
s

•• . ~ ••
••••••••• •••••• ······•·· ·····• . \•-'" "' ""' ~ f) \ .. . ,.. ..~.,.........

\. \ .,\\········· ·••····• -······ ···········

Macintosh Quick Toolbox Reference

QuickDraw

Graf Port Routines
void InitGraf(Ptr globalPtr);

void OpenPort(GrafPtr port);

void InitPort(GrafPtr port);

void ClosePort(GrafPtr port);

void SetPort(GrafPtr port);

void GetPort(GrafPtr *port);

void GrafDevice(int device);

void SetPortBits(BitMap *bm);

void PortSize(int width,height);

void MovePortTo(int leftGlobal,topGlobal);

void SetOrigin(int h,v);

void SetClip(RqnHandle rgn);

void GetClip(RgnHandle rgn);

void ClipRect(Rect *r);

void BackPat(Pattern *pat);

Cursor Handling
void InitCursor ();
void SetCursor(Cursor

void HideCursor ();

void ShowCursor ();

void ObscureCursor () ;

Pen and Line Drawing
void HidePen () ;

void ShowPen () ;

*crsr);

void GetPen(Point *pt);

void GetPenState(PenState *pnState);

void SetPenState(*PenState *pnState);

void PenSize(int width,height);

void PenMode(int mode);

void PenPat(Pattern *pat);

void PenNormal();

void MoveTo(int h,v);

void Move(int h,v);

void LineTo(int h,v);

void Line(int h,v);

Text Drawing
void TextFont(int font);

void TextFace(int style);

void TextMode(int mode);

void TextSize(int size);

void SpaceExtra(long extra);

void DrawChar(char ch);

void DrawText(Ptr textBuf; int

firstByte,byteCount);

int CharWidth(char ch);

int StringWidth(Str255 *s);

int TextWidth(Ptr textbuf; int

fir~tByte,byteCount);

void GetFontinfo(Fontinfo *info);

Color
void ForeColor(long color);

void BackColor(long color);

void ColorBit(int whichBit);

Calculations with Rectangles
void SetRect(Rect *r; int

left,top,right,bottom);

void OffsetRect(Rect *r; int dv,dh);

void InsetRect(Rect *r; int dv,dh);

char SectRect(Rect *srcl,*src2,*destRect);

void UnionRect(Rect *srcl,*src2,*destRect);

char PtinRect(Point pt; Rect *r);

void Pt2Rect(Point ptl,pt2; Rect *dstRect);

void PtToAngle(Rect *r; Point pt; int *angle);

char EqualRect(Rect *rectl,*rect2);

char EmptyRect(Rect *r);

Graphic Operations on Rectangles
void FrameRect(Rect *r);

void PaintRect(Rect *r);

void EraseRect(Rect *r);

void InvertRect(Rect *r);

void FillRect(Rect *r; Pattern *pat);

Graphic Operations on Ovals
void FrameOval(Rect *r);

void PaintOvall(Rect *r);

void EraseOval(Rect *r);

void InvertOval(Rect *r);

void FillOval(Rect *r; Pattern *pat);

Graphic Operations on Rounded-Corner
Rectangles

void FrameRoundRect(Rect *r; int

ovalWidth,ovalHeight);

void PaintRoundRect(Rect *r; int

ovalWidth,ovalHeiqht);
void EraseRoundRect(Rect *r; int

ovalWidth,ovalHeiqht);
void InvertRoundRect(Rect *r; int

ovalWidth,ovalHeiqht);
void FillRoundRect(Rect *r;· int

ovalWidth,ovalHeiqht; Pattern *pat);

Graphic Operations on Arcs and Wedges
void FrameArc(Rect *r; int

startAnqle,arcAnqle);
void PaintArc(Rect *r; int

startAnqle,arcAnqle);
void EraseArc(Rect *r; int

startAnqle,arcAnqle);
void InvertArc(Rect *r; int

startAnqle,arcAnqle);
void FillArc(Rect *r; int

startAnqle,arcAnqle; Pattern *pat);

Calculations with Regions
RqnBandle NewRgn();
void OpenRgn () ;
void CloseRgn(RqnBandle dstRqn);
void DisposeRgn(RqnHandle rqn);
void CopyRgn(RqnHandle srcRqn,dstRqn);
void SetEmptyRgn(RqnHandle rqn);
void SetRectRgn(RqnHandle rqn; int

left,top,riqht,bottom);
void RectRgn(RqnHandle rqn; Rect *r);
void OffsetRgn(RqnBandle rqn; int dv,dh);
void InsetRgn(RqnHandle rqn; int dv,dh);
void SectRgn(RqnHandle

srcRqnA,srcRqnB,dstRqn);
void UnionRgn(RqnHandle

srcRqnA,srcRqnB,dstRqn);
void DiffRgn(RqnHandle

srcRqnA,srcRqnB,dstRqn);
void XorRgn(RqnHandle srcRqnA,srcRqnB,dstRqn);
char PtinRgn(Point pt; RqnHandle rqn);
char EqualRgn(RqnHandle rqnA,rqnB);
char EqaualRgn(RqnHandle rqnA,rqnB);
char EmptyRgn(RqnHandle rqn);

Graphic Operations on Regions
void FrameRgn(RqnHandle rqn);
void PaintRgn(RqnHandle rqn);
void EraseRgn(RqnBandle rqn);
void InvertRgn(RqnHandle rqn);
void FillRgn(RqnHandle rqn; Pattern *pat);

Bit Transfer Operations
void ScrollRect(Rect *r; int dv,dh; RqnHandle

updateRqn) ;
void CopyBits(BitMap *srcBits,*dstBits; Rect

*srcRect,*dstRect; int mode; RqnHandle
maskRqn);

Pictures
PicHandle OpenPicture(Rect *picFrame);
void PicComment(int kind,dataSize; Handle

dataHandle);
void ClosePicture();
void DrawPicture(PicHandle myPicture; Rect

*dstRect);
void KillPicture(PicHandle myPicture);

Calculations with Polygons
PolyHandle OpenPoly();
void ClosePoly();
void KillPoly(PolyBandle poly);
void OffsetPoly(PolyBandle poly; int dv,dh);

Graphic Operations on Polygons
void FramePoly(PolyBandle poly);
void PaintPoly(PolyBandle poly);
void ErasePoly(PolyBandle poly);
void InvertPoly(PolyBandle poly);
void FillPoly(PolyHandle poly; Pattern *pat);

Calculations with Points
void AddPt(Point srcPt,*dstPt);
void SubPt(Point srcPt,*dstPt);
void SetPt(Point *pt; int h,v);
char EqualPt(Point ptl,pt2);
void LocalToGlobal(Point *pt);
void GlobalToLocal(Point *pt);

Miscellaneous Routines
int Random () ;
char GetPixel(int h,v);
void StuffHex(Ptr thinqPtr;Str255 *s);
void ScalePt(Point *pt; Rect

*srcRect,*dstRect);
void MapPt(Point *pt;Rect *srcRect,*dstRect);
void MapRect(Rect *r,*srcRect,*dstRect);
void MapRgn(RqnHandle rqn; Rect

*srcRect,*dstRect);
void MapPoly(PolyHandle poly; Rect

*srcRect,*dstRect);

USING THE

MACINTOSH
TOOLBOX WITH c

USING THE
MACINTOSH®
TOOLBOX WITH c
Second Edition

Fred A. Huxham
David Burnard
Jim Takatsuka

e• SAN FRANCISCO• PARIS• DiisSELDORF • SOEST

Acquisitions Editor: Dianne King
Supervising Editor: Joanne Cuthbertson
Copy Editor: Gina Jaber
Editor (First Edition): Geta Carlson
Technical Editor: Dan Tauber
Wonl Processors: Scott Campbell and Chris Mockel
Book Designer & Chapter Art: Suzanne Albertson
Technical Illustrations: Jeff Giese
Saeen Graphics: Soitja Schenk
Typesetters: Charles Cowens and Suzanne Albertson
Proofreader: Vanessa Miller
Indexer: Paul Geisert
Cover Designer: Thomas Ingalls + Associates
Cover Photographer: Michael Lamotte

Macintosh is nrademark licensed to Apple Computer, Inc.
MC68000 is a trademark of Motorola, Inc.
Apple, Switcher, Resource Compiler, Resource Editor, QuickDraw, Finder, Inside Macintosh, and Lisa are
trademarks of Apple Computer, Inc.
Mac C is a trademark of Consulair Corporation.
MacDraw and MacPaint are trademarks of Apple Computer, Inc.
MacWrj.te is a trademarlc of F.ncore Systems and Apple Computer, Inc.
Think C is a trademark of Symantec Corp.
Word and Excel are trademarks of Microsoft Corp.
Jazz is a trademark of Lotus Development Corp.
MacDraft is a trademarlc of Leonard G. Barton.
Fedit is a trademark of John Mitchell.
SetFile 20 and BaseTool Desk Aci:essories © 1985 Fred, Sam, and Dave Software.

SYBEX is a registered trademark of SYBEX, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX assumes no respon
sibility for its use, nor for any infringements of patents or other rights of third parties which would result.

F°ll'St Edition copyright 1986 SYBEX Inc.

Copyright© 1989 SYBEX Inc., 2021 Challenger Drive# 100, Alameda, CA 94501. World rights reserved. No part
of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without prior agreement and written permission of
the publisher.

Library of Congress Card Number: 89-62280
ISBN: 0-89588-572-7
Manufaclured in the United States of America
10 9 8 7 6 5

To our parents:

Fred and Marjorie Huxham

Carl and Dorsey Burnard

Walter and Gail Takatsuka

Acknowledgments
Our sincere thanks to Steve Rimmer for his time in preparing this

revision. Writing this book was quite an experience for the three of us and
there were a lot of people who helped us through. We'd like to thank Wil
liam Adams, Reese Jones, Raines Cohen, Nicole Kowalski, Don Yost, and
Steve Costa for their encouragement and support throughout the course of
this project. We'd also like to thank everyone who showed up at the BMUG
Developers Group meetings at UC Berkeley and at our classes at Lawrence
Livermore National Laboratories for keeping us on our toes by proving that
even the simplest of examples can be laden with bugs.

World-famous desk accessory author Sam Roberts of Fred,
Sam, and Dave Software proved to be a lot of help (and great fun) in the
realization of this book. Our C guru, Peter Moore, made some valuable
contributions in proofreading a lot of the example routines and sample
source code. Steve Capps and Larry Kenyon provided technical assis
tance on some of the more esoteric workings of the file system, for
which we are very grateful.

Finally, JT would like to extend a special "mahalo" to Rick
Iwamoto and Robert Antonio for doing a terrific job holding down the
fort while he was writing. FH also would like to thank Jennifer Iscol for
being his best friend throughout the ups and downs of the book. Without
all of these people, this book would never have made it out in any
reasonable period of time. Once again, we would like to thank them all
very much.

Fred, Dave, and Jim

Contents
at a Glance

Introduction xvi

1 The Macintosh Toolbox and the User Interface 1

2 Using the Event Manager 18

3 An Introduction to the Window Manager 42

4 Using the Menu Manager 76

5 Drawing with QuickDraw 100

6 Memory Management 162

7 Using Multiple Windows 184

8 Text Editing with the Toolbox 208

9 Resources 278

10 Controls 294

11 Alerts and Dialogs 324

12 The Macintosh File System 362

13 Finishing Touches 454

A C Calling Conventions 472

B Error Codes and Reserved Resource Types 498

c ASCII Chart of the Macintosh System Font 510

Index 514

Table
of Contents

Introduction xvi

How to Use This Book 2
Conventions Used in This Book 3
The Macintosh Toolbox and C 3
Additional Background Information 12

1 The Macintosh Toolbox and the User Interface 1

Characteristics of a Good Macintosh Application 2
The Macintosh User Interface 3
User Interface Conventions 4
Summing Up 16

2 Using the Event Manager 18

Types of Events 20
Event Records 24
Tl;te Event Queue 33
Priority of Events 34
Event Masks 35
Using the Event Manager Routines 36
A Sample Main Event Loop Program 40

xii

3 An Introduction to the Window Manager 42

Types of Windows 44
Components of a Window 46
Window Manager Data Types and Structures 48
Windows and GratPorts 49
Using the Window Manager 50
A Sample Program: Using Events and Windows 70

4 Using the Menu Manager 76

Anatomy of Menus 77
Menu Manager Types and Structures 78
Creating Menus 80
Choosing from Menus 90
A Sample Program for Windows and Menus 93

5 Drawing with QuickDraw 100

QuickDraw Basics-The Coordinate Plane, Points,
and Rectangles 103
GratPorts-Drawing Environments for QuickDraw 112
The GratPort Data Structure and Routines 126
The QuickDraw Drawing Verbs 134
Drawing Rectangles 135
Drawing Ovals 136
Drawing Rounded-Comer Rectangles 137
Defining and Drawing Angles, Arcs, and Wedges 138
Defining and Drawing Polygons 140
Defining, Manipulating, and Drawing Regions 143
Defining and Drawing Pictures 148
Bit Transfer Operations 150
Cursors 151

xiii

A Sample Program for QuickDraw 155

6 Memory Management 162

The Macintosh Memory Map 164
Using the Memory Manager 171

7 Using Multiple Windows 184

Activate Events 186
Update Events 188
Programming Techniques 194
A Programming Example: Using Double-Clicks to
Resize Windows 200

8 Text Editing with the Toolbox 208

The Appearance of Text on the Screen 210
TextEdit Data Structures 213
Using TextEdit 217
Advanced Techniques 236
A Sample Program Using TextEdit 251

9 Resources 278

Organization of Resources 279
The Role of the Resource Manager 282
A Look at the System Resource File 284
Using Resources 286
Creating Resources 288
Resource Power 293

xiv

10 Controls 294

Buttons 296
Check Boxes 297
Radio Buttons 297
Scroll Bars 298
Highlighted, Active, and Inactive Controls 300
Part Codes 302
The Control Record Data Structure 303
Control Manager Routines 304
A Sample Program for the Control Manager 314

11 Alerts and Dialogs 324

Types of Dialogs and Alerts 325
The Contents of Dialog and Alert Boxes 328
DialogRecord Data Type 332
Dialog and Alert Resource Types 333
Using Alert and Dialog Routines 339
A Sample Program Using Alerts and Dialogs 352

12 The Macintosh File System 362

Volumes 363
Files 365
The Standard File Interface 367
The File Manager 374
.Using the Low-Level File Manager Routines 381
Programming Examples 415
A Sample Program Illustrating the Macintosh File System 428

xv

13 Finishing Touches 454

Creating Your Own Icon 455
Supporting Desk Accessories from Your Application 462
Menu Icons 470

A C Calling Conventions 472

B Error Codes and Reserved Resource Types 498

c ASCII Chart of the Macintosh System Font 510

Index 514

xvi

Introduction

Using the Macintosh Toolbox with C is the first book written
especially for C programmers on the Macintosh. While there have been
implementations of C for the Macintosh for several years now, it is only
recently that they have really caught up with the Pascal development
environments which were originally created for the Mac. The latest gen
eration of C compilers, and in particular Think C, the package which
this book is based upon, are professional quality compilers which can
produce complex applications every bit as good as those written under
the Pascal Workshop system originally designed for Mac developers.

The difficulty in using C which is experienced by many pro
grammers new to the Macintosh is that the Mac's extensive Toolbox
was written expressly to be used with Pascal. There are many subtle dif
ferences in the ways that C and Pascal work, and these complicate the
interface between a C language program and the Mac's firmware. More
than this, though, the documentation for the Toolbox, the voluminous
Inside Macintosh books, explains the Toolbox in Pascal terms. One
must be quite familiar with Pascal in order to use Inside Macintosh to
program the Mac in C.

In addition, Inside Macintosh is huge, running to five volumes
as of this writing, and quite expensive. It's more of a reference book
than a tutorial. It doesn't lend itself to simply sitting down and cranking
out an application.

Programmers wishing to learn C on the Macintosh will prob
ably be frustrated by a lack of sample source code, even though C has
been extant on the Mac for several years now. There is little of it around,
and what there is tends to be very specific and exotic. As with most
programs released into the public domain, the source code one finds is
rarely commented as well as it might be, making it less than ideal as a
learning tool. Furthermore, each of the various C compilers released for
the Mac have implemented the language a bit differently. Source code
written for, say, Aztec C will probably present you with some subtle
lexical twists if you try to use it with Think C.

Having faced all of these problems ourselves, Using the Macin
tosh Toolbox with C was created to help you learn the essentials of

xvii

Macintosh programming without bogging you down with too much in
formation. Each chapter in this book explains the implementation of a
fundamental element of the Macintosh user interface, including all the
important data structures and how to use the Toolbox routines related to
that aspect of the interface. Numerous examples of the Toolbox routines
are provided throughout each of the chapters, as well as source code for
several applications.

This book will not replace Inside Macintosh. You will probably
eventually want to buy a copy of it. There are all sorts of subjects which
are simply not within the scope of this book, and you may want to know
about them one day. However, Using the Macintosh Toolbox with C will
tell you everything you need to know about writing basic, workable
Macintosh applications in much less time than it would have taken you
to puzzle through Inside Macintosh to learn the same things.

Contemporary Mac programmers may take heart in knowing
that Inside Macintosh is now available in relatively low cost paper
bound volumes. The original books came only in a prohibitively expen
sive hard bound edition.

How to Use This Book
Using the Macintosh Toolbox with C is designed to be a Macin

tosh programmer's guide. Its chapters are meant to be read in sequence,
with each chapter building upon what was previously discussed. By the
time you reach the end, you will have learned all the fundamentals of
programming the Macintosh user interface. The sample programs in
cluded in this book also provide a good reference to use when you begin
creating your own applications.

Unlike other computers, the Macintosh does not lend itself to
compiling fragments of code to see what they do. A Mac program must
be a complete application which, as you'll see while you work your way
through the book, is quite an elaborate thing. As such, you can't just
type in the example functions and compile them though you can type in
the complete applications.

xviii

Conventions Used in This Book
All the programming examples in this book are written in

Think C for the Macintosh, which is a product of Symantec. They will
work on most C compilers for the Macintosh, but you should be aware
that no two Macintosh C implementations are exactly the same. As the de
velopers of C compilers for the Mac have grown more proficient at
optimizing their products, the divergences between the various lan
guages have grown more noticeable.

If you are familiar with C these differences should not be too
difficult to work around. If you are new both to C and to the Macintosh,
we strongly recommend that you start with Think C. It's bad enough
trying to find your own programming bugs; you'll find learning C a
great deal easier if you 're not trying to isolate compiler problems at the
same time.

Throughout the book, all Macintosh Toolbox functions will be
printed in boldface and in a special program font. This same program font,
minus the boldface, will be used in all examples and sample programs,
as well as for various names associated with the Toolbox. That way,
anything associated with programming will clearly stand out from the
rest of the text. Finally, any special terms related to the Macintosh or its
user interface will be printed in italics.

The Macintosh Toolbox and C
As we noted previously, the Macintosh Toolbox was originally

intended to be used with programs written in Pascal or in native 68000
assembly language cooked up to look like Pascal. In order to success
fully write C programs in this Pascal environment, it's necessary to
become more than usually familiar with the subtle distinctions between
these two languages. While it's not normally essential to understand
how C passes arguments to a function, for example, just to be able to
program in C, having this sort of "inside information" is very helpful
when using C on the Macintosh.

xix

Before we begin our discussion of how to write an application
with the Macintosh Toolbox, we must briefly cover a few important
points concerning the relationship between the Toolbox and C. The first
point concerns the various simple data types which C will be using and,
as such, passing to the Toolbox.

The second point is that the Toolbox is very much enamored of
complex data types. If you are familiar with C, you will know that un
der C these are called "structs". Think C defines well over a hundred
specialized structs as unique Macintosh data types. An important part of
mastering the use of the Toolbox, then, is in understanding how to use
these data types effectively.

The third point is that Pascal is a slightly more obliging lan
guage than C tends to be, and it takes care of a lot more of the low level
things that languages do. There are drawbacks to this, too, which will
become clear as you proceed through this book. What is important,
however, is that a C programmer must take great care in using the ap
propriate data types and using them correctly.

The Simple Data Types used by the Toolbox and C
Experienced users of C will be familiar with its basic data types

and will probably think of them in certain fixed ways. For example, an
int is usually thought of as having 16 bits.

In fact, the abstract definition of C, Kernighan and Ritchie's
The C Programming Language, does not specify the sizes of data types.
They are allowed to be whatever is natural for the environment the lan
guage is implemented for. In this case, it is convenient for the creators of
Macintosh C compilers to use the same conventions as does Macintosh
Pascal wherever possible, to allow for the least amount of data type con
version when a C program goes to call the Toolbox.

The basic data types for Macintosh Pascal as they relate to the
Toolbox are shown in Figure I.1. Figure I.2 shows the simple data types
for C and their sizes. These values are specific to Think C. For example,
some Macintosh C compilers use 32 bit ints. This can cause trouble in
using source code written for a different C compiler if the author of the
program counted on having 32 bit ints and the compiler you 're using
only supports 16 bit ints.

xx

The Think C data sizes are much the same as the data sizes used
in IBM PC based C compilers, which does make porting PC code to the
Macintosh a great deal easier. Note that a long integer and a pointer to a
long integer are the same size. This will return to haunt you again and
again.

Type Name Storage Size

character CHAR 1 bytet

flag BOOLEAN 1 bytet

integer INTEGER 2 bytes

Jong integer Long Int 4 bytes

pointer Ptr 4 bytes

t An individual character or flag requires 2 bytes.
In a packed array, each character or flag requires
only 1 byte.

Figure :.1: The Basic Data Types of the Toolbox

Type Name

character char

flag char

short integer short

integer int

long integer long

pointer char•

floating point float

double floating point double

t not really a data type

:j: 12 bytes if 68881 option is on

Figure 1.2: The Basic Data Types of Think C

Storage Size

1 byte

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

4 bytes

10 bytes :j:

Strings
The sizes of data types under Think C have been thoughtfully

chosen, and rarely become an issue except in exotic circumstances. One
of the things which does lead to innumerable difficulties in this area,
however, is the difference between a string in Pascal and one in C.

Under Pascal, a string consists of some number of characters
preceded by an index byte, that is, by a number which defines how long
the rest of the string is. The string "Think C" is 7 bytes long, so if you
wanted to define it as a Pascal style string under C you would write this:

"\007Think C"

If you passed this to a Toolbox function which expected to see a
string, this would be interpreted correctly.

Under C, strings are represented as some characters followed
by a terminating zero byte, or "null". When you define a string under C
you do not explicitly define the null, any more than you need define the
index byte under Pascal. The language puts it there for you.

If you pass a Toolbox function a C string when it expects a Pas
cal string, very strange things may happen. For example, the string
"Think C", when passed to a Toolbox function as it stands, would be
regarded by the Toolbox as being 84 bytes long. If you are wondering
how 84 crept into the discussion, observe that the ASCII value of the
letter "T" is 84. A Pascal function passed a C string will use the first
character of the string as its index byte.

Think C gives you two very elegant ways of converting be
tween C strings and Pascal strings. First of all, if you want to define
a string which you know is to be passed to a Toolbox routine, that is, a
Pascal string, you would do this:

"\pThink C"

The ''\p" tells Think C to treat this as a Pascal string, and to put
an index byte in front of it.

Second, there are two library functions provided by the com
piler to convert existing strings between these two conventions. You can

xxi

xx ii

use CtoPstr to make a C string into a Pascal string and PtoCstr to make a
Pascal string into a C string. It's worth noting that these functions ac
tually change the strings which they are given as arguments, rather than
copying their arguments to new strings.

It is very, very important to know which sort of string a function
expects to be passed when you go to use it. Passing the wrong sort of
string will at best make your program misbehave, and will frequently
crash your Macintosh, necessitating a reboot. All of the Toolbox func
tions expect Pascal strings. All of the C functions provided by Think C,
with the exception of PtoCstr, of course, expect C strings.

If a Toolbox function returns a string, you must convert it back
to a C string before you use it with any C functions.

There is an additional catch to using strings from C with the
Toolbox. Under Pascal, a string is a specific complex data type called
Str255. As you might expect, this allots 255 bytes of string space for each
string. Under C, a string is an array of however many chars the program
mer feels like allocating. The Toolbox, which thinks it's dealing with a
Pascal program, will assume that it can increase the size of a string
passed to it as much as it needs to, so long as the string remains within
255 bytes.

When you define string variables in your C programs which
will be passed to Toolbox routines that might change their sizes, make
very sure that you have allocated enough space to allow for any contin
gency. When in doubt, allocate 256 bytes. This is the largest possible
Pascal string plus one byte for either the Pascal index byte or the C null
terminator byte, as is applicable.

Alternately, you can use one of the data types which Think C
provides for Pascal compatibility. A variable of the type Str255 can be
defined in your C program to behave just like an Str255 variable in Pascal.

In this book, when you see a Toolbox function specified as re
quiring an Str255 variable as an argument, this is a key that it requires a
Pascal style string.

Toolbox Data Structures
The Macintosh utilizes over a hundred complex data types. A

complex data type is a collection of simple data types bundled together

xx iii

into one new variable. Under most C environments this is a fairly ad
vanced practice. However, because the Toolbox uses complex data
types for even the simplest functions, it's important for Macintosh C
programmers to know about them from the start.

Here's an example of how complex data structures work. The
Toolbox provides us with a function which draws rectangles on the
screen. It's called FrameRect. In order to define where a rectangle will go
on the Mac's screen, we must specify four numbers. These are the num
ber of dots down from the top for the upper horizontal line, the number
of dots in from the left for the left vertical line, the number of dots down
from the top for the lower horizontal line and the number of dots in from
the left for the right vertical line.

The obvious way to handle this would be to pass FrameRect four
ints. In fact, the Toolbox doesn't do things this way. Instead, it defines a
new data type called Rect. A Rect is a collection of four ints called top,
left, bottom and right, in that order.

Under C, if r is a variable of the type Rect, then r.top is the integer
which defines the position of the top line of the rectangle. You might say
r.top = 100 to assign it a specific value.

There are many more complex data types associated with the
Toolbox, most of which contain combinations of differing simple data
types. It's not unusual to find complex data types which contain other
complex data types.

The Toolbox data types are defined in header files included
with Think C. Assuming that you include the headers as the Think C
manual says you should, you can always assume that these complex
data types are "on tap" when you need them.

Calling the Toolbox from C
Under Think C, the Macintosh Toolbox appears to your

programs just like any other library of functions. In order to call it, you
simply assume that all those functions are there and the compiler does
the rest.

The biggest single headache in learning to program the Mac
intosh C in C is getting the calls to the Toolbox right. They are very

xx iv

confusing at times, because C expects us to do a few things by hand
which Pascal handles automatically.

In addition, the Toolbox includes a few curves of its own. This
is the first and perhaps the trickiest curve. In some cases, you will pass
a number to a Toolbox function expecting it to do something with the
number. In other cases, the Toolbox will wish to be able to modify the
number as it exists in the calling function. Under Pascal, the compiler
takes care of this by knowing whether or not each Toolbox function
might wish to be able to modify its arguments.

In technical terms, when we wish to simply give a number to a
Toolbox function, we pass the value of the number. The compiler pushes
the number onto the stack and calls the Toolbox function in question.
The Toolbox peeks at the number on the stack to see what it is and does
whatever it's supposed to do. When the Toolbox function returns, the
number on the stack is thrown away by the calling function.

If the Toolbox function expects to actually modify the number
it's passed, things are handled differently. In this case, we must tell the
Toolbox where the number is in the original calling function so that it
can go and change its contents. This is called passing by reference. What
we actually do is push the address in memory where the number is onto
the stack, rather than the number itself, before we call the Toolbox.

All sorts of terrible things will happen if a particular Toolbox
function thinks it's going to be passed the address of a number and you
pass it the number instead. It will interpret the number as an address and
usually modify some totally unrelated memory location. If this happens
to be part of your program or something else important, your Macintosh
will usually crash.

You might be wondering how to tell when a Toolbox function
expects to be passed an argument by value and when it expects to be
passed an argument by reference. The answer is in knowing a little bit of
Pascal. Under Pascal, if a function is declared as, for example,

Function(i : integer);

this is a function which expects to have i passed by value. On the other
hand, if it was

Function(VAR i integer);

xxv

this function expects to have i passed by reference.
The notation for passing arguments under C is very similar to

that of Pascal. In the first case, you would call the above hypothetical
Toolbox function like this to pass it an argument by value.

Function(i);

In the second case, you would do this to pass it one by reference.

Function(&i);

As you work through this book, you will have no difficulty
recognizing how arguments are passed to the Toolbox for the functions
discussed herein, as the notation will all be in C. If a function is
described like this, it indicates passing by value.

Function(i)

int i;

If it's described like this, its argument is being passed by reference.

Function(i)

int *i;

However, you will want to keep this point in mind for when you start
delving into uncharted territory, and using the functions described in
Inside Macintosh.

When you are passing a complex data type to a Toolbox func
tion, there is no choice between passing it by value and passing it by
reference. Under Think C, nothing bigger than four bytes is ever passed
by value. If, for example, we wanted to pass a Rect variable to FrameRect,
we would always pass the address of the Rect, not the Rect itself. This a
typical call to FrameRect.

FrameRect(&r);

There is an interesting exception to this. One of the commonly
used complex data types which the Toolbox defines is Point, which con
tains two integers. This specifies the horizontal and vertical coordinates
of something, such as the point at which the mouse was clicked. Now,

xxvi

this is a complex data type but it's only four bytes long. As such, under
Think C you are expected to break the rules and pass Point variables by
value, that is, without the"&" operator, unless the Point is actually going
to be modified by the Toolbox function in question.

Pointers and Handles
The final area of potential confusion for C programmers on the

Macintosh concerns pointers and handles. The Macintosh is especially
fond of handles, a phenomenon which rarely crops up on most other
common microcomputers.

The function of a pointer will be fairly obvious from its name.
It tells a program where to look for something. In real terms, a pointer
contains the location in memory where the first byte of the thing it
points to lives.

If i is an integer and p is a pointer to an integer, then if we say
p = &i, p will point to the integer i. If we subsequently say *p = 6, then i will
contain the value six.

Under C, pointers are "type checked." This means that if p is
declared to be a pointer to an int, for example, and you attempt to make
it point to a Rect variable without telling C what you're doing, the com
piler will complain. In practice, a pointer to an int and a pointer to a Rect
are both four byte numbers, but C tries to keep you from making ob
vious mistakes by preventing you from, for example, trying to make a
Rect variable equal to six.

This part is pretty simple. If it doesn't make perfectly lucid
sense just yet, don't worry. You'll find that you understand it intuitively
before you're even part way through this book.

A handle is a pointer to a pointer to a thing. If i is an integer, and
p is a pointer to an integer and h is a handle to an integer, then we would
do this to make h into a handle to i.

p = &i;

h = &p;

This doesn't take a lot of work to understand. What is a little
mysterious is why anyone might want to do it.

On the Macintosh, the position of things in memory is left up to
the Mac itself much of the time. If you ask the Mac to give you some

xxvii

memory to store data in, the Mac can't suddenly take your memory
away from you later on, but it is allowed to move it around behind your
back wherever it feels like doing so. It might do this if it's trying to allo
cate a big block of memory by combining several smaller, unused areas
of memory.

When the Toolbox moves your chunk of memory around, it
cannot know where in your program pointers into the memory might lie.
As such, it has you deal with the memory through a handle. The handle
lives in your program, and points to a pointer. The Mac knows where the
pointer is. If it elects to move your memory, it will change where the
pointer points to. However, your handle will know where the pointer is,
and so you will still be able to find your memory.

Although it might not sound like one, this is a simple example
of handles on the Macintosh.

It's very important to differentiate between handles and
pointers. It's also very important not to attempt to use the pointer a
handle points to as you would a pointer which you have defined, be
cause the Macintosh might change where it points to without telling you
about it.

This is discussed in detail in Chapter 6.

Additional Background Information
In addition to the background information we have already out

lined, there is some further information that you will need before you
begin to learn about the Toolbox in the first chapter.

Toolbox Naming Conventions
The functions, constants and data types which are used with the

Toolbox follow a more or less standardized naming convention. When
you write the functions which will comprise your own applications, you
should attempt to either stick to this convention or devise one of your
own which is equally readable. There are those Macintosh programmers
who deliberately adopt a different naming style to make it easy to spot

xx viii

which functions are Toolbox calls and which are calls to parts of their
own code.

Here's a quick summary of how Toolbox names are formed.

First, as a general rule a Toolbox name is comprised of two or
more descriptive words with the first letter of each word capital
ized. For example, we have FrameRect, MyFileFilter, FixRound and
so on (shown here in the bold faced program font we will use for
functions throughout this book). In a few cases, a single word is
sufficiently descriptive, such as Create or Munger. If it is not ob
vious from its name what Munger does, don't worry. The
description of this function isn't much help either.

The names of Toolbox data structures and their associated
pointers and handles are named using the same conventions, such
as EventRecord, WindowPtr and ControlHandle (shown here in the pro
gram font we will use for data structures, variables and the names
of constants throughout this book).

Individual field names from the Toolbox data structures begin
with a lower case letter. For example, the where field of an Event
Record or the portRect of a Graf Port.

All of these conventions can be abandoned whenever Apple feels
like it. So, for example, we have TEGetText, PBEject, noErr and so
on.

Pascal is not case sensitive. We could write FRAMERECT rather
than FrameRect under Pascal without upsetting the compiler. C is case
sensitive. FRAMERECT and FrameRect are two unique names under C.
This is important to remember if you are attempting to transliterate a
Pascal program to C. It's also the cause of a particularly frustrating
group of compiler errors, wherein you know that a Toolbox function or
data type exists but the compiler fails to recognize it. Check it again
you have probably capitalized the name incorrectly.

xx ix

Other Predefined Constants
Under Pascal, there are many situations wherein things are

either true or false. To pass a true argument to a function, for example,
you simply pass the word TRUE. This is a predefined constant under Pas
cal, and its actual value is never used.

In fact, the TRUE and FALSE behave under Pascal exactly as they
would under C. A value of zero is false. Everything else is true. As such,
of you are told to pass a false value to a Toolbox function, pass zero. If
you are told to pass a true value, pass something other than zero. A good
choice is Oxff.

Under Pascal, a pointer which points to location zero is said to
point to NIL, or be a "nil pointer." Under C, we would say that it points to
NULL.

Suggested Reading

The best place to start to learn C is by reading the book which
started it all, The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie, published by Prentice-Hall, Inc. The second edition
of this book is now available, covering all the recent and proposed chan
ges to C. If you get through K&R and the book you 're holding now you
will probably be able to do without any other general purpose C books.

Sooner or later you should acquire all five volumes of Inside
Macintosh, published by Addison-Wesley, Inc. The first three deal with
the basic Macintosh, and all of the code in this book is drawn from them.
The latter two volumes handle the upgrades to the newer Macintosh ver
sions, the hierarchical file system, the Mac II and so on. If you're a bit
short of cash, you can get by with the first three.

--/.. I

I ---------r-
~ I

+ I
I

I
L_

..........._

...........___ I
........._

----++ I

I
I

)(I

~
+I

The Macintosh Toolbox
and the User Interface

Using the Macintosh is very easy. There is something unique
about a computer that seems to make users comfortable right away. The
user's sense of control over Macintosh applications seems to develop
more quickly than with applications designed for other computers.

Most users take the operation of the Macintosh for granted.
They know it's an easy machine to use and they enjoy being able to
learn new applications quickly. We as application programmers, how
ever, need to be more aware of just what it is that makes a Macintosh
application "Mac-like."

We know, of course, that the key to the Macintosh's uniqueness
is its user interface. It is through the interface that the user interacts with
the computer and the computer communicates with the user. The quality
of the mediation between user and computer provided by the interface is
especially important when you have, on the one hand, a computer as
sophisticated as the Macintosh and its 68000 series processor and, on
the other hand, users who are much more interested in getting their work
done efficiently than in knowing about the inner workings of the
machine or program they're using.

In this chapter, we will introduce you to the Macintosh's user
interface by looking at the role and operation of its basic elements and
by reviewing a few conventions that apply to each. We will begin by dis
cussing the qualities of a user friendly, and hence of a Mac-like,
application.

2 Using the Macintosh Toolbox with C
--- CH.1

Characteristics of a Good Macintosh
Application

The user interface that Apple created for the Macintosh repre
sents a significant advance in user friendliness. The designers of the
Macintosh wanted their machine to appeal to as wide an audience as
possible. Since that meant primarily an audience of nonprogrammers,
many of whom had never before used a computer, the new design had to
be easy to learn and use.

You can achieve an overall effect of user friendliness in your
Macintosh application by ensuring that it contains three characteristics:
responsiveness, permissiveness, and consistency.

A "responsive" application should produce direct results from a
user's actions. When the user selects an icon, it should become high
lighted. When the user boldfaces a word in a word processor, the word
should appear boldfaced on the screen. It is this kind of direct response
that gives the person using the application a sense of control over what
he or she is doing. It's frustrating for a user to execute a command in an
application and be left wondering whether anything really happened. As
much as possible, the effects of a command should be shown directly,
encouraging the user to move on to the next task.

The "permissiveness" of an application refers to the ability of
the user to move quickly and freely between features without having to
go through a lot of intermediate steps. For example, issuing a print com
mand in a word processor should not be too much harder than issuing
a command to boldface text, and the user should be able to jump from
one to the other as directly as possible. Using an application should be
come an intuitive process, encouraging spontaneity. The designers of
the Macintosh felt that the person using the application should have to
worry less about using the application than about completing the task
at hand.

Finally, the Macintosh's designers felt that the most important
characteristic of an application is "consistency." When users move from
one application to another, they shouldn't be forced to learn an entirely
new interface. Clearly, if application control does not vary greatly be
tween programs, the time spent learning to use a new program will be
minimized.

The Macintosh Toolbox and the User Interface 3 ---
The overall intention behind giving your application these char

acteristics is to make the user more comfortable with the program he or
she is using. It is the implementation of these characteristics that makes
Macintosh applications truly Mac-like. For example, Macintosh menus
eliminate the task of memorizing a great many keyboard commands.
Spontaneity is encouraged because all the user's options are right there
at the top of the screen-readily available but not in the way. When the
user selects a menu from the menu bar, the menu responds by displaying
its menu items. What is more, the operation of menus remains consistent
from one Macintosh application to another. Through the use of win
dows, menus, controls, alerts, dialogs, and all the other familiar aspects
of the interface, Apple provides the Macintosh user with a simple yet
powerful environment in which to work.

The Macintosh User Interface
To ensure implementation of their user interface, Apple provided

programmers with two resources. The first, Inside Macintosh's "User In
terface Guidelines," offers recommendations on the operation of the
user interface in a Macintosh application. An outline of the operation of
menus, windows, and the like is provided, as well as some general sug
gestions as to the appearance and flow of an application.

In general, the "User Interface Guidelines" recommend a
copious use of graphics. Whenever possible, commands, features, and
parameters of an application should be presented as graphics objects on
the screen. The pattern palette in MacPaint, dialog boxes, icons, and
menus are familiar examples of the use of graphics.

Because using the standard Macintosh interface necessarily
meant doing a lot of complicated graphics, Apple provided the second
resource, the Toolbox ROM. Residing in the Macintosh ROM are the
fundamental routines needed for implementing the user interface.
Through the use of these routines, something as vital to the user inter
face as displaying a window-a task that would normally require quite
of bit of coding-is as simple as passing a few parameters to one of the
Toolbox routines.

4 Using the Macintosh Toolbox with C
---cH.1

Technically speaking, the Macintosh ROM is divided into two
sections. The operating system portion of the ROM contains routines for
memory management, file management, handling system errors, han
dling external devices, and so on. The User Interface Toolbox contains
the routines that are used to actually build the user interface. These in
clude routines for implementing windows, menus, QuickDraw, and
TextEdit. Over time, the two sections of the ROM have become collec
tively known simply as the Toolbox.

Of course, using the ROM routines to create an application is
the primary topic of this book. In the subsequent chapters, we don't
make a distinction between the operating system and user interface
Toolbox. Although we discuss routines from each section of the ROM,
we refer to all ROM routines as "Toolbox" routines.

User Interface Conventions
Because many of the broader guidelines of the user interface

single- and double-clicking, for example-are very familiar to all but
the newest Macintosh users, we will not go through an exhaustive
coverage of the user interface. Instead we'll look at some of the more
subtle behaviors and conventions associated with each of the major user
interface elements that we, as application programmers, need to be con
scious of. This review will provide us with a common ground of ideas
about how a Macintosh application is supposed to work and about when
certain features and behaviors should be implemented.

Windows

Windows in a Macintosh application can contain a variety of
things. Examples include information generated by the program (for ex
ample, status messages from a compiler) and alert and dialog messages; in
the case of desk accessories, a window can even embody an entire pro
gram. By far the most common use for windows, however, is to contain
application documents. Documents range in kind from text files produced
on a word processor to pictures produced on a graphics program to the

The Macintosh Toolbox and the User Interface 5

transcripts of a bulletin board session on a terminal program.
To accommodate the many uses of document files, the Mac

intosh operating system has predefined a special style of document
window, familiar to anyone who has ever used MacWrite. Because
this window is such an integral part of nearly every Macintosh ap
plication, it needs to be capable of a variety of behaviors. The user
should be able to open or close it, move it, resize it, hide it, and put it
in front of or behind other windows. The graphics features associated
with these behaviors are all designed into the Macintosh's predefined
document window. The behaviors themselves, however, must be
programmed into the application, as we will describe. Although the
following discussion pertains specifically to the document window,
most of the behaviors are directly applicable to other window styles.

Opening and Closing Windows
Windows are usually opened either by a menu command or

automatically by the application. As we'll see in Chapter 3, the place
ment of the window when it is opened is determined by the application.
When the user closes a window (if in fact the application wants to allow
the window to be closed), the user should have the option of clicking
in the close box in the upper left-hand corner of the window. If the ap
plication doesn't support closing a window with the close box, the close
box should, of course, be omitted from the window so as not to create
confusion.

The Active Window
Although an application may be capable of having several win

dows open on the desktop, the user can only work with a single window
at any given time. This window, called the active window, must always
be the frontmost window and should be easily recognizable as the win
dow with the highlighted title bar. By the same token, an inactive
window must have the title bar unhighlighted and cannot be the
frontmost window. To make an inactive window active, the user should
be able to click on that window once and have the window activate it
self, highlighting the title bar and bringing it to the front. Whichever
window was previously active should be deactivated (that is, the title
bar should be unhighlighted to avoid confusing the user).

6 Using the Macintosh Toolbox with C
--- CH.1

Moving and Resizing Windows
When an application allows the creation of multiple windows,

the desktop can become cluttered very quickly. To help the user keep the
desktop "clean" and in order, the application should allow the user to
move and resize the windows on the desktop. To allow for resizing,
document windows should have a grow icon in the lower right-hand
comer. The programmer can also set a maximum and minimum size for
the window. This would help the user to avoid problems such as mak
ing the window too small to redraw the grow icon in the bottom-right
comer or too large to completely fit on the screen. If a window cannot
be resized, as is the case in some applications that allow only a single
window, the size box should be omitted.

Resizing a window goes hand in hand with moving it. Since the
primary purpose of both resizing and moving is desktop organization,
achieving that goal would be difficult if one function were implemented
and not the other. When the user clicks the mouse in the title bar and
drags, the window should move. The application can specify the boun
daries to which the window can be moved. Such boundaries are a
helpful addition to an application because they prevent the window
from being moved completely off the screen.

Scroll Bars in Windows
Document windows can also have scroll bars. Scroll bars make

it easier for the user to look through a document too long to fit in a single
screen. They should be implemented whenever there is a possibility of
creating such a document.

As shown in Figure 1.1, scroll bars should support moving
through a document in three ways. First, the user should be able to scroll
smoothly in either direction by clicking in the scroll bar's arrows.
Second, the user should be able to page through the document one
screenful at a time by clicking in the gray area on either side of the scroll
box. And finally, the user should be able to go to any portion of the
document by positioning the scroll bar thumb (scroll box) directly.

The Macintosh Toolbox and the User Interface 7

Menus
Although they're not the only means of controlling an applica

tion, menus are by far the most common. There are a few conventions
for menu layout and operation that you've undoubtedly seen in other ap
plications but may not have recognized as conventions. The more
important of these conventions will be described next.

Presenting Menu Commands
Menu commands can be divided into two categories: verbs and

adjectives (or actions and attributes). Verb commands, as their classifi
cation implies, actually do something, such as print or copy. Adjective
commands, on the other hand, describe a certain state or attribute of an
object. Adjective commands can be further distinguished as either ac
cumulating attributes or mutually exclusive attributes. An attribute is
accumulating when it can be added to other attributes, as when the user
can boldface and italicize text. Attributes are mutually exclusive when
they can only exist by themselves, as when the user is invited to either
show or hide a window.

As you've probably noticed in the applications you use, the
menu itself can be divided into groups, indicated by a gray line spanning
the width of the menu. Whenever a menu contains a large number of
commands, you should use this type of grouping to create a logical sub
set of commands within a particular menu.

Page
Region Ariow

12 rnmml Jm:m~mmmmmmmmmmml 91
I

Scroll Bar
Thumb

Figure 1.1: The Operation of Scroll Bars

8 Using the Macintosh Toolbox with C
--- CH.1

Another important convention for the visual organization of
menus is to divide attributes--either accumulating, exclusive, or both
into respective groups in order to emphasize their relationship.
Figure 1.2 shows a hypothetical menu for paragraph formatting. Notice
how related attributes are grouped together. The Style menu shown later
in the chapter (in Figure 1.5) is an example of an instance in which it is
all right to have accumulating attributes grouped with an exclusive at
tribute. Often, however, grouping accumulating and exclusive attributes
together will result in a confusing menu. The Style menu is a special
case in that the function of each selection is clear.

The state of an attribute, in tum, can be indicated in several
ways. If the grouped attributes are mutually exclusive (that is, only one
option is available at a time), the command that's in effect can be
preceded by a check mark (as is done in the Font menu we'll be talking
about shortly). You can also use check marks to identify accumulating
attributes, where any number of attributes from a particular group can
be in effect at the same time. In this case, whichever attributes are
selected will be marked by a check mark. If there are only two mutually
exclusive choices, the command can be simply toggled. In other words,
the text of the menu item will change from something like "Show Item"
to something like "Hide Item."

If a menu selection will require further information when it is
chosen, the command should be followed by an ellipsis (...). A good
example is the "Print ... " item in the File menu. When selected, this
command puts up a dialog box requesting further information about

Align Left XN
Align Center XM
Align Right XR
Justify XJ

Single Space
Double Space
Open Space

Figure 1.2: A Paragraph Format Menu

The Macintosh Toolbox and the User Interface 9

such matters as print resolution and number of copies needed.
If an option isn't available at a certain time, the application can

dim the corresponding menu command so that it cannot be selected. For
example, if the user has not opened any documents, there is obviously
no document to close. In that case, you should disable the Close option
in your File menu.

Menu items can also have keyboard equivalents. In other
words, the application can allow the user to select certain menu items
from the keyboard without having to use the mouse. When a keyboard
equivalent exists for a menu item, you should make sure that this is in
dicated in that item by displaying to the right of the item the Command
key symbol (88) followed by the equivalent key character.

Some Standard Menus
There are three standard menus on the Macintosh that should be

present in all applications that support menus. You'll find that this
convention has been adhered to rather strictly by all but the most spe
cialized programs. Some copy programs, for instance, don't use these
menus because the entire application serves only a single purpose.

The Apple Menu If your application supports desk accessories (and it
should), the names of all available desk accessories should reside in the
Apple menu. This should be the leftmost menu and the title should be
the Apple symbol (ASCII character hex 14). If you include an "About
... " window in your application, the command calling it out should be
the first item in the Apple menu.

The File Menu This menu should contain all the commands dealing
with general file management, including actions such as opening, clos
ing, saving, and quitting. A typical File menu is pictured in Figure 1.3.
As you can see from this figure, if your application allows printing,
those commands also go into the File menu.

10 Using the Macintosh Toolbox with C
--- CH.1

The Edit Menu Probably the single most important factor in maintain
ing consistency from application to application is represented by the Edit
menu. If an application is going to support desk accessories, the edit menu
must appear exactly as shown in Figure 1.4. Since the Undo, Cut, Copy,
and Paste commands are passed to desk accessories by the system accord
ing to relative position in the menu and not according to the command
itself, following the conventional Edit menu format will ensure com
patibility with any desk accessory that needs to make use of these
commands. The keyboard equivalents for these commands also need to be
exactly as shown in Figure 1.4, again to ensure compatibility with all desk
accessories.

N<m1
Dl>t~n ...
Close
Saue
Saue Rs ...
Page Setup •••
Print •••
Quit

Figure 1.3: File Menu from MacWrite

Undo xz
Cut XH
Copy XC
Paste XU
Clear XB

Show Clipboard

Figure 1.4: The Edit Menu

The Macintosh Toolbox and the User Interface 11

Font-Related Menus
There are a few other menus that are applicable only to word

processors and other applications that allow the user to change text fonts
and alter font appearance. With the increasing availability of mass
storage devices for the Macintosh, the feasibility of listing all the avail
able fonts in a single menu is diminishing since now there is the
possibility of having a dozen or more fonts installed in the system. If
you decide not to use these menus for displaying fonts and font options,
try to come up with a method that's as intuitive as possible. In other
words, use an interface feature that is familiar to Macintosh users (a
dialog box, perhaps). Remember that the whole idea behind the user in
terface is to make applications as easy to use as possible. In this case,
you want to add flexibility without sacrificing ease of use.

The Font Menu A Font menu should always list the fonts that are cur
rently available to the user. It is from this menu that the user will select
which font he or she wants to use. A check or other mark should be used
to indicate which selection is the active one.

The Style Menu The Style menu should contain the commands
shown in Figure 1.5. All the commands except Plain Text are ac
cumulating attributes and should be marked when active. When
selected, the Plain Text command should override any other option .

Figure 1.5: The Style Menu

.;'Plain TeHt
Bold
Italic

XP
XB
XI

Underline XU
CllmtlDDID© XO
"lbmcO©!!lJ x s
Superscript XH
Subscript XL

12 Using the Macintosh Toolbox with C
--- CH.1

Keyboard equivalents for the style enhancements are optional.
If you do decide to use keyboard equivalents, however, convention dic
tates that they be the same keyboard equivalent characters as those used
in Figure 1.5.

The FontSize Menu The FontSize menu should list the possible sizes
of the active font. The sizes that are currently installed in the system
should be listed in outline letters as shown in Figure 1.6.

Although the font may be scaled to a size that is not installed in
the system, it will not look as good as one of the installed sizes since the
computer will need to improvise a bit in displaying and printing it. If
there is limited room in the menu bar, the name of this menu can be
shortened to simply "Size" or else the contents of the FontSize menu
can be appended to the Font or Style menu.

Controls
Controls are graphics objects that can be manipulated by the

mouse. Resembling the control dials on household appliances, controls
in a Macintosh application provide an additional method of issuing
commands. Examples of the four basic types of controls-buttons,
check boxes, radio buttons, and dials-are shown in Figure 1.7. Let's
take a look at each of these four basic types.

IQ•rn' .
ID (J)©0[Iltl
am

...... a~
a<(}
am
~<(}
36
48
72

Figure 1.6: A Typical FontSize Menu

The Macintosh Toolbox and the User Interface 13 ---
Buttons

Although buttons can be any shape you wish to make them,
they are usually small boxes or rectangles labeled with text. Appearing
for the most part inside dialog and alert boxes, their function is usually
to allow the user to confirm an option or to initiate an action. Thus in
many dialog boxes, buttons indicate to the computer both that the user is
ready to move on and in which direction. For example, when a dialog
box comes up in MacPaint asking whether the user wants to save chan
ges, three buttons are present: Yes, No, and Cancel. The user must select
one of these choices before moving on.

Check Boxes and Radio Buttons
Check boxes and radio buttons differ from the buttons we have

just described in that they act more like simple switches, either turning
an option on or off. Check boxes allow the user to select between ac
cumulating attributes: any number of check boxes grouped together can
be on or off at a given time. Radio buttons, on the other hand, are for
selecting mutually exclusive attributes. They function just like the chan
nel select buttons on a car radio: only one radio button in a group can be

Check Boxes

IZI Bozo

OBusy

IZI lnited

fij Dials

Radio Buttons

@High
0 Stondord

0 Droft

Buttons

(Concel)

((OK)J

• 111

0 100

Figure 1.7: Sample Controls

14 Using the Macintosh Toolbox with C
--- CH.1

"on" at a time, and selecting one radio button automatically turns "off'
any other button that is on.

Dials
Dials are used to indicate the value, level, or magnitude of

something. They usually display their values graphically in an analog
fashion, much like the dials on equipment and appliances. Some dials
also allow the user to change their values by dragging or clicking with
the mouse. A common example of a dial used by many Macintosh
programs is the scroll bar. In a RAM disk program, for example, the
scroll bar can serve as the size indicator of the disk, with the scroll bar
thumb showing the current amount of RAM allocated to the disk. The
user can then change the amount of memory allocated to the RAM disk
by moving the scroll bar thumb with the mouse.

Dialog Boxes

When menu commands require more information before they
can be executed, the application should use dialog boxes to prompt the
user for further input. Dialog boxes contain check boxes, radio buttons,
and text fields through which the application can gather the information
it requires.

Dialog boxes fall into two classes. A modal dialog box forces
the user to acknowledge it before he or she can move on. No other part
of the application can be accessed while the modal dialog box is dis
played. Modeless dialog boxes, the other category of dialog boxes,
allow the user to perform other operations in the application without
having to close the dialog box. Figure 1.8 shows two familiar dialog
boxes--one modal, the other modeless.

The Macintosh Toolbox and the User Interface 15

lmogeWriter (Stondord or Wide) ((OK JJ
Quality: @High 0 Stondord O Droft

(Cancel) Poge Ronge: @All 0 From: D To: D
Copies: LJ
Poper Feed: @Continuous O Cut Sheet

Modal Dialog Box

0 Find

Find whot ll J
(rind N<m1 J @ Whole Word O Portiol Word

Modeless Dialog Box

Figure 1.8: Modal and Modeless Dialog Boxes

Alerts
Alerts are messages from the application to the user. Although

these messages are generally error messages, they are also often used to
caution users when they are about to do something drastic, such as eras
ing a disk. They provide a consistent and informative way to warn the
user that something is wrong.

The simplest form of alerts is a beep. Beeps are used when a
minor and relatively obvious error occurs. Clicking the mouse outside
of a modal dialog box is an example of such an error. Alert boxes, on the
other hand, are very similar to modal dialog boxes and serve to actually
stop users from proceeding until they have read and responded to the
message contained in the alert box. The only way for users to proceed is
by clicking in one of the buttons that are always a part of the alert box.
Figure 1.9 shows a sample alert box.

16 Using the Macintosh Toolbox with C
--- CH.1

"Missing link" not found

OK

Figure 1.9: A Sample Alert Box

Summing Up

This about wraps up our overview of the user interface. In the
subsequent chapters, you will learn how to manipulate the various
aspects of the interface we have discussed here and how to tie them all
together to create your own application. As you think about this applica
tion, keep in mind that you shouldn't feel compelled to limit yourself to
existing Mac features. It never hurts the appeal of an application to have
a clever new feature as part of its interface.

All the same, it's important that you try to make every feature of
your application as Mac-like in style as possible. In particular, you
should be sure that features shared by all applications, such as menus
and windows, work the same way as they do in well-known Macintosh
applications so as not to confuse the user. The rule of thumb is that if
you're going to use a feature that's already a part of the user interface,
do it exactly as it's done in other programs.

I

I ---------r-
~ I

+ I
I

I

I
I
I
I
I

--....._ I -- --__ I
........_ ,__

I
I
I
I

~
I ~

--· \ :1
+

Using the
Event Manager

Now that we've discussed the Macintosh user interface, and
have gotten a general idea of what's in the Toolbox ROM, we are ready
to examine some of the Toolbox procedures and functions in detail. The
first section of the Toolbox we will examine is the Event Manager.

A thorough understanding of events is essential to writing
Macintosh applications because events are the backbone or guiding
force behind a Macintosh application program. Unlike applications that
run on other microcomputers and that are typically sequential in nature,
with the program code going from point A to point B, a Macintosh ap
plication is constantly responding to various types of events. It is for this
reason that the Macintosh is said to be an event-driven computer. Events
are generated by the user, by the other Toolbox managers (which we
will discuss in subsequent chapters), by device drivers, and even by the
application itself.

A typical Mac application has a main event loop that repeatedly
checks for events that need to be processed. Each time through the loop,
the application, using Event Manager routines, analyzes the events
awaiting processing, and then responds accordingly. A sample main
event loop is given at the end of the chapter.

In this chapter we will first learn about the various types of
events and how or why they are generated. Then we will take an in
depth look at an event record, the information each of its fields contains,
and how and why our application uses this data structure. We will study
the event queue, the priority of different events, and event masks. Fi
nally, we will examine each of the different Event Manager routines to
see how they work and how our application can use them.

20 Using the Macintosh Toolbox with C
--- CH.2

Types of Events

It's always good to know what you're looking for before you go
searching for something. For this reason, it's important to know what
types of events our application may need to respond to. Figure 2.1
shows all the different event types. In the sections that follow are
descriptions of the 16 event types and the manner in which each is
generated. Twelve of them are predefined, while the other four are left
for each application to define and use in any manner it chooses.

Null Events

An application will continuously poll the Event Manager for
events to respond to. If there are no events to process, the Event
Manager will return to the application a null event.

Mouse-Down and Mouse-Up Events
Mouse events are very simple. When you press the mouse but

ton, a mouse-down event is generated. Releasing the button creates a
mouse-up event.

Event type

NuU
Mouse-down
Mouse-up
Key-down
Key-up
Auto-key
Update
Disk-inserted
Activate
Network
Device driver
Application defined
Application defined
Application defined
Application defined

Figure 2.1: Event Types and Event Codes

Event Code

nullEvent = O
mouseDown = 1
mouseUp =2
keyDown =3
keyUp =4
autoKey =5
updateEvt = 6
diskEvt = 7
activateEvt = 8
networkEvt = 9
driverEvt = 1 O
app1Evt = 11
app2Evt = 12
app3Evt = 13
app4Evt = 14

Using the Event Manager 21

Key-Down, Auto-Key, and Key-Up Events

Pressing a character key on the keyboard or on the keypad
generates a key-down event; releasing the key generates a key-up event;
and holding the key down creates auto-key events. The character keys
consist of all the keys on the Macintosh keyboard or keypad except for
the modifier keys: Shift, Caps Lock, Command, and Option. Modifier
keys do not generate a character; instead, they modify the character
generated when it is held down in conjunction with a character key. For
example, striking the s key generates a lowercase "s," while striking the
s key with the Shift key held down generates a capital "S." (In order for
an application to detect if one of the modifier keys is being held down,
it will need to examine the modifiers field of the event record. We will dis
cuss event records in a moment.)

After each key-down event occurs, the application takes into
consideration two auto-key time variables: the auto-key threshold and
the auto-key rate. The auto-key threshold indicates how long in ticks
(sixtieths of a second) a character key must be held down in order to
generate an auto-key event. After the first auto-key event, if the key con
tinues to be held down for the number of ticks specified by the auto-key
rate, another auto-key event is generated. The initial values for the auto
key threshold and the auto-key rate are 16 ticks and 4 ticks, respectively.
These values are easily changed using the Control Panel desk accessory.

Disk-Inserted Events
Inserting a disk into the internal or external drive generates a

disk-inserted event. One other source of disk-inserted events is hard disk
software. Hard disk drives are often divided into several smaller parti
tions called volumes. Each volume is treated like a separate floppy disk.
Mounting a hard disk volume is analogous to inserting a floppy disk into
one of the drives. When the hard disk user mounts a hard disk volume,
the mounting software will generate a disk-inserted event and send it
to the Event Manager.

The next two event types, activate and update, are generated by
the Window Manager.

22 Using the Macintosh Toolbox with C
--- CH.2

Activate and Update Events

It is a very common situation on the Macintosh to have multiple
overlapping windows on the screen at once. Most activate and update
events stem from this multiple window situation. Anytime the user
moves any of the windows, we can count on activate and update events
being generated.

Activate events are generated by the Window Manager when
ever an inactive window becomes active or an active window becomes
inactive. Update events are also generated by the Window Manager
whenever any part of a window's contents region needs to be drawn or
redrawn.

Since we haven't studied windows yet, it may not be clear what an
active or inactive window is, or what a window's content region is. We'll
learn about these aspects of windows in Chapter 3 and in Chapter 7. Until
then, look at Figure 2.2 for a pictorial explanation of activate and update
events.

Device Driver Events
The serial ports, disk drives, and printers all have device drivers

that can generate device driver events. For example, if our application
uses the serial drivers, it can request the driver to post a device driver
event whenever the driver detects a change in the hardware handshake
status or whenever a break occurs. Our application could then, upon
detecting the device driver event, put up an error message or perform
some other appropriate action.

Network Events
A network event may be generated by the AppleTalk Manager.

Network events are a highly specialized topic. For more information,
refer to the AppleTalk Manager documentation in Inside Macintosh.

18 items

18 items

Using the Event Manager 23

Application-Defined Events
An application may define four event types of its own. The ap

plication will generate these events itself, and then send them to the
Event Manager with the routine PostEvent. The routine PostEvent will be
described later in this chapter.

Startup
1 4DDK in disk 4874K

Word Processing
11 96K in disk

~ ~ ~ "
Edi1 Mac Write Write 4.5

~ ~ <$l
Toolbox Draw 1 .7

Startup
1388K in disk

~im~

Paint 1 .5 ii\j\i

When the user clicks the mouse in the
rear window, Startup, the following even1s
are generated:

1. A deactivate event is generated for the
front window, Word Processing.

2. An activate event is generated for the
Startup window.

3. An update event is generated for the
portion of the Startup window that
was previously obscured by the Word
Processing window. The updated area
is indicated by the gray shad ing.

Switcher 4 .0 Toolbox Draw 1 .7 Postscript

Figure 2.2: Activate and Update Events

24 Using the Macintosh Toolbox with C
--- CH.2

Event Records

Each time an event occurs, information particular to the event is
placed by the Event Manager into an event record. The information
stored in an event record consists of

1. The type of event that occurred (for example, mouse-down, key
up, disk-inserted, and so on).

2. A message about the event explaining, for example, which key
was pressed, or which drive the disk was inserted into.

3. When the event took place.

4. The location of the mouse at the time of the event.

5. Information regarding the status of the modifier keys, the status
of the mouse button, and for activate events, whether the window
involved is being activated or deactivated.

Let's examine the structure of an event record:

struct ER {

} ;

short what;
long message;
long when;
Point where;
short modifiers;

#define EventRecord struct ER

The five fields of the event record contain the five pieces of information
we have just listed. We will now examine each of the five fields in
depth, beginning with the what field.

The what Field
The what field contains an event code identifying the type of event.

(For a list of all the event codes see Figure 2.1.) These event code constants
are normally predefined in header files supplied with your compiler.

Using the Event Manager 25

Besides being the first field of an event record, it is typically the first
field an application examines when it is processing events. The contents
of the what field have a direct effect on the application's next action. For
example, if an application detects a disk-inserted event, its next move
might be to find out which drive the disk was inserted into, whereas if the
same application detects a mouse-down event, its next move would
probably be to figure out the location of the mouse-down event.

The message Field
Once an application has determined the type of event that oc

curred by examining the what field, it can examine the message field to
gain more information about the event. The information stored in the
event message field changes dep~nding on the event code for that par
ticular event record (see Figure 2.3).

Event Message for Null, Mouse-Down, and Mouse-Up Events
For null, mouse-down, and mouse-up events, the event message

contains no information.

Event type

Nul
Mouse-down
Mouse-up
Key-down
Key-up
Auto-key
Update
Disk-inserted

Activate
Network
Device driver
Application defined
Application defined
Application defined
Application defined

Contents of the event message

Not Used
Not Used
Not Used
ASCII character code and key code in low order word
ASCII character code and key code in low order word
ASCII character code and key code in low order word
Pointer to the window that needs to be updated
Drive number in the lower 16 bits, MountVol resut code in
the upper 16 bits
Pointer to window that needs to be activated or deactivated
See the AppleTalk documentation
See the particular driver's documentation
Anything the programmer wants
Anything the programmer wants
Anything the programmer wants
Anything the programmer wants

Figure 2.3: Event Message Contents

26 Using the Macintosh Toolbox with C
--- CH.2

Event Message for Keyboard Events
For keyboard events, the lower eight bits (0-7) of the event

message contain the integer ASCII character code of the key (or modi
fier/key combination) that was pressed or released. The next eight bits
of the message (8-15) contain the integer key code of the key or com
bination that was pressed or released (see Figure 2.4).

In most cases, the upper 16 bits of the message are not used.
However, the Macintosh II has a facility which allows it to be connected
to multiple keyboards. In this case, the third eight bits of the message
(16-23) contain information which allows an application to determine
which of several keyboards a particular character has come from. This
can usually be ignored.

The character code returned in the event message is the ASCII
code that is generated internally by the key or combination of keys
pressed. See Appendix C for a complete table of the ASCII character
codes. The key code returned is an integer that represents which physi
cal key that was struck. See Figure 2.5 for the key code values of the
standard U.S. keyboard and keypad.

To get an idea of how character codes and key codes differ, let's
consider the event message for two different key-down events, the first
for pressing the e key and the second for pressing Shift-e. For the
first event, the event message would contain the character code for "e"
and a key code value of 14 (decimal). For the second event, the event
message would contain the character code for "E" and the same key
code value of 14 (decimal). Observe that for the two key-down events,

31

l
reserved

24 23 16 15

l I
ADB address virtual

key code

Figure 2.4: Event Message for Keyboard Events

8 7

I
ASCII

character

0

J

Using the Event Manager 27

Apple Standard Keyboard

Macintosh Plus Keyboard

~~.~,[D
lock lock lock

32 12 47

~r 51 1°T ~;
59 58 sc; ~l il-· iL· .L
56 57 ~.(!SJ 4 5

~Jn 55 4] 3

0 52
41

- J!!!!!!

Apple Extended Keyboard

Figure 2.5: Key Code Values for U.S. Standard Keyboard and Keypad

28 Using the Macintosh Toolbox with C
--- CH.2

while the character codes were different, the key code values remained
the same. The character code is linked to the character generated, which
for the first event was "e" and for the second event "E." The key code is
linked to the actual key on the keyboard that is struck, which for both
events was the fourth key over on the second row from the top of the
keyboard, or 14 (decimal). If an application is placing text from the key
board onto the screen, it will use the character code value from the event
message. If an application uses the keyboard for something other than
inputting text-for example, as a music keyboard-and is only con
cerned with the actual key that is struck, it will examine and use the key
code value. In short, just remember that when any of the modifier
keys-the Shift, Caps Lock, or Option key-is held down with a char
acter key, the character code changes, but the key code always remains
the same.

To make it easier for us to get at the character code and key
code values, we can use the following constant masks, which are
provided by Think C.

#define charCodeMask OxOOOOOOFF
#define keyCodeMask OxOOOOFFOO

We can use these constant masks in the following manner:

theASCIICode = theEvent.message & charCodeMask;
theKeyCode = theEvent.message & keyCodeMask;

Event Message for Update and Activate Events
For update and activate events, the event message contains a

pointer to the window that needs to be updated. The application passes
the window pointer to update or activate handling routines. (These
routines are discussed in Chapter 7, the chapter on multiple windows.)

Event Message for Disk-Inserted Events
For disk-inserted events, the event message contains two pieces

of information. The lower 16 bits (0-15) contain the drive number, in
dicating which disk drive the disk-inserted event took place in. The
internal drive is equal to 1 and the external drive is equal to 2. The upper

Using the Event Manager 29 ---
16 bits (16-31) contain the File Manager result code from MountVol (see
Figure 2.6).

If the drive number returned is greater than 2, the disk-inserted
event took place on a disk drive connected to either the modem or
printer port. Whenever a disk-inserted event takes place, the system im
mediately tries to mount the volume by calling the File Manager
function MountVol, which returns the value stored in the upper 16 bits of
the event message. The value indicates whether or not the volume was
successfully mounted. Our application should check the result code and
display some sort of error message if the value returned is anything
other than zero. See Figure 2. 7 for the possible result codes returned by
Mount Vol.

We can define our own constant masks to simplify the task of
getting at the drive number and MountVol result code.

31 1615 0

Result code from MountVol Drive number

Figure 2.6: Event Message for Disk-Inserted Events

Result Code

O = noErr
-60 = badMDBErr
-58 = extFSErr

-36 = ioErr
-41 = mFullErr
-57 = noMacDskErr

-56 = nsDrvErr
-50 = paramErr

-55 = volOnlinErr

Meaning

No error.
The disk's master directory is bad. The volume must be reinitialized.
The file system identHier is nonzero, or the path reference number
is greater than 1024.
Disk input/output error.
The system heap (memory) is full.
Not a Macintosh volume; the disk does not have a Macintosh format
directory.
The indicated drive number does not match any in the drive queue.
Bad drive number; parameters do not specify an existing volume, and
there is no default volume.
The specHied volume is already mounted and on line.

Figure 2.7: Possible Results from the File Manager Function MountVol

30 Using the Macintosh Toolbox with C
--- CH.2

#define drvNumMask OxOOOOFFFF
#define resu1tCodeMask OxFFFFOOOO

We can use these masks in the following manner:

theDrive = theEvent.message & drvNumMask;
theResu1t = theEvent.message & resu1tCodeMask;

The when Field
Each time an event is generated, the number of ticks (sixtieths

of a second) since the system was started up is placed in the when field.
If our application implements a stopwatch feature, it could simply check
for mouse-down events in the start button and the stop button of the
stopwatch. The elapsed time for the application to display would equal
the difference between the values stored in the when fields of each event
record.

The where Field
The location of the mouse, in global coordinates, is placed in

the where field of the event record each time an event is generated. The
location of the mouse is very important to an application when handling
mouse-down events. The location determines the next course of action
an application will take. If the mouse is clicked in a window, the ap
plication should, using Window Manager routines, determine where in
the desktop the mouse was clicked (these are covered in Chapter 3). If it
is clicked in a menu, control should be passed to menu routines (covered
in Chapter 4). If it is clicked in a control, alert or dialog box, control
should be passed to control, alert and dialog handling routines (the
topics of Chapters 10 and 11).

Using the Event Manager 31

The modifiers Field
For certain types of events, simply knowing the event code is

not enough information for an application to respond accurately. By ex
amining the modifiers field, an application can determine the status of the
modifier keys and the status of the mouse button; and in the case of an
activate event, the modifiers field indicates whether the window involved
is being activated or deactivated. Let's take a look at some examples of
when and why an application would have to examine the modifiers field.

One of the features of the Macintosh is that an application
may have keyboard equivalents for its various menu items. Basically,
a keyboard equivalent is a combination of keys, usually the Com
mand key and a character key, that when struck simultaneously,
execute the particular menu item they are assigned to. As an example,
it is customary for the menu item "Paste" to have a keyboard equiv
alent of Command-v. An application, by examining the what and
message fields of an event record, may know that a key-down event has
occurred and, for example, that the key struck was the v key. But the
application also needs to know if the Command key was held down or
not. This is one thing the application can find out by examining the
modifiers field. If the Command key was held down, the application
should execute a Paste command; otherwise, it should respond to a
simple v keystroke.

For mouse-down events, the application needs to know whether
or not the shift key is being held down. Shift-clicking often indicates
something quite different from a simple mouse click. Once again, the
application could obtain this additional information by examining
the modifiers field of the event record. A diagram of the modifiers field is
shown in Figure 2.8.

To simplify the process of reading the modifiers field, we can use
the masks shown in Figure 2.9. For the modifier key flags (bits 8-11), a
value of 1 indicates that the key is down. As we saw earlier, if our pro
gram uses menus and it detects a key-down event, it should check to see
if the user is also holding down the Command key. A Command and
character-key event generally indicates that the user is selecting a menu
item by hitting its keyboard equivalent.

32 Using the Macintosh Toolbox with C
--- CH.2

15 13 12 11 10 9 8 7 6

1 if Control key down, 0 if not --~

1 if Option key down, 0 if not ----~

1 if Caps Lock key down, 0 if not -----'

1 if Shift key down, 0 if not-------~

1 if Command key down, 0 if not --------'

1 if mouse button up, 0 if not

Figure 2.8: Diagram of Modifiers Field

activeFlag
btnState
cmdKey
control Key
shiftKey
alphaLock
option Key

= 1
= 128
= 256
= 4096
= 512
= 1024
= 2048

Figure 2.9: Modifiers Field Masks and Their Values

1 0

The following code block shows how our application might
respond to key-down events:

char charhit;
case keyDown:

/* assign the ASCII character code of the key hit to charhit*/
charhit = theEvent.messaqe & charCodeMask;
/* determine whether or not the command key

was also held down */
if (theEvent.modifiers & cmdkey) {

/*respond to a command-character key event
pass the information to menu handling routines */

else {

Note that it is not necessary for the status of the Shift, Caps
Lock or Option keys to be checked when an application responds to a

Using the Event Manager 33

key-down event. When any of these three keys is held down along with
a character key, the character code is appropriately changed. For key
down events, it is usually only necessary to check the status of the
Command key.

The control key bit of the modifiers field only applies to the Apple
Extended and Macintosh II keyboards, as these are the only keyboards
with control keys. Your application will probably want to ignore the
possible existence of a control key since it cannot be assumed to be
available on all Macs.

When any type of event occurs, our application can check the
status of the mouse button by examining bit 7 of the modifiers field. For
the mouse button (bit 7), a value of 0 (zero) indicates the mouse button
is down.

When an activate event is generated, an application would look
to the message field for a pointer to the window affected, and then it
would look to bit 0 of the modifiers field to see whether the window is
being activated or deactivated. A value of 1 in bit 0 indicates the window
is being activated. When our application begins dealing with multiple
windows in Chapter 7, the importance of activate events will become
more evident.

The Event Queue
Whenever an event is generated, information about the event is

placed in an event record. Once the information is placed in the event
record, the Event Manager places the event record into the event queue.
The event queue is part of the Event Manager. The application doesn't
have to do anything to set it up or prepare it for events. The first events
placed in the queue are generally the first events returned when an ap
plication polls the queue for events to process.

Let's take a closer look at how events are returned from the
event queue.

34 Using the Macintosh Toolbox with C
--- CH.2

Priority of Events
When an application retrieves events from the event queue,

they are generally returned in the order they were generated. Because
some events have a higher priority than others, however, they disrupt
the standard first-in first-out action of the event queue. When the Event
Manager is polled, it will return the highest priority event available ac
cording to the order shownin Figure 2.10.

An application asks, "Hey Event Manager, give me the next event."

The Event Manager responds according to the following algorithm

Are there any pending
activate events?

No

Are there any mouse-down,
mouse-up, key-down, key-up

disk-inserted, network,
device driver, or application
defined events in the event

queue?

No

Are there any pending
auto-ke events?

No

Do the contents of any
window need to be redrawn?

No

Return a null event

Yes

Yes

Yes

Yes

Return an activate event

Return one of the named
events in FIFO order

Return an auto-key event

Return an update event

Figure 2.10: Priority of Events Returned by the Event Manager

Using the Event Manager 35 ---
Activate and update events are not actually placed in the event

queue. When an application polls the Event Manager, the Event
Manager checks for any pending activate events before going to look in
the event queue. For update events, if no higher priority event is avail
able, the Event Manager will examine, from front to rear, all windows to
see if any of their content regions need to be redrawn. If such a window
is found, an update event is generated and returned to the application.
The application can then pass information about the update event to the
update handling routines covered in Chapter 7.

Event Masks
Many Event Manager routines have an event mask parameter.

The event mask indicates to the function or procedure which different
event types the routine applies to. An event mask is a 16-bit integer with
one bit for each event type (see Figure 2.11). If a bit is set to 1, the event
type for that bit is active, and the routine applies to it.

For each individual event type, there is a constant event mask
defined (see Figure 2.12). To specify multiple event types, we can simp
ly add event masks together. For example, passing an event mask of
(mDownMask + autoKeyMask + driverMask) to a function or procedure would
indicate to the particular routine to only act upon mouse-down, auto
key, and device driver events.

application-defined _.___...__.__.

device driver ------'

network -------'

reserved for future use ------~

activate

disk-inserted--------~

Figure 2.11 : Event Mask Diagram

not used

mouse-down

--- mouse-up

---- key-down

----- key-up

------ auto-key

update

36 Using the Macintosh Toolbox with C
--- CH.2

Event Type

all event types
mouse-down
mouse-up
key-down
key-up
auto-key
update
disk-inserted
activate
network
device driver
application-defined
application-defined
application-defined
application-defined

Figure 2.12: Event Mask Values

Event Mask & Value

everyEvent =-1
mDownMask = 2
mUpMask =4
keyDownMask = 8
keyUpMask = 16
autoKeyMask = 32
updateMask = 64
diskMask = 128
actlvMask = 256
networkMask = 1024
driverMask = 2048
app1Mask = 4096
app2Mask = 8192
app3Mask = 16384
app4Mask = -32768

Using the Event Manager Routines
The Event Manager has routines to manipulate event records

and to read the mouse location and its button status, and a routine to see
how long the system has been running. In the following sections, we
will examine each of these routines in order to see how they work and
how they might fit into a Macintosh application.

Manipulating Event Records
A Macintosh application must constantly poll the Event

Manager for events to respond to. To do this, most applications have a
main event loop containing a GetNextEvent call (see the end of the chap
ter for a sample main event loop). According to the priority of events
and the eventMask specified, GetNextEvent returns, in theEvent parameter,
an event record of the next available event.

char GetNextEvent(eventMask, theEvent)
int eventMask;
EventRecord *theEvent;

Using the Event Manager 37 ---
If the event is stored in the event queue, it is removed. Events that are
not specified in the eventMask but that are present in the event queue are
left there. The function value returned by GetNextEvent is true if an event
is returned in theEvent, and false if a null event is returned. The function
also returns a false value when the system wants to intercept and
respond to theEvent. Th~ system will intercept activate, update, and key
board events when they correspond to desk accessories and when the
desk accessory is able to handle the event.

If our application has a need to see what events are waiting to be
processed, but doesn't want to alter the contents of the event queue, we
can use the function EventAvail.

char EventAvail(eventMask, theEvent)
int eventMask;
EventRecord *theEvent;

EventAvall works exactly like GetNextEvent except that if the event is
stored in the event queue, it is not removed.

If our application uses its own particular event type, it will need
to post the event to the event queue using the function PostEvent.

short PostEvent(eventCode, eventMsg)
int eventCode;
long eventMsg;

The eventCode and the eventMsg parameters indicate the event type and
event message of the event being posted to the queue. The other fields of
the event record (when, where, and modifiers) are filled in automatically
by the Event Manager with the current time, mouse location, and
modifiers field information.

To get rid of events as opposed to posting them, our application
can call the procedure FlushEvents.

FlushEvents(eventMask, stopMask);
int eventMask;
int stopMask;

FlushEvents removes all the events from the event queue that are
specified in the eventMask. It removes all the events indicated up to the
first event specified in the stopMask. For example, if we called Flush·

38 Using the Macintosh Toolbox with C
--- CH.2

Events with an eventMask of mDownMask and a stopMask of keyDownMask, all
of the mouse-down events up to the first key-down event would be
removed from the queue. If we specified a stopMask value of 0 instead,
all the mouse-down events would be removed.

Note: Apple has, in its technical documentation, defined Flush·
Events twice, with each definition having a different number of arguments.
Think C uses the more common definition, as illustrated above. Some
development systems call FlushEvents in a different manner. Instead of
passing two int arguments, an application will pass a long with the event
Mask in the low order word and stopMask in the high order word. Keep
this in mind if you use source code which originates with a different ver
sion of C.

Before your application enters the main event loop for the first
time, its a good idea for the program to call FlushEvents with an eventMask
of everyEvent and a stopMask of 0. This will clear the event queue of any
stray mouse-downs or keystrokes that were clicked or typed to the
Finder.

Mouse Routines
If we are interested in the location of the mouse at any particular

time, even when an event has not occurred, we can call the procedure
GetMouse.

GetMouse(mouseLoc)

Point *mouseLoc;

After calling GetMouse, the variable mouseloc will contain the
position of the mouse in the coordinate system of the current graf Port.
(We will learn about grafPorts in Chapter 5. For now, you can think of a
grafPort as the current window.)

To check and see whether the mouse button is currently up or
down, we can use the functions Button or StillDown.

char Button() ;

The function Button returns a true value if the mouse button is
down, and a false value if the button is up.

Using the Event Manager 39

The function Still Down is generally called after a mouse-down event

char StillDown();

It returns the same values as Button, but under the following cir
cumstances. If the mouse button is currently down and there are no
pending mouse events in the queue, a true value is returned. Under any
other circumstances, a false value will be returned. The advantage of
StillDown is that it indicates whether or not the button is still down from
its original pressing. The result of StillDown is used in conjunction with a
number of window handling routines that we will look at in the next
chapter.

Time Routines
It is possible to find out how long it has been since the system

was started up by calling TickCount.

lonq TickCount();

The long integer returned by TickCount is the number of ticks
(sixtieths of a second) that have occurred since the system was started
up. If our application implemented a clock or timer-as in a game for
example-it might have a TickCount call somewhere in its main event
loop. This call would allow the application to update the clock every
time through the loop.

Escape from the Main Event Loop
One last thing we'll need to know is how to get out of the main

eventloop, in other words, how to let the user exit from an application. The
toolbox provides the procedure ExitToShell specifically for this purpose.

ExitToShell();

The procedure ExitToShell quits the current application and returns to the
Finder.

40 Using the Macintosh Toolbox with C
--- CH.2

The other way to do this is to simply allow the loop to cease
looping. The program will then fall through to the end of itself and re
start the Finder. You may prefer to exit this way for a number of reasons.
If the value which the eventloop tests is a global variable, you can signal
the end of the program from multiple locations within your code by
simply setting this global variable false.

A commonly used name for this variable is alive. When alive is no
longer true, your program will no longer be alive.

A Sample Main Event Loop Program
The following is a sample main event loop. The loop has switch

statements for each possible event type, except for application defined
events. In practice, your application's main event loop will typically not
have switch statements for every event type, but rather only those that
your application wants to respond to. Inside of each case, you would in
sert the appropriate routines to respond to the event detected.

It's time to move on to another essential feature of Macintosh
applications-namely, windows.

EventRecord event;

while (TRUE) {
if (GetNextEvent(everyEvent,&event))

switch (event.what) (

case mouseDown:
break;

case mouseUp:
break;

case keyDown:
break;

case keyUp:
break;

case autoKey:
break;

case updateEvt:
break;

case diskEvt:
break;

case activateEvt:
break;

case networkEvt:
break;

case driverEvt:
break;

case nullEvent:

Using the Event Manager 41

/* mouse-down event */

/* mouse-up event */

/* key-down event */

/* key-up event */

/* auto-key event */

/* update event */

/* disk-inserted event */

/* activate event */

/* network event */

/* device driver event */

/* no events are pending */

-.,.. I

I ---------r-
~ I

-f- II

I

I
I

I
I
I

I

--- I -- ---+--
1

I
I

)(I

~
+ I

An Introduction to the
Window Manager

Windows like those shown in Figure 3.1 are perhaps the single
most striking feature of the Macintosh. Windows serve primarily as a
means for organizing the display of information on the desktop, allow
ing the program user to rapidly access information organized in a
natural extension to an office desk environment. It is important that we
begin the topic of windows early, to emphasize their fundamental im
portance in the Toolbox. Now that we understand how the Macintosh
uses events to react to the world around it, an examination of windows
will provide a convenient setting for our first elementary programming
examples.

Information about Figure 3.1

LnserDrnw
5 items 362K in disk 37K available

Kind:
Size:
Where:
Creoted:
Modifie Size K

~Locke

Figure 3.1: Windows on the Desktop

44 Using the Macintosh Toolbox with C
--- CH.3

We begin our discussion of windows with an introduction to the
Toolbox procedures used to perform basic window operations. The
Window Manager contains commands for creating, manipulating, and
destroying windows. In this chapter we will not attempt a complete dis
cussion of the Window Manager but will instead offer a description of
the features needed to construct a program using a single window. For
many types of applications-namely games and utilities-a single win
dow is sufficient. Including desk accessories or dialog windows in an
application is a more complex process because it involves overlapping
windows. At this time, however, it is important to concentrate our ef
forts on the processes involved in creating, disposing, moving, and
resizing a single window. In Chapter 7 we will return to the Window
Manager to discuss the more difficult subject of manipulating multiple
windows.

When the MultiFinder is running, even a single application
such as the one described in this chapter, may have to contend with mul
tiple windows. The other windows belong to different applications that
are running concurrently. The methods of responding to this are beyond
the scope of this book.

Types of Windows
Before we can begin to discuss how an application interacts

with the Window Manager, we must first discuss windows themselves.
The Toolbox contains the definitions for six types of windows; in addi
tion, you may choose to define your own custom window styles. These
predefined window types are shown in Figure 3.2. The window types
are actually constants that are defined in the Window Manager header
file included with your development system. Figure 3.3 lists, for each
predefined window style, the type name and the window definition ID,
along with its assigned value. The names of the standard window types
suggest the usual ways in which these types are used, as document win
dows and dialog and alert boxes.

An Introduction to the Window Manager 45 ---
The two types of document windows, documentProc and noGrow

DocProc, are nearly identical, the only difference being that the former
can be resized, while the latter cannot. The rounded document window,
rDocProc, is often used for desk accessories; the radii of curvature can be
varied by adding a constant, from 1 to 7, to the definition ID (see Fig
ure 3.4). The remaining windows types are commonly used for dialogs
and alerts.

Title Title Title

documentProc noGrowDocProc rDocProc

dBoxProc

Figure 3.2: Predefined Window Styles

Window Type

Document window
Dialog box
Plain dialog box
Alternative dialog box
Fixed size document window
Rounded document window

plainDBox

Figure 3.3: Window Types and Definition IDs

altDBoxProc

window ID

documentProc = O
dBoxProc = 1
plainDBox = 2
altDBoxProc = 3
noGrowDocProc = 4
rDocProc = 16

46 Using the Macintosh Toolbox with C
--- CH.3

windowlD

rDocProc
rDocProc+ 1
rDocProc+ 2
rDocProc+3
rDocProc+4
rDocProc+S
rDocProc+ 6
rDocProc+ 7

radii

16,16
4,4
6,6
8,8
10,10
12,12
20,20
24,24

Figure 3.4: Radii of Curvature for rDocProc Windows

Components of a Window
An individual window can be divided into distinct regions.

These regions are illustrated in Figure 3.5 and are described in the fol
lowing sections.

Title Bar (Drag Region)

The frame containing the window's title, if there is one, is
known as the title bar. This area is used for dragging the window with
the mouse. Dialog and alert boxes have no title bar and thus cannot be
moved like document windows. To conform with the "User Interface
Guidelines," the title bar of the active, or frontmost, windQw should al
ways be highlighted, while for inactive windows the title bar should
remain unhighlighted.

Close Box (Go-Away Region)
The close box is the small square in the upper left-hand comer

of document windows. The close box, which is optional, can be used to
notify the application that the user is finished with a window and that it
should be put away. Alerts and many dialogs do not contain close boxes
since they are not designed to be put away by the user.

An Introduction to the Window Manager 47 ---

close box (go away region) @ebar

Document Window

t
content region size box (grow region)

Figure 3.5: Parts of a Document Window

Size Box (Grow Region)
The small icon in the lower right hand comer of many docu

ment windows is the size box. The presence of such a grow region
indicates that the size of the window may be adjusted with the mouse,
although as we shall see later in this chapter, the size box need not be
visible to resize a window.

Content Region

The content region is the interior of the window where text or
graphics will be drawn. For inactive windows, the grow region becomes
part of the content region. Under normal circumstances when a mouse
down event occurs in the content region of an inactive window, the
application should instruct the Window Manager to make it become
the active window.

48 Using the Macintosh Toolbox with C
--- CH.3

Structure Region

The structure region is defined by the sum of all the parts of a
window we have just discussed. The role of the structure region is to in
dicate the total size of the window on the desktop. When an application
moves overlapping windows, the structure regions of the frontmost win
dows are used by the Window Manager to determine which portions of
the underlying windows must be redrawn.

Window Manager Data Types and Structures
As is the case for nearly all of the sections within the Tool

box, the Window Manager has its own internal types of variables and
data structures. Associated with each and every window in the system is
a structure known as a WindowRecord, which contains information unique
to the window. The box entitled "Window Manager Data Structures"
contains the definitions of the data type WindowRecord and several as
sociated data types, which can be found in the header files of your
development system.

The storage for a WindowRecord must be nonrelocatable and can
easily be allocated by the application itself as a local variable. In addition,
the Window Manager can obtain the necessary memory. The contents of
a nonrelocatable object, like a WindowRecord, can be accessed through a
pointer, in this case a variable of type WindowPeek. To refer to a window as
an entity on the desktop, use the variable type WindowPtr.

Most of the fields in a WindowRecord used by the operating sys
tem are rarely directly manipulated by the application. The refCon field,
however, is designed for use by the application and can contain any
32-bit value the application decides to associate with a particular win
dow (a pointer or handle to a related data structure might be kept here).
The updateRgn field is also read by many applications, as it contains a
handle to the region describing which portions of a window need to be
redrawn. The uses of the updateRgn will be discussed when we return to
the Window Manager in Chapter 7.

struct WR
Graf Port
int
char
char
char
char
RgnHandle
RgnHandle
RgnHandle
Handle
Handle
Handle
int
Handle
struct WR
PicHandle
long

};

Jtdefine
typedef
typedef

An Introduction to the Window Manager 49

Window Manager Data Structures

port;
windowKind;
visible;
hilited;
goAwayFlag;
spareFlag;
strucRgn;
contRgn;
updateRgn;
windowDefProc;
dataHandle;
titleHandle;
titleWidth;
controlList;
*nextWindow;
windowPic;
refCon;

WindowRecord struct WR
WindowRecord *WindowPeek;

/* grafPort for window */
/* creator of window */
/* TRUE if visible */
/* TRUE if hilighted */
/* TRUE if has go-away region */
/* system use */
/* handle to structure region */
/* handle to content region */
/* handle to update region */
/* window definition function */
/* data for definition function */
/* handle to title string */
/* width of title in pixels */
/* control list for window */
/* next window in window list */
/* picture for drawing window */
/* reference value for application */

GrafPtr WindowPtr; /*a GrafPtr is a QuickDraw data type*/

Windows and Graf Ports

When drawing text or graphics in a window, an application
must inform the Toolbox where to draw by referring to the window as a
graf Port, a type of graphics device. Choosing a particular graf Port is
similar to sending a printer file to one of several printers and plotters
connected to a computer. Since the Macintosh can support multiple win
dows on the screen, the Toolbox must know which window the
upcoming drawing commands should be carried out in. It is not neces
sary for the window you wish to modify to be the active window on the
desktop, indeed, the window may not even be visible while you are
drawing into it. We will discuss graf Ports further in Chapter 5, when we
focus on QuickDraw.

50 Using the Macintosh Toolbox with C
--- CH.3

To inform the Macintosh Toolbox which window it should
begin drawing into, use the procedure

SetPort(gp)
Grafptr gp;

The parameter passed to SetPort is a pointer to the data contained in the
graf Port that is assigned to the window that the Toolbox should begin
drawing in. If you study the structure of a WindowRecord, you will see that
the WindowPtr is in fact the Graf Ptr of the window.

The procedure GetPort returns in its parameter a pointer to the
current graf Port, which is the same as the WindowPtr of the window where
a drawing command last took place.

GetPort (gp)
GrafPtr *gp;

The following is a short example that uses GetPort to obtain a copy of the
current grafPort.

/* locally defined variables - Grafptr for current qrafPort */

GrafPtr currentGrafPtr;

I* qet current GrafPtr - pass location of currentGrafPtr */

GetPort(¤tGrafptr);

We will make use of this example in Chapter 7 when dealing with mul
tiple windows.

Using the Window Manager
Before you can use any of the Window Manager's routines, it

must be initialized with the procedure

InitWindows ();

An Introduction to the Window Manager 51

which draws the desktop and an empty menu bar. lnitWindows also re
serves storage for the desktop (a variable of type Graf Port) and makes the
desktop the current graf Port. If you wish to draw on the desktop or alter
any of the default settings such as background pattern, refer to Chapter 5
where the actual contents of a Graf Port are discussed.

Creating a New Window

As you'll see in many of the following chapters, there are two
ways to create most of the things on the Macintosh which involve sig
nificant amounts of static storage. The most obvious way to create a new
window is to define it with Toolbox calls from your program. The less
obvious way is to define it as a program resource.

Chapter 9 of this book includes a complete description of how
to create and utilize resources. We '11 touch on the process here, how
ever, as it pertains to the Window Manager.

Let's begin with the easy way to create a window, a Toolbox
call from your program. To crea~ a new window on the desktop, call the
function

WindowPtr NewWindow(wStoraqe,boundsRect, title, visible, procID,
behind, qoAwayFlaq, refCon)

WindowPeek wStoraqe;
Rect *boundsRect;
Str255 *title;
char visible;
int procID;
WindowPtr behind;
char qoAwayFlaq;
lonq refCon;

Let's examine each of the parameters of NewWindow in detail.

wStorage Parameter
When the window is created, the Window Manager will place

the WindowRecord at the location pointed to by the wStorage parameter.
If the value NULL is passed, NewWindow will request space from the
Memory Manager instead. In most cases the application should supply

52 Using the Macintosh Toolbox with C
--- CH.3

storage directly, by setting wStorage to the address of a WindowRecord
declared in the application. We will see in Chapters 6 and 7 how to re
quest this space directly from the Memory Manager. A good rule of
thumb is to allow NewWindow to allocate the storage for windows that
appear only briefly, such as dialogs or alerts.

boundsRect Parameter
The boundsRect parameter points to a variable of type Rect con

taining the bounding rectangle, in global coordinates (see boxed
discussion of global coordinates). The coordinates are global and as
such specify not only the size of the window but also its position on the
desktop. The area enclosed by the boundsRect becomes the content region
of the window. For rounded or plain document windows, the bounding
rectangle does not include the region occupied by the title bar. One must
consider the additional area occupied by the title bar when drawing win
dows, especially when placing them near the menu bar (the height of the
menu bar is 20 pixels).

title Parameter
The title for the window, pointed to by title, is passed as a Pascal

string. The title parameter may also be specified as a C string, but it must
first be converted to a Pascal string before being passed to NewWindow. It
is important to recall from our earlier discussion of C to Pascal string

Macintosh Global Coordinates

The coordinates used on the Macintosh desktop are referred to as global coor
dinates. In this Cartesian system the top left comer of the screen is the origin, the
point (0,0), while the lower right hand comer of the screen, on a standard Macin
tosh, is the point (512,342). Any point on the desktop, even though it may not fit
on the current screen, can be expressed in this system of coordinates as a horizon
tal and vertical offset from the origin at (0,0). To define a rectangle, one needs two
points corresponding to the top-left and bottom-right comers of the rectangle.
Coordinate systems, points and rectangles are discussed in greater detail in Chap
ter 5, the QuickDraw chapter.

An Introduction to the Window Manager 53

conversion that if the string will be reused (for example to recreate the
title if the window has been closed), you must make certain to reconvert
the string to C format. NewWindow requests the Memory Manager to
make a private relocatable copy of the string and places a handle to it in
the titleHandle field of the WindowRecord. The title parameter will be ig
nored for windows that cannot have titles.

If you simply want to pass a fixed string for this argument, you
can define it by'using the special Think C Pascal string notation, like
this:

"\pUntitled"

Note that even if your window is not a type which has a title,
you must have an argument here. It should be an empty string, but it
should be an empty Pascal string. This would be written as "\p".

visible Parameter
The visible parameter is a Boolean value that determines whether

the window should appear on the desktop or remain hidden. Windows
are often created in an invisible state, so that the contents can be drawn
before the window appears on the desktop. Pass a true value here to
make the window visible.

proclD Parameter
The type of window to draw is specified by the proclD parameter.

Pass one of the window definition IDs shown in Figure 3.2.

behind Parameter
To place the new window underneath an existing window on

the desktop, set the behind parameter to the WindowPtr of the existing win
dow. Alternatively, the new window can be placed either in front of or
behind all other windows by passing a value of (WindowPtr)-lL
or (WindowPtr)OL, respectively. Note that casting the values to type
WindowPtr is mandatory in C, since the internal represe~tation of an in
teger may not be the same as that for a pointer.

54 Using the Macintosh Toolbox with C
--- CH.3

goAwayFlag Parameter
The parameter goAwayFlag determines whether the window

will be drawn with a close box. You must pass a true - nonzero - value
if the window should contain a close box, or a false value if it should
not. This parameter will be ignored if the window style does not in
clude a close box.

refCon Parameter
As we mentioned earlier, each WindowRecord contains a 32-bit

value, the refCon field, for use by the application program. This value
may be initialized by passing the desired value as the refCon parameter in
a call to NewWindow. Subsequent chapters will provide examples of pos
sible ways in which an application can use the refCon field.

An Example: Creating a New Window from C
The following function entitled MakeAWindow creates a new win

dow on the desktop and makes it the current graf Port. Before creating the
window, the routine must create a bounding rectangle for the window
and convert the title string to the (Pascal) format used by the Toolbox.

WindowPtr MakeAWindow()/* MakeAWindow() */
{

/* locally defined variables */

Rect myBoundsRect;

char *myTitle;

/* initialize bounding rectangle
- use SetRect from QuickDraw

- SetRect(&myBoundsRect, left, top, right, bottom);

*I

SetRect(&myBoundsRect, 50, 60, 150, 260);

I* initialize pointer with C string constant */
myTitle ="My Window Title";

/* create myWindow

An Introduction to the Window Manager 55

- convert tit1e with CtoPstr()
- window ID = rDocProc (rounded document window)

- visib1e & in front of a11 other windows

- with go-away region

- use g1oba1 WindowRecord myWindowRec

- a11ocate storage 1oca11y */

myWindowPtr = NewWindow(&myWindowRec, &myBoundsRect,

CtoPstr(myTit1e), Oxff, rDocProc, (WindowPtr) -lL,

Oxff, OL);

PtoCStr(myTit1e); /*reconvert to C string*/

SetPort(myWindowPtr); /* set current port to myWindow */

return myWindowPtr;

Notice that the routine has assumed the WindowRecord is a global
variable. For now this is acceptable, but in a real application it would be
better to keep this and other Toolbox structures in a separate block of
memory requested explicitly from the Memory Manager. We will see
just how to do this in Chapter 6.

Creating a New Window as a Resource
Think C comes with a program called RMaker. This is a re

source compiler. In effect, it is a special language for writing data
definitions in. Because the Macintosh uses so many kinds of complex
data, having a streamlined way of defining them is important to writing
efficient programs.

Under Think C, the compiler will automatically link a compiled
resource file with the same name as your program. If your program is
called MyProgram.C, Think C will look for a file called MyProgram.
Rsrc and include it in the compilation process if it's found. The com
plete details of this procedure can be found in Chapter 9.

In order to create a window as a resource, you must write a
resource file which contains the window definition in RMaker's lan
guage, transfer to RMaker, compile the resource file, transfer back to
Think C and then compile your program. Again, a more complete ex
planation of this process can be found in Chapter 9.

56 Using the Macintosh Toolbox with C
--- CH.3

Despite the obvious complexity of using resources rather than
using C language calls, (for those circumstances where you have a
choice) using resources is preferable when you get into writing large ap
plications. It gives the Macintosh a lot more flexibility in managing its
memory.

In addition, resources can be modified after your program has
been compiled. The ResEdit program, which also comes with Think C,
allows you to extract any resource, make changes to it, and return it to
your program. An advanced technique along these lines allows applica
tions to modify their own resources, for example, to allow users to
configure the size and placement of windows to their liking. At various
places in Inside Macintosh, Apple hints at this not being a very good
idea, but it's widely used in professional application development just
the same.

This is the RMaker definition for a window:

TYPE WIND
I 128

Untitled
100 120 200 450

Visible GoAway
0

0

Let's see what each of these lines does.

The TYPE Field
The first line tells RMaker what sort of resource this is. There is

a list of the common resource types in Appendix D of the Think C user's
manual. RMaker will deal with the rest of the fields in this resource in a
way which is appropriate to the TYPE field. All resource types are ex
actly four characters long.

The Reference Number
This is the number which your program will use to call this win

dow. It can be any integer you want. It is allowable to have multiple
resources in the same file with the same numbers so long as you don't
have multiple resources of the same type and the same number. Later on

An Introduction to the Window Manager 57

in this resource file you might define a MENU resource numbered 128.

The title
This is the title which will appear in the window, assuming that

the window you are defining is of a type which supports a title. Even if
it is not, you must put some text on this line. You can alter the title from
within your program later on by using the SetWTitle and GetWTitle Tool
box functions.

RMaker automatically generates this title as a Pascal style string.

The Bounding Rectangle
This defines where the window will appear on your screen, in global

coordinates. These numbers appear in the order top, left, bottom, right.

The Visible Field
This tells the window manager that the window is to be visible

and that it is to have a GoAway box.

The Window Type
This defines which of the six basic window types this is to be.

The zero on this line means that this will be a document window with a
size box. Consult Figures 3.2 and 3.3 for the other window types and
their appropriate numbers.

The refCon
This is the same as the refCon argument in NewWindow above.

Calling a Window Resource from C
If the definition of a window resource seems complicated, it is

at least partially off set by the C language call for a window resource,
which is much simpler.

58 Using the Macintosh Toolbox with C
--- CH.3

WindowPtr GetNewWindow(windowID, wStorage, behind)
int windowID;
WindowPeek wStorage;
WindowPtr behind;

The windowlD in this example would be 128. In order to make the
window appear in front of all the other windows on the screen, which is
usually what you will want to do, pass - lL for the behind argument.

Disposing of Windows
Windows should be disposed of as soon as they are no longer

needed by the application. Disposing of a window decreases the amount
of overhead the operating system incurs while manipulating multiple
windows; in addition, any memory requested from the Memory
Manager will be released.

Two Toolbox functions exist for disposing of windows:

DisposeWindow(theWindow)
WindowPtr theWindow;

CloseWindow(theWindow);
WindowPtr theWindow;

DisposeWindow should be used if NewWindow requested space from the
Memory Manager so that the memory can be released. In the case where
storage for the WindowRecord is handled entirely by the application, use
CloseWindow, which does not attempt to release the memory occupied by
the WindowRecord. Attempting to release the storage occupied by a vari
able declared in the application will result in a system error.

Window Display Routines
The Window Manager includes procedures to alter the ap

pearance and front-to-back ordering of windows on the Desktop.
Several of these routines are designed to be called by other Window
Manager routines and are rarely used directly by the application. We

An Introduction to the Window Manager 59

will exclude many of these nonessential routines here. Refer to Inside
Macintosh for a complete description of these routines.

The Order of Windows on the DeskTop
It is often necessary for an application to determine which win

dow is active. The function FrontWindow returns the WindowPtr of the
active window, or NULL if there is no active window.

WindowPtr FrontWindow()

The following example uses FrontWindow to determine whether
a mouse-down event has occurred in an active or inactive window. The
example assumes that the Event Manager has returned a mouse-down
event for the window theMouseWindow:

/* given the non-NULL WindowPtr theMouseWindow */

if(FrontWindow() == theMouseWindow) {
/* mouse-down in active window */

else
/* mouse-down in inactive window */

Such a test should always be performed for mouse-down
events. If the event occurred in an inactive window, it will need to be
activated. (An exception to this rule is discussed later in this chapter in
the section on moving windows.)

To change the active window when more than one window is
present, as when a mouse-down event occurs in the content region of an
inactive window, call the SelectWindow procedure, as follows:

SelectWindow(theWindow)

WindowPtr theWindow;

This procedure first unhighlights the previously active window, moves the
specified window in front of all other windows, and then highlights it.
SelectWindow also generates activate events for the appropriate windows.

For windows that are created as invisible or are subsequently
made invisible, call ShowWindow:

60 Using the Macintosh Toolbox with C
--- CH.3

ShowWindow(theWindow)
WindowPtr
theWindow;

This procedure makes the window visible. Conversely, to make
a visible window invisible, call HideWindow:

HideWindow(theWindow)
WindowPtr theWindow;

Calling HideWindow for the active window will make the frontmost
remaining window active. A subsequent call to ShowWindow will make
the window visible again, but will not bring it to the front. If no other
windows are present on the desktop, ShowWindow will make the window
active.

The Window Title
The title of a window may be changed by using the procedure

SetWTitle, where the title parameter is a pointer to a Pascal string:

SetWTitle(theWindow, title)
WindowPtr
Str255

theWindow;
*title;

When converting a C string for use in SetWTitle, remember to
reconvert to a C string before reusing the string. Alternatively, the string
pointer can be declared as a global and the string converted to Pascal
format one time only at the beginning of the application. The following
example shows how to change the title of an existing window. The new
title is in C string format:

/* locally defined variables */

WindowPtr
Str255

theWindow;
*newTitle;

/* initialize the pointer with a C strinq constant */

newTitle = "A Different Title";

I* set the new title */

An Introduction to the Window Manager 61

SetWTitle(theWindow, CtoPstr(newTitle));

/* restore string to C format - so newTitle string

can be reused *I

PtoCstr(newTitle);

At times it may be useful to directly manipulate the title string
of a window. GetWTitle returns a pointer to the title string of the window
specified by theWindow.

GetWTitle(theWindow, title)

WindowPtr

Str255

theWindow;

*title;

It is important to recall from our earlier discussion of a Window
Record that the title string is stored in a relocatable block. Since GetWTitle
returns a pointer to the string, any operations on the title should be
performed immediately in case the string is relocated. The Memory
Manager contains several procedures that permit safe access to the
string in this situation (see Chapter 6).

The Size Box
If the size of a window can be adjusted, then it should have a size

box. While the operation of enlarging or shrinking the window is handled
by the window definition in the operating system, the need to highlight and
unhighlight the size box must be handled by the application.

The procedure DrawGrowlcon should be called when the Event
Manager reports an activate or update event for a window with a size box.

DrawGrowicon(theWindow)

WindowPtr theWindow;

Of the predefined window types, only document windows can
be resized. For active document windows DrawGrowlcon redraws the size
box, and the outlines of the scroll bars. If the window is inactive Draw
Growlcon redraws the outlines of the scroll bar and size box and removes
the size box icon to indicate that the window cannot be resized.

62 Using the Macintosh Toolbox with C
--- CH.3

More complete use of the window's content region can be made
by not displaying the size box. This can be especially important when
using many small windows. If the size box is not displayed, however,
the user may not realize that the window can be resized.

Manipulating Windows with the Mouse
The Macintosh mouse is the primary tool for manipulating win

dows on the desktop. The mouse can be used to activate, move, resize,
and close windows. When the Event Manager function GetNextEvent
reports a mouse-down event, the application must first determine where
the event occurred. A mouse-down event could occu! in a window,
in the menu bar, or in several other places. For mouse-down events in
windows, the response of the application will depend on where in the
window the event took place.

Determining the Location of a Mouse-Down Event
Given the global coordinates of the mouse-down event, the

routine FindWindow will return the WindowPtr of the window, if any, in
which the event occurred.

int FindWindow(thePt, whichWindow)
Point
WindowPtr

thePt;
*whichWindow;

Recall that under Think C, Points are passed by value rather than
by reference much of the time. The which Window parameter is actually the
address of the WindowPtr being passed. If w is a WindowPtr, you would use
&where.

FindWindow also returns one of the predefined constants, listed
in Figure 3.6, to indicate the location of the mouse-down. These values
should be defined in the header file for the Window Manager. After call
ing FindWindow, the parameter whichWindow will point to the WindowPtr of
the window that the mouse event occurred in. If the mouse event did not
occur in a window, the pointer will be set to NULL. The application can
use the value returned by FindWindow to call routines to handle the dif
ferent contexts in which a mouse-down event can occur.

An Introduction to the Window Manager 63

Location of mouse-down windowCode

none of the following
in menu bar
in system window - usually a desk accessory
in content region
in drag region
in grow region - active windows only
in go-away region - active windows only

Figure 3.6: Constants Returned by FindWindow

in Desk
inMenuBar
inSysWindow
inContent
in Drag
in Grow
inGoAway

=0
= 1
=2
=3
=4
=5
=6

The following example demonstrates the general method for
separating mouse-down events:

/* 1oca11y defined variab1es */

WindowPtr
EventRecord
short

whichWindow;
theEvent;
windowCode;

/* This examp1e is from a portion of the
- app1ication's main event 1oop
- we begin at part of the switch on the event type
- returned by GetNextEvent */

case mouseDown:

/* pass 1ocation of where fie1d in EventRecord theEvent
- returns WindowPtr in whichWindow */

windowCode = FindWindow(theEvent.where,
&whichWindow) ;

switch(windowCode) { /* where did event occur? */

case inDesk:
/* actions appropriate for the Desktop */
break;

case inMenuBar:
/* actions appropriate for the menu bar */
break;

case inSysWindow:
/* actions appropriate for a system window */
break;

64 Using the Macintosh Toolbox with C
--- CH.3

case inContent:
/* actions appropriate for content region */
break;

case inDrag:
/* actions appropriate for the drag region */
break;

case inGrow:
/* actions appropriate for the grow region */
break;

case inGoAway:
/* actions appropriate for

the go-away region */
break;

Every application that uses the mouse will include a section of
code similar to this example. In upcoming chapters we will discuss how
to handle mouse-down events that occur in the menu bar (Chapter 4), in
the content region of a window (Chapter 7), and in system windows
(Chapter 13). Mouse-down events that occur on the desktop are gener
ally ignored (the finder is one exception to this rule, as it places icons on
the desktop). In the remainder of this chapter we discuss the routines
that are used to handle the parts of a window where a mouse-down event
can occur.

Using the Go-Away Region
If FindWindow reports that the event occurred in the go-away

region, the user is probably trying to close the window. However, the
window should not be closed until the mouse button has been released.
If the mouse was still in the go-away region when the button was re
leased, the window should be closed. The function TrackGoAway
simplifies this process

char TrackGoAway(theWindow, thePt)
WindowPtr
Point

theWindow;
thePt;

Pass TrackGoAway the WindowPtr of the window in question and
the global coordinates of the mouse-down event. TrackGoAway takes
control until the mouse button is released and will highlight or unhigh
light the go-away region depending on the mouse location. The value

An Introduction to the Window Manager 65

returned by TrackGoAway will be true if the mouse button was released in
the go-away region and false otherwise.

The following demonstrates the use of TrackGoAway:

/* locally defined variables */

WindowPtr
EventRecord
char

theWindow;
theEvent;
stillinGoAway;

/* portion of switch statement following FindWindow ()
- is the user trying to close the window? */

case inGoAway:
stillinGoAway = TrackGoAway(theWindow, &theEvent.where);
if(stillinGoAway) {

/* Do housekeeping and close/dispose of window */

break;

Depending on the nature of the application, closing a window
may signify additional actions, such as saving the contents of the win
dow to a disk file. The "User Interface Guidelines" provide information
about the actions appropriate to various types of applications.

Dragging a Window with the Mouse
When FindWindow returns the constant inDrag, the user is at

tempting to move the window designated by the whichWindow parameter.
To allow the window to move, the application should call the following
procedure:

DragWindow(theWindow, startPt, boundsRect)
WindowPtr theWindow;
Point startPt;
Rect *boundsRect;

Here WindowPtr is the pointer to the window to be moved and startPt is
the location of the mouse-down event in global coordinates. The bounds
Rect parameter contains a pointer to a rectangle specifying a delimiting
region on the desktop, outside of which the window (actually, the
mouse) cannot be moved during a call to DragWindow. The bounding

66 Using the Macintosh Toolbox with C
--- CH.3

rectangle prevents the window from being dragged off the desktop or
under the menu bar where the user cannot recover it.

DragWindow takes control and waits for the mouse button to be
released. During this time a gray outline of the window follows the
movement of the mouse. Once the button is released, DragWindow calls
the procedure MoveWindow to place the window at the new location. Un
less the window is already active or the Command key is being held
down, DragWindow activates the window by passing a true value as the
front parameter to MoveWindow. Activation takes place after the window
is moved to the new location.

To actually move the window and its contents, DragWindow calls
the procedure MoveWindow. The application can move a window without
using the mouse by calling Move Window itself. The parameters are the
WindowPtr for the window to be moved, the new location of the upper left
hand comer of the content region (in global coordinates), and whether
or not the window should become the active window once the move is
completed.

MoveWindow(theWindow, hGlobal, vGlobal, front)
WindowPtr theWindow;
int hGlobal, vGlobal;
char front;

The following example illustrates the use of DragWindow. The
bounding rectangle in this example is determined from the actual size of
the screen stored in a Toolbox global variable. This enables the example
to work properly on the differing screen sizes of the Macintosh and the
Macintosh II (as well as on future models of the Macintosh).

I* Toolbox global variable: pointer to QuickDraw globals
- global if InitGraf called in this program file
- screen size is contained in QuickDraw globals*/
external struct QDVar *QD;

/* locally defined variables */

WindowPtr theWindow;
EventRecord theEvent;
Rect dragBoundsRect;

I* initialize dragBoundsRect

An Introduction to the Window Manager 67 ---
- typically inset four pixels from menubar, sides
- and bottom of screen
- SetRect(&dragBoundsRect, limLeft, limTop, limRight, limBottom);
- InitGraf returns QD, pointer to QuickDraw globals
- QD->screenBits.bounds is bounding Rect for screen */

I* Set drag bounding rectangle to screen size -4 pixels, allow 20
pixels for menubar */

SetRect(&dragBoundsRect,
QD->screenBits.bounds.left +4,
QD->screenBits.bounds.top +24,
QD->screenBits.bounds.right -4,
QD->screenBits.bounds.bottom -4);

/* portion of switch statement following FindWindow() */

case inDrag:
DragWindow(whichWindow, theEvent.where, &dragBoundsRect);
break;

Remember, if the mouse-down occurs in the title bar of an inac
tive window, the application must not activate the window itself.
DragWindow will take care of highlighting if necessary, depending on the
current state of the window and, for inactive windows, the state of
the Command key.

Resizing Windows: Using the Mouse to Determine the New Size
When FindWindow reports a mouse-down in the size box of the

active window, the user is attempting to resize the window. The applica
tion can use the function GrowWindow to obtain the new window size.
Pass the appropriate WindowPtr indicated by FindWindow, the global coor
dinates of the mouse-down event, and a pointer to a rectangle describing
the limiting sizes of the window. This limiting rectangle is constructed
as follows: the maximum (minimum) vertical extent is contained in the
top (bottom) field, and the maximum (minimum) horizontal extent is
contained in the left (right) field.

long GrowWindow(theWindow, startPt, sizeRect)
WindowPtr theWindow;
Point startPt;
Rect *sizeRect;

68 Using the Macintosh Toolbox with C
--- CH.3

GrowWindow takes control and waits for the mouse button to be
released. While the mouse button is held down, a gray outline (the "grow"
image) of the window expands and contracts to follow the movement of
the mouse. When the mouse button is released, GrowWindow returns as
its value the new size determined from the position of the mouse. The
size is returned as two short (16-bit) integers packed into a single long
(32-bit) integer (see Figure 3.7).

The high-order word of the value returned by GrowWindow con
tains the vertical size in pixels (the low-order word contains the
horizontal size). If the size selected by the user is the same as the current
size of the window, a value of NULL will be returned. Figure 3.8 shows
the appearance of a window being resized during a call to GrowWindow.

The Toolbox provides two functions to extract the short integers
from the long value returned by GrowWindow: HiWord and LoWord. These

31 16 15 0

vertical size horizontal size

Figure 3.7: The Window Size Returned by GrowWindow

...
led

This window is be i ng resized¢

J
----------width--------~

Figure 3.8: Resizing a Window Using GrowWindow

An Introduction to the Window Manager 69 ---
functions take the long (32-bit) value as a parameter and return the ap
propriate int (16-bit) values.

int HiWord(x)
long x;

int LoWord(x)
long x;

Resizing Windows: Redrawing the Window at the New Size
To change the size of the window to the dimensions specified

by GrowWindow, the application should call the SizeWindow procedure:

SizeWindow(theWindow, width, height, £Update)
WindowPtr theWindow;
int w, h;
char £Update;

The calling parameters are the WindowPtr of the window to be resized, the
desired width and height, in pixels, of the window's content region, and
a flag to indicate whether SizeWindow should accumulate any new area
into the update region for the window. If both width and height of the
new size are zero, as would be the case if GrowWindow previously
returned a value of NULL, the size of the window is not changed. Set
ting fUpdate to a true value instructs SizeWindow to automatically modify
the window's update region, which is what is normally done. In some
cases it is convenient for the application itself to maintain the update
region, for instance if the window contains a QuickDraw picture (this is
covered briefly in Chapter 7).

Here is an example using GrowWindow and SizeWindow in con
junction to modify the size of a window:

/* locally defined variables */

WindowPtr theWindow;
EventRecord theEvent;
Rect limitRect;
long newSize;

/* initialize limitRect

70 Using the Macintosh Toolbox with C
--- CH.3

- determines max and min window dimensions
- typically based on screen size or other
- program constraint
- SetRect(&limitRect, minHoriz, minVert, maxHoriz, maxVert);*/

SetRect(&limitRect, 80, 40, 500, 300);

/* portion of switch statement following FindWindow */

case inGrow:
newSize = GrowWindow(whichWindow, theEvent.where,

&limitRect);
SizeWindow(whichWindow, LoWord(newSize),

HiWord(newSize), Oxff);
break;

The maximum size of a window can be based either on the ac
tual size of the screen or on a constraint imposed by the application
itself. It is best not to make any assumptions about the size of the screen
since it's of a different size on the Macintosh II, and will probably un
dergo further changes in future Macs.

A Sample Program: Using Events
and Windows

This concludes our discussion of the routines comprising the
Toolbox Window Manager for the time being. We will resume the dis
cussion of windows in Chapter 7, which covers more advanced aspects
of using the Window Manager: handling update and activate events,
maintaining the update region, using the refCon field of the WindowRecord,
and other miscellaneous items.

The first complete program we are presenting begins on the fol
lowing page. It includes nearly everything we have learned in this and
the previous chapter, and as such will serve as an excellent chance to
review the Event and Window Managers. The program consists of a
single procedure, main. The first part of main initializes the Toolbox,

An Introduction to the Window Manager 71

changes the cursor shape from the watch to the familiar arrow, empties
the event queue, and sets up the rectangles used to limit window move
ment and window size.

The second part of the procedure main is the event loop which
begins with the GetNextEvent function. The example uses key-down
events in conjunction with the Command key to create a window, close
the window, make the window visible or invisible, change the window's
title, and return to the Finder. Mouse-down events are screened to deter
mine where they occurred, and if appropriate are used to unhighlight the
window, highlight the window, drag the window, resize the window, and
close the window using the go-away region. All other types of events
are ignored.

In order to make this sample program complete, we have had to
borrow a few routines from QuickDraw and the Memory Manager,
which are the topics of Chapters 5 and 6. Portions of the program that
use routines from these chapters include comments that indicate we are
anticipating material we have not yet covered.

/* Window & Event Manager Sample Program */

#include <EventMgr.h>
#include <WindowMgr.h>
#include <Pascal.h>
#include <stdio.h>
/* Program begins here */

main()
{

/* main() */

/* declare local variables */

EventRecord theEvent;
WindowRecord theWindowRec;
WindowPtr theWindow, whichWindow;
RgnHandle contRgnHnd;

/* string conversion utilities */

Rect myBoundsRect, dragBoundsRect, limitRect;
Rect tempRect; /* Not listed in Book! */
short windowCode, stillinGoAway, wType;
static char *myTitle, *newTitle;
char c;
long newSize;

72 Using the Macintosh Toolbox with C
--- CH.3

/* Initialize QuickDraw *I InitGraf(&thePort);
InitFonts();
InitWindows () ;
InitCursor () ;

FlushEvents(everyEvent, 0);

/* Initialize the Window Manager */
/* Set cursor to arrow style

otherwise will remain watch */
/* Empty event queue of

SetRect(&myBoundsRect,50,50,300,150);
stray or leftover events */

/* initialize myBoundsRect */

/* initialize dragBoundsRect - limits movement of window
- for use with Mac & MacXL
- InitGraf returns QD (thePort), pointer to QuickDraw globals
- QD->screenBits.bounds is bounding Rect for screen */

SetRect(&dragBoundsRect,
screenBits.bounds.left +4,
screenBits.bounds.top +24,
screenBits.bounds.right -4,
screenBits.bounds.bottom -4);

/* initialize limitRect - limits size of window */

SetRect(&limitRect, 60, 40,
screenBits.bounds.right - screenBits.bounds.left -4,
screenBits.bounds.bottom - screenBits.bounds.top -24);

theWindow = NULL;

/* Begin event loop */

while (1) {
if (GetNextEvent(everyEvent, &theEvent))

switch (theEvent.what) {

case keyDown:

if(! (theEvent.modifiers & cmdKey)) break; /* if Command-key not down
ignore key-down */

c = theEvent.message & charCodeMask; /* char code in lower 8 bits */

if(c == 'q' 11 c =='Q'l
ExitToShell ();

if (theWindow == NULL)

if(c == 'm' II c 'M') {

/* quit program, return to Finder */

/* if no window, look for 'M'
and create new window */

/* create theWindow - use local storage for WindowRecord */

myTitle = "\pMy Window Title"; /* static string myTitle */

wType = documentProc + 8;

theWindow

An Introduction to the Window Manager 73

NewWindow(&theWindowRec, &myBoundsRect,
myTitle, Oxff, wType,

(WindowPtr) -1, Oxff, 0);

DrawGrowicon(theWindow); /* draw size box and
scroll bar outlines */

else SysBeep(l);

else

break;

/* a window already exists, try various window commands */

switch(c)

case 'x':
case 'X':

CloseWindow(theWindow);
theWindow = NULL;
break;

case's':
case 'S':

ShowWindow(theWindow);
DrawGrowicon(theWindow);

break;

case 'h':
case 'H':

HideWindow(theWindow);
break;

case 't' :
case 'T':

/* Close theWindow
don't dispose of storage */

/* make theWindow visible */

/* draw size box and */
/* scroll bar outlines */

/* make theWindow invisible */

/* change the title of theWindow */

newTitle = "\pA Different Title"; /* Pascal static string */

SetWTitle(theWindow, newTitle);

break;

default:
break;

/* set the new title */

case mouseDown:

74 Using the Macintosh Toolbox with C
--- CH.3

/* where did mouse-down occur? */
windowCode=FindWindow(theEvent.where, &whichWindow);
switch (windowCode) {

case inDesk:

if(theWindow !=NULL) {
HiliteWindow(theWindow,0);

DrawGrowicon(theWindow);

break;

case inMenuBar:
SysBeep(l);
break;

case inSysWindow:
SysBeep(l);
break;

case inContent:

/* on the desktop */

/*if theWindow exists ... */
/* unhilight window */

/* hide the size box */

/* do nothing */

/* do nothing */

/* hilight window */

HiliteWindow(whichWindow, Oxff);

DrawGrowicon(theWindow);
break;

/* draw size box and */
/* scroll bar outlines */

case inDrag: /* drag window */

DragWindow(whichWindow,theEvent.where,&dragBoundsRect);
/* can you see why this is needed */

DrawGrowicon(theWindow); /*draw size box and*/
break; /* scroll bar outlines */

case inGrow: /* resize window */

newSize = GrowWindow(whichWindow,theEvent.where,
&limitRect); /*get new size from user*/

SizeWindow(whichWindow, LoWord(newSize),
HiWord(newSize), 0); /*redraw window to newSize */

/* Erase inside of window and
- redraw size box and scroll bar outlines
- try commenting out this section to see what happens

- refer to QuickDraw for definition of a -Region- */

contRgnHnd = theWindowRec.contRgn; /* get handle to content
region of theWindow */

tempRect

An Introduction to the Window Manager 75

(*contRgnHnd)->rgnBBox;
/* Memory Manager - copy rect as

EraseRect may compact heap */
/* More efficient than lock/unlock */

EraseRect(&tempRect); /*erase window, parameter is
bounding Rect of content */

DrawGrowicon(theWindow); /*draw size box and*/
break; /* scroll bar outlines */

case inGoAway:
stillinGoAway

/* in close box */
TrackGoAway(whichWindow,theEvent.where);

/* is mouse still in close box? */
if(stillinGoAway) {

CloseWindow(whichWindow); /*Yes, close window*/
theWindow = NULL;

break;

/* Treat ZoomBox: Erase inside of window and

break;

default:
break;

- redraw size box and scroll bar outlines
- Note the alternate way to erase content
- (GrafPorts portRect)
- refer to QuickDraw for definition of a -GrafPort- */

case inZoomin:
case inZoomOut:

if(TrackBox(whichWindow,theEvent.where, windowCode)) (
GrafPtr curPort;

contRgnHnd = theWindowRec.contRgn;
tempRect = (*contRgnHnd)->rgnBBox;
EraseRect(&tempRect);

GetPort(&curPort);
SetPort(whichWindow);

ZoomWindow(whichWindow, windowCode, 0);
DrawGrowicon(theWindow);

SetPort(curPort);

break;

/* end of procedure main() */

-/-. I

I ---------r--
~ I

+ /
I

f6s\e

c,\e6t" \\ ~\\··· ·
\ec\ \\ ... ············· se ············· ..I ······ _ ... "

I
I
I
I
I
I

-- I
----~

I
I
I

)(I

~ ..,..,

Using the Menu Manager

After events and windows, the next most fundamental element
of a Macintosh application is the use of menus. Menus are the central
control element of nearly all Macintosh applications and one of the
more distinctive elements of the Macintosh user interface. To use menus
effectively in an application, we'll first need to be able to create them.
That means defining their titles and contents and deciding on the ap
pearance of each menu item. Next we '11 need to insert the menus into
the application-that is, actually make them show up on the top of the
screen. Finally we '11 need to know how to tell the rest of the program
which menu item (if any) was selected and what to do as a result.

Anatomy of Menus
Before we examine the functions provided by the Menu

Manager we should take some time to go over the nomenclature of
menus (see Figure 4.1). At the top of the Macintosh screen in all menu
driven applications (which comprise the majority of Macintosh
applications) is the thin white strip called the menu bar. The menu bar
measures 20 pixels high and is bordered on the bottom by a thin black
line. Up to 16 menus may reside in the menu bar at any given time but
with titles of average length, 10 to 12 menus are usually the most that
will fit. Text in the menu bar is always in the system font and the system
font size.

Menus themselves consist of a vertical list of menu items inside
a shadowed rectangle. The text of the menu items, like that of the title in
the menu bar, is always in the system font and system font size. Despite

78 Using the Macintosh Toolbox with C
--- CH.4

Menu Titles

Menu Bar s File Uiew Special
Undo :)(:2

Cut XH
Copy XC
Paste XU
Clear
Select All XA

Show Clipboard

Figure 4.1: Menu Parts

2
3
4
5
6
7
8
9

Menu with
9 items

the font limitations, however, you do have the flexibility to vary the ap
pearance of menu items. Besides the standard type style enhancements
(boldface, italics, and so on), an icon can be added to the left side of the
item and a check mark or other symbol can be used to indicate that
an item has been selected. Each menu item can also show a keyboard
equivalent at the right, indicated by the Command key symbol (g.c)

together with the appropriate keyboard character. A maximum of
20 items will fit in a menu. Because of the size of icons, menu items
with icons count as two items.

Menu Manager Types and Structures
All the information required by the system about a particular

menu is stored in a menu record. A menu record is defined as data type
Menulnfo and is referred to by an application through a menu handle. Be
cause the Menu Manager takes care of all the manipulation within menu
records, it isn't necessary to be familiar with the exact field names.
However, knowing the structure of a menu record, as shown in the box
"Menu Manager Data Structures," helps in understanding the Menu
Manager.

Using the Menu Manager 79

Menu Manager Data Structures

struct MenuRecord

I ;

#define
typedef
typedef

int
int
int
Handle
long
Str255

menuID;
menuWidth;
menuHeight;
menuProc;
enableFlags;
menuData;

Menu Info
MenuRecord
MenuPtr

/* menu ID */
/* menu width in pixels */
/* menu height in pixels */
/* Handle to menu definition procedure */
/* tells if menu items are enabled or not */
/* menu title (and other stuff) */

struct MenuRecord
* MenuPtr;
* MenuHandle;

The first field of the menu record is filled by a unique menu ID
that identifies the menu to the Menu Manager. The menulD is assigned
by the programmer and can be any positive integer, as long as the
ID is unique within the program. Negative menulDs are reserved for
the system.

The next two fields hold the menu's width and height measured
in pixels. These fields are set and used by the Menu Manager and the
programmer never has to worry about their contents.

The menuProc field contains a handle to the menu definition pro
cedure, which defines the appearance of the menu as well as the location
of its menu items and how they react to being selected. This field
defaults to the standard menu definition procedure, which is the proce
dure that defines the menus you 're accustomed to seeing. A good
example of a custom menu is the fill-pattern menu in MacDraw. Since
custom menus are beyond the scope of this discussion, you need not
worry about the menuProc field.

The enableFlags field contains a long word whose bits correlate
to the items of the menu in question. Beginning at bit 1, each bit cor
responds to a menu item. If a bit is set, then the corresponding item is
enabled; if it's clear, the item is disabled. Bit 0 toggles the status of the
entire menu.

Finally, the menuData field consists of a variable length data string
which contains information about the menu's text. The menu title, as well
as the text and other parts of the individual menu items are stored here.

80 Using the Macintosh Toolbox with C
--- CH.4

The other important pool of information on which the Menu
Manager draws is the menu list. The menu list contains the handles, in
order, to all the menus that will appear in the menu bar. Space for the
menu list is automatically allocated by the Menu Manager upon in
itialization. The data structure for the menu list is not really important.
The thing to remember about the menu list is that its contents determine
the contents of the menu bar.

Creating Menus
Before using the Menu Manager, we need to initialize Quick

Draw (lnltGraf), the Font Manager (lnitfonts),the Window Manager
(lnitWindows), and of course the Menu Manager (lnitMenus). The concep
tual outline for creating menus in your application, as well as the
accompanying code, is very simple. For each menu, you need to create
a new menu record, fill in the menu items along with the desired enhan
cements, and add them to the menu list. After all the menus are set up,
they are put into the application by drawing the menu bar.

We will first look at creating a menu through C calls, then as a
resource file.

Creating a New Menu Record from C

For every new menu you want to create, a call needs to be made
to NewMenu as follows:

MenuBandl.e NewMenu(menuID, menuTitle)
int menuID;
Str255 *menuTitle;

When passed a menulD and menuTltle, this function creates an
empty menu record and returns a handle to it. Henceforth, whenever the
Menu Manager refers to this menu, it is actually referring to the as
sociated menu record. The new menu record is not yet added to the
menu list.

Using the Menu Manager 81

Filling the Menus with Items
Next, the menus need to be filled with items. This can be done

in two ways. The first, AppendMenu, adds the items indicated by a data
string to the menu designated by theMenu, as follows:

AppendMenu(theMenu, data)
MenuHandle theMenu;
Str255 *data;

The data string passed to AppendMenu consists of the actual menu items
separated by a semicolon or carriage return. A left parenthesis preceding
an item disables it. One or more spaces can be used to indicate a blank
item, while a hyphen (-) used as an item instructs the Menu Manager to
draw a dividing line across the width of the menu. It is a good policy to
always disable the dividing line; that way a user won't get confused
when trying to select it.

The data string can also specify any enhancements to particular
menu items. Through the use of metacharacters, the programmer can
tell the Menu Manager exactly how to modify each menu item. The
metacharacters themselves do not appear in the menu. Figure 4.2 lists
the recognized metacharacters.

Meta-Character

;or Return

A

<

Meaning

Separates Items

When followed by an icon number, adds that icon
to the Item

When followed by a character, marks the item
with that character

When followed by B, I, U, 0, or S, sets the character
style of that Item

When followed by a character, sets that character
as the Item's keyboard equivalent

When precedes an Item, disables that item

Figure 4.2: Metacharacters

82 Using the Macintosh Toolbox with C
--- CH.4

For example, the code

NewMenu(myMenu,"\pMy Menu");

Append.Menu(myMenu,"\p<BFirst;Second/J;<UThird;(-;Fifth");

will create a menu that looks like the one shown in Figure 4.3. Remem
ber that the disabled dividing line counts as an item.

The other way to fill items into a menu is with the procedure
AddResMenu.

AddResMenu(theMenu, theType)
MenuHandl.e theMenu;

ResType theType;

This procedure searches all open resource files for the resource type
specfied by theType (see Chapter 9 for more on resources). It then ap
pends the names of all resources found to the menu indicated by theMenu.
The resource names found appear in the menu as enabled items, without
icons or marks and in the normal character style. AddResMenu will not
add any resources whose names begin with a period (.) or a percent
sign (%). In our sample program at the end of this chapter, we use
AddResMenu to set up the desk accessory menu.

DeskMenu=NewMenu(DeskID, "\p\024");

AddResMenu(DeskMenu, 'DRVR');

The "\024" above is the octal code for the Apple character in
the system font and serves as the title of the menu.

s File Dur Menu
First
Second XJ
Third

Fifth

Figure 4.3: Sample Menu Using AppendMenu

Using the Menu Manager 83

The Menu Manager also allows you to add a resource type to
the middle of a menu with the procedure lnsertResMenu:

InsertResMenu(theMenu, theType, afteritem)
MenuHand1e theMenu;
ResType theType;
int after Item;

lnsertResMenu works in the same way as AddResMenu except that it adds
the resource names after the item specified by the afterltem parameter. If
afterltem is zero, the names are inserted before the first menu item. If it's
greater than the number of menu items, the resource names are added to
the end of the menu.

Note that AddResMenu and lnsertResMenu, unlike AppendMenu,
cannot make use of metacharacters. Because of this, the Menu Manager
provides functions that perform enhancements equivalent to those done
by the metacharacters. Since it's not really practical to recreate an
AppendMenu data string every time you want to change the appearance of
a menu item, these functions can also be used during the course of a pro
gram to alter the appearance of a menu item.

Changing Menu Items and Their Appearance
Menu items can be dynamically changed by the program with

the Setltem function as follows:

Setitem(theMenu, item, itemStrinq)
MenuHand1e
int
Str255

theMenu;
item;
*itemStrinq;

Setltem replaces the menu item whose item number is item to the string
given by itemString. This is handy when you want to switch between two
choices like "Show clipboard" and "Hide clipboard."

Enabling and Disabling Menus and Items
Menus and their items can also be enabled and disabled by the

application. Enableltem and Disableltem both take the same parameters

84 Using the Macintosh Toolbox with C
--- CH.4

and allow the programmer to prevent the user from making inap
propriate menu choices from the application. The item parameter
indicates which menu item to enable or disable. If item is zero, the entire
menu is enabled or disabled.

Enableitem (theMenu, item)
MenuHandle theMenu;
int item;

Disableitem (theMenu, item);
MenuHandle theMenu;
int item;

A good example of using the enable/disable toggle is when an
application doesn't have any documents open. Since there are no docu
ments open, it doesn't make much sense to select Close from the File
menu. To remind the user of this, we can disable the Close command
until a document is opened. Then we can call Enableltem to enable the
Close command, allowing it to be selected.

Marking Menu Items
For menus that contain accumulating attributes, it's usually a

good idea to mark items with a check mark when they are selected. To
accomplish this, the Menu Manager provides this procedure:

Checkitem(theMenu, item, checked)
MenuHandle theMenu;
int item;
char checked;

The checked field determines whether the item indicated by the menu
handle and item number should be checked or not. If a true value is
passed, Checkltem will mark the item. If checked is false, the item will be
unmarked.

You aren't limited to using a check mark as the marking charac
ter. The procedure SetltemMark will allow you to specify exactly which
character you wish to use to mark the menu item.

SetitemMark(theMenu, item, markChar)
MenuHandle theMenu;

Using the Menu Manager 85 ---
int item;
int markChar;

This procedure will mark the indicated menu item with whichever char
acter is specified by markChar, allowing you to use any character from
the system font. All you need to do is pass the code for the character to
SetltemMark in the markChar parameter (a code chart for the system font is
provided in Appendix C). Some of the more unique characters of the
system font and their character codes are shown in Figure 4.4.

To determine which character is being used to mark a menu
item, the procedure GetltemMark returns in its markChar parameter the
ASCII code for the marking character.

GetitemMark(theMenu, item, markChar)
Menu&andle theMenu;
int item;
char *markChar;

If there is no marking character, markChar will be equal to zero (the
ASCII code for the NULL character). This procedure can also be
used to determine which way to toggle the mark next to a menu
item. For instance, whenever the Bold option for text enhancement
is selected from the Style menu of your application, you'll need to
determine whether the item was previously marked or not and then
do the opposite. In the example program at the end of this chapter,
we use GetltemMark for this purpose. After calling the procedure, we
check to see if markChar is nonzero. If it is, we know the menu was
already marked and we need to un-mark it. Of course, the method
used to determine whether an item is marked or not is entirely up to

Character

no Mark
commandMark
checkMark
diamond Mark
apple Mark

Figure 4.4: Special Mark Characters

ASCII Value

0
$11
$12
$13
$14

86 Using the Macintosh Toolbox with C
--- CH.4

the programmer and is usually very dependent upon what the applica
tionisdoing.

Changing the Typestyle of Menu Item
The Menu Manager also allows you to change the text style of

menu items as the application proceeds. SetltemStyle takes the menu item
indicated by the menu handle and item number passed to it and changes
the character style of the item's text to that indicated by chStyle.

SetitemStyle (theMenu, item, chSty1e)

MenuHand1e theMenu;

int item;

Sty1e chSty1e;

In Think C, the variable type Style is already defined for you in the
QuickDraw.h header file. You might want to look into this header file to
see how the various typeface effects are named. For example, bold
typeface is indicated by the variable bold (see Figure 4.5). Thus, in code
SetltemStyle would look like this:

SetitemStyle(theMenu, item, bo1d);

Variable Value

bold 1

italic 2

underline 4

outline 8

shadow 16

condense 32

extend 64

Figure 4.5: Sample Style Variables

Using the Menu Manager 87

Adding Menus to the Menu Bar
When all the menus have been set up, they need to be added to

the menu list. This is done through the function lnsertMenu.

InsertMenu(theMenu, beforeID)

MenuBanclle

int

theMenu;

beforeID;

lnsertMenu will add the menu specified by ·theMenu to the menu list and
put it before (to the left of) the menu whose ID is specified by the
beforelD parameter. If the beforelD is zero, lnsertMenu just adds the given
menu to the end of the menu list. If theMenu already exists in the menu
list or the menu list is full, lnsertMenu will do nothing. It doesn't make a
difference if you insert each menu as you define it or define all your
menus and then insert them. The important thing to note is that Insert
Menu needs to be called for each menu. If you define a menu but don't
insert it, it won't show up in the menu bar.

Removing Menus from the Menu List
The reciprocal function of lnsertMenu is DeleteMenu. This proce

dure will remove the menu specified by menulD from the menu list but
will not deallocate the memory it occupies.

DeleteMenu (menuID)
int menuID;

If you are through using a particular menu and wish to free the memory
occupied by its menu record, you need to call DisposeMenu:

DisposeMenu(theMenu)
MenuBanclle theMenu;

It's important to remember to call DeleteMenu before disposing
of its menu record and to be careful not to use the menu handle of the
disposed menu.

88 Using the Macintosh Toolbox with C
--- CH.4

Creating a New Menu Record as a Resource

As you saw in the Window Manager, resource definitions in
volve a lot less work than do creating things from C. You do have to
employ RMaker to use them, of course.

This is a menu definition as written into an RMaker file. All of
the preceding metacharacters and other menu phenomena can be used in
a menu defined as a resource.

TYPE MENU

,128

File

Open

Close

Save As ...

Save

(-
Printer setup
Print
(-

Transfer

Quit

The first line tells RMaker what type of resource this is. In this
case, it's a MENU resource. Note that resource names are case sensitive.
The resource MENU is different from the resource Menu.

The next line is the resource number, 128 in this case.
The line after that is the name of the menu. This is the text

which will appear on the menu bar.
The rest of this definition contains the various menu items. The syn

tax of these is the same as they would be had you created this menu using
calls to AppendMenu, except that rather than separating the menu items with
semicolons we put each on its own line.

The definition for this menu extends down to the first blank line
in the resource file.

One of the things you might have noticed in the discussion about
metacharacters, particularly in Figure 4.2, was the reference to including an
icon in menus. This is something which is only practical to do using a
resource file. As you will see in greater detail in Chapter 9, you can define
an icon as a resource. If that icon's resource number is between 257 and
265, you can make it appear in a menu right next to the item.

Using the Menu Manager 89

You can create a menu item with reference to an icon with
AppendMenu, but not the icon itself.

This is a menu with an icon in it.

TYPE MENU

,129
Edit

Undo
(-

Cut
Copy
Paste
Cl.ear
(

"lOptions

The Options item will have icon 257 beside it, assuming that
there is a resource definition for this icon. The number of the icon
specified with the "A" metacharacters is 256 plus the number after the
metacharacters. The number after the metacharacter can be 1through9.

Using Resource Menus
Having defined some menus in a resource file, you must still

tell your program to use them. The Menu Manager provides this func
tion to do this:

MenuHandl.e GetMenu(nwnber)
int nwnber;

For example, to get a handle to the above menu, you would do this:

handl.e = GetMenu(l29);

With a handle to each of your menus, usually stored in an array
of MenuHandles, you would use lnsertMenu to add them to the menu bar.

90 Using the Macintosh Toolbox with C
--- CH.4

Drawing the Menu Bar
The last step in setting up your menus is to draw the menu bar.

Not surprisingly, this is done through the command DrawMenuBar.

DrawMenuBar ()

No parameters are required. DrawMenuBar simply redraws the menu bar,
displaying all menus that were in the menu list. A call needs to be made
to DrawMenuBar whenever any menus are added or deleted from the
menu list; otherwise, any changes the application made to the menu bar
won't show up.

Choosing from Menus
Once the menu bar has been drawn, the application is ready to

deal with menu selection. Thanks to the Menu Manager, this is an ex
tremely simple task. When GetNextEvent detects a mouse-down event in
the menu bar, all that's required is a call to MenuSelect.

long MenuSelect(startPt)
Point startPt;

Once it has been passed the point of the mouse-down event,
MenuSelect takes control of the application, tracking the mouse, pulling
down menus, and highlighting enabled menu items under the cursor
until it encounters a mouse-up event. When the mouse button is released
over a highlighted menu item, MenuSelect returns menu Result, a long word
containing in its high-order word the menulD of the selected menu and in
its low-order word the item number within that menu. It also highlights
(that is inverts the text of) the menu title. If no choice is made, Menu·
Select returns zero in the high-order word and the low-order word is
undefined.

Handling the keyboard equivalents of menu items is no more
difficult than handling regular menu selections. When there is a key
down event modified by the Command key, pass the key character to the

Using the Menu Manager 91

function MenuKey. MenuKey will then determine whether that particular
key is the equivalent of any active menu item. If so, it returns the same
long word result as MenuSelect and highlights the menu title. If the key
doesn't correspond to any menu items, the menu result is the same as a
nonselection from MenuSelect (see Figure 4.6).

So what do we do now that the menu and the item have been
selected? The easiest thing to do is pass the menu result to a function
that switches first on the menu ID, and then on the item number to deter
mine what task to carry out. For example, we can have a function that
would look something like this:

doMenu(menuResult)
long menuResult;

short menuID, itemNumber;
menuID=HiWord(menuResult);
itemNumber= menuResult;
switch (menuID) { /* which menu was selected? */

case theRightID:
switch (itemNumber)
I* which item in the menu was selected?*/

case theRightitem:
DoSomething();

Our function would first decipher which menu was selected, then which
item was selected, and then tell the application to go and do whatever
it's supposed to.

After a selection is made with either MenuSelect or MenuKey, the
menu's title is highlighted. The menu title will remain that way until
the application tells the Menu Manager to return the text to its original
form. To do this, the application needs to call

HiliteMenu(menuID)
short menuID;

with a menuID of zero. HiliteMenu highlights the title of the menu indi
cated by the given menu ID. If that title is already highlighted, this

92 Using the Macintosh Toolbox with C
--- CH.4

Menu IDs

101 102 103 1 04 1 05

Menu Item
Numbers

1 ••2
2

: ••••.
5
6
7
8

Clear
Select All XA

...

g Show Clipboard

startPt

MenuSelect (startPt) or MenuKey ('c') return a menu Result:

31 1615 0

l menu ID = 103 l itemNum = 4 l
Hi Word Lo Word

Figure 4.6: MenuSelect and MenuKey (above) and MenuResult (below)

procedure won't do anything. Because only one menu title can be high
lighted at a time, HiliteMenu will unhighlight any menu previously
highlighted. If the menu ID doesn't exist in the menu bar, HiliteMenu
simply unhighlights whichever menu is highlighted. Thus, since by con
vention a menu ID cannot be zero, the call

HiliteMenu(O);

will unhighlight any highlighted menu title.
When menu items are added to a menu using either AddResMenu or

lnsertResMenu, the rest of your program has no way of knowing exactly
how many items will be added. More importantly, your application
won't know the identity of each menu item simply by its item number.

Using the Menu Manager 93

Thus, using MenuSelect will not work correctly. In this case, you need to
use the procedure Getltem.

Getltem(theMenu, item, itemString)
MenuHandle theMenu;
int item;
Str255 *itemString;

This procedure will return the text of the item given by the menu handle
and item number. A word of caution is in order here. This is one of those
sticky places where C and Pascal strings can get mixed up if you 're not
careful. Getltem returns a Pascal string.

At this point, we don't really know how to do anything with a
text string returned from a menu selection. We'll look in depth at deal
ing with desk accessory menus in Chapter 13.

A Sample Program for Windows and Menus
Now we get to take a look at what we've learned to do with

menus. You'll notice that we've written a couple of new procedures.
The first, SetUpMenus, does exactly that; it creates new menu records and
appends items to each of the menus we create. The second, doMenu, takes
the result of a mouse down event in the menu bar, decides which menu
item was selected, and carries it out. Aside from these two procedures,
the code is essentially the same as the code we saw in Chapter 3. As far
as this example program goes, nearly everything we need for dealing
with menus is in these two procedures.

One other point to notice is in the case of a key down event. If
the key was pressed along with the Command key, we pass the character
associated with the key to MenuKey and then pass the MenuKey result to
our new procedure doMenu.

That about wraps up our introduction to menus. We now know
how to create and implement menus in our code. As we mentioned ear
lier, we'll discuss desk accessory menus in Chapter 13.

It's time to draw pictures---on to QuickDraw.

94 Using the Macintosh Toolbox with C
--- CH.4

/* Include Header Files - contains Toolbox data types & constants */

#include <EventMgr.h>
#include <WindowMgr.h>
#include <MenuMgr.h>
#include <Pascal.h>
#include <stdio.h>

/* Menu Stuff */
#define Desk ID -
#define File ID -
#define Our ID
#define BMUG_
#define My_ID

MenuHandle
MenuHandle
MenuHandle
MenuHandle
MenuHandle

ID

DeskMenu;
FileMenu;
OurMenu;
BMUGMenu;
MyMenu;

100
101
102
103
104

Event Record theEvent;
WindowRecord theWindowRec; /* Don't Fragment the Heap */
WindowPtr theWindow, which Window;
Rect windowR,legalR,limitR;
short windowcode,still_InGoAway;
char
long
long

c;
markChar;
newSize;

/* Procedure to set up menus and add them to the menu list */

SetUpMenus ()
{

/* Desk Accessory Menu */
DeskMenu = NewMenu (Desk_ID,"\p\24");
AddResMenu (DeskMenu, 'DRVR');
InsertMenu (DeskMenu, 0);

/* File Menu */
FileMenu = NewMenu (File_ID,"\pFile");
AppendMenu (FileMenu,"\pOpen Window/M;Close Window/X;Quit/Q");
InsertMenu (FileMenu,0);
Disableltem (FileMenu, 2);

/* Our Menu */
OurMenu = NewMenu (Our_ID, "\pOur Menu");
AppendMenu (OurMenu, "\pHide Window/H;Show Window/S;
New Window Title; (-;Show BMUG;Hide BMUG");
InsertMenu (OurMenu, 0);
Disableltem (OurMenu, 6);

/* BMUG Menu */
BMUGMenu = NewMenu (BMUG_ID, "\pBMUG");
Appenc!Menu (BMUGMenu, "\pDevelopers Group");

/* Sample Menu */
MyMenu = NewMenu (My_ID, "\pMy Menu");
Appenc!Menu (MyMenu, "\p<BFirst;Second/J;<UThird; (-;Fifth");
InsertMenu (MyMenu,0);

DrawMenuBar();

I

/* Program begins here */

main()
{

/* main() */

InitGraf(&thePort);
InitFonts ();
InitWindows();
InitCursor();

/* Initialize QuickDraw */

FlushEvents(everyEvent, 0);
InitMenus();
SetUpMenus();
theWindow = NULL;
SetRect(&windowR,50,50,300,150);
SetRect(&legalR,5,5,505,335);
SetRect(&limitR, 50,10,500,330);

while (1) {
if (GetNextEvent(everyEvent,&theEvent))

switch (theEvent.what) {

case keyDown:
c = theEvent.message & charCodeMask;
if (theEvent.modifiers & cmdKey) {

doMenu(MenuKey (c));
HiliteMenu(O);

break;

Using the Menu Manager 95

case mouseDown:
windowcode=FindWindow(theEvent.where,&whichWindow);

switch (windowcode) (
case inDesk:

if ((whichWindow

HiliteWindow(whichWindow, 0);
break;

FrontWindow()) != 0)

96 Using the Macintosh Toolbox with C
--- CH.4

break;

case inMenuBar:
doMenu(MenuSelect(theEvent.where));
break;

case inSysWindow:
Sys Beep (1) ;
break;

case inContent:
HiliteWindow(whichWindow, Oxff);
break;

case inDrag:
DragWindow(whichWindow,theEvent.where,&legalR);
break;

case inGrow:
newSize = GrowWindow(whichWindow,theEvent.where,

&limitR);
SizeWindow(whichWindow,LoWord(newSize),

HiWord(newSize),0);
/* newSize is split into short

ints for width and height */
break;

case inGoAway:
still_InGoAway = TrackGoAway(whichWindow,

theEvent.where);
if(still_InGoAway) {

CloseWindow(whichWindow);
theWindow = NULL;
Enableitem(FileMenu,1);
Disableitem(FileMenu, 2);

break;
case inZoomin:
case inZoomOut:

if(TrackBox(whichWindow,theEvent.where, windowcode)) {
GrafPtr curPort;

GetPort(&curPort);
SetPort(whichWindow);
ZoomWindow(whichWindow, w'indowcode,0);
SetPort(curPort);

break;

default:
break;

doMenu(menuResult)
long menuResult;

short menuID, itemNumber, wType;
menuID HiWord (menuResult);
itemNumber = LoWord (menuResult);

switch (menuID)
{

case File_ID:
switch (itemNumber)

I
case 1:

wType = documentProc + 8;

Using the Menu Manager 97

theWindow = NewWindow (&theWindowRec,&windowR,"\pHi Mom!",

break;

case Our_ID:.

Oxff,wType, (WindowPtr) -1,0xff,0);
Disableitem (FileMenu, 1);
Enableitem (FileMenu, 2);
break;

case 2:
CloseWindow (theWindow);
theWindow = NULL;
Disableitem (FileMenu, 2);
Enableitem (FileMenu, 1);
break;

case 3:
ExitToShell ();
break;

switch (itemNumber) {
case 1:

if (theWindow) HideWindow (theWindow);
break;

case 2:
if (theWindow) ShowWindow (theWindow);
break;

case 3:
if (theWindow) SetWTitle (theWindow,"\pA New Title");
break;

case 5:
InsertMenu (BMUGMenu, 0);
Enableitem (OurMenu, 6);
Disableitem (OurMenu, 5);

98 Using the Macintosh Toolbox with C
--- CH.4

DrawMenuBar();
break;

case 6:

break;

case Desk ID:

case My_ID:

DeleteMenu (BMUG_ID);
Enableitem (OurMenu, 5);
Disableitem (OurMenu, 6);
DrawMenuBar();
break;

break;

GetitemMark(MyMenu,itemNumber,&markChar);
if (markChar) Checkitem(MyMenu,itemNumber,0);
else Checkitem(MyMenu,itemNumber,0);
break;

HiliteMenu(O);

~

+
I

I
I -r- I

I
I
I

1
I

I

-..... I
---- I -- ---- I + --~

I
I

)(I

~
+I

Drawing with QuickDraw

Quickdraw is responsible for everything we see on a Macintosh
screen. We can use it to draw and manipulate lines, shapes such as rec
tangles, ovals and rounded-comer rectangles, and more complicated
structures such as polygons, regions, and pictures. QuickDraw also
provides our means of displaying text, specifying the state and shape of
the cursor, and defining patterns that are used to paint areas of the
screen. Figure 5.1 shows some examples of the things QuickDraw is
capable of drawing.

In addition to being used directly by an application, QuickDraw
is also called by many of the other Toolbox Managers. The Window
Manager calls it to draw windows, the Menu Manager calls it to draw
menus, the Control Manager calls it to draw controls, and so on (see
Figure 5.2).

here's some text

Figure 5.1: Lines, Shapes, and Text Drawn by QuickDraw

102 Using the Macintosh Toolbox with C
--- CH.5

s
xz

~ XH
T xc
+

"' D ...

0

Figure 5.2: Windows, Menus, and Controls Drawn by QuickDraw

We're studying QuickDraw at this point of the book for a num
ber of reasons. In the previous four chapters, we've learned how to
create a very simple Macintosh application complete with menus and a
single window. If we were interested in programming an arcade-type
game, what we've already learned, combined with the information dis
cussed in this chapter, is probably sufficient to get the game up and
running. The information in this chapter is also a helpful prerequisite for
many parts of the chapters yet to come. What we will cover in this chap
ter about grafports, which are the basis of the Mac's multiple-window
interface, will be helpful not only when dealing with QuickDraw, but
also when we get to Chapter 7, which shows us how to implement
multiple windows. This chapter will also cover fonts and their char
acteristics, which will be helpful when we get to Chapter 8-Text
Editing with the Toolbox. In general, knowing what QuickDraw does
and how it does it is helpful when studying any of the Macintosh ROM
Managers that draw on the screen.

Drawing with QuickDraw 103

QuickDraw Basics-The Coordinate Plane,
Points, and Rectangles

Before we can effectively discuss or use the any of the Quick
Draw routines, there are a few underlying concepts and data structures
that we must know about. The coordinate plane, the place where things
are drawn, as well as points and rectangles-locations and areas we
specify in the plane to draw at or in-are all discussed here as a prereq
uisite to what we will learn in the rest of the chapter.

The Coordinate Plane
When using various QuickDraw routines, an application will

have to specify a location to place or draw an object, or a distance to
move it. The application specifies these locations or distances with
regard to the coordinate plane. The coordinate plane is similar to the
real-number plane you learned about in high school geometry. There are
however, three important dissimilarities:

1. All coordinates in the plane are integers.

2. The horizontal and vertical coordinates range from -32768
to +32767.

3. Horizontal values increase from left to right while vertical values
increase from top to bottom, as shown in Figure 5.3.

It is very important to remember that vertical coordinates in
crease downward, unlike the traditional number plane. On the
Macintosh, if we want something to move downward, we must increase
its vertical coordinate. As is shown in Figure 5.3, the origin (0,0), is in
the middle of the coordinate plane.

104 Using the Macintosh Toolbox with C
--- CH.5

(-32768,-32768)

(0,0)

(32767 ,32767)

Figure 5.3: The Coordinate Plane

Defining and Manipulating Points

The most basic way to indicate a location in the coordinate
plane is by specifying a horizontal and a vertical coordinate-that is, a
point-in the plane. We refer to a point as (h,v)-that is, horizontal
coordinate, vertical coordinate-just as we would specify (x,y) in the
real number plane. There is a data structure of type Point defined in
QuickDraw that applications will use to indicate locations in the plane.

struct pt {

int v;

int h;
} ;

typedef struct pt Point;

Each pixel on the screen can be thought of as a Point. Since there are
65,536 vertical lines and 65,536 horizontal lines in the drawing plane,
there are 65,536 times 65,536, or 4,294,967,296 unique points. On a
normal, monochrome Macintosh screen, however, there are only 512
vertical lines and 342 horizontal lines, or 175,104 pixels. The Mac's
screen is actually a small window into a very large coordinate plane. We
will see that it is possible, even easy, to move the plane around behind
the Mac screen to view different portions of the plane. Figure 5.4 shows

Drawing with QuickDraw 105

this relationship of the large plane to the small screen.
Our drawing is not limited to the Mac screen. It is very easy to

draw off screen and is sometimes very advantageous to do so. An ap
plication might, for example, want to draw pictures off screen ahead of
when they are needed so that when the time comes for one to be dis
played, there will be no noticeable hesitation in the program. The
drawing will be displayed instantly since it has already been calculated
and drawn.

Defining Points
To assign horizontal and vertical coordinates to a variable of

type Point, we use the procedure SetPt:

SetPt(pt,h,v)
Point *pt;
int h,v;

The integers h and v specify the horizontal and vertical coordinates to be
assigned to the Point pt. For example, the call

Point samplePoint;
SetPt{&samplePoint,20,25);

(-32768,-32768)

(0,0)

Figure 5.4: The Mac Screen in the Coordinate Plane

(32767 ,32767)

106 Using the Macintosh Toolbox with C
--- CH.5

would assign the location (20,25) to the Point samplePoint.

Manipulating Points
To determine if two Points are equal, we use the Boolean func

tion EqualPt:

char EqualPt(ptA,ptB)
Point ptA, ptB;

The function returns a true value if the points ptA and ptB are the
same or a false one if they are not.

To add or subtract points, an application can use the procedures
AddPt or SubPt. I

AddPt(srcPt,dstPt)
Point srcPt,*dstPt;

SubPt(srcPt,dstPt)
Point srcPt,*dstPt;

AddPt adds srcPt to dstPt, and the result is placed in dstPt. SubPt subtracts
srcPt from dstPt and places the result in dstPt. For example, if srcPt were
(10, 10) and dstPt were (90,60) and we made the call

AddPt(srcPt,&dstPt)

dstPt would now equal (100,70). If we were then to call

SubPt(srcPt,&dstPt)

dstPt would once again equal (90,60). The value stored in srcPt is never
affected.

Notice that the destination points in these calls are passed by
reference but the source points are not.

Changing a Point's Coordinate System
A point's coordinates are always expressed in terms of its coor

dinate plane. It is possible for an application to have a number of
coordinate planes. QuickDraw, when dealing with multiple coordinate

Drawing with QuickDraw 107

planes, or graf Ports, always keeps track of two. It keeps track of the active
or local coordinate system, the one that is currently being drawn into, as
well as the global coordinate system, the one that has its origin (0,Q) at
the top-left corner of the Mac screen.

An application can convert a point from its local coordinate sys
tem to the global coordinate system and then back again with the two
routines LocalToGlobal and GlobalTolocal. The routine LocalToGlobal takes
a point expressed in the active coordinate system and converts its coor
dinates to the global coordinate system.

LocalToGlobal(pt)
Point *pt;

The routine GlobalTolocal converts points in the opposite direction.
GlobalTolocal takes a point expressed in the global coordinate system
and converts its coordinates to the local coordinate system.

GlobalToLocal(pt)
Point *pt;

Many of the other Toolbox Managers have routines that require
a point parameter to be expressed in local coordinates, while others re
quire it to be expressed in global coordinates. As a result, the two
routines LocalToGlobal and GlobalTolocal are used quite often, even if an
application isn't using QuickDraw routines.

Defining and Manipulating Rectangles
Rectangles are another important basic part of QuickDraw and

of the other Toolbox Managers that draw anything on the screen. In
QuickDraw, Rectangles are the underlying structure used to draw rec
tangles themselves, as well as rounded-comer rectangles and ovals.
Rectangles are also used, as was shown in Chapter 3, to indicate a
window's size and location on the screen. We will see in future chapters
how rectangles are used to specify the size and location of controls and
alert and dialog boxes.

108 Using the Macintosh Toolbox with C
--- CH.5

An application specifies a rectangular area of the coordinate
plane with two Points, or four coordinates. The two Points or four coor
dinates indicate the top-left and bottom-right comers of the rectangle
(see Figure 5.5).

Rectangles have an associated data structure of type Rect
defined as follows:

union rect {
struct

Point TopLeft, BottomRight;
} ;

struct {
int top, left, bottom, right;

} ;

} ;

typedef union rect Rect;

Note once again that the Rect can be defined as either two values of type
Point-TopLeft and BottomRight-or as four individual coordinates:
top, left, bottom, and right.

Defining Rectangles
To define a Rect we can use the procedure SetRect:

SetRect(r, left, top, right, bottom)
Rect *r;
int left, top, right, bottom;

Toplef1 __________ 1_,0P _________ _

left right

bottom
BottomRight

Figure 5.5: Diagram of a Rect

Drawing with QuickDraw 109

SetRect assigns to the Rect r the coordinates left, top, bottom, and right.
This is best shown with an example. The call

Rect sampl.eRect;

SetRect(&sampl.eRect, 1.0, 20, 80, l.00);

defines sampleRect to be a rectangle with a top left coordinate of (10,20)
and bottom-right coordinate of (80, 100).

We can also define a rectangle as the intersection of two rec
tangles. If we have two rectangles, and we want to know if and where
they intersect, we can call the function SectRect:

char SectRect(srcRectA, srcRectB, dstRect)

Rect *srcRectA,*srcRectB,*dstRect;

If the two rectangles, srcRectA and srcRectB intersect, the function returns
a true value, and the rectangle that is the intersection of the two is placed
in dstRect. If the rectangles do not intersect, the function returns a false
value, and the Rect dstRect is set to (0,0,0,0). Rectangles that intersect in
only a line or a point are not considered intersecting because their inter
section encloses no bits. Also, if we have two rectangles A and B, we can
determine their intersection and then set rectangle A to the rectangle that
is A and B's intersection-we just call SectRect with rectangle A as both a
source and destination Rect.

A third way to define a rectangle is to indicate it as the rectangle
that is the union of two specified rectangles. If we have two rectangles
and would like to find a Rect that encloses them, we can call the proce
dure UnionRect.

UnionRect(srcRectA, srcRectB, dstRect)
Rect *srcRectA,*srcRectB,*dstRect;

The smallest rectangle that encloses srcRectA and srcRectB is returned in dest
Rect. Also, if we have two rectangles A and B we can determine their
bounding rectangle and set rectangle A to be the bounding rectangle-we
just call UnionRect with rectangle A as both a source and destination Rect.

The last way we can define a rectangle is by specifying two
Points. If we have two Points, and wish to find the smallest rectangle that

110 Using the Macintosh Toolbox with C
--- CH.5

encloses them, our application can use the procedure Pt2Rect.

Pt2Rect(ptA, ptB, destRect)
Point ptA, ptB;
Rect *destRect;

If ptA was (10,20) and ptB was (90,50) and we made the call

Pt2Rect(ptA,ptB,&resultRect);

resultRect would be set to the rectangle with coordinates (10,20,90,50).

Moving Rectangles
To move the rectangle around in the coordinate plane, we can

use the procedure OffsetRect.

OffsetRect(r,dh,dv)
Rect *r;
int dh,dv;

The rectangle r will be moved dh coordinates horizontally and dv coor
dinates vertically. Calling OffsetRect with the following values:

OffsetRect(&sampleRect,30,-60);

would move sampleRect 30 coordinates to the right and 60 coordinates
up. The rectangle itself would not be affected by this call. The procedure
also has no effect on the screen. The rectangle is moved, but not
redrawn. We will see how to draw or redraw a rectangle later, in the sec
tion Drawing Rectangles.

Resizing Rectangles
The procedure lnsetRect shrinks or expands the specified rectangle

InsetRect(r,dh,dv)
Rect *r;
int dh,dv;

Drawing with QuickDraw 111

If the values for dh and dv are positive, the rectangle is shrunk; if they are
negative, the rectangle will expand.

The following piece of code demonstrates lnsetRect:

Rect sampleRect;

SetRect(&sampleRect,50,60,110,150);

InsetRect(&sampleRect,10,-20);

After the previous code segment executes, sampleRect would
have coordinates (60,40,100,170). Note that each coordinate is inset or
expanded the distance specified by dh or dv. Also, if after a call to lnset
Rect the rectangle's height or width is less than 1, its coordinates are set
to (0,0,0,0)-that is, it is made an empty rectangle.

Determining if Points are enclosed in Rectangles
Given a Point and a Rect, we can determine with the function

PtlnRect whether the point is enclosed by the rectangle

char PtinRect(pt,r)
Point pt;

Rect *r;

If the Point pt is enclosed by rectangle r, then the function returns
true; otherwise it returns false. As an example of one of the many uses
of the PtlnRect procedure, suppose we have detected a mouse-down
event and need to determine if the mouse was clicked in a rectangle we
have defined on the screen. The code block below shows one way an
application could deal with the situation.

switch(theEvent.what)
case mouseDown:

if(PtinRect(&theEvent.where,&ourRect))

/* respond to a mouseDown in ourRect */
else

/* otherwise do something else */

break;

112 Using the Macintosh Toolbox with C
--- CH.5

Comparing Rectangles
If we have two rectangles and wish to determine if they are

equal, we can use the procedure EqualRect.

char EqualRect{rectA,rectB)
Rect *rectA,*rectB;

If the two rectangles have exactly the same boundary coordinates, the
function returns true; otherwise it returns false.

Given a rectangle, we can determine whether it is empty or not
with the function EmptyRect.

char EmptyRect{r)
Rect *r;

The function returns true if the rectangle r is empty and false
otherwise. A rectangle is considered empty if the left coordinate is
greater than or equal to the right or the top coordinate is greater than or
equal to the bottom.

Graf Ports-Drawing Environments for
QuickDraw

Everything that an application draws with QuickDraw is drawn
into a graf Port. Each graf Port has its own characteristics that determine
how the drawing commands will work. The characteristics include,
among other things, the grafPort's own coordinate plane, pen charac
teristics, text characteristics, and patterns. An application may have
multiple graf Ports, each having its own set of characteristics.

In this section, we will study the various data types that make
up a grafPort. In preparation for the next section of this chapter which ex
amines the graf Port data structure in detail, we will examine and explain
transfer modes, patterns, the QuickDraw pen, and text characteristics.

Drawing with QuickDraw 113

Transfer Modes
When lines, text, or shapes are drawn, a transfer mode deter

mines how they are to appear. For example, if we are drawing a
rectangle to the screen, and the screen already has something drawn on
it, a transfer mode will determine whether the rectangle is drawn opa
que--covering over all the other drawing, or transparent-allowing
some of the drawing underneath to show through. There are eight dif
ferent ways the rectangle could be drawn or "transferred" to the screen.
In the example, above the rectangle would be ref erred to as the source,
and the screen would be referred to as the destination.

The types of transfer modes are broken into two categories: pat
tern transfer modes, referred to as pat, that are used when drawing lines
or shapes, and source transfer modes, referred to as src, that are used
when drawing text.

For each type of transfer mode, there are four operations: Copy,
Or, Xor, and Bic. Copy simply overwrites the bits in the destination with
the bits from the source. It doesn't matter what the destination bits are,
they are simply replaced.

Or, Xor, and Bic all leave the destination pixels under the white
source pixels unchanged. The three operations differ in the way that
they affect the destination pixels that lie under black source pixels. Or
sets those destination pixels to black. Bic erases the destination pixels
under the black source pixels to white, while Xor inverts the destination
pixels.

For each of these four operations, there is also a not version in
which all the bits in the source are inverted before the transfer mode
operation is performed. Figure 5.6, with a sample source and destina- ·
tion, shows how each of the transfer modes works.

The constant names for all the transfer modes, given in Fig
ure 5. 7, should be predefined in one of your header files, QuickDraw.h.

Patterns
A pattern in QuickDraw is an 8-by-8 square bit image, as shown

in Figure 5.8. Each of the 64 individual bits is set to 1 (black) or
0 (white) to create designs such as bricks or tones such as dark gray.

114 Using the Macintosh Toolbox with C
--- CH.5

When you are using MacPaint, all the designs along the bottom
of the screen are examples of QuickDraw patterns. Patterns have an as
sociated data structure of type Pattern.

struct p {

char s[S];

} ;

#define Pattern struct P

typedef Pattern *PatPtr;

typedef PatPtr *PatHandle;

Once we have a pattern, we can use it to draw lines or to fill in
or draw shapes on the screen. In fact, most of the time that we draw
something on the screen, a pattern comes into play one way or another.

SrcCopy
PatCopy

NotSrcCopy
NotPatCopy

Source

SrcOr
PatOr

NotSrcOr
NotPatOr

Destination

SrcXOr
PatXOr

NotSrcXOr
NotPatXOr

Figure 5.6: Examples of How the Transfer Modes Work

SrcBic
PatBic

NotSrcBic
NotPatBic

Drawing with QuickDraw 115

Whenever a pattern is drawn, each 8-by-8-bit image is automatically
aligned with the next so that the overall design or tone is continuous
and even.

In QuickDraw, there are five predefined patterns (see Fig
ure 5.9) for us to use: white, ltGray, gray, dkGray, and black.

We can use any of the standard patterns, or we can create and
use our own. One way of creating a pattern is to use the procedure

Transfer Mode Value

srcCopy = 0
srcOr = 1
srcXor = 2
srcBic = 3
notSrcCopy = 4
notSrcOr = 5
notSrcXor = 6
notSrcBic = 7
patCopy = 8
patOr =9
patXor = 10
patBic = 11
notPatCopy = 12
notPatOr = 13
notPatXor = 14
notPatBic = 15

Figure 5.7: The 16 Transfer Modes and Their Values

64·bit image 64-bit image

II • The pattern it creates The pattern it creates

liiiiiiiiiliiii!iiiiiiiiiiiiiliiiliiil

Figure 5.8: Two 64-bit Images and the Patterns They Create

116 Using the Macintosh Toolbox with C
--- CH.5

StuffHex (There is an easier way to do this by using the application
RMaker, which we will discuss in Chapter 9 on Resources.)

StuffHe x (thingPtr,s)
Ptr thingPtr;
Str255 *s;

StuffHex allows us to assign a string of hexadecimal digits to any data
structure. The following code segment shows how to set the variable our
Pattern to be a pattern with a brick design.

Pattern *ourPattern

StuffHex (ourPattern, " \p808080FF080808FF");

We must be extra careful when using StuffHex. No variable checking is
done to make sure there is enough room in the destination variable for
the hex string specified. If a hex string is given that is larger than the
data structure it is being stuffed into, other things in memory may be
destroyed.

D
White Black

Light Gray Gray Dari< Gray

Figure 5.9: The Standard Patterns

Drawing with QuickDraw 117

Pen Characteristics
A QuickDraw pen has 5 characteristics: its location, size, trans

fer mode, pattern, and a flag indicating whether it is visible or not. These
characteristics are stored in the pnloc, pnSize, pnMode, pnPat, and pnVis
fields of a graf Port. The pen of the graf Port we are drawing into is used
whenever we draw lines, shapes, or text.

The pnLoc Field
The pnloc is a point that indicates the location of the pen in the

grafPort's coordinate plane. The pen's actual location is not restricted
to the screen; it can lie anywhere in the coordinate plane. We can find
out the pen's current location by calling the procedure GetPen.

Getpen(pt)
Point *pt;

GetPen will return in the variable pt, the location of the pen, ex
pressed in terms of the current graf Port's coordinate system.

The pnSize Field
The pnSize is another variable of type Point, but instead of repre

senting a location in the coordinate plane, it represents the pen's horizontal
and vertical dimensions. The default size of the pen is a 1-by-1-bit square,
but it can be defined to be any size from (0,0) to (32,767,32,767). An ap
plication changes the pen's size with the procedure PenSize.

PenSize(width,heiqht)
int width,heiqht;

When you draw with the pen, the upper left-hand corner of the pen is
lined up with the Point that is the pnloc. The rest of the pen hangs below
and to the right of the pnloc (see Figure 5.10).

The pnMode Field
The pnMode is a variable of type int that specifies which transfer

mode to use when doing any pen drawing. The mode may be any one of

118 Using the Macintosh Toolbox with C
--- CH.5

the eight pattern transfer modes. The pnMode value is easily changed
with the routine PenMode.

PenMode(mode)

int mode;

The pnMode is initially set to the patCopy transfer mode. If the mode is set to
any of the source transfer modes or negative, no drawing will take place.

The pnPat Field
The pnPat is a Pattern data type. It indicates the tone or design to

be used whenever any line drawing occurs. If the pnPat is black, the pen
will draw in black, if the pnPat is gray, pen drawing will be done with
gray, and so on. We set the pnPat with the procedure PenPat.

PenPat (pat)

Pattern *pat;

The initial value of the pnPat is black.

The pn Vis Field
The pnVis is a variable of data type int. It determines whether or not

the pen will be visible on the screen or not. If the pnVis is negative, the pen
will be invisible; zero or a positive value will make the pen visible. We can

[pen height or pnSize. h

t
pen width or pnsize. w

Figure 5.10: The Pen's Location and Size

Drawing with QuickDraw 119

alter the pnVis field with the two routines, HidePen and ShowPen. HidePen
decrements the pnVis field; ShowPen increments the field.

HidePen ();
ShowPen();

If the pnVis field is zero and we call HidePen three times in succession, it
will be necessary to call ShowPen three times to make it visible again.

Restoring the Pen's Default Fields
A call to the procedure PenNormal restores the initial values of

the pnSize, pnMode, and pnPat fields of the current pen.

PenNormal () ;

Figure 5.11 lists the pen's initial values.

Moving the Pen
To change the location of the pen without drawing anything, we

have two routines, MoveTo and Move. MoveTo moves the pen to absolute
location (h,v) in the current grafPort.

MoveTo(h,v)
int h,v;

The procedure Move offsets the pen a distance of dh horizontally and dv
vertically from its current position pnloc.

Move(dh,dv)
int dh,dv;

Field

pnSize
pnMode
pnPat

Figure 5.11: The Pen's Initial Values

Initial Value

(0,0)
patCopy
black

120 Using the Macintosh Toolbox with C
--- CH.5

Drawing Lines with the Pen
There are two similar routines for line drawing: Linero and Line.

Linero draws a line from the pen's current location pnLoc to the absolute
point (h,v).

LineTo{h,v)
int h,v;

Line draws a line a distance of (dh,dv) relative to the current value
in pnLoc.

Line(dh,dv)
int dh,dv;

Preserving a Pen's Characteristics
Often, an application will have the pen's characteristics all set,

but will then want to change some of the characteristics for just a short
time-for example, when a particular procedure is called. When the ap
plication finishes calling the routine, it will want the pen's characteristics
restored to their original state. A program can accomplish this with the
two routines GetPenState and SetPenState.

GetPenState saves the pen's location, size, pattern, and transfer
mode into the storage variable pnState, which can later be passed to the
routine SetPenState.

GetPenState(pnState)
PenState *pnState;

The pen's characteristics can be restored to the values stored in
the pnState variable with the routine SetPenState.

SetPenState(pnState)
PenState *pnState;

The PenState data type is not useful for anything except saving and reset
ting the pen's location, size, pattern, and transfer mode with GetPenState
and SetPenState.

Drawing with QuickDraw 121

Text Characteristics
Text has five characteristics which determine: the character font

it will be displayed in, its style, its transfer mode, its size, and some
spacing information for fully justified text. The characteristics are
stored in the txFont, txFace, txMode, txSize, and spExtra fields of a graf Port.

The txFont Field
The txFont is an int data type, a font number that specifies the

character font, or typeface, to use when displaying text in the current
graf Port. Figure 5.12 lists the font names and numbers of the standard
Macintosh fonts. You will probably have other fonts in your system,
and, as you'll see in chapter 9, it is possible to add special fonts to a
resource file to make them available to your application.

To change the character font being used, an application uses the
procedure TextFont.

TextFont(font)
int font;

The parameter font is simply the font number of the font we wish to
change to. Its initial value is zero which specifies the system font.

Font Name Value

System Font systemFont =0
Application Font applFont = 1
New York newYork =2
Geneva geneva =3
Monaco monaco =4
Venice venice =5
London london =6
Athens athens =7
San Francisco sanFran =8
Toronto toronto =9

Figure 5.12: Font Names and Their Font Numbers

122 Using the Macintosh Toolbox with C
--- CH.5

The txFace Field
The txFace field determines the style of the font specified by

txFont. There are eight different font styles: plain, bold, italic, underline,
outline, shadow, condense, and extend. Figure 5.13 lists the eight dif
ferent font styles and their constant equivalents.

The styles can be used alone or in any combination. We tum on
and off the various type styles with the procedure TextFace.

TextFace(face)
Style face;

The face parameter passed to TextFace is a Style data type, which is simply
an int data type. The integer passed in faceindicat~s the style or com
bination of styles that the txFont is to be displayed ip. The following line
shows how to set the font style to be bold, italic, and underline.

TextFace(boldStyle + italicStyle + underlineStyle);

The txMode Field
The txMode field is similar to the pnMode field of the pen. It con

tains a transfer mode that determines how a character will be drawn on
the screen. We can change its value with the procedure TextMode.

TextMode (mode)
int mode;

Style Value

plain =0
bold = 1
ttalic =2
underline = 3
outline =4
shadow =5
condense = 6
extend = 7

Figure 5.13: Font Styles and Their Values

Drawing with QuickDraw 123

Only three of the transfer modes should be used for text draw
ing: srcOr, srcXor, or srcBic. The initial value of txMode is srcOr.

The txSize Field
The txSize field specifies the size that the characters are to be

displayed in. The size of the text is specified in points (1/72 inch, not the
data type Point). An application changes the text's size with the proce
dure TextSize.

TextSize(size)

int size;

Any size font may be specified. The size we specify and the
sizes the font exists in affect the way the font will appear. Specifying a
size that the Font Manager has will result in the best looking fonts. The
next degree of quality is obtained when we specify a font size to display
that is an even multiple of an existing one. Requesting a 27 point font
when only a 9 point size is defined will cause the 9 point font to be
scaled evenly up to the 27 point font. The worst appearance occurs when
an application asks to display a point size that the Font Manager doesn't
have and that isn't an even multiple of a size that the manager has. If
zero is specified as the size, the Font Manager will display the font in
the size closest to the system font size (12-point, usually).

The spExtra Field
The last text characteristic is the spExtra field. It is used when

ever text needs to be fully justified, that is, aligned with both left and
right margins. The value in spExtra is the number of pixels by which each
space character needs to be widened to fill out the line of text. An ap
plication sets the spExtra field with the routine SpaceExtra.

SpaceExtra(extra)

int extra;

The initial value of the spExtra field is zero.

124 Using the Macintosh Toolbox with C
--- CH.5

Text Drawing Routines
At this point, we're ready to begin talking about actual text

drawing routines. When text drawing occurs, each character is placed to
the right of the current pen location pnLoc. The left edge of a character's
baseline is aligned with the pnLoc. After a character is drawn, the pnLoc is
moved to the right side of the character just drawn.

Drawing Characters, Strings, and Text buffers
There are three routines for drawing text: DrawChar, Drawstring,

and DrawText. DrawChar draws a single character, Drawstring draws a
specified string, and DrawText draws characters taken from a specified
buffer.

The procedure DrawChar places the specified character ch to the
right of the pen location pnLoc, and moves the pen to the right side of ch.
If the character isn't defined in the font, then QuickDraw will draw the
missing symbol.

DrawChar(ch)
int ch;

DrawString calls DrawChar for each character in the string s. After the proce
dure, the pnLoc will be at the right side of the last character in the string s.

DrawString(s)
Str255 *s;

DrawText draws the text stored in the buffer textBuf. The arguments firstByte
and byteCount indicate the number of bytes into the structure to begin and
the number of bytes to draw. As usual, the text begins to the right of the
current pen.

DrawText(textBuf,firstByte,byteCount)
char *textBuf;
int firstByte,byteCount;

Drawing with QuickDraw 125

Determining the Width of a Character, String, or Text in a Buffer
There are three similar routines for determining the width of a

character or string: CharWidth, StringWidth, and TextWidth.
CharWidth returns the width of the character ch specified. Any

style enhancements such as bold, italic, and so on are taken into con
sideration when the width is calculated. The spExtra field is added to the
width if ch is a space character. The width returned is the number of
coordinates the pnLoc will be moved to the right after the character ch
is drawn.

int CharWidth(ch)
int ch;

Both StringWidth and TextWidth call CharWidth to determine the width of
the strings specified. For StringWidth the specified string is the string s,
and for TextWidth the specified string is the string byteCounts long, begin
ning at firstByte in the buffer textBuf.

int StringWidth(s)
Str255 *s;

int TextWidth(textBuf,firstByte,byteCount)
char *textBuf;
int firstByte,byteCount;

Determining a Font's Ascent, Descent, Width, and Leading
With the Toolbox it is possible to have more that one font size

and style in the same line of text. This can lead to problems with line
spacing when an application must display multiple lines of text contain
ing a number of different font sizes and styles. There is, however, a
solution. Using the routine GetFontlnfo, an application can determine
a font's ascent, descent, maximum character width, and leading (the dis
tance between the descent line and the ascent line below it). It can then
use this information to accurately change the line spacing so that every
thing is displayed correctly. In the sample code of Chapter 8, Text
Editing with the Toolbox, there is an example of how GetFontlnfo can
be used.

GetFontinfo(info)
Font Info *info;

126 Using the Macintosh Toolbox with C
--- CH.5

The Fontinfo data type is a structure of four shorts as is shown below. Get·
Fontinfo returns values expressed in pixels, in each field of the Fontinfo
structure.

typedef struct
int ascent;
int descent;
int widMax;
int leading;

Font Info;

Figure 5.14 shows the ascent, descent, and width characteristics of a
character.

The Graf Port Data Structure and Routines
Now that we have enough background knowledge, it is time for us

to study the structure of a graf Port data type, its fields, and the routines that
will allow our application to take full control of how drawing will occur.

The graf Port Data Structure

The graf Port data structure, shown in the box titled "graf Port Data
Structure," consists of a number of fields, some of which we discussed
in the last section and others that we will cover now.

Rg ascent line

•oo•m ~ base line
descent

descent line ,--,
width

Figure 5.14: The Ascent, Descent, and Width Characteristics of a Character

Grafport Data Structure

struct GP

);

int
BitMap
Rect
RgnHandle
RgnHandle
Pattern
Pattern
Point
Point
int
Pattern
int
int
Style
int
int
long
long
long
int
int
Handle
Handle
Handle
QDProcsPtr

device;
portBits;
portRect;
visRgn;
clipRgn;
bkPat;
fillPat;
pnLoc;
pnSize;
pnMode;
pnPat;
pnVis;
txFont;
txFace;
txMode;
txSize;
spExtra;
fgColor;
bkColor;
colrBit;
patStretch;
picSave;
rgnSave;
polySave;
grafProcs;

#define
typedef

Graf Port
Graf Port

struct GP
*GrafPtr;

The device Field

Drawing with QuickDraw 127 ---

The device field, an int, indicates the output device the graf Port
will be using. The default device number is 0, representing the Macin
tosh screen.

The portBits Field
The portBits field is the bitMap that is used by the graf Port. A bit Map

points to a bit image, which is simply a rectilinear collection of bits in
memory. All drawing that is done in a graf Port will take place in the

128 Using the Macintosh Toolbox with C
--- CH.5

portBit's bit image. The default bit image is set to be the entire Macintosh
screen.

The portRect Field
The portRect field is a rectangle that defines the portion of the

port Bits that will be used for the graf Port. Whenever an application draws
something, it will occur inside of the portRect rectangle. Recall from
Chapter 3, that a window pointer is the same thing as a grafPtr. A
window's content region is a graf Port's portRect.

The visRgn Field
The visRgn field is used primarily by the Window Manager and

is rarely changed by the programmer. It indicates the region of a graf Port
that is visible on the screen. Normally the visRgn is set to be the same size
as the portRect. When a window (a graf Port), has an object moved in front
of it, the area of the window obscured by the object is removed from the
window's visRgn. Then, if drawing occurs in the window, the drawing is
clipped to the visRgn so that no drawing occurs on the obscuring object.

The clipRgn Field
The clipRgn is a programmer-definable region that an application

can use to limit drawing in specific areas of the portRect. The clipRgn is
initially set to be very large so that no drawing to the portRect is obscured
by it. If, for example, an application wanted items to be drawn only in
the upper half of a graf Port, the clipRgn could be set to be the upper half.
The sample program at the end of Chapter 10 changes the clipRgn often
and is a practical example of why an application might want to limit
drawing.

The bkPat and fillPat Fields
The bkPat and fillPat fields are both patterns that are used by the

graf Port and QuickDraw routines. The bkPat, or background pattern, is
used in areas on the screen that are "erased" or have bits scrolled out of
them by various QuickDraw routines. The fillPat, or fill pattern, is used to
fill in areas of the screen that are specified by QuickDraw's Fill

Drawing with QuickDraw 129

routines. Filling and erasing routines will be discussed in the section on
QuickDraw drawing verbs.

The pnloc, pnSize, pnMode, pnPat, and pnVis Fields
The pnLoc, pnSize, pnMode, pnPat, and pnVis fields-covered in

detail earlier in this chapter-all have to do with a grafPort's pen charac
teristics. The pnLoc and pnSize fields indicate the location and size of the
grafPort's pen. The pnMode and pnPat fields indicate the pen's transfer
mode and pattern to be used when drawing. Finally, the pnVis field deter
mines whether the pen is visible or not.

The txFont, txFace, txMode, txSize, and spExtra Fields
The txFont, txFace, txMode, txSize, and spExtra fields-also covered

in detail above-all have to do with a graf Port's text. The txFont and txFace
fields determine the font and style to be used when displaying text. The
txMode and txSize fields indicate the transfer mode and size for the text of
the graf Port. Finally, the spExtra field is used when an application wants to
display fully justified text.

The fgColor, bkColor, and colrBit Fields
The fgColor, bkColor, and colrBit fields of a graf Port are used with

color QuickDraw. This is an extension of the basic QuickDraw package
which is used on the Macintosh II. There is, in fact, a lot of color with
QuickDraw which is not covered in this book, as it's beyond the scope
of this text. You will need Inside Macintosh if you want to write
programs which draw in color.

The patStretch Field
The patStretch field is sometimes used by QuickDraw when it is

printing a pattern to a printer. An application should not change this
field's value and has no use for its contents.

130 Using the Macintosh Toolbox with C
--- CH.5

The picSave, rgnSave, and polySave Fields
The picSave, rgnSave, and polySave fields of a graf Port reflect the

status of picture, region, or polygon definition. For example, to define a
picture, region, or polygon, an application calls a routine to open it, then
the application executes the drawing commands to draw it, and finally
calls a routine to close it. If a picture, region, or polygon is open, the
picSave, rgnSave, or polySave field will contain a handle to the open pic
ture, region, or polygon.

The graf Procs Field
The grafProcs field may contain a pointer to a customized Quick

Draw data structure that an application might use. If the field is set to
NULL, QuickDraw will respond in the normal manner. Customized
QuickDraw routines are beyond the scope of this book, so we won't be
discussing the graf Pro cs field.

Graf Port Routines
A lot of routines that could be classified as graf Port routines

have already been discussed under different headings. The routines that
change a graf Port's pen and text characteristics, for example, were
discussed in the earlier sections on Pen Characteristics and Text Char
acteristics. The routines we will discuss here deal mainly with the first
five fields of a graf Port.

Initialization
The first routine, lnitGraf, should be called at the beginning of a

program to initialize QuickDraw. It initializes the QuickDraw global
variables listed in Figure 5.15.

InitGraf(q1oba1Ptr)
char *q1oba1Ptr;

Drawing with QuickDraw 131 ---
Creating and Disposing of Graf Ports

Before using any graf Port, an application needs to create it by
calling the routine OpenPort. Given a pointer gp, created with the routine
NewPtr, OpenPort creates a new grafPort gp, initializes the grafPort's fields
as listed in Figure 5.16, allocates memory for the grafPort's visRgn and clip
Rgn, and makes the port gp the current port. The current port is the port
where all drawing commands will be directed.

OpenPort(gp)
Grafptr gp;

To reinitialize a currently open graf Port, an application calls the
routine lnitPort. lnitPort initializes the fields of the specified port to the
values listed in Figure 5.16, and makes gp the current port.

InitPort (gp)
GrafPtr gp;

When an application is through with a graf Port, it should dispose
of the graf Port with the routine Close Port. ClosePort releases the memory
occupied by the specified grafPort's visRgn and clipRgn. After an applica
tion calls ClosePort, it should dispose of the graf Ptr gp with a call to the
Memory Manager routine DisposPtr.

ClosePort(gp)
GrafPtr gp;

Variable

the Port
white
black
gray
ltGray
dkGray
arrow
screenBits
randSeed

Type

GrafPtr
Pattem
Pattem
Pattem
Pattem
Pattern
Cursor
BitMap
Long Int

Figure 5.15: QuickDraw's Global Variables

Initial Setting

NIL
all-white pattern
all-black pattern
50% gray pattern
25% gray pattern
75% gray pattern
pointing arror cursor
Macintosh Screen (0,0,512,342)
1

132 Using the Macintosh Toolbox with C
--- CH.5

Keeping Track of Graf Ports
When an application uses multiple graf Ports, it will have to use

the two routines GetPort and SetPort to switch between them. The routine
SetPort is used to set the specified graf Port gp to be the current port. This
will cause all future drawing commands to be directed to the graf Port gp
until the application does a SetPort to another port.

SetPort(gp)

Grafptr gp;

Before each call to SetPort, however, an application should save
the current grafPort (so that it can later be reset to the current port), by
calling the routine Get Port. Get Port saves a pointer to the current graf Port
in the specified variable gp. For example, when an application wants to
create a new graf Port with the routine Open Port, it should first execute a

Field

device
protBits
pro!Rect
visRgn
cliprgn
bkPat
fill Pat
pnLoc
pnSize
pnMode
pnPat
pnVis
txfont
txFace
txMode
txSize
spExtra
fgColor
bk Color
colrBit
patStretch
picSave
rgnSave
polySave
grafProcs

Type

short
Bit Map
Rect
Rgnhandle
RgnHandle
Pattern
Pattern
Point
Point
short
Pattern
short
short
Style
short
short
short
long
long
short
short
QDHandle
QDHandle
QDHandle
QDProcsPtr

Figure 5.16: The lnltial Values of a Graf Port

Initial Setting

O (Macintosh Screen)
screenBits
screenBits.bounds (0,0,512,342)
handle to (0,0,512,342)
handle to (-30000,-30000,30000,30000)
white
black
(0,0)
(1, 1)
patCopy
black
O (visible)
0 (System Font)
normal
srcOr
o (Font Manager Decides;
0
blackColor
whiteColor
0
0
NIL
NIL
NIL
NIL

Drawing with QuickDraw 133 ---
GetPort to save the current port away, then call OpenPort to create a new
graf Port, and finally call Set Port to restore the previous graf Port to be the
current one.

GetPort (gp)
GrafPtr *gp;

Moving a Graf Port's Coordinate System
To move a grafPort's coordinate system, an application uses the

procedure SetOrigin. SetOrigin moves the current origin of the coordinate
plane to the new coordinates specified by the parameters h and v. An ap
plication will often want to move the coordinate plane around after it
performs a scrolling operation. The sample program at the end of Chap
ter 10 shows one way an application might use the SetOrigln procedure.
SetOrigin also offsets the coordinates of a grafPort's portBits, portRect, and
visRgn. The application, however, must manually move the clipRgn with a
call to OffsetRgn.

SetOrigin(h, v)

int h,v;

Manipulating a Graf Port's clipRect
We can alter the clipRect of the current graf Port with the three

routines GetClip, SetClip, and ClipRect. GetClip changes the specified
region rgn to be a region equivalent to the current graf Port's clipRgn.

GetClip (rgn)
Rgnllanclle rgn;

The routine SetCllp does just the opposite of what GetClip does. SetClip
sets the clipRgn field of a graf Port to be a region equivalent to the specified
region rgn.

SetClip(rgn)
RgnBanclle rgn;

Our final clipRect manipulating routine is CllpRect. CllpRect allows an ap
plication to set the clipRect field of the current graf Port to the specified

134 Using the Macintosh Toolbox with C
--- CH.5

rectangle r. ClipRect is used in the sample program at the end of Chap
ter 10.

ClipRect(r)
Rect *r;

Changing a Graf Port's Background Pattern
To change the background pattern of the current graf Port, an ap

plication can call the routine BackPat. BackPat changes the bkPat field of
the current graf Port to the specified pattern pat.

BackPat(pat)

Pattern *pat;

The QuickDraw Drawing Verbs
To draw a number of the shapes in Quick.Draw, an application

will specify a procedure that consists of a drawing verb combined with
the shape or structure the verb is to act upon. The procedure will look
like VerbShape. In this section we will study the five drawing verbs and
the shapes or structures that they act upon, in preparation for the next six
sections of the chapter, which discuss the individual routines.

There are five drawing verbs in Quick.Draw: Frame, Paint, Erase,
Invert, and Fill.

Frame is used to draw the shape's outline.

Paint is used to paint the shape with the pen pattern of the current
grafPort.

Erase is used to paint the shape with the current grafPort's back
ground pattern.

Invert is used to. change the shape's black pixels to white and
white to black.

Fill is used to fill the shape with a specified pattern.

Drawing with QuickDraw 135

These five drawing verbs operate on six different QuickDraw
shapes or structures, for a total of 30 routines. The shapes are

Rectangles

Ovals

Rounded-comer rectangles

Arcs and wedges

Polygons

Regions

Each verb works the same way with each shape or structure, with one
exception that we will discuss in the section on polygons.

Drawing Rectangles
FrameRect outlines the rectangle specified, just inside of its

coordinates. The line is drawn using the current grafPort pen's pattern
pnPat, transfer mode pnMode, and size pnSize.

FrameRect(r)

Rect *r;

PaintRect paints the specified rectangle r with the current grafPort's pen
pattern pnPat, using the pnMode transfer mode.

PaintRect (r)

Rect *r;

EraseRect works exactly like PaintRect except that it paints the Rect r
using the background pattern bkPat and transfer mode patCopy.

EraseRect (r)

Rect *r;

136 Using the Macintosh Toolbox with C
--- CH.5

lnvertRect simply inverts all the pixels within the rectangle r. All the
white pixels are changed to black, and all the black pixels are changed
to white.

InvertRect(r)
Rect *r;

FillRect, unlike the other four rectangle displaying routines, requires two
arguments: a rectangle rand a pattern pat. The rectangle r is painted with
the specified pattern pat using the patCopy transfer mode.

FillRect(r,pat)
Rect *r;
Pattern *pat;

Drawing Ovals
The data type Rect is also used when drawing ovals. All ovals

are drawn inside rectangles, as shown in Figure 5 .17. To draw a circle,
we just specify a square rectangle. The following five routines work ex
actly like the corresponding rectangle-drawing routines:

FrameOval(r)
Re ct *r;

PaintOval(r)
Re ct *r;

EraseOval(r)
Re ct *r;

InvertOval(r)
Re ct *r;

FillOval(r,pat)
Re ct *r;

Pattern *pat;

Drawing with QuickDraw 137

Figure 5.17: Ovals Drawn Inside Rectangles

Drawing Rounded-Corner Rectangles
We also use Reels for drawing rounded-comer rectangles. As

with rectangles and ovals, there are five display operations: Frame, Paint,
Erase, Invert, and Fill. With rounded-comer rectangles, however, each
routine requires two additional arguments: ovalWidth and ovalHeight. The
two integers ovalWidth and ovalHeight are used to indicate the diameters of
curvature for the rounded comers of the rectangle, as shown in Fig
ure 5.18. Apart from the two additional arguments, the drawing routines
work exactly as they did with rectangles.

FrameRoundRect (r, ovalWidth, ovalHeight)
Rect *r
int ovalWidth,ovalHeight;

Paint RoundRect (r, ovalWidth, ovalHeight)
Re ct *r
int ovalWidth,ovalHeight;

EraseRoundRect (r, ovalWidth, ovalHeight)
Re ct *r
int ovalWidth,ovalHeight;

I nvertRoundRect(r, ovalWidth, ovalHeight)
Re ct *r
int ovalWidth,ovalHeight;

138 Using the Macintosh Toolbox with C
--- CH.5

FillRoundRect(r, ovalWidth, ovalBeiqht, pat)
Rect *r
int ovalWidth,ovalBeiqht;

Pattern *pat;

oval width oval height

Figure 5.18: Corner Measurement of a Rounded-Corner Rectangle

Defining and Drawing Angles, Arcs, and
Wedges

In QuickDraw there are six routines that deal with angles, arcs,
and wedges. One of the routines, PtToAngle, is used to measure angles,
while the other five are the standard display routines Frame, Paint, Erase,
Invert, and Fill. In all of the following six routines, angles are measured
with respect to the rectangle r that we are dealing with, as shown in
Figure 5.19. Zero degrees is a vertical line from the center of the rec
tangle upward; 90 degrees is a horizontal line from the center of the rect
to the right; 180 degrees is a vertical line downward from the center; and
270 degrees is a horizontal line from the center to the left. An angle of
45 degrees is a line from the center of the rectangle, through its top-right
comer. Similarly, a line through the rectangle's bottom-left comer
would measure 225 degrees. These measurements hold true for every
rectangle, no matter what its size or shape.

Drawing with QuickDraw 139

Defining an Angle
To define an angle, an application uses the routine PtToAngle. Pt·

ToAngle measures a clockwise angle from a line straight up from the
center of the specified rectangle r to another line drawn from the center
of the rectangle to the point pt. The integer degree value is returned in
the variable angle, always measured with respect to the rectangle r, as
was discussed in the previous section.

PtToAngle(r, pt, angle)

Rect *r;
Point pt;
int *angle;

45 degrees

90 degrees

135 degrees

45 degrees

135 degrees

Figure 5.19: How Angles are Drawn with Respect to Rectangles

140 Using the Macintosh Toolbox with C
--- CH.5

Drawing Angles
The five standard display routines work for angles just as they

did with rectangles, except that each routine requires two additional
integer arguments: startAngle and arcAngle. The integer startAngle indi
cates where the arc is to begin, while arcAngle indicates how many
degrees the arc should span. If the arcAngle is positive, the arc is drawn
clockwise from the startAngle; if the arcAngle is negative, the line is
drawn counterclockwise.

FrameArc(r, startAnqle, arcAnqle)
Rect *r;
int startAnqle,arcAnqle;

PaintArc(r, startAnqle, arcAnqle)
Rect *r;
int startAnqle,arcAnqle;

EraseArc(r, startAnqle, arcAnqle)
Rect *r;
int startAnqle,arcAnqle;

InvertArc(r, startAngle, arcAngle)
Rect *r;
int startAnqle,arcAngle;

FillArc(r, startAnqle, arcAngle, pat)
Rect *r;
int startAngle,arcAnqle;
Pattern *pat;

Defining and Drawing Polygons
QuickDraw gives us the ability to draw and manipulate

polygons. A polygon is a closed figure made of any number of con
nected lines. Some sample polygons are shown in Figure 5.20.

To define a polygon we use the two routines OpenPoly and Close
Poly. We call OpenPoly to begin the definition and ClosePoly to end it. Any
line drawing routines called between OpenPoly and ClosePoly are added
to the polygon's definition. The data structure of a polygon is as follows:

struct PY {
int polySize;

} ;

#define

typedef
typedef

Rect polyBBox;
Point polyPoints[l];

Polygon

Polygon
PolyPtr

struct PY

*PolyPtr;
*PolyHandle;

Drawing with QuickDraw 141

The polySize field contains the size of the polygon in bytes. The polyBBox
field is the smallest rectangle that encloses the entire polygon. The poly
Points array stores all the points of the polygon. This array of points is
what really defines the polygon. When an application draws a polygon,
lines are simply drawn between each point in the polyPoints array.

Defining and Disposing Polygons
To begin our polygon definition, we call the function OpenPoly.

PolyHandle OpenPoly ();

OpenPoly returns a PolyHandle to a new polygon and tells QuickDraw to
save all Line and LineTo calls as part of the polygon definition. Only the
end points of the lines are stored in the polyPoints array. Also, none of the
pen characteristics are taken into consideration. HidePen is called so that
no drawing occurs on the screen while the polygon is being defined.

Figure 5.20: Pictures of Polygons

142 Using the Macintosh Toolbox with C
--- CH.5

To end the polygon definition, we call ClosePoly.

ClosePoly();

ClosePoly tells QuickDraw to stop saving all the Line and LineTo calls as
the definition of the polygon. The polygon's polyBBox is calculated, and
ShowPen is called to balance the HidePen called by OpenPoly. Here's an
example of how we would define a triangular polygon:

PolyHandle triPoly;

triPoly = OpenPoly();
MoveTo(300,100);

LineTo(400,200);

LineTo(200,200);

LineTo(300,lOO);

ClosePoly () ;

To deallocate the memory occupied by the polygon we call the proce
dure KillPoly.

KillPoly (poly)

PolyHandle poly;

We should only call KillPoly when we are completely through with the
polygon poly.

Moving Polygons
We can move a polygon in the same manner that we are able to

move a rectangle. When an application calls OffsetPoly, the polygon poly
is offset a distance of dh horizontally and dv vertically. OffsetPoly does
not affect the screen or the polygon's shape or size.

OffsetPoly(poly,dh,dv)

PolyHandle
int

poly;

dh,dv;

Drawing with QuickDraw 143

Drawing Polygons
To display a polygon, we can use any of the five standard draw

ing verbs: Frame, Paint, Erase, Invert, or Fill. The polygon-displaying
routines work the same as the corresponding rectangle-displaying rou
tines, except for FramePoly. FramePoly re-executes the Line and LineTo
calls of the polygon's definition with the current pnSize, pnMode, and
pnPat pen characteristics. As a result, the framed polygon does not fit in
side its polyBBox. The pen extends beyond the bottom and right sides of
the polyBBox by the pen height and width.

FramePoly(poly)
PolyBandl.e poly;

Paintpoly(poly)
PolyBandl.e poly;

ErasePoly(poly)
PolyBandl.e poly;

InvertPoly(poly)
PolyBandl.e poly;

FillPoly(poly,pat)
PolyBandl.e poly;
Pattern *pat;

Defining, Manipulating, and Drawing
Regions

A region is a complex object that can consist of any combina
tion of lines, shapes such as ovals and rectangles, and even other
regions. In a region, you may have one or more disjointed shapes. Be
cause a region can be nearly any shape or set of shapes, its data structure
is of variable size. The structure consists of two fixed fields followed by
a variable-length data field.

struct RG {
int
Re ct

rqnSize;
rqnBBox;

/* = 10 if region is rectangular */

/* plus byte codes for region content */
} ;

144 Using the Macintosh Toolbox with C
--- CH.5

#define
typedef
typedef

Reqion
Reqion
RqnPtr

struct RG
*RqnPtr;
*RqnBancile;

The rgnSize field contains the size, in bytes, of the region, and
the rgnBBox is the smallest rectangle that completely encloses the region.
The rest of the data structure contains a compressed version of the draw
ing commands that define the region.

Defining Regions

To define a region, we use three routines: NewRgn, OpenRgn, and
CloseRgn. The function NewRgn allocates space for and returns a handle
to a new region. Once we have a region handle and we want to start
defining the region, we call the procedure OpenRgn .. OpenRgn tells
QuickDraw to start saving all calls to the line drawing routines Line and
LineTo and to the procedures that draw framed shapes (except for Frame
Arc) as the definition of a region.

As is the case with polygons, the pen characteristics are not
taken into consideration in the definition of a region. HidePen is called so
that no drawing appears on the screen during the definition of a region.
The outline of the region is defined, and the portBit bitMap is split into two
groups: those bits that are within the region and those that are not. Each
call to one of the Frame routines forms another closed loop. Any simple
lines drawn must connect with another line or a closed loop.

RqnBancile NewRgn();
OpenRgn ();

When we are through defining our region, a call should be made to
CloseRegion. CloseRegion combines the lines and framed shapes as the
definition of a region and assigns this region to dstRgn. Once a region is
defined, we will always access it through its rgnHandle.

CloseRgn(dstRqn)
RqnBancile dstRqn;

Drawing with QuickDraw 145

Here's an example of how to define a barbell shaped region:

rgnBandle

Rect

barbell;

tempRect;

barbell= NewRgn();

OpenRgn();

SetRect(&tempRect,20,20,30,50);

FrameOval(&tempRect);

SetRect(&tempRect,30,30,80,40);

FrameRect(&tempRect);

SetRect(&tempRect,80,20,90,50);

FrameRect(&tempRect);

CloseRgn(barbell);

Manipulating Regions
Once our region is defined, there are all sorts of things we can

do with it. Many of the routines are very similar to the rectangle
manipulating routines. A call to any of the routines has no effect on the
screen whatsoever.

The OffsetRgn Procedure
OffsetRgn moves the region rgn a distance of dh horizontally and

dv vertically.

OffsetRgn(rgn, dh, dv)

RgnBandle rgn;

int dh,dv;

The lnsetRgn Procedure
lnsetRgn moves each point on the boundary of the specified

region inward a distance of dh horizontally and dv vertically. Positive
values for dh and dv cause the region to be shrunk; negative values cause
it to expand.

InsetRgn(rgn, dh, dv)

RgnBandle rgn;
int dh,dv;

146 Using the Macintosh Toolbox with C
--- CH.5

The SectRgn Procedure
SectRgn calculates the intersection of srcRgnA and srcRgnB and

places the result in dstRgn. The RgnHandle dstRgn must have been pre
viously created with NewRgn; SectRgn does not create it. Either of the
source regions may also serve as the dstRgn.

SectRgn(srcRqnA, srcRgnB, dstRgn)

RgnHandle srcRqnA,srcRgnB,dstRgn;

The UnionRgn Procedure
UnionRgn calculates the union of srcRgnA and srcRgnB and places

the result in dstRgn. The RgnHandle dstRgn must have been previously
created with NewRgn. Either of the source regions may also serve as the
dstRgn.

UnionRgn(srcRqnA, srcRgnB, dstRgn)
RgnHandle srcRqnA,srcRgnB,dstRgn;

The DiffRgn Procedure
DiffRgn subtracts srcRgnB from srcRgnA and places the result in

dstRgn. It does not create the dstRgn; we must create it with NewRgn.
Either of the source regions may also serve as the dstRgn.

DiffRgn(srcRqnA, srcRgnB, dstRgn)

RqnHandle srcRqnA,srcRgnB,dstRgn;

The XorRgn Procedure
XorRgn calculates the difference between the union and the in

tersection of srcRgnA and srcRgnB and places the result into dstRgn. It does
not create the dstRgn; we must create it with NewRgn. Either of the source
regions may also serve as the dstRgn.

XorRgn(srcRqnA, srcRgnB, dstRgn)
RgnHandle srcRqnA,srcRgnB,dstRgn;

Drawing with QuickDraw 147

The PtlnRgn Function
PtlnRgn returns a true value if the pixel below and to the right of

the Point pt is enclosed by the specified region rgn. The function returns
false if pt is not enclosed.

char PtinRgn(pt, rgn)
Point pt;
RgnHandle rgn;

The RectlnRgn Function
RectlnRgn returns true if any bits of the Rect r are enclosed by

the region rgn. The function returns false if no bits are enclosed.

char RectinRgn(r, rgn)
Rect *r;
RgnHandle rgn;

The EqualRgn Function
EqualRgn returns true if the two regions rgnA and rgnB have ex

actly the same size, shape, and location. Otherwise, it returns false.

char EqualRgn(rgnA, rgnB)
RgnHandle rgnA,rgnB;

The EmptyRgn Function
EmptyRgn returns true if rgn is an empty region and false if the

region contains something.

char EmptyRgn(rgn)
RgnHandle rgn;

148 Using the Macintosh Toolbox with C
--- CH.5

Drawing Regions
To draw a region on the screen, we have the same five standard

drawing commands: Frame, Paint, Erase, Invert, and Fill. These routines
work exactly the same way they do with rectangles.

FrameRgn(rgn)

RgnBandle rgn;

PaintRgn(rgn)

RgnBandle rgn;

EraseRgn(rgn)

RgnBandle rgn;

InvertRgn(rgn)

RgnBandle rgn;

FillRgn(rgn, pat)

RgnHandle rgn;

Pattern *pat;

Defining and Drawing Pictures
A picture in QuickDraw is defined much in the same way as a

polygon. Just as a polygon is a series of line drawing routines, a picture
is a series of any QuickDraw procedures and functions. We call Open
Picture to begin the picture's definition and ClosePicture to end it. Any
QuickDraw routines called between OpenPicture and ClosePicture are
saved as the definition of the picture. When we begin our picture defini
tion, we specify an enclosing rectangle, called the picture frame, for our
picture. Later, when we go to draw the picture, we specify a destination
rectangle for our picture. The picture is scaled up or down so that the
border of the picture frame is the same size as the destination rectangle.

struct PI {

int picSize;

Rect *picFrame;
/* plus byte codes for picture content */
} ;

#define

typedef

typedef

Picture

Picture

PicPtr

struct PI

*PicPtr;

*PicBandle;

Drawing with QuickDraw 149

The picSize field contains the size of the picture in bytes. The picFrame is
the rectangle that encloses or frames the picture.

The rest of the structure contains a compact representation of
the drawing commands that draw the picture. The data structure is
variably sized-the last field can be any size depending on the com
plexity of the picture.

Defining Pictures
To begin our picture definition, we call the function OpenPicture.

OpenPicture returns a PicHandle to a new picture with the specified pic
Frame and tells QuickDraw to begin saving all drawing routines as part
of the picture definition. HidePen is called so that no drawing occurs on
the screen while the picture is being defined.

PicHand1e OpenPicture(picFrame)
Rect *picFrame;

To end the picture definition, we call ClosePicture. ClosePicture tells
QuickDraw to stop saving drawing commands as the definition of the
picture. ShowPen is called to balance the HidePen called by OpenPicture.

ClosePicture ();

Disposing of Pictures

To deallocate the memory used by a picture, we call the proce
dure KillPicture. An application should only call KillPicture when we are
completely through with the picture myPicture.

KillPicture(myPicture)
PicHanclle myPicture;

150 Using the Macintosh Toolbox with C
--- CH.5

Drawing Pictures
To draw a picture on the screen, we call the procedure Draw

Picture. The PicHandle myPicture identifies the picture to draw, scaled to fit
in the dstRect.

DrawPicture(myPicture, dstRect)
PicHandle myPicture;
Rect *dstRect;

Adding to a Previously Defined Picture
Once an application calls ClosePicture, the picture cannot be

reopened and added to. An application can however, in a rather tricky
manner, add to a picture that has already been defined. We simply open
a new picture with the routine OpenPicture and then draw the old picture
into the new picture. Now we can add anything we want to the old pic
ture since it is now the new picture. When we are through adding things
to the picture, we call ClosePicture, as usual.

Bit Transfer Operations
The two routines in this section allow an application to scroll or

copy a specified set of bits. The first routine, ScrollRect, scrolls the bits
inside the specified rectangle that intersect with visRgn, clipRgn, portRect,
and portBits.bounds.

ScrollRect(r, dh, dv, updateRqn)
Rect *r;
int
RgnHancUe

dh, dv;
updateRqn

The bits inside the specified rectangle r, are shifted a distance of dh
horizontally, and dv vertically. After the procedure, the updateRgn will be
the region that the bits were scrolled out of. This region will be filled
with the background pattern of the current graf Port. Before calling Scroll·

Drawing with QuickDraw 151

Rect, create the updateRgn with NewRgn. The sample program at the end
of Chapter 10 uses the routine ScrollRect to scroll bits around a window.

The second routine, CopyBits, allows an application to copy a set
of bits from one bitMap to another.

CopyBits(srcBits, dstBits, srcRect, dstRect, mode, maskRgn)
BitMap srcBits, dstBits;
Rect *srcRect, *dstRect;
int mode;
RgnHandl.e maskRqn;

CopyBits copies the bits enclosed by srcRect in the bitMap srcBits to the rec
tangle dstRect in the bitMap dstBits. The srcRect is scaled to fit the dstRect.
The srcRect must be specified in the coordinates of the source bitMap,
while the dstRect is in the coordinates of the destination bitMap. The mode
parameter indicates which of the eight source transfer modes is to be
used when the bits are copied. The bits that are copied may be clipped
by specifying a maskRgn parameter. If the maskRgn is NULL or OL, no
clipping will be performed.

Cursors
When you move the Mac's mouse around on a table, an image

(the cursor) moves around on the screen in a similar manner. The stand
ard cursor is an arrow pointing upward and to the left. It is possible,
however, to change the cursor to any shape that we choose. A good ex
ample of this is when the cursor changes to a wristwatch to indicate a
lengthy operation is taking place.

The cursor is a 16-by-16-bit square, defined as a 256-bit image.
A structure of type Cursor consists of three fields: a 16-word data field
which contains the cursor's image, a 16-word mask field which contains
the cursor's mask image, and a hotspot of type Point which aligns the cur
sor to the position of the mouse.

typedef struct {
short s[16);

} Bits16;

152 Using the Macintosh Toolbox with C
--- CH.5

struct C {

} ;

#define
typedef
typedef

Bits16 data;
Bits16 mask;
Point hotspot;

Cursor
Cursor
CursPtr

struct C
*CursPtr;

*Curs Handle;

The data and mask fields determine how the cursor will appear on the
screen in accordance with the chart in Figure 5 .21.

If all the mask bits are set to 1, then the cursor is opaque, and
none of the bits underneath it show through. If all the mask bits are set
to 0, then the cursor will appear "transparent"-pixels under the white
parts of the cursor will remain the same, while any pixels under the
black part will be inverted.

The hotspot is a Point in the cursor's 16-by-16-bit image that
aligns the cursor with the position of the mouse. Whenever the mouse is
moved, some low-level routines (handled by the system, not you), align
the cursor's hotspot with the new position of the mouse. The hotspot also
indicates exactly where the mouse button is clicked down. The pixel on
the screen that is aligned with the hotSpot of the cursor is the Point that is
placed in the where field of the event record whenever an event takes
place. For the standard arrow cursor, the hotspot is at Point (0,0). Fig
ure 5.22 shows the relationship between the cursor and its hotspot for the
standard arrow cursor.

The lnitCursor Routine
One of the first procedures we need to call in any application is

lnitCursor. It sets the cursor to the standard arrow cursor and makes the

Data Mask Resulting Pixel on Screen

0 1 White
1 1 Black
0 O Same as pixel under cursor
1 0 Inverse of pixel under cursor

Figure 5.21: Cursor Appearance Chart

Drawing with QuickDraw 153

cursor visible by setting the cursor level to 0. (A cursor level of 0 indi
cates that the cursor is to be visible; a negative number indicates that it
is to be invisible.) The cursor level is changed via the procedures Hide
Cursor and ShowCursor, to be discussed shortly.

Ini tCurso r () ;

The importance of calling lnitCursor or, as we will see in a moment, Set·
Cursor, is that when an application is double-clicked to start it up, the
cursor is changed to a wristwatch. The wristwatch cursor tells the user
"wait a moment" while the program is loaded from disk. When the pro
gram finally begins, unless we change the cursor to something else, it
will remain a wristwatch, and the user may sit there for quite a while
before realizing that there is no longer a need to "wait a moment."

The SetCursor Routine
In some applications, a cursor shaped differently than the stan

dard arrow is advantageous. We can set the cursor to any shape we want
with the procedure SetCursor. SetCursor changes the cursor to the one
stored in crsr. No change, however, is made to the cursor level. If the cur
sor was currently invisible, it will remain that way. When the cursor is
made visible, or if it already was visible, it will change to its new image.

SetCursor (crsr)

Cursor crsr;

Hotspot -----.-.-.-r""T""......-....,..."T""T--.-."""T'"'1.....,
(0,0)

Figure 5.22: The Standard Arrow Cursor and its Hotspot

154 Using the Macintosh Toolbox with C
--- CH.5

It is customary for the cursor to be changed to a wristwatch
whenever a lengthy operation must take place. A good example is disk
1/0. Whenever an application begins any substantial disk 1/0, it should
change the cursor to a wristwatch. When the operation is completed, the
cursor should be restored to another appropriate shape.

The GetCursor Routine
In the standard Macintosh System File, there are four prede

fined cursor shapes. A handle to any one of the four shapes, shown in
Figure 5.23, can be obtained using the GetCursor routine. An application
simply passes the number of the cursor it wants to GetCursor, and a han
dle to it is returned as the function value. The handle to the cursor can
then be used with the previously discussed routine SetCursor.

CursHandle GetCursor(cursorID)
int cursorID;

The HideCursor and ShowCursor Routines
To change the cursor level, making the cursor visible or in

visible, we use the routines HideCursor and ShowCursor. Each time we
call HideCursor, the cursor is made invisible and the cursor level is decre
mented. Each time we call ShowCursor, the cursor level is incremented.

tz> ~ + I
4 3 2

Figure 5.23: The Standard System Cursors

Drawing with QuickDraw 155

If the cursor level becomes 0, the cursor will become visible. Each call
to HideCursor should be balanced by a call to ShowCursor. If we call Hide
Cursor twice, ShowCursor will have to be called twice to make the cursor
visible again. The converse is not true. ShowCursor will not increment
the cursor level beyond 0, so multiple calls to ShowCursor will not re
quire multiple calls to HideCursor to make the cursor invisible again. One
call to HideCursor will always suffice to hide the cursor.

HideCursor ();

ShowCursor ();

The ObscureCursor Routine
There is one other way to make the cursor invisible, and that is

with a call to ObscureCursor. ObscureCursor makes the cursor invisible
until the next time it is moved. This can add a very nice touch to your
applications. In a word processing program for example, a user typing
in some text may find it annoying to have the cursor obscuring part of
the text on the screen. If ObscureCursor is used, the cursor will be in
visible when text is being typed. It isn't until the user attempts to do
something with the mouse that the cursor becomes visible again. The
Toolbox sort of tucks it away for us until we need to use it again.

ObscureCursor();

A Sample Program for QuickDraw
The application that follows demonstrates many of the routines

that we have discussed in the chapter. In addition, many of the other
sample applications in this book use QuickDraw routines.

156 Using the Macintosh Toolbox with C
--- CH.5·

/***/
/* Sample Application for Chapter 5: Drawing with QuickDraw */

/* *I
/* This application demonstrates several of the QuickDraw */
/* routines discussed in the chapter. It allows you to */
/* clear the screen, and perform the 5 drawing verbs on */
/* rectangles and ovals. The application can also switch */
/* the cursor to any of the 4 standard system cursors. */
/* The application also performs simple animation, */
/* defines the fills a polygon, and draws a picture that is */
/* stored in the resource fork of the application. */
/* */
/***/

/* Include Mac header files */
#include <QuickDraw.h>
#include <EventMgr.h>
#include <WindowMgr.h>
#include <MenuMgr.h>
#include <ToolboxUtil.h>
#include <stdio.h>

/* Menu Constants */
#define Desk_ID 100
#define Shape_ID 101
#define Cursor ID 102
#define Special_ID 103

/* SetUpMenus simply sets up each menu
and puts it in the menu bar */

SetUpMenus ()
{

MenuHandle
MenuHandle
MenuHandle

DeskMenu;
shapeMenu;
cursorMenu;
SpecialMenu; MenuHandle

long items, i;

/* Desk Accessory Menu - with disabled items until Ch. 13 */
DeskMenu = NewMenu (Desk_ID,"\p\24");
AddResMenu (DeskMenu, 'DRVR');
items= CountMitems(DeskMenu);

for(i=l;i<=items;i++) Disableitem(DeskMenu,i);
InsertMenu (DeskMenu, 0);

/* shape menu */
shapeMenu = NewMenu (Shape ID, "\pShapes");
AppendMenu (shapeMenu, "\pClear Screen; (-;Frame Rect;Paint Rect");
AppendMenu (shapeMenu, "\pErase Rect;Invert Rect;Fill Rect");
AppendMenu (shapeMenu, "\p(-;Frame Oval;Paint Oval;Erase Oval");

Drawing with QuickDraw 157

Appenc!Menu (shapeMenu, "\pinvert Oval;Fill Oval; (-;Quit");
Disableitem(shapeMenu,2);
Disableitem(shapeMenu,8);
Disableitem(shapeMenu,14);
InsertMenu(shapeMenu, 0);

/* Cursors Menu */
cursorMenu = NewMenu (Cursor_ID, "\pCursors");
Appenc!Menu (cursorMenu, "\pI-Beam;Cross;Plus;Watch;Arrow");
InsertMenu (cursorMenu, 0);

/* Special Menu */
SpecialMenu = NewMenu (Special_ID, "\pSpecial");
Appenc!Menu (SpecialMenu, "\pDraw Picture;Draw Polygon;Animation");
InsertMenu (SpecialMenu, 0);

DrawMenuBar () ;

/* main event loop */
main()
{

EventRecord theEvent;
WindowPtr whichWindow;
short

InitGraf(&thePort);
InitFonts ();
InitWindows () ;
InitMenus ();
InitCursor();

FlushEvents(everyEvent, NULL);

SetUpMenus();
while (1) {

windowcode;

if (GetNextEvent(everyEvent,&theEvent))
switch (theEvent.what) {

case mouseDown:
windowcode=FindWindow(theEvent.where,&whichWindow);
switch (windowcode) {

case inMenuBar:

break;

/* end of main() */

DoWhatTheMenuSays(MenuSelect(theEvent.where));
break;

158 Using the Macintosh Toolbox with C
--- CH.5

/* DoWhatTheMenuSays responds to each menu event */
DoWhatTheMenuSays(menuResult)

long menuResult;

short
Curs Handle
PicHandle
PolyHandle
Handle
Rect
Pattern

menuID, itemNumber,i;
theCursor;
thePicture;
thePolygon;
saucerl;
screen,theRect,iconl;
brickPat;

SetRect(&theRect,150,100,362,242);
SetRect(&screen,

screenBits.bounds.left,
screenBits.bounds.top + 20,
screenBits.bounds.right,
screenBits.bounds.bottom);

menuID = HiWord (menuResult);
itemNumber = LoWord (menuResult);

switch (menuID) {
case Shape_ID:

switch (itemNumber)
case 1:

EraseRect(&screen);
break;

case 3:
FrameRect(&theRect);
break;

case 4:
PaintRect(&theRect);
break;

case 5:
EraseRect(&theRect);
break;

case 6:
InvertRect(&theRect);
break;

case 7:
FillRect(&theRect,dkGray);
break;

case 9:
FrameOval(&theRect);
break;

case 10:
PaintOval(&theRect);
break;

case 11:
Eraseoval(&theRect);
break;

case 12:
InvertOval(&theRect);
break;

case 13:
FillOval(&theRect,ltGray);
break;

case 15:

break;

ExitToShell () ;
break;

/* each of the cursor selections pulls in
a cursor from the system resource fork
and makes it the current cursor */

case Cursor_ID:
switch (itemNumber) {

case 1:
theCursor = GetCursor(l);
SetCursor(*theCursor);
break;

case 2:
theCursor = GetCursor(2);
SetCursor(*theCursor);
break;

case 3:
theCursor = GetCursor(3);
SetCursor(*theCursor);
break;

case 4:
theCursor = GetCursor(4);
SetCursor(*theCursor);
break;

case 5:
InitCursor();
break;

Drawing with QuickDraw 159 ---

160 Using the Macintosh Toolbox with C
--- CH.5

break;

case Special_ID:
switch (itemNumber)

/* The first case prints a picture on the screen that is
stored in the resource fork of the application.
To create a PICT resource, cut or copy a picture
into the scrapbook, then with the Resource Editor,
go in and cut or copy the PICT resource out of the
scrapbook file and paste it into your application. */

case 1:
thePicture = GetPicture(l);
HLock(thePicture);
DrawPicture (thePicture, & ((**thePicture) . picFrame)) ;
HUnlock(thePicture);
break;

/* This case creates a brick pattern, and then a
triangular shaped polygon. The polygon is filled
with the brick pattern */

case 2:
StuffHex(&brickPat,"\p808080FF080808FF");
thePolygon = OpenPoly();

MoveTo(300,100);
LineTo(400,200);
LineTo(200,200);
LineTo(300,100);

ClosePoly();
FillPoly(thePolygon, &brickPat);
FramePoly(thePolygon);
KillPoly(thePolygon);
break;

/* The last case performs some simple animation.
The reason the icon does not have to be erased
is that its left edge has a couple columns of
white space that overwrite the previous drawing
on the screen. This reduces the flicker on the
screen. */

case 3:
HideCursor();
EraseRect(&screen);
SetRect(&iconl,-33,50,-1,82);
saucerl = Geticon(l);
Ploticon(&iconl,saucerl);
for(i=O;i<screen.right+32;i++)

OffsetRect(&iconl,1,0);
Ploticon(&iconl,saucerl);

Memory Management

In the previous three chapters we discussed how to create and
use windows and menus, and introduced the graphics capabilities of
QuickDraw. These are very important tools to have at our disposal as we
design the user interface for our application, but now it is time to move
on to some of the more advanced capabilities of the Toolbox, and in par
ticular one that lies at the heart of every program written for the
Macintosh.

Up to this point we have said very little about how the memory
of the Macintosh is organized or how it can best be used by an applica
tion program. The sample programs we have presented so far already
make extensive use of the Macintosh Memory Manager, yet there has
been no need to stop and explain how things actually happen. For the
most part, in fact, the Memory Manager operates automatically, without
any action required on the part of the programmer. Most of the activity
handled by the Memory Manager is generated by other parts of the
Toolbox rather than coming directly from the application. The Menu
Manager function NewMenu, for example, directs the Memory Manager
to set aside a section of memory to contain all of the information about
an item in the menu bar, without any conscious effort on the part of the
programmer.

This is an essential feature of the Macintosh Toolbox. The
power and versatility of memory management are available to the ap
plication programmer, but for the most part the application and the
programmer are insulated from the inner workings of the Memory
Manager.

In this chapter we will look first at the overall layout of the
memory of the Macintosh, with special focus on which portions of mem
ory are used by the operating system and which portions are available for
the application program. Next, we will examine some of the frequently

164 Using the Macintosh Toolbox with C
--- CH.6

used routines of the Memory Manager for allocating and releasing
blocks of memory. Along the way we will discuss some of the pitfalls
that programmers can avoid and offer some guidelines for safe and ef
fective use of the Memory Manager.

The Macintosh Memory Map
The memory of the Macintosh can be divided into three distinct

regions: low memory, high memory, and application memory (see Fig
ure 6.1).

Low memory contains global variables belonging to the Tool
box and operating system, the system heap, and the ROM (or RAM)

» ::,:;· '®Ml :
Sound Buffer

' ·. ·~ ~·:::···'. ~~. l.:: ;:::;: • . ,,
Screen Buffer

Application & OuickDraw
Globals

Stack

-- ----.-- - - --

1
Application Heap

System Heap

ToolBox Globals

Trap Dispatch Table

System Globals

68000 Trap Vectors

Figure 6.1: Macintosh Memory Map

-

-

--f-- topMem

High
Memory

Application
Memory

i Higher
Addresses

Low
Memory

-__ J_.OxOOOO

Memory Management 165 ---
locations of the Toolbox routines. High memory contains the screen and
sound buffers. Occasionally an application will need to know the value
of one of the system or Toolbox globals (for instance, the double-click.
time) that is not accessible through any of the Toolbox routines. In Ap
pendix C we have listed the locations of the system and Toolbox global
variables in low memory.

Application memory contains the application heap, the stack,
system global variables associated with QuickDraw, and the applica
tion's own global variables. Throughout this book we will deal almost
entirely with application memory. Let's take a closer look at the stack
and the application heap now.

The Stack

The stack, which is located at the top of application memory, is
a dynamic structure. As more space is needed, the stack grows from
higher addresses to lower ones-that is, toward the application heap.
The upper end of the stack begins at a fixed address which depends only
on the amount of memory installed in your Macintosh. Space on the
stack is allocated on a last-in first-out, or LIFO, basis. In other words,
recently allocated items must be released from the stack before attempt
ing to release an older item from the stack. Whenever a procedure or
function is called, additional space is allocated on the stack. As a routine
begins to execute, space for its local variables will be allocated on the
stack. This space will be released as the routine is exited. In addition,
roughly half of the routines in the Toolbox as well as several develop
ment systems expect their calling parameters to be passed on the stack.
(The alternative is to pass parameters in the registers of the 68000.)

One of the advantages of using a high-level language like Pas
cal or C is that manipulation of the stack is handled entirely by the
compiler. Typically the programmer does not need to worry about
the contents of the stack. There are occasions, however, when it be
comes necessary to manipulate the stack. An example of this can be
seen in Chapter 10, in the implementation of a scroll bar.

166 Using the Macintosh Toolbox with C
--- CH.6

The Heap

The heap is best described as a memory pool that is divided into
many chunks or blocks of varying sizes. Three types of blocks can be
found in the heap: relocatable blocks, nonrelocatable blocks, and free
or unallocated blocks. Every memory location in the heap will be a part
of only one such block. Figure 6.2 shows how these three types of
blocks might be distributed in a generic heap configuration.

You will have noted in our earlier discussion of the memory
map that there are actually two heaps: the system heap and the applica
tion heap. In fact, the Macintosh operating system is capable of handling
multiple heap zones, of which the system and application heaps are but
two examples. Throughout the remainder of this book, we will consider
only applications that utilize a single application heap zone.

A major difference between the application heap and the system
heap is that each time an application is launched, the application heap is ini
tialized (that is, erased and set back to the default size); thus any information
from the previous application will be lost. The system heap, on the other
hand, remains intact across the launching of different applications.

The application heap is important for several reasons. First
of all, the application code itself is stored in the application heap. In
addition, any memory allocated directly by the application through

' ' ' ,,, '' '' ' " " " " " " " " " " " , " " " , ,, , ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,

i Higher
addresses

~ nonrelocatable

relocatable

D free

Figure 6.2: Blocks of Memory in a Generic Heap

Memory Management 167 ---
the Memory Manager, or indirectly through the Toolbox, is located in
the application heap.

The Macintosh operating system uses the system heap to store
its own data, independent of the current application. It is possible for an
application to place objects in the system heap, although doing so takes
up precious space in the system heap and therefore cannot be recom
mended. In this book, we will only discuss manipulation of the
application heap, and we will refer to it generically as "the heap."

Relocatable and Nonrelocatable Blocks
As we learned a moment ago, the heap is divided into three

types of blocks: relocatable, nonrelocatable, and free. A free block con
sists of a range of memory not currently allocated; the block may have
been free since the current application was launched or it may have been
released back to the Memory Manager after the application no longer
needed its contents. In contrast, relocatable and nonrelocatable blocks
are portions of memory set aside by the Memory Manager for use by the
application.

A nonrelocatable block will be found at a fixed location
throughout its lifetime on the heap. An application refers to the contents
of a nonrelocatable block through the use of a pointer to the block. A
pointer is a variable containing the fixed address in memory of the
beginning of the data contained in the block (see Figure 6.3).

t Higher I addresses

Figure 6.3: Pointers and Nonrelocatable Blocks

168 Using the Macintosh Toolbox with C
--- CH.6

When an application requests space for a nonrelocatable block,
the Memory Manager will attempt to situate the block near the bottom
(toward lower addresses) of the heap to avoid the possibility of frag
menting the heap (we will discuss this in a moment). Whenever
possible, nonrelocatable blocks should be allocated early in the applica
tion program to ensure their placement near the bottom of the heap.

Relocatable blocks may be moved at the discretion of the
Memory Manager. Whenever an application releases a block of memory
from the heap-either directly through the Memory Manager, or in
directly through the Toolbox-this relocation can occur. The Memory
Manager will rearrange the heap while attempting to gather space for an
object that is larger than any of the available free blocks. This process is
known as heap compaction. When compaction occurs, the memory ad
dress of data contained in a relocatable block will change. To access the
data in a relocatable block, the application must use a handle to the data.
As we discussed briefly in the introduction to this book, a handle is
a variable that contains the location of a pointer to the data (a handle
is essentially a pointer to a pointer). The Memory Manager uses a spe
cial type of pointer called a master pointer in conjunction with handles
(see Figure 6.4). Master pointers are kept by the operating system in

t Higher
addresses

Figure 6.4: Handles, Master Pointers, and Relocatable Blocks

Memory Management 169

nonrelocatable blocks in the heap. When a relocatable block is moved,
the Memory Manager updates the appropriate master pointer to
reflect the new location of the block.

Heap Compaction and Fragmentation
As we just learned, the Memory Manager merges free blocks

scattered throughout the heap in a process known as heap compaction.
During a compaction, relocatable blocks are moved towards the bottom
of the heap (to lower addresses) in an attempt to merge free space at the
top of the heap. This process begins with the relocatable blocks near
the bottom of the heap. If there were no nonrelocatable blocks in the
heap, the Memory Manager would be able to merge all of the free space
into a single contiguous block at the top of the heap. However, the
Memory Manager cannot move a relocatable block around or over a
nonrelocatable one. Thus the presence of nonrelocatable blocks inter
feres with the attempt to move the relocatable blocks downward.

Fragmentation of the heap occurs whenever nonrelocatable or
locked relocatable blocks subdivide the heap into two or more pieces
(locked relocatable blocks will be discussed later in the chapter). Frag
mentation prevents the Memory Manager from merging free blocks to
form larger ones. In almost any imaginable situation the heap will be
partially fragmented since it is impossible to allocate all of the non
relocatable blocks side by side at the bottom of the heap. The
seriousness of fragmentation depends on how severely the heap is
divided by nonrelocatable blocks. In a badly fragmented heap, the
Memory Manager will be unable to merge the scattered free blocks,
even though the total amount of available space may be large. Figure 6.5
illustrates the appearance of the heap before and after compaction in the
case where the heap is only slightly fragmented. Notice the free block
stranded between the two nonrelocatable blocks near the bottom of the
heap. This block can only be used if the Memory Manager needs a block
of exactly its size or smaller.

Figure 6.6 shows the same heap configuration as Figure 6.5, ex
cept that we have added a nonrelocatable block near the middle of the
heap. In this more seriously fragmented case, the Memory Manager can
no longer merge together the majority of the free space in the heap.

170 Using the Macintosh Toolbox with C
--- CH.6

Before

Continuous

Free Space

~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~
,,,,,,,,,,,,,, ,,,,,,,,,,,,,,
'''''''''''''' ,,,,,,,,,,,,,
,,,,,,,,,,,,,
'''''''''''''' ,,,,,,,,,,,,,

After Compaction

Figure 6.5: The Unfragmented Heap Before and After Compaction

,,,,,,,,,,,,,,
''''''''''''' ,,,,,,,,,,,,,,

,,,,,,,,,,,,,,
''''''''''''' ,,,,,,,,,,,,,,

''''''''''''' ,,,,,,,,,,,,,,,
'''''''''''''

,,,,,,,,,,,,,,
, ... , ... ,, ', ... , '" ... , ... ,, ... , .. , ... , ... , ... , ',

,,,,,, ... ,,,,,,

Before

Fragmented
Free Space

,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,
'''''''''''''' ,,,,,,,,,,,,,
'''''''''''''' ,,,,,,,,,,,,,
''''''''''''''
'''''''''''''' < < < ... ; ... ; < < < ... ; < < < ... ; ' ,,,,,,,,,,,,,
'''''''''''''' ,,,,,,,,,,,,,
'''''''''''''' ,,,,,,,,,,,,,
''''''''''''''

Fragmented
Free Space

After Compaction

Figure 6.6: The Fragmented Heap Before and After Compaction

Memory Management 171

Using the Memory Manager
Many simple application programs will not notice the operation

of the Memory Manager. Heap compaction and memory allocation take
place with little or no direction from the application. In more complex
applications, however, the need will arise to allocate memory for an
array or structure that is not part of the Macintosh operating system. In
addition, when accessing the contents of relocatable blocks, it often be
comes necessary to communicate directly with the Memory Manager
(this topic is discussed later in this chapter under the heading "Deref
erencing"). For these reasons some knowledge of the routines in the
Memory Manager is essential. We will limit our discussion to only the
most frequently used routines.

Dereferencing: Using Pointers and Handles to
Access Data

To access a variable, structure, or structure field from its handle or
pointer, the application must dereference the handle or pointer; that is, the
application must follow the pointer or handle into memory to find the ac
tual memory location of the data of interest. Suppose that we have defined
a structure named Thing, and that we have declared variables corresponding
to a pointer and handle to a variable of type Thing, as follows:

struct Thing
int theint;

char theChar;

1ong theLong;

} ;

#define Thing struct Thing

typedef Thing *ThingPtr;

typedef ThingPtr *ThingHand1e;

Given this definition for the Thing structure and its contents, we
can construct the following, rather nonsensical, example in which we

172 Using the Macintosh Toolbox with C
--- CH.6

demonstrate various methods of using handles and pointers to a data
structure.

/* declare a local variable of type Thing and create a handle and
pointer to the variable */
Thing aThing;
ThingPtr aThingPtr;
ThingHandle aThingHandle;
/* Pass location of structure to a procedure */
aProcedure (&aThing); /*use address operator (&)*/
aProcedure (aThingPtr);
aProcedure (*aThingHandle) I* use indirection operator (*) */
/* Access individual field of the structure*/
theLongPart = aThing.theLong; /*use dot operator (.) */
theLongPart = aThingPtr->theLong; /* use arrow operator (->) */
theLongPart (*aThingPtr).theLong; /*or dereference pointer*/
theLongPart (*aThingHandle)->theLong;/* deference and

use arrow */
theLongPart = (**aThingHandle) .theLong; /* deference twice and

use dot */

The parentheses used when dereferencing handles and pointers are re
quired, since in C the structure operators dot (.) and arrow (->) take
precedence over the indirection operator(*).

Allocating, Disposing and Resizing of
Nonrelocatable Blocks

To allocate a nonrelocatable block on the application heap, use
the function NewPtr:

Ptr NewPtr(logicalSize)
long logical Size;

The parameter logicalSize specifies the size in bytes of the desired block.
NewPtr returns as its value a pointer to the new block if it was successfully

Memory Management 173

allocated, or NULL if it was not. The function NewPtr attempts to position
the nonrelocatable block as close to the bottom of the heap as possible by
moving relocatable blocks toward the top of the heap. Remember to cast
the generic pointer to the appropriate structure pointer before passing it to a
Toolbox routine or attempting to dereference the pointer to access the con
tents of the block.

To release the memory occupied by a nonrelocatable block, call
DisposPtr with a pointer to the block as the parameter:

DisposPtr(aPointer)
Ptr aPointer;

Releasing the block allows the Memory Manager to reclaim the space
occupied by the block.

The size of an existing nonrelocatable block can be obtained
from the function GetPtrSize by passing a pointer to the desired block:

long GetPtrSize(aPointer)
Ptr aPointer;

GetPtrSize returns the size of the block unless an error occurs, in which case
it returns NULL. The most common error involves passing a pointer that
does not point to any of the existing nonrelocatable blocks.

The size of an existing nonrelocatable block may be altered
with the procedure SetPtrSize. Pass a pointer to the block and the desired
size of the block, as follows:

SetPtrSize(aPointer, newSize)
Ptr aPointer;
long newSize;

This allows an application to expand, or shrink, the amount of memory
used to store its data. In C, the only universal way to determine if SetPtr·
Size succeeded in changing the size of the block (see the box entitled
"Determining if a Memory Manager Error Has Occurred") is to follow
up with a call to GetPtrSize.

174 Using the Macintosh Toolbox with C
--- CH.6

Determining if a Memory Manager Error Has Occurred

Many of the routines in the Memory Manager place a result or
error code into the DO register of the 68000 upon completion. For
many of the routines in the Memory Manager, it is necessary to in
spect this value to determine if the operation was carried out
successfully. Under Think C, the return value of any function is
placed in the DO register just prior to the conclusion of the function.
As such, no special manipulation is required to read the result or error
codes from Memory Manager routines. You can simply treat them as
return values.

A listing of the appropriate error codes for the routines of the
Memory Manager may be found in Appendix B.

Allocating, Dis~osing and Resizing
of Relocatable Blocks

The Memory Manager also contains routines for use with relo
catable blocks. These routines are similar to the ones used with non
relocatable blocks.

To allocate a relocatable block on the application heap, use the
function NewHandle, as follows:

Handle NewHandle(logicalSize)
long logicalSize;

The parameter logicalSize once again specifies the size in bytes of the
desired block. NewHandle returns as its value a handle (equivalent to a
char**) to the new block if it was successfully allocated, or NULL if it
was not. NewHandle will position the relocatable block near the top of the
heap and will, if necessary, compact the heap to merge sufficient free
space for the new block. Before using the generic handle returned by
NewHandle in a Toolbox routine, or to access the contents of the
relocatable block, remember to cast the handle to a specific structure
handle.

Memory Management 175

To release the memory occupied by a relocatable block back to
the Memory Manager, call DisposHandle with a handle to the block as the
parameter:

DisposHandle(aHandle)

Handle aHandle;

The size of an existing relocatable block can be obtained from the func
tion GetHandleSize by passing a handle to the desired block:

long GetHandleSize(aHandle)
Handle aHandle;

GetHandleSize returns the size of the block, or NULL if an error occurs.
The most common error again involves passing a handle that does not
correspond to any existing relocatable block.

The size of an existing relocatable block may be increased or
decreased with the procedure SetHandleSize. Pass a handle to the block
and the desired final size of the block as the parameters:

SetHandleSize(aHandle, newSize)
Handle aHandle;

long newSize;

Properties of Relocatable Blocks
A relocatable block can be temporarily locked to prevent its

movement during a memory compaction. It is often necessary to lock a
relocatable block when a Toolbox routine will access some part of its
contents. Furthermore, in time-critical portions of an application, it may
be desirable to access the contents of a block through a pointer instead
of a handle, since using a pointer rather than the handle removes one
level of indirection and results in faster execution. Whenever a pointer
is being used to access the contents of a relocatable block, the block
must be locked in case memory is compacted. Be certain to unlock the

176 Using the Macintosh Toolbox with C
--- CH.6

block after the relevant portion of the application has been completed to
allow memory compaction to occur properly.

To lock or unlock the block with the handle aHandle, use the fol
lowing procedures:

HLock(aHancile)
Hancile aHancile;

HUnlock(aHancile)
Handle aHandle;

By default, the Memory Manager creates unlocked relocatable blocks.
In memory critical situations that occur when you are trying

to fit a large application into a small amount of memory, it may be
convenient to allow the Memory Manager to purge the contents of a re
locatable block. A block should be marked as purgeable only if the
contents of the block can be easily reconstructed and then only when
the application is nearly out of memory. The Memory Manager will
only reclaim the space occupied by a purgeable block if it has ex
hausted all other means of obtaining free space.

To mark a relocatable block as either purgeable or unpurgeable
(relocatable blocks are created as unpurgeable), use the procedures:

HPurge(aHancile)
Handle aHancile;

HNoPurge(aHancile)
Hancile aHancile;

If a block has been marked as purgeable, you must determine if it has ac
tually been purged before attempting to access its contents. The Memory
Manager will place the value NULL into the block's master pointer before
purging the block. Thus if the handle points to a NULL master pointer, the
block has been purged. Attempting to access the contents of a block whose
master pointer has the value NULL will produce unpredictable results. In
terpreting NULL as a pointer leads to address zero at the bottom of system
memory. This is where system global variables are stored. Therefore, if you
write to it, the system will probably crash. If the block has been purged, the
application should instead reallocate the block and reconstruct its contents
before proceeding. Since the block's master pointer is not released when
the block is purged, the application should always reallocate the block

Memory Management 177

using the existing master pointer, instead of creating a new block with
NewHandle. Use the procedure

ReallocHandle(aHandle, logicalSize)
Handle aHandle;
long logicalSize;

to reallocate space using the existing master pointer for the relocatable
block that has been purged.

The Dangers of Dangling Pointers
One of the most common errors made when working with

memory management involves creating and dereferencing a dangling
pointer. The danger of a dangling pointer exists whenever the applica
tion dereferences a handle to a relocatable block and then passes the
resulting pointer or absolute memory location to a Toolbox routine, or
worse yet makes a local copy of the dereferenced handle. If the Memory
Manager compacts the heap and relocates the block, the pointer created
by the application will be left dangling; in other words, the pointer will
no longer point correctly to the data in the block. Figure 6. 7 illustrates
this situation. Before compaction, both the master pointer and the
application's copy correctly point to the data in the relocatable block.
After the compaction, the master pointer has been updated by the
Memory Manager to reflect the new position of the relocatable block
while the application's copy still reflects the old position of the block.

Most often dangling pointers are created when the application is
passing a pointer to a structure, which is located in a relocatable block,
to a Toolbox routine. If the Toolbox routine causes a memory compac
tion before it finishes with the structure, the pointer passed to the routine
may become invalid. To avoid dangling pointers, the application should
lock the relocatable block in memory before calling a Toolbox routine
with a dereferenced handle. It is important to remember to unlock the
block as soon as the application has finished calling the routine or
routines that require a dereferenced handle-and may cause a heap
compaction-since the locked block may fragment the heap.

Let's take a look at two examples leading to the creation of dan
gling pointers, along with the appropriate remedies. The first example

178 Using the Macintosh Toolbox with C
--- CH.&

illustrates the more obvious case where the application itself uses the
dangling pointer.

I* EXAMPLE 1:
- usinq local copy of master pointer */
/* dereference handle to qet a pointer to the data */
1oca1ThinqPtr = *aThinqBandle;
/* call a procedure which may cause a heap compaction */
RiskyProcedure();
/* if RiskyProcedure caused a memory compaction
- 1oca1ThinqPtr becomes a danqlinq pointer
- the next operation usinq it will be boqus */
theLonqPart = 1oca1ThinqPtr->theLonq;
/**/
/* Solution A: Don't make a copy of the dereferenced handle! */
someThinq = (*aThinqBandle)->theint;
RiskyProcedure();
theLonqPart = (*aThinqHandle)->theLonq; /*dereference here

aqain! */
/* Solution B: If you must copy the master

pointer-lock the handle */
HLock(aThinqBandle);
1oca1ThinqPtr = *aThinqBandle;

Pointer

Handle

~,~~ .. ~·'·'-~,,,
~,~,: Data '~'~'

I .. , ~, ~ ... ~, ~, ~, ~, ~, ~, ~, ~ ... ~

I_. ~:~ointe(~ 1--

Handle,
Master Pointer, and

Dereferenced Pointer

, ,','.,/,',',' .. ;',',',',
~ ~~ ~ Data ~~ ~~ ~ ... '~'~',',',',',',',

.........., ~~

Handle,
Master Pointer, and

Dangling Pointer
after Heap Compaction

Figure 6.7: Dangling Pointers Caused by Heap Compaction

RiskyProcedure();
theLongPart = (aThingHandle)->theLong;
HUnlock(aThingHandle);

Memory Management 179

The second example passes a pointer to a structure, which is
contained within a relocatable block, to a Toolbox routine that may
cause a heap compaction. This is the most common way of inadver
tently creating a dangling pointer. In this case the error is likely to occur
within the Toolbox routine itself. This example should be a familiar one,
as it first appeared in the sample program used in Chapter 3.

/* EXAMPLE 2:

- passing structure pointer to a Toolbox routine */
/* Erase the window content, pass boundsRect to EraseRect
- the boundsRect is contained in the relocatable
- block used to store the content region */
/* get handle to content region first */
contRgnHnd = theWindowRec.contRgn;
/* pass pointer to boundsRect
- note that handle is dereferenced in the process */
EraseRect (&(*contRgnHnd)->rgnBBox);
/* even an innocuous routine like EraseRect can cause
a heap compaction. If this occurs, the pointer
to the boundsRect becomes invalid */

/**/
/* Solution: lock relocatable block before dereferencing */
contRgnHnd = theWindowRec.contRgn;
HLock(contRgnHnd);
EraseRect (&(*contRgnHnd)->rgnBBox);
HUnlock(contRgnHnd);

Miscellaneous Routines
The Memory Manager also contains several routines designed to

report on the available space in the heap, or to explicitly compact the heap.
To determine the total amount of free space in the application

heap, call the function FreeMem:

long FreeMem ()

180 Using the Macintosh Toolbox with C
--- CH.6

Note that allocating a block equivalent to the total amount of free space
in the heap is not usually possible because of the fragmentation caused
by nonrelocatable and locked relocatable blocks.

The size of the largest block that can be allocated after memory
compaction can be determined with the function MaxHeap:

long MaxHeap ()

The application can perform a memory compaction explicitly
(as opposed to the compactions performed indirectly by the Memory
Manager as it gathers free space) with the function CompactMem:

long CompactMem(cbNeeded)
long cbNeeded;

Here the parameter cbNeeded specifies the amount of free space that the
Memory Manager should attempt to gather in one place. CompactMem
moves relocatable blocks downward in the attempt to gather free space
near the top of the heap. The result returned from CompactMem is the size
of the largest free block available after the compaction.

If the application contains a relocatable block that will be locked
for long periods of time, the block should be placed near the bottom of the
heap. In contrast to CompactMem, the procedure ReservMem moves relo
catable blocks upward in an attempt to gather free space near the bottom
of the heap:

ReservMern(cbNeeded)
long cbNeeded;

If necessary, ReservMem will purge blocks from the heap in order to free
the specified amount of memory. Following ReservMem with a call to
NewHandle results in locating the block near the bottom of the heap.
Recall that a locked relocatable block acts just like a nonrelocatable
block in fragmenting the heap. Locating the block near the bottom of the
heap with the nonrelocatable blocks, however, minimizes the extent to
which a locked block can cause fragmentation.

The final Memory Manager routine we will discuss is a general
purpose utility for copying an arbitrary portion of memory. BlockMove
copies a specified number of bytes from one memory location to another.

Memory Management 181

BlockMove(sourcePtr, destPtr, byteCount)

Ptr sourcePtr, destPtr;
lonq byteCount;

Here the parameter sourcePtr specifies the starting location in memory of
the source of data to be copied, while destPtr is the starting location for
the destination, and byteCount is the number of bytes to be copied. You
can use BlockMove whenever the application needs to copy a data struc
ture, and thus avoid having to copy each field separately.

Here is an example of copying the contents of one structure
variable into a block allocated on the heap:

/* locally defined variables */

WindowRecord theWindowRec;
WindowPeek copyOfTheWR;

I* allocate a nonrelocatable block of the riqht size
- remember to cast generic pointer */

copyOfTheWR = (WindowPeek) NewPtr(sizeof(WindowRecord));

/* make a copy of theWindowRec */

BlockMove(&theWindowRec, copyOfTheWR, sizeof(WindowRecord));

C Language Equivalents

If you leaf through the Think C Standard Libraries Reference
book, you will discover that the storage library offers some functions
which seem to do much the same things as the Memory Manager func
tions do. In some cases, it might not be obvious which to use for a
particular application.

In fact, these functions call the Memory Manager directly.
Thus, for example, the malloc function, which allocates memory under
any C language environment, is equivalent to the NewPtr function of the
Mac's Memory Manager. The C language functions are provided with
Think C to make it easier to port source code from other computers to
the Mac, and to subsequently recompile it with a minimum of changes.

182 Using the Macintosh Toolbox with C
--- CH.6

Good arguments can be constructed for using the C language
storage functions rather than the direct Memory Manager calls when
ever possible. A program which uses malloc rather than NewPtr, for
example, will be easier for a C programmer not familiar with the Macin
tosh to read at some future time. It will also be a lot easier to port out of
the Mac, if you want to run it on a different machine.

In practice, the C language storage functions don't provide
equivalents for most of the useful functions of the Memory Manager in
any case, and their use doesn't come up that often. They can't allocate
relocatable blocks, for example. On the other hand, C provides a func
tion called calloc which will allocate a non-relocateable buffer to hold an
array of structs and clear it, all with one call. Since this is something
which comes up a lot in C programs, it's a useful thing to know about.

C also provides you with memory movers. The movmem func
tion, in the unix library of Think C, is equivalent to the Memory
Manager's BlockMove function. Again, it's useful principally for reasons
of portability.

There's a trap in porting code from other machines to the
Macintosh involving this function. The equivalent to movmem under
many IBM PC C language compilers is memcpy, and it's an easy proce
dure to simply replace one with the other, or to use a #define statement
to have the compiler do the work for you. However, most implementa
tions of memcpy copy in the opposite direction to movmem, that is, the
source and destination arguments are reversed. Watch for this.

No Example
In contrast to our usual procedure, we will not wrap up our dis

cussion of memory with an example demonstrating the Memory
Manager per se. It would be difficult to present a very meaningful ex
ample without the surrounding context of a sample application. Instead,
in the upcoming chapters the programming examples will be sprinkled
with routines from the Memory Manager. Pay particular attention to the
way in which these routines are used in conjunction with other Toolbox
routines. Mastering the use of the Memory Manager will be an impor
tant step in writing any application.

Now that we have a little more of the fundamentals of the Tool
box under our belts, we are ready to move on to a more challenging
topic-the use of multiple windows.

I

I ---------r---
~ I I

I
+ / I

I I
L I

--.. --.. I

--- --- --- I
--- +---

\

I
I

)(I

~
+I

Using Multiple Windows

In Chapter 3 we learned the basics skills required to manipulate
a single window on the desktop. This chapter concludes our discussion
of the Window Manager by covering the slightly more complicated
situations that can arise when multiple windows are present on the
desktop. Reading this chapter will enable you to write an application
that has one or more windows, in addition to dialogs, alerts, and desk
accessories.

The interaction between multiple windows produces the two
types of events we discussed briefly in Chapter 2: namely, activate and
update events. Activate events result from changes in the front-to-back
ordering of the windows. Update events indicate that a previously
obscured portion of a window has become visible and must now be
redrawn. In this chapter we will describe in detail and also provide ex
amples of the ways in which an application should respond to activate
and update events.

In addition to discussing activate and update events, this chap
ter will include information on manipulating update regions from within
the application. Several miscellaneous topics-for example, determin
ing the size and type of a window, manipulating the refCon field, and the
use of double-clicks in the title bar to resize a window (a feature found,
for instance, in Microsoft Word and Excel)-are covered at the end of
this chapter.

186 Using the Macintosh Toolbox with C
--- CH. 7

Activate Events
When multiple windows are present on the desktop, the

frontmost window is referred to as the active window, while any remain
ing windows are called inactive windows. The active window is set
apart by highlighting the title bar (if indeed the window contains a title
bar). In addition, a window may contain controls (scroll bars, buttons,
check boxes, and so on) or other features (for example, a flashing text
insertion point) whose appearance should change as the window chan
ges between its active and inactive states.

In Chapter 3, we learned to bring a window to the front of the
desktop with SelectWindow w.hen a mouse-down event occurs in the con
tent region of an inactive window. The Window Manager will
automatically highlight the title bar of the newly activated window, then
determine which window should be deactivated, automatically unhigh
lighting its title bar. Other operations necessary to transform the
appearance of a window from the active state to the inactive state, or
vice versa, must be performed explicitly by the application. All of the
routines of the Window Manager that affect the order of windows on
the desktop will generate and post the appropriate activate events to the
Macintosh's event queue automatically. Figure 7.1 shows what happens
when two windows containing text, scroll bars, and other controls
change their front-to-back order on the desktop. The process occurs in
two stages, beginning with the original desktop as shown in Figure 7 .1 a.
In the first step, the application calls SelectWindow, which highlights or
unhighlights the title bars of the windows (see Figure 7 .1 b) and posts the
activate events to the event queue. The process is completed when
the application receives and processes the activate events generated by
SelectWindow, taking actions appropriate to the contents of the individual
windows, as shown in Figure 7 .1 c.

Information concerning which windows have been activated or
deactivated is passed to the application in the form of an activate event.
In Chapter 2 we learned that when the Event Manager function GetNext
Event returns an activate event, the message field of the EventRecord will
contain a pointer to the window to be activated. Bit zero, the least sig
nificant bit, of the modifiers field will have a true value if the window
should be activated, or a false value if it should be deactivated.

~D Untitled

The application itself
must actiuate or dea
the window contents JiJiJi

~,~~:.~~,=~::.~· .. II~
(Panic)

Using Multiple Windows 187

Untitled

The application it!
must activate or d
the window conte
when it receives 2

Activate event.

(Punic)

a. - Two windows on the desktop

Untitled

The application itself
must actiuate or dea
the window contents iJJJJJ

when it receiues an mm
Rctiuate euent. !!iii!

(Panic)
!:·1·1

::o Untitled

The application it!
must activate or d
the window conte
when it receives 2
Activate event.

(Pirnie)

b. - After SelectWindow activates the window on the left. Note that the
window's contents do not yet reflect their new position on the desktop

Untitled

The application itself
must actiuate or dea
the window contents
when it receiues an
Rctiuate euent.

(Punic)

~D Untitled

The application it!

~~st activate or dlilili
when it receives 21!1!1!
Activate event. :,!ji:

c. - Final appearance of the windows after the application
activates or deactivates the contents of the windows

Figure 7.1: Activate Events and the Appearance of the Desktop

188 Using the Macintosh Toolbox with C
--- CH. 7

The following example is based on a portion of the main event
loop of a typical application. Upon receiving an activate event, the ap
plication first determines which window will be affected and then
whether the window will be activated or deactivated. Once this has been
determined, the application can then modify the contents of the window
to reflect its new position on the desktop.

/* locally defined variables */
EventRecord theEvent;
WindowPtr actWindow;
I* constant from Window Manager header file
activeFlaq = OxOOOl */
I* portion of switch on event type from GetNextEvent */
case activateEvt:

/* determine windowPtr for window,
set as current qrafPort */

actWindow = theEvent.messaqe;
SetPort(actWindow);
/* activate or deactivate the window? */
if(theEvent.modifiers & activeFlaq) {

} else {

break;

/* activate window controls, text items, etc.
- redraw size box if appropriate */

/* deactivate window controls, test items, etc.
- redraw size box if appropriate */

In Chapters 8 and 9, where we will discuss TextEdit and con
trols, we will see examples of activating and deactivating windows
containing text items, scroll bars, and buttons.

Update Events
In addition to the need to activate and deactivate windows, ap

plications using multiple windows entail the need to redraw the contents
of a window when its position changes relative to the other windows on
the desktop. When the application brings a partially obscured window
to the front of the desktop, in effect, it must redraw the previously

Using Multiple Windows 189

obscured region, in addition to performing the actions required to ac
tivate the window.

This whole situation is clearer if we isolate the update process
from that of activation. In Figure 7.2 we show two overlapping windows
before, during, and after the lower window is moved. While moving the
lower window in this way does not disturb the front-to-back ordering of
the windows, it does require that a part of the lower window be redrawn.
The Window Manager routine used by the application to change the
relative position of the windows will post the appropriate update events
to the event queue. Figure 7 .2a shows the desktop just prior to the move
ment of the window. In Figure 7 .2b we see the appearance of the
desktop after the window has been moved but before the application has
redrawn the necessary portion of the window (the region that needs to
be redrawn is known as the update region). Finally, in Figure 7.2c we
see the desktop after the application has received the update event and
has redrawn the contents of the lower window.

As is the case for activate events, when the function GetNextEvent
reports an update event, the WindowPtr for the appropriate window can be
found in the message field of the EventRecord. The Window Manager keeps
track of exactly which portion of each window needs to be redrawn in the
window's update region, which is stored in the updateRgn field of the
window's WindowRecord. Typically it is easier for the application to redraw
the entire window, instead of just the update region, because of the com
plications involved in determining how to redraw only the contents of the
update region. However, in certain situations you can easily specify that the
application redraw only the necessary portions of the window and thereby
speed up the update process significantly.

Update events are not posted to the event queue in the same way
that other types of events are posted. Instead, the operating system peri
odically examines all of the visible windows on the desktop to determine
if any of the windows require updating. If one or more of the windows
contain a nonempty update region, the operating system will report,
through the next GetNextEvent call, an update event. Update events are
reported in the front-to-back order of the windows if multiple windows
need to be updated. The application will thus be asked to redraw the
frontmost windows first, since they contain the most visible information.

190 Using the Macintosh Toolbox with C
--- CH. 7

§0 Untitled

The opplicotion itself
must redraw the
window contents
when it receiues on
Updat~ euent.

~§0 Untitled

The opplicotion itself
must redraw the

ish Window

update
region

a. - Overlapping windows
on the desktop

b. - The same windows after the lower window has been moved.
Notice the update region which must be redrawn

§0 Untitled

The opplicotion itself
must redraw the
window contents
when it receiues on
Updot~ euent.

c. - Final appearance after the application has redrawn the update region

Figure 7.2: Update Events and the Appearance of the Desktop

Using Multiple Windows 191

Redrawing the Window
Before we discuss the details of redrawing a window, you

should note that we will often be drawing in an inactive window. In
order to draw in an inactive window, the application must first make the
window to be updated the current grafPort, since drawing can only take
place in the current graf Port. After the drawing is completed, the graf Port
should be restored to its previous value so that the application can con
tinue to work in the active window.

The Window Manager provides procedures for informing the
operating system that the application has begun and completed the up
date for a particular window. The procedure BeginUpdate, as the name
implies, should be called to begin the update process:

BeginUpdate(theWindow)

WindowPtr theWindow;

BeginUpdate replaces the region describing the visible portion of the win
dow, the visRgn, with the intersection of the visible region and the update
region, and then sets the update region to zero. The application can
redraw the visible region of the window, which now contains the visible
portion of the update region. Setting the updateRgn to zero prevents the
update event from being reported again.

When the application completes the update process, call End·
Update to restore the visible region of the window to its usual value:

EndUpdate(theWindow)

WindowPtr theWindow;

The following example was taken from the portion of the event
loop responsible for handling update events. The application saves the
current graf Port before changing the graf Port to the update window. The
actual commands used to redraw the window are placed between the
Begin Update and EndUpdate calls. Afterwards, the current graf Port is res
tored to its previous value.

/* locally defined variables */
EventRecord theEvent;

WindowPtr updateWindow;
GrafPort theCurrentPort;

192 Using the Macintosh Toolbox with C
--- CH.7

/* portion of switch on event type from GetNextEvent */
case updateEvt:

/* save current port */
GetPort(&theCurrentPort);
/* qet WindowPtr to be updated, set as current port */
updateWindow = theEvent.messaqe;
SetPort(updateWindow);
/* beqin update process */
BeginUpdate(updateWindow);
/* redraw contents of updateWindow */
EndUpdate(updateWindow);
/* restore current port */
SetPort(theCurrentPort);
break;

Manipulating the Update Region

The update region of each window on the desktop is maintained
automatically by the Window Manager. Since the Window Manager has
no way to determine the exact contents of each window on the desktop,
it may be necessary for the application to modify the automatically
determined update region.

A simple example involves a document window containing a
size box and scroll bars. Since the scroll bars and size box are an option
al part of a document window, the Window Manager will not consider
their possible presence when determining the update region. Figure 7 .3
illustrates both the problem that occurs when such a window is resized,
and the appropriate solution.

In this example the application must add the area formerly oc
cupied by the scroll bars and size box to the update region for the
window. If instead the window were made smaller, the area to be oc
cupied by the new scroll bars and size box would have to be added to the
update region. Whether the window is made larger or smaller, once
the new scroll bars and size box have been redrawn, the area they oc
cupy should be removed from the update region. If you choose to have
your application redraw the entire window in response to an update
event, then erasing the content region of the window prior to redrawing

Using Multiple Windows 193

will provide the desired result. Note that this is basically the same tech
nique we used to resize the window in the program sample at the end of
Chapter 3.

The Window Manager provides four procedures for modifying
the update region of a graf Port. Rectangles or regions, specified in local
coordinates, may be accumulated or removed from the update region of
the current graf Port. To add to the update region, use either lnvalRect to
add the rectangle specified by the parameter badRect or lnvalRgn to add

a. A Typical window on the Desktop

c. The final appearance of the window if only the update
region calculated by the Window Manager is redrawn.

b. The window is resized. The gray area indicates the
update region calculated by the WindowManager

d. The final appearance of the window if the area formerly
occupied by the scroll bars and size box are added to

the update region before it is redrawn.

Figure 7.3: Manipulating the Update Region

194 Using the Macintosh Toolbox with C
--- CH. 7

the area specified by badRgn:

InvalRect(baclRect)
Rect *baclRect;

InvalRgn(baclRgn)
RgnHandle baclRgn;

To subtract from the update region, use either ValidRect to subtract the
rectangle specified by goodRect or ValidRgn to subtract the area specified
by goodRgn:

ValidRect(gooclRect)
Rect *gooclRect;

ValidRgn(gooclRgn)
RgnHandle gooclRgn;

In a situation like that shown in Figure 7.3, the application
should remove the area occupied by the new scroll bars and size box
from the update region to avoid either having to redraw or overwriting
this area. Remember that these routines can only modify the update
region of the current graf Port. The application will have to change the
current graf Port to the window whose update region it needs to modify.

Programming Techniques
In this section we present a series of short topics related to using

multiple windows in an application. These topics, which at first glance
may seem unrelated, are an important part of building our knowledge of
the Toolbox into an application program. Many of these ideas will ap
pear in the program examples in the upcoming chapters.

Obtaining the Size of a Window

To perform many of the calculations involved in manipulating
windows, it is necessary to know both the size of the content region of a
window and also its position on the desktop. To make a local copy of the

Using Multiple Windows 195 ---
bounding rectangle of the content region found in the WindowRecord for
the window, we can make use of the BlockMove procedure discussed in
Chapter 6. The following procedures will copy the dimensions of a win
dow into the rectangle pointed to by the parameter theSize. LocWindowSize
returns the dimensions in the local coordinates of the window itself,
while GlobWindowSize returns them in the global coordinates of the
desktop.

LocWindowSize(tempWindow, theSize)
WindowPtr tempWindow;
Rect *theSize;

I* Procedure to copy size of a window's content reqion in LOCAL
coordinates of window*/

I* copy window's portRect from its GrafPort */
BlockMove(&tempWindow->portRect, theSize, sizeof(Rect));

GlobWindowSize(tempWindow, theSize)
WindowPtr tempWindow;
Rect *theSize;

I* Procedure to copy size of a window's content reqion in GLOBAL
coordinates */

GrafPtr theCUrrentPort;
LocWindowSize(tempWindow, theSize);
/* chanqe qrafPort to tempWindow */
GetPort(&theCurrentPort);
SetPort(tempWindow);
/* convert Rect to qlobal coordinates - as two Points */
LocalToGlobal(&theSize->topLeft);
LocalToGlobal(&theSize->botRiqht);
I* restore qrafPort */
SetPort(theCurrentPort);

These procedures will be used in the examples throughout the re
mainder of this chapter as well as in upcoming chapters.

196 Using the Macintosh Toolbox with C
--- CH. 7

Determining the Type or Creator of a Window
In an application that includes desk accessories, dialogs, and

alerts in addition to the usual types of application windows, it may be
useful to determine to which of these categories the active window
belongs. The WindowRecord for each window contains a windowKind field
that contains a constant value describing the type or creator of the win
dow. Possible values of the windowKind field are listed in Figure 7.4.

As an example, suppose that at some point an application needs
to determine what type of window is at the front of the desktop. The ap
plication could use the following skeleton example to determine the
type of a window.

/* excerpt used to determine windowKind of front window */

/* locally declared variables */
WindowPtr theFrontOne;

short theFrontKind;

/* Get WindowPtr of front window */
theFrontOne = FrontWindow();

/* Get the windowKind - cast WindowPtr as WindowPeek to access

WindowRecord */
theFrontKind = ((WindowPeek) theFrontOne)->windowKind;

I* do som~thing depending on what the windowKind is */
switch(theFrontKind) {

case dialogKind:

/* a dialog or alert window */
break;

case userKind:

windowKind

<0
1
2 dialogKind

3-7
8 userKind

>8

Meaning

System Window
reserved
Dialog or Alert Window
reserved
Application Window
User- Defined
Application Window

Figure 7.4: The Meaning of windowKind Values

Using Multiple Windows 197

/* an ordinary window created by our app1ication */
break;

defauit:

if(theFrontKind < 0) {

/* a desk accessory */
eise if(theFrontKind > 8) {

/* a custom window type be1onging to our

app1ication */
} eise

/* oops, somebody used a reserved type!

*I

break;

Using the Window refCon Field
The WindowRecord of every window contains a 32-bit field

designed to be used by the application for keeping track of some quan
tity associated with the window. For instance, you may want to associate
a string of characters or other data to each window in an application. If
you place a pointer or handle to this data in the refCon field, the applica
tion can easily retrieve the data associated with each window.

To store the value to be associated with a particular window into
the refCon field, use the function SetWRefCon, as follows:

SetWRefCon(theWindow, data)

WindowPtr theWindow;

1ong data;

To retrieve the value associated with a window, call the function Get·
WRefCon, as follows:

iong GetWRefCon(theWindow)
WindowPtr theWindow;

The example at the end of this chapter demonstrates the use of these
routines. In the more ambitious sample application program of Chap
ter 8, we use the refCon field to store a handle to a structure containing
information about each of several windows.

198 Using the Macintosh Toolbox with C
--- CH. 7

Windows Containing QuickDraw Pictures
The Window Manager allows the contents of any window to be

either explicitly drawn by the application or specified by a QuickDraw
picture. If the contents of a window do not change and can be drawn
with a series of QuickDraw commands, the commands can be grouped
together as a QuickDraw picture. (Refer to Chapter 5 for a complete dis
cussion of the data type Picture.) The process of updating the contents of
a window specified as a picture is quite different from the process used
for ordinary windows. Instead of generating an update event for the por
tion of the window that needs to be redrawn, the Window Manager can
immediately redraw the window contents by calling the QuickDraw
procedure DrawPicture.

In order to inform the Window Manager that the contents of a win
dow are described by a QuickDraw picture, the application should call the
procedure SetWindowPic with the appropriate PicHandle, as follows:

SetWindowPic(theWindow, pie)
WindowPtr
PieHandle

theWindow;
pie;

SetWindowPic stores the picture handle in the windowPic field of the Win
dowRecord. If the contents of the window are subsequently drawn, the
Window Manager will redraw the picture instead of generating an up
date event. To obtain a handle to the picture describing the contents of
such a window, call the function GetWindowPic:

PieHandle GetWindowPic(theWindow)
WindowPtr theWindow;

Using the Toolbox Window List

The Window Manager keeps track of all of the windows on the
desktop in a linked list of WindowRecords called the window list. In addi
tion to the information about the window, each WindowRecord in the list
contains a pointer to the next WindowRecord in the list. The order of the
windows in the list is the same as the front-to-back order of the windows
as they appear on the desktop (note that one or more of the windows in

Using Multiple Windows 199

the list may be invisible to the user). The last item in the list-the win
dow furthest back on the desktop--contains a NULL pointer to the next
window. A pointer to the first window in the list is stored in a system
global variable named windowList.

In the course of debugging an application, or in the interest of
safety, you may wish to verify that a WindowPtr returned from a function
or procedure is a valid one. The function lsValidWindow searches through
the window list to find the particular window and returns a true value if
theWindow is contained in the list.

char IsValidWindow(tempWindow)

WindowPtr tempWindow;

/* determines if tempWindow is a valid window by searching

through the window list */

WindowPeek aWindow, testWindow;
/* define windowList to be the WindowPeek

in system global - at location Ox09D6 */

#define windowList *((WindowPeek *)Ox09D6)

/* cast tempWindow to WindowPeek */

testWindow = (WindowPeek) tempWindow;

/* start at beginning of list */

aWindow = windowList;
/* if we are not at end of list

- is this tempWindow ?

- if not then skip to the next window in list */

while(aWindow != NOLL) {

if(aWindow == testWindow)
return 1;

else
aWindow = aWindow->nextWindow;

return O; /* can't find tempWindow */

200 Using the Macintosh Toolbox with C
--- CH.7

A Programming Example: Using
Double-Clicks to Resize Windows

Up to this point, the only thing we have learned how to put in a
window is a QuickDraw picture. Windows that contain QuickDraw pic
tures, however, do not call for the use of update events since the
Window Manager causes these windows to be updated immediately.
Only when we have learned how to use TextEdit in a window will up
date events become necessary.

For this reason we will postpone presenting activate and update
events in the setting of a complete program until we discuss TextEdit in
Chapter 8. In the place of a complete application program, we will
present the essential components (consisting of several procedures and
some slightly modified portions of the familiar main event loop) of a
convenient method for instantly resizing a window to the full size of the
desktop or shrinking the window back to its previous size. Ordinarily
the user must move or resize a window by dragging the size box or title
bar with the mouse. When using multiple windows, it is convenient to
be able to zoom (that is, to expand) a small window up to the full size of
the desktop to examine its contents, and then to shrink it back to its pre
vious size and location in order to view the other windows.

This zooming technique is used in several Microsoft products,
including Word and Excel, and it is a natural extension of the Macintosh
"User Interface Guidelines." In this example we will use a double-click
in the title bar (we could just as well have chosen the size box) of a win
dow to signal that the window should be zoomed to one size or the other.
In the application program of Chapter 8, we generalize this method to
include a menu item named "Zoom."

The definition of a double-click is a mouse-up event followed
by a mouse-down event that occurs within a certain time interval known
as the double-click time. The double-click time can be changed with the
Control Panel desk accessory and is accessible through the function Get
DblTime or as a system global variable.

If the double-click time is set to its maximum value, in addition
to measuring the time interval the application should also check that the
mouse location has not changed by more than a small amount between
the two events.

Using Multiple Windows 201

In the following example, detecting the double-click is a little
tricky since usually a mouse-down in the title bar of a window indicates
that the user wants to move the window around on the desktop. Before
proceeding to drag the window, the application must first wait a

· reasonable amount of time (for example, the double-click time) to see if
a mouse-up event occurs. If indeed a mouse-up event does occur, the ap
plication must wait an additional double-click time and then check for
the second mouse-down.

In this example, when a user double-clicks in the title bar of the
window, one of two things will happen: if the window does not fill
the desktop the window will be expanded until it does, or if the window
already fills the desktop, it will be resized to the most recent size and
location determined in the usual way with the mouse. The application
will need to keep a private copy of the window's size and location that it
updates only when the window is moved or resized using the title bar or
the size box. The size rectangle should be specified in global coor
dinates to indicate not only the dimensions of the window, but also the
position of the window on the desktop.

The application can store the rectangle containing the old win
dow coordinates in a relocatable block along with other information
relevant to the window. A handle to the relocatable block can be kept in
the refCon field of the window.

The following section of code initializes several variables of in
terest, including the full-size rectangle and the size rectangles of each of
several windows. The relocatable blocks associated with each window
are also allocated in this section.

#define howMany 5

/* global variables */

Rect fullSize;

/* howMany windows */

WindowPtr someWindows[howMany]; /* an array of

WindowPtrs */
Rect someRects[howMany]; /* an array of Rects */

char *someTitles[howMany]; /*an array of Pascal Titles*/

/* definition of user defined type, WindowStuff */

struct WStuf f 2

Rect oldSize;

202 Using the Macintosh Toolbox with C
--- CH. 7

#define
typedef

typedef

WindowStuff
WindowStuff

WStuffPtr

struct WStuff

*WStuffE'tr;

*WSHandl.e;

/* locally defined variables */

WindowPeek

WSHandle

wRecPtr;

tempWS;
short i;
/* set fullSize Rect to some pleasing size and location, don't

assume the screen size to be 512 x342. Use QD, the

pointer to QuickDraw globals returned by InitGraf */

SetRect(&fullSize,

QDglob->screenBits.bounds.left +2,

QDglob->screenBits.bounds.top +20 +20,
QDglob->screenBits.bounds.right -2,

QDglob->screenBits.bounds.bottom -2);

/* Open howMany windows using nonrelocatable blocks for their

WindowRecords.

Create a relocatable block for each window to hold a

WindowStuff containing among other things the oldSize

rectangle used for zooming.
Initialize the oldSize's with the global coordinates of the

window's content region*/

/* loop over the number of windows */

for(i=O; i < howMany; i++) {

/* allocate non-relocatable block for WindowRecord */

if(IsValidWindow(someWindows[i]) {

/* this window has already been created */
} else {

/* open a new window */
wRecPtr (WindowPeek)

NewPtr(sizeof(WindowRecord));

someWindows[i] = NewWindow(wRecPtr,

someRects[i], someTitles[i],
Oxff, 0, -1, Oxff, O);

tempWS = (WShandl.e) GetWRefCon(someWindows[i]);

if(tempWS == NULL) {

/* allocate relocatable block for WindowStuff -
put handl.e into window's refCon */
tempWS = (WSHandl.e)

NewHandle(sizeof(WindowStuff));

SetWRefCon(someWindows[i], tempWS);
) else

/* the window already has a relocatable block
assigned to it */

Using Multiple Windows 203

I* lock down WindowStuff and copy global size of window
into the oldSize Rect */

HLock (tempWS);

GlobWindowSize(someWindows[i], &(*tempWS)->oldSize);

HUnlock(tempWS);

Next we will present the section of the main event loop respon
sible for mouse-down events in the size box of a window. Here the
application must update the copy of the window size when the user
resizes the window. Note that this example will not update the variable
containing the old size of the window if GrowWindow returns a value of
NULL, thus indicating that the window size was not changed.

/* Extracted from main event loop - resizing windows */

/* locally defined variables */

long newSize;

WindowPtr whichWindow;

EventRecord theEvent;

WSHandle tempWS;
Rect limitRect;
case inGrow:

newSize = GrowWindow(whichWindow, theEvent.where,

&limitRect);
SizeWindow(whichWindow, LoWord(newSize),

HiWord(newSize), Oxff);

/* if size was changed update the oldSize Rect -

handle to WindowStuff is in window's refCon */
if(newSize != 0) {

break;

tempWS = (WSHandle) GetWRefCon(tempWindow);
HLock(tempWS);
GlobWindowSize(tempWindow, &(*tempWS)->oldSize);

HUnlock(tempWS);

Next is a section of code removed from the portion of the event
loop for handling mouse-down events that occur in the title bars of ac
tive windows. To look for a double-click, the application must first
compute at what time it can stop waiting for a mouse-up event (which
signals that the user may be attempting a double-click). Adding the
double-click time to the value of the when field of the first mouse-down
event yields an appropriate time.

204 Using the Macintosh Toolbox with C
--- CH. 7

Once the double-click interval has elapsed, the application calls
GetNextEvent to determine if a mouse-up event is waiting to be read from
queue. If GetNextEvent does not find a mouse-up event, the user is
probably trying to drag the window. The application should check to see
if the mouse button is still down and if it is, it should call DragWindow as
usual to move the window. If the user moves the window, the applica
tion should update the variable containing the old window size to reflect
the new position.

On the other hand, if the a mouse-up event does occur, then the
application must once again wait, this time to see if a second mouse
down will occur. During this wait, the application constructs a rectangle
that is 16 pixels on a side and that is centered on the position of the first
mouse-down in order to be certain that the mouse position has not
strayed too far from the mouse-up. After completing this task, the ap
plication completes the wait for a second mouse-down event. If
GetNextEvent reports a second mouse-down event, the application should
check the position to see if it occurred within the allowable rectangle
before zooming the window.

/* Extracted from event loop - dragging windows */
I* locally defined variables */
long upTime, clickTime;
short vert, horiz;
Rect clickRect, screenRect;
EventRecord *theEvent
EventRecord upEvent, downEvent;
WindowPtr mouseWindow;
WSHandle tempWS;
case inDrag:

/* Delay to wait for mouse-up */
upTime = theEvent->when + GetDblTime();
while(TickCount() < upTime);
/* has a mouse-up occurred? */
if(GetNextEvent(mUpMask, &upEvent)) {

/* Delay to wait for mouse-down */
clickTime = upEvent.when + GetDblTime();
/* set up rectangle to check stray clicks */
vert = upEvent.where.v;
horiz = upEvent.where.h;
SetRect(&clickRect, horiz-8, vert-8,

horiz+8, vert+8);
/* finish wait until clickTime */

Using Multiple Windows 205

while(TickCount() < clickTime);

I* did the second click occur? */

if(GetNextEvent(mDownMask, &downEvent)) {

}

} else {

I* did second click happen
inside clickRect? */

if(PtinRect(downEvent.where, &clickRect))
{

I* doubleclick in draqReqion */

ZoomWindow(mouseWindow);
break;

I* drag the window as usual */
if(StillDown()) {

break;

DragWindow(mouseWindow, theEvent->where,

&draqBoundsRect);
/* update the old window size */

tempWS = (WSHandle)

GetWRefCon(mouseWindow);
HLock (tempWS);

GlobWindowSize(mouseWindow,

&(*tempWS)->oldSize);
HUnlock(tempWS);

break; /* end of inDraq case */

Finally we have the procedure ZoomWindow, which performs the
actual resizing. This routine tests to see if the window dimensions cor
respond to some predetermined full-sized rectangle, which is kept in the
global variable fullSize. If the window is not currently at full size, the ap
plication will resize the window to these dimensions. If the window is
already full-sized, it will be resized to the old-sized rectangle contained
in the relocatable block pointed to by the refCon field of the window. To
add a little excitement to this process, ZoomWindow calls the procedure
ZoomRect to draw a series of expanding or contracting rectangles to
indicate the new window size. The sample application at the end of
Chapter 8 contains the source code to one such routine.

ZoomWindow(tempWindow)/* ZoomWindow() */

WindowPtr tempWindow;

/* This routine will zoom a window between the size/location

206 Using the Macintosh Toolbox with C
--- CH. 7

specified by the global Rect fullSize, and that specified by the
rectangle contained in the oldSize Rect in the relocatable
WindowStuff kept in the window's refCon field*/
{

Rect theStart, theFinal;
WSBandle tempWS;

/* Get a copy of the window coordinates in startRect and compare
with the fullSize rectangle */

GlobWindowSize(tempWindow, &theStart);
if(EqualRect(&theStart, &fullSizeRect))
/* the window is currently full size - copy oldSize into
finalRect and do animation */

} else

tempWS = (WSBandle) GetWRefCon(tempWindow);
BlockMove(&(*tempWS)->oldSize, &theFinal,

sizeof(Rect));
ZoomRect(&theStart, &theFinal);
/* erase contents of the window to wipe out

scroll bars */
LocWindowSize(tempWindo~, &theStart);
EraseRect(&theStart);
/* since window is becoming smaller resize

before moving the win4ow */
SizeWindow(tempWindow,

theFinal.right - theFinal.left,
theFinal.bottom - theFinal.top, Oxff);

MoveWindow(tempWindow, theFinal.left,
theFinal.top, O);

/* the window is not currently full size -
copy ful1Size into finalRect and do animation */
BlockMove(&fullSize, &theFinal, sizeof(Rect));
ZoomRect(&theStart, &theFina1);
/* erase contents of the window to wipe out

scroll bars */
LocWindowSize(tempWindow, &theStart);
EraseRect(&theStart);
/* since window is becoming larger move

the window before resizing it */
MoveWindow(tempWindow, theFinal.left,

theFinal.top, O);
SizeWindow(tempWindow,

theFinal.right - theFinal.left,
theFinal.bottom - theFinal.top, Oxff);

I* erase the contents of the final window force an
update event for the entire content region */

Using Multiple Windows 207

LocWindowSize(tempWindow, &theFinal);
EraseRect(&theFinal);
InvalRect(&theFinal);

This rather lengthy example is incorporated into the sample text
editing application listed at the end of Chapter 8. The various com
ponents shown here will be modified slightly in Chapter 8 to reflect the
particular type of application presented there, although their function
will remain unchanged.

I

I ---------r-
~ I

+ I
I

I

•
'

I
I
I
I
I

.........__ I
........._

........._-..........._ I
-...........+-

!
I
I

)(I

~
+.I

Text Editing with the
Toolbox

Nearly every Macintosh application uses routines from Text
Edit, the portion of the Toolbox devoted to text editing. There are two
main reasons for including the capabilities of TextEdit in the Toolbox.
The obvious reason is that it greatly simplifies the work of any program
mer trying to include some of the available text editing features in an
application; otherwise, the routines would have to be developed from
scratch. The second and perhaps most important reason relates to the
fact that text editing is such a common requirement used in every type
of application, not just in word processing. TextEdit helps to maintain
consistency between the widely varying situations in which the user
enters or edits text. In fact, on the Macintosh many of the features as
sociated with sophisticated word processing applications are available
when the user performs a simple action like entering a file name. As we
mentioned in Chapter 1, the consistency and predictability that exist
among diverse situations like these are essential features of the "User
Interface Guidelines."

TextEdit provides most of the familiar operations that can be
performed during text editing. These features include inserting and
deleting text, using the mouse to specify a range of text for cut and paste
operations, scrolling the text of a large document in a window, word
wrap at the right edge of a document, and many others. Nevertheless,
TextEdit does not contain all of the features found in a word processing
application like Mac Write or Microsoft Word. The major features miss
ing from TextEdit are full justification (flush right and left margins),
individual paragraph formatting, and multiple fonts, sizes, or styles of
text in a single document. However, word processing applications that
do not make use of TextEdit are still required to conform to the

210 Using the Macintosh Toolbox with C
--- CH.8

"User Interface Guidelines" to avoid confusing the user.
Despite these restrictions, there are a great variety of uses for

TextEdit. Aside from word processing, any type of data entry-for ex
ample, entering data into a database or typing into a communications
program-could be handled with TextEdit. In fact, any application
using the keyboard probably also uses TextEdit either directly or in
directly through another part of the Toolbox. Several indirect uses of
TextEdit common to every Macintosh application are desk accessories
like the Notepad or the dialog and alert boxes used to request informa
tion from the user or to notify the user when something important is
about to happen.

Our discussion will first focus on the methods used by TextEdit
for keeping track of text and on how the text is drawn on the Macintosh
screen. The section covering how to use TextEdit from an application
begins with a discussion of creating and disposing of text items and goes
on to explain the various editing routines responsible for actions like
Cut, Copy, and Paste. Next we discuss the interaction required between
the application and the Toolbox to maintain the insertion point and
selection range. Our discussion of using TextEdit concludes by explain
ing how the application can alter the font and layout of the text used on
the screen. Throughout this section, we will provide information and ex
amples outlining how and where the various routines fit within a typical
application.

The last portion of the chapter is devoted to several advanced
topics that are used to build a nearly complete application. At the end of
this chapter we have included a detailed sample application encompass
ing nearly everything we have discussed in the book so far.

The Appearance of Text on the Screen
TextEdit keeps track of text strings and the formatting informa

tion associated with them in a data structure called an edit record. Such
a text string might consist of the entire contents of a file created by a text
editor, or it could be as small as a one- or two-character item used to
select the desired page number when printing a single page of a docu
ment. When the Toolbox draws the text associated with an edit record in

Text Editing with the Toolbox 211

a window on the desktop, there are several parameters that control the
actual appearance of the text.

TextEdit arranges for the text to be drawn within the confines of
a rectangle known as the destination rectangle. The destination rect
angle defines an imaginary "page" on which TextEdit places the text.
The top of the destination rectangle determines the position of the first
line of the text. Within the destination rectangle, the text can be either
right-, left- or center-justified. TextEdit uses the left and right sides of
the destination rectangle to determine the width of the area in which the
text will be drawn. When an individual line of text (the end of a line is
usually signalled by a carriage return character) exceeds the width of the
destination rectangle, the text will normally be wrapped onto the next
line at a convenient word boundary. Word wrap can be suppressed, how
ever, in which case the rest of the line will simply extend over one or
both edges of the page and become invisible. The bottom of the destina
tion rectangle has no real significance; as the number of lines of text
exceeds the number that will fit in the destination rectangle, text con
tinues to be drawn beyond the bottom.

The destination rectangle containing the text is viewed by the user
through the view rectangle. Text outside the view rectangle is not visible on
the desktop. In most applications the view rectangle will not be as large
as the destination rectangle, in which case the user will only be able to see
a portion of the text at any given time. The remainder of the text can be
made visible by scrolling the text, which simply changes the relative posi
tions of the view and destination rectangles and allows other portions of the
text to become visible. Figure 8.1 shows the effect of different relative sizes
of the destination and view rectangles.

TextEdit is capable of formatting the text with either right-, left
or center-justification within the destination rectangle. In addition to
these three styles of justification, word wrap is also available. As the
length of a line exceeds the width of the destination rectangle, the text is
broken at a boundary between words and moved to the next line. If the
application chooses not to word wrap text, a new line of text will begin
only after a carriage return has been typed. Word wrap is essential to
most word processing applications but becomes quite a nuisance when
you are writing source code in a programming language. Figure 8.2 il
lustrates the effect of word wrap on different types of text.

As the user enters text from the keyboard, the characters are in
serted into the existing text at the location of the insertion point. The

212 Using the Macintosh Toolbox with C
--- CH.8

-----------------------~ ------------.• "Place my face upon your
character set, and all that
you wish for will be
ouchsafed unto you,

probably."
- J. R. "Bob" Dobbs

as told by Jon Carroll
~ ___ --~f- 9brQ!li<;:I~: ____ _

________________ ,

: -,-,P-la_c_e_m_y_fa_c_e-up-~...._-~

: character set, and :
' you wish for will be:

ouchsafed unto y~
probably." :

•
• _1_1;1 _ '!Qr..1-:i.".Oobb~

destRect

Figure 8.1: The View and Destination Rectangles

Do i=l,10000,2
a(i) a(i-l)*b(
c(i) = b(i) + a(

Enddo

!MY Summer Vacation

What a relief it is
Summer was a horrir
It all started with
They took over the

without word wrap

Figure 8.2: The Effects of Word Wrap

0 i=l, 10000, 2
a (i) =

a(i-l)*b(i)
c (i)

(i) + a(l)
nddo

y Summer Vacation

hat a relief it is
o be back in

school. Summer was a
orrible experience

It all started with

with word wrap

Text Editing with the Toolbox 213

location of the insertion point is indicated on the Macintosh screen by a
flashing vertical bar. The insertion point may be moved, in order to enter
text in another location on the screen, by clicking the mouse at the
desired location.

The insertion point may also take the form of a range of text
known as the selection range. The selection range will be highlighted
(normally with inverse video) on the screen. The selection range serves
to mark a range of text to be either removed or replaced through the use
of Cut and Paste commands or by typing characters from the keyboard.
The user can choose the selection range by holding down the mouse but
ton and then dragging the mouse from one location to another. The
current selection range can be shortened or lengthened if the user holds
down the Shift key while dragging the mouse.

TextEdit Data Structures
Nearly all of the routines in TextEdit operate on a data structure

called an edit record, which is actually a structure of type TERec (we will
use the terms edit record and TERec interchangeably). The TERec stores
all of the information about a particular item of text, including all of the
on-screen formatting information. The complete description of an edit
record and the associated pointer and handle are shown in the box
"TextEdit Data Structures." Many of the fields of a TERec can be manip
ulated directly or indirectly through the routines contained in TextEdit.
Several of the fields are used internally by TextEdit and should not be
manipulated by the application.

Before we discuss the various kinds of information contained in
an edit record, we should first understand how TextEdit stores the text
and how it references the individual characters. The character data is
stored in a variable-sized array of bytes that is located in a relocatable
block separate from the edit record itself. The first character in the array
is located at position 0, with subsequent characters located at positions 1
to telength. Planning the character mapping so that the character index,
which is used to specify the start and end of a selection range, actually
falls between characters allows the Toolbox to give a unique interpreta
tion as to which characters should be included in the selection range.

214 Using the Macintosh Toolbox with C
--- CH.8

Figure 8.3 illustrates how the character index used to specify the selec
tion range corresponds to the actual character data.

Fields within an Edit Record
It is important to briefly discuss several of the fields contained

in an edit record because, unlike most of the Toolbox data structures we

TextEdit Data Structures

struct TE (

Rect destRect; /* destination rectangle */
Re ct viewRect; /* view rectangle */
Re ct selRect; /* current selection re ct */
int lineHeight; /* line spacing in pixels *I
int fontAscent; /* caret/highlighting height */
Point selPoint; /* mouse-down location */
unsigned int selStart; /* start of selection range */
unsigned int selEnd; /* end of selection range */
int active; /* non-zero if active */
Ptr wordBreak; I* points WordBreak routine */
Ptr clikLoop; I* points ClikLoop routine */
long clickTime; /* ticks of 1st click */
int clickLoc; I* char location of click */
long caret Time; /* time for next caret blink */
int caretState; /* on or off */
int just; /* current justification */
int teLength; /* number of chars in text */
Handle hText; /* handle to chars */
int recalBack; /* internal use */
int recalLines; /* internal use *I
int clikStuff; /* internal use */
int crOnly; /* <0 for no word wrap */
int txFont; /* text font */
Style txFace; /* text style */
int txMode; /* drawing mode for text */
int txSize; I* text size */
Graf Ptr inPort; /* in which graf Port */
Ptr highHook; /* points to highlight routine
Ptr caretHook; /* points to caret routine *I
int nLines; /* number of lines of text */
unsigned int lineStarts[l]; /* positions of line starts */

} ;

#define TERec struct TE
typedef TE Rec *TEPtr;
typedef TEPtr *TEHandle;

*/

Text Editing with the Toolbox 215

have seen so far, the application will often need to directly manipulate
these fields. Since an edit record is a relocatable object in memory, this
also means that you must watch out for circumstances that might lead to
a dangling pointer.

Destination and View Rectangles
The destination and view rectangles used by TextEdit to format

the text are contained in the destRect and viewRect fields. They are
specified in the local coordinates of the window in which the text ap
pears. To insure that the text remains readable, you should inset the
destination rectangle at least four pixels from the edges of the window
in which the text appears. This will keep the text from running into the
edge of the window and also allows space for the overhang of italic
characters. Allow an additional 16 pixels on the right or bottom if a
scroll bar will be present.

Line Spacing
The lineHeight determines the spacing between the lines of text,

while the fontAscent measures the height of the character in the font

I ±m 0~ E83 ffi1#liffi HB fl'.B~ H~ FfB '
0123;

A character array from TextEdit showing how characters are numbered

selStart I selEnd

selStart selEnd

Figure 8.3: Character Numbering in TextEdit

telength

The insertion point is located
between characters, at the
position indicated by either
selStart or selEnd which will
by definition be equal.

A selection range begins at the
character to the right of selStart
and ends at the character to
the left of selEnd.

216 Using the Macintosh Toolbox with C
--- CH.8

(without including characters like "g", which descend below the base
line). TextEdit uses the fontAscent field to correctly position the insertion
point or selection range. In order to change the line spacing of the text,
you should change both fields by the same amount; otherwise, the posi
tion of the insertion point and selection range may not be correct. Both
the lineHeight and fontAscent fields are measured in pixels. At the end of
this chapter, we will explain how to change these fields to reflect the
spacing appropriate for a specific font and size.

Selection Range and Insertion Point
The position of the insertion point or extent of the selection

range is specified by the selStart and selEnd fields. When an insertion
point is present, both fields will contain the same value. If the user has
chosen a selection range, however, these fields will contain the begin
ning and ending points of the selection range. Note that in order to
include the nth character in a selection range, the application must
specify selStart = n and selEnd = n+ 1. This is because the selection range
starts at the character after the selStart position and ends at the character
just before the selEnd position.

Justification
The current setting for text justification is contained in the just

field. The three possible types of justification are indicated by the fol
lowing predefined constants.

#define
#define
#define

Character Data

teJustLeft 0
teJustCenter 1
teJustRight -1

The number of characters in the text is stored in the telength
field. The hText field contains a handle to the relocatable block contain
ing the text itself. One can rapidly replace the text in an existing edit
record with new text by changing the hText and telength fields.

Text Editing with the Toolbox 217

Word Wrap
Word wrap is controlled by the crOnly field of the edit record. A

non-negative value of crOnly indicates that the text should be word
wrapped according to the width of the destination rectangle. A negative
value indicates that a new line should only be started after a return char
acter has been entered.

Font Characteristics
The text contained in the edit record is drawn with the font,

style, pen mode, and size specified in the txFont, txFace, txMode, and txSize
fields. Since TextEdit cannot handle multiple fonts, sizes, and styles,
these fields determine the text appearance throughout the edit record.

grafPort
The graf Port of the window in which the text appears is kept in

the inPort field. When an edit record is first allocated and initialized, it is
by default assigned to the current graf Port.

Dividing the Text into Lines
The nlines field contains the number of lines of text in the TERec.

For the same character data, the value of nlines will depend on whether
word wrap has been selected or not. The character positions of the begin
ning of each line are stored in the dynamically allocated array lineStarts.

The remaining fields of the edit record are only used in ad
vanced applications or are used internally by TextEdit.

Using TextEdit
The routines which make up TextEdit fall into several functional

categories: allocating and disposing of text edit records, manipulating the
contents of an edit record, editing functions, handling the insertion point
and selection range, using the TextEdit scrap and the Clipboard and other
miscellaneous routines.

218 Using the Macintosh Toolbox with C
--- CH.8

Initializing TextEdit
Before using any of the routines in TextEdit, the application must

call TElnit to allocate a handle to TextEdit's private scrap. In fact, even if the
application does not explicitly use any of the routines within TextEdit, it
must still call TElnit to insure that dialogs, alerts, and desk accessories,
which may use routines from TextEdit, will operate properly. Since Text
Edit itself calls upon other portions of the Toolbox, the application should
initialize QuickDraw, the Font Manager, and the Window Manager be
fore initializing TextEdit.

TEinit ()

The private scrap allocated by TElnit is used to hold the text selected in
copy and cut operations and provides the text for paste operations. The
data contained in the TextEdit scrap must be transferred to and from the
Clipboard (or desk scrap), which is maintained by the Scrap Manager, in
order to allow cutting and pasting between applications and/or desk ac
cessories. The Macintosh Pascal Workshop contains several routines
that are not part of the Toolbox (these routines are known as Toolbox
extension routines) to enable the application to transfer text between the
TextEdit scrap and the desk scrap. We will discuss this process and
present C versions of the necessary routines at the end of this chapter.

Allocating and Disposing of Edit Records
The function TENew allocates an edit record on the heap, incor

porating the drawing environment of the current graf Port, and returns as
its value a handle to the new edit record. The parameters destRect and
viewRect specify, in the local coordinates of the current graf Port, the des
tination and view rectangles in which the text will be drawn.

TEHand1e TENew(destRect, viewRect)
Rect *destRect;
Rect *viewRect;

The edit record is initialized as single-spaced and left-justified with the
insertion point at character position zero. The insertion point will not

Text Editing with the Toolbox 219

become visible until the edit record is explicitly activated with a call to
TEActivate, which will be discussed later in the chapter.

An application containing multiple text windows must deter
mine which edit records belong to a specified window. The edit record
contains a pointer to the window (actually a GrafPtr) in which the text
will appear. The process of determining which edit records belong to
which windows is made easier if each window keeps track separately
of which edit records are associated with it. In the simplest case of one
edit record per window, it will suffice to store the TEHandle, returned by
TENew, in the refCon field of the WindowRecord of the window. In advanced
applications, as we learned in Chapter 7, one can use the refCon field to
store a handle to a custom data structure containing a list of handles
to the edit records, plus any other information.

To dispose of an edit record once it is no longer needed by the
application, call the procedure TEDispose:

TEDispose(hTE)
TEHandle hTE;

TEDispose deallocates the edit record indicated by the hTE
parameter and releases the block occupied by the text itself.

To have the application place text into an edit record when it is
first created, or to substitute new text for the existing text, use the proce
dure TESetText:

TESetText(text, 1ength, hTE)
char *text;
1onq 1ength;
TEHandle hTE;

The parameter text should be a pointer to the text to be placed
into the edit record, with length indicating the number of characters to be
used. TESetText makes a copy of the specified text in a relocatable block
and places a handle to the text in the hText field of the edit record which
is pointed to by hTE. When the application calls TESetText, the relo
catable block that contains the original text from the edit record will not
automatically be released from memory. The application should ex
plicitly dispose of this block, if the data it contains is no longer needed,
in order to return the space to the Memory Manager.

220 Using the Macintosh Toolbox with C
--- CH.8

If the application needs a copy of the handle to the text of an
edit record, it can call the routine TEGetText:

Handle TEGetText(hTE)
TEHandle hTE;

Under Think C, the type Handle is equivalent to a char **, which
allows direct access to the character data. Alternatively, the application
can copy the value of the hText field of the edit record.

The following example shows how to allocate an edit record
and place the TEHandle in the refCon field of the window. The example
then calls TESetText to place a text string into the edit record, which will
appear when the edit record is first drawn.

I* locally defined variables */
WindowPtr theWindow;
TEHandle theText;
Re ct
Handle
char

destRect, viewRect;
oldCharHandle;
*startUpStr;

startUpStr = "Don't Panic - Enter text here";

/* set up the destRect and viewRect
- use LocWindowSize() from Chapter 7
- allow for scroll bars on right, bottom
- indent destRect 4 pixels for readability */

LocWindowSize(theWindow, &viewRect);

viewRect.right -= 16;
viewRect.bottom -= 16;

I* copy viewRect into destRect */
BlockMove(&viewRect, &destRect, sizeof(Rect));
InsetRect(&destRect, 4, 4);

I* allocate a new TERec for theWindow
- theWindow must be the current gra£Port */
SetPort(theWindow);
theText = TENew(&destRect, &viewRect);

I* store TEHandle into refCon of the window */
SetWRefCon(theWindow, theText);

Text Editing with the Toolbox 221

/* Substitute start-up text into edit record
- qet copy of text handle in theText
- substitute text
- dispose of old handle to release storaqe */

oldCharHandle = TEGetText(theText);

TESetText(startUpStr, strlen(startUpStr), theText);

DisposHandle(oldCharHandle);

Active and Inactive Edit Records
In analogy to the case of multiple windows, an edit record can

exist in either an active or inactive state. In order to direct input from the
keyboard unambiguously, there can be only one active edit record at a
given moment. The active edit record must always be located in the ac
tive window. The application uses activate events, which indicate a
change in the front-to-back ordering of the windows on the desktop, to
signal the application that the edit record in a window should become
either active or inactive. In the inactive state the insertion point will not
be shown, or the selection range will not be highlighted; whereas in the
active state the insertion point will blink or the selection range will be
highlighted.

Figure 8.4 illustrates the difference between the active and inac
tive states of an edit record. When an edit record is first created, it will
be inactive until the application calls TEActivate to activate the edit
record. In the first part of this section, we will discuss how the applica
tion should respond to an activate event for a window containing one or
more edit records.

In an active edit record, the flashing insertion point indicates to the
user the location at which new data will be added to the text on the screen.
The application is partly responsible for maintaining the insertion point.
TextEdit provides a routine, which must be called periodically by the ap
plication, to blink the insertion point at a constant rate.

222 Using the Macintosh Toolbox with C
--- CH.8

i:iD Untitled

r score and seven YE
fathers set forth upo;!;!;!
w 111111

yand dedicated to 1mm
en are created equc:mm

r mm

Active
Edit Record

Figure 8.4: Active and Inactive Edit Records

Untitled

r score and seven ye
fathers set forth upo
w nation conceived
y and dedicated to 1
en are created equc

~

Inactive
Edit Record

Activating and Deactivating Edit Records
The procedures TEActivate and TEDeactivate are used to switch an

edit record between the active and inactive states.

TEActivate(hTE)
TEHandle hTE;

TEDeactivate(hTE)
TEHandle hTE;

In the simplest case where each window on the desktop con
tains only a single edit record, the application can simply activate or
deactivate the edit records as the windows containing them are activated
or deactivated. The following example shows how activating edit
records can be included into the portion of an application's main event
loop responsible for activating windows.

/* Based on example from Chapter 7
- portion of main event loop to activate/deactivate windows
- assume the TEHandle of the window is kept in the refCon
- global variables:

theWindow the current active window
theText the current active edit record */

Text Editing with the Toolbox 223

/* locally defined variables */
EventRecord
WindowPtr
TEHandle

theEvent;
actWindow;
actEditRecord;

/* constant from Window Manager header file
activeFlag = OxOOOl */

case activateEvt:
/* determine windowPtr for window, set as current

grafPort */
actWindow = theEvent.message;
SetPort(actWindow);

/* get copy of TEHandle from refCon of window - if any */
actEditRecord = {TEHandle) GetWRefCon(actWindow);

/* activate or deactivate? */
if(theEvent.modifiers & activeFlag)

} else

break;

/* other activate stuff - controls,
size box, etc.

- then activate edit record - if any */

if(actEditRecord) TEActivate(actEditRecord);
theText = actEditRecord;

/* other deactivate stuff - controls,
size box, etc.

- then deactivate edit record - if any */

if(actEditRecord) TEDeactivate(actEditRecord);
theText = NULL;

In the case where a window can contain more than one edit
record, the application should activate the most recently active edit rec
ord as the window moves to the front. Whenever the user clicks the
mouse in the content region of the window, the application should check
to see if the corresponding event returned by GetNextEvent occurred

224 Using the Macintosh Toolbox with C
--- CH.8

inside the view rectangle of one of the edit records. If so, the application
can activate the edit record selected by the user and deactivate the pre
viously active edit record. We will not discuss any further the case of
multiple edit records in a single window, although in Chapter 11 we will
see that dialogs frequently contain several edit records.

Blinking the Insertion Point
The routine TEldle does the necessary drawing to blink the inser

tion point.

TEidle(hTE)
TEHandle hTE;

The application should call TEldle as often as possible (once
each time through the event loop is usually sufficient) to insure that the
insertion point is updated regularly. The insertion point will not blink
any faster than the rate set by the Control Panel desk accessory no mat
ter how frequently the application calls TEldle.

Editing Routines

The editing routines from TextEdit allow the user to enter text
from the keyboard, and also include the familiar cut, copy, and paste
operations. The application will be notified by GetNextEvent in the main
event loop if the user enters text from the keyboard. On the other hand,
the Cut, Copy, and Paste commands are usually chosen through menu
selection (see Chapter 4). All of the routines in this section will automat
ically redraw the text on the screen when it becomes necessary.

Text that is entered from the keyboard is added to the edit
record by the function TEKey. When a key-down event is returned by
GetNextEvent in the main event loop of an application, the application
must first make certain that the key is not part of a Command key com
bination used for a menu selection. If the Command key was not held
down during the key-down, then the application should call TEKey, pass
ing both the ASCII character code from the low-order byte of the

Text Editing with the Toolbox 225

message field of the EventRecord and the TEHandle of the edit record to
which the text should be added.

TEKey(c, h'l'E)
char c;
'l'EHandle hTE;

The new character will be inserted after the insertion point
or will replace the current selection range. Afterwards the insertion
point will be placed to the right of the new character. If a backspace
character is passed to TEKey, the selection range will be deleted and
replaced with the insertion point; if no selection range is present, the
character to the left of the insertion point will be removed.

Use the procedure TECut to remove the text contained in the cur
rent selection range:

TECut(h'l'E)
TEHandle hTE;

Pass TECut a handle to the currently active edit record. TECut
places the text it removes into the TextEdit scrap for use in subsequent
paste operations. If the selection range is empty when TECut is called,
the scrap will be emptied.

The procedure TECopy makes a copy of the current selection
range without deleting it from the document.

TECopy(h'l'E)
'l'EHandle h'l'E;

Like TECut, TECopy places a copy of the text into the TextEdit
scrap; if the selection range is empty, the scrap will be emptied.

To paste a copy of the text in the scrap after the current insertion
point, call the procedure TEPaste.

TEPaste(hTE)
'l'EHandle hTE;

TEPaste will replace the contents of the current selection range with the
contents of the scrap by first deleting the selection range and then copy
ing the text after the insertion point. After the text from the scrap has

226 Using the Macintosh Toolbox with C
--- CH.8

been added, the insertion point is placed just beyond the right end of the
new text.

TextEdit also contains a procedure named TEDelete, which in
contrast to TECut, removes the text contained in the selection range
without disturbing the contents of the scrap.

TEDelete(hTE)
TEHancile hTE;

A common use of the TEDelete procedure is in implementing the Clear
command of the standard edit menu.

Another procedure, TElnsert, allows the application to insert an
arbitrary text string just before the current insertion point or selection
range.

TEinsert(text, length, hTE)
char
long
TEHandle

*text;
length;
hTE;

The text parameter points to the first character of a string of characters
(not a Pascal string) whose length is denoted by the length parameter.
TElnsert does not alter the position of the insertion point or selection
range relative to the text of the edit record.

It is possible to implement an Undo command, allowing the
user to backup one step, by using suitable combinations of the editing
routines of TextEdit. The simplest form of an Undo command that might
appear in an application would only allow the user to undo the last Cut
or Paste command. For simplicity, this version of Undo would not allow
the user to undo the last command once the selection range or the inser
tion point is moved or once a key is typed on the keyboard.

In this situation, the application must record-in a global vari
able named undoType, for instance-the last operation selected by the
user that can be undone. In order to undo a Paste command, the applica
tion must also keep a copy of the text in the selection range at the time
the Paste command is issued, as well as a count of the number of char
acters pasted into the edit record. Then, whenever the user types a key or
moves the insertion point, the variable undoType can be cleared. Now
when the user selects Undo from the Edit menu, the application can look
at the contents of undo Type and act accordingly.

Text Editing with the Toolbox 227

For instance, to undo a Cut command, the application would
call TEPaste. To undo a Paste command, the application must first call
TESetSelect (discussed in the next section) and TEDelete to remove the
characters inserted by the Paste command, and then call TElnsert fol
lowed by TESetSelect to restore the former text and insertion point or
selection range.

Changing the Selection Range
and tile Insertion Point ·

The application may need to change the selection range or
move the insertion point in two different situations. First, when the user
attempts to move either the selection range or the insertion point, the ap
plication will receive a mouse-down event inside the view rectangle of
the active edit record and must respond. Second, in certain circum
stances it may be convenient for the application to change the selection
range independent of any action on the part of the user.

Responding to Mouse-Down Events
After determining that a mouse-down event has occurred in the

content region of an active window, the application should check to see
if the coordinates of the point also fall within the view rectangle of the
active edit record. If this is the case, the application must call

TEClick(pt, extend, hTE)
Point pt;
char extend;
TEHandle hTE;

where pt specifies the local coordinates of the mouse-down event, ex
tend is a flag indicating whether the Shift key was held down in order to
extend an existing selection range, and hTE is the TEHandle of the edit
record in which the event occurred. TEClick controls the position of the
insertion point as well as the position and highlighting of the selection
range. To be specific, TEClick expands or shrinks the selection range ac
cording to the current mouse position, until the mouse button is
released. If TEClick determines that the mouse-down was part of a

228 Using the Macintosh Toolbox with C
--- CH.8

double-click, the word (which can be defined as a blank delimited se
quence of characters with no embedded control characters) nearest the
mouse location becomes the selection range. The combination of a
double-click and drag will expand or contract the selection range in
word-sized chunks.

The following example illustrates how TEClick should be called
from within the portion of the main event loop responsible for mouse
down events. This example covers only the situation in which the
mouse-down occurs within the content region of a window belonging to
the application. Notice that the position of the mouse-down returned by
GetNextEvent must be converted to the local coordinates of the window
before being passed to TEClick.

/* based on an example from Chapter 4

- global variables:
theWindow the current active window

theText the current active edit record */

/* locally defined variables */

WindowPtr whichWindow;
EventRecord theEvent;
int windowCode;

/* portion of switch on event type returned by GetNextEvent */
case mouseDown:

/* pass location of where field in EventRecord theEvent
- returns WindowPtr in whichWindow */
windowCode = FindWindow(theEvent.where, &whichWindow);

switch(windowCode)
case

case inContent:
/* if not active window, activate */

if((FrontWindow() != whichWindow) &&
(whichWindow !=NULL)) {
SelectWindow(whichWindow);
break;

/* switch to local coordinates for
TEClick, etc. */

records? */

break;

Text Editing with the Toolbox 229

GlobalToLocal(&theEvent.where);

I* If there is an active edit record

it is in this (active) window,

- did mouse-down occur in its viewRect? */
if (theText) {

} else

if(PtlnRect(theEvent.where,
&(*theText)->viewRect))

TEClick(theEvent.where,

(theEvent.modifiers &

shiftKey),

theText);

/* mouse-down occurred

somewhere else . .

- controls or inactive edit

At the end of this chapter we include a description of two of the
internal functions of TEClick which may be redefined by advanced
programmers: 1) the algorithm used by TextEdit to determine word
boundaries; and 2) scrolling the text of an edit record while changing the
selection range.

Directly Changing the Selection Range
Frequently the application will need to change the position of

the insertion point or the selection range independent of what the user
does with the mouse. The application might need to do this, for instance,
to implement cursor keys or a Select All or Find command. TextEdit
provides the function TESetSelect for this purpose:

TESetSelect(selStart, selEnd, hTE)
long selStart, selEnd;

TEHandle hTE;

Here selStart and selEnd are the character positions for the start and end of
the new selection range. Specifying the same position for both para
meters will result in moving the insertion point to that position. To select
from a given location to the end of the edit record, the application can

230 Using the Macintosh Toolbox with C
--- CH.8

either obtain the value of the teLength field from the edit record or use the
integer 32767 (the maximum number of characters in an edit record) to
specify the end position of the selection range.

Redrawing the Text in Response to Update Events

When the Toolbox Event Manager reports an update event for a
window containing one or more edit records, call the procedure
TEUpdate to redraw the contents of the edit records.

TEUpdate(rUpdate, hTE)
Rect *rUpdate;

TEHandle hTE;

TEUpdate will redraw the text that belongs to the edit record that is
specified by hTE and that falls inside the rectangle rUpdate. The update
rectangle, rUpdate, should be specified in the local coordinates of the edit
record's grafPort. The application will usually pass the view rectangle of
the edit record as the update rectangle, which will result in some un
necessary drawing. Typically TEUpdate will be called between the
BeginUpdate and EndUpdate calls in the update portion of the main event
loop, as shown in the following example. Be certain to erase the con
tents of the update rectangle before calling TEUpdate to redraw the text.

/* based on an examp1e from Chapter 7 */

/* 1oca11y defined variab1es */
EventRecord

WindowPtr

Graf Port

TEHandle

theEvent;
updateWindow;

theCurrentPort;

updateTEH;

/* portion of switch on event type from GetNextEvent */
case updateEvt:

/* save current port */
GetPort(&theCurrentPort);

/* qet WindowPtr to be updated, set as current port */
updateWindow = theEvent.messaqe;

SetPort(updateWindow);

Text Editing with the Toolbox 231

/* begin update process */
BeginUpdate(updateWindow);

/* redraw contents of updateWindow */

/* redraw any edit records in window (assume one only)
- get TEHandle from refCon of updateWindow
- redraw entire viewRect for simplicity */
updateTEH = (TEHandle) GetWRefCon(updateWindow);
HLock(updateTEH); /*don't let &viewRect dangle*/

/* erase viewRect and redraw text */
EraseRect(&{*updateTEH)->viewRect);
TEUpdate{&{*updateTEH)->viewRect, updateTEH);

HUnlock(updateTEH);

EndUpdate(updateWindow);

/* restore current port */
SetPort(theCurrentPort);

break;

TEUpdate should also be called any time the appearance (for ex
ample, the font style) or the contents of the edit record are changed.
Only the editing routines (TEPaste) redraw the text automatically.

The Appearance of Text on the Screen

The on-screen appearance of the text of an edit record can be
changed in several ways. The most obvious changes are those involving
the font or character size and style used to draw the text. Other changes
involve the justification of the text or the use of word wrap.

When the application directly alters the fields of an edit record
that affect the appearance of the text (i.e. the destination rectangle, font
or font size, or word wrap), the position of the beginning of each line of
text may need to be recalculated before the text is redrawn. (These posi
tions are kept in the lineStarts array, as you will recall from our earlier
discussion of the fields of an edit record.) In this situation, the applica
tion should call the procedure

232 Using the Macintosh Toolbox with C
--- CH.8

TECalText(hTE)
TEHandle hTE;

before calling TEUpdate to redraw the text.

Changing the Font Characteristics
There are no Toolbox routines designed to alter the font, size,

style, or word wrap used in an edit record; instead, the application must
alter the fields of the edit record directly and then redraw the text to
reflect whatever changes have been made. Be certain to recalculate the
lineStarts array as we just described if either the font type or size has been
changed.

fu addition, when the application changes the font or size used
in an edit record, the line Height and fontAscent fields of the edit record must
be recalculated to insure proper line spacing and highlighting. Use the
QuickDraw routine GetFontlnfo to determine the vertical spacing and
character size of the font in the current graf Port. The following routine,
SetlineHeight, first determines the spacing characteristics of the font used
in the edit record and then recalculates the lineHeight and fontAscent fields,
including in its calculation the possibility of double-spacing and one
and-a-half spacing of the text.

SetLineHeight(spacing, hTE)/* SetLineHeight() */

#define
#define
#define

int spacing; /* line spacing */
TEHandle hTE; /* the edit record */

singleSp 0
oneandhalfSp l
double Sp 2

I* this routine changes the lineHeight and fontAscent of
the edit record hTE to reflect its font and size. The
line spacing can be either single 1 1/2 or double */

GrafFtr
Fontinfo
short

theCurrentPort;
fontStuff;
extra;

I* set current port to window containing hTE */
GetPort(&theCurrentPort);

Text Editing with the Toolbox 233

SetPort((*hTE)->inPort);
/* set font and size of qrafPort to same as hTE */
TextFont((*hTE)->txFont);
TextSize((*hTE)->txSize);

I* qet font information */
GetFontinfo(&fontStuff);

/* set up for sinqle space */
(*hTE)->fontAscent fontStuff.ascent;
(*hTE)->lineHeiqht fontStuff.ascent +

fontStuff.descent +
fontStuff.leadinq;

/* modify for other spacinqs */
if(spacinq == sinqleSP) return;
else if(spacinq == oneandhalfSP)

extra= (*hTE)->lineHeiqht/2;
else if(spacinq == doubleSP)

extra= (*hTE)->lineHeiqht;

(*hTE)->lineHeiqht +=extra;
(*hTE)->fontAscent +=extra;

return;

The application at the end of the chapter uses this method
whenever the user selects a new font or size for an edit record.

Justification and Word Wrap
When the user wants to change the justification of an edit

record, the application should respond by calling the routine TESetJust:

TESetJust(just, hTE)
int
TEHandle

just;
hTE;

Depending on the value of the parameter just, this routine changes the
justification to either right, left, or center. Earlier in this chapter we
listed the predefined constants used to specify the desired justification.
TESetJust does not redraw the text with the new justification; for this, the
application must call TEUpdate.

234 Using the Macintosh Toolbox with C
--- CH.8

To change whether the edit record uses word wrap or not, the
application must change the value of the crOnly field of the edit record.
The following procedure changes the setting of the word wrap field,
recalculates the lineStarts array, and finally redraws the text.

doWordWrap(whichTE, flag)

TEHandle whichTE; /* Handle to Edit record to

change */
char flag; I* true (yes) or false (no) word wrap */

/* this procedure turns on or off word wrap for the edit

record specified by whichTE. Could be more efficient

by checking if whichTE is already set the desired way */

I* local variables */
GrafPtr oldPort, whichPort;

/* Lock the TERec, get copy of which Port

it is drawn in */
HLock(whichTE);

whichPort = (*whichTE)->inPort;

/* set value of crOnly */

if (flag) {

(*whichTE)->crOnly

else {

(*whichTE)->crOnly

+1; /* turn on word wrap */

-1; /* turn off word wrap */

I* change grafPort to one containing whichTE */
GetPort(&oldPort);
SetPort(whichPort);

I* recalculate lines

- erase and redraw window contents */
TECalText(whichTE);

EraseRect(&(*whichTE)->viewRect);

TEUpdate(&(*whichTE)->viewRect);

/* restore grafPort */
SetPort(oldPort);

/* unlock the TERec */

HUnlock(whichTE);

Text Editing with the Toolbox 235 ---

Miscellaneous Routines
To change the portion of the text that is visible on the desktop,

the application can scroll the text within the view rectangle of the edit
record (when the user manipulates a scroll bar, for instance) with the
routine

TEScroll(dh, dv, hTE)
int

TEBand1e
dh, dv;
hTE;

where dh and dv specify the number of pixels to move the text right and
down, respectively (see Figure 8.5). The edit record is scrolled by off
setting the destination rectangle with respect to the view rectangle by
the amount specified and redrawing the text. Two of the advanced tech
niques included at the end of the chapter make use of TEScroll to scroll
the text under the view rectangle.

TextEdit also contains a routine that draws uneditable text. This
routine can be used to place static text in any sort of window. The dif
ference between this routine, TextBox, and the text drawing routines found

,-------- ... -- ...
• •

viewRect

0 ;
' ' ' ' : i; :
' '
: -------- -----~---
~dh : ~ :
: ' : '
~ : 1 :
: ' : '
~· ~
: ' :
: ' : . '

j j
: ' : : ' , .. .

I

---~ I

destRect '" - - - - - - - - - - - - - - - - - - 1

TEScroll(dh, dv, hTE);

Figure 8.5: Parameters for TEScroll

236 Using the Macintosh Toolbox with C
--- CH.8

in QuickDraw-DrawString and DrawText-is that TextBox draws the text
justified and word-wrapped within the specified destination rectangle.

TextBox(text, length, box, just)
char *text;
lonq length;
Rect *box;
int just;

The application at the end of the chapter uses TextBox to draw an
information window when the user selects the About ... command from
the Apple menu.

Advanced Techniques
In this section we present several programming examples that

either enhance the basic features of TextEdit or are used to complete the
requirements of the "User Interface Guidelines." The individual ex
amples include such topics as changing the appearance of the cursor,
resizing an edit record, using the TextEdit scrap, and scrolling the text of
an edit record. Two of the more advanced examples require the use
of in-line assembly language in order to interface correctly with the
Toolbox. At the end of the chapter we combine these ideas with the
basic material from TextEdit and the preceding chapters to make a near
ly complete text editing application.

Changing Cursor to the I-Beam
Over an Active Edit Record

The "User Interface Guidelines" specify that when the cursor is
located over an active, editable text region, the cursor should change to
the familiar I-beam shape. Once the cursor leaves the text region, it
should return to the usual upward left-pointing arrow (see Figure 8.6).
In order to accomplish this task, the application must periodically check
the mouse location against the position of the active edit record, if any.

Text Editing with the Toolbox 237

The following code fragment should be placed in the main event loop of
the application to insure that the insertion point blinks at the appropriate
rate and that the cursor changes to the I-beam over an active edit record.

/* global variables */

TEHandle theText; /* the active edit record */

if(theText != NULL) {

TEidle(theText);

ChangeMouse(theText);

The procedure ChangeMouse first verifies that the edit record it
received belongs to the frontmost window on the desktop (recall that an
active edit record must be part of the active window). If the current cur
sor position is within the view rectangle of the edit record, ChangeMouse
changes the cursor to the I-beam shape. If not, the cursor is returned to
the arrow shape. The cursor shapes are retrieved from the Toolbox, the
arrow shape from the QuickDraw globals, and the I-beam shape from
the system file with the function GetCursor which was discussed in
Chapter 5.

ChangeMouse(activeTEH) /* ChangeMouse() */
TEHandle activeTEH;

D Untitled

The application shouldlQ
make the familiar
I-beam cursor appear I
over the active edit mm
record. The arrow curs<i:!W
should reappear once Hi!i!
the cursor leaves the mm
viewRect of the active mm
edit record.I I Q

121 Ji!iii!i!ii!i!i!Wiii!!Hi!i!i!!!Wi!i!i!!HiiHrmimmlQI 121

cursor inside the view rectangle

Untitled

The application should
make the familiar

~:~~:~h~~~~!;~::~!~S< ,!!,'!
should reappear once mm
the cursor leaves the !!!iii
viewRect of the active mm
edit record -I ····

cursor outside the view rectangle

Figure 8.6: Changing the Cursor Shape over an Active Edit Record

238 Using the Macintosh Toolbox with C
--- CH.8

/* this routine compares the current mouse location with the
view rectangle of the edit record activeTEH and changes
the cursor to the I-beam, or arrow as appropriate

#define

- assumes QD is the pointer to the QuickDraw globals
returned by InitGraf */

iBeamCursor 1 /* from header files */

PointmousePt;
Curs Handle iBeam;

/* Does the front window contain activeTEH ?
- if not something is wrong! */
if(FrontWindow() == (WindowPtr) (*activeTEH)->inPort

I* get the current mouse (local coordinates) */
GetMouse{&mousePt);

/* is the mouse in the viewRect
of the edit record? */

if(PtinRect(mousePt,&{*activeTEH)->viewRect)) {
/* Yes, get I-Beam from system and

change cursor */

} else

iBeam = GetCursor(iBeamCUrsor)
SetCursor(*iBeam);

/* No, return cursor to arrow
(a QuickDraw global) */

SetCursor(&QD->arrow);

This method is used in the sample application at the end of the
chapter. The application should also set the cursor to the arrow shape
when deactivating an edit record in order to insure that the cursor
changes when there is no active edit record.

Text Editing with the Toolbox 239 ---

Resizing View and Destination Rectangles
When an application resizes a window, it will probably also need

to adjust the view rectangles, and possibly the destination rectangles, of the
edit records contained in the window. In most word processing applica
tions, the view rectangle will closely follow the size of the window, while
the destination rectangle depends only on the page size and the right and
left margins. In other applications, the destination rectangle may depend on
the window size. On the other hand, drafting and graphic design programs
(MacDraw II, for instance) allow many edit records to be placed in a single
window. In this case, the user changes the view and destination rectangles
by resizing the item with the mouse.

The sample program at the end of the chapter allows the user to
resize the windows containing text edit records. For the purpose of
demonstration both the destination and view rectangles are controlled
by the size of the window. The following procedure, ReSizeTE, changes
the view and destination rectangles of the edit record associated with a
window to the maximum size that will fit in the window.

ReSizeTE(tempWindow)/* ReSizeTE() */
WindowPtr tempWindow;

/* this routine resizes the view and destination rectanq1es
of the edit record associated with tempWindow, to the
maximum size that wi11 fit in the window
- assumes the TEHand1e is 1ocated in a WindowStuff
(whose hand1e is in the refCon of the window)

struct wstuf f (

} ;

typedef

*/

TEHand1e theTE; (hand1e to TE for window)

struct WStuff WindowStuff;

/* dec1are 1oca1 variab1es */
Re ct
TEHand1e
WindowStuf f

aRect;
tempText;
**theWSHand1e;

/* Get a copy of the WindowStuff hand1e */
theWSHand1e = (WindowStuff **) GetWRefCon{tempWindow);

240 Using the Macintosh Toolbox with C
--- CH.8

if(theWSBandle == NULL) return; /* in case its empty */
I* get the TEBandle */
tempText = (*theWSBandle)->theTE;

/* make a copy of the window size (local coordinates) */
LocWindowSize(tempWindow, &aRect); /*from Chapter 7 */

/* Make room for scrollbars in viewRect and resize */
aRect.right -= 16;
aRect.bottom -= 16;
BlockMove(&aRect, &(*tempText)->viewRect, sizeof(Rect));

/* Indent a bit for destRect and resize */
aRect.right -= 4;
aRect.top += 4;
aRect.left += 4;
aRect.bottom -= 4;
BlockMove(&aRect, &(*tempText)->destRect, sizeof(Rect));

/* Recalculate lineStarts array for new destRect */
TECalText(tempText);

With a few additions, this function appears in the sample application at
the end of the chapter.

TextEdit and the Clipboard

As we mentioned in the beginning of the chapter, TextEdit sup
ports cut, copy, and paste operations between edit records in a single
application. A powerful feature also provided by the Macintosh Toolbox
is the ability to cut and paste text and pictures between applications and
between desk accessories and applications. This unique feature is em
bodied in the Clipboard or desk scrap, which is discussed in the Scrap
Manager chapter in Inside Macintosh. To allow text to be copied into or
pasted from the Clipboard, several routines exist which add to· the
capabilities of the Toolbox by making it possible to move text between
the private TextEdit scrap and Clipboard. We have included source code
for C versions of these routines to allow our applications to use the Clip
board (see the box entitled "Routines for Using TextEdit with the
Clipboard").

Text Editing with the Toolbox 241

Routines for Using TextEdit with the Clipboard

/***/
/* *I
/* TEScrap Toolbox Extension Routines */
/* */
/***/

#include "MacTypes.h"
#include "MemoryMgr.h"

/* Toolbox globals */

#define
#define

TEScrpLength
TEScrpHandle

((short) OxOABO)
*((Handle *)Ox0AB4)

Handle TEScrapHandle()

return TEScrpHandle;

long TEGetScrapLen()
(

return TEScrpLength;

TESetScrapLen(length)
long length;

TEScrpLength = (short) length;

OSErr TEFromScrap()
{

long offset,length;

/* TEScrapHandle() */

/* TEGetScrapLen() */

/* TESetScrapLen() */

/* TEFromScrap() */

length= GetScrap(TEScrapHandle(), 'TEXT', &offset);

if (length > 0)
TESetScrapLen(length);

return length;

OSErr TEToScrap() I* TEToScrap () *I

242 Using the Macintosh Toolbox with C
---- CH.8

Ptr *TEScrapH;
long length;

HLock(TEScrapH = TEScrapHandle());
ZeroScrap(); /*not included in Lisa Pascal Version*/
length= PutScrap(TEGetScrapLen(), TEXT, *TEScrapH);
HUnlock(TEScrapH);

if(length >= 0) (
length = O;

return length;

The TextEdit Scrap Routines
To copy the contents of the TextEdit scrap to the Clipboard, use

the routine TEToScrap, which returns zero if the operation was completed
successfully, or a 16-bit error code if an error occurred (the values of the
Macintosh Operating System error codes are listed in Appendix B.)

OSErr TEToScrap()

The version of TEToScrap we will present has the Toolbox function Zero
Scrap built in, unlike the Lisa Pascal version. (Ordinarily ZeroScrap must
be called before TEToScrap; we have simply included the call to Zero
Scrap in our version.)

To copy the contents of the Clipboard to the TextEdit scrap, use
the routine TEFromScrap.

OSErr TEFromScrap()

This routine returns an error code if the text was not copied, or zero if
the text was copied successfully. Note that this routine will not copy the
contents of the Clipboard into the TextEdit scrap unless the data on
the Clipboard resembles text (for example, a MacPaint picture will not
be copied into the TextEdit scrap).

There are three other TextEdit scrap routines used primarily in
implementing the routines TEToScrap and TEFromScrap. These routines
allow the application to obtain a handle to the scrap (TEScrapHandle),

Text Editing with the Toolbox 243 ---
determine the number of bytes in the scrap (TEGetScraplen), and set the
length of the scrap (TESetScraplen).

Hanclle TEScrapHandle()

long TEGetScrapLen()

TESetScrapLen(lenqth)

Using the TextEdit Scrap Routines in an Application
There are two different interactions we must consider when

using the TextEdit scrap and the Clipboard. The simplest situation in
volves copying the contents of the Clipboard into the TextEdit scrap at
the start of the application and copying from the scrap into the Clip
board as the application finishes. This will insure that the user can
transfer text from one application to another in the usual fashion. To ac
complish this, the application need only call TEFromScrap before
entering the event loop, and then call TEToScrap just prior to returning to
the Finder.

The other situation is somewhat more complicated and involves
desk accessories and other applications. Whenever either the applica
tion or a desk accessory becomes the active window the application
must insure that the Clipboard and TextEdit scrap both contain the text
from the most recent cut or copy operation. To allow pasting text from
an application to a desk accessory, the contents of the TextEdit scrap
should be copied into the Clipboard after every operation that changes
the scrap (using TECut and TECopy). An alternative approach would be to
copy the scrap to the Clipboard whenever either the application opens a
desk accessory or FindWindow reports that a mouse-down has occurred in
a system window (see Chapter 3).

It is a bit trickier to allow pasting text in the opposite direction,
from a desk accessory to the application. The Scrap Manager maintains
a counter that changes every time the contents of the Clipboard are
changed. The application can periodically check this counter and, if the
value has changed, copy the Clipboard into the TextEdit scrap. The

244 Using the Macintosh Toolbox with C
--- CH.8

counter is located in low memory and can be retrieved with the follow
ing function:

#define scrapCount *((short *) Ox0968)

short GetScrapCount()
{

return scrapCount;

It would also be sufficient for the application to transfer the
Clipboard to the scrap whenever it receives an activate event for one of
its windows (which would happen when deactivating a desk accessory
to return to the application). The techniques we have just described are
used in the sample program at the end of the chapter to allow pasting
between desk accessories and other applications. We will not actually
discuss desk accessories until Chapter 13, although if you can't wait any
longer you can skip ahead and read that section, as we have by now
covered all of the necessary background information.

Scrolling an Edit Record

When the text of an edit record overflows the view rectangle,
the application can scroll the text either horizontally or vertically to
allow the user to view different parts of the text. Scroll bars are the usual
way to allow the user to select which portion of the text will be visible.
This subject will have to wait until Chapter 10, where we discuss con
trols. For now, we can consider the problem of what to do when the
insertion point moves outside the visible portion of the edit record, as
will happen when the number of lines, or the line length, exceeds the
dimensions of the view rectangle.

One method involves computing the position of the insertion
point each time a character is inserted into the edit record with TEKey.
We can first determine which line of the text contains the insertion
point, and then determine the vertical coordinate using the line number
and the line spacing. Once we have determined which line contains the
insertion point, we can determine the horizontal coordinate by comput
ing the width of the string of characters starting at the beginning of the

Text Editing with the Toolbox 245

line and ending at the insertion point. Since the Macintosh uses propor
tionally spaced fonts, the application must use the QuickDraw function
TextWidth to determine the width of a string in an arbitrary font. This
method works quite well, but because of the overhead incurred on each
keystroke it may noticeably slow the application when used by an ex
tremely fast typist. The sample program at the end of the chapter uses
this technique to scroll vertically, but not horizontally, as the insertion
point moves out of the view rectangle.

Scrolling While Selecting Text
Using the mouse to create a selection range may also require

scrolling if the text extends outside of the view rectangle. The routine
TEClick provides a way to scroll the text during a selection if text extends
beyond the boundaries of the current view rectangle. As long as the
mouse button is held down, TEClick will periodically call the function
whose pointer is installed in the Clikloop field of the active edit record.
The application-defined Clikloop routine should check the location of the
mouse and, if it lies outside the view rectangle, scroll the text in the ap
propriate direction (see Figure 8.7).

You can also include other operations in the Clikloop routine that
should be performed during a mouse-down event in an active edit
record. The Toolbox calls the Clikloop routine directly and expects to find
its result in the DO register of the 68000. In addition, the Toolbox expects
that the contents of the 02 register will not be disturbed. Think C allows
the use of in-line assembly language statements, which can be used in
this and other similar situations, to write a small glue routine that places
the parameters where the compiler would normally place them, con
verts the function result if necessary, and restores the appropriate 68000
registers. The box entitled "The ClikLoop Routine" contains such a glue
routine written for the Think C compiler.

To allow the Clikloop routine to function properly, the applica
tion should contain a global variable that maintains a handle to the
active edit record. The following routine, CClikloop, will scroll the text
either horizontally or vertically as necessary, depending on the location

246 Using the Macintosh Toolbox with C
--- CH.8

Scrolling while s
the user to select
visible in the curr mm
for the edit record mm

The text can be s l!ii:i
!Ni@iii!IPl(or ver i!!!ii
on the mouse posi ti''''''

original selection range

ing while selecting
to select that is n

in the current view
edit record.
xt can be scrolled e

ouse position.

scrolling horizontally

~D Untitled

scrolling vertically

Figure 8.7: Horizontal and Vertical Scrolling During TEClick

The ClikLoop Routine

ClikLoop () I* ClikLoop () *I

/* This routine interfaces TEClick to the
routine CClikLoop. The routine has no parameters, but
must preserve the D2 register.

The result is returned in the DO register and has the
following values:

1 - continue (the normal action)
0 - ABORT the current mouse-down

The C routine looks like:

char CClikLoop();

*/
asm

MOVEM.L
JSR
MOVEM.L
MOVEQ.L
RTS

Dl-D7/A0-A6, -(SP)
CClikLoop
(SP)+, Dl-D7/A0-A6
#1,DO

Text Editing with the Toolbox 247

Save registers
Call C routine
Restore registers
keep mouse-down enabled

of the mouse. We will use this routine in the sample program at the
end of the chapter.

CClikLoop () /* CClikLoop() */

/* This routine scrolls the text belonging to the edit
record pointed to by the global variable theText.
It is not very smart about what to do if the window
needs to be scrolled in two directions at once */

/*global variable: the active edit record */
extern TEHandle theText;
/* local variables */

Re ct
Point
int
TEPtr

*viewR, *destR;
mousePt;
viewWidth, lineHeight, destBottom;
theTEPtr;

/* lock and dereference TERec for speed */
HLock(theText);
theTEPtr = *theText;

/* get pointers to view and dest rects
- get lineheight and width of view rectangle */
viewR = &theTEPtr->viewRect;
destR = &theTEPtr->destRect;
lineHeight = theTEPtr->lineHeight;
viewWidth = viewR->right - viewR->left;

248 Using the Macintosh Toolbox with C
--- CH.8

/* get current mouse location and test against viewRect */
GetMouse(&mousePt);
if(!PtinRect(mousePt, viewR)) {

/* if mouse is below viewRect and some text
is below, scroll up one line */

if(mousePt.v > viewR->bottom) {
/* where is the bottom line? */
destBottom = destR->top +
(theTEPtr->nLines)*lineHeight;
if(viewR->bottom < destBottom)

TEScroll(O, -lineHeight,
theText);

/* if mouse is to left of viewRect and
some text is there, scroll right a bit */

} else if((mousePt.h < viewR->left) &&
(viewR->left > destR->left)) {
TEScroll(viewWidth/10, 0, theText);

/* if mouse is to right of viewRect and
some text is there, scroll left a bit */

} else if((mousePt.h > viewR->right) &&
(viewR->right < destR->right)) {

TEScroll(-viewWidth/10, 0, theText);
/* if mouse is above viewRect and some
text is there, scroll down one line */

} else if((mousePt.v < viewR->top) &&
(viewR->top > destR->top))

TEScroll(O, lineHeight, theText);

/* unlock TERec before returning */
HUnlock(theText);

Changing TextEdit's Definition of a Word

In order to split up long lines of text with word wrap or to use a
double-click to select a word, TextEdit has to be able to determine how

Text Editing with the Toolbox 249

to break up a text string into a series of words. As we saw earlier, the
default definition used by TextEdit is that a word consists of a series of
characters bounded on either end by a space or by an ASCII character
below Ox20 (hexadecimal). In word processing applications, however,
this may not be the most useful definition. TextEdit allows the applica
tion to use its own word definitions, which can be assigned on the level
of individual edit records.

To use a custom word definition the application can store a pro
cedure pointer into the wordBreak field of the appropriate edit record. In
the analogy to the Clikloop function we described earlier, the Toolbox
calls the application-defined wordBreak routine directly with its param
eters in the registers of the 68000, and the result returned as the Z flag of
the 68000 status register. In the box entitled "Custom WordBreak:
Routines," we have included a glue routine written for Think C. The
sample program at the end of the chapter uses such a routine to modify
the default definition used by TextEdit.

Custom WordBreak Routines

WordBreak () /* WordBreak() */

/* This routine interfaces the Toolbox to a word breaking
routine written in Think C. The Toolbox passes
the following parameters:

DO - Pointer to locked contents of edit record
Dl - Offset to character in question (16-bit)

and expects the following result

Z-flag SR (Zero result)

- SET if word should not break here
- CLEAR if word should break here

The C routine looks like:

char CWordBreak(textPtr, charPos)
char *textPtr;
short charPos;

250 Using the Macintosh Toolbox with C
--- CH.8

*/
asm

and returns

MOVEM.L
MOVE.W
MOVE.L
JSR

MOVEM.L
TST.B DO
RTS

- TRUE if the word should break here
- CLEAR if word should not break here

Dl-D7/A0-A6, -(SP)
DO, Dl
AO, DO
CWordBreak

(SP)+, Dl-D7/A0-A6

Save registers
put textPtr,
charPos into DO, Dl
Call C routine
(return result in DO)
Restore registers
set z for no break

/* Skeleton word-break routine */

char CWordBreak(textPtr, charPos)
char *textPtr;
int charPos;

char c;

c = *(textPtr + charPos);

I* decision based on the character and its neighbors
- return true to break word at charPos
- return false otherwise */

Text Editing with the Toolbox 251

A Sample Program Using TextEdit
This concludes our discussion of TextEdit. When we discuss

controls and dialogs in Chapters 9 and 10, we will see that TextEdit
forms the basis for several of the ideas presented in these chapters.

With the knowledge we have gained so far of the Toolbox, it is
possible to build a fairly sophisticated application. Several features re
lated to material that we have not yet covered, like reading from or
writing to the disk, will be added in the upcoming chapters. This
chapter's program is lengthy, but we have been leading up to this ex
ample throughout this and the previous seven chapters. In fact, a great
deal of the program has already been presented in examples outlining
the use of various routines in the Toolbox.

The program represents what might be considered a first at
tempt to write a simple word processor that allows several files to be
open at once. The user can change the font, size, and style used in each
of the edit records, as well as the justification and word wrap settings.
Several advanced features like word break, scrolling while selecting,
and window zooming (a double-click in the title bar) are included to
demonstrate that, with the ideas from this and previous chapters, you
can now build a sophistocated text editor. After studying this example,
you should be able to begin to design your own applications, perhaps
using this code as a rough framework.

Because this example is so long, we will not attempt to describe
the program on a line-by-line basis. We have instead divided the ap
plication into a number of procedures and functions that perform
specific tasks. This structure should help to clarify the details of how the
application works.

From text editing we move ahead to resources, another unique
feature of the Toolbox designed specifically to make the job of writing
application programs easier.

252 Using the Macintosh Toolbox with C
--- CH.B

/* This application must be broken into two segments, one for the application
code and the other for the library code. This can be done from the
Project box in THINK C. */

#include
#include
#include
#include
#include
#include
#include
#include
#include

<WindowMgr.h>
<MemoryMgr.h>
<EventMgr.h>
<TextEdit.h>
<FontMgr.h>
<MenuMgr.h>
<ToolboxUtil.h>
<stdio.h>
<strings.h>

/* LSC defines txFace as a char */
#define teNormal
#define teBold OxOl
#define teitalic
#define teUnderline
#define teOutline
#define teShadow
#define teCondense
#define teExtend

#define Desk ID
#define File ID -
#define Edit ID -
#define Format ID -
#define Font ID -
#define Style_ID
#define iBeamCursor

#define singleSp
#define oneandhalfSp
#define double Sp

#define grayRgn

struct _WStuff {
TEHandle theTEH;
Rect oldSize;

) ;

200
201
202

203
204
205

1

0
1
2

OxOO

Ox02
Ox04
Ox08
OxlO
Ox20
Ox40

* ((RgnHandle

ildef ine
typedef
typedef

WindowStuff struct WStuff
WindowStuff *WSPtr;
WSPtr *WSHandle;

/* Global Variables */

*) Ox09EE)

WindowPtr theWindow, windPtrA, windPtrB;

WindowRecord
WindowRecord
TEHandle
Rect

*windRecA;
*windRecB;
theText;
dragBoundsRect, limitRect, fullSize;
windowRectA, windowRectB;

Text Editing with the Toolbox 253

Re ct
MenuHandle
char

deskMenu, fileMenu, editMenu, formatMenu, fontMenu, styleMenu;
*titleA = "\pWindow A";

/*

char
short
CursHandle

External or

WindowPtr
TEHandle
long
short
char
void
void

*titleB = "\pWindow B";
scrapindex;
iBeam;

Non-Integer functions *I

OpenWindow();
OpenTE();
GetDblTime ();
GetScrapCount () ;
IsValidWindow();
WordBreak();
ClikLoop (l ;

reStartProc ()
{

ExitToShell();

/* Initialization Routine */

Init()
{

/* Init () */

InitGraf(&thePort);
InitFonts ();
InitWindows ();
InitDialogs(reStartProc);
TEinit ();
PutUpMenus();
iBeam = GetCursor(iBeamCursor);

/* initialize dragBoundsRect - limits movement of window
- for use with Mac &.MacXL
- InitGraf returns QD, pointer to QuickDraw globals
- QD->screenBits.bounds is bounding Rect for screen */

SetRect(&dragBoundsRect,
screenBits.bounds.left +4,
screenBits.bounds.top +24,
screenBits.bounds.right -4,
screenBits.bounds.bottom -4);

254 Using the Macintosh Toolbox with C
--- CH.8

/*

/* initialize limitRect - limits size of window */
SetRect(&limitRect, 60, 40,

screenBits.bounds.right - screenBits.bounds.left -4,
screenBits.bounds.bottom - screenBits.bounds.top -24);

/* set size of window at full size (for Zoom) */
SetRect(&fullSize,

screenBits.bounds.left +10,
screenBits.bounds.top +40,
screenBits.bounds.right -10,
screenBits.bounds.bottom -8);

/* set up initial size for windows */

SetRect(&windowRectA ,10, 40, 250, 330);
SetRect(&windowRectB ,260, 40, 500, 330);

thewindow = NULL;
theText = NULL;

windRecA
windRecB

windPtrB
windPtrA

(WindowRecord *) NewPtr(sizeof(WindowRecord));
(WindowRecord *) NewPtr(sizeof(WindowRecord));

Openwindow(windRecB,&windowRectB,titleB);
Openwindow(windRecA,&windowRectA,titleA);

* Main
*I

main()
{

I* main() */

char
short

c;
windowcode;

EventRecord
WindowPtr
WindowPtr

Init () ;

theEvent;
mousewindow;
tempWindow;

FlushEvents(everyEvent, 0);
TEFromScrap () ;
scrapindex = GetScrapCount();
SelectWindow(windPtrA);
SetPort(windPtrA);

InitCursor();
while (1) {

/* copy desk scrap to TE scrap */
/* get value of desk scrap counter */
/* Generate an activate event for window A */

Text Editing with the Toolbox 255

SystemTask();

if(scrapindex != GetScrapCount()) (/*if new scrapCount then copy desk scrap*/
TEFromScrap () ;
scraplndex = GetScrapCount();

if(theText)
TEidle(theText);
ChangeMouse(theText);

if (GetNextEvent(everyEvent, &theEvent))
switch (theEvent. what) {

case autoKey:
case keyDown:

c = theEvent.message & charCodeMask;
if ((theEvent.modifiers & cmdKey))

DoMenuitem(MenuKey(c));
else {
if (theText) {

break;

TEKey(c, theText);
ScrollinsertPt(theText);

case mouseDown:
windowcode = FindWindow(theEvent.where, &mouseWindow);

/* mouseDown occurs in active window */
if ((FrontWindow() == mouseWindow) && (mouseWindow !=NULL))

ActiveWindowEvt(&theEvent,mouseWindow,windowcode);
break;

/* mouseDown occurs in inactive window */
if ((FrontWindow() != mouseWindow) && (mouseWindow !=NULL))

InactiveWindowEvt(&theEvent,mouseWindow,windowcode);
break;

/* mouseDown does not occur in a window */

if (mouseWindow == NULL) (
NotaWindowEvt(&theEvent,mouseWindow,windowcode);
break;

256 Using the Macintosh Toolbox with C
--- CH.8

/*

case updateEvt:
DoUpdateEvt(&theEvent);
break;

case activateEvt:
DoActivateEvt(&theEvent);
break;

* mouseDown event handler #1 - Active window
*/

ActiveWindowEvt(theEvent,mouseWindow,windowcode)
EventRecord *theEvent;
WindowPtr
short

long
EventRecord
Re ct
short

mouseWindow;
windowcode;

growResult, upTime, clickTime;
upEvent, downEvent;
clickRect;
vert, horiz;

SetPort(mouseWindow);
switch (windowcode)

case inContent:
GlobalToLocal(&theEvent->where);

activeWindowEvt()

TEClick(theEvent->where, (theEvent->modifiers & shiftKey)? Oxff :0, theText);
break;

case inDrag:
/* Delay to wait for mouse-up */
upTime = theEvent->when + DoubleTime;
while(TickCount() < upTime);

/* has a mouse-up occurred? */
if(GetNextEvent(mUpMask, &upEvent)

/* Delay to wait for mouse-down */
clickTime = upEvent.when + DoubleTime;
vert = theEvent->where.v;
horiz = theEvent->where.h;
SetRect(&clickRect, horiz-8, vert-8, horiz+8, vert+8);

while(TickCount() < clickTime);
if(GetNextEvent(mDownMask, &downEvent)) (

Text Editing with the Toolbox 257

/*

else

if(PtinRect(downEvent.where, &clickRect))
I* doubleclick in dragRegion */
MyZoomWindow(mouseWindow);
break;

/* let user drag the window */
if (StillDown ()) {

Dragwindow(mousewindow,theEvent->where, &dragBoundsRect);
UpdateWSSize(mouseWindow);

break; /* This break was misplaced in the book - see p260 */

case inGrow:
growResult = GrowWindow(mouseWindow, theEvent->where, &limitRect);
if(growResult) I

SizeWindow(mouseWindow, LoWord(growResult), HiWord(growResult), TRUE);
EraseRect(&mousewindow->portRect);
InvalRect(&mouseWindow->portRect);
ReSizeTE(mousewindow);
DrawGrowicon(mouseWindow);
UpdateWSSize(mouseWindow);

break;

case inGoAway:
if (TrackGoAway(theWindow, theEvent->where)) KillWindow(theWindow);
break;

case inSysWindow:
SystemClick(theEvent,mouseWindow);
break;

* mouseDown event handler #2 - inactive window
InactiveWindowEvt()

*/
InactiveWindowEvt(theEvent,mouseWindow,windowcode)

EventRecord
WindowPtr
short

long
Event Record

*theEvent;
mouseWindow;
windowcode;

ticks;
dummyEvent;

258 Using the Macintosh Toolbox with C
--- CH.8

/*

switch (windowcode) {
case inContent:

SelectWindow(mouseWindow);
break;

case inDrag:
ticks = theEvent->when + DoubleTime -1;
while(TickCount() <ticks);
if (StillDown ()) {

DragWindow(mouseWindow, theEvent->where, &dragBoundsRect);
UpdateWSSize(mouseWindow);

else SelectWindow(mouseWindow);
break;

case inSysWindow:
SystemClick(theEvent,mouseWindow);
break;

* mouseDown event handler #3 - no window
NotaWindowEvt ()

*/
NotaWindowEvt(theEvent,mouseWindow,windowcode)

/*

Event Record
WindowPtr
short

*theEvent;
mousewindow;
windowcode;

switch windowcode) {
case inMenuBar:

DoMenuitem(MenuSelect(theEvent->where));
break;

case inDesk:
SysBeep(l);
break;

* Update event handler
DoUpdateEvt ()

*/
DoUpdateEvt(theEvent)

EventRecord *theEvent;

WindowPtr
TEHandle
WSHandle

tempWindow,oldPort;
tempText;
tempWS;

/*

GetPort(&oldPort);
SetPort(tempWindow = (WindowPtr)theEvent->message);
BeginUpdate(tempWindow);
tempWS = (WSHandle)GetWRefCon(tempWindow);
tempText = (*tempWS)->theTEH;
HLock(tempText);
EraseRect(&(*tempText)->viewRect);
TEUpdate(&(*tempText)->viewRect, tempText);
HUnlock(tempText);
DrawGrowicon(tempWindow);
EndUpdate(tempWindow);
SetPort(oldPort);
return;

* Activate event handler
DoActivateEvt ()

*I
DoActivateEvt(theEvent)

/*

EventRecord

WindowPtr
TEHandle
WSHandle

*theEvent;

tempWindow;
tempText;
tempWS;

SetPort(tempWindow = (WindowPtr)theEvent->message);
if(!IsValidWindow(tempWindow)) SysBeep(O);
tempWS = (WSHandle)GetWRefCon(tempWindow);
tempText = (*tempWS)->theTEH;
if ((theEvent->modifiers & activeFlag))

theWindow = tempWindow;
TEActivate(theText = tempText);
SetMenus(tempText);

else I
TEDeactivate(tempText);
theText = NULL;
ClearMenus();

DrawGrowicon(tempWindow);
return;

* Close Window and remove storage
*I

KillWindow(tempWindow)
WindowPtr tempWindow;

WSHandle tempWS;

Text Editing with the Toolbox 259

260 Using the Macintosh Toolbox with C
--- CH.8

/*

tempWS = (WSHandle) GetWRefCon(tempWindow);
HLock(tempWS);

TEDispose((*tempWS)->theTEH);
theText = NULL;

if(theWindow
if(theWindow

windPtrA) windPtrA
windPtrB) windPtrB

CloseWindow(theWindow);
theWindow = NULL;

HUnlock(tempWS);
DisposHandle(tempWS);
ClearMenus();

NULL;
NULL;

* Put up a new Window
*/

WindowPtr OpenWindow(wRec,rect,title) /* OpenWindow() */
WindowRecord *wRec;
Rect *rect;
char *title;

WindowPtr
TEHandle
WSHandle

tempWindow;
tempText;
tempWS;

tempWindow = NewWindow(wRec,rect, title, Oxff, 0, -1, Oxff, 0);
SetPort(tempWindow);
TextFont(geneva);
TextFace(italic);
TextSize(12);
tempText = OpenTE(tempWindow);
HLock(tempText);
tempWS = (WSHandle) NewHandle(sizeof(WindowStuff));
(*tempWS)->theTEH = tempText;
SetWRefCon(tempWindow, tempWS);
UpdateWSSize(tempWindow);
(*tempText)->wordBreak = (ProcPtr) WordBreak;
(*tempText)->clikLoop = (ProcPtr) ClikLoop;
(*tempText)->crOnly = 1;
SetLineHeight(O, tempText);
TEUpdate(&(*tempText)->viewRect, tempText);
HUnlock(tempText);
return tempWindow;

/* try out the wordBreak! ! */
/* try out the clickLoop! ! */

/*
* Get a New a TEHandle
*I

TEHandle OpenTE(tempWindow)
WindowPtr tempWindow;

/* OpenTE() */

Rect destRect, viewRect;

LocWindowSize(tempWindow, &viewRect);
viewRect.right -= 16; /* Make room for scroll bar */
viewRect.bottom -= 16; /* Make room for scroll bar */

LocWindowSize(tempWindow, &destRect);
destRect.right -= 16; /* Make room for scroll bar */
destRect.bottom -= 16; /* Make room for scroll bar */
destRect. left += 4; I* indent a bit *I

return TENew(&destRect, &viewRect);

I*
* Resize Suffix Rects
*/

ReSizeTE(tempWindow)
/* ReSizeTE() */

WindowPtr tempWindow;

Re ct
TEHandle
WSHandle

rect;
tempText;
tempWS;

tempWS = (WSHandle)GetWRefCon(tempWindow);
tempText = (*tempWS)->theTEH;

LocWindowSize(tempWindow, &rect);
rect.right -= 16; /* Make room for scroll bar */
rect.bottom -= 16; /* Make room for scroll bar */

BlockMove(&rect, &(*tempText)->viewRect, sizeof(Rect));
rect.left += 4; /* indent a bit */
rect.top += 4; /* indent a bit */
rect.right 4; /* indent a bit */
rect.bottom 4; /* indent a bit */

BlockMove(&rect, &(*tempText)->destRect, sizeof{Rect));
TECalText(tempText);

Text Editing with the Toolbox 261

LocWindowSize(tempWindow, theSize)
WindowPtr tempWindow;

/* LocWindowSize() */

Rect *theSize;

262 Using the Macintosh Toolbox with C
--- CH.8

/* Procedure to copy size of a window's content region
in LOCAL coordinates of window */

/*copy window's portRect from its GrafPort */
*theSize = tempWindow->portRect;

GlobWindowSize(tempWindow, theSize)
WindowPtr tempWindow;
Rect *theSize;

/*Procedure to copy size of a window's content region
in GLOBAL coordinates */

GrafPtr theCurrentPort;

/* change grafPort to tempWindow */

GetPort(&theCurrentPort);
SetPort(tempWindow);

LocWindowSize(tempWindow, theSize);

/* convert Rect to global coordinates - as two Points */
LocalToGlobal((Point *) &theSize->top);
LocalToGlobal((Point *) &theSize->bottom);

/* restore grafPort */

SetPort(theCurrentPort);

UpdateWSSize(tempWindow)
WindowPtr tempWindow;

WSHandle tempWS;
tempWS = (WSHandle) GetWRefCon(tempWindow);
HLock (tempWS) ;

GlobWindowSize(tempWindow, &(*tempWS)->oldSize);
HUnlock(tempWS);

MyZoomWindow(tempWindow)
/* MyZoomWindow() */

WindowPtr

Re ct
WSHandle

tempWindow;

theStart, theFinal;
tempWS;

RgnHandle theRgn;
char zoomUp;

/* GlobWindowSize() */

GlobWindowSize(tempWindow, &theStart);
if(EqualRect(&theStart, &fullSize)) (

tempWS = (WSHandle) GetWRefCon(tempWindow);
BlockMove(&(*tempWS)->oldSize, &theFinal, sizeof(Rect));
ZoomRect(&theStart, &theFinal);
/* window getting "smaller" */
LocWindowSize(tempWindow, &theStart);
EraseRect(&theStart);
SizeWindow(tempWindow,

theFinal.right - theFinal.left,
theFinal.bottom - theFinal.top, Oxff);

MoveWindow(tempWindow, theFinal.left, theFinal.top, 0);
else (

BlockMove(&fullSize, &theFinal, sizeof(Rect));
ZoomRect(&theStart, &theFinal);
/* window getting "bigger" */
LocWindowSize(tempWindow, &theStart);
EraseRect(&theStart);
MoveWindow(tempWindow, theFinal.left, theFinal.top, 0);
SizeWindow(tempWindow,

theFinal.right - theFinal.left,
theFinal.bottom - theFinal.top, Oxff);

LocWindowSize(tempWindow, &theFinal);
EraseRect(&theFinal);
InvalRect(&theFinal);
ReSizeTE(tempWindow);
DrawGrowicon(tempWindow);

/*
* Puts up Menus
*/

PutUpMenus ()
(

short items, i;

InitMenus () ;

/* Desk Accessory menu */
deskMenu = NewMenu(Desk ID,"\p\024");
AppendMenu(deskMenu,"\pAbout This Example!;(-");
AddResMenu(deskMenu, 'DRVR');
items= CountMitems(deskMenu);
for(i=3;i<=items;i++) Disableitem(deskMenu, i);
InsertMenu(deskMenu, 0);

/* File menu */
fileMenu = NewMenu(File_ID, "\pFile");

Text Editing with the Toolbox 263

264 Using the Macintosh Toolbox with C
--- CH.8

/*

AppendMenu(fileMenu, "\pNew/N; (Open/O;Close; (-;Zoom/,;Quit/.");
InsertMenu(fileMenu, 0);

/* Edit menu */
editMenu = NewMenu(Edit_ID, "\pEdit");
AppendMenu(editMenu, "\p(Undo/Z;(-;Cut/X;Copy/C;Paste/V;Clear; (-;Select All");
InsertMenu(editMenu, 0);

/* Format menu */
formatMenu = NewMenu(Format_ID, "\pFormat");
AppendMenu(formatMenu,

"\pLeft/L;Center/M;Right/R; (-;WordWrap; (-;CompactMem;ResrvMem");
InsertMenu(formatMenu, OJ;

/* Font menu */
fontMenu = NewMenu(Font_ID, "\pFont");
AppendMenu(fontMenu, "\pChicago;New York;Geneva;Monaco");
AppendMenu(fontMenu,"\p(-;9 point;lO point;12 point;14 point");
InsertMenu(fontMenu, OJ;

/* Style menu */
styleMenu = NewMenu(Style_ID, "\pStyle");
AppendMenu(styleMenu,

"\pNormal;Bold;Italic;Underline;Outlined;Shadow;Condense;Extend");
InsertMenu(styleMenu, 0);

DrawMenuBar();

*Do what the menu says ...
*/

DoMenuitem(menuresult)
long menuresult;

Str255 accessoryName;
short menuID, itemNumber;

menuID HiWord(menuresult);
itemNumber = menuresult;

switch (menuID) {
case Desk ID:

if(itemNumber == 1)
AboutWindow();

else {

/* item 1 is about window */

Getitem(deskMenu, itemNumber, &accessoryName);

TEToScrap(); /*copy TE scrap to desk scrap for DA's */
scrapindex = GetScrapCount();

Text Editing with the Toolbox 265

OpenDeskAcc(&accessoryName);

break;

case File_ID:
switch (itemNumber) {

case 1: /* item 1 is New */
if(wind.PtrA ==NULL) wind.PtrA = OpenWindow(windRecA,

else if(wind.PtrB ==NULL) wind.PtrB = OpenWindow(windRecB,

break;

case 2:
break;

/* item 2 is Open */

case 3: /* item 3 is Close */
if((theWindow == FrontWindow()) && (theWindow !=NULL))

KillWindow(theWindow);
break;

case 5: /* item 5 is Zoom */
if(theWindow !=NULL) MyZoomWindow(theWindow);

break;

case 6: /* item 6 is quit */

break;

TEToScrap () ;
ExitToShell () ;
break;

/* copy TE scrap to desk scrap */

case Format_ID:
if(!theText) break;
HLock(theText);
switch(itemNumber) {

case 1: /* item 1 is Left Justification */
TESetJust(teJustLeft,theText);
break;

case 2: /* item 2 is Center Justification */
TESetJust(teJustCenter,theText);
break;

case 3: /* item 3 is Right Justification */
TESetJust(teJustRight,theText);
break;

case 5: /* item 5 is WordWrap */
(*theText)->crOnly *= -1;
EraseRect(&(*theText)->viewRect);
break;

266 Using the Macintosh Toolbox with C
--- CH.8

case 7: /* case 7 is CompactMem */
CompactMem(maxSize);
break;

case 8: I* case 8 is ReserveMem *I
ResrvMem(maxSize);
break;

TECalText(theText);
TEUpdate(&(*theText)->viewRect, theText);
HUnlock(theText);
SetMenus(theText);
break;

case Edit_ID:
if(SystemEdit(itemNumber-1)) break;
if(!theText) break;
switch(itemNumber) {

case 3: /* item 3 is Cut */
TECut(theText);
TEToScrap(); /*copy TE scrap to desk scrap for DA's */
scrapindex = GetScrapCount();
break;

case 4: /* item 4 is Copy */
TECopy(theText);
TEToScrap(); /*copy TE scrap to desk scrap for DA's */
scrapindex = GetScrapCount();
break;

case 5: /* item 5 is Paste */
TEPaste(theText);
break;

case 6: /* item 6 is Clear */
TEDelete(theText);
break;

case 8: /* item 8 is Select All */
TESetSelect(0,65000,theText);
break;

break;

case Font ID:
if(!theText) break;
switch(itemNumber) {

case 1: /* case 1 is Chicago */
(*theText)->txFont = systemFont;
break;

case 2: /* case 2 is New York */
(*theText)->txFont = newYork;
break;

case 3: /* case 3 is Geneva */
(*theText)->txFont = geneva;
break;

case 4: /* case 4 is Monaco */
(*theText)->txFont = monaco;
break;

case 6: /* case 6 is 9 point *I
(*theText)->txSize = 9;
break;

case 7: /* case 7 is 10 point */
(*theText)->txSize = 10;
break;

case 8: /* case 8 is 12 point */
(*theText)->txSize = 12;
break;

case 9: /* case 9 is 14 point */
(*theText)->txSize = 14;
break;

HLock(theText);
EraseRect(&(*theText)->viewRect);
SetLineHeight(O, theText);
TECalText(theText);
TEUpdate(&(*theText)->viewRect, theText);
HUnlock(theText);
SetMenus(theText);
break;

case Style_ID:
if(!theText) break;
switch(itemNumber) I

case 1: /* case
(*theText)->txFace
break;

1 is Normal
teNormal;

*/

case 2: /* case 2 is Bold *I
(*theText)->txFace A= teBold;
break;

case 3: I* case 3 is Italic *I
(*theText)->txFace A= teitalic;
break;

case 4: /* case 4 is Underline */
(*theText)->txFace A= teUnderline;
break;

case 5: I* case 5 is Outline *I
(*theText)->txFace A= teOutline;
break;

case 6: I* case 6 is Shadow *I
(*theText)->txFace A= teShadow;
break;

case 7: /* case 7 is Condense */
(*theText)->txFace A= teCondense;
break;

case 8 : I* case 8 is Extend *I
(*theText)->txFace A= teExtend;
break;

Text Editing with the Toolbox 267

268 Using the Macintosh Toolbox with C
--- CH.8

HLock(theText);
EraseRect(&(*theText)->viewRect);
TECalText(theText);
TEUpdate(&(*theText)->viewRect, theText);
HUnlock(theText);
SetMenus(theText);
break;

HiliteMenu(O);

/*
* Clear Menus
*I

ClearMenus ()
/* ClearMenus() */
{

short i;

for(i=l;i<6;i++) Checkitem(formatMenu,i,0);
for(i=l;i<lO;i++) Checkitem(fontMenu,i,0);
for(i=l;i<9;i++) Checkitem(styleMenu,i,0);

/*
* Set up Menus for current TextWindow
*/

SetMenus(tempText)
TEHandle tempText;

ClearMenus();

switch((*theText)->just)
case teJustLeft:

Checkitem(formatMenu,1,0xff);
break;

case teJustCenter:
Checkitem(formatMenu,2,0xff);
break;

case teJustRight:
Checkitem(formatMenu,3,0xff);
break;

/* SetMenus () */

if((*theText)->crOnly > -1) Checkitem(formatMenu,5,0xff);
switch((*theText)->txFont) {

case systemFont:
Checkitem(fontMenu,1,0xff);
break;

Text Editing with the Toolbox 269

/*

case newYork:
Checkitem(fontMenu,2,0xff);
break;

case geneva:
Checkitem(fontMenu,3,0xff);
break;

case monaco:
Checkitem(fontMenu,4,0xff);
break;

switch((*theText)->txSize)
case 9:

if (
if (
if (
if(
if(
if(
if (
if(

Checkitem(fontMenu,6,0xff);
break;

case 10:
Checkitem(fontMenu,7,0xff);
break;

case 12:
Checkitem(fontMenu,8,0xff);
break;

case 14:
Checkitem(fontMenu,9,0xff);
break;

(*theText)->txFace == teNormal
(*theText)->txFace & teBold)
(*theText)->txFace & teitalic)
(*theText)->txFace & teUnderline)
(*theText)->txFace & teOutline)
(*theText)->txFace & teShadow)
(*theText)->txFace & teCondense)
(*theText)->txFace & teExtend)

Checkitem(styleMenu,l,Oxff);
Checkitem(styleMenu,2,0xff);
Checkitem(styleMenu,3,0xff);
Checkitem(styleMenu,4,0xff);
Checkitem(styleMenu,5,0xff);
Checkitem(styleMenu,6,0xff);
Checkitem(styleMenu,7,0xff);
Checkitem(styleMenu,8,0xff);

* Put up About Window
*/

About Window ()
I

Rect creditR;
Rect lineR;
GrafPtr port;
WindowPtr creditW;
EventRecord anEvent;
long dummy;
char *linel = "Sample Application from";
char *line2 = "Using the Macintosh ToolBox from C";
char *line3 = "Fred Huxham, Dave Burnard, Jim Takatsuka";
char *line4 "Published by Sybex, Inc.";
char *lines = "developed using THINK Technologies' LightSpeedC*";

270 Using the Macintosh Toolbox with C
--- CH.8

/*

GetPort(&port);
SetRect(&lineR,5,10,345,25);
SetRect(&creditR,75,110,425,230);
creditW = NewWindow ((WindowPeek) NULL, &creditR, "\lx", Oxff,

dBoxProc, (WindowPtr) -1,0xff,0);
SetPort(creditW);

TextSize(12);
TextFont(systemFont);
TextBox(linel,strlen(linel),&lineR,teJustCenter);
OffsetRect(&lineR,0,20);

TextFace(underline);
TextBox(line2,strlen(line2),&lineR,teJustCenter);

TextFace(O);

OffsetRect(&lineR,0,20);
TextBox(line3,strlen(line3),&lineR,teJustCenter);
OffsetRect(&lineR,0,20);
TextBox(line4,strlen(line4),&lineR,teJustCenter);
OffsetRect(&lineR,0,20);
TextBox(line5,strlen(line5),&lineR,teJustCenter);

do (
GetNextEvent(everyEvent, &anEvent);

I while (anEvent.what != mouseDown);

DisposeWindow(creditW);

SetPort (port);

return;

* Change Mouse if over active Text region
*/

ChangeMouse(activeTEH)
TEHandle activeTEH;

Point mousePt;
if(FrontWindow() == (WindowPtr) (*activeTEH)->inPort) {

GetMouse(&mousePt);
if(PtinRect(&mousePt,&(*activeTEH)->viewRect)) SetCursor(*iBeam);
else SetCursor(&arrow);

void WordBreak ()
{

char CWordBreak();

asm

MOVEM.L
MOVE.W
MOVE.L
JSR
ADD

MOVEM.L
TST.B
RTS

Dl-D7/A0-A6, -(SP)
DO, -(SP)
AO, - (SP)
CWordBreak
#6,SP

(SP)+, Dl-D7/A0-A6
DO

char CWordBreak(textPtr, charPos)

; Push Dl to stack
push charPos onto stack

textPtr

Text Editing with the Toolbox 271

Call C routine (returns result in DO)
Pop arguments from stack

; Restore registers from stack
z code set should'nt break

short charPos; /* offset into text of character to test */
char *textPtr; /* pointer to text of Edit Record */

/* returns TRUE if break should occur at the char, or FALSE if not */

char c;

c = *(textPtr + charPos);

if ((c >= '\000') && (c <= ,
'))

if ((c >= ,
') && (c <= , /'))

if ((c >= , :') && (c <= '@'))

if ((c >= , [') && (c <= , "))
if ((c >= , {') && (c <= , _,))

return 0;

void ClikLoop ()

char CClikLoop () ;
asm (
MOVEM.L
JSR
MOVEM.L
MOVEQ.L
RTS

Dl-D7/AO-A6, -(SP)
CClikLoop
(SP)+, Dl-D7/AO-A6
#1,DO

return Oxff;
return Oxff;
return Oxff;
return Oxff;
return Oxff;

Save registers to stack
Call C routine
Restore registers from stack
keep ClikLoop enabled

272 Using the Macintosh Toolbox with C
--- CH.8

char
I

CClikLoop ()

Rect
Point
short
TEP tr

*viewR, *destR;
mousePt;
viewWidth, lineHeight, destBottom;
theTEPtr;

HLock(theText);
theTEPtr = *theText;

viewR = &theTEPtr->viewRect;
destR = &theTEPtr->destRect;
lineHeight = theTEPtr->lineHeight;
viewWidth = viewR->right - viewR->left;

GetMouse(&mousePt);
if(!PtinRect(mousePt, viewR)) {

if(mousePt.v > viewR->bottom)
destBottom = destR->top + (theTEPtr->nLines)*lineHeight;
if(viewR->bottom < destBottom) TEScroll(O, -lineHeight, theText);
else if((mousePt.h < viewR->left) && (viewR->left > destR->left))
TEScroll(viewWidth/5, O, theText);
else if((mousePt.h > viewR->right) && (viewR->right < destR->right))
TEScroll(-viewWidth/5, 0, theText);
else if((mousePt.v < viewR->top) && (viewR->top > destR->top)) {
TEScroll(O, lineHeight, theText);

HUnlock(theText);

ScrollinsertPt(hTE)
TEHandle hTE;

TEPtr pTE;
short position, line, nLines, linePos, lineHeight, viewTop, viewBot;
HLock(hTE);
pTE = *hTE;

nLines = pTE->nLines;
position = pTE->selEnd;
viewTop = (pTE->viewRect) .top;
viewBot = (pTE->viewRect) .bottom;
lineHeight = pTE->lineHeight;

line = 1;
while((position > pTE->lineStarts[line)) && (line<= nLines)) line+= 1;

linePos = (pTE->destRect) .top+ pTE->lineHeight * (line+!);

if(linePos < viewTop) I

do I
TEScroll(O, lineHeight, hTE);

linePos += lineHeight;
} while(linePos < viewTop);

else if(linePos > viewBot) I

do I
TEScroll(O, -lineHeight, hTE);

linePos -= lineHeight;
} while(linePos > viewBot);

HUnlock(hTE);

short
I

GetScrapCount()

return *((short *) Ox0968);

Text Editing wijh the Toolbox 273 ---

SetLineHeight(spacing, hTE) /* SetLineHeight() */

short
TEHandle

spacing;
hTE;

/* line spacing */
I* the edit record */

/* this routine changes the lineHeight and fontAscent of
the edit record hTE to reflect its font and size. The
line spacing can be either single 1 1/2 or double */

GrafPtr theCurrentPort;
Fontinfo fontStuff;
short extra;

/* set current port to window containing hTE */

GetPort(&theCurrentPort);
SetPort((*hTE)->inPort);
/* set font and size of grafPort to same as hTE */
TextFont((*hTE)->txFont);
TextSize((*hTE)->txSize);
/* get font information */

274 Using the Macintosh Toolbox with C
--- CH.8

GetFontinfo(&fontStuff);
/* set up for single space */
(*hTE)->fontAscent fontStuff.ascent;
(*hTE)->lineHeight = fontStuff.ascent + fontStuff.descent +

fontStuff.leading;
/* modify for other spacings */
if(spacing == singleSp) return;
else if(spacing == oneandhalfSp) extra= (*hTE)->lineHeight/2;
else if(spacing == doubleSp) extra= (*hTE)->lineHeight;
(*hTE)->lineHeight +=extra;
(*hTE)->fontAscent +=extra;
return;

ZoomRect(beginR, endR)
Rect *beginR, *endR;

#define Nsteps B
Rect tempRect[Nsteps];
short nnl, i;
Fixed fnnl, fdLeft, fdRight, fdTop, fdBottom;
Fixed fsLeft, fsRight, fsTop, fsBottorn;
GrafPtr savePort,deskPort;
RgnHandle deskClipRgn;

deskClipRgn = (RgnHandle) NewHandle(sizeof(Region));

GetPort(&savePort);
GetWMgrPort(&deskPort);
SetPort(deskPort);
GetClip(deskClipRgn);
SetClip(grayRgn);

PenPat(&gray);
PenMode(patXor);

nnl = (Nsteps-l)*Nsteps;

beginR->top
endR->top

20; /* correct for standard window title */
20;

fsLeft
fsRight
fsTop
fsBottom

fdLeft
fdRight
fdTop
fdBottom

FixRatio(beginR->left, 1);
FixRatio(beginR->right, 1);
FixRatio(beginR->top, 1);
FixRatio(beginR->bottom, 1);

FixRatio(2*(endR->left
FixRatio(2*(endR->right
FixRatio(2*(endR->top
FixRatio(2*(endR->bottom

- beginR->left),
- beginR->right),
- beginR->top),
- beginR->bottom),

nnl);
nnl);
nnl);
nnl);

for(i=l;i<Nsteps;i++) I
fnnl = FixRatio(i*(i+l), 1);
tempRect[i-1] .left FixRound(fsLeft
tempRect[i-1] .right FixRound(fsRight
tempRect[i-1] .top FixRound(fsTop
tempRect[i-1] .bottom FixRound(fsBottom

+ FixMul (fnnl,
+ FixMul (fnnl,
+ FixMul (fnnl,
+ FixMul (fnnl,

Text Editing with the Toolbox 275

fdLeft));
fdRight));
fdTop));
fdBottom));

FrameRect(beginR); /* draw start rectangle */
FrameRect(&tempRect[OJ); /* draw first rectangle */
FrameRect(&tempRect[l]); /* draw second rectangle */

FrameRect(beginR); /* erase start rectangle */

for(i=2;i<Nsteps-l;i++)
FrameRect(&tempRect[i]); /* draw next rectangle */
FrameRect(&tempRect[i-2]); /* erase rectangle two steps back */

FrameRect(endR); /* draw final rectangle */

FrameRect(&tempRect[Nsteps-3]);
FrameRect(&tempRect[Nsteps-2]);
FrameRect(endR);

/* erase next to last rectangle */
/* erase last rectangle */
/* erase final rectangle */

beginR->top += 20; /* correct for standard window title */
endR->top += 20;

SetClip(deskClipRgn);
DisposHandle(deskClipRgn);
SetPort(savePort);

char IsValidWindow(tempWindow)
WindowPtr tempWindow;
/* determines if tempWindow is a valid window

by searching through the window list */

WindowPeek aWindow, testWindow;

/* define windowList to be the WindowPeek in system global
- at location Ox09D6 */

#define windowList *((WindowPeek *)0x09D6)

/* cast tempWindow to WindowPeek */

testWindow = (WindowPeek) tempWindow;

/* start at beginning of list */

276 Using the Macintosh Toolbox with C
--- CH.8

aWindow = windowList;

/* if we are not at end of list
- is this tempWindow ?

if not then skip to the next window in list */

while(awindow !=NULL) {
if(aWindow == testWindow) return Oxff;
else aWindow = aWindow->nextWindow;

return 0; /* can't find tempWindow */

--/.. I

I ---------r-
~ I

+ /

• • ••• •••••
••••• • • • • • • • • •

I

I
I
I
I
I
I

-- I --- --1--
1

I
I

)(I

~
+I

Resources

Now that we have covered the fundamentals for creating an ap
plication, it's a good time to take a look at one of the most powerful
features of the Macintosh: the concept of resources. Resources allow the
programmer to break an application down into logical segments, so that
menus, windows, icons, cursors, pictures, fonts, alert boxes, or any
other element of an application can be stored in its own module. This
makes it easy to create and modify our applications as they grow in
creasingly complex. Although resources are used primarily to store data
elements, several resource types contain actual code. Window and menu
definition procedures, desk accessories, and the code of the application
are all contained in resources.

Why would an application want to use resources in the first
place? The main reason is flexibility. Because the user interface can be
altered independently of an application's code, the programmer can
change the cosmetic elements of an application without having to
recompile the entire program. This means that the more complex ele
ments of the Macintosh's graphics-oriented interface (icons, cursors,
and background patterns) can be easily readjusted.

Organization of Resources
Every Macintosh file is divided into two distinct parts or

"forks": the resource fork and the data fork. The primary distinction be
tween these two forks is the way in which they are accessed. The
Resource Manager is responsible for information in the resource fork,
whereas information in the data fork is manipulated via the File

280 Using the Macintosh Toolbox with C
--- CH.9

Manager. A Mac Write file provides a nice example of the breakdown
between resources and data. Creation date, the status of windows and
rulers, and a lot of other miscellaneous information is stored in the
resource fork, while the actual text of the document is stored in the data
fork (see Figure 9.1).

For identification, all resources have associated with them a
type, an ID number, and an optional name. A resource type consists of a
unique four character string. The system requires that the resource type
be exactly four characters long (spaces count as characters) and makes a
distinction between uppercase and lowercase letters. By default, the
system recognizes a number of reserved resource types and the pro
grammer is free to define his or her own resource types as well (we'll
explain shortly why you might want to do that) . A list of the reserved
resource types is given in Appendix B.

Within each resource fork, more commonly known as a
resource file, resources are grouped according to their types. For ex
ample, all resources of the type 'FONT' would be grouped together. To
distinguish among resources of the same type, every resource within a
type is identified by its resource ID, a unique integer. The ID must be
unique within each resource type, but resources of different types can
have the same ID, as we have touched on previously. So, two resources
of type 'ICON' cannot both have the ID 2; however, an 'ICON' resource
and a 'PICT' resource could share the same ID.

Resource

Fork

Figure 9.1: Macintosh File Structure

Resources 281

By convention, negative resource IDs and IDs less than 127 are
reserved for use by the system. The rest are free to be used in whatever
way you wish. If you are working on certain standard system resources,
you may be restricted further in the use of ID numbers.

A resource can also have an optional resource name. Like the
resource ID, the name must be unique within a particular resource type.
The types of resources for which names are really useful are those that
could potentially appear in menus-specifically fonts and desk acces
sories. Other types of resources generally don't have names except
where names would be a useful reference tool for the programmer.

As far as our treatment of resources goes, it isn't essential to
know the exact format of a resource file. However, having a general
idea of its format helps in understanding the intricacies of the Resource
Manager. Figure 9 .2 shows the overall structure of a resource file.

Every resource file begins with a resource header, which
gives the offsets to and lengths of the resource data and resource
map parts of the file. The directory copy contains information
about the file for use by the Finder, and the application data can be
used for anything you want.

Resource Header

Copy of directory Entry

Application Data

Resource Data

Resource Map

Figure 9.2: Structure of a Resource File

282 Using the Macintosh Toolbox with C
--- CH.9

Next comes the resource data. This is where the meat of the
resources is stored: icon bitmaps, procedure definitions for menus,
windows, controls, menu item information, and whatever other data ele
ments you want to store.

Finally, the resource map contains the offsets for the resource
data. It contains such information as how many resources are stored in
the file and what kind of resources they are, as well as information about
particular resources, such as length and ID number.

The Role of the Resource Manager
Unlike the other Toolbox managers we have seen so far, the

Resource Manager exists primarily for use by other parts of the Tool
box. It's important to realize that the Resource Manager doesn't
understand anything about the contents of resource files; it's only
responsible for their housekeeping. Actually making use of the informa
tion in resource files is up to the particular section of the Toolbox that
makes the call. When the Menu Manager processes a GetMenu call, for
example, it in tum makes calls to Resource Manager routines that access
the appropriate information in the resource file.

By default, the Resource Manager searches files for resources
in the reverse order to that in which they were opened. For every ap
plication, two important resource files are opened automatically by the
system. When the computer is first turned on, the system opens the sys
tem resource file as part of the initialization of the Resource Manager.
The application's resource file is opened when the application starts up.
Using the example of a GetMenu call again, when the Resource Manager
searches for a 'MENU' type resource with the given ID, it will first
search the application's resource file. If it doesn't find what it is looking
for, it will move on and search the system resource file. (The Resource
Manager also allows you to change the search order to begin at any
resource file you choose, not just the most recently opened.)

Note that when the Resource Manager searches a resource file,
it doesn't search the actual file itself. Rather it searches the resource
map that was read into memory when the file was opened. Figure 9.3
shows the order the Resource Manager follows when searching for a
particular resource in a file.

Resources 283

As a programmer you can take advantage of the default
search sequence whenever you want to modify one of the shared sys
tem resources. Say, for example, that you are working in a text editor,
writing code for your new program using the Monaco font. The prob
lem is that you keep getting your zeros mixed up with the letter 0.
One solution would be to put a slash through the zeros, except that,
for whatever reason, you don't want the zeros slashed in all the other
applications that use the Monaco font. Now that you know the
system's search order for resources, however, making the change
only in your text editor is easy. You simply make a copy of the
Monaco resource from the system resource file with ResEdit, modify
it, and paste it into the resource fiie of your text editor. Then when
ever the text editor needs a Monaco font, it will first check its own
resource file. Finding your modified font there, it will be satisfied
and search no further, using that font for your code.

What else does the Resource Manager do? As mentioned ear
lier, it is mostly occupied with the housekeeping required by the other
sections of the Toolbox that access resources. For advanced applications
that create new resource types and modify their contents, the Resource
Manager's functions are directly accessible. An application can create,

Other
Resource file

Document
Resource File

Application
Resource File

System
Resource File

Default Search Alternate Search
Order Order

j

Figure 9.3: Search Order of the Resource Manager

284 Using the Macintosh Toolbox with C
--- CH.9

open, and close resource files at its discretion, as well as modify any
thing about a particular resource other than its type. However, the direct
control of resources is a bit beyond the scope of this discussion.

A Look at the System Resource File
The resource file most familiar to Macintosh users is the system

resource file. The system resource file stores all the standard resources
shared by the Finder and all other applications. Studying this file will give
us a good feel for what kinds of things can be stored in resource files.

First and foremost, the system resource file serves as the foun
dation for all the graphics used in the Macintosh's user interface. The
resources here can be shared by any application running under a given
system file. We can divide the standard resources, as we can all resour
ces, into two general classifications: those that act as a storage space for
information and those that direct the computer to carry out a task; in
other words, passive and active resources. Passive resources in the sys
tem file are of types containing icons, alerts, pictures, dialogs, patterns,
fonts and the like.

More crucial to the user interface are the resources of the
second type, those that actually carry out a task. If you recall our discus
sion of menus and windows, you'll remember that the Toolbox allowed
us the option of designing our own custom versions of these interface
features. Each was defined by something called a "definition proce
dure" which was pointed to in the feature's data structure by a handle
(definition procedures are also used with controls, as we'll see in the
next chapter). If we back up a step, it's clear that the system needs to
have a definition procedure for the standard features as well. The stand
ard menu and the six predefined windows, as well as the standard button
and scroll controls, are all defined in the system resource file. They are
identified by the resource types 'MDEF', 'WDEF', and 'CDEF' respec
tively. These definition procedures are stored as resource data and
define not only the appearance of the particular feature but the way it
functions as well.

Also in the category of active resources are resources of the
type 'DRVR'. In general, these device driver resources handle all

Resources 285

the communications between the Macintosh and its external devices
(disk drives, hard disks, printers, and so on). The driver for the Im
agewriter printer is a good example. Hard disk drives that hook up to the
Macintosh's serial port also install their drivers in the system resource
file. By far the most popular of the 'DRVR' resources, however, are the
desk accessories. Desk accessories are small stand-alone applications
that can be run from within other applications and are capable of doing
nearly anything an application can do. There are a number of desk ac
cessories provided with the Macintosh system software, and countless
thousands of them now exist in both the commercial markets and the
public domain.

Another very popular resource type is 'FONT' which defines
text fonts. As you know, the Macintosh is capable of displaying many
different fonts on the screen at the same time. When fonts are installed
into the system, either by Apple's Font/DA Mover or some other utility,
they are installed into the system resource file. That's why the system
file on a disk seems to grow exponentially whenever you start adding
fonts to it.

The system resource file also contains a class of active resour
ces that are essentially extensions to the Toolbox ROM. 'PACK' or
package resources contain additional functions and data structures for
relatively specialized purposes. For example, whenever a program
opens or closes a file, it calls a function from the Standard File package.
The Standard File package (SF package, for short) is automatically read
into memory whenever one of its functions is called. It puts up the ap
propriate dialog box for either opening or closing a file and handles all
events until a file is selected and acted upon.

If the user ejects a disk while in the SF package's dialog box
and inserts another disk, the SF package will call another 'PACK'
resource, the Disk Initialization package. This package will inspect the
inserted disk and determine if it is an initialized Macintosh diskette. If
not, it will put up a dialog box asking the user if the inserted disk is to be
initialized or ejected and will carry out the function selected. Both the
SF package and Disk Initialization package dialog boxes are probably
very familiar to Macintosh users. Nearly every application on the
market uses them or a variation of them.

286 Using the Macintosh Toolbox with C
--- CH.9

The other packages in the system resource file include one that
does binary-to-decimal number conversion, a package for doing float
ing point arithmetic, and a package to perform transcendental functions
(trigonometry, logarithms, and so on).

Using Resources
Since the Resource Manager knows only how to access and

manipulate resource files and isn't capable of doing anything with the
resource data, how can we make use of resources in our own applications?
The answer is that the sections of the Toolbox that we have already dis
cussed are all capable of using information stored as resource data.

As an example, we have seen that the Window Manager allows us
to create new windows in two different ways. In the sample program in
Chapter 3, we created our window in code using the function NewWindow.

WindowPtr NewWindow(wStoraqe, boundsRect, title, visible,
procID, behind, qoAwayFlaq, refCon);

You'll recall the many parameters we needed to pass to this
function in order to describe the new window we wanted to put up. If it
turned out that we didn't like the way the new window looked (say
it was the wrong size or the wrong type), we would have to change the
parameters of the function and recompile the code in order to change
the window.

We also looked at a similar call which used a resource file win
dow definition, GetNewWindow.

WindowPtr GetNewWindow(windowID, wStoraqe, behind);

The behind and wStorage parameters are the same as in New
Window. The Window ID is the ID of a resource of the type 'WIND' which
needs to be in a currently open resource file. It is from this resource that
GetNewWindow will get information about the new window. The 'WIND'
or window template resources contain the parameters in NewWindow that
are missing from GetNewWindow. ("Template" means that this resource
stores a list of information used to build a Toolbox object.) The bounds-

Resources 287

Rect, proclD, visibleFlag, goAwayFlag, refCon, and title data are all stored here
in the format shown in Figure 9.4.

We will look at a slightly more formalized way to define these
parameters later in this chapter when we deal with RMaker.

GetNewWindow creates a window record for the new window
using the information from a resource file and returns a pointer to the
window record. The rest of your application cannot tell the difference
between GetNewWindow and NewWindow. The real difference is to the
programmer, who now has the flexibility to change the appearance of
the new window without having to recompile code or worry too much
about disturbing the functionality of the application.

Another example can be found in the Menu Manager. The pro
cedure GetMenu works similarly to GetNewWindow. Given a resource ID,
GetMenu searches for the appropriate 'MENU' resource and reads the
information required to create a new menu record. Like 'WIND',
'MENU' is a template resource type and contains all the information
necessary to fill a menu record, as well as the specifications for each
menu item. As we saw in chapter 4, defining a menu in a resource file
actually saves us a step in code by replacing both the NewMenu and
AppendMenu functions. The menu template data is stored as shown in
Figure 9.5.

Again the flexibility provided by the resource file is clear: all
of the menu's characteristics normally specified in code by New·
Menu/AppendMenu are stored in a resource file where it is easy to change,
should the need arise.

The Menu Manager can also store the menu bar as a resource of
type 'MBAR'. It simply contains the number of menus in the menu bar
and the resource ID of each menu and can be called up by the function
GetNewMBar.

Window Template Data

8 bytes the boundsRect parameter
2 bytes the proclD parameter
2 bytes the visible flag
2 bytes the goAway Flag
4 bytes the refCon parameter
n bytes the window's title

Figure 9.4: Format of Window Template Data

288 Using the Macintosh Toolbox with C
--- CH.9

2 bytes
2 bytes
2 bytes
4 bytes
4 bytes
1 byte
n bytes

Menu ID
Place holder for menu width
Place holder for menu height
Resource ID of menu def Proc
enableFlai:1s field of menu record
length of title
menu title

For each menu item:
1 byte byte count for following text
m bytes text of menu item
1 byte icon number, or 0 if no icon
1 byte keyboard equivalent, or O if none
1 byte marking character, or zero if none
1 byte character style of item's text
1 byte o, indicating the end of menu items

Figure 9.5: Format of Menu Template Data

The convenience of resources really becomes apparent when
dealing with the graphic elements of the user interface. Icons, pictures,
patterns, cursors, etc. are all bit-mapped entities. Creating these items in
code would take a very long time and would probably be very dis
couraging to new programmers, not to mention very tedious to
advanced hackers. What resources allow you to do is create these ob
jects in a resource file and simply read them into memory whenever you
need to use them in your program. We'll see in the next section that
creating an icon or cursor can be as easy as working in MacPaint.

Creating Resources
In order for resources to truly be a timesaver, there should be a

simple way to specify the various data for the different resource types.
This could be done by the Resource Manager from within the program,
but that would defeat most of the purpose of resources in the first place.
Remember, we want to modularize things as much as possible. For
tunately, there are several programs available that make possible the
quick and easy creation and modification of resources. With one of
these utilities, creating a 'WIND' resource can be as simple as filling in

Resources 289

a couple of dialog boxes or typing a couple of lines of text.
The simplest of these is the program Resource Editor, or Res

Edit, which allows you to create and modify actual resource files. A
more advanced tool, RMaker is a compiler which creates resource files
from text definitions, much as your C compiler creates executable ap
plications from text source files. Both of these programs are included
with Think C in the Utilities 2 folder, although because they are not ac
tually part of Think C itself, they don't integrate easily into its
environment. Using RMaker will seem a bit clumsy after you've gotten
used to the ease of writing C code in Think C.

In theory, either ResEdit or RMaker can be used to create
resources. Once you understand the process of creating resources, you
will be able to choose the one that best suits your application. As Res
Edit is the simpler of the two to use, we '11 begin with it.

In ResEdit, the window template resource appears as shown in
Figure 9.6. Since we are familiar with what is required by the Window
Manager to create a new window, it is a simple matter to fill in the
dialog box shown in the figure. This is the case for all resources. If you
are familiar with the resource type you are trying to create or modify,
using the Resource Editor, or any other resource utility program, is a
very simple matter.

_o WIND ID 301 from MocWrite

boundsRect ~LJ@D~CfilJIQ
proclD lo I
uisible

goRwoy

refCon

title

OTrue

@True

lo
I Untitled

®Folse

O Folse

Figure 9.6: ResEdit Window for Creating a Window Template

290 Using the Macintosh Toolbox with C
--- CH.9

Creating bit-mapped resources is where resource utilities really
become timesavers. Suppose we wanted to create a new icon for our ap
plication to use. Using the Resource Editor, we'd be presented with the
dialog box shown in Figure 9.7.

As you can see from the figure, the dialog box looks very much
like the fat bits mode in MacPaint and it works the same way. After you
create the icon, you'll need to give it a resource ID number. We then
close up the file.

It might not be obvious how a resource file on your disk gets to
become part of your application. Each development system has its own
way of allowing for the compilation of applications which include
resource files. Under Think C, if you have a program whose main C lan
guage file is called Program.C, the compiler will automatically merge in a
resource file called Program.Rsrc. Thus, having your resources included
in your program is merely a question of naming the file correctly.

There's a catch to this. Under development systems which force
you to explicitly name the resource files you want to include in your ap
plication, the compiler will complain if a resource file you've specified
doesn't exist. Think C will merely assume that you hadn't intended to have
a resource file to begin with, and will create an application which lacks the
resources it needs to run properly. As such, it's a good idea not to assume

,.D~ Icon ID= -6047 from System~

•••••••••••••••••••••••••••
• • • • • • • • • • • •

•
•
•
•
•
•

• • •
•
• •

•••••••••••••••••••••••••••••

Figure 9.7: ResEdit Window for Creating an Icon

Resources 291

that all the resources you call for will be there. For example, if you call
GetMenu to read the resource definition of a menu from your resource file,
it's a good idea to check that the handle it returns doesn't point to NULL,
which would be the case if the resource wasn't available.

A Maker
We've touched on the syntax for RMaker-short for Resource

Maker-in previous chapters. In general, RMaker is preferable if you
foresee your application making extensive use of resources. In addition,
because it starts with a source code file, you can print out an RMaker
resource definition and look at it as hard copy, just as you can a C lan
guage source file.

By default, RMaker works with source files having names
that end in .R, and you will usually instruct it to create resource
files which end in .Rsrc, all ready for Think C to compile into ap
plications. Thus, if your C language source file was Program.C, your
RMaker source file would be Program.A.

Figure 9.8 shows a complete RMaker file for the same window
definition as ResEdit was creating in Figure 9.6.

To compile this, you would use the Transfer function from the
File menu of Think C to transfer to RMaker. RMaker starts with a file

Program.Rsrc

TYPE WIND

,301

Untitled

40 3 337 509

Invisible goAway

0
0

;; Name of the resource file

;; Resource type

;· Resource number

Window title

Bounding rectangle

Visible and goAway box

Window definition ID

refCon

;; More resources could follow

Figure 9.8: RMaker Source for Window

292 Using the Macintosh Toolbox with C
--- CH.9

dialog box, and conveniently only shows you file names with the .Ren
ding. Select Program.A. Assuming that there are no syntax errors in your
source file, RMaker will compile it and allow you to transfer back to
Think C using the "Other" item in the Transfer menu. Program.Rsrc will
now exist on your disk for Think C to find.

If you are running under the Multifinder, Think.C will still be
loaded. To transfer back select Quit from the File menu, then Think C
from the Apple menu.

RMaker recognizes the templates for twelve resource types.
These are shown in Figure 9.9.

Complex resource files will have many other resource types as
well. RMaker allows you to define your own resource types by building
them from these basic types.

There are some things which are no~ convenient to create in R
Maker. Icons, for example, are much more easily done using ResEdit, as
are small custom fonts, and, as we will see in Chapter 11, pictures can
be created with MacPaint and included in resource files, such that they
become part of your finished application. For this reason, it's often the
case that the resource file which RMaker finally writes to your disk is an
aggregate of the resources you actually wrote into the initial source file
plus several other resource files.

For example, let's say that we used ResEdit to create an icon
for some as yet unspecified purpose-and saved it in a resource file

'ALRT' - Alert

'BNDL' - Bundle

'CNTL' - Control

'DITL' - Dialog or alert item list

'DLOG' - Dialog

'FREF' - File reference

'GNRL' - General

'MENU' • Menu
'PROC' - Procedure, that is, code

'STR ' - String

'STR#' - String list

'WIND' - Window

Figure 9.9: Recognized Basic Resource Types for RMaker

Resources 293 ---
called Programlcon.Rsrc. You can see how this would be done if you
glance back at Figure 9.7. This could be made part of Program.Rsrc by ad
ding the following line to Program.A before transferring to RMaker and
compiling it.

INCLUDE Proqramicon.Rsrc

You can include as many of these little resources as you like, so
your final resource file can contain fonts, pictures, code, icons and
so on, as well as the windows and menus and such which are easy to do
inRMaker.

Resource Power
While having to repeatedly jump from Think C to ResEdit or

RMaker and back again may seem tedious at first, becoming proficient
at using resources is very important to becoming a fluent Macintosh
programmer. Once you understand what you can do with these powerful
tools, a number of the things which seem mysterious in commercial ap
plications-the ones that make you wonder how on earth the
programmer accomplished that-will start to make sense.

Along these same lines, ResEdit can be a very useful tool to see
how other applications use their resources. Take any application which
you think is clever and open its resource fork with ResEdit. You can
prowl through its workings and, very often, pick up some interesting
tricks to apply to your own programs.

~

+
I

I
I

I

+

I
I
I
I
I
I

-- I "- "-1--
1

I
I

)(I

~
+ I

Controls

Using what we've learned in the previous nine chapters, we
could rtow write a simple word processing program. To make such a
program fully functional, we would, however, need to add a few things.
The program should contain scroll bars for our text windows, enabling
the user to move to different portions of a document. It should also con
tain alerts, to inform the user of any errors he or she may be making;
dialogs, which enable the user to adjust various settings; and finally,
disk 1/0 capabilities so that we can save files to disk. All of these topics
are covered in the next three chapters. This chapter deals with controls.
We will learn about the various types of controls, what they are used for,
and how to use the various Control Manager routines in order to imple
ment controls in our applications.

Controls are another distinctive part of the Macintosh user in
terface. Just as there were several types of windows, each with a
different use, there are a number of different types of controls. The
predefined controls, which are pictured in Figure 10.1, consist of but
tons, check boxes, radio buttons, and scroll bars.

I n Button I
D n Check BOH

0 R Rodio Button

A Scroll Bar

Figure 10.1 : The Standard Controls

296 Using the Macintosh Toolbox with C
--- CH.10

It is important to note here that although we can put any type of
control in a window, it is customary for controls to appear only in alert or
dialog boxes. The one exception is scroll bars, which are used with win
dows to move text or pictures around the content area. We will learn how to
implement alerts and dialogs in the next chapter. It is important, however,
to read this chapter, in order to learn how controls and the various Control
Manager routines work. To effectively use the Dialog Manager, you will
need a thorough understanding of controls and the Control Manager
routines.

Buttons
Buttons are used to cause an immediate action when the user

presses them with the mouse. They are drawn as a rounded-comer rec
tangle with a title centered inside. The button's title usually indicates the
action that will occur when it is pressed. Common button titles are Start,
Stop, Resume, Pause, Restart, OK, Cancel, Open, Close, and so on. But
tons may be any size, but it is advisable to make them at least as tall and
wide as their title string. Twenty pixels high is sufficient for the tallest
character of the system font, and we can find the title's width with
the QuickDraw function StringWidth. Figure 10.2 shows some sample
buttons.

STOP

OK
(Cancel)

Begin

[Pause J

Figure 10.2: Some Sample Buttons

Controls 297

Check Boxes
Check boxes are used to display the on or off status of a setting.

A check box is drawn as a small square box with a title to its right. The
title indicates the setting that the user turns on or off by clicking the
mouse in the square box. Check boxes do not cause an immediate ac
tion; instead they are used to set or unset attributes of a future action.
Figure 10.3 shows some sample check boxes for text attributes.

Radio Buttons
Radio buttons are also used to display settings. A radio button is

drawn as a small circle with a title to its right. As was the case with
check boxes, the radio button's title indicates an attribute that is either
on or off. Radio buttons are used instead of check boxes when we have
a group of attributes in which only one may be "on" at a time. Between
each radio button title we should think of an invisible "or", as in Fig
ure 10.4, where sample radio buttons offer a choice of 300 or 1200 or

ONormal
181 Bold
D Italic
181 Underline
D Outline
0Shadow

Figure 10.3: Check Boxes for Text Attributes

0 300 Baud
® 1200 Baud
O 9600 Baud

Figure 10.4: Baud Rate Radio Buttons

298 Using the Macintosh Toolbox with C
--- CH.10

9600 baud. Only one of the baud rates may be on at any one time, so that
clicking in one button causes the others to be turned off.

A radio button is on if it is filled with a small black circle. In
Figure 10.4, 1200 baud is on, while 300 and 9600 baud are off. This
characteristic-that only one radio button in a group may be on at any
one time-is a property of the Macintosh user interface, not of the Con
trol Manager. It is up to the programmer to make sure that when one
radio button is selected, all of the others are turned off. Therefore, when
the application detects that the user has clicked a button, the application
has to tum the other buttons off.

Scroll Bars
The last type of predefined control is the scroll bar. Some

sample scroll bars are shown in Figure 10.5.
Scroll bars are usually used to move text or pictures around in

windows. A window can have both vertical and horizontal scroll bars,
but some applications will only use one. As a general rule, if the con
tents of a window are too tall to be viewed all at one time, the
application should provide the user with a vertical scroll bar to scroll
through the window's contents. Similarly, if a window's contents are too
wide to be viewed, a horizontal scroll bar should be implemented.

Clicking the mouse in the up or down arrows moves the text
one line up or down. Clicking in the page-up or page-down regions

UpArrow_ ;
Page Up Region • l lTh~:: Down Region__: ; ! orn Arrow ____.

1¢ 1mmm immmm 91

Figure 10.5: Sample Scroll Bars

Controls 299

similarly moves a windowful of text or graphics up or down. (In
horizontal scroll bars the up and down arrows and page-up and page
down regions can, of course, be called the left and right arrow and
page-left and page-right regions.) When a document is scrolled using
the arrows or paging regions, the thumb, which indicates the scroll bar's
value, follows the document's movement, always displaying the relative
position in the file. For example, if page 5 of a 10-page document were
displayed in a window-that is, if the middle of a document were dis
played-the thumb of the window's scroll bar would likewise be in the
middle of the scroll bar. It is also possible for the user to drag the thumb
to any position in the scroll bar, causing the application to scroll to the
corresponding position in a file.

In addition to scrolling text and pictures, scroll bars can be used as
a type of dial, with the thumb always indicating a value relative to its end
points. Figure 10.6, which shows how all the standard controls can be com
bined in a real-life context, includes an example of a scroll bar used as a
dial. The value of the thumb may be displayed digitally as well.

Highlighted, Active, and Inactive Controls
While retaining their standard shapes and sizes, controls may

have other aspects of their appearance changed by an application when

(Make Burger) (Cancel Order)

Condiments:
D Mustard
D Catsup
D Cheese
OTomato
D Onion
D Pickle

Burger Size:
0 1 /4 Pounder
0 1 /3 Pounder
0 112 Pounder

Rare Well Done

1¢ l!mimmmm:mmmO!!i!!ii!i!!!!!!!l!!i!ll!il 91

Figure 10.6: The Standard Controls Combined in a Fast-Food Application

300 Using the Macintosh Toolbox with C
--- CH.10

they are selected by the user or when their use becomes inappropriate or
unavailable. Let's take a look at the conventions for some of these chan
ges in appearance.

Highlighted Controls
When the user clicks the mouse in a control, the control is high

lighted. A highlighted control changes its appearance in some manner to
indicate that it has been selected with the mouse. Figure 10.7 shows the
standard controls in both their normal and highlighted states. The
controls in this example follow the "User futerface Guidelines" in dis
playing highlighted buttons with inverted print (white letters on a dark
ground), while the highlighting of check boxes and radio buttons is indi
cated by a heavier outline around the box or button. Scroll bars are
highlighted according to where in the control the user clicks the mouse.

There are also two additional types of highlighting called 254
and 255 highlighting. Let's take a look at them now.

Active and Inactive Controls

fu addition to being either normal or highlighted, controls are
also active or inactive. Active controls are drawn like the normal

(Normal) "IMNMHM'
D Normal D Highlighted
O Normal O Highlighted

1¢ rnmmommmm 91 I+ rnmmommmm +1
If the mouse is clicked
in either of the arrows
of a scroll bar, the arrow
is inverted as above.
The other parts of a
scroll bar are not
highlighted when
clicked with the mouse.

Figure 10.7: Normal and Highlighted Controls

Controls 301

controls in Figure 10.7. They respond to mouse events; that is, they be
come highlighted when they are clicked. Inactive controls are drawn
differently than normal controls. For inactive controls, the titles of but
tons, check boxes, and radio buttons are drawn dimmed, in gray instead
of black. For inactive scroll bars, the thumb and page regions are not
drawn. Figure 10.8 shows the standard controls, in both their active and
inactive states.

An application should make a control inactive whenever the
operation it performs or controls is inappropriate or unavailable. Con
sider the following example. Our application puts up a window with
three buttons entitled Start, Pause, and Stop (see Figure 10.9). When the
control window is initially displayed on the screen, the Start button
should be active, with the Pause and Stop buttons displayed as inactive.
The Pause and Stop buttons should be inactive because the user can't
pause or stop an action that hasn't been started yet. After the user clicks
the Start button, thereby starting an operation, the operation can be
brought to a pause or stopped. The application should therefore make

(Rctiue)

D Rctiue
O Rctiue

Figure 10.8: Active and Inactive Controls

D I n~1<: tilrn
0 lrrn<:tilrn

Start J (Pmt$1~ J (S1 op

Initial display of buttons

S1ar1 J (Pause J [Stop

Display of buttons after Start has been pressed

(Start J (Pml$1~ J (Stop J

Display of buttons after Pause has been pressed

Figure 10.9: Start, Pause, and Stop Buttons

302 Using the Macintosh Toolbox with C
--- CH.10

the Start button inactive and both the Pause and Stop buttons active at
this point. Similarly, when the Pause button is pressed, the application
should make it inactive, but now starting and stopping is appropriate
again, so that the Start and Stop buttons should be made active. The
guideline to remember i1> that as soon as an operation is not possible or
becomes inappropriate, the application should make the corresponding
control inactive.

Part Codes
Three of the standard controls consist of only one part, while

the fourth consists of several parts. Buttons, check boxes, and radio but
tons each consist of only one part that encompasses the entire control. In
contrast, a scroll bar consist:S of five parts: the up arrow, down arrow,
page-up region, page-down region, and thumb (see Figure 10.5 for an
example). Each control part has a corresponding part code that is used
by various Control Manager routines.

For example, when an application detects a mouse-down event
in a single-part control, knowing which control is pressed is generally
enough information for the application to respond accurately. Since
single-part controls have only a single action, an application knows ex
actly what to do when one is pressed. For multiple-part controls,
however, the application must also know which part of the control was
pressed. In responding to a mouse-down in a scroll bar, for example, the
application will need to know whether the mouse was pressed in the up
arrow, down arrow, page-up region, page-down region, thumb, or the
horizontal equivalents to these in order to respond correctly. The part
codes for the standard controls are given in Figure 10.10.

The Control Record Data Structure
As we have seen in many of the previous chapters, each Tool

box Manager has its own internal data structures with which to store its

Controls 303

inButton
inCheckBox
inUpButton
inDownButton
inPageUp
in Page Down
in Thumb

=10
= 11
= 20
= 21
= 22
= 23
= 129

[in a button]
[in a check box or radio button]
[in the up arrow of a scroll bar]
(in the down arrow of a scroll bar]
[in the page-up region of a scroll bar]
[in the page-down region of a scroll bar]
[in the thumb of a scroll bar]

Figure 10.10: Part Codes for Standard Controls

objects. The Control Manager is no different in this respect. Just as
events are stored in EventRecords and windows are stored in Window
Records, controls are stored in ControlRecords. The box entitled "Control
Manager Data Structures" contains the definition of a ControlRecord as
well as the associated types ControlPtr and ControlHandle. These definitions
will be found in the header files of Think C.

Control Manager Data Structures
struct CR {

Handle
WindowPtr
Re ct
char
char
int
int
int
Handle
Handle
int
long
Str255
);

nextControl;
contrlOwner;
contrlRect;
contrlVis;
contrlHilite;
contrlValue;
contrlMin;
contrlMax;
contrlDefProc;
contrlData;
(*contrlAction) ();
contrlRfCon;
contrlTitle;

#define ControlRecord struct CR

typedef
typedef

ControlRecord *ControlPtr;
ControlPtr *ControlHandle;

Most of the fields of a ControlRecord are rarely accessed directly
by an application; instead the fields are set or changed using Control Man
ager routines or by the other managers themselves.

304 Using the Macintosh Toolbox with C
--- CH.10

The contrlRfCon field of a Control Record is very similar to the refCon
field of a WindowRecord. An application can store any 32-bit value, typi
cally a pointer or a handle to a related data structure, in the contrlRfCon
field of a ControlRecord.

Control Manager Routines
Before calling any of the Control Manager routines, an applica

tion must first initialize QuickDraw, the Font Manager, and the Wmdow
Manager by calling lnitGraf, lnitFonts, and lnitWindows. An application
uses the Control Manager to create its controls and then usually calls the
routines FindControl and TrackControl inside its main event loop to deter
mine if a control has been pressed by the user, and if so, which one has
been pressed. When the application determines which control was
pressed, it can respond appropriately to the user's actions. The applica
tion can also use Control Manager routines to change a control's value,
title, or highlighting state.

Defining and Disposing of Controls

There are two routines for defining controls and two routines
for disposing of them. The two routines for def ming controls, NewControl
and GetNewControl, accomplish exactly the same thing. The difference
between the two routines is that NewControl takes the control's defmition
as its arguments while GetNewControl takes the control's definition from
a resource file.

The NewControl Function
The function NewControl creates a control, adds it to theWindow's

control list, and returns a handle to the control.

ControlHancile NewControl(theWindow, boundsRect, title, visible,

WindowPtr
value, min, max, procID, refCon)

theWindow;

Rect
Str255
char
int
long

*boundsRect;
*title;
visible;
value,min,max,procID;
refCon;

Controls 305 ---

The window pointer named theWindow indicates which window the con
trol will belong to. The boundsRect parameter determines the size and
location of the control. The boundsRect has to be given in the Windows
local coordinate system. As we explained earlier, buttons should be at
least 20 pixels high, while check boxes and radio buttons should be
made at least 16 pixels high. These heights insure that the control's title
isn't truncated on the top or bottom. Scroll bars are typically 16 pixels
wide and look best if drawn that size.

Next, the title parameter is the control's title. A control's title
should be short but to the point. The visible parameter indicates whether
the control should be drawn or not drawn--that is, visible on the screen.
If the parameter is true, the control will be drawn.

The min, max, and value arguments are the control's minimum,
maximum, and initial value, respectively. For buttons, which have no
values or settings, these parameters are not used. For check boxes and
radio buttons, an application should set the minimum value to 0 and the
maximum value to 1. If the control's initial value isl, the control will be
checked; if it is 0, it will appear unchecked. For scroll bars, the mini
mum and maximum values can be any integer; the up-end of a scroll bar
is set to the minimum value, and the down-end is set to the maximum.

The thumb of the scroll bar is placed at the position indicated by
the value parameter. For example, if for a scroll bar the min, max, and
value parameters were 0, 10, and 5 respectively, the thumb would be
placed in the middle of the scroll bar.

The proclD argument indicates the type of control the application
is creating: that is, a button, check box, radio button, or scroll bar. The
proclD numbers are given in Figure 10.11. In addition to defining
a control's type, the proclD can affect the appearance of a control's title.
A control's title is usually drawn with the system font. To draw a
control's title in the same font that is used in the window in which
the control appears, we simply add the constant useWFont to the control's
proclD. If, for example, we wanted the title of a button to be displayed in
its window's font, we would pass the proclD value (pushButProc +
useWFont) to the routine that defines the button as a control.

306 Using the Macintosh Toolbox with C
--- CH.10

pushButProc = O
checkBoxProc = 1
radioButProc = 2
useWFont =8
scrollBarProc = 16

[Button)
[Check Box I
[Radio Button)
[use window's font)
[Scroll Bar]

Figure 10.11: proclDs for Standard Controls

The refCon is an extra field that is reserved for use by the ap
plication. As was stated earlier, an application can store any 32-bit value
in the refCon field (typically a pointer or a handle to a related data struc
ture). Using the field or not has no effect on the control.

The function GetNewControl works the same way as NewControl.

ControlHandle GetNewControl(controlID, theWindow)
int controlID;
WindowPtr theWindow;

GetNewControl creates a control just as NewControl did, but it gets the in
formation for the boundsRect, title, visible, value, max, min, proclD, and refCon
from the 'CNTL' resource that has an ID of controllD. The 'CNTL'
resource can be created with either ResEdit or RMaker, as previously
discussed.

The DisposeControl and KillControls Procedures
The two routines for disposing of controls are very simple and

straightforward. The procedure DisposeControl is used for disposing of
individual controls. The application passes to DisposeControl the control
handle of the control it wants to get rid of. The procedure KillControls dis
poses of all the controls contained in a specified window. First, the
application passes a window pointer to KillControls, and then KillControls
calls DisposeControl for each control contained in the window.

DisposeControl(theControl)
ControlHandle theControl;

KillControls(theWindow)
WindowPtr theWindow;

Controls 307

Displaying and Determining the Appearance of
Controls

There are six routines that affect a control's appearance. In the
next few pages, we will examine two routines that deal with a control's
title, routines to hide and show controls, a routine to draw a window's
controls, and a routine to highlight various parts of a control.

Manipulating a Control's Title
The first two routines, SetCTitle and GetCTitle, set and get a

specified control's title.

SetCTitle(theContro1, tit1e)
Contro1Rand1e theContro1;
Str255 *tit1e;

GetCTitle(theContro1, tit1e);
Contro1Rand1e theContro1;
Str255 *tit1e;

The parameter theControl indicates the control whose title is to be
set or gotten. For SetCTitle, the tttle parameter is the new title of the con
trol. When an application calls SetCTrtle, the control's title is changed
and the control is redrawn. When an application calls GetCTitle, the title
parameter is returned to the application with the specified control's title
value in it.

Hiding and Showing Controls
To hide and show controls, there are two routines appropriately

named HideControl and ShowControl. HldeControl makes the specified
control invisible by filling its bounding rectangle in with the back
ground pattern of its window's grafPort.

HideControl(theContro1)
Contro1Rand1e theContro1;

To show a control that we have hidden or that was perhaps
created invisible, we would call ShowControl.

308 Using the Macintosh Toolbox with C
--- CH.10

ShowControl(theControl)
ControlHandle theControl;

ShowControl draws theControl in the control's window.

Updating Controls with the DrawControls Procedure
The procedure DrawControls is used to draw all the visible con

trols of a specified window. It is generally used to redraw controls in a
window whose content region needs to be updated. For example, every
time a window with scroll bars is moved or resized, the location and size
of its scroll bars have to be recalculated, and then these controls have to
be redrawn. The following routine, MoveScrollBars, was taken from the
code example at the end of the chapter. It shows one way in which an
application can move, resize, and redraw a window's scroll bars.

/* hScrollRect and vScrollRect are Global Variables */
MoveScrollBars(whichWindow)

WindowPtr whichWindow;

SetRect(&hScrollRect, (*whichWindow) .portRect.left-1,
(*whichWindow) .portRect.bottom-15,
(*whichWindow) .portRect.right-14,
(*whichWindow) .portRect.bottom+l);

SetRect(&vScrollRect, (*whichWindow).portRect.right-15,
(*whichWindow).portRect.top-1,
(*whichWindow) .portRect.right+l,
(*whichWindow) .portRect.bottom-14);

HLock(hScroll);
HLock(vScroll);
(**hScroll) .contrlRect = hScrollRect;
(**vScroll) .contrlRect = vScrollRect;
HUnlock(hScroll);
HUnlock(vScroll);

DrawControls(whichWindow);
DrawGrowicon(whichWindow);

The application passes the window that needs updating to Move
ScrollBars. The two calls to SetRect calculate the horizontal and vertical
scroll bars' new size and location. Space is left for the grow icon of the

Controls 309

window. These new sizes and locations are stuffed into the contrlRect
fields of their corresponding control records, and then the controls are
redrawn along with the window's grow icon.

Highlighting Controls
The last routine that concerns the way controls look on the

screen is HiliteControl. HiliteControl changes the way the specified control
is highlighted according to the hiliteState argument.

HiliteControl(theControl, hiliteState)

ControlHandle theControl;

int hilitestate;

The hiliteState is an integer between 0 and 255. A value of 0 indicates that
the control specified should have no highlighting. Values between 1 and
253 indicate the code for the part of the control that is to be highlighted.
(Refer to Figure 10.10 for a list ·of the part codes and their values.)
Values of 254 or 255 indicate that the control is to be highlighted as an
inactive control. In effect, if a control has 254 or 255 highlighting, it will
be visible but inactive.

The difference between 254 and 255 highlighting is the follow
ing: Using the routines TestControl or FindControl, an application can
detect whether the mouse was pressed in a control with 254 highlight
ing, but it cannot detect a mouse-down event in a control with 255
highlighting. If an application needs to detect mouse-downs in inactive
controls, it should use 254 highlighting.

Detecting and Handling Mouse-Downs in Controls
The routines FindControl and TrackControl are the heart of the

Control Manager. When an application detects a mouse-down event, it
typically calls the Window Manager routine FindWindow to determine
what part of the desktop the mouse was pressed in. If the mouse is
pressed in the content region of a window that contains controls, the ap
plication should then call FindControl to determine if the mouse was
pressed in a control or not. If it was, FindControl will tell the application
both which control and which part of the control was pressed.

310 Using the Macintosh Toolbox with C
--- CH.10

If a control was pressed, the application should then call the
routine TrackControl. If the mouse is pressed in a button, check box, or
radio button, TrackControl highlights and unhighlights the selected con
trol as the mouse is moved in and out of it. If the mouse is pressed in the
thumb of a scroll bar, a gray outline of the thumb will follow the mouse
until the mouse button is released. When the mouse is released, the
thumb is drawn in its new location and its value is changed accordingly.

In contrast, if the mouse is pressed in either of the arrows or
paging regions of a scroll bar, TrackControl calls an action procedure that
defines what should be done as long as the mouse is held down. The ac
tion procedure for an up-arrow event might, for example, cause the
thumb to slowly move up in the scroll bar, as well as cause the document
to scroll up in the window, one line at a time. The action procedure
doesn't need to highlight the arrow, however; TrackControl takes care of
all control highlighting and unhighlighting.

We should now examine the two routines and their arguments.
Let's take a look at FindControl first:

int FindControl(thePoint, theWindow, whichControl)
Point thePoint;
WindowPtr theWindow;
ControlBandle *whichControl;

An application passes three arguments to FindControl: the point where
the mouse was pressed in the window's local coordinates, the window
pointer of the window that the mouse was pressed in, and whichControl, a
control handle. If the mouse was pressed in a visible, active control or in
an inactive control with 254 highlighting, the selected control's handle
is placed in whichControl. The function value returned is the part code of
the control part that was pressed, or in the case of a mouse-down in a
254-highlighted control, it returns the integer 254. If the mouse was
pressed in an invisible control, in an inactive control with 255 highlight
ing, or in no control at all, whichControl is set to NULL and the value
returned by the function is 0.

An application usually calls TrackControl right after FindControl,
so it is appropriate that we take a look at TrackControl now.

int TrackControl(theControl, startPt, actionProc)
ControlHandle theControl;

Point
ProcPtr

startPt;
actionProc;

Controls 311

An application also passes three arguments to TrackControl: the control
handle of the control that was pressed; the point where the mouse was
pressed expressed in the local coordinates of theControl's window; and final
ly, an optional action procedure that defines any additional actions that
need to be performed besides highlighting the control or dragging an in
dicator. For the standard controls, an application generally only needs an
action procedure for the arrow and paging regions of a scroll bar.

An action procedure has the following form:

MyAction(theControl, partcode)
ControlHandle theControl;
int partcode;

TrackControl calls the action procedure as long as the mouse button is
held down. There is a little problem in getting the action procedure to
work with TrackControl, however, because TrackControl expects the action
procedure to be a Pascal routine. If we are programming in C, we must
handle this a little differently to make everything work correctly.

Think C allows us to declare functions as being of the type pas
cal, which means that they will return whatever they return so it looks
like it has come from a Pascal function. Here is an example of how this
looks.

pascal void ScrollAction(theControl, partcode)
ControlHandle theControl;
int partcode;

Moving and Sizing Controls

It is possible for an application to move or resize a control once
the control has been defined. To move a control, the application would
call the procedure MoveControl:

MoveControl(theControl, h, v)
ControlHandle theControl;
int h,v;

312 Using the Macintosh Toolbox with C
--- CH.10

When an application calls MoveControl, the top-left corner of the control
specified is moved to the location (h,v) in the window's local coordinate
system in the same window. If the control is visible at the time of the
call, it will be erased from its previous location and redrawn at its new
location. The size of the control is not affected by MoveControl.

To resize a control after it has been drawn, an application can
call SizeControl:

SizeControl(theControl, h, v)
ControlHandle theControl;
int h,v;

When an application calls SizeControl, the control associated with the
handle theControl is resized to be v pixels wider and h pixels taller. The
top-left corner of the control remains fixed while the bottom-right
corner is moved v pixels down and h pixels right. If the control is visible
at the time of the call, it is hidden and then redrawn in its new size. Th~
location of the control is not affected by SizeControl.

Setting Control Values
Each control has a minimum, maximum, and current setting. An

application can get and set each of these values with the six routines Set·
CtlValue, GetCtlValue, SetCtlMin, GetCtlMin, SetCtlMax, and GetCtlMax.

The first two of these routines, GetCtlValue and SetCtlValue, allow
an application to find out and set a control's current value.

int GetCtlValue(theControl)
ControlHandle theControl;

SetCtlValue(theControl, theValue)
ControlHandle theControl;
int theValue;

GetCtlValue, given a control handle, will return the current value of the
control specified. SetCtlValue changes the current setting of theControl to
theValue. Using the routine FindControl or TrackControl, an application will
find out which part of which control has been pressed. It is then the

Controls 313

responsibility of the application to find out the control's current value
and set it to its appropriate new value. For controls like check boxes and
radio buttons, which only have two settings, the control should be set to
the opposite of its value before it was pressed. For scroll bars, the
thumb, which is the scroll bar's current value, is automatically set to its
new value whenever it is moved. The application must then use GetCtl·
Value to obtain the control's new setting and respond appropriately. For
example, if the thumb is moved to the middle of its scroll bar, it is up to
the application to determine the thumb's new value and then scroll to the
appropriate location in the document (in this case, the middle).

The functions GetCtlMin and GetCtlMax return theControl's mini
mum and maximum settings, respectively.

int GetCtlMin(theContro1)
Contro1Band1e theContro1;

int GetCtlMax(theContro1)
Contro1Band1e theContro1;

The opposites of these two routines are SetCtlMin and SetCtlMax.
SetCtlMin and SetCtlMax set the specified control's minimum and maxi
mum settings.

SetCtlMin(theContro1, minVa1ue)
Contro1Band1e theContro1;
int minVa1ue;

SetCtlMax(theContro1, maxVa1ue)
Contro1Band1e theContro1;
int maxValue;

SetCtlMin sets the minimum value of theControl to the integer minValue. If
min Value is greater than the current value of theControl, the current value is
also set to minValue. SetCtlMax sets the maximum value of theControl to the
integer maxValue. If maxValue is less than the current value of theControl,
the current value is also set to maxValue.

314 Using the Macintosh Toolbox with C
--- CH.10

Miscellaneous Routines
As we saw earlier in the chapter, the contrlRfCon field of a Control

Record is set aside for the application's use. This 32-bit field is often used
to store a pointer or a handle to a related data structure. An application
can set or get the control's contrlRfCon value with the routines SetCRefCon
and GetCRefCon.

SetCRefCon(theControl,data)
ControlHandle theControl;
long data;

long GetCRefCon(theControl)
ControlHandle theControl;

With SetCRefCon, theControl's contrlRfCon is set to the value indicated by
the data parameter. The function GetCRefCon returns theControl's contrlRf
Con as its value.

A Sample Program for the Control Manager
As we stated earlier, the standard controls, with the exception of

scroll bars, are rarely used outside of alert or dialog boxes. In the sample
code at the end of Chapter 11, we will see an implementation of buttons,
check boxes, and radio buttons in alert and dialog boxes.

The sample code here shows how scroll bars can be imple
mented in a window to scroll graphics or text. The program puts up a
window that has both horizontal and vertical scroll bars. If the window
is moved or resized, the scroll bars are moved and resized in the ap
propriate manner. The contents of the window contain graphics and text
which can be scrolled both horizontally and vertically. The routines in
this sample application could easily be integrated with the sample pro
gram shown in the previous chapter to give that program the capability
to scroll text.

From controls, we move on to the topic of using alerts and
dialogs, another important feature of the Macintosh Toolbox, and the
place where buttons, check boxes, and radio buttons are used.

/***/
/* Sample Application for Chapter 10: Controls */
I* */
/* This application demonstrates how to implement scroll bars */
/* in a window. We have tried to demonstrate all possible */
/* situations you might have to deal with when implementing */
/* scroll bars in your application. */
/* *I
/* This application puts up a window that has both a horizontal */
/* and a vertical scroll b~r. The contents of the window */
/* contains both text and graphics. The window may be moved */
/* or resized. */
I* */
/* One thing to note is that this application often uses */
/* structure assignment when manipulating rectangles. If your */
/* compiler·does not support structure assignment, you will */
/* have to assign each coordinate of the rectangle separately. */
I* */
/**~**************************/

#include
ltinclude
ltinclude
ltinclude
ltinclude
ltinclude
ltinclude
ltinclude
#include
ltinclude

#define
ltdefine
#define

<QuickDraw.h>
<WindowMgr.h>
<MemoryMgr.h>
<EventMgr.h>
<TextEdit.h>
<FontMgr.h>
<ControlMgr.h>
<MenuMgr.h>
<ToolboxUtil.h>
<stdio.h>

VISIBLE 1
HORIZ 1
VERT 2

/* Global Variables */
WindowPtr
TEHandle
Re ct
Re ct
ControlHandle
short
short

windPtrA;
theText;
lowerRect;
hScrollRect,vScrollRect;
hScroll,vScroll;
startValue,endValue;
dhGraf,dvGraf;

/* restart procedure for InitDialogs */
restartProc ()
(

ExitToShell () ;

Controls 315

316 Using the Macintosh Toolbox with C
--- CH.10

/* The main event loop */
main()

short
WindowPtr
Event Record

InitStuff ();

while (1) (

windowcode;
whichWindow;
theEvent;

if (GetNextEvent(everyEvent,&theEvent)) {
switch (theEvent.what) (

case mouseDown:
windowcode = FindWindow(theEvent.where,&whichWindow);
DoWindowStuff(&theEvent,whichWindow,windowcode);
break;

case updateEvt:
DoUpdates(&theEvent);
break;

case nullEvent:
break;

/* end of main() */

/* InitStuff initializes some toolbox managers, defines
our window and its scroll bars, and then draws the
windows text, graphics, and dividing line */

InitStuff () (
WindowRecord
Rect
short
char

*windRecorc!A;
windRectA, viewRect, destRect;
i;
*theString = "\pBMUG DEVELOPERS GROUP - CONTROLS";

InitGraf(&thePort);
InitFonts () ;
InitWindows();
InitMenus () ;
InitDialogs(restartProc);

FlushEvents(everyEvent, 0);
SetRect(&windRectA,50,50,450,300);

windRecorc!A = (WindowRecord *) NewPtr(sizeof(WindowRecord));
windPtrA = NewWindow(windRecorc!A,&windRectA,

"\pScroll Bar Example",
0,0, (WindowPtr) -1,0xff,0);

SetPort(windPtrA);

SetRect(&hScrollRect, (*windPtrA) .portRect.left-1,
(*windPtrA) .portRect.bottom-15,
(*windPtrA) .portRect.right-14,
(*windPtrA) .portRect.bottom+l);

SetRect(&vScrollRect, (*windPtrA) .portRect.right-15,
(*windPtrA) .portRect.top-1,
(*windPtrA) .portRect.right+l,
(*windPtrA) .portRect.bottom-14);

hScroll

vScroll

NewControl(windPtrA,&hScrollRect,"\p",VISIBLE,0,0,100,
scrollBarProc,HORIZ);

NewControl(windPtrA,&vScrollRect,"\p",VISIBLE,0,0,100,
scrollBarProc,VERT);

destRect = windPtrA->portRect;
destRect.right += 200;

viewRect = windPtrA->portRect;
viewRect.right -= 15;
viewRect.bottom = (windPtrA->portRect.bottom)/2 - 12;

lowerRect = windPtrA->portRect;
lowerRect.right -= 15;
lowerRect.top = (windPtrA->portRect.bottom)/2 - 10;
lowerRect.bottom -= 15;

theText = TENew(&destRect, &viewRect);
for(i=l; i<200; ++i) TEinsert(theString, 33, theText);

DrawGraphics () ;
dhGraf = 0;
dvGraf = 0;
DrawDivider(windPtrA);

ShowWindow(windPtrA);
InitCursor();

pascal void ScrollGlue(theControl,partcode)
ControlHandle theControl;
short partcode;

long direction;

start Value GetCtlValue(theControl);
direction= GetCRefCon(theControl);

switch(partcode) I

Controls 317 ---

318 Using the Macintosh Toolbox with C
--- CH.10

case inUpButton:
SetCtlValue(theControl, startValue - 1);
/* NOTE the bug here which permits scrolling even

after scroll elevator has reached its limit!! */
if(direction ==VERT) ScrollContents(O, l);
else ScrollContents(l, 0);
break;

case inDownButton:
SetCtlValue(theControl, startValue + 1);
/* NOTE the bug here which permits scrolling even

after scroll elevator has reached its limit!! */
if(direction ==VERT) ScrollContents(O, -1);
else ScrollContents(-1, 0);
break;

case inPageUp:
SetCtlValue(theControl, startValue - 10);
if(direction ==VERT) ScrollContents(O, 10);
else ScrollContents(lO, 0);
break;

case inPageDown:
SetCtlValue(theControl, startValue + 10);

if(direction ==VERT) ScrollContents(O, -10);
else ScrollContents(-10, 0);
break;

endValue = GetCtlValue(theControl);

/* ScrollContents scrolls the text and graphics that
are in the content region of the window */

ScrollContents(dh, dv)
short dh,dv;

RgnHandle updateRgn;

updateRgn NewRgn();
TEScroll(dh, dv, theText);
ScrollRect(&lowerRect, dh, dv, updateRgn);
UpdateGraphics(dh, dv);
DisposeRgn(updateRgn);

/* DoWindowStuff handles the user's actions when he
or she clicks in the goAway box or moves or resizes

the window. When the scroll bars are clicked in,
those actions are handled also. */

DoWindowStuff(theEvent,whichWindow,windowcode)
EventRecord *theEvent;
WindowPtr
short

whichWindow;
windowcode;

long growResult;
long
short
Point
ControlHandle
Re ct

direction;
partcode,bogus;
eventPoint;
whichControl;
screenRect, limitRect;

SetRect(&screenRect, 4, 24,
screenBits.bounds.right-4,
screenBits.bounds.bottom-4);

SetRect(&limitRect, 80, 80,
screenBits.bounds.right - screenBits.bounds.left -4,
screenBits.bounds.bottom - screenBits.bounds.top -24);

SetPort(whichWindow);
switch (windowcode)

case inDrag:
DragWindow(whichWindow,theEvent->where,&screenRect);
break;

case inGoAway:
if(TrackGoAway(whichWindow,theEvent->where)) ExitToShell();
break;

case inGrow:

Controls 319

growResult = GrowWindow(whichWindow,theEvent->where,&limitRect);
SizeWindow(whichWindow,LoWord(growResult),HiWord(growResult),Oxff);
EraseRect(&whichWindow->portRect);
InvalRect(&whichWindow->portRect);
MoveScrollBars(whichWindow);
break;

case inContent:
eventPoint = theEvent->where;
GlobalToLocal(&eventPoint);

partcode = FindControl(eventPoint,whichWindow,&whichControl);
if(partcode) direction= GetCRefCon(whichControl);
if(partcode == inThumb) {

startValue = GetCtlValue(whichControl);
bogus= TrackControl(whichControl,eventPoint,NULL);
endValue = GetCtlValue(whichControl);
if(direction == HORIZ) ScrollContents(startValue-endValue,0);
else ScrollContents(O,startValue-endValue);

else if(partcode != 0)
bogus= TrackControl(whichControl,eventPoint,ScrollGlue);

break;

320 Using the Macintosh Toolbox with C
--- CH.10

case inSysWindow:
SystemClick(theEvent,whichWindow);
break;

/* MoveScrollBars calculates the new positions of the scroll
bars, the TextEdit view rect, and the clip rect for the
graphics. It also redraws the dividing line of the window */

MoveScrollBars(whichWindow)
WindowPtr whichWindow;

SetRect(&hScrollRect, (*whichWindow) .portRect.left-1,
(*whichWindow) .portRect.bottom-15,
(*whichWindow) .portRect.right-14,
(*whichWindow) .portRect.bottom+l);

SetRect(&vScrollRect, (*whichWindow) .portRect.right-15,
(*whichWindow) .portRect.top-1,
(*whichWindow) .portRect. right+l·,
(*whichWindow) .portRect.bottom-14);

HLock (hScroll);
HLock(vScroll);
(**hScroll) .contrlRect
(**vScroll) .contrlRect
HUnlock(hScroll);
HUnlock(vScroll);

HLock(theText);

hScrollRect;
vScrollRect;

(**theText) .viewRect = whichWindow->portRect;
(**theText) .viewRect.right -= 15;
(**theText) .viewRect.bottom = (whichWindow->portRect.bottom)/2 - 12;
HUnlock(theText);

lowerRect = whichWindow->portRect;
lowerRect.right -= 15;
lowerRect.top = (whichWindow->portRect.bottom)/2 - 10;
lowerRect.bottom -= 15;

DrawDivider(whichWindow);

/* DoUpdates handles the application's update events */
DoUpdates(theEvent)

EventRecord *theEvent;

WindowPtr whichWindow,oldPort;

GetPort(&oldPort);
SetPort(whichWindow = (WindowPtr)theEvent->message);
BeginUpdate(whichWindow);
DrawControls(whichWindow);
DrawGrowicon(whichWindow);
UpdateText ();
UpdateGraphics(O, 0);
DrawDivider(whichWindow);
EndUpdate(whichWindow);
SetPort(oldPort);

/* UpdateText updates the text in the window */
UpdateText ()
(

HLock(theText);
TEUpdate(&(**theText) .viewRect, theText);
HUnlock(theText);

/* UpdateGraphics updates the area the graphics were
scrolled out of. There is a little monkey business
with the origin in this routine to redraw the
graphics correctly. */

UpdateGraphics(dh, dv)
short dh, dv;

Re ct

dhGraf
dvGraf

aBigRect, tempRect;

dh;
dv;

tempRect = lowerRect;
SetRect(&aBigRect,-100,-100,600,600);

SetOrigin(dhGraf, dvGraf);
OffsetRect(&tempRect, dhGraf, dvGraf);

ClipRect(&tempRect);
DrawGraphics();

SetOrigin(O, 0);
ClipRect(&aBigRect);

/* DrawDivider draws a line, 2-pixels high,

through the middle of the window */
DrawDivider(whichWindow)

WindowPtr whichWindow;

Controls 321 ---

322 Using the Macintosh Toolbox with C
--- CH.10

PenSize(l,2);
MoveTo(whichWindow->portRect.left,

(whichWindow->portRect.bottom)/2 - 12);
LineTo((whichWindow->portRect.right)-16,

(whichWindow->portRect.bottom)/2 - 12);
PenSize(l,l);

/* DrawGraphics draws the graphics of the window */
DrawGraphics ()
I

MoveTo(0,0);
Line(l00,700);
MoveTo(0,0);
Line(200,700);
MoveTo(0,0);
Line(300,700);
MoveTo(0,0);
Line(400,700);
MoveTo(0,0);
Line(S00,700);
MoveTo(0,0);
Line(600,700);

I

I --- ------r
~ I

+ I
I

I

I
I
I
I
I

--..........._ I_
---- ----_ I

---- +--
1

I
I

)(I

-t1
+ I

Alerts and Dialogs

As we work our way toward a complete Macintosh application,
we need to discuss how to implement alerts and dialogs. Dialog boxes
are used whenever an application needs to prompt the user for more
input. Alerts are messages from the application to the user, usually an
nouncing errors or warning the user of a potentially dangerous situation.
Our discussion of alerts and dialogs has been held off until this point in
the book because an understanding of the Event Manager, Window
Manager, QuickDraw, TextEdit, and Control Manager is a necessary
prerequisite.

Types of Dialogs and Alerts
There are two types of dialog boxes: one that the user must

respond to immediately and another that allows the user to proceed with
other actions before responding. The first type is referred to as a modal
dialog since it puts the user in the mode of having to respond, and the
second type is called a modeless dialog because it doesn't put the user in
a particular mode. In addition to the two types of dialogs, the Dialog
Manager provides the application with a type of modal dialog called an
alert. An alert is used to signal an error or give a warning to the user, by
displaying a message on the screen, or by emitting an error sound, or
both.

326 Using the Macintosh Toolbox with C
--- CH.11

Modal Dialogs
A modal dialog is the most commonly used dialog type. The

dialog is placed on the screen whenever an application needs more in
formation before it can proceed. A good example is when the user gives
the command to print something on the printer. A modal dialog appears
because the application needs to know what portion of the document to
print, the quality of printing to be used, and how many copies to print.
Without this information, the application cannot execute the print com
mand. If the user was to click outside of the dialog window, the
Macintosh would emit a loud beep, indicating that all actions must occur
in the dialog until it has left the screen.

A modal dialog will typically have one or more buttons, giving
the user a number of options. Clicking a button will usually cause the
application to proceed, removing the dialog from the screen. One button
may be outlined with a heavy line to indicate that it is the preferred or
safest choice. Pressing the Return or Enter key will have the same affect
as clicking the outlined button. If there is no preferred choice, no button
should be outlined, and pressing the Return or Enter key will have no
affect. A sample modal dialog is shown in Figure 11.1.

Modeless Dialogs
In contrast to modal dialogs, modeless dialogs do not require

the user to respond before doing something else. Modeless dialogs be
have just like a normal window; they can be moved, made active or
inactive, or closed, all with or without ever being used. Modeless

Drawing Size: 111111"'---"-1-1-l-_J...._J_J_-1---.l--1---.1

8.00 K 10.00

OK (Concel) 1...1...1...1....i...i...r...i...i...r....i...r...1

Figure 11.1: Sample Modal Dialog

Alerts and Dialogs 327 ---
dialogs also differ in their use of buttons. When the user clicks a button
in a modeless dialog, the indicated action will be performed, but the
dialog will remain on the screen. To remove a modeless dialog from the
screen, the user must click in the dialog window's close box. A sample
modeless dialog is shown in Figure 11.2.

Alerts
An alert is a type of dialog that is used to report errors or give

warnings to users. Alerts can consist of explanatory messages displayed
on the screen, sounds to let the user know he is doing something wrong,
or both. A sample alert is shown in Figure 11.3.

D Change

Find what 1=ja=w=o=rd===============~•
Change to I another wor~

(Find Ne Ht J ([hnnt.P~- "rlu~n flnd J ([hlHHJf~ J (Change All)

@ Whole Word O Partial Word

Figure 11.2: Sample Modeless Dialog

((OK JI

Figure 11.3: Sample Alert

There is not enough memory
to open the document.

328 Using the Macintosh Toolbox with C
--- CH.11

Alert Stages
An alert can have as many as four stages, with each stage cor

responding to the number of times that the user has committed the same
error in a row. The first time that an error is committed, the first stage of
the alert will take place; if the error is repeated, the second stage will
take place; and so on. For errors committed four or more times, the
fourth stage alert will be used. Each alert stage, stored in the stage field
of the alert's ALRT resource, indicates if the alert will be displayed on
the screen, which of the alert's buttons is the default, and which of the
four alert sounds should be emitted.

At each alert stage, a sound-numbered 0, 1, 2, or 3-will be
emitted. For the standard sound procedure, the sound number indicates
the number of beeps that will be emitted. For example, if a stage 1 alert
has a sound value of 3, the first time an alert occurs, three beeps will be
emitted.

This is done with a sound procedure, which is just a function
which accepts an integer argument and produces a sound based on the
number passed to it. Declare the function pascal.

Alert Behavior
If an alert is displayed on the screen, it will behave very much

like a modal dialog; that is, the alert must be responded to before the
user can do anything else. An alert will typically have some text in it that
explains the error or warning, along with one or two buttons for the user
to click, in order to acknowledge the error or respond to the alert 's warn
ing. The alert's default button, which is specified in each of the alert's
stages, will have a heavy outline around it to indicate that it is the safe or
preferred choice. Pressing the Return or Enter key will have the same
affect as clicking the outlined button.

The Contents of Dialog and Alert Boxes
Alerts and dialogs can contain a number of different types of

items. They can contain controls, static text (text that cannot be edited
by the user), edit text (text that can be edited by the user), icons, or

Alerts and Dialogs 329 ---
pictures. Each item in an alert or dialog box will have an item number
and will be enclosed by a bounding rectangle. In the next few pages, we
will learn about the various types of items that can go in an alert or
dialog box, about the numbers associated with items, and about the way
in which each item is displayed in its bounding rectangle. Once we have
this overview of what goes into alert and dialog boxes, we will see how
all of these attributes are stored in an item list, or DITL resource.

Controls

Any of the controls that we learned about in the previous chap
ter-buttons, check boxes, radio buttons, or scroll bars--can be placed
in dialogs or alerts. See Figure 11.4 for an example.

Static Text

Static text is text that cannot be edited by the user. It appears in
alerts to report errors or give warnings to the user. In dialogs, static text
can, for example, explain why the dialog is there or label groups of con
trols. See Figure 11.4 for an example.

(Here is a Button

D This Is a Check Bon

O This Is a Radio Button

This is some Static Tent

!This is an edit tent item

Figure 11.4: Sample Control and Text Items

330 Using the Macintosh Toolbox with C
--- CH.11

Edit Text
Edit text items are used only in dialogs. They allow the user to

enter textual information into a dialog. Figure 11.4 shows a sample edit
text item.

To handle a user's actions in edit text items, the Dialog
Manager calls TextEdit and lets TextEdit take care of the user's actions.
TextEdit handles the user's actions in edit text items in the standard
manner. When the mouse is clicked in an edit text item, an insertion
point will appear, indicating where text typed from the keyboard will be
entered. A portion of the text can be selected by dragging the mouse
over it, and words can be selected by double-clicking them. Selected
text is replaced by anything typed on the keyboard. Backspacing in an
edit text item will erase characters to the left of the insertion point, one
character per strike of the Backspace key. If a segment of text is
selected, backspacing will erase the selected text.

Icons
Icons are 32-by-32 bit images. They are most commonly dis

played in alerts to signify the type of alert that has occurred. Figure 11.5
shows the standard alert icons: Stop, Note, and Caution. Icons may also
be displayed in dialogs to represent an object, such as a disk or a
telephone.

Stop Icon = O Note Icon = 1 Caution Icon = 2

Figure 11.5: The Standard Alert Icons

Alerts and Dialogs 331

Pictures
A QuickDraw picture can also be displayed in an alert or dialog

box. Many software authors put a digitized picture of themselves in the
About... dialog, which informs the user of the software name, version
number, author, date written, and so on.

Pictures can be manipulated just like any other resource ele
ment. A PICT resource can contain both line primitives and bitmap
fragments, so you can easily include part of a MacPaint picture in a
resource file. One of the easiest ways to extract part of a MacPaint
image into a PICT resource is to copy a fragment of a picture to the
ClipBoard, and from there to the Scrapbook. Image fragments stored in
the file called Scrapbook in the system folder of your disk are saved as
individual PICT resources.

This is one of those cases wherein a little snooping around with
ResEdit will tum up something interesting. If you open your Scrapbook
file with ResEdit, you will be able to locate the appropriate image
fragment, copy it into a new file and change its resource number to
something useful, say 128. If you save this resource into a file of its
own-let's call it Picture.Rsrc-you can include it in the resource file
for your program by adding the line

INCLUDE Picture.Rare

to your RMaker file, as we discussed in Chapter 9.

Item Numbers
Each item in an alert or dialog has a number that corresponds to

its position in the item list. By convention, the first item in any item
list-whether it's for an alert or a dialog-should be the OK or default
button. This is because, when an alert or dialog is the active window on
the screen and the user presses the Return or Enter key, the Dialog
Manager returns item number one, just as if the user had clicked the first
item with the mouse. Also by convention, the second item in the item list
for an alert should be the Cancel button. The remaining items can be
listed in any order.

332 Using the Macintosh Toolbox with C
--- CH.11

How Items Are Displayed
Each item in an alert or dialog has an associated rectangle,

called the ltmRect, that determines the item's size and location within the
alert or dialog window. For control items, the itmRect becomes the contrl
Rect field of the control's control record. For static text and edit text
items, the itmRect becomes TextEdit's destination rectangle and view
rectangle. In addition, for edit text items, a rectangle is drawn three
pixels outside its display rectangle. If pictures or icons are to be drawn
in an alert or dialog box, they will be automatically scaled by the Tool
box to fit the itmRect.

DialogRecord Data Type
Although it is rarely used by an application directly, the struc

ture of a DialogRecord is presented in the box below and described in this
section.

Dialog Record Data Type

struct DR
WindowRecord
Handle
TEHandle
int
int
int

I;

window;
items;
textH;
editField;
editOpen;
aDefitern;

#define
lidefine

DialogRecord structDR
DialogPtr *DialogRecord

The window field of a DialogRecord is the WindowRecord for the
dialog's window. The items field is a handle to the item list that is used
for this dialog. The next three fields-textH, edltField, and editOpen-are
used by the Dialog Manager when there are one or more edit text items

Alerts and Dialogs 333 ---

in the dialog. When there is more than one edit text item in a dialog, the
fields correspond to the item that is currently selected or to the one that
displays an insertion point. The textH field is a text edit handle to the text
in the item. The editField field contains the item number minus 1 of the
text edit item. If the dialog has no edit text items, the field will equal -1.
The editOpen field is used internally by the Dialog Manager. The aDefltem
field contains the item number of a modal dialog's or alert's default but
ton. For modal dialogs, it contains the number 1; for alerts, it contains
the number specified in the ALRT resource.

Dialog and Alert Resource Types
There are a few different ways to create dialogs and alerts, but

creating them with resources is the easiest, most flexible, fastest, and as
a result, it is the best way to do so. In this section, we will discuss the
format of dialog and alert resource types as well as how to create them.

DLOG Resource Type
A DLOG resource is used to define various attributes of a dialog

window. Many of the fields of a DLOG resource are the same as the argu
ments that are used by the Window Manager function NewWindow. It might
be a good idea to refer to Chapter 3 to review the routine NewWindow and its
arguments. The format of a DLOG resource is given in the box below.

The boundsRect value is the same boundsRect used by the Window
Manager function NewWindow. It specifies the size and location on the
dialog on the screen. The proclD value is the same proclD value used by
NewWindow. It specifies the type of window to be used for the dialog. If
the visible field is true, the dialog will be drawn; otherwise, it will be in
visible. The filler1 field is not used; it simply takes up the lower 8 bits of
the word whose top 8 bits are occupied by the visible field.

The goAwayFlag field specifies whether the dialog window
should have a close box or not. For modeless dialogs, which have a
close box, this value should be true. For modal dialogs, it should be
false. The filler2 field is not used; it takes up the lower 8 bits of the word

334 Using the Macintosh Toolbox with C
--- CH.11

boundsRect
procID
visible
filler!
goAwayFlag
filler2
ref Con
items ID
title

DLOG Resource Format

8 bytes
2 bytes
1 byte
1 byte
1 byte
1 byte
4 bytes
2 bytes
1 count byte followed by the rest
of the string

whose top 8 bits are occupied by goAwayFlag. refCon is the window's ref
erence value, a 32-bit field. It is the same refCon that was discussed in the
chapters about windows, Chapters 3 and 8, and may contain any value
for use by the application. The itemslD field is an integer that specifies the
resource ID of the item list resource DITL, which is to be used with this
dialog window. The title field is the title, if any, of the dialog.

DITL Resource Type

An item list, or DITL resource, is a list or group of items (con
trols, icons, and so on) that is put into dialog or alert. When an
application creates an alert or dialog using Dialog Manager routines, it
will have to specify a DITL to define the items. The format of a DITL
resource is given in the box below.

DITL Resource Format

dlgMaxindex 2 bytes

Then, for each item in the item list
itmHandle 4 bytes
itmRect 8 bytes
itmType 1 byte
itmData 1 byte plus an even number of

data bytes for the itmType's data

Alerts and Dialogs 335

A DITL resource begins with a dlgMaxlndex field, a word that
contains the number of items in the item list minus one. Then, for each
item (a control, icon, and so on), there are four more fields-itmHandl,
itmRect, itmType, and itmData-each containing the information described
below:

The itmHandle field contains a handle to the particular item in the
item list.

The itmRect field is the item's bounding rectangle.

The itmType field indicates what kind of item this is (for example,
an edit text or picture).

The itmData field is a length byte followed by the item's data.

ALRT Resource Type
Alerts are always created as resources and then invoked by one

of the four alert-invoking routines described later in this chapter in the
Invoking Alerts section. The box below shows the format of an ALRT
resource.

ALRT Resource Format

boundsRect
items ID
stages

8 bytes
2 bytes
2 bytes

The boundsRect field is just like the boundsRect field of a DLOG
resource. It is a rectangle that determines the size and location of the
alert on the screen. The itemslD field contains the resource ID of the
DITL resource, which contains all of the alert's items. The stages field
is a 16-bit word that contains the information about each of the alert's
four stages. The field is broken into four groups of 4-bits each. Each 4-
bit group represents one of the alert's stages. The box below shows the
format of the stages field.

336 Using the Macintosh Toolbox with C
--- CH.11

Stages Format

stg4bolditem 1 bit
stg4boxDrawn 1 bit
stg4sound 2 bits
stg3boldrtem 1 bit
stg3boxDrawn 1 bit
stg3sound 2 bits
stg2bolditem 1 bit
stg2boxDrawn 1 bit
stg2sound 2 bits
stglbolditem 1 bit
stglboxDrawn 1 bit
stglsound 2 bits

Each 4-bit stage determines how an alert will behave each time
that it is invoked. The first bit of a stage, the stgboldltem, determines
whether a heavy line should be drawn around item number 1 or item
number 2. If the value of the bit is 0, item 1 will be outlined; if the bit is
1, item 2 will be outlined.

The second bit, the stgboxDrawn, indicates whether or not the
alert should be drawn on the screen. A value of 1 indicates yes, and a
value of 0 indicates no. The third and fourth bits, the stgsound field,
which can represent an integer between 0 and 3, indicate which error
sound (0 to 3) should be sounded at this stage of the alert.

Each alert has four stages, for a total of 16 bits. It is important to
note that the stages are executed in the reverse order of the way that they
are organized. The last 4 bits of the word, the stg1 fields, determine an
alert's actions the first time that it occurs while the first 4 bits of the
word, the stg4 fields, determine how an alert will behave the fourth and
subsequent times that it is invoked.

How to Create a DLOG, DITL, or ALRT Resource
The easiest way to create a DLOG, DITL, or ALRT resource is

using ResEdit or RMaker. For each of these resource types, as well as
many of the other types, ResEdit has a resource template, which you
simply fill in. Under RMaker, the same process is handled by keying in

Alerts and Dialogs 337

a short text file. Sample resource templates are provided in Appendix D
of the Think C User's manual.

Creating a DLOG Resource
Figure 11.6 shows the template for a DLOG resource. Notice

that many of the fields of the template have exactly the same name as
the fields of a DLOG resource. The top, left, bottom, and right fields
specify the boundsRect coordinates for the dialog. The proclD, visible, go
AwayFlag, and refCon fields are exactly those same fields of a DLOG
resource. We simply need to fill in the values for a particular dialog. The
Window title is the title of the dialog window. The reslD is the itemslD, the
resource ID number of the DITL to be used with this dialog box.

Creating a DITL Resource
To create a DITL resource, we simply need to create each one

of the items that we want in the item list. For each item of the item list,
we will use the template shown in Figure 11. 7. We specify the type of
item, whether it is to be enabled or disabled, its bounding rectangle, and
its title (if any). From this information, the Resource Editor will fill in
the fields of a DITL resource with the appropriate data.

§D§ Dialog ID= 19192 from Chapter 11

top

left

ProclD

res ID

12] Uisible 12] goAwayFlag

Figure 11.6: Resource Editor Template for DLOG Resources

338 Using the Macintosh Toolbox with C
- - - CH.11

Creating an ALRT Resource
To create an ALRT resource, we will use the template shown in

Figure 11.8. If we refer back to the description of an ALRT resource for
mat, the template should be fairly self-explanatory. The top, left, bottom,

®Button
0 Check bOH

Edit Item #1

®Enabled
0 Disabled

0 Radio control

0 Static teHt
O Editable teHt

top 70
1-------1

left 70 O CNTL resource
O ICON resource
O PICT resource

t-----1

bottom 90
t-----1

right 130
0 User item

'---------'

Te Ht

OK Cancel

Figure 11.7: Resource Editor Template for DITL Resources

ElD§ Alert ID = 1 894 from Chapter 11

top ~bottom~
left right 280

Res ID 1241 I sound

stage 1 02 bold Odrown

~ stage 2 D 2 bold Odrown
stage 3 1812 bold 181 drown

stage 4 1812 bold 181 drown

Figure 11.8: Resource Editor Template for ALRT Resources

Alerts and Dialogs 339

and right fields of the template indicate the boundsRect and the size and
location of the alert on the screen. The reslD is the same as the ltemslD; it is
an integer that specifies the DITL that is to be used with this alert. Finally,
for each stage of the alert, the 2 bold field, if checked, means item number
2 of the alert is the default button and should be outlined accordingly. If it
is unchecked, item number 1 will be outlined. The drawn field indicates
whether or not the alert box is to be drawn on the screen. The sound field
contains a number from 0 to 3 that indicates the sound to be emitted at the
particular stage of the alert.

Using Alert and Dialog Routines
This section describes the Toolbox routines an application will

use to implement alerts and dialogs.

Initialization
There are two routines that have to do with initializing alerts

and dialogs. The first of the two, lnitDialogs, is similar to other Toolbox
initializing routines, such as lnitWindows and lnitMenus. It should be
called before using any of the other Dialog Manager routines. The pro
cedure initializes the Dialog Manager, sets up the standard sound
procedure, and passes empty strings to the routine ParamText, a routine
which allows an application to substitute text in static text items.

InitDialogs(restartProc)
ProcPtr restartProc;

An application can pass a restart procedure to lnitDialogs, which
can be executed whenever a system error occurs (an additional feature
of lnitDialogs that most applications fail to take advantage of). Whenever
a system error occurs, the System Error Handler of the Toolbox puts a
dialog box on the screen with a message notifying the user of the error
that has occurred and two buttons, Resume and Restart. Most of the
time, the Resume button is inactive, leaving the Restart button as

340 Using the Macintosh Toolbox with C
--- CH.11

the user's only choice. If a restart procedure is passed to lnitDialogs,
however, the system error dialog will appear with the Resume button ac
tive. Clicking the Resume button will execute the restart procedure.

Depending on which system error occurred, it may or may not
be a good idea to actually resume the application that crashed. Pointers
and handles may have been jumbled, so restarting the application may
lead to even more system errors. In this case, a relatively safe choice for
a restart procedure, and also a very useful one, is the Toolbox procedure
ExitToShell. This will allow the user to get back to the Finder and back up
all of his or her files. Being able to get back to the Finder is essential for
people using a RAM disk, since restarting the Mac would wipe out all
the data that they had stored in that disk, while being able to get back to
the Finder would allow them to back up all of their data to a floppy disk.
Once all the files had been backed up, the user could then restart the
machine to clear memory and start over again. The following piece of
code shows how to pass ExitToShell to lnitDialogs as the restart procedure.

restartProc ()
{

ExitToShell ();

InitDialogs(restartProc);

The other initialization routine for alerts and dialogs is the pro
cedure ErrorSound.

ErrorSound(soundProc)

ProcPtr soundProc;

An application passes a sound procedure, which becomes the sound
procedure for dialogs and alerts, to ErrorSound. If the sound procedure
passed is NULL, then alerts and dialogs will have no sound and, in the
case that the volume is set to zero, the menu bar will not blink. An ap
plication does not have to call ErrorSound; if it is not called, the Dialog
Manager uses the standard sound procedure.

Alerts and Dialogs 341 ---
Format of a Sound Procedure

The format of a sound procedure is shown in the following code:

My Sound (sounclNo)

int sounclNo;

A sound procedure should take integer values from 0 to 3,
usually passed from the stages field of an alert, and can emit any sound
for each number. The standard sound procedure emits the number of
beeps specified by soundNo. For the standard sound procedure, a soundNo
of 0 results in no sound, a soundNo of 1 results in 1 beep, and so on. If the
user has the volume set to 0, the menu bar will blink in place of each
beep. If an application uses its own sound procedure, it's good practice
to have sound number 1 be a single beep. When a modal dialog is on the
screen and the user clicks outside of it, sound number 1 is emitted. If the
current sound procedure does not emit a single beep, it will not be con
forming to the Macintosh User Interface Guidelines.

Creating and Disposing of Dialogs
The Dialog Manager provides two routines for creating dialogs,

two routines for disposing of them, and two routines for locking or un
locking dialog resources in memory. The first two routines, NewDialog
and GetNewDialog, are analogous to the New and GetNew routines of other
Toolbox Managers.

The NewDialog Routine
The NewDialog routine creates a dialog from the arguments that

the application passes it, while GetNewDialog creates a dialog from a
dialog template stored in a resource.

DialoqPtr NewDialog(dStorage, boundsRect, title, visible,

procro, behind, qoAwayFlag, refCon, items)

Ptr dStoraqe;

Re ct
Str255
char

*boundsRect;
*title;
visible;

342 Using the Macintosh Toolbox with C
--- CH.11

int procID;
WindowPtr behind;
char goAwayFlag;
long
Handle

refCon;
items;

The first eight arguments of NewDialog are the same as the arguments
passed to the Window Manager routine NewWindow. In fact, NewDialog
calls NewWindow with its first eight parameters to create the dialog win
dow. You might also notice that the arguments of NewDialog are the fields
of a DLOG resource. We will see why in just a moment when we ex
amine the GetNewDialog routine. Finally, NewDialog gets the items for the
dialog from the items parameter. The items parameter is a handle to a
DITL resource. The following code shows how an application, using the
Resource Manager routine GetResource, can get a handle to a DITL
resource with ID number 321.

Handle items;
items= GetResource('DITL', 321);

The handle items can then be used as an argument to NewDialog.

The GetNewDialog Routine
The GetNewDialog function accomplishes the same thing as New

Dialog but does it in a different manner.

DialogPtr GetNewDialog(dialogID, dStorage, behind)
int dialogID;
WindowRecord *dStorage;
WindowPtr behind;

GetNewDialog uses the dStorage and behind parameters just as they were
used by NewDialog, but it gets the remainder of its dialog definition
data-boundsRect, title, visible, proclD, goAwayFlag, refCon, and items-from
the DLOG resource that has the ID number specified by the argument
dialog ID.

Alerts and Dialogs 343

Disposing of Dialogs
To dispose of a dialog, we have two routines to choose from:

CloseDialog and DisposDialog. If, when a dialog was created with New
Dialog or GetNewDialog, the dStorage parameter contained a pointer to the
dialog storage, we should dispose of it with CloseDialog.

CloseDialog(theDialoq)

DialoqPtr theDialoq;

CloseDialog removes the specified dialog from the screen and
deletes the dialog's window from the window list. It releases the mem
ory occupied by the dialog window's data structures and by the dialog's
items, except for icons and pictures. These data structures include the
window record, update region, content region, and control records that
may have been allocated for theDialog. CloseDialog does not, however,
release the memory occupied by the dialog record or the item list. In
order to release the memory occupied by the dialog record and the item
list, an application will need to use the procedure DisposDialog.

DisposDialog(theDialog)

DialoqPtr theDialoq;

DisposDialog first calls CloseDialog and then releases the memory
occupied by the dialog record and the item list. Like CloseDialog, Dispos·
Dialog does not release the memory occupied by icons or pictures.
DisposDialog should also be used to remove dialogs whenever the dia
log's storage was allocated on the heap.

Locking and Unlocking Dialog Resources in Memory
To lock or unlock dialog resources in memory, the Dialog

Manager provides the routines CouldDialog and FreeDialog. CouldDialog
loads the specified DLOG resource, its associated DITL resource, and
all their related data structures into memory and marks them as unpurge
able. It's a good idea for an application to lock dialog resources in
memory whenever there is a possibility of the application disk not being
in the drive (a common situation on a Macintosh with only one disk
drive). If an application tries to display a dialog whose data structures
aren't in memory and whose resource file is not accessible, the familiar

344 Using the Macintosh Toolbox with C
--- CH.11

"Please insert the disk: xxxx" message will appear, and the user will have
to do disk swaps until all the necessary dialog data structures are read from
disk into memory. Instead of putting the user through the tedious task of
disk swapping, an application can simply call CouldDialog for each dialog
that might be displayed when the resource file is inaccessible.

CouldDialog(dialogID)
int dialogID;

The dialoglD parameter is the resource ID for the DLOG resource that
needs to be loaded and locked into memory.

An application can undo the work of CouldDialog with the proce
dure FreeDialog. FreeDialog marks the specified DLOG resource, its
associated DITL resource, and all of their related data structures in
memory as purgeable. An application should call FreeDialog whenever
there is no longer a need to have the specified dialog locked in memory.

FreeDialog(dialogID)
int dialogID;

The dialoglD parameter is the resource ID of the DLOG resource in
memory that can be marked as purgeable.

Responding to Dialog Events

Once a dialog is placed on the screen, the application needs to
respond to the user's actions within the dialog window. The Dialog
Manager provides four routines for this purpose. It provides us with the
mechanism to deal with modal dialogs through a procedure called
ModalDialog; with two functions for dealing with modeless dialogs, ls
DialogEvent and DialogSelect; and with a final routine, DrawDialog, to
handle dialogs that don't need a response.

Handling Modal Dialogs
When a modal dialog is placed on the screen, an application

should call ModalDialog to handle all of the user's actions. When the
user's action occurs in an enabled dialog item, ModalDialog returns its

item number in the parameter itemHit.

ModalDialog(filterProc, itemHit)
ProcPtr filterProc;
int *itemHit;

Alerts and Dialogs 345 ---

If ModalDialog is passed a NULL value for its filterProc, it will
respond to each event that occurs in the following manner:

If it is a mouse-down event outside of the dialog window, sound
number 1 is emitted (usually a single beep), the mouse-down event
is thrown out, and the ModalDialog responds to the next event.

If the Return or Enter key is pressed, the procedure returns with
itemHit equal to 1.

If an activate or update event occurs, ModalDialog activates or up
dates the window.

Mouse-down and key-down events in edit text items are handled
in the standard manner, which we discussed earlier in this chapter
in the section titled Edit Text. If the event occurred in an enabled
edit text item, ModalDialog returns with itemHit equal to the edit
text's item number. If the event occurs in a disabled item or if a
key-down event occurs when there are no edit text items, Modal·
Dialog returns nothing.

If a mouse-down event occurs in a control, ModalDialog calls the
Control Manager routine TrackControl (refer to Chapter 10 for
more information about TrackControl). If the mouse is released in
the same control and the control is enabled, ModalDialog returns
with itemHit equal to the control's item number. If the control is
disabled, ModalDialog returns nothing.

If a mouse-down event occurs in any other enabled item, such as
an icon or picture, ModalDialog returns with its item number in
item Hit.

If a mouse-down event occurs in any other disabled item, in no item,
or if any other event takes place, ModalDialog returns nothing.

346 Using the Macintosh Toolbox with C
--- CH.11

Handling Modeless Dialogs
To handle a user's actions in a modeless dialog, an application

should use the routines lsDialogEvent and DialogSelect. lsDialogEvent deter
mines whether or not an event is part of a dialog. If the event is part of a
dialog, the application passes it to DialogSelect (just as we passed menu
events to MenuSelect in Chapter4). Then, DialogSelect responds to the user's
actions in the same way as ModalDialog responds to modal dialog events.

The function lsDialogEvent is called inside of a program's main
event loop, just after the loop's GetNextEvent call.

char IsDialogEvent(theEvent)

EventRecord *theEvent;

An application passes the current event to lsDialogEvent to determine
whether or not it needs to be handled as part of a modeless dialog. The
function returns true whenever there is an update or activate event for a
dialog or a mouse-down event in a dialog window, or whenever any
other type of event occurs while a dialog window is active. Under
any other circumstances, lsDialogEvent returns false.

If lsDialogEvent returns true, an application should pass theEvent
to DialogSelect.

char DialogSelect(theEvent, theDialog, itemHit)

EventRecord

DialogPtr

int

*theEvent;

*theDialog;

*itemHit;

DialogSelect responds to the same events in modeless dialogs that Modal·
Dialog responds to in modal dialogs, in exactly the same manner. If an
event takes place in an enabled item, the function returns true, the itemHit
parameter is returned containing the item number of the selected item,
and theDialog parameter returns a pointer to the dialog. If DialogSelect
returns true, an application should respond to the dialog event in what
ever way is appropriate.

Handling Dialogs That Need No Response
The last dialog-handling routine is DrawDialog. DrawDialog is

used when an application displays a dialog that contains nothing but
static text items in order to let the user see what's going on. This type of

Alerts and Dialogs 347

dialog might appear, for example, when an application is copying a file
(see Figure 11.9). Because there is no need for the user to respond to this
sort of dialog, an application uses DrawDialog instead of any of the other
dialog-handling routines.

DrawDialog(theDialoq)
DialoqPtr theDialoq;

DrawDialog draws the items contained in the specified dialog box theDialog.

Invoking Alerts
There are four different routines for invoking alerts. Each of the

four functions takes the exact same parameters. The only operational
difference between the routines is the icon that the routine draws in the
alert window.

The first of the four functions, Alert, reads the ALRT resource
that has an ID of alertlD into memory. Once it's in memory, the ALRT
resource are examined, and the appropriate stage's actions are executed.
The execution of the alert's stage may include emitting an error sound,
drawing an alert on the screen, or both. If an alert is drawn on the screen,
Alert then calls the routine ModalDialog, passing it the filterProc, to handle
the user's actions.

int Alert(alertID, filterProc)

int
ProcPtr

alertID;
filterProc;

Once an alert is drawn on the screen, it behaves just as if the application
had created it as a modal dialog and then called the routine ModalDialog,

A Dialog That Requires No User Response

Files/Folders remaining to copy D

Figure 11.9: Files Remaining to Copy Dialog

348 Using the Macintosh Toolbox with C
--- CH.11

which we discussed earier. The function value returned by Alert is -1 if
an alert box is not drawn on the screen (because no alert has been
defined at this stage); otherwise, it returns the item number of the
enabled item that is clicked with the mouse. Just as is the case with
modal dialogs, if the user presses the Return or Enter key, a value of 1 is
returned. Before returning its function value to the application, Alert
removes the alert from the screen and releases all the memory allocated
to its data structures.

The next three routines, StopAlert, NoteAlert, and cautionAlert, be
have in exactly the same manner as Alert, except that each draws a
different icon in the upper left-hand comer of the alert window. The
standard icons for the Stop, Note, and Caution alerts are shown in Fig
ure 11.5. Each of the standard alert icons is in the resource fork of the
System file and has a resource ID of 0, l, and 2, respectively. If an ap
plication had ICON resources in its resource fork numbered 0, l, or 2,
these icons would be displayed instead of the standard icons found in
the System resources.

Note that the appearance of these "standard" icons has varied
with the changing Macintosh system software.

The StopAlert routine works exactly like Alert, except that it
draws the ICON resource that has an ID of 0 in the rectangle
(10,20,42,52) within the alert window.

int StopAlert(alertID, filterProc)
int alertID;
ProcPtr filterProc;

The NoteAlert routine works exactly like StopAlert, except that it draws
the ICON resource that has an ID of 1.

int NoteAlert (alertID, filterProc)
int
ProcPtr

alertID;
filterProc;

Finally, the CautionAlert routine works exactly like StopAlert, except that
is draws the ICON resource that has an ID of 2.

int CautionAlert(alertID, filterProc)
int alertID;
ProcPtr filterProc;

Alerts and Dialogs 349

Locking and Unlocking Alert Resources in Memory
To lock or unlock alert resources in memory, the Dialog

Manager provides the routines CouldAlert and FreeAlert. These two
routines do the same things for alerts that CouldDialog and FreeDialog
do for dialogs. An application should use CouldAlert to load an alert's
resources into memory whenever there is a chance that the alert will
be invoked when the disk is not in the drive. When there is no longer
a need to have the alert locked in memory, an application should call
FreeAlert to release the memory occupied by the alert and its as
sociated resources.

CouldAlert loads the specified ALRT resource, its associated
DITL resource, and their related data structures in memory and marks
them as unpurgeable.

Coulc!Alert(alertID)
int alert ID;

The alertlD parameter is the resource ID for the ALRT resource that is to
be loaded and locked into memory.

An application can undo the work of CouldAlert with the pro
cedure FreeAlert. FreeAlert marks the specified ALRT resource, its
associated DITL resource, and all their related data structures in mem
ory as purgeable.

FreeAlert(alertID)
int alertID;

The alertlD parameter is the resource ID of the ALRT resource in mem
ory that can be marked as purgeable.

Manipulating Items in Alerts and Dialogs
An application can manipulate items in alerts and dialogs using

the following six Dialog Manager routines: GetDltem, SetDltem, GetlText,
SetlText, SellText, and ParamText. The first two of these routines deal with
manipulating any type of dialog or alert item, while the last four, as we

350 Using the Macintosh Toolbox with C
--- CH.11

might guess from their suffixes, deal with manipulating edit text and
static text items.

The GetDltem and SetDltem Procedures
GetDltem and SetDltem are two general routines that allow an ap

plication to get or set information about any type of item in an item list.
When passed a dialog pointer and an item number, GetDltem returns to
the application a handle to the item specified, the type of item specified
(control, icon, and so on), and the item's bounding rectangle.

GetDitem(theDialoq, itemNo, type, item, box)
DialoqPtr theDialoq;
int
int
Handle
Re ct

itemNo;
*type;
*item;
*box;

The item's handle, type, and bounding rectangle are returned in
the item, type, and box parameters, respectively. Once an application has
a handle to an item, it can change or examine the item by passing
the handle to other routines. For example, if an application needed to
change or examine the text in a static text or edit text item, it would pass
the item's handle to the SetlText or GetlText routine (we will discuss both
of these routines shortly). If the item the application needed to examine
or change was a control, the handle would be passed to the appropriate
Control Manager routine. For example, the application would pass the
handle to MoveControl if it needed to move the control, to GetCtlValue or
SetCtlValue if it needed to get or set the control's value, and to GetCtlTitle
and SetCtlTitle if it needed to get and set the control's title.

The SetDltem procedure is generally used to add an item to a
dialog that was unknown or inaccessible at the time that the item list was
defined. To do this, an application could create an item in the item list
and set its display rectangle to (0,0,0,0). Once the item became acces
sible, the application could pass the item's handle and its bounding
rectangle to SetDltem.

SetDitem(theDialoq, itemNo, type, item, box)
DialoqPtr theDialoq;
int itemNo;

Alerts and Dialogs 351

int type;
Handle item;
Rect *box;

The parameters itemNo and theDialog indicate which item of which dialog
is to be set. The item, type and box, parameters indicate the new handle,
item type, and bounding rectangle that the specified item is to have,
respectively. The new item is not drawn by the routine SetDltem.

SetDltem should not be used to change the text of a static text or
edit text item or to change a control item in any way. To alter such items,
first call the GetDltem routine to get a handle to the item, and then pass
the item's handle to the appropriate routines, as we outlined in the dis
cussion of GetDltem.

Manipulating Text in Alerts and Dialogs
To examine or change the contents of an edit text or static text

item, an application can use the procedures GetlText and SetlText. GetlText
takes a handle to an edit text or static text item and returns the contents
of the text string in its text parameter.

GetIText(item, text)
Handle
Str255

item;
*text;

The parameter item is typically the handle returned by the Dialog Man
ager routine GetDltem.

To change the text of an edit text or static text item, the SetlText
routine can be used.

Set!Text(item, text)
Handle
Str255

item;
*text;

SetlText changes the contents of the indicated edit text or static text item
to the string specified in the text parameter.

It is customary for a dialog that contains an edit text item to ap
pear with some selected, default text in it. The text appears selected so
that all the user has to do to replace it is to type in the new text from the
keyboard. This saves the user from having to manually select the text
with the mouse in order to replace it. Anything that the user types will

352 Using the Macintosh Toolbox with C
--- CH.11

replace the selected text in the edit text item. The Dialog Manager
provides us with a means of selecting all or part of an edit text item with
the SellText routine (Select Item's Text).

SelIText(theDia1oq, itemNo, strtSe1, endSe1)
Dia1oqPtr theDia1oq;
int itemNo;
int strtSe1;
int endSe1;

Given a pointer to a dialog and the item number of an edit text item,
SellText selects the portion of text from character position strtSel to the
postion endSel. To select all of the text in an edit text item, pass a value
of 0 in strtSel and a very large number in endSel. This will ensure that the
entire text string is selected.

The ParamText Routine
The ParamText procedure allows an application to substitute text

in static text items. The Pascal strings .passed in paramO through param3
will replace the strings ""0" through ""3" in all subsequent static text
items that appear in alerts or dialogs.

ParamText{paramO, param1, param2, param3)
Str255 *paramO, *paraml;
Str255 *param2, *param3;

For example, if the static text of an alert was "Completely erase disk en
titled "0," diskName was a Pascal string that contained a disk name, and
noString was an empty string, an application could call ParamText(disk
Name, noString, noString, noString).

A Sample Program using Alerts and Dialogs
The sample program following demonstrates almost all of the

routines that we have discussed. The program displays a modeless
dialog that contains controls that allow the user to put up modal dialogs
and alerts.

Alerts and Dialogs 353

/**/
/* Sample Application for Chapter 11: Alerts and Dialogs */
/* */
/* This application puts up a modeless dialog that */
/* contains buttons, check boxes, radio buttons, static */
/* text and edit text items. The buttons allow the user */
/* to bring up a modal dialog or any one of 4 alerts. */
/* *I
/* The check boxes indicate which of the 4 edit text */
/* strings should be passed to the modal dialog, while */
/* the radio buttons indicate which of the 4 alerts */
I* should be invoked. *I
/* */
/**/

it include <QuickDraw.h>
it include <WindowMgr.h>
it include <MemoryMgr.h>
Hnclude <EventMgr.h>
#include <TextEdit.h>
Hnclude <FontMgr.h>
Hnclude <ControlMgr.h>
Hnclude <MenuMgr.h>
#include <DialogMgr.h>
#include <ToolboxUtil.h>
#include <stdio.h>

I* constants for dialog items */
#define modalBut 1
#define edTextl 3
#define edText2 4
#define edText3 5
#define edText4 6
itdefine radButl 7
#define radBut2 8
#define radBut3 9
#define radBut4 10
#define alert But 11
#define chkBoxl 12
#define chkBox2 13
itdefine chkBox3 14
itdefine chkBox4 15

/* constants for alert Val */
itdefine PlainA 1
#define StopA 2
#define NoteA 3
#define CautionA 4

/* Global variables */
short alertVal,checkVal;

354 Using the Macintosh Toolbox with C
--- CH.11

/* restart procedure for InitDialogs */
reStartProc ()
{

ExitToShell ();

/* the main event loop */
main()
{

Event Record
DialogPtr
short
WindowPtr
Re ct
ControlHandle

theEvent;
modeless,whichDialog;
whichitem,windowcode,type;
whichWindow;
box;
radHandl;

InitGraf(&thePort);
InitFonts () ;
InitWindows ();
InitMenus ();
InitDialogs(reStartProc);
InitCursor();

FlushEvents(everyEvent, 0);

/* put up the modeless dialog with the first
radio button and edit text item selected */

modeless = GetNewDialog(331,NULL, (WindowPtr)-1);
SelIText(modeless,edTextl,0,100);
GetDitem(modeless,radButl,&type,&radHandl,&box);
SetCtlValue(radHandl,1);
alert Val = 1;
checkVal = 0;
ShowWindow(modeless);

while (1)

if (GetNextEvent(everyEvent,&theEvent))
if (IsDialogEvent(&theEvent)) {

if (DialogSelect(&theEvent,&whichDialog,&whichitem))
DoModeless(whichitem,whichDialog);

switch (theEvent.what)

case mouseDown:
windowcode = FindWindow(theEvent.where,&whichWindow);
DoWindowStuff(&theEvent,whichWindow,windowcode);
break;

/* end of main() */

I* The procedure DoModeless takes a dialog
item and a dialog pointer as arguments, and
responds to .the user's actions appropriately */

DoModeless(whichitem,whichDialog)
short which Item;
DialogPtr whichDialog;

short
Str255
Handle

type, result;
theTextl,theText2,theText3,theText4;
item;

Re ct
ControlHandle

box;
radHandl,radHand2,radHand3,radHand4,chkHand;

/* Get a handle to each of the radio buttons */
GetDitem(whichDialog,radButl,&type,&radHandl,&box);
GetDitem(whichDialog,radBut2,&type,&radHand2,&box);
GetDitem(whichDialog,radBut3,&type,&radHand3,&box);
GetDitem(whichDialog,radBut4,&type,&radHand4,&box);

switch(whichitem)

/* If its the modal button, get the text out of each edit
text item and pass strings to DoModal */

case modalBut:
GetDitem(whichDialog,edTextl,&type,&item,&box);
GetIText(item,&theTextl);
GetDitem(whichDialog,edText2,&type,&item,&box);
GetIText(item,&theText2);
GetDitem(whichDialog,edText3,&type,&item,&box);
GetIText(item,&theText3);
GetDitem(whichDialog,edText4,&type,&item,&box);
GetIText(item,&theText4);
DoModal(&theTextl,&theText2,&theText3,&theText4);
break;

/* For the next four cases, turn on the radio button that
was pressed and turn off all the rest. Also change the
global variable alertVal which keeps track of the radio
button that is currently selected */

case radButl:
SetCtlValue(radHandl,1);
SetCtlValue(radHand2,0);
SetCtlValue(radHand3,0);
SetCtlValue(radHand4,0);
alertVal = 1;
break;

Alerts and Dialogs 355 ---

356 Using the Macintosh Toolbox with C
--- CH.11

case radBut2:
SetCtlValue(radHandl,0);
SetCtlValue(radHand2,l);
SetCtlValue(radHand3,0);
SetCtlValue(radHand4,0);
alertVal = 2;
break;

case radBut3:
SetCtlValue(radHandl,0);
SetCtlValue(radHand2,0);
SetCtlValue(radHand3,l);
SetCtlValue(radHand4,0);
alertVal = 3;
break;

case radBut4:
SetCtlValue(radHandl,0);
SetCtlValue(radHand2,0);
SetCtlValue(radHand3,0);
SetCtlValue(radHand4,1);
alertVal = 4;
break;

/* When the Alert button is pressed, check alertVal to
see which alert radio button is selected and invoke
the appropriate alert routine */

case alertBut:
switch(alertVal)

case PlainA:
result= Alert(333,NULL);
break;

case StopA:
result
break;

case NoteA:

StopAlert(333,NULL);

result= NoteAlert(333,NULL);
break;

case CautionA:

break;

result= CautionAlert(333,NULL);
break;

/* For the next four cases, get a handle to the check
box selected, change its value to the opposite, then
change the value of the global variable checkVal,
which keeps track of the check boxes status */

case chkBoxl:
GetDitem(whichDialog,chkBoxl,&type,&chkHand,&box);
SetCtlValue(chkHand, !GetCtlValue(chkHand));
checkVal A= 1;
break;

Alerts and Dialogs 357

case chkBox2:
GetDitem(whichDialog,chkBox2,&type,&chkHand,&box);
SetCtlValue(chkHand, !GetCtlValue(chkHand));
checkVal A= 2;
break;

case chkBox3:
GetDitem(whichDialog,chkBox3,&type,&chkHand,&box);
SetCtlValue(chkHand, !GetCtlValue(chkHand));
checkVal A= 4;
break;

case chkBox4:
GetDitem(whichDialog,chkBox4,&type,&chkHand,&box);
SetCtlValue(chkHand, !GetCtlValue(chkHand));
checkVal A= 8;
break;

/* DoWindowStuff takes care of mouse-downs in the
drag region and goAway region of the modeless
dialog */

DoWindowStuff(theEvent,whichWindow,windowcode)
EventRecord *theEvent;
WindowPtr whichWindow;
short windowcode;

Rect screenRect;
SetRect(&screenRect,10,30,502,332);

switch(windowcode)

case inDrag:
DragWindow(whichWindow,theEvent->where,&screenRect);
break;

case inGoAway:
if(TrackGoAway(whichWindow,theEvent->where)) ExitToShell();
break;

/* DoModal takes four strings as its arguments,
and checks the global variable chkVal to
determine which strings to pass to the
ParamText routine. The strings that are
passed to ParamText are put in the modal
dialog that is placed on the screen. */

DoModal(theTextl,theText2,theText3,theText4)
char *theTextl,*theText2,*theText3,*theText4;

358 Using the Macintosh Toolbox with C
--- CH.11

short
DialogPtr

iternHit;
modal;

if{! {checkVal & 1)) *theTextl 0;
if{! {checkVal & 2)) *theText2 0;
if{! {checkVal & 4)) *theText3 0;
if{! {checkVal & 8)) *theText4 0;

*
*
*

ParamText{theTextl,theText2,theText3,theText4);
modal= GetNewDialog{332,NULL, {WindowPtr)-1);

while{iternHit != 1) ModalDialog{NULL,&iternHit);
CloseDialog{modal);

Source Code for Chapter 11 Sample Application Resources

Use the Apple Resource Compiler - RMaker

Chaptll. rsrc

Type ALRT

,333
100 106 184 368
333
7654

Type DITL

,333
2

* 1
Btnitem Enabled
47 152 67 212
OK

* 2
StatText Disabled
15 68 31 228
This is an Alert

, 332
6

* 1
Btnitem Enabled
152 160 172 220
OK

* 2
StatText Enabled
9 9 25 369
These are the strings that were passed to ParamText:

* 3
StatText Enabled
40 24 56 384
ho

* 4
StatText Enabled
64 24 80 384
hl

* 5
StatText Enabled
88 24 104 384
h2

* 6
StatText Enabled
112 24 128 384
h3

,331
15
* 1
Btnitem Enabled
34 56 74 160
Modal Dialog

* 2
StatText Enabled
96 8 112 200
Text Strings for ParamText:

* 3
EditText Enabled
128 16 144 368
String 1

* 4
EditText Enabled
152 16 168 368
String 2

* 5
EditText Enabled
176 16 192 368
String 3

Alerts and Dialogs 359 ---

360 Using the Macintosh Toolbox with C
--- CH.11

* 6
EditText Enabled
200 16 216 368
String 4

* 7
Radioitem Enabled
8 384 32 488
Plain Alert

* 8
Radioitem Enabled
32 384 56 488
Stop Alert

* 9
Radioitem Enabled
56 384 80 488
Note Alert

* 10
Radioitem Enabled
80 384 104 496
Caution Alert

* 11
Btnitem Enabled
32 280 72 368
Alert

* 12
Chkitem Enabled
128 376 144 472
Use String l

* 13
Chkitem Enabled
152 376 168 472
Use String 2

* 14
Chkitem Enabled
176 376 192 480
Use String 3

* 15
Chkitem Enabled
200 376 216 480
Use String 4

Type DLOG

,332
Modal Dialog
62 72 242 470
Visible NoGoAway
0
0
332

,331
Modeless Dialog
48 6 284 508
Invisible GoAway
0
0
331

Alerts and Dialogs 361 ---

-------------------------~----~-----~--

~

+
I

I
I

I

I
I
I
I
I
I

-- I ----+--
1

I
I

)(I

~
+I

The Macintosh
File System

The final topic that we need to cover before we can create a
truly complete application is the Macintosh file system. In this chapter,
we will explain how the Toolbox creates, reads, and writes data files. We
will introduce the various elements of the file system, take a closer look
at the standard file package that was introduced in Chapter 9, and then
discuss the actual Toolbox calls used to manipulate and maintain files.

Volumes
A volume can be any piece or segment of storage medium that

is capable of containing files. A volume can be the entire medium, as is
the case with the 3 1/2-inch Macintosh disks, or it can be a smaller seg
ment or partition of a larger storage device, such as a hard disk. Each
volume is, in turn, subdivided into logical blocks of up to 512 bytes,
depending on the medium. These blocks are the basic unit of space al
location on a volume. Every file on a volume is made up of an integral
number of allocation blocks, which contain multiple logical blocks.

Volume Information
Every volume contains some important information about itself

for use by the File Manager. This information includes the volume
name, a file directory, and a volume allocation block map. The volume

364 Using the Macintosh Toolbox with C
--- CH.12

name consists of a string of up to 27 printing characters. Uppercase and
lowercase letters can be used, but the File Manager does not make a dis
tinction between the two. The file directory contains an entry for each
file on the volume. Each entry contains the file's name, its location on
the desktop, and the number of the first allocation block it occupies, as
well as all the characteristic information about a file that we will discuss
in this chapter. The volume allocation block map tells the File Manager
which allocation blocks are free and which already belong to a file.

Accessing Volumes

Before a volume can be recognized by the Macintosh, it must
first be mounted by the File Manager. When mounting a volume, the
File Manager reads descriptive information about the volume into
memory and assigns the volume a volume buffer and volume reference
number. The volume buffer serves as a temporary storage space on the
heap which is used when the File Manager reads and writes information
on the volume. The volume reference number is used by many of the
File Manager calls to identify the volume. It has an advantage over
volume names in that it is always unique. Including the descriptive in
formation and the space allocated for the volume buffer, each mounted
volume occupies about 1.5K of memory. The number of volumes that
may be mounted at any one time depends on the number of drives
present and the amount of available memory.

Once mounted, volumes can be placed on-line or off-line. A
volume is considered on-line as long as all the information in its volume
buffer is still present in memory. When placed off-line, the volume buf
fer is flushed and removed from memory, leaving only essential
descriptive information in memory. The File Manager can only access
on-line volumes.

One volume is always the default volume. If no other volume is
specified for an operation, the default volume is accessed. The volume
used to start up the system is initially the default volume, but the ap
plication can designate which volume it wants to use as the default
volume at any time.

The Macintosh File System 365 ---

Files
A Macintosh file consists of a sequential group of bytes iden

tified by a file name and version number. The file name can be any
string of up to 31 printing characters, excluding colons(:). In practice,
any file name much longer than about 15 characters may be difficult to
read on a crowded desktop. As with volume names, the File Manager
allows the use of both uppercase and lowercase letters in the file name,
but it doesn't make a distinction between the two. Finally, the file's ver
sion number is an integer between 0 and 255 and is used by the File
Manager to distinguish between two files with the same name.

Each byte within a file is identified by its position within the se
quence. Numbering begins at 0 and can increase to 16,777,216, making
the maximum file size on the Macintosh 16 megabytes. Bytes can be
read or written either singly or in sequences to or from anywhere within
a file.

As mentioned in Chapter 9, a Macintosh file is divided into a
resource fork and a data fork. For the most part, all of the data dealt with
by the File Manager is contained in the data fork. There are a few oc
casions, however, when the File Manager needs to access the resource
fork. Copying files is a good example. In this chapter, whenever we talk
about "files," we are talking about the file's data fork unless stated
otherwise.

File Layout
The physical size of a file, that is, the space it occupies on the

disk, is indicated by the physical end of file (physical EOF). This num
ber is always 1 greater than the sequence number of the last byte in the
last allocation block of the file. The file's actual size, in bytes, is indi
cated by the logical end of.file (logical EOF). The logical EOF is equal
to 1 greater than the sequence number of the last byte in the file and
(since the first byte of a file is 0) is equal to the number of bytes in the
file. The logical EOF is always less than the physical EOF.

The file's position marker, which is often simply called its
mark, indicates the number of the next byte that will be read or written.
Of course, the value of the mark can't exceed the value of the logical

366 Using the Macintosh Toolbox with C
--- CH.12

EOF. The mark is moved forward automatically by the File Manager
after every read or write operation. If, during a write operation, the mark
runs into the logical EOF, the File Manager will automatically advance
the logical EOF as it needs to. The same thing happens when the physi
cal EOF is reached. The difference is that, instead of being incremented
by 1 (as the logical EOF is), the physical EOF will be incremented by
512 (the number of bytes in an allocation block), as the File Manager
assigns another allocation block to the file.

The logical EOF can also be moved by the application to any
position between the beginning of the file and the physical EOF. If the
logical EOF is moved to a position more than one allocation block less
than the physical EOF, the unneeded allocation block(s) will be deleted
from the file. Figure 12.1 shows a schematic representation of a Macin
tosh file.

Accessing Files
Files can be either open or closed. Many operations can only be

performed on files in one state or the other. For instance, only open files
can be read from or written to, whereas only closed files can be deleted.
When opening a file, the File Manager creates an access path to the file.
The access path specifies the volume on which the file is located and the
file's location on the volume. The File Manager also assigns a unique
path reference number to each access path. Path reference numbers
should always be used instead of names for identifying open files so that
files with the same name won't get mixed up.

Logical
EOF

Byte 0 +
·-•111111111111•••• 111111

t
Mark

Figure 12.1: Macintosh Data Fork Structure

Physical
EOF

+
I

The Macintosh File System 367 ---

An access path will allow the File Manager to read from a file,
write to it, or do both. Each file can have up to 12 access paths open at a
time. However, only one access path can have write permission to
a given file; the rest will be only able to read. Each of these access paths
keeps track of its own mark within the file, but they will all share com
mon logical and physical EOFs.

Before reading and writing files, the File Manager requires you
to have an application data buffer from which the application actually
gets its data. The File Manager always reads and writes data to files in
logical blocks. During a read operation, the File Manager transfers data
in logical block sized increments from the file to its application
data buffer. If there is any data amounting to less than one logical block,
it is read as a logical block anyway, except that the data is stored in a
temporary storage space. The file system then determines how much of
the data stored in the temporary storage space belongs to the file and
reads it into the application.

The situation in writing to a file is very similar. When an ap
plication writes data to a file, it actually writes it to the application data
buffer. The File Manager then transfers the data to the file in logical
blocked sized increments. Any data less than one logical block in size is
stored in a temporary storage space until a full logical block has ac
cumulated or until the File Manager is specifically instructed to write
the data to the file. Unless specified otherwise, the temporary storage
space for read and write operations is in the volume buffer. The applica
tion does have the option to create a specific access path buffer to serve
as this temporary storage space.

The Standard File Interface
Before we can begin actually manipulating files, we'll need to

talk a bit about the Standard File package (SF package). The SF package
provides the standard interface for file access on the Macintosh and con
sists of two dialog boxes: one for selecting a file to open and another for
specifying a file to save to.

The SF package is made up of two basic procedures. SFGetFile
displays the dialog box shown in Figure 12.2 and allows the user to

368 Using the Macintosh Toolbox with C
--- CH.12

specify which file on which volume and in which folder he or she
wishes to select. The other procedure, SFPutFile, displays the dialog
box shown in Figure 12.3 to let the user name the file to be saved or
written to.

la Paint I
\2 CJ Sta.-tup

I: j(H t

Open

Cancel

Figure 12.2: The SFGetFile Dialog Box

la Paint I
l;QJ CJ Sta.-tup

I
Saue Document Rs:

II Cancel

Figure 12.3: The SFPutFile Dialog Box

The Macintosh File System 369 ---
These dialog boxes share a few general characterstics. On the

right-hand side of each dialog box, you '11 notice the name of the current
drive. At the top of the box, you'll find the current volume. In the ex
ample, the current volume is named Startup. Below this volume name
are four buttons. When the Eject button is pressed, the Macintosh will
eject the volume specified by the displayed volume name and display
the name of the next mounted volume. If there are no other mounted
volumes, the area where the volume name is displayed is left blank.

The Drive button allows the user to switch between mounted
volumes, changing the displayed volume name accordingly. If only
one volume is on-line, the Drive button is disabled.

The SF package is also prepared to handle disk inserted events.
If the user responds to the dialog box by inserting a new disk into the
disk drive, the SF package routine makes the newly inserted disk the
current volume. If the inserted disk is uninitialized or not a Macintosh
disk, the SF package routine will call the Disk Initialization package to
prompt the user to initialize or eject the disk.

Both of these dialog boxes, as well as all of their behaviors, are
already specified by the system. All the programmer needs to do is call the
SF package procedures, as we will describe shortly. First, however, we'll
need a little more background information about the SF package calls.

The Reply Record
Both SFGetFile and SFPutFile use the same data structure, called

a reply record, to communicate with the application that calls them.
When passed a pointer to a reply record, each routine fills the structure
with information and returns to the application a pointer to the structure.

The reply record's data type is defined to be SFReply, as shown
in the box below.

The Macintosh interprets the first two fields as Pascal Booleans
(if true, bit 0 is set; if false, bit 0 is clear). The first field is false when the
user clicks the Cancel button and true if it's okay to continue on with the
procedure. The copy field is not currently used by the operating system,
so.the next relevant field is fType. This field is used only by SFGetFlle to
store the selected file's type. Next, the vRefNum field contains the volume
reference number associated with the selected file. The version field

370 Using the Macintosh Toolbox with C
--- CH.12

Reply Record

struct SF {

char good;
char copy;
long fType;
int vRefNum;
int version;
char[64) fName;

) ;

#define SFReply struct SF

contains the selected file's version number. The last field, fName, contains
the file's name. Be careful to note that the fName field is returned as a Pascal
string. These three fields-vRefNum, version, and fName--are set up for use
by the File Manager calls that we will cover later in this chapter.

Selecting a File

Whenever our application needs to access a file on a volume, it
should call SFGetFile. It will display the modal dialog box shown in Fig
ure 12.2 and handle all events until a file is selected or the Cancel button
is pressed.

SFGetFile (where, prompt, fileFilter, numTypes, typeList,
dlqHook, reply)

Point
Str255
ProcPtr
int
SFTypeList
ProcPtr
SFReply

where;
*prompt;
fileFilter;
numTypes;
*typeList;
dlqHook;
*reply;

The where parameter specifies the location of the upper left-hand comer
of the dialog box in global coordinates. The prompt parameter is left
over from an older version of the standard file interface and is ignored
by the procedure.

The next three parameters-fileFilter, numTypes, and typelist-all
help determine which files are displayed in the SFGetFile dialog box.

The Macintosh File System 371

SFGetFile first looks at the numTypes and typeList parameters to determine
which files to display. Pass -1 in numTypes if you wish to display all file
types; otherwise, pass the number of different file types that you wish to
display in numTypes and pass the types themselves in typeList. The SFType
List data structure is defined in the box below.

SFTypeList

struct ST {
long fType[4];

);

#define SFTypeList struct ST

Notice that the SFTypeList structure is defined to hold a maxi
mum of four different file types. This is more than enough for most
situations. However, if your application needs to specify more file types,
you can define your own array type with the necessary number of
entries and pass a pointer to it.

Using a File-Filter Routine
If you require more filtering than simply selecting files by file

type, you can write a file-filter routine which would do any additional
filtering required to specify the files that you wanted to display. For ex
ample, RMaker uses this to display only files which end in ".R". A
pointer to this function is passed to SFGetFile in the fileFilter parameter.
SFGetFile executes the filter function for each file to determine whether
or not that file should be displayed. The filter function is passed a single
parameter that we will discuss shortly (a pointer to a parameter block)
and returns a Pascal Boolean result.

The general form of the filter function must be as follows:

char Fi1eFi1ter (paramB1ock)

Fi1eParam *paramB1ock;

372 Using the Macintosh Toolbox with C
--- CH.12

This function is called by SFGetFile once for each file on the volume and
returns false if the file is to be displayed, or true if it isn't. In determining
which files to display, SFGetFile first looks at numTypes and SFTypelist and
then looks at fileFilter. If you do not have a filter procedure, pass NULL as
the fileFilter parameter. We've written an example of a file-filter function
and included it in the sample code at the end of this chapter.

The dlgHook parameter is NULL. It is intended to act as a pointer
to a control procedure for a custom dialog box, but since custom dialog
boxes are beyond the scope of this discussion, we'll just define this
parameter as NULL.

Finally, reply is a pointer to the reply record that SFGetFile used to
identify the selected file. We will use reply when we begin accessing files.

Using SFPutFile

SFPutFile is the reciprocal function of SFGetFile and, not surpris
ingly, it works very similarly. SFPutFile requires five parameters, as
follows:

SFPutFile (where, prompt, oriqName, dlqHook, reply)
Point where;
Str255 *prompt;
Str255 *oriqName;
ProcPtr dlqHook;
SFReply *reply;

The where parameter is the same as in SFGetFile. In contrast to
SFGetFile, however, the prompt parameter here is used to specify a static
text item that appears in the dialog box-for example, the message
"Save current document as" (see Figure 12.3). The origName parameter is
a pointer to a Pascal string that will serve as the default name in the
SFPutFile dialog box. Quite often, origName is specified as Untitled, but
you are free to define it to be anything that you wish. The last two
parameters, dlgHook and reply, are the same as in SFGetFile.

Once displayed, the SFPutFile dialog box will handle all events
until either the Save or Cancel button is pressed. SFPutFile will write the
appropriate information to the reply record pointed to by reply if

The Macintosh File System 373

the Save button is pressed, and it will do nothing but cancel the dialog
box if the Cancel button is pressed.

SFPutFile is also smart enough to deal with some of the problems
it may encounter while trying to write its reply record. For instance, if
the file name the user specifies in the dialog box already exists on the
volume, SFPutFile will display the alert box shown in Figure 12.4.

Aside from clicking the Drive button, the user can specify a des
tination volume in SFPutFlle by preceding the file name with a volume name
and a colon. For instance, typing volumeName:folderName:FileName will save
onto the volume named volumeName the file named FileName in the
folder specified by folderName. If the user specifies a nonexisting volume
in this manner or if the destination volume is locked, SFPutFile will display
the appropriate alert boxes.

We need to make an important point before we move on. The
SFGetFile and SFPutFile procedures only read and write to the specified
reply record. They know nothing about the actual file whose identity is
specified in the reply record. When calling SFGetFile, the application still
needs to issue commands to open and read from a file before it can be
aware of any information that exists there. Likewise, SFPutFile does not
write and close a file. That also needs to be done by the application.
Remember that SFGetFile and SFPutFile are only the interface to files and
do not access the contents of the file. We'll learn how to do that next.

lei Paint I
~ c::J Hard Driu e

I (Ej•~ct l
J [h"il•<~

Replace eHisting
"Macintosh" ?

Saue J (l (l Yes No
Cancel J

Figure 12.4: Alert Box for Replacing an Existing File

374 Using the Macintosh Toolbox with C
--- CH.12

The File Manager
In contrast with the SF package, which implements a standard

user interface for file operations, the File Manager contains the actual
Toolbox routines used to manipulate the contents of files. In many disk
related operations (such as copying or renaming a file), the SF package
and the File Manager are used one after the other. The application will
first call one or more routines from the SF package to allow the user to
select the file and volume names to be used in the upcoming operation.
After the necessary information has been obtained, the application will
carry out the operation with the appropriate routines from the File
Manager. In addition to the individual files, the File Manager is respon
sible for the volume's directory information, which covers every file on
the volume.

An Overview of the File Manager

The routines found in the File Manager can be divided into
three functional categories. First there are the routines for handling
familiar I/0 operations: opening a disk file, reading from and writing to
a file, closing a file, and creating a new file. Next are the routines for
manipulating files as a whole: renaming or deleting a file and obtaining
or altering the descriptive information maintained for each file by the
File Manager. Finally, there are the routines for manipulating entire
volumes: mounting and unmounting volumes, changing the default vol
ume, ejecting volumes, and obtaining descriptive information about a
particular volume. To complement the routines that perform the tasks
we have just mentioned, we will also discuss additional routines that im
plement less familiar operations on files and volumes.

Before we move on to describe the routines themselves, we
must first briefly discuss the different types of routines that are available
to our application.

Most of the capabilities of the File Manager can be accessed by
using either of two methods. The Toolbox contains calls for all of the
features of the File Manager; these routines are referred to as the low
level File Manager routines. Inside Macintosh also describes the
high-level File Manager routines, which are a set of routines built upon

The Macintosh File System 375

the Toolbox routines.
The major difference between using the high-level and low

level routines from within an application are the calling conventions for
the routines themselves. For instance, when referring to a particular
volume, the high-level routines expect to be passed a pointer to the
string containing the name of the volume. In general, the individual
parameters required by the high-level routines must be kept in separate
variables.

In contrast, each of the low-level routines has only two calling
parameters. The first parameter is a pointer to a File Manager data struc
ture known as a parameter block which contains all of the information
required by the Toolbox routine. The requirements of all of the low
level routines can be met by just three variations on this basic data
structure. Because the low-level routines all use nearly the same
parameter block, one such block can be assigned to each file or volume.
The same parameter block can then be used over and over again, each
time a routine acting on the given file is called. Setting up the parameter
blocks for the low-level routines requires some effort on the part of the
programmer, but this effort is easily justified by the convenience of
keeping track of fewer variables. The low-level routines are also faster,
since the high-level routines must essentially recreate the parameter
block with every call. Finally, in addition to the difference in speed and
ease of use, the low-level routines provide other features not included in
the high-level routines.

We have chosen not to discuss the high-level File Manager
routines here since they do not provide any real advantage over the low
level routines, and our main purpose in writing this book is to describe
and show examples using the routines of the Toolbox itself.

File Manager Data Structures
The File Manager, like the other portions of the Toolbox, uses

several internal data structures to store and manipulate information
about files and volumes. The first of these data types is used to keep in
formation used exclusively by the Finder. The next three data types are
the parameter blocks used by the low-level routines.

376 Using the Macintosh Toolbox with C
--- CH.12

Finder Information
The first of these data structures is the Finto, whose contents are

listed in the box below. In this structure, the File Manager stores infor
mation used by the Finder for each file on a volume.

File Manager Data Structures: Finder Info

typedef long OSType;

struct Finfo {·
OS Type
OS Type
int
Point
int

fdType;
fdCreator;
fdFlags;
fdLocation;
fdFldr;

/* type of the file */
/* creator of the file */
/* file flags */
/* position in window */
/* which folder */

} ;

Jldefine Finfo struct Finfo

The type and creator of the file are stored in the fdType and
fdCreator fields of the Finder information structure. The type and creator
are contained in 32-bit fields and are composed of four ASCII charac
ters, similar to the way resource types are made up, as described in
Chapter 9. For example, the file type 'TEXT' is used to designate
generic text documents; whereas a file of type 'WORD' and creator
'MACA' is a formatted word-processing document from Mac Write.

The fdFlags field consists of 16 flags (1 bit each) that contain in
formation used by the Finder for every file on a volume. Figure 12.5
lists the locations of the various flags in the fdFlags field, along with
several predefined constants that can be used when examining the value
of the flags.

We have included a brief description of each flag in the box
below, even though it is rarely necessary to use these flags from within
an application. These flags are designed to be used by the Finder, and
the result of altering any of their values from within an application is
unreliable at best. Several applications do exist that allow the values of
these flags to be safely changed, however. See, for instance, the file
editor FEdit (written by John Mitchell) or the SetFile desk accessory (writ-

The Macintosh File System 377

Bit Position Flag Name Constant Name and Value*

0-7 Unused in Finder 4.1

8 inited #define cflnited Ox0100

9 changed #define cfHasChanged Ox0200

10 busy #define cflsBusy Ox0400

11 no-copy or "bozo" #define cfNoCopy Ox0800

12 system #define cfSystemFile Ox1000

13 bundle #define cfHasBundle Ox2000

14 invisible #define cf Invisible Ox4000

15 locked #define cf locked Ox8000

• These are not the same as the predefined constants found in Inside Macintosh.
The values in Inside Macintosh are measured relative to bit Sol the word
(the high-order byte). We have added the prefix •c• to the constant names to
indicate this difference.

Figure 12.5: The Finder Information Flags

Finder Flags

The inited flag is a signal to the Finder that it has seen this file in the past and
has completed the process of initializing the file, which includes assigning it a
location on the desktop and determining the icon used to represent the file.

The changed flag is used by the Finder to record whether the contents of a file
have changed since the last time it was saved to disk.

The busy flag is set if the file has been opened by the File Manager so that it
will not be destroyed or renamed inside the Finder.

If the bozo or no-copy flag is set, the Finder will not allow a file to be copied.
The system flag is used to indicate that a file is needed by the Macintosh

operating system; the Finder posts an alert when the user attempts to throw away
such a file.

The invisible flag determines whether or not the file's icon will be visible on
the desktop.

The bundle flag determines if the file has its own icon for use on the desktop
(see Chapter 13 for a discussion of assigning an icon to a file).

The locked bit can be used to ensure that the contents of a file are not dis
turbed; a locked file cannot be deleted, renamed, or written to from the Finder.

378 Using the Macintosh Toolbox with C
--- CH.12

ten by Sam Roberts).
The final two fields of the Finder information structure, fdFolder

and fdlocation, describe the window in which the file's icon will appear
on the desktop and the icon's position in the local coordinates of this
window. Three predefined constants are used to indicate special win
dows on the desktop. These constants are listed in Figure 12.6. We will
see in the examples at the end of the chapter how the fdFolder field can be
used to place a file into the same desktop folder as another file.

Parameter Blocks
In our introduction to the File Manager, we mentioned that

parameter blocks are used to pass information back and forth between
the application and the low-level routines of the File Manager. The three
different forms of a parameter block correspond to the division of the
File Manager routines into 1/0-, file-, and volume-related routines.
Roughly the first third of each type of parameter block is identical, with
the latter two-thirds depending on the corresponding type of low-level
operation.

Notice that the first eight fields are common to each of the three
types of parameter blocks. Of these eight fields, only the last two are of
any consequence to most applications; the first four fields are used inter
nally by the File Manager, and the other two are used only during
asynchronous operations. Since the final two fields, ioNamePtr and ioVRef
Num, are used by almost every low-level routine, it is appropriate that we
discuss the significance of these fields before we move on to the rou
tines themselves.

Value of FdFldr

mash = -3

fDeskTop = - 2

!Disk =0

File Locations

file is in Trash window

file is on the desktop

file is in disk window

Figure 12.6: Special Values of the fdFolder Field of the Finder Information Structure

The Macintosh File System 379

File Manager Data Structures: The Parameter Blocks

/* file I/O parameter block */

struct IO {

};

Jldafine
lldefine

/* fields common to all parameter blocks */
struct IO *qLink;
int qType;
int
Ptr
ProcPtr
OS Err
char
int
/* fields
int
char
char
Ptr
Ptr
long
long
int
long

ioParam
IOParam

ioTrap;
ioCmdAddr;
ioCompletion;
ioResult;
*ioNamePtr;
ioVRefNum;

/* completion routine */
/* result code */
/* volume or filename */
/* volume reference number */

specific to I/O
ioRefNum;

routines */

ioVersNum;
ioPermssn;
ioMisc;
ioBuffer;
ioReqCount;
ioActCount;
ioPosMode;
ioPosOffset;

struct IO

/* path reference number */
/* file version number */
/* read/write permission */
/* misc parameter */
/* buffer for read/write */
/* requested number of bytes */
/* actual number of bytes */
/* type of file positioning */
/* file position offset */

struct IO /* added for consistency */

/* file info parameter block */

struct FP {
/* fields common to all parameter blocks */
struct FP *qLink;
int qType;
int
Ptr
ProcPtr
OS Err

ioTrap;
ioCmdAddr;
ioCompletion;
ioResult;

/* completion routine */
/* result code */

char *ioNamePtr; /* volume or filename */
int ioVRefNum; /* volume reference number */
/* fields specific to file info routines */
int ioFRefNum; /* path reference number */
char ioFVersNum; /* file version number */
char fillerl; /* not used */
int
char
char

ioFDirindex;
ioFlAttrib;
ioFlVersNum;

/* file directory index */
/* file attributes */
/* file version number */

380 Using the Macintosh Toolbox with C
--- CH.12

Finfo ioFlFndrinfo; /* finder information *I
long ioFlNum; /* file number */
int ioFlStBlk; /* first block of data fork */
long ioFlLgLen; /* logical length */
long ioFlPyLen; /* physical length "" */
int ioFlRStBlk; /* first block of resource fork
long ioFlRLgLen; /* logical length "" */
long ioFlRPyLen; /* physical length "" */
long ioFlCrDat; /* date and time of creation */
long ioFlMdDat; /* date and time of modification

};

#define FileParam struct FP

/* volume info parameter block *I

struct VP
I* fields common to all parameter blocks */

};

#define

struct VP *qLink;
int qType;
int ioTrap;
Ptr ioCmd.Addr;
ProcPtr
OS Err
char
int
/* fields
long
int
long
long
int
int
int
int
int
long
long
int
long
int

ioCompletion;
ioResult;
*ioNamePtr;
ioVRefNum;

specific to file info
filler2;
ioVolindex;
ioVCrDate;
ioVLsBkUp;
ioVAtrb;
ioVNmFls;
ioVDirSt;
ioVBlLn;
ioVNmAlBlks;
ioVAlBLkSiz;
ioVClpSiz;
ioAlBlSt;
ioVNxtFNum;
ioVFrBlk;

/* completion routine */
/* result code */
/* volume or filename */
/* volume reference number */

routines */
/* not used */
/* volume index */
/* initialization date/time */
/* last backup date/time */
/* volume attributes */
/* number of files */
/* first block of directory */
/* number of blocks in dir */
/* number of alloc blocks */
/* size of alloc block */
/* number of bytes to allocate */
/* first block in block map */
/* next free file number */
/* number of free alloc blocks */

VolumeParam struct VP

*/

*/

The Macintosh File System 381 ---
The application may specify a file on a particular volume in one

of the following ways:

The File Manager assumes the default volume is to be used if
ioVRefNum contains the value zero.

The File Manager interprets the value as a drive number (where
1 is the internal drive and 2 is the external drive) if ioVRefNum is
positive.

The application can use the value obtained from SFPutFile or any
other routine that returns a volume reference number (here ioVRef
Num will be negative).

The application can use the name of the volume, if the user in
cluded it, in the string pointed to by ioNamePtr, where the file,
folder, and volume names are separated by a colon, as in the
string volumeName:folderName:fileName. (This method is not recom
mended, as it may mislead the user into thinking he or she must
always remember the names of the different volumes in use.)

Throughout the descriptions of the File Manager routines, we
will assume that the reader is familiar with these four methods of
specifying a file.

Using the Low-Level File Manager Routines
In this section, we will describe the low-level routines of the

File Manager, beginning with a brief overview of how the application
calls the routines and a discussion of the distinction between syn
chronous and asynchronous I/O operations. Next, we will discuss the
routines by dividing them into the three categories: I/O, file, and volume
routines. Along the way, we will include elementary examples showing
how some of the routines may be used. In the final section of this chap
ter, we present more detailed examples using the Macintosh file system.

The application does not need to initialize the File Manager
before calling any of its routines. The File Manager is automatically in-

382 Using the Macintosh Toolbox with C
--- CH.12

itialized along with other parts of the operating system when the Macin
tosh is powered up.

Low-Level Routines and Parameter Blocks
The names of the low-level File Manager routines begin with

the letters PB to indicate that they require a parameter block. The general
form of nearly all of these routines is that of a function consisting of two
parameters that returns an error code.

However, the interaction between the low-level routines of the
File Manager and the parameter blocks used to pass parameters back
and forth complicates the manner in which we have been describing the
routines of the Toolbox. It is now necessary to distinguish between the
fields of the parameter block that are required by the Toolbox routine on
the one hand and the fields that are used to return information to the ap
plication on the other. The following example illustrates the way in
which we shall present this additional information:

OSErr PBSample(paramBlock, asynch)

I*

*I

IOParam *paramBlock; /* or
FileParam *paramBlock; or
VolumeParam *paramBlock; */
char asynch;

Parameter Block fields passed to PBSample:
ioPassFieldl
ioPassField2
ioPassField3
ioPassField4
ioPassFieldS

Parameter Block fields returned by PBSample:
ioRetFieldl
ioRetField2

Possible Result Codes:
noErr
anErrS

anErrl
anErr6

anErr2 anErr3 anErr4

The Macintosh File System 383

The first three lines define the Toolbox routine in the same man
ner as we have used throughout the rest of the book-that is, in terms of
the routine's calling arguments and return value. The paramBlock para
meter is a pointer to one of the three types of parameter blocks, in
particular, the type appropriate for the low-level routine in question. The
asynch parameter is explained in the next section, Synchronous and
Asynchronous Operations. The comment block following the function
definition in the example above lists the fields of the parameter block
that should be passed to the File Manager routine and which field will be
returned to the application. The significance of each of these parameter
block fields will be discussed for the individual File Manager routines.

All of the low-level File Manager routines return a 16-bit error
code similar to the error codes returned by some of the routines in
the Memory Manager. As a part of the definition of each low-level
routine, we have included a listing of the error codes that can be
returned from each routine. These error codes are summarized in Figure
12.7. A complete listing of the operating system error codes can be
found in Appendix D. The sample application at the end of this chapter
illustrates how to incorporate these error codes into an informative
dialog box that can be used while debugging.

Synchronous and Asynchronous Operations
The majority of the File Manager's low-level routines can be

executed either synchronously or asynchronously. If the application
specifies that a routine be executed synchronously, the application must
wait until the File Manager routine has completed before continuing on
to the next instruction (this is the case with all other Toolbox routines).
However, the application may instead specify that a routine be executed
asynchronously, in which case the application is free to perform other
tasks during the time the File Manager routine is executing. Requests
for asynchronous File Manager operations are posted to the file 1/0
queue and executed on a first-in-first-out basis. The Boolean parameter
asynch, common to nearly all of the low-level routines, specifies whether
a particular routine should execute synchronously (asynch = false) or
asynchronously (asynch =true).

384 Using the Macintosh Toolbox with C
--- CH.12

If the application chooses to execute a File Manager routine
asynchronously, then it must monitor two fields of the parameter block that
would not otherwise be used. To determine if the routine has been com
pleted, the application can examine the contents of the ioResult field. During
the time that the routine is executing, ioResult will contain a positive value.
Once the routine has completed, ioResult will contain the result usually
returned as the value of the function (a negative error code if an error
occurred or noErr if the operation was completed successfully). The
application can also specify a routine, known as a completion routine,
to be called immediately after the asynchronous routine has finished

Event Code

badMDBErr
badMovErr
dirFulErr
dirNFErr
dskFulErr
dupFNErr
eofErr
extFSErr
fBsyErr
firstDskErr
flckdErr
fnfErr
fnOpnErr
fsDSlntErr
fsRnErr
gfpErr
ioErr
lastDskErr
memFullErr
mFullErr
no Err
noMacDskErr
nsDrvErr
nsvErr
paramErr
perm Err
posErr
rfNumErr
tmwdoErr
tmfoErr
vlckdErr
volOfflinErr
volOnlinErr
wrgVolTypErr
wrPermErr
wPrErr

= -60
= -122
= -33
= -120

-34
-48
-39
-58
-47
-84
-45
-43
-38

= -127
-59

= -52
= -36
= -64
= -108

-41
-0

-57
-56
-35
-50
-54
-40
-51

= -121
-42

= -46
= -53
= -55
= -123

-61
= -44

Error Message

bad master directory block - reinitialize volume
attempted to move into offspring
file directory full
directory not found
no free allocation blocks on disk
duplicate filename
logical end-of-file
volume in question belongs to an external file system
file is busy doing a delete operation
first of the range of low-level disk errors
file is locked
file not found
file not open
internal system file error
error during rename
error during GetFPos
disk 1/0 error
last of the range of low-level disk errors
not enough room in heap zone
system heap is full
no error
not a Macintosh volume
no such drive (tried to mount a bad drive num)
no such volume
error in user parameter list
permissions error (read/write not allowed)
tried to position to before start of file
nonexistent access path
Tio many working directories open
too many files open (12 maximum)
volume is locked (software)
volume is not on line
volume is already on-line
attempt to do hierarchical operation on nonhierarchical volume
permission doesn't allow writing
diskette is write protected (hardware)

Figure 12.7: The File Manager Error Codes

The Macintosh File System 385 ---
executing. The application can place a pointer to this routine, or NULL
to specify no completion routine, in the ioCompletion field of the
parameter block passed to the routine to be executed asynchronously. If
a low-level call is executed synchronously by the application, the File
Manager will automatically set the ioCompletion field of the parameter
block to NULL.

If an error occurs while an application is using asynchronous
routines, it should remove the remaining calls from the queue. To flush
all pending asynchronous file operations from the file 1/0 queue, ex
cept the one currently executing, the application can call the routine
lnitQueue:

InitQueue ()

The 1/0 Routines
We begin our description of File Manager Toolbox routines

with the familiar file 1/0 operations of creating, opening, and closing a
file. This section also covers the routines for reading from and writing to
a file, along with several more advanced routines.

Creating a New File
There are two general situations in which an application will

create a new file. The first situation involves a request from the user, as
will happen when either the New or Save As ... items are chosen from the
File menu. The second instance involves creating a file without direc
tion from the user in applications that need to keep a scratch file on a
disk for temporary storage.

In the first instance, the application calls SFPutFile from the SF
package to allow the user to enter a file name and select the volume on
which the disk should reside. In the second case, the application itself
must determine an appropriate file name and volume. To avoid conflicts
with existing files or with the scratch files from your own or other ap
plications running in the Switcher or the MultiFinder, the application
should base its scratch file names on the system clock or on a random
text string.

386 Using the Macintosh Toolbox with C
--- CH.12

After determining the file name and volume for the new file,
call the routine PBCreate:

OSErr PBCreate(paramBlock, asynch)

IOParam *paramBlock;

I*

*I

char asynch;

Parameter Block fields passed to PBCreate:

ioCompletion

ioNamePtr

ioVRefNum
ioVersNum

Parameter Block fields returned by PBCreate:

ioResult

Possible Result Codes:

noErr

ioErr

bdNamErr dupFNErr dirFulErr extFSErr

nsvErr vLckdErr wPrErr

This routine will create an empty, unlocked file with the name
contained in the Pascal string pointed to by the ioNamePtr field, on the
volume specified by ioVRefNum (refer to the discussion earlier in
the chapter on specifying a file). The ioVersNum parameter specifies the
version number to be assigned to the new file. Your application must al
ways set ioVersNum to 0 since the Resource Manager and the Segment
Loader cannot operate on files with nonzero version numbers.

The file created by PBCreate will have its creation and modifica
tion dates set to the current time on the system clock. The application
should call PBSetFlnfo (which we will describe when we discuss file
routines later in the chapter) to complete the information used by the
Finder.

The following example shows how to use SFPutFile and PBCreate
to create a new file on a volume. This example uses two routines that are
included in the sample application at the end of the chapter. The first is
the routine Pstrcpy, which is used to copy a string in Pascal format from
one location to another, in analogy with the standard C routine strcpy.
The second routine, OSError, can be used while debugging an application
to inform the programmer about the occurrence File Manager errors.
OSError displays a dialog box containing information about the error

The Macintosh File System 387

code passed as its second parameter; the other two parameters are ar
bitrary C strings specified by the application.

I* Example of creatinq a file with SFPutFile and PBCreate */

/* define some local variables */
SFReply reply;
OSErr theErr;
ioParam newIOParmBlk;
Point loc;
Str255 defaultName;

/*specify the upper riqht hand corner of SFPutFile's dialoq */
SetPt(&loc,100,80);

/* set up a default filename */
Pstrcpy(&defaultName, "\pUntitled");

/* have the user enter a file name*/
SFPutFile(loc, "\pName the new file:", &defaultName, NULL,

&reply);

/* if the user cancelled, abort and return . . . *I
if(!reply.qood) return;

/* otherwise, create the new file beqin by settinq up an IOParam
block*/

newIOParmBlk.ioNamePtr &reply.fName;
newIOParmBlk.ioVRefNum = reply.vRefNum;
newIOParmBlk.ioVersNum = reply.version;

theErr = PBCreate(&newIOParmBlk, O);

/* if theErr is non-zero, an error has occurred */
if(theErr) OSError("PBCreate", theErr, "creatinq the new file");

Opening a File for Reading or Writing
Before the application can examine or change the contents of a

file with a read or write call, the file must first be opened. As we
described at the beginning of this chapter, the process of opening a file
creates an access path and a unique path reference number that will sub
sequently be used whenever the application accesses the file through

388 Using the Macintosh Toolbox with C
--- CH.12

this path. A file can have at most one access path with read and write or
write-only permission at a given time; there is no such restriction for
read-only paths. To open the data fork of a file, the application should
call the routine PBOpen:

OSErr PBOpen(paramBlock, asynch)

I*

*/

IOParam

char

*paramBlock;

asynch;

Parameter Block fields passed to PBOpen:

ioCompletion

ioNamePtr

ioVRefNum

ioVersNum

ioPermssn

ioMisc

Parameter Block fields returned by PBOpen:

ioResult

ioRefNum

Possible Result Codes:

noErrbdNamErr extFSErr

mFullErr nsvErr

fnfErr

opWrErr

ioErr

tmfoErr

The volume, name, and version number of the file to be opened
should be placed into the parameter block, as always, before calling
PBOpen. The parameter ioPermssn contains the read and write permission
for the new access path. The predefined number values for specifying
read and write permissions are listed in Figure 12.8. If the application
attempts to open a second access path to a file with write permission,
PBOpen will return the path reference number of the existing path in io
RefNum and the error code opWrErr as its function value. This same error
code will be returned when the application attempts to open an access
path with write permission for a locked file. However, PBOpen will not
return an error if the application attempts to open a file for writing that
resides on a locked volume; instead, the File Manager will report the
error on the first write operation.

The ioMisc parameter can optionally contain a pointer to a
522-byte data buffer to be used by the access path Instead of the volume

The Macintosh File System 389 ---

Value Permission

fsCurPerm = O whatever is currently allowed

fsRdPerm = 1 read only permission

fsWrPerm = 2 write only permission

fsRdWrPerm = 3 read and write permission

Figure 12.8: Constants Used to Set Read and Write Permission

buffer; pass the value NULL to use the volume buffer. If the application
specifies such a buff er to be used, then all other access paths must share
the same buffer to ensure that any write operations in the buffer are
flushed to the disk before a read operation can take place.

An identical function exists to open the resource fork of a file.
PBOpenRF should not be used to access the contents of a resource file;
instead, use the routines of the Resource Manager. An application can
use PBOpenRF to copy the resource fork of a file.

OSErr PBOpenRF(paramBlock, asynch)

I*

*/

IOParam

char

*paramBlock;
asynch;

Parameter Block fields passed to PBOpenRF:

ioCompletion

ioNamePtr
ioVRefNum

ioVersNum

ioPermssn

ioMisc

Parameter Block fields returned by PBOpenRF:
ioResult

ioRefNum

Possible Result Codes:
noErrbdNamErr extFSErr

mFullErr nsvErr

fnfErr

opWrErr

ioErr
tmfoErr

390 Using the Macintosh Toolbox with C
--- CH.12

The following example shows how the SF package routine
SFGetFile can be combined with PBOpen to open a file specified by the user.

/* Example of opening a file with SFGetFile and PBOpen */

I* define some local variables */
SFTypeList typeList;
short
SFReply
OSErr
ioParam
Point

numTypes;
reply;
theErr;
openIOParmBlk;
loc;

/* location for SFGetFile's dialog box*/
SetPt(&loc,100,80);

I* set up the filetypes to be shown in SFGetFile select only
'TEXT' and 'WORD' documents */

numTypes = 2;
typeList.ftype[O]
typeList.ftype[l]

'TEXT';
'WORD';

/* have the user select a file name */
SFGetFile(loc, NOLL, NOLL, numTypes, &typeList, NULL, &reply);

/*if the user cancelled, return to wherever we came from ... */
if(!reply.qood) return;

/*otherwise open the file's data fork set up the IOParam, choose
read-only permission */

openIOParmBlk.ioNamePtr
openIOParmBlk.ioVRefNum
openIOParmBlk.ioVersNum

&reply.fName;
reply.vRefNum;
reply.version;

openIOParmBlk.ioPermssn fsRdPerm;
openIOParmBlk.ioMisc = NOLL; /* use volume buffer */

theErr = PBOpen(&openIOParmBlk, O);
if(theErr) {

/* an error occurred while opening the file */
OSError("PBOpen", theErr, "can't open this file");
return;

The Macintosh File System 391

Closing a File
To close an access path to a file, the application should call

PBClose with the appropriate path reference number in the ioRefNum field
of the parameter block.

OSErr PBClose(paramBlock, asynch)
IOParam
char

*paramBlock;
asynch;

/* Parameter Block fields passed to PBClose:
ioCompletion
ioRefNum

Parameter Block fields returned by PBClose:
ioResult

Possible Result Codes:
noErr
ioErr

extFSErr fnfErr fnOpnErr
nsvErr rfNumErr */

Each access path for a file must be closed individually before
the application finishes; otherwise, the File Manager will not remove
the flag indicating that the file is still open from the file's directory
entry. The access path's buffer is flushed to complete any pending write
operations before the access path is removed.

Reading the Contents of a File
To read from a disk file through an access path with read per

mission, use the function PBRead, as follows:

OSErr PBRead(paramBlock, asynch)
IOParam
char

*paramBlock;
asynch;

/* Parameter Block fields passed to PBRead:
ioCompletion
ioRefNum
ioBuf fer
ioReqCount
ioPosMode
ioPosOf f set

392 Using the Macintosh Toolbox with C
--- CH.12

*/

Parameter Block fields returned by PBRead:
ioResult
ioActCount
ioPosOffset

Possible Result Codes:
noErr
ioErr

eofErr
paramErr

extFSErr
rfNumErr

fnOpnErr

The parameter ioRefNum specifies the access path to the file.
PBRead attempts to read ioReqCount bytes from the file and places the
data into the buff er pointed to by ioBuffer.

The ioPosMode and ioPosOffset parameters specify where the
read operation should begin. Bits 0 and 1 specify whether the data
to be read should begin relative to the beginning or end of the file,
or from the current location of the file mark of the access path
(recall that the file mark simply points to the byte following the last
byte read from, or written to, the file). Bit 6 of ioPosMode, the verify
flag, indicates that the File Manager should verify the data read into
memory against the contents of the disk. When bit 7, the newline
flag, is set, the File Manager will terminate PBRead at the first
newline character, unless ioReqCount bytes have been read or the end
of the file is encountered before a newline character can be found.
The application specifies the desired newline character by placing
it in the upper 8 bits of ioPosMode. Figure 12.9 lists the values used
to position a call to PBRead and includes some convenient constants
for manipulating the value of ioPosMode. Finally, the ioPosOffset
parameter contains the offset in bytes, relative to the location indi
cated by ioPosMode, from which the first byte should be read.

After the PBRead routine has been completed, the current loca
tion of the file mark for this access path is returned in ioPosOffset. The
number of bytes successfully read from the file is returned in ioActCount.
If PBRead attempts to read past the logical EOF, the file mark for the ac
cess path will be placed at the end of the file and the error code eofErr
will be returned.

The following short example illustrates how an application can
read a section of a file into an arbitrary data buffer allocated by the ap
plication, for example, a WindowRecord. We assume that the file has

The Macintosh File System 393

Value of ioPosMode

fsAtMark = 0

fsFromStart = 1

fsFromLEOF = 2

fsFromMark = 3

Notes:

File positioning for Read/Write Operations

begin at position of current file mark (ignore ioPosOffset)

use offset relative to start of file (use ioPosOffset)

use offset relative to logical end-of-file (use ioPosOffset)

use offset relative to current file mark (use ioPosOffset)

Verify flag - Bit 6 of ioPosMode can be set to force all read operations to be verified

Newline flag - Bit 7 of ioPosMode force read operation to terminate at the character
specified in the upper 8 bits of loPosMode.

Figure 12.9: Positioning Read and Write Operations with ioPosMode

already been opened with read permission, as in the previous example.
This example makes use of the routine ErrDialog, which allows the ap
plication to display an error dialog consisting of three arbitrary C
strings.

/* :&:xamp1e of readinq from a fi1e with PBRead
we assume the fi1e has been previous1y opened
with the IOParam openIOParmBlk */

OSErr theErr;
ioParam openIOParmB1k;
Ptr buffer;
WindowRecord *aWindow;

/* a11ocate the WindowRecord on the heap */
aWindow = (WindowRecord *) NewPtr(sizeof(WindowRecord));

/* set up the IOParam for the read ca11 */
openIOParmB1k.ioBuffer = aWindow;
openIOParmB1k.ioReqCount = sizeof(WindowRecord);
openIOParmB1k.ioPosMode = fsAtMark; /* read from the */
openIOParmB1k.ioPosOffset = OL; /* current fi1e mark */

theErr = PBRead(&openIOParmB1k, 0);

394 Using the Macintosh Toolbox with C
--- CH.12

/* did an error occur? */
if(theErr) OSError("PBRead", theErr, "reading the WindowRecord");

/* check that the correct number of bytes were returned */
if(openIOParmBlk.ioActCount != openIOParmBlk.ioReqCount)

ErrDialoq("PBRead","wronq number of bytes read from file","");

/* close the access path when finished with file */
PBClose(&openIOParmBlk, 0);

We will use this method at the end of the chapter to read text
from a file into an edit record as part of a text editor.

Writing to a File
Writing data to a file is very similar to reading from a file. The

application can simply call the function PBWrite with the reference num
ber of a path that has write permission to the file.

OSErr PBWrite(paramBlock, asynch)

*I

IOParam
char

*paramBlock;
asynch;

/* Parameter Block fields passed to PBWrite:
ioCompletion
ioRefNum
ioBuf fer
ioReqCount
ioPosMode
ioPosOff set

Parameter Block fields returned by PBWrite:
ioResult
ioActCount
ioPosOffset

Possible Result Codes:
noErr extFSErr fnflilrr ioErr
fnOpnErr nsvErr rfNumErr

PBWrite will attempt to write ioReqCount bytes, from the buffer
pointed to by ioBuffer, to the specified file. The parameters ioPosMode and
ioPosOffset specify where the first byte from the write operation should

The Macintosh File System 395

be placed relative to the beginning or end of the file or to the current
location of the file mark. The positioning methods used for PBWrite are
identical to the methods used for PBRead, which are described in Fig
ure 12.9.

PBWrite returns the number of bytes successfully written in
ioActCount and the new position of the file mark in ioPosOffset. PBWrite auto
matically increments the number of allocation blocks assigned to the file if
data would otherwise be written past the current end of the file.

The following short example illustrates how an application can
write the contents of an arbitrary data structure to file. Notice that this
example is nearly identical to the previous example for reading data
from a file.

/* Example of writing to a file with PBWrite

we assume the file has been previously opened

for writing with the IOParam openIOParmBlk */

OSErr theErr;

ioParam openIOParmBlk;

Ptr buffer;

WindowRecord *aWindow;

/* assume the data in the WindowRecord is all ready to be written

to the disk */

/* set up the IOParam for the write call */

openIOParmBlk.ioBuffer = aWindow;

openIOParmBlk.ioReqCount = sizeof(WindowRecord);

openIOParmBlk.ioPosMode = fsAtMark; /* write starting at */
openIOParmBlk.ioPosOffset = OL; /* the current file mark */

theErr = PBWrite(&openIOParmBlk, O);

/* did an error occur? */

if(theErr)
OSError("PBWrite", theErr, "writing the WindowRecord ");

/* check that the correct number of bytes were written */

if(openIOParmBlk.ioActCount != openIOParmBlk.ioReqCount)

ErrDialog ("PBRead",
"wrong number of bytes written to file","");

396 Using the Macintosh Toolbox with C
--- CH.12

/* close the access path when finished with file */
PBClose(&openIOParmBlk, O);

Finding and Changing the Length of a File
To determine the length of a file, the application can call

PBGetEOF with the reference number of an open access path to the file.
The PBGetEOF routine returns the current location of the logical EOF in
the ioMisc parameter.

OSErr PBGetEOF(paramBlock, asynch)

/*

*/

IOPara.m *paramBlock;
char asynch;

Para.meter Block fields passed to PBGetEOF:
ioCompletion
ioRefNum

Para.meter Block fields returned by PBGetEOF:
ioResult
ioMisc

Possible Result Codes:
noErr
fnOpnErr
rfNumErr

extFSErr
ioErr

The application can change the length of a file by changing
either the logical or the physical EOF. The functions PBSetEOF and
PBAllocate are designed for this purpose. PBSetEOF changes the length of
a file by moving the logical EOF (and if necessary the physical EOF).
PBAllocate, on the other hand, changes the file length by moving only the
physical EOF. The access path that is used to specify the file for either
PBSetEOF or PBAllocate must have write permission; otherwise, the error
code wrPermErr will be returned. We will see in the examples at the end
of the chapter how these routines are used in an application to read or
write the contents of a file.

The application should pass PBSetEOF the desired location, in
bytes, of the new logical EOF as the ioMisc parameter.

The Macintosh File System 397

OSErr PBSetEOF(paramBlock, asynch)

/*

*/

IOParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBSetEOF:

ioCompletion

ioRefNum

ioMisc

Parameter Block fields returned by PBSetEOF:

ioResult

Possible Result Codes:

noErr dskFulErr

ioErr rfNumErr
extFSErr

vLckdErr
fLckdErr fnOpnErr

wPrErr wrPermErr

The new position of the logical EOF may be either beyond the
current physical EOF or well short of it. If the logical EOF is more than
a full allocation block short of the physical EOF, the extra block will be
removed from the file. If the logical EOF is beyond the physical EOF,
the File Manager will check to see if the required number of allocation
blocks are available on the disk. If the additional space is available, the
space will be added to the file and both the logical and physical EOFs
will be moved to their appropriate locations. If the additional space is
not available, the logical EOF is not moved, no allocation blocks are
added to the file, and PBSetEOF will return the error code dskFulErr.

Setting the logical EOF to zero releases all disk space from the
volume associated with the file, although the file will still exist in
the file directory on the volume.

An application should not use PBSetEOF to lengthen a file unless
it immediately writes into the newly created space and then readjusts the
end of the file to the end of the data. Otherwise, the position of the logi
cal EOF may confuse this or other applications, since the space located
between the old and new logical EOFs is likely to contain garbage.
Given this proviso, however, PBSetEOF can be used to find out if an up
coming write operation will overflow the disk.

The correct way for an application to reserve space for a file for
the long term is with the routine PBAllocate. This routine might be useful,
for example, when you wish to reserve space for a scratch file required

398 Using the Macintosh Toolbox with C
--- CH.12

by the application. The application should pass the reference number of
an access path to the file in the ioRefNum parameter and the number
of bytes to add to the file in the ioReqCount field of an IOParam.

OSErr PBAllocate(paramBlock, asynch)

I*

*/

IOParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBAllocate:
ioCompletion
ioRefNum
ioReqCount

Parameter Block fields returned by PBAllocate:
ioResult
ioActCount

Possible Result Codes:
noErr dskFu'
rfNumErr

fLckdErr
vLckdErr

fnOpnErr
wPrErr

ioErr
wrPermErr

The parameter ioActCount returns the number of bytes actually
added to the file. Any difference between ioActCount and ioReqCount is due
to the fact that the number of bytes added must be rounded up to the
nearest multiple of the volume's allocation block size. Note that
PBAllocate does not change the position of the logical EOF.

PBAllocate has the strange feature of allocating the remaining space
on the volume before returning the error code dskFulErr if the amount of
space available on the volume is less than the amount requested.

Miscellaneous 110 Routines
To flush any pending read or write operations from the buffer of

an access path and update the file's directory entry on the disk, call P·
BFlshFile, passing the appropriate path reference number. The
application should call PB Fish File (or better still, PBFlshVol, which is
described in the Volume Routines section later in the chapter) peri
odically during extended write operations to minimize the amount of
information lost in the event of an unexpected system error or power in
terruption.

The Macintosh File System 399

OSErr PBFlshFile(paramBlock, asynch)

I*

*I

IOParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBFlshFile:
ioCompletion
ioRefNum

Parameter Block fields returned by PBFlshFile:
ioResult

Possible Result Codes:
noErr extFSErr
ioErr n svErr

fnfErr
rfNumErr

fn0pnErr

The File Manager also contains two routines that allow the ap
plication to find or change the location of the file mark of an open access
path. The application can call the routine PBGetf Pos to determine the
location of the file mark for the access path specified in the ioRefNum
parameter of an IOParam.

OSErr PBGetFPos(paramBlock, asynch)

I*

*I

IOParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBGetFPos:
ioCompletion
ioRefNum

Parameter Block fields returned by PBGetFPos:
ioResult
ioReqCount
ioActCount
ioPosMode
ioPosOffset

Possible Result Codes:
noErr extFSErr
ioErr rfNumErr

fn0pnErr

400 Using the Macintosh Toolbox with C
--- CH.12

The file mark is returned in ioPosOffset, while ioReqCount, ioAct
Count, and ioPosMode are all set to zero.

The application can also change the position of the file mark
with the routine PBSetFPos.

OSErr PBSetFPos(paramBlock, asynch)

I*

*I

IOParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBSetFPos:
ioCompletion
ioRefNum
ioPosMode
ioPosOffset

Parameter Block fields returned by PBSetFPos:
ioResult

Possible Result Codes:
noErr
ioErr

eofErr
posErr

extFSErr fnOpnErr
rfNumErr

The new file mark is specified as an offset in bytes, contained in
ioPosOffset, from either the beginning or end of the file or from the current
file mark, as specified by ioPosMode (see Figure 12.9). If the application at
tempts to position the file mark before the beginning of the file (or after the
logical EOF) the error code posErr (or eotErr) will be returned by PBSetFPos.
If one of these errors occurs, PBSetFPos will position the file mark at either
the first byte of the file or at the logical EOE

File Routines
The File Manager's file information routines are those routines

that obtain or alter information concerning the file as a whole. The
routines include familiar features such as renaming and deleting a file
and locking (or unlocking) a file as a means of write-protecting its con
tents. In addition to describing these routines, we will take a look at two
other routines that allow the application to access the File Manager's

The Macintosh File System 401

own internal information about each file on a disk. It's important to note
that two of the routines we will discuss, PBRename and PBSetFVers, must use
an IOParam as their parameter block. PBSetFlnfo and PBGetFlnfo must use a
FileParam. The remaining routines in this section can use either a FileParam or
an IOParam as their parameter block.

The sample program at the end of this chapter demonstrates
many of the routines described in this section. For example, the sample
program allows the user to rename or delete a file from within the ap
plication. The program also allows the user to view the internal File
Manager information for a file with a dialog box.

Deleting a File
To delete a closed file from a volume, the application can call

the function PBDelete, which expects the name, volume, and version
number of the file to be in the ioNamePtr, ioVRefNum, and ioVersNum para
meters of its parameter block. These parameters are used in the same
way here as they are for the routine PBCreate.

OSErr PBDelete(paramBlock, asynch)

/*

*/

IOParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBDelete:
ioCompletion
ioVRefNum

ioNamePtr
ioVersNum

Parameter Block fields returned by PBDelete:
ioResult

Possible Result Codes:
no Err bdNamErr extFSErr
fnfErr ioErrnsvErr vLckdErr

fBsyErr fLckdErr

wPrErr

Renaming Files and Volumes
The function PBRename can be used to rename either a file or a

volume. To rename a file, the application should pass the name, volume,
and version number of the file in the ioNamePtr, ioVRefNum, and ioVersNum
fields, respectively. To rename a volume, pass either the volume name

402 Using the Macintosh Toolbox wtth C
--- CH.12

(ending in a colon) in ioNamePtr or just the volume reference number in
ioVRefNum, along with the new volume name. PBRename expects to find a
pointer to a Pascal string containing the new name in the ioMisc field of
an IOParam block.

OSErr PBRename (paramBlock, asynch)

I*

*I

IOParam

char

*paramBlock;

asynch;

Parameter Block fields passed to PBRename:

ioCompletion
ioNamePtr

ioVRefNum

ioVersNum

ioMisc

Parameter Block fields returned by PBRename:

ioResult

Possible Result Codes:

noErr bdNamErr dirFulErr extFSErr
fnfErr fsRnErr ioErrnsvErr paramErr
vLckdErr wPrErr

fLckdErr

It is possible, although not recommended, to rename an open
file. Since any existing access paths will not be disturbed, this can lead
to the situation where the application will contain two parameter blocks
indicating different names for the same file.

Locking and Unlocking a File
As we explained at the beginning of the chapter, the File

Manager allows files to be locked or write-protected. A locked file can
not be deleted, renamed, or written to in any way (including changing
the File Manager's internal file information). To lock (or unlock) a file,
call PBSetFLock (or PBRstFLock) with the file name, the volume, and the

The Macintosh File System 403

version number in the ioNamePtr, ioVRefNum, and ioVersNum fields, respec
tively, of either an IOParam or a FileParam parameter block.

OSErr PBSetFLock (paramBlock, asynch)

I*

*I

IOParam *paramBlock;

char asynch;

Parameter Block fields passed to PBSetFLock:

ioCompletion

ioNamePtr

ioVRefNum
ioVersNum

Parameter Block fields returned by PBSetFLock:
ioResult

Possible Result Codes:

noErr

nsvErr

extFSErr fnfErr

vLckdErr wPrErr

ioErr

OSErr PBRstFLock (paramBlock, asynch)

I*

*/

IOParam

char

*paramBlock;

asynch;

Parameter Block fields passed to PBRstFLock:

ioCompletion

ioNamePtr

ioVRefNum
ioVersNum

Parameter Block fields returned by PBRstFLock:
ioResult

Possible Result Codes:

noErr
nsvErr

extFSErr fnfErr
vLckdErr wPrErr

ioErr

Access paths that are already open at the time the application
locks or unlocks a file will not be affected. The application must close

404 Using the Macintosh Toolbox with C
--- CH.12

and then reopen all of the access paths leading to a file, so that the paths
will reflect the new status of the file.

The File Manager also contains a routine for setting the version
number of a file. The older versions of the Finder and of the Macintosh
ROM handled the file version ambiguously. If you want to ensure back
ward compatibility for your application, this field should be set to zero.
If you must use PBSetFVers, the file is specified by its name, volume, and
current version number in the usual manner. The new version number
for the file should be put into the ioMisc field of an IOParam block.

OSErr PBSetFVers(paramBlock, asynch)

I*

*I

IOParam

char

*paramBlock;

asynch;

Parameter Block fields passed to PBSetFVers:
ioCompletion

ioNamePtr

ioVRefNum

ioVersNum

ioMisc

Parameter Block fields returned by PBSetFVers:

ioResult

Possible Result Codes:

noErr

ioErr
bdNamErr dupFNErr fLckdErr fnfErr

nsvErr paramErr vLckdErr wPrErr

PBSetFVers does not affect access paths open at the time it is
called by the application.

Copying or Modifying Information About a File
The File Manager maintains a rather long list of information

about each file on a volume. The information, which is returned in the
form of a FileParam parameter block, includes the following:

A copy of the Finder information

A set of attribute flags for the File Manager

The Macintosh File System 405

- The file creation and modification dates and times

Information about the location and number of allocation blocks
assigned to the resource and data forks of the file

The Finder information is kept in a data structure called a Finto
(described in the File Manager Data Structures section earlier in the
chapter) as a part of the FileParam parameter block, and it can be ex
amined or modified by an application through the File Manager. Earlier
in the chapter, we pointed out which portions of this information can be
altered by the application and which portions cannot.

The File Manager's internal file attribute flags are stored in the
ioFIAttrib field of the FileParam. The current version of the Macintosh file
system uses 5 bits of the ioFIAttrib to indicate that a file is locked, in use,
or not copyable. Figure 12.10 shows how to interpret the value of the
ioFIAttrib field. In practice, only the locked flag is normally changed by an
application. For more information about this field, consult Inside
Macintosh, IV-122.

The remaining fields in a FileParam are either self-explanatory
(such as the creation and modification dates) or beyond the scope of this
book. We will not discuss, for example, the subject of which allocation
blocks are assigned to the data and resource forks of a file.

To obtain a copy of the File Manager information for a par
ticular file, call the routine PBGetFlnfo with the name, volume, and

Bit Position Flag Name Constant Name
and Value*

0 locked #define fslocked Ox01

2 resource fork open #define fsResOpen Ox04

3 data fork open #define fsDataOpen Ox08

4 directory #define fsDirectory Ox10

7 file open (busy) #define fsBusy OxBO

*These constants are not found in Inside Macintosh. We have defined them
here for use in the examples at the end of the chapter. The prefix "fs" indi
cates that these are File System flags, as opposed to Finder flags.

Figure 12.10: File Manager Attribute Flags

406 Using the Macintosh Toolbox with C
--- CH.12

version number of the file in the ioNamePtr, ioVRefNum, and ioFVersNum
parameters, respectively, of a FileParam block.

The ioFDirlndex field should be set to zero. It can be used in an
alternate form of file addressing, which we will not get into here. If
you're interested in its application, consult Inside Macintosh, IV-148.

OSErr PBGetFinfo(paramBlock, asynch)

I*

*I

FileParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBGetFinfo:

ioCompletion
ioNamePtr

ioVRefNum
ioFVersNum

ioFDirindex

Parameter Block fields returned by PBGetFinfo:

ioResult

ioFRefNum

ioFlAttrib
ioFlVersNum

ioFlFndrinfo

ioFlNum

ioFlStBlk

ioFlLqLen

ioFlPyLen

ioFlRStBlk

ioFlRLqLen

ioFlRPyLen

ioFlCrDat

ioFlMdDat

Possible Result Codes:

noErr bdNamErr

ioErr nsvErr
extFSErr

paramErr
fnfErr

The File Manager allows the application to modify only the
Finder information and creation and modification dates for a file. The
remaining fields of the File Manager information are used internally by
the File Manager. The application should call the routine PBSetFlnfo with
the name, volume, and version number of the file in the appropriate
parameters of a FileParam block. The modified Finder information and

The Macintosh File System 407

new creation and modification dates should be put into the ioFndrlnfo,
ioFICrDat, and ioFIMdDat fields, respectively, of the FileParam prior to call
ing PBSetFlnfo.

OSErr PBSetFinfo (paramBlock, asynch)

I*

*/

FileParam

char

*paramBlock;

asynch;

Parameter Block fields passed to PBSetFinfo:
ioCompletion

ioNamePtr

ioVRefNum

ioVersNum

ioFndrinf o

ioFlCrDat

ioFlMdDat

Parameter Block fields returned by PBSetFinfo:

ioResult

Possible Result Codes:

noErr bdNamErr extFSErr
ioErr nsvErr vLckdErr

fLckdErr f nfErr
wPrErr

The following example illustrates the combined use of PBGetFlnfo
and PBSetFlnfo to set the relevant information for a file being copied from
another file. This ensures that copy has the same type and creator and crea
tion and modification dates as the original file. In addition, the file is placed
into the same folder on the desktop as the original file.

/* example usinq PBGetFinfo and PBSetFinf o durinq a file copy to
make the new file (file2) look like a copy of filel */

/* declare the local variables */

OSErr

FileParam

theErr;
flFParmBlk, f2FParmBlk;

/* we assume the FileParam blocks have already had the ioNamePtr,
ioVRefNum, and ioVersNum fields filled in with information from

SFPutFile and SFGetFile */

408 Using the Macintosh Toolbox with C
--- CH.12

/* Get the information about the existing file, filel */
theErr = PBGetFinfo(&flFParmBlk, 0);
if(theErr) OSError("PBGetFinfo", theErr, "for filel");

/* Get the information about the new file, file2 */
theErr = PBGetFinfo(&f2FParmBlk, 0);
if(theErr) OSError("PBGetFinfo", theErr, "for file2");

/* copy the Finder Information to the new file */
f2FParmBlk.ioF1Fndrinfo.fdType = flFParmBlk.ioFlFndrinfo.fdTypei
f2FParmBlk.ioF1Fndrinfo.fdCreator =

flFParmBlk.ioFlFndrinfo.fdCreator;
f2FParmBlk.ioF1Fndrinfo.fdFlaqs =

flFParmBlk.ioFlFndrinfo.fdFlaqs;
f2FParmBlk,ioF1Fndrinfo.fdFldr = flFParmBlk,ioFlFndrinfo.fdFldr;

/* clear the inited flaq; the Finder needs to initialize file 2

*I
f2FParmBlk.ioF1Fndrinfo.fdFlaqs &= Oxffff - cfinited;

/* copy the creation and modification dates */
f2FParmBlk.ioF1CrDat flFParmBlk.ioFlCrDat;
f2FParmBLk.ioFlMdDat = flFParmBLk.ioFlMdDat;

/* call PBSetFinfo to set the information for file2 */
theErr = PBSetFinfo(&f2FParmBlk, 0);
if(theErr) OSError("PBSetFinfo", theErr, "for file2");

Volume Routines

The File Manager's volume information routines are those
routines that deal with information about entire volumes. The tasks per
formed by the volume routines include flushing 1/0 buffers, ejecting
volumes, and obtaining a copy of the File Manager's private volume infor
mation. Many of the volume routines embody concepts that will be
unfamiliar to most readers unless they are familiar with low-level file
operations from another computer. These routines include mounting and
unmounting volumes, placing a volume off-line, and changing the default
volume. All of the routines we are about to describe, with the exception of
PBGetVollnfo, use only the first few fields of a parameter block and can

The Macintosh File System 409

therefore use either an IOParam, a FileParam, or a VolumeParam. PBGetVollnfo
requires that a VolumeParam be used as its parameter block.

The File Manager's Volume Information
In addition to the information that the File Manager maintains

for every file on a volume, it also keeps a list of information about the
volume itself. This information, which can be obtained by the applica
tion as a VolumeParam block, includes the date that the volume was first
initialized and when it was last copied as a whole. Other fields of a
VolumeParam contain a set of 16 volume attribute flags, a description of
the layout of the volume's file directory, and information about the size
of the volume and the number of free allocation blocks on the volume.
Bit 15 of the volume attribute flags field will be set if the volume is
locked. To obtain a copy of this information, the application can call the
routine PBGetVollnfo, as follows:

OSErr PBGetVolinfo(paramBlock, asynch)

I*

VolumeParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBGetVolinfo:
ioCompletion
ioNamePtr
ioVRefNum
ioVolindex

Parameter Block fields returned by PBGetVolinfo:
ioResult
ioNamePtr
ioVRefNum
ioVCrDate
ioVLsBkUp
ioVAtrb
ioVNmFls
ioVDirSt
ioVBlLn
ioVNmAlBlks
ioVAlBLkSiz
ioVClpSiz

410 Using the Macintosh Toolbox with C
--- CH.12

*/

ioAlBlSt
ioVNxtFNum
ioVFrBlk

Possible Result Codes:

noErr nsvErr paramErr

If the application passes a positive value for ioVollndex, PBGetVol
lnfo will attempt to return information about the volume with the given
index. (Volume indices are assigned in the order that volumes are
mounted; that is, the first mounted volume is assigned index 1, and so
on.) If ioVollndex is negative, the File Manager assumes that the applica
tion has either specified the volume by name in the ioNamePtr field or by
its volume reference number or drive number in ioVRefNum. If ioVollndex
is zero, only the ioVRefNum field is used to determine the volume. PBGet
Vollnfo returns the volume reference number of the volume in ioVRefNum
and copies the name of the volume into the string pointed to by ioName
Ptr, unless ioNamePtr is a NULL pointer.

The Default Volume
The File Manager specifies one of the volumes currently

mounted as the default volume. If the application does not specify a
volume reference number for a File Manager routine that requires one,
the default volume will be used instead (an error will occur if a default
volume has not been selected). The application can call the routine P
BGetVol to obtain the name and reference number of the current default
volume.

OSErr PBGetVol(paramBlock, asynch)

/*

VolumeParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBGetVol:

ioCompletion

Parameter Block fields returned by PBGetVol:
ioResult
ioNamePtr

ioVRefNum

The Macintosh File System 411

*I

Possible Result Codes:
noErrnsvErr

PBGetVol returns the name of the default volume in the string
pointed to by ioNamePtr, unless ioNamePtr is a NULL pointer.

The application can change the default volume by calling PBSet
Vol. The volume that is to become the default is specified by a suitable
combination of ioVRefNum and ioNamePtr (recall our earlier discussion of
specifying volumes in the section called Creating a New File).

OSErr PBSetVol(paramBlock, asynch)

I*

VolumeParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBSetVol:
ioCompletion
ioNamePtr
ioVRefNum

Parameter Block fields returned by PBSetVol:
ioResult

Possible Result Codes:
noErr bdNamErr
nsvErr paramErr*/

The SF package routines SFGetFile and SFPutFile will use the
default disk when they first put up their respective dialog boxes. Thus,
one possible use for these routines is to change the SF package dialog
boxes to begin with a particular disk.

Preparing to Eject a Volume
The process of ejecting a volume from an application is usually

handled by one of the SF package routines. It is also possible for the ap
plication to eject a disk on its own.

Ejecting a volume occurs in three separate stages. First, the
volume buffers and access paths for files on the volume are flushed.
Next, the volume is placed off-line to release most of the memory space

412 Using the Macintosh Toolbox with C
--- CH.12

associated with the volume. Finally, the command to eject the volume is
sent to the driver controlling the disk drive containing the volume (this
allows for disk drives other than the standard 3 1/2-inch floppy drives).

The simplest way for an application to eject a disk is to call the
routine PBEject.

OSErr PBEject(paramBlock, asynch)

/*

*/

VolumeParam

char
*paramBlock;
asynch;

Parameter Block fields passed to PBEject:

ioCompletion

ioNamePtr
ioVRefNum

Parameter Block fields returned by PBEject:

ioResult

Possible Result Codes:

noErr bdNamErr

nsDrvErr nsvErr
extFSErr ioErr
paramErr

The application specifies the volume to eject with the ioNamePtr
and ioVRefNum fields of the parameter block it passes to PBEject. Before
ejecting the volume, PBEject calls the File Manager's routines PBFlshVol
and PBOffline. Let's take a look at each of these routines.

To flush the volume buffer and the buffers of each access path
associated with a file on a volume, the application can call the routine
PBFlshVol. It is a good idea for the application to call PBFlshVol frequent
ly to keep the contents of open files as up-to-date as possible in case of
a power failure or any disaster that might interfere with the normal
operation of the application.

OSErr PBFlshVol(paramBlock, asynch)

I*

VolumeParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBFlshVol:

ioCompletion

ioNamePtr

*I

The Macintosh File System 413

ioVRefNum

Parameter Block fields returned by PBFlshVol:
ioResult

Possible Result Codes:
noErr
nsDrvErr

bdNamErr
nsvErr

extFSErr ioErr
paramErr

In situations where an application is desperately in need of
memory space, one possible source of relief is to place unused volumes
off-line. Putting unused volumes off-line will release all but 94 bytes of
descriptive information about the volume, with a resulting release of be
tween 1 and l .5K bytes of memory per volume. If the File Manager
subsequently needs to access an off-line volume, it will automatically be
placed back on-line.

The application can call PBOffLine with the name of the volume
or the volume reference number in the ioNamePtr or ioVRefNum fields of
the parameter block.

OSErr PBOffLine(paramBlock, asynch)

I*

*I

VolumeParam
char

*paramBlock;
asynch;

Parameter Block fields passed to PBOffLine:
ioCompletion
ioNamePtr
ioVRefNum

Parameter Block fields returned by PBOffLine:
ioResult

Possible Result Codes:
noErr bdNamErr extFSErr ioErr
nsDrvErr nsvErr paramErr

PBOffLine calls PBFlshVol to flush the volume and access path buffers
before placing the volume off-line.

414 Using the Macintosh Toolbox with C
--- CH.12

Mounting and Unmounting Volumes
As is the case with ejecting volumes, most applications will not

ever need to mount or unmount a volume. Volumes are mounted auto
matically whenever the Event Manager routine GetNextEvent detects a
disk-inserted event. The routine PBMountVol mounts the volume in the
drive indicated by the drive number in the ioVRefNum parameter and then
returns the volume reference number, again in ioVRefNum. If at the time
PBMountVol was called there was no default volume, the volume to be
mounted will become the default volume. Neither PBMountVol, or its
counterpart PBUnmountVol, may be executed asynchronously.

OSErr PBMountVol(paramBlock)

I*

*/

VolumeParam *paramBlock;

Parameter Block fields passed to PBMountVol:

ioVRefNum

Parameter Block fields returned by PBMountVol:
ioResult ioVRefNum

Possible Result Codes:
noErr bdNamErr

noMacDskErr nsDrvErr
extFSErr ioErr mFulErr

paramErr volOnLinErr

PBUnmountVol unmounts the volume indicated by the ioNamePtr
and ioVRefNum fields. Before releasing all of the memory space as
sociated with the volume, PBUnmountVol calls PBFlshVol to flush the
volume and access path buffers to the volume and then closes all of the
open files on the volume. The application must never unmount the start
up volume, since it contains files required by the operating system.

OSErr PBUnmountVol(paramBlock)

/*

VolumeParam *paramBlock;

Parameter Block fields passed to PBUnmountVol:
ioVRefNum

Parameter Block fields returned by PBUnmountVol:
ioResult

The Macintosh File System 415 ---
ioVRefNum

Possib1e Resu1t Codes:
noErr bdNamErr extFSErr ioErr
nsDrvErr nsvErr paramErr

*/

Programming Examples
In this final section of the chapter, we will present several

programming examples built upon routines of the SF package and the
File Manager. The first example is a filtering function to be used in con
junction with SFGetFile to select only files of a specific type and creator
for your application. The example contains three routines to be added to
the text-editing application that we presented in Chapter 8. These
routines allow the user to open text files and save them back to disk. The
final example is a small application that allows the user to copy, rename,
delete, and obtain descriptive information about a file.

The final two sections make frequent use of several routines
that we have not yet discussed. These include standard routines for
manipulating C and Pascal formatted strings. The remaining routines,
OSError and ErrDialog, are used to display a generic dialog box containing
debugging information as well as information intended for the user. The
C sources for the string routines and the dialog routines are included in
the sample application at the end of the chapter.

A Filter Procedure for SFGetFile
There will be times in your application when you will need to

filter files for selection by SFGetFile on a more specific basis than simply
by type. You'll recall that when we discussed the SF Package, we men
tioned that SFGetFile is capable of calling a supplemental filter routine
that will determine whether a specific file should be displayed by the
SFGetFile dialog box. This routine can be as simple or complex as you
care to make it.

416 Using the Macintosh Toolbox with C
--- CH.12

The sample filter function that follows is for the very simple
case of choosing files by creator. The actual filter routine is called File
Filter. It is passed a pointer to a parameter block and must return a
Boolean indicating whether or not the file represented by the parameter
block should appear in the SFGetFile dialog box.

pascal Boolean FileFilter(FlParamBlk) /* The Filter function */
FileParam *FlParamBlk;
char show;

OSType myCreator;
myCreator = 'MACA'; /*Created by MacWrite */
if ((FlParamBlk->ioFlFndrinfo).fdCreator == myCreator)

show = 0; /* Show It */
else

show = l; /* Don't Show It */
return show;

/* Tell SFGetFile whether to display it or not */

To let SFGetFile know that we wish to use a filter function, we
need to pass a pointer to the function in its filterProc field.

Adding Open and Save Commands to the
Text-Eetiting Application

The major ingredient missing from the text-editing sample ap
plication presented in Chapter 8 is the ability to open a file on a disk or
to save a file back to a disk. The only major modification to the code of
Chapter 8 is the addition of several fields to the WindowStuff data structure
that we associated with each open window. We have added fields for a
file name, volume, and version number, and a flag to indicate if the file
has been changed since it was last saved.

Opening a File for Editing
The procedure DoOpen, described below, allows the user to read

the contents of a specified file into the editor. To include DoOpen in the
sample text editor, simply add an Open item to the File menu, which
when selected calls DoOpen. This routine obtains a file name from the

The Macintosh File System 417

user with SFGetFile, creates a new window and edit record, and then
proceeds to read the contents of the file into the edit record. Along the
way, the application checks to make certain that the file is not too big to
fit in an edit record and that sufficient memory space is available.

DoOpen()/* DoOpen() */

/* This routine will open any 'TEXT' and if its length does not
exceed 30K, will open a window, create an edit record and copy
the contents of the file into the edit record. This assumes that
in addition to the fields discussed previously, we have added the
following fields to the WindowStuf f structure assigned to each
window:

struct WindowStuf f

} ;

*I

{

Str255 fileName; - file name for the window
int vRefNum; - volume refNum of file
char versNum; - version number of file
char changed; - file changed since last save

I* define local variables *I
SFTypeList typeList;
int numTypes;
SFReply reply;
OS Err theErr, anErr;
ioParam anIOParmBlk;
Point loc;
Ptr buffer;
long textLength, size;

WindowPtr tempWindow;
TEBandle temphTE;
WSBandle tempWS;
Bandle textH;
Ptr textPtr;
CursHandle watchB;

/* select filetypes for SFGetFile: all file of type
'TEXT' */

numTypes = 1;
typeList.ftype[O]='TEXT';

418 Using the Macintosh Toolbox with C
--- CH.12

/* let the user select a file to open */
SetPt(&loc,100,80);
SFGetFile(loc, NOLL, NULL, numTypes, &typeList, NULL,

&reply);

/* did the user hit cancel? */
if(!reply.good) return;

/*open the file's data fork with read-only permission*/
anIOParmBlk.ioNamePtr
anIOParmBlk.ioVRefNum
anIOParmBlk.ioVersNum

&reply.fName;
reply.vRefNum;
reply.version;

anIOParmBlk.ioPermssn fsRdPerm;
anIOParmBlk.ioMisc =NOLL;

theErr = PBOpen(&anIOParmBlk, O);
if(theErr) {

I* bail out ... can't open the file */
OSError("PBOpen", theErr, "error opening the file");
return;

I* how much text is in the file? */
theErr = PBGetEOF(&anIOParmBlk, O);
if(theErr) {

/* something is wrong, close file and return */
OSError("PBGetEOF", theErr, "error determining EOF");
PBClose(&anIOParmBlk, 0);
return;

/* will the file fit in an edit record? */
if((textLength = anIOParmBlk.ioMisc) >= 30*1024)

/* the file is too long, close it and return */
ErrDialog ("The file", PtoCstr (anIOParmBlk. ioNamePtr) ,
"exceeds 30K, too long for this editor");

CtoPstr(anIOParmBlk.ioNamePtr);
PBClose(&anIOParmBlk, O);
return;

/* At this point, we are ready to read the file, first open a
window, and create an edit record for the text. Use the file name
as the title of the window */

The Macintosh File System 419

/* is one of the two windows free?
- what must be done to add more windows? */
if(winc:IPtrA !=NULL && winc:IPtrB != NNOLL) {

/* Both windows are open, close file and return */
ErrDialog ("Both windows are already occupied",
"I'm too dumb to open another window", "Fix Me!");

PBClose(&anIOParmBlk, O);
return;

/* Open a new window, OpenWindow is part of the application in
Chapter 8 */

if(winc:IPtrA == NULL)
tempWindow =

OpenWindow(windRecA,&windowRectA,anIOParmBlk.ioNamePtr);
winc:IPtrA = tempWindow;

else if(winc:IPtrB == NULL)
tempWindow =

OpenWindow(windRecB,&windowRectB,anIOParmBlk.ioNamePtr);
winc:IPtrB = tempWindow;

/* get a copy of the text handle for the edit record, resize to
the file size */

tempWS = (WSBandle)GetWRefCon(tempWindow);
temphTE = (*tempWS)->theTEB;

textB = (*temphTE)->hText;
SetHandleSize(textB, textLenqth);
size= GetHandleSize(textB);

/* was there enough memory available? */
if(size != textLenqth) {

ErrDialog("Insufficient Memory to open the file",
"or some other memory problem", "");

PBClose(&anIOParmBlk, 0);
/* Dispose of the Window and the edit record */
KillWindow(tempWindow);
return;

420 Using the Macintosh Toolbox with C
--- CH.12

/*put up the watch cursor until we're finished*/
watchB = GetCursor(watchCursor);
SetCursor(*watchB);

/* lock and dereference the text handle, to use as a
buffer */

*I

HLock(textH);
textPtr = *textH;

/* read the contents of the file into the buffer textPtr

anIOParmBlk.ioBuffer = textPtr;
anIOParmBlk.ioReqCount = textLength;
anIOParmBlk.ioPosMode = fsAtMark;
anIOParmBlk.ioPosOffset = OL;

theErr = PBRead(&anIOParmBlk, O);
I* any errors during the read?, EOF's are OK */
if((theErr) && (theErr!=eofErr))

OSError("PBRead", theErr, "reading the text file");

I* did we get the expected number of bytes? */
if(anIOParmBlk.ioActCount != anIOParmBlk.ioReqCount)

ErrDialog("PBRead","wrong number of bytes read from
file","");

I* close the file, we're finished with it */
PBClose(&anIOParmBlk, O);

/* Unlock the text handle */
HUnlock(textH);

/* change the teLength field of the edit record */
(*temphTE)->teLength = textLength;

I* set-up the file stuff in the WindowStuff for the
window */
HLock(tempWS);

I* copy the filename, version number and volume
reference number into the WindowStuff */

(*tempWS)->vRefNum = anIOParmBlk.ioVRefNum;
(*tempWS)->versNum = anIOParmBlk.ioVersNum;

The Macintosh File System 421

/* copy the string used by the IOParam, into the
Windowstuff */

Pstrcpy(&(*tempWS)->fileName, anIOParmBlk.ioNamePtr);

/*clear the file's dirty bit, we just opened it */
(*tempWS)->chanqed = O;

HUnlock(tempWS);

/* calculate line starts draw the text */
HLock(temphTE);
TECalText(temphTE);
TEUpdate(&(*temphTE)->viewRect, temphTE);
HUnlock(temphTE);

/* ready to qo, fix the cursor and return */
SetCursor(&QD->arrow);

return;

Saving the File Back to Disk

Most text editors and word processors will have both a Save
and a Save As ... menu item to allow the user to save the text that they
have created in either the same file as the text came from or in another
file. The procedures DoSave and DoSaveAs should be called whenever the
user chooses either the Save or Save As ... menu items from the File
menu. The first procedure, DoSave, opens the file named in the Window
Stuff of the active window and writes the contents of the window's edit
record into the open file. If the user has not yet specified a file name to
be used, for example, if the user opens a new window, DoSave calls the
second procedure, DoSaveAs, to get a name from the user. DoSaveAs, in
turn, calls DoSave to complete the task of writing the file to disk.

DoSave() I* DoSave () *I
/* This routine will save the contents of the front window to the
file named in its windowStuff record. It warns the user if the
file cannot be found, or if sufficient space is not available on
the disk. */

422 Using the Macintosh Toolbox with C
--- CH.12

/* local variables */
OSErrtheErr, anErr;
ioParam anIOParmBlk;
Pointloc;
Ptr buffer;
long textLenqth, size;
int kind;
char changed;
Str255
WindowPtr
TEHandle
WSBandle
Bandle
Ptr textPtr;
Curs Handle

strl;
tempWindow;
temphTE;
tempWS;
textB;

watchB;

I* Is the front window an editing window?
- we have added a line to OpenWindow that sets the
windowKind of each of the applications editing windows
to the constant myKind
*/

tempWindow = FrontWindow();
kind= ((WindowPeek) tempWindow)->windowKind;
if(kind != myKind) {

ErrDialog("This window is not an edit window!","","");
return;

/* has the text changed since the last save? check the
dirty bit */

tempWS = (WSBandle) GetWRefCon(tempWindow);
changed= (*tempWS)->changed;
if (! changed) {

ErrDialog ("Text has not changed since",
"the last time it was saved","");

return;

/* does the window have a file name? if not, try
DoSaveAs */
if((*tempWS)->fileName.count ==NULL) {

DoSaveAs () ;
return;

The Macintosh File System 423

/* get the text handl.e and length of the text */
HLock(tempWS);
temphTE = (*tempWS)->theTEH;
textH = (*temphTE)->hText;
textLength = (*temphTE)->teLength;

/* set up the IOParam for the file with write permission
and open

the file */

anIOParmBlk.ioNamePtr
anIOParmBlk.ioVRefNum

(char*) &(*tempWS)->fileName;
(*tempWS)->vRefNum;

anIOParmBlk.ioVersNum = (*tempWS)->versNum;
anIOParmBlk.ioPermssn = fsWrPerm;
anIOParmBlk.ioMisc = NOLL;

theErr = PBOpen(&anIOParmBlk, 0);
if(theErr) {

OSError("PBOpen", theErr, "can't open the file");
HUnlock(tempWS);
return;

/* set Logical EOF to length of text in edit record */
/* Caution: ioMisc is a Ptr must cast textLength to
a Ptr */
anIOParmBlk.ioMisc = (Ptr) textLength;
theErr = PBSetEOF(&anIOParmBlk, 0);
if(theErr) {

/* an error occurred close file and return */
OSError ("PBSetEOF", theErr, "on output file") ;
if(theErr=dskFulErr) ErrDialog("The disk is full",
"Try saving to another disk",
PtoCStr(NumToString(textLength, &strl)));
PBClose(&anIOParmBlk, 0);
HUnlock(tempWS);
return;

/* set file mark to beginning of file */
anIOParmBlk.ioMisc = NOLL;
anIOParmBlk.ioPosMode = fsFromStart;
anIOParmBlk.ioPosOffset = OL;

424 Using the Macintosh Toolbox with C
--- CH.12

theErr = PBSetFPos(&anIOParmBlk, 0);
if(theErr) {

OSError("PBSetFPos", theErr,
"error setting file mark");

PBClose(&anIOParmBlk, 0);
HUnlock(tempWS);
return;

/*display the watch cursor until we're finished*/
watchH = GetCursor(watchCursor);
SetCursor(*watchH);

/* write text into file - first lock handle to text and
dereference to get a buffer pointer */

HLock(textH);
textPtr = *textH;

/* write the contents of the file into the block
at textH */
anIOParmBlk.ioBuffer = textPtr;
anIOParmBlk.ioReqCount = textLenqth;
anIOParmBlk.ioPosMode = fsAtMark;
anIOParmBlk.ioPosOffset = OL;

theErr = PBWrite(&anIOParmBlk, 0);

I* check for errors */
if(theErr)

OSError ("PBWrite", theErr,
"writing into the file");

/* were the expected number of bytes written? */
if(anIOParmBlk.ioActCount != anIOParmBlk.ioReqCount)

ErrDialog ("PBWrite",
"wrong number of bytes written to file",
"");

/*close the file and flush it's volume*/
PBClose(&anIOParmBlk, 0);
PBFlshVol(&anIOParmBlk, 0);

HUnlock(textH);

I* clear the file's dirty bit, since we just saved it */

The Macintosh File System 425

(*tempWS)->changed = 0;

HUnlock(tempWS);

/* restore cursor and return to the application */
SetCursor{&QD->arrow);

return;

The final procedure, DoSaveAs, allows the user to save the text
under a different file name than the window's current title or to assign a
file name to an untitled window. One important feature of DoSaveAs is
exercised when the user chooses to save a file to a file that already ex
ists. The routine SFPutFile warns the user if a file already exists and
requires the user to acknowledge this fact before replacing the file. Do
SaveAs must then reset the logical EOFs of both the data and resource
forks to eliminate the previous contents of the file.

DoSaveAs{)
/* This routine obtains a new file name from the user and creates
it the specified disk, deleting older versions if necessary. It
then changes the window title, updates the WindowStuff and calls

DoSave. */

/* local variables */
SFReply reply;
OSErr
ioParam
FileParam
Point
int
char
Str255
WindowPtr
WSHandle

theErr, anErr;
newIOParmBlk;
newFParmBlk;
loc;
kind;
*putStr = "Save File as:";
defaultName;
tempWindow;
tempWS;

/* Is the front window an editing window? */
tempWindow = FrontWindow();
kind= ((WindowPeek) tempWindow)->windowKind;
if(kind != myKind) {

ErrDialog("This window is not an editing window!",
\\Ill \\II) j

return;

426 Using the Macintosh Toolbox with C
--- CH.12

/* make the default title string */
tempWS = (WSBandle) GetWRefCon(tempWindow);
HLock(tempWS);
if((*tempWS)->fileName.count ==NOLL) {

else

J?strcpy(&defaultName, "\pUntitled");

l?strcpy(&defaultName, "\pCopy of");
J?strcat{&defaultName, &{*tempWS)->fileName);

HUnlock(tempWS);

/* select the destination file */
SetPt(&loc,100,80);
SFPutFile(loc, Ctol?str(putStr), &defaultName, NULL,

&reply);
J?toCstr(putStr);

/* did the user choose cancel? */
if(!reply.good) return;

I* create the new file */
newIOJ?armBlk.ioNamel?tr
newIOJ?armBlk.ioVRefNum
newIOJ?armBlk.ioVersNum

&reply.fName;
reply.vRefNum;
reply.version;

if(theErr = PBCreate(&newIOJ?armBlk, 0)) {

/* for all errors except file exists, return */
if(theErr != dupFNErr) {

OSError{"l?BCreate", theErr,
"Creating the new file") ;

return;

/* if the new file name exists
- set EOF's to zero */

if(theErr == dupFNErr) {
newIOJ?armBlk.ioPermssn = fsWrl?erm;
newIOJ?armBlk.ioMisc = NULL;
theErr = PBOpen{&newIOJ?armBlk, 0);
newIOJ?armBlk.ioMisc = {l?tr) l;
/* well, not quite zero */
theErr I= PBSetEOF(&newIOJ?armBlk, O);

The Macintosh File System 427

PBClose(&newIOParmBlk, 0);
newIOParmBlk.ioMisc = NULL;
theErr I= PBOpenRF(&newIOParmBlk, 0);
theErr I= PBSetEOF(&newIOParmBlk, 0);
PBClose(&newIOParmBlk, O);
if(theErr) {

ErrDialog("Problems setting EOF's to NULL",
"on an existing file",
"during Save As");

return;

/* set file and creator of the file to our own type */
newFParmBlk.ioCompletion = NULL;
newFParmBlk.ioNamePtr = newIOParmBlk.ioNamePtr;
newFParmBlk.ioVRefNum = newIOParmBlk.ioVRefNum;
newFParmBlk.ioFVersNum = newIOParmBlk.ioVersNum;
newFParmBlk.ioFDirindex = 0;

theErr = PBGetFinfo(&newFParmBlk, 0);
if(theErr) OSError("PBGetFinfo", theErr, "getting info

for file");

*/
I* set creator, type, creation and mod date, attributes

newFParmBlk.ioFlFndrinfo.fdType = 'TEXT';
newFParmBlk.ioFlFndrinfo.fdCreator = 'FD&J';
newFParmBlk.ioFlFndrinfo.fdFlags =NULL;

theErr = PBSetFinfo(&newFParmBlk, FALSE);
if(theErr) OSError("PBSetFinfo", theErr,

"setting info file");

/* flush volume buffers to the disk */
PBFlshVol(&newIOParmBlk, O);

/* change the window title and update the WindowStuff */
HLock(tempWS);

Pstrcpy(&(*tempWS)->fileName, newIOParmBlk.ioNamePtr);
(*tempWS)->vRefNum = newIOParmBlk.ioVRefNum;

428 Using the Macintosh Toolbox with C
--- CH.12

(*tempWS)->versNum = newIOParmBlk.ioVersNum;
(*tempWS)->chanqed = Oxff;
/* true - qo ahead and save it */

SetWTitle(tempWindow, newIOParmBlk.ioNamePtr);

HUnlock(tempWS);

/* call DoSave to write text to the disk */
DoSave();
return;

There are still a few remaining items that need to be added to
the text-editing application to make it complete. The most obvious ones
are scroll bars for the text windows and features for handling desk ac
cessories. Other minor additions include changing the Close menu item
so that a window's contents will be saved if its dirty bit is set, fixing the
Font menu so that it shows the available fonts and sizes, and adding
more informative dialog boxes and alerts. In the next chapter, we will
discuss the topic of desk accessories. The remaining features are left up
to the interested reader.

A Sample Program Illustrating the
Macintosh File System

This sample application is a relatively simple program that allows
the user to rename, delete, or copy a file. We have also included a menu
item that displays a dialog box containing useful information about a file,
including the Finder information, and the File Manager attribute flags. At
the end of the program listing, we have included the source code to several
string-manipulation routines that we have used throughout the examples in
this chapter. Also included are two routines for displaying generic dialog
boxes during the debugging phase of writing an application.

The Macintosh File System 429

/* This application must be broken into two segments, one for the application
code and the other for the library code. This can be done from
Project box in THINK C. */

/* include Mac header files */
#include <WindowMgr.h>
#include <MemoryMgr.h>
#include <EventMgr.h>
#include <TextEdit.h>
#include <FontMgr.h>
#include <MenuMgr.h>
#include <ToolboxUtil.h>
#include <DialogMgr.h>
#include <PackageMgr.h>
#include <StdFilePkg.h>
#include <IntlPkg.h>
#include <FileMgr.h>
#include <Strings.h>
#include <stdio.h>

extern
extern

char
char

*Pstrcpy ();
*Pstrcat ();

/* add Complete Finder attributes
#define cfinited OxOlOO
#define cfHasChanged Ox0200
#define cfisBusy Ox0400
#define cfNoCopy Ox0800
#define cfSystemFile OxlOOO
#define cfHasBundle Ox2000
#define cf Invisible Ox4000
#define cf Locked Ox8000
/* add File System attribute flags
#define fsLocked OxOl
#define fsNoCopy Ox40
#define fsBusy Ox80

flags */

*/

/* size of disk buffer for file copies */
#define BUFFERSIZE 4096

/* constants for menus and menuitems */
#define Desk_ID 100

#define
#define
#define
#define

Edit ID
undo Item
cut Item
copy Item

102
1
3
4

430 Using the Macintosh Toolbox with C
--- CH.12

#define paste Item 5
#define clear Item 6

#define File ID 101 -
#define fcopyltem 1
#define frenameltem 2
#define fdeleteitem 3
#define finfoltem 4
#define quit Item 6

/*constants for dialogs kept in the resource file prog12.res
(Resource Compiler source code listed at end of application code) */

#define errDialogID 9999
#define finfoDialogID 10000

#define fnameDitem 7
#define vnameDitem 8
#define typeDitem 9
#define createDitem 10
#define sizeDitem 11
#define fLockedDitem 25
#define finvisibleDitem 26
#define fBundleDitem 27
#define fSystemDitem 28
#define fNoCopyDitem 29
#define fBusyDitem 30
#define fChangedDitem 31
#define finitedDitem 32
#define fsBusyDitem 33
#define fsNoCopyDitem 34
#define fsLockedDitem 35
#define creationDitem 38
#define modifiedDitem 39

#define SFName2ROM(x) (x)

/* External and non-integer functions */

char
Str255
long

*ErrMessage();
*Num2String () ;
String2Num();

/* Global Variables */
MenuHandle DeskMenu;
MenuHandle FileMenu;
MenuHandle EditMenu;

/* begin code */

reStartProc ()
{

The Macintosh File System 431

ExitToShell ();

SetUpMenus ()
{

/* SetUpMenus() */

long items, i;

InitMenus();

DeskMenu=NewMenu(Desk_ID, "\p\24");
AppendMenu(DeskMenu,"\pAbout ... ; (-");
AddResMenu(DeskMenu,'DRVR');
items= CountMitems(DeskMenu);

for(i=3;i<=items;i++) Disableitem(DeskMenu, i); /*disable desk accessories*/
InsertMenu(DeskMenu,0); /*until Chapter 13 */

FileMenu=NewMenu(File_ID,"\pFile");
AppendMenu(FileMenu,

"\pCopy File;Rename File;Delete File;File Info; (-;Quit/Q");
InsertMenu(FileMenu,0);

EditMenu=NewMenu(Edit_ID,"\pEdit");
AppendMenu(EditMenu, "\pUndo; (-;Cut/X;Copy/C;Paste/V;Clear");
Disableitem(EditMenu,0); /*disable Edit menu until */
InsertMenu(EditMenu,0); /*a desk accessory is opened*/

DrawMenuBar () ;

Init ()
{

I* Init () *I

InitGraf(&thePort);
InitFonts ();
InitWindows () ;
InitDialogs(reStartProc);
TEinit () ;
SetUpMenus();
InitCursor();

FlushEvents(everyEvent, 0);

/* the main event loop */
main()
(

short
char
long
EventRecord

windowcode,stillinGoAway;
c;
newSize;

theEvent;

/* main() */

432 Using the Macintosh Toolbox with C
--- CH.12

WindowPtr whichWindow;

Init ();

while (Oxff)

if(GetNextEvent(everyEvent,&theEvent))
switch (theEvent.what) I

case keyDown:
c=theEvent.rnessage & keyCodeMask;
if (theEvent.rnodifiers & crndKey) {

DoMenu(MenuKey(c));
HiliteMenu(O);

break;

case rnouseDown:
windowcode=FindWindow(theEvent.where,&whichWindow);
switch(windowcode) I

case inDesk:
break;

case inMenuBar:
DoMenu(MenuSelect(theEvent.where));
break;

case inSysWindow:
break;

break;

default:
break;

/* respond to menu selections */
DoMenu(rnenuResult)

long rnenuResult;

short rnenuID,iternNurnber;

rnenuID=HiWord(rnenuResult);
iternNurnber=LoWord(rnenuResult);

switch (rnenuID) {

I* DoMenu () *I

The Macintosh File System 433

case Desk_ID:
if(itemNumber==l) AboutWindow();
else {

/* Desk accessory was selected - see Chapter 13 */

break;

case File_ID:
switch (itemNumber)

case fcopyitem:

break;

DoFileCopy () ;
break;

case frenameitem:
DoFileRename () ;
break;

case fdeleteitem:
DoFileDelete();
break;

case finfoitem:
DoFileinfo () ;
break;

case quititem:
ExitToShell ();
break;

case Edit_ID:
switch(itemNumber)

case undoitem:
break;

case cutitem:
break;

case copyitem:
break;

case pasteitem:
break;

case clearitem:
break;

HiliteMenu(O);

/* ignore Edit menu for now */
/* -only used here for DA's */

/* Rename a file */
DoFileRename () /* DoFileRename{) */
{

434 Using the Macintosh Toolbox with C
--- CH.12

SFTypeList
short
SFReply

typeList;
numTypes;
reply, Preply;

OS Err
IOParam
Point

theErr, anErr;
theIOParmBlk, dupIOParmBlk;
loc;

char
Str255

*putStr = "\pRename File to:";
defaultName;

/* select filetypes for SFGet */
numTypes = -1;

/* select the file to rename */
SetPt(&loc,100,80);
SFGetFile (loc, "\p", (Ptr) NULL, numTypes, &typeList, NULL, &reply);

/* exit if user hit cancel button */
if(!reply.good) return;

/*set up default name for rename: Not- ... */
strcpy(&defaultName, "Not-");
strcat(&defaultName, PtoCstr((char *) &reply.fName));
CtoPstr((char *) &reply.fName);
CtoPstr((char *) &defaultName);

/* let user select the new file name (must be same disk!) */
do

SFPutFile(loc, putStr, &defaultName, NULL, &Preply);
if(!Preply.good) return; /*user cancelled operation*/
if(reply.vRefNum != Preply.vRefNum)

ErrDialog("You cannot rename a file across disks","Please try again","");
while(reply.vRefNum != Preply.vRefNum);

/* set up an IOParam */
theIOParmBlk.ioNamePtr
theIOParmBlk.ioVRefNum
theIOParmBlk.ioVersNum
theIOParmBlk.ioMisc

SFName2ROM(reply.fName);
reply.vRefNum;
reply.version;
(Ptr) SFName2ROM(Preply.fName); /*new file name*/

theErr = PBRename(&theIOParmBlk, 0);
if(theErr==dupFNErr) { /* file with new name exists - delete it first */

dupIOParmBlk.ioNamePtr SFName2ROM(Preply.fName);
dupIOParmBlk.ioVRefNum reply.vRefNum;
dupIOParmBlk.ioVersNum reply.version;
PBDelete(&dupIOParmBlk, 0);

I* try renaming again */
theErr = PBRename(&theIOParmBlk, 0);
if(theErr) OSError("PBRename", theErr, "Couldn't rename after delete");

else I
if(theErr) OSError("PBRename", theErr, "Error during Rename");

The Macintosh File System 435

PBFlshVol(&theIOParmBlk, 0);

/* delete a file */
DoFileDelete () /* DoFileDelete() */
{

SFTypeList
short
SFReply
OSErr
IOParam
Point

typeList;
numTypes;
reply, Preply;
theErr, anErr;
theIOParmBlk;
lee;

/* select filetypes for SFGet */
numTypes = -1;

/* select the file to delete */
SetPt(&loc,100,80);
SFGetFile (lee, "\p", (Ptr) NULL, numTypes, &typeList, NULL, &reply);

/* quit of user hit cancel button */
if(!reply.good) return;

/* set up an IOParam */
theIOParmBlk.ioNamePtr
theIOParmBlk.ioVRefNum
theIOParmBlk.ioVersNum

SFName2ROM(reply.fName);
reply.vRefNum;
reply.version;

theErr = PBDelete(&theIOParmBlk, 0);
if(theErr) OSError("PBDelete", theErr, "could not delete the file");

PBFlshVol(&theIOParmBlk, 0);

/*Put up dialog with Finder Info, etc ... */
DoFileinfo () /* DoFileinfo() */
{

SFTypeList
short
SFReply
OS Err
FileParam
VolumeParam
Point
Str255
char
DialogPtr
short
short
Handle

typeList;
numTypes, shr;
reply, Preply;
theErr, anErr;
anFParmBlk;
aVolParmBlk;
lee;
sizeStr, volStr, strl, str2;
*p;
theDialog;
itemHit;
itemType;
itemHandle;

436 Using the Macintosh Toolbox with C
--- CH.12

Re ct itemRect;

/* select filetypes for SFGet (all) */
numTypes = -1;

/* select the file to delete */
SetPt(&loc,100,80);
SFGetFile (loc, "\p", (Ptr) NULL, numTypes, &typeList, (Ptr) NULL, &reply);
if(!reply.good) return; /*user cancelled operation*/

/* prepare FileParam for PBGetFinfo */
anFParmBlk.ioNamePtr SFName2ROM(reply.fName);
anFParmBlk.ioVRefNum
anFParmBlk.ioFVersNum
anFParmBlk.ioFDirindex

reply.vRefNum;
reply.version;
0;

/* prepare VolumeParam for PBGetVolinfo */
aVolParmBlk.ioVRefNum reply.vRefNum;
aVolParmBlk.ioVolindex
aVolParmBlk.ioNamePtr

/* get file information */

0;
(unsigned char *) &volStr;

theErr = PBGetFinfo(&anFParmBlk, 0);
if (theErr) I

OSError("PBGetFinfo", theErr, "the requested file for info");
return;

/* get volume information */
theErr = PBGetVolinfo(&aVolParmBlk, 0);
if (theErr) I

OSError("PBGetVolinfo", theErr, "the file's volume info");
return;

/* Start setting up the dialog */
theDialog = GetNewDialog(finfoDialogID, NULL, (WindowPtr) -lL);

/* File Name */
GetDitem(theDialog, fnameDitem, &itemType, &itemHandle, &itemRect);
SetIText(itemHandle, anFParmBlk.ioNamePtr);

/* Volume Name */
GetDitem(theDialog, vnameDitem, &itemType, &itemHandle, &itemRect);
SetIText(itemHandle, aVolParmBlk.ioNamePtr);

I* File Type */
GetDitem(theDialog, typeDitem, &itemType, &itemHandle, &itemRect);

/* In general strncpy does NOT put the NULL at the end of the string */
p = strncpy(&strl, &anFParmBlk.ioFlFndrinfo.fdType, 4);

The Macintosh File System 437

*(p+4) = '\0';
SetIText(itemHandle, CtoPstr((char *) &strl));

/* File Creator */
GetDitem(theDialog, createDitem, &itemType, &itemHandle, &itemRect);

/* In general strncpy does NOT put the NULL at the end of the string */
p = strncpy(&strl, &anFParmBlk.ioFlFndrinfo.fdCreator, 4);
*(p+4) = '\0';
SetIText(itemHandle, CtoPstr((char *) &strl));

/* File Size - first the logical size */
GetDitem(theDialog, sizeDitem, &itemType, &itemHandle, &itemRect);
strcat(PtoCstr((char *) Num2String(anFParmBlk.ioF1LgLen + anFParmBlk.ioFlRLgLen,

&sizeStr)), "bytes; accounts for");
/* - then the physical size */
strcat(PtoCstr((char *) Num2String((anFParmBlk.ioF1PyLen

+ anFParmBlk.ioFlRPyLen + 10)/1024, &strl)), "Kon the volume");
/* put strings together and display */
SetIText(itemHandle, CtoPstr(strcat(&sizeStr, &strl)));

/* put up finder flags */
for(shr=O;shr<S;shr++) {

GetDitem(theDialog, fLockedDitem +shr, &itemType, &itemHandle, &itemRect);
if(anFParmBlk.ioFlFndrinfo.fdFlags & ((cfLocked) >> shr)) {

SetIText(itemHandle, "\p *");
else {

SetIText(itemHandle, "\p ");

/* put up file system flags */
GetDitem(theDialog, fsBusyDitem, &itemType, &itemHandle, &itemRect);
if(anFParmBlk.ioFlAttrib & fsBusy)

SetIText(itemHandle, "\p *");
else {

SetIText(itemHandle, "\p ");

GetDitem(theDialog, fsNoCopyDitem, &itemType, &itemHandle, &itemRect);
if(anFParmBlk.ioFlAttrib & fsNoCopy)

SetIText(itemHandle, "\p *");
else I
SetIText (itemHandle, "\p ");

GetDitem(theDialog, fsLockedDitem, &itemType, &itemHandle, &itemRect);
if(anFParmBlk.ioFlAttrib & fsLocked) {

SetIText(itemHandle, "\p *");
else I
SetIText (itemHandle, "\p ");

/* set up file creation and modification dates

438 Using the Macintosh Toolbox with C
--- CH.12

use IUDateString and IUTimeString from International Utilities
Package in IM ... glue routines are at the end of the code*/

GetDitem(theDialog, creationDitem, &itemType, &itemHandle, &itemRect);
IUDateString(anFParmBlk.ioFlCrDat, abbrevDate, &str2);
Pstrcat(&str2, "\pat");
IUTimeString(anFParmBlk.ioFlCrDat, Oxff, &strl);
Pstrcat(&str2, &strl);
SetIText(itemHandle, &str2);

GetDitem(theDialog, modifiedDitem, &itemType, &itemHandle, &itemRect);
IUDateString(anFParmBlk.ioFlMdDat, abbrevDate, &str2);
Pstrcat(&str2, "\pat");
IUTimeString(anFParmBlk.ioFlMdDat, Oxff, &strl);
Pstrcat(&str2, &strl);
SetIText(itemHandle, &str2);

ShowWindow(theDialog); /* display the dialog */

/* wait until the user clicks mouse in button */
do

ModalDialog((ProcPtr) NULL, &itemHit);
} while(itemHit != l);

DisposDialog(theDialog);

/* Copy a file */
DoFileCopy () /* DoFileCopy() */
{

SFTypeList
short
SFReply
OSErr
IOParam
FileParam
Point
Ptr
char
Str255

typeList;
numTypes;
reply, Preply;
theErr, anErr;
openIOParmBlk, newIOParmBlk;
newFParmBlk, oldFParmBlk;
lee, offset;
buffer;
*putStr = "Destination file:";
defaultName;

/* select filetypes for SFGet */
numTypes = -1;

/* select the file to copy */
SetPt(&loc,100,80);
SFGetFile(loc, "\p", (Ptr) NULL, numTypes, &typeList, NULL, &reply);
if(!reply.good) return; /*user cancelled operation */

/*default destination name is Copy of ... */
strcpy(&defaultName, "Copy of");

The Macintosh File System 439

strcat(&defaultName, PtoCstr((char *) SFName2ROM(reply.fName)));
CtoPstr((char *) &reply.fName);

/* select the destination file */
SFPutFile(loc, CtoPstr((char *) putStr), CtoPstr((char *) &defaultName),

NULL, &Preply);
PtoCstr(putStr);
/* quit if user hit cancel button */
if{!Preply.good) return;

/* create the new file */
newIOParmBlk.ioNamePtr SFName2ROM(Preply.fName);
newIOParmBlk.ioVRefNum Preply.vRefNum;
newIOParmBlk.ioVersNum Preply.version;
theErr = PBCreate(&newIOParmBlk, 0);
if (theErr) { /* an error occurred */

/* for all errors except file exists, return */
if(theErr != dupFNErr) {

OSError("PBCreate", theErr, "Creating the new file");
return;

/*if the new file name exists - set logical EOF's to zero */
if(theErr == dupFNErr) {

newIOParmBlk.ioPermssn = fsWrPerm;
newIOParmBlk.ioMisc = (Ptr) NULL;
theErr = PBOpen(&newIOParmBlk, 0);
theErr I= PBSetEOF(&newIOParmBlk, 0);
PBClose(&newIOParmBlk, 0);

newIOParmBlk.ioMisc = (Ptr) NULL;
theErr I= PBOpenRF(&newIOParmBlk, 0);
theErr I= PBSetEOF(&newIOParmBlk, 0);
PBClose(&newIOParmBlk, 0);
if(theErr) {

ErrDialog("Problems setting EOF's to 0",
"on existing destination file","during file copy");

return;

/* set file and creator of new file to same as existing file */

/* get info for existing file */
oldFParmBlk.ioNamePtr SFName2ROM(reply.fName);
oldFParmBlk.ioVRefNum reply.vRefNum;
oldFParmBlk.ioFVersNum reply.version;
oldFParmBlk.ioFDirindex 0;
theErr = PBGetFinfo(&oldFParmBlk, 0);

440 Using the Macintosh Toolbox with C
--- CH.12

if(theErr) OSError("PBGetFinfo", theErr, "existing file");

/* get info for existing file */
newFParmBlk.ioNamePtr newIOParmBlk.ioNamePtr;
newFParmBlk.ioVRefNum newIOParmBlk.ioVRefNum;
newFParmBlk.ioFVersNum newIOParmBlk.ioVersNum;
newFParmBlk.ioFDirindex 0;
theErr = PBGetFinfo(&newFParmBlk, 0);

if(theErr) OSError("PBGetFinfo", theErr, "new fi.le");

/* set creator, type, creation and
newFParmBlk.ioFlFndrinfo.fdType
newFParmBlk.ioFlFndrinfo.fdCreator
newFParmBlk.ioFlFndrinfo.fdFlags

mod date, and attributes */
oldFParmBlk.ioFlFndrinfo.fdType;
oldFParmBlk.ioFlFndrinfo.fdCreator;
(oldFParmBlk.ioFlFndrinfo.fdFlags &

(OxFFFF-cfinited));
newFParmBlk.ioFlFndrinfo.fdFldr = oldFParmBlk.ioFlFndrinfo.fdFldr;

newFParmBlk.ioFlCrDat
newFParmBlk.ioFlMdDat

oldFParmBlk.ioFlCrDat;
oldFParmBlk.ioFlMdDat;

theErr = PBSetFinfo(&newFParmBlk, 0);
if(theErr) OSError("PBSetFinfo", theErr, "new file");

/* create buffer for read/write */
buffer= NewPtr(BUFFERSIZE);

/* set up an IOParam for the
openIOParmBlk.ioNamePtr
openIOParmBlk.ioVRefNum
openIOParmBlk.ioVersNum
openIOParmBlk.ioPermssn
openIOParmBlk.ioMisc

existing file */
SFName2ROM(reply.fName);
reply.vRefNum;
reply.version;
fsRdPerm;
(Ptr) NULL;

/* set up an IOParam for the new file */
newIOParmBlk.ioNamePtr SFName2ROM(Preply.fName);
newIOParmBlk.ioVRefNum
newIOParmBlk.ioVersNum
newIOParmBlk.ioPermssn
newIOParmBlk.ioMisc

Preply.vRefNum;
Preply.version;
fsWrPerm;
(Ptr) NULL;

/* copy the resource fork if it is Non-empty */

if(oldFParmBlk.ioFlRStBlk) {
theErr = PBOpenRF(&openIOParmBlk, 0);
if(theErr) { /* error opening existing file */

OSError("PBOpenRF", theErr, "existing file resource fork");
return;

/* open the new file's resource fork */
newIOParmBlk.ioPermssn = fsWrPerm;

The Macintosh File System 441

newIOParmBlk.ioMisc = (Ptr) NULL;
theErr = PBOpenRF(&newIOParmBlk, 0);
if(theErr) (/* error opening new file */

OSError("PBOpenRF", theErr,"new file resource fork");
I* close open file and quit */

theErr = PBClose(&openIOParmBlk, 0);
return;

/* by this point both the resource forks of the old and new files are open */

/* copy data fork */
openIOParmBlk.ioBuffer
openIOParmBlk.ioReqCount
openIOParmBlk.ioPosMode
openIOParmBlk.ioPosOffset

newIOParmBlk.ioBuffer
newIOParmBlk.ioPosMode
newIOParmBlk.ioPosOffset

do

buffer;
BUFFERSIZE;
fsAtMark;
OL;

buffer;
fsAtMark;
OL;

theErr = PBRead(&openIOParmBlk, 0);
if((theErr) && (theErr!=eofErr))

OSError("PBRead", theErr, "resource fork");

newIOParmBlk.ioReqCount = openIOParmBlk.ioActCount;
anErr = PBWrite(&newIOParmBlk, 0);

if(anErr) OSError("PBWrite", theErr, "resource fork");
while (theErr>=noErr);

/* flush file buffers and close the files' resource forks */
theErr = PBFlshFile(&newIOParmBlk, 0);
if(theErr) OSError("PBFlshFile", theErr, "New file");

theErr = PBClose(&newIOParmBlk, 0);
if(theErr) OSError("PBClose", theErr, "New File");

theErr = PBClose(&openIOParmBlk, 0);
if(theErr) OSError("PBClose", theErr, "Old File");

/* copy the data fork if it is Non-empty */
if(oldFParmBlk.ioFlStBlk) (

theErr = PBOpen(&openIOParmBlk, 0);
if(theErr) (/* error opening existing file */

OSError("PBOpen", theErr, "existing file");
return;

/*open the new file's data fork */
newIOParmBlk.ioPermssn fsWrPerm;

442 Using the Macintosh Toolbox with C
--- CH.12

newIOParmBlk.ioMisc = (Ptr) NULL;
theErr = PBOpen(&newIOParmBlk, 0);
if (theErr) {

OSError("PBOpen", theErr,"new file");
/* close open file and quit */

theErr = PBClose(&openIOParmBlk, OJ;
return;

/* error opening new file */

/* by this point both the data forks of the old and new files are open */

/* copy data fork */
openIOParmBlk.ioBuffer buffer;
openIOParmBlk.ioReqCount BUFFERSIZE;
openIOParmBlk.ioPosMode fsAtMark;
openIOParmBlk.ioPosOffset OL;

newIOParmBlk.ioBuffer buffer;
newIOParmBlk.ioPosMode fsAtMark;
newIOParmBlk.ioPosOffset OL;

do
theErr = PBRead(&openIOParmBlk, 0);
if((theErr) && (theErr!=eofErr))

OSError("PBRead", theErr, "data fork");

newIOParmBlk.ioReqCount = openIOParmBlk.ioActCount;
anErr = PBWrite(&newIOParmBlk, 0);

if(anErr) OSError("PBWrite", theErr, "data fork");
while (theErr>=noErr);

/* flush file buffers and close the files' data forks */
theErr = PBFlshFile(&newIOParmBlk, 0);
if(theErr) OSError("PBFlshFile", theErr, "New file");

theErr = PBClose(&newIOParmBlk, 0);
if(theErr) OSError("PBClose", theErr, "New File");

theErr = PBClose(&openIOParmBlk, 0);
if(theErr) OSError("PBClose", theErr, "Old File");

/* flush the volume of the new file */
theErr = PBFlshVol(&newIOParmBlk, 0);
if(theErr) OSError("PBFlshVol", theErr, "the new file's volume");

DisposPtr(buffer);

return;

/* Put up the AboutI window */
About Window () /* AboutWindow() */

long
Re ct
Re ct
GrafPtr
WindowPtr

dummy;
creditR;
lineR;

port;
creditW;

EventRecord anEvent;
char *linel="Sample Application for the Mac File System";
char *line2="Toolbox from C - from Sybex Books";
char *line3="written by DB & JT";

The Macintosh File System 443

char *line4="Portions Copyright 1986) THINK Technologies, Inc.";

GetPort(&port);
SetRect(&lineR,5,5,345,20);
SetRect(&creditR,75,120,425,220);
creditW=NewWindow((WindowPeek) NULL, &creditR, "\lx", Oxff, dBoxProc,

(WindowPtr)-lL,Oxff,0);
SetPort(creditW);

TextSize(12);
TextFont(O);
TextBox(linel,strlen(linel),&lineR,1);
OffsetRect(&lineR,0,20);
TextBox(line2,strlen(line2),&lineR,1);
OffsetRect(&lineR,0,20);
TextBox(line3,strlen(line3),&lineR,1);
OffsetRect(&lineR,0,20);
TextBox(line4,strlen(line4),&lineR,1);

do (
GetNextEvent(everyEvent,&anEvent);

) while (anEvent.what != mouseDown);

DisposeWindow(creditW);

SetPort (port);
return;

/* display a dialog for a system error */
OSError(procName, errNum, msg)

char *procName, *msg;
short errNum;

Str255 errMsg, trapMsg;

/* paste together trap message */
strcpy(&trapMsg, procName);

/* paste together errorNum message */

I* OSError () *I

strcat (PtoCstr ((char *) Num2String ((long) errNum, &errMsg)) , " ") ;

444 Using the Macintosh Toolbox with C
--- CH.12

ErrDialog(strcat(&trapMsg, "reports an error"),
strcat(&errMsg, ErrMessage(errNum)), msg);

I* Generic Error dialog with 3 definable message.s *I
ErrDialog(strl, str2, str3)

char
char
char

*strl;
*str2;
*str3;

EventRecord
DialogPtr
short
char

anEvent;
theDialog;
itemHit;
*err= "An Error has occurred ... ";

/* ErrDialog() */

ParamText(CtoPstr(err), CtoPstr(strl), CtoPstr(str2), CtoPstr(str3));

theDialog = GetNewDialog(errDialogID, NULL, (WindowPtr) -lL);

ShowWindow(theDialog);
PtoCstr(err);
PtoCstr(strl);
PtoCstr(str2);
PtoCstr(str3);

do {
ModalDialog((ProcPtr) NULL, &itemHit);

I while(itemHit != 1);

DisposDialog(theDialog);

/* Get a message corresponding to an OSErr code */
char *ErrMessage(anOSErr)

OSErr anOSErr;
/* ErrMessage() */

I* this routine would be much more space efficient if the
strings were kept in a single 'STR#' resource ... */

static char *str;

switch(anOSErr)

case noErr:
str = "No Error";
break;

/* File System Error Messages */
case badMDBErr:

str = "Bad master directory block";
break;

case bdNamErr:
str = "Bad file/volume name";
break;

case dirFulErr:
str = "Directory full";
break;

case dskFulErr:
str = "Disk full";
break;

case dupFNErr:
str = "Duplicate file name";
break;

case eofErr:
str = "Logical EOF reached";
break;

case extFSErr:
str = "External file system";
break;

case fBsyErr:
str = "File busy";
break;

case fLckdErr:
str = "File locked";
break;

case fnfErr:
str = "File not found";
break;

case fnOpnErr:
str = "File not open";
break;

case fsRnErr:
str = "Error during PBRename";
break;

case ioErr:
str = "Disk I/O error";
break;

case mFulErr:
str = "Memory full";
break;

case noMacDskErr:
str = "Not a Macintosh Disk";
break;

case nsDrvErr:
str = "No such drive";
break;

case nsvErr:
str = "No such volume";
break;

case opWrErr:

The Macintosh File System 445

446 Using the Macintosh Toolbox with C
--- CH.12

str = "File already open for writing";
break;

case pararnErr:
str = "No default volume";
break;

case perrnErr:
str = "File not open for writing";
break;

case posErr:
str = "Attempt to position before file start";
break;

case rfNurnErr:
str = "Bad reference number";
break;

case tmfoErr:
str = "Too many files open";
break;

case volOffLinErr:
str = "Volume not on-line";
break;

case volOnLinErr:
str = "Volume already on-line";
break;

case vLckdErr:
str = "Software volume lock";
break;

case wPrErr :.
str = "Hardware volume lock";
break;

default:
str = "No message for this error";
break;

return str;

Str255
long
Str255

*Num2String(theNum, theStr)
theNum;

*theStr;
/* This is a minor variation on the Binary-Decimal Conversion

Package of the same name. Here we have made the procedure
into a function returning a pointer to the string.

*/
I

NumToString(theNum, theStr);
return (theStr);

long String2Num(theStr)
Str255 *theStr;

/* This is a minor variation on the Binary-Decimal Conversion

Package of the same name. Here we have made the procedure
into a function returning the long number.

*I
I

long theNum;

StringToNum(theStr, &theNum);
return (theNum);

/* strlib.c -- DJB 10/18/85 */

/* USE STRINGS LIBRARY FOR MOST FUNCTIONS */
iinclude <MacTypes.h>

char *Pstrcpy(s, t)
char *s, *t;

int i, length;
char *p;

length = *t;
P = s;

for (i=O;i<=length;i++) *p++
return s;

char *Pstrcat(s, t)
char *s, *t;

int i, length;
char *p;

length = *t;
p = s + *s +1;
t++;

for (i=O;i<length;i++) *p++
*s += length;
return s;

*t++;

*t++;

* Source code for Chapter 12 Sample Application Resources
* Use the Apple Resource Compiler - RMaker

*

Chapt12.rsrc

Type DITL

The Macintosh File System 447 ---

448 Using the Macintosh Toolbox with C
--- CH.12

,10000
39
* 1
Btnltem Enabled
266 177 286 237
Thanks

* 2
StatText Enabled
6 8 23 107
All About File:

* 3
StatText Enabled
22 25 40 107
On Volume:

* 4
StatText Enabled
46 72 65 140
File Type:

5
StatText Enabled
46 203 65 264
Creator:

* 6
StatText Enabled
71 30 90 95
File Size:

7

StatText Enabled
6 111 23 330
File Name

8
StatText Enabled
22 111 40 330
Volume Name

* 9
StatText Enabled
46 139 65 179
????

* 10
StatText Enabled
46 263 65 303
????

* 11
StatText Enabled
71 94 90 380

* 12
StatText Enabled
96 30 115 131
Finder Flags:

* 13
StatText Enabled
121 71 141 131
Locked

* 14
StatText Enabled
140 71 160 137
Invisible

* 15
StatText Enabled
159 71 179 131
Bundle

* 16
StatText Enabled
178 71 198 131
System

* 17
StatText Enabled
197 71 217 138
No-Copy

* 18
StatText Enabled
216 71 236 131
Busy

* 19
StatText Enabled
235 71 255 139
Changed

* 20
StatText Enabled
254 71 274 131
Inited

The Macintosh File System 449 ---

450 Using the Macintosh Toolbox with C
--- CH.12

* 21
StatText Enabled
96 248 116 391
File System Flags:

* 22
StatText Enabled
119 292 139 352
Busy

* 23
StatText Enabled
138 292 158 359
No-Copy

* 24
StatText Enabled
157 292 177 359
Locked

* 25
StatText Enabled
121 52 141 72
%

* 26
StatText Enabled
140 52 160 72
%

* 27
StatText Enabled
159 52 179 72
%

* 28
StatText Enabled
178 52 198 72
%

* 29
StatText Enabled
197 52 217 72

%

* 30
StatText Enabled
216 52 236 72
%

* 31
StatText Enabled
235 52 255 72
%

* 32
StatText Enabled
254 52 274 72
%

* 33
StatText Enabled
119 273 139 293
%

* 34
StatText Enabled
138 273 158 293
%

* 35
StatText Enabled
157 273 177 293
%

* 36
StatText Enabled
186 186 206 246
Created:

* 37
StatText Enabled
228 176 248 246
Modified:

* 38
StatText Enabled
186 251 223 377

* 39
StatText Enabled
228 251 264 377

I 9999 (4)

6

* 1
Btnitem Enabled
117 121 141 177
OK

The Macintosh File System 451

452 Using the Macintosh Toolbox with C
--- CH.12

* 2
StatText Enabled
40 8 56 288
Al

* 3
StatText Enabled
64 8 80 288
A2

* 4
StatText Enabled
88 8 104 288
A3

* 5
StatText Enabled
11 47 28 288
Ao

*
*
*

6 - ARRRGH! Can't put icons into dialogs this way. Thats what I get
for trying to be nice and use RMaker. Use Resource Editor like
I did, or just use an Alert! <<Iconitem is undefined here!>>

Iconitem Enabled
3 9 35 41
0

Type DLOG

,10000
File Info
31 24 323 477
Invisible NoGoAway
1
0
10000

,9999
A Message ...
87 67 235 378
Invisible NoGoAway
1
0
9999

---------------------------------------..,..
---- -- -- -- --

~ I
I
I

+ I I I I I
I
I

--- I ---__

---+ ----+-
I
I
I

)(I

~
+ I

Finishing
Touches

This chapter is a small grab bag of miscellaneous topics that we
decided to put in a little chapter of their own. We will cover three sub
jects here: how to create and design an icon for your application, how to
let your application handle desk accessories, and how to add icons to
menus.

Creating Your Own Icon
Half the fun of writing your own application is creating and as

signing its desktop icon. For an application to have a custom icon, it
must have a unique signature, and, in its resource fork, a number of
Finder-related resources. In this section we will examine file signatures
and all the Finder-related resources an application needs in order to have
a custom desktop icon. Using ResEdit and RMaker, we will also create
all the resources necessary to assign a custom icon to a sample applica
tion named YourProgram. The application YourProgram is shown in
Figure 13.1 with its generic application icon,

Note: In order to have a custom icon appear in the finder, your
application must have its bundle bit set. This is one of the Finder flags,
as described in Chapter 12. When you set the project type to Application
under Think C, the compiler automatically creates an application with
its bundle bit set. As such, you need not explicitly set this bit. However,
if you change any of the Finder flags externally (such as with Fedit or
miniDos), make sure you leave this bit set.

456 Using the Macintosh Toolbox with C
--- CH.13

D Chopterl 3
1 item SK in folder 2240K available

~
~

YourProgram

lQJ
121 12 Q:]

Figure 13.1: Your Program with Generic Icon

File Signatures and Bundle Bits
In order to have a custom icon, a Macintosh application must

have a unique signature that the Finder can identify it by. An appli
cation1s signature, often referred to as its creator or creator ID, is a unique
four-character sequence. The creator must be unique in that no other ap
plication on a currently mounted disk may have the same four-character
signature. In this example, we'll set the creator of our application Your
Progam to be the four-character sequence FRED.

When an application's bundle bit is set, the Finder copies the
application's ICN#, FREF, and BNDL resources into the Desktop file
along with the version data resources, if they have been created. The
version data, ICN#, PREF, and BNDL resources are the Finder-related
resources we will shortly learn how to create. The Desktop file is the
invisible file on each disk that keeps track of all the custom icons for
files and programs on the disk. Once an application has a unique signa
ture and its finder-related resources have been copied to the desktop file,
its custom icon will appear.

Now let's move onto the four Finder-related resources.

®Application

O Desk Accessory

O Deuice Driuer

0 Code Resource

File Type I APPL

Creator I FRED

D Separate STRS

Partition (K) §.]
MF Attrs ~ I ODDO I

((OK J) Cancel

Figure 13.2: Think C's Set Application Type Box

The Icon

Finishing Touches 457

The first thing we'll do is create a custom icon. This is, as we've
mentioned before, easiest to manage in ResEdit. Double click on Res
Edit and select New from the file menu. This creates a new resource file.
You will see a dialog box like the one in Figure 13.3. Type in the name
Yourlcon.Rsrc.

Next, we must add a new ICN# resource to the file. Select New
from the file menu again to bring up the resource type selector. Select
the type ICN#, as shown in Figure 13.4.

Now, use the Get Info function as shown in figure 13.5 from the
file menu to change the resource number of the icon to 128. It will
usually be assigned an arbitrary number by ResEdit when you initially
create it.

Finally, use the icon editor as shown in figure 13.6 to create
your icon. It behaves pretty much as does MacPaint's fatbits mode.
When you're done, copy the icon to the mask area and close Your
lcon.Rsrc to save the icon to your resource file.

458 Using the Macintosh Toolbox with C
--- CH.13

'111 Switcher 4.4
osymantec
D s stem Folder

'111 TOPSwabber
DTurbo Pascal
DWAPs

Figure 13.3: Creating a New Resource File

Edit

D Your I con.Rsrc3
or------;;;;;;;;;;;;;;;;;;;;~
D
'111 New Type Name:
D

OK

1\- [Cancel J

Figure 13.4: Selecting an ICN# Resource

r • File Edit

Hard Drive
D
D IC
<ill

Type: ICN# Size: 256

Name:

I 12~ ID: Owner type

Owner ID:

Sub ID:

Attributes:
D Locked D Preload D System Heap

D Purgeable D Protected

Figure 13.5: The Get Info Box

r s File Edit lcn#

Hard Drive

D Yourlcon.Asrc
D.f-,I C,...,.,,~~~~;;,;;,;;.;,;~~~d

<!I
D
D • • . . • • • • • •

Figure 13.6: The Icon Editor

Finishing Touches 459

.,

460 Using the Macintosh Toolbox with C
--- CH.13

The Finder Related Resources
The other three resources related to your custom icon will be

handled as an RMaker source file. Here is the complete file. The last line
is used to tell RMaker to include the icon you just created with ResEdit.

YourProqram.Rsrc

Type FRED = STR
,0 ;; 'STR'

Your proqram vars 1.0 ; ; Get Info text

Type FREF '' Finder reference
,128

APPL 0 '' Local icon number 0

Type BNDL '' Bundle
,128

FRED 0 '' Version data
ICN# '' Icon
0 128 '' Local number I resource number
FREF

'' Finder reference
0 128 '' Local number I resource number

INCLUDE Youricon.Rsrc

Let's see what these resources do.

Version Data Resource
Each application must have a version data resource, a special

resource that has the application's creator as its resource type. Thus, our
application, YourProgram, will have a version data resource type of
FRED. The data of this resource constitutes a Pascal string which will
appear as the Get Info comments for our application.

FREF Resources
A PREF or file reference resource needs to know only what

type of file the custom icon is being assigned to and the local ID of the
custom icon. The file type for YourProgram, and for any application
program, is APPL. Thus we enter the type APPL into the PREF

Finishing Touches 461

resource. The icon local ID, which we have entered as zero, can be any
number so long as it is consistent with the local ID that we specify in the
BNDL resource, which we will do next.

BNDL Resources
The last resource type an application needs for a custom icon is

a BNDL, a resource that serves to bundle everything together. You
might want to look at the above RMaker listing as we go over the fields
of this resource.

The first line under the BNDL type declaration is the number of
the resource, for which we'll use 128. The next field, the owner's name,
has to be set to the file's creator and local reference number. For Your
Program, of course, the creator is FRED. FRED's local resource number
is 0.

Following this is a list of the items we want to bundle together.
The first one is ICN# number 128, which actually lives in the included
file Yourlcon.Rsrc. The BNDL assigns this a local resource number
of 0. The second is the FREF resource we've just created, which is also
assigned a local resource number of 0.

This list has assigned the mapping between the local IDs and
the resource IDs. These IDs can be set to whatever we want so long as
we are consistent throughout all of the Finder-related resources.

With this short file typed in, run RMaker to compile it. One
common error occurs in the declaration of the version type resource,
FRED. If there is not a space after STR, RMaker will complain.

Wrapping Things Up
Once YourProgram's Finder-related resources are created, your

new custom icon should appear as in Figure 13.7.
If you follow the general directions we have just given for

creating a new icon and the new icon does not appear, it may be that the
file or application for which you are creating the icon already had a cus
tom icon assigned to it. To force the new icon to appear, double-click the
mouse on the Finder while holding down the Command and Option
keys. This throws out the old desktop file and creates a new one, with
your custom icon in place.

462 Using the Macintosh Toolbox with C
--- CH.13

:o Chapterl3
I item 81< in folder 22401< available

~
~

--
YourProgram

~
Qi TO '2J

Figure 13.7: YourProgram with Its New Custom Icon

Supporting Desk Accessories from Your
Application

As your application nears completion you will undoubtedly
want to include the necessary code to support desk accessories. Desk ac
cessories have evolved quite a bit since the original set that was
provided with the Macintosh. The simplest desk accessories are truly as
they were originally called, desk ornaments. These include the Alarm
Clock, the Puzzle, the Control Panel, and the Calculator. Another type of
desk accessory consists of utility programs designed to be used during
an application. These desk accessories include features like renaming,
copying or deleting a file, transferring to another application, and blank
ing the screen when the machine is idle. A third category consists of
desk accessories that are actually miniature applications which can be
active along with the main application. These mini-applications include
text editors, terminal emulators, spreadsheets, and even graphics
programs.

As you can see, there is quite a bit of variety and versatility in
desk accessories as a group. What makes desk accessories even more
powerful as a tool is that they are available to the user at any time within
almost any application. By including desk accessories in your applica-

Finishing Touches 463

tion, you can make it possible for the user to virtually tailor the Macin
tosh to her or his needs.

How Desk Accessories Work
Desk accessories operate by borrowing (or stealing, depending

on how you look at it) control of the Macintosh's processor from time to
time from the current application. Periodically the application will ask
the operating system to check on the active desk accessories to see if
any of them are ready to borrow some time.

When the user opens a desk accessory, it will inform the operat
ing system how often it needs to take control of the processor. Exactly
how often a desk accessory needs to borrow time from the application,
and how much time it will use each time, depends, of course, on the na
ture of the desk accessory's function. The alarm clock, for instance,
needs to update its display once every second. On the other hand, a desk
accessory using one of the Macintosh's serial ports for terminal emula
tion must empty its buffers much more frequently to avoid losing any
characters, perhaps as often as once every one or two ticks of the system
clock (recall that a tick equals 1/60 of a second). In addition, desk acces
sories must respond to different types of events just like an application
program. They must be able to respond to mouse and keyboard-related
events as well as to activate and update events. Some types of events are
automatically passed to the desk accessory by the Event Manager func
tion GetNextEvent, while others must be forwarded by the application.

This section of the chapter describes what an application must
do to support desk accessories. We will first discuss how to open a desk
accessory when the user chooses one from the Apple menu, and how to
close a desk accessory when the user has finished with it. We will then
move on to the task, shared by the application and the Toolbox, of
making sure that a desk accessory receives the events and menu selec
tions that are intended for it.

464 Using the Macintosh Toolbox with C
--- CH.13

Opening and Closing Desk Accessories
When the user selects an item from the Apple menu, the ap

plication must check to see whether the item selected is a desk accessory
or another item instead. The standard layout for the Apple menu has the
"About. .. " item first, followed by a dotted line, followed by the names
of the desk accessories. The application can call OpenDeskAcc to open
the desk accessory whose name is contained in the string pointed to by
the parameter theAcc:

int OpenDeskAcc(theAcc)
Str255 *theAcc;

The value returned by OpenDeskAcc is the reference number of
the desk accessory; this value can be safely ignored by the application.
According to Inside Macintosh, the desk accessory itself is responsible
for informing the user if for some reason, such as lack of available
memory, it cannot be opened. Many applications also check the avail
able memory to avert the potential paradox that results when a desk
accessory that will not fit into memory is required to inform the user of
this fact.

To obtain the name of the desk accessory, the application can
call the Menu Manager procedure Getltem, which copies the text of a
given menu item into the string variable passed from the application.
The following example is an excerpt from the menu selection section of
almost any application:

/* global MenuHandle for apple menu */
extern MenuHandle appleMenu;

/* define local variables */
int
Str255
Graf Ptr

switch(menuID)

menuID, itemNumber; /* see Chapter 4: Menus */
daName;
theCurrentPort;

case AppleID:
if(itemNumber == 1)

/* put the applications About . . . window */
About Window() ;

else {

Finishing Touches 465 ---

I* which DA to open */
Getitem(appleMenu, itemNumber, &daName);

I* local check for memory space */
/* copy private scrap(s) to Clipboard

if application window at the front */

/* save the current qrafPort in case the
DA doesn't restore it to the previous
value */

GetPort(&theCUrrentPort);

/* open the DA if sufficient memory
space exists and restore the current
qrafPort */

OpenDeskAcc(&daName);
SetPort(theCurrentPort);

break;

/* cases for other menus, . . . *I

The user can close a desk accessory in one of several ways.
Both methods involve desk accessories with windows. In the first case
if the window has a close box, the user can close the desk accessory with
a mouse-down in the close box of the window. This method involves
mouse events, which we will discuss in a moment. The second method
uses the Close item found in the File menu of most applications. If the
user selects the Close item while a desk accessory window is at the
front, the application should call CloseDeskAcc with the reference num
ber of the desk accessory.

CloseDeskAcc(refNum)
int refNum;

The reference number of the desk accessory can be found in the
windowKind field of the WindowRecord defining its window. The following
example shows how to close a desk accessory with this method.

/* define local variables */
int menuID, itemHumber; /* see Chapter 4: Menus */

466 Using the Macintosh Toolbox with C
--- CH.13

int refNum;

switch(menuID)
case EditID:

/* get the window:Ki.nd of the active window */
refNum = ((WindowPeek.>

FrontWindow())->window:Ki.nd;

if (refNum <= 0)

else

break;

/* close the desk accessory with refNum */
CloseDeskAcc(refNum);

/* handle the Close item for an
application window */

/* cases for other menus, . . . */

Lending Time to a Desk Accessory

In order to allow desk accessories to carry out periodic opera
tions, such as updating clock or flashing a TextEdit insertion point, the
application must call the procedure SystemTask in the main event loop.

SystemTask ()

SystemTask checks each active desk accessory to see if it has re
quested time on a periodic basis. If the elapsed time since it was last
given control is longer than the time interval it requested when it was
installed, control is passed to the desk accessory.

Forwarding Mouse-Down Events to a Desk
Accessory

In our discussions of the Window Manager in Chapters 3 and 7,
we learned that the routine FindWindow will return the constant inSys
Window when a mouse-down occurs in a desk accessory window. In

Finishing Touches 467

order to pass the event on to the desk accessory, the application must
call the routine SystemClick, passing a pointer to the EventRecord and the
WindowPtr of the window in the parameters the Event and theWindow.

SystemClick(theEvent ,theWindow)
EventRecord
WindowPtr

*theEvent;
theWindow;

SystemClick first determines if it can handle the event itself. If
the mouse-down occurs in the content region and the window is inac
tive, SystemClick will activate the window. If the event occurs in the title
bar, SystemClick calls DragWindow to allow the user to drag window.
Afterwards, if the window was inactive, it will be activated unless the
Command key was held down. If the mouse-down occurs in the close
box, SystemClick calls TrackGoAway and if appropriate, signals the desk
accessory to close itself. Finally, if none of these scenarios apply, the
mouse-down event is forwarded to the desk accessory.

Events Forwarded or Handled by the Toolbox

The Event Manager routine GetNextEvent automatically inter
cepts activate, update, key-down, and auto-key events intended for desk
accessories. GetNextEvent calls the function SystemEvent to determine if
a given event should be handled by the operating system instead of the
application.

char SystemEvent(theEvent)
EventRecord *theEvent;

If SystemEvent determines that the operating system should
handle the event, it will call the appropriate system routines and return
true, otherwise, if the application should handle the event SystemEvent
returns false. Note that SystemEvent does not attempt to filter mouse
down events. It is the responsibility of the application to call SystemClick
for mouse-down events. An application should not attempt to call
SystemEvent directly.

468 Using the Macintosh Toolbox with C
--- CH.13

Selecting an Item from a Desk Accessory Menu

Many desk accessories install their own menus into the menu
bar. The Menu Manager routines MenuSelect and MenuKey are respon
sible for intercepting menu selections belonging to desk accessories.
Both MenuSelect and MenuKey call the procedure SystemMenu if the menu
item chosen by the user belongs to a desk accessory menu.

SystemMenu(menuResult)
long menuResult;

The menuResult parameter has the same value as the value usually
returned to the application by either MenuSelect or MenuKey (see Chapter 4).

Desk Accessories and the Edit Menu

Many desk accessories will respond to the standard items con
tained in the Edit menu (namely Undo, Cut, Copy, Paste, and Clear).
Whenever the user selects an item from the Edit menu, the application
should call SystemEdit with the appropriate value of the editCmd
parameter (see Figure 13.7 for a listing of the values of editCmd cor
responding to the standard editing commands).

char SystemEdit(editCmd)
int editCmd;

Value Editing Command

0 Undo

1 -None-

2 Cut

3 Copy

4 Paste

5 Clear

>6 -None-

Figure 13.8: Command Numbers for SystemEdit

Finishing Touches 469

SystemEdit returns true if the menu selection was forwarded to
the desk accessory and false if the menu selection applies to the applica
tion. If the items in the application's Edit menu are in the order
suggested by the User Interface Guidelines, the application can simply
subtract 1 from the value of the menu item to obtain the appropriate
value for editCmd, as illustrated in the following example.

/* define local variables */
int menuID, itemNumber; I* see Chapter 4: Menus */
Str255 daName;

switch(menuID) {
case EditID:

/* if command intended for a DA,
forward it and exit */

if(SystemBdit(itemNumber - 1)) break;

/* command intended for the
application do whatever is necessary */

switch(edititem)
case ..

break;

/*cases for other menus, ... */

Supporting Desk Accessories: A Final Word
We have seen that the Macintosh operating system handles

many of the chores involved in supporting desk accessories. As a result,
the amount of extra code necessary to support desk accessories in an ap
plication is quite small.

In this discussion we have learned how to open and close desk ac
cessories, and how to forward the remaining types of events and commands
not automatically intercepted by the Toolbox. This information, combined
with the discussion of the TextEdit scrap and the Clipboard in Chapter 8,
should enable you to include desk accessories in your application.

470 Using the Macintosh Toolbox with C
--- CH.13

Menu Icons
You'll recall from Chapter 4 that the one menu-item enhance

ment we didn't talk about was adding icons to our menus. Now that we
are familiar with resources, we can go ahead and cover the coding
methods for adding an icon to a menu item.

Adding an icon to a menu item is not difficult and can be coded
in two different ways. The first method is through the use of the proce
dure Setltemlcon.

Setitemicon(theMenu, item, icon)
MenuHandle theMenu;
int
int

item;
icon;

You pass this procedure a menu handle, the item number of the menu
item you wish to modify, and the icon number of the icon you wish to
use. The Menu Manager will add 256 to this icon number to get the
resource ID of the icon it will use in the menu. Since icon resource IDs
257 through 511 are reserved for menu icons, the icon number can be
any number from 1 to 255.

The other way to add an icon to a menu item is through the caret
(A) metacharacter in the AppendMenu data string.

AppendMenu (myMenu, "\pFirst Item;"2Icon Item");

In the AppendMenu data string, the caret precedes the icon number of the
icon that is going to be associated with a particular menu item. The same
rules apply to the item number in AppendMenu as in the Setltemlcon pro
cedure.

If you have created your menu as an RMaker source file initially,
you can simply write the caret metacharacter into the initial menu defini
tion, like this:

Type MENU

,130
First Item
"2Icon Item

Finishing Touches 471

Of course, you will have to create an 'ICON' resource with the
appropriate resource ID and add it to the resource fork of your applica
tion. If either of these procedures cannot find the icon designated by the
icon number, they will simply display a white space where the icon
would normally appear (to the left of the menu item).

~

+

I
I --r-

I

1
I

I

L___
.....___

.....___
.....___

I
I
I
I
I
I

-...-....___ I

---+
I
I
I
I

~ I
+ I

C Calling Conventions

This appendix contains the C calling conventions of the Tool
box routines discussed in this book.

Chapter 2: Using the Event Manager
/* declare some variables */
char
int
lonq
Point
EventRecord

TrueOrFalse;
eventMask, eventCode, OSErr, stopMask, noOfTicks;
eventMsq, eventandstopMask;
mouseLoc;
theEvent;

Manipulating Event Records

TrueOrFalse = GetNextEvent(eventMask, &theEvent);

TrueOrFalse = EventAvail(eventMask, &theEvent);

OSErr = PostEvent(eventCode, eventMsq);

FlushEvents(eventMask, stopMask);

or

FlushEvents(eventandstopMask);

474 Using the Macintosh Toolbox with C
--- APP.A

Mouse Routines

GetMouse(&mouseLoc);

TrueOrFalse =Button();

TrueOrFalse = StillDown();

Time Routines

noOfTicks = TickCount();

Chapter 3: Introduction to the Window Manager
/* declare some variables */
char
int
int
lonq
Point
Rect
Grafptr
Str255
WindowPtr
WindowRecord

Initialization

InitWindows ();

qoAwayFlaq, inGoAway, front, £Update;
procID, partCode, h, v, hi, lo;
width, heiqht;
refCon, newSize;
thePt, startPt;
boundsRect;
qp;
aPStrinq;
theWindow, behindWindow;
aWindowRec;

Changing Graf Ports

SetPort(qp);

GetPort(&qp);

C Calling Conventions 475

Creating and Disposing of Windows

theWindow = NewWindow(&aWindowRec, &boundsRect, &aStrinq,

visible, procID, behindWindow, qoAwayFlaq,

refCon);

DisposeWindow(theWindow);

CloseWindow(theWindow);

The Front-to-Back Order on the Desktop

SelectWindow(theWindow);

ShowWindow(theWindow);

HideWindow(theWindow);

theWindow = FrontWindow();

Window Titles

SetWTitle(theWindow, &aPStrinq);

GetWTitle(theWindow, &aPStrinq);

The Size Box

DrawGrowicon(theWindow);

Locating Mouse-Down Events

partCode = FindWindow(thePt, &whichWindow);

inGoAway = TrackGoAway(theWindow, thePt);

Moving and Resizing Windows

DragWindow(theWindow, startPt, &boundsRect);

476 Using the Macintosh Toolbox with C
--- APP.A

MoveWindow(theWindow, h, v, front);

newSize = GrowWindow(theWindow, startPt, &boundsRect);

SizeWindow(theWindow, width, height, fUpdate);

Miscellaneous

hi HiWord(newSize);

1o LoWord(newSize);

Chapter 4: An Introduction to Menus
/* dec1are some variab1es */
MenuHand1e theMenu;
int menuID, afteritem, item, beforeID, resourceID;
Str255 menuTit1e, itemStrinq, data;
ResType theType;
char checked, markChar, keyChar;
Sty1e chSty1e;
Point startPt;

Initialization

InitMenus ();

Creating a New Menu

theMenu = NewMenu(menuID, &menuTit1e);

AppendMenu(theMenu, &data);

AddResMenu(theMenu, theType);

InsertResMenu(theMenu, theType, afteritem);

Modifying Menu Items

Getitem(theMenu, item, &itemString);

Setitem(theMenu, item, &itemString);

Enabling/Disabling Menu Items

Enableitem(theMenu, item);

Disableitem(theMenu, item);

Marking Menu Items

Checkitem(theMenu, item, checked);

SetitemMark(theMenu, item, markChar);

GetitemMark(theMenu, item, &markChar);

Changing Text Syles in Menu Items

SetitemStyle(theMenu, item, chStyle);

Working with the Menu List

InsertMenu(theMenu, beforeID);

DisposeMenu(theMenu);

DeleteMenu(menuID);

DrawMenuBar () ;

Selecting from a Menu

menuResult = MenuSelect(startPt);

menuResult = MenuKey(keyChar);

C Calling Conventions 477

478 Using the Macintosh Toolbox with C
--- APP.A

Hilighting the Menu Bar

HiliteMenu(menuID);

Reading Menus in from Resources

GetNewMenu(resourceID);

Chapter 5: Drawing with QuickDraw
/* declare some variables */
char TrueOrFalse, aCharacter;
char *textBuf, *globalPtr;
int horiz, vert, left, top, right, bottom;
int mode, width, height, font, face, size, extra;
int firstByte, byteCount, ovalWidth, ovalBeight;
int angle, startAngle, arcAngle, cursorID;
Point
Rect
Pattern
PenState
Str255
Fontinfo
Grafptr
BitMap
Cursor
RgnHandle
PolyBandle
PicBandle
Curs Handle

pointl, point2, location;
rectl, rect2, srcRectA, srcRectB, destRect, picFrame;
*yourPattern, *&Pattern;
thePenState;
*aBexString, *aString;
info;
aGrafpointer;
srcBits, dstBits;
aCursor;
region, sourceRgnA, sourceRgnB, destRgn;
&Polygon;
aPictureBand;
aCursorBand;

Defining Points

SetPt(&Pointl, horiz, vert);

Manipulating Points

EqualPt(pointl, point2);

AddPt{pointl, &point2);

SubPt{pointl, &point2);

Changing a Point's Coordinate System

LocalToGlobal{&pointl);

GlobalToLocal{&pointl);

Defining Rectangles

SetRect{&rectl, left, top, right, bottom);

C Calling Conventions 479

TrueOrFalse = SectRect{&srcRectA, &srcRectB, &destRect);

UnionRect{&srcRectA, &srcRectB, &destRect);

Pt2Rect{pointl, point2, &destRect);

Moving Rectangles

OffsetRect{&rectl, horiz, vert);

Resizing Rectangles

InsetRect{&rectl, horiz, vert);

Determining if Points are enclosed in Rectangles

TrueOrFalse = PtinRect{pointl, &rectl);

Comparing Rectangles

TrueOrFalse = EqualRect{&rectl, &rect2);

TrueOrFalse = EmptyRect{&rectl);

480 Using the Macintosh Toolbox with C
--- APP.A

Pattern Defining Routines

StuffHex(yourPattern, aHexStrinq);

Pen Field Manipulating Routines

GetPen(&location);

PenSize(width, heiqht);

PenMode(mode);

PenPat(aPattern);

HidePen ();

ShowPen ();

Restoring the Pen's Default Fields

PenNormal () ;

Moving the Pen

MoveTo(horiz, vert);

Move(horiz, vert);

Drawing Lines with the Pen

LineTo(horiz, vert);

Line(horiz, vert);

Preserving a Pen's Characteristics

GetPenState(&thePenState);

SetPenState(&thePenState);

C Calling Conventions 481

Text Field Manipulating Routines

TextFont (font);

TextFace(face);

TextMode (mode) ;

TextSize(size);

SpaceExtra(extra);

Drawing Characters, Strings, and Text Buffers

DrawChar(aCharacter);

DrawString(aString);

DrawText(textBuf, firstByte, byteCount);

Determining the Width of a Character, String, or Text in a Buffer

width= CharWidth(aCharacter);

width= StringWidth(aString);

width= TextWidth(textBuf, firstByte, byteCount);

Determining a Font's Ascent, Descent, Width, and Leading

GetFontinfo(&info);

Graf Port Routines

InitGraf(&globalPtr);

Creating and Disposing of Graf Ports

OpenPort(aGra£Pointer);

482 Using the Macintosh Toolbox with C
--- APP.A

InitPort(aGrafpointer);

ClosePort(aGrafpointer);

Keeping Track of Graf Ports

SetPort(aGrafPointer);

GetPort(&aGrafpointer);

Moving a Graf Port's Coordinate System

SetOrigin(horiz, vert);

Manipulating a Graf Port's clipRect

GetClip(reqion);

SetClip(reqion);

ClipRect(&rectl);

Changing a Graf Port's Background Pattern

BackPat(aPattern);

Drawing Rectangles

FrameRect(&rectl);

PaintRect(&rectl);

EraseRect(&rectl);

InvertRect(&rectl);

FillRect(&rectl, aPattern);

Drawing Ovals

FrameOval(&rectl);

PaintOval(&rectl);

EraseOval(&rectl);

InvertOval(&rectl);

FillOval(&rectl, aPattern);

Drawing Rounded-Corner Rectangles

C Calling Conventions 483

FrameRoundRect(&rectl, ovalWidth, ovalHeiqht);

PaintRoundRect(&rectl, ovalWidth, ovalHeiqht);

EraseRoundRect(&rectl, ovalWidth, ovalHeiqht);

InvertRoundRect(&rectl, ovalWidth, ovalHeiqht);

FillRoundRect(&rectl, ovalWidth, ovalBeiqht, aPattern);

Defining an Angle

PtToAngle(&rectl, &pointl, &angle);

Drawing Angles

FrameArc(&rectl, startAnqle, arcAnqle);

PaintArc(&rectl, startAnqle, arcAnqle);

EraseArc(&rectl, startAnqle, arcAnqle);

InvertArc(&rectl, startAnqle, arcAnqle);

FillArc(&rectl, startAnqle, arcAnqle, aPattern);

484 Using the Macintosh Toolbox with C
--- APP.A

Defining and Disposing Polygons

aPolygon = OpenPoly();

ClosePoly () ;

KillPoly(aPolygon);

Moving Polygons

OffsetPoly{aPolygon, horiz, vert);

Drawing Polygons

FramePoly{aPolygon);

PaintPoly{aPolygon);

ErasePoly(aPolygon);

InvertPoly(aPolygon);

FillPoly(aPolygon, aPattern);

Defining Regions

region= NewRgn();

OpenRgn();

CloseRgn(region);

Manipulating Regions

OffsetRgn(region, horiz, vert);

InsetRgn(region, horiz, vert);

SectRgn(sourceRgnA, sourceRgnB, destRgn);

C Calling Conventions 485 ---
UnionRgn(sourceRgnA, sourceRgnB, destRgn);

DiffRgn(sourceRgnA, sourceRgnB, destRgn);

XorRgn(sourceRgnA, sourceRgnB, destRgn);

TrueOrFalse = PtinRgn(&pointl, region);

TrueOrFalse RectinRgn(&rectl, region);

TrueOrFalse EqualRgn(sourceRgnA, sourceRgnB);

TrueOrFalse EmptyRgn(region);

Drawing Regions

FrameRgn(region);

PaintRgn(region);

EraseRgn(region);

InvertRgn(region);

FillRgn(region);

Defining Pictures

aPictureBand = OpenPicture(&picFrame);

ClosePicture ();

Disposing of Pictures

KillPicture(aPictureBand);

Drawing Pictures

DrawPicture(aPictureBand, &picFrame);

486 Using the Macintosh Toolbox with C
--- APP.A

Bit· Transfer Operations

ScrollRect(&rectl, horiz, vert, region);

CopyBits(srcBits, dstBits, &srcRect, &destRect, mode, region);

Cursor Routines

InitCursor ();

SetCursor(aCursor);

aCursorBand = GetCursor(cursorID);

HideCursor () ;

ShowCursor ();

ObscureCursor();

Chapter 6: An Introduction to Memory Management
/* declare some variables */
long howBig, howMuch;
Ptr
Bandle

aPtr, sourcePtr, destPtr;
aBandle;

Non-Relocatable Blocks

aPtr = NewPtr(howBig);

DisposPtr (aPtr) ;

howBig = GetPtrSize(aPtr);

SetPtrSize(aPtr, howBig);

Relocatable Blocks

aHandle = NewHandle(howBig);

DisposHandle(aHandle);

howBig = GetHandleSize(aHandle);

SetHandleSize(aHandle, howBig);

HLock(aHandle);

HUnlock(aHandle);

HPurge(aHandle);

HNoPurge(aHandle);

ReallocHandle(aHandle, howBig);

Heap Routines

howMuch = FreeMem();

howMuch = CompactMem(howBig);

ReservMem(howBig);

Miscellaneous Memory Routines

BlockMove(sourcePtr, destPtr, howMuch);

Chapter 7: Using Multiple Windows
/* declare some variables */
long theRefCon, time;
WindowPtr
Re ct
RgnHandle
PicHandle

theWindow;
goodRect, badReot;
goodRgn, badRgn;
thePic;

C Calling Conventions 487 ---

488 Using the Macintosh Toolbox with C
--- APP.A

Update Events and the Update Region

BeginUpdate(theWindow);

EndUpdate(theWindow);

InvalRect(&baclRect);

InvalRgn(badRgn);

ValidRect{&qoodRect);

ValidRgn(qoodRgn);

The Window RefCon

SetWRefCon(theWindow, theRefCon);

theRefCon = GetWRefCon(theWindow);

Windows and QuickDraw Pictures

SetWindowPic(theWindow, thePic);

thePic = GetWindowPic(theWindow);

The Double-Click Time

time= GetDblTime();

Chapter 8: Text Editing with the Toolbox
/* declare some variables */
char
int

OSErr

long
Point

Ptr

c, extend;

whichJust, dh, dv;
theErr;

length, selStart, selEnd;

thePt;

textPtr;

C Calling Conventions 489 ---
Handle textHndl;
Rect clestRect, viewRect, rUpdate, box;
TEHandle theText;

Initializing TextEdit

TEinit ();

Creating and Disposing of Edit Records

theText = TENew(&destRect, &viewRect);

TEDispose(theText);

The Text of an Edit Record

TESetText(text, length, theText);

textHndl = TEGetText(theText);

Activating an Edit Record

TEActivate(theText);

TEDeactivate(theText);

Blinking the Insertion Point

TEidle(theText);

Entering Text from the Keyboard

TEKey(c, theText);

Editing Routines

TECut(theText);

490 Using the Macintosh Toolbox with C
--- APP.A

TECopy(theText);

TEPaste(theText);

TEDelete(theText);

TEinsert(textPtr, length, theText);

Responding to Mouse-Down Events

TEClick(&thePt, extend, theText);

Changing the Selection Range

TESetSelect(selStart, selEnd, theText);

Redrawing the Text

TEUpdate(&rUpdate, theText);

TECalText(theText);

TESetJust(whichJust, theText);

Scrolling an Edit Record

TEScroll(dh, dv, theText);

Drawing Text in Boxes

TextBox(textPtr, length, &box, whichJust);

The TextEdit Scrap Routines

theErr = TEToScrap();

theErr = TEFromScrap();

C Calling Conventions 491 ---

textBncil = TEScrapHandle();

length= TEGetScrapLen();

TESetScrapLen(length);

Chapter 10: Controls
/* declare some variables */
char visible;
int
int

value, min, max, procID, controlID, hiliteState;
partcode, horiz, vert, theValue;

lonq
Point
Rect
Str255
ProcPtr
WindowPtr
ControlBancile

refCon, refConData;
thePoint, startPoint;
boundsRect;
*title;
actionProc;
theWindow;
aControlBand, theControl, whichControl;

Defining and Disposing of Controls

aControlBand = NewControl(theWindow, &boundsRect, title, visible,
value, min, ·max, procID, refCon);

aControlBand = GetNewControl(controlID, theWindow);

DisposeControl(theControl);

KillControls(theWindow);

Displaying and Determining the Appearance of Controls

SetCTitle(theControl, title);

GetCTitle(theControl, title);

HideControl(theControl);

492 Using the Macintosh Toolbox with C
--- APP.A

ShowControl(theControl);

DrawControls(theWindow);

HiliteControl(theControl, hiliteState);

Detecting and Handling Mouse-Downs in Controls

partcode = FindControl(thePoint, theWindow, &whichControl);

partcode = TrackControl(theControl, startPoint, actionProc);

Moving and Sizing Controls

MoveControl(theControl, horiz, vert);

SizeControl(theControl, horiz, vert);

Setting Control Values

theValue = GetCtlValue(theControl);

SetCtlValue(theControl, theValue);

theValue GetCtlMin(theControl);

theValue GetCtlMax(theControl);

SetCtlMin(theControl, theValue);

SetCtlMax(theControl, theValue);

Miscellaneous Routines

SetCRefCon(theControl, refConData);

refConData = GetCRefCon(theControl);

C Calling Conventions 493

Chapter 11 : Alerts and Dialogs
I* declare some variables */
char visible, goAwayFlag, TrueOrFalse;
int
int
long
Re ct
Str255
Str255
WindowRecord
Bandle
DialogPtr
WindowPtr
ProcPtr

Initialization

procID, dialogID, itemBit, alertID, itemNo, type;
startSel, endSel;
ref Con;
boundsRect, box;
*title, *theText, *paramO;
*paraml, *param2, *param3;
dStorage;
items, item;
theDialog, aDialogPtr;
behind;
restartProc, soundProc, filterProc;

InitDialogs(restartProc);

ErrorSound(soundProc);

Creating and Disposing of Dialogs

aDialogPtr = NewDialog(&dStorage, &boundsRect, title, visible,
procID, behind, goAwayFlag, refCon,
items);

aDialoqPtr = GetNewDialog(dialoqID, &dStorage, behind);

CloseDialog(aDialoqPtr);

DisposDialog(aDialoqPtr);

CouldDialog(dialoqID);

FreeDialog(dialoqID);

Responding to Dialog Events

ModalDialog(filterProc, &itemBit);

494 Using the Macintosh Toolbox with C
--- APP.A

TrueOrFalse IsDialogEvent(&theEvent);

TrueOrFalse DialogSelect(&theEvent, &theDialoq, &itemHit);

DrawDialog(theDialoq);

Invoking Alerts

itemHit = Alert(alertID, filterProc);

itemHit = StopAlert(alertID, filterProc);

itemHit = NoteAlert(alertID, filterProc);

itemHit CautionAlert(alertID, filterProc);

Locking and Unlocking Alert Resources in Memory

Could.Alert(alertID);

FreeAlert(alertID);

Manipulating Items in Alerts and Dialogs

GetDitem(theDialoq, itemNo, &type, &item, &box);

SetDitem(theDialoq, itemNo, type, item, &box);

GetIText(item, theText);

SetIText(item, theText);

SelIText(theDialoq, itemNo, startSel, endSel);

ParamText(paramO, paraml, param2, param3);

C Calling Conventions 495

Chapter 12: The Macintosh File System
/* declare some variables */
Point loc;

Str255 defaultName, promptStr;

ProcPtr FilterGlue;

int numTypes;

SFTypeList typeList;

ProcPtr dlqHook;

SFReply reply;

char asynch;
OSErr anErr;

IOParam anIOParam;

FileParam anFParam;

VolumeParam aVParam;

The Standard Fi le Package

SFGetFile(loc, &PromptStr, FilterGlue, numTypes, &typeList,

dlqHook, &reply);

SFPutFile(loc, &PromptStr, &defaultName, dlqHook, &reply);

Emptying the 1/0 Queue

InitQueue ();

1/0 Calls

anErr PBCreate(&anIOParam, asynch);

anErr PBOpen(&anIOParam, asynch);

anErr PBOpenRF(&anIOParam, asynch);

anErr PBClose{&anIOParam, asynch);

anErr PBRead(~anIOParam, asynch);

anErr PBWrite(&anIOParam, asynch);

496 Using the Macintosh Toolbox with C
--- APP.A

anErr PBGetEOF(&anIOParam, asynch);

anErr PBSetEOF(&anIOParam, asynch);

anErr PBAllocate(&anIOParam, asynch);

anErr PBFlshFile(&anIOParam, asynch);

anErr PBGetFPos(&anIOParam, asynch);

anErr PBSetFPos(&anIOParam, asynch);

File Routines

anErr PBDelete{&anIOParam, asynch);

anErr = PBRename(&anIOParam, asynch);

anErr PBSetFLock(&anIOParam, asynch);

anErr PBRstFLock(&anIOParam, asynch);

anErr PBSetFVers(&anIOParam, asynch);

anErr PBGetFinfo{&anFPram, asynch);

anErr PBSetFinfo (&anFParam, asynch);

Volume Routines

anErr PBGetVolinfo(&aVParam, asynch);

anErr PBGetVol(&anIOParam, asynch);

anErr PBSetVol(&anIOParam, asynch);

anErr PBEject(&anIOParam, asynch);

anErr PBFlshVol{&anIOParam, asynch);

anErr PBOffLine(&anIOParam, asynch);

C Calling Conventions 497

anErr = PBMountVol(&anXOParam);

anErr = PBUnmountVol(&anXOParam);

Chapter 13: The Finishing Touches
/* declare some variables */
char
int
long
Str255
WindowPtr
EventRecord
MenuBandle

al'lag;
refNwn, editCmd, it-, iconNumber;
menuResult;
theName;
tbeWindow;
tbeEvent;
theMenu;

Opening and Closing Desk Accessories

refNwn = OpenDeskAcc(&theName);

CloseDeskAcc(refNum);

Desk Accessories and Events

SystemTask () ;

SystemClick(&theEvent ,tbeWindow);

al'lag = SystemEvent(&tbeEvent);

SystemMenu(menuResult);

al'lag = SystemEdit(editCmd);

Icons in Menus

Setitemicon(tbeMenu, it-, iconNumber);

I

+
I
I
I
I

.............. I
..............

I
...............

...............
............... t-..,..

I
I
I

)(I .,,
..,_ I

Error Codes and
Reserved Resource
Types

The following is a list of the Macintosh Operating System
Error Codes and Reserved Resource Types.

Macintosh Operating System Error Codes

Null Error
noErr = 0 no Error

General System Errors (Vertical Retrace Mgr,
Queuing, Etc.)

qErr = -1 queue element not found during deletion

vTypErr = -2 invalid queue element

corErr = -3 core routine number out of range

unimpErr = -4 unimplemented core routine

500 Using the Macintosh Toolbox with C
--- APP.B

1/0 System Error Codes

controlErr = -17 driver can't respond to the Control
call

statusErr = -18 driver can't respond to the Status
call

readErr = -19 driver can't respond to the Read
call

writErr = -20 driver can't respond to the Write
call

badUnitErr = -21 reference number doesn't match
unit table

unitEmptyErr = -22 Reference number specifies NIL
handle in unit table

openErr = -23 driver can't respond to the Open
call

closErr = -24 driver can't respond to the Close
call

dRemoveErr = -25 tried to remove an open driver

dlnstErr = -26 Drvrlnstall couldn't find driver in
resources

abortErr = -27 1/0 call aborted by KillIO

notOpenErr = -28 Couldn't rd/wr/ctl/sts because
driver not opened

File System Error Codes

dirFulErr = -33 file directory full

dskFulErr = -34 all allocation blocks on the disk
are full

nsvErr = -35 no such volume
ioErr = -36 disk 1/0 error

Error Codes and Reserved Resource Types 501

bdNamErr = -37 bad file or volume name (zero
length?)

fnOpnErr = -38 file not currently open

eotErr = -39 logical EOF reached during a
read operation

posErr = -40 tried to position mark before start
of file (r/w)

mFulErr = -41 system heap is full

tmfoErr = -42 too many files open
(12 maximum)

fnfErr = -43 file not found

wPrErr = -44 diskette is write protected
(hardware)

tLckdErr = -45 file is locked (one of the File Sys-
tern flags)

vLckdErr = -46 volume is locked in software

fBsyErr = -47 file is busy (one of the File Sys-
tern flags)

dupFNErr = -48 a file with the specified name
already exists

opWrErr = -49 file already open with write
permission

paramErr = -50 error in user parameter list: bad
volume and no default

rfNumErr = -51 reference number specifies non-
existent access path

gfpErr = -52 error during GetFPos

volOftLinErr = -53 volume not on-line (was Ejected?)

permErr = -54 read/write permission doesn't
allow writing

volOnLinErr = -55 drive volume already on-line at
Mount Vol

nsDrvErr = -56 no such drive number, not in
drive queue

502 Using the Macintosh Toolbox with C
--- APP. B

noMacDskErr = -57 not a Mac diskette, wrong or bad
directoryfile format

extFSErr = -58 volume in question belongs to an
external file system

f sRnErr = -59 problem occurred during rename

badMDBErr = -60 bad master directory block,
volume must be reinitialized

wrPermErr = -61 read/write or open permission
does not allow writing

lastDskErr = -64 last of the range of low-level disk
errors

dirNFErr = -120 directory not found

tmwdoErr = -121 too many working directories
open

badMovErr = -122 attempted to move into offspring

wrgVolTypErr = -123 attempt to do hierarchical opera-
tion on nonhierarchical volume

fsDSintErr = -127 internal file system error

Disk Driver, Serial Ports, & Clock Error Codes

noDriveErr = -64 drive not installed

noNybErr = -66 couldn't find 5 nybbles in
200 tries

noAdrMkErr = -67 couldn't find valid addr mark

dataVerErr = -68 read verify compare failed

badCkSmErr = -69 addr mark checksum didn't
check

badBtSlpErr = -70 bad addr mark bit slip nibbles

noDtaMkErr = -71 couldn't find a data mark header

badDCkSum = -72 bad data mark checksum
badDBtSlp = -73 bad data mark bit slip nibbles

Error Codes and Reserved Resource Types 503

wrUnderRun = -74 write underrun occurred

cantStepErr = -75 step handshake failed

tkOBadErr = -76 track 0 detect doesn't change

initIWMErr = -77 unable to initialize IWM

twoSideErr = -78 ried to read 2nd side on a
1-sided drive

spdAdjErr = -79 unable to correctly adjust disk
speed

SeekErr = -80 track number wrong on address
mark

sectNFErr = -81 sector number never found on a
track

firstDskErr = -84 first of the range of low-level
disk errors

clkRdErr = -85 unable to read same clock value
twice

clkWrErr = -86 time written did not verify

pRWrErr = -87 parameter RAM written didn't
read-verify

pRinitErr = -88 InitUtil found the parameter
RAM uninitialized

rcvrErr = -89 sec receiver error (framing,
parity, OR)

breakRecd = -90 Break received (SCC)

Scrap Manager Error Codes
noScrapErr

noTypeErr
=
=

-100 No scrap exists error

-102 No object of that type in scrap

504 Using the Macintosh Toolbox with C
--- APP.B

Memory Manager Error Codes

memROZErr = -99 operation on a read only zone

memFullErr = -108 not enough room in heap zone

nilHandleErr = -109 Master Pointer was NIL

memAdrErr = -110 specified address is odd or out of
range

memWZErr = -111 attempt to operate on a free block

memPurErr = -112 trying to purge a locked or non-
purgeable block

memAZErr = -113 address in zone check failed

memPCErr = -114 pointer check failed

memBCErr = -115 block check failed

memSCErr = -116 size check failed

Resource Manager Error Codes (other than 1/0
errors)

resNotFound = -192 Resource not found

resFNotFound = -193 Resource file not found

addResFailed = -194 AddResource failed

addRefFailed = -195 AddReference failed

rmvResFailed = -196 RmveResource failed

rmvRefFailed = -197 RmveReference failed

resAttrErr = -198 Attribute inconsistent with
operation

mapReadErr = -199 Map inconsistent with operation

System Startup Alerts

= -10 MacsBug installed

Error Codes and Reserved Resource Types 505

= -11 Disassembler installed

= -12 RAM-based Operating System
installed

= 40 "Welcome to Macintosh" box

= 42 Can't mount system startup

volume: Couldn't mount disk in internal drive or couldn't read system
resource file into memory

= 43

"Warning-this startup disk is not
usable" box

"Desperate Situation" Alerts
dsBusErr = 1 Bus Error: Never happens on a

Macintosh

dsAddressErr = 2 Address Error: Word or long-
word reference made to an odd
address

dsllllnstErr = 3 Illegal 68000 instruction

dsZeroDivErr = 4 Zero Divide: DIVS or DIVU in-
struction with a divisor of 0 was
executed

dsChkErr = 5 Check Exception: CHK instruc-
tion was executed and failed

dsOvflowErr = 6 Trap V Exception: TRAPV in-
struction was executed and failed

dsPrivErr = 7 Privilege Violation: Perhaps an
erroneous RTE instruction was
executed

dsTraceErr = 8 Trace Exception: The trace bit in
the staus register is set

dsLineAErr = 9 Line 1010 Exception: The 1010
trap dispatcher is broken

506 Using the Macintosh Toolbox with C
--- APP.B

dsLineFErr = 10 Line 1111 Exception: Usually a
breakpoint

dsMiscErr = 11 Miscellaneous Exception: All
other 68000 exceptions

dsCoreErr = 12 Unimplemented Core routine: An
unimplemented trap number was
encountered

dslrqErr = 13 Spurious Interrupt: usually oc-
curs with level 4, 5, 6, or 7
interrupts

dsIOCoreErr = 14 I/0 System Error

dsLoadErr = 15 Segment Loader Error: A
GetResource call to read a seg-
ment into memory failed

dsFPErr = 16 Floating Point Error: The halt bit
in the floating-point environment
word was set

dsNoPackErr = 17 Can't load package 0

dsNoPkl = 18 Can't load package 1

dsNoPk2 = 19 Can't load package 2

dsNoPk3 = 20 Can't load package 3

dsNoPk4 = 21 Can't load package 4

dsNoPk5 = 22 Can't load package 5

dsNoPk6 = 23 Can't load package 6

dsNoPk7 = 24 Can't load package 7

dsMemFullErr = 25 Out of memory

dsBadLaunch = 26 Segment Loader Error: usually
indicates a nonexecutable file

dsFSErr = 27 File Map trashed: Bad logical
block number is found

dsStkNHeap = 28 Stack Overflow error: The stack
and heap have collided

dsReinsert = 30 "Please insert the disk:": File
Manager alert

Error Codes and Reserved Resource Types 507

dsNotThel = 31 This is not the correct disk

memTrbBase = 32 Memory Manager failed

neg2cbFreeErr = 33 2cbFree is negative

= 41 The file named "Finder" can't be
found on the disk

menuPrgErr = 84 A menu was purged

= 100 Couldn't read the system
resource file into memory

= 32767 System Error

Reserved System Resource Types
'ALRT' Alert Template

'ADBS' Apple desktop bus service routine

'BNDL' Bundle

'CACH' RAM cache code

'CDEF' Control Definition

'CNTL' Control Template

'CODE' Application Code Segment

'CURS' Cursor

'DITL' Dialog item list for alerts and
dialogs

'DLOG' Dialog Template

'DRVR' Device Driver (desk accessories,
printer drivers, etc.)

'DSAT' System startup alert table

'FCMT' "Get Info" Comment-used by the
Finder

'FKEY' Command-Shift-number key
routine

'FMTR' 3 l;2 inch disk formatting code

508 Using the Macintosh Toolbox with C
--- APP.B

'FOBJ' Folder Names-used by the Desk-
Top File

'FOND' Font family record

'FONT' Font

'PREF' File Reference

'FRSV' Font reserved for system use

'FWID' Font widths

'ICN#' Icon list

'ICON' Icon

'INIT' Initialization Resource

'INTL' International Resource

'INT#' List of integers owned by Find File

'KCAP' Physical layout of keyboard

'KCHR' ASCII mapping

'KMAP' Keyboard mapping

'KSWP' Keyboard script table

'LDEF' List definition procedure

'MACS' Mac Software Creator

'MBAR' Menu Bar

'MDEF' Menu Definition

'MENU' Menu

'MMAP' Mouse tracking code

'MINI' MiniFinder Creator

'NBPC' Name Binding Protocol

'NFNT' 128K ROM font

'PACK' Package

'PAPA' Current selection of the Choose
Printer Desk Accessory

'PAT ' Pattern (the space is required)

'PAT#' Pattern List

'PDEF' Printer Definition

'PICT' Picture

Error Codes and Reserved Resource Types 509 ---
'PREC' Print Record

'PRER'. Device type for Chooser

'PRES' Device type for Chooser

'PTCH' ROM patch code

'RDEV' Device type for Chooser

'ROvr' Code for overriding ROM resources

'ROv#' List of ROM resources to override

'SERO' Serial Driver

'STR' String (the space is required)

'STR#' String List

'WDEF' Window Definition

'WIND' Window

-- -...... --+

',,;.

I
I
I
I
I
I
I

---+
I
I
I
I

~
I

ASCII Chart of the
Macintosh System Font

This appendix contains an ASCII chart of the system font
(Chicago). The first four characters are exclusive to the system font and
are often used in creating menus. The chart was from a program written
by Dave Richey.

The characters in $00, $09, $0d, $20, $7f, and $ca denote the
effect of the ASCII code, rather than illustrating what is printed by it.

512 Using the Macintosh Toolbox with C
--- CH.1

ASCII Chart of the Macintosh System Font

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 D 0 @ p ' fi

..... t • D D NUL Space p e 00 L -
1 D x I 1 A Q 8 q A e 0 ± • D D I -•
2 D ../ II 2 B R b 1

,
¢ " D D r I i .,

,

' -./ 3 D • 3 c s c s E I £ 1 " D D

• $
,.,, § 4 D 4 D T d t N I ¥ f ' D D

5 D D 3 5 E u e u 0 ... • JI - ' D D
6 D D & 6 F u f 0

,.,,
'11 a 6. D D u n .

7 D D I 7 G UJ _g_
, ,

JJ I <> D D w 8 0 «
8 D D (8 H H h ' ' ® TT _y_ D D H 8 0 »
9 D) 9 I y i y

© T1 D D D TAB 8 0 •••

D D * J 2 i ti ii TM 1
non-

D D D a • z break
• space

b D [{
,.,, - ' D + • K k 8 0

,
I A D D D '

D D \ I
0 , .. -c

' < L I 8 u ! A D D D
d D M] } '

,.,,
CR - - m

.. ~ u * 0 0 D D D
D D > N " - ,

fE a: D D D e • n e u fl!
f D D I ? 0 ' ii B D D D 0 DEL e B m • -

Index
A
active edit record. See editText
AddPt, 106
AddResMenu, 82, 92
afterltem, 83
aHandle, Memory manager, 176
alarm clock. See desk accessories, types of
alerts, 15. See also alerts and dialogs

ALRT resource, 328
behavior of, 328
definition of, 325
sample of, 327
sounds, 328
stages, 328

alerts and dialogs
creating and disposing of, 493
events, responding to, 493
initialization of, 493
invoking of, 494
items, manipulation of, 494
locking and unlocking of, 494

Alert, 347, 348
alive, 40
allocation block map. See volumes,

allocation block map
ALRT resource, 347, 349
altDBoxProc, 45
angles, arcs, and wedges

operations on, 138
defining and drawing of, 139-140

AppendMenu, 81, 83, 88-89, 287, 470
arcAngle, 140
arcs. See angles, arcs, and wedges
ASCII chart of system font, 511-512
assembly language glue routines, 245
auto-key. See keys, auto-key

B
BackPat, 134
beeps, 15
beforelD, 87
BeginUpdate, 191, 229
behind, 53
Sic, 113
bitMap, 127
bkColor, 129

bkPat, 128
blinking insertion point, using TEldle, 224
BlockMove, 180-182, 195
bold, 86
bounding rectangle, 57
boundsRect, 52, 287
buffer. See files, application, data buffer for
buttons. See controls
Button, 38
byteCounts, 125

c
C language, xxix

calling conventions, summary of,
473-497

string, Pascal, converting to, xxii
Toolbox, calling of, xxiii-xxvii

calculator. See desk accessories, types of
canoe, 182
caution icon, 330
CautlonAlert, 348
CClikloop, 245
ChangeMouse, 237
CharWldth, 125
check boxes. See controls, check boxes
Checkltem, 84
chStyle, 86
Clikloop, 245, 249
clipboard scrap routines, 240-244
ClipRect, 133
clipRgn, 128
ClosedeskAcc, 465
CloseDlalog, 343
ClosePlcture, 148, 150
ClosePoly, 140, 142
ClosePort, 131
CloseRgn, 144
closing a file. See File Manager, low-level

routines
CNTL, 306
colrBit, 129
command key

modifiers field, 31
symbol, 77

compaction. See heap, compaction
CompactMem, 180
compiler compatability, xviii

constant masks, 28
contriRect, 332
contrlRfCon, 304
control panel. See desk accessories, types of
ControlHandle, 303
ControlPtr, 303
ControlRecords, 303
controls

active and inactive, 300-302
appearance,307-309
buttons, 13, 296
check boxes, 13, 297
control manager routines, 304-314
defining and disposing of, 340-306, 491
dials, 14
displaying and determing of, 491
disposing of, 306
examples of, 12-14
highlighted, active and inactive,

299-302,309
initializing control manager, 304
miscellaneous routines, 314, 492
mouse-down events, 309-311, 492
moving and sizing of, 311-312, 492
NewControl parameters, 304-306
part codes, 302
radio buttons, 13, 297
record data structure, 302-304
sample program for, 314-322
scroll bars, 298-299
setting values of, 312-313
sizing, 312
and Think C, 303
types of, 295
updating of, 308
values, setting of, 492

conventions used in text, xviii
coordinate planes, multiple, 107
coordinates

global, 52
horizontal, l 05
vertical, 105

copy, 10, 224, 243
CopyBlts, 151
copying files. See desk accessories, types of
copy, 113
CouldAlert, 349
CouldDlalog, 349
creating a file, example of, 387. See also file

manager, low-level routines
crOnly, 217
CtoPstr, xxii
cursors, 151-155

hotspot, 152
opaque, 152

routines for, 486
transparent, 152

Cursor, 151
cut, 224, 243
cut command, 10

D

Index 515

data fork. See resources, data fork
dBoxProc, 45
default volume. See volume routines, default

volume
DeleteMenu, 87
deleting files. See file manager, low-level

routines
dereferencing. See memory manager
desk accessories, 285

edit menu, 468-469
and events, 496
events forwarded by Toolbox, 467
forwarding of mouse-down events,

466-467
lending time to, 466
opening and closing of, 464-466
operation of, 463
selecting an item of, 468
support for, 462-469
types of, 462

destination rectangle. See TextEdit,
destination rectangles

destRect, 215
device, 127
dialog and alert boxes

contents, 328-332
controls, 329
definition of, 325
display of items, 332
edit text, 330
icons, 330
item numbers, 331
pictures, 331
static text, 329

dialog and alert resource types, 333-339
ALRT, 335
ALRT creation, 338
creation of, 336
DITL, 334
DITL creation, 337
DLOG, 333
DLOG creation, 337

dialog and alert routines, 339-352
alert resources in memory, locking and

unlocking, 349
alerts, invoking of, 347
creating and disposing of, 341

516 Using the Macintosh Toolbox with C

dialog Manager routines (6), 349
initializing, 339
manipulating items, 349-352
manipulating text, 351-352
NewDialog, 341
ParamThxt routine, 352
sample program, 352-361

dialog boxes, modal and modeless, 14
dialog manager, 339-352

CloaeDlalog, 343
Control Manager lhlckControl, 345
CouldDlalog, 343
DlalogEvent, 345
DlalogSelect, 345-346
DlspoaDlalog, 343
disposing of dialogs, 343
DITL resource, 344
DLOG resource, 344
DrawDlalog, 345, 346
FreeDlalog, 344
GetNewDlalog, 341, 342
initialization, 339
lsDlalogEvent, 346
locking and unlocking of resources, 343
modal dialogs, 344-345
ModalDlalog, 344-345
modeless dialog handling, 346
NewDlalog, 341, 342
no response needed dialogs, 346
responding to dialog events, 345

DialogRecord, 332
DlflRgn, 146
Dlsableltem, 83
disk drives. See also events, device driver
disk insert events. See SF package, disk

insert events
DlspoaDlalog, 343
DlspoaeControl, 306
DlspoaeMenu, 87
DlspoaHandle, 175
DlspoaPtr, 131, 173
DITL resource, 349
documentProc, 45
double clicking, 200-201
DownMask, 38
drag region. See window components, title

bar
DragWlndow, 204
DrawChar, 124
DrawControls, 308
DrawGrowlcon, 61
drawing text. See GrafPort, text drawing

routines
DrawMenuBar, 90
DrawPlcture, 150, 198
DrawStrlng, 124

Draw"Rlxt, 124
DrawWlndow 65-67, 467
dstPt, 106

E
edit record, 210-211. See also TextEdit, edit

record .
edit Text

activating and deactivating edit
records, 222-224

active and inactive edit records, 221
justification, 233
scroll, 235
word wrap, 233

ejecting volume. See volume routines,
ejecting of volume

EmptRect, 112
EmptyRgn, 147
enableFlags, 79
Enableltem, 83-84
EndUpdate, 191, 229
EOE See files, logical end of
EqualPt, 106
EqualRect, 112
EqualRgn, 147
Erase, 134
EraseRect, 135
error Codes

alerts, desperate situation, 505-507
clock error, 502
disk driver, 502
file system, 500-502
1/0 system, 500
listing of, 499-509
memory manager, 504
null, 499
reserved system resource types, 507-509
resource manager, 504
scrap manager, 503
serial ports, 502
system errors, general, 499
system startup alerts, 504-505

ErrorSound, 340
events

activate events, 22
AppleTalk Manager network event, 22
application-defined, 23
device driver events, 22
disk-inserted, 21
key-down/auto-key/key-up, 21
masks

diagram, 35
values, 36

mouse-down/mouse-up, 20
network event, 22

null, 20
queue, priorities in, 33-40
update events, 22

event manager
defined, 20
event records, manipulation of, 473
mouse routines, 474
time routines of, 474
windows example program 70-75

event manager routines
escape from main event loop, 39
manipulating event records, 36
mouse routines, 38
time routines, 39

event records
ASCII codes, 26
codes, 20
key code values, 27
message

for disk-inserted events, 28
field, 25
for keyboard events, 26
for update and activate, 28
null, mouse-down, mouse-up, 25

modifiers field, 31
control key bit, 33
for shift, caps, lock, and option

keys,33
mouse button status, 33

what fields 24-25
when field, 30
where field, 30

event-driven computer, 20
EventAvall, 37
EventRecord, 303, 467
EventRecord, 467
everyEvent, 38
ExltToShell, 39, 340

F
FALSE,xxix
fgColor, 129
file directory. See volumes, file directory
file manager. See also files

compared with SF package, 374
data fork, 279, 365
data structures, 375-381
file system, sample program, 428-452
filter programming example, 415-416
finder flags for, 377
finder information, 404-405
functional categories, 374-375
high-level routines, 374-375
internal file attribute flags, 405

Index 517

low-level routines. See low-level
routines

MountVol, 29
opening a file for editing sample,

416-421
parameter block, 375
resource fork, 365
saving file back to disk program

example, 421-428
SF package examples, 415-428
specifying a file, methods of, 381
version, setting of, 404
volume routines, 408-415

file system, See also file manager, file system
sample program

1/0 calls for, 495
routines for, 496
standard file package of, 495

file-filter routine. See SF package, file-filter
routine

FileParam, 405
files, 365-367

application data buffer for, 367
assessing of, 366-367
closed, 366
definition of, 365
file name, 365
logical end of (logical EOF), 365,

396-397
mark. See files, position marker
open, 366
path reference number to, 366
physical end of (physical EOF), 365,

396-397
position marker, 365
version number of, 365

fillPat, 128
FlllRect, 136
Fiii, 134
FlndControl, 304, 309-312
finder flags. See file manager, finder flags

for
FlndWlndow, 62-65, 67-70, 243, 309-311,

466
Flnfo, 376, 405
flrstByte, 125
flags. See file manager, internal file attribute

flags
FluahEvents, 37, 38
font

characteristics, 217
size and style. See GrafPort, text

drawing routines
update. See TextEdit, font update

fontAscent, 215

518 Using the Macintosh Toolbox with C

FontWlndow, 59
fragment_ation. See heap, fragmentation
FramePoly, 143
FrameRect, xxii, 135
Frame, 134, 144
FreeAlert, 349
FreeDlalog, 349
FreeMem, 179

G
GetCllp, 133
GetCRefCon, 314
GetCTltle, 307
GetCtlMax, 312-313
GetCtlMln, 312-313
GetCtlValue, 350
GetCtlValue, 312-313
GetCursor, 154, 237
GetDblTlme, 200
GetDltem, 349-351
Getfontlnfo, 125, 232
GetHandleSlze, 175
GetltemMark, 85
Getltem, 93, 464
GetlText, 349-351
GetMemu, 282, 287
GetMouse, 38
GetNewControl, 304, 306
GetNewMBar, 287
GetNewWlndow, 286-287
GetNextEvent, 36, 37, 62, 90, 186, 189, 204,

223,224,227,414,467
GetPenState, 120
GetPen, 117
GetPort, 50, 132
GetPtrSlze, 173
GetWlndowPlc, 198
GetWRefCon, 197
GetWTltle, 57, 61
global coordinates, 52
GlobalToLocal, 107
GlobWindowSize, 195
glue routine, 245
goAway, 57
goAwayFlag, 54, 287
go-away region. See windows components,

close box
GrafPort, 112-134

data structure and routines, 126-134
patterns, 113-117
pen characteristics, 117-121
QuickDraw drawing verbs, 134-143
routines, 130-134
text characteristics, 121-123

text drawing routines, 124-126
transfer. See transfer mode

gra!Port, 38, 49, 112, 191, 193, 217
gra!Procs, 130
g raf Ptr, 128
graphics programs. See desk accessories,

types of
grow region. See windows components, size

box
GrowWindow, 67-70, 203

H
handles, xxvi-xxvii
hard disks volumes, 21
heap

compaction, 168-169
fragmentation, 169
free (unallocated) blocks, 166
master pointer, 168
nonrelocatable blocks, 166
pointer, 167
relocatable blocks, 166, 167
zones, 166

heap. See also memory map, heap
HldeControl, 307
HldeCursor, 153-154
HldePen, 119, 141, 144
HldeWindow, 60
high-level routines. See file manager,

high-level routines
HlllteControl, 309
HlllteMenu, 91-92
HIWord, 68
hotSpot, 151, 152
hText, 216
h, 105

ICON resource, 348, 471
icons, 292

BNDL resource, 461
bundle bits, 456
creating own, 455-462
file signatures, 456
and Finder, 456
finder related resources, 460-461
FRED resource, 460
for menu, 470-471
in menu, 486
requirements for, 455
in ResEdit, 457
RMaker, 460
version data resource, 460

inactive edit record. See EditText, active and
inactive records

lnltc:uraor, 152-153
lnltDlalogs, 339
lnltFonts, 80, 304
lnltGraf, 80, 130, 304
initialization. See dialog and alert routines,

initializing
initializing control.manager. See controls,

initializing control manager
lnltMenua, 80, 33·9
lnltPort, 131
lnltQueue, 385
lnltWlndowa, 51, 304, 339
insertion point of text, 212
lnsertMenu, 87, 89
lnsertResMenu, 83, 92
lnsetRect 110-lll
lnsetRgn, 145
Inside Macintosh, xvi, xxv, xxix, 56, 59, 129,

240,464
lnvalRect, 193
lnvalRgn, 193
lnvertRect, 136
Invert, 134
lsValldWlndow, 199
itemString, 83
itmRect, 332

J
justification, 216, 233
just, 216

K
keys

auto-key defaults, 21
auto-key rate, 21
auto-key threshold, 21
character keys, 21
modifier keys, 21

KlllControls, 306
KlllPlcture, 149
KlllPoly, 142

L
lineHeight, 215
lineStarts, 217
LlneTo, 120, 141
Line, 120, 141
LocalToGlobal, 107
locked purgeable block, 176
locking/unlocking a file. See file manager,

low-level routine

Index 519

LocWindowSize, 195
low-level routine, 374-375, 381-415

asynchronous,383-385
·completion routine, 384
copying or modifying information,

404-408
creating a file, 385-387
deleting a file, 401
error codes, 384
finding and changing file length,

396-398
110 routines, 385-400
locking/unlocking a file, 402-404
opening for reading or writing, 387-400
parameter blocks (and), 378-383
renaming files and volume.s, 401-402
synchronous,383-385
writing to a file, 394-396

LoWord, 68

M
MacPaint, 331
main event loop program example, 40
malloc, 181
markChar, 85
mDownMask, 38
memcpy, 182
memory management

heap, routines for, 487
non-relocatable blocks, 486
relocatable blocks, 487

memory manager, 171-172
C language equivalents, 181-182
dereferencing, 171-172
errors in, 174
miscellaneous routines, 179-181
nonrelocatable blocks, 172-174
pointers, 177-179
relocatable block properties, 175-177
relocatable blocks, 174-175

memory map, 164-170
application memory, 164
heap, 165
high memory, 164
low memory, 164
RAM, 164
ROM, 164
stack, 165
system heap, 164

menus
accumulating attributes, 7
adjective commands, 7
anatomy of, 77-78
and bar, 77

520 Using the Macintosh Toolbox with C

bar highlighting, 478
creation of, 80-90, 476
exclusive attributes, 7
font-related fontsize, 11
handle, 78
initialization of, 476
items

enabling and disabling of, 477
marking of, 477
modifying of, 477

list, 80, 477
presenting commands, 7-9
record, 78
resources, reading in, 478
sample program for, 93-98
selecting from, 477
standard edit menu, 10
standard file menu, 9
standard Apple menu, 9
style, 8
text styles, 477
types and structures, 78-80
verb commands, 7

menuData, 79
MenuHandles, 89
menulD, 79, 80, 90
Menulnfo, 78
MenuKey, 91, 468
menuProc, 79
menuResult, 90
MenuSelect, 90, 91, 468
menuTitle, 80
MENU, 56, 88
metacharacters in menu manager, 81
modal dialog box. See dialog and alert boxes
ModalDlalog, 347
modeless dialog box. See dialog and alert

boxes
Mounting and unmounting of volumes. See

volume routines, mounting and
unmounting of

MountVol, 29
mouse

click location, 30
controls, events of, 30
modifiers field, 31
where field, 30

mouse-down events. See controls,
mouse-down events

mouseloc, 38
MoveControl, 311-312, 350
MoveTo, 119
MoveWlndow, 66
Move, 119

MoveScrollBars, 308
moving controls. See controls, moving and

sizing of
movmem, 182
multiple windows, 185-199

N

activate events, 186
creator determination, 196
double-click time, 488
inactive window, 186
programming example, 200-207
programming techniques, 194-199
and QuickDraw picture, 198, 200. 488
redrawing of, 191
RefCon, 488
refCon fields of, 197
size determination, 194-195
type determination, 196
update events, 188-189, 488
update region, 189, 192-194
window list, 198-199

NewControl, 304
NewHandle, 174, 180
NewMenu, 80, 163
Newptr, 131, 172-173, 181
NewRgn, 144, 146, 151
NewWlndow, 51, 286-287, 333
NIL, xxix
nlines, 217
noGrowDocProc, 45
nonrelocatable blocks. See memory manager
not, 113
NoteAlert, 348
note icon, 330

0
OBGetVol, 410-411
ObscureCursor, 155
OffsetPoly, 142
OffsetRect, 110
OffsetRgn, 133, 145
OpendeskAcc, 464
opening a file. See file manager, low-level

routines, 385
opening and closing desk accessories, 496
OpenPlcture, 148, 150
OpenPoly, 140-141
OpenPort, 131-132
OpenRgn, 144
Or, 113
ovals, operations on, 136. See also

QuickDraw shapes

p
packages. See file system, standard file

package of
page-up/down. See controls, scroll bars
PalntRect, 135
Paint, 134
paramBlock, 383
parameter blocks. See file manager, low-level

routines
Para111'ntxt,339,349-351,352
Pascal

C, compared to, xix, xxi
C, converting to, xxii
and native 68000 assembly language,

xviii
relationship to C, xvi

paste, 224, 243
paste command, 10
pat, 113
patStretch, 129
Pattern, 114
pattern, five predefined, 115
PBAllocate, 396- 398
PBCreate, 386, 401
PBDelete, 401
PBEJect, 412
PBFlshFlle, 398
PBFlahVol, 398, 412-414
PBGETEOF, 396-398
PBGetFlnfo, 401, 406-407
PBGetFPoa, 399
PBGetVollnfo, 409-410
PBMountVol, 414
PBOffLlne, 412-413
PBOpen, 390
PBOpenRF, 389
PBRead, 392, 395
PBRena111e, 401-402
PBRatFLock, 402
PBSetEOF, 396-397
PBSetFlnfo, 386, 401, 407
PBSetFLock,402
PBSetFPoa, 400
PBSetFVera, 401, 404
PBSetVol, 411
PBUn111ountVol, 414
PBWrlte, 394, 395
PB (parameter blocks). See File Manager,

low-level routines
pen

default fields, 480
drawing lines with, 480
moving of, 480
perserving characteristics of, 480

Index 521

PenMode, 118
PenNor111al, 119
PenPat, 118
PenSlze, 117
picSave, 130
pictures

defining and drawing of, 148-150
routines for, 485

plainDBox, 45
pnLoc, 117, 129
pnMode, 117
pnPat, 118, 129
pnSize, 117, 129
pnVis, 118, 129
Point, 104, 152
pointers, xxvi-xxvii. See also heap, pointer
Points, 107, 109
points

coordinate system, 479
definition of, 479
manipulation of, 479
Pointer dangling, 177

polygons. See also QuickDraw, shapes and
structures

defining and disposing, 141
defining and drawing of, 140, 143
moving of, 142

polySave, 130
portBits, 127
portRect, 128
PoatEvent, 23, 37
PrlnRect, 111
printers. See also events, device driver
proclD, 53, 287
Pt2Rect, 110
PtlnRgn, 147
PtoCatr, xxii
PtToAngle, 138
puzzle. See desk accessories, types of

a
QuickDraw. See also multiple windows

bit transfer operations, 150-151, 486
coordinate plane, 103
coordinate system changes, 479
defining and manipulating points,

104-107
defining and manipulating rectangles,

107-112
dialog or alert box, 331
drawing environments. See GrafPorts
drawing in, 481
drawing verbs, 134-143
figure routines, 482-484

522 Using the Macintosh Toolbox with C

R

font character determination, 481
GrafPorts, creating and disposing of,

481
GrafPorts routines, 481-482
pattern defining, 480
pen field manipulating, 480
regions, routines for, 484-485
sample program for, 155-156
shapes and structures, 135-143
text field manipulation, 481
width of items, 481

radio buttons. See controls, radio buttons
rDocProc, 45
rectangles, 135

comparison of, 479
definition of, 479
moving of, 479
points within, 479
resizing of, 4 79

RectlnRgn, 147
Rect, 52, 108
refCon, 334
refCon,48,54,57, 197,219,287
reference, Toolbox, calling of, xxiv
regions. See also QuickDraw, shapes and

structures
defining of, 144
drawing of, 148
manipulation of, 145-147

relocatable blocks. See memory manager,
relocatable blocks

renaming a file. See file manager, low-level
routines

ResEdit, 293, 331, 336, 455. See also
resources, ResEdit

ResEdit program, 56
ReservMem, 180
ReSizeTE, 239

resource
data, 281
file, 280
fork 279-280
header, 281
map, 281
name, 281

RMaker, 289, 291-293
Standard File package (SF), 285
techniques for using, 286-288
window template resources (WIND),

286
resource and windows, 55-58
Resource Manager, 282-284

file order, 282

initialization,-282
search order, 282

resource map. See resources, resource, map
resources

active, 284
bit-mapped entities, 288
creating, 288-291
data fork, 279-280
Disk initialization package (PACK),

285
function of, 279
manager. See Resource Manager
miscellaneous, 286
organization of, 279-282, 279
package resources, 285
passive, 284
PICT, 331
power, 293
program modification, 288
ResEdit, 289

resource types
CDEF, 284
DRVR, 284
FONT, 285
MDEF, 284
PACK, 285
SF, 285
WEDF, 284
WIND, 286

rgnSave, 130
RMaker, 88, 336, 455, 470.
rectangles, operations on, 137. See also

QuickDraw, shapes and
structures

s
scroll bars, 14. See also controls, scroll bars
scrolling of text, 212
ScrollRect, 150
SectRect, 109
SectRgn, 146
SellText, 349-351
selection range, 213
SelectWlndow, 59, 186
selEnd, 216
selStart, 216
serial ports. See also event, device driver
SetCllp, 133
SetCRefCon, 314
SetCTltle, 307
SetCtlMax, 312-313
SetCtlMln, 312-313
SetCtlValue, 312-313, 350
SetCursor, 153-154
SetDltem, 349-351

SetHandleSlze, 175
Setltem, 83
Setltemlcon, 470
SetltemMark, 84
SetltemStyle, 86
SetlText, 351
SetOrtgln, 133
SetPenState, 120
SetPort, 50, 132
SetPt, 105
SetPtrSlze, 173
SetRect, 108-110, 308
setting values of controls. See controls
SetWindowPlc, 198
SetWRetCon, 197
SetWTltle, 57, 60
SF package. See also File Manager, SF

package example
basic procedures, 367-369
disk insert events, 369
file-filter routine, 371
reply record, 369-370
selecting a file, 370
SFGetFile/SFPutFile read and write

limitations, 373
SFPutFile, use of, 372-373

SFGetFlle, 367-373, 390, 411, 415-417
SFPutFlle, 368, 385-386, 411, 425
ShowControl, 307
ShowCursor, 153-154
ShowPen, 119
ShowWlndow, 59-60
SlzeControl, 312
SlzeWindow, 69-70
sizing controls. See controls, sizing
sound procedure, 341
spExtra, 123, 129
SpaceExtra, 123
spreadsheets. See desk accessories, types of
srcBic, 123
srcOr, 123
srcPt, 106
srcXor, 123
src, 113
Standard File package. See SF package
startAngle, 140
StlllDown, 38
stop icon, 330
StopAlert, 348
stopMask, 38
strings, xxi
StrlngWldth, 125, 296
Structs, xix
StuHHex, 116
Style, 86
SubPt, 106

system resource file, 284-286
SystemCllck, 467
SystemEdlt, 468
SystemEvent, 467
SystemMenu, 468
Systemlllsk, 466

T
TEActlvate, 219, 222
TEActlve, 221
TECllck, 227, 245
TECopy, 225, 243
TECut, 225, 243
TEDeactlvate, 222
TEDelete, 226
TEDlspose, 219
TEFromScrap, 242
TEGetScrapLen, 243
TEGetText, 220
TElnlt, 218
TElnsert, 226
TEKey, 224-225, 244
telength, 216
TENew, 218
TEPaste, 225, 231
TERec, 213

Index 523

terminal emulators. See desk accessories,
types of

TEScrapHandle, 242
TEScroll, 235
TESetJust, 233
TESetScrapLen, 243
TESetSelect, 228
TESetText, 219
TestControl, 309
TEToScrap, 242-243
TEUpdate, 229-230, 233
TextEdit

advanced techniques. See text
techniques, advanced

allocating and disposing of records,
218-221

appearance routines, 231-234
character data, 216
character index, 213
data structures, 213-217
destination and view rectangles, 215
destination rectangle, 212
edit record, 213
editing routines, 224-230
font update, 232
initializing, 218
itmRect, 332
line spacing, 215

524 Using the Macintosh Toolbox with C ---
redrawing in response to update event,

229
sample program, 2Sl-27S
selection range and insertion point, 216
selection range direct change, 228
text appearance, 210-213
text lines, 217
and Toolbox, 210-264
view rectangle, 212

text editing
appearance,210-213
drawing of in boxes, 490
edit record text, 489
editing, routines for, 489
entering of keyboard text, 489
initializing, 489
insertion point blinking, 489
mouse-down events, 490
record activation, 489
records, creating and disposing of, 489
redrawing of, 490
scrap routines for, 490
scrolling of, 490
selection range, changing of, 490

text editors. See also desk accessories,
types of

text lines, 217
"RtxtBox, compared to DrawString and

DrawText, 23S
"RtxtFace, 122
"RtxtFont, 121
"RtxtMode, 122
"RtxtSlze, 123
text techniques, advanced

I-beam cursor, 236-238
resizing view and destination

rectangles, 239-240
scrolling an edit record, 244
scrolling while selecting text, 24S
TextEdit definition change, 248-2SO

"RtxtWldth, 12S, 24S
theMenu, 82
theType, 82
Think C, xvi, 28, 38, SS, 62, 24S, 249, 289,

290, 311, 4S5
compilers (and), xviii
data sizes, xx
strings, xxi

thumb. See controls, scroll bars
TlckCount, 39
titfeHandle, S3
title, 52, S7, 287
Toolbox

data structures of, xxii-xxiii
naming conventions, xxvii-xxix, xx
operating system portion of, 4

predefined constants, xxix
ROM,3
simple data types of, xix
text editing. See Text editing
text editing, routines for, 489-491
user interfact portion of, 4

lhlckControl, 304, 309-311, 312
lhlckGoAway, 64, 467
transfer mode

opaque, 113
pattern transfer, 113
transparent, 113

transferring files. See desk accessories, types
of

TRUE, xxix
txFace, 129, 217
txFact, 122
txFont, 121, 129, 217
txMode, 122, 217
txSize, 123, 129, 217
typestyle of menu item. See SetltemStyle
TYPE,S6

u
undo,226
undo command, 10, 226
UnlonRect, 109
UnlonRgn, 146
unpurgeable block, 176
Up/down controls. See controls, scroll bars
updateRgn, 48
user friendliness, characteristics of, 2-3
user interface

v

alerts, lS
controls, 12-14
conventions, 4
dialog boxes, 14-lS
menus, 7-11
7bolbox, 4
windows, 4-7

values, passing of, xxiv
view rectangle. See TextEdit: text techniques,

advanced
viewRect, 21S
visible field, S7
visibleFlag, 287
visible, S3
visRgn, 128
volume routines

default volume, 410-411
ejecting of a volume, 411-414
information about, 409-410

mounting and unmounting of, 414
overview of, 408

volumeParam, 409
volumes, 363-364

accessing of, 364
allocation block map, 363-364
buffer for, 364
default for, 364
file directory, 364
mounting of, 364
name of, 363-364
off-line, 364
on-line, 364
reference number of, 364

v, 105

w
wedges. See angle, arcs, and wedges
whichWindow, 62
WidowPrt, 59
window display routines

manipulating windows with mouse,
62-70

order of windows, S9
size box, 61
title, 60

Window Manager
creating a new window, example of, S4
creating and disposing of windows, S8,

47S
creating new windows, Sl-SS
data types and structures, 48-49
display routines for, S8-62
front-to-back order, 47S
GrafPorts, 49-SO, 474
initialization of, SO-Sl, 474
mouse-down events, 47S
moving and resizing, 475

Index 525

multiple windows. See multiple
windows

RMaker, SS
size box, 47S
types of, 44-4S
window titles, 47S

window type in resource, S7
windowKind, 196
WindowPeek, 48
WindowPtr, 48, 62, 189, 467
WindowRecords, 198, 303

WindowRecord, 48, Sl, 61, 189, 19S-197, 332
windows

active and inactive, S
moving and resizing, 6
opening and closing, S
scroll bars, 6

windows components
close box, 46
content region, 47
size box, 47
structure region, 48
title bar, 46

WindowStuff, 416
word processor sample program. See

TextEdit, sample program
word wrap, 217, 233
wordBreak, 249
wStorage, S 1

x
XorRgn, 146
Xor, 113

z
ZeroScrap, 242
zooming,200

Selections from
The SVBEX Library

APPLE/MACINTOSH

ABC's of Excel on the Macintosh
(Second Edition)
Douglas Hergert
334pp. Ref. 634-0
Newly updated to include version 2.2, this
tutorial offers a quick way for beginners to
get started doing useful work with Excel.
Readers build practical examples for
accounting, management, and home/
office applications, as they learn to create
worksheets, charts, databases, macros,
and more.

Desktop Publishing with
Microsoft Word on the
Macintosh
(Second Edition)
Tim Erickson
William Finzer
525pp. Ref. 601-4
The authors have woven a murder mys
tery through the text, using the sample
publications as clues. Explanations of
page layout, headings, fonts and styles,
columnar text, and graphics are interwo
ven within the mystery theme of this excit
ing teaching method. For Version 4.0.

Encyclopedia Macintosh
Craig Danuloff
Deke McClelland
650pp. Ref. 628-6
Just what every Mac user needs-a com
plete reference to Macintosh concepts
and tips on system software, hardware,
applications, and troubleshooting. In
stead of chapters, each section is pre
sented in A-Z format with user-friendly
icons leading the way.

Encyclopedia Macintosh
Software Instant Reference
Craig Danuloff
Deke McClelland
243pp. Ref. 753-3
Help yourself to complete keyboard short
cut charts, menu maps, and tip lists for all
popular Macintosh applications. This
handy reference guide is divided into
functional software categories, including
painting, drawing, page layout, spread
sheets, word processors, and more.

Mastering Adobe Illustrator
David A. Holzgang
330pp. Ref. 463-1
This text provides a complete introduction
to Adobe Illustrator, bringing new sophisti
cation to artists using computer-aided
graphics and page design technology.
Includes a look at Postscript, the page
composition language used by Illustrator.

Mastering AppleWorks
(Second Edition)
Elna Tymes
479pp. Ref. 398-8
New chapters on business applications,
data sharing DIF and Applesoft BASIC
make this practical, in-depth tutorial even
better. Full details on AppleWorks
desktop, word processing, spreadsheet
and database functions.

Mastering Excel
on the Macintosh
(Third Edition)
Carl Townsend
656pp. Ref. 622· 7
This highly acclaimed tutorial has been
updated for the latest version of Excel.

Full of extensive examples, tips, applica
tion templates, and illustrations. This book
makes a great reference for using work
sheets, databases, graphics, charts,
macros, and tables. For Version 2.2.

Mastering Microsoft Word on
the Macintosh
Michael J. Young
447pp. Ref. 541-7
This comprehensive, step-by-step guide
shows the reader through WORD's exten
sive capabilities, from basic editing to cus
tom formats and desktop publishing.
Keyboard and mouse instructions and
practice exercises are included. For
Release 4.0.

Mastering PageMaker 4 on the
Macintosh
Greg Harvey
Shane Gearing
421 pp. Ref.433-X
A complete introduction to desktop
publishing-from planning to printing
with emphasis on business projects.
Explore the tools, concepts and tech
niques of page design, while learning to
use PageMaker. Practical examples
include newsletters, forms, books, man
uals, logos, and more.

Mastering Powerpoint
Karen L. McGraw, Ph.D.
425pp. Ref. 646-4
The complete guide to creating high
quality graphic presentations using
PowerPoint 2.01 on the Macintosh
offering detailed, step-by-step coverage
of everything from starting up the soft
ware to fine-tuning your slide shows for
maximum effect.

Mastering Ready, Set, Go!
David A. Kater
482pp. Ref. 536-0
This hands-on introduction to the popular
desktop publishing package for the Mac
intosh allows readers to produce
professional-looking reports, brochures,

and flyers. Written for Version 4, this title
has been endorsed by Letraset, the
Ready, Set, Go! software publisher.

PageMaker 4.0 Macintosh
Version Instant Reference
Louis Columbus
120pp. Ref. 788-6
Here's a concise, plain-language refer
ence, offering fast access to details on all
PageMaker 4.0 features and commands.
Entries are organized by function
perfect for on-the-job use-and provide
exact keystrokes, options, and cross
references, and instructions for all essen
tial desktop publishing operations.

Up & Running with PageMaker
on the Macintosh
Craig Danuloff
134pp. Ref. 695-2
Ideal for computer-literate users who
need to learn PageMaker fast. In just
twenty steps, readers learn to import text,
format characters and paragraphs, create
graphics, use style sheets, work with
color, and more.

Understanding Hard Disk
Management on the Macintosh
J. Russell Roberts
334pp. Ref. 579-4
This is the most comprehensive and acces
sible guide to hard disk usage for all Mac
intosh users. Complete coverage includes
SCSI and serial drives and ports, formatting,
file fragmentation, backups, networks, and a
helpful diagnostic appendix.

Up & Running with Norton
Utilities on the Macintosh
Peter Dyson
146pp. Ref. 823-8
In just 20 lessons, you can be up and run
ning with Norton Utilities for the Macintosh.
You'll soon learn to retrieve accidentally
erased files, reconstruct damaged files, find
"lost files," unformat accidentally formatted
disks, and make your system work faster.

APPLICATION
DEVELOPMENT

The ABC's of ToolBook for
Windows
Kenyon Brown
300pp. Ref. 795-9
Gain the skill and confidence you need to
create sophisticated applications for Win
dows. This hands-on introduction teaches
you how to build custom graphical appli
cations, without the need for traditional
computer language. Learn to use the
Script Recorder to create scripts and add
animation to presentation applications.

The Elements of Friendly
Software Design
Paul Heckel
319pp. Ref. 768-1
Here's what you didn't learn in engineer
ing school! This entertaining, practical text
shows how the same communication
techniques used by artists and filmmakers
can make software more appealing to
users. Topics include visual thinking;
design principles to follow-and mistakes
to avoid; and examples of excellence.

Up & Running with ToolBook for
Windows
Michael Tischer
138pp. Ref. 816-5
In just 20 time-coded steps (each taking
no more than 15 minutes to an hour), you
can begin designing your own Windows
applications. Learn to add visual interest
with lines, colors, and patterns; create a
customized database form; navigate the
user interface; draw and paint with Tool
Book, and more.

LANGUAGES

The ABC's of GW-BASIC
William R. Orvis
320pp. Ref. 663-4
Featuring two parts: Part I is an easy-to
follow tutorial for beginners, while Part II is

a complete, concise reference guide to
GW-BASIC commands and functions.
Covers everything from the basics of pro
gramming in the GW-BASIC environment,
to debugging a major program. Includes
special treatment of graphics and sound.

The ABC's of Quick C
Douglas Hergert
309pp. Ref. 557-3
This is the most unintimidating C lan
guage tutorial, designed especially for
readers who have had little or no com
puter programming experience. The
reader will learn programming essen
tials with step-by-step instructions for
working with numbers, strings, arrays,
pointers, structures, decisions, and loops.
For Version 2.0.

BASIC Programs for Scientists
and Engineers
Alan R. Miller
318pp. Ref. 073-3
The algorithms presented in this book are
programmed in standard BASIC code
which should be usable with almost any
implementation of BASIC. Includes statis
tical calculations, matrix algebra, curve
fitting, integration, and more.

Encyclopedia C
Robert A. Radcliffe
1333pp. Ref. 655-3
This is the complete reference for stan
dard ANSI/ISO programmers using any
Microsoft C compiler with DOS. It blends
comprehensive treatment of C syntax,
functions, utilities, and services with prac
tical examples and proven techniques for
optimif'.ing productivity and performance
in C programming.

FORTRAN Programs for
Scientists and Engineers
(Second Edition)
Alan R. Miller
280pp. Ref. 571-9
In this collection of widely used scientific
algorithms-for statistics, vector and matrix
operations, curve fitting, and more-the
author stresses effective use of little-known
and powerful features of FORTRAN.

Introduction to Pascal:
Including Turbo Pascal
(Second Edition)
Rodnay Zaks
464pp. Ref. 533-6
This best-selling tutorial builds complete
mastery of Pascal-from basic structured
programming concepts, to advanced 1/0,
data structures, file operations, sets,
pointers and lists, and more. Both ISO
Standard and Turbo Pascal.

Mastering C
Craig Bolon
437pp. Ref. 326-0
This in-depth guide stresses planning,
testing, efficiency and portability in C
applications. Topics include data types,
storage classes, arrays, pointers, data
structures, control statements, 1/0 and the
C function library.

Mastering QuickBASIC
Rita Belserene
450pp. Ref. 589-1
Readers build professional programs with
this extensive language tutorial. Funda
mental commands are mixed with the
author's tips and tricks so that users can
create their own applications. Program
templates are included for video displays,
computer games, and working with data
bases and printers. For Version 4.5.

Mastering QuickC
Stan Kelly-Bootle
602pp. Ref. 550-6
This extensive tutorial covers C language
programming and features the latest
version of QuickC. Veteran author Kelly
Bootle uses many examples to explain
language and style, covering data types,
storage classes, file 1/0, the Graphics
Toolbox, and the window-oriented debug
ger. For Version 2.0.

Mastering Turbo C
(Second Edition)
Stan Kelly-Bootle
609pp. Ref. 595-6
With a foreword by Borland International
President Philippe Kahn, this new edition
has been expanded to include full details
on Version 2.0. Learn theory and practical

programming, with tutorials on data
types, real numbers and characters, con
trolling program flow, file 1/0, and produc
ing color charts and graphs. Through
Version 2.

Mastering Turbo Pas.cal 6
Scott D. Palmer
650pp, Ref. 675-8
This step-by-step guide to the newest
Turbo Pascal release takes readers from
programming basics to advanced tech
niques such as graphics, recursion,
object-oriented programming, efficient
debugging, and programming for other
environments such as Vax/VMS. Includes
dozens of useful exercises and examples,
and tips for effective programming.

Systems Programming in
Microsoft C
Michael J. Young
604pp. Ref. 570-0
This sourcebook of advanced C program
ming techniques is for anyone who wants
to make the most of their C compiler or
Microsoft QuickC. It includes a compre
hensive, annotated library of systems
functions, ready to compile and call.

Turbo Pascal Toolbox
(Second Edition)
Frank Dutton
425pp. Ref. 602-2
This collection of tested, efficient Turbo
Pascal building blocks gives a boost to
intermediate-level programmers, while
teaching effective programming by ex
ample. Topics include accessing DOS,
menus, bit maps, screen handling, and
much more.

Up & Running with Turbo
Pascal 5.5
Michael-Alexander Belsecker
Peter Brickwede
137pp. Ref.713-4
All the basics of Turbo Pascal 5.5 in
twenty time-coded "steps" taking 15, 30,
45 or 60 minutes. In addition to Pascal
essentials, topics include dynamic vari
ables, file management, graphics, sys
tems programming, the debugger, and
using the Toolboxes.

ASSEMBLY
LANGUAGES

Programming the 6809
Rodnay Zaks
William Labiak
362pp. Ref. 078-4
A step-by-step course in assembly
language programming for 6809-based
home computers. Covers hardware orga
nization, the instruction set, addressing,
1/0, data structures, program develop
ment and complete sample applications.

Programming the 68000
Steve Williams
539pp. Ref. 133-0
This tutorial introduction to assembly
language programming covers the com
plete 68000 architecture and instruction
set, as well as advanced topics such as
interrupts, 1/0 programming, and interfac
ing with high-level languages.

Programming the 8086/8088
James W. Coffron
311 pp. Ref. 120-9
A concise introduction to assembly
language programming for 8086/8088-
based systems, including the IBM PC.
Topics include architecture, memory organi
zation, the complete instruction set, inter
rupts, 110, and IBM PC BIOS routines.

Programming the 80286
C. Vleillefond
487pp. Ref. 277-9
In-depth treatment of assembly-level pro
gramming for the IBM PC/AT's 80286
processor. Topics include system archi
tecture, memory management, address
modes, multitasking and more; plus a
complete reference guide to the instruc
tion set.

Programming the 80386
John H. Crawford
Patrick P. Gelsinger
775pp. Ref. 381-3
A detailed tour of the 80386 for assembly
language programmers. Topics include

registers, data types and instruction
classes, memory management, protec
tion models, multitasking, interrupts, the
numerics coprocessor, and more.

Programming the Z80
(Third Edition)
Rodnay Zaks
624pp. Ref. 069-5
A self-teaching guide to assembly-language
programming for the wide range of 280-
based microcomputers. Includes the
Z80 architecture and instruction set,
addressing, 1/0 techniques and devices,
data structures and sample programs.

Z80 Applications
James W. Coffron
295pp. Ref. 094-6
A handbook for assembly-language
programmers on the principles of 280
hardware operations. Topics include
using ROM, static and dynamic RAM,
1/0, interrupts, serial communication and
several specific LSI peripheral devices.

COMMUNICATIONS

Mastering Crosstalk XVI
(Second Edition)
Peter W. Gofton
225pp. Ref. 642-1
Introducing the communications program
Crosstalk XVI for the IBM PC. As well as
providing extensive examples of com
mand and script files for programming
Crosstalk, this book includes a detailed
description of how to use the program's
more advanced features, such as win
dows, talking to mini or mainframe, cus
tomizing the keyboard and answering
calls and background mode.

Mastering PROCOMM PLUS
Bob Campbell
400pp. Ref. 657-X
Learn all about communications and infor
mation retrieval as you master and use
PROCOMM PLUS. Topics include choosing
and using a modem; automatic dialing;

using on-line services (featuring Compu
Serve), and more. Through Version 1.1 b;
also covers PROCOMM, the "shareware"
version.

Mastering Serial
Communications
Peter W. Gofton
289pp. Ref. 180-2
The software side of communications,
with details on the IBM PC's serial pro
gramming, the XMODEM and Kermit
protocols, non-ASCII data transfer,
interrupt-level programming, and more.
Sample programs in C, assembly lan
guage and BASIC.

Mastering UNIX Serial
Communications
Peter W. Gofton
307pp. Ref. 708-8
The complete guide to serial communica
tions under UNIX. Part I introduces essen
tial concepts and techniques, while Part II
explores UNIX ports, drivers, and utilities,
including MAIL, UUCP, and others. Part Ill
is for C programmers, with six in-depth
chapters on communications program
ming under UNIX.

Up & Running with PROCOMM
PLUS
Bob Campbell
134pp. Ref. 794-0
Get a fast-paced overview of telecommuni
cations with PROCOMM PLUS, in just 20
steps. Each step takes only 15 minutes to an
hour to complete, covering the essentials of
installing and running the software, setting
parameters, dialing, connecting with and
using an online service, sending and receiv
ing files, using macros and scripts, and
operating a bulletin board.

NETWORKS

The ABC's of Local Area
Networks
Michael Dortch
212pp. Ref. 664-2

This jargon-free introduction to LANs is for
current and prospective users who see gen
eral information, comparative options, a look
at the future, and tips for effective LANs use
today. With comparisons of Token-Ring, PC
Network, Novell, and others.

The ABC's of Novell NetWare
Jeff Woodward
282pp. Ref. 614-6
For users who are new to PC's or net
works, this entry-level tutorial outlines
each basic element and operation of
Novell. The ABC's introduces computer
hardware and software, DOS, network
organization and security, and printing
and communicating over the netware
system.

Mastering Novell NetWare
Cheryl C. Currid
Craig A. Gillett
500pp. Ref. 630-8
This book is a thorough guide for System
Administrators to installing and operating
a microcomputer network using Novell
Netware. Mastering covers actually set
ting up a network from start to finish,
design, administration, maintenance, and
troubleshooting.

UTILITIES

The Computer Virus Protection
Handbook
Colin Haynes
192pp. Ref. 696-0
This book is the equivalent of an intensive
emergency preparedness seminar on
computer viruses. Readers learn what
viruses are, how they are created, and
how they infect systems. Step-by-step
procedures help computer users to iden
tify vulnerabilities, and to assess the con
sequences of a virus infection. Strategies
on coping with viruses, as well as meth
ods of data recovery, make this book well
worth the investment.

Mastering the Norton Utilities 5
Peter Dyson
400pp, Ref. 725-8
This complete guide to installing and
using the Norton Utilities 5 is a must for
beginning and experienced users alike. It
offers a clear, detailed description of each
utility, with options, uses and examples
so users can quickly identify the pro
grams they need and put Norton right to
work. Includes valuable coverage of the
newest Norton enhancements.

Mastering PC Tools Deluxe 6
For Versions 5.5 and 6.0
425pp, Ref. 700-2
An up-to-date guide to the lifesaving utili
ties in PC Tools Deluxe version 6.0 from
installation, to high-speed back-ups, data
recovery, file encryption, desktop applica
tions. and more. Includes detailed back
ground on DOS and hardware such as
floppies, hard disks, modems and fax
cards.

Mastering SideKick Plus
Gene Welsskopf
394pp. Ref. 558-1
Employ all of Sidekick's powerful and
expanded features with this hands-on guide
to the popular utility. Features include com
prehensive and detailed coverage of time
management. note taking, outlining, auto
dialing, DOS file management, math, and
copy-and-paste functions.

Norton Utilities 5 Instant
Reference
Michael Gross
162pp. Ref. 737-1
Organized alphabetically by program
name, this pocket-sized reference offers
complete information on each utility in the
Norton 5 package-including a descrip
tive summary, exact syntax, command
line options, brief explanation, and ex
amples. Gives proficient users a quick
reminder. and helps with unfamiliar
options.

PC Tools Deluxe 6 Instant
Reference
Gordon McComb

194pp. Ref. 728-2
Keep this one handy for fast access to
quick reminders and essential information
on the latest PC Tools Utilities. Alpha
betical entries cover all the Tools of Ver
sion 6-from data recovery to desktop
applications-with concise summaries,
syntax, options, brief explanations. and
examples.

Up & Running with Carbon
Copy Plus
Marvin Bryan
124pp. Ref. 709-6
A speedy, thorough introduction to Car
bon Copy Plus, for controlling remote
computers from a PC. Coverage is in
twenty time-coded "steps"-lessons that
take 15 minutes to an hour to complete.
Topics include program set-up, making
and receiving calls, file transfer. security,
terminal emulation, and using Scripts.

Up & Running with Norton
Utilities
Rainer Bartel
140pp. Ref. 659-6
Get up and running in the shortest pos
sible time in just 20 lessons or "steps."
Learn to restore disks and files, use
UnErase, edit your floppy disks, retrieve
lost data and more. Or use the book to
evaluate the software before you pur
chase. Through Version 4.2.

Up & Running with Norton
Utilities 5
Michael Gross
154pp. Ref. 819-0
Get a fast jump on Norton Utilties 5. In just
20 lessons. you can learn to retrieve
erased files, password protect and
encrypt your data, make your system
work faster, unformat accidentally format
ted disks, find "lost" files on your hard
disk, and reconstruct damaged files.

Up & Running with PC Tools
Deluxe 6
Thomas Holste
180pp. Ref.678-2
Learn to use this software program in just
20 basic steps. Readers get a quick, inex-

pensive introduction to using the Tools for
disaster recovery. disk and file manage
ment, and more.

Up & Running with XTreeGold 2
Robin Merrin
136pp. Ref. 820-3
Covers both XTreeGold 2 and XTreePro
Gold 1. In just 20 steps, each taking no
more than 15 minutes to an hour, you can
learn to customize your display, archive
files, navigate the user interface, copy
and back up your files, undelete acciden
tally erased files, and more.

OPERATING SYSTEMS

The ABC's of DOS 4
Alan R. Miller
275pp. Ref. 583-2
This step-by-step introduction to using
DOS 4 is written especially for beginners.
Filled with simple examples. The ABC'.s of
DOS 4 covers the basics of hardware,
software, disks, the system editor EDLIN,
DOS commands, and more.

The ABC's of DOS 5
Alan Miiier
267pp. Ref. 770-3
This straightforward guide will haven even
first-time computer users working com
fortably with DOS 5 in no time. Step-by
step lessons lead users from switching on
the PC, through exploring the DOS Shell,
working with directories and files, using
essential commands, customizing the sys
tem, and trouble shooting. Includes a
tear-out quick reference card and func
tion key template.

ABC's of MS-DOS
(Second Edition)
Alan R. Miller
233pp. Ref. 493-3
This handy guide to MS-DOS is all many
PC users need to manage their computer
files, organize floppy and hard disks, use
EDLIN, and keep their computers orga
nized. Additional information is given
about utilities like Sidekick, and there is a

DOS command and program summary.
The second edition is fully updated for
Version 3.3.

The ABC's of SCO UNIX
Tom Cuthbertson
263pp. Re. 715-0
A guide especially for beginners who
want to get to work fast. Includes hands
on tutorials on logging in and out; creat
ing and editing files; using electronic mail;
organizing files into directories; printing;
text formatting; and more.

The ABC's of Windows 3.0
Kris Jamsa
327pp. Ref. 760-6
A user-friendly introduction to the essen
tials of Windows 3.0. Presented in 64
short lessons. Beginners start with lesson
one, while more advanced readers can
skip ahead. Learn to use File Manager,
the accessory programs, customization
features, Program Manager, and more.

DESQview Instant Reference
Paul J. Perry
175pp. Ref. 809-2
This complete quick-reference command
guide covers version 2.3 and DESQview
386, as well as QEMM (for managing
expanded memory) and Manifest Mem
ory Analyzer. Concise, alphabetized
entries provide exact syntax, options,
usage, and brief examples for every com
mand. A handy source for on-the-job
reminders and tips.

DOS 3.3 On-Line Advisor
Version 1.1
SYBAR, Software Division of
SVBEX, Inc.
Ref. 933-1
The answer to all your DOS problems.
The DOS On-Line Advisor is an on-screen
reference that explains over 200 DOS
error messages. 2300 other citations
cover all you ever needed to know about
DOS. The DOS On-Line Advisor pops up
on top of your working program to give
you quick, easy help when you need it,
and disappears when you don't. Covers
thru version 3.3. Software package

comes with 3112" and 51/4" disks. System
Requirements: IBM compatible with DOS
2.0 or higher, runs with Windows 3.0,
uses 90K of RAM.

DOS Instant Reference
SYBEX Prompter Series
Greg Harvey
Kay Yarborough Nelson
220pp. Ref. 477-1
A complete fingertip reference for fast, easy
on-line help:command summaries, syntax,
usage and error messages. Organized by
function-system commands, file com
mands, disk management, directories,
batch files, 1/0, networking, programming,
and more. Through Version 3.3.

DOS 5 Instant Reference
Robert M. Thomas
200pp. Ref. 804-1
The comprehensive quick guide to
DOS-all its features, commands,
options, and versions-now including
DOS 5, with the new graphical interface.
Concise, alphabetized command entries
provide exact syntax, options, usage,
brief examples, and applicable version
numbers. Fully cross-referenced; ideal for
quick review or on-the-job reference.

The DOS 5 User's Handbook
Gary Masters
Richard Allen King
400pp. Ref. 777-0
This is the DOS 5 book for users who are
already familiar with an earlier version of
DOS. Part I is a quick, friendly guide to
new features; topics include the graphical
interface, new and enhanced commands,
and much more. Part II is a complete
DOS 5 quick reference, with command
summaries, in-depth explanations, and
examples.

Encyclopedia DOS
Judd Robbins
1030pp. Ref. 699-5
A comprehensive reference and user's
guide to all versions of DOS through 4.0.
Offers complete information on every
DOS command, with all possible switches

and parameters-plus examples of effec
tive usage. An invaluable tool.

Essential OS/2
(Second Edition)
Judd Robbins
445pp. Ref. 609-X
Written by an OS/2 expert, this is the
guide to the powerful new resources of
the OS/2 operating system standard edi
tion 1 .1 with presentation manager. Rob
bins introduces the standard edition, and
details multitasking under OS/2, and the
range of commands for installing, starting
up, configuring, and running applications.
For Version 1 .1 Standard Edition.

Essential PC-DOS
(Second Edition)
Myril Clement Shaw
Susan Soltis Shaw
332pp. Ref. 413-5
An authoritative guide to PC-DOS, including
version 3.2. Designed to make experts out
of beginners, it explores everything from
disk management to batch file program
ming. Includes an 85-page command sum
mary. Through Version 3.2.

Graphics Programming
Under Windows
Brian Myers
Chris Doner
646pp. Ref. 448-8
Straightforward discussion, abundant
examples, and a concise reference guide
to graphics commands make this book a
must for Windows programmers. Topics
range from how Windows works to pro
gramming for business, animation, CAD,
and desktop publishing. For Version 2.

Hard Disk Instant Reference
SYBEX Prompter Series
Judd Robbins
256pp. Ref. 587-5
Compact yet comprehensive, this pocket
sized reference presents the essential infor
mation on DOS commands used in
managing directories and files, and in opti
mizing disk configuration. Includes a survey

of third-party utility capabilities. Through
DOS 4.0.

Inside DOS: A Programmer's
Guide
Michael J. Young
490pp. Ref. 710-X
A collection of practical techniques (with
source code listings) designed to help you
take advantage of the rich resources intrin
sic to MS-DOS machines. Designed for the
experienced programmer with a basic
understanding of C and 8086 assembly lan
guage, and DOS fundamentals.

Mastering DOS
(Second Edition)
Judd Robbins
722pp. Ref. 555-7
"The most useful DOS book." This seven
part, in-depth tutorial addresses the
needs of users at all levels. Topics range
from running applications, to managing
files and directories, configuring the sys
tem, batch file programming, and tech
niques for system developers. Through
Version 4.

Mastering DOS 5
Judd Robbins
800pp. Ref.767-3
"The DOS reference to keep next to your
computer," according to PC Week, this
highly acclaimed text is now revised and
expanded for DOS 5. Comprehensive
tutorials cover everything from first steps
for beginners, to advanced tools for sys
tems developers-with emphasis on the
new graphics interface. Includes tips,
tricks, and a tear-out quick reference card
and function key template.

Mastering SunOS
Brent D. Heslop
David Angell
588pp. Ref. 683-9
Learn to configure and manage your sys
tem; use essential commands; manage files;
perform editing, formatting, and printing
tasks; master E-mail and external communi
cation; and use the SunView and new Open
Window graphic interfaces.

Mastering Windows 3.0
Robert Cowart
592pp. Ref.458-5
Every Windows user will find valuable
how-to and reference information here.
With full details on the desktop utilities;
manipulating files; running applications
(including non-Windows programs); shar
ing data between DOS, OS/2, and Win
dows; hardware and software efficiency
tips; and more.

Understanding DOS 3.3
Judd Robbins
678pp. Ref. 648-0
This best selling, in-depth tutorial
addresses the needs of users at all levels
with many examples and hands-on exer
cises. Robbins discusses the fundamen
tals of DOS, then covers manipulating
files and directories, using the DOS editor,
printing, communicating, and finishes
with a full section on batch files.

Understanding Hard Disk
Management on the PC
Jonathan Kamin
500pp. Ref. 561-1
This title is a key productivity tool for all
hard disk users who want efficient, error
free file management and organization.
Includes details on the best ways to con
serve hard disk space when using several
memory-guzzling programs. Through
DOS 4.

Up & Running with DR DOS 5.0
Joerg Schieb
130pp. Ref. 815-7
Enjoy a fast-paced, but thorough intro
duction to DR DOS 5.0. In only 20 steps,
you can begin to obtain practical results:
copy and delete files, password protect
your data, use batch files to save time,
and more.

Up & Running with DOS 3.3
Michael-Alexander Beisecker
126pp. Ref. 750-9
Learn the fundamentals of DOS 3.3 in just
20 basic steps. Each "step" is a self-

contained, time-coded lesson, taking 15
minutes to an hour to complete. You learn
the essentials in record time.

Up & Running with DOS 5
Alan Simpson
150pp. Ref. 77 4-6
A 20-step guide to the essentials of DOS
5-for busy users seeking a fast-paced
overview. Steps take only minutes to com
plete, and each is marked with a timer
clock, so you know how long each one
will take. Topics include installation, the
DOS Shell, Program Manager, disks,
directories, utilities, customization, batch
files, ports and devices, DOSKEY, mem
ory, Windows, and BASIC.

Up & Running
with Your Hard Disk
Klaus M Rubsam
140pp. Ref. 666-9
A far-sighted, compact introduction to
hard disk installation and basic DOS use.
Perfect for PC users who want the practi
cal essentials in the shortest possible time.
In 20 basic steps, learn to choose your
hard disk, work with accessories, back
up data, use DOS utilities to save time,
and more.

Up & Running with Windows
286/386
Gabriele Wentges
132pp. Ref. 691-X
This handy 20-step overview gives PC
users all the essentials of using Win
dows-whether for evaluating the soft
ware, or getting a fast start. Each self
contained lesson takes just 15 minutes to
one hour to complete.

Up & Running with Windows 3.0
Gabriele Wentges
117pp. Ref. 711-8
All the essentials of Windows 3.0 in just
twenty "steps"-self-contained lessons
that take minutes to complete. Perfect for
evaluating the software or getting a quick
start with the new environment. Topics
include installation, managing windows,
using keyboard and mouse, using
desktop utilities, and built-in programs.

Windows 3.0 Instant Reference
Marshall Moseley
195pp. Ref. 757-6
This concise, comprehensive pocket ref
erence provides quick access to instruc
tions on all Windows 3.0 mouse and
keyboard commands. It features step-by
step instructions on using Windows, the
applications that come bundled with it,
and Windows' unique help facilities. Great
for all levels of expertise.

DESKTOP
PRESENTATION

Harvard Graphics Instant
Reference
Gerald E. Jones
154pp. Ref. 726-6
This handy reference is a quick, non
technical answer manual to questions about
Harvard's onscreen menus and help dis
plays. Provides specific information on each
of the program's major features, induding
Draw Partner. A must for business profes
sionals and graphic artists who create charts
and graphs for presentation.

Mastering Animator
Mitch Gould
300pp. Ref.688-X
A hands-on guide to creating dynamic multi
media presentations. From simple animation
to Hollywood-style special effects, from plan
ning a presentation to bringing it all to life-

. it's all you need to know, in straightforward,
easy-to-follow terms.

Mastering Harvard Graphics
{Second Edition)
Glenn H. Larsen
375pp, Ref. 673-1
"The clearest course to begin mastering
Harvard Graphics," according to Com
puter Currents. Readers master essential
principles of effective graphic communi
cation, as they follow step-by-step instruc
tions to create dozens of charts and
graphs; automate and customize the
charting process; create slide shows,
and more.

Up & Running with Harvard
Graphics
Rebecca Bridges Altman
148pp. Ref. 736-3
Desktop presentation in 20 steps-the
perfect way to evaluate Harvard Graphics
for purchase, or to get a fast, hands-on
overview of the software's capabilities.
The book's 20 concise lessons are time
coded (each takes no more than an hour
to complete), and cover everything from
installation and startup, to creating spe
cific types of charts, graphs, and slide
shows.

DESKTOP
PUBLISHING

The ABC's of the New Print
Shop
Vivian Dubrovin
340pp. Ref. 640-4
This beginner's guide stresses fun, practi
cality and original ideas. Hands-on tutori
als show how to create greeting cards,
invitations, signs, flyers, letterheads, ban
ners, and calendars.

The ABC's of Ventura
Robert Cowart
Steve Cummings
390pp. Ref. 537-9
Created especially for new desktop pub
lishers, this is an easy introduction to a
complex program. Cowart provides
details on using the mouse, the Ventura
side bar, and page layout, with careful
explanations of publishing terminology.
The new Ventura menus are all carefully
explained. For Version 2.

Desktop Publishing with
WordPerfect 5.1
Rita Belserene
418pp. Ref. 481-X
A practical guide to using the desktop
publishing capabilities of versions 5.0 and

5.1. Topics include graphic design con
cepts, hardware necessities, installing
and using fonts, columns, lines, and
boxes, illustrations, multi-page layouts,
Style Sheets, and integrating with other
software.

Mastering CorelDRAW!
Steve Rimmer
430pp. Ref. 763-0
A comprehensive tutorial and on-the-job
reference for CorelDRAW users, covering
version 1.2, with details on using Corel
DRAW under Windows. Turn here for a
complete hands-on guide to using this
versatile program in publishing, commer
cial art, and more.

Mastering CorelDRAW 2
Steve Rimmer
500pp. Ref. 814-9
This comprehensive tutorial and design
guide features complete instruction in cre
ating spectacular graphic effects with
CorelDRAW 2. The book also offers a
primer on commercial irT]age and page
design, including how to use printers and
print-house facilities for optimum results.

Mastering Micrografx Designer
Peter Kent
400pp. Ref. 694-4
A complete guide to using this sophisti
cated illustration package. Readers begin
by importing and modifying clip art, and
progress to creating original drawings,
working with text, printing and plotting,
creating slide shows, producing color
separations, and exporting art.

Mastering PageMaker
on the IBM PC
(Second Edition)
Antonia Stacy Jolles
384pp. Ref. 521-2
A guide to every aspect of desktop pub
lishing with PageMaker: the vocabulary
and basics of page design, layout, graph
ics and typography, plus instructions for
creating finished typeset publications of
all kinds.

Mastering PageMaker 4 on the
IBM PC
Rebecca Bridges Altman, with Rick
Altman
509pp. Ref. 773-8
A step-by-step guide to the essentials of
desktop publishing and graphic design.
Tutorials and hands-on examples explore
every aspect of working with text, graph
ics, styles, templates, and more, to design
and produce a wide range of publica
tions. Includes a publication "cookbook"
and notes on using Windows 3.0.

Mastering Ventura for Windows
(For Version 3.0)
Rick Altman
600pp, Ref. 758-4
This engaging, hands-on treatment is
for the desktop publisher learning and
using the Windows edition of Ventura. It
covers everything from working with the
Windows interface, to designing and
printing sophisticated publications using
Ventura's most advanced features.
Understand and work with frames, graph
ics, fonts, tables and columns, and much
more.

Mastering Ventura 3.0 Gem
Edition
Matthew Holtz
650pp, Ref. 703-7
The complete hands-on guide to desktop
publishing with Xerox Ventura Publisher
now in an up-to-date new edition featuring
Ventura version 3.0, with the GEM win
dowing environment. Tutorials cover
every aspect of the software, with
examples ranging from correspondence
and press releases, to newsletters, techni
cal documents, and more.

Understanding Desktop
Publishing
Robert W. Harris
300pp. Ref. 789-4
At last, a practical design handbook, written
especially for PC users who are not design
professionals, but who do have desktop
publishing duties. How can publications be
made attractive, understandable, persua
sive, and memorable? Topics include type,
graphics, and page design: technical and

physiological aspects of creating and con
veying a message.

Understanding PFS: First
Publisher
Gerry Litton
463pp. Ref. 712-6
This new edition of the popular guide to
First Publisher covers software features in
a practical introduction to desktop pub
lishing. Topics include text-handling,
working with graphics, effective page
design, and optimizing print quality. With
examples of flyers, brochures, newslet
ters, and more.

Understanding Postscript
Programming
(Second Edition)
David A. Holzgang
472pp. Ref. 566-2
In-depth treatment of Postscript for pro
grammers and advanced users working
on custom desktop publishing tasks.
Hands-on development of programs for
font creation, integrating graphics, printer
implementations and more.

Up & Running with PageMaker 4
on the PC
Marvin Bryan
140pp. Ref. 781-9
An overview of PageMaker 4.0 in just 20
steps. Perfect for evaluating the software
before purchase-or for newcomers who
are impatient to get to work. Topics
include installation, adding typefaces, text
and drawing tools, graphics, reusing lay
outs, using layers, working in color, print
ing, and more.

Your HP LaserJet Handbook
Alan R. Neibauer
564pp. Ref. 618-9
Get the most from your printer with this
step-by-step instruction book for using
LaserJet text and graphics features such
as cartridge and soft fonts, type selection,
memory and processor enhancements,
PCL programming, and Postscript solu
tions. This hands-on guide provides spe
cific instructions for working with a variety
of software.

CAD

The ABC's of AutoCAD
(Second Edition)
Alan R. Miller
375pp. Ref. 584-0
This brief but effective introduction to
AutoCAD quickly gets users drafting and
designing with this complex GADD pack
age. The essential operations and capa
bilities of AutoCAD are neatly detailed,
using a proven, step-by-step method that
is tailored to the results-oriented beginner.

The ABC's of AutoCAD Release 11
Alan R. Miller
383pp. Ref. 730-4
The best tutorial for AutoCAD beginners
now in an updated edition for Release 11.
These meticulous, step-by-step lessons
will have even first-time computer users
creating a first drawing in record time.
Users learn to set up a prototype drawing,
and work with shapes, lettering, dimen
sioning, layers, isometric views, 3-D draw
ing, plotting, and more.

The ABC's of AutoLISP
George Omura
300pp. Ref. 620-0
This book is for users who want to
unleash the full power of AutoCAD
through the AutoLISP programming lan
guage. In non-technical terms, the reader
is shown how to store point locations,
create new commands, and manipulate
coordinates and text. Packed with tips on
common coding errors.

The ABC's of Generic CADD
Alan R. Miller
278pp. Ref. 608-1
This outstanding guide to computer-aided
design and drafting with Generic GADD
assumes no previous experience with
computers or GADD. This book will have
users doing useful GADD work in record
time, including basic drawing with the
keyboard or a mouse, erasing and
unerasing, making a copy of drawings
on your printer, adding text and organiz
ing your drawings using layers.

AutoCAD Desktop Companion
SYBEX Ready Reference Series
Robert M. Thomas
1094pp. Ref. 590-5
This is a complete reference work cover
ing all the features, commands, and user
options available under AutoCAD
Release 10, including drawing basic and
complex entities, editing, displaying,
printing, plotting, and customizing draw
ings, manipulating the drawing database,
and AutoLISP programming. Through
Release 10.

AutoCAD Instant Reference
SYBEX Prompter Series
George Omura
390pp. Ref. 548-4
This pocket-sized reference is a quick
guide to all AutoCAD features. Designed
for easy use, all commands are organized
with exact syntax, a brief description,
options, tips, and references. Through
Release 10.

Encyclopedia AutoCAD Release 11
Robert M. Thomas
1221pp. Ref. 734-7
This comprehensive reference presents
all the features, commands, and user
options available in the latest releases of
AutoCAD, through release 11. Topics
include drawing, editing, displaying and
printing, solid modeling, multiple-view
plotting, accessing the drawing database,
programming and the AutoCAD develop
ment system (ADS), and much more.

Mastering AutoCAD Release 11
George Omura
1150pp, Ref. 716·9
Even if you're just beginning, this compre
hensive guide will help you to become an
AutoCAD expert. Create your first draw
ing, then learn to use dimensions, enter
pre-existing drawings, use advanced 3-D
features, and more. Suitable for experi
enced users, too-includes tips and tricks
you won't find elsewhere.

Up & Running with AutoSketch 3
Robert Shepherd
126pp. Ref. 793-2

This quick, hands-on overview of
AutoSketch Version 3 is ideal for evaluat
ing the software, or getting a fast start.
There are twenty "steps"-self-contained
lessons that take only minutes to com
plete. Coverage includes such topics as
installation, start-up, drawing, using text,
groups and objects, polylines, dimension
ing, printing, plotting, and macros.

GAMES

Up & Running with Flight
Simulator
Frank Dille
Frank Raudszus
Nick Dargahi
156pp. Ref. 738-X
Get off the ground in the shortest time
possible, using this concise 20-step guide
to the major features of the software. Each
"step" is a self-contained, time-coded les
son (taking 15, 30, 45 or 60 minutes to
complete) focused on a single aspect of
operating the Flight Simulator-from
installation to advanced navigation.

HARDWARE

The ABC's of Upgrading Your PC
Dan Gookin
340pp. Ref. 626-X
The do-it-yourselfer's guide to upgrading
PC hardware and software-featuring
step-by-step instructions, straight-forward
explanations, and clear illustrations. Top
ics include adding disk drives, hard
drives, and expansion cards; upgrading
memory and power supply; building a
customer computer; and tips on mainte
nance and repair.

From Chips to Systems: An
Introduction to Microcomputers
(Second Edition)
Rodnay Zaks
Alexander Wolfe
580pp. Ref. 377-5

The best-selling introduction to microcom
puter hardware-now fully updated,
revised, and illustrated. Such recent
advances as 32-bit processors and RISC
architecture are introduced and explained
for the first time in a beginning text.

The Hand-Me-Down PC
Handbook
Alan R. Neibauer
367pp. Ref. 702-9
An indispensable survival guide for those
with inherited PCs. Topics include clean
ing out unwanted files, backing up impor
tant ones, and reformatting and re
vitalizing the hard disk; personalizing the
PC with new configurations, batch files,
and utilities; preventative maintenance
and troubleshooting; and a guide to
options for upgrading.

The RS-232 Solution
(Second Edition)
Joe Campbell
193pp. Ref. 488-7
For anyone wanting to use their com
puter's serial port, this complete how-to
guide is updated and expanded for
trouble-free RS-232-C interfacing from
scratch. Solution shows you how to con
nect a variety of computers, printers, and
modems, and it includes details for IBM
PC AT. PS/2, and Macintosh.

WORD PROCESSING

The ABC's of Microsoft Word
(Third Edition)
Alan R. Neibauer
461pp. Ref. 604-9
This is for the novice WORD user who
wants to begin producing documents in
the shortest time possible. Each chapter
has short, easy-to-follow lessons for both
keyboard and mouse, including all the
basic editing, formatting and printing
functions. Version 5.0.

The ABC's of Microsoft Word
for Windows
Alan R. Nelbauer

334pp. Ref. 784-6
Designed for beginning Word for Win
dows users, as well as for experienced
Word users who are changing from DOS
to the Windows version. Covers every
thing from typing, saving, and printing
your first document, to creating tables,
equations, and graphics.

The ABC's of WordPerfect
Alan R. Nelbauer
239pp. Ref. 425-9
This basic introduction to WordPefect
consists of short, step-by-step lessons
for new users who want to get going fast.
Topics range from simple editing and for
matting, to merging, sorting, macros, and
more. Includes version 4.2

The ABC's of WordPerfect 5
Alan R. Nelbauer
283pp. Ref. 504-2
This introduction explains the basics of
desktop publishing with WordPerfect 5:
editing, layout, formatting, printing, sort
ing, merging, and more. Readers are
shown how to use WordPerfect S's new
features to produce great-looking reports.

The ABC's of WordPerfect 5.1
Alan R. Nelbauer
352pp. Ref. 672-3
Neibauer's delightful writing style makes
this clear tutorial an especially effective
learning tool. Learn all about 5.1 's new
drop-down menus and mouse capabil
ities that reduce the tedious memorization
of function keys.

The Complete Gulde
to MultiMate
Carol Holcomb Dreger
208pp. Ref. 229-9
This step-by-step tutorial is also an excel
lent reference guide to MultiMate features
and uses. Topics include search/replace,
library and merge functions, repagina
tion, document defaults and more.

Encyclopedia WordPerfect 5.1
Greg Harvey
Kay Yarborough Nelson
11 OOpp. Ref. 676-6
This comprehensive, up-to-date Word
Perfect reference is a must for beginning
and experienced users alike. With com
plete, easy-to-find information on every
WordPerfect feature and command-and
it's organized by practical functions, with
business users in mind.

Introduction to WordStar
Arthur Naiman
208pp. Ref. 134-9
This all time bestseller is an engaging first
time introduction to word processing as
well as a complete guide to using
WordStar-from basic editing to blocks,
global searches, formatting, dot com
mands, SpellStar and MailMerge.
Through Version 3.3.

Mastering Microsoft Word
on the IBM PC
(Fourth Edition)
Matthew Holtz
680pp. Ref. 597-2
This comprehensive, step-by-step guide
details all the new desktop publishing
developments in this versatile word pro
cessor, including details on editing, for
matting, printing, and laser printing. Holtz
uses sample business documents to dem
onstrate the use of different fonts, graph
ics, and complex documents. Includes
Fast Track speed notes. For Versions 4
and 5.

Mastering Microsoft Word for
Windows
Michael J. Young
540pp. Ref. 619-7
A practical introduction to Word for Win
dows, with a quick-start tutorial for new
comers. Subsequent chapters explore
editing, formatting, and printing, and
cover such advanced topics as page
design, Style Sheets, the Outliner, Glossa
ries, automatic indexing, using graphics,
and desktop publishing.

TO JOIN THE SYBEX MAILING LIST OR ORDER BOOKS
PLEASE COMPLETE THIS FORM

NAME ------------- COMPANY -------------

STREET ----------------- CITY -----------

STATE ZIP -------------

0 PLEASE MAIL ME MORE INFORMATION ABOUT SYBEX TITLES

ORDER FORM (There is no obligation to order)

PLEASE SEND ME THE FOLLOWING:

TITLE QTY PRICE

SHIPPING AND HANDLING PLEASE ADD $2.00
PER BOOK VIA UPS

FOR OVERSEAS SURFACE ADD $5.25 PER
BOOK PLUS $4.40 REGISTRATION FEE

FOR OVERSEAS AIRMAIL ADD $18.25 PER
BOOK PLUS $4.40 REGISTRATION FEE

CALIFORNIA RESIDENTS PLEASE ADD
APPLICABLE SALES TAX

TOTAL AMOUNT PAYABLE

D CHECK ENCLOSED D VISA
D MASTERCARD D AMERICAN EXPRESS

ACCOUNT NUMBER ----------

TOTAL BOOK ORDER $__ EXPIR. DATE __ DAYTIME PHONE ___ _

CUSTOMER SIGNATURE ---------------------------

CHECK AREA OF COMPUTER INTEREST:

D BUSINESS SOFTWARE

D TECHNICAL PROGRAMMING

D OTHER: ------------

THE FACTOR THAT WAS MOST IMPORTANT IN

YOUR SELECTION:

0 THE SYBEX NAME

0 QUALITY

D PRICE

0 EXTRA FEATURES

0 COMPREHENSIVENESS

D CLEAR WRITING

D OTHER -------------

OTHER COMPUTER TITLES YOU WOULD LIKE

TO SEE IN PRINT:

OCCUPATION

0 PROGRAMMER 0 TEACHER

0 SENIOR EXECUTIVE 0 HOMEMAKER

D COMPUTER CONSULTANT D RETIRED

D SUPERVISOR 0 STUDENT

0 MIDDLE MANAGEMENT 0 OTHER:

D ENGINEER/TECHNICAL

0 CLERICAL/SERVICE

0 BUSINESS OWNER/SELF EMPLOYED

CHECK YOUR LEVEL OF COMPUTER USE

D NEW TO COMPUTERS

D INFREQUENT COMPUTER USER

D FREQUENT USER OF ONE SOFTWARE

PACKAGE:

NAME ~~~~~~~~~~~~

C FREQUENT USER OF MANY SOFTWARE

PACKAGES

0 PROFESSIONAL PROGRAMMER

OTHER COMMENTS:

PLEASE FOLD, SEAL, AND MAIL TO SYBEX

SYBEX, INC.
2021 CHALLENGER DR. #100
ALAMEDA, CALIFORNIA USA

94501

SEAL

D

SYBEX Computer Books
are different.

Here is why . ..
At SYBEX, each book is designed with you in mind. Every manuscript is
carefully selected and supervised by our editors, who are themselves
computer experts. We publish the best authors, whose technical expertise
is matched by an ability to write clearly and to communicate effectively.
Programs are thoroughly tested for accuracy by our technical staff. Our
computerized production department goes to great lengths to make
sure that each book is well-designed.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.
SYBEX was among the first to integrate personal computers used by
authors and staff into the publishing process. SYBEX was the first to
publish books on the CP/M operating system, microprocessor interfacing
techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product
have made SYBEX a world leader in computer book publishing. Trans
lated into fourteen languages, SYBEX books have helped millions of
people around the world to get the most from their computers. We hope
we have helped you, too.

For a complete catalog of our publications:
SYBEX, Inc. 2021 Challenger Drive, #100, Alameda, CA 94501
Tel: (415) 523-8233/(800) 227-2346 Telex: 336311
Fax: (415) 523-2373

Window Manager
Initializations and Allocation

void InitWindows();
void GetWMgrPort(GrafPtr *wPort);
WindowPtr NewWindow(Ptr wStorage; Rect

*boundsRect; Str255 *title; char
visible; int procID; WindowPtr behind;
char goAwayFlag; long refCon);

WindowPtr GetNewWindow(int windowID; Ptr
wStorage; WindowPtr behind);

void CloseWindow(WindowPtr theWindow);
void DisposeWindow(WindowPtr theWindow);

Window Display
void SetWTitle(WindowPtr theWindow; Str255

*title);
void GetWTitle(WindowPtr theWindow; Str255

*title);
void SelectWindow(WindowPtr theWindow);
void HideWindow(WindowPtr theWindow);
void ShowWindow(WindowPtr theWindow);
void ShowHide(WindowPtr theWindow; char

showFlag);
void HiliteWindow(WindowPtr theWindow; char

fHilite);
void BringT9Front(WindowPtr

theWindow,behindWindow);
WindowPtr FrontWindow();
void DrawGrowicon(WindowPtr theWindow);

Mouse Location
int FindWindow(Point pt; WindowPtr

*whichWindow) ;
char TrackGoAway(WindowPtr theWindow;

Point pt);

Window Movement and Sizing
void MoveWindow(WindowPtr theWindow; int

hGlobal,vGlobal);
void DragWindow(WindowPtr theWindow; Point

startPt; Rect *boundsRect);
long GrowWindow(WindowPtr theWindow; Point

startPt; Rect *sizeRect);
void SizeWindow(WindowPtr theWindow; int w,h;

char £Update);

Update Region Maintenance
void InvalRect(Rect *badRect);
void InvalRgn(RqnHandle badRqn);

void ValidRect(Rect *goodRect);
void ValidRgn(RqnHandle goodRgn);
void BeginUpdate(WindowPtr theWindow);
void EndUpdate(WindowPtr theWindow);

Miscellaneous Routines
void SetWRefCon(WindowPtr theWindow; long

data);
long GetWRefCon(WindowPtr theWindow);
void SetWindowPic(WindowPtr theWindow;

PicHandle pie);
PicHandle GetWindowPic(WindowPtr theWindow);
long PinRect(Rect *theRect; Point thePt);
long DragGrayRgn(RqnHandle rqn; Point

startPt; Rect limitRect,slopRect; int
axis; ProcPtr actionProc);

Control Manager
Initializations and Allocation

ControlHandle NewControl(WindowPtr theWindow;
Rect *boundsRect; Str255 *title; char
visible; int value,min,max,procID; long
refCon);

ControlHandle GetNewControl(int controlID;
WindowPtr theWindow);

void DisposeControl(ControlHandle theControl);
void KillControls(WindowPtr theWindow);

Control Display
void SetCTitle(ControlHandle theControl;

Str255 *title);
void GetCTitle(ControlHandle theControl;

Str255 *title);
void HideControl(ControlHandle theControl);
void ShowControl(ControlHandle theControl);
void DrawControls(WindowPtr theWindow);
void HiliteControl(ControlHandle theControl;

int hiliteState);

Mouse Location
int FindControl(Point thePoint; WindowPtr

theWindow; ControlHandle *whichControl);
int TrackControl(ControlHandle theControl;

Point startPt; ProcPtr actionProc);
int TestControl(ControlHandle theControl;

Point thePoint);

Control Movement and Sizing

void MoveControl{ControlHand1e theControl;
int h,v);

void DragControl{ControlHandle theControl;

Point startPt; Rect

*limitRect,*slopRect; int axis);

void SizeControl(ControlHand1e theControl;

int h,v);

Control Setting and Range
void SetCtlValue(ControlHandle theControl;

int theValue);

int GetCtlValue(ControlHand1e theControl)

void SetCtlMin(ControlHand1e theControl; int

minValue);

int GetCtlMin(ControlHand1e theControl);

void SetCtlMax(ControlHand1e theControl; int

maxValue);

int GetCtlMax(ControlHandle theControl);

Miscellaneous Routines
void SetCRefCon(ControlHandle theControl;

long data);

long GetCRefCon(ControlHand1e theControl);

void SetCtlAction(ControlHand1e theControl;

ProcPtr actionProc);

ProcPtr GetCtlAction(ControlHand1e

theControl) ;

Menu Manager
Initialization and Allocation

void InitMenus();

MenuHand1e NewMenu(int menuID; Str255

*menuTitle);

MenuHand1e GetMenu(int resourceID);

void DisposeMenu(MenuHand1e theMenu);

Forming the Menus
void Appenc!Menu(MenuHand1e theMenu; Str255

data);

void AddResMenu(MenuHandle theMenu; ResType

theType);

void InsercResMenu(MenuHandle theMenu ResType

theType; int afteritem);

Forming the Menu Bar
void InsertMenu(MenuHandle theMenu; int

beforeID);

void DrawMenuBar();

void DeleteMenu(int menuID);

void ClearMenuBar();

Handle GetNewBar(int menuBarID);

Handle GetMenuBar();

void SetMenuBar(Hand1e menuList);

Choosing From a Menu
long MenuSelect(Point startPt);

long MenuKey(char ch);

void HiliteMenu(int menuID);

Controlling the Appearance of Items
void Setitern(MenuHand1e theMenu; int item;

Str255 itemString) ;

void Getitern(MenuHand1e theMenu; int item;

Str255 *itemString);

void Disableitern(MenuHandle theMenu; int

item);

void Enableitern(MenuHand1e theMenu; int item);

void Checkitern(MenuHandle theMenu; int item;

char checked) ;

void SetiternMark(MenuHand1e theMenu; int

item; char markChar);

void GetiternMark(MenuHand1e theMenu; int

item; char *markChar) ;

void Setiternicon(MenuHand1e theMenu; int

item; char icon);

void Getiternicon(MenuHandle theMenu; int

item; char *icon);

void SetiternStyle(MenuHand1e theMenu; int

item; Style *chStyle);

void GetiternStyle{MenuHand1e theMenu; int

item; Style *chStyle);

Miscellaneous Routines
void CalcMenuSize(MenuHand1e theMenu);
int CountMiterns(MenuHandle theMenu);

MenuHand1e GetMHandle(int menuID);

void FlashMenuBar(int menuID);

void SetMenuFlash{int count);

USING THE .
MACINTOSH
TOOLBOX-WITH C
An up-to-date new edition featuring Think C!

Using the Macintosh Toolbox with C is an indispensible
handbook and reference guide for any C programmer working
on the Macintosh. Now in an updated Second Edition, it
offers complete hands-on coverage of the latest system Toolbox
resources-and how to put them to work in C language
applications for the Mac. You'll find:

Plenty of usable sample C code, illustrating proper use of every
Toolbox function call.

Complete sample programs for every major topic, including:

• using the Event Manager

• creating and managing single and multiple windows

• managing a menu

• drawing with QuickDraw

• managing memory

• text editing with the Toolbox

• using alerts, dialogs, and controls

• handling disk file I/ 0

An in-depth guide to using RMaker to snnplify creation and
management of icons, windows, menus, and other resources.

Complete quick-reference appendices covering C calling
conventions, resource types and error codes, and much more.

Using the Macintosh Toolbox with C will show you how to get
your Macintosh applications up and running quickly-saving
you countless hours in programming time. And you'll return
to it time and again as an ongoing Toolbox reference!

COMPUTER BOOK SHELF CATEGORY

¥'Intermediate How-To

Reference

About the Authors

Fred A. Huxharn, David Burnard,
and Jim Takatsuka work at or·
contract for Apple Computer, Inc.,
and~ave taught courses on
Macintosh software development
in C for Macintosh users at the
University of California at Berkeley,
and the Lawrence Livermore
National .Laboratory.

SYBEX books bring you skil/s
not just information.

90000

9 780895 885722

LANGUAGES/TECHNICAL: C ISBN D-89588- 572-7 U.S. $29.95

