangle r will be moved dh coordinates horizontally and dv coor-
dinates vertically. Calling OffsetRect with the following values:

OffsetRect (&sampleRect, 30, -60) ;

would move sampleRect 30 coordinates to the right and 60 coordinates
up. The rectangle itself would not be affected by this call. The procedure
also has no effect on the screen. The rectangle is moved, but not
redrawn. We will see how to draw or redraw a rectangle later, in the sec-
tion Drawing Rectangles.

Resizing Rectangles
The procedure InsetRect shrinks or expands the specified rectangle

InsetRect (x,dh, dv)
Rect *r;
int dh,dv;

Drawing with QuickDraw 111

If the values for dh and dv are positive, the rectangle is shrunk; if they are
negative, the rectangle will expand.
The following piece of code demonstrates InsetRect:

Rect sampleRect;
SetRect (&sampleRect, 50, 60,110,150);
InsetRect (&sampleRect, 10, -20);

After the previous code segment executes, sampleRect would
have coordinates (60,40,100,170). Note that each coordinate is inset or
expanded the distance specified by dh or dv. Also, if after a call to Inset-
Rect the rectangle’s height or width is less than 1, its coordinates are set
to (0,0,0,0)—that is, it is made an empty rectangle.

Determining if Points are enclosed in Rectangles

Given a Point and a Rect, we can determine with the function
PtinRect whether the point is enclosed by the rectangle

char PtInRect (pt,r)
Point pt;
Rect *r;

If the Point pt is enclosed by rectangle r, then the function returns
true; otherwise it returns false. As an example of one of the many uses
of the PtinRect procedure, suppose we have detected a mouse-down
event and need to determine if the mouse was clicked in a rectangle we
have defined on the screen. The code block below shows one way an
application could deal with the situation.

switch (theEvent.what)
case mouseDown:
if (PtInRect (&theEvent.where, &ourRect))
/* respond to a mouseDown in ourRect */
else
/* otherwise do something else */
break;

112 Using the Macintosh Toolbox with C

- ... CH.5

Comparing Rectangles

If we have two rectangles and wish to determine if they are
equal, we can use the procedure EqualRect.

char EqualRect (rectA, rectB)
Rect *rectA, *rectB;

If the two rectangles have exactly the same boundary coordinates, the
function returns true; otherwise it returns false.

Given a rectangle, we can determine whether it is empty or not
with the function EmptyRect.

char EmptyRect (r)
Rect *r;

The function returns true if the rectangle r is empty and false
otherwise. A rectangle is considered empty if the left coordinate is
greater than or equal to the right or the top coordinate is greater than or
equal to the bottom.

GrafPorts—Drawing Environments for
QuickDraw

Everything that an application draws with QuickDraw is drawn
into a grafPort. Each grafPort has its own characteristics that determine
how the drawing commands will work. The characteristics include,
among other things, the grafPort’s own coordinate plane, pen charac-
teristics, text characteristics, and patterns. An application may have
multiple grafPorts, each having its own set of characteristics.

In this section, we will study the various data types that make
up a grafPort. In preparation for the next section of this chapter which ex-
amines the grafPort data structure in detail, we will examine and explain
transfer modes, patterns, the QuickDraw pen, and text characteristics.

Drawing with QuickDraw 113

Transfer Modes

When lines, text, or shapes are drawn, a transfer mode deter-
mines how they are to appear. For example, if we are drawing a
rectangle to the screen, and the screen already has something drawn on
it, a transfer mode will determine whether the rectangle is drawn opa-
que—covering over all the other drawing, or transparent—allowing
some of the drawing underneath to show through. There are eight dif-
ferent ways the rectangle could be drawn or “transferred” to the screen.
In the example, above the rectangle would be referred to as the source,
and the screen would be referred to as the destination.

The types of transfer modes are broken into two categories: pat-
tern transfer modes, referred to as pat, that are used when drawing lines
or shapes, and source transfer modes, referred to as src, that are used
when drawing text.

For each type of transfer mode, there are four operations: Copy,
Or, Xor, and Bic. Copy simply overwrites the bits in the destination with
the bits from the source. It doesn’t matter what the destination bits are,
they are simply replaced.

Or, Xor, and Bic all leave the destination pixels under the white
source pixels unchanged. The three operations differ in the way that
they affect the destination pixels that lie under black source pixels. Or
sets those destination pixels to black. Bic erases the destination pixels
under the black source pixels to white, while Xor inverts the destination
pixels.

For each of these four operations, there is also a not version in
which all the bits in the source are inverted before the transfer mode
operation is performed. Figure 5.6, with a sample source and destina- -
tion, shows how each of the transfer modes works.

The constant names for all the transfer modes, given in Fig-
ure 5.7, should be predefined in one of your header files, QuickDraw.h.

Patterns

A pattern in QuickDraw is an 8-by-8 square bit image, as shown
in Figure 5.8. Each of the 64 individual bits is set to 1 (black) or
0 (white) to create designs such as bricks or tones such as dark gray.

114 Using the Macintosh Toolbox with C

CH.5

When you are using MacPaint, all the designs along the bottom
of the screen are examples of QuickDraw patterns. Patterns have an as-
sociated data structure of type Pattern.

struct P {

char s[8];
}i
#define Pattern struct P
typedef Pattern *PatPtr;
typedef PatPtr *PatHandle;

Once we have a pattern, we can use it to draw lines or to fill in
or draw shapes on the screen. In fact, most of the time that we draw
something on the screen, a pattern comes into play one way or another.

Source Destination

SrcCopy SrcOr SrcXOr SrcBic
PatCopy PatOr PatXOr PatBic

NotSrcCopy NotSrcOr NotSrcXOr NotSrcBic
NotPatCopy NotPatOr NotPatXOr NotPatBic

Figure 5.6: Examples of How the Transfer Modes Work

Drawing with QuickDraw

115

Whenever a pattern is drawn, each 8-by-8-bit image is automatically
aligned with the next so that the overall design or tone is continuous

and even.

In QuickDraw, there are five predefined patterns (see Fig-
ure 5.9) for us to use: white, ItGray, gray, dkGray, and black.
We can use any of the standard patterns, or we can create and
use our own. One way of creating a pattern is to use the procedure

Transfer Mode

srcCopy
srcOr
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic
patCopy
patOr
patXor
patBic
notPatCopy
notPatOr
notPatXor
notPatBic

Figure 5.7: The 16 Transfer Modes and Their Values

64-bit image

The pattern it creates

64-bit image

The pattern it creates

HH
H

A

HHH

HHHHH

THH

Figure 5.8: Two 64-bit Images and the Patterns They Create

116 Using the Macintosh Toolbox with C

==™= CH.5

StuffHex (There is an easier way to do this by using the application
RMaker, which we will discuss in Chapter 9 on Resources.)

StuffHex (thingPtr, s)
Ptr thingPtr;
Str255 *s;

StuffHex allows us to assign a string of hexadecimal digits to any data
structure. The following code segment shows how to set the variable our-
Pattern to be a pattern with a brick design.

Pattern *ourPattern
StuffHex (ourPattern, “\p80808OFF080808FF") ;

We must be extra careful when using StuffHex. No variable checking is
done to make sure there is enough room in the destination variable for
the hex string specified. If a hex string is given that is larger than the
data structure it is being stuffed into, other things in memory may be
destroyed.

White Black

Light Gray Gray Dark Gray

Figure 5.9: The Standard Patterns

Drawing with QuickDraw 117

Pen Characteristics

A QuickDraw pen has 5 characteristics: its location, size, trans-
fer mode, pattern, and a flag indicating whether it is visible or not. These
characteristics are stored in the pnLoc, pnSize, pnMode, pnPat, and pnVis
fields of a grafPort. The pen of the grafPort we are drawing into is used
whenever we draw lines, shapes, or text.

The pnLoc Field

The pnloc is a point that indicates the location of the pen in the
grafPort’s coordinate plane. The pen’s actual location is not restricted
to the screen; it can lie anywhere in the coordinate plane. We can find
out the pen’s current location by calling the procedure GetPen.

GetPen(pt)
Point *pt;

GetPen will return in the variable pt, the location of the pen, ex-
pressed in terms of the current grafPort’s coordinate system.

The pnSize Field

.. The pnSize is another variable of type Point, but instead of repre-
senting a location in the coordinate plane, it represents the pen’s horizontal
and vertical dimensions. The default size of the pen is a 1-by-1-bit square,
but it can be defined to be any size from (0,0) to (32,767,32,767). An ap-
plication changes the pen’s size with the procedure PenSize.

PenSize (width, height)
int width, height;

When you draw with the pen, the upper left-hand corner of the pen is
lined up with the Point that is the pnLoc. The rest of the pen hangs below
and to the right of the pnlLoc (see Figure 5.10).

The pnMode Field

The pnMode is a variable of type int that specifies which transfer
mode to use when doing any pen drawing. The mode may be any one of

118 Using the Macintosh Toolbox with C

=== CH5

the eight pattern transfer modes. The pnMode value is easily changed
with the routine PenMode.

PenMode (mode)
int mode;

The pnMode is initially set to the patCopy transfer mode. If the mode is set to
any of the source transfer modes or negative, no drawing will take place.

The pnPat Field

The pnPat is a Pattern data type. It indicates the tone or design to
be used whenever any line drawing occurs. If the pnPat is black, the pen
will draw in black, if the pnPat is gray, pen drawing will be done with
gray, and so on. We set the pnPat with the procedure PenPat.

PenPat (pat)
Pattern *pat;

The initial value of the pnPat is black.

The pnVis Field

The pnVis is a variable of data type int. It determines whether or not
the pen will be visible on the screen or not. If the pnVis is negative, the pen
will be invisible; zero or a positive value will make the pen visible. We can

pnLoc

[pen height or pnsize.h

pen width or pnSize.w

Figure 5.10: The Pen’s Location and Size

Drawing with QuickDraw 119

alter the pnVis field with the two routines, HidePen and ShowPen. HidePen
decrements the pnVis field; ShowPen increments the field.

HidePen():
ShowPen () ;

If the pnVis field is zero and we call HidePen three times in succession, it
will be necessary to call ShowPen three times to make it visible again.

Restoring the Pen’s Default Fields

A call to the procedure PenNormal restores the initial values of
the pnSize, pnMode, and pnPat fields of the current pen.

PenNormal () ;

Figure 5.11 lists the pen’s initial values.

Moving the Pen

To change the location of the pen without drawing anything, we
have two routines, MoveTo and Move. MoveTo moves the pen to absolute
location (h,v) in the current grafPort.

MoveTo (h, v)
int h,v;

The procedure Move offsets the pen a distance of dh horizontally and dv
vertically from its current position pnLoc.

Move (dh, dv)
int dh,dv;

Field Initial Value
pnSize (0,0)
pnMode patCopy
pnPat black

Figure 5.11: The Pen’s Initial Values

120 Using the Macintosh Toolbox with C

- - .- CH_5

Drawing Lines with the Pen

There are two similar routines for line drawing: LineTo and Line.
LineTo draws a line from the pen’s current location pnLoc to the absolute
point (h,v).

LineTo (h,v)
int h,v;

Line draws a line a distance of (dh,dv) relative to the current value
in pnLoc.

Line (dh, dv)
int dh,dv;

Preserving a Pen’s Characteristics

Often, an application will have the pen’s characteristics all set,
but will then want to change some of the characteristics for just a short
time—for example, when a particular procedure is called. When the ap-
plication finishes calling the routine, it will want the pen’s characteristics
restored to their original state. A program can accomplish this with the
two routines GetPenState and SetPenState.

GetPenState saves the pen’s location, size, pattern, and transfer
mode into the storage variable pnState, which can later be passed to the
routine SetPenState.

GetPenState (pnState)
PenState *pnState;

The pen’s characteristics can be restored to the values stored in
the pnState variable with the routine SetPenState.

SetPenState (pnState)
PenState *pnState;

The PenState data type is not useful for anything except saving and reset-
ting the pen’s location, size, pattern, and transfer mode with GetPenState
and SetPenState.

Drawing with QuickDraw 121

Text Characteristics

Text has five characteristics which determine: the character font
it will be displayed in, its style, its transfer mode, its size, and some
spacing information for fully justified text. The characteristics are
stored in the txFont, txFace, xMode, txSize, and spExtra fields of a grafPort.

The txFont Field

The txFont is an int data type, a font number that specifies the
character font, or typeface, to use when displaying text in the current
grafPort. Figure 5.12 lists the font names and numbers of the standard
Macintosh fonts. You will probably have other fonts in your system,
and, as you’ll see in chapter 9, it is possible to add special fonts to a
resource file to make them available to your application.

To change the character font being used, an application uses the
procedure TextFont.

TextFont (font)
int font;

The parameter font is simply the font number of the font we wish to
change to. Its initial value is zero which specifies the system font.

Font Name Value
System Font systemFont =0
Application Font applFont =1
New York newYork =2
Geneva geneva =3
Monaco monaco =4
Venice venice =5
London london =6
Athens athens =7
San Francisco sanFran =8
Toronto toronto =9

Figure 5.12: Font Names and Their Font Numbers

122 Using the Macintosh Toolbox with C

=== CH.5

The txFace Field

The txFace field determines the style of the font specified by
txFont. There are eight different font styles: plain, bold, italic, underline,
outline, shadow, condense, and extend. Figure 5.13 lists the eight dif-
ferent font styles and their constant equivalents.

The styles can be used alone or in any combination. We turn on
and off the various type styles with the procedure TextFace.

TextFace (face)
Style face;

The face parameter passed to TextFace is a Style data type, which is simply
an int data type. The integer passed in face indicates the style or com-
bination of styles that the txFont is to be displayed in. The following line
shows how to set the font style to be bold, italic, and underline.

TextFace (boldStyle + italicStyle + underlineStyle);

The txMode Field

The txMode field is similar to the pnMode field of the pen. It con-
tains a transfer mode that determines how a character will be drawn on
the screen. We can change its value with the procedure TextMode.

TextMode (mode)
int mode;

Style Value
plain =0
bold =1
italic =2
underline =3
outline =4
shadow =5
condense =6
extend =7

Figure 5.13: Font Styles and Their Values

Drawing with QuickDraw 123

Only three of the transfer modes should be used for text draw-
ing: srcOr, srcXor, or srcBic. The initial value of txMode is srcOr.

The txSize Field

The txSize field specifies the size that the characters are to be
displayed in. The size of the text is specified in points (1/72 inch, not the
data type Point). An application changes the text’s size with the proce-
dure TextSize.

TextSize(size)
int size;

Any size font may be specified. The size we specify and the
sizes the font exists in affect the way the font will appear. Specifying a
size that the Font Manager has will result in the best looking fonts. The
next degree of quality is obtained when we specify a font size to display
that is an even multiple of an existing one. Requesting a 27 point font
when only a 9 point size is defined will cause the 9 point font to be
scaled evenly up to the 27 point font. The worst appearance occurs when
an application asks to display a point size that the Font Manager doesn’t
have and that isn’t an even multiple of a size that the manager has. If
zero is spé,ciﬁed as the size, the Font Manager will display the font in
the size closest to the system font size (12-point, usually).

The spExtra Field

The last text characteristic is the spExtra field. It is used when-
ever text needs to be fully justified, that is, aligned with both left and
right margins. The value in spExtra is the number of pixels by which each
space character needs to be widened to fill out the line of text. An ap-
plication sets the spExtra field with the routine SpaceExtra.

SpaceExtra (extra)
int extra;

The initial value of the spExtra field is zero.

124 Using the Macintosh Toolbox with C

- - .- CH.S

Text Drawing Routines

At this point, we’re ready to begin talking about actual text
drawing routines. When text drawing occurs, each character is placed to
the right of the current pen location pnLoc. The left edge of a character’s
baseline is aligned with the pnLoc. After a character is drawn, the pnlLoc is
moved to the right side of the character just drawn.

Drawing Characters, Strings, and Text buffers

There are three routines for drawing text: DrawChar, DrawString,
and DrawText. DrawChar draws a single character, DrawString draws a
specified string, and DrawText draws characters taken from a specified
buffer.

The procedure DrawChar places the specified character ch to the
right of the pen location pnLoc, and moves the pen to the right side of ch.
If the character isn’t defined in the font, then QuickDraw will draw the
missing symbol.

DrawChar (ch)
int ch;

DrawString calls DrawChar for each character in the string s. After the proce-
dure, the pnLoc will be at the right side of the last character in the string s.

DrawString(s)
Str255 *g;

DrawText draws the text stored in the buffer textBuf. The arguments firstByte
and byteCount indicate the number of bytes into the structure to begin and
the number of bytes to draw. As usual, the text begins to the right of the
current pen.

DrawText (textBuf, firstByte, byteCount)
char *textBuf;
int firstByte, byteCount;

Drawing with QuickDraw 125

Determining the Width of a Character, String, or Text in a Buffer

There are three similar routines for determining the width of a
character or string: CharWidth, StringWidth, and TextWidth.

CharWidth returns the width of the character ch specified. Any
style enhancements such as bold, italic, and so on are taken into con-
sideration when the width is calculated. The spExtra field is added to the
width if ch is a space character. The width returned is the number of
coordinates the pnLoc will be moved to the right after the character ch
is drawn.

int CharWidth (ch)
int ch;

Both StringWidth and TextWidth call CharWidth to determine the width of
the strings specified. For StringWidth the specified string is the string s,
and for TextWidth the specified string is the string byteCounts long, begin-
ning at firstByte in the buffer textBuf.

int StringWidth(s)
Str255 *s;

int TextWidth (textBuf, firstByte, byteCount)
char *textBuf;
int firstByte, byteCount;

Determining a Font’s Ascent, Descent, Width, and Leading

With the Toolbox it is possible to have more that one font size
and style in the same line of text. This can lead to problems with line
spacing when an application must display multiple lines of text contain-
ing a number of different font sizes and styles. There is, however, a
solution. Using the routine GetFontinfo, an application can determine
a font’s ascent, descent, maximum character width, and leading (the dis-
tance between the descent line and the ascent line below it). It can then
use this information to accurately change the line spacing so that every-
thing is displayed correctly. In the sample code of Chapter 8, Text
Editing with the Toolbox, there is an example of how GetFontinfo can
be used.

GetFontInfo (info)
FontInfo *info;

126 Using the Macintosh Toolbox with C

=== CH.5

The Fontlnfo data type is a structure of four shorts as is shown below. Get-
Fontinfo returns values expressed in pixels, in each field of the Fontinfo
structure.

typedef struct {

int ascent;

int descent;

int widMax;

int leading;
} FontInfo;

Figure 5.14 shows the ascent, descent, and width characteristics of a
character.

The GrafPort Data Structure and Routines

Now that we have enough background knowledge, it is time for us
to study the structure of a grafPort data type, its fields, and the routines that
will allow our application to take full control of how drawing will occur.

The grafPort Data Structure

The grafPort data structure, shown in the box titled “grafPort Data
Structure,” consists of a number of fields, some of which we discussed
in the last section and others that we will cover now.

descent

ascent line
ascent Rg
base line
<

— — descent line
width

Figure 5.14: The Ascent, Descent, and Width Characteristics of a Character

Drawing with QuickDraw 127

Grafport Data Structure

struct GP

{
int device;
BitMap portBits;
Rect portRect;
RgnHandle visRgn;
RgnHandle clipRgn;
Pattern bkPat;
Pattern fillPat;
Point pnLoc;
Point ’ pnsize;
int pnMode;
Pattern pnPat;
int pnVis;
int txFont;
Style txFace;
int txMode;
int txSize;
long spExtra;
long fgColor;
long bkColor;
int colrBit;
int patStretch;
Handle picSave;
Handle rgnSave;
Handle polySave;
QDProcsPtr grafProcs;

}i

#define GrafPort struct GP

typedef GrafPort *GrafPtr;

The device Field

The device field, an int, indicates the output device the grafPort
will be using. The default device number is 0, representing the Macin-
tosh screen.

The portBits Field

The portBits field is the bitMap that is used by the grafPort. A bitMap
points to a bit image, which is simply a rectilinear collection of bits in
memory. All drawing that is done in a grafPort will take place in the

128 Using the Macintosh Toolbox with C

=== CH5

portBit’s bit image. The default bit image is set to be the entire Macintosh
screen.

The portRect Field

The portRect field is a rectangle that defines the portion of the
portBits that will be used for the grafPort. Whenever an application draws
something, it will occur inside of the portRect rectangle. Recall from
Chapter 3, that a window pointer is the same thing as a grafPtr. A
window’s content region is a grafPort’s portRect.

The visRgn Field

The visRgn field is used primarily by the Window Manager and
is rarely changed by the programmer. It indicates the region of a grafPort
that is visible on the screen. Normally the visRgn is set to be the same size
as the portRect. When a window (a grafPort), has an object moved in front
of it, the area of the window obscured by the object is removed from the
window’s visRgn. Then, if drawing occurs in the window, the drawing is
clipped to the visRgn so that no drawing occurs on the obscuring object.

The clipRgn Field

The clipRgn is a programmer-definable region that an application
can use to limit drawing in specific areas of the portRect. The clipRgn is
initially set to be very large so that no drawing to the portRect is obscured
by it. If, for example, an application wanted items to be drawn only in
the upper half of a grafPort, the clipRgn could be set to be the upper half.
The sample program at the end of Chapter 10 changes the clipRgn often
and is a practical example of why an application might want to limit
drawing.

The bkPat and fillPat Fields

The bkPat and fillPat fields are both patterns that are used by the
grafPort and QuickDraw routines. The bkPat, or background pattern, is
used in areas on the screen that are “erased” or have bits scrolled out of
them by various QuickDraw routines. The fillPat, or fill pattern, is used to
fill in areas of the screen that are specified by QuickDraw’s Fill

Drawing with QuickDraw 129

routines. Filling and erasing routines will be discussed in the section on
QuickDraw drawing verbs.

The pnLoc, pnSize, pnMode, pnPat, and pnVis Fields

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields—covered in
detail earlier in this chapter—all have to do with a grafPort’s pen charac-
teristics. The pnLoc and pnSize fields indicate the location and size of the
grafPort’s pen. The pnMode and pnPat fields indicate the pen’s transfer
mode and pattern to be used when drawing. Finally, the pnVis field deter-
mines whether the pen is visible or not.

The txFont, txFace, txMode, txSize, and spExtra Fields

The txFont, txFace, txMode, txSize, and spExtra fields—also covered
in detail above—all have to do with a grafPort’s text. The txFont and txFace
fields determine the font and style to be used when displaying text. The
txMode and txSize fields indicate the transfer mode and size for the text of
the grafPort. Finally, the spExtra field is used when an application wants to
display fully justified text.

The fgColor, bkColor, and colrBit Fields

The fgColor, bkColor, and colrBit fields of a grafPort are used with
color QuickDraw. This is an extension of the basic QuickDraw package
which is used on the Macintosh II. There is, in fact, a lot of color with
QuickDraw which is not covered in this book, as it’s beyond the scope
of this text. You will need Inside Macintosh if you want to write
programs which draw in color.

The patStretch Field

The patStretch field is sometimes used by QuickDraw when it is
printing a pattern to a printer. An application should not change this
field’s value and has no use for its contents.

130 Using the Macintosh Toolbox with C

-—-— = CH.5

The picSave, rgnSave, and polySave Fields

The picSave, rgnSave, and polySave fields of a grafPort reflect the
status of picture, region, or polygon definition. For example, to define a
picture, region, or polygon, an application calls a routine to open it, then
the application executes the drawing commands to draw it, and finally
calls a routine to close it. If a picture, region, or polygon is open, the
picSave, rgnSave, or polySave field will contain a handle to the open pic-
ture, region, or polygon.

The grafProcs Field

The grafProcs field may contain a pointer to a customized Quick-
Draw data structure that an application might use. If the field is set to
NULL, QuickDraw will respond in the normal manner. Customized
QuickDraw routines are beyond the scope of this book, so we won’t be
discussing the grafProcs field.

GrafPort Routines

A lot of routines that could be classified as grafPort routines
have already been discussed under different headings. The routines that
change a grafPort’s pen and text characteristics, for example, were
discussed in the earlier sections on Pen Characteristics and Text Char-
acteristics. The routines we will discuss here deal mainly with the first
five fields of a grafPort.

Initialization

The first routine, InitGraf, should be called at the beginning of a
program to initialize QuickDraw. It initializes the QuickDraw global
variables listed in Figure 5.15.

InitGraf (globalPtr)
char *globalPtr;

Drawing with QuickDraw ~ 131

Creating and Disposing of GrafPorts

Before using any grafPort, an application needs to create it by
calling the routine OpenPort. Given a pointer gp, created with the routine
NewPtr, OpenPort creates a new grafPort gp, initializes the grafPort’s fields
as listed in Figure 5.16, allocates memory for the grafPort’s visRgn and clip-
Rgn, and makes the port gp the current port. The current port is the port
where all drawing commands will be directed.

OpenPort (gp)
GrafPtr gp;

To reinitialize a currently open grafPort, an application calls the
routine InitPort. InitPort initializes the fields of the specified port to the
values listed in Figure 5.16, and makes gp the current port.

InitPort (gp)
GrafPtr gp;

When an application is through with a grafPort, it should dispose
of the grafPort with the routine ClosePort. ClosePort releases the memory
occupied by the specified grafPort’s visRgn and clipRgn. After an applica-
tion calls ClosePort, it should dispose of the grafPtr gp with a call to the
Memory Manager routine DisposPtr.

ClosePort (gp)
GrafPtr gp;
Variable Type Initial Setting
thePort GrafPir NIL
white Pattern all-white pattern
black Pattern all-black pattern
gray Pattern 50% gray pattern
tGray Pattern 25% gray pattern
dkGray " Pattern 75% gray pattern
arrow Cursor pointing arror cursor
screenBits BitMap Macintosh Screen (0,0,512,342)
randSeed Longlint 1

Figure 5.15: QuickDraw’s Global Variables

132 Using the Macintosh Toolbox with C

=== CH.5

Keeping Track of GrafPorts

When an application uses multiple grafPorts, it will have to use
the two routines GetPort and SetPort to switch between them. The routine
SetPort is used to set the specified grafPort gp to be the current port. This
will cause all future drawing commands to be directed to the grafPort gp
until the application does a SetPort to another port.

SetPort (gp)
GrafPtr gp;

Before each call to SetPort, however, an application should save
the current grafPort (so that it can later be reset to the current port), by
calling the routine GetPort. GetPort saves a pointer to the current grafPort
in the specified variable gp. For example, when an application wants to
create a new grafPort with the routine OpenPort, it should first execute a

Field Type Initial Setting

device short 0 (Macintosh Screen)
protBits BitMap screenBits

protRect Rect screenBits.bounds (0,0,512,342)
visRgn Rgnhandle handle to (0,0,512,342)
cliprgn RgnHandle handle to (-30000,-30000,30000,30000)
bkPat Pattern white

fillPat Pattern black

pnLoc Point (0,0)

pnSize Point (1,1)

pnMode short patCopy

pnPat Pattern black

pnVis short 0 (visible)

txfont short 0 (System Font)

txFace Style normal

txMode short srcOr

txSize short 0 (Font Manager Decides)
spExtra short 0

fgColor long blackColor

bkColor long whiteColor

colrBit short 0

patStretch short 0

picSave QDHandle NIL

rgnSave QDHandle NIL

polySave QDHandle NIL

grafProcs QDProcsPtr NIL

Figure 5.16: The Initial Values of a GrafPort

Drawing with QuickDraw 133

GetPort to save the current port away, then call OpenPort to create a new
grafPort, and finally call SetPort to restore the previous grafPort to be the
current one.

GetPort (gp)
GrafPtr *gp;

Moving a GrafPort’s Coordinate System

To move a grafPort’s coordinate system, an application uses the
procedure SetOrigin. SetOrigin moves the current origin of the coordinate
plane to the new coordinates specified by the parameters h and v. An ap-
plication will often want to move the coordinate plane around after it
performs a scrolling operation. The sample program at the end of Chap-
ter 10 shows one way an application might use the SetOrigin procedure.
SetOrigin also offsets the coordinates of a grafPort’s portBits, portRect, and
visRgn. The application, however, must manually move the clipRgn with a
call to OffsetRgn.

SetOrigin(h, v)
int h,v;

Manipulating a GrafPort’s clipRect

We can alter the clipRect of the current grafPort with the three
routines GetClip, SetClip, and ClipRect. GetClip changes the specified
region rgn to be a region equivalent to the current grafPort’s clipRgn.

GetClip(xgn)
RgnHandle rgn;

The routine SetClip does just the opposite of what GetClip does. SetClip
sets the clipRgn field of a grafPort to be a region equivalent to the specified
region rgn.

SetClip(xgn)
RgnHandle rgn;

Our final clipRect manipulating routine is ClipRect. ClipRect allows an ap-
plication to set the clipRect field of the current grafPort to the specified

134 Using the Macintosh Toolbox with C

=== CH5

rectangle r. ClipRect is used in the sample program at the end of Chap-
ter 10.

ClipRect (x)
Rect *r;

Changing a GrafPort’s Background Pattern

To change the background pattern of the current grafPort, an ap-
plication can call the routine BackPat. BackPat changes the bkPat field of
the current grafPort to the specified pattern pat.

BackPat (pat)
Pattern *pat;

The QuickDraw Drawing Verbs

To draw a number of the shapes in QuickDraw, an application
will specify a procedure that consists of a drawing verb combined with
the shape or structure the verb is to act upon. The procedure will look
like VerbShape. In this section we will study the five drawing verbs and
the shapes or structures that they act upon, in preparation for the next six
sections of the chapter, which discuss the individual routines.

There are five drawing verbs in QuickDraw: Frame, Paint, Erase,
Invert, and Fill.

= Frame is used to draw the shape’s outline.

= Paint is used to paint the shape with the pen pattern of the current
grafPort.

= Erase is used to paint the shape with the current grafPort’s back-
ground pattern.

= Invert is used to. change the shape’s black pixels to white and
white to black.

= Fill is used to fill the shape with a specified pattern.

Drawing with QuickDraw 135

These five drawing verbs operate on six different QuickDraw

shapes or structures, for a total of 30 routines. The shapes are

Rectangles

Ovals

Rounded-comer rectangles
Arcs and wedges
Polygons

Regions

Each verb works the same way with each shape or structure, with one
exception that we will discuss in the section on polygons.

Drawing Rectangles

FrameRect outlines the rectangle specified, just inside of its

coordinates. The line is drawn using the current grafPort pen’s pattern
pnPat, transfer mode pnMode, and size pnSize.

FrameRect (r)

Rect *r;

PaintRect paints the specified rectangle r with the current grafPort’s pen
pattern pnPat, using the pnMode transfer mode.

PaintRect (r)

Rect *r;

EraseRect works exactly like PaintRect except that it paints the Rect r
using the background pattern bkPat and transfer mode patCopy.

EraseRect (r)

Rect *r;

136 Using the Macintosh Toolbox with C

=== CH5

InvertRect simply inverts all the pixels within the rectangle r. All the
white pixels are changed to black, and all the black pixels are changed
to white.

InvertRect (r)
Rect *r;

FillRect, unlike the other four rectangle displaying routines, requires two
arguments: a rectangle r and a pattern pat. The rectangle r is painted with
the specified pattern pat using the patCopy transfer mode.

FillRect (r,pat)
Rect *r;
Pattern *pat;

Drawing Ovals

The data type Rect is also used when drawing ovals. All ovals
are drawn inside rectangles, as shown in Figure 5.17. To draw a circle,
we just specify a square rectangle. The following five routines work ex-
actly like the corresponding rectangle-drawing routines:

FrameOval (r)

Rect *r;
PaintOval(r)

Rect *r;
EraseOval (r)

Rect *r;
InvertOval (r)

Rect *r;
FillOval (r,pat)

Rect *r;

Pattern *pat;

Drawing with QuickDraw 137

Figure 5.17: Ovals Drawn Inside Rectangles

Drawing Rounded-Corner Rectangles

We also use Rects for drawing rounded-corner rectangles. As
with rectangles and ovals, there are five display operations: Frame, Paint,
Erase, Invert, and Fill. With rounded-corner rectangles, however, each
routine requires two additional arguments: ovalWidth and ovalHeight. The
two integers ovalWidth and ovalHeight are used to indicate the diameters of
curvature for the rounded corners of the rectangle, as shown in Fig-
ure 5.18. Apart from the two additional arguments, the drawing routines

work exactly as they did with rectangles.

FrameRoundRect (r, ovalWidth, ovalHeight)

Rect *r

int ovalWidth, ovalHeight;
PaintRoundRect (r, ovalWidth, ovalHeight)

Rect *r

int ovalWidth, ovalHeight;
EraseRoundRect (r, ovalWidth, ovalHeight)

Rect *r

int ovalWidth, ovalHeight;
InvertRoundRect (r, ovalWidth, ovalHeight)

Rect *r

int ovalWidth, ovalHeight;

138 Using the Macintosh Toolbox with C

=== CHS5

FillRoundRect (r, ovalWidth, ovalHeight, pat)
Rect *r
int ovalWidth, ovalHeight;
Pattern *pat;

ovalwidth) (l\ oval height

Q C

Figure 5.18: Corner Measurement of a Rounded-Corner Rectangle

Defining and Drawing Angles, Arcs, and
Wedges

In QuickDraw there are six routines that deal with angles, arcs,
and wedges. One of the routines, PtToAngle, is used to measure angles,
while the other five are the standard display routines Frame, Paint, Erase,
Invert, and Fill. In all of the following six routines, angles are measured
with respect to the rectangle r that we are dealing with, as shown in
Figure 5.19. Zero degrees is a vertical line from the center of the rec-
tangle upward; 90 degrees is a horizontal line from the center of the rect
to the right; 180 degrees is a vertical line downward from the center; and
270 degrees is a horizontal line from the center to the left. An angle of
45 degrees is a line from the center of the rectangle, through its top-right
corner. Similarly, a line through the rectangle’s bottom-left comer
would measure 225 degrees. These measurements hold true for every
rectangle, no matter what its size or shape.

Drawing with QuickDraw 139

Defining an Angle

To define an angle, an application uses the routine PtToAngle. Pt-
ToAngle measures a clockwise angle from a line straight up from the
center of the specified rectangle r to another line drawn from the center
of the rectangle to the point pt. The integer degree value is returned in
the variable angle, always measured with respect to the rectangle r, as

was discussed in the previous section.

PtToAngle(r, pt, angle)

Rect *r;
Point pt;
int *angle;

/

/ 45 degrees

90 degrees

135 degrees

45 degrees

90 degrees

S 135 degrees

Figure 5.19: How Angles are Drawn with Respect to Rectangles

140 Using the Macintosh Toolbox with C

=== CH.5

Drawing Angles

The five standard display routines work for angles just as they
did with rectangles, except that each routine requires two additional
integer arguments: startAngle and arcAngle. The integer startAngle indi-
cates where the arc is to begin, while arcAngle indicates how many
degrees the arc should span. If the arcAngle is positive, the arc is drawn
clockwise from the startAngle; if the arcAngle is negative, the line is
drawn counterclockwise.

FrameArc(r, startAngle, arcAngle)

Rect *r;

int startAngle, arcAngle;
PaintArc(r, startAngle, arcAngle)

Rect *r;

int startAngle, arcAngle;
EraseArc(r, startAngle, arcAngle)

Rect *r;

int startAngle, arcAngle;
InvertArc(r, startAngle, arcAngle)

Rect *r;

int startAngle, arcAngle;
FillArc(r, startAngle, arcAngle, pat)

Rect *r;

int startAngle, arcAngle;

Pattern *pat;

Defining and Drawing Polygons

QuickDraw gives us the ability to draw and manipulate
polygons. A polygon is a closed figure made of any number of con-
nected lines. Some sample polygons are shown in Figure 5.20.

To define a polygon we use the two routines OpenPoly and Close-
Poly. We call OpenPoly to begin the definition and ClosePoly to end it. Any
line drawing routines called between OpenPoly and ClosePoly are added
to the polygon’s definition. The data structure of a polygon is as follows:

struct PY {
int polySize;

Drawing with QuickDraw 141

Rect polyBBox;
Point polyPoints[1];
}i

#define Polygon struct PY
typedef Polygon *PolyPtr;
typedef PolyPtr *PolyHandle;

The polySize field contains the size of the polygon in bytes. The polyBBox
field is the smallest rectangle that encloses the entire polygon. The poly-
Points array stores all the points of the polygon. This array of points is
what really defines the polygon. When an application draws a polygon,
lines are simply drawn between each point in the polyPoints array.

Defining and Disposing Polygons

To begin our polygon definition, we call the function OpenPoly.
PolyHandle OpenPoly ()’

OpenPoly returns a PolyHandle to a new polygon and tells QuickDraw to
save all Line and LineTo calls as part of the polygon definition. Only the
end points of the lines are stored in the polyPoints array. Also, none of the
pen characteristics are taken into consideration. HidePen is called so that
no drawing occurs on the screen while the polygon is being defined.

Figure 5.20: Pictures of Polygons

142 Using the Macintosh Toolbox with C

- s .. cH.s

To end the polygon definition, we call ClosePoly.
ClosePoly();

ClosePoly tells QuickDraw to stop saving all the Line and LineTo calls as
the definition of the polygon. The polygon’s polyBBox is calculated, and
ShowPen is called to balance the HidePen called by OpenPoly. Here’s an
example of how we would define a triangular polygon:

PolyHandle triPoly;
triPoly = OpenPoly();
MoveTo (300,100);
LineTo (400, 200);
LineTo (200, 200) ;
LineTo (300,100);
ClosePoly();

To deallocate the memory occupied by the polygon we call the proce-
dure KillPoly.

KillPoly (poly)
PolyHandle poly;

We should only call KillPoly when we are completely through with the
polygon poly.

Moving Polygons

We can move a polygon in the same manner that we are able to
move a rectangle. When an application calls OffsetPoly, the polygon poly
is offset a distance of dh horizontally and dv vertically. OffsetPoly does
not affect the screen or the polygon’s shape or size.

OffsetPoly (poly,dh,dv)
PolyHandle poly;
int dh, dv;

Drawing with QuickDraw 143

Drawing Polygons

To display a polygon, we can use any of the five standard draw-
ing verbs: Frame, Paint, Erase, Invert, or Fill. The polygon-displaying
routines work the same as the corresponding rectangle-displaying rou-
tines, except for FramePoly. FramePoly re-executes the Line and LineTo
calls of the polygon’s definition with the current pnSize, pnMode, and
pnPat pen characteristics. As a result, the framed polygon does not fit in-
side its polyBBox. The pen extends beyond the bottom and right sides of
the polyBBox by the pen height and width.

FramePoly (poly)

PolyHandle poly;
PaintPoly (poly)

PolyHandle poly;
ErasePoly (poly)

PolyHandle poly;
InvertPoly (poly)

PolyHandle poly;
FillPoly(poly,pat)

PolyHandle poly;

Pattern *pat;

Defining, Manipulating, and Drawing
 Regions

A region is a complex object that can consist of any combina-
tion of lines, shapes such as ovals and rectangles, and even other
regions. In a region, you may have one or more disjointed shapes. Be-
cause a region can be nearly any shape or set of shapes, its data structure
is of variable size. The structure consists of two fixed fields followed by
a variable-length data field.

struct RG {
int rgnSize; /* = 10 if region is rectangular */
Rect rgnBBox;

/* plus byte codes for region content */

};

144 Using the Macintosh Toolbox with C

=== CH.5

#define Region struct RG
typedef Region *RgnPtr;
typedef RgnPtr *RgnHandle;

The rgnSize field contains the size, in bytes, of the region, and
the rgnBBox is the smallest rectangle that completely encloses the region.
The rest of the data structure contains a compressed version of the draw-
ing commands that define the region.

Defining Regions

To define a region, we use three routines: NewRgn, OpenRgn, and
CloseRgn. The function NewRgn allocates space for and returns a handle
to a new region. Once we have a region handle and we want to start
defining the region, we call the procedure OpenRgn.. OpenRgn tells
QuickDraw to start saving all calls to the line drawing routines Line and
LineTo and to the procedures that draw framed shapes (except for Frame-
Arc) as the definition of a region.

As is the case with polygons, the pen characteristics are not
taken into consideration in the definition of a region. HidePen is called so
that no drawing appears on the screen during the definition of a region.
The outline of the region is defined, and the portBit bitMap is split into two
groups: those bits that are within the region and those that are not. Each
call to one of the Frame routines forms another closed loop. Any simple
lines drawn must connect with another line or a closed loop.

RgnHandle NewRgn();
OpenRgn() ;

When we are through defining our region, a call should be made to
CloseRegion. CloseRegion combines the lines and framed shapes as the
definition of a region and assigns this region to dstRgn. Once a region is
defined, we will always access it through its rgnHandle.

CloseRgn (dstRgn)
RgnHandle dstRgn;

Drawing with QuickDraw 145

Here’s an example of how to define a barbell shaped region:

rgnHandle barbell;

Rect tempRect ;

barbell = NewRgn();

OpenRgn () ;

SetRect (&tempRect, 20,20, 30, 50) ;
FrameOval (&tempRect) ;

SetRect (&tempRect, 30,30, 80, 40) ;
FrameRect (&tempRect) ;

SetRect (&tempRect, 80,20, 90,50) ;
FrameRect (&tempRect) ;

CloseRgn (barbell) ;

Manipulating Regions

Once our region is defined, there are all sorts of things we can
do with it. Many of the routines are very similar to the rectangle
manipulating routines. A call to any of the routines has no effect on the
screen whatsoever.

The OffsetRgn Procedure

OffsetRgn moves the region rgn a distance of dh horizontally and
dv vertically.

OffsetRgn(xrgn, dh, dv)

RgnHandle rgn;
int dh, dv;

The InsetRgn Procedure

InsetRgn moves each point on the boundary of the specified
region inward a distance of dh horizontally and dv vertically. Positive
values for dh and dv cause the region to be shrunk; negative values cause
it to expand.

InsetRgn(xgn, dh, dv)
RgnHandle rgn;
int dh, dv;

146 Using the Macintosh Toolbox with C

==%= CH.5

The SectRgn Procedure

SectRgn calculates the intersection of srcRgnA and srcRgnB and
places the result in dstRgn. The RgnHandle dstRgn must have been pre-
viously created with NewRgn; SectRgn does not create it. Either of the
source regions may also serve as the dstRgn.

SectRgn (srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

The UnionRgn Procedure

UnionRgn calculates the union of srcRgnA and srcRgnB and places
the result in dstRgn. The RgnHandle dstRgn must have been previously
created with NewRgn. Either of the source regions may also serve as the
dstRgn.

UnionRgn (srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

The DiffRgn Procedure

DiffRgn subtracts srcRgnB from srcRgnA and places the result in
dstRgn. It does not create the dstRgn; we must create it with NewRgn.
Either of the source regions may also serve as the dstRgn.

DiffRgn(srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

The XorRgn Procedure

XorRgn calculates the difference between the union and the in-
tersection of srcRgnA and srcRgnB and places the result into dstRgn. It does
not create the dstRgn; we must create it with NewRgn. Either of the source
regions may also serve as the dstRgn.

XorRgn (srcRgnA, srcRgnB, dstRgn)
RgnHandle srcRgnA, srcRgnB, dstRgn;

Drawing with QuickDraw 147

The PtinRgn Function

PtinRgn returns a true value if the pixel below and to the right of
the Point pt is enclosed by the specified region rgn. The function returns
false if pt is not enclosed.

char PtInRgn(pt, rgn)
Point pt;
RgnHandle rgn;

The RectinRgn Function

RectinRgn returns true if any bits of the Rect r are enclosed by
the region rgn. The function returns false if no bits are enclosed.

char RectInRgn(r, rgn)
Rect *r;
RgnHandle rgn;

The EqualRgn Function

EqualRgn returns true if the two regions rgnA and rgnB have ex-
actly the same size, shape, and location. Otherwise, it returns false.

char EqualRgn(rgnA, rgnB)
RgnHandle rgnA, rgnB;

The EmptyRgn Function

EmptyRgn returns true if rgn is an empty region and false if the
region contains something.

char EmptyRgn (xrgn)
RgnHandle rgn;

148 Using the Macintosh Toolbox with C

=== CH5

Drawing Regions

To draw a region on the screen, we have the same five standard
drawing commands: Frame, Paint, Erase, Invert, and Fill. These routines
work exactly the same way they do with rectangles.

FrameRgn (xrgn)

RgnHandle rgn;
PaintRgn (xrgn)

RgnHandle rgn;
EraseRgn (xrgn)

RgnHandle rgn;
InvertRgn (rgn)

RgnHandle rgn;
FillRgn(xgn, pat)

RgnHandle rgn;

Pattern *pat;

Defining and Drawing Pictures

A picture in QuickDraw is defined much in the same way as a
polygon. Just as a polygon is a series of line drawing routines, a picture
is a series of any QuickDraw procedures and functions. We call Open-
Picture to begin the picture’s definition and ClosePicture to end it. Any
QuickDraw routines called between OpenPicture and ClosePicture are
saved as the definition of the picture. When we begin our picture defini-
tion, we specify an enclosing rectangle, called the picture frame, for our
picture. Later, when we go to draw the picture, we specify a destination
rectangle for our picture. The picture is scaled up or down so that the
border of the picture frame is the same size as the destination rectangle.

struct PI {

int picSize;

Rect *picFrame;
/* plus byte codes for picture content */
}:
#define Picture struct PI
typedef Picture *PicPtr;
typedef PicPtr *PicHandle;

Drawing with QuickDraw 149

The picSize field contains the size of the picture in bytes. The picFrame is
the rectangle that encloses or frames the picture.

The rest of the structure contains a compact representation of
the drawing commands that draw the picture. The data structure is
variably sized—the last field can be any size depending on the com-
plexity of the picture.

Defining Pictures

To begin our picture definition, we call the function OpenPicture.
OpenPicture returns a PicHandle to a new picture with the specified pic-
Frame and tells QuickDraw to begin saving all drawing routines as part
of the picture definition. HidePen is called so that no drawing occurs on
the screen while the picture is being defined.

PicHandle OpenPicture (picFrame)
Rect *picFrame;

To end the picture definition, we call ClosePicture. ClosePicture tells
QuickDraw to stop saving drawing commands as the definition of the
picture. ShowPen is called to balance the HidePen called by OpenPicture.

ClosePicture();

Disposing of Pictures

To deallocate the memory used by a picture, we call the proce-
dure KillPicture. An application should only call KillPicture when we are
completely through with the picture myPicture.

KillPicture (myPicture)
PicHandle myPicture;

150 Using the Macintosh Toolbox with C

=== CH.s5

Drawing Pictures

To draw a picture on the screen, we call the procedure Draw-
Picture. The PicHandle myPicture identifies the picture to draw, scaled to fit
in the dstRect.

DrawPicture (myPicture, dstRect)
PicHandle myPicture;
Rect *dstRect;

Adding to a Previously Defined Picture

Once an application calls ClosePicture, the picture cannot be
reopened and added to. An application can however, in a rather tricky
manner, add to a picture that has already been defined. We simply open
a new picture with the routine OpenPicture and then draw the old picture
into the new picture. Now we can add anything we want to the old pic-
ture since it is now the new picture. When we are through adding things
to the picture, we call ClosePicture, as usual.

Bit Transfer Operations

The two routines in this section allow an application to scroll or
copy a specified set of bits. The first routine, ScrollRect, scrolls the bits
inside the specified rectangle that intersect with visRgn, clipRgn, portRect,
and portBits.bounds.

ScrollRect (r, dh, dv, updateRgn)
Rect *r;
int dh, dv;
RgnHandle updateRgn

The bits inside the specified rectangle r, are shifted a distance of dh
horizontally, and dv vertically. After the procedure, the updateRgn will be
the region that the bits were scrolled out of. This region will be filled
with the background pattern of the current grafPort. Before calling Scroll-

Drawing with QuickDraw 151

Rect, create the updateRgn with NewRgn. The sample program at the end
of Chapter 10 uses the routine ScrollRect to scroll bits around a window.

The second routine, CopyBits, allows an application to copy a set
of bits from one bitMap to another.

CopyBits(srcBits, dstBits, srcRect, dstRect, mode, maskRgn)

BitMap srcBits, dstBits;
Rect *srcRect, *dstRect;
int mode;

RgnHandle maskRgn;

CopyBits copies the bits enclosed by srcRect in the bitMap srcBits to the rec-
tangle dstRect in the bitMap dstBits. The srcRect is scaled to fit the dstRect.
The srcRect must be specified in the coordinates of the source bitMap,
while the dstRect is in the coordinates of the destination bitMap. The mode
parameter indicates which of the eight source transfer modes is to be
used when the bits are copied. The bits that are copied may be clipped
by specifying a maskRgn parameter. If the maskRgn is NULL or OL, no
clipping will be performed.

Cursors

When you move the Mac’s mouse around on a table, an image
(the cursor) moves around on the screen in a similar manner. The stand-
ard cursor is an arrow pointing upward and to the left. It is possible,
however, to change the cursor to any shape that we choose. A good ex-
ample of this is when the cursor changes to a wristwatch to indicate a
lengthy operation is taking place.

The cursor is a 16-by-16-bit square, defined as a 256-bit image.
A structure of type Cursor consists of three fields: a 16-word data field
which contains the cursor’s image, a 16-word mask field which contains
the cursor’s mask image, and a hotSpot of type Point which aligns the cur-
sor to the position of the mouse.

typedef struct {
short s[16];
} Bitslé;

152 Using the Macintosh Toolbox with C

- s .. CH.5

struct C {
Bitsl6é data;
Bitsl6 mask;
Point hotSpot;
}:

ffdefine Cursor struct C
typedef Cursor *CursPtr;
typedef CursPtr *CursHandle;

The data and mask fields determine how the cursor will appear on the
screen in accordance with the chart in Figure 5.21.

If all the mask bits are set to 1, then the cursor is opaque, and
none of the bits underneath it show through. If all the mask bits are set
to 0, then the cursor will appear “transparent”—pixels under the white
parts of the cursor will remain the same, while any pixels under the
black part will be inverted.

The hotSpot is a Point in the cursor’s 16-by-16-bit image that
aligns the cursor with the position of the mouse. Whenever the mouse is
moved, some low-level routines (handled by the system, not you), align
the cursor’s hotSpot with the new position of the mouse. The hotSpot also
indicates exactly where the mouse button is clicked down. The pixel on
the screen that is aligned with the hotSpot of the cursor is the Point that is
placed in the where field of the event record whenever an event takes
place. For the standard arrow cursor, the hotSpot is at Point (0,0). Fig-
ure 5.22 shows the relationship between the cursor and its hotSpot for the
standard arrow cursor.

The InitCursor Routine

One of the first procedures we need to call in any application is
InitCursor. It sets the cursor to the standard arrow cursor and makes the

Data Mask Resulting Pixel on Screen

White

Black

Same as pixel under cursor
Inverse of pixel under cursor

—_“0 =0
(=

Figure 5.21: Cursor Appearance Chart

Drawing with QuickDraw 153

cursor visible by setting the cursor level to 0. (A cursor level of 0 indi-
cates that the cursor is to be visible; a negative number indicates that it
is to be invisible.) The cursor level is changed via the procedures Hide-
Cursor and ShowCursor, to be discussed shortly.

InitCursor();

The importance of calling InitCursor or, as we will see in a moment, Set-
Cursor, is that when an application is double-clicked to start it up, the
cursor is changed to a wristwatch. The wristwatch cursor tells the user
“wait a moment” while the program is loaded from disk. When the pro-
gram finally begins, unless we change the cursor to something else, it
will remain a wristwatch, and the user may sit there for quite a while
before realizing that there is no longer a need to “wait a moment.”

The SetCursor Routine

In some applications, a cursor shaped differently than the stan-
dard arrow is advantageous. We can set the cursor to any shape we want
with the procedure SetCursor. SetCursor changes the cursor to the one
stored in crsr. No change, however, is made to the cursor level. If the cur-
sor was currently invisible, it will remain that way. When the cursor is
made visible, or if it already was visible, it will change to its new image.

SetCursor (crsr)
Cursor crsr;

Hotspot T
(0,0

Figure 5.22: The Standard Arrow Cursor and its HotSpot

154 Using the Macintosh Toolbox with C

=== CH.5

It is customary for the cursor to be changed to a wristwatch
whenever a lengthy operation must take place. A good example is disk
I/O. Whenever an application begins any substantial disk I/O, it should
change the cursor to a wristwatch. When the operation is completed, the
cursor should be restored to another appropriate shape.

The GetCursor Routine

In the standard Macintosh System File, there are four prede-
fined cursor shapes. A handle to any one of the four shapes, shown in
Figure 5.23, can be obtained using the GetCursor routine. An application
simply passes the number of the cursor it wants to GetCursor, and a han-
dle to it is returned as the function value. The handle to the cursor can
then be used with the previously discussed routine SetCursor.

CursHandle GetCursor (cursorID)
int cursorlID;

The HideCursor and ShowCursor Routines

To change the cursor level, making the cursor visible or in-
visible, we use the routines HideCursor and ShowCursor. Each time we
call HideCursor, the cursor is made invisible and the cursor level is decre-
mented. Each time we call ShowCursor, the cursor level is incremented.

@ @ t+ I
4 3 2 1

Figure 5.23: The Standard System Cursors

Drawing with QuickDraw 155

If the cursor level becomes 0, the cursor will become visible. Each call
to HideCursor should be balanced by a call to ShowCursor. If we call Hide-
Cursor twice, ShowCursor will have to be called twice to make the cursor
visible again. The converse is not true. ShowCursor will not increment
the cursor level beyond 0, so multiple calls to ShowCursor will not re-
quire multiple calls to HideCursor to make the cursor invisible again. One
call to HideCursor will always suffice to hide the cursor.

HideCursor();
ShowCursor () ;

The ObscureCursor Routine

There is one other way to make the cursor invisible, and that is
with a call to ObscureCursor. ObscureCursor makes the cursor invisible
until the next time it is moved. This can add a very nice touch to your
applications. In a word processing program for example, a user typing
in some text may find it annoying to have the cursor obscuring part of
the text on the screen. If ObscureCursor is used, the cursor will be in-
visible when text is being typed. It isn’t until the user attempts to do
something with the mouse that the cursor becomes visible again. The
Toolbox sort of tucks it away for us until we need to use it again.

ObscureCursor () ;

A Sample Program for QuickDraw

The application that follows demonstrates many of the routines
that we have discussed in the chapter. In addition, many of the other
sample applications in this book use QuickDraw routines.

156 Using the Macintosh Toolbox with C

=== CH.5"

/****‘k**/

/* Sample Application for Chapter 5: Drawing with QuickDraw */

/* */
/* This application demonstrates several of the QuickDraw *x/
/* routines discussed in the chapter. It allows you to */
/* clear the screen, and perform the 5 drawing verbs on */
/* rectangles and ovals. The application can also switch */
/* the cursor to any of the 4 standard system cursors. */
/* The application also performs simple animation, *x/
/* defines the fills a polygon, and draws a picture that is */
/* stored in the resource fork of the application. */
/* */

/***/

/* Include Mac header files */
#include <QuickDraw.h>
#include <EventMgr.h>

#include <WindowMgr.h>
#include <MenuMgr.h>

#include <ToolboxUtil.h>
#include <stdio.h>

/* Menu Constants */

#define Desk_ID 100
#define Shape_ ID 101
#define Cursor_ID 102
#define Special_ID 103

/* SetUpMenus simply sets up each menu
and puts it in the menu bar */
SetUpMenus ()
{
MenuHandle DeskMenu;
MenuHandle shapeMenu;
MenuHandle cursorMenu;
MenuHandle SpecialMenu;
long items, i;

/* Desk Accessory Menu - with disabled items until Ch. 13 */
DeskMenu = NewMenu (Desk_ID,"\p\24");
AddResMenu (DeskMenu, ‘DRVR’);
items = CountMItems (DeskMenu) ;

for(i=1;i<=items;i++) DisablelItem(DeskMenu, i) ;
InsertMenu (DeskMenu, 0);

/* shape menu */

shapeMenu = NewMenu (Shape_ID, "\pShapes"):;

AppendMenu (shapeMenu, "\pClear Screen; (-;Frame Rect;Paint Rect");
AppendMenu (shapeMenu, "\pErase Rect;Invert Rect;Fill Rect");
AppendMenu (shapeMenu, "\p(-;Frame Oval;Paint Oval;Erase Oval");

Drawing with QuickDraw 157

AppendMenu (shapeMenu, "\pInvert Oval;Fill Oval; (-;Quit");
DisableItem(shapeMenu, 2) ;
DisableItem(shapeMenu, 8) ;
DisableItem(shapeMenu, 14) ;
InsertMenu (shapeMenu, 0);

/* Cursors Menu */

cursorMenu = NewMenu (Cursor_ID, "\pCursors");

AppendMenu (cursorMenu, "\pI-Beam;Cross;Plus;Watch;Arrow");
InsertMenu (cursorMenu, 0);

/* Special Menu */

SpecialMenu = NewMenu (Special ID, "\pSpecial");

AppendMenu (SpecialMenu, "\pDraw Picture;Draw Polygon;Animation");
InsertMenu (SpecialMenu, 0);

DrawMenuBar () ;

}

/* main event loop */
main ()
{
EventRecord theEvent;
WindowPtr whichWindow;
short windowcode;

InitGraf (&thePort);
InitFonts();
InitWindows () ;
InitMenus () ;
InitCursor();

FlushEvents (everyEvent, NULL);

SetUpMenus () ;
while (1) {
if (GetNextEvent (everyEvent, &theEvent)) {
switch (theEvent.what) {
case mouseDown:
windowcode=FindWindow (theEvent .where, &whichWindow) ;
switch (windowcode) {
case inMenuBar:
DowWhatTheMenuSays (MenuSelect (theEvent .where)) ;
break;

break;

}
} /* end of main() */

158 Using the Macintosh Toolbox with C

=== CH5

/* DoWhatTheMenuSays responds to each menu event
DoWhatTheMenuSays (menuResult)
long menuResult;
{
short menulID, itemNumber,i;
CursHandle theCursor;
PicHandle thePicture;
PolyHandle thePolygon;

Handle saucerl;
Rect screen, theRect, iconl;
Pattern brickPat;

SetRect (&theRect,150,100,362,242);

SetRect (&screen,
screenBits.bounds.left,
screenBits.bounds.top + 20,
screenBits.bounds.right,
screenBits.bounds.bottom) ;

menuID = HiWord (menuResult);
itemNumber = LoWord (menuResult);

switch (menulID) ({
case Shape ID:
switch (itemNumber) {
case 1:
EraseRect (&screen) ;
break;

case 3:
FrameRect (&theRect) ;
break;

case 4:
PaintRect (&theRect) ;
break;

case 5:
EraseRect (&theRect) ;
break;

case 6:
InvertRect (&theRect);
break;

case 7:

FillRect (&theRect,dkGray) ;
break;

case 9:
FrameOval (&theRect) ;
break;

Drawing with QuickDraw 159

case 10:
PaintOval (&theRect) ;
break;

case 11:
EraseOval (&theRect) ;
break:

case 12:
InvertOval (&theRect) ;
break;

case 13:
FilloOval (&theRect, 1tGray) ;
break;

case 15:
ExitToShell() ;
break;

}
break:;

/* each of the cursor selections pulls in
a cursor from the system resource fork
and makes it the current cursor */
case Cursor_ID:
switch (itemNumber) {
case 1:
theCursor = GetCursor(l);
SetCursor (*theCursor) ;
break;

case 2:
theCursor = GetCursor(2);
SetCursor (*theCursor) ;
break;

case 3:
theCursor = GetCursor(3);
SetCursor (*theCursor) ;
break;

case 4:
theCursor = GetCursor(4);
SetCursor (*theCursor) ;
break:;

case 5:
InitCursor();
break;

160 Using the Macintosh Toolbox with C

=== CH.5

}
break;

case Special_ID:
switch (itemNumber) {

/* The first case prints a picture on the screen that is
stored in the resource fork of the application.
To create a PICT resource, cut or copy a picture
into the scrapbook, then with the Resource Editor,
go in and cut or copy the PICT resource out of the
scrapbook file and paste it into your application. */
case 1:
thePicture = GetPicture(l);
HLock (thePicture) ;
DrawPicture(thePicture, & ((**thePicture) .picFrame)) ;
HUnlock (thePicture) ;
break;

/* This case creates a brick pattern, and then a
triangular shaped polygon. The polygon is filled
with the brick pattern */

case 2:

StuffHex (&brickPat, "\p80808OFF080808FF") ;
thePolygon = OpenPoly():
MoveTo (300,100) ;
LineTo (400,200) ;
LineTo (200,200) ;
LineTo (300,100);
ClosePoly() ;
FillPoly(thePolygon, &brickPat);
FramePoly(thePolygon);
KillPoly (thePolygon) ;
break;

/* The last case performs some simple animation.
The reason the icon does not have to be erased
is that its left edge has a couple columns of
white space that overwrite the previous drawing
on the screen. This reduces the flicker on the
screen. */

case 3:

HideCursor();

EraseRect (&screen);

SetRect (&iconl,-33,50,-1,82);

saucerl = GetIcon(l);

PlotIcon(&iconl, saucerl);

for(i=0;i<screen.right+32;i++) {
OffsetRect (&iconl,1,0);
PlotIcon(&iconl,saucerl);

Memory Management

In the previous three chapters we discussed how to create and
use windows and menus, and introduced the graphics capabilities of
QuickDraw. These are very important tools to have at our disposal as we
design the user interface for our application, but now it is time to move
on to some of the more advanced capabilities of the Toolbox, and in par-
ticular one that lies at the heart of every program written for the
Macintosh.

Up to this point we have said very little about how the memory
of the Macintosh is organized or how it can best be used by an applica-
tion program. The sample programs we have presented so far already
make extensive use of the Macintosh Memory Manager, yet there has
been no need to stop and explain how things actually happen. For the
most part, in fact, the Memory Manager operates automatically, without
any action required on the part of the programmer. Most of the activity
handled by the Memory Manager is generated by other parts of the
Toolbox rather than coming directly from the application. The Menu
Manager function NewMenu, for example, directs the Memory Manager
to set aside a section of memory to contain all of the information about
an item in the menu bar, without any conscious effort on the part of the
programmer.

This is an essential feature of the Macintosh Toolbox. The
power and versatility of memory management are available to the ap-
plication programmer, but for the most part the application and the
programmer are insulated from the inner workings of the Memory
Manager.

In this chapter we will look first at the overall layout of the
memory of the Macintosh, with special focus on which portions of mem-
ory are used by the operating system and which portions are available for
the application program. Next, we will examine some of the frequently

164 Using the Macintosh Toolbox with C

=== CH.6

used routines of the Memory Manager for allocating and releasing
blocks of memory. Along the way we will discuss some of the pitfalls
that programmers can avoid and offer some guidelines for safe and ef-
fective use of the Memory Manager.

The Macintosh Memory Map

The memory of the Macintosh can be divided into three distinct
regions: low memory, high memory, and application memory (see Fig-
ure 6.1).

Low memory contains global variables belonging to the Tool-
box and operating system, the system heap, and the ROM (or RAM)

--¥-- topMem
Sound Buffer

High
Memory

Screen Buffer

Application & QuickDraw
Globals

Application
Memory
Application Heap Higher
Addresses
v
4
System Heap
ToolBox Globals
Low

Trap Dispatch Table Memory

System Globals

68000 Trap Vectors

0x0000

Figure 6.1: Macintosh Memory Map

Memory Management 165

locations of the Toolbox routines. High memory contains the screen and
sound buffers. Occasionally an application will need to know the value
of one of the system or Toolbox globals (for instance, the double-click ,
time) that is not accessible through any of the Toolbox routines. In Ap-
pendix C we have listed the locations of the system and Toolbox global
variables in low memory.

Application memory contains the application heap, the stack,
system global variables associated with QuickDraw, and the applica-
tion’s own global variables. Throughout this book we will deal almost
entirely with application memory. Let’s take a closer look at the stack
and the application heap now.

The Stack

The stack, which is located at the top of application memory, is
a dynamic structure. As more space is needed, the stack grows from
higher addresses to lower ones—that is, toward the application heap.
The upper end of the stack begins at a fixed address which depends only
on the amount of memory installed in your Macintosh. Space on the
stack is allocated on a last-in first-out, or LIFO, basis. In other words,
recently allocated items must be released from the stack before attempt-
ing to release an older item from the stack. Whenever a procedure or
function is called, additional space is allocated on the stack. As a routine
begins to execute, space for its local variables will be allocated on the
stack. This space will be released as the routine is exited. In addition,
roughly half of the routines in the Toolbox as well as several develop-
ment systems expect their calling parameters to be passed on the stack.
(The alternative is to pass parameters in the registers of the 68000.)

One of the advantages of using a high-level language like Pas-
cal or C is that manipulation of the stack is handled entirely by the
compiler. Typically the programmer does not need to worry about
the contents of the stack. There are occasions, however, when it be-
comes necessary to manipulate the stack. An example of this can be
seen in Chapter 10, in the implementation of a scroll bar.

166 Using the Macintosh Toolbox with C

- .- .- CH_S

The Heap

The heap is best described as a memory pool that is divided into
many chunks or blocks of varying sizes. Three types of blocks can be
found in the heap: relocatable blocks, nonrelocatable blocks, and free
or unallocated blocks. Every memory location in the heap will be a part
of only one such block. Figure 6.2 shows how these three types of
blocks might be distributed in a generic heap configuration.

You will have noted in our earlier discussion of the memory
map that there are actually two heaps: the system heap and the applica-
tion heap. In fact, the Macintosh operating system is capable of handling
multiple keap zones, of which the system and application heaps are but
two examples. Throughout the remainder of this book, we will consider
only applications that utilize a single application heap zone.

A major difference between the application heap and the system
heap is that each time an application is launched, the application heap is ini-
tialized (that is, erased and set back to the default size); thus any information
from the previous application will be lost. The system heap, on the other
hand, remains intact across the launching of different applications.

The application heap is important for several reasons. First
of all, the application code itself is stored in the application heap. In
addition, any memory allocated directly by the application through

Higher

7// //////////A T addresses

zzzzzzzz NN

v,
\ N, \ \I\I\I\I\I\/\/\I I\/\/\I\I\l\: V/ nonrelocatable

///////////// 7500 relocatable

’.4
N

~ EAIA)
IIIIIIIIIIIIIIIII 4

R N N NN NN NN free
DADAADLDADLDLINDIE

Figure 6.2: Blocks of Memory in a Generic Heap

Memory Management 167

the Memory Manager, or indirectly through the Toolbox, is located in
theapplicationheap.

The Macintosh operating system uses the system heap to store
its own data, independent of the current application. It is possible for an
application to place objects in the system heap, although doing so takes
up precious space in the system heap and therefore cannot be recom-
mended. In this book, we will only discuss manipulation of the
application heap, and we will refer to it generically as “the heap.”

Relocatable and Nonrelocatable Blocks

As we learned a moment ago, the heap is divided into three
types of blocks: relocatable, nonrelocatable, and free. A free block con-
sists of a range of memory not currently allocated; the block may have
been free since the current application was launched or it may have been
released back to the Memory Manager after the application no longer
needed its contents. In contrast, relocatable and nonrelocatable blocks
are portions of memory set aside by the Memory Manager for use by the
application.

A nonrelocatable block will be found at a fixed location
throughout its lifetime on the heap. An application refers to the contents
of a nonrelocatable block through the use of a pointer to the block. A
pointer is a variable containing the fixed address in memory of the
beginning of the data contained in the block (see Figure 6.3).

Higher
addresses

2,222 7.«

755 /M

Figure 6.3: Pointers and Nonrelocatable Blocks

168 Using the Macintosh Toolbox with C

- . CH.G

When an application requests space for a nonrelocatable block,
the Memory Manager will attempt to situate the block near the bottom
(toward lower addresses) of the heap to avoid the possibility of frag-
menting the heap (we will discuss this in a moment). Whenever
possible, nonrelocatable blocks should be allocated early in the applica-
tion program to ensure their placement near the bottom of the heap.

Relocatable blocks may be moved at the discretion of the
Memory Manager. Whenever an application releases a block of memory
from the heap—either directly through the Memory Manager, or in-
directly through the Toolbox—this relocation can occur. The Memory
Manager will rearrange the heap while attempting to gather space for an
object that is larger than any of the available free blocks. This process is
known as heap compaction. When compaction occurs, the memory ad-
dress of data contained in a relocatable block will change. To access the
data in a relocatable block, the application must use a handle to the data.
As we discussed briefly in the introduction to this book, a handle is
a variable that contains the location of a pointer to the data (a handle
is essentially a pointer to a pointer). The Memory Manager uses a spe-
cial type of pointer called a master pointer in conjunction with handles
(see Figure 6.4). Master pointers are kept by the operating system in

Higher
. addr

\ g

Handle

I
N
N
§|
Q
\T_

llllllll

7/ NasteiFoel 777
—////, Master Pointer 7///] 4—— —
cossosbsos andle

,,,,,,,,,,,,,,,,,,

i

l

Figure 6.4: Handles, Master Pointers, and Relocatable Blocks

Memory Management 169

nonrelocatable blocks in the heap. When a relocatable block is moved,
the Memory Manager updates the appropriate master pointer to
reflect the new location of the block.

Heap Compaction and Fragmentation

As we just learned, the Memory Manager merges free blocks
scattered throughout the heap in a process known as heap compaction.
During a compaction, relocatable blocks are moved towards the bottom
of the heap (to lower addresses) in an attempt to merge free space at the
top of the heap. This process begins with the relocatable blocks near
the bottom of the heap. If there were no nonrelocatable blocks in the
heap, the Memory Manager would be able to merge all of the free space
into a single contiguous block at the top of the heap. However, the
Memory Manager cannot move a relocatable block around or over a
nonrelocatable one. Thus the presence of nonrelocatable blocks inter-
feres with the attempt to move the relocatable blocks downward.

Fragmentation of the heap occurs whenever nonrelocatable or
locked relocatable blocks subdivide the heap into two or more pieces
(locked relocatable blocks will be discussed later in the chapter). Frag-
mentation prevents the Memory Manager from merging free blocks to
form larger ones. In almost any imaginable situation the heap will be
partially fragmented since it is impossible to allocate all of the non-
relocatable blocks side by side at the bottom of the heap. The
seriousness of fragmentation depends on how severely the heap is
divided by nonrelocatable blocks. In a badly fragmented heap, the
Memory Manager will be unable to merge the scattered free blocks,
even though the total amount of available space may be large. Figure 6.5
illustrates the appearance of the heap before and after compaction in the
case where the heap is only slightly fragmented. Notice the free block
stranded between the two nonrelocatable blocks near the bottom of the
heap. This block can only be used if the Memory Manager needs a block
of exactly its size or smaller.

Figure 6.6 shows the same heap configuration as Figure 6.5, ex-
cept that we have added a nonrelocatable block near the middle of the
heap. In this more seriously fragmented case, the Memory Manager can
no longer merge together the majority of the free space in the heap.

170 Using the Macintosh Toolbox with C

== CH.e6

DRI
R N N N N N N NN
RN

A PRENENEANEENENEN

<

LN
AT A N AN
N NN NN NN

Continuous
Free Space

777
AN NN AN NN

AN
AN AT AN N A

ARG
R N N N N N NN NN
LN NN

AR IEIATINY
AP AT AI AP I AP AP IIN)

.,

(NG

7772

7707

Before

przzzzzz2

After Compaction

Figure 6.5: The Unfragmented Heap Before and After Compaction

AN NN
R N N N N N NN NENEN
NN NN NN NN NN

7
R N N N N N N NN
AN NN
AT AN AN AT

YL LLLLL L

AN
RN N N N N N NN NENEN
RN NNRNNS

AT T
Z AV

00

7z

Before

Fragmented

Free Space
LRI RIS
AR NA YA NA YA YA YA AN YA YA Y
IS
SR A YA A TR A A U YA A WA R
AR NN
RONANANNNNNNAN
DN NN NN
ARARRARARRARRARIRAR
AR AR
NN
NNV NN NN N N N N S N NN

SOV AN
LA NN
AN AT AT AT AN

(L L

Fragmented
Free Space
TTIA RIS
RN RN
LN /\/ /. l\/\l\/ I\/
NG

00002

i

After Compaction

Figure 6.6: The Fragmented Heap Before and After Compaction

Memory Management 171

Using the Memory Manager

Many simple application programs will not notice the operation
of the Memory Manager. Heap compaction and memory allocation take
place with little or no direction from the application. In more complex
applications, however, the need will arise to allocate memory for an
array or structure that is not part of the Macintosh operating system. In
addition, when accessing the contents of relocatable blocks, it often be-
comes necessary to communicate directly with the Memory Manager
(this topic is discussed later in this chapter under the heading “Deref-
erencing”). For these reasons some knowledge of the routines in the
Memory Manager is essential. We will limit our discussion to only the
most frequently used routines.

Dereferencing: Using Pointers and Handles to
Access Data

To access a variable, structure, or structure field from its handle or
pointer, the application must dereference the handle or pointer; that is, the
application must follow the pointer or handle into memory to find the ac-
tual memory location of the data of interest. Suppose that we have defined
a structure named Thing, and that we have declared variables corresponding
to a pointer and handle to a variable of type Thing, as follows:

struct Thing {

int thelnt;

char theChar;

long thelong;
}:
#define Thing struct Thing
typedef Thing *ThingPtr;

typedef ThingPtr *ThingHandle;

Given this definition for the Thing structure and its contents, we
can construct the following, rather nonsensical, example in which we

172 Using the Macintosh Toolbox with C

=== CH.6

demonstrate various methods of using handles and pointers to a data
structure.

/* declare a local variable of type Thing and create a handle and
pointer to the variable */
Thing aThing;
ThingPtr aThingPtr;
ThingHandle aThingHandle;
/* Pass location of structure to a procedure */
aProcedure (&aThing); /* use address operator (&)*/
aProcedure (aThingPtr);
aProcedure (*aThingHandle) /* use indirection operator (*) */
/* Access individual field of the structure*/
thelongPart = aThing.theLong; /* use dot operator (.) */
thelongPart aThingPtr->thelong; /* use arrow operator (->) */
thelongPart = (*aThingPtr).thelLong; /* or dereference pointer */
thelongPart = (*aThingHandle)->thelong;/* deference and
use arrow */
theLongPart = (**aThingHandle) .thelLong; /* deference twice and
use dot */

The parentheses used when dereferencing handles and pointers are re-
quired, since in C the structure operators dot (.) and arrow (->) take
precedence over the indirection operator (*).

Allocating, Disposing and Resizing of
Nonrelocatable Blocks

To allocate a nonrelocatable block on the application heap, use
the function NewPtr:

Ptr NewPtr (logicalSize)
long logicalsize;

The parameter logicalSize specifies the size in bytes of the desired block.
NewPtr returns as its value a pointer to the new block if it was successfully

Memory Management 173

allocated, or NULL if it was not. The function NewPtr attempts to position
the nonrelocatable block as close to the bottom of the heap as possible by
moving relocatable blocks toward the top of the heap. Remember to cast
the generic pointer to the appropriate structure pointer before passing it to a
Toolbox routine or attempting to dereference the pointer to access the con-
tents of the block.

To release the memory occupied by a nonrelocatable block, call
DisposPtr with a pointer to the block as the parameter:

DisposPtr (aPointer)
Ptr aPointer;

Releasing the block allows the Memory Manager to reclaim the space
occupied by the block.

The size of an existing nonrelocatable block can be obtained
from the function GetPtrSize by passing a pointer to the desired block:

long GetPtrSize (aPointer)
Ptr aPointer;

GetPtrSize returns the size of the block unless an error occurs, in which case
it returns NULL. The most common error involves passing a pointer that
does not point to any of the existing nonrelocatable blocks.

The size of an existing nonrelocatable block may be altered
with the procedure SetPtrSize. Pass a pointer to the block and the desired
size of the block, as follows:

SetPtrSize (aPointer, newSize)
Ptr aPointer;
long newSize;

This allows an application to expand, or shrink, the amount of memory
used to store its data. In C, the only universal way to determine if SetPtr-
Size succeeded in changing the size of the block (see the box entitled
“Determining if a Memory Manager Error Has Occurred”) is to follow
up with a call to GetPtrSize.

174 Using the Macintosh Toolbox with C

= =™ CH.6

Determining if a Memory Manager Error Has Occurred

Many of the routines in the Memory Manager place a result or
error code into the DO register of the 68000 upon completion. For
many of the routines in the Memory Manager, it is necessary to in-
spect this value to determine if the operation was carried out
successfully. Under Think C, the return value of any function is
placed in the DO register just prior to the conclusion of the function.
As such, no special manipulation is required to read the result or error
codes from Memory Manager routines. You can simply treat them as
return values.

A listing of the appropriate error codes for the routines of the
Memory Manager may be found in Appendix B.

Allocating, Disposing and Resizing
of Relocatable Blocks

The Memory Manager also contains routines for use with relo-
catable blocks. These routines are similar to the ones used with non-
relocatable blocks.

To allocate a relocatable block on the application heap, use the
function NewHandle, as follows:

Handle NewHandle (logicalSize)
long logicalsize;

The parameter logicalSize once again specifies the size in bytes of the
desired block. NewHandle returns as its value a handle (equivalent to a
char**) to the new block if it was successfully allocated, or NULL if it
was not. NewHandle will position the relocatable block near the top of the
heap and will, if necessary, compact the heap to merge sufficient free
space for the new block. Before using the generic handle returned by
NewHandle in a Toolbox routine, or to access the contents of the
relocatable block, remember to cast the handle to a specific structure
handle.

Memory Management 175

To release the memory occupied by a relocatable block back to
the Memory Manager, call DisposHandle with a handle to the block as the
parameter:

DisposHandle (aHandle)
Handle aHandle;

The size of an existing relocatable block can be obtained from the func-
tion GetHandleSize by passing a handle to the desired block:

long GetHandleSize (aHandle)
Handle aHandle;

GetHandleSize returns the size of the block, or NULL if an error occurs.
The most common error again involves passing a handle that does not
correspond to any existing relocatable block.

The size of an existing relocatable block may be increased or
decreased with the procedure SetHandleSize. Pass a handle to the block
and the desired final size of the block as the parameters:

SetHandleSize (aHandle, newSize)
Handle aHandle;
long newSize;

Properties of Relocatable Blocks

A relocatable block can be temporarily locked to prevent its
movement during a memory compaction. It is often necessary to lock a
relocatable block when a Toolbox routine will access some part of its
contents. Furthermore, in time-critical portions of an application, it may
be desirable to access the contents of a block through a pointer instead
of a handle, since using a pointer rather than the handle removes one
level of indirection and results in faster execution. Whenever a pointer
is being used to access the contents of a relocatable block, the block
must be locked in case memory is compacted. Be certain to unlock the

176 Using the Macintosh Toolbox with C

= =™ CH.6

block after the relevant portion of the application has been completed to
allow memory compaction to occur properly.

To lock or unlock the block with the handle aHandle, use the fol-
lowing procedures:

HLock (aBRandle)

Handle aHandle;
HUnlock (aHandle)

Handle aHandle;

By default, the Memory Manager creates unlocked relocatable blocks.

In memory critical situations that occur when you are trying
to fit a large application into a small amount of memory, it may be
convenient to allow the Memory Manager to purge the contents of a re-
locatable block. A block should be marked as purgeable only if the
contents of the block can be easily reconstructed and then only when
the application is nearly out of memory. The Memory Manager will
only reclaim the space occupied by a purgeable block if it has ex-
hausted all other means of obtaining free space.

To mark a relocatable block as either purgeable or unpurgeable
(relocatable blocks are created as unpurgeable), use the procedures:

HPurge (aHandle)

Handle aHandle;
HNoPurge (aHandle)

Handle aHandle;

If a block has been marked as purgeable, you must determine if it has ac-
tually been purged before attempting to access its contents. The Memory
Manager will place the value NULL into the block’s master pointer before
purging the block. Thus if the handle points to a NULL master pointer, the
block has been purged. Attempting to access the contents of a block whose
master pointer has the value NULL will produce unpredictable results. In-
terpreting NULL as a pointer leads to address zero at the bottom of system
memory. This is where system global variables are stored. Therefore, if you
write to it, the system will probably crash. If the block has been purged, the
application should instead reallocate the block and reconstruct its contents
before proceeding. Since the block’s master pointer is not released when
the block is purged, the application should always reallocate the block

Memory Management 177

using the existing master pointer, instead of creating a new block with
NewHandle. Use the procedure

ReallocHandle (aHandle, logicalSize)
Handle aHandle;
long logicalSize;

to reallocate space using the existing master pointer for the relocatable
block that has been purged.

The Dangers of Dangling Pointers

One of the most common errors made when working with
memory management involves creating and dereferencing a dangling
pointer. The danger of a dangling pointer exists whenever the applica-

- tion dereferences a handle to a relocatable block and then passes the
resulting pointer or absolute memory location to a Toolbox routine, or
worse yet makes a local copy of the dereferenced handle. If the Memory
Manager compacts the heap and relocates the block, the pointer created
by the application will be left dangling; in other words, the pointer will
no longer point correctly to the data in the block. Figure 6.7 illustrates
this situation. Before compaction, both the master pointer and the
application’s copy correctly point to the data in the relocatable block.
After the compaction, the master pointer has been updated by the
Memory Manager to reflect the new position of the relocatable block
while the application’s copy still reflects the old position of the block.

Most often dangling pointers are created when the application is
passing a pointer to a structure, which is located in a relocatable block,
to a Toolbox routine. If the Toolbox routine causes a memory compac-
tion before it finishes with the structure, the pointer passed to the routine
may become invalid. To avoid dangling pointers, the application should
lock the relocatable block in memory before calling a Toolbox routine
with a dereferenced handle. It is important to remember to unlock the
block as soon as the application has finished calling the routine or
routines that require a dereferenced handle—and may cause a heap
compaction—since the locked block may fragment the heap.

Let’s take a look at two examples leading to the creation of dan-
gling pointers, along with the appropriate remedies. The first example

178 Using the Macintosh Toolbox with C

=== CH.6

illustrates the more obvious case where the application itself uses the
dangling pointer.

/* EXAMPLE 1:
- using local copy of master pointer */
/* dereference handle to get a pointer to the data */
localThingPtr = *aThingHandle;
/* call a procedure which may cause a heap compaction */
RiskyProcedure () ;
/* if RiskyProcedure caused a memory compaction
- localThingPtr becomes a dangling pointer
- the next operation using it will be bogus */
theLongPart = localThingPtr->theLong;
/**/
/* Solution A: Don’t make a copy of the dereferenced handle! */
someThing = (*aThingHandle)->thelnt;
RiskyProcedure();
theLongPart = (*aThingHandle)->theLong; /* dereference here
again! */
/* Solution B: If you must copy the master
pointer—lock the handle */
HLock (aThingHandle) ;
localThingPtr = *aThingHandle;

AJATATA JAJA JLIA JA YA

",
. I:I:I\/\/\/\I\I\/:I:I: N
Pointer > < Pointer

7 4 77 7.7.77.7
RECERESSSSSS

VIS IS I IS
Hande |—#-p Master Pointer 4— [Master Pointer 7] 4—] Hande |
Handle, Handle,
Master Pointer, and Master Pointer, and
Dereferenced Pointer Dangling Pointer
after Heap Compaction

Figure 6.7: Dangling Pointers Caused by Heap Compaction

Memory Management 179

RiskyProcedure();
thelongPart = (aThingHandle)->thelLong;
HUnlock (aThingHandle) ;

The second example passes a pointer to a structure, which is
contained within a relocatable block, to a Toolbox routine that may
cause a heap compaction. This is the most common way of inadver-
tently creating a dangling pointer. In this case the error is likely to occur
within the Toolbox routine itself. This example should be a familiar one,
as it first appeared in the sample program used in Chapter 3.

/* EXAMPLE 2:

- passing structure pointer to a Toolbox routine */

/* Erase the window content, pass boundsRect to EraseRect
- the boundsRect is contained in the relocatable

- block used to store the content region */

/* get handle to content region first */

contRgnHnd = theWindowRec.contRgn;

/* pass pointer to boundsRect

- note that handle is dereferenced in the process */
EraseRect (& (*contRgnHnd)->rgnBBox);

/* even an innocuous routine like EraseRect can cause

a heap compaction. If this occurs, the pointer

to the boundsRect becomes invalid */

/**/

/* Solution: lock relocatable block before dereferencing */
contRgnHnd = theWindowRec.contRgn;

HLock (contRgnHnd) ;

EraseRect (& (*contRgnHnd)->rgnBBox);

HUnlock (contRgnHnd) ;

Miscellaneous Routines
The Memory Manager also contains several routines designed to
report on the available space in the heap, or to explicitly compact the heap.
To determine the total amount of free space in the application
heap, call the function FreeMem:

long FreeMem/()

180 Using the Macintosh Toolbox with C

=== CH.6

Note that allocating a block equivalent to the total amount of free space
in the heap is not usually possible because of the fragmentation caused
by nonrelocatable and locked relocatable blocks.

The size of the largest block that can be allocated after memory
compaction can be determined with the function MaxHeap:

long MaxHeap()

The application can perform a memory compaction explicitly
(as opposed to the compactions performed indirectly by the Memory
Manager as it gathers free space) with the function CompactMem:

long CompactMem (cbNeeded)
long cbNeeded;

Here the parameter cbNeeded specifies the amount of free space that the
Memory Manager should attempt to gather in one place. CompactMem
moves relocatable blocks downward in the attempt to gather free space
near the top of the heap. The result returned from CompactMem is the size
of the largest free block available after the compaction.

If the application contains a relocatable block that will be locked
for long periods of time, the block should be placed near the bottom of the
heap. In contrast to CompactMem, the procedure ReservMem moves relo-
catable blocks upward in an attempt to gather free space near the bottom
of the heap:

ReservMem (cbNeeded)
long cbNeeded;

If necessary, ReservMem will purge blocks from the heap in order to free
the specified amount of memory. Following ReservMem with a call to
NewHandle results in locating the block near the bottom of the heap.
Recall that a locked relocatable block acts just like a nonrelocatable
block in fragmenting the heap. Locating the block near the bottom of the
heap with the nonrelocatable blocks, however, minimizes the extent to
which a locked block can cause fragmentation.

The final Memory Manager routine we will discuss is a general
purpose utility for copying an arbitrary portion of memory. BlockMove
copies a specified number of bytes from one memory location to another.

Memory Management 181

BlockMove (sourcePtr, destPtr, byteCount)
Ptr sourcePtr, destPtr;
long byteCount;

Here the parameter sourcePtr specifies the starting location in memory of
the source of data to be copied, while destPtr is the starting location for
the destination, and byteCount is the number of bytes to be copied. You
can use BlockMove whenever the application needs to copy a data struc-
ture, and thus avoid having to copy each field separately.

~ Here is an example of copying the contents of one structure
variable into a block allocated on the heap:

/* locally defined variables */

WindowRecord theWindowRec;
WindowPeek copyOfTheWR;

/* allocate a nonrelocatable block of the right size
- remember to cast generic pointer */

copyOfTheWR = (WindowPeek) NewPtr (sizeof (WindowRecord));
/* make a copy of theWindowRec */

BlockMove (&theWindowRec, copyOfTheWR, sizeof (WindowRecorxd));

C Language Equivalents

If you leaf through the Think C Standard Libraries Reference
book, you will discover that the storage library offers some functions
which seem to do much the same things as the Memory Manager func-
tions do. In some cases, it might not be obvious which to use for a
particular application.

In fact, these functions call the Memory Manager directly.
Thus, for example, the malloc function, which allocates memory under
any C language environment, is equivalent to the NewPtr function of the
Mac’s Memory Manager. The C language functions are provided with
Think C to make it easier to port source code from other computers to
the Mac, and to subsequently recompile it with a minimum of changes.

182 Using the Macintosh Toolbox with C

=== CH.6

Good arguments can be constructed for using the C language
storage functions rather than the direct Memory Manager calls when-
ever possible. A program which uses malloc rather than NewPtr, for
example, will be easier for a C programmer not familiar with the Macin-
tosh to read at some future time. It will also be a lot easier to port out of
the Mac, if you want to run it on a different machine.

In practice, the C language storage functions don’t provide
equivalents for most of the useful functions of the Memory Manager in
any case, and their use doesn’t come up that often. They can’t allocate
relocatable blocks, for example. On the other hand, C provides a func-
tion called calloc which will allocate a non-relocateable buffer to hold an
array of structs and clear it, all with one call. Since this is something
which comes up a lot in C programs, it’s a useful thing to know about.

C also provides you with memory movers. The movmem func-
tion, in the unix library of Think C, is equivalent to the Memory
Manager’s BlockMove function. Again, it’s useful principally for reasons
of portability.

There’s a trap in porting code from other machines to the
Macintosh involving this function. The equivalent to movmem under
many IBM PC C language compilers is memcpy, and it’s an easy proce-
dure to simply replace one with the other, or to use a #define statement
to have the compiler do the work for you. However, most implementa-
tions of memcpy copy in the opposite direction to movmem, that is, the
source and destination arguments are reversed. Watch for this.

No Example

In contrast to our usual procedure, we will not wrap up our dis-
cussion of memory with an example demonstrating the Memory
Manager per se. It would be difficult to present a very meaningful ex-
ample without the surrounding context of a sample application. Instead,
in the upcoming chapters the programming examples will be sprinkled
with routines from the Memory Manager. Pay particular attention to the
way in which these routines are used in conjunction with other Toolbox
routines. Mastering the use of the Memory Manager will be an impor-
tant step in writing any application.

Now that we have a little more of the fundamentals of the Tool-
box under our belts, we are ready to move on to a more challenging
topic—the use of multiple windows.

Using Multiple Windows

In Chapter 3 we learned the basics skills required to manipulate
a single window on the desktop. This chapter concludes our discussion
of the Window Manager by covering the slightly more complicated
situations that can arise when multiple windows are present on the
desktop. Reading this chapter will enable you to write an application
that has one or more windows, in addition to dialogs, alerts, and desk
accessories.

The interaction between multiple windows produces the two
types of events we discussed briefly in Chapter 2: namely, activate and
update events. Activate events result from changes in the front-to-back
ordering of the windows. Update events indicate that a previously
obscured portion of a window has become visible and must now be
redrawn. In this chapter we will describe in detail and also provide ex-
amples of the ways in which an application should respond to activate
and update events.

In addition to discussing activate and update events, this chap-
ter will include information on manipulating update regions from within
the application. Several miscellaneous topics—for example, determin-
ing the size and type of a window, manipulating the refCon field, and the
use of double-clicks in the title bar to resize a window (a feature found,
for instance, in Microsoft Word and Excel)—are covered at the end of
this chapter.

186 Using the Macintosh Toolbox with C

=== CH7

Activate Events

When multiple windows are present on the desktop, the
frontmost window is referred to as the active window, while any remain-
ing windows are called inactive windows. The active window is set
apart by highlighting the title bar (if indeed the window contains a title
bar). In addition, a window may contain controls (scroll bars, buttons,
check boxes, and so on) or other features (for example, a flashing text
insertion point) whose appearance should change as the window chan-
ges between its active and inactive states.

In Chapter 3, we learned to bring a window to the front of the
desktop with SelectWindow when a mouse-down event occurs in the con-
tent region of an inactive window. The Window Manager will
automatically highlight the title bar of the newly activated window, then
determine which window should be deactivated, automatically unhigh-
lighting its title bar. Other operations necessary to transform the
appearance of a window from the active state to the inactive state, or
vice versa, must be performed explicitly by the application. All of the
routines of the Window Manager that affect the order of windows on
the desktop will generate and post the appropriate activate events to the
Macintosh’s event queue automatically. Figure 7.1 shows what happens
when two windows containing text, scroll bars, and other controls
change their front-to-back order on the desktop. The process occurs in
two stages, beginning with the original desktop as shown in Figure 7.1a.
In the first step, the application calls SelectWindow, which highlights or
unhighlights the title bars of the windows (see Figure 7.1b) and posts the
activate events to the event queue. The process is completed when
the application receives and processes the activate events generated by
SelectWindow, taking actions appropriate to the contents of the individual
windows, as shown in Figure 7.1c.

Information concerning which windows have been activated or
deactivated is passed to the application in the form of an activate event.
In Chapter 2 we learned that when the Event Manager function GetNext-
Event returns an activate event, the message field of the EventRecord will
contain a pointer to the window to be activated. Bit zero, the least sig-
nificant bit, of the modifiers field will have a true value if the window
should be activated, or a false value if it should be deactivated.

Using Multiple Windows 187

[ECO== untitled] Untitled
itself{d The application it
must activate or dea . must activate or d
the window Content the window conte
:’c':fl:‘a'tte':lfg:"’t“ an when it receives z

) Activate event.
&

a. - Two windows on the desktop

Untitled E[J=== Untitled
itself[d The application it
must activate or dea|_] must activate ord
the window content . the window conte
:’c'}f:a'tte'xz:"’t“ an when it receives z

’ Activate event.

b. - After SelectWindow activates the window on the left. Note that the
window's contents do not yet reflect their new position on the desktop

Untitled E[J== Untitled |
The application itself] The application it{=2
must activate or dea must activate or ||
the window contents i =Ywindow cont
when it receives an when it receives

i t. .
Activate even Activate event.

¢. - Final appearance of the windows after the application
activates or deactivates the contents of the windows

Figure 7.1: Activate Events and the Appearance of the Desktop

188 Using the Macintosh Toolbox with C

] cH.7

The following example is based on a portion of the main event
loop of a typical application. Upon receiving an activate event, the ap-
plication first determines which window will be affected and then
whether the window will be activated or deactivated. Once this has been
determined, the application can then modify the contents of the window
to reflect its new position on the desktop.

/* locally defined variables */
EventRecord theEvent;
WindowPtr actWindow;
/* constant from Window Manager header file
activeFlag = 0x0001 */
/* portion of switch on event type from GetNextEvent */
case activateEvt:
/* determine windowPtr for window,
set as current grafPort */
actWindow = theEvent.message;
SetPort (actWindow) ;
/* activate or deactivate the window? */
if (theEvent .modifiers & activeFlag) {
/* activate window controls, text items, etc.
- redraw size box if appropriate */
} else {
/* deactivate window controls, test items, etc.
- redraw size box if appropriate */
}

break;

In Chapters 8 and 9, where we will discuss TextEdit and con-
trols, we will see examples of activating and deactivating windows
containing text items, scroll bars, and buttons.

Update Events

In addition to the need to activate and deactivate windows, ap-
plications using multiple windows entail the need to redraw the contents
of a window when its position changes relative to the other windows on
the desktop. When the application brings a partially obscured window
to the front of the desktop, in effect, it must redraw the previously

Using Multiple Windows 189

obscured region, in addition to performing the actions required to ac-
tivate the window.

This whole situation is clearer if we isolate the update process
from that of activation. In Figure 7.2 we show two overlapping windows
before, during, and after the lower window is moved. While moving the
lower window in this way does not disturb the front-to-back ordering of
the windows, it does require that a part of the lower window be redrawn.
The Window Manager routine used by the application to change the
relative position of the windows will post the appropriate update events
to the event queue. Figure 7.2a shows the desktop just prior to the move-
ment of the window. In Figure 7.2b we see the appearance of the
desktop after the window has been moved but before the application has
redrawn the necessary portion of the window (the region that needs to
be redrawn is known as the update region). Finally, in Figure 7.2c we
see the desktop after the application has received the update event and
has redrawn the contents of the lower window.

As is the case for activate events, when the function GetNextEvent
reports an update event, the WindowPtr for the appropriate window can be
found in the message field of the EventRecord. The Window Manager keeps
track of exactly which portion of each window needs to be redrawn in the
window’s update region, which is stored in the updateRgn field of the
window’s WindowRecord. Typically it is easier for the application to redraw
the entire window, instead of just the update region, because of the com-
plications involved in determining how to redraw only the contents of the
update region. However, in certain situations you can easily specify that the
application redraw only the necessary portions of the window and thereby
speed up the update process significantly.

Update events are not posted to the event queue in the same way
that other types of events are posted. Instead, the operating system peri-
odically examines all of the visible windows on the desktop to determine
if any of the windows require updating. If one or more of the windows
contain a nonempty update region, the operating system will report,
through the next GetNextEvent call, an update event. Update events are
reported in the front-to-back order of the windows if multiple windows
need to be updated. The application will thus be asked to redraw the
frontmost windows first, since they contain the most visible information.

190 Using the Macintosh Toolbox with C

- CH.7

iiiiii

O Untitled S

The application itself{l
must redraw the
window contents
when it receives an
Update event.

o

a. - Overlapping windows
on the desktop

iiiiii

O Untitled S==ish Window
The application itself[2 .
must redraw the
window contents
when it receives an
Update event.

update
region

b. - The same windows after the lower window has been moved.
Notice the update region which must be redrawn

i

0 Untitled ===Fish Window
The application itself(d \N\
must redraw the
window contents
when it receives an
Update event.

c. - Final appearance after the application has redrawn the update region

Figure 7.2: Update Events and the Appearance of the Desktop

Using Multiple Windows 191

Redrawing the Window

Before we discuss the details of redrawing a window, you
should note that we will often be drawing in an inactive window. In
order to draw in an inactive window, the application must first make the
window to be updated the current grafPort, since drawing can only take
place in the current grafPort. After the drawing is completed, the grafPort
should be restored to its previous value so that the application can con-
tinue to work in the active window.

The Window Manager provides procedures for informing the
operating system that the application has begun and completed the up-
date for a particular window. The procedure BeginUpdate, as the name
implies, should be called to begin the update process:

BeginUpdate (theWindow)
WindowPtr theWindow;

BeginUpdate replaces the region describing the visible portion of the win-
dow, the visRgn, with the intersection of the visible region and the update
region, and then sets the update region to zero. The application can
redraw the visible region of the window, which now contains the visible
portion of the update region. Setting the updateRgn to zero prevents the
update event from being reported again.

When the application completes the update process, call End-
Update to restore the visible region of the window to its usual value:

EndUpdate (theWindow)
WindowPtr theWindow;

The following example was taken from the portion of the event
loop responsible for handling update events. The application saves the
current grafPort before changing the grafPort to the update window. The
actual commands used to redraw the window are placed between the
BeginUpdate and EndUpdate calls. Afterwards, the current grafPort is res-
tored to its previous value.

/* locally defined variables */
EventRecord theEvent;
WindowPtr updateWindow;
GrafPort theCurrentPort;

192 Using the Macintosh Toolbox with C

-_— - - CH.7

/* portion of switch on event type from GetNextEvent */
case updateEvt:

/* save current port */

GetPort (&theCurrentPort) ;

/* get WindowPtr to be updated, set as current port */

updateWindow = theEvent.message;

SetPort (updateWindow) ;

/* begin update process */

BeginUpdate (updateWindow) ;

/* redraw contents of updateWindow */

EndUpdate (updateWindow) ;

/* restore current port */

SetPort (theCurrentPort) ;

break;

Manipulating the Update Region

The update region of each window on the desktop is maintained
automatically by the Window Manager. Since the Window Manager has
no way to determine the exact contents of each window on the desktop,
it may be necessary for the application to modify the automatically
determined update region.

A simple example involves a document window containing a
size box and scroll bars. Since the scroll bars and size box are an option-
al part of a document window, the Window Manager will not consider
their possible presence when determining the update region. Figure 7.3
illustrates both the problem that occurs when such a window is resized,
and the appropriate solution.

In this example the application must add the area formerly oc-
cupied by the scroll bars and size box to the update region for the
window. If instead the window were made smaller, the area to be oc-
cupied by the new scroll bars and size box would have to be added to the
update region. Whether the window is made larger or smaller, once
the new scroll bars and size box have been redrawn, the area they oc-
cupy should be removed from the update region. If you choose to have
your application redraw the entire window in response to an update
event, then erasing the content region of the window prior to redrawing

Using Multiple Windows

193

will provide the desired result. Note that this is basically the same tech-
nique we used to resize the window in the program sample at the end of

Chapter 3.

The Window Manager provides four procedures for modifying
the update region of a grafPort. Rectangles or regions, specified in local
coordinates, may be accumulated or removed from the update region of
the current grafPort. To add to the update region, use either InvalRect to
add the rectangle specified by the parameter badRect or InvalRgn to add

E=— Untitled =1

c. The final appearance of the window if only the update
region calculated by the Window Manager is redrawn.

Untitled

b. The window is resized. The gray area indicates the
update region calculated by the WindowManager

Untitled =————1|

d. The final appearance of the window if the area formerly
occupied by the scroll bars and size box are added to
the update region before it is redrawn.

Figure 7.3: Manipulating the Update Region

194 Using the Macintosh Toolbox with C

=== CH7

the area specified by badRgn:

InvalRect (badRect)
Rect *badRect;

InvalRgn (badRgn)
RgnHandle badRgn;

To subtract from the update region, use either ValidRect to subtract the
rectangle specified by goodRect or ValidRgn to subtract the area specified
by goodRgn:

ValidRect (goodRect)

Rect *goodRect ;
ValidRgn (goodRgn)

RgnHandle goodRgn;

In a situation like that shown in Figure 7.3, the application
should remove the area occupied by the new scroll bars and size box
from the update region to avoid either having to redraw or overwriting
this area. Remember that these routines can only modify the update
region of the current grafPort. The application will have to change the
current grafPort to the window whose update region it needs to modify.

Programming Techniques

In this section we present a series of short topics related to using
multiple windows in an application. These topics, which at first glance
may seem unrelated, are an important part of building our knowledge of
the Toolbox into an application program. Many of these ideas will ap-
pear in the program examples in the upcoming chapters.

Obtaining the Size of a Window

To perform many of the calculations involved in manipulating
windows, it is necessary to know both the size of the content region of a
window and also its position on the desktop. To make a local copy of the

Using Multiple Windows 195

bounding rectangle of the content region found in the WindowRecord for
the window, we can make use of the BlockMove procedure discussed in
Chapter 6. The following procedures will copy the dimensions of a win-
dow into the rectangle pointed to by the parameter theSize. LocWindowSize
returns the dimensions in the local coordinates of the window itself,
while GlobWindowSize returns them in the global coordinates of the
desktop.

LocWindowSize (tempWindow, theSize)
WindowPtr tempWindow;
Rect *theSize;
/* Procedure to copy size of a window’s content region in LOCAL
coordinates of window*/

/* copy window’s portRect from its GrafPort */

BlockMove (&tempWindow->portRect, theSize, sizeof(Rect));
}
GlobWindowSize (tempWindow, theSize)

WindowPtr tempWindow;

Rect *theSize;
/* Procedure to copy size of a window’s content region in GLOBAL

coordinates */

GrafPtr theCurrentPort;
LocWindowSize (tempWindow, theSize);
/* change grafPort to tempWindow */
GetPort (&theCurrentPort) ;
SetPort (tempWindow) ;
/* convert Rect to global coordinates - as two Points */
LocalToGlobal (&theSize->toplLeft) ;
LocalToGlobal (&theSize->botRight) ;
/* restore grafPort */
SetPort (theCurrentPort) ;

}

These procedures will be used in the examples throughout the re-
mainder of this chapter as well as in upcoming chapters.

196 Using the Macintosh Toolbox with C

=== CH7

Determining the Type or Creator of a Window

In an application that includes desk accessories, dialogs, and
alerts in addition to the usual types of application windows, it may be
useful to determine to which of these categories the active window
belongs. The WindowRecord for each window contains a windowKind field
that contains a constant value describing the type or creator of the win-
dow. Possible values of the windowKind field are listed in Figure 7.4.

As an example, suppose that at some point an application needs
to determine what type of window is at the front of the desktop. The ap-
plication could use the following skeleton example to determine the
type of a window.

/* excerpt used to determine windowKind of front window */

/* locally declared variables */
WindowPtr theFrontOne;
short theFrontKind;

/* Get WindowPtr of front window */
theFrontOne = FrontWindow();

/* Get the windowKind - cast WindowPtr as WindowPeek to access
WindowRecord */
theFrontKind = ((WindowPeek) theFrontOne)->windowKind;

/* do something depending on what the windowKind is */
switch(théFrontKind) {
case dialogKind:
/* a dialog or alert window */
break;
case userKind:

windowKind Meaning
<0 . System Window

1 reserved

2 = dialogKind Dialog or Alert Window
3-7 reserved

8 = userKind Application Window
>8 User- Defined

Application Window

Figure 7.4: The Meaning of windowKind Values

Using Multiple Windows 197

/* an ordinary window created by our application */
break;
default:
if (theFrontKind < 0) {
/* a desk accessory */
} else if (theFrontKind > 8) {
/* a custom window type belonging to our
application */
} else {
/* oops, somebody used a reserved type!
*/
}

break;

Using the Window refCon Field

The WindowRecord of every window contains a 32-bit field
designed to be used by the application for keeping track of some quan-
tity associated with the window. For instance, you may want to associate
a string of characters or other data to each window in an application. If
you place a pointer or handle to this data in the refCon field, the applica-
tion can easily retrieve the data associated with each window.

To store the value to be associated with a particular window into
the refCon field, use the function SetWRefCon, as follows:

SetWRefCon (theWindow, data)
WindowPtr theWindow;
long data;

To retrieve the value associated with a window, call the function Get-
WRefCon, as follows:

long GetWRefCon (theWindow)
WindowPtr theWindow;

The example at the end of this chapter demonstrates the use of these
routines. In the more ambitious sample application program of Chap-
ter 8, we use the refCon field to store a handle to a structure containing
information about each of several windows.

198 Using the Macintosh Toolbox with C

=== CH.7

Windows Containing QuickDraw Pictures

The Window Manager allows the contents of any window to be
either explicitly drawn by the application or specified by a QuickDraw
picture. If the contents of a window do not change and can be drawn
with a series of QuickDraw commands, the commands can be grouped
together as a QuickDraw picture. (Refer to Chapter 5 for a complete dis-
cussion of the data type Picture.) The process of updating the contents of
a window specified as a picture is quite different from the process used
for ordinary windows. Instead of generating an update event for the por-
tion of the window that needs to be redrawn, the Window Manager can
immediately redraw the window contents by calling the QuickDraw
procedure DrawPicture.

In order to inform the Window Manager that the contents of a win-
dow are described by a QuickDraw picture, the application should call the
procedure SetWindowPic with the appropriate PicHandle, as follows:

SetWindowPic (theWindow, pic)
WindowPtr theWindow;
PicHandle pic;

SetWindowPic stores the picture handle in the windowPic field of the Win-
dowRecord. If the contents of the window are subsequently drawn, the
Window Manager will redraw the picture instead of generating an up-
date event. To obtain a handle to the picture describing the contents of
such a window, call the function GetWindowPic:

PicHandle GetWindowPic (theWindow)
WindowPtr theWindow;

Using the Toolbox Window List

The Window Manager keeps track of all of the windows on the
desktop in a linked list of WindowRecords called the window list. In addi-
tion to the information about the window, each WindowRecord in the list
contains a pointer to the next WindowRecord in the list. The order of the
windows in the list is the same as the front-to-back order of the windows
as they appear on the desktop (note that one or more of the windows in

Using Multiple Windows 199

the list may be invisible to the user). The last item in the list—the win-
dow furthest back on the desktop—contains a NULL pointer to the next
window. A pointer to the first window in the list is stored in. a system
global variable named windowList.

In the course of debugging an application, or in the interest of
safety, you may wish to verify that a WindowPtr returned from a function
or procedure is a valid one. The function IsValidWindow searches through
the window list to find the particular window and returns a true value if
theWindow is contained in the list.

char IsValidWindow (tempWindow)
WindowPtr tempWindow;
/* determines if tempWindow is a valid window by searching
through the window list */

WindowPeek aWindow, testWindow;
/* define windowList to be the WindowPeek
in system global - at location 0x09D6 */

#define windowList * ((WindowPeek *)0x09D6)
/* cast tempWindow to WindowPeek */
testWindow = (WindowPeek) tempWindow;
/* start at beginning of list */
aWindow = windowList;
/* if we are not at end of list
- is this tempWindow ?
- if not then skip to the next window in list */
while(aWindow != NULL) {

if (aWindow == testWindow) {

return 1;
} else {
aWindow = aWindow->nextWindow;

}
}
return 0; /* can’t find tempWindow */
}

200 Using the Macintosh Toolbox with C

=== CcH7

A Programming Example: Using
Double-Clicks to Resize Windows

Up to this point, the only thing we have learned how to putin a
window is a QuickDraw picture. Windows that contain QuickDraw pic-
tures, however, do not call for the use of update events since the
Window Manager causes these windows to be updated immediately.
Only when we have learned how to use TextEdit in a window will up-
date events become necessary.

For this reason we will postpone presenting activate and update
events in the setting of a complete program until we discuss TextEdit in
Chapter 8. In the place of a complete application program, we will
present the essential components (consisting of several procedures and
some slightly modified portions of the familiar main event loop) of a
convenient method for instantly resizing a window to the full size of the
desktop or shrinking the window back to its previous size. Ordinarily
the user must move or resize a window by dragging the size box or title
bar with the mouse. When using multiple windows, it is convenient to
be able to zoom (that is, to expand) a small window up to the full size of
the desktop to examine its contents, and then to shrink it back to its pre-
vious size and location in order to view the other windows.

This zooming technique is used in several Microsoft products,
including Word and Excel, and it is a natural extension of the Macintosh
“User Interface Guidelines.” In this example we will use a double-click
in the title bar (we could just as well have chosen the size box) of a win-
dow to signal that the window should be zoomed to one size or the other.
In the application program of Chapter 8, we generalize this method to
include a menu item named “Zoom.”

The definition of a double-click is a mouse-up event followed
by a mouse-down event that occurs within a certain time interval known
as the double-click time. The double-click time can be changed with the
Control Panel desk accessory and is accessible through the function Get-
DbiTime or as a system global variable.

If the double-click time is set to its maximum value, in addition
to measuring the time interval the application should also check that the
mouse location has not changed by more than a small amount between
the two events.

Using Multiple Windows 201

In the following example, detecting the double-click is a little
tricky since usually a mouse-down in the title bar of a window indicates
that the user wants to move the window around on the desktop. Before
proceeding to drag the window, the application must first wait a
~ reasonable amount of time (for example, the double-click time) to see if
a mouse-up event occurs. If indeed a mouse-up event does occur, the ap-
plication must wait an additional double-click time and then check for
the second mouse-down.

In this example, when a user double-clicks in the title bar of the
window, one of two things will happen: if the window does not fill
the desktop the window will be expanded until it does, or if the window
already fills the desktop, it will be resized to the most recent size and
location determined in the usual way with the mouse. The application
will need to keep a private copy of the window’s size and location that it
updates only when the window is moved or resized using the title bar or
the size box. The size rectangle should be specified in global coor-
dinates to indicate not only the dimensions of the window, but also the
position of the window on the desktop.

The application can store the rectangle containing the old win-
dow coordinates in a relocatable block along with other information
relevant to the window. A handle to the relocatable block can be kept in
the refCon field of the window.

The following section of code initializes several variables of in-
terest, including the full-size rectangle and the size rectangles of each of
several windows. The relocatable blocks associated with each window
are also allocated in this section.

#define howMany 5 /* howMany windows */
/* global variables */
Rect fullsSize;

WindowPtr someWindows [howMany] ; /* an array of
WindowPtrs */

Rect someRects[howMany]; /* an array of Rects */

char *someTitles[howMany]; /* an array of Pascal Titles */

/* definition of user defined type, WindowStuff */
struct WStuff 2

Rect oldsize;

202 Using the Macintosh Toolbox with C

- - - cH.7

$#define WindowStuff struct WStuff
typedef WindowStuff *WSstuffPtr;
typedef WStuffPtr *WSHandle;

/* locally defined variables */

WindowPeek wRecPtr;

WSHandle tempWs;

short i;

/* set fullSize Rect to some pleasing size and location, don’t
assume the screen size to be 512 x342. Use QD, the
pointer to QuickDraw globals returned by InitGraf */

SetRect (&fullsize,

QDglob->screenBits.bounds.left +2,
QDglob->screenBits.bounds.top +20 +20,
QDglob->screenBits.bounds.right -2,
QDglob->screenBits.bounds.bottom -2);

/* Open howMany windows using nonrelocatable blocks for their

WindowRecords.

Create a relocatable block for each window to hold a
WindowStuff containing among other things the oldSize
rectangle used for zooming.

Initialize the oldSize’s with the global coordinates of the
window’s content region */

/* loop over the number of windows */

for(i=0; i < howMany; i++) {

/* allocate non-relocatable block for WindowRecord */
if (IsvalidWindow (someWindows([i]) {
/* this window has already been created */
} else {
/* open a new window */
wRecPtr = (WindowPeek)
NewPtr (sizeof (WindowRecord)) ;
someWindows [i] = NewWindow (wRecPtr,
someRects[i], someTitles[i],
Ox£f£, 0, -1, Oxff, 0);
}
tempWS = (WShandle) GetWRefCon (someWindows[i]);
if (tempWS == NULL) {
/* allocate relocatable block for WindowStuff -
put handle into window’s refCon */
tempWS = (WSHandle)
NewHandle (sizeof (WindowStuff));
SetWRefCon (someWindows [i], tempWSs);
} else {
/* the window already has a relocatable block
assigned to it */

Using Multiple Windows 203

/* lock down WindowStuff and copy global size of window
into the oldSize Rect */

HLock (tempWs) ;

GlobWindowSize (someWindows [i], & (*tempWS)->oldSize);

HUnlock (tempWs) ;

Next we will present the section of the main event loop respon-
sible for mouse-down events in the size box of a window. Here the
application must update the copy of the window size when the user
resizes the window. Note that this example will not update the variable
containing the old size of the window if GrowWindow returns a value of
NULL, thus indicating that the window size was not changed.

/* Extracted from main event loop - resizing windows */
/* locally defined variables */

long newSize;
WindowPtr whichWindow;
EventRecord theEvent;
WSHandle tempWs;

Rect limitRect;

case inGrow:
newSize = GrowWindow(whichWindow, theEvent.where,
&limitRect);
SizeWindow (whichWindow, LoWord(newSize),
HiWord (newSize), Oxff);
/* if size was changed update the oldSize Rect -
handle to WindowStuff is in window’s refCon */

if (newSize !'= 0) {
tempWS = (WSHandle) GetWRefCon (tempWindow);
HLock (tempWs) ;
GlobWindowSize (tempWindow, & (*tempWS)->oldSize);
HUnlock (tempWs) ;

}

break;

Next is a section of code removed from the portion of the event
loop for handling mouse-down events that occur in the title bars of ac-
tive windows. To look for a double-click, the application must first
compute at what time it can stop waiting for a mouse-up event (which
signals that the user may be attempting a double-click). Adding the
double-click time to the value of the when field of the first mouse-down
event yields an appropriate time.

204 Using the Macintosh Toolbox with C

-— . . cH.7

Once the double-click interval has elapsed, the application calls
GetNextEvent to determine if a mouse-up event is waiting to be read from
queue. If GetNextEvent does not find a mouse-up event, the user is
probably trying to drag the window. The application should check to see
if the mouse button is still down and if it is, it should call DragWindow as
usual to move the window. If the user moves the window, the applica-
tion should update the variable containing the old window size to reflect
the new position.

On the other hand, if the a mouse-up event does occur, then the
application must once again wait, this time to see if a second mouse-
down will occur. During this wait, the application constructs a rectangle
that is 16 pixels on a side and that is centered on the position of the first
mouse-down in order to be certain that the mouse position has not
strayed too far from the mouse-up. After completing this task, the ap-
plication completes the wait for a second mouse-down event. If
GetNextEvent reports a second mouse-down event, the application should
check the position to see if it occurred within the allowable rectangle
before zooming the window.

/* Extracted from event loop - dragging windows */
/* locally defined variables */

long upTime, clickTime;
short vert, horiz;
Rect clickRect, screenRect;

EventRecord *theEvent
EventRecord upEvent, downEvent;
WindowPtr mouseWindow;
WSHandle tempWs;
case inDrag:
/* Delay to wait for mouse-up */
upTime = theEvent->when + GetDblTime();
while(TickCount() < upTime);
/* has a mouse-up occurred? */
if (GetNextEvent (mUpMask, &upEvent)) {
/* Delay to wait for mouse-down */
clickTime = upEvent.when + GetDblTime();
/* set up rectangle to check stray clicks */
vert = upEvent.where.v;
horiz = upEvent.where.h;
SetRect (&clickRect, horiz-8, vert-8,
horiz+8, vert+8);
/* finish wait until clickTime */

Using Multiple Windows 205

while(TickCount () < clickTime);
/* did the second click occur? */
if (GetNextEvent (mDownMask, &downEvent)) {
/* did second click happen
inside clickRect? */
if (PtInRect (downEvent .where, &clickRect))
{
/* doubleclick in dragRegion */
ZoomWindow (mouseWindow) ;
break;

}
} else {
/* drag the window as usual */
if(StillDown()) {
DragWindow (mouseWindow, theEvent->where,
&dragBoundsRect) ;
/* update the old window size */
tempWS = (WSHandle)
GetWRefCon (mouseWindow) ;
HLock (tempWs) ;
GlobWindowSize (mouseWindow,
& (*tempWS) ->oldSize);
HUnlock (tempWs) ;
}

break;

}

break; /* end of inDrag case */

Finally we have the procedure ZoomWindow, which performs the
actual resizing. This routine tests to see if the window dimensions cor-
respond to some predetermined full-sized rectangle, which is kept in the
global variable fullSize. If the window is not currently at full size, the ap-
plication will resize the window to these dimensions. If the window is
already full-sized, it will be resized to the old-sized rectangle contained
in the relocatable block pointed to by the refCon field of the window. To
add a little excitement to this process, ZoomWindow calls the procedure
ZoomRect to draw a series of expanding or contracting rectangles to
indicate the new window size. The sample application at the end of
Chapter 8 contains the source code to one such routine.

ZoomWindow (tempWindow) /* ZoomWindow () */
WindowPtr tempWindow;
/* This routine will zoom a window between the size/location

206 Using the Macintosh Toolbox with C

- - CH.7

specified by the global Rect fullSize, and that specified by the
rectangle contained in the oldSize Rect in the relocatable
WindowStuff kept in the window’s refCon field */
{
Rect theStart, theFinal;
WSHandle tempWs;
/* Get a copy of the window coordinates in startRect and compare
with the fullSize rectangle */
GlobWindowSize (tempWindow, &theStart);
if (EqualRect (&theStart, &fullSizeRect)) {
/* the window is currently full size - copy oldSize into
finalRect and do animation */
tempWS = (WSHandle) GetWRefCon (tempWindow) ;
BlockMove (& (*tempWS) ->oldSize, &theFinal,
sizeof (Rect));
ZoomRect (&theStart, &theFinal);
/* erase contents of the window to wipe out
scroll bars */
LocWindowSize (tempWindowy, &theStart);
EraseRect (&theStart);)
/* since window is becoming smaller resize
before moving the window */
SizeWindow (tempWindow,
theFinal.right - theFinal.left,
theFinal.bottom - theFinal.top, Oxff);
MoveWindow (tempWindow, theFinal.left,
theFinal.top, 0);
} else {
/* the window is not currently full size -
copy fullSize into finalRect and do animation */
BlockMove (&fullSize, &theFinal, sizeof(Rect));
ZoomRect (&theStart, &theFinal);
/* erase contents of the window to wipe out
scroll bars */
LocWindowSize (tempWindow, &theStart);
EraseRect (&theStart);
/* since window is becoming larger move
the window before resizing it */
MoveWindow (tempWindow, theFinal.left,
theFinal.top, 0);
SizeWindow (tempWindow,
theFinal.right - theFinal.left,
theFinal .bottom - theFinal.top, Oxff);
}
/* erase the contents of the final window force an
update event for the entire content region */

Using Multiple Windows 207

LocWindowSize (tempWindow, &theFinal);
EraseRect (&theFinal);
InvalRect (&theFinal);

This rather lengthy example is incorporated into the sample text
editing application listed at the end of Chapter 8. The various com-
ponents shown here will be modified slightly in Chapter 8 to reflect the
particular type of application presented there, although their function
will remain unchanged.

Text Editing with the
Toolbox

Nearly every Macintosh application uses routines from Text-
Edit, the portion of the Toolbox devoted to text editing. There are two
main reasons for including the capabilities of TextEdit in the Toolbox.
The obvious reason is that it greatly simplifies the work of any program-
mer trying to include some of the available text editing features in an
application; otherwise, the routines would have to be developed from
scratch. The second and perhaps most important reason relates to the
fact that text editing is such a common requirement used in every type
of application, not just in word processing. TextEdit helps to maintain
consistency between the widely varying situations in which the user
enters or edits text. In fact, on the Macintosh many of the features as-
sociated with sophisticated word processing applications are available
when the user performs a simple action like entering a file name. As we
mentioned in Chapter 1, the consistency and predictability that exist
among diverse situations like these are essential features of the “User
Interface Guidelines.”

TextEdit provides most of the familiar operations that can be
performed during text editing. These features include inserting and
deleting text, using the mouse to specify a range of text for cut and paste
operations, scrolling the text of a large document in a window, word
wrap at the right edge of a document, and many others. Nevertheless,
TextEdit does not contain all of the features found in a word processing
application like MacWrite or Microsoft Word. The major features miss-
ing from TextEdit are full justification (flush right and left margins),
individual paragraph formatting, and multiple fonts, sizes, or styles of
text in a single document. However, word processing applications that
do not make use of TextEdit are still required to conform to the

210 Using the Macintosh Toolbox with C

=== cH.8

“User Interface Guidelines” to avoid confusing the user.

Despite these restrictions, there are a great variety of uses for
TextEdit. Aside from word processing, any type of data entry—for ex-
ample, entering data into a database or typing into a communications
program—could be handled with TextEdit. In fact, any application
using the keyboard probably also uses TextEdit either directly or in-
directly through another part of the Toolbox. Several indirect uses of
TextEdit common to every Macintosh application are desk accessories
like the Notepad or the dialog and alert boxes used to request informa-
tion from the user or to notify the user when something important is
about to happen.

Our discussion will first focus on the methods used by TextEdit
for keeping track of text and on how the text is drawn on the Macintosh
screen. The section covering how to use TextEdit from an application
begins with a discussion of creating and disposing of text items and goes
on to explain the various editing routines responsible for actions like
Cut, Copy, and Paste. Next we discuss the interaction required between
the application and the Toolbox to maintain the insertion point and
selection range. Our discussion of using TextEdit concludes by explain-
ing how the application can alter the font and layout of the text used on
the screen. Throughout this section, we will provide information and ex-
amples outlining how and where the various routines fit within a typical
application.

The last portion of the chapter is devoted to several advanced
topics that are used to build a nearly complete application. At the end of
this chapter we have included a detailed sample application encompass-
ing nearly everything we have discussed in the book so far.

The Appearance of Text on the Screen

TextEdit keeps track of text strings and the formatting informa-
tion associated with them in a data structure called an edit record. Such
a text string might consist of the entire contents of a file created by a text
editor, or it could be as small as a one- or two-character item used to
select the desired page number when printing a single page of a docu-
ment. When the Toolbox draws the text associated with an edit record in

Text Editing with the Toolbox 211

a window on the desktop, there are several parameters that control the
actual appearance of the text.

TextEdit arranges for the text to be drawn within the confines of
a rectangle known as the destination rectangle. The destination rect-
angle defines an imaginary “page” on which TextEdit places the text.
The top of the destination rectangle determines the position of the first
line of the text. Within the destination rectangle, the text can be either
right-, left- or center-justified. TextEdit uses the left and right sides of
the destination rectangle to determine the width of the area in which the
text will be drawn. When an individual line of text (the end of a line is
usually signalled by a carriage return character) exceeds the width of the
destination rectangle, the text will normally be wrapped onto the next
line at a convenient word boundary. Word wrap can be suppressed, how-
ever, in which case the rest of the line will simply extend over one or
both edges of the page and become invisible. The bottom of the destina-
tion rectangle has no real significance; as the number of lines of text
exceeds the number that will fit in the destination rectangle, text con-
tinues to be drawn beyond the bottom.

The destination rectangle containing the text is viewed by the user
through the view rectangle. Text outside the view rectangle is not visible on
the desktop. In most applications the view rectangle will not be as large
as the destination rectangle, in which case the user will only be able to see
a portion of the text at any given time. The remainder of the text can be
made visible by scrolling the text, which simply changes the relative posi-
tions of the view and destination rectangles and allows other portions of the
text to become visible. Figure 8.1 shows the effect of different relative sizes
of the destination and view rectangles.

TextEdit is capable of formatting the text with either right-, left-
or center-justification within the destination rectangle. In addition to
these three styles of justification, word wrap is also available. As the
length of a line exceeds the width of the destination rectangle, the text is
broken at a boundary between words and moved to the next line. If the
application chooses not to word wrap text, a new line of text will begin
only after a carriage return has been typed. Word wrap is essential to
most word processing applications but becomes quite a nuisance when
you are writing source code in a programming language. Figure 8.2 il-
lustrates the effect of word wrap on different types of text.

As the user enters text from the keyboard, the characters are in-
serted into the existing text at the location of the insertion point. The

212 Using the Macintosh Toolbox with C

=== cH.8

+ ["Place my face upon your
\ [character set, and all that
+ | you wish for will be

\ lvouchsafed unto you,

\ |probably."

+ | - J. R."Bob" Dobbs

as told by Jon Carroll
N -SF_Chronicle-

.................

. | "Place my face up¢
\ [character set, and!
+ [you wish for will bg
\ vouchsafed unto ye
\ [probably." '

_| - 1.R."RAh".Nokhka

viewRect

destRect

Figure 8.1: The View and Destination Rectangles

Do 1i=1,10000,2
a(i) = a(i-1)*b(
c(i) = b(i) + a(

Enddo

My Summer Vacation

What a relief it is
Summer was a horriQ
It all started with
They took over the

Do i=1,10000,2
a(i) =

My Summer Vacation

What a relief it is
to be back in

school.Summer was a
horrible experience
It all started with

without word wrap

with word wrap

Figure 8.2: The Effects of Word Wrap

Text Editing with the Toolbox 213

location of the insertion point is indicated on the Macintosh screen by a
flashing vertical bar. The insertion point may be moved, in order to enter
text in another location on the screen, by clicking the mouse at the
desired location.

The insertion point may also take the form of a range of text
known as the selection range. The selection range will be highlighted
(normally with inverse video) on the screen. The selection range serves
to mark a range of text to be either removed or replaced through the use
of Cut and Paste commands or by typing characters from the keyboard.
The user can choose the selection range by holding down the mouse but-
ton and then dragging the mouse from one location to another. The
current selection range can be shortened or lengthened if the user holds
down the Shift key while dragging the mouse.

TextEdit Data Structures

Nearly all of the routines in TextEdit operate on a data structure
called an edit record, which is actually a structure of type TERec (we will
use the terms edit record and TERec interchangeably). The TERec stores
all of the information about a particular item of text, including all of the
on-screen formatting information. The complete description of an edit
record and the associated pointer and handle are shown in the box
“TextEdit Data Structures.” Many of the fields of a TERec can be manip-
ulated directly or indirectly through the routines contained in TextEdit.
Several of the fields are used internally by TextEdit and should not be
manipulated by the application.

Before we discuss the various kinds of information contained in
an edit record, we should first understand how TextEdit stores the text
and how it references the individual characters. The character data is
stored in a variable-sized array of bytes that is located in a relocatable
block separate from the edit record itself. The first character in the array
is located at position 0, with subsequent characters located at positions 1
to teLength. Planning the character mapping so that the character index,
which is used to specify the start and end of a selection range, actually
falls between characters allows the Toolbox to give a unique interpreta-
tion as to which characters should be included in the selection range.

214 Using the Macintosh Toolbox with C

=== cH.8

Figure 8.3 illustrates how the character index used to specify the selec-
tion range corresponds to the actual character data.

Fields within an Edit Record

It is important to briefly discuss several of the fields contained
in an edit record because, unlike most of the Toolbox data structures we

struct TE {

Rect
Rect
Rect
int

int
Point
unsigned int
unsigned int
int

Ptr

Ptr
long
int
long
int

int

int
Handle
int

int

int

int

int
Style
int

int
GrafPtr
Ptr

Ptr

int

TextEdit Data Structures

destRect;
viewRect;
selRect;
lineHeight;
fontAscent;
selPoint;
selStart;
selEnd;
active;
wordBreak;
clikLoop;
clickTime;
clickLoc;
caretTime;
caretState;
just;
teLength;
hText;
recalBack;
recallines;
clikStuff;
crOnly;
txFont;
txFace;
txMode;
txSize;
inPort;
highHook;
caretHook;
nLines;

destination rectangle */
view rectangle */

current selection rect */
line spacing in pixels */
caret/highlighting height */
mouse-down location */

start of selection range */
end of selection range */
non-zero if active */

points WordBreak routine */
points ClikLoop routine */
ticks of 1lst click */

char location of click */
time for next caret blink */
on or off */

current justification */
number of chars in text */
handle to chars */

internal use */

internal use */

internal use */

<0 for no word wrap */

text font */

text style */

drawing mode for text */
text size */

in which grafPort */

points to highlight routine */
points to caret routine */
number of lines of text */

unsigned int lineStarts(1]; /* positions of line starts */

}i

#define TERec struct TE
typedef TERec *TEPtr;
typedef TEPtr *TEHandle;

Text Editing with the Toolbox 215

have seen so far, the application will often need to directly manipulate
these fields. Since an edit record is a relocatable object in memory, this
also means that you must watch out for circumstances that might lead to
a dangling pointer.

Destination and View Rectangles

The destination and view rectangles used by TextEdit to format
the text are contained in the destRect and viewRect fields. They are
specified in the local coordinates of the window in which the text ap-
pears. To insure that the text remains readable, you should inset the
destination rectangle at least four pixels from the edges of the window
in which the text appears. This will keep the text from running into the
edge of the window and also allows space for the overhang of italic
characters. Allow an additional 16 pixels on the right or bottom if a
scroll bar will be present.

Line Spacing
The lineHeight determines the spacing between the lines of text,
while the fontAscent measures the height of the character in the font

19 [tihe [geo]ijnin|in 4nd thiq 1S [tihe |gnid]
01234 /‘
A character array from TextEdit showing how characters are numbered
teLength
The insertion point is located

Tihig |ilnldelrtlilan] jddiln) between characters, at the

position indicated by either

selStart or selEnd which will

selStart / selEnd by definition be equal.

A selection range begins at the
character to the right of selStart
and ends at the character to
the left of selEnd.

A ~91Pctyon r%nge

selStart selEnd

Figure 8.3: Character Numbering in TextEdit

216 Using the Macintosh Toolbox with C

=== cH.s8

66 9

(without including characters like “g”, which descend below the base-
line). TextEdit uses the fontAscent field to correctly position the insertion
point or selection range. In order to change the line spacing of the text,
you should change both fields by the same amount; otherwise, the posi-
tion of the insertion point and selection range may not be correct. Both
the lineHeight and fontAscent fields are measured in pixels. At the end of
this chapter, we will explain how to change these fields to reflect the
spacing appropriate for a specific font and size.

Selection Range and Insertion Point

The position of the insertion point or extent of the selection
range is specified by the selStart and selEnd fields. When an insertion
point is present, both fields will contain the same value. If the user has
chosen a selection range, however, these fields will contain the begin-
ning and ending points of the selection range. Note that in order to
include the nth character in a selection range, the application must
specify selStart = n and selEnd = n+1. This is because the selection range
starts at the character after the selStart position and ends at the character
just before the selEnd position.

Justification

The current setting for text justification is contained in the just
field. The three possible types of justification are indicated by the fol-
lowing predefined constants.

fidefine teJustLeft 0
#define teJustCenter 1
#define teJustRight -1
Character Data

The number of characters in the text is stored in the teLength
field. The hText field contains a handle to the relocatable block contain-
ing the text itself. One can rapidly replace the text in an existing edit
record with new text by changing the hText and teLength fields.

Text Editing with the Toolbox 217

Word Wrap

Word wrap is controlled by the crOnly field of the edit record. A
non-negative value of crOnly indicates that the text should be word
wrapped according to the width of the destination rectangle. A negative
value indicates that a new line should only be started after a return char-
acter has been entered.

Font Characteristics

The text contained in the edit record is drawn with the font,
style, pen mode, and size specified in the txFont, txFace, txMode, and txSize
fields. Since TextEdit cannot handle multiple fonts, sizes, and styles,
these fields determine the text appearance throughout the edit record.

grafPort

The grafPort of the window in which the text appears is kept in
the inPort field. When an edit record is first allocated and initialized, it is
by default assigned to the current grafPort.

Dividing the Text into Lines

The nLines field contains the number of lines of text in the TERec.
For the same character data, the value of nLines will depend on whether
word wrap has been selected or not. The character positions of the begin-
ning of each line are stored in the dynamically allocated array lineStarts.

The remaining fields of the edit record are only used in ad-
vanced applications or are used internally by TextEdit.

Using TextEdit

The routines which make up TextEdit fall into several functional
categories: allocating and disposing of text edit records, manipulating the
contents of an edit record, editing functions, handling the insertion point
and selection range, using the TextEdit scrap and the Clipboard and other
miscellaneous routines.

218 Using the Macintosh Toolbox with C

=== CcH.8

Initializing TextEdit

Before using any of the routines in TextEdit, the application must
call TEInit to allocate a handle to TextEdit’s private scrap. In fact, even if the
application does not explicitly use any of the routines within TextEdit, it
must still call TEInit to insure that dialogs, alerts, and desk accessories,
which may use routines from TextEdit, will operate properly. Since Text-
Edit itself calls upon other portions of the Toolbox, the application should
initialize QuickDraw, the Font Manager, and the Window Manager be-
fore initializing TextEdit.

TEInit ()

The private scrap allocated by TElnit is used to hold the text selected in
copy and cut operations and provides the text for paste operations. The
data contained in the TextEdit scrap must be transferred to and from the
Clipboard (or desk scrap), which is maintained by the Scrap Manager, in
order to allow cutting and pasting between applications and/or desk ac-
cessories. The Macintosh Pascal Workshop contains several routines
that are not part of the Toolbox (these routines are known as Toolbox
extension routines) to enable the application to transfer text between the
TextEdit scrap and the desk scrap. We will discuss this process and
present C versions of the necessary routines at the end of this chapter.

Allocating and Disposing of Edit Records

The function TENew allocates an edit record on the heap, incor-
porating the drawing environment of the current grafPort, and returns as
its value a handle to the new edit record. The parameters destRect and
viewRect specify, in the local coordinates of the current grafPort, the des-
tination and view rectangles in which the text will be drawn.

TEHandle TENew (destRect, viewRect)
Rect *destRect;
Rect *viewRect;

The edit record is initialized as single-spaced and left-justified with the
insertion point at character position zero. The insertion point will not

Text Editing with the Toolbox 219

become visible until the edit record is explicitly activated with a call to
TEActivate, which will be discussed later in the chapter.

An application containing multiple text windows must deter-
mine which edit records belong to a specified window. The edit record
contains a pointer to the window (actually a GrafPtr) in which the text
will appear. The process of determining which edit records belong to
which windows is made easier if each window keeps track separately
of which edit records are associated with it. In the simplest case of one
edit record per window, it will suffice to store the TEHandle, returned by
TENew, in the refCon field of the WindowRecord of the window. In advanced
applications, as we learned in Chapter 7, one can use the refCon field to
store a handle to a custom data structure containing a list of handles
to the edit records, plus any other information.

To dispose of an edit record once it is no longer needed by the
application, call the procedure TEDispose:

TEDispose (hTE)
TEHandle hTE;

TEDispose deallocates the edit record indicated by the hTE
parameter and releases the block occupied by the text itself.

To have the application place text into an edit record when it is
first created, or to substitute new text for the existing text, use the proce-
dure TESetText:

TESetText (text, length, hTE)

char *text;
long length;
TEHandle hTE;

The parameter text should be a pointer to the text to be placed
into the edit record, with length indicating the number of characters to be
used. TESetText makes a copy of the specified text in a relocatable block
and places a handle to the text in the hText field of the edit record which
is pointed to by hTE. When the application calls TESetText, the relo-
catable block that contains the original text from the edit record will not
automatically be released from memory. The application should ex-
plicitly dispose of this block, if the data it contains is no longer needed,
in order to return the space to the Memory Manager.

220 Using the Macintosh Toolbox with C

=== CH.8

If the application needs a copy of the handle to the text of an
edit record, it can call the routine TEGetText:

Handle TEGetText (hTE)
TEHandle hTE;

Under Think C, the type Handle is equivalent to a char **, which
allows direct access to the character data. Alternatively, the application
can copy the value of the hText field of the edit record.

The following example shows how to allocate an edit record
and place the TEHandle in the refCon field of the window. The example
then calls TESetText to place a text string into the edit record, which will
appear when the edit record is first drawn.

/* locally defined variables */
WindowPtr theWindow;
TEHandle theText;

Rect destRect, viewRect;
Handle oldCharHandle;
char *gtartUpStr;

startUpStr = “Don’t Panic - Enter text here”;

/* set up the destRect and viewRect

- use LocWindowSize() from Chapter 7

- allow for scroll bars on right, bottom

- indent destRect 4 pixels for readability */

LocWindowSize (theWindow, &viewRect);

viewRect.right -= 16;
viewRect.bottom -= 16;

/* copy viewRect into destRect */
BlockMove (&viewRect, &destRect, sizeof (Rect));
InsetRect (&destRect, 4, 4);

/* allocate a new TERec for theWindow

- theWindow must be the current grafPort */
SetPort (theWindow) ;

theText = TENew (&destRect, &viewRect);

/* store TEHandle into refCon of the window */
SetWRefCon (theWindow, theText):;

Text Editing with the Toolbox 221

/* Substitute start-up text into edit record
- get copy of text handle in theText

-~ substitute text

- dispose of old handle to release storage */

oldCharHandle = TEGetText (theText);
TESetText (startUpStr, strlen(startUpStr), theText);

DisposHandle (oldCharHandle) ;

Active and Inactive Edit Records

In analogy to the case of multiple windows, an edit record can
exist in either an active or inactive state. In order to direct input from the
keyboard unambiguously, there can be only one active edit record at a
given moment. The active edit record must always be located in the ac-
tive window. The application uses activate events, which indicate a
change in the front-to-back ordering of the windows on the desktop, to
signal the application that the edit record in a window should become
either active or inactive. In the inactive state the insertion point will not
be shown, or the selection range will not be highlighted; whereas in the
active state the insertion point will blink or the selection range will be
highlighted.

Figure 8.4 illustrates the difference between the active and inac-
tive states of an edit record. When an edit record is first created, it will
be inactive until the application calls TEActivate to activate the edit
record. In the first part of this section, we will discuss how the applica-
tion should respond to an activate event for a window containing one or
more edit records.

In an active edit record, the flashing insertion point indicates to the
user the location at which new data will be added to the text on the screen.
The application is partly responsible for maintaining the insertion point.
TextEdit provides a routine, which must be called periodically by the ap-
plication, to blink the insertion point at a constant rate.

222 Using the Macintosh Toolbox with C

=== CH.8

EC== untitled =——x Untitled
r score and seven ye r score and seven ye(c
fathers set forth upol- fathers set forth upo
dgnation conceived sw hation conceived
rty and dedicated to'f rty and dedicated to 1
hen are created equ: neh are created eque
1 LY |
> o
= [I
Active Inactive
Edit Record Edit Record

Figure 8.4: Active and Inactive Edit Records

Activating and Deactivating Edit Records

The procedures TEActivate and TEDeactivate are used to switch an
edit record between the active and inactive states.

TEActivate (hTE)
TEHandle hTE;

TEDeactivate (hTE)
TEHandle hTE;

In the simplest case where each window on the desktop con-
tains only a single edit record, the application can simply activate or
deactivate the edit records as the windows containing them are activated
or deactivated. The following example shows how activating edit
records can be included into the portion of an application’s main event
loop responsible for activating windows.

/* Based on example from Chapter 7

- portion of main event loop to activate/deactivate windows
- assume the TEHandle of the window is kept in the refCon

- global variables:

theWindow the current active window
theText the current active edit record */

Text Editing with the Toolbox 223

/* locally defined variables */

EventRecord theEvent;
WindowPtr actWindow;
TEHandle actEditRecord;

/* constant from Window Manager header file
activeFlag = 0x0001 */

case activateEvt:
/* determine windowPtr for window, set as current
grafPort */
actWindow = theEvent.message;
SetPort (actWindow) ;

/* get copy of TEHandle from refCon of window - if any */
actEditRecord = (TEHandle) GetWRefCon (actWindow);

/* activate or deactivate? */
if (theEvent .modifiers & activeFlag) {

/* other activate stuff - controls,
size box, etc.
- then activate edit record - if any */

if (actEditRecord) TEActivate (actEditRecord);
theText = actEditRecord;

} else {

/* other deactivate stuff - controls,
size box, etc.
- then deactivate edit record - if any */

if (actEditRecord) TEDeactivate (actEditRecoxd);
theText = NULL;

}

break;

In the case where a window can contain more than one edit
record, the application should activate the most recently active edit rec-
ord as the window moves to the front. Whenever the user clicks the
mouse in the content region of the window, the application should check
to see if the corresponding event returned by GetNextEvent occurred

224 Using the Macintosh Toolbox with C

- .. CH.8

inside the view rectangle of one of the edit records. If so, the application
can activate the edit record selected by the user and deactivate the pre-
viously active edit record. We will not discuss any further the case of
multiple edit records in a single window, although in Chapter 11 we will
see that dialogs frequently contain several edit records.

Blinking the Insertion Point

The routine TEldle does the necessary drawing to blink the inser-
tion point.

TEIdle (hTE)
TEHandle hTE;

The application should call TEldle as often as possible (once
each time through the event loop is usually sufficient) to insure that the
insertion point is updated regularly. The insertion point will not blink
any faster than the rate set by the Control Panel desk accessory no mat-
ter how frequently the application calls TEldle.

Editing Routines

The editing routines from TextEdit allow the user to enter text
from the keyboard, and also include the familiar cut, copy, and paste
operations. The application will be notified by GetNextEvent in the main
event loop if the user enters text from the keyboard. On the other hand,
the Cut, Copy, and Paste commands are usually chosen through menu
selection (see Chapter 4). All of the routines in this section will automat-
ically redraw the text on the screen when it becomes necessary.

Text that is entered from the keyboard is added to the edit
record by the function TEKey. When a key-down event is returned by
GetNextEvent in the main event loop of an application, the application
must first make certain that the key is not part of a Command key com-
bination used for a menu selection. If the Command key was not held
down during the key-down, then the application should call TEKey, pass-
ing both the ASCII character code from the low-order byte of the

Text Editing with the Toolbox 225

message field of the EventRecord and the TEHandle of the edit record to
which the text should be added.

TEKey (¢, hTE)
char c;
TEHandle hTE;

The new character will be inserted after the insertion point
or will replace the current selection range. Afterwards the insertion
point will be placed to the right of the new character. If a backspace
character is passed to TEKey, the selection range will be deleted and
replaced with the insertion point; if no selection range is present, the
character to the left of the insertion point will be removed.

Use the procedure TECut to remove the text contained in the cur-
rent selection range:

TECut (hTE)
TEHandle hTE;

Pass TECut a handle to the currently active edit record. TECut
places the text it removes into the TextEdit scrap for use in subsequent
paste operations. If the selection range is empty when TECut is called,
the scrap will be emptied.

The procedure TECopy makes a copy of the current selection
range without deleting it from the document.

TECopy (hTE)
TEHandle hTE;

Like TECut, TECopy places a copy of the text into the TextEdit
scrap; if the selection range is empty, the scrap will be emptied.

To paste a copy of the text in the scrap after the current insertion
point, call the procedure TEPaste.

TEPaste (hTE)
TEHandle hTE;

TEPaste will replace the contents of the current selection range with the
contents of the scrap by first deleting the selection range and then copy-
ing the text after the insertion point. After the text from the scrap has

226 Using the Macintosh Toolbox with C

=== CH.8

been added, the insertion point is placed just beyond the right end of the
new text.

TextEdit also contains a procedure named TEDelete, which in
contrast to TECut, removes the text contained in the selection range
without disturbing the contents of the scrap.

TEDelete (hTE)
TEHandle hTE;

A common use of the TEDelete procedure is in implementing the Clear
command of the standard edit menu.

Another procedure, TEInsert, allows the application to insert an
arbitrary text string just before the current insertion point or selection
range.

TEInsert (text, length, hTE)
char *text;
long length;
TEHandle hTE;

The text parameter points to the first character of a string of characters
(not a Pascal string) whose length is denoted by the length parameter.
TElnsert does not alter the position of the insertion point or selection
range relative to the text of the edit record.

It is possible to implement an Undo command, allowing the
user to backup one step, by using suitable combinations of the editing
routines of TextEdit. The simplest form of an Undo command that might
appear in an application would only allow the user to undo the last Cut
or Paste command. For simplicity, this version of Undo would not allow
the user to undo the last command once the selection range or the inser-
tion point is moved or once a key is typed on the keyboard.

In this situation, the application must record—in a global vari-
able named undoType, for instance—the last operation selected by the
user that can be undone. In order to undo a Paste command, the applica-
tion must also keep a copy of the text in the selection range at the time
the Paste command is issued, as well as a count of the number of char-
acters pasted into the edit record. Then, whenever the user types a key or
moves the insertion point, the variable undoType can be cleared. Now
when the user selects Undo from the Edit menu, the application can look
at the contents of undoType and act accordingly.

Text Editing with the Toolbox ~ 227

For instance, to undo a Cut command, the application would
call TEPaste. To undo a Paste command, the application must first call
TESetSelect (discussed in the next section) and TEDelete to remove the
characters inserted by the Paste command, and then call TElnsert fol-
lowed by TESetSelect to restore the former text and insertion point or
selection range.

Changing the Selection Range
and the Insertion Point

The application may need to change the selection range or
move the insertion point in two different situations. First, when the user
attempts to move either the selection range or the insertion point, the ap-
plication will receive a mouse-down event inside the view rectangle of
the active edit record and must respond. Second, in certain circum-
stances it may be convenient for the application to change the selection
range independent of any action on the part of the user.

Responding to Mouse-Down Events

After determining that a mouse-down event has occurred in the
content region of an active window, the application should check to see
if the coordinates of the point also fall within the view rectangle of the
active edit record. If this is the case, the application must call

TEClick (pt, extend, hTE)

Point pt;
char extend;
TEHandle hTE;

where pt specifies the local coordinates of the mouse-down event, ex-
tend is a flag indicating whether the Shift key was held down in order to
extend an existing selection range, and hTE is the TEHandle of the edit
record in which the event occurred. TEClick controls the position of the
insertion point as well as the position and highlighting of the selection
range. To be specific, TEClick expands or shrinks the selection range ac-
cording to the current mouse position, until the mouse button is
released. If TEClick determines that the mouse-down was part of a

228 Using the Macintosh Toolbox with C

=== CH.8

double-click, the word (which can be defined as a blank delimited se-
quence of characters with no embedded control characters) nearest the
mouse location becomes the selection range. The combination of a
double-click and drag will expand or contract the selection range in
word-sized chunks.

The following example illustrates how TEClick should be called
from within the portion of the main event loop responsible for mouse-
down events. This example covers only the situation in which the
mouse-down occurs within the content region of a window belonging to
the application. Notice that the position of the mouse-down returned by
GetNextEvent must be converted to the local coordinates of the window
before being passed to TEClick.

/* based on an example from Chapter 4

- global variables:

theWindow the current active window
theText the current active edit record */

/* locally defined variables */

WindowPtr whichWindow;
EventRecord theEvent;
int windowCode;

/* portion of switch on event type returned by GetNextEvent */
case mouseDown:

/* pass location of where field in EventRecord theEvent
- returns WindowPtr in whichWindow */
windowCode = FindWindow (theEvent.where, &whichWindow);

switch (windowCode) {
case .

case inContent:
/* if not active window, activate */
if ((FrontWindow() !'= whichWindow) &&
(whichWindow != NULL)) {
SelectWindow (whichWindow) ;
break;
}
/* switch to local coordinates for
TEClick, etec. */

Text Editing with the Toolbox 229

GlobalToLocal (&theEvent .where) ;

/* If there is an active edit record
it is in this (active) window,
- did mouse-down occur in its viewRect? */
if (theText) {
if (PtInRect (theEvent .where,
& (*theText) ->viewRect))
TEClick (theEvent .where,
(theEvent .modifiers &
shiftKey),
theText);
} else {
/* mouse-down occurred
somewhere else . .
- controls or inactive edit
records? */

break;

At the end of this chapter we include a description of two of the
internal functions of TEClick which may be redefined by advanced
programmers: 1) the algorithm used by TextEdit to determine word
boundaries; and 2) scrolling the text of an edit record while changing the
selection range.

Directly Changing the Selection Range

Frequently the application will need to change the position of
the insertion point or the selection range independent of what the user
does with the mouse. The application might need to do this, for instance,
to implement cursor keys or a Select All or Find command. TextEdit
provides the function TESetSelect for this purpose:

TESetSelect (selStart, selEnd, hTE)
long selStart, selEnd;
TEHandle hTE;

Here selStart and selEnd are the character positions for the start and end of
the new selection range. Specifying the same position for both para-
meters will result in moving the insertion point to that position. To select
from a given location to the end of the edit record, the application can

230 Using the Macintosh Toolbox with C

=== cHs

either obtain the value of the teLength field from the edit record or use the
integer 32767 (the maximum number of characters in an edit record) to
specify the end position of the selection range.

Redrawing the Text in Response to Update Events

When the Toolbox Event Manager reports an update event for a
window containing one or more edit records, call the procedure
TEUpdate to redraw the contents of the edit records.

TEUpdate (rUpdate, hTE)
Rect *rUpdate;
TEHandle hTE;

TEUpdate will redraw the text that belongs to the edit record that is
specified by hTE and that falls inside the rectangle rUpdate. The update
rectangle, rUpdate, should be specified in the local coordinates of the edit
record’s grafPort. The application will usually pass the view rectangle of
the edit record as the update rectangle, which will result in some un-
necessary drawing. Typically TEUpdate will be called between the
BeginUpdate and EndUpdate calls in the update portion of the main event
loop, as shown in the following example. Be certain to erase the con-
tents of the update rectangle before calling TEUpdate to redraw the text.

/* based on an example from Chapter 7 */

/* locally defined variables */
EventRecord theEvent;

WindowPtr updateWindow;
GrafPort theCurrentPort;
TEHandle updateTEH;

/* portion of switch on event type from GetNextEvent */
case updateEvt:

/* save current port */

GetPort (&theCurrentPort) ;

/* get WindowPtr to be updated, set as current port */
updateWindow = theEvent .message;
SetPort (updateWindow) ;

Text Editing with the Toolbox 231

/* begin update process */
BeginUpdate (updateWindow) ;

/* redraw contents of updateWindow */

/* redraw any edit records in window (assume one only)
- get TEHandle from refCon of updateWindow

- redraw entire viewRect for simplicity */

updateTEH = (TEHandle) GetWRefCon (updateWindow);

HLock (updateTEH); /* don’t let &viewRect dangle */

/* erase viewRect and redraw text */
EraseRect (& (*updateTEH) ->viewRect) ;
TEUpdate (& (*updateTEH) ->viewRect, updateTEH);

HUnlock (updateTEH) ;
EndUpdate (updateWindow) ;

/* restore current port */
SetPort (theCurrentPort) ;

break;

TEUpdate should also be called any time the appearance (for ex-
ample, the font style) or the contents of the edit record are changed.
Only the editing routines (TEPaste) redraw the text automatically.

The Appearance of Text on the Screen

The on-screen appearance of the text of an edit record can be
changed in several ways. The most obvious changes are those involving
the font or character size and style used to draw the text. Other changes
involve the justification of the text or the use of word wrap.

When the application directly alters the fields of an edit record
that affect the appearance of the text (i.e. the destination rectangle, font
or font size, or word wrap), the position of the beginning of each line of
text may need to be recalculated before the text is redrawn. (These posi-
tions are kept in the lineStarts array, as you will recall from our earlier
discussion of the fields of an edit record.) In this situation, the applica-
tion should call the procedure

232 Using the Macintosh Toolbox with C

-—— - CH.B

TECalText (hTE)
TEHandle hTE;

before calling TEUpdate to redraw the text.

Changing the Font Characteristics

There are no Toolbox routines designed to alter the font, size,
style, or word wrap used in an edit record; instead, the application must
alter the fields of the edit record directly and then redraw the text to
reflect whatever changes have been made. Be certain to recalculate the
lineStarts array as we just described if either the font type or size has been
changed.

In addition, when the application changes the font or size used
in an edit record, the lineHeight and fontAscent fields of the edit record must
be recalculated to insure proper line spacing and highlighting. Use the
QuickDraw routine GetFontinfo to determine the vertical spacing and
character size of the font in the current grafPort. The following routine,
SetLineHeight, first determines the spacing characteristics of the font used
in the edit record and then recalculates the lineHeight and fontAscent fields,
including in its calculation the possibility of double-spacing and one-
and-a-half spacing of the text.

SetLineHeight (spacing, hTE)/* SetLineHeight () */

int spacing; /* line spacing */
TEHandle hTE; /* the edit record */
#define singleSp 0
#define oneandhalfSp 1
f#define doubleSp 2

/* this routine changes the lineHeight and fontAscent of
the edit record hTE to reflect its font and size. The
line spacing can be either single 1 1/2 or double */

GrafPtr theCurrentPort;
FontInfo fontStuff;
short extra;

/* set current port to window containing hTE */
GetPort (&theCurrentPort) ;

Text Editing with the Toolbox 233

SetPort ((*hTE) ->inPort) ;
/* set font and size of grafPort to same as hTE */
TextFont ((*hTE) ->txFont) ;
TextSize ((*hTE) ->txSize);

/* get font information */
GetFontInfo (&fontStuff) ;

/* set up for single space */

(*hTE) ->fontAscent = fontStuff.ascent;

(*hTE) ->lineHeight = fontStuff.ascent +
fontStuff.descent +
fontStuff.leading;

/* modify for other spacings */
if (spacing == singleSP) return;
else if (spacing == oneandhalfSP)
extra = (*hTE)->lineHeight/2;
else if (spacing == doubleSP)
extra = (*hTE)->lineHeight;

(*hTE) ->lineHeight += extra;
(*hTE) ->fontAscent += extra;

return;

The application at the end of the chapter uses this method
whenever the user selects a new font or size for an edit record.

Justification and Word Wrap

When the user wants to change the justification of an edit
record, the application should respond by calling the routine TESetJust:

TESetJust (just, hTE)
int just;
TEHandle hTE;

Depending on the value of the parameter just, this routine changes the
justification to either right, left, or center. Earlier in this chapter we
listed the predefined constants used to specify the desired justification.
TESetJust does not redraw the text with the new justification; for this, the
application must call TEUpdate.

234 Using the Macintosh Toolbox with C

=== CHs8

To change whether the edit record uses word wrap or not, the

application must change the value of the crOnly field of the edit record.
The following procedure changes the setting of the word wrap field,
recalculates the lineStarts array, and finally redraws the text.

doWordWrap (whichTE, flag)

/* this

TEHandle whichTE; /* Handle to Edit record to
change */
char flag; /* true (yes) or false (no) word wrap */

procedure turns on or off word wrap for the edit
record specified by whichTE. Could be more efficient
by checking if whichTE is already set the desired way */

/* local variables */
GrafPtr oldPort, whichPort;

/* Lock the TERec, get copy of which Port
it is drawn in */

HLock (whichTE) ;

whichPort = (*whichTE)->inPort;

/* set value of crOnly */
if (flag) {

(*whichTE) ->crOnly = +1; /* turn on word wrap */
} else {

(*whichTE) ->crOnly

-1; /* turn off word wrap */

/* change grafPort to one containing whichTE */
GetPort (&oldPort) ;
SetPort (whichPort) ;

/* recalculate lines

- erase and redraw window contents */
TECalText (whichTE) ;
EraseRect (& (*whichTE) ->viewRect) ;
TEUpdate (& (*whichTE) ->viewRect) ;

/* restore grafPort */
SetPort (oldPort) ;

/* unlock the TERec */
HUnlock (whichTE) ;

Text Editing with the Toolbox ~ 235

Miscellaneous Routines

To change the portion of the text that is visible on the desktop,
the application can scroll the text within the view rectangle of the edit
record (when the user manipulates a scroll bar, for instance) with the
routine

TEScroll (dh, dv, hTE)
int dh, dv;
TEHandle hTE;

where dh and dv specify the number of pixels to move the text right and
down, respectively (see Figure 8.5). The edit record is scrolled by off-
setting the destination rectangle with respect to the view rectangle by
the amount specified and redrawing the text. Two of the advanced tech-
niques included at the end of the chapter make use of TEScroll to scroll
the text under the view rectangle.

TextEdit also contains a routine that draws uneditable text. This
routine can be used to place static text in any sort of window. The dif-
ference between this routine, TextBox, and the text drawing routines found

viewRect destRect

TEScroll(dh, dv, hTE);

Figure 8.5: Parameters for TEScroll

236 Using the Macintosh Toolbox with C

-——-— . cH.a

in QuickDraw—DrawString and DrawText—is that TextBox draws the text
justified and word-wrapped within the specified destination rectangle.

TextBox (text, length, box, just)
char *text;
long length;
Rect *box;
int Just;

The application at the end of the chapter uses TextBox to draw an
information window when the user selects the About . . . command from
the Apple menu.

Advanced Techniques

In this section we present several programming examples that
either enhance the basic features of TextEdit or are used to complete the
requirements of the “User Interface Guidelines.” The individual ex-
amples include such topics as changing the appearance of the cursor,
resizing an edit record, using the TextEdit scrap, and scrolling the text of
an edit record. Two of the more advanced examples require the use
of in-line assembly language in order to interface correctly with the
Toolbox. At the end of the chapter we combine these ideas with the
basic material from TextEdit and the preceding chapters to make a near-
ly complete text editing application.

Changing Cursor to the |-Beam
Over an Active Edit Record

The “User Interface Guidelines” specify that when the cursor is
located over an active, editable text region, the cursor should change to
the familiar I-beam shape. Once the cursor leaves the text region, it
should return to the usual upward left-pointing arrow (see Figure 8.6).
In order to accomplish this task, the application must periodically check
the mouse location against the position of the active edit record, if any.

Text Editing with the Toolbox ~ 237

The following code fragment should be placed in the main event loop of
the application to insure that the insertion point blinks at the appropriate
rate and that the cursor changes to the I-beam over an active edit record.

/* global variables */

TEHandle theText; /* the active edit record */

if (theText != NULL) {
TEIdle (theText) ;
ChangeMouse (theText) ;

The procedure ChangeMouse first verifies that the edit record it
received belongs to the frontmost window on the desktop (recall that an
active edit record must be part of the active window). If the current cur-
sor position is within the view rectangle of the edit record, ChangeMouse
changes the cursor to the I-beam shape. If not, the cursor is returned to
the arrow shape. The cursor shapes are retrieved from the Toolbox, the
arrow shape from the QuickDraw globals, and the I-beam shape from
the system file with the function GetCursor which was discussed in
Chapter 5.

ChangeMouse (activeTEH)
TEHandle

/* ChangeMouse () */
activeTEH;

E0=——— Untitled =——

[O=——= Untitled =——

The application should [
make the familiar | |
I-beam cursor appear
over the active edit
record. The arrow curs«
should reappear once
the cursor leaves the
viewRect of the active
edit record.| J

@[a

cursor inside the view rectangle

The application should (&
make the familiar | |
I-beam cursor appear
over the active edit
record. The arrow curs:
should reappear once
the cursor leaves the
viewRect of the active
edit record.|

Q[

cursor outside the view rectangle

Figure 8.6: Changing the Cursor Shape over an Active Edit Record

238 Using the Macintosh Toolbox with C

=== cHs

/* this routine compares the current mouse location with the
view rectangle of the edit record activeTEH and changes
the cursor to the I-beam, or arrow as appropriate

- assumes QD is the pointer to the QuickDraw globals
returned by InitGraf */

#idefine iBeamCursor 1 /* from header files */
{

PointmousePt;

CursHandle iBeam;

/* Does the front window contain activeTEH ?
- if not something is wrong! */
if(Fr