TURBO PASGAL TODLBOXN

NUMERIGAL METHODS

A complete collection
of Turbo Pascal® rou-
tines and programs

TURBO PASGAL Numerical Methods Toolbox™

Borland’s No-Nonsense License Statement!
This software is protected by both United States copyright law and international treaty provisions. There-
fore, you must treat this software just like a book, with the following single exception. Borland International
authorizes you to make archival copies of the software for the sole purpose of backing-up our software
and protecting your investment from loss.

By saying, “just like a book,"” Borland means, for example, that this software may be used by any number of
people and may be freely moved from one computer location to another, so long as there is no possibility
of it being used at one location while it's being used at another. Just like a book that can't be read by two
different people in two different places at the same time, neither can the software be used by two differ-
ent people in two different places at the same time. (Unless, of course, Borland's copyright has been
violated.)

Borland International grants you (the licensed owner of the Turbo Pascal Numerical Methods Toolbox)
the right to incorporate toolbox routines into your programs. You may distribute your programs that
contain Numerical Toolbox routines in executable form without restriction or fee, but you may not give
away or sell any part of the actual Numerical Methods Toolbox source code. You are not, of course, res-
tricted from distributing your own source code.

Sample programs are provided on the Numerical Methods Toolbox diskettes as examples of how to use
the various toolbox features. You may edit or modify these sample programs and incorporate them into
the programs that you write. Use of these sample programs is governed by the same conditions and res-
trictions as outlined in the first paragraph above.

WARRANTY

With respect to the physical diskette and physical documentation enclosed herein, Borland International,
Inc. (“Borland") warrants the same to be free of defects in materials and workmanship for a period of 60
days from the date of purchase. In the event of notification within the warranty period of defects in mate-
rial or workmanship, Borland will replace the defective diskette or documentation. If you need to return a
product, call the Borland Customer Service Department to obtain a return authorization number. The
remedy for breach of this warranty shall be limited to replacement and shall not encompass any other
damages, including but not limited to loss of profit, and special, incidental, consequential, or other similar
claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but
not limited to implied warranties of merchantability and fitness for a particular purpose with respect to
defects in the diskette and documentation, and the program license granted herein in particular, and with-
out limiting operation of the program license with respect to any particular application, use, or purpose. In
no event shall Borland be liable for any loss of profit or any other commercial damage, including but not
limited to special, incidental, consequential or other damages.

GOVERNING LAW

This statement shall be construed, interpreted, and governed by the laws of the state of California.

First Edition
Printed in USA
987654321

READ ME FIRST A

In order to provide you with the latest technical information on our products, announcements of future updates, and up-to-
the-minute information on new products, please complete and réeturn this registration form. Be sure to read the Borland No-

Nonsense License Statement on the other side.

Technical Support—To receive telephone technical supporit, you must be the registered owner of the Borland product.
Prompt technical support is available through the Borland Forums on CompuServe; just type GO BOR at any CompuServe prompt.
If you need further assistance, write a letter or call Borland and be prepared to give the product name, version number, and

the serial number found on the label of your master diskette.

The README File—If present on your master diskette, this file contains important information. that may not be in the
manual. To view this file, simply type README at the command pprompt. Be sure to read this file before you call for technical

support.

Thank you for completing this product registration card and returning it promptly. We want to keep you informed.

Name and address must be filled in by the person using the product for the registration form to be valid. (Please print legibly.)

Serial #

Name:

Date Purchased: /
M

Title:

first middle initial

C

Address:

Department:

Mail Stop:

City:

State:

Zip: Country:

Phone # (.)

- O Work

1 have read and agree to the terms of the Borland No-Nonsense License Agreement: -

Signature

Date:. /.

0 Home

In order to help us serve your needs, please complete the following:

Microcomputer used:
O 1BM PC or compatible [Macintosh [other

Where did you purchase this program?
O Borland direct

0 discount retailer

Software was bought for:

Oself O company | work for [company | own
Where will you use this program? v
Oathome Oatwork DOboth O other

O other mail order
O full-service retailer

O other

Where did you hear about this program?
0O ad in computer publication

0O ad in general interest publication

O other user

Nature of business:

O finance/real estate/insurance

O retail/wholesale

O published review
O retailer
O trade show

O computer consulting
O other consulting

O other

O transportation/communication/utilities
O mining/construction

0O legal O software publishing O governmemt
O health O other publishing 0O military
O professional services O computers/electronics manufacturing O education
O other services O other manufacturing 0O other
Nature of occupation:
[0 MIS/DP, systems analyst O administration O operations O student
O programming O finance/accounting O consulting O homemaker
O engineering/scientific O sales/marketing O teacher/trainer O retired
O doctor/lawyer O manufacturing/production O clerical O other
O other professional O purchasing
Number of employees at busil 0 1-24 0 25-99 O 100-499 O 500-1999 0O 2000-9999 O more than 9999
Number of mi puters at busi a -9 0 10-49 0 50-249 0 250-999 O more than 999
Other Borland products owned:
Programming languages Business Applications Utllity Programs:
0O Turbo Pascal O Turbo Prolog O Reflex 0 SideKick
Turbo Pascal Toolboxes O Turbo Prolog TB 0O Reflex Workshop O Traveling SideKick
O Tutor O Turbo Basic 0O Sprint O SuperKey
O Database O Turbo Basic Database TB For the Macintosh O Turbo Lightning
O Editor O Turbo Basic Editor TB O Turbo Pascal O Lightning Word Wizard
O Graphix O Turbo Basic Telecom TB O Reflex Scientific & Engineering
O GameWorks O Turbo C O SideKick O Eureka
O Numerical Methods O Eureka 0O Other
What other software do you use:
O spreadsheet O languages O desktop publishing O RAM-resident utilities
O database O accounting O business graphics O games

0O word processor O communications
O project management 0O network

What hardware peripherals do you use?

O modem O hard disk
O laser printer O plotter
0O mouse DO other peripheral

O CAD/CAM/CAE
O other

O EGA card
O other printer

BOR 0045F

Turbo Pascal Numerical Methods Toolbox

Borland’s No-Nonsense License Statement!

This software is protected by both United States copyright faw and international treaty provisions. Therefore, you must treat this software just like
a book, with the following single exception. Borland International, Inc. authorizes you to make archival copies of the software for the sole purpose
of backing-up our software and protecting your investment from loss.

By saying, “just like a book," Borland means, for example, that this software may be used by any number of people and may be freely moved from
one computer location to another, so long as there is no possibility of it being used at one location while it's being used at another. Just like a book
that can't be read by two different people in two different places at the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's copyright has been violated.)

Borland International grants you (the licensed owner of the Turbo Pascal Numerical Methods Toolbox) the right to incorporate toolbox routines
into your programs. You may distribute your programs that contain Numerical Toolbox routines in executable form without restriction or fee, but
you may not give away or sell any part of the actual Numerical Methods Toolbox source code. You are not, of course, restricted from distributing
your own source code.

Sample programs are provided on the Numerical Methods Toolbox diskettes as examples of how to use the various toolbox features. You may edit
or modify these sample programs and incorporate them into the programs that you write. Use of these sample programs is governed by the same
conditions and restrictions as outlined in the first paragraph above.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland International, Inc. (“Borland”) warrants the same to be free
of defects in materials and workmanship for a period of 60 days from the date of purchase. In the event of notification within the warranty period
of defects in material or workmanship, Borland will replace the defective diskette or documentation. If you need to return a product, call the Borland
Customer Service Department to obtain a return authorization number. The remedy for breach of this warranty shall be limited to replacement and
shall not encompass any other damages, including but not limited to loss of profit, and special, incidental, consequential, or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but not limited to implied warranties of merchantability
and fitness for a particular purpose with respect to defects in the diskette and documentation, and the program license granted herein in particular,
and without limiting operation of the program license with respect to any particular application, use, or purpose. In no:event shall Borland be liable
for any loss of profit or any other commercial damage, including but not limited to special, incidental, consequential or other damages.

GOVERNING LAW

This statement shall be construed, interpreted, and governed by the laws of the state of California.

BOR 0420 Fold at dotted line. Tape closed. Drop in mail. No postage necessary. 27
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 200 SANTA CRUZ, CA
POSTAGE WILL BE PAID BY ADDRESSEE

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066-9987

|

g

:
I

Turbo Pascal

Numerical Methods
Toolbox”

For the Macintosh

BORLAND INTERNATIONAL, INC.
4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Copyright ©1987
All Rights Reserved, First Printing, 1987
Printed in U.S.A.

0987654321

Table of Contents

INErOAUCHON ooveciivercirriisrieennscisessseseneescesersessisassesassssssssssssssstsssssesssssssssessssessesens 1
TOOIBOX FUNCHONS ...ucucveverererecrniesssssssessssesssssmmmnsssssssssssssssssmssssssessssesssssessasssssssessess 1
About this Manualccciiniininenennscnnnsesessesssssssersssessssesssssssssssesess 2
On the Distribution DisKS c.ccveverereercninnisinensinineiinnnensssssessrsesssssessessssssrsssssssssssseses 3
System Requirementsc.cccvcvcneinnnenincenccsnnneninennae 3
ACKNOWIEAZEMENLS oeoreirierericrevreecsnessnssssessssssssssssonsessssssssssssssssssssssssssssssssssseans 3
Chapter 1. ROUTINE BEGINNINGS . 5
Using the Toolbox: An Examplecccccvvvinenninnenenennnsinnsnensisnsssssssssssssssenes 5
The Distribution DisKsccevververeemeerermseseseemmeesencesessesenseenns 7
Installation 8
Files on Distribution Disks 8
The Graphics Demos ' 10
Data Types and Defined Constantscccocceervevueenee 10
Compiler Directives 1
Chapter 2. ROOTS TO EQUATIONS IN ONE VARIABLEccccceeerinnnee 13
Stopping Criteria 15
Root of a Function Using the Bisection Method (Bisect.pas)cccoeervereernnne .16

Description e 16

User-Defined Functioncoceeceeeeeserernnnneerenene . 16

Input Parameters .. 16

Output Parameterscocoveeververirmsesnennenssessssssssneenes 17

Syntax of the Procedure Callccooevunereerneerverernnn. .17

COMUNENES ...cvereerereieesrersnsnisesesssssssstsessasissssssssssssesssssssasssesssssssesetsssesssssnssssesssses 17
Sample PrOgramcooccernincinsieinesssinesensmmnissssssssmmsnssssssssssssssssessssssssssssess 17
EXample ..ottt s et s s ssssssnes 18
Root of a Function Using the Newton-Raphson Method (Raphson.pas) 19
Description . 19
User-Defined FUDCHONS .c.covuererererinrenesninnessrsenssssssrsessmsssssssssssssssssssssssssessessse 19
Input Parameterscccccceeiencnnennnnencneisessnsiseseenssnns 19
Output Parametersccevevcecenecnincncsenisersnccsssesens 20
Syntax of the Procedure Call vttt et e b R e s Rt ennebenes 20
COMMENLS ...cvviritieetii s ssa b s e 20
SamPle PIOZIAIMN ...cceccuvvecrenreseesssisississessissssessesssessns 20
EXampleooceiicietieecseeierseseesnnnessresessssnessessssesans 21
Root of a Function Using the Secant Method (Secant.pas)ccccoeeeerreerireens 23
DESCHIPLON ...c.oveveiviiiiiiiiiiinissiisisissisiiessssisisisssisssrsisssssssoseses 23
User-Defined FUNCHON veceeiueisiiensiscssinnessesssesnessesmsssisssssssssssssessssssssssarsess 23
Input Parameters ..., 23
Output Parameters ... 24
Syntax of the Procedure Callcccooveverenrenvrreverresernenes 24
Commentsccoevveenneene 24
Sample Program 24
Exampleccooerirernrrennns 25
Real Roots of a Real Polynomial Equation Using the Newton-Horner
Method with Deflation (Newtdefl.pas) 26
Description 26
User-Defined Types . . 26
Input Parameters ... 26
Output Parameters ccccoceoercveeneinincnesinniesnesisnessosismssssssssssssssossssssssssasssssess 27
Syntax of the Procedure Callccovuveveieemrevrenenersensisesesenes 28
COMIMENES .oovvrriiicienisectniise sttt sseasssasssasssessasassssasnessassssess 28
Sample PIOZIAmM ...cocovvreecininsisinsisisnissssisseseasesenstsstssssessssseaseassssssssassssssnsasssss 28
Input Files 28
EXAIPIE ovoreeerereeinnrnnisesenenseessessisensasensesssasessssessassssarassessessasessssessessssssasasens 28
Complex Roots of a Complex Function Usmg Miiller’s Method (Muller pas)31
Description 31
User-Defined TYPES cccvviiminniiinsnnininninincsissesisisisesssescssasesssscsssnss 31
User-Defined Procedurec.covmneneinnnisencenesscossesesssesens 31
Input Parameters 31
Output Parameters . 32
Syntax of the Procedure Call 32
COMIMENES ..ottt sesensasaeses 32
SAmNPlE PrOZIAIMN ...ceerenrinerccnsencisssssinsecssmnessssssecssasstssassssessessssesssssssasesssasssssans 33
EXample ..o 33

Turbo Pascal Numerical Methods Toolbox

Complex Roots of a Complex Polynomial Using Laguerre’s Method

and Deflation (Laguerre.pas) 35
DEeSCrPHON ..ottt sesesssesne s sesssssnsssssnssessassaons 35
User-Defined Types 35
Input Parameterscccvcvininiiniiiinnsisssssessssssssssssssssasssasssss 35
Output Parametersccocecevcnscneneennnenenineceseeseene 36
Syntax of the Procedure Callccccecuvcunmrnrninenennsinnininssssnsnssssssssssesssesesnns 36
Comments .36
Sample Programcecveersenseecsesessiscssassnsessrsesens 37

Input Files 37
Example 37
Chapter 3. INTERPOLATION 39
Polynomial Interpolation Using Lagrange’s Method (Lagrange.pas) 41
DeSCription ccccovevimiviriennniisnisisinsnsisisiiesssesesssssssssssens 41
User-Defined Types 41
Input Parameters ... 41
Output Parameters ceteere s s ae e sre s e e e srens 42
Syntax of the Procedure Call 42
Sample Program 42
INpUt Files ...cccoveveiivenrrnrcnnisenneecsesensasssansssenens 42
EXample cocciveneneienninniseniensssessnsensassssessssses 43
Interpolation Using Newton’s Interpolary Divided-Difference Method

(Divdif.pas) 45
Description 45
User-Defined Types 45
Input Parameters 45
Output Parameters 46
Syntax of the Procedure Call 46
Sample Program 46

Input Files 46
Example 46

Free Cubic Spline Interpolation (Cube_Fre.pas) 48
I D LT o (o) TR 48
USer-Defined TYPES ..c.ocvvvrienerncrinsininsnssminssssssessississsssssssssssssssssssssssssesssssssssases 48
Input Parameters ... 48
Output Parameters _ 49
Syntax of the Procedure Call 49
Sample Programccevervnrsecensensnreseernnnns 49
Input Files 50
EXample ...coveveererierirnssneeesssesessssssesniessensassesees 50
Clamped Cubic Spline Interpolation (Cube—Cla.pas) w53
Description 53
User-Defined Types reetee s tena e sasessnsaaanaasastans 53

Table of Contents

Input Parameterscccceveeemcnceinnnnnniininnecsssssssse e sssssesssssssisasasssnsnens 53
Output Parametersccoveeersersniscnsnsiinnsessesssssnssssssssssssssssssssasssssssssssssssssess 54
Syntax of the Procedure Callccoveivecenireeeereeeneeee e cesesesesesenns 54
Sample Programcccveecnciccniciniesesissssenesssssesesssssssssssssassssines 55
INPUL FIlES ..ovieirciieccreeensnenessnsessssnsessnsssasssssssssssssssessssssassssssessasssnsssssses 55
EXamMPIE ..ocvviircreecseerneesenncneneesssstessess st ssssssssssssasssssssssssssssssssssasassnes 55
Chapter 4. NUMERICAL DIFFERENTIATIONcccocoennunenencnneneennnens 59
First Differentiation Using Two-Point, Three-Point, or Five-Point Formulas
(DIETIV.PAS) cuvereerrereeneiesrasrsssssssssessssasesessessassssessessssassssssssssssssssssasssssssssssssessessensscsees 61
I D TCTT g 101 4 o ¢ KOO 61
USer-Defined TYPES ..ccvervrrerersesensessnsesssnsssersssessassssssssssssssssssssssesssssssassssssscnsssens 61
Input Parametersccocccnienininnnnnininienscssssisssssssssssssssssesssssssssssssens 61
Output Parametersc.ccciveneniiimiiniiiisessesss 62
Syntax of the Procedure Callccovvivirieveninnnennninnieeennesesenessesissnsssssenses 62
COMIMENES c.vcvcirerrsenrireresnsrsissssesesissenssiisesistsssssssssssssssseassessssssssssessssssssssssssssssess 62
Sample Programc.ccccccencminincninnnnisininccsssissssssssssssesessssssesssessssssessesssssses 63
INPUL FlES ovvvevireeiecncccrsncccsiessisssnsssssssassssssessassssssssssessssssessssasensass 63
EXAMPIE ..vvvererreireriiereesiessesessasessessessssessssssersssasssssssssssssasessassssessissssssssssssans 63
Second Differentiation Using Three-Point or Five-Point Formulas
(DIETEVR.DAS) oveveerererrsrrenesrsssssssssssssscssesasssssssessessssesssssssssssssssssssssssssssessesssssnssssssessens 66
DESCIPHON ..vevvericirirrrrereeniestesiesisissseesiestssssssesssessessssssssssssssssssssssssssssssssnens 66
USEr-DefiNed TYPES ...ccccerervererrerennrresessssassssssssessssssesssssessessssesssassssssesssessessssssnsess 66
INput Parametersccccecvieincncninininieniniincsessesensssssssssssesesessssesssssasaens 66
Output Parametersceevvneennnennnniecnnnsienens vee 67
Syntax of the Procedure Callcccoouveeuneneenenennreninnrnensesessnessessssssessesessessans 67
COMINENES ...voverereerriereererreresnssssssressssssessestsrssssssssssssesssssssssssessosssssssssossssssssassosssass 67
Sample Program ceveseesasae et sns s s e naseasaseasas e nsnsssnans 68
Input Files ettt ettt bet et setsaee s e aetasane 68
EXAMPIE ovvevereereeeeecteesiessesessesessessssessssssssssssssesssssssssssssssssssssssssssssssssssssssns 68
Differentiation with a Cubic Spline Interpolant (Interdrv.pas)cccceccveevueenee 71
DESCrIPHON ...ociiviiriricnnisiieritseniisisesreissssisssesssestsrsssssassssseasessasane 71
User-Defined TYPES ..cevererreeeeeneneneesnssssnisnssessssssasssasssssssssssssssssessssssssssssssssesssses 71
INput Parameterscceveniiencncninnnninisiesnissssesnssseesessssssssssesessesssssssssssenes 71
Output Parametersccccoeicrcnnecniinninnesessssssssiesesssssssseseess 72
Syntax of the Procedure Callccocovvevevimrninnrinerenneesencnssenssessesesesssssenens 72
SamPIE PrOZIamcccccecevenisensnesesessessssesssssssssssssesssssssssassnsssssassssssssassssssasssssses 72
INPUL FIIES oottt sssssensssessasessesssssssessssssssssssssssssssssesssssssns 73
EXAMDIE oovvvieeiereeernecinesnesseseesnsssesiecssssessisssassssessasssesssasessassssssssssssssans 73
Differentiation of a User-Defined Function (Derivin.pas)ccccoecvuncrecusenncs 75
DESCIPHON ...oovvriiriiireriirisitsncssi s eastrsssssasassssassssrsresens 75
User-Defined TyPes cccvveivininnnimininninnnsensinsesissienes 75
User-Defined FUnCtonscmincsecseensienes 75
Input Parameters ... 75

iv Turbo Pascal Numerical Methods Toolbox

Output Parameters 76

Syntax of the Procedure Callcocovuveeennrvenricenesensenenenssersenssesssssens 76
Comments _ 76
Sample PrOZIam occvmniiccnimmsenininesssiniisssssssssssssssssssssssssessassensns 76
INPUL FIIES cooeoeveeeenciercrnencennersnssssssensesesssssessssesensesessasssasssssssrssssassrsssssssssssasens 76
Example 77
Second Differentiation of a User-Defined Function (Deriv2fn.pas)cou... 78
DESCHPHON ...coverrenrecninsennrssiesssusssesmsisssssssssesssssssssesssssssnssssssnssssssensssns 78
User-Defined Types 78
User-Defined Function 78
Input Parameters eeotsestsnesaoasasRsHtbeR SRS R SRS LSS SEBE SRR SRS B E SRR SR S SRS SRR SRSB4 4S04 8 78
Output Parameterscoiieminsiisinnsssmmssiismssssiiessmsssssssssss 79
Syntax of the Procedure Callcccccvermevernrecrrreecnresennennrnenesnnsessesessnes 79
Comments .79
Sample Program 79
Input Files 80
EXAMNPIE .ocvoveiiriicccineneneinsnsnsresssssnsessssssssssssssssssssssessasssssssasssssssssserasessasses 80
Chapter 5. NUMERICAL INTEGRATION 83
Integration Using Simpson’s Composite Algorithm (Simpson.pas)ccceeuee 85
Description 85
User-Defined Function 85
Input Parameters 85
Output Parameters .86
Syntax of the Procedure Call 86
Sample Program 86
Example .. 86
Integration Using the Trapezoid Composite Rule (Trapzoid.pas)ccccoeuurenee 88
Description ... 88
User-Defined Function 88
Input Parameters 88
Output Parameters ... 89
Syntax of the Procedure Callcccoceernrrncruerennens 89
Sample Programccceeeennesseossssssessssrsssssssssens 89
Example . 89
Integration Using Adaptive Quadrature and Simpson’s Rule (Adapsimp.pas) 91
- Description 91
User-Defined Function : 91
Input Parameters 91
Output Parameters 92
Syntax of the Procedure Call 92
Comments 92
Sample Program 92
Example93

Table of Contents v

Integration Using Adaptive Quadrature and Gaussian Quadrature

(AADEAUS.PAS) .evverererieereriernersssssssssearssssssessessssssssssssssssessasssssssssssesssssestssesssssanes 94
Description ettt bR L b SRR RS s sb e bbb bR 94
User-Defined FUNCHON ...ocovveueecmrecuncniisiininestsesessassessessssessssesessassssessssesssecans 94
Input Parameters e s e R s SRRt n 94
Output Parameters ... 95
Syntax of the Procedure Call reretere et sa s e enan R seren b sases 95
COMMENES evruerrrrrieriitsitereseisreserssr sttt s rens et s bt ssesanssssessssssnsssesereses 95
SAMPIE PIOZIAmM ..ottt sses st stssesssssssssssessasensesass 97

EXaMPIE oovevcrreerercninnnninssessnscssnseersessesessesisssesssssssssssssssssssssssesenissssssssasens 97
Integration Using the Romberg Algonthm (Romberg.pas)oveeveeeererereneennens 98
Description 98
User-Defined Functioncccoeuue.. 98
Input Parametersc.coceviininininiiseessesssessasssssssssens 98
Output Parameterscocecovereivercressieririsesineressesesenssesssesesssesaens 99
Syntax of the Procedure Call 99
Sample Programccevieencenesenesesisesneencnsessnsanessenseens .99
EXample ...oovereereerireeecenennceenetee s ..99
Chapter 6. MATRIX ROUTINEScccoemvemmunrrrrnnens ...101
Determinant of a Matrix (DEL.pas)ccoeieeecmnernmmeesesecsssssessesesssssssessessesssnse 103
Description s sr bbb bts 103
User-Defined Types et e e ta e e e R et en s raees 103
Input Parameters ..., 103
Output PArQmELErs cccccecveeruirieneninnisisniesescseenssessssesesesesssssssssessensssssssases 104
Syntax of the Procedure Callccccvuviiieurinrennirriniinnieneenerseessisensesseasesessnes 104
Sample PrOgram ... 104
INPUL FIlE oottt ssssese e seeasssensesensasesasnss 104
EXaMPIE oovivvreriereecrnsersnnneesesesstssaeessesesesssssss s ssssssesssesssssssssnsessssssessessarsses 105
Inverse of a Matrix (INVErSE.pas)ceimnesvcesereceeerenes 106
DESCIPHON ...ttt eestasae sttt ssssessssasasoss 106
User-Defined Types cetse st s s s tas106
Input Parameters ... e 106
Output Parameters ... 107
Syntax of the Procedure Callc..ccoeevieininivenenenineserenensenisssssessesssserssssssesses 107
Sample Program ... 107
INPUL FIlES oo cenecestistsstcneesessesnssesssenssensasessesessssessassscsesssne 107
EXAIMPIE oot sse s ssass s sssssssassssessesnas 108
Solving a System of Linear Equations with Gaussian Elimination

(GaUSEHMLPAS) ..cvvcvereeiriersrcneresenenesesssstsisesseessasesssssssesssssssesssssessasesssssosssssssasess 109
DESCrIPHON ...ttt sb e 109
User-Defined Types ... et s st 109
Input Parameterscoiinennnssniennnes 109
Output PArametersccecoeeveenereenmseriiniisisensesesessssssssresssssssssssssssasesesesssssens 110

vi Turbo Pascal Numerical Methods Toolbox

Syntax of the Procedure Callcccovueeeenrceeneeveenncinnennessssressesssessseeseseses 110

SAMPIE PIOZIAM ...covveieereceeeeetsesseneseensesrasesessisesssssssssssssnsssssssssnsssssnesssssssees 110
INPUL FIlE oot seer e tessesssss st s senessnsssesesssassnsesssssssnns 110
EXampIe ..ottt sesesssessassaeene 1

Solving a System of Linear Equations with Gaussian Elimination and
Partial Pivoting (Partpivt.pas)c...cceceevcesireineereremsenemeenessesencssensesesssseneseessesessens 12

DESCHPHON ..ottt ee st sestsas s sesesassesesesesessssanan 12

USer-DefiNed TYPES cccueverirrierrecerercserencsensnersesssssssssssssssssssesssssesessnssssssssssssssesens 112

Input Parameters ...t 112

Output Parametersccvinmnninisnimiiiiisssssssssss 113

Syntax of the Procedure Callcooovvevninnrvernieinnnnresnesennensssssesssssssseens 13

SAMPIE PIOZIAIN ...covurererisresineenisensessensenenisesssssssssssesessnassssesssssssessssssssssssssssssses 13
INPUL FIle oottt sttt sese st sssssssessassssssnsnsssanes 13
EXAMPIE ..ovvierrrcrreetseeeentsesesssssesessasessssnssssssssssssssesssssssssssessassssssessssssessesenes 114

Solving a System of Linear Equations with Direct Factoring (Dirfact.pas) 15

DESCIIPHON .cvvuecneirienreaenreeseseeeetstststsssssensasassssssesessssssaseseassssesssesesssesassssssssasns 15

User-Defined TYPES ccovrivrrreesrsensmsensiscssensissssessssasssssssssssssasssssessssssssssssssessssnns 15

Procedure LU_Decompose Input Parametersccoceeeevevrreeevernnensssesennns 116

Procedure LU_Decompose Output Parametersocovceveeeueecrsrecesennenn. 116
Syntax of the Procedure Callccoovrivenvnirenininenrcsestsneeesssneseessenens 116

Procedure LU_Solve Input Parametersoocceevvreescnsrsessusersssnssssssssssnsanns 116

Procedure LU_Solve Output Parameterscocoeeerveerneisssersrerssessssssennes 1u7
Syntax of the Procedure Callccoecvineunimnecinenerreieericneeneisnscesnnseseesenns u7

Sample Programcceierirenincssisinnicnenenensiesescseesessesecsssesesessssssssssesssncsens 1u7
INDUL FIlE oottt sensestessassssasessessssesssssasensass nu7
EXAIMNPIE .oocurricireieicsnncsisneenistseessestasssnsessssas s sassssesesssessessassesessssssassssssns 118

Solving a System of Linear Equations with the Iterative Gauss-Seidel Method
(GAUSSIALPAS) cevrrrerererresrrsiensessesesseseesesesesersssesessnssssssssasssssasssssssssssnsessssssssssesans 121

DESCIIPHON ...ttt st s asss s st bsbasssasssesssnenssons 121

USer-Defined TYPES ccoeevverererrenisercrensiisnnesesensisisssesessssessssesessssssssssssssssssssssases 121

INPUL PArametersc.ccoeccoiveenmssiiniiniensisesenssnsecssssassisssssssessssssssssssssasssssesces 122

Output Parameterscocceeeceenircsiinicistneeeneneeseeceassessesssssessssssssssessessassenss 122

Syntax of the Procedure Callccccceeeninnirenirerercrnssenssesssseessessnsssssesens 123

SamPIE Programccoccceeiverneneeeisescscniinensenisesesssnissscsssssssssssssssssssssssssssssssssses 123
INPUL FIlE oottt ese et sanesseseneneasesen 123
EXAMPIE oottt b sne st ns 124

Chapter 7. EIGENVALUES AND EIGENVECTORSccccooecenirneninnns 127
Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using the
Power Method (POWEL.DAS) vcveerereencmrinensernrnnresersessssssesnssssssssssesssssesssssssssssenns 129

DESCHPHON ..ecocevrerrccenneensineesiiresrstssasisssesest sttt sss s e sssssesesesssenssssssnnns 129

USer-Defined TYPES ..c.covceireeresreenesernecesenesesessesesssssssssesssssssssssssessssssassssaesenss 129

Input Parametersccccoeeecnninniiicnciniecctesssses st sessssesssesssssons 129

Output Parametersccccoeveveevnininniniiicniinoeessiniesssmesssieessiesssssssen 130

Table of Contents vii

Syntax of the Procedure Callccccoeeevvvnrervernercrrenans 130
COMMENLS ..ottt s e sersssseassasssesssses 130
Sample Program 131
INPUE FAlE ooicieiccencrrsensesnessnisssessssnssssnssssessenssssssssasssssensssssssessssessenasas 131
EXAMPIE .couvriricerneninicinnisnesnessisssssisssisssssssnssesssssssssssssssesssssssssssssassssssssneas 131
Real Eigenvalue and Eigenvector of a Real Matrix Using the Inverse
Power Method (InvPower.pas) 133
Description 133
User-Defined Types 133
Input Parameters ... 133
Output Parameters ... 134
Syntax of the Procedure Callcccovverervennrnenninnnniennsnssnenssnsnsssssseesessssssnssees 134
COMIMENLS ...eoirericnreniniserisississnsisssissitesssssssssssssssssssassssssssesssssesssssssnssssssasssans 135
Sample PrOZIAIN ccccververserersennemsessnsssssmossssesssssssssessessssissessassssassassssesssssssees 135
INPUL File ..oooceercrrecnrecennesesessnsensesessessesessasnsssssnssssssasses 135
Example 136
Real Eigenvalues and Eigenvectors of a Real Matrix Using the Power
Method and Wielandt’s Deflation (Wielandt.pas) 139
DESCIPHON ...covererncererrerinssssisssssisssisssesssssssssessssssssasssssssssssssassssssassesssesses 139
User-Defined TYPES cccocvveiirnnmciniiniisincininiscsenssisessssessssssesssssssssses 139
Input Parameters OO 139
Output Parameters reeseestseneasaenns 140
Syntax of the Procedure Callccoveeiiivernrvernennnnnnrnnenesncsnnesnsssnsessssssnns 141
Comments 141
Sample Programcminncmnnimnsisssssesssssssssscsssssssssssssssses 141
Input File et s e b e bes e s sa et ssane 142
EXAIMPIE ovovectercterctnnetnninnersnesssenssssssssssssssnsssssssssssessesssessstossssessensssesesne 142
The Complete Eigensystem of a Symmetric Real Matrix Using the Cycllc
Jacobi Method (Jacobi.pas) . rressnsensersstsiross 144
DESCIIPHON ..cuvvviririrniniiriniaenninniesisiesissiiesessastssssssssassssssssssssssessassssasessasssssin 144
User-Defined Types 144
Input Parameterscoienieininieniiiessiisesiissssssssssssens 144
Output Parameters ...145
Syntax of the Procedure Call 145
Comments 146
Sample Program 146
INPUL FilE coecricceernrenrenneersaesesescsessssssssessssssasssenens 146
Example .. reereet bbb e e Rt e e e R e R e bRt n Rt 147
Chapter 8. INITIAL VALUE AND BOUNDARY VALUE METHODS ... 149
Solution to an Initial Value Problem for a First-Order Ordinary Differential
Equation Using the Runge-Kutta Method (Runge_1.pas)ccccoeeeuerrerrunnenns 153
Description 153
User-Defined TYPES cvvcumcrmnrucissemessinnsissessssessassssesssssssesssssssasssssssssssssases 153

viii Turbo Pascal Numerical Methods Toolbox

User-Defined FUNCHON ...c.covevvervireenninnnnenseresnessesesssssssssssesessssssssessssssssesssons 154

Input Parameterscccccoceunnene. . 154
Output Parameters ... 154
Syntax of the Procedure Call detetsee et s st saRe s Rt sn et nRea s 154
Commentsccoceveveenrcrenncrseneens 155
Sample Program 155
EXamPIE ..ottt sssssassssssentes 155
Solution to an Initial Value Problem for a First-Order Ordinary Differential

Equation Using the Runge-Kutta-Fehlberg Method (RKF_1.pas) 157
DeSCription ccccviniineinniscnisisisesiisssssisssssessnsans 157
User-Defined Types 157
User-Defined Function 157
Input Parametersiceinnnnnsinncnisiennnnienns 158
Output Parametersccccovreermrencsesesenns 158
Syntax of the Procedure Callccoooruvcrnrnrrninenersennrnnninnnnssnsessenssesnssnsssssees 158
Comments 159
Sample Programcoceeeeeeeemsescessissnnnes 159
Example ..ot esseensenes 159

Solution to an Initial Value Problem for a First-Order Ordinary Differential
Equation Using the Adams-Bashforth/Adams-Moulton Predictor/Corrector

Scheme (Adams_l.pas) 162
DESCIPHON c.vveiniiricnirieisinnsisrsnsiisisnsnsissiisssesssssssssssesssssessssssssssssrsesssssases 162
User-Defined Types - 163
User-Defined Function 163
Input Parameters 163
Output Parameters 163
Syntax of the Procedure Call ... 164
COIMIMENLS .cevevurrrrrerrirerriirnresiienensterstststsesesenssesssssssssasssesssssssssssssassssssssssssssesssesenes 164
Sample Programcoococvvenvernnneenseessecnens 164

EXAIMPIE .ooovevreeiccnnirennisessennnennecesstesstssesssssssssessasssessassassasssesensssssnssens ... 164
Solution to an Initial Value Problem for a Second-Order Ordinary Differenti

Equation Using the Runge-Kutta Method (Runge—2.pas)cceccvumneerrurnenee 166
DESCIIPHON ...cvvviiiiiisiimrissrssssesnisieiinssirscssssssassssassssssssssesesssssssesassses 166
USer-Defined TYPES ccevcvevrrnrmnerennesessisernineeseeessssssesssessassssssasssssssssssssssssssens 167
User-Defined FUNCHON ovveeeecniiiriiinieectrenesineseeesneeeiescsessessssssssssssssessans 167
Input Parametersccieinmiiiinniniiiisisssssessesnsses 167
Output Parameterscoovvirercrinnnncrinens 168
Syntax of the Procedure Callcoovineneeverentneee e sesesessens 168
COMIMENLS ..ovovinieriirniisrisisssssseissrssessssasssssssssens 168
Sample Program cerereseesareaesnestens 169

EXAINPIE ..ottt et eses s e s ssansssassnssssssssess 169
Solution to an Initial Value Problem for an nth-Order Ordinary Differential

Equation Using the Runge-Kutta Method (Runge_N.pas)cc.ccceevrerrvereennes 172

DeSCIPHON ...ttt sasaaene 172

Table of Contents ix

User-Defined Types ettt s ase R en R st Rs R R en Rt nee 174

User-Defined Function 174
Input Parameters 174
Output Parameters 175
Syntax of the Procedure Call 175
Comments 175
Sample Program . 176

Example 176

Solution to an Initial Value Problem for a System of Coupled First-Order
Ordinary Differential Equations Using the Runge-Kutta Method

(Runge_Sl.pas) 180
Description 180
User-Defined Types 182
User-Defined FUNCHONS cccoreereeensencesesnmsissesersasessassssesssssssssssssassssesssssrssssnssss 182
Input Parameters ... sssesesessesessssseses 183
Output Parametersccocinereinninencnuininesisieiesnissesmnmesenssssssssssssssssssssssssss 184
Syntax of the Procedure Call 184
Comments 184
Sample Program 185

Example 185

Solution to an Initial Value Problem for a System of Coupled Second-Order
Ordinary Differential Equations Using the Runge-Kutta Method

(RUDZE_S2.DAS) crevrerrrrerenreresersemssicsssssissisissinssssssssssessessssssssisssssssssssossassasssssassseses 190
Description 190
User-Defined Types 193
User-Defined Functions 193
Input Parameterscooevisisnsisnsmenenissenonses . 194
Output Parameterscceee. 195
Syntax of the Procedure Call 195
Comments 195
Sample Program 196

Examplecocvvrvennnnennnennisenenens 197
Solution to Boundary Value Problem for a Second-Order Ordinary Differential

Equation Using the Shooting and Runge-Kutta Methods (Shoot2.pas) 202
Description 202
USEr-Defined TYPES ...vovvvversrnencesisessinsionsenssessnsssensssensasesssmssssssssssessasssssssssasssses 203
User-Defined Functionsececieeniisieosenssonnes 203
Input Parameters 203
Output Parameters 204
Syntax of the Procedure Call 204
Comments 204
Sample Program 205

Example 205

X Turbo Pascal Numerical Methods Toolbox

Solution to a Boundary Value Problem for a Second-Order Ordinary Linear
Differential Equation Using the Linear Shooting and Runge-Kutta Methods

(LinshOt2.pas)ccceceemrereerererrenressnesssssssessessesssssssssssssassees 209
DESCIIPHON ...eovevrerrrrecererererensnssnessssstsssssistsiesesesssssesessnsasssesssssestssssessensssssssssseas 209
USer-Defined TYPESccvvvecervereereeseserersesensssssesesesssssssssssssssssssssssssssssssassssssssens 210
User-Defined FUNCHONS ccovvuverecessisemsensesnseesseserssnsnssesanse 210
Input Parametersoocvneniininnininiessscsssssssssesaessan 210
Output Parametersc.coevemereisisesisisisissssssssosssessasesisssssesssssassessssssssssssssnses 210
Syntax of the Procedure Callcccoccoeremrrerenrureseserinsirstnssesssssssssssssssssssees 211
COMIMENLS ...ceeeririirinrieinrisrsnissrseirsasse sttt s sesessssessassssenesesssses 21
SaMPIE PrOGramcccovveeeerernenennissisisesnisinessissssssssesssssssessessssassssassssessansssessssenss 211

EXAIMNPIE ..ooveeiriecitreencrnensenasesssasasssssinessssssessssssssssssssssessssssssssesssssssssssssesns 212
Chapter 9. LEAST-SQUARES APPROXIMATIONcccooovvcrrecnemrersencnseenne 215
Least-Squares Approximation (Least.pas)eeceesersmerssssarsssessesssssssssssssssssesases 216

DESCIIPHON ...ucvrrreceeeenesrsesnnsnssesesssssssssisssiesssssessssssssssssssssssessssssasssssnenessssssass 216
User-Defined TYPES cccoceveerienrsesrensesssirsesesessssssssmussssssssassssssssssasssssssssssasesasas 217
Input Parameters ...t 217
Output Parameterscccvccnmienninnininiesiesssssssessssssasasaes 218
Syntax of the Procedure Callc.ccoermmmnnrnrrnenenenenensssnissesssssssssssessssssssssnns 218
COMIMENLS ...evveceerererreeesnrerenrseeesesssssesssessssserssssssssnssssssssssssssssenssesessssssssssssesassssases 218

POLY oottt ss e ase ittt et et en s n s R e sasnanetnanas 218

FOUTIET ...cvvviveeiceecentnneseesesennseesssntsssnsassssesasssassssasassssonssssesssnnssssersnesnssssenes 219

POWET .ttt ssssssessssssssssssstsssssassssssessassnsssssass 219

EXPO cooivererecnnereresnssinnsisstassssssesssssssssssnssestssssssesssnensstssssssnssssnssnsntssssssnsssssan 219

LOE ervoeseesesessesessessssssssesssesssssessessesssessesssessssessssssessseessessmsesssreseen 220

USET cereieccisetini sttt ess bt sas b sb s et s b e se b sasbsbe e nas e 220

SAMPIE PIOZIAM ...concvreirinenrencrsensessissississesstsssse et seassssssssessesssssssasessesssnssssssss 221

INDUL FIlES ovevicriecrciernenncrnnsensiceneensennsessssessasssnssssssssssesessssssessessassasesssses 221

Example ..o sssensasensees 221
Chapter 10. FAST FOURIER TRANSFORM ROUTINESccccceevnunee 227
The Application PrOgramscc.eccccererecssmnssesesesssesisesiosssssssssssssssssssssssssssssnss 228
Data SampPlING coovireerninrnisennesiesssisssiesisese e sesesssssssssssessssssesstasesensessases 232
USer-DefiNed TYPEScccveeererneeererescersusesssessasessssssesssessasessesssssassesessssssasssssssssssnsns 233
Fast Fourier Transform Algorithmscccccooooiveinivcinisniceccnresseennenssssssesssssnns 234

Procedure TEStINPUL cccoevrverereensescssessssessesessressssssssssessssssessesssssssssesssssssesans 234

DESCIIPHON ..ottt sasassesassesssessessesessenessss 234

Input Parametersccocovevninncninnnincineeeessessesnssessssssssssnsas 234

OULPUL PArAMELETS ..cvvovveervserserssrnsesssenssessessssssesssesssssssssssssssssssssssssssssssssens 234

Syntax of the Procedure Callcccovverveirnnenereninensinensnsersesesesssssseeass 234

Procedure MakeSinCoSTablecccovenrrernernineninenennnernssssssssnsssesssssssssesens 235
DESCIIPHON ...vcvvieerrreinrnsnstinensestsistsisissssissesssssssssssssesesassssssssssnesssnssasssnnens 235
INput Parametersccccmmeinininininiisnnneeienmsnsssssesssssesssnsssesessssssssenes 235

Table of Contents xi

Output Parameters ... 235

Syntax of the Procedure Callccooevienminnnriniiincnninninesisenesssenesessen 235
Procedure ComplexFFT, RealFFT e b 235
Description reeet ettt se et aebane e e saes 235
Input Parameters st ens 236
Output Parameters e 236
Syntax of the Procedure Callccocvveeccrnivrrerrrennrneniseneceseeesesesensesesnens 236
Fast Fourier Transform Applicationscecceeveeverucvnreens 237
COMPIEXFFT ...oovverrrrerraresreeesseissaiasissssissaseasssesseessassasessesensesesssesssassseasesens 237
Description ccecvveeeenscsnceeaenes . 237
Input Parameters ... 237
Output Parameters ... 237
Syntax of the Procedure Call reeetrse et s R b s e b ssat st senes 238
REAIFFT ooovrreinrrecrnrensessiscnssssssssssssssssasessesesesnsnsanssessesenssnesssnessissssssesins 238
DEeSCHPHON ...coveecrrernccnicriiniireisisessssessnesiesessesssans 238
Input Parameters 238
Output Parameters 239
Syntax of the Procedure Callccccovvivernrnneinnnnecneieneresneneesneesersssesens 239
ComplexConvolution 239
DESCIIPLON ...ttt ssaesssstsassesssesesssssacsesssssesssessssens 239
Input Parameters 240
Output PArameterscccceccevevienmrcnininincnesssnessssiesescsnssesssssessssssssssssssassnns 240
Syntax of the Procedure Callccoccenneirnnnrininenerneseninsinssesesessssseresens 240
RealCONVOIIHON cvucvererireneseieeeesseeserieiacrsessesssisesnsssssssssssssssnsssssssssssssssssssens 240
DESCHIPLON ..covvveeerreersnnisenisisssisssstsssssisssssssssnsnsssssnsssenssssssenssssensssssnsasssssans 240
Input Parameters ... 241
Output Parameters et s a et sa st ene 241
Syntax of the Procedure Callcc.ocovvvrveeevernrennriernenns 241
ComplexCrosSCOITEIAtIoN c..eevreerreemreeesenssrensrsssssssserssssssassssssssssssessssesseseses 242
DESCHPHON .ovivirieinicrieiceiirsisiisiensitesiiesietsessststsaessssasssssssssesssssssssnsssssscons 242
Input Parametersccccceviininniniicnniicces et esssseseses 242
Output Parameters 243
Syntax of the Procedure Call crrsesenererensaarens 243
COMIMNENLS .cvviniiririririiiinniti s rsbss bbbt sasssaessssssessssassssens 243
RealCrossCorrelation rerereter bbb sttt en st n et r s e barasaaseaes 244
Description ccceveerreecensinesveenns cerseseesssentsaens 244
Input Parameterscccoccvnivnnnnrininncninesenonenens 244
Output Parameterscccovinrinmiiniiiieiesiemsesssmo 245
Syntax of the Procedure Callocoovvreerrrrnineninenrnneeeenrenesenesssssesens 245
Comments ettt st e e tens 245
SamPIe PIOZIAIN ccocccuvevevircnneirinnisessersasessessssansssssssessssssssssssessssesssssssssssseseses 245
INPUL File oot cnrcsinesessinessteonssssssssssssssssssssssssssssssenssess 245
Example 246

xii Turbo Pascal Numerical Methods Toolbox

Chapter 11. GRAPHICS PROGRAMSocovvrninininnsssnssssesssssssnsssssssssns
Function of the Least-Squares Graphics Demonstration Program
Function of the Fourier Transform Graphics Demonstration Program
Rebuilding the Demonstration Programs

REFERENCES ...

INDEX ...t iessssss s sssassssssssssssssssens

Table of Contents

xiii

Introduction

The Turbo Pascal Numerical Methods Toolbox is a reference manual for both the
student of numerical analysis and the professional needing efficient routines. An
elementary background in calculus and linear algebra is assumed, although many
of the algorithms use only high-school-level mathematics. A general knowledge of
Turbo Pascal® is also assumed. If you need to brush up on your knowledge of
Pascal, we suggest looking at the Turbo Pascal for the Macintosh Reference Manual.

Before you begin using a particular routine, read through this brief introductory
chapter and then refer to the chapter that interests you.

Toolbox Functions

The Turbo Pascal Numerical Methods Toolbox provides routines for

* Finding solutions to equations

« Interpolations

* Calculus

* Numerical derivatives and integrals

* Matrix operations: inversions, determinants, and eigenvalues

» Differential equations
* Least-squares approximations

* Fourier transforms

About this Manual

The major areas in numerical analysis are represented in this Toolbox, with each
chapter focusing on a particular problem. Each routine begins with a general
description of the implemented algorithm or numerical method. (References to
numerical analysis texts are provided for each numerical procedure.) User-supplied
types, functions, and input and output parameters are defined, and the syntax of

the procedure call is provided. If appropriate, a “Comments” section is also pro-
vided.

Finally, every algorithm in the Toolbox is accompanied by a general-purpose pro-
gram that handles all the necessary 1/0, while allowing you to try each algorithm
without building any code. Handily, these sample programs will often reduce the
coding your own application may require.

As an example, let’s say you want to find the roots to an equation in one variable.
First, you would read the introduction to Chapter 2, “Roots to Equations in One
Variable,” and choose the numerical method best suited to your particular problem.
Second, you would run the sample program for the desired numerical method to
determine the necessary input and output. Third, you would write a Turbo Pascal
function defining your equation, using the function already coded in the sample
program as a guide. Fourth, you would run the sample program with your function
substituted for the original one. Of course, if these algorithms are to be part of a
larger program, you must build all the interfaces to the other parts of the system,;
but this should only be done after you gain experience with the particular numeri-
cal method.

Several books are referred to throughout the text; complete references are listed at
the back of the book in the section entitled “References.”

The body of this manual is printed in normal typeface; other typefaces serve to
illustrate the following:

Alternate This type displays program examples and procedure and function
declarations.
Italics This type emphasizes certain concepts, first-mentioned terms, and

mathematical expressions.

Boldface This type marks the reserved words of Turbo Pascal in text and in
program examples.

2 Turbo Pascal Numerical Methods Toolbox

On the Distribution Disks

The routines for this Toolbox are contained on two packed disks. Their contents and
general installation instructions are covered in Chapter 1.

System Requirements

To use the Turbo Pascal Numerical Methods Toolbox you must have one of these
Macintosh computers: 512K, Plus, SE or II; with one 800K or two 400K disk
drives.

You will also need Turbo Pascal version 1.0 to run the routines.

Acknowledgements

We refer to the following products in this book.

¢ Turbo Pascal is a registered trademark and Turbo Pascal Numerical Methods
Toolbox for the Macintosh is a trademark of Borland International, Inc.

 ImageWriter and LaserWriter are trademarks of Apple Computers, Inc.

Introduction 3

C H A P T E R 1

Routine Beginnings

This chapter provides you with everything you need to start using the routines in
this Toolbox. We'll discuss the files supplied on the disks. We also briefly discuss
data types and defined constants used in the Toolbox, and the setting of compiler
directives.

First, though, before we thrust you into the middle of numerical madness, let’s take
a look at one way to use this Toolbox.

Using the Toolbox: An Example

In late 1986 and early 1987, the America’s Cup 12-meter yacht championship was
held. The 12-meter yachts are just large sailboats, but the competition is so intense
that the only way to be competitive is to use dozens of people, spend millions of
dollars, design a special boat, and spend a couple of years training for the race. The
race has become so sophisticated that many of the sailboats have on-board com-
puters and other electronic equipment.

To keep stride with other challengers, one yacht’s crew used personal computers,
and of course, Borland software. They used Turbo Pascal to design the boat’s hull.
They used Reflex®: The Database Manager to maintain their databases and to
display plots while the boat was sailing. And when it came time to do some mathe-
matical modeling, again they turned to Borland for its inimitable software and
chose the Turbo Pascal Numerical Methods Toolbox.

Simply speaking, the problem they had was one of “precision monitoring.” It takes a
crew of very highly skilled sailors to compete in America’s Cup races, but even the
best skippers cannot act with sufficient precision to win. A typical race lasts for
several hours, and the winner usually wins by only a few feet.

The electronic equipment on a boat can sense with reasonable accuracy all of the
crucial variables: boat velocity, wind velocity, boat direction, boat position, and so
on. This data must then be made available to the skipper in a coherent form, and
he/she must decide at what angle to place the rudder based on that information.
The problem is too complex to rely on intuition alone.

Even just displaying the velocity is more complex than you might think at first.
When sailing on the ocean, the waves are big enough that the velocity is in constant
flux. Fortunately, the fluctuations due to the waves represents a steadily periodic
force. By using Fourier transforms (Chapter 10), the crew was able to identify the
periodic portion of the velocity and subtract it out. The result: the velocity as a
function of time but with the wave fluctuations eliminated. The graph of this modi-
fied velocity is much smoother, and allows the skipper to tell much more quickly
and accurately whether the boat is accelerating or decelerating.

To measure the acceleration quantitatively, the crew used the fact that the accelera-
tion is the derivative of the velocity. They were able to do this easily with differenti-
ation routines (Chapter 4). They were also able to directly measure the distance
travelled by using integration routines (Chapter 5), and the fact that distance is the
integral of the speed.

Perhaps the most difficult problem in navigating a sailboat is aiming the rudder.
You can’t just aim the boat in the direction that you want to go, rather you have to
pick a direction that you can sail rapidly, depending on the wind direction. An
experienced skipper can judge this pretty well, but not well enough. Every boat is
a little different, and the best way to handle one boat is not necessarily the best way
to handle another.

So, the team ran extensive trial races with the boat to gather data on how the boat
performed in various circumstances. The data was collected automatically by elec-
tronic instruments on board, and stored digitally on floppy disks. They then used
Reflex to manage the data and to display graphs. But they lacked the tools to relate
their data to the data they would have under actual racing conditions.

In order to predict the behavior of their boat in an actual race, the team created a
model from their collected data using least-squares routines (Chapter 9). With the
least-squares routines, you can create a multiparameter model and then find the
values of the parameters that make the model most accurately fit the data. With a
mathematical model of the boat’s behavior, the team was then able to predict how
the boat would perform under circumstances similar but not identical to its prac-
tices.

6 Turbo Pascal Numerical Methods Toolbox

This, of course, is just one of many possible applications of this Toolbox. Now, let’s
go on to the fundamentals.

The Distribution Disks

All of the Toolbox routines are contained on two disks. Each disk has folders corre-
sponding to chapters in the manual.

The files for each chapter are self-contained and do not require any files from any
other chapter, with these exceptions:

+ All files require Turbo Pascal (not included).

¢ Most files require the IOSelection unit, located on Disk 2.

o The files for Chapter 11 require the compiled units from Chapters 9 and 10, as
well as the TurboGraph unit from Chapter 11.

The numerical analysis routines are in the files with the .unit suffix. The files with
the .pas suffix are demonstration programs. To run a demonstration program, get
into Turbo Pascal and load the .pas file of your choice. The menus are self-explana-
tory. The .dat files contain input data for specific .pas files.

Contents of the distribution disks:

NMT Disk 1:

Read Me Read Me program (double click on this)
Read file Text for the Read Me program
FFTComplex Compiled Unit from Chapter 10
FFTDemo Fast Fourier Transform Demo program
FFTDemo.pas Source for Fast Fourier Transform Demo
FFTMenu.r RMaker source for FFTMenu.rsrc
FFTMenu.rsrc RMaker output for Fast Fourier Transform Demo
FFTReal Compiled Unit from Chapter 10
FFTRoutines Compiled Unit from Chapter 10
LeastSquares Compiled Unit from Chapter 9
LeastSquaresDemo Least Squares Demo program
LSQDemo.pas Source for Least Squares Demo
LSQMenu.r RMaker source for LSQMenu.rsrc
LSQMenu.rsrc RMaker output for Least Squares Demo
SamplellA.dat Data file for Least Squares Demo
SamplellB.dat Data file for Fast Fourier Transform Demo
TurboGraph.unit Source to the TurboGraph Unit

Routine Beginnings

NMT Disk 2:

IO Selection Packed source for IO Selection
Chapter 2 Packed source for Chapter 2
Chapter 3 Packed source for Chapter 3
Chapter 4 Packed source for Chapter 4
Chapter 5 Packed source for Chapter 5
Chapter 6 Packed source for Chapter 6
Chapter 7 Packed source for Chapter 7
Chapter 8 Packed source for Chapter 8
Chapter 9 Packed source for Chapter 9
Chapter 10 Packed source for Chapter 10
UnPack The program to unpack the packed files

Installation

The files Chap2 through Chapl0 on your disk are packed source for the corre-
sponding chapters in this manual. In order to use these files, you must first unpack
them with the UnPack program.

How to use the UnPack program:

1. Double-click on the icon for the UnPack program. You will be asked to name
the Packed file to UnPack.

2. Using the Standard File Dialog, select the Packed file to UnPack. You will be
asked for the Volume/Folder to save all of the source files to.

3. Using the Standard File Dialog, select the Volume/Folder to hold the source
files in that Packed file.

And now you are ready to begin.

Files on Distribution Disks

Note: These files are not copy protected. All files are ordinary text files.
Contents of the folders.
10 Selection Routines common to all chapters

IO Selection 10 Selection.rsrc 10 Selection.unit
IO Selection.r

8 Turbo Pascal Numerical Methods Toolbox

Chap2 “Roots to Equations in One Variable”

Bisect.pas
Laguerre.pas
Muller.pas

Chap3 “Interpolation”

Cube_cla.pas
Cube_fre.pas
Divdif.pas

Interpolation

Interpolation.unit

Newtdefl.pas
Raphson.pas
Raphson2.pas

Lagrange.pas

Sample3A.dat
Sample3B.dat
Sample3C.dat
Sample3D.dat

Chap4 “Numerical Differentiation”

Deriv.pas
Deriv2.pas
Derivin.pas

Deriv2fn.pas

Differentiation
Differentiation.unit

Chap5 “Numerical Integration”

Adapgaus.pas
Adapsimp.pas

Integration

Integration.unit

Romberg.pas
Simpson.pas

Chap6 “Matrix Routines”

Det.pas
Dirfact.pas
Gauselim.pas
Gaussidl.pas

Inverse.pas

MatrixRoutines
MatrixRoutines.unit

Partpivt.pas

Roots of Equat
Roots of Equat.unit
Secant.pas

Sample3E.dat
Sample3F.dat
Sample3G.dat
Sample3H.dat
Sample3I.dat

Interdrv.pas
Sample4A.dat
Sample4B.dat

Trapzoid.pas

Sample6A.dat
Sample6B.dat
Sample6C.dat
Sample6D.dat

Chap7 “Eigenvalues and Eigenvectors”

EigenRoutines Jacobi.pas
EigenRoutines.unit Power.pas

Wielandt.pas

Invpower.pas

Sample7A.dat

Chap8 “Initial Value and Boundary Value Methods”

Adams_1.pas Runge_l.pas
DifferentialEquat.unit Runge_2.pas
Linshot2.pas Runge_N.pas
RKF_l.pas Runge_sl.pas

Routine Beginnings

Runge_s2.pas
Shoot2.pas

Chap9 “Least-Squares Approximations”

Least.pas LeastSquares.unit
LeastSquares Sample9A.dat

Chapl0 “Fast Fourier Transform Routines”
FFTComplex FFTReal.unit Samplel0B.dat
FFTComplex.unit FFTRoutines Samplel0C.dat
FFTProgs.pas FFTRoutines.unit
FFTReal Samplel0A.dat

All sample programs use the IO Selection unit from the disk. This file includes
procedures that are common to all sample programs. When copying any of the
sample programs to a disk, be sure to also copy the files IO Selection and 10
Selection.rsre to that disk or the sample programs will not compile.

We have made the sample programs general and easy to use. For example, numeri-
cal input can originate from the keyboard (where improper input is trapped) or
from a text file; output can be sent to the printer, screen, or text file; other refine-
ments are also included. Since, to a beginner, the supporting code may obscure the
simplicity of calling the procedure, we have included a minimal sample program
for Newton-Raphson’s method of root-finding (Raphson2.pas).

The Graphics Demos

Because graphic displays are often an essential part of numerical analysis, we have
included two demonstration programs that involve display of numerical results.
These programs rely on graphics routines contained in the unit library TurboGraph
supplied on the distribution disk.

The demonstration programs are on Disk 1. For instructions about how to run or
recompile them, see Chapter 11.

Data Types and Defined Constants

Data types that might be confused with those in the calling program have been
prefixed with the letters TN (for Turbo Numerical); for example, TNmatrix or
TNuvector. All Toolbox-type declarations are contained in the particular Toolbox
unit you are using in your program. Therefore, you must recompile the unit if you
want to modify one of the type declarations. (You might want to do this to dimen-

10 Turbo Pascal Numerical Methods Toolbox

sion arrays based on your particular needs.) For example, the Lagrange procedure
requires the definition

type TNvector = array[0..TNArraySize] of Extended;

The identifier TNArraySize should be optimized by the user, although we have set
a default value in each of the Toolbox units. It may be replaced with an integer or
byte constant.

Compiler Directives

Aside from the usual default values of the compiler directives in standard Turbo
Pascal, we have set the compiler directive to {$R + } in all units that use arrays, and
to {$I—} in all sample programs. The first directive checks to see that all array-
indexing operations are within the defined bounds and all assignments to scalar
and subrange variables are within range. The latter directive disables I/O error-
checking. All the sample programs have their own 1/O error-checking procedures
(contained in the unit library IO Selection), so the {$I —} directive must remain
disabled in the sample programs. The array checker {$R+} should always be
active, since the performance penalty is slight and the advantages are significant.

Routine Beginnings I

C H A P T E R 2

Roots to Equations in One Variable

The routines in this chapter are for finding the roots of a single equation in one real
variable. A typical problem is to solve

xxexp(x) — 10 =0
In general, the routines find a value of x, where x is a scalar real variable, satisfying

flx) = 0.0
where f is a real-valued function that you program in Pascal.

All of the methods are approximate methods, meaning that they find an approxi-
mate value of x that makes f(x) close to zero. Because of round-off error, it is usually
not possible to find the exact value of x. Furthermore, they are all iterative
methods, meaning that you specify some initial guess that is some value for x,
which you think is reasonably close to the solution. The routine repeats some calcu-
lations that replace the guess x with a more accurate guess until the required level
of accuracy is achieved.

The bisection method returns an approximation to a root of a real continuous func-
tion of the real variable x. This method always converges (as long as the function
changes signs at a root), but may do so relatively slowly.

The Newton-Raphson method also returns an approximation to a root of a real
function f of the real variable x. When this algorithm converges, it is usually faster
than the bisection method. If more than one root of a polynomial equation is
desired, then use Newton-Horner’s method.

The secant method is similar to the Newton-Raphson method, but doesn’t require
knowledge of the first derivative of the function. Consequently, it is more flexible
than the Newton-Raphson method, though somewhat slower.

Newton-Horner’s method applies Newton’s method to real polynomials. It also
uses deflation techniques to attempt to approximate all the real roots of a real
polynomial. Both the Newton-Horner and Newton-Raphson methods are faster
than the bisection and secant methods, but are undefined if | f'(x)| < = TNNear-
lyZero.

The Newton-Horner and Newton-Raphson methods both converge around multi-
ple roots, although convergence is slow. These algorithms depend upon an initial
approximation of the root. If the initial approximation is not sufficiently close to the
root, the Newton methods may not converge. In some instances, an initial choice
may lead to successive iterations that oscillate indefinitely about a value of x usu-
ally associated with a relative minimum or relative maximum of f. In either case,
the bisection method could be used to determine the root or to determine a close
approximation to the root that can be employed as an initial approximation in the
Newton-Raphson or Newton-Horner methods.

Miiller’s method returns an approximation to a root (possibly complex) of a complex
function of the complex variable x. Although Miiller’s method can approximate the
roots of polynomials, we recommend that you use Newton-Horner’s method, the
secant method, or (in the case of complex polynomials) Laguerre’s method to find
the roots of polynomials.

Laguerre’s method attempts to approximate all the real and complex roots of a real
or complex polynomial. Laguerre’s method is very reliable and quick, even when
converging to a multiple root. This is the best general method to use with polyno-
mials.

A caution when solving polynomial equations: Polynomials can be ill-conditioned,
in the sense that small changes in the coefficients may lead to large changes in the
roots.

14 Turbo Pascal Numerical Methods Toolbox

Stopping Criteria

All the root-finding routines use the function TestForRoot to determine if a root has
been found.

function TestForRoot(X, 01dX, Y, Tol : Real) : Boolean;

........................ ——- - -}
{ Here are four stopping criteria. If you wish to }
{ change the active criteria, simply comment off the current }
{ criteria (including the appropriate or) and remove the comment }
{ brackets from the criteria (including the appropriate or) you }
{ wish to be active. }
....................................... }
begin

TestForRoot := { --- ----}

(ABS(Y) <= TNNearlyZero) {Y=0 }

{ }

or { }

{ +

(ABS(X - 01dX) < ABS(01dx*Tol)) { relative change in X }

{ +

{ +

(* or) { }

(* =) A{ }

(* (ABS(X - 01dX) < Tol) *) { absolute change in X }

* *) { }

(* or *) { }

(* *) { }

(* (ABS(Y) <= Tol) *) { absolute change in Y }

{ s-eemeeeee}

end; { procedure TestForRoot }

The four separate tests provided by function TestForRoot may be used in any
combination. The default criteria tests the absolute value of Y and the relative
change in X. If you wish to change the active criteria, simply comment off the
current criteria (including the appropriate or) and remove the comment brackets
from the criteria (including the appropriate or) you wish to be active.

The first criterion simply checks to see if Y is zero (TNNearlyZero is defined at the
beginning of the procedure). This criterion should usually be kept active.

The second criterion examines the relative change in X between iterations. To
avoid division by zero errors, OldX has been multiplied through the inequality.

The third criterion checks the absolute change in X between iterations.

The fourth criterion determines the absolute difference between Y and the allow-
able tolerance. Note: The parameter Tol(erance) means something different in each
test. Be sure you know which tests are active when you input a value for Tol.

Roots to Equations in One Variable 15

Root of a Function Using the Bisection Method (Bisect.pas)

Description

This method (Burden and Faires 1985, 28 ff.) provides a procedure for finding a -
root of a real continuous function f, specified by the user on a user-supplied real
interval [a,b]. The functions fla) and f{b) must be of opposite signs. The algorithm
successively bisects the interval and converges to the root of the function. You must
also specify the desired accuracy to which the root should be approximated.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Bisect determines the roots of this function.

Input Parameters

LeftEndpoint:Extended; Left end of the interval
RightEndpoint:Extended; Right end of the interval
Tol:Extended; Indicates accuracy of solution

MaxIter:Extended; Maximum number of iterations permitted
The preceding parameters must satisfy the following conditions:
1. LeftEndpoint < RightEndpoint.

2. TNTargetF (LeftEndpoint) » TNTargetF(RightEndpoint) < 0; the endpoints
must have opposite signs.

3. Tol > 0.
4. Maxlter = 0.

16 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Answer:Extended; An approximate root of TNTargetF
fAnswer:Extended; The value of the function at the value Answer
Iter:Integer; Number of iterations to find answer

Error:Byte; 0: No error
1: Iter > MaxlIter
2: Endpoints are of the same sign
3: LeftEndpoint > -RightEndpoint
4:Tol <0
5: MaxIter < 0

If Error = 1 (maximum number of iterations exceeded), Answer is set to the last x
value tested and fAnswer is set to TNTargetF(Answer). If Error > 1, then the other
output parameters are not defined.

Syntax of the Procedure Call

Bisect(LeftEndpoint, RightEndpoint, Tol, MaxIter, Answer, yAnswer, Iter,
Error,@TNTargetF);

The procedure Bisect determines the roots of function TNTargetF.

Comments

If a root occurs at a relative maximum or relative minimum, the bisection method
will be unable to locate that value of p if p does not occur as an endpoint of a
subinterval.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Bisect.pas provides I/O functions that demonstrate the bisec-
tion algorithm. To modify this program for your own function, simply change the
definition of function TNTargetF. Note that the address of TNTargetF is passed into
the Bisect procedure.

Roots to Equations in One Variable 17

Example

Problem. Determine the solution to the equation cos(x) = x.

1. Write the following code for function TNTargetF into Bisect.pas:

{----mmmeeea HERE IS THE FUNCTION ---c--eeee-- }
function TNTargetF(x : Extended) : Extended;
begin
TNTargetF := Cos(x) - x;
end; { function TNTargetF }
{ommmmmmmm e }

2. Run Bisect.pas:

Left endpoint: 0
Right endpoint: 100

Tolerance (> 0): 1E-6
Maximum number of iterations (> 0): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

" Left endpoint: 0.00000000000000e+0
Right endpoint: 1.00000000000000e+2
Tolerance: 1.00000000000000e-6
Maximum number of iterations: 100

Number of iterations: 28
Calculated root: 7.39085301756859%e-1
Value of the function
at the calculated root: -2.82073423997129e-7

18 Turbo Pascal Numerical Methods Toolbox

Root of a Function Using the Newton-Raphson Method
(Raphson.pas)

Description

This example uses Newton-Raphson’s algorithm (Burden and Faires 1985, 42 f.) to
find a root of a real user-specified function when the derivative of the function and
an initial guess are given. The algorithm constructs the tangent line at each iterate
approximation of the root. The intersection of the tangent line with the x-axis
provides the next iterate value of the root. You must specify the desired tolerance to
which the root should be approximated.

User-Defined Functions

function TNTargetF(x : Extended) : Extended;

function TNDerivF(x : Extended) : Extended;

The procedure Newton Raphson determines the roots of the function TNTargetF.
The function TNDerivF must be the first derivative of function TNTargetF.

Input Parameters

InitGuess:Extended; User’s initial approximation to the root
Tol:Extended; Tolerance in answer (see “Comments”)
MaxIter:Integer; Maximum number of iterations permitted

The preceding parameters must satisfy the following conditions:
1. Tol >0
2. MaxlIter > 0

Roots to Equations in One Variable 19

Output Parameters

Root:Extended; Approximate root.

Value:Extended; Value of the function at the approximate root.
Deriv:Extended; Value of the derivative at the approximated root.
Iter:Integer; Number of iterations needed to find the root.

Error:Byte; 0: No error.
1: Iter < MaxlIter.
2: The slope is zero (see “Comments”).
3:Tol = 0.
4: MaxIter < 0.

If a root is found, it is returned along with the value of the function at the root
(which, of course, should be close to zero) and the value of the derivative at the
root. If Error < 2, the data from the last iteration is returned.

Syntax of the Procedure Call

Newton_Raphson(InitGuess, Tol, MaxIter, Root, Value, Deriv, Iter, Error, @TNTargetF,
@TNDerivF);

Comments

Newton’s method involves division by the value of the derivative of the function.
Should the algorithm attempt to do any calculations at a point where the derivative
is less than TNNearlyZero, the routine will stop and return an error message (Error
= 2).

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Raphson.pas provides I/O functions that demonstrate the
Newton-Raphson algorithm. Note that the addresses of TNTargetF and TNDerivF
are passed to the Newton_Raphson procedure.

The program Raphson2.pas also provides I/O functions that demonstrate the New-
ton-Raphson method. It is an extremely bare-bones program and is provided for

20 Turbo Pascal Numerical Methods Toolbox

the newcomer to Turbo Pascal who wants to see a simple, straightforward applica-
tion of a Toolbox routine.
Example

Problem. Determine the solution to the equation cos(x) = x.

1. Code the following two functions into Raphson.pas (or Raphson2.pas):

{--mmmmm- HERE IS THE FUNCTION ----cccecee-- }
function TNTargetF(x : Extended) : Extended;
begin
TNTargetF := Cos(x) - x;
end; { function TNTargetF }
{ - -}
{----un-- HERE IS THE DERIVATIVE ~-==ceccecca-- }
function TNDerivF(x : Extended) : Extended;
begin
TNDerivF := =Sin(x) - 1;
end; { function TNDerivF }
£--- }

2. Run Raphson.pas:

Initial approximation to the root: 0
Tolerance (> 0): 1E-6
Maximum number of iterations (>= 0): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Initial approximation: 0.00000000000000e+0
Tolerance: 1.00000000000000e-6
Maximum number of iterations: 100

Number of iterations: 5
Calculated root: 7.39085133215161e-1
Value of the function
at the calculated root: 0.00000000000000e+0
Value of the derivative
of the function at the
calculated root: -1.67361202918321e+0

Roots to Equations in One Variable 2|

22

Here is the Raphson2.pas version of the same function:

Initial approximation to the root: 0
Tolerance(>0): 1E-6
Maximum number of iterations(>=0): 100

Error = 0

Number of iterations: 5§
Calculated root: 7.39085133215161e-1
Value of the

function at the root: 0.00000000000000e+0
Value of the derivative of the

function at the root: -1.67361202918321e+0

Turbo Pascal Numerical Methods Toolbox

Root of a Function Using the Secant Method (Secant.pas)

Description

This example uses the secant method (Gerald and Wheatley 1984, 11-13) to find a
root of a user-specified real function given two initial real approximations to the
root. The secant method constructs a secant through the two points specified by
the initial approximations. The intersection of this line and the x-axis is used as the
next best approximation to the root. The approximation to the root and its prede-
cessor are used to construct the next secant line. The process continues until a root
is approximated with specified accuracy or until a specified number of iterations
have been exceeded.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Secant will determine the roots of this function.

Input Parameters

InitGuessl:Extended; User’s first approximation to the root
InitGuess2:Extended; User’s second approximation to the root
Tol:Extended; Indicates accuracy in solution
MaxIter:Integer; Maximum number of iterations permitted

The preceding parameters must satisfy the following conditions:
1L Tol >0
2. Maxlter = 0

Roots to Equations in One Variable ' 23

Output Parameters

Root:Extended; Approximate root.
Value:Extended; Value of the function at the approximate root.
Iter:Integer; Number of iterations needed to find the root.

Error:Byte; 0: No error.
1: Iter > MaxlIter.
2: The slope is zero (see “Comments”).
3: Tol = 0.
4: MaxIter < 0.

If a root is found, it is returned with the value of the function at the root (which, of
course, should be nearly zero). If Error < 2, then the data from the last iteration is
returned.

Syntax of the Procedure Call

Secant (InitGuessl, InitGuess2, Tol, MaxIter, Root, Value, Iter, Error, GTNTargetF);

The procedure Secant determines the roots of the function TNTargetF.

Comments

The secant algorithm constructs a line through two points and finds the intersec-
tion of that line with the x-axis. If the line has a slope whose absolute values are
less than TNNearlyZero (that is, the two points have the same y-value), then it has
no intersection with the x-axis (or infinitely many if it lies on the x-axis) and the
algorithm will no longer continue. If this happens, Error 2 is returned. Error 2 will
also be returned if the absolute difference of the two initial approximations (Guessl
and Guess2) is less than TNNearlyZero.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Secant.pas provides I/O functions that demonstrate the
secant algorithm. Note that the address of TNTargetF is passed to the secant proce-
dure.

24 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Determine the solution to the equation cos(x) = .

1. Write the following code for procedure TNTargetF into Secant.pas:

Y S, HERE IS THE FUNCTION =-=----=nn-- }
function TNTargetF(x : Extended) : Extended;
begin
TNTargetF := Cos(x) - x;
end; { function TNTargetF }
£ }

2. Run Secant.pas:

First initial approximation to the root: 0
Second initial approximation to the root: 1
Tolerance (> 0): 1E-8

Maximum number of iterations (> 0): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

First initial approximation: 0.00000000000000e+0
Second initial approximation: 1.00000000000000e+0
Tolerance: 1.00000000000000e-8

Maximum number of iterations: 100

Number of iterations: 6
Calculated root: 7.39085133215161e-1
Value of the function
at the calculated root: 0.00000000000000e+0

Roots to Equations in One Variable 25

Real Roots of a Real Polynomial Equation Using the
Newton-Horner Method with Deflation (Newtdefl.pas)

Description

This example uses Newton-Horner’s algorithm and deflation. Newton-Horner is
the Newton-Raphson method applied to polynomials (Burden and Faires 1985, 42
fl). Deflation is used to find several roots of a user-specified real polynomial given
an initial guess specified by the user. This procedure approximates a real root and
then removes the corresponding linear factor from the given polynomial. The
newly obtained (deflated) polynomial is then analyzed for a real root. This process
continues until a quadratic remains, the remaining roots are complex, or the algo-
rithm is unable to approximate the remaining real roots. Should the polynomial
contain two complex roots, they may be determined using the quadratic formula.
You must specify (at most) the tolerance to which the roots should be approxi-
mated.

User-Defined Types

TNvector = array[0..TNArraySize] of Extended;

TNIntVector = array[0..TNArraySize] of Integer;

Input Parameters

InitDegree:Integer; Degree of user-defined polynomial
InitPoly:Thvector; Coefficients of user-defined polynomial

Guess:Extended; User’s initial approximation
Tol:Extended; Indicates accuracy in solution
MaxIter:Integer; Maximum number of iterations permitted

26 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. InitDegree > 0

2. Tol >0

3. Maxlter = 0

4. InitDegree < TNArraySize
TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 4. If condi-

tion 4 is violated, the program will crash with an Index Out of Range error (assum-
ing the directive {$R +} is active).

Output Parameters

Degree:Integer; Degree of the deflated polynomial (> 2 if some of the roots are
not approximated).
NumRoots: Integer; Number of roots found.
Poly:TNvector; Coefficients of the deflated polynomial.
Root:TNvector; Real part of all roots found.
Imag:TNvector; Imaginary part of all roots found (nonzero for 2 at most).
Value:Thvector; Value of the polynomial at each approximate root.
Deriv:Thvector; Value of the derivative at each found root.
Iter:TNIntVector; Number of iterations required to find each root.
Error:Byte; 0: No error.
1: Maximum number of iterations exceeded.
2: The slope is zero (see “Comments”).
3: Degree <0.
4:Tol < 0.
5: MaxlIter < 0.

If a root is found, it is returned with the value of the polynomial at that root (which
should be close to zero) and with the value of the derivative at that root. If the last
two roots are complex (only two can be complex, since they are evaluated by the
quadratic formula), then the value and derivative at those points are arbitrarily set
to zero. If all the roots have not been found, then the unsolved deflated polynomial
is also returned.

Roots to Equations in One Variable 27

Syntax of the Procedure Call

Newt_Horn_Def1(InitDegree, InitPoly, InitGuess, Tol, MaxIter, Degree,
NumRoots, Poly, Root, Imag, Value, Deriv, Iter, Error);

Comments

Newton’s method involves division by the derivative of the function. Should the
algorithm attempt to do any calculations at a point where the absolute values of the
derivative are less than TNNearlyZero, the routine stops and returns an error mes-
sage (Error = 2).

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Newtdefl.pas provides I/O functions that demonstrate the
Newton-deflation algorithm.

Input Files
It is possible to input the coefficients from a text file. The format for the text file is
as follows:

1. The degree of the polynomial

2. The coefficients in descending order, beginning with the leading coefficient

and decreasing to the constant term

Spaces or carriage returns can be used to separate the data. It does not matter
whether the file ends with a carriage return; for example, the polynomial

F(x) = 2° — 2x
could be entered in a text file as
310 -20

Example

Problem. Determine the roots to the 7th degree polynomial:
2+ 2° — 49" + 69x° + 120x° + 98x — 240

28 Turbo Pascal Numerical Methods Toolbox

Run Newtdefl.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Degree of the polynomial (<= 30)? 6

Input the coefficients of the polynomial
where Poly[n] is the coefficient of x"n

Poly[6] = 1
Poly[5] = 1
Poly[4] = -49
Poly[3] = 69
Poly[2] = 120
Poly[1] = 98
Poly[0] = -240

Initial approximation to the root: 0
Tolerance (> 0): 1E-8
Maximum number of iterations (>= 0): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Initial Polynomial:

Poly[6]: 1.00000000000000e+0
Poly[5]: 1.00000000000000e+0
Poly[4]: -4.90000000000000e+1
Poly[3]: 6.90000000000000e+1
Poly[2]: 1.20000000000000e+2
Poly[1]: 9.80000000000000e+1
Poly[0]: -2.40000000000000e+2

Initial approximation: 0.00000000000000e+0
Tolerance: 1.00000000000000e-8
Maximum number of iterations: 100

Number of calculated roots: 6

Roots to Equations in One Variable 29

Root 1

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at
the calculated root

Root 2

Number of iterations:
Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 3
Number of iterations
Calculated root
Value of the function

at the calculated root:

Value of the derivative
of the function at
the calculated root

Root 4
Number of iterations

Calculated root:

Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 5

Number of iterations:

Calculated root
Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

Root 6

Number of iterations:

Calculated root
Value of the function

at the calculated root:

Value of the derivative
of the function at

the calculated root:

7
3.00000000000000e+0

3.33066907387547e-16

: -7.48000000000000e+2

6
1.00000000000000e+0

3.46944695195361e-16

3.60000000000000e+2

: 32
: -8.00000000000000e+0

0.00000000000000e+0

: -6.43500000000000e+4

: 25
5.00000000000000e+0

0.00000000000000e+0

3.84800000000000e+3

0
: -1.00000000000000e+0

0.00000000000000e+0

0.00000000000000e+0

0
: -1.00000000000000e+0

0.00000000000000e+0

0.00000000000000e+0

Turbo Pascal Numerical Methods Toolbox

+-1.00000000000000e+0

+ 1.00000000000000e+0

i

i

Complex Roots of a Complex Function Using Miiller’s
Method (Muller.pas)

Description

This example uses Miiller’s method (Burden and Faires 1985, 71-75) to find a
possibly complex root of a user-defined complex function. The algorithm finds a
root of a parabola defined by three distinct points of the given function. This
approximation to the root and its two predecessors are used to construct the next
parabola. This is repeated until the convergence criteria is satisfied. Miiller’s
method has the advantage of nearly always converging; however, it is slow because
it uses complex arithmetic. You must create a complex function, input an initial
guess (which need not be very accurate), the tolerance in the answer, and the
maximum number of iterations.

User-Defined Types

TNcomplex = record
Re, Im:Extended;
end;

User-Defined Procedure

procedure TNTargetF(x:TNcomplex; var y:TNcomplex);

The Muller procedure approximates a complex root of this function.

Input Parameters

Guess:TNcomplex; An initial guess
Tol:Extended; Indicates accuracy in solution
MaxIter:Integer; Maximum number of iterations

Roots to Equations in One Variable 31

The preceding parameters must satisfy the following conditions:
L. Tol >0
2. Maxlter = 0

Output Parameters

Answer:TNcomplex; An approximate root of the function
yAnswer: TNcomplex; Value of the function at the approximate root
Iter: Integer; Number of iterations required to find the root

Error:Byte; 0: No error
1: Iter > Maxlter
2: Parabola could not be formed (see “Comments”)
3:Tol =0
4: Maxlter < 0

If Error < 2, then the information from the last iteration is output.

Syntax of the Procedure Call

Muller(Guess, Tol, MaxIter, Answer, yAnswer, Iter, Error, @TNTargetF);

The procedure Muller approximates a complex root of function TNTargetF.

Comments

Miiller’s method involves constructing a parabola from three points. If they all lie
on a line whose slope in absolute value is less than TNNearlyZero, then a parabola
that intersects the x-axis cannot be constructed. Such a construction will halt the
algorithm and return Error = 2. Fortunately, this does not commonly occur.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter. Complex arithmetic is used.

32 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Muller.pas provides 1/O functions that demonstrate Miiller’s
method.

The user-defined function is contained in the procedure TNTargetF. It is necessary
to separately define the real and complex parts of the function. To define the com-
plex function F(x), you must code the following definitions:

y.Re := Re[F(x.Re + ix.Im)];
yIm := Im[F(x.Re + ix.Im)];

where i is the square root of — 1.
For example, the complex function F(x) : = exp(x) would be coded like this:

y.Re : = exp(x.Re) * cos(x.Im);
y.Im := exp(x.Re) * sin(X.Im);

Note that the address of TNTargetF is passed to the Muller procedure.

Example

Problem. Find a solution to the complex equation cos(x) = x.

1. First, code the following procedure TNTargetF into Muller.pas:
g SR — HERE IS THE FUNCTION =--mmm-emmmcecmnn- }

procedure TNTargetF(x : TNcomplex; var y : TNcomplex);

begin { this is the complex function y = Cos(x) - x }

y.Re := Cos(x.Re)*(Exp(-x.Im) + Exp(x.Im))/2 - x.Re;
y.Im := Sin(x.Re)*(Exp(-x.Im) - Exp(x.Im))/2 - x.Im;
end; { procedure TNTargetF }
{rmmmmmm e }

2. Run Muller.pas:
Initial approximation to the root:
Re(Approximation)= -4
Im(Approximation)= 4
Tolerance (> 0): 1E-6
Maximum number of iterations (> 0): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Roots to Equations in One Variable 33

34

Initial approximation: -4.00000000000000e+0 + 4.00000000000000e+0 i
Tolerance: 1.00000000000000e-6
Maximum number of iterations: 100 ‘

Number of iterations: 18
Calculated root: -9.10998745393294e+0 + 2.95017086170180e+0 i
Value of the function
at the calculated root: -1.42544604592176e-11 + 3.75013236610100e-11 i

Turbo Pascal Numerical Methods Toolbox

Complex Roots of a Complex Polynomial Using Laguerre’s
Method and Deflation (Laguerre.pas)

Description

This example uses Laguerre’s method (Ralston and Rabinowitz 1978, 380-383) and
linear deflation to find the possibly complex roots of a complex (or real) polynomial.
You must input the coefficients of the polynomial, an initial guess, the tolerance
with which to find the answer, and the maximum number of iterations.

User-Defined Types

TNcomplex = record
Re, Im:Extended;
end;
TNIntVector = array[0..TNArraySize] of Integer;

TNCompVector = array[0..TNArraySize] of TNcomplex;

Input Parameters

Degree:Integer; Degree of the user’s polynomial
Poly:TNvector; Coefficients of the user’s polynomial
InitGuess: TNcomplex; Initial guess of the root
Tol:Extended; Indicates accuracy in solution
MaxIter:Integer; Maximum number of iterations

The preceding parameters must satisfy the following conditions:
1. degree > 0
2. Tol >0
3. Maxlter = 0
4. degree < TNArraySize

Roots to Equations in One Variable 35

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 4. If condi-
tion 4 is violated, the program will crash with an Index Out of Range error (assum-
ing the directive {$R +} is enabled).

Output Parameters

Degree: Integer; Degree of the deflated polynomial
Poly:Integer; Coefficients of deflated polynomial
NumRoots:Integer; Number of approximate roots

Roots:TNCompVector; Approximate roots
yRoots:TNCompVector; Value of the polynomial at the approximate root
Iter:TNIntVector; Number of iterations required to find each root

Error:Byte; 0: No error
1: Iter = MaxlIter
2: Degree < 0
3:Tol =0
4: MaxIter < 0

Syntax of the Procedure Call

Laguerre(Degree, Poly, Guess, Tol, MaxIter, NumRoots,
Answer, yAnswer, Iter, Error);

Comments

For some polynomials, certain starting values (Guess) will not yield convergence. If
the routine does not converge to a solution, try a different starting value. Note that
convergence is slower around multiple roots than around single roots.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

36 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Laguerre.pas provides I/O routines that demonstrate
Laguerre’s method.

Input Files
It is possible to input the coefficients from a text file. The format for the text file is
as follows:
1. The degree of the polynomial
2. The real and imaginary parts of the coefficients in descending order, begin-
ning with the leading coefficient and descending to the constant term

Spaces or carriage returns can be used to separate the data. It does not matter
whether the file ends with a carriage return; for example, the polynomial

Flx) = 2* — 2 + 20 + 4ix® + (2 — 2i)x —1
where i represents the square root of — 1, could be entered in a text file like this:
410-2-2042-2-10

Example

Problem. Find all the roots to the complex polynomial
Fx) = x' — 2 + 2% + 4ix® + (2 — 20)x — 1

where i is the square root of — 1.

Run Laguerre.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Degree of the polynomial (<= 30)? 4

Input the complex coefficients of the polynomial
where Poly[n] is the coefficients of x™n

Re(Poly[4]) = 1
Im(Poly[4]) = ©
Re(Poly[3]) = -2
Im(Poly[3]) = -2
Re(Poly[2]) = ©
Im(Poly[2]) = 4

Roots to Equations in One Variable 37

Re(Poly[1]) = 2
Im(Poly[1]) = -2
Re(Poly[0]) = -1
Re(Poly[0]) = ©

Initial approximation to the root:
Re(Approximation) = 1
Im(Approximation) = 0

Tolerance (> 0): 1E-6
Maximum number of iterations (> 0): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Initial polynomial:

InitPoly[4]: 1.00000000000000e+0 + 0.00000000000000e+0
InitPoly[3] :-2.00000000000000e+0 +-2.00000000000000e+0
InitPoly[2]: 0.00000000000000e+0 + 4.00000000000000e+0
InitPoly[1]: 2.00000000000000e+0 +-2.00000000000000e+0
InitPoly[0] :-1.00000000000000e+0 + 0.00000000000000e+0

[P AR A T Y

Initial approximation: 1.00000000000000e+0 + 0.00000000000000e+0 i
Tolerance: 1.00000000000000e-6
Maximum number of iterations: 100

Root 1
Number of iterations: 2
Calculated root: 1.00000000000000e+0 + 0.00000000000000e+0 i
Value of the function at
the calculated root: 0.00000000000000e+0 + 0.00000000000000e+0 i

Root 2
Number of iterations: 2
Calculated root: 1.00000000000000e+0 + 0.00000000000000e+0 i
Value of the function at
the calculated root: 0.00000000000000e+0 + 0.00000000000000e+0 i

Root 3
Number of iterations: 2
Calculated root: 1.34424834689770e-10 + 9.99999999865575e-1 i
Value of the function at
the calculated root: -1.08420217248550e-19 + 1.44222068471458e-19 i

Root 4
Number of iterations: 2
Calculated root: 6.71338828512027e-11 + 1.00000000013411e+0 i
Value of the function at
the calculated root: 0.00000000000000e+0 + 3.80353570607857e-20 i

38 Turbo Pascal Numerical Methods Toolbox

C H A P T E R 3

Interpolation

Interpolation is useful when some values of a function are known but others are
required. For example, suppose values are known for a function f(x) at x = 2.3, 2.4,
2.5, 2.6, 2.7, 2.8, and the value of f(x) is desired at x = 2.415. The routines in this
chapter provide the means to model to given values of f(x) with an appropriate
function, so that the function can be evaluated at other arbitrary points.

The goal of interpolation is to approximate the value of the function at a specified
value of x, given N values of the function at N distinct points. This approximation
will be a polynomial determined from the input data. The value of the polynomial
at x will be returned as the approximation to the value of f(x).

The Lagrange method accepts points in any order. The x-values need not be
equally spaced. An interpolating polynomial is explicitly calculated. Although an
interpolating polynomial can be useful for computing derivatives (and more), the
Lagrange method is a lengthy process. Furthermore, high-degree polynomials may
cause significant round-off error in some interpolations.

Newton’s general divided-difference algorithm does not require input to have
equally spaced x-values, nor is it necessary that the x-values be in either ascending
or descending order. For large amounts of data, the divided-difference routine is
more accurate than Lagrangian interpolation.

If there are many input points, the Lagrange and the divided-difference methods
may result in high-degree polynomials whose oscillatory nature can produce an
inaccurate approximation. This is especially true if the interpolation occurs at a

39

value near the midpoint between adjacent input x-values. In such cases, the cubic
spline methods are preferable.

The cubic spline methods require that the x-values be entered in ascending order.
The clamped cubic spline method may yield more accurate results than the free
cubic spline method but requires knowledge of the first derivative of the function at
the endpoints of the input data. When this information is not available, the free
cubic spline routine should be used.

The values at which interpolation is to occur should lie in the closed interval
bounded by the extreme values of the input x-values. The preceding methods will
not give accurate approximations to values outside this interval (extrapolation).

40 Turbo Pascal Numerical Methods Toolbox

Polynomial Interpolation Using Lagrange’s Method
(Lagrange.pas)

Description

This example provides an interpolation algorithm (Burden and Faires 1985, 84 ff;
Horowitz and Sahni 1984, 429-430). Given a set of N data points (x,y), the routine
uses Lagrange polynomials to construct a polynomial to fit the data points. The
degree of the polynomial is at most N — 1.

Note: The nature of high-degree polynomials may cause significant error if the
algorithm is used with large amounts of data (about N > 25). In such cases,
Divdif.pas, Cube_Fre.pas, or Cube_Cla.pas should be used. You must supply the
data points and the x-values at which interpolation will take place.

User-Defined Types

TNvector = array[0..TNArraySize] of Extended;
TNmatrix = array[0..TNArraySize] of TNvector;

Input Parameters

The parameters for Lagrange:

NumPoints:Integer; Number of data points

XData:Thvéctor; The x-coordinates of the data points

YData:Thvector; The y-coordinates of the data points

NumInter:Integer; Number of interpolations

XInter:TNvector The x-coordinates at which interpolation is to take place

The preceding parameters must satisfy the following conditions:
1. The x-coordinates of the data points (XInter) must be unique.
2. NumPoints, NumInter < TNArraySize.
3. NumPoints > 0.

Interpolation 4

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 2. If condi-
tion 2 is violated, the program will crash with an Index Out of Range error (assum-
ing the directive {$R + } is active).

Output Parameters

YInter:TNvector; The interpolated values at XInter
Poly:ThNvector; The coefficients of the interpolating polynomial

Error:Byte; 0: No error
1: X-values of the data points not unique
2: NumPoints < 1

Syntax of the Procedure Call

Lagrange(NumPoints, XData, YData, NumInter, XInter, YInter, Poly, Error);

Sample Program

The sample program Lagrange.pas provides I/O functions that demonstrate the
Lagrange interpolating algorithm.

Input Files

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

42 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Construct and use an interpolating polynomial for the cosine function
between x = 1 degree and x = 20 degrees.

Run Lagrange.pas:

A dialog box appears asking you whether you will input data from the Keyboard or

from a File. Select File and click OK. Then select the following file from the stan-
dard dialog box:

File name? Sample3A.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3B.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The Data :
1.0000000 9.99847695156391e-1
2.0000000 9.99390827019096e-1
3.0000000 9.98629534754574e-1
4.0000000 9.97564050259824e-1
5.0000000 9.96194698091746e-1
6.0000000 9.94521895368273e-1
7.0000000 9.92546151641322e-1
8.0000000 9.90268068741570e-1
9.0000000 9.87688340595138e-1
10.0000000 9.84807753012208e-1
11.0000000 9.81627183447664e-1
12.0000000 9.78147600733806e-1
13.0000000 9.74370064785235e-1
14.0000000 9.70295726275996e-1
15.0000000 9.65925826289068e-1
16.0000000 9.61261695938319e-1
17.0000000 9.56304755963035e-1
18.0000000 9.51056516295154e-1
19.0000000 9.45518575599317e-1
20.0000000 9.39692620785908e-1

Interpolation 43

The polynomi
Poly[19]=-1.
Poly[18]= 3.
Poly[17]=-3.
Poly[16]= 2.
Poly[15]=-8.
Poly[14]= 2.
Poly[13]=-5.
Poly[12]= 1.
Poly[11]=-1.
Poly[10]= 1.
Poly[9]=-1.
Poly[8]= 1.
Poly[7]=-5.
Poly[6]= 2.
Poly[5]=-7.
Poly[4]= 4.
Poly[3]=-3.
Poly[2]=-1.
Poly[1]=-2.
Poly[0]= 1.

19.500
20.500

al :

72014247146006e-28
54986012534706e-26
41072664146385e-24
02588035084664e-22
33028761905346e-21
51630894794110e-19
78243038713688e-18
03284343326638e-16
45263304267538e-15
61970333747745e-14
43449305975914e-13
00656254399833e-12
55641265799623e-12
37976717179018e-11
79913921901990e-11
05555790625022e-9
26288947218059e-10
52308336619420e-4
49984780967393e-10
00000000007260e+0

Interpolated Y value
9.99657324975254¢e-1
9.99048221581889e-1
9.98134798421861e-1
9.96917333733130e-1
9.95396198367178e-1
9.93571855676588e-1
9.91444861373810e-1
9.89015863361917e-1
9.86285601537232e-1
9.83254907563954e-1
9.79924704620830e-1
9.76296007119933e-1
9.72369920397676e-1
9.68147640378107e-1
9.63630453208623e-1
9.58819734868193e-1
9.53716950748227e-1
9.48323655206198e-1
9.42641491092216e-1
9.36672189246619e-1

The data is taken from a function of which the derivative could be computed

exactly.

Turbo Pascal Numerical Methods Toolbox

Interpolation Using Newton’s Interpolary Divided-
Difference Method (Divdif-pas)

Description

This example provides an interpolation algorithm. Given a set of data points (x,y),
the routine uses Newton’s interpolary divided-difference equation to interpolate
between the points (Burden and Faires 1985, 100-102). The data points must have
unique x-values, but these values need not be evenly spaced nor set in any particu-
lar order. You must supply the data points and the x-values at which interpolation is
to take place.

User-Defined Types

TNvector = array[0..TNArraySize] of Extended;

TNmatrix = array[0..TNArraySize] of TNvector;

Input Parameters

NumPoints:Integer; Number of data points

XData:Thvector; The x-coordinates of the data points

YData:TNvector; The y-coordinates of the data points

NumInter:Integer; Number of interpolations

XInter:TNvector The x-coordinates at which interpolation is to take place

The preceding parameters must satisfy the following conditions:

1. The x-coordinates of the data points (XInter) must be unique.

2. NumPoints, NumInter < TNArraySize.

3. NumPoints > 0.
TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 2. If condi-

* tion 2 is violated, the program will crash with an Index Out of Range error (assum-
ing the directive {$R + } is active).

Interpolation 45

Output Parameters

YInter:TNvector; The interpolated values at XInter

Error:Byte; 0: No error
1: X-values of the data points not unique
2: NumPoints < 1

Syntax of the Procedure Call

Divided.Difference(NumPoints, XData, YData, NumInter, XInter, YInter, Error);

Sample Program

The sample program Divdif.pas provides I/O functions that demonstrate Newton’s
interpolary divided-difference algorithm.

Input Files

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

Example
Problem. Interpolate the cosine function between x = 1x and x = 20x.
Run Divdifpas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3C.dat

46 Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of points (0-50)?15

Point
Point
Point
Point
Point
Point
Point
Point
Point
Point 10:
Point 11:
Point 12:
Point 13:
Point 14:
Point 15:

OCONOAIANLEWN -~
ae oo oo e s e es se oo
. e o o o ® o s o e

P el el =3
NPWNEHOOWOONOOLLEWN =

. . .
oot onToto

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

X Y
12.000 0.9781476
8.000 0.9902681
1.000 0.9998477
10.000 0.9848078
5.000 0.9961947
15.000 0.9659258
4.000 0.9975641
3.000 0.9986295
7.000 0.9925462
14.000 0.9702957
X Interpolated Y value
1.500 9.99656668284607e-1
2.500 9.99047982204853e-1
3.500 9.98134846782587e-1
4.500 9.96917355869352e-1
5.500 9.95396200633579e-1
6.500 9.93571893532269e-1
7.500 9.91444906399794e-1
8.500 9.89015879894104e-1
9.500 9.86285623948171e-1
10.500 9.83254980952454e-1
11.500 9.79924765142406e-1
12.500 9.76295923083642e-1
13.500 9.72369781236267e-1
14.500 9.68147757339141e-1
15.500 9.63629212784400e-1

The data is taken from a function of which the derivative could be computed
exactly.

Interpolation 47

Free Cubic Spline Interpolation (Cube_Fre.pas)

Description

This example constructs a smooth curve through a given set of data points. The
curve is a cubic spline interpolant with the following properties:

1. It passes through every data point.
2. It is continuous.
3. Its first derivative is continuous.
4. TIts second derivative is continuous.
The second derivative is assumed to be zero at both endpoints (thus the cubic

spline is “free”) of the interval determined by the data (Burden and Faires 1985,
117 ff). Cubics that join adjacent data points are of the following form:

Sli](x) = Coef0[i] + Coefl[ilx — x[i]) + Coef2[i](x — x[i])®
+ Coef3[i)(x — x[i))’

where i ranges between 1 and the number of data points minus 1, the x[i]’s are the
x-coordinates of the input data, and x[i] < x < x[i + 1]. The interpolated values of
f(x) are found by evaluating the ith cubic polynomial at x, where

xi] = x < x[i + 1].

User-Defined Types

TNvector = array[0..TNArraySize] of Extended;

Input Parameters

NumPoints:Integer; Number of data points

XData:TNvector; The x-coordinates of the data points
YData:TNvector; The y-coordinates of the data points
NumInter:Integer; Number of interpolations

XInter:TNvector; X-coordinates of points at which to interpolate

48 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. X data points must be unique.

2. X data points must be in ascending order.

3. NumPoints, NumInter < TNArraySize.

4. NumPoints > 1.
TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 3. If condi-

tion 3 is violated, the program will crash with an Index Out of Range error (assum-
ing the directive {$R+ } is active).

Output Parameters

Coef0:TNvector; Coefficient of the constant term
Coefl:TNvector; Coefficient of the linear term
Coef2: Thvector; Coefficient of the squared term
Coef3:Thvector; Coefficient of the cubed term
Yinter:Thvector; Interpolated values at XInter

Error:Byte; 0: No error
1: X-values of the data points not unique
2: X-values of the data points not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

CubicSplineFree(NumPoints, XData, YData, NumInter, XInter,
Coef0, Coefl, Coef2, Coef3, YInter, Error);

Sample Program

The sample program Cube_Fre.pas provides I/O functions that demonstrate the
free cubic spline algorithm.

Interpolation 49

Input Files

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525
Example
Problem. Construct an interpolating spline for the following figure:
3.
2
1]
I T

Because a cusp occurs at x = 3.55, we will construct two splines, one for each side
of the cusp.

Run Cube_Fre.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3D.dat

50 Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the

standard dialog box:

File name? Sample3E.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.
Data : X Y
1: 0.0000000000 2.8000000000
2: 0.1000000000 2.7000000000
3: 0.2000000000 2.6000000000
4: 0.6000000000 2.2000000000
5: 1.0000000000 1.8000000000
6: 1.4000000000 1.6000000000
7: 1.8000000000 1.4000000000
8: 2.0000000000 1.4200000000
9: 2.2000000000 1.4000000000
10: 2.6000000000 1.5000000000
11: 3.0000000000 1.8000000000
12: 3.4000000000 2.4000000000
13: 3.4500000000 2.6000000000
14: 3.5000000000 2.8000000000
15: 3.5500000000 2.9000000000
Splines: Coef0 Coefl Coef2 Coef3
1: 2.8000000000 -0.9988332302 0.0000000000 -0.1166769808
2: 2.7000000000 -1.0023335396 -0.0350030942 0.5833849040
3: 2.6000000000 -0.9918326113 0.1400123770 -0.4010771215
4: 2.2000000000 -1.0723397281 -0.3412801689 1.3053237227
5: 1.8000000000 -0.7188084763 1.2251082984 -1.6952177695
6: 1.6000000000 -0.5524263669 -0.8091530249 2.3505473551
7: 1.4000000000 -0.0714860563 2.0115038012 -5.7703675978
8: 1.4200000000 0.0406713524 -1.4507167575 3.7367999767
9: 1.4000000000 -0.0911993534 0.7913632286 0.1540878869
10: 1.5000000000 0.6158534153 0.9762686929 -1.6022555777
11: 1.8000000000 0.6277856923 -0.9464380003 7.8174344240
12: 2.4000000000 3.6230038155 8.4344833084 -17.8911923822
13: 2.6000000000 4.3322682035 5.7508044511 -247.9233704257
14: 2.8000000000 3.0479233704 -31.4377011128 209.5846740851
Interpolated Points: X Y
1: 0.3000000000 2.5018157855
2: 0.5000000000 2.3042222482
3: 1.2000000000 1.6916808945
4: 1.6000000000 1.4759529845
5: 2.1000000000 1.4132967676
6: 2.3000000000 1.3989477848
7: 2.5000000000 1.4480232575
8: 2.7000000000 1.5697457729
9: 2.9000000000 1.7293593063
10: 3.2000000000 1.9502390938
11: 3.3000000000 2.1142270171

Interpolation Sl

Second half of the figure:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the

standard dialog box:

File name? Sample3F.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the

standard dialog box:

File name? Sample3G.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

Data :

1:

.

ONOTOT A~ WN
e oo es se ss se oo

9:
10:
11:

Splines:
1:

—

CLENOGI A WN

X
3.5500000000
3.6000000000
3.6500000000
3.8000000000
4.0000000000
4.3000000000
4.8000000000
5.3000000000
5.6000000000
5.8000000000
6.0000000000

Coef0
2.9000000000
2.8000000000
2.6500000000
2.5000000000
2.3500000000
2.2000000000
1.9500000000
1.6000000000
1.3000000000
1.2000000000

Interpolated Points:

52

—

O WOoONOOIHWN -
e 4s se se se s es s se se o

.

OTN OO RERLEWW

Y

2.9000000000
2.8000000000
2.6500000000
2.5000000000
2.3500000000
2.2000000000
1.9500000000
1.6000000000
1.3000000000
1.2000000000
0.0000000000

7000000000
.9000000000
1000000000
.2000000000
5000000000
6000000000
0000000000
.2000000000
5000000000
7000000000
9000000000

Coefl
-1.6719664279
-2.6560671441
-2.7037649955
-0.4016786037
-0.7704798556
-0.4200828166
-0.4754252188
-1.2782163082

0.1155473174
-3.0330135193

O s == NN NN NN

Coef2

0.0000000000
-19.6820143244
18.7280572976
-3.3808146854
1.5368084259
-0.3688182960
0.2581334916
-1.8637156703
6.5095944222
-22.2523986055

Y
.5554905401
4342200313
.2862027357
2404374617
.1045744477
.0520666406
.8539237670
7105990402
3442375346
.3287140209
7112619930

Turbo Pascal Numerical Methods Toolbox

Coef3
-131.2134288293
256.0671441466
-49.1308266290
8.1960385189
-2.1173630243
0.4179678583
-1.4145661079
9.3036778805
-47.9366550462
37.0873310092

Clamped Cubic Spline Interpolation (Cube_Cla.pas)

Description

This example constructs a smooth curve through a given set of data points. The
curve is a cubic spline interpolant with the following properties:

L

It passes through every data point.

2. It is continuous.
3.
4

Its first derivative is continuous.

. Its second derivative is continuous.

The first derivative at the endpoints of the interval determined by the input data is
defined by the user (Burden and Faires 1985, 122 f.). (This is what makes the cubic
spline “clamped””) The cubics that join adjacent data points are of the following

form:

S[i](x) = Coefo[i] + Coefl[i](x — x[i]) + Coef2[il(x — x[i])®

+ Coef3[il(x — «[i])’

where i ranges between 1 and the number of data points minus 1, the x[i]'s are the
x-coordinates of the input data, and x[i] < x < x[i + 1]. The interpolated values
of f(x) are found by evaluating the ith cubic polynomial at x, where x[i] < x <
x[i + 1].

User-Defined Types

TNvector = array[0..TNArraySize] of Extended;

Input Parameters

NumPoints:Integer; Number of data points

XData:TNvector; The x-coordinates of the data points
YData:TNvector; The y-coordinates of the data points
DerivLE:Extended; Derivative of the function at the left endpoint
DerivRE:Extended; Derivative of the function at the right endpoint

Interpolation 53

NumInter:Integer; Number of interpolations

XInter:TNvector; X-coordinates of points at which to interpolate

The preceding parameters must satisfy the following conditions:

1

X data points must be unique.

2. X data points must be in ascending order.
3.
4

NumPoints, NumInter < TNArraySize.

NumPoints > 1.

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 3. If condi-
tion 3 is violated, the program will crash with an Index Out of Range error (assum-
ing the directive {$R + } is active).

Output Parameters

Coef0:Thvector; Coefficient of the constant term

Coefl:TNvector; Coefficient of the linear term

Coef2:Thvector; Coefficient of the squared term
Coef3:Thvector; Coefficient of the cubed term

Yinter:TNvector; Interpolated values at XInter

Error:Byte; 0: No error

1: X-values of the data points not unique
2: X-values of the data points not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

CubicSplineClamped (NumPoints, XData, YData, DerivLE, DerivRE, NumInter,

54

XInter, Coef0, Coefl, Coef2, Coef3, YInter, Error);

Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Cube_Cla.pas provides I/O functions that demonstrate the
clamped cubic spline interpolation algorithm.

Input Files

Data may be entered from a text file. The x- and y-coordinates should be separated
by a space and followed by a carriage return. The last two values in the file must be
the derivatives of the function at the endpoints. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525
210

Note that the last two values are the derivatives of sqr(x) at the endpoints x = 1
andx = 5.

Example
Problem. Construct an interpolating spline for the following figure:
3.
2]
1)
0 1 2 3 4 5 6

Interpolation . 55

Because a cusp occurs at x = 3.55, we will construct two splines, one for each side
of the cusp.

Run Cube_Cla.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3H.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3E.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.
Data : X Y
1: 0.0000000000 2.8000000000
2: 0.1000000000 2.7000000000
3: 0.2000000000 2.6000000000
4: 0.6000000000 2.2000000000
5: 1.0000000000 1.8000000000
6: 1.4000000000 1.6000000000
7: 1.8000000000 1.4000000000
8: 2.0000000000 1.4200000000
9: 2.2000000000 1.4000000000
10: 2.6000000000 1.5000000000
11: 3.0000000000 1.8000000000
12: 3.4000000000 2.4000000000
13: 3.4500000000 2.6000000000
14: 3.5000000000 2.8000000000
15: 3.5500000000 2.9000000000
Derivative at X= 0.00000000000000e+0 -1.33333333333333e+0
Derivative at X= 3.55000000000000e+0 3.00000000000000e+0
Splines: Coef0 Coefl Coef2 Coef3
1: 2.8000000000 -1.3333333333 5.7579845570 -24.2465122365
2: 2.7000000000 -0.9091317890 -1.5159691140 6.0728700429
3: 2.6000000000 -1.0301395105 0.3058918989 -0.5763578064
4: 2.2000000000 -1.0620777385 -0.3857374687 1.3523295373
5: 1.8000000000 -0.7215495356 1.2370579761 -1.7079603429
6: 1.6000000000 -0.5517241193 -0.8124944355 2.3545118344
7: 1.4000000000 -0.0715539872 2.0129197658 -5.7757491499
8: 1.4200000000 0.0405240212 -1.4525297241 3.7495480911
9: 1.4000000000 -0.0905420975 0.7971991306 0.1353902832
10: 1.5000000000 0.6122045428 0.9596674704 -1.5379470688
11: 1.8000000000 0.6417239262 -0.8858690121 7.5788979919
12: 2.4000000000 3.5708997526 8.2088085781 7.4639274157
13: 2.6000000000 4.4477600660 9.3283976905 -365.6719802043
14: 2.8000000000 2.6380599835 -45,5223993401 655.2239934014

56

Turbo Pascal Numerical Methods Toolbox

Interpolated Points: X
1: 0.3000000000
2: 0.5000000000
3: 1.2000000000
4: 1.6000000000
5: 2.1000000000
6: 2.3000000000
7: 2.5000000000
8: 2.7000000000
9: 2.9000000000
10: 3.2000000000
11: 3.3000000000
Second half of figure:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the

standard dialog box:
File name? Sample3I.dat

A dialog box appears asking you whether you will input data from the Keyboard or

N = et et et et b b = N N

Y
.4994686101
.3029267570
.6915087292
.4759914934
.4132766530
.3990531718
.4482408301
.5692791819
.7285068643
.9535412087
.1174192125

from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3G.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.
Data :

HOWONDMIUTL WN -~
es s ee es ee es e se oo ee e

——

Derivative
Derivative

Splines:

.

QWO NOAN D WN =
. e s se oo se se ee o

. ee

—

Interpolation

X Y

3.5500000000 2.9000000000

3.6000000000 2.8000000000

3.6500000000 2.6500000000

3.8000000000 2.5000000000

4.0000000000 2.3500000000

4,3000000000 2.2000000000

4.8000000000 1.9500000000

5.3000000000 1.6000000000

5.6000000000 1.3000000000

5.8000000000 1.2000000000

6.0000000000 0.0000000000

at X= 3.55000000000000e+0 -4.00000000000000e+0

at X= 6.00000000000000e+0 -1.70000000000000e+1

Coef0 Coefl Coef2 Coef3

2.9000000000 -4.0000000000 80.2233303937 -804.4666078741
2.8000000000 -2.0111665197 -40.4466607874 413,3998236224
2.6500000000 -2.9553339213 21.5633127559 -56.8516885392
2.5000000000 -0.3238290709 -4,0199470867 9.4454622054
2.3500000000 -0.7983524409 1.6473302365 -2.1760736673
2.2000000000 -0.3974941891 -0.3111360640 0.2122488846
1.9500000000 -0.5494435897 0.0072372629 -0.6167001671
1.6000000000 -1.0047314521 -0.9178129877 3.1119483153
1.3000000000 -0.7151931996 1.8829404961 -4.0348724916
1.2000000000 -0.4462017001 -0.5379829989 -136.1550425028

57

58

Interpolated Points: X

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

3.7000000000
3.9000000000
4.1000000000
4.2000000000
4.5000000000
4.6000000000
5.0000000000
5.2000000000
5.5000000000
5.7000000000
5.9000000000

Y
2.5490351248
2.4368630843
2.2844619846
2.2388141319
2.1097537107
2.0584802174
1.8354671712
1.6919117155
1.3872367766
1.2432752125
1.0138449575

Turbo Pascal Numerical Methods Toolbox

C H A P T E R 4

Numerical Differentiation

Differentiation is a process used in calculus to quantify the rate of change of a given
function. The derivative of a real-valued function of a real variable is another real-
valued function of a real variable. For example, suppose you are driving down the
freeway in your car and f(t) gives the distance traveled at time . Typical values
might be

t ft)
10 450
11 492
12 545
13 59.8
14 65.1
15 70.4

The units are in hours and miles, and the data refers to a trip that started at noon.
f(10) = 45.0, so the distance traveled by one o’clock is 45.0 miles, and f(1.5) =
70.4, so by half past one you will be 70.4 miles from where you were at noon.

The derivative of this distance function gives the velocity function. The car’s veloc-
ity at one o’clock is the value of the derivative at £ = 1.0. From the previous data, it
is impossible to compute the derivative exactly, but it is possible to approximate
the derivative. The car traveled 49.2 — 45.0 = 4.2 miles in the six minutes after
one o’clock (1.1 — 1.0 = 0.1 hours = 6 minutes). Thus, the average velocity of the
car during those six minutes is 4.2 /0.1 = 42 miles per hour. This gives an approxi-
mation to the velocity at one o’clock.

59

Each method described in this chapter approximates derivatives of a real function
of one real variable.

The routines Deriv.pas, Deriv2.pas, and Interdrv.pas compute derivatives of a
function that is represented by tabular data. Consequently, their accuracy depends
heavily upon the precision and spacing of the data points.

The routines Derivfn.pas and Deriv2fn.pas compute derivatives of a user-defined
function. Consequently, the accuracy of the values calculated with these routines is
limited by the precision of the computer.

Differentiation consists of subtracting two very close numbers and dividing by a
very small number; hence, it is extremely sensitive to round-off error. The accuracy
of the first derivative is approximately the square root of the precision with which
real numbers are represented; the accuracy of the second derivative is approxi-
mately equal to the fourth root.

The first derivative of a function that is represented by a table of values can be
approximated in Deriv.pas via a two-point formula, a three-point formula, or a five-
point formula. The accuracy of the formula increases with the number of points
used in the formula. In order to use the five-point formula, however, the domain
values of the data points (that is, the x-coordinates) must be equally spaced. This is
not required for the two-point and three-point formulas. Derivatives can only be
approximated at data points.

The second derivative of a function that is represented by a table of values can be
approximated in Deriv2.pas via a three-point formula or a five-point formula. The
domain values of the data points must be equally spaced (regardless of whether the
three-point formula or five-point formula is used). Second derivatives can only be
approximated at data points.

The routine Interdrv.pas approximates a function by constructing a free cubic
spline to a set of data points. Cubic splines avoid the undesirable oscillatory
behavior of other interpolating polynomials. The derivative of the cubic spline at a
given domain value, which may be different from the input data values, will then
approximate the corresponding derivative of the function.

The first derivative of a user-supplied function is approximated in Derivfn.pas
via a three-point formula. The approximation is refined with Richardson extrapola-
tion. The derivative can be approximated at any point within the domain of the
function.

The second derivative of a user-supplied function is approximated in Deriv2fn.pas
via a three-point formula. The approximation is refined with Richardson extrapola-
tion. The second derivative can be approximated at any point within the domain of
the function.

60 Turbo Pascal Numerical Methods Toolbox

First Differentiation Using Two-Point, Three-Point, or
Five-Point Formulas (Deriv.pas)

Description

This example contains several algorithms for approximating the derivative of a
function f{(x), given several data points (x, f(x)). The user must specify whether a
two-point, three-point, or five-point formula should be used. Two points are used
in the two-point formula, three in the three-point formula, and five in the five-
point formula. The user must supply the data points (x, f(x)) and the x-values of the
data points at which to approximate the derivative. Note: Derivatives can only be
approximated at x-values corresponding to input data points.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

Input Parameters

NumPoints : Integer; Number of data points

XData : TNvector; X-coordinates of data points

YData : TNvector; Y-coordinates of data points

Point : Byte; Two-point, three-point, or five-point differentiation

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : TNvector; X-coordinates of data points at which the derivative is to be
approximated

The preceding parameters must satisfy the following conditions:
1. XData points must be unique.
2. XData points must be entered in ascending order.

3. At least two points are needed for two-point differentiation, three for three-
point differentiation, and five for five-point differentiation.

4. Point must equal two, three, or five.

Numerical Differentiation 6l

5. XData points must be equally spaced for five-point differentiation.

6. XDeriv points must be a subset of the XData points.

7. NumPoints, NumDeriv < TNArraySize.
TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 7. If condition 7 is

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R + } is active).

Output Parameters

YDeriv : TNvector; Approximation to the first derivative at the points in XDeriv

Error : Byte; 0: No errors
1: WARNING! Not all the derivatives were computed
(see “Comments”)
2: X-values not unique
3: X-values not in ascending order
4: Not enough data
5: Point not equal to 2, 3, or 5
6: X-values not equally spaced for the five-point formula

Syntax of the Procedure Call

First_Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error);

Comments

If an x-value at which the derivative is to be approximated is not among the data
points, the value —9.999999999E35 is arbitrarily assigned to the derivative at that
point and Error = 1 is returned. When using five-point differentiation with only
five points, there is not enough information to approximate the derivative at the
first, second, fourth, or fifth points. Likewise, if only six points are input, there is
insufficient information for approximating the derivative at the second and fifth
data points. Should an attempt be made to approximate the derivative at any of
these points, the value of 9.999999999E35 is arbitrarily assigned the derivative at
that point and Error = 1 is returned.

62 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Deriv.pas provides I/O functions that demonstrate differenti-
ation with two-point, three-point, and five-point formulas.

Input Files

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
525

Derivative points may also be entered from a text file. Every derivative point must
be followed by a carriage return. For example, to determine the derivatives of the
preceding points, create the following file of derivative points:

U WM -

Example

Problem. Approximate the first derivative of fix) = sqr(x) * cos(x) at several points
between one and two radians. The output from three runs is given. Actual values of
the derivatives to eight significant figures are also given.

Run Deriv.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? SampledA.dat

Numerical Differentiation 63

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of X values (0-100)? §

2-, 3-, or 5-point differentiation ? 2

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

Input Data:
X
1.0000000
1.1000000
1.2000000
1.3000000
1.4000000
1.5000000
1.6000000
1.7000000
1.8000000
1.9000000
2.0000000

<*
<*
<*

Y
5.40302305868140e-1
5.48851306924949¢-1
5.21795166446410e-1
4,52073020375553e-1
3.33135600084472e-1
1.59158703752332e-1

-7.47507770912994e-2
-3.72360588514066e-1
-7.36134786805602e-1
-1.16707533637725e+0
-1.66458734618857e+0

*>

WARNING

*>

Using 2-point differentiation:

X
1.100
1.300
1.500
2.000
2.200

Derivative at X

8.54900105680900e-2
-6.97221460708570e-1
-1.73976896332140e+0
-4.97512009811320e+0

No derivative calculated

Using 3-point differentiation:

X
1.100
1.300
1.500
2.000
2.200

64

Derivative at X
-9.25356971086500e-2
-9.43297831809690e-1
-2.03943188587886e+0
-5.30797739931156e+0

No derivative calculated

Turbo Pascal Numerical Methods Toolbox

Using 5-point differentiation:

X Derivative at X
1.100 -8.08749392678308e-2
1.300 -9.32986606435739%e-1
1.500 -2.03221450709713e+0
2.000 -5.30200229054730e+0
2.200 No derivative calculated

The data is taken from a function of which a derivative could be computed exactly.
The warning signal indicates that some derivatives were not calculated.

The derivative is not approximated for x = 2.2 in any of the examples because
x = 2.2 is not among the data points.

Numerical Differentiation 65

Second Differentiation Using Three-Point or Five-Point
Formulas (Deriv2.pas)

Description

This example contains two algorithms that approximate the second derivative of a
function f(x) when several data points (x, f(x)) are specified. You decide whether to
use a three-point or five-point formula (Gerald and Wheatley 1984, 236-237);
three points are used in the three-point formula, and five in the five-point formula.
You must supply the data points (x, f{x)) and the x-values of the data points at which
the second derivative is to be approximated. The second derivative may only be
approximated at x-values that were input as data points.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

Input Parameters

NumPoints : Integer; Number of data points

XData : TNvector; X-coordinates of the data points

YData : TNvector; Y-coordinates of the data points

Point : Byte; Three-point or five-point differentiation

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approx-
imated

The preceding parameters must satisfy the following conditions:
1. XData points must be unique.
2. XData points must be entered in ascending order.

3. At least three points for three-point differentiation and five points for five-
point differentiation.

4. Point must equal 3 or 5.

66 Turbo Pascal Numerical Methods Toolbox

5. XData points must be equally spaced.

6. XDeriv points must be a subset of the XData points.

7. NumPoints, NumDeriv < TNArraySize.
TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 7. If condition 7 is

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDeriv : TNvector; Approximation to the second derivative at the XDeriv points

Error : Byte; 0: No errors
1: WARNING! At least one derivative was not approximated
(see “Comments”)
2: X-values not unique
3: X-values not in increasing order
4: Not enough data
5: Point not equal to 3 or 5
6: X-value points not equally spaced

Syntax of the Procedure Call

Second_Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error);

Comments

If an x-value at which the second derivative is approximated is not among the data
points, the value —9.9999999E35 is arbitrarily assigned to the derivative at that
point and Error = 1 is returned. When using five-point second differentiation with
only five data points, there is insufficient information for approximating the second
derivative at the second and fourth data points. Should an attempt be made to
approximate the second derivative at these points, the value 9.9999999E35 is arbi-
trarily assigned to the second derivative at that point and Error = 1 is returned.

Numerical Differentiation 67

Sample Program

The sample program Deriv2.pas provides I/O functions that demonstrate second-
order differentiation with three-point and five-point formulas.

Input Files

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr{x) could be entered in a text file as

11
24
39
416
525

Derivative points may also be entered from a text file. Every derivative point must
be followed by a carriage return. For example, to determine the second derivatives
of the preceding points, create the following file of derivative points:

UU B N

Example

Problem. Approximate the second derivative of f(x) = sqr(x) * cos(x) at several
points betweenx = 1 andx = 2 radians. The output from two runs is given. Actual
values of the second derivatives to eight significant figures are also given.

Run Deriv2.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? SampledA.dat

68 Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Keyboard or

from a File. Select Keyboard and click OK. Then input the data as follows:

Number of X values (0-100)75

Point 1: 1.
Point 2: 1.
Point 3: 1.
Point 4: 2
Point 5: 2

N O U W=

3- or 5-point second differentiation ? 3

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK
Input Data:

X
1.0000000
1.1000000
1.2000000
1.3000000
1.4000000
1.5000000
1.6000000
1.7000000
1.8000000
1.9000000
2.0000000

(34

(S
¢k

Y
5.40302305868140e-1
5.48851306924949¢-1
5.21795166446410e-1
4.52073020375553e-1
3.33135600084472e-1
1.59158703752332e-1

~7.47507770912994e-2
-3.72360588514066e-1
-7.36134786805602¢e-1
-1.16707533637725e+0
-1.66458734618857e+0

WARNING *>

Using 3-point second differentiation:

X
1.100
1.300
1.500
2.000
2.200

Second Dérivative at X
-3.56051415353480e+0
-4.92152742202240e+0
-5.99325845114914e+0
-6.65714602396720e+0

No 2nd derivative calculated.

Using 5-point second differentiation:

X
1.100
1.300
1.500
2.000
2.200

Second Derivative at X
-3.61167369644120e+0
-4.92756964541466e+0
-6.00263647117238e+0
-6.59765691992320e+0

No 2nd derivative calculated.

Numerical Differentiation

69

The data is taken from a function of which the derivative could be computed
exactly.

The warning signal indicates that some second derivatives were not calculated.

The second derivative is not approximated at x = 2.2 for either run because x =
2.2 is not among the input x-value points.

70 Turbo Pascal Numerical Metheds Toolbox

Differentiation with a Cubic Spline Interpolant
(Interdrv.pas)

Description

This example contains an algorithm for approximating the first and second deriva-
tives of a function given several data points (x, f(x)). The algorithm assumes that a
free cubic spline interpolant (Burden and Faires 1985, 117-122) is an adequate
approximation to the function f(x), so that the slope of the interpolant at any value
x, is an adequate approximation to f'(x). See Chapter 3 (Cube_Fre.pas) for more
information on free cubic splines. The user must supply the data points (x, f(x)) and
the x-values at which to approximate the derivatives. Derivatives may be approxi-
mated at any x-value contained in the closed interval determined by the data
points. This routine will likely give significant errors if interpolation (Gerald and
Wheatley 1984, 227-231) is attempted outside the range of x-values (extrapola-
tion).

User-Defined Types

Thvector = array[l..TNArraySize] of Extended;

Input Parameters

NumPoints : Integer; Number of data points
XData : TNvector; X-coordinates of data points
YData : TNvector; Y-coordinates of data points

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated A

XDeriv : TNvector; X-coordinates of points at which the derivative is to be approx-
imated

Numerical Differentiation 71

The preceding parameters must satisfy the following conditions:

1. XData points must be unique.

2. XData points must be in ascending order.

3. NumPoints = 2.

4. NumPoints, NumDeriv < TNArraySize.
TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 4. If condition 4 is

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

Yinter : TNvector; Interpolated y-values at the XDeriv points
YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv

YDeriv2 : TNvector; Approximation to the second derivative at the x-values in
XDeriv
Error : Byte; 0: No errors
1: X-values not unique
2: X-values not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

Interpolate_Derivative(NumPoints, XData, YData, NumDeriv,
XDeriv, YInter, YDeriv, YDeriv2, Error);

Sample Program

The sample program Interdrv.pas provides I/O functions that demonstrate differ-
entiation with a cubic spline interpolant.

72 Turbo Pascal Numerical Methods Toolbox

Input Files

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
525

Derivative points may also be entered from a text file. Every derivative point must
be followed by a carriage return. For example, to determine the derivatives of the
preceding points, create the following file of derivative points:

UL WO DN

Example

Problem. Determine the first and second derivative of f(x) = sqr(x) * cos(x) at
several points between one and two radians. Actual values of the derivatives to
eight significant figures are given here.

Run Interdrv.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample4B.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of derivative points (0-100)?5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.55
Point 4: 1.95
Point 5: 2.20

Numerical Differentiation 73

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Input Data:

X Y
1.000 0.5403023
1.100 0.5488513
1.200 0.5217952
1.300 0.4520730
1.400 0.3331356
1.500 0.1591587
1.600 -0.0747508
1.700 -0.3723606
1.800 -0.7361348
1.900 -1.1670753
2.000 -1.6645873

Using free cubic spline interpolation:

X Value at X 1st Deriv at X 2nd Deriv at X
1.100 5.48851300000000e-1 -5.86015666816464e-2 -4.32274700
1.300 4,52073000000000e-1 -9.31377366861403e-1 -4.98862501
1.550 4,99429267146237e-2 -2.33770918101853e40 -6.19118137
1.950 -1.41057141673716e+0 -5.01018588841894e+0 -4.20790661
2.200 -2.57545316779455e+0 -3.43222090956673e+0 16.83162644

The data is taken from a function of which the derivative could be computed
exactly. The actual values are shown here:

X Value at X 1st Deriv at X 2nd Deriv at X
1.1 0.5488513 —0.0804494 -3.5629715
1.3 0.4520730 —0.9329164 —4.9275779
1.55 0.0499596 —-2.3375165 —6.2070293
1.95 —1.4076126 —4.9760746 —-6.5786348
2.20 —2.8483454 —6.5025275 —5.4434252

Note the poor results obtained at values outside the range of input data (x = 2.2).

Also note the large error in the second derivatives near the endpoints of the inter-
val determined by the data.

74 Turbo Pascal Numerical Methods Toolbox

Differentiation of a User-Defined Function (Derivfn.pas)

Description

Given a user-defined function f{x), this example will approximate the first deriva-
tive of the function at a set of x values. The formula

f'@) = [flx + AX) — flx — AX))2+AX

gives a first approximation to the derivative. Richardson extrapolation is then used
to refine the approximation (Burden and Faires 1985, 137-152).

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Functions

function TNTargetF(X : Extended) : Extended;

Input Parameters

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be
approximated

Tolerance : Extended; Indicates accuracy of solution
The preceding parameters must satisfy the following conditions:
1. NumbDeriv < TNArraySize
2. Tolerance > TNNearlyZero
TNArraySize represents the number of elements in each vector. It is used in the

type definition of TNvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 1. If condition 1 is

Numerical Differentiation 75

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv

Error : Byte; 0: No errors
1: Tolerance < TNNearlyZero

Syntax of the Procedure Call

FirstDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error, @TNTargetF);

The procedure FirstDerivative approximates the first derivative of function TNTar-
getF.

Comments

Note that the address of TNTargetF is passed into the FirstDerivative procedure.

Sample Program

The sample program Derivfn.pas provides I/O functions that find the first deriva-
tive of a function at a set of points.

Input Files
Derivative points may be entered from a text file. Every derivative point must be

followed by a carriage return. For example, to determine the derivatives at x-values
1 through 5, create the following file of derivative points:

UL WD =

76 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Determine the first derivative of fix) = sqr(x) * cos(x) at several points
between 1 and 2.2. Actual values of the derivatives to eight significant figures are
given here.

First, write the function into the Derivfn.pas program:
{----- here is the function to differentiate }

function TNTargetF(X : Extended) : Extended;

begin
TNTargetF := Sqr(X)*Cos(X);
end; { function TNTargetF }
{ }
Run Derivin.pas: .

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of points (0-100)? 5

Point 1:
Point 2:
Point 3:
Point 4:
Point 5:

N =t b et st
o o o o o
N O O W -
oo,

Tolerance (> 0)? 1E-4

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Tolerance = 1.00000000000000e-4

X Derivative at X
1.100 -8.04494385380667e-2
1.300 -9.32916380187814e-1
1.550 -2.33751652942971e40
1.950 -4.97607456093026e+0
2.200 -6.50252751007340e+0

The data is taken from a function of which the derivative could be calculated
exactly.

Numerical Differentiation 77

Second Differentiation of a User-Defined Function
(Deriv2fn.pas)

Description

Given a user-defined function f{x), this example will approximate the second deriv-
ative of the function at a set of x values. The three-point formula

'@ = [fle + AX) - 2f(@) + f(x - AX)JAX

gives a first approximation to the second derivative. Richardson extrapolation is
then used to refine the approximation (Burden and Faires 1985, 142-152).

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Function

function TNTargetF(X : Extended) : Extended;

Input Parameters

NumDeriv : Integer; Number of points at which the derivative is to be approxi-
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be
approximated

Tolerance : Extended; Indicates accuracy in solution

The preceding parameters must satisfy the following conditions:
1. NumDeriv < TNArraySize
2. Tolerance = TNNearlyZero

78 Turbo Pascal Numerical Methods Toolbox

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNuvector. TNArraySize is not a variable name and is never refer-
enced by the procedure; hence there is no test for condition 1. If condition 1 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDeriv : TNvector; Approximation to the second derivative at the x-values in XDeriv

Error : Byte; 0: No errors
1: Tolerance < TNNearlyZero

Syntax of the Procedure Call

SecondDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error, @TNTargetF);

SecondDerivative approximates the derivative of function TNTargetF.

Comments

Note that the address of TNTargetF is passed into the SecondDerivative procedure.

Sample Program

The sample program Deriv2fn.pas provides I/O functions that find the second
derivative of a function at a set of points.

Numerical Differentiation 79

Input Files

Derivative points may be entered from a text file. Every derivative point must be
followed by a carriage return. For example, to determine the second derivatives at
x-values 1 through 5, create the following file of derivative points:

UL WM -

Example

Problem. Determine the second derivative of fix) = sqr(x)’ * cos(x) at several
points between 1 and 2.2. Actual values of the derivatives to eight significant fig-
ures are given here.

First, write the function into the Deriv2fn.pas program:
{ -=--- here is the function to differentiate ----cecccccccacaacan }

function TNTargetF(X : Extended) : Extended;

begin
TNTargetF := Sqr(X)*Cos(X);
end; { function TNTargetF }
{ -ememmemmemenennnea }

Run Deriv2fn.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of points (0-100)? 5

Point 1:
Point 2:
Point 3:
Point 4:
Point 5:

.1
.3
.55
.95
.2

N =t bt b

Tolerance (> 0)? 1E-4

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

80 Turbo Pascal Numerical Methods Toolbox

Tolerance = 1.00000000000000e-4

X Second Derivative at X
1.100 -3.56297144833630e+0
1.300 -4,92757792729853e+0
1.550 -6.20702925616294e+0
1.950 -6.57863482851564e+0
2.200 -5.44342518062510e+0

The data is taken from a function of which the derivative could be calculated
exactly.

Numerical Differentiation 8l

c H A P T E R 5

Numerical Integration

Integration is another concept used in calculus. It is just the opposite of differentia-
tion, for which routines are provided in Chapter 4. Differentiation tells you the
changes in a function, where integration tells you how to add those changes to get
the original function.

Integration is most easily understood in terms of areas under curves. Given a
function f(x) and real numbers @ and b with ¢ < b, the area under the curve y =
f(x) and above the x-axis between x = a and x = b is given by the integral of f(x)
from a to b.

As with derivatives, the laws of calculus are required to compute integrals exactly.
The routines in this chapter provide very accurate approximations.

Several methods are described here that approximate the value of a definite inte-
gral of a real function of one real variable. Both limits of integration must be finite.

The trapezoid method and Simpson’s method return an approximation of the inte-
gral when a number of equal length subintervals are specified. For a given number
of subintervals, Simpson’s method is preferred over the trapezoid method when-
ever the function being integrated is sufficiently smooth.

It is sometimes possible to approximate the definite integral to within a user-
specified accuracy with fewer function evaluations using adaptive schemes. Adap-
tive schemes determine the length of each subinterval by the local behavior of the
integrand. Simpson’s method and the Gaussian quadrature method are used with
adaptive schemes. The Gaussian quadrature method permits, in some instances,

83

the integrand to possess a singularity at an endpoint of integration, since the func-
tion is evaluated at points that are not the endpoints of the interval of integration.

The Romberg method uses the trapezoid method and Richardson extrapolation to
approximate the integral. It returns an approximation within a user-specified accu-
racy. Except for extremely oscillatory functions or functions that possess an end-
point singularity, this method is fastest and most accurate. If the function oscillates
substantially or possesses an endpoint singularity, the adaptive Gaussian quadra-
ture routine is preferred.

84 Turbo Pascal Numerical Methods Toolbox

Integration Using Simpson’s Composite Algorithm
(Simpson.pas)

Description

This example uses Simpson’s composite algorithm (Burden and Faires 1985, 156—
167) to approximate the definite integral of a function f{x) over an interval [a, b].
The interval is divided into N subintervals of equal length. The curve in each
subinterval is approximated by a second-degree Lagrange polynomial. The integral
of the resulting polynomial is then calculated. The sum of the integrals of the N
Lagrange polynomials approximates the integral of the function f over the interval
[a, b]. You must supply the function, the limits of integration, and the number of
subintervals.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Simpson approximates the integral of this function.

Input Parameters

LowerLimit : Extended; Lower limit of integration
UpperLimit : Extended; Upper limit of integration
NumIntervals : Integer; Number of subintervals over which to apply Simpson’s rule

The preceding parameters must satisfy the following condition:

NumlIntervals > 0

Numerical Integration 85

Output Parameters

Integral : Extended; Approximation to the integral of the function

Error : Byte; 0: No errors
1: NumlIntervals < 0

Syntax of the Procedure Call

Simpson(LowerLimit, UpperLimit, NumIntervals, Integral, Error, @TNTargetF);
Simpson approximates the integral of TNTargetF.

Sample Program

The sample program Simpson.pas provides I/O functions that demonstrate Simp-
son’s composite algorithm.

Example
Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using Simpson’s
composite algorithm.

1. Code function TNTargetF:
function TNTargetF(x : Extended) : Extended;

{ 1
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
{ }
begin

TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

2. Run Simpson.pas:

Lower 1imit of integration? 0
Upper limit of integration? 5

Number of intervals (> 0): 100

86 Turbo Pascal Numerical Methods Toolbox

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection

and click OK.

Lower limit: 0.0000000000000000e+0
Upper limit: 5.0000000000000000e+0
Number of intervals: 100

Integral: 1.08968620446200e+6

To eight significant figures, the correct answer is 1,089,686.2.

Numerical Integration 87

Integration Using the Trapezoid Composite Rule
(Trapzoid.pas)

Description

This example uses the trapezoid composite rule (Burden and Faires 1985, 154-167)
to approximate the definite integral of a function fx) over an interval [a, b]. The
interval is divided into N subintervals of equal length. In each subinterval the
function is approximated by a straight line. The sum of the integrals of the result-
ing trapezoids approximates the integral of the function f over the interval [a, b].

You must supply the function, the limits of integration, and the number of subinter-
vals.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Trapezoid approximates the integral of this function.

Input Parameters

LowerLimit : Extended; Lower limit of integration
UpperLimit : Extended; Upper limit of integration

NumIntervals : Integer; Number of subintervals over which to apply the trapezoid
rule

The preceding parameters must satisfy the following condition:
NumIntervals > 0

88 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Integral : Extended; Approximation to the integral of the function

Error : Byte; 0: No errors
1: NumlIntervals < 0

Syntax of the Procedure Call

Trapezoid(LowerLimit, UpperLimit, NumIntervals, Integral, Error, @TNTargetF);
Trapezoid approximates the integral of TNTargetF.

Sample Program

The sample program Trapzoid.pas provides I/O functions that demonstrate the
trapezoid composite rule.

Example
Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the trape-
zoid composite rule.

1. Code function TNTargetF:
function TNTargetF(x : Extended) : Extended;

{ }
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
{ }
begin

TNTargetF := Exp(3#X) + Sqr(X)/3;
end; { function TNTargetF }

Numerical Integration 89

2. Run Trapzoid.pas:
Lower 1imit of integration? 0
Upper limit of integration? 5
Number of intervals (> 0)? 100

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Lower Limit: 0.00000000000000e+0
Upper Limit: 5.00000000000000e+0

Number of intervals: 100
Integral: 1.09172838320801e+6

To eight significant figures, the correct answer is 1,091,728.3.

90 Turbo Pascal Numerical Methods Toolbox

Integration Using Adaptive Quadrature and Simpson’s Rule
(Adapsimp.pas)

Description

This example contains an algorithm for approximating the definite integral of a
function f(x) over an interval [a,b] within a specified tolerance. By increasing the
number of subintervals in regions of large functional variation (adaptive quadra-
ture), the desired degree of accuracy can be reached (Burden and Faires 1985,
153-167). The integral within each subinterval is calculated with Simpson’s rule.
The adaptive quadrature approximates the integral over a subinterval twice: once
over the whole subinterval, and again as the sum of the integral over each half of
the subinterval. The algorithm halts when the fractional difference between these
two approximations is less than the tolerance. You must supply the function, the
limits of integration, and the tolerance with which to approximate the integral.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Adaptive_Simpson approximates the integral of this function.

Input Parameters

LowerLimit : Extended; Lower limit of integration
UpperLimit : Extended; Upper limit of integration
Tolerance : Extended; Indicates accuracy in solution
MaxIntervals : Integer; Maximum number of subintervals

The preceding parameters must satisfy the following conditions:
L. Tolerance > 0
2. MaxIntervals > 0

Numerical Integration 9l

Output Parameters

Integral : Extended; Approximation to the integral of the function
NumIntervals : Integer; Number of subintervals used

Error : Byte; 0: No errors
1: Tolerance < 0
2: MaxIntervals < 0
3: NumlIntervals = MaxIntervals

Syntax of the Procedure Call

Adaptive_Simpson(LowerLimit, UpperLimit, Tolerance, MaxIntervals,
Integral, NumIntervals, Error, @TNTargetF);

Adaptive_Simpson approximates the integral of TNTargetF.

Comments

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure
calls (which slow down the execution), a stack is created on the heap to simulate
recursion.

Sample Program

The sample program Adapsimp.pas provides I/O functions that demonstrate the
adaptive quadrature method with Simpson’s rule.

92 Turbo Pascal Numerical Methods Toolbox

Example
Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using adaptive
quadrature and Simpson’s rule.

1. Code function TNTargetF:
function TNTargetF(x : Extended) : Extended;

{ R
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
e }
begin

TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

2. Run Adapsimp.pas:
Lower 1imit of integration? 0
Upper 1imit of integration? 5
Tolerance (> 0): 1E-8
Maxir_num number of subintervals (> 0): 1000

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.
Lower limit: 0.0000000000000000e+0
Upper limit: 5.0000000000000000e+0
Tolerance: 1.0000000000000000e-8

Maximum number of subintervals: 1000
Number of subintervals used: 511

Integral: 1.08968601332499¢+6

To eight significant figures, the correct answer is 1,089,686.0.

Numerical Integration 93

Integration Using Adaptive Quadrature and Gaussian
Quadrature (Adapgaus.pas)

Description

This example contains an algorithm for approximating the integral of a function f{(x)
over an interval [a,b] within a specified tolerance. By increasing the number of
subintervals in regions of large functional variation (adaptive quadrature), the
desired degree of accuracy can be reached. The integral within each subinterval is
approximated by applying Gaussian quadrature (Burden and Faires 1985, 184-188)
with a 16th degree Legendre polynomial. Adaptive quadrature (Burden and Faires
1985, 172-176) approximates the integral over a subinterval twice: once over the
whole subinterval, and again as the sum of the integral over each half of the subin-
terval. The algorithm halts when the fractional difference between these two
approximations is less than the tolerance. You must supply the function, the limits
of integration, and the tolerance with which to approximate the integral.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Adaptive_Gauss—Quadrature approximates the integral of this func-
tion.

Input Parameters

LowerLimit : Extended; Lower limit of integration
UpperLimit : Extended; Upper limit of integration
Tolerance : Extended; Indicates accuracy in solution

MaxIntervals : Integer; Maximum number of subintervals
The preceding parameters must satisfy the following conditions:
1. Tolerance > 0

2. MaxIntervals > 0

94 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Integral : Extended; Approximation to the integral of the function
NumIntervals : Integer; Number of subintervals used

Error : Byte; 0: No errors
1: Tolerance < 0
2: MaxIntervals < 0
3: NumlIntervals = MaxIntervals

Syntax of the Procedure Call

Adaptive_Gauss—Quadrature(LowerLimit, UpperLimit, Tolerance, MaxIntervals,
Integral, NumIntervals, Error, @TNTargetF);

Adaptive_Gauss—Quadrature approximates the integral of TNTargetF.

Comments

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure
calls (which slow down execution), a stack is created on the heap to simulate recur-
sion.

Gaussian guadrature uses orthogonal polynomials (in this case, Legendre polyno-
mials) to approximate an integral. Generally, a higher degree polynomial will yield
a more accurate result, but will take more time to compute. The 16th degree
Legendre polynomial used in Adapgaus.pas is very efficient. The values of its zeros
and weight factors follow (Abramowitz and Stegun 1972).

Numerical Integration - 95

The following condition is satisfied by the numbers that follow it:
Integral from —1 to 1 of f(x) dx
equals

Sum from i=1 to NumLegendreTerms of
Legendreli].Weight * f(Legendre[i].Root)

for an arbitrary function f(x).
Legendre[l]........ccccoviviiiiiiiiiiiiiiinnnnnnnn Root: 0.0950125098376370440185
Weight: 0.189450610455068496285
Legendre[2]...........oovvuvvviiiinniiininnnannn, Root: 0.281603550778258913230
Weight: 0.182603415044923588867
Legendre[3]........ccccoevvveviiiivnnninneennnnnn, Root: 0.458016777657227386342
Weight: 0.169156519395002538189
Legendrel[d]...........ccocovvvviiiiiiiiniinnannns Root: 0.617876244402643748447
Weight: 0.149595988816576732081
Legendre[5].........cccoovvvveiiiniieiiiiennennns Root: 0.755404408355003033895
Weight: 0.124628971255533872052
Legendre[6]..........ccoovvvviniiiiinniiininnnnnns Root: 0.865631202387831743880
Weight: 0.095158511682492784810
Legendre[T]......cccocovviuiiniiiiiiniiinennannns Root: 0.944575023073232576078
Weight: 0.062253523938647892863
Legendre[8]........c.coovvvviuvinieniniinannannen, Root: 0.989400934991649932596
Weight: 0.027152459411754094852
Legendref9]......c.coovvviveiiiiiiiiniinninninnns Root: —0.0950125098376370440185
Weight: 0.189450610455068496285
Legendre[10]ccoovvvvviviiniiniiinennnnnns Root: —0.281603550778258913230
Weight: 0.182603415044923588867
Legendre[11]cccouvvvviiiiiniiinnnninnns Root: —0.458016777657227386342
Weight: 0.169156519395002538189
Legendre[12]ccovevviiiiiiiiniiinieninnns Root: —0.617876244402643748447
Weight: 0.149595988816576732081
Legendre[13]cc.oooveviiiininiinninnnnn. Root: —0.755404408355003033895
Weight: 0.124628971255533872052
Legendre[14]ccoovvvinviiiiiniiininninnns Root: —0.865631202387831743880
Weight: 0.095158511682492784810
Legendre[l15]cccoovvnvineeniiiniineinnnnnns Root: —0.944575023073232576078
Weight: 0.062253523938647892863
Legendre[16]coovvniiineniinniininnnnnns Root: —0.989400934991649932596

Weight: 0.027152459411754094852

96 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Adapgaus.pas provides I/O functions that demonstrate the
adaptive quadrature method with Gaussian quadrature.

Example
Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using adaptive
quadrature with Gaussian quadrature algorithm.

1. Code function TNTargetF:
function TNTargetF(x : Extended) : Extended;

{ }
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
}
begin
TNTargetF := Exp(3*X) + Sqr(X)/3;
end; ' { function TNTargetF }

2. Run Adapgaus.pas:

Lower 1imit of integration? 0

Upper limit of integration? 5

Tolerance in answer: (> 0): 1E-8

Maximum number of subintervals (> 0): 1000

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.
Lower Timit: 0.00000000000000e+0
Upper limit: 5.00000000000000e+0
Tolerance: 1.00000000000000e-8

Maximum number of subintervals: 1000
Number of subintervals used: 1

Integral: 1.08968601304609¢+6

To eight significant figures, the correct answer is 1,089,686.0.

Numerical Integration 97

Integration Using the Romberg Algorithm (Romberg.pas)

Description

This example contains an algorithm (Burden and Faires 1985, 177-182) for approxi-
mating the integral of a function f(x) over an interval [a, b] within a specified
tolerance. The trapezoid rule is used to generate a preliminary approximation, and
Richardson extrapolation (Burden and Faires 1985, 148-152) is subsequently used
to improve the approximation. Extrapolation continues until the fractional differ-
ence between successive approximations of the integral is less than the tolerance.
You must supply the function, the limits of integration, and the tolerance with
which to approximate the integral.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Romberg approximates the integral of this function.

Input Parameters

LowerLimit : Extended; Lower limit of integration

UpperLimit : Extended; Upper limit of integration

Tolerance : Extended; Indicates accuracy in solution

MaxIter : Integer; Maximum number of iterations allowed

The preceding parameters must satisfy the following conditions:
1. Tolerance > 0

2. MaxlIter > 0

98 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Integral : Extended; Approximation to the integral of the function

Iter : Integer; Number of iterations
Error : Byte; 0: No errors

1: Tolerance < 0

2: MaxIter < 0

3: Iter = Maxlter

Syntax of the Procedure Call

Romberg(LowerLimit, UpperLimit, Tolerance, MaxIter, Integral, Iter, Error,
@TNTargetF);

Romberg approximates the integral of TNTargetF.

Sample Program

The sample program Romberg.pas provides I/O functions that demonstrate the
Romberg algorithm.

Example
Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the Rom-
berg algorithm.

1. Code function TNTargetF:
function TNTargetF(x : Extended) : Extended;

T -- -- -}
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
{ -}
begin

TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

Numerical Integration 99

2. Run Romberg.pas:
Lower 1imit of integration? 0
Upper limit of integration? 5
Tolerance (> 0): 1E-8
Maximum number of iterations: (> 0): 100

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.
Lower 1imit: 0.00000000000000e+0
Upper limit: 5.00000000000000e+0
Tolerance: 1.00000000000000e-8

Maximum number of iterations: 100
Number of iterations: 7

Integral: 1.08968601696675e+6
To eight significant figures, the correct answer is 1,089,686.0.

100 Turbo Pascal Numerical Methods Toolbox

C H A p T E R 6

Matrix Routines

This chapter provides routines for dealing with systems of linear equations. An
example of a system of linear equations is as follows:

2X+Y+Z=17
X-Y+Z=2
X+Y-Z=0

Matrix algebra is a collection of notations that constitutes a technique for handling
such systems. With matrix algebra, the preceding system would be written

Ax=b

where

2 1 1 X 7
A= |1 -1 1 x= |Y b= |2
1 1 -1 Z 0

In Pascal, x and b are represented as one-dimensional arrays, and A is represented
as a two-dimensional array. In matrix notation, the solution is given by

x=A"b
where A™" is the inverse to A.

The determinant is an indicator of whether the matrix can be inverted. For exam-
ple, the equations

3X-3Y =4
—-2X+2Y =35

101

cannot be solved. Even for different values of the right-hand side, the equations
can only be solved in certain exceptional cases. (If you change 4 and 5 to 3 and —2,
then there are infinitely many solutions; but there are none if you change 4 and 5 to
3 and —3.000L)

Following is a description of several routines that operate on matrices and systems
of linear equations.

The determinant of a square matrix is found via Det.pas.
The inverse of a nonsingular matrix is found via Inverse.pas.

The direct techniques implemented to solve a system of N linear equations in N
unknowns are Gaussian elimination, Gaussian elimination with partial pivoting,
and direct factorization.

The Gauss-Seidel method, an iterative technique that converges to the solution, is
seldom used for solving small systems, since the time required for sufficient accu-
racy exceeds that required for the preceding direct techniques.

In general, Gaussian elimination with partial pivoting is the fastest, most accurate
algorithm. The following special cases may warrant the use of one of the other
routines:

* If you are considering systems where round-off is minimal (that is, small sys-
tems whose coefficients are all of nearly the same magnitude), Gaussian elimi-
nation without pivoting may be used. It is somewhat faster than its pivoting
counterpart.

* When considering sparse coefficient matrices, the Gaussian elimination rou-
tine with partial pivoting is the most efficient and accurate routine. If the
matrix is small and the nonzero coefficients do not differ wildly from each
other, regular Gaussian elimination can usually be used safely.

* For large, dense matrices, the iterative technique is the most efficient; it cre-
ates less round-off error than the direct methods. However, the Gauss-Seidel
algorithm has its own weaknesses (see the section, “Solving a System of Lin-
ear Equations with the Iterative Gauss-Seidel Method,” for more details).

* When it is necessary to solve several systems with the same coefficient matrix
but a different vector of constant terms, the direct factorization method is the
most efficient. This is because it does not require reduction of the coefficient
matrix for each vector of constants. '

102 Turbo Pascal Numerical Methods Toolbox

Determinant of a Matrix (Det.pas)

Description

The determinant of an N X N matrix can be computed by the following algorithm
(Gerald and Wheatley 1984, 110-111):

1. Use elementary row operations to make the matrix upper triangular (that is,
all the elements below the main diagonal are zero).

2. Find the product of the main diagonal elements —this will be the determi-
nant.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the data matrix

Data : TNmatrix; The square matrix

The preceding parameters must satisfy the following conditions:
1. Dimen > 0
9. Dimen < TNArraySize

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Matrix Routines 103

Output Parameters

Det : Extended; Determinant of the data matrix

Error : Byte; 0: No errors
1: Dimen < 1

Syntax of the Procedure Call

Determinant(Dimen, Data, Det, Error);

Sample Program

The sample program Det.pas provides I1/O functions that demonstrate how to find
the determinant of a matrix.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be like this:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
[1,1],1,2]..[1,N], [2,1]..[2 N]..[N,N],

where N is the dimension of the matrix
For example, a text file containing the matrix
2 3
-4 0
could look like this:

2
2 3
-4 0

104 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Find the determinant of the following matrix:

1 2 0 -10
-1 4 3 -05
2 21 =30
0 0 3 —-40
Run Det.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.
The matrix:
1.00000000 2.00000000 0.00000000 -1.00000000
-1.00000000 4.00000000 3.00000000 -0.50000000

2.00000000 2.00000000 1.00000000 -3.00000000
0.06000000 0.00000000 3.00000000 -4.00000000

Determinant = -2.10000000000000e+1

Matrix Routines 105

Inverse of a Matrix (Inverse.pas)

Description

The inverse of an N X N matrix A is an N X N matrix A~", such that A™'A equals
the identity matrix (Burden and Faires 1985, 306-316). Gauss-Jordan elimination
(Gerald and Wheatley 1984, 96-98) is used to transform the original matrix into
the identity matrix. The same elementary row operations that reduce A to the
identity matrix transform the identity matrix into the inverse of the original matrix
A. If one or more of the main diagonal elements of the transformed original matrix
(that is, after Gauss-Jordan elimination) is zero, then the original matrix A is singu-
lar and its inverse does not exist.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the data matrix
Data : TNmatrix; The elements of the square matrix
The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen < TNArraySize
TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

106 Turbo Pascal Numerical Methods Toolbox

Output Parameters

INV : TNmatrix; The inverse of the data matrix

Error : Byte; 0: No errors
1: Dimen < 1
2: No inverse exists

Syntax of the Procedure Call

Inverse(Dimen, Data, INV, Error);

Sample Program

The sample program Inverse.pas provides 1/O functions that demonstrate how to
find the inverse of a matrix.

Input Files

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,

(L1, [L2].. [, N), [2,1]...[2,N] ... [N, N],
where N is the dimension of the matrix

For example, a text file containing the matrix
2 3
-4 0
could look like this:

2
2 3
-4 0

Matrix Routines 107

Example

Problem. Invert the following matrix:

1 2 0 -10
-1 4 3 -05
2 21 -30
0 0 3 —-40

Run Inverse.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:

1.000000000 2.000000000 0.000000000 -1.000000000
-1.000000000 4.000000000 3.000000000 -0.500000000
2.000000000 2.000000000 1.000000000 -3.000000000
0.000000000 0.000000000 3.000000000 -4.000000000

Inverse:

-1.952380952 0.190476190 1.571428571 -0.714285714
0.761904762 0.047619048 -0.357142857 0.071428571
-1.904761905 0.380952381 1.142857143 -0.428571429
-1.428571429 0.285714286 0.857142857 -0.571428571

To continue this example, reinvert the matrix just obtained:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6B.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:

-1.952380952 0.190476190 1.571428571 -0.714285714
0.761904762 0.047619048 -0.357142857 0.071428571
-1.904761905 0.380952381 1.142857143 -0.428571429
-1.428571429 0.285714286 0.857142857 -0.571428571

Inverse:

1.000000000 2.000000000 0.000000000 -1.000000000
-1.000000000 4.000000000 3.000000000 -0.500000000
2.000000000 2.000000000 1.000000000 -3.000000000
-0.000000000 -0.000000000 3.000000000 -4.000000000

108 Turbo Pascal Numerical Methods Toolbox

Solving a System of Linear Equations with Gaussian
Elimination (Gauselim.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns may be
found by simultaneously performing Gaussian elimination (Burden and Faires
1985, 291-304) on the matrix containing the coefficients of the equations (the coef-
ficient matrix A) and the vector containing the constant terms of the equations (the
constant vector B). First, elementary row operations are used to make A upper
triangular (that is, all the elements below the main diagonal are zero). Backward
substitution (whereby X[N] is calculated and used to calculate X[N — 1], which is
then used to calculate XN —2], and so on) is then used to compute the solution
vector X. If one or more of the elements on the main diagonal of the upper triangu-
lar matrix is zero, then no unique solution to the system exists.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters
Dimen : Integer; Dimension of the coefficients matrix
Coefficients : TNmatrix; The square matrix containing the coefficients of the equa-

tions
Constants : TNvector; The constant terms of each equation
The preceding parameters must satisfy the following conditions:
1. Dimen > 0
2. Dimen < TNArraySize
TNArraySize sets an upper bound on the number of elements in each vector. It is

used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

Matrix Routines 109

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution : TNvector; Solution to the set of equations.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: Coefficients matrix is singular; no unique solution exists.

Syntax of the Procedure Call

Gaussian_Elimination(Dimen, Coefficients, Constants, Solution, Error);

Sample Program

The sample program Gauselim.pas provides 1/O functions that demonstrate how to
solve a system of linear equations with Gaussian elimination.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the coefficient matrix

2. The elements of the matrix in row order; that is,

(1,11, (1, 2], .., [L N, [21], .., [2,N], ..., [N, N],
where N is the dimension of the matrix

3. The elements of the constant vector, in the order [1],...,[N]

110 Turbo Pascal Numerical Methods Toolbox

For example, to solve the system

2x + 3y = 10
—4x = 10

a text file could be created to look like this:

2

2 3
-4 0
10

10

Example

Problem. Solve the following linear system:

w+ 2x + 0y — z = 100
-w + 4x + 3y - 0.5z = 215
2w+ 2x + y — 3z = 26.0

3y — 4z

Run Gauselim.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the

standard dialog box:
File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

The coefficients:
1.000000000 2.000000000
-1.000000000 4.000000000
2.000000000 2.000000000
0.000000000 0.000000000

The constants:
1.00000000000000e+1
2.15000000000000e+1
2.60000000000000e+1
3.70000000000000e+1

The solution:

-1.00000000000000e+0
2.00000000000000e+0
3.00000000000000e+0
-7.00000000000000e+0

Matrix Routines

= 370

0.000000000
3.000000000
1.000000000
3.000000000

-1.000000000
-0.500000000
-3.000000000
-4.000000000

Solving a System of Linear Equations with Gaussian
Elimination and Partial Pivoting (Partpivt.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns may be
found by simultaneously performing Gaussian elimination (Burden and Faires
1985, 291-304) on the matrix containing the coefficients of the equations (the coef-
ficient matrix A) and the vector containing the constant terms of the equations (the
constant vector B). However, excessive round-off errors can occur when elements
on the main diagonal are small compared to the elements below them in the same
column. To avoid this, partial pivoting (maximal column pivoting) is performed
(Burden and Faires 1985, 324-327); that is, row interchanges are performed so that
each main diagonal element is greater than or equal to the elements below it in the
same column.

User-Defined Types

TNvector = array[1..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;
Input Parameters
Dimen : Integer; Dimension of the coefficients matrix

Coefficients : TNmatrix; The square matrix containing the coefficients of the equa-
tions
Constants : TNvector; The constant terms of each equation
The preceding parameters must satisfy the following conditions:
1. Dimen > 0
2. Dimen < TNArraySize
TNArraySize sets an upper bound on the number of elements in each vector. It is

used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

112 Turbo Pascal Numerical Methods Toolbox

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution : TNvector; Solution to the set of equations.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: Coefficients matrix is singular; no unique solution exists.

Syntax of the Procedure Call

Partial_Pivoting(Dimen, Coefficients, Constants, Solution, Error);

Sample Program

The sample program Partpivt.pas provides I/O functions that demonstrate how to
solve a system of linear equation with Gaussian elimination and partial pivoting.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,

[1’ 1]’ [1, 2], ey [l, N]’ [2’ 1]’ eeey [2, N]’ teey [N, N]’
where N is the dimension of the matrix

3. The elements of the constant vector, in the order [1],...,[N]

Matrix Routines 13

For example, to solve the system

2 + 3y = 10
—4x = 10

a text file could be created to look like this:

2

2 3
-4 0
10

10

Example

Problem. Solve the following linear system:

w+2x+0y—2=10
—w + 4x + 3y — 0.5z = 21.5
2w+ 2x +y — 32 =26

3y — 4z

Run Partpivt.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the

standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

The coefficients:
1.000000000 2.000000000
-1.000000000 4.000000000
2.000000000 2.000000000
0.000000000 0.000000000

The constants:
1.00000000000000e+1
2.15000000000000e+1
2.60000000000000e+1
3.70000000000000e+1

The solution:

-1.00000000000000e+0
2.00000000000000e+0
3.00000000000000e+0
-7.00000000000000e+0

114

= 37

0.000000000
3.000000000
1.000000000
3.000000000

-1.000000000
-0.500000000
-3.000000000
-4.000000000

Turbo Pascal Numerical Methods Toolbox

Solving a System of Linear Equations with Direct Factoring
(Dirfact.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns can be
computed by factoring the matrix containing the coefficients of the N equations
(the coefficient matrix A) into an upper triangular matrix U (that is, all the elements
below the main diagonal are zero) and a lower triangular matrix L (that is, all the
elements above the main diagonal are zero) such that A = LU. Partial pivoting is
used to reduce round-off error. A record of the pivoting permutations are recorded
in a permutation matrix P, so that the equation is actually A = PLU. Forward
substitution (analogous to backward substitution; see “Solving a System of Linear
Equations with Gaussian Elimination”) is used to solve the equations LZ = B
(actually LZ = PB, where P is the pivoting permutation matrix) and UX = Z
(where X is the solution to the N linear equations, and Z is an intermediate solu-
tion). If the coefficient matrix cannot be factored into nonsingular triangular
matrices, then no unique solution exists.

This module includes two procedures to perform this algorithm. Procedure
LU_Decompose performs the LU decomposition of a matrix, and procedure
LU_Solve performs forward and backward substitution to solve the linear equa-
tions.

The most efficient way to calculate the solutions to several systems with the same
coefficient matrix but different constant vectors is to first decompose the coefficient
matrix A into L and U (Burden and Faires 1985, 342-349). Then perform backward
substitution on this decomposed matrix and each of the constant vectors B. Thus,
the coefficient matrix is decomposed only once.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Matrix Routines 15

Procedure LU_Decompose Input Parameters

Dimen : Integer; Dimension of the coefficients matrix
Coefficients : TNmatrix; Square matrix containing the coefficients of the equations
The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen < TNArraySize
TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Procedure LU_Decompose Output Parameters

Decomp : Thmatrix; The LU decomposition of the coefficients matrix.
Permute : TNmatrix; A permutation matrix that records the effects of pivoting.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: The coefficients matrix is singular.

Syntax of the Procedure Call

LU_Decompose(Dimen, Coefficients, Decomp, Permute, Error);

Procedure LU_Solve Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Decomp : Thmatrix; The LU decomposition of the coefficients matrix
Constants : TNmatrix; The constant terms of each equation

Permute : TNmatrix; A permutation matrix that records the effects of pivoting

16 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:
1. Dimen > 0
2. Dimen < TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Procedure LU_Solve Output Parameters

Solution : TNvector; Solution to each system of equations

Error : Byte; 0: No errors
1: Dimen < 1

Syntax of the Procedure Call

LU_Solve(Dimen, Decomp, Constants, Permute, Solution, Error);

Sample Program

The sample program Dirfact.pas provides I/O functions that demonstrate how to
solve a system of linear equations with the method of direct factoring.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
(1,1} [1,2]..,[1, N} [21]..[2N],..[N,N]
where N is the dimension of the matrix

Matrix Routines 17

3. The elements of the first constant vector, in the order [1],...,[N], with each
element followed by a carriage return

4. The elements of any additional constant vectors, in the order [1],...,[N], with
each element followed by a carriage return

For example, to solve the systems

% + 3y = 10 o + 3y = 1
—4x =10 —4x =2
a text file could be created to look like this:
2
2 3
-4 0
10
10
1
2
Example

Problem. Given the following set of coefficients:

2w+ x+ 5y -— 8
Tw+ 6x + 2y + 2z
—lw — 3x — 10y + 4z
2w+ 2w+ 2+ z

compute solutions for each of the five constant vectors:

0 -15 14 -13 5

17 50 1 84 30
-10 -5 -12 -51 -15
7 17 1 37 10

Run Dirfact.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6C.dat

118 Turbo Pascal Numerical Methods Toolbox

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The coefficients:
2.000000000 1.000000000 5.000000000 -8.000000000
7.000000000 6.000000000 2.000000000 2.000000000
-1.000000000 -3.000000000-10.000000000 4.000000000
2.000000000 2.000000000 2.000000000 1.000000000

The constants:
0.00000000000000e+0
1.70000000000000e+1

-1.00000000000000e+1
7.00000000000000e+0

The solution:
1.00000000000000e+0
1.00000000000000e+0
1.00000000000000e+0
1.00000000000000e+0

The constants:
-1.50000000000000e+1
5.00000000000000e+1
-5.00000000000000e+0
1.70000000000000e+1

The solution:
2.00000000000000e+0
5.00000000000000e+0

-2.26268279475236e-19
3.00000000000000e+0

The constants:
1.40000000000000e+1
1.00000000000000e+0

-1.20000000000000e+1
1.00000000000000e+0

The solution:
1.00000000000000e+0

-1.00000000000000e+0
1.00000000000000e+0

-1.00000000000000e+0

The constants:
-1.30000000000000e+1
8.40000000000000e+1
-5.10000000000000e+1
3.70000000000000e+1

The solution:
4.00000000000000e+0
5.00000000000000e+0
6.00000000000000e+0
7.00000000000000e+0

Matrix Routines 119

The constants:
5.00000000000000e+0
3.00000000000000e+1

-1.50000000000000e+1
1.00000000000000e+1

The solution:
1.98254111540207¢-18
5.00000000000000e+0
1.07686940416918e-18
7.38863702730862e-19

120 Turbo Pascal Numerical Methods Toolbox

Solving a System of Linear Equations with the Iterative
Gauss-Seidel Method (Gaussidl.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns can be
approximated by the Gauss-Seidel iterative technique (Burden and Faires 1985,
424-432). The equation AX = B is transformed into X = TX + C. Given an initial
approximation X , the sequence X = TX _| + C is generated with the following
formula:

i-1 N
= D ALAX - D @A X,_) + Bl
=1 j=i+1

X,[i] =
Al i]

The algorithm halts when the fractional difference for each element of the vector X
between two iterations is less than a specified tolerance.

If A is diagonally dominant (that is, each of the diagonal terms is greater than or
equal to the sum of the off-diagonal terms in the same row), then the sequence will
converge to the solution X. If the matrix A is not diagonally dominant, then the
sequence may converge to the solution, but more likely it will not. You must supply
the tolerance with which to approximate a solution.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Matrix Routines 121

Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Coefficients : TNmatrix; The square matrix containing the coefficients of the equa-
tions

Constants : TNvector; The constant terms of the equation
Tol : Extended; Indicates accuracy in solution

MaxIter : Integer; Maximum number of iterations

The preceding parameters must satisfy the following conditions:
1. Dimen > 0.

Dimen < TNArraySize.

Tol > 0.

Maxlter = 0.

AN I

The coefficients matrix may not contain a zero on the main diagonal.

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution : TNvector; Solution to the set of equations.
Iter : Integer; The number of iterations required to find the solution.

Error : Byte; 0: No errors.
1: Iter > MaxlIter and matrix is not diagonally dominant.
2: Iter > MaxIter and matrix is diagonally dominant.
3: Dimen < 1.
4: Tol < 0.
5: MaxIter < 0.
6: Zero on the diagonal of the coefficients matrix.
7: Sequence is diverging.

122 Turbo Pascal Numerical Methods Toolbox

If the coefficients matrix is diagonally dominant, then the Gauss-Seidel method
will converge to a solution. If the coefficients matrix is not diagonally dominant,
then the Gauss-Seidel may converge to a solution, but more likely it will not. Error
7 can only occur when the coefficients matrix is not diagonally dominant. If Error 1
is returned, it is likely that convergence is not possible; if Error 2 is returned,
convergence is possible but will take more than MaxIter iterations.

If the diagonal of the coefficients matrix contains a zero (Error 6), then the Gauss-
Seidel method may not be used to solve the system of equations.

If the system of equations is under-determined, the Gauss-Seidel method will
still converge to a (nonunique) solution. The Gauss-Seidel method cannot distin-
guish between unique and nonunique solutions. If you suspect that your system of
equations is under-determined, use one of the direct methods (for example,
Gauselim.pas) to attempt a solution; Gaussian elimination will give an error if it is
under-determined. Alternatively, you could use Det.pas to find the determinant; if
the determinant is zero, then the system is under-determined.

Syntax of the Procedure Call

Gauss-Seidel(Dimen, Coefficients, Constants, Tol, MaxIter, Solution, Iter, Error);

Sample Program

The sample program Gaussidl.pas provides I/O functions that demonstrate how to
solve a system of linear equations with the iterative Gauss-Seidel method.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
[1’ 1]’ [1’ 2]’ ey [1’ N]’ [2’ 1]’ ey [2’ N], ey [N’ N]?
where N is the dimension of the matrix

3. The elements of the first constant vector, in the order [1]....,[N]

Matrix Routines 123

For example, to solve the systems

20x + 3y = 10
—4y =10
a text file could be created to look like this:
2
20 3
0 -4
10
10
Example

Problem. Solve the following linear system to within a tolerance of 1E — 12:
10v+ w+ 2x— 3y+ 22= - 29

4do+50w+ x+ z= 35
-20+5w -3+ y+ z2=— 25
6o+ 4w + 10y + 3z = — 46
-3v—-2w-—- x+ 6y + 252 = —106

Run Gaussidl.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6D.dat
Tolerance (> 0): 1E-12
Maximum number of iterations (> 0): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The coefficients:
10.000000000 1.000000000 2.000000000 -3.000000000 2.000000000
4.000000000 50.000000000 1.000000000 0.000000000 1.000000000
-2.000000000 5.000000000 -30.000000000 1.000000000 1.000000000
6.000000000 4.000000000 0.000000000 10.000000000 3.000000000
-3.000000000 -2.000000000 -1.000000000 6.000000000 25.000000000

The constants:

-2.90000000000000e+1
3.50000000000000e+1
-2.50000000000000e+1
-4.60000000000000e+1
-1.06000000000000e+2

124 Turbo Pascal Numerical Methods Toolbox

Tolerance: 1.00000000000000e-12
Maximum number of iterations: 100

Number of iterations: 15
The result:
-2.99999999999997e+0

9.99999999999999e-1
9.99999999999998e-1
-1.99999999999999¢+0
-4.00000000000000e+0

Matrix Routines ' 125

C H A P T E R 7

Eigenvalues and Eigenvectors

The routines in this chapter can find the eigenvalues and eigenvectors. A scalar ¢ is
an eigenvalue (or characteristic value) of a square matrix A if there is a nonzero
vector v satisfying

Av=cv
The vector v is called the eigenvector corresponding to c.

The eigenvalues and eigenvectors of a matrix provide a lot of information about the
matrix. If a matrix is written in terms of a basis of eigenvectors, then it is diagonal,
meaning that its only nonzero terms are on the main diagonal.

Each procedure in this chapter attempts to approximate at least one real eigen-
value (and associated eigenvector) of a real square matrix. The eigenvector is nor-
malized so that the element with the largest magnitude is 1.

The power method approximates the eigenvalue that is largest in magnitude (domi-
nant eigenvalue). The iterative process will converge slowly or not at all if the
dominant eigenvalue is not simple or if it has nearly the same magnitude as the
next most-dominant eigenvalue.

The inverse power method approximates the eigenvalue nearest to a user-supplied
real value. This process usually converges more rapidly than the power method,
and may be used to refine the approximate value of the eigenvalue determined by
the latter method.

127

The Wielandt method attempts to approximate a user-specified number of eigen-
values of a given matrix. The power method is first used to approximate the domi-
nant eigenvalue of the matrix. Deflation is employed to form a deflated, square
matrix (that is, a square matrix whose dimension is one less than the original
matrix). The eigenvalues of the deflated matrix are identical to those of the original
matrix except for the determined dominant eigenvalue. Eigenvectors of the
remaining eigenvalues from the original matrix are also contained in the deflated
matrix. The dominant eigenvalue of the new deflated matrix is then determined
using the power method. Wielandt’s method is susceptible to round-off error, thus
it may be desirable to use its results as input to the inverse power method.

The cyclic Jacobi method approximates all the eigenvalues of a symmetric matrix.
The iterative process uses orthogonal plane rotations to reduce the given matrix
into a diagonal form. Although Jacobi’s method is only applicable to symmetric
matrices, it is much more efficient and accurate than Wielandt’s method.

128 Turbo Pascal Numerical Methods Toolbox

Real Dominant Eigenvalue and Eigenvector of a Real
Matrix Using the Power Method (Power.pas)

Description

The power method (Burden and Faires 1985, 452—456) approximates the dominant
real eigenvalue of a matrix and its associated eigenvector. The dominant eigen-
value is the eigenvalue of the largest absolute magnitude. Given a square matrix
A and a real nonzero vector v, a vector w is constructed by the matrix operation
Av = w. The vector w is normalized by dividing by its element of the largest
absolute magnitude q. If the absolute difference between each of the correspond-
ing elements in w and v is less than a specified tolerance, then the procedure halts.
Otherwise, v is set equal to w, and the operation repeats until a solution is found.
The magnitude q is the dominant eigenvalue, and w will be the associated eigen-
vector of the matrix A.

You must supply the matrix A, an initial approximation to the eigenvector v, and the
tolerance.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters
Dimen : Integer; Dimension of the matrix Mat
Mat : TNmatrix; The matrix

GuessVector : TNvector; Initial approximation to the eigenvector
MaxIter : Integer; Maximum number of iterations
Tolerance : Extended; Indicates accuracy in solution

Eigenvalues and Eigenvectors 129

The preceding parameters must satisfy the following conditions:

1. Dimen > 1

2. Dimen < TNArraySize

3. Tolerance > 0

4. Maxlter > 0
TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R+} is active).

Output Parameters

Eigenvalue : Extended; Approximation to the dominant eigenvalue of the matrix
Eigenvector : TNvector; Appfoximate eigenvector associated with the dominant

eigenvalue
Iter : Integer; Number of iterations required to find the solution
Error : Byte; 0: No errors

1: Dimen < 1

2: Tolerance < 0
3: MaxIter < 0
4: Iter = MaxlIter

Syntax of the Procedure Call

Power(Dimen, Mat, GuessVector, MaxIter, Tolerance,
Eigenvalue, Eigenvector, Iter, Error);

Comments

The power method will not converge if the initial approximation (Guess) to the
eigenvector is orthogonal to the dominant eigenvector. If the initial approximation
is orthogonal, then the power method will converge to a different eigenvector with-
out warning. If you suspect this has happened, run the routine with several differ-
ent initial approximations.

130 Turbo Pascal Numerical Methods Toolbox

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen-
vectors do not pose a problem.

The eigenvectors are normalized such that the element of largest absolute magni-
tude in each vector is equal to one.

Sample Program

The sample program Power.pas provides I/O functions that demonstrate the power
method of approximating eigenvalues.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[1’ 1]’ [l’ 2]’ ety [1’ N]’ eeey [N’ 1]’ ey [N7 N]’
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

[5:]

you could first create the following text file:

W 0O DO

Example

Problem. Find the dominant eigenvalue of the matrix:

2100
0 10
0 24

using the initial guess (1, 2, 3).

Eigenvalues and Eigenvectors 131

Run Power.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
Matrix[2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix[3, 3]:

—

BANOCOROOON

Now input an initial guess for the eigenvector:
Vector[1]: 1
Vector[2]: 2
Vector([3]: 3

Tolerance (> 0): 1E-8
Maximum number of iterations (> 0): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:

2.00000000000000e+0 1.00000000000000e+1 0.00000000000000e+0
0.00000000000000e+0 1.00000000000000e+0 0.00000000000000e+0
0.00000000000000e+0 2.00000000000000e+0 4.,00000000000000e+0

Tolerance: 1.00000000000000e-8
Maximum number of iterations: 100

Number of iterations: 12
The approximate eigenvector:
-2.30295124326775e-14
3.53562219190609e-30
1.00000000000000e+0

The associated eigenvalue: 4.00000000000000e+0
The exact solution is

Eigenvalue = 4
Eigenvector = (0, 0, 1)

132 Turbo Pascal Numerical Methods Toolbox

Real Eigenvalue and Eigenvector of a Real Matrix Using
the Inverse Power Method (InvPower.pas)

Description

Where the power method converges to the dominant real eigenvalue of a matrix
(see Power.pas), the inverse power method (Burden and Faires 1985, 459—462)
converges to the real eigenvalue nearest to a user-supplied real value. Given a
square matrix A, an initial approximation p to the eigenvalue, and an initial approx-
imation v to the eigenvector, the linear system (A — pl)w = o (where I is the
identity matrix) is solved via LU decomposition (see Chapter 6, “Solving a System
of Linear Equations with Direct Factoring”). The vector w is normalized by divid-
ing through by the element g with the largest absolute magnitude. If the absolute
difference between each of the corresponding elements in v and w is less than a
specified tolerance, then the procedure halts. Otherwise, v is set equal to w, and
the previous matrix equation is solved again. The process repeats until a solution is
reached. The eigenvalue of A closest to p will be (1/g + p), and w will be the
associated eigenvector.

You must supply the matrix A, the initial approximations p and v, and the tolerance.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[l..TNArraySize] of TNvector;

Input Parameters
Dimen : Integer; Dimension of the matrix Mat
Mat : TNmatrix; The matrix

GuessVector : Thvector; Initial approximation (Guess) of the eigenvector
ClosestVal : Extended; The approximate eigenvalue

MaxIter : Integer; Maximum number of iterations

Tolerance : Extended; Indicates accuracy of solution

Eigenvalues and Eigenvectors 133

The preceding parameters must satisfy the following conditions:

1. Dimen > 1

2. Dimen < TNArraySize

3. Tolerance > 0

4. Maxlter > 0
TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

Eigenvalue : Extended; Approximation to the eigenvalue closest to ClosestVal

Eigenvector : TNvector; Approximation to the eigenvector associated with Eigen-

value
Iter : Integer; Number of iterations required to find the solution
Error : Byte; 0: No errors

1: Dimen < 1

2: Tolerance < 0

3: MaxIter < 0

4: Iter = MaxlIter

5: Eigenvalue/Eigenvector not calculated (see “Comments”)

Syntax of the Procedure Call

InversePower(Dimen, Mat, GuessVector, ClosestVal, MaxIter,
Tolerance, Eigenvalue, Eigenvector, Iter, Error);

134 Turbo Pascal Numerical Methods Toolbox

Comments

The inverse power method approximates the solution of a system of linear equa-
tions. If the matrix (Mat - Eigenvalue * I) is singular, where I is the identity matrix,
the method will not converge to a solution and Error 5 will be returned. If this
occurs, run the routine again with a slightly different initial approximation,
ClosestVal.

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen-
vectors do not pose a problem.

The inverse power method is sensitive to the initial approximation (ClosestVal). If
ClosestVal is not close to an eigenvalue or lies midway between two eigenvalues,
the algorithm will converge very slowly, if at all.

The eigenvectors are normalized such that the element of the largest absolute
magnitude in each vector is equal to one.

Sample Program

The sample program InvPower.pas provides I/O functions that demonstrate the
inverse power method of approximating eigenvalues.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[1’ 1]’ [1’ 2]’ ey [1, N]’ ety [N’ 1]’ ey [N’ N]’
where N is the dimension of the matrix

3. Elements of the initial guess, in the order

(1], [2], ..., [N],

where N is the dimension of the matrix

Eigenvalues and Eigenvectors 135

For example, to find an eigenvalue of the matrix

12
34

with an initial guess of (11, 10), you could first create the following text file:

O = B W DN =

P

Example

Problem. Suppose you know that two of the eigenvalues of the matrix

2100
010
0 24

are approximately 1.999 and 0.7. Use the inverse power method with an initial
guess of (1, 2, 3) to refine these approximations.

Run InvPower.pas with 1.999 as the approximate eigenvalue:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
Matrix[2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix[3, 3]:

—

HPNHNOOROOON

Now input an initial guess for the eigenvector:
Vector[1]: 1

Vector[2]: 2

Vector[3]: 3

Approximate eigenvalue : 1.999

Tolerance (> 0): 1E-8

Maximum number of iterations (> 0): 200

136 Turbo Pascal Numerical Methods Toolbox

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
2.00000000000000e+0 1.00000000000000e+1 0.00000000000000e+0
0.00000000000000e+0 1.00000000000000e+0 0.00000000000000e+0
0.00000000000000e+0 2.00000000000000e+0 4.,00000000000000e+0

Approximate eigenvalue: 1.99900000000000e+0
Tolerance: 1.00000000000000e-8
Maximum number of iterations: 200

Number of iterations: 4
The approximate eigenvector:
1.00000000000000e+0
9.56200019081920e-14
-5.08756039829010e-14

The associated eigenvalue: 2.00000000000096e+0
Run InvPower.pas with 0.7 as the approximate eigenvalue:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[1, 1]: 2
Matrix[1, 2]: 10
Matrix[1, 3]: O
Matrix[2, 1]: ©
Matrix[2, 2]: 1
Matrix[2, 3]: ©
Matrix[3, 1]: ©
Matrix[3, 2]: 2
Matrix[3, 3]: 4

Now input an initial guess for the eigenvector:
Vector[1]: 1

Vector[2]: 2

Vector[3]: 3

Approximate eigenvalue : 0.7

Tolerance (> 0): 1E-8

Maximum number of iterations (> 0): 200

Eigenvalues and Eigenvectors 137

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:

2.00000000000000e+0 1.00000000000000e+1 0.00000000000000e+0
0.00000000000000e+0 1.00000000000000e+0 0.00000000000000e+0
0.00000000000000e+0 2.00000000000000e+0 4.00000000000000e+0

Approximate eigenvalue: 7.00000000000000e-1
Tolerance: 1.00000000000000e-8
Maximum number of iterations: 200

Number of iterations: 12
The approximate eigenvector:
1.00000000000000e+0
-1.00000002395103e-1
6.66666682633328e-2

The associated eigenvalue: 9.99999976048973e-1
The exact solutions are

Eigenvalue = 2; Eigenvector = (1, 0, 0)
Eigenvalue = 1; Eigenvector = (1, —0.1, 2/30)

138 Turbo Pascal Numerical Methods Toolbox

Real Eigenvalues and Eigenvectors of a Real Matrix Using
the Power Method and Wielandt’s Deflation
(Wielandt.pas)

Description

Wielandt's deflation is a technique that approximates each real eigenvalue and
related eigenvector of a matrix (Burden and Faires 1985, 452-456). Once the domi-
nant real eigenvalue/vector of a matrix has been approximated with the power
method (see “Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using
the Power Method”), the next most dominant real eigenvalue/vector is approxi-
mated by removing the dominant solution. This deflates the matrix. The deflated
matrix will have the same eigenvalues as the original matrix (except for the
removed ones). The eigenvectors of the deflated matrix will be related to the
eigenvectors of the original matrix. (They will not be identical because the dimen-
sion of the deflated matrix is less than the dimension of the original matrix.) The
power method then approximates the dominant eigenvalue of the deflated matrix.
This process is repeated until the appropriate number (user-supplied) of eigen-
values/vectors have been approximated.

You must supply the matrix, the number of eigenvalues/vectors to approximate,
and the tolerance with which to approximate the eigenvalues/vectors.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;
TNmatrix = array[l..TNArraySize] of TNvector;

TNIntVector = array[l..TNArraySize] of Integer;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat
Mat : TNmatrix; The matrix
GuessVector : TNvector; Initial approximation (Guess) of an eigenvector

Eigenvalues and Eigenvectors 139

MaxEigens : Integer;

MaxIter : Integer;

Tolerance : Extended;

Number of eigenvalues/vectors to find (at most, Dimen),
(see “Comments”)

Maximum number of iterations
Indicates accuracy in solution

The preceding parameters must satisfy the following conditions:

1. Dimen > 1

Dimen < TNArraySize

2

3. Tolerance > 0
4. Maxlter > 0

5. MaxEigens > 0
6

. MaxEigens < Dimen

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

NumEigens : Integer;

Eigenvalues : TNvector;
Eigenvectors : TNmatrix;

Iter : TNIntVector;

Error : Byte;

The number of eigenvectors returned (will be =
MaxEigens).

The first NumEigens eigenvalues of the matrix.
The eigenvectors associated with the eigenvalues.

Number of iterations required to find each eigenvalue/vec-
tor.

0: No errors.
1: Dimen < 1.
2: Tolerance < 0.
3: MaxIter < 0.
4: MaxEigens < 0, MaxEigens > Dimen.
5: Iter = Maxlter.
6: Warning! Not a fatal error!
The last two eigenvalues aren’t real.

Turbo Pascal Numerical Methods Toolbox

Syntax of the Procedure Call

Wielandt(Dimen, Mat, GuessVector, MaxEigens, MaxIter, Tolerance,
NumEigens, Eigenvalues, Eigenvectors, Iter, Error);

Comments

It is often unnecessary to determine the complete eigensystem of a matrix. The
parameter MaxEigens prevents the routine from approximating more eigenvalues/
vectors than needed. For example, if the four most dominant eigenvalues of a 20 X
20 matrix are desired, set MaxEigens equal to 4. The algorithm will halt when it
has approximated the four most dominant eigenvalues, thus saving a considerable
amount of time. Note, however, that the dimension of the vector eigenvalues and
the matrix eigenvectors must still be TNArraySize (that is, the same as the dimen-
sion of the matrix).

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen-
vectors do not pose a problem.

The eigenvectors are normalized such that the element of the largest absolute
magnitude in each vector is equal to one.

It is difficult to determine why the power method doesn’t converge to a particular
eigenvector; usually the eigenvalue is complex, or eigenvectors of repeated eigen-
values are linearly dependent. However, when Wielandt's deflation has deflated
the matrix to a2 X 2, it is easy to determine if the eigenvalues of the 2 X 2 are
real or complex. If the last two eigenvalues are real, then they (and their associated
eigenvectors) are returned; if the last two eigenvalues are complex, Error 6 is
returned. (Error 6 is only a warning; it is not a fatal error.) It is returned to give you
some information about the undetermined eigenvectors.

Sample Program

The sample program Wielandt.pas provides I/O functions that demonstrate
Wielandt's method of approximating eigensystems.

Eigenvalues and Eigenvectors 141

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
(L,1],[1,2],..,[1N], .. [N1], .., [N,N],
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

12
34

you could first create the following text file:

B W DO

Example

Problem. Find all real eigenvalues and eigenvectors of the matrix

2100
010
0 24

using an initial guess of (1, 2, 3).
Run Wielandt.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[1, 1]:
Matrix[1, 2]:
Matrix[1, 3]:
Matrix[2, 1]:
Matrix[2, 2]:
Matrix[2, 3]:
Matrix[3, 1]:
Matrix[3, 2]:
Matrix[3, 3]:

—

ANOOROOON

142 Turbo Pascal Numerical Methods Toolbox

Now input an initial guess for the eigenvector:
Vector[1]: 1
Vector[2]: 2
Vector[3]: 3

Tolerance (> 0): 1E-6
Maximum number of eigenvalues/eigenvectors to find (<= 3): 3
Maximum number of iterations (> 0): 200

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:

2.00000000000000e+0 1.00000000000000e+1 0.00000000000000e+0
0.00000000000000e+0 1.00000000000000e+0 0.00000000000000e+0
0.00000000000000e+0 2.00000000000000e+0 4.00000000000000e+0

Tolerance: 1.00000000000000e-6
Maximum number of eigenvalues/eigenvectors to find: 3
Maximum number of iterations: 200

Number of iterations: 10
The approximate eigenvector:
-8.32731765655097e-7
4,60590248231668e-15
1.00000000000000e+0

The associated eigenvalue: 4.00000000000004e+0

Number of iterations: 0
The approximate eigenvector:
1.00000000000000e+0
-0.00000000000000e+0
-0.00000000000000e+0

The associated eigenvalue: 2.00000000000000e+0

Number of iterations: 0
The approximate eigenvector:
1.00000000000000e+0
-9.99999888969116e-2
6.66666592646069e-2

The associated eigenvalue: 9.99999999999991e-1
The exact solution is

Eigenvalue = 4; Eigenvector = (0, 0, 1)
Eigenvalue = 2; Eigenvector = (1, 0, 0)
Eigenvalue = 1; Eigenvector = (1, —0.1, 2/30)

Eigenvalues and Eigenvectors 143

The Complete Eigensystem of a Symmetric Real Matrix
Using the Cyclic Jacobi Method (Jacobi.pas)

Description

The eigensystem of a symmetric matrix can be computed much more simply and
efficiently than the eigensystem of an asymmetric matrix. The cyclic Jacobi method
(Atkinson and Harley 1983, 154-160) is an iterative technique for approximating
the complete eigensystem of a symmetric matrix to within a given tolerance. It
consists of multiplying the matrix A by a series of rotation matrices R,. The rotation
matrices are chosen so that the elements of the upper triangular part of A (exclud-
ing the diagonal) are systematically annihilated; that is, R, is chosen so that A[1, 2]
becomes zero, R, is chosen so that A[1, 3] becomes zero, and so on. Since the matrix
is symmetric, this will also annihilate the lower triangular part of A. Because each
rotation will probably change the value of elements annihilated in previous rota-
tions, the method is iterative. Eventually, the matrix will be diagonalized. The
eigenvalues will be the elements of the main diagonal of the diagonal matrix; the
eigenvectors will be the corresponding rows of the matrix created by the product of
the rotation matrices R..

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

TNmatrix = array[1..TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat
Mat : TNmatrix; The symmetric matrix
MaxIter : Integer; Maximum number of iterations

Tolerance : Extended; Accuracy in solution

144 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:
1. Dimen > 1.
2. Dimen < TNArraySize.
3. Tolerance > 0.
4. MaxlIter > 0.
5. Mat must be symmetric.
TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari-
able name and is never referenced by the procedure; hence there is no test for

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

Eigenvalues : TNvector; Approximation to the eigenvalues of the matrix

Eigenvectors : TNmatrix; Approximation to the eigenvectors associated with the
eigenvalues
Iter : Integer; Number of iterations required to find eigenvalues/vectors
Error : Byte; 0: No errors
1: Dimen < 1
2: Tolerance < 0
3: Maxlter < 0
4: Mat not symmetric
5: Iter = MaxlIter

Syntax of the Procedure Call

Jacobi (Dimen, Mat, MaxIter, Tolerance, Eigenvalues, Eigenvectors, Iter, Error);

Eigenvalues and Eigenvectors 145

Comments

For symmetric matrices, the Jacobi method is preferred to Wielandt's deflation.

Unlike the power and inverse power methods, the efficiency of the Jacobi method
is not affected by repeated eigenvalues with linearly dependent eigenvectors.

The eigenvectors are normalized such that the element of largest absolute magni-
tude in each vector is equal to one.

Sample Program

The sample program Jacobi.pas provides I/O functions that demonstrate Jacobi’s
method of approximating the eigensystem of symmetric matrices.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[l’ 1]’ [17 2]’ secy [1’ N]’ haas] [N’ 1]’ ety [N7 N])

where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

[1]

you could first create the following text file:

= D DO = W

146 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Find the complete eigensystem of the symmetric matrix

1 2-3-1
2 1-1-3
-3-1 1 2
-1-3 2 1

Run Jacobi.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample7A.dat
Tolerance (> 0): 1E-8
Maximum number of iterations (> 0): 200

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
1.000000000 2.000000000 -3.000000000 -1.000000000
2.000000000 1.000000000 -1.000000000 -3.000000000
-3.000000000 -1.000000000 1.000000000 2.000000000
-1.000000000 -3.000000000 2.000000000 1.000000000

Tolerance: 1.00000000000000e-8
Maximum number of iterations: 200

Number of iterations: 4

The approximate eigenvector:
-1.00000000000000e+0
-1.00000000000000e+0

1.00000000000000e+0

1.00000000000000e+0

The associated eigenvalue: 7.00000000000000e+0
The approximate eigenvector:
9.99999999977805e-1
-9.99999999977804e-1
-1.00000000000000e+0
1.00000000000000e+0

The associated eigenvalue: 1.00000000000000e+0

Eigenvalues and Eigenvectors 147

The approximate eigenvector:
1.00000000000000e+0
-9.99999556935429¢-1
9.99999999977805e-1
-9.99999556913233e-1

The associated eigenvalue: -2.99999999999990e+0
The approximate eigenvector:
9.99999556935428e-1
1.00000000000000e+0
9.9999955693542%¢e-1
1.00000000000000e+0
The associated eigenvalue: -1.00000000000010e+0

The exact solution is

Eigenvalue = 7T; Eigenvector = (1,1, —1, —1)
Eigenvalue = —3; Eigenvector = (1, —1,1, —1)
Eigenvalue = 1; Eigenvector = (—1,1,1, —1)
Eigenvalue = —1; Eigenvector = (1,1,1,1)

148 Turbo Pascal Numerical Methods Toolbox

C H A P T E R 8

Initial Value and Boundary Value Methods

A differential equation is like an ordinary equation except that the unknown is a
function, and derivatives of the function appear in the equation. For example,

f'@) + f) =0
is a differential equation. f"(x) is the second derivative of f{x). The solutions are the
functions of the form
flx) = a * cos(x) + b * sin(x)
The function is uniquely determined by suitable initial conditions, such as
f0)=3
f'0) =4
in which case the solution is
f(x) = 3 * cos(x) + 4 * sin(x)

The routines in this chapter solve differential equations that are ordinary and lin-
ear. A differential equation is ordinary if there is only an independent variable (that
is, the unknown function is a function of only one variable), and thus the deriva-
tives are ordinary derivatives and not partial derivatives. A differential equation is
linear if the unknown function and its derivatives appear linearly in the equation.

This chapter describes routines that specifically solve: (1) initial value problems for
nth-order ordinary differential equations, (2) initial value problems for systems of
coupled first-order and second-order ordinary differential equations, and (3)
boundary value problems for second-order ordinary differential equations.

149

Note that these routines work only with ordinary differential equations, not partial
differential equations. All of the routines in this chapter can solve problems involv-
ing nonlinear equations.

Two one-step techniques that solve initial value problems for first-order ordinary
differential equations are implemented. The first technique employs the fourth-
order Runge-Kutta method, also known as the classical Runge-Kutta method. The
second employs the Runge-Kutta-Fehlberg method.

Each one-step technique approximates the value of the dependent variable at a
mesh point, which is a value of the independent variable, by using only the infor-
mation obtained from the preceding mesh point. The Runge-Kutta method em-
ploys equally spaced mesh points. On the other hand, the Runge-Kutta-Fehlberg
method varies the spacing of the mesh points in order to control the local trunca-
tion error. This produces a corresponding bound on the global error.

The Adams-Bashforth/Adams-Moulton predictor/corrector method is a multistep
method that uses information obtained at several preceding mesh points to approx-
imate the value of the dependent variable at the current mesh point. The proce-
dure employs the Adams-Bashforth four-step method to obtain a predictor. It is
subsequently used as input for the Adams-Moulton three-step method to obtain a
corrector. The corrector is the approximate value of the solution. Mesh points are
equally spaced, and the starting values for the process are determined by the one
step, fourth-order Runge-Kutta method.

The Runge-Kutta methods are the most reliable and should be used when you are
uncertain of the behavior of the differential equation (for example, if the solution to
the differential equation is not very smooth). If you want the output to be evenly
spaced (in x) or do not require a high degree of accuracy, use the classical Runge-
Kutta method. Otherwise, the Runge-Kutta-Fehlberg method is the best general
purpose routine to use, since it provides control over the accuracy of the solution.

The Adams-Bashforth/Adams-Moulton method achieves the same accuracy (for
equally spaced mesh points) as the fourth-order Runge-Kutta formula, but it is
significantly faster. Consequently, the Adams-Bashforth/Adams-Moulton method is
the most desirable method if you are reasonably certain that the differential equa-
tion is well-behaved.

Initial value problems for first-order ordinary differential equations are guaranteed
to have a unique solution on the interval a, b if the function

x' = f(t x)

150 Turbo Pascal Numerical Methods Toolbox

is continuous over the interval a, b, and if the function satisfies the Lipshitz condi-
tion. The Lipshitz condition states that there exists a positive number L such that

| fit, x) — ft,)| = Lix, — x|
foralla =t <b — 0 <x < ».

Initial value problems for second-order ordinary differential equations can be
solved via a fourth-order Runge-Kutta method (Runge_2.pas). This procedure
reduces a given differential equation to a system of two, first-order ordinary differ-
ential equations. The solution to this system is approximated at equally spaced
mesh points with the fourth-order Runge-Kutta method.

Initial value problems for second-order ordinary differential equations are guaran-
teed to have a unique solution on the interval g, b if the function

2 = fit, x, x')

is continuous over the interval a, b and if the function satisfies the Lipshitz condi-
tion. For a second-order differential equation, the Lipshitz condition states that
there exists a positive number L such that

|ft 2, 2') = ft,x, ') | = L(|x, — x| + [x', — «')])
foralla<st<b — o <x < ®, —0 <x' < o,

The Runge-Kutta method can be generalized for any order ordinary differential
equation. The file Runge-N.pas contains an algorithm that can solve an initial
value problem for an nth-order differential equation with the fourth-order Runge-
Kutta formulas. The Lipshitz condition can be generalized for any order ordinary
differential equation. (For details, consult the reference book listed in the section,
“Solution to an Initial Value Problem for a First-Order Ordinary Differential Equa-
tion Using the Runge-Kutta Method.)

Although Runge_N.pas can be used to solve initial value problems for first-order
and second-order ordinary differential equations, we recommend that Runge_l.pas
and Runge_2.pas be used instead. The notation used by these routines is somewhat
simpler than the general case. There is no significant difference in computation
time between the general program (Runge_N.pas) and the specific programs
(Runge-l.pas and Runge_2.pas).

Systems of coupled equations may also be solved with Runge-Kutta techniques. A
system of up to ten first-order ordinary differential equations can be solved with
the file Runge_Sl.pas. A system of up to ten second-order ordinary differential
equations can be solved with the file Runge_S2.pas. The algorithms in both these
files are based on the classical Runge-Kutta method with uniform spacing between
mesh points; hence, they do not allow for accuracy control (as in the Runge-Kutta-
Fehlberg method). (The Lipshitz condition for systems of equations is given in the
reference in the sections about Runge_S1.pas and Runge_S2.pas.)

Initial Value and Boundary Value Methods 151

Boundary value problems for second-order ordinary differential equations (where
the value of the dependent variable is specified at the two endpoints of interval)
can be solved using shooting techniques. Shooting techniques converge onto the
slope of the function at one boundary. This reduces the boundary value problem to
a series of initial value problems. The series concludes when the initial value prob-
lem satisfies the boundary condition at the other boundary.

If the second-order differential equation is linear (that is, linear in the dependent
variable(s), not necessarily linear in the independent variable), the linear-shooting
method (linshot2.pas) may be used. A linear combination of solutions to two initial
value problems yields the solution to the boundary value problem.

If the second-order differential equation is nonlinear, the routine Shoot2.pas must
be used. The secant method generates a sequence of solutions with different values
of the first derivative until the appropriate boundary condition, subject to a desired
accuracy, is satisfied. Although Shoot2.pas may be used to solve linear boundary
value problems, Linshot2.pas is more efficient for the linear case.

Boundary value problems for second-order differential equations are guaranteed to
have a unique solution on the interval g, b if the function

y' =flxyy)
and the two partial derivatives df/dy, 9f/dy’ are continuous on the interval [a, b).

Furthermore, 9f/dy must be positive and df/dy’ must be bounded for allx, y, y’' a <
x<b -0 <y< o, — o<y <o,

The convergence to the appropriate initial value of the first derivative is not
assured for nonlinear boundary value problems. A good guess of the derivative
boundary condition is often required and may involve considerable trial and error.

Interpolation techniques (see Chapter 3) may be used to approximate the solution
of values of the independent variable that are not mesh points.

152 Turbo Pascal Numerical Methods Toolbox

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (Runge_L.pas)

Description

This example uses the Runge-Kutta method (Burden and Faires 1985, 220-227) to
approximate the solution to a first-order ordinary differential equation with a speci-
fied initial condition.
Given a function of the form

dx/dt = TNTargetF(t, x)
which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = XlInitial
and spacing

h = (UpperLimit — LowerLimit)/NumlIntervals

the fourth-order Runge-Kutta method approximates x in the interval [LowerLimit,
UpperLimit].
The fourth-order Runge-Kutta formulas consist of the following:

F1 = h » TNTargetF(t, x[t])

F2 = h « TNTargetF(t + h/2, x[t] + F1/2)

F3 = h * TNTargetF(t + h/2, x[t] + F2/2)

F4 = h » TNTargetF(t + h, x[t] + F3)

%[t + 1] = «[t] + (F1 + 2% F2 + 2 x F3 + F4)/6

where ¢ ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h'.

You must supply LowerLimit, UpperLimit, XInitial, NumIntervals, and TNTargetF.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

Initial Value and Boundary Value Methods 153

User-Defined Function

TNTargetF(t, X : Extended) : Extended;
dx/dt = TNTargetF(, x)

The function TNTargetF(t, x) is a user-defined function that calculates the deriva-
tive dx/dt.

Input Parameters

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

XInitial : Extended; Value of X at LowerLimit

NumReturn : Integer; Number of (¢, x) pairs returned from the procedure

NumIntervals : Integer; Number of subintervals used in calculations
The preceding parameters must satisfy the following conditions:

1. NumReturn > 0

2. NumlIntervals = NumReturn

3. LowerLimit # UpperLimit

Output Parameters

TValues : TNvector; Values of ¢ between the limits
XValues : TNvector; Values of X approximated at the values in TValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialCondlstOrder(LowerLimit, UpperLimit, XInitial, NumReturn,
NumIntervals, TValues, XValues, Error, @TNTargetF);

The procedure InitialConditionlstOrder integrates the first-order differential
equation.

154 Turbo Pascal Numerical Methods Toolbox

Comments

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use all the values. The vectors TValues and XValues will contain
only NumReturn values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when NumlIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

Warning: A stiff differential equation occurs when there are at least two very dif-
ferent scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢~ '**. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. Ifa
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

Sample Program

The sample program Runge_l.pas provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems. Note that the address of
TNTargetF is passed into the InitialConditionlstOrder procedure.

Example
Problem. Solve the following initial value problem with the Runge-Kutta method:
' =xt+t—-1 lst=<2
x(1) =1

1. Code the equation into the program Runge_1.pas:
function TNTargetF(t, X : Extended) : Extended;

L ST }
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---}
{om e }
begin

TNTargetF := x/t + t - 1
end; { function TNTargetF }

Initial Value and Boundary Value Methods 155

2. Run Runge_l.pas:

Lower 1imit of interval? 1

Upper limit of interval? 2

X value at t = 1.00000e+0: 1

Number of values to return (1-40)? 10
Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower 1imit: 1.00000000000000e+0

Upper limit: 2.00000000000000e+0
Value of X at 1.0000: 1.00000000000000e+0
Number of intervals: 100

t X
1.00000000 1.00000000000000e+0
1.10000000 1.10515880220649e+0
1.20000000 1.22121413182916e+0
1.30000000 1.34892645616477et0
1.40000000 1.48893886869362e+0
1.50000000 1.64180233779216et0
1.60000000 1.80799419315265e+0
1.70000000 1.98793197313186e+0
1.80000000 2.18198400310574e+0
1.90000000 2.39047761619428e+0
2.00000000 2.61370563879444e+0

The exact solution is

X=¢—txIn()
X(2) = 2.6137056

156 Turbo Pascal Numerical Methods Toolbox

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation
Using the Runge-Kutta-Fehlberg Method (RKF_L.pas)

Description

This example uses the Runge-Kutta-Fehlberg method (Burden and Faires 1985,
230-235) to approximate a solution within a specified tolerance to a first-order
ordinary differential equation with a specified initial condition.

Where the Runge-Kutta method (see Runge_l.pas) uses a constant spacing h, the
Runge-Kutta-Fehlberg method varies the spacing so that the solution can be
approximated with accuracy.

Given a function of the form

dx/dt = TNTargetF(t, x)
which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = Xlnitial

both the fourth-order and fifth-order Runge-Kutta formulas are used to approxi-
mate x in the interval [LowerLimit, UpperLimit]. The number of subintervals is
continually increased until the fractional difference between the results of the
fourth-order and fifth-order formulas (which give a truncation error of h* and A°,
respectively) in each subinterval is less than the specified tolerance.

You must supply LowerLimit, UpperLimit, Tolerance, and TNTargetF.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Function

TNTargetF(t, X : Extended) : Extended;
dx/dt = TNTargetF(, x)

Initial Value and Boundary Value Methods 157

Input Parameters

LowerLimit : Extended; Lower limit of interval
UpperLimit : Extended; Upper limit of interval
XInitial : Extended; Value of X at LowerLimit

Tolerance : Extended; Maximum tolerable fractional difference between iterate
values

NumReturn : Integer; Number of (¢, x) values to be returned
The preceding parameters must satisfy the following conditions:
1. Tolerance > 0
2. NumReturn > 0
3. LowerLimit # UpperLimit

Output Parameters

Tvalues : TNvector; Values of ¢ at which X was approximated
XValues : TNvector; Values of X at the values in TValues
Error : Byte; 0: No errors

1: Tolerance < 0

2: NumReturn < 0

3: LowerLimit = UpperLimit

4: Tolerance not reached

Syntax of the Procedure Call

RungeKuttaFehlberg(LowerLimit, UpperLimit, XInitial, Tolerance,
NumReturn, TValues, XValues, Error, @TNTargetF);

The procedure RungeKuttaFehlberg integrates the first-order differential equation
TNTargetF.

158 Turbo Pascal Numerical Methods Toolbox

Comments

This procedure will compute more values in its calculations than it will return in
the vectors TValues and XValues. The vectors TValues and XValues will contain
only NumReturn values at subintervals between the lower and upper limits. More
values will be returned in regions of large functional variation than in regions of
small functional variation. Thus, you can ensure a highly accurate solution (by
making the Tolerance small) without generating an excessive amount of output (by
making NumReturn small).

The Runge-Kutta-Fehlberg method improves the accuracy in the solution by
reducing the spacing between successive values of t. However, if the Tolerance is
too small, the spacing required to reach Tolerance may be beyond the machine’s
limit of precision. Consequently, the routine will not converge to a solution that
meets the required Tolerance and Error 5 will be returned.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢ °*. The Runge-Kutta-Fehlberg method may
generate a numerical solution that bears no resemblance to the exact solution of the
differential equation. This unstable numerical solution usually grows exponentially
and may be oscillatory. However, if the exact solution of the differential equation
grows as the independent variable increases, the instability may be difficult to
detect. If a suspected instability has been encountered, reduce the interval size
(NumlIntervals).

Sample Program

The sample program RKF_l.pas provides I/O functions that demonstrate the
Runge-Kutta-Fehlberg method of solving initial value problems. Note that the
address of TNTargetF is passed into the Runge-Kutta-Fehlberg procedure.

Example

Problem. Use the Runge-Kutta-Fehlberg method to solve the following initial
value problem with a tolerance of 1E-6:

/t+t—1 1<st=s?2

()

Initial Value and Boundary Value Methods 159

1. Code the differential equation into the program RKF_l.pas:
function TNTargetF(t, X : Extended) : Extended;

e }
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---}
{ }
begin

TNTargetF := x/t + t - 1;
end; { function TNTargetF }

2. Run RKF_lpas:

Lower 1imit of interval? 1

Upper limit of interval? 2

X value at t = 1.00000e+0: 1

Number of values to return (1-40)? 10

Tolerance (> 0)? 1E-6

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

Lower limit: 1.00000000000000e+0

Upper limit: 2.00000000000000e+0

Value of X at 1.0000: 1.00000000000000e+0
Tolerance: 1.00000000000000e-6

t X
1.00000000 1.00000000000000e+0
1.10000000 1.10515881708653e+0
1.20000000 1.22121416069278e+0
1.30000000 1.34892649817459¢+0
1.40000000 1.48893892310351e+0
1.50000000 1.64180240395245e+0
1.60000000 1.80799427050390e+0
1.70000000 1.98793206119471e+0
1.80000000 2.18198410146987e+0
1.90000000 2.39047772450816e+0
2.00000000 2.61370575675625e+0

Now solve the same problem with a smaller tolerance, 1.000E-08:

Lower 1imit of interval? 1

Upper limit of interval? 2

X value at t = 1.00000e+0: 1

Number of values to return (1-40)? 10

Tolerance (> 0)? 1E-8

160 Turbo Pascal Numerical Methods Toolbox

Now a dialog box appears asking you whether you would like the output sent to the
Screen, directly to the Printer, or into a File. Make your selection and click OK.

Lower Limit: 1.00000000000000e+0

Upper Limit: 2.00000000000000e+0

Value of X at 1.0000 : 1.00000000000000e+0
Tolerance: 1.00000000000000e-8

T X
1.00000000 1.00000000000000e+0
1.12208941 1.12982837401487e+0
1.20585321 1.22836146842843e+0
1.29271260 1.33921121932749e+0
1.38286653 1.46405185232472e+0
1.47648998 1.60468229893107e+0
1.57374241 1.76304147999705e+0
1.67477301 1.94122165035498e+0
1.77972398 2.14148082489667e+0
1.88873280 2.36625482901586e+0
2.00193373 2.61816928271558e+0

The exact solution is
X=1t>-th()
X(2) = 2.6137056
X(2.00193373) = 2.6181693

In the first run, a solution could be approximated within tolerance with a spacing of
0.1 In the second run, the algorithm had to vary the spacing in order to approxi-
mate a solution within the tolerance.

Initial Value and Boundary Value Methods 161

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation

Using the Adams-Bashforth/Adams-Moulton
Predictor/Corrector Scheme (Adams_L.pas)

Description

This example approximates the solution to a first-order ordinary differential equa-
tion with a specified initial condition using the four-step Adams-Bashforth/Adams-
Moulton formulas (Burden and Faires 1985, 238-247). Runge-Kutta methods are
one-step methods, because each calculation uses information from only one pre-
vious point. The Adams’ formulas use information from four previous points, thus
the four-step method.

Given a function of the form
dx/dt = TNTargetF(t, x)
which satisfies the conditions given at the beginning of this chapter, and an initial
condition
x[LowerLimit] = XlInitial
and spacing
h = (UpperLimit - LowerLimit)/NumlIntervals

the fourth-order Runge-Kutta formula (see Rungel.pas) is used to find approxi-
mations at the first three points in the interval [LowerLimit, UpperLimit]. Then the
following explicit Adams-Bashforth formula:

x[i+1] = x[i] + h/24 * {55 * TNTargetF(#[i], [i])
— 59 % TNTargetF(ti — 1], x[i — 1])
+ 37 * TNTargetF(t[i — 2], x[i — 2])
— 9 x TNTargetF(t[i — 3], x[i — 3]) }
and the following implicit Adams-Moulton formula:
xli+1] = «fi] + h/24 » {9 » TNTargetF(t[i +1], x [i + 1])
+ 19 * TNTargetF(t[i], x[i])
~ 5 x TNTargetF(t[i — 1], x[i — 1])
+ TNTargetF (i — 2], x[i —2]) }
approximate (predict) and refine (correct) all other points in the interval.

162 Turbo Pascal Numerical Methods Toolbox

You must supply UpperLimit, LowerLimit, XInitial, NumIntervals, and TNTargetF.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Function

TNTargetF(t, X : Extended) : Extended;
dx/dt = TNTargetF(, x)

Input Parameters

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

XInitial : Extended; Value of X at LowerLimit

NumReturn : Integer; Number of (¢, x) values to be returned from the procedure
NumIntervals : Integer; Number of subintervals to be used in calculations

The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. Numlintervals = NumReturn

3. LowerLimit # UpperLimit

Output Parameters

Tvalues : TNvector; Values of ¢t between the limits
XValues : TNvector; Values of X determined at the values in TValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit

Initial Value and Boundary Value Methods 163

Syntax of the Procedure Call

Adams (LowerLimit, UpperLimit, XInitial, NumReturn,
NumIntervals,TValues, XValues, Error, @TNTargetF);

The procedure Adams integrates the first-order differential equation TNTargetF.

Comments

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use the values. The vectors TValues and XValues will contain
only NumReturn values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when NumlIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumlIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = = + e '°*. The Adams-Bashforth/Adams-Moulton
method may generate a numerical solution that bears no resemblance to the exact
solution of the differential equation. This unstable numerical solution usually
grows exponentially and may be oscillatory. However, if the exact solution of the
differential equation grows as the independent variable increases, the instability
may be difficult to detect. If a suspected instability has been encountered, reduce
the interval size (NumlIntervals).

Sample Program

The sample program Adams_l.pas provides I/O functions that demonstrate the
Adams-Bashforth/Adams-Moulton predictor/corrector method of solving initial
value problems. Note that the address of TNTurgetF gets passed into the Adams
procedure.

Example

Problem. Solve the following initial value problem with the Adams-Bashforth/
Adams-Moulton method:

X =xt+t-1 l<st=<2
(1) =1

164 Turbo Pascal Numerical Methods Toolbox

1. Code the differential equation into the program Adams_l.pas:
function TNTargetF(t, X : Extended) : Extended;

{ 1
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---}
e — }
begin

TNTargetF := x/t + t - 1;
end; { function TNTargetF }

2. Run Adams_l.pas:

Lower 1imit of interval? 1

Upper limit of interval? 2

X value at t = 1.00000e+0: 1

Number of values to return (1-40)? 10
Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower limit: 1.00000000000000e+0

Upper limit: 2.00000000000000e+0
Value of X at 1.0000: 1.00000000000000e+0
Number of intervals: 100

t X
1.00000000 1.00000000000000e+0
1.10000000 1.10515880229293e+0
1.20000000 1.22121413201736et0
1.30000000 1.34892645643801e+0
1.40000000 1.48893886904034et0
1.50000000 1.64180233820416e+0
1.60000000 1.80799419362396e+0
1.70000000 1.98793197365806e+0
1.80000000 2.18198400368348e+0
1.90000000 2.39047761682098e+0
2.00000000 2.61370563946811e+0

The exact solution is

X=+¢-th()
x(2) = 2.6137056

Initial Value and Boundary Value Methods 165

Solution to an Initial Value Problem for a Second-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (Runge_2.pas)

Description

This example approximates the solution to a second-order ordinary differential
equation with specified initial conditions using the two variable Runge-Kutta for-
mulas (Burden and Faires 1985, 261-269).

Given a function of the form
d’x/dt* = TNTargetF(t, x, x")

where x' indicates dx/dt (which satisfies the Lipshitz condition given at the begin-
ning of this chapter), the initial conditions

x[LowerLimit] = InitialValue
x'[LowerLimit] = InitialDeriv
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

rewrite the second-order differential equation as two, first-order differential equa-
tions:

x =y
y' = TNTargetF(t, x, y)

Then the fourth-order, two-variable Runge-Kutta method can be used to approxi-
mate simultaneously x and y (x and x’).

The fourth-order Runge-Kutta formulas for these equations consist of the follow-
ing:

Flx = h = y[t]

Fly = h * TNTargetF(t, [t], ylt])

F2x = h * (y[t] + Fly/2)

F2y = h * TNTargetF(t + h/2, x[t] + F1x/2, y[t] + Fly/2)

F3x = h * (y[t] + F2y/2)

F3y = h * TNTargetF(t + h/2, x[t] + F2x/2, y[t] + F2y/2)

F4x = h = (y[t] + F3y)

F4y = h » TNTargetF(t + h, x[t] + F3x, y[t] + F3y)

166 Turbo Pascal Numerical Methods Toolbox

x[t+1] = x[t] + (Flx + 2 x F2x + 2 * F3x + F4x)/6
ylt+1] = ylt] + (Fly + 2 * F2y + 2 * F3y + F4y)/6

where ¢ ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h'.

You must supply LowerLimit, UpperLimit, XInitial, NumlIntervals, and TNTargetF.

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Function

TNTargetF(t, X, XPrime : Extended) : Extended;
dx’/df = TNTargetF(t, x, dx/dt)

Input Parameters

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

Initialvalue : Extended; Value of X at LowerLimit

InitialDeriv : Extended; Derivative of X at LowerLimit

NumReturn : Integer; Number of (¢, x) values returned from the procedure
NumIntervals : Integer; Number of subintervals used in the calculations

The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. NumlIntervals = NumReturn

3. LowerLimit # UpperLimit

Initial Value and Boundary Value Methods 167

Output Parameters

Tvalues : TNvector; Values of ¢ between the limits

XValues : TNvector; Values of X determined at the values in TValues

XDerivValues : TNvector; Values of the first derivative of X determined at the values
in TValues

Error : Byte; 0: No errors

1: NumReturn < 1
2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialCond2ndOrder(LowerLimit, UpperLimit, Initialvalue, InitialDeriv,
NumReturn, NumIntervals, TValues, XValues,
XDerivValues, Error, @TNTargetF);

The procedure InitialCondition2ndOrder integrates the second-order differential
equation TNTargetF.

Comments

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use all these values. The vectors TValues, XValues, and XDeriv-
Values will contain only NumReturn values at roughly equally spaced t-values
between the lower and upper limits. (They will be equally spaced only when
NumlIntervals is a multiple of NumReturn.) Thus, you can ensure a highly accurate
solution (by making NumlIntervals large) without generating an excessive amount
of output (by making NumReturn small).

Warning: A differential equation occurs when there are at least two very different
scales of the independent variable on which the dependent variable(s) is changing;
for example, y = x + e~ '**. The Runge-Kutta method may generate a numerical
solution that bears no resemblance to the exact solution of the differential equation.
This unstable numerical solution usually grows exponentially and may be oscilla-
tory. However, if the exact solution of the differential equation grows as the inde-
pendent variable increases, the instability may be difficult to detect. If a suspected
instability has been encountered, reduce the interval size (NumlIntervals).

168 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Runge_2.pas provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems for second-order ordinary
differential equations. Note that the address of TNTargetF gets passed into the
InitialCondition2ndOrder procedure.

Example

Problem. A weight with mass m lies on a frictionless table and is connected to a-
spring with spring constant k:

<—Wall

F
(w) L

"~ O0000A0G0000e

Frictionless surface

If the weight is subject to a driving force F sin(w t) (» represents the frequency of
the driving force and ¢ is time), the equation of motion of the mass is as follows:

md’x/dt® + kx = F sin(o ?)
Given

m = 2kg
F=9N
= 32 N/m
® = 5 cycles/sec
20 =0m
dx(0)/dt = -2.5 m/sec

find the position and velocity of the block from ¢ = 0 second to ¢ = 2 seconds.

1. Rewrite the preceding second-order differential equation:
d’x/df® = Fimsin(o t) — k/m x

Initial Value and Boundary Value Methods 169

2. Code this second-order differential equation into the program Runge_2.pas:

function TNTargetF(t : Extended;

{

X : Extended;
Extended) : Extended;

XPrime :

{---

THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION

{
begin

TNTargetF := 9/2 * Sin (5 * t) - 32/2 * x;

end;

3. Run Runge_2.pas:

Lower 1imit of interval? 0

170

Upper limit of interval? 2

Enter X value at t = 0.00000e+0: 0

{ function TNTargetF }

Enter derivative of X at t = 0.00000e+0: -2.5

Number of values to return (1-40)? 10

Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

Number of intervals: 100

T
0.00000000
0.20000000
0.40000000
0.60000000
0.80000000
1.00000000
1.20000000
1.40000000
1.60000000
1.80000000
2.00000000

Lower Limit: 0.00000000000000e+0
Upper Limit: 2.00000000000000e+0
Value of X at 0.0000 : 0.00000000000000e+0
Value of X' at 0.0000 :-2.50000000000000e+0

Value of X
0.00000000000000e+0
-4.20735284275848e-1
-4.54648724216734e-1
-7.05605786993375e-2
3.78400378699554e-1
4.79461767300631e-1
1.39708469016312e-1
-3.28491796183335e-1
-4.94677974769031e-1
-2.06059519715177e-1
2.72008842396951e-1

Derivative of X
-2.50000000000000e+0
-1.35075642830665e+0

1.04036531118478e+0
2.47497991717220e+0
1.63411037473655e+0
-7.09151289407566e-1
-2.40042152228323e+0
-1.88475529635975e+0
3.63745224811835e-1
2.27781864414105e+0
2.09767516082022e+0

Turbo Pascal Numerical Methods Toolbox

The exact solution is

F sin(w t)

m (0’ — o)

F_ cos(m t)
dx/dt =

m(} — o)
where _ is the natural frequency of the system
o’ =km
The period of oscillation is given by
t = 2w = 1257 sec

The data is taken from a function of which the derivative could be computed
exactly. Following are the actual values:

t Values of X Derivative of X
0.0 0.000000000000E + 000 - 2.500000000000E + 000
0.2 —4.207354924039E — 001 —1.350755764670E + 000
0.4 —4.546487134128E — 001 1.040367091367E + 000
0.6 —7.056000402993E — 002 2.474981241501E + 000
0.8 3.784012476539E — 001 1.634109052159E + 000
1.0 4.794621373315E — 001 —7.091554636580E — 001
1.2 1.397077490994E — 001 —2.400425716625E + 000
14 —3.284932993593E ~ 001 —1.884755635858E + 000
1.6 —4.946791233116E — 001 3.637500845215E — 001
18 —2.060592426208E — 001 2.277825654711E + 000
2.0 2.720105554446E — 001 2.097678822691E + 000

Initial Value and Boundary Value Methods 171

Solution to an Initial Value Problem for an nth-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (Runge_N.pas)

Description

This example integrates an nth-order ordinary differential equation with specified
initial conditions using the generalized Runge-Kutta formulas (Burden and Faires
1985, 261-269).

Given a function of the form
d'x/dt" = TNTargetF(t, x, 2%, ..., " ")
where x indicates d’x/d’, which satisfies the general Lipshitz condition (the Lip-
shitz condition for first-order and second-order ordinary differential equations is
given at the beginning of this chapter, and initial condition
x[LowerLimit] = a,
x"[LowerLimit] = q,

x"‘"”[iower[imit] =a
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals
rewrite the nth-order differential equation as n first-order differential equations:

x(l) =

= yl
@ __ n
X = y 1 yz
@) __ o
- Yy 2 y3
- _) —
x = y n-2 yn—l

]
I

" = ¢ = TNTargetFt, x,y,y, ., y,_)

Then the fourth-order general Runge-Kutta method can be used to approximate
simultaneously the y’s (x and its derivatives).

172 Turbo Pascal Numerical Methods Toolbox

The general Runge-Kutta formulas for these equations consist of the following:

Flx = h#y|t]
Fly, = h syl
Fly,_, = h=*y, [
Fly, _, = h» TNTargetF(t, x[t], y [t], ..., y,_|[t])
F2x = h = (y[+ Fly/2)
F2y, = h * (y[t] + Fly,/2)

F2y , = hx(y,_[t] + Fly _/2)

F2y = hx TNTargetF(t + h/2, x[t] + Flx/2,y[f] + Fly /A2, ...y, _[t]
+ Fly”_l/2)

F3x = h (y,[t] + F2y,/2)
F3y, = h* (y,lt] + F2y,2)

F3y ,= h+(y, |[t] + F2y _ /2)

F3y _, = h+ TNTargetF(t + h/2, zlt] + F2x/2,y[t] + F2y /2, ..,y _\[f]
+ F2y..—1/2)

F4x = h* (y [t] + F3y)
Fdy = h = (y,[t] + F3y,)

F4y _,
F4y _,

= hx(y, [t] + F3y _)

h * TNTargetF(t + h, x[t] + F3x, y,[t] + F3y,, ... y,_,[t]
+ F3y,_)

x[t+1] = x[t] + (Flx + 2 % F2x + 2 * F3x + F4x)/6
ylt+1] = y[t] + (Fly, + 2 % F2y, + 2 + F3y, + F4y)/6
ylt+1] = y,[t] + (Fly, + 2+ F2y, + 2+ F3y, + F4y,)/6

y, ft+1] =y]l + (Fly _,+2*F2y ,+ 2% F3y _, + F4y _)6
y t+1] =y [0+ (Fly _, +2+F2y + 2+ F3y _, + Fdy)6

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h‘.

Initial Value and Boundary Value Methods 173

You must supply the order, limits, initial values, and TNTargetF. The order may be
arbitrarily large.

User-Defined Types

TNvector
TNmatrix

array[0..TNRowSize] of Extended;
array[0..TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the order of the differ-
ential equation (Order).

User-Defined Function

TNTargetF(V : TNvector) : Extended;
The elements of V are defined as

V10] corresponds to ¢

V[1] corresponds to x

V[2] corresponds to first derivative of x
V13] corresponds to second derivative of x

This is the differential equation:
d'x/dt" = TNTargetF(t, x, x°, ... ") where n is the order of the equation.
The procedure InitialCondition integrates this nth-order differential equation.

Input Parameters

Order : Integer; Order of the differential equation

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

InitialValues : TNvector; Values of X and its derivatives at LowerLimit

NumReturn : Integer; Number of (¢, %, 7, ..., x) values returned from the
procedure

NumIntervals : Integer; Number of subintervals used in the calculations

174 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. NumlIntervals = NumReturn
3. Order > 0
4. LowerLimit # UpperLimit

Output Parameters

SolutionValues : TNmatrix; Values of ¢, x and the derivatives of x between the limits

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3:Order < 1
4: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialCondition(Order, LowerLimit, UpperLimit, InitialValues,
NumReturn, NumIntervals, SolutionValues, Error, @TNTargetF);

Comments

The first row of SolutionValues will be the values of ¢ between the limits, the
second row of SolutionValues will be the values of x between the limits, the third
row of SolutionValues will be the values of ” between the limits, and so on.

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use all those values. The rows of SolutionValues will contain
only NumReturn values at roughly equally spaced ¢-values between the lower and
upper limits. (They will be equally spaced only when NumlIntervals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making NumIn-
tervals large) without generating an excessive amount of output (by making Num-
Return small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢~ '*". The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-

Initial Value and Boundary Value Methods 175

tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

Sample Program

The sample program Runge_N.pas provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems for high-order ordinary dif-
ferential equations. Note that the address of TNTargetF gets passed into the Initial-
Condition procedure.

Example

Problem. Find the solution to the following fourth-order ordinary differential equa-
tion fromt = Oto¢ = 1:

d'x(t)/dt' = —4 x(t) d’x(t)/dt’
x0) = 1
dx(0)/dt = -1
d’x(0)/df = 2
&Ex(0)/dt* = —6

176 Turbo Pascal Numerical Methods Toolbox

1. Code the equation into the program Runge_N.pas:
function TNTargetF(V : TNvector) : Extended;

{ +
{ THIS IS THE DIFFERENTIAL EQUATION }
{ +
E d" x (1) (n-1) %
{ ----- = TNTargetF(t, x, X , ... X) }
{ . +
{ dt +
{ +
{ where n is the order of the equation. }
{ }
{ The elements of V are defined: }
{ V[0] corresponds to t }
{ V[1] corresponds to X -}
{ V[2] corresponds to 1st derivative of X }
{ VI3] corresponds to 2nd derivative of X }
{ . +
{ +
{ +
{ }
begin
TNTargetF := -4 * V[1] * V[4];

end; { function TNTargetF }

2. Run Runge_N.pas:
Order of the equation (1-40)? 4

Lower Timit of interval? 0

Upper limit of interval? 1

Enter X value at t = 0.00000e+0: 1
Derivative 1 of X at t = 0.00000e+0: -1
Derivative 2 of X at t = 0.00000e+0: 2
Derivative 3 of X at t = 0.00000e+0: -6

Number of values to return (1-40)? 10
Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: 0.00000000000000e+0
Upper Limit: 1.00000000000000e+0
Number of intervals: 100

Initial conditions at lTower limit:
X[1]= 1.000000000060000e+0
X[2]=-1.00000000000000e+0
X[3]= 2.00000000000000e+0
X[4]=-6.00000000000000e+0

Initial Value and Boundary Value Methods 177

178

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

value X[1]
1.00000000000000e+0
9.09090909737517e-1
8.33333334189336e-1
7.69230770157394e-1
7.14285715280102e-1
6.66666667788519e-1
6.25000001337168e-1
5.88235295769619e-1
5.55555557625526e-1
5.26315792064849e-1
5.00000003213983e-1

Value X[2]
-1.00000000000000e+0
-8.26446283273189%¢-1
-6.94444446826215e-1
-5.91715977923112e-1
-5.10204082090465e-1
-4.44444443661452e-1
-3.90624997971428e-1
-3.46020758007956e-1
-3.08641970911504e-1
-2.77008304743045e-1
-2.49999993429933e-1

Value X[3]
2.00000000000000e +0
1.50262961438149e+0
1.15740742373768e+0
9.10332288053840e-1
7.28862989793594e-1
5.92592607536866e-1
4,88281263842229¢-1
4.07083261374879e-1
3.42935540127152e-1
2.91587706310718e-1
2.50000010753536e-1

Value X[4]
-6.00000000000000e+0
-4.09808076056272e+0
-2.89351855059016e+0
-2.10076680857258e+0
-1.56184925333600e+0
-1.18518520443061e40
-9.15527359078898e-1
-7.18382215400418e-1
-5.71559223064178e-1
-4,60401631119694e-1
-3.75000005740566e-1

Turbo Pascal Numerical Methods Toolbox

X[1] are the values of x(t).

X[2] are the values of dx(t)/dt.
X[3] are the values of d*x(t)/d¢’.
X[4) are the values of d°x(t)/df’.

The exact solution is

@)= @+

dx@®)/dt = —(@t+1)°

&x@)de = 2t+1)7°

Ex@)dt’ = —6(+1)""
x(1) = 0.5

dx(l)/dt = —0.25
dx(1)/dt* = 025
&x(1)/dt* = —0.375

Initial Value and Boundary Value Methods 179

Solution to an Initial Value Problem for a System of
Coupled First-Order Ordinary Differential Equations Using
the Runge-Kutta Method (Runge_S1.pas)

Description

This example integrates a system of coupled first-order ordinary differential equa-
tions with specified initial conditions using the generalized Runge-Kutta formulas
(Burden and Faires 1985, 261-269).

Given m first-order ordinary differential equations in the form

dx /dt = TNTargetF1(, x, x,, ..., x,)
dx,/dt = TNTargetF2(, x, x,, ..., x,)

dx /dt = TNTargetFm(t, x, x,, ..., X,)

which satisfies the Lipshitz condition (the Lipshitz condition for first-order and
second-order ordinary differential equations is given at the beginning of this chap-
ter; consult the previous book reference for details of the Lipshitz condition for
systems), and initial conditions

x,[LowerLimit] = a
x,[LowerLimit] = a,

x _[LowerLimit] = a
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

the fourth-order general Runge-Kutta method can be used to approximate simulta-
neously the x’s.

180 Turbo Pascal Numerical Methods Toolbox

The general Runge-Kutta formulas for these equations are as follows:

Flx, = h * TNTargetF1(t, x [t], x,[t], ..., x_[t])
Flx, = h * TNTargetF2(t, « [t], x[t], ..., x [t])

Flx, = h * TNTargetFm(t, x [t], x,[t], ..., x_[t])

F2x, = h * TNTargetF1(t + h/2, x[t] + Flx /2, x[t] + Flx,/2, ..., x [t]
+ Flx f2)

F2x, = h * TNTargetF2(t + h/2, x[f] + Flx /2, xJi] + Flz2, .., 1]
+ Flx_f2)

F2x = h * TNTargetFm(t + h/2, x[f] + Flx /2, x[t] + F 1x,/2, ..., x [t]

+ Flx_/2)

F3x, = h * TNTargetF1(t + h/2, x[t] + F2x /2, x,[t] + F2x,/2, .., x []
+ F2x_[2)

F3x, = h * TNTargetF2(t + h/2, x[t] + F2x /2, x,[t] + F2x,/2, .., x [t]
+ F2x f2)

F3x_ = h * TNTargetFm(t + h/2, x [t] + F2x /2, x,[{] + F2x,/2, .., x [t]
+ F2x_f2)

F4x, = h * TNTargetF1(t + h, x[t] + F3x,x,[t] + F3x,, .., x [t] + F3x)
F4x, = h * TNTargetF2(t + h, x,[t] + F3x, x[t] + F3x, .., x [t] + F3x)

F4x_ = h * TNTargetFm(t + h, x[t] + F3x, x[t] + F3x,, .., x [tf] + F3x)
x[t+1] = x[t] + (Flx, + 2+F2x, + 2+F3x, + F4x)/6
xt+1] = x[t] + (Flx, + 2+F2x, + 2+«F3x, + F4x)/6

x [t+1] = x [t] + (Flx_ + 2xF2x + 2%F3x_+ F4x)/6

Initial Value and Boundary Value Methods 181

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h’.

You must supply the number of differential equations, the limits, initial values, and
TNTargetF’s.

This procedure can solve a system of up to ten differential equations (see “Com-
ments” for information about how to increase this limit).

User-Defined Types

TNvector = array[0..TNRowSize] of Extended;
TNmatrix = array[0..TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the number of differ-
ential equations (NumEquations).

User-Defined Functions

function TNTargetF1(V : TNvector) : Extended;

function TNTargetF2(V : TNvector) : Extended;

function TNTargetF3(V : TNvector) : Extended;

function TNTargetF4(V : TNvector) : Extended;
function TNTargetF5(V : TNvector) : Extended;
function TNTargetF6(V : TNvector) : Extended;
function TNTargetF7(V : TNvector) : Extended;
function TNTargetF8(V : TNvector) : Extended;
function TNTargetF9(V : TNvector) : Extended;
function TNTargetF10(V : TNvector) : Extended;
These are the differential equations:
dxj/dt = TNTargetFjt, x, x,, ..., X,))

where j ranges from 1 to 10.

182 Turbo Pascal Numerical Methods Toolbox

The elements of the vector V are defined as follows:

Vo] =t
VI1] = x,
V2] = x,
V[le =1,

The procedure InitialConditionSystem solves this system of coupled differential
equations (a maximum of ten equations). All ten functions must be defined, even if
your system contains less than ten equations.

Input Parameters

NumEquations : Integer; Number of first-order differential equations

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

InitialValues : TNvector; Values of x, x,, ..., x_ at LowerLimit

NumReturn : Integer; Number of (¢, xl,‘xz, ..., %) values returned from
the procedure

NumIntervals : Integer; Number of subintervals used in the calculations

FuncVect : array[1..10] of ProcPtr; Pointers to the ten equations
The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. Numlintervals = NumReturn
3. NumkEgquations > 0
4. LowerLimit # UpperLimit

Initial Value and Boundary Value Methods 183

Output Parameters

SolutionValues : TNmatrix; Values of¢, x,, x,, ... x between the limits
Error : Byte; 0: No errors

1: NumReturn < 1

2: NumlIntervals < NumReturn

3: NumEquations < 1

4: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialConditionSystem(NumEquations, LowerLimit, UpperLimit,
InitialValues, NumReturn, NumIntervals,
SolutionValues, Error, FuncVect);

Comments

The first row of SolutionValues will be the values of ¢t between the limits, the
second row of SolutionValues will be the values of x, between the limits, the third
row of SolutionValues will be the values of x, between the limits, and so on.

All ten user-defined functions are called from the procedure. If your system has
less than ten equations, you must still define all ten functions or the program will
not compile. The superfluous functions should be defined as follows (TNTargetF10
is used as an example):

function TNTargetF10(V : TNvector) : Extended;

begin
TNTargetF10 : = 0.0;
end; { function TNTargetF10 }

If you need to solve a system with more than ten equations, then edit the include
file Runge_S1.pas. The following line should be added to the end of procedure
Step:

F[11] := Spacing * TNTargetF11(CurrentValues);

More statements (for F[12], and so on) may be added as necessary. All new func-
tions (for example, TNTargetF11) must be defined in your top-level program. Note:
Before making any changes to the include file, make sure you have a backup copy.

184 Turbo Pascal Numerical Methods Toolbox

This procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use these values. The rows of SolutionValues will contain only
NumReturn values at roughly equally spaced t-values between the lower and upper
limits. (They will be equally spaced only when NumlIntervals is a multiple of Num-
Return.) Thus, you can ensure a highly accurate solution (by making NumlIntervals
large) without generating an excessive amount of output (by making NumReturn

small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e~ °*. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-

vals).

Sample Program

The sample program Runge_S1l.pas provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems for systems of first-order
ordinary differential equations. Note that the addresses of the ten equations get
passed into the procedure InitialConditionSystem in the variable FuncVect.

Example

Problem. A weight with mass m lays on a frictionless table and is connected to a
spring with spring constant k:

<*—Wall

F(w)
k

B

Frictionless surface

Initial Value and Boundary Value Methods 185

If the mass is subject to a driving force F sin(w #) (represents the frequency of the
driving force and ¢ is time), the equation of motion of the mass is as follows:

md’x/dt’ + kx = F sin(w t)

Given
m = 2kg
F=9N
k = 32 N/m
w = 5 cycles/sec
x2(0) = 0m

dx(0)/dt = —2.5 m/sec
find the position and velocity of the block from ¢ = 0 second to ¢ = 2 seconds.

1. Write the second-order ordinary differential equations as a system of two cou-
pled first-order ordinary differential equations:

dx /dt = x,
dx/dt = (F/m) sin(w t) — (k/m) x,

2. Code these equations into the program Runge_S1.pas:
function TNTargetF1(V : TNvector) : Extended;

{ -}
E THIS IS THE FIRST DIFFERENTIAL EQUATION %
{ +
{ dx[1] }
{ ----- = TNTargetF1(t, x[1], x[2], ... x[m]) }
{ dt }
{ s
{ The vector V is defined: }
{ v[o] =t }
{ V[1] = X[1] }
{ v[2] = x[2] }
{ . '
{ }
{ . }
E V[m] = X[m] %
E where m is the number of coupled equations. }
+
begin
TNTargetF1 := V[2];
end; { function TNTargetF1 }

186 Turbo Pascal Numerical Methods Toolbox

function TNTargetF2(V : TNvector) : Extended;

% THIS IS THE SECOND DIFFERENTIAL EQUATION %
{ }
{ dx[2] b
{ ----- = TNTargetF2(t, x[1], x[2], ... x[m]) }
{ dt I3
{ }
{ The vector V is defined: }
{ v[o] = t +
{ V[1] = X[1] }
{ V2 - X2 }
{ . }
{ t
{ . }
fi V[m] = X[m] %
«E where m is the number of coupled equations. %
begin

TNTargetF2 := 9/2 * Sin(5 * V[0]) - 32/2 * V[1];
end; { function TNTargetF2 }
function TNTargetF3(V : TNvector) : Extended;
% THIS IS THE THIRD DIFFERENTIAL EQUATION %
{ Y
{ dx[3] }
{ ----- = TNTargetF3(t, x[1], x[2], ... x[m]) }
{ dt 1
{ }
{ The vector V is defined: }
{ v[o] = t }
{ vid = }
{ v[2] = x[2] }
{ . Y
{ . }
{ . 1
% V[m] = X[m] %
{ where m is the number of coupled equations. %
begin

TNTargetF3 : = 0.0;
end; { function TNTargetF3 }

Functions TNTarget4 to TNTargetlO should be defined like the function
TNTargetF3.

Initial Value and Boundary Value Methods 187

3. Run Runge_Sl.pas:
Number of first order equations: (1-40)7 2

Lower limit of interval? 0
Upper limit of interval? 2

Enter X[1] value at t
Enter X[2] value at t

0.00000et0: 0
0.00000e+0: -2.5

Number of values to return (1-40)7 10
Number of intervals (> = 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: 0.00000000000000e+0
Upper Limit: 2.00000000000000e+0
Number of intervals: 100

Initial conditions at lTower limit:
X[1]= 0.00000000000000e+0
X[2]=-2.50000000000000e+0

T value X[1]
0.00000000 0.00000000000000e+0
0.20000000 -4.20735284275848e-1
0.40000000 -4.54648724216734e-1
0.60000000 -7.05605786993375e-2
0.80000000 3.78400378699554e-1
1.00000000 4.79461767300631e-1
1.20000000 1.39708469016312e-1
1.40000000 -3.28491796183335e-1
1.60000000 -4.94677974769031e-1
1.80000000 -2.06059519715177e-1
2.00000000 2.72008842396951e-1

T value X[2]
0.00000000 -2.50000000000000e+0
0.20000000 -1.35075642830665e+0
0.40000000 1.04036531118478e+0
0.60000000 2.47497991717220e+0
0.80000000 1.63411037473655e+0
1.00000000 -7.09151289407566e-1
1.20000000 -2.40042152228323e+0
1.40000000 -1.88475529635975e+0
1.60000000 3.63745224811835e-1
1.80000000 2.27781864414105e+0
2.00000000 2.09767516082022e+0

X[1] are the values of x(£), the position. X[2] are the values of dx(t)/dt, the velocity.

188 Turbo Pascal Numerical Methods Toolbox

The exact solution is

F sin(o)

F, cos(w t)
dx/dt =

m (o — o)
where o_is the natural frequency of the system:
o’ = k/m
The period of oscillation is given by
T = 2 w/w = 1.257 sec

The data is taken from a function of which the derivative could be computed
exactly. The actual values are as follows:

t Values of X Derivative of X
0.0 0.000000000000E + 000 —2.500000000000E + 000
0.2 —4.207354924039E — 001 —1.350755764670E + 000
04 —4.546487134128E — 001 1.040367091367E + 000
0.6 —7.056000402993E — 002 2.474981241501E + 000
0.8 3.784012476539E — 001 1.634109052159E + 000
1.0 4.794621373315E — 001 —7.091554636580E — 001
1.2 1.397077490994E — 001 —2.400425716625E + 000
14 —3.284932993593E — 001 —1.884755635858E + 000
1.6 —4.946791233116E — 001 3.637500845215E — 001
1.8 - 2.060592426208E — 001 2.277825654711E + 000
2.0 2.720105554446E — 001 2.097678822691E + 000

Initial Value and Boundary Value Methods 189

Solution to an Initial Value Problem for a System of
Coupled Second-Order Ordinary Differential Equations
Using the Runge-Kutta Method (Runge_S2.pas)

Description

This example integrates a system of coupled second-order ordinary differential
equations with specified initial conditions using the generalized Runge-Kutta for-
mulas (Burden and Faires 1985, 261-269).
Given m coupled second-order ordinary differential equations of the form

d'x /df* = TNTargetF1(t, x, %', x, &', s X, %')

d&x/df = TNTargetF2(t, x, x', x,, %', . X, %')

d’x /df = TNTargetFm(t, x,x', %, ¥’y . X, x')

where x’, indicates dx /dt, which satisfies the Lipshitz condition (the Lipshitz con-
dition for first-order and second-order ordinary differential equations is given at
the beginning of this chapter; consult the previous book reference for details of the
Lipshitz condition for systems), and initial condition

x [LowerLimit] = a, x' [LowerLimit] = b,

x,[LowerLimit] = a, x' [LowerLimit] = b,

x [LowerLimit] = a_ x' [LowerLimit] = b_
and spacing

h = (UpperLimit — LowerLimit)/NumlIntervals

190 Turbo Pascal Numerical Methods Toolbox

rewrite each of the second-order differential equations as two, first-order differen-
tial equations:

dx /dt = y,
dy,/dt = TNTargetF1(t, x,, y,, %,, Y, --» %,, Y,)
dx,/dt = y,

dx,/dt = TNTargetF2(t, x,y, %, Y,, - X, Y,)

dx jdt =y _
dx /dt = TNTargetFm(t, x, y,, %,, Y,, > X, Y.)

Then the fourth-order general Runge-Kutta method can be used to approximate
the xs and the y,’s simultaneously.

The general Runge-Kutta formulas for these equations are as follows:
Flx, = hxy,
Fly, = h* TNTargetF1(t, x [t], y,[t], x,[t], y,[¢], ..., x [¢], y_[t])
Flx, = hxy,
Fly, = h * TNTargetF2(t, x [t], y,[t], x,[t], y,[e], ..., [t], y _[£])

Flx, =hxy,
Fly = h * TNTargetFm(t, x,[t], y [t], x,[t], y [¢], ..., x_[t], y_[¢])

F2x = h + (y, + Fly /2)

F2y = h * NTargetF1(t + h/2, x[t] + Flx /2,y [t] + Fly /2, x,[t]
+ Flx,/2, y,[t] + Fly,/2, .., x [t] + Flx /2,y [t] + Fly /2)

F2x, = h * (y, + Fly,/2)

F2y, = h * NTargetF2(t + h/2, x[t] + Flx /2,y [t] + Fly /2, x,[t]
+ Flx,/2,y,lt] + Fly/2, .., x [t] + Flx /2,y [t] + Fly /2)

Fox_=h+(y_ + Fly)
F2y_= h* TNTargetFm(t + h/2, x[t] + Flx /2, y [t] + Fly /2, x,[f]
+ Flx,/2,y,[t] + Fly,/2, .., x [tf] + Flx 2,y [t] + Fly /2)

Initial Value and Boundary Value Methods 191

F3x, = h*(y, + F2y /)

F3y, = h » TNTargetF1(t + h/2, x[t] + F2x /2,y [t] + F2y /2, x[1]
+ F2x,/2, y[t] + F2y,2, ... x [t] + F2x /2,y [t] + F2y [/2)

F3x, = h * (y, + F2y,/2)

F3y, = h » NTargetF2(t + h/2,x[t] + F2x /2,y [t] + F2y /2, x[t]
+ F2x,/2,y,[t] + F2y,2, .., x [t1] + F2x /2,y [t] + F2y /2)

F3x = hx(y, + F2y 2)
F3y_= h » TNTargetFm(t + h/2, x [t] + F2x /2, y [t] + F2y /2, x,[t]
+ F2x,/2,y[t] + F2y,2, .., x [t] + F2x /2,y [t] + F2y /2)

F4x = h(y, + F3y)

F4y, = h * TNTargetF1(t + h, x[t] + F3x,y,[t] + F3y, x[t] + F3x, y,[t]
+ F3y,, ..,z [t] + F3x ,y [t] + F3y,)

Fix, = h* (y, + F3y,

F4y, = h » TNTargetF2(t + h, x[t] + F3x,y[t] + F3y, x,[t] + F3x,, y,[t]
+ F3y,, ...x [t] + F3x_,y [t] + F3y)

F4xm =hx* (ym + F3ym)
F4y_ = h » TNTargetFm(t + h, x[t] + F3x,y [t] + F3y, x,[t] + F3x,, y,[t]
+ F3y,, ... x [t] + F3x ,y[tf] + F3y)

x[t+1] = x[t] + (Flx, + 2 » F2x, + 2 F3x + F4x)/6
ylt+1] = ylt] + (Fly, + 2 » F2y, + 2 » F3y, + F4y)/6
xft+1] = x[f] + (Flx, + 2 » F2x, + 2 » F3x, + F4x)/6
ylt+1] = yt] + (Fly, + 2 » F2y, + 2 » F3y, + F4y,)/6

x[t+1] = x [t] + (Flx_ + 2% F2x_ + 2% F3x_+ F4x)/6
ylt+1] =y [1] + (Fly + 2+ F2y + 2% F3y_ + Fdy)6

where ¢ ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h*.

192 Turbo Pascal Numerical Methods Toolbox

You must supply the number of equations, limits, initial values, and TNTargetF’s.

This procedure can solve a system of up to ten, second-order ordinary differential
equations (see “Comments” for information about how to increase this limit).

User-Defined Types

TNData = record
x : Extended;
xDeriv : Extended;
end; { TNData record }
TNvector = array[0..TNRowSize] of TNData;
TNmatrix = array[0..TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the number of second-
order differential equations (NumEquations).

User-Defined Functions

function TNTargetF1(V : TNvector) : Extended;

function TNTargetF2(V : TNvector) : Extended;
function TNTargetF3(V : TNvector) : Extended;
function TNTargetF4(V : TNvector) : Extended;

function TNTargetF5(V : TNvector) : Extended;
function TNTargetF6(V : TNvector) : Extended;
function TNTargetF7(V : TNvector) : Extended;
function TNTargetF8(V : TNvector) : Extended;
function TNTargetF9(V : TNvector) : Extended;
function TNTargetF10(V : TNvector) : Extended;
Here are the differential equations:
d’x /df* = TNTargetFjt, x, %', %, %' s T, %',

where j ranges from 1 to 10.

Initial Value and Boundary Value Methods 193

The elements of the vector V are defined as follows:

V0]x = ¢

Villx = x[1]
V[1].xDeriv = x'[1]

Vi2lx = x[2]

V[2].xDeriv = x'[2]

V101x = [10]
V[10].xDeriv = x'[10]

The procedure used in Runge_S2.pas solves this system of coupled differential
equations (a maximum of ten equations). All ten functions must be defined, even if
your system contains less than ten equations.

Input Parameters

NumEquations : Integer; Number of second-order differential equations

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

InitialValues : TNvector2; Values of xj’s and x',’s at LowerLimit

NumReturn : Integer; Number of ¢, x, ', x,, x',, ..., x_, x’) values
returned from the procedure

NumIntervals : Integer; Number of subintervals used in the calculations

FuncVect : array[1..10] of ProcPtr; Pointers to the ten equations
The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
2. Numlintervals = NumReturn
3. NumEquations > 0
4. LowerLimit = UpperLimit

194 Turbo Pascal Numerical Methods Toolbox

Output Parameters

SolutionValues : Thmatrix2; Values of ¢, x, and x, between the limits

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumBReturn
3: NumEquations < 1
4: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialConditionSystem2 (NumEquations, LowerLimit, UpperLimit,
InitialValues, NumReturn, NumIntervals,
SolutionValues, Error, FuncVect);

Comments

The first row of SolutionValues will be the values of ¢ between the limits, the
second row of SolutionValues will be the values of x, and x', between the limits, the
third row of SolutionValues will be the values of x, and x’, between the limits, and
SO on.

All ten user-defined functions are called from the procedure. If your system has
less than ten equations, you must still define all ten functions or the program will
not compile. The superfluous functions should be defined as follows (TNTargetF10
is used as an example):

function TNTargetF10(V : TNvector) : Extended;

begin
TNTargetF10 : = 0.0
end; { function TNTargetF10 }

If you need to solve a system with more than ten equations, then edit the source
code for the InitialValRoutines unit. The following lines should be added to the end
of procedure Step:

F[11].xDeriv := Spacing * CurrentValues[11].xDeriv;

F[11].x := Spacing * TNTargetF11(CurrentValues);
More statements (for F[12], and so on) may be added as necessary. All new func-
tions (for example, TNTargetF11) must be defined in your top-level program. Note:
Before making any changes to the include file, make sure you have a backup copy.

Initial Value and Boundary Value Methods 195

The procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use these values. The rows of SolutionValues will contain only
NumReturn values at roughly equally spaced ¢-values between the lower and upper
limits. (They will be equally spaced only when NumlIntervals is a multiple of Num-
Return.) Thus, you can ensure a highly accurate solution (by making NumIntervals
large) without generating an excessive amount of output (by making NumReturn
small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢~ '**. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-

vals).

Sample Program

The sample program Runge_S2.pas provides I/O functions that demonstrate the
Runge-Kutta method of solving initial value problems for systems of first-order
ordinary differential equations. Note that the addresses of the ten equations gets
passed to the InitialConditionSystem2 procedure in the variable FuncVect.

196 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Two weights of mass m each hang from a pendulum of length ! and are
connected by a spring with spring constant k:

/T//////

Ceiling

 OOB0T0000 <

The equations of motion of these two masses are as follows:
mdx/df = —mgx/l — k(x — y)
mdy/df = —mgyll + kix — y)

where g is the acceleration due to gravity, ¢ is time, and x and y are the displace-
ments of the two weights from their rest positions. Given

m = 2kg

k = 32 N/m
g = 9.8 m/sec’
1l =06125m
x0) =1m
y0) = —1m

dx(0)/dt = 0 m/sec
dy(0)/dt = 0 m/sec

find the positions and velocities of the two weights from ¢ = 0 second to t = 2
seconds.

1. Rewrite the equations of motion as shown here:

&x/dt® = —gx/l — kim(x — y)
dy/dt* = —gyll + kim(x — y)

Initial Value and Boundary Value Methods 197

2. Code these equations into the program Runge_S2.pas:
function TNTargetF1(V : TNvector) : Extended;

'% THIS IS THE FIRST DIFFERENTIAL EQUATION i
{ +
{ , }
{ d x[1] }
{ ------ = TNTargetF1(t, x[1], x'[1], x[2], x'[2], }
{ veey X[ml, x'[m] }
{ }
{ adt Y
{ b
{ The elements of the vector V are defined: }
{ viol.x = t }
{ V[1].x = X[1] }
{ VI[1].xDeriv = X'[1] }
{ v[2].x = X[2] +
{ V[2].xDeriv = X'[2] }
{ ' }
{ . +
{ V[ml.x = X[m] :
% V[m] .xDeriv = X'[m] i
E where m is the number of coupled equations. %

var
t : Extended;

begin

t := v[0].x;

TNTargetFl := -9.8 * V[1].x/0.6125 - 32/2 * (V[1].x - V[2].x);
end; { function TNTargetF1 }

198 ’ Turbo Pascal Numerical Methods Toolbox

function TNTargetF2(V : TNvector) : Extended;

THIS IS THE SECOND DIFFERENTIAL EQUATION

{ --=--- = TNTargetF2(t, x[1], x'[1], x[2], x'[2],
veey X[m], x'[m]

viol.x = t

vi1].x = X[1]
V[1] .xDeriv = X'[1]

v[2].x = x[2]
v[2] .xDeriv = X'[2]

{

{

{

{

{

{

{

E

{ The elements of the vector V are defined:
{

{

{

{

{

{

{

{ .

{ Vm].x = X[m]
{ V[m].xDeriv = X'[m]

{ where m is the number of coupled equations.

A ey ey ey M Mgl g g g e g Mg g g g gl M gl Mgl ¥ ey ey e e gl

var
t : Extended;

begin

t := v[0].x;

TNTargetF2 := -9.8 * V[2].x/0.6125 + 32/2 * (V[1].x - V[2].x);
end; { function TNTargetF2 }

Initial Value and Boundary Value Methods 199

function TNTargetF3(V : TNvector) : Extended;

% THIS IS THE THIRD DIFFERENTIAL EQUATION i
{ b
{, }
{ d x[3] 1
¥ g—— = TNTargetF3(t, x[1], x'[1], x[2], x'[2], }
{ 2 veey X[m], x'[m] }
{ dt ¥
g }
{ The elements of the vector V are defined: }
{ viol.x = t }
{ V[1].x = X[1] }
{ V[1].xDeriv = X'[1] }
{ v[2].x = X[2] }
{ V[2].xDeriv = X'[2] }
{ . }
{ . }
{ . }
{ V[m].x = X[m] }
E V[m] .xDeriv = X'[m] %
E where m is the number of coupled equations. {
var
t : Extended;
begin
TNTargetF3 : = 0.0;
end; { function TNTargetF3 }

Functions TNTargetF4 to TNTargetF10 should be defined like function TNTargetF3.
3. Run Runge_S2.pas:
Number of second order equations: (1-20)? 2
Lower limit of interval? 0
Upper limit of interval? 1
0.00000e+0: 0.01
0.00000e+0: 0.00

0.00000e+0: -0.01
0.00000et0: 0.00

Enter X[1] value at t
Enter X'[1] value at t
Enter X[2] value at t
Enter X'[2] value at t

Number of values to return (1-70)? 10

Number of intervals (>= 10)? 100

200 Turbo Pascal Numerical Methods Toolbox

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: 0.00000000000000e+0
Upper Limit: 1.00000000000000e+0
Number of intervals: 100
Initial conditions at lower limit:

X[1]= 1.00000000000000e-2

X'[1]= 0.00000000000000e+0

X[2]=-1.00000000000000e-2

X'[2]= 0.00000000000000e+0

T value X[1] Deriv X[1]
0.00000000 1.00000000000000e-2 0.00000000000000e+0
0.10000000 7.69447788485895e-3 -4.42511063153028e-2
0.20000000 1.84099813762452e-3 -6.80978317847279%¢-2
0.30000000 -4.86137387553900e-3 -6.05443464988731e-2
0.40000000 -9.32214486443693e-3 -2.50735962983904e-2
0.50000000 -9.48443369885918e-3 2.19586991271007e-2
0.60000000 -5.27340834792187e-3 5.88657408762406e-2
0.70000000 1.36920877108260e-3 6.86295294795967e-2
0.80000000 7.38047758874091e-3 4.67479393932010e-2
0.90000000 9.98857556718864e-3 3.31066873866278e-3
1.00000000 7.99089728515028e-3 -4.16531651968366e-2

T Value X[2] Deriv X[2]
0.00000000 -1.00000000000000e-2 0.00000000000000e+0
0.10000000 -7.69447788485895e-3 4.42511063153028e-2
0.20000000 -1.84099813762452e-3 6.80978317847279e-2
0.30000000 4.86137387553900e-3 6.05443464988731e-2
0.40000000 9.32214486443693e-3 2.50735962983904e-2
0.50000000 9.48443369885918e-3 -2.19586991271007e-2
0.60000000 §.27340834792187e-3 -5.88657408762406e-2
0.70000000 -1.36920877108260e-3 -6.86295294795967e-2
0.80000000 -7.38047758874091e-3 -4.67479393932010e-2
0.90000000 -9.98857556718864e-3 -3.31066873866278e-3
1.00000000 -7.99089728515028e-3 4,16531651968366e-2

The weights move in opposite directions; the system is in one of its normal modes.
The natural frequency w_ is given by the following:

o’ =g/l + 2k/m
o, = 6.928 cycles/sec

Thus the period of oscillation, ¢, is

t = 2m/o,
t = 0.9069 sec

Initial Value and Boundary Value Methods 201

Solution to Boundary Value Problem for a Second-Order
Ordinary Differential Equation Using the Shooting and
Runge-Kutta Methods (Shoot2.pas)

Description

This example uses the shooting method to approximate the solution to a second-
order ordinary differential equation with specified boundary conditions (Burden
and Faires 1985, 526-531).

Given a second-order differential equation (Burden and Faires 1985, 261-269) of
the form

d’y/dx* = TNTargetF(x, y,y')

where y' represents dy/dx, which satisfies the conditions given at the beginning of
this chapter, boundary conditions

y[LowerLimit] = Lowerlnitial
y[UpperLimit] = Upperlnitial

and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals

and an initial approximation (guess) to the slope at LowerLimit
y'[LowerLimit] = InitialSlope

the shooting method first solves the second-order initial value problem (using the
method described in Runge_2.pas). Based on a comparison of the solution at
UpperLimit with the boundary condition Upperlnitial, a new approximation to the
slope at LowerLimit is made. In this way, a new “shot” at the solution is made by
observing the result of the previous “shot” Subsequent iterations use information
from two previous shots and the secant method (see Chapter 2, “Roots of a Func-
tion Using the Secant Method”) to approximate the slope at LowerLimit. This pro-
cess is repeated until the fractional difference between successive approximations
to the boundary condition at UpperLimit is less than a specified tolerance.

You must supply the LowerLimit, UpperLimit, LowerInitial, UpperInitial, Initial-
Slope, NumIntervals, Tolerance, and TNTargetF.

202 Turbo Pascal Numerical Methods Toolbox

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Functions

TNTargetF(x, y, yPrime : Extended) : Extended;
d’y/dx’* = TNTargetF(x, y, dy/dx)

The procedure Shooting integrates this second-order differential equation.

Input Parameters

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

LowerInitial : Extended; Value of y at LowerLimit

UpperInitial : Extended; Value of y at UpperLimit

InitialSlope : Extended; Approximation to the slope at LowerLimit

NumReturn : Integer;

Tolerance : Extended; Indicates accuracy in solution

MaxIter : Integer; Maximum number of iterations

NumIntervals : Integer; Number of subintervals used in calculations

The preceding parameters must satisfy the following conditions:

1

ATl

NumReturn > 0
NumlIntervals = NumReturn
LowerLimit # UpperLimit
Tolerance > 0

MaxIter > 0

Initial Value and Boundary Value Methods

Number of (x, y, y') values returned from the procedure

203

Output Parameters

Iter : Integer; Number of iterations required to reach a solution

XValues : TNvector; Values of x between the limits

YValues : TNvector; Values of y determined at values in XValues

YDerivValues : TNvector; Values of the first derivative of y determined at values in
XValues

Error : Byte; 0: No errors

1: NumReturn < 1

2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit
4: Tolerance < 0

5: MaxIter < 0

6: Iter > MaxlIter

7: Convergence not possible

Syntax of the Procedure Call

Shooting(LowerLimit, UpperLimit, LowerInitial, UpperInitial, InitialSlope,
NumReturn, Tolerance, MaxIter, NumIntervals, Iter, XValues,
Yvalues, YDerivValues, Error, @TNTargetF);

Comments

The parameter Tolerance can be misleading. The shooting method converges to the
initial slope, which satisfies the upper boundary condition. Convergence is
achieved when the fractional difference between Upperlnitial and the upper
boundary approximation is less than Tolerance. This does not mean that every
value between the boundaries has been approximated with the same degree of
accuracy. To improve the accuracy of the entire approximation, increase the num-
ber of intervals. The example demonstrates the different effects of Tolerance and
NumlInterovals.

The shooting algorithm will compute NumlIntervals values in its calculations. How-
ever, you will rarely need to use all those values. The vectors XValues, YValues, and
YDerivValues will contain only NumReturn values at roughly equally spaced t-
values between the lower and upper limits. (They will be equally spaced only
when NumlIntervals is a multiple of NumReturn.) Thus, you can ensure a highly
accurate solution (by making NumlIntervals large) without generating an excessive
amount of output (by making NumReturn small).

204 Turbo Pascal Numerical Methods Toolbox

Boundary value problems are notoriously difficult to solve. The shooting method is
extremely sensitive to the approximation of the initial slope. If the shooting method
does not converge onto a solution (Error 7), run the program with a different value
of the initial slope InitialSlope. You may also alleviate some stability problems by
solving the equation backwards (from UpperLimit to LowerLimit). Considerable
trial and error may be involved before a solution is found.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢'**. The shooting method may generate a numeri-
cal solution that bears no resemblance to the exact solution of the differential equa-
tion. This unstable numerical solution usually grows exponentially and may be
oscillatory. However, if the exact solution of the differential equation grows as the
independent variable increases, the instability may be difficult to detect. If a sus-
pected instability has been encountered, reduce the interval size (NumlIntervals).

Sample Program

The sample program Shoot2.pas provides I/O functions that demonstrate the
shooting method of solving boundary value problems. Note that the address of
TNTargetF gets passed into the Shooting procedure.

Example

Problem. Use the nonlinear shooting method to solve the following boundary value
problem:

y" = 192 sqryly’) 0<szx=<1
y1) = 1
y(2) = 16

1. Code the differential equation into the program:

function TNTargetF(x : Extended;
y : Extended;
yPrime : Extended) : Extended;

}
{ THIS IS THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION }
}

begin
TNTargetF := 192 * Sqr(y/yPrime);
end; {function TNTargetF}

Initial Value and Boundary Value Methods 205

2. Run Shoot2.pas

Lower 1imit of interval? 0
Upper limit of interval? 1

0.00000e+0: 1
1.00000e+0: 16

Enter Y value at X
Enter Y value at X

Enter a guess for the slope at X = 0.00000e+0 : 15
Number of points returned (1-40)? 10

Number of intervals (>= 10)? 10

Tolerance (> 0)? 1E-12

Maximum number of jterations (> 0)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: 0.00000000000000e+0

Upper Limit: 1.00000000000000e+0

Value of Y at 0.0000 : 1.00000000000000e+0

Value of Y at 1.0000 : 1.60000000000000e+1

Initial slope at 0.0000 : 1.50000000000000e+1
NumIntervals: 10

Tolerance: 1.00000000000000e-12
Maximum number of iterations: 100

Number of iterations: 6

206

X
0.00000000000000e+0
1.00000000000000e-1
2.00000000000000e-1
3.00000000000000e-1
4.00000000000000e-1
5.00000000000000e-1
6.00000000000000e-1
7.00000000000000e-1
8.00000000000000e-1
9.00000000000000e-1
1.00000000000000e+0

Y Value
1.00000000000000e+0
1.46417721408153e+0
2.07370562259973e+0
2.85621262766442e+0
3.84170902091389e+0
5.06259931530967e+0
6.55368547624580e+0
8.35216836918581e+0
1.04976483580762e+1
1.30321255669365e+1
1.60000000000094e+1

.

Turbo Pascal Numerical Methods Toolbox

Derivative of Y
4.,00053795390884e+0
5.32386904044879e+0
6.91162114244397e+0
8.78752756627335e+0
1.09754927855527e+1
1.34994802016423e+1
1.63834750611955e+1
1.96514712240017e+1
2.33274661179548e+1
2.74354587043772e+1
3.19994486182108e+1

Now solve the same problem using a smaller spacing, but with a greater tolerance:

Lower 1imit of interval? 0
Upper Timit of interval? 1

Enter Y value at X = 0.00000e+0: 1
Enter Y value at X = 1.00000e+0: 16

Enter a guess for the slope at X = 0.00000e+0 : 15
Number of points returned (1-40)? 10

Number of intervals (>= 10)? 100

Tolerance (> 0)? 1E-6

Maximum number of iterations (> 0)? 100

Now a dialog box appears asking you whether you would like the output sent to the
Screen, directly to the Printer, or into a File. Make your selection and click OK.

Lower Limit: 0.00000000000000e+0

Upper Limit: 1.00000000000000e+0

Value of Y at 0.0000 : 1.00000000000000e+0

Value of Y at 1.0000 : 1.60000000000000e+1

Initial slope at 0.0000 : 1.50000000000000e+1
NumIntervals: 100

Tolerance: 1.00000000000000e-6

Maximum number of iterations: 100 i

Number of iterations: 5§

X Y Value Derivative of Y
0.00000000000000e+0 1.00000000000000e+0 4.00000062625639¢+0
1.00000000000000e-1 1.46410005120828e+0 5.32400035609946e+0
2.00000000000000e-1 2.07360008576235e+0 6.91200027103432e40
3.00000000000000e-1 2.85610011557157e+0 8.78800025750412¢+0
4.,00000000000000e-1 3.84160014547825e+0 1.09760002747783e+1
5.00000000000000e-1 5.06250017769403e+0 1.35000003070170e+1
6.00000000000000e-1 6.55360021337285e+0 1.63840003476283e+1
7.00000000000000e-1 8.35210025321452e+0 1.96520003937080e+1
8.00000000000000e-1 1.04976002977125e+1 2.33280004439140e+1
9.00000000000000e-1 1.30321003472617e+1 2.74360004976014e+1
1.00000006000000e+0 1.60000004022081e+1 3.20000005544507e+1

Initial Value and Boundary Value Methods

207

The exact solution is

y=(@+1
X Y Value Derivative of Y

0.0 1.0000000000 4.000000000
0.1 1.4641000000 5.324000000
0.2 2.0736000000 6.912000000
0.3 2.8561000000 8.788000000
04 3.8416000000 1.097600000
0.5 5.0625000000 1.350000000
0.6 6.5536000000 1.638400000
0.7 8.3521000000 1.965200000
0.8 1.0497600000 2.332800000
0.9 1.3032100000 2.743600000
1.0 1.6000000000 3.200000000

Although the tolerance is smaller (that is, more exacting) in the first case, the
accuracy of the approximation is greater in the second case. The spacing in the first
case is too large to permit a more accurate approximation.

208 Turbo Pascal Numerical Methods Toolbox

Solution to a Boundary Value Problem for a Second-Order
Ordinary Linear Differential Equation Using the Linear
Shooting and Runge-Kutta Methods (Linshot2.pas)

Description

This example uses the linear shooting method to approximate the solution to a
second-order linear ordinary differential equation with specified boundary condi-
tions (Burden and Faires 1985, 519-524).

Given a second-order differential equation (Burden and Faires 1985, 261-264) of
the form
d’y/dx* = TNTargetF(x, y,y')
which is linear in both y and y’, where y’ represents dy/dx, and which satisfies the
conditions given at the beginning of this chapter, boundary conditions
ylLowerLimit] = LowerlInitial
y[UpperLimit] = Upperlnitial
and spacing
h = (UpperLimit — LowerLimit)/NumlIntervals
the shooting method solves the two initial value problems (see Runge_2.pas):
y'[LowerLimit] = 0 y[LowerLimit] = Lowerlnitial
y'[LowerLimit] = 1 y[LowerLimit] = LowerInitial
(These values are particular to this implementation; any other nonidentical set of
initial conditions will suffice.) Since neither of these initial values of y’ is likely to
be correct, the solutions generated are not likely to satisfy the boundary condition
at UpperInitial. However, because of the linearity of the equation, an appropriate
linear combination of these two solutions will be a solution to the boundary value
problem. The linear shooting method requires that only two initial value problems
be solved, where the ordinary shooting method (Shoot2.pas) requires that an

unknown number of initial value problems be solved before the method converges
to a solution. -

You must supply the LowerLimit, UpperLimit, LowerlInitial, UpperInitial, NumIn-
tervals, and TNTargetF.

Initial Value and Boundary Value Methods 209

User-Defined Types

TNvector = array[l..TNArraySize] of Extended;

User-Defined Functions

TNTargetF(x, y, yPrime : Extended) : Extended;
d’y/dx’* = TNTargetF(x, y, dy/dx)
The procedure LinearShooting integrates this second-order differential equation.

Input Parameters

LowerLimit : Extended; Lower limit of interval

UpperLimit : Extended; Upper limit of interval

LowerInitial : Extended; Value of y at LowerLimit

UpperlInitial : Extended; Value of y at UpperLimit

NumIntervals : Integer; Number of subintervals used in calculations

NumReturn : Integer; Number of (x, y, y') triples returned from the procedure

The preceding parameters must satisfy the following conditions:
1. NumReturn > 0
9. Numlntervals = NumReturn
3. LowerLimit # UpperLimit

Output Parameters

XValues : TNvector; Values of x between the limits

YValues : TNvector; Values of y determined at values in XValues

YDerivValues : Thvector; Values of the first derivative of y determined at values in
XValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: NumlIntervals < NumReturn
3: LowerLimit = UpperLimit
4; Equation not linear

210 Turbo Pascal Numerical Methods Toolbox

Syntax of the Procedure Call

LinearShooting(LowerLimit, UpperLimit, LowerInitial, UpperInitial,
NumReturn, NumIntervals, XValues, YValues,
YDerivValues, Error, @TNTargetF);

Comments

If TNTargetF is a nonlinear function, the linear shooting algorithm will usually
compute a solution (albeit an incorrect one) without returning an error message.
Error 4 (nonlinear equation) will be returned in only a few cases where the
two initial value problems happen to yield solutions with the same y-value at
x = UpperLimit. '

The procedure will compute NumlIntervals values in its calculations; however, you
will rarely need to use these values. The vectors XValues, YValues, and YDeriv-
Values will contain only NumReturn values at roughly evenly spaced intervals
between the lower and upper limits. (They will be exactly evenly spaced only when
Numlntervals is a multiple of NumReturn.) Thus, you can ensure a highly accurate
solution (by making NumIntervals large) without generating an excessive amount
of output (by making NumReturn small).

Warning: A stiff differential equation occurs when. there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + ¢~ '*". The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (NumlInter-
vals).

Sample Program

The sample program Linshot2.pas provides 1/O functions that demonstrate the
linear shooting method of solving boundary value problems. Note that the address
of TNTargetF gets passed into the LinearShooting procedure.

Initial Value and Boundary Value Methods 211

Example

Problem. Use the linear shooting method to solve the following boundary value

problem:

y" =y'k — ylsqrlx) +
y(l) =1

y(10) = 76.974149

1

x<10

1. Code the differential equation into the program Linshot2.pas:

2.

212

function TNTargetF(x : E
y: E
yPrime

xtended;
xtended;

: Extended) : Extended;

THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION

¥
b
¥

begin
TNTargetF := yPrime/
end; { funct
Run Linshot2.pas:
Lower 1imit of interval?
Upper limit of interval?

1.0
1.0

Enter Y value at X
Enter Y value at X

Number of points returne

Number of intervals (>=

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

Lower limit:
Upper limit:
Value of Y at 1.0000:
Value of Y at 10.0000:
NumIntervals:

X
1.00000000000000e+0
2.00000000000000e+0
3.00000000000000e+0
4.00000000000000e+0
5.00000000000000e+0
6.00000000000000e+0
7.00000000000000e+0
8.00000000000000e+0
9.00000000000000e+0
1.00000000000000e+1

x - y/Sqr(x) + 1;
ion TNTargetF }

1
10

0000e+0: 1
0000et1: 76.974149

d (1-40)? 9
9)? 9

1.00000000000000e+0
1.00000000000000e+1
1.00000000000000e+0
7.69741490000000e+1
9.00000000000000e+0

Y Value
1.00000000000000e+0
2.61170356138588e+0
5.70207271413620e+0
1.04528257144925e+1
1.69509897305375e+1
2.5247868761213%e+1
3.53773649984557e+1
4.73635728977226e+1
6.12245068576119e+1
7.69741490000000e+1

Turbo Pascal Numerical Methods Toolbox

Derivative of Y

.00042467674563e+0
.30627678512124e+0
.90115296191831e+0
.61367861126495e+0
.39067355864438e+0
.20845513089500e+0
.10543869346579%¢+1
.29209245920937e+1
1.4803201147299%4e+1
1.66978931711222e+1

O N OTW N =

Now solve the same problem with a spacing of only 0.1:

Lower limit of interv

al?

1

Upper limit of interval? 10

Enter Y value at X =
Enter Y value at X =

1.00000e+0: 1
1.00000e+1: 76.974149

Number of points returned (1-40)? 9

Number of intervals (>= 9)? 90

Now a dialog box appears asking you whether you would like the output sent to the
Screen, directly to the Printer, or into a File. Make your selection and click OK.

Lower limit:
Upper Timit:
Value of Y at 1.0000:
Value of Y at 10.0000:
NumIntervals:

X
1.00000000000000e+0
2.00000000000000e+0
3.00000000000000e+0
4.00000000000000e+0
5.00000000000000e+0
6.00000000000000e+0
7.00000000000000e+0
8.00000000000000e+0
9.00000000000000e+0
1.00000000000000e+1

The exact solution is

y=x*xx — x*In(x)

y(l) =1
y(10) = 7.6974149

O N =

NO P WN == OTN =

.00000000000000e+0
.00000000000000e+1
.00000000000000e+0
.69741490000000e+1
.00000000000000e+1

Y Value
.00000000000000e+0
.61370547174514e+0
.70416298088411e+0
.04548224122436e+1
.69528103026793e+1
.52494430584438e+1
.53786288412165e+1
.73644675641047e+1
.12249787166508e+1
.69741490000000e+1

y'(1) =1

Derivative of Y
1.00000001942594e+0
2.30685275847028e+0
3.90138768358927e+0
5.61370562650429e+0
7.39056208402440e+0
9.20824053324639e+0
1.10540898579729%¢+1
1.29205584690303e+1
1.48027754364805e+1
1.66974149235206e+1

y'(10) = 16.6974149

The second approximation is more accurate.

Initial Value and Boundary Value Methods

213

C H A P T E R 9

Least-Squares Approximation

Given a set of data points, this chapter provides routines to model the data with a
function of a given type. The most common application of this concept is linear
regression.

With linear regression, there is some control variable, say X, and some observed
variable, say Y. X and Y are known or suspected to have some linear relationship,
say

Y=axX+Db

but the parameters a and b are unknown. Usually there is some experimental error
or some other nonlinear influence on Y, so that there are no values of @ and b for
which the preceding equation holds exactly. The method of regression provides a
formula for a and b in terms of the values of X and Y such that the error is mini-
mized. The error is the sum of squares of the errors (@ * X + b — Y) on each data
point. Except in certain unusual cases, there is exactly one value for @ and one
value for b that makes this sum of squares the least possible. This is called the
least-squares solution.

This concept of least squares also applies when more variables are present — then it
is often called multiple regression. Using this method, you can find the best model
for a given set of data that is linear in a given set of other data sets or functions.
Models that are nonlinear variables can also be treated as long as the unknown
parameters appear linearly.

215

Least-Squares Approximation (Least.pas)

Description

This model provides a method for finding a least-squares approximation (Cheney
and Kincaid 1985, 362-387) to a set of data points (x, y). The approximation must
be a linear combination of a set of basis vectors. The functional form of the approxi-
mation (polynomial, logarithmic, and so on) is therefore determined by the user, as
long as it is represented linearly. (How to represent logarithmic, and other func-
tions linearly is discussed later.)

Given a set of m data points (x, y), an m X n matrix (m = n), A, is constructed,
where n is the number of basis vectors in the approximation. The elements of the
matrix are

Ali.j] = V/(X)

where V(X) is the jth basis vector evaluated at the data value X[i]. A vector Y is
constructed that contains the y-values of the data points. The coefficients of the
basis vectors that form the least-squares approximation will be the n vector C, such
that the Euclidean norm of (AC — Y) (represented by || AC — Y ||,) is 2 minimum.
This requirement is converted to the requirement that

| BC - Z||, + || R,
be a minimum. Here B is an n X n matrix, Z is an n vector, and R is an (m — n)
vector. The equations BC = Z are the normal equations. The previous expression
will be minimized when C solves the equation BC = Z. Gaussian elimination with

partial pivoting (see Chapter 6, “Solving a System of Linear Equations with Gauss-
ian Elimination and Partial Pivoting”) is used to solve the normal equations.

The goodness of fit is indicated by the standard deviation:
$.D. = ((Y[il = FX[D)'/m — n))*

where F(X[i]) is the least-squares solution at the point X[i], (Y[i]] — F(X[i])) is the
residual, and (m — n) is the degree of freedom of the fit.

216 Turbo Pascal Numerical Methods Toolbox

User-Defined Types

TNColumnVector = array[l..TNColumnSize] of Extended;
TNRowVector = array[l..TNRowSize] of Extended;

(TNColumnSize will usually be much larger than TNRowSize.)

TNmatrix = array[l..TNColumnSize] of TNRowVector;
TNSquareMatrix = array[l..TNRowSize] of TNRowVector;
TNStringd0 = string[40];

FitType = (Expo, Fourier, Log, Poly, Power, User);

Input Parameters

NumPoints : Integer; Number of data points

XData : TNColumnVector; X coordinates of the data points

YData : TNColumnVector; Y coordinates of the data points

NumTerms : Integer; Number of terms in the least-squares approximation
Fit : FitType; Type of least-squares fit requested

The preceding parameters must satisfy the following conditions:

1. NumPoints > 1.

2. NumTerms < NumPoints.

3. NumpPoints < TNColumnSize.

4. NumTerms < TNRowSize.

5. The XData points cannot all be identical.
TNColumnSize and TNRowSize set an upper bound on the number of elements in
a vector. Neither of these identifiers are variable names and are never referenced

by the procedure. If conditions 3 or 4 are violated, the program will crash with an
Index Out of Range error (assuming the directive {$R +} is active).

Least-Squares Approximation 217

Output Parameters

Solution : TNRowVector; Coefficients of the basis vectors that form the least-
squares approximation

YFit : TNColumnVector; Values of the least-squares fit evaluated at the XData
values

Residual : TNColumnVector; Difference between YData and YFit values

StandardDeviation : Extended; Square root of the variance —indicates the goodness of
fit

Error : Byte; 0: No error
1: NumPoints < 2
2: NumTerms < 1
3: NumTerms > NumPoints
4: Least-squares solution does not exist (see “Com-
ments”)

Syntax of the Procedure Call

LeastSquares (NumPoints, XData, YData, NumTerms, Solution,
YFit, Residual, StandardDeviation, Variance, Error, Fit);

Comments

The least-squares routine is defined in LeastSquares.unit. The choice of parameter
passed in for FitType will depend upon the functional form (basis vectors) to which
you fit the data. Following are the five choices for the FitType parameter:

Poly

This method uses Chebyshev polynomials to fit a polynomial to the data points.
NumTerms must be one greater than the degree of the polynomial (for example, to
fit a fourth-degree polynomial, input NumTerms = 5). To get a straight-line least-
squares fit, use this module and fit a curve with only two coefficients. The elements
of the Solution vector will be as follows:

Solution[j] = a, 1 < j < NumTerms

where a, is the coefficient of x'

218 Turbo Pascal Numerical Methods Toolbox

Fourier

This method will fit a finite Fourier series to the data points. The number of terms
in the approximation will be NumTerms. The elements of the Solution vector will
be as follows:

Solution[j] = F,_, 1 < j < NumTerms

where F,__ is the (j—1)th term in the Fourier series. Following are the first few
terms in the Fourier series:

Flol =1

F[1] = cos(x)
F[2] = sin(x)
F[3] = cos(2x)
F[4] = sin(2x)

F[5] = cos(3x)
F[6] = sin(3x)

Power

This method will fit the function

y=ax
where a and b are real numbers to the data points. A linear equation is obtained by
taking the log of both sides, like so:

Iny) = In(@) + b * In(x)

and expanding on basis vectors 1 and In(x). The x-values of the data points must all
be positive, and the y-values of the data points must all have the same sign. The
number of coefficients in the approximation will be two regardless of the value of
NumTerms (unless NumTerms > NumbPoints, in which case Error 3 will occur).
The elements of the Solution vector will be as follows:

Solution[1] = a
Solution[2] = b

Expo

This method will fit the function
y = ae”

where a and b are real numbers to the data points. A linear equation is obtained by
taking the log of both sides, like so:

In@y) = In(@) + bx

Least-Squares Approximation 219

and expanding on basis vectors 1 and x. The y-values of the data points must all
have the same sign. The number of coefficients in the approximation will be two
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which
case Error 3 will occur). The elements of the Solution vector will be as follows:

Solution[l] = a
Solution[2] = b

Log

This method will fit the function
y = aln(bx)

where a and b are real numbers to the data points. A linear equation is obtained by
rewriting the equation:

y = aln(d) + aln(x)
and expanding on basis vectors 1 and In(x). The x-values of the data points must all
have the same sign. The number of coefficients in the approximation will be two
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which
case Error 3 will occur). The elements of the Solution vector will be as follows:

Solution[1] = a
Solution[2] = b
User

This method is included if you need a least-squares approximation on a set of basis
vectors different from the ones listed earlier. This method allows you to create your
own set of basis vectors. The source code contains detailed instructions of how to
flesh out the skeleton for the user-defined method.

A least-squares solution may not exist for some input data and choice of basis
vectors (Error 4). The reasons for this will depend on the module you are using. For
example, it is impossible to fit an exponential function to data with y-values of
differing signs; Error 4 will occur if you try. The same data could be fit with a
polynomial and no error would result. Error 4 will also occur if all the x-values of
the data are identical.

220 Turbo Pascal Numerical Methods Toolbox

Sample Program

The demonstration program Least.pas contains I/O routines that allow you to run
the least-squares approximation routine.

To change the basis vectors of the approximation, simply pass in a different para-
meter for FitType to select the method used.

Input Files

Data may be entered from a text file. The x- and y-coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr{x)

could be entered in a text file as

11
24
39
416
525

Example

Problem. Given the following data (contained in the file Sample9A.dat), fit a
fourth-degree polynomial and a logarithmic function to the data:

0.00000000000000e+0
0.10000000000000e+0
0.20000000000000e+0
0.30000000000000e +0
0.40000000000000e+0
0.02000000000000e+0
0.04000000000000e +0
0.06000000000000e+0
0.08000000000000e +0
0.12000000000000e+0
0.14000000000000e+0
0.16000000000000e +0
0.18000000000000e+0
0.22000000000000e+0
0.24000000000000e+0
0.26000000000000e+0
0.28000000000000e+0
0.32000000000000e+0
0.34000000000000e +0
0.36000000000000e+0
0.38000000000000e+0

(The function is the left-hand side of a Gaussian distribution curve with mean
0.5 and standard deviation = 0.1.) Note that the points do not have to be in any

particular order.

1.33830225764886e-3
4.43184841193803e-2
5.39909665131879e-1
2.41970724519143et0
3.98942280401433e+0
2.91946925791461e-3
6.11901930113775e-3
1.23221916847303e-2
2.38408820146486e-2
7.91545158298001e-2
1.35829692336855e-1
2.23945302948430e-1
3.54745928462313e-1
7.89501583008939%e-1
1.10920834679455e+0
1.49727465635745e+0
1.94186054983213e+0
2.89691552761483e+0
3.33224602891800e+0
3.68270140303323e+0
3.91042693975456€+0

Least-Squares Approximation

First fit the polynomial; set the FitType parameter to Poly in the call to procedure
LeastSquares.

Run Least.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample9A.dat
Number of terms in the least squares fit (<= 21)? 5

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The Data Points:

X Y
0.200 0.0443185
0.300 0.5399097
0.400 2.4197072
0.500 3.9894228
0.100 0.0013383
0.120 0.0029195
0.140 0.0061190
0.160 0.0123222
0.180 0.0238409
0.220 0.0791545
0.240 0.1358297
0.260 0.2239453
0.280 0.3547459
0.320 0.7895016
0.340 1.1092083
0.360 1.4972747
0.380 1.9418605
0.420 - 2.8969155
0.440 3.3322460
0.460 3.6827014
0.480 3.9104269
* ——— ———¥
Polynomial Least Squares Fit
* *

Coefficients in least squares approximation:
Coefficient 0: -3.1905595418e+0
Coefficient 1: 6.4048009603e+1
Coefficient 2: -4.3900537685e+2
Coefficient 3: 1.2058567475e+3
Coefficient 4: -1.0523352671e+3

222 Turbo Pascal Numerical Methods Toolbox

X
0.2000
0.3000
0.4000
0.5000
0.1000
0.1200
0.1400
0.1600
0.1800
0.2200
0.2400
0.2600
0.2800
0.3200
0.3400
0.3600
0.3800
0.4200
0.4400
0.4600
0.4800

Standard Deviation :
The fourth-degree polynomial that best fits this data is as follows:

y = —1052.34 x* + 1205.86 2° —439.005 2* + 64.0480 x — 3.19056
Note that a fourth-degree polynomial requires five terms in the fit.

Least Squares Fit
2.1944857693e-2
5.4757594259%e-1
2.4228330082e+0
4.0432402964e+40
-7.5189129206e-2
3.9032402642e-2
7.6262215354e-2
6.8115144544e-2
4.2165058402e-2
2.6946475755e-2
7.2620878501e-2
1.7037806442¢-1
3.2758706457e-1
8.2963179469%e-1
1.1690007497e+0
1.5568879689¢+0
1.9804576462e+0
2.8630963140e+0
3.2762888552e+0
3.6334109560e+0
3.9014219733e+0

5.381534e-2

Residual
-2.2373626426e-2
7.6662774599e-3
3.1257630445e-3
5.3817492388e-2
-7.6527431463e-2
3.6112933385e-2
7.0143196053e-2
5.5792952859%¢-2
1.8324176388e-2
-5.2208040075e-2
-6.3208813836e-2
-5.3567238529e-2
-2.7158863892e-2
4.0130211685e-2
5.9792402868e-2
5.9613312500e-2
3.8597096380e-2
-3.3819213603e-2
-5.5957173721e-2
-4.9290447009e-2
-9.0049664558e-3

Now fit the logarithmic function; set the FitType parameter to Log in the call to
procedure LeastSquares.

Run Least.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample9A.dat

Number of terms in the least squares fit (<= 21)? 2

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click

OK.

Least-Squares Approximation

223

The Data Points:

*

*

X
0.200
0.300
0.400
0.500
0.100
0.120
0.140
0.160
0.180
0.220
0.240
0.260
0.280
0.320
0.340
0.360
0.380
0.420
0.440
0.460
0.480

Y
0.0443185
0.5399097
2.4197072
3.9894228
0.0013383
0.0029195
0.0061190
0.0123222
0.0238409
0.0791545
0.1358297
0.2239453
0.3547459
0.7895016
1.1092083
1.4972747
1.9418605
2.8969155
3.3322460
3.6827014
3.9104269

Logarithmic Least Squares Fit

*

*

Coefficients in least squares approximation:

Standard Deviation :

224

Coefficient 0:
Coefficient 1:

X
0.2000
0.3000
0.4000
0.5000
0.1000
0.1200
0.1400
0.1600
0.1800
0.2200
0.2400
0.2600
0.2800
0.3200
0.3400
0.3600
0.3800
0.4200
0.4400
0.4600
0.4800

Least Squares Fit
4.8470072527e-1
1.5382650082e+0
2.2857807631e+0
2.8655990284e+0
-1.3163793126e+0
-8.4263329495e-1
-4.4208674432e-1
-9.5117540049e-2
2.1093098798e-1
7.3235557703e-1
9.5844674288e-1
1.1664304540e+0
1.3589932935e+0
1.7059624978e+0
1.8634900752e+0
2.0120110258e+0
2.1524997931e+0
2.4125575764e+0
2.5334356149e+0
2.6489394854e+0
2.7595267807e+0

2.5984092388e+0
6.0253489684e+0

8.320742e-1

Residual
4,4038224115e-1
9.9835534307e-1

-1.3392648209e-1
-1.1238237756e+0
-1.3177176148e+0
-8.4555276421e-1
-4,4820576362e-1
-1.0743973173e-1
1.8709010596e-1
6.5320106120e-1
8.2261705055e-1
9.4248515105e-1
1.0042473651e+0
9.1646091478e-1
7.5428172842e-1
5.1473636946e-1
2.1063924325¢e-1
-4.8435795117e-1
-7.9881041405e-1
-1.0337619176e+0
-1.1509001590e+0

Turbo Pascal Numerical Methods Toolbox

The logarithmic function that best fits this data is as follows:
y = 2.59841 * In(6.02535x)

The standard deviation of the polynomial fit is much smaller than that of the loga-
rithmic fit; a fourth-degree polynomial fits this data much better than a logarithmic
function.

Least-Squares Approximation 225

C H A P T E R10

Fast Fourier Transform Routines

Fourier transforms are used to analyze periodic phenomena such as waves. A con-
tinuous function f that has period 2w (= 2 * 3.14159265...); that is, satisfies

flc + 2m) = fx)
for all x, can be decomposed into sines and cosines:

f&x) = a[0] + a[1] * cos(x) + b[1] * sin(x) + a[2] * cos(2x)
+ b[2] # sin(2x) + ...

This is an infinite series where the coefficients get closer and closer to zero. The
routines in this chapter can be used to calculate the coefficients.

The Fast Fourier Transform (FFT) is a particular algorithm for computing Fourier
transforms efficiently.

This chapter includes two kinds of units. One group consists of four variations of
the FFT method of calculating discrete Fourier transforms, each optimized for
certain conditions. All are variations of the original Cooley-Tukey method. The
second group consists of six applications: ComplexFFT, RealFFT, ComplexCon-
volution, RealConvolution, ComplexCrossCorrelation, and RealCrossCorrelation.
Each can be used with any of the FFT methods. You can select the FFT method
most appropriate to the circumstances and combine it with the appropriate appli-
cation or integrate it into another program (Brigham 1974; Nussbaumer 1982).

In each FFT unit the procedure calls have exactly the same form (although there
are different restrictions on the data) so that any one FFT unit can be combined

227

with any of the application units without rewriting code. Each of these algorithms
will compute either a forward or an inverse transform.

Each unit contains two procedures needed to prepare for the FFT calculation:
procedure TestInput and procedure MakeSinCosTable. TestInput examines the
input data to ensure that it satisfies certain conditions (for example, that there is
more than 1 data point). MakeSinCosTable precalculates a table of the nth roots of
unity for look up in the FFT calculation.

When Radix2 is passed in for the RadixType parameter, the Cooley-Tukey powers-
of-two (radix2 or base2) Fast Fourier Transform is used. Complex multiplications
are done with four real multiplications and two real additions. By using this stan-
dard form of complex multiplication, storage overhead and assignment statements
are reduced. This algorithm is appropriate when the time for a real multiplication
is close to the time for a real addition.

When Radix4 is passed in for the RadixType parameter, the powers-of-four (radix4
or base4) Fast Fourier Transform is used. The powers-of-four method is the same
as the Cooley-Tukey algorithm except at each stage of reduction a given transform
is converted into four transforms each with one fourth the data points of its prede-
cessor (Nussbaumer 1982). When this algorithm is optimized, there are about 25
percent fewer multiplications and slightly fewer additions than in a radix-2 algo-
rithm. The algorithm has the disadvantage of only being applicable to data sets
where the number of points is a power of four up to a maximum of 4,096 points. A
reduction in execution time of about 20 percent is accomplished when Radix4 is
used over its Radix2 counterpart.

The Application Programs

Fast Fourier Transforms are particularly useful for analyzing periodic signals. Such
a signal is represented by a function f satisfying

fle + 1) = £

where ¢ is time and T is the period. Under mild hypotheses, f can be expanded into
a Fourier series such as the following:

f@) = N"** Z F(n) exp 2 i n t/T)

n=-—ow

where i is the square root of — 1. The term exp (2 i n ¢/T) is a sinusoid of period
T/n and frequency n/T, and its coefficient F(n) gives the strength of that frequency
component in the original signal.

228 Turbo Pascal Numerical Methods Toolbox

To analyze a signal on a digital computer, the signal must be discretized. Let x(n)
be computed by discretizing the function f at N equidistant points in one period.
Thus, let

x(n) = f(nT/N) n=01.N-1
Once we restrict attention to N points, it only makes sense to represent the signal
in terms of N of the functions
exp (2 in t/T)
since the rest are redundant. For example:
exp @wi(—1)t/T) = exp @wi (N—1)¢/T)
fort = nT/N,n = 0,1, ... N — 1. The Fourier series for the signal is then a finite
sum, and has the form
N-1
x(n) = N'mz X(k) exp (2w i k n/N)
k=0
(The factor of N™'* is a matter of convention. Some books do not include it in this
formula, resulting in a factor of 1/N in the formula for X that follows.)
The formula for the coefficients X(k) is as follows:
N-1
Xk) = N'# 2 x(n) exp (—i 2w n k/N)
n=10
This formula for X makes sense for any integer k. X is then periodic, satisfying
Xk + N) = X(k)

for all k. In formulas and programs, it is more convenient to let k run from 0 to
N — 1, but for analyzing signals it makes more sense to think of k as running from
(—N/2) to (N/2 — 1). This is because values of k near zero represent the low
frequency information, and values of k near or greater than N/2 represent frequen-
cies that are so high that the discretization is too coarse to realize them accurately
anyway. Therefore, if k is between N/2 and N, X(k) should be thought of as the
coefficient of

exp (2w i (k—N) t/T)
rather than

exp 2w ik t/T)

In other words, negative frequencies are represented on the right half of the trans-
form.

Fast Fourier Transform Routines 229

ComplexFFT simply takes the complex Fast Fourier Transform of a set of complex
data points. The complex Fourier transform is defined as

N=1
X = N® Zx” exp (2w in fIN) f=0N-1
n=0

where i is the square root of — 1. The inverse Fourier transform (which may also be
calculated with ComplexFFT) is defined as

1
i=N")_(fexp (2w ifn/N) n=0N-1
f=0

where the bar stands for complex conjugation.

RealFFT provides a procedure that is optimized for a discrete Fourier transform
with all real data. It proceeds by mapping the N real data points onto N/2 complex
points, applying one of the FFT routines, then reconstructing the N points of the
desired transform. This reduces the computation time by about 25 percent com-
pared to applying the complex FFT routine to the N real data points. RealFFT can
be used with any of the given FFT methods, but note that if a radix-4 method is
used, N/2 must be a power of four; so N must be of the form 2 * 4*.

ComplexConvolution provides a procedure for calculating convolutions of two com-
plex vectors (Brigham 1974; Nussbaumer 1982). The discrete convolution of two
complex functions x and h is defined by

N-1

ym=2xh m=01.N-1

n m-n

n=20

where subscripts are taken modulo N (circular convolution). The basic theorem that
allows us to calculate these effectively using FFTs is shown in the following:

Y =X H, m=01.N-1

where capital letters indicate the transforms of the functions represented by lower-
case letters. Thus the procedure for convolution works like this:

1. Transform both given data sets using FFTs.
2. Multiply the resulting transforms point by point.
3. Find the inverse transform of this product using FFTs.

230 Turbo Pascal Numerical Methods Toolbox

RealConvolution provides a procedure for calculating convolutions of two real vec-
tors (Brigham 1984; Nussbaumer 1982). This procedure is exactly the same as the
previous procedure (ComplexConvolution) for complex convolution except that only
one forward Fourier transform need be performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal plus iHReal, where i is the square root of — 1.

2. Transform this complex vector.

3. Extract the transforms of the two real functions from the transform of the
complex function (using the symmetry X. = X_, where the bar stands for
complex conjugation). A

4. Multiply the resulting transforms point by point.

5. Find the inverse transform of this product using FFTs. RealConvolution is
about 25 percent faster than its complex counterpart for the same set of real
data.

ComplexCrossCorrelation provides a procedure for calculating the crosscorrelation
of two discrete complex functions or the autocorrelation of one discrete complex
function (Brigham 1974). If x and h are the given discrete functions, then their cor-
relation is defined as
N-1
cm=2xnhn+m m=01..N-1
n=0
where subscripts are taken modulo N (circular convolution). This can be computed
using FFTs with a method analogous to that used in ComplexConvolution:
C =XH,_ =0,1,..N -1

Commonly x and h are real functions; in which case the preceding formula reduces
toC_= X_H_, where the bar stands for complex conjugation. Thus the procedure
for correlation works like this:

1. Transform both given data sets using FFTs.

2. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

3. Find the inverse transform of this product using FFTs.
RealCrossCorrelation provides a procedure for calculating the crosscorrelation of

two discrete real functions or the autocorrelation of one discrete real function
(Brigham 1974). This procedure is exactly the same as the previous procedure for

Fast Fourier Transform Routines 231

complex correlation except that only one forward Fourier transform need be per-
formed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal + iHReal, where i is the square root of — 1.

2. Transform this complex vector.

3. Extract the transforms of the two real vectors from the transform of the
complex vector (using the symmetry X, = X_, where the bar stands for
complex conjugation).

4. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

5. Find the inverse transform of this product using FFTs.

Any one of the FFT include files can be used with any of the applications.

Data Sampling

While sampling theory is beyond the scope of this Toolbox, we would like to men-
tion several common problems associated with data sampling (Brigham 1974; Press
et al. 1986, Ch.12). The most common frustration is aliasing. A Fourier transform
only represents frequencies up to a certain limit (called the Nyquist limit, or
Nyquist frequency), which is given by half the sampling rate. (For example, if a
signal is sampled sixty times a second, the Nyquist frequency will be 30 Hz.) A
sample containing frequencies greater than this limit will not be properly trans-
formed. The high frequencies will falsely contribute to the transform. This contri-
bution will be indistinguishable from a contribution of a frequency below the
Nyquist frequency.

There are several ways to combat aliasing. Increasing the sampling rate will
increase the Nyquist frequency and thus reduce aliasing effects. It is also possible
to pass the signal through a low pass filter, thus eliminating the high frequencies
before sampling. If the Fourier transform of a signal does not converge to zero at
the Nyquist frequency, the transform has very likely been aliased.

The Fourier transform assumes that the sample represents a periodic function and
that the sample is an integer multiple of one period. If the latter condition is not
true, spurious frequencies will show up in the transform. For example, if a sine
wave is sampled from 0 to 270 degrees (instead of the full period), a sharp bound-
ary is created because the sine of 0 does not equal the sine of 270. High frequen-
cies will be introduced into the transform to account for that sharp boundary.

232 Turbo Pascal Numerical Methods Toolbox

The assumption of periodicity can cause problems when convolving or correlating
two signals that are not periodic. The convolution of each point in a signal affects
the points surrounding it (the nature and extent of the affect depends on the partic-
ular convolving function). The assumption of periodicity means that the convolu-
tion at one end of the signal will affect the other end of the signal. This “end effect”
can be eliminated by padding the data (on either end) with a sufficient number of
zeros.

User-Defined Types

TNvector = array[0..TNArraySize] of Extended;
TNvectorPtr = “TNvector;
RadixType = (Radix2, Radix4);

These user-defined types are different from others in this Toolbox, because they
involve pointers. Pointers are used to transcend the limitations imposed by the 32K
data segment size of Turbo Pascal. However, it is possible to store these arrays on
the heap, and to point to them with pointers that only require 4 bytes. The size of
the heap (and hence the maximum size and number of TNvectors) is determined
by the amount of memory in the machine.

Fast Fourier Transform Routines 233

Fast Fourier Transform Algorithms

The following documentation generally applies to all FFT algorithms. When a dif-
ference between the radix-2 and radix-4 algorithms needs to be described, the
radix-4 information will be placed in brackets following the radix-2 information (for
example, the number of points must be a power of two [four]).

Procedure TestInput

Description

This example determines the number of data points in terms of a power of two
[four]. If the number of data points is not a power of two [four], then an error is
returned.

Input Parameters

NumPoints : Integer; Number of data points
The preceding parameter must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

Number0fBits : Byte; Number of data points as a power of two [four]

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

TestInput (NumPoints, NumberOfBits, Error);

234 Turbo Pascal Numerical Methods Toolbox

Procedure MakeSinCosTable

Description

This example creates a look-up table of NumPoints/2 [3/4 NumPoints] roots of unity.
The roots of unity are defined as follows:

Root = exp (—i 2w n/NumPoints n = 0..NumPoints/2 [3/4 NumPoints]

where i is the square root of — 1. These values are stored in two tables: SinTable,
containing the imaginary parts of the roots of unity, and CosTable, containing the
real parts of the roots of unity. It is faster to look up these values in a table than to
calculate them in the FFT procedure.

Input Parameters

NumPoints : Integer; Number of data points
The preceding parameter must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

SinTable : TNvectorPtr; Table of sine values
CosTable : TNvectorPtr; Table of cosine values

Syntax of the Procedure Call

MakeSinCosTable(NumPoints, SinTable, CosTable);

Procedure ComplexFFT, RealFFT

Description

This example implements the particular variation of the Cooley-Tukey algorithm.
The Fast Fourier Transform of the data XReal, XImag is made in place and is thus
returned in the vectors XReal, XImag. The inverse transform of the data can also
be calculated with this procedure.

Fast Fourier Transform Routines 235

It is essential that procedures TestInput and MakeSinCosTable be called before
procedure Fast Fourier Transform is called. TestInput will flag any errors in the
data (for example, number of points that are not a power of two [four]), and
MakeSinCosTable generates a table of sine and cosine values referenced by Fast
Fourier Transform. TestInput and MakeSinCosTable need only be called once, even
if several calls to Fast Fourier Transform are made within the same program (for
example, when computing the discrete convolution), as long as the number of data
points is unchanged. If the number of data points changes between two calls of
Fast Fourier Transform, TestInput and MakeSinCosTable must be called again.
(Interested readers are urged to consult the references given in the beginning of
the chapter for details about the Cooley-Tukey algorithm.)

Input Parameters

NumberOfBits : Byte; Number of data points as a power of two [four]
NumPoints : Integer; Number of data points

Inverse : Boolean; FALSE equals forward transform; TRUE equals inverse
transform

XReal : TNvectorPtr; Pointer to real values of the data points

XImag : TNvectorPtr; Pointer to imaginary values of the data points
SinTable : TNvectorPtr; Table of sine values

CosTable : TNvectorPtr; Table of cosine values

Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the
input data

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform
of the input data

Syntax of the Procedure Call

RealFFT(NumberOfBits, NumPoints, Inverse, XReal, XImag, SinTable, CosTable, Radix);
Comp1exFFT(NumberOfBits, Numpoints, Inverse, XReal, XImag, SinTable, CosTable,
Radix);

236 Turbo Pascal Numerical Methods Toolbox

Fast Fourier Transform Applications

ComplexFFT

Description

This example is the most basic application, performing a complex Fast Fourier
Transform. It simply calls TestInput, MakeSinCosTable, and FFT sequentially; thus
accomplishing an in-place transformation of the complex data XReal, XImag.

Input Parameters

NumPoints : Integer; Number of data points

Inverse : Boolean; FALSE equals forward transform; TRUE equals inverse trans-
form

XReal : TNvectorPtr; Pointer to real values of the data points

XImag : TNvectorPtr; Pointer to imaginary values of the data points

Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the
input data

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform
of the input data

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Fast Fourier Transform Routines 237

Syntax of the Procedure Call

ComplexFFT(NumPoints, Inverse, XReal, XImag, Error, Radix);

RealFFT

Description

This example performs a complex Fast Fourier Transform of real data. The Num-
Points real data points are first mapped onto NumPoints/2 complex data points. A
complex Fast Fourier Transform of these complex points is performed by calling
TestInput, MakeSinCosTable, and FFT. The NumPoints/2 transform is then mapped
onto NumPoints complex points. The real part of the transformation will be even,
and the imaginary part of the transformation will be odd. If you are implementing
this application with a radix-4 algorithm, be sure that the number of real data
points (NumPoints) is twice the power of four.

Input Parameters

NumPoints : Integer; Number of data points

Inverse : Boolean; FALSE equals forward transform; TRUE equals inverse trans-
form

XReal : ThvectorPtr; Pointer to real values of the data points
Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:
1. NumPoints = 4.
2. NumPoints must be a power of two (twice a power of four for a radix-4

algorithm).

At least four data points are required, because this algorithm transforms the real
vector to a complex vector half the size. If only two real data points were entered,
the routine would have to take the transform of a single complex point.

238 Turbo Pascal Numerical Methods Toolbox

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the Fourier transform of the input data

XImag : TNvectorPtr; Pointer to imaginary values of the Fourier transform of the
input data

Error : Byte; 0: No errors
1: NumPoints < 4
2: NumPoints not a power of two [twice a power of four]

Syntax of the Procedure Call

RealFFT(NumPoints, Inverse, XReal, XImag, Error, Radix);

ComplexConvolution

Description

The calculation of the convolution of two complex vectors is facilitated with a Fast
Fourier Transform routine. The discrete convolution of two functions x and & is
defined by

N-1

v, = > xh m=01.N-1

n m-n

n=0

where subscripts are taken modulo N (circular convolution). The basic theorem
that allows us to calculate these effectively using FFTs is as follows:

Y =XH, m=01.N-1

where capital letters indicate the transforms of the functions represented by lower-
case letters. Thus the procedure for convolution works like this:

1. Transform both given data sets using FFTs.
2. Multiply the resulting transforms point by point.
3. Find the inverse transform of this product using FFTs.

Fast Fourier Transform Routines 239

Input Parameters

NumPoints : Integer; Number of data points

XReal : TNvectorPtr; Pointer to real values of the first set of data points

XImag : TNvectorPtr; Pointer to imaginary values of the first set of data points
HReal : TNvectorPtr; Pointer to real values of the second set of data points

HImag : TNvectorPtr; Pointer to imaginary values of the second set of data points
Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPt}; Pointer to real values of the convolution of XReal, XImag and
HReal, HImag

XImag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal, XImag
and HReal, HImag

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

ComplexConvolution(NumPoints, XReal, XImag, HReal, HImag, Error, Radix);

RealConvolution

Description

The calculation of the convolution of two real vectors is facilitated with a Fast
Fourier Transform routine. This procedure is exactly the same as the previous
procedure for complex convolution except that only one Fourier transform need be
performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal + iHReal, where i is the square root of — 1.

2. Transform this complex vector.

240 Turbo Pascal Numerical Methods Toolbox

3. Extract the transforms of the two real functions from the transform of the
complex function (using the symmetry X = X__, where the bar stands for
complex conjugation).

Multiply the resulting transforms point by point.

5. Find the inverse transform of this product using FFTs. RealConvolution is

about 25 percent faster than its complex counterpart for the same set of real
data.

Input Parameters

NumPoints : Integer; Number of data points

XReal : ThvectorPtr; Pointer to real values of the first set of data points
HReal : TNvectorPtr; Pointer to real values of the second set of data points
Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : ThvectorPtr; Pointer to real values of the convolution of XReal and HReal

XImag : ThvectorPtr; Pointer to imaginary values of the convolution of XReal and
HReal

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedﬁre Call

RealConvolution(NumPoints, XReal, XImag, HReal, Error, Radix);

Fast Fourier Transform Routines 241

ComplexCrossCorrelation

Description

The calculation of the correlation of two complex vectors is facilitated with a Fast
Fourier Transform routine. The discrete correlation of two complex functions x and

h is defined by
N-=-1
v, = > zh m=01..N-1
n=0
where subscripts are taken modulo N (circular correlation). The basic theorem that
allows us to calculate these effectively using FFTs is as follows:

Y =X H,__ m=00L1.N-1

where capital letters indicate the transforms of the functions represented by lower-
case letters and ~ indicates the complex conjugate. (Commonly x and A are real
functions, in which case the preceding formula reduces to the more familiar
expression C, = X I_{m, where the bar stands for complex conjugation. Thus the
procedure for correlation works like this:

1. Transform both given data sets using FFTs.

2. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

3. Find the inverse transform of this product using FFTs.

If the functions x and h are different, the correlation is called crosscorrelation; if the
functions x and h are the same, the correlation is called autocorrelation.

Input Parameters

NumPoints : Integer; Number of data points

Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation
XReal : TNvectorPtr; Pointer to real values of the first set of data points

XImag : TNvectorPtr; Pointer to imaginary values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross-
correlation)

HImag : TNvectorPtr; Pointer to imaginary values of the second set of data points (for
crosscorrelation)

Radix : RadixType; Radix2 or Radix4

242 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : ThvectorPtr; Pointer to real values of the correlation of XReal, XImag and
HReal, HImag (or the autocorrelation of XReal, XImag if
Auto = TRUE)

XImag : ThvectorPtr; Pointer to imaginary values of the correlation of XReal, XImag
and HReal, HImag (or the autocorrelation of XReal, XImag if
Auto = TRUE)

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

ComplexCorrelation(NumPoints, Auto, XReal, XImag, HReal, HImag, Error, Radix);

Comments

If you are performing an autocorrelation of the vector XReal, XImag, then set
Auto = TRUE. In this case, the vector HReal, HImag will not contain any informa-
tion but must still be passed into the procedure. Autocorrelations are faster to
compute, since only one forward transformation must be made, as opposed to two
for crosscorrelation.

Fast Fourier Transform Routines 243

RealCrossCorrelation

Description

The calculation of the convolution of two real vectors is facilitated with a Fast
Fourier Transform routine. This procedure is exactly the same as the previous
procedure for complex correlation except that only one forward Fourier transform
need be performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec-
tor XReal + iHReal, where i is the square root of — 1.

2. Transform this complex vector.

Extract the transforms of the two real vectors from the transform of the
complex vector (using the symmetry X, = X__, where the bar stands for
complex conjugation).

4. Multiply each element of the transform of the first data set by the appropri-
ate element of the transform of the second data.

5. Find the inverse transform of this product using FFTs.

Input Parameters

NumPoints : Integer; Number of data points
Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation
XReal : TNvectorPtr; Pointer to real values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross-
correlation)

Radix : RadixType; Radix2 or Radix4
The preceding parameters must satisfy the following conditions:
1. NumPoints = 2.

2. NumPoints must be a power of two [four].

244 Turbo Pascal Numerical Methods Toolbox

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the correlation of XReal and HReal (or
the autocorrelation of XReal if Auto = TRUE)

XImag : ThvectorPtr; Pointer to imaginary values of the correlation of XReal and
HReal (or the autocorrelation of XReal if Auto = TRUE)

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

RealCorrelation(NumPoints, Auto, XReal, XImag, HReal, Error, Radix);

Comments

If you are performing an autocorrelation of the vector XReal, then set Auto equal to
TRUE. In this case, the vector HReal will not contain any information but must
still be passed into the procedure. Autocorrelations are faster to compute, since
only one forward transformation must be made, as opposed to two for crosscorrela-
tion.

Sample Program

The sample program FFTProgs.pas provides I/0 functions that demonstrate any of
the application programs.

Input File

Data may be entered from a text file. The real and imaginary parts of a complex
number should be separated by a space and followed by a carriage return. Real
numbers should each be followed by a carriage return.

The procedures ComplexFFT, ComplexConvolution, and ComplexCrossCorrelation
expect data to be in complex form. A data file containing a four-point complex
square wave could look like this:

00
11
11
00

Fast Fourier Transform Routines 245

The procedures RealFFT, RealConvolution, and RealCrossCorrelation expect data
to be in real form. A data file containing a four-point real square wave could look
like this:

0
1
1
0

Example

Problem. Perform a Fourier transform and an autocorrelation of a 32-point square
wave. Also, convolve and crosscorrelate this square wave with a saw-tooth wave.

1. The input data file Sample10A.dat is as follows (note that this is in real format):

C O OC OO OO IHEHEMFEFMMEMEEEEEOODOOOOODODODODOOO

246 Turbo Pascal Numerical Methods Toolbox

[]

2. Run FFTProgs.pas:

N WN -

Sel

. Real Fast Fourier Trans
. Real Convolution

. Real Autocorrelation

. Real Crosscorrelation

. Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

. Complex Crosscorrelation

ect a number (1-8): 1

form

*kkkkkkkx Rea]l Fast Fourier Transform ****xxxxx

(F)orward or (I)nverse transform? F

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

Fil

e name? SamplelOA.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of real Fourier transform:

1.
-1,
7.
5.
-4.
2.
6.
-2.
1.
6.
-2.
1.
7.
-1.
1
8.
-1.

94454364826301e+0
59057003804788e+0
53417436515731e-1
96901852132470e-2
26776695296637e-1
89883706652938e-1
20757203331860e-2
66655959906343e-1
76776695296637e-1
6384051751257 1e-2
08522329739913e-1
27160952826887e-1
32233047033631e-2
83841625879619e-1

.00135954077543e-1

37351650164211e-2
76776695296637e-1

8.37351650164211e-2
1.00135954077543e-1
-1.83841625879619e-1
7.32233047033631e-2
1.27160952826887e-1
-2.08522329739913e-1

Fast Fourier Transform Routines

0.00000000000000e+0
-3.56682381055970e-17
4.55292313916419e-17
-2.69289447846945e-16
-2.87492515628133e-20
-3.48529572466949¢-16
.09874847931145e-16
.77190700484791e-18
.000000006000000e+0
.35764180659936e-17
.09798183260311e-16
.28863728588383e-16
.05413922396982¢-19
.96595405328328e-17
.53375697145565e-17
.53423092584155e-17
0.00000000000000e+0
-5.53423092584155e-17
-4,53375697145565e-17
4.96595405328328e-17
-1.05413922396982e-19
1.28863728588383e-16
-1.09798183260311e-16

NP P = OON =

247

6.63840517512571e-2
1.76776695296637e-1
-2.66655959906343e-1
6.20757203331860e-2
2.89883706652938e-1
-4.26776695296637e-1
5.96901852132470e-2
7.53417436515731e-1

-9.35764180659936e-17
-0.00000000000000e+0
-2.77190700484791e-18
-1.09874847931145e-16
3.48529572466949e-16
2.87492515628133e-20
2.69289447846945e-16
-4.55292313916419e-17

-1.59057003804788e+0 3.56682381055970e-17

Note that the transform of the even real-square wave is an even real function. If
you take the inverse transform of this data, you should get back the original square
wave.

3. Run FFTProgs.pas:

. Real Fast Fourier Transform

. Real Convolution

. Real Autocorrelation

. Real Crosscorrelation

. Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

. Complex Crosscorrelation

ONONPWN =

Select a number (1-8): 5
*xkxkxkxk Complex Fast Fourier Transform *d¥ikakix
(F)orward or (I)nverse transform? I

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOB.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of complex Fourier transform:

248

1.83845713893878e-15
1.68459114457461e-15
2.11375997190428e-15
.89507399834982e-15
.18630911648793e-15
.10496790073287e-15
.86928259751718e-16
.23818927547367e-16
.00487796352727e-15
.31468256684932e-16
.03172956429440e-17

e N W WO WO e

-0.00000000000000e+0
-6.70815869798976e-20
-1.05413922396982e-19
3.44909004811084e-17
-0.00000000000000e+0
3.42849429972988e-17
1.68143873326862e-16
2.37407332761055e-16
-0.00000000000000e+0
2.37751564484486e-16
1.68148262525511e-16

.00000000000000e+0 2.03763730303779e-16
.00000000000000e+0 -0.00000000000000e+0
.00000000000000e+0 2.03969687787589e-16

Turbo Pascal Numerical Methods Toolbox

1.00000000000000e+0
1.00000000000000e+0
9.99999999999999¢-1
1.00000000000000e+0
1.00000000000000e +0
9.99999999999999¢-1
1.00000000000000e+0
1.00000000000000e+0
-1.44345194948787e-16
-6.60945902546872e-17
9.04264001920616e-16
1.13846180955400e-15
3.49146703466816e-16
1.49507607827254e-15

7.85812876050229e-19
1.60995808751754e-18
-0.00000000000000e+0
1.62912425522608e-19
1.05413922396982e-19
-2.02632926408975e-16
0.00000000000000e+0
-2.02417228203197e-16
-1.68143873326862e-16
-2.38193145637105e-16
-0.00000000000000e+0
-2.37847395323029e-16
-1.68148262525511e-16
-3.56217043759124e-17

9.82879412429460e-16 -0.00000000000000e+0
1.52785022505415¢e-15 -3.58374025816908e-17
1.62624933006980e-15 -7.85812876050229e-19
1.58864530902564e-15 -8.24145211467314e-19

You get back the original square wave, accurate to 15 significant figures.

The autocorrelation of a square wave is simply a triangle. Let’s take the
autocorrelation of the square wave.

4. Run FFTProgs.pas:

1. Real Fast Fourier Transform

. Real Convolution

. Real Autocorrelation

Real Crosscorrelation

Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

. Complex Crosscorrelation

.

ONO UG WN
.

Select a number (1-8): 3
kkkkkkk Real Autocorrelation ****¥¥¥xx

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOA.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Fast Fourier Transform Routines 249

Results of real autocorrelation:

1.94454364826301e+0
1.76776695296637e+0
1.59099025766973e+0
1.41421356237310e+0
1.23743686707646e+0
1.06066017177982e+0
8.83883476483185e-1
7.07106781186548e-1
5.30330085889911e-1
3.53553390593273e-1
1.76776695296636e-1
~7.13134768099437e-16
-8.91610121801382e-16
-6.53642983532122e-16
-6.24203749931802e-16
-7.13441426782774e-16
-4.75627617855183e-16
-7.13364762111940e-16
-6.24050420590133e-16
-6.54026306886293e-16
-8.91610121801382e-16
-7.13748085466111e-16
1.76776695296636e-1
3.53553390593273e-1
5.30330085889911e-1
7.07106781186548e-1
8.83883476483185e-1
1.06066017177982e+0
1.23743686707646e+0
1.41421356237310e+0
1.59099025766973e+0
1.76776695296637e+0

-1.86068547103024e~18
-7.31524706015784e-17
-1.20291519030913e-16
-2.28393637498843e-16
-1.08420217248551e-18
-3.11917400601706e-16
-2.67794627815503e-16
-3.24279578773716e-16
1.54428189954649¢-19
-2.64227183800926e-16
-2.67190893532684e-16
-1.92763731728663e-16
1.08420217248551e-18
-1.08779980600795e-16
-1.18700727111104e-16
-1.28557069905047e-17
1.55182909112094e-18
1.34977736087408e-17
1.20128888705040e-16
1.09467566867339e-16
1.08420217248551e~18
1.92996121512129e-16
2.67957258141376e-16
2.64586549445461e-16
1.54428189954649¢e-19
3.23881880793764e-16
2.67353523858557e-16
3.11689802360167e-16
-1.08420217248551e-18
2.27701259690372e-16
1.18538096785231e-16
7.25487363187593e-17

Keeping in mind that this is a periodic function (see “Data Sampling”), you can
see that this is a triangle wave.

Let’s now convolve the square wave with a saw-tooth wave. The input file for
the saw-tooth wave (Samplel0C.dat) is as follows:

WNHHHFOOOOOOOOOOO

250 Turbo Pascal Numerical Methods Toolbox

1

QOO OO O OO OHMEHOWWIO UK

5. Run FFTProgs.pas:

. Real Fast Fourier Transform

. Real Convolution

. Real Autocorrelation

. Real Crosscorrelation

. Complex Fast Fourier Transform
. Complex Convolution

. Complex Autocorrelation

8. Complex Crosscorrelation

NOOEHEWN =

Select a number (1-8): 2
*dkkdkkdkk Rea] cOnvo]utiOn hededkdekkhk

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

The first function:
File name? SamplelOA.dat
The second function:

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? Samplel0OC.dat

Fast Fourier Transform Routines 251

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of real convolution:

1.16672618895780e+1
1.14904851942814et1
1.11369318036881et1
1.06066017177982e+1
9.89949493661167e+0
9.01561146012848e+0
7.95495128834866e+0
6.71751442127220e+0
5.30330085889911e+0
3.71231060122937e+0
1.94454364826300e+0
-4.48963645339059e-15
-4.65630544778407e-15
-3.65659814010651e-15
-3.47045631932115e-15
-3.85439299085867e-15
-2.87891171916470e-15
-4.57044101644980e-15
-3.77067517030775e-15
-4.08070709916113e-15
-5.84767443254705e-15
-3.65997138562321e-15
1.76776695296633e-1
5.30330085889907e-1
1.06066017177982e+0
1.76776695296637e+0
2.65165042944955e+0

-0.00000000000000e+0
5.39795947343382e-16
-1.17756934401283e-16
-6.23437103223460e-16
-0.00000000000000e+0
-1.63431828667510e-15
-1.33473191922288e-15
-2.27837818635295e-15
-0.00000000000000e+0
-2.05062661547234e-15
-1.87280291147249e-15
-1.68784939308506e-15
-0.00000000000000e+0
-1.09893055790468e-15
-1.31403245809765e-15
-2.51249292491279¢-16
-0.00000000000000e+0
-9.33009044051833e-17
1.17756934401283e-16
2.09754539402286e-16
-0.00000000000000e+0
6.25142892149520e-16
1.33473191922288e-15
1.11725341423405e-15
-0.00000000000000e+0
1.60413157253415e-15
1.87280291147249e-15

3.71231060122937e+0 2.10153195690623e-15
4.94974746830584e+0 -0.00000000000000e+0
6.36396103067893e+0 2.10810595243026e-15
7.95495128834866e+0 1.31403245809765e-15

9.72271824131503e+0

6. Run FFTProgs.pas:

252

. Real Convolution
. Real Autocorrelation

. Complex Convolution

ONONHWN -

Select a number (1-8): 4

. Real Crosscorrelation
. Complex Fast Fourier Transform

. Complex Autocorrelation
. Complex Crosscorrelation

1.41237406461018e-15

Now let’s crosscorrelate the square wave with the saw-tooth wave.

. Real Fast Fourier Transform

*kkikikkk Real Crosscorrelation *¥xkkdik

Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

The first function:
File name? SamplelOA.dat
The second function:

A dialog box appears asking you whether you will input data from the Key-
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOC.dat
Now another dialog box appears asking you whether you would like the output

sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of real crosscorrelation:

1.16672618895780e+1
9.72271824131503e+0
7.95495128834866e+0
6.36396103067893e+0
4.94974746830583e+0
3.71231060122937e+0
2.65165042944955e+0
1.76776695296637e+0
1.06066017177982e+0
5.30330085889907e-1
1.76776695296632e-1
-4.54836159124956e-15
-6.31870217015218e-15
-3.84059335010852e-15
-2.91417746774842e-15
-3.80256767337477e-15
-2.82248652143076e-15
-3.79950108654140e-15
-3.67714427189007e-15
-3.77895495475784e-15
-4.41588504004812e-15
-4.31192774639698e-15
1.94454364826300e+0
3.71231060122937e+0
5.30330085889911e+0
6.71751442127221e+0
7.95495128834866e+0
9.01561146012849¢+0
9.89949493661167¢+0
1.06066017177982e+1
1.11369318036881e+1
1.14904851942814e+1

Fast Fourier Transform Routines

-0.00000000000000e+0
-1.39794194032565e-15
-1.30705597305174e-15
-2.10114863355206e-15
-0.00000000000000e+0
-2.09953867546454e-15
-1.87232375727978e-15
-1.61001558602067e-15
-0.00000000000000e+0
-1.12643400856644e-15
-1.34178506893962e-15
-6.36393432594434e-16
-0.00000000000000e+0
-2.20870916673240e-16
-1.27416682926388e-16
8.09195600654651e-17
-0.00000000000000e+0
2.39002111325521e-16
1.30705597305174e-15
1.08963496656604e-15
-0.00000000000000e+0
1.67956960863497e-15
1.87232375727978e-15
2.05122076667131e-15
-0.00000000000000e+0
2.28537383756657e-15
1.34178506893962e-15
1.64790709958046e-15
-0.00000000000000e+0
6.40839983502816e-16
1.27416682926388e-16
-5.22124740716106e-16

253

C H A P T E R 11

Graphics Programs

There are some programs that graphically demonstrate the usefulness of the least-
squares routines in Chapter 9 and the Fourier transforms in Chapter 10. Each
program reads a data set from an input file, and displays the results. You will see
curves being fitted to data using the least-squares routines and also see a signal
being transformed into its Fourier spectrum.

The programs LSQDemo and FFTDemo graphically illustrate the power and util-
ity of the Turbo Pascal Numerical Methods Toolbox.

255

Function of the Least-Squares Graphics Demonstration
Program

The program LSQDemo demonstrates the least-squares capabilities of the Tool-
box. A default input file Sample11A.dat contains the x and y values (in ASCII form)
separated by carriage returns. Running LSQDemo will provide five different least-
squares fits to the input data.

The different fits are based on the function forms: logarithm, exponential, polyno-
mial, power law, and finite Fourier series. The fits are displayed graphically on the
screen and can be printed on an ImageWriter or LaserWriter printer.

The first plot shows the input data from Samplel1A.dat along with three curves.
The three curves are the graphs of the power function

Y = aX’

the exponential function
Y = aexp (bX)

and the logarithm function
Y = aln(®X)

The header to the plot tells which curve corresponds to which function. The next
plot shows the same input data plotted with a five-term Fourier series:

Y =a + b * cos(x) + ¢ *sin(x) + d * cos(2X) + e * sin(2X)

and a five-term polynomial (that is, a polynomial of degree four). The coefficients
are found using the routines from Chapter 9, and they give the least-square error
among all functions of that form. (In some cases, the problem is transformed into a
linear problem, and the error is actually the least for the transformed problem but
possibly not exactly the least for the original problem.) Again, the header to the plot
tells which curve corresponds to which function.

Finally, a bar chart shows the error for each function. The data is not at all periodic,
so the Fourier series model is the worst. The five-degree polynomial gives the best
fit, but it is not much better than the fit obtained by using power, exponential, or
logarithm functions.

The LSQDemo program offers three pulldown menus—File, Edit and Window.
The Edit menu does not offer any executable commands while the File and Win-
dow menus offer three and six selections respectively.

256 Turbo Pascal Numerical Methods Toolbox

The File menu offers:
Print Screen Prints everything displayed on the screen on an ImageWriter™,
ImageWriter™ II, or LaserWriter™

Print Window Prints the currently selected window on an ImageWriter,
ImageWriter I1, or LaserWriter

Quit Terminates program execution

The Window menu gives you control of the various windows displayed on the
screen and offers the following window-related commands:

Zoom Windows Zooms all windows to the largest possible size
Stack Windows Layers all windows on the screen
Tile Windows Displays all windows in a row, from the top to the bottom

of the screen

Power, Exp, Log Selects and brings forward the window displaying the
power, exponentidl, and logarithm least-squares fits

Fourier, Polynomial Selects and brings forward the window displaying the fou-
rier and polynomial least-squares fits

Sum of Squares Selects and brings forward the window displaying the sum
of the squares of the residuals for the five least-squares fits

Graphics Programs 257

Function of the Fourier Transform Graphics Demonstration
Program '

The program FFTDemo demonstrates the Fourier capabilities of the Toolbox.

A default input file Sample11B.dat contains 1024 real values (in ASCII form) sepa-
rated by carriage returns. These values represent sample points from a two-second
signal sampled at a rate of 512 points per second. The program will display four
FFT transforms at the following sampling rates: 8 per second (16 points), 32 per
second (64 points), 128 per second (256 points), and 512 per second (1,024 points).
For the last two samplings, the default data yields the same transforms, demon-
strating that a sample rate higher than twice the highest frequency adds no new
information (the Nyquist limit). The transforms are shown on a scale of —64 to
+ 63 cycles per second.

In addition to the real and imaginary transforms, the program displays the inverse
transform over the original data, illustrating the degree to which information is lost
at different sampling rates. The header tells which curve is the original data and
which is the inverse transform.

A default output data file can easily be arranged by changing the constant
WriteToFile in FFTDemo.pas and recompiling it.

The FFTDemo program offers five pulldown menus— File, Edit, Sample, Win-
dow, and Graph. File and Window additionally provide three and six options
respectively.

The File menu offers:

Print Screen Prints everything displayed on the screen on an ImageWriter,
ImageWriter II, or LaserWriter

Print Window Prints the currently selected window on an ImageWriter,
ImageWriter II, or LaserWriter

Quit Terminates the program
The Edit menu does not offer any executable commands.

The Sample menu allows you to select one of the four sampling rates (mentioned
earlier), and indicates the currently selected sample rate with a check mark.

258 Turbo Pascal Numerical Methods Toolbox

The Window menu gives you control of the various windows displayed on the
screen and offers the following window-related commands:

Zoom Windows Zooms all windows to the largest possible size
Stack Windows Layers all windows on the screen
Tile Windows Displays all windows in a row, from the top to the bottom

of the screen

Real Transform Selects and brings forward the window displaying the
real transformation

Imaginary Transform Selects and brings forward the window displaying the
imaginary transformation

Inverse Transform Selects and brings forward the window displaying the
inverse transformation

The Graph menu offers only one selection, Display new graph, which lets you
display a new set of graphs with the currently selected sampling rate.

Graphics Programs 259

Rebuilding the Demonstration Programs

This procedure assumes that Turbo Pascal is on your hard disk or in a floppy disk
drive.

How to recompile the Demos:

1. Copy Disk 1 to a folder on your hard disk or onto another disk. (You don’t
need to copy the Read Me program or the file Read file.)

2. Double click on the TurboGraph.unit file. (This should bring up Turbo Pas-
cal.)

3. Compile this Unit to disk. (Type Command-K to Select “Compile To Disk” in
Turbo Pascal.)

4. Open either FFTDemo.pas or LSQDemo.pas.

5. Select Command-R to run the Demos in memory.

260 Turbo Pascal Numerical Methods Toolbox

References

Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Washington, D.C.:
National Bureau of Standards Applied Mathematics Series, 55, 1972.

Atkinson, L.V., and P.J. Harley. An Introduction to Numerical Methods with Pascal.
Reading: Addison-Wesley Publishing Co., 1983. This is an excellent text for learn-

ing numerical methods, with an emphasis on the implementation of various numer-
ical algorithms.

Brigham, E. Oran. The Fast Fourier Transform. Englewood Cliffs: Prentice-Hall,
Inc., 1974. A very complete, easy-to-read text on the use and implementation of the
fast Fourier transform algorithm.

The next three texts are excellent for learning numerical analysis, emphasizing the
mathematical theory underlying the algorithms in this toolbox.

Burden, Richard L., and J. Douglas Faires. Numerical Analysis, 3rd ed. Boston:
Prindle, Weber & Schmidt, 1985.

Cheney, Ward, and David Kincaid. Numerical Mathematics and Computing, 2nd
" ed. Monterey: Brooks/Cole Publishing Co., 1985.

Dahlquist, Germund, and Ake Bjorck. Numerical Methods, trans. Ned Anderson.
Englewood Cliffs: Prentice-Hall, Inc., 1974.

Gerald, Curtis F., and Patrick O. Wheatley. Applied Numerical Analysis, 3rd ed.
Reading: Addison-Wesley Publishing Co., 1984. This is another excellent source for
learning numerical analysis.

261

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling,
Numerical Recipes: The Art of Scientific Computing. New York: Cambridge Univer-
sity Press, 1986. This book discusses many of the subtle problems encountered
when implementing numerical methods, and has program listings in Turbo Pascal.

Ralston, Anthony, and Philip Rabinowitz. A First Course in Numerical Analysis.
New York: McGraw-Hill Book Co., 1978. A well-written mathematics text that is a
step more sophisticated than the preceding ones.

262 Turbo Pascal Numerical Methods Toolbox

Index

263

A
Adams_1.pas, 164-165
Adams-Bashforth/Adams-Moulton
predictor-corrector method, 150,
162-165
_ Adams-Bashforth formula, 162
- Adams-Moulton formula, 162
Adapgaus.pas, 97
Adapsimp.pas, 92-93
Adaptive schemes, 83
quadrature, 91-97
Aliasing, 232

B

- Backward substitution, 109, 115
Basis vectors, 216
Bisection method, 13
root of a function using, 16-18
- Bisect.pas, 17-18
"Boundary value problems, 149-152
. using Linear Shooting/Runge-Kutta
methods, 209-213
using Shooting/Runge-Kutta methods,
202-208

C

Chebyshev polynomials, 218
ComplexConvolution, 227, 230-231
application, 239-240
ComplexCrossCorrelation, 227, 231
" application, 242-243
ComplexFFT, 227, 230
application, 237-238
- Compiler directives, 11
" Convergence, rate of, 13-14
Cooley-Tukey method, 227-228
Cube_Cla.pas, 55-58
Cube_Fre.pas, 49-52
Cubic spline methods
clamped, 40, 53-58
free, 40, 48-52, 60, 71-74
Cyclic Jacobi method, 128, 144-148

D

Data sampling, 232-233
Data types, 10

‘Defined constants, 10
 Deflation, 14

and Laguerre, 35-38

264

and Newton-Horner, 26-30

of a matrix, 128, 139-143
Deriv2fn.pas, 79-81
Deriv2.pas, 68-70
Derivative, 59

approximation of, 60-81
Derivfn.pas, 76-77
Deriv.pas, 63-65
Determinant of a matrix, 101-105
Det.pas, 104-105
Diagonally dominant, 121
Diagonal matrix, 127
Differential equations

first-order, 153-165

coupled, 180-187

linear, 149

nth order, 151, 172-179

ordinary, 149

second-order, 152, 166171, 186,

202-213
coupled, 190-201

stiff, 155

systems of, 151
Direct factorization of matrices, 102,

115-120

Dirfact.pas, 117-120
Distribution disks, 7-10
Divdif.pas, 46-47

E

Eigensystem, 144
Eigenvalue, 127-128
Eigenvector, 127
Expo, 219-220

F

Fast Fourier Transform, 227
algorithms, 234-236
applications, 237-253
sample program, 245-253

FFTDemo, 255, 258

FFTProgs.pas, 245-253

Forward substitution, 115

Forward transform, 228

Fourier, 219

Fourier series, 219
in graphics programs, 256

Fourier transform, 227-253
in graphics demo, 258-259

Turbo Pascal Numerical Methods Toolbox

G

Gauselim.pas, 110-111
Gaussian elimination, 102
with partial pivoting, 102, 112-114
Gaussian quadrature, 83
using Legendre polynomials, 94-97
Gaussidl.pas, 123-125
Gauss-Jordan elimination, 106
Gauss-Seidel iterative method, 102,
121-125
Goodness of fit, 216
Graphics
demo programs, 10, 256-260
rebuilding, 260

I

Initial value problems, 149-151
Adams-Bashforth/Adams-Moulton,
162-165
Runge-Kutta order five, 157-161
Runge-Kutta order four, 153-161,
166-201
Installation, 8-10
Integration, 83-100
Interdrv.pas, 72-74
Interpolation, 39, 152
cubic splines, 48-58
Lagrange polynomials, 4144
Newton’s divided-difference method,
4547
Inverse of a matrix, 101-102, 106-108
Inverse.pas, 107-108

Inverse power method, 127-128, 133-138

Inverse transform, 228

InvPower.pas, 135-138

Iterative methods, 13
cyclic Jacobi, 144-148
Gauss-Seidel, 102

J
Jacobi.pas, 146-148

L

Lagrange method, 39, 41-44
Lagrange.pas, 42—44
Laguerre.pas, 37-38
Laguerre’s method, 14
finding roots of complex polynomial,
35-38
Least.pas, 221-225

Index

Least-squares approximation, 216-225
Least-squares solution
graphics demo, 256-257
linear regression, 215
multiple regression, 215
Linear equations, 101-102
differential, 149
with direct factoring, 115-120
with Gaussian elimination, 109-114
Linshot2.pas, 211-213
Lipshitz condition, 151
Log, 220
LSQDemo, 255-256
LU_Decompose, 115-116
LU_Solve, 115-117

M

MakeSinCosTable, 235-236
Matrix
algebra, 101
diagonal, 127
direct factorization, 102, 115
identity, 135
nonsingular, 102, 115-120
orthogonal, 130
permutation, 115
rotation, 144
square, 102, 127-129, 133
symmetric, 128, 144-148
Mesh points, 150
Muller.pas, 33-34
Muller’s method, 14
finding roots of complex function,
31-34
N
Newtdefl.pas, 28-30
Newton-Horner method, 13-14
with deflation, 26-30
Newton-Raphson method, 13-14
root of a function using, 19-22
Newton’s general divided-difference
algorithm, 39, 4547
Nonlinear shooting method, 152,
202-208
Numerical differentiation, 59—60
five-point formulas, 60, 61-70
three-point formulas, 60, 61-70
two-point formulas, 60, 61-65
Nyquist frequency, 232, 258

265

P

Partial pivoting, 102, 112
and direct factoring, 115
Partpivt.pas, 113-114
Poly, 218
Polynomials
Lagrange, 85
Legendre, 94-96
methods to approximate roots of, 14,
23-38
Power, 219
Power method, 127-132
and Wielandt’s deflation, 139-143
Power.pas, 131-132
Powers-of-four, 228
Powers-of-two, 228

R

Raphson.pas, 10, 2022
RealConvolution, 227, 231
application, 240-241
RealCrossCorrelation, 227, 231-232
application, 244-245
Real FFT, 227, 230
application, 238-239
Richardson extrapolation
and numerical integration, 60, 75-77
and Romberg method, 84, 98-100
numerical integration, 60, 75-77
RKF_1.pas, 159-161
Romberg algorithm, 98-100
Romberg method, 84
using trapezoidal rule, 98-100
Romberg.pas, 99-100
Roots of an equation, 13-38
Rotation matrix, 144-148
Runge-Kutta-Fehlberg, 150, 157-161
Runge_l.pas, 155-156
Runge_2.pas, 169-171
Runge-Kutta formulas, 173, 181-182,
191-193
Runge-Kutta methods, 150
fifth-order, 157
fourth-order, 150-151, 153-161,
166-179
Runge_N.pas, 176-179
Runge_S1.pas, 185-189
Runge_S2.pas, 196-201

266

S

Secant method, 14
in nonlinear equations, 152, 202-208
root of a function using, 23-25
Secant.pas, 24-25
Shoot2.pas, 205-208
Shooting method, 152
linear, 209-213
nonlinear, 202-208
Simpson.pas, 86-87
Simpson’s method, 83-93
Splines (see Cubic spline methods)
System requirements, 3

T

TestForRoot, 15
TestInput, 234, 236
TNArraySize, 11
TNcomplex, 31-32
TNCompVector, 35-36
TNIntVector, 26-27
TNNearlyZero, 14-15
TNTargetF, 16
TNvector, 10
Trapezoid composite rule, 88-90
Trapezoid method, 83-84
Trapzoid.pas, 89-90
Turbo Pascal, 1-3
rebuilding with, 260

U
Unpack, 8

w
Wielandt.pas, 141-143

Turbo Pascal Numerical Methods Toolbox

Borland
Software

BORLAND

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit card, call (800) 255-8008; CA (800) 742-1133;
CANADA (800) 237-1136.

TURBO

P Asc‘l ;u:mmsn :

The ultimate Pascal development environment

Borland’s new Turbo Pascal for the Mac is so incredibly fast that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and “Units”

The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called “Units,”
which can be linked to any Turbo Pascal program. This “modular pathway” gives you “pieces” which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa® that they should be living together
Routines from Macintosh Programmer’s Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 27-second Guide to Turbo Pascal for the Mac
e (Compilation speed of more than 12,000 lines Workshop Pascal (with minimal changes)
per minute ® Compatibility with Hierarchical File System of
@ “Unit" structure lets you create programs in your Mac
modular form ® Ability to define default volume and folder names
® Multiple editing windows—up to 8 at once used in compiler directives
® (Compilation options include compiling to disk or e Search and change features in the editor speed up
memory, or compile and run and simplify alteration of routines
® No need to switch between programs to compile ® Ability to use all available Macintosh memory
Or run a program without limit
e Streamlined development and debugging ® “Units" included to call all the routines provided by
® Compatibility with Macintosh Programmer's Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

i Turbo Pascal and SideKick are registered of Borland Inc. and Reflex is a
== BORLA"D registered trademark of Borland/Analytica, Inc. Macintosh is a of McIntosh Laboratories, Inc.
_“E licensed to Apple Computer with its express permission. Lisa is a registered trademark of Apple

I'NTERNATIONAL Computer, Inc. Inside Macintosh is a copyright of Apple Computer, Inc.
Copyright 1987 Borland International BOR 0167A

TURBO PASGAL®

TUTOR

From the folks who created Turbo Pascal. Borland’s new
Turbo Pascal Tutor is everything you need to start pro-
gramming in Turbo Pascal on the Macintosh!™ It takes

you from the bare basics to advanced programming in a

simple, easy-to-understand fashion.

No gimmicks. It's all here.

The manual, the Tutor application, and 30 sample
programs provide a step-by-step tutorial in three
phases: programming in Pascal, programming on
the Macintosh, and programming in Turbo Pascal
on the Macintosh. Here’s how the manual is set
up:

Turbo Pascal for the Absolute Novice
delivers the basics—-a concise history of Pascal,
key terminology, your first program.

A Programmer’s Guide to Turbo Pascal
covers Pascal specifics—program structure,
procedures and functions, arrays, strings, and so
on. We've also included Turbo Typist, a textbook
sample program.

Advanced Programming

takes you a step higher into stacks, queues,
binary trees, linked structures, writing large pro-
grams, and more.

Using the Power of the Macintosh
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the
600-plus utility routines in the Apple Toolbox.

Programming the Macintosh in Turbo Pascal

shows you how to create true-Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com-
plete stand-alone application featuring animated
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge
you've just acquired.

The disk contains the source code for all the
sample programs, including Turbo Typist, MacTy-
pist, and Turbo Tutor. The Tutor's split screen lets
you run a procedure and view its source code
simultaneously. After running it, you can take a
test on the procedure. If you're stuck for an
answer, a Hint option steers you in the right
direction.

™ memory management

™ resources and resource files
™ QuickDraw

™ events

™ windows

™ controls

Macintosh topics included are

™ menus

™ desk accessory support
™ dialogs

™ File Manager

™ debugging

Suggested Retail Price: $69.95

Minimum system requirements: Any Macintosh with at least 512K of RAM. Requires Turbo Pascal.

5,5 BORLAND
= INTERNATIONAL

Turbo Pascal and Turbo Tutor are registered trademarks of Boriand Internalional, Inc. Other brand and product names
are trademarks of registered trademarks of their respective holders. Copyright 1987 Borland International. BOR 0381

SIDERICK: iz

Macintosh™

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick—Outlook™ The Outliner
and MacPlan™: The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
= |t's the desk accessory with more power than a stand-alone outliner
= A great desktop publishing tool, Outlook lets you incorporate both text and graphics
into your outlines
= Works hand-in-hand with MacPlan
= Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
Integrates spreadsheets and graphs
Does both formulas and straight numbers
Graph types include bar charts, stacked bar charts, pie charts and line graphs
Includes 12 example templates free!
Pastes graphics and data right into Qutlook creating professional memos and reports, complete
with headers and footers.

& File Edit Uiew Special Worksheet

SideKick: The Desktop Organizer,

Release 2.0 now includes
QOutlook: The Outliner e e T
MacPlan: The Spreadsheet sz de!
Mini word processor

Forecast

T
Iy B Ic I [E IF Ic

$1331 $14.64
$19965 $21562

Calendar

PhoneLog

Analog clock

Alarm system

Calculator

Report generator

Telecommunications (new version now
supports XModem file transfer protocol)

RERARRRRRRARAR

$26620° ' $29282
$47916 52708

$75037. $105984 |

O 4665 Materss

B 213 Onrheat

O 1185 Total Expenses
g o

B 1243% tetFront

B 13678 Saksh
0 1594% Saese
1% Total Revenues
b a2 o
\l B 0% Egenses
27) O o35 e
\ r
Sl
ll

MacPlan does both spreadsheets and business
graphs. Paste them into your Outlook files and
generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One 800K or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be installable per disk.

—>> BORLAND
EINTERNATIONAL

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland
International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 1987 Borland International BOR 0069D

®
"f"ﬂ THE DATABASE
= MANAGIR
The easy-to-use relational database that thinks like a spreadsheet.

Reflex for the Mac lets you crunch numbers by entering formulas
and link databases by drawing on-screen lines.

§ free ready-to-use templates are included on the examples disk:

8 A checkbook application.
m A client billing application set up for
a law office, but easily customized
=N by any professional who bills time.
k=2~ \ @ A parts explosion application that
breaks down an object into its
component parts for cost analysis.

= A sample 1040 tax application
with Schedule A, Schedule B, and
Schedule D, each contained in a
separate report document.

& A portfolio analysis application with
linked databases of stock purchases,
sales, and dividend payments.

Reflex for the Mac accomplishes all of these tasks without /royramminy—usiny
spreadsheet-like formulas. Some other Reflex for the Mac features are:

| Visual database design. m Data types which include variable length text,
® “What you see is what you get” report number, integer, automatically incremented
and form layout with pictures. sequence number, date, time, and logical.
® Automatic restructuring of database files when @ Up to 255 fields per record.
data types are changed, or fields m Up to 16 files simultaneously open.
are added and deleted. = Up to 16 Mac fonts and styles are selectable
@ Display formats which include General, Decimal, for individual fields and labels.

Scientific, Dollars, Percent.

[T ¢ iue_tat_rormet Descrive Dstedese tearch Misc Gindew
Setatese overviow

LO0.C —— St i
——— 101 05 I) W SRS DI AT 1

After opening the Ovemew‘ window, you The link lines you draw establish bath visual You can have multiple windows open

draw link lines between databases directly and electronic relationships between your simultangously to view all members of a
onto your Macintosh screen. databases. linked set—which are interactive and truly
relational.

Critic’s Choice

*. .. a powerful relational database . . . uses a visual approach to information management.” InfoWorld
“. .. gives you a lot of freedom in report design; you can even import graphics.” A+ Magazine

“... bridges the gap between the pretty programs and the power programs.” Stewart Alsop, PC Letter

% BOR'-A"D Suggested Retail Price: $99.95*

INTERNATIONAL (ﬂnt copy prOlected)

Minimum system configurstion: Macintosh 512K or Macinlosh Plus with one disk drive. Second extemal drive recommended.

Refiex is a registered trademark of Borland/Analytica, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. and is used with express permission of its owner.
Copyright 1887 Borland International BORO0149A

r-_—--_

"

FN-T ERNA T8 A1L
4585 Scotts Valley Drive Scotts Valley, California 95066

In |
" ‘\ California]

Il
Card, | J s
Call o (800)

(800) . 742-1133

To Order
By Credit

b In Canada call
259-8008 (800) 237-1136

For The Apple Macintosh’

Reflex®: The Database
Manager

Combines the analytic capability of a relational
database with the number-crunching power

of a spreadsheet to let you organize, analyze
and report information faster than ever
before. Creating database designs, forms,

and reports is as easy as drawing them

on your screen. Comes with sample appli-
cations which can be customized to your
needs. Minimum memory: 512K.

Eureka: The Solver™*

Anyone who routinely works with equations
needs Eureka: The Solver. Using a mouse,
Macintosh pull-down menus and online
help screens, you can solve complex equations
while interacting with your computer in

an almost conversational way. Eureka also
lets you plot graphs of the functions and
generate reports showing the equation file,
the solutions and the graphs. Support for
the 68881 math co-processor chip is also
provided. Minimum memory: 512K.

*Available Third Quarter 1987.

BORLAND

INTERNATIONAL

SideKick®: The Desktop
Organizer, Release 2.0

A complete and comprehensive collection

of desk accessories. Includes Outlook,™ a
powerful outline processor, and MacPlan,”

a 20x50 cell spreadsheet that supports 30
mathematical functions and standard business
graphics. Also includes notepad, calculator,
modem communications package, phone
directory, autodialer, appointment scheduler,
alarm system and quicksheet reminder tem-
plates. Minimum memory: 512K.

Turbo Pascal®

The fastest, most efficient and easy-to-use
Pascal compiler! Compiles and runs over
12,000 lines of source code per minute.
Multiple editing windows let you work with
up to 8 programs at a time. Compatible
with your Macintosh’s Hierarchical File
System, Macintosh Programmer’s Workshop
Pascal and Inside Macintosh. Minimum
memory: 512K.

4584 SCOTTS VALLEY DRIVE SCOTTS VALLEY, CA 95066 PHONE (408) 438-8400 TELEX: 172373

Scientific &

Turbo Pascal Numerical
Methods Toolbox™

Implements the latest high-level mathemati-

cal methods to solve the most common problems.
An essential programming tool for mathe-
maticians, engineers, statisticians, or physicists.
Supports the 8087 chip and comes com-

plete with source code. Minimum memory:
256K. Requires Turbo Pascal 2.0 or later.

Business F

Sprint°: The Professional
13 Word Processor*

The most powerful, easy-to-use word processor
ever written. Can be used “as is™ or told to
function like WordPerfect,” WordStar® or
Microsoft® Word. Includes pop-up menus,
incremental saving, multiple windows and
files, and Autospell (with 100,000-word
dictionary and 300,000-word thesaurus).
Drives practically every printer. Minimum
memory: 256K.

*Available Second Half 1987.

Reflex°: The Database
Manager

No matter what business you're in, Reflex

is the database management system for you.
With its Form, List, Graph, Crosstab and

Report views that give you instant graphic
analyses of your data, Reflex shows you patterns
and relationships otherwise hidden in data

and numbers. Minimum memory: 384K.

Reflex: The Workshop ™

Taps Reflex’s powerful analytical capabilities
and makes them work for your business.

Comes with 22 models and five samples

on disk that you can adapt to your needs.

It can also generate form letters, help you
through common analysis problems, and explain
advanced reporting and graphing techniques.
Minimum memory: 384K.

SuperKey°: The Productivity
Booster

With SuperKey you can turn a thousand
keystrokes into the one keystroke of your
choice! You can encrypt your confidential

files in seconds. And SuperKey is RAM-
resident, so you can encrypt files or create
macros while you're running another program.
Minimum memory: 128K.

Engineering

Eureka: The Solver™

Any solvable problem that can be expressed
as a linear or non-linear equation can be
solved using Eureka. Its pull-down menus
and context-sensitive help screens make

it easy to use and learn. Eureka can also
plot graphs of functions and print them

out. Minimum memory: 384K.

roductivity

SideKick®: The Desktop
Organizer

The #1 best-seller for the IBM PC and true
compatibles, SideKick is a powerful, RAM-
resident desktop management program.
Comes with notepad, calendar, calculator,
appointment scheduler, telephone directory,
and autodialer. Can be called up at the touch
of a key, even while you run other programs.
Minimum memory: 128K.

Traveling SideKick®

Your SideKick’s sidekick and the organizer
for the Computer Age! It's both a notebook
that travels with you and a software program.
The software lets you organize, format and
print your address book, phone list, mailing
labels and calendar engagements in daily,
weekly, monthly or yearly formats from

its own files or your SideKick files. So you
can stay up-to-date, at home and on the

road. Minimum memory: 256K.

Turbo Lightning®: The Spell-
Checker & Thesaurus

Gives you a RAM-resident spell-checker
and thesaurus. Beeps every time you make
a mistake and lets you correct a misspelled
word instantly. Synonyms are available—
at the touch of a key! Minimum memory:
266K.

Lightning Word Wizard "

With the help of Turbo Lightning, you can
incorporate Lightning Word Wizard's procedures
and functions into your own word programs.
Includes source code for Turbo Lightning.
Comes with seven games and solvers to

give you ideas on how to implement the
routines in your own applications—or play

the games just for fun! Minimum memory:
256K.

ut we haven't stopped there.
BWe are constantly developing

new products. Improving our
existing products. And exploring
new and better ways to make your
computer’s potential more accessi-
ble, your software more friendly,
more affordable.

Our commitment extends over
several categories of software
development. From programming
languages and Artificial Intel-
ligence to business productivity
and scientific and engineering pro-
ducts. And our products in every
category are faster, more powerful
and technically more advanced.

So whether you're a PC user or
a Macintosh user; whether you're
an expert programmer or a begin-
ner; a business user or someone
who just likes tapping at a key-
board, you can be sure that Bor-
land has the software to match
your needs. At a price to match
your pocket. And a performance
level that's unmatched.

Take a look inside. Make your
choice. Then, if you have any
further questions, call us at
(408) 438-8400.

Turbo Pascal,
Turbo C, Sprint,
and Reflex
are 4 of our
famous products.

The other 20 are inside . . .

opment Languages

6

Turbo Pascal Tutor® 2.0

This interactive tutorial for Turbo Pascal

takes you from “What's a computer?’ through
complex data structures, assembly languages,
trees and tips on writing long Turbo Pascal
programs. Includes a 400-page, quick-study
tutorial and 10,000 lines of fully commented
source code. Minimum memory: 192K.
Requires Turbo Pascal 3.0 (CP/M-80

version available.)

Turbo Pascal Graphix Toolbox®

A library of graphics routines for Turbo

Pascal programs. Lets even beginning pro-
grammers create high-resolution graphics

on the IBM® PC, true compatibles, and

the Zenith Z-100.® Gives you a set of pro-
gramming tools for complex business graphics,
easy windowing and storing screen images

to disk and to memory. Minimum memory:
192K. Requires Turbo Pascal 3.0.

Turbo Pascal Database
Toolbox°®

A perfect companion to Turbo Pascal, it
contains a complete library of Pascal proce-
dures that allows you to search and sort

data and build powerful database applications.
Comes with source code for a free sample
database—right on the disk. Minimum memory:
128K. Requires Turbo Pascal 2.0 or later.
(CP/M-80 version available.)

Turbo Pascal Editor Toolbox®

It's the only tool you need to build your
own text editor or word processor. Comes
with two sample editors—Simple Editor
and MicroStar“—and their complete source
code, plus information on how to install

the features you need into your programs.
Minimum memory: 192K. Requires Turbo
Pascal 3.0.

Turbo Pascal GameWorks®

Teaches you techniques to quickly create

your own computer games using Turbo Pascal.
The secrets and strategies of the Masters

are revealed for the first time in three classic
games of strategy—Chess, Bridge and Go-
Moku. Complete source code is included.

You can play them “‘as is,” customize them
for greater challenge or build a whole new
set of games! Minimum memory: 192K.
Requires Turbo Pascal 3.0.

1

Programming Devel

Turbo Basic®

With a compilation speed of up to 12,000*
lines per minute, Turbo Basic combines

an interactive editor, fast memory-to-memory
compiler and a trace debugging system.
Program size not limited by 64K. Compatible
with BASICA. Offers 8087 math support and
true recursion. Comes with a free MicroCalc™
spreadsheet and source code. Minimum
memory: 320K.

*Run on a 4.77 MHz IBM PC with 20MB hard disk using Turbo
Basic version 1.0.

Turbo C°®

With its RAM-based compiler and high-
performance linker, Turbo C offers a compilation
speed of up to 7,000* lines per minute.

Fully compatible with the ANSI C standard.
Generates native in-line code and linkable
object modules. Supports tiny, small, compact,
medium, large and huge memory model
libraries. Minimum memory: 384K.

*Run on a 6 MHz IBM AT using Turbo C version 1.0 and Turbo
Linker version 1.0.

Turbo Prolog°®

The high-speed Prolog compiler. Brings
Hth-generation programming language and
supercomputer power to your IBM PC and
compatibles. Both amateurs and professionals
can build powerful expert systems, customized
knowledge bases, natural language interfaces,
and smart information-management systems.
Minimum memory: 384K.

Turbo Prolog Toolbox™

A professional developer'’s toolbox to help
you build powerful commercial applications
in Prolog. Enhances Turbo Prolog with over
80 tools, 40 sample programs and 8,000
lines of source code that can easily be
incorporated into your programs.

Minimum memory: 512K.

Turbo Pascal® 3.0

The worldwide standard in high-speed Pascal
compilers. Gives you a high-performance devel-
opment tool featuring a completely integrated
programming environment, a compiler which
instantly locates programming errors, a full-
screen editor, BCD reals, 8087 support and
much more. Minimum memory: 128K.
(CP/M-80° version available.)

All Borland products are of Borland International, Inc. or
Borland/Analytica, Inc. Other brand and produm names are trademarks or registered trade-
marks of their respective holders. Copyright 1987 BOR 0291

that outperforms anything else

on a disk, at a price that beats
everything else on a disk, you're
looking to the right people! Bor-
land International. And here’s
why:

Our products are guaranteed to
perform better than anything else.
They're packed with more speed
and power than you'll find any-
where else. And they come with
a friendly user-interface design
that’ll get you started right away.
They are products built with a
long-standing commitment to Qual-
ity, Speed, Power and Price!

We invented RAM-resident desk-
top organizers with SideKick. We
set the Pascal and Prolog language
standards worldwide with Turbo
Pascal and Turbo Prolog. We
changed the way people look at
data with Reflex: The Database
Manager. We also introduced the
concept of not copy-protected
software.

I f you're looking for software

TURBO PASCAL

NUMERIGAL
METHODS
TODLBOXN™

Provides state-of-
the-art math tools
to solve scientific
and engineering
problems—fast!

MACINTOSH

implements the latest high-level mathematical methods t

’urbo Pascal Numerical Methods Toolbox for the Macintos

solve common scientific and engineering problems. Fast.

So every time you need to calculate
an integral, work with Fourier trans-
forms, or incorporate any of the classi-
cal numerical analysis tools into your
programs, you don't have to reinvent
the wheel, because the Numerical
Methods Toolbox is a complete collec-
tion of Turbo Pascal routines and pro-
grams that gives you applied state-of-
the-art math tools. It also includes two
graphics demo programs that use
least-square and Fast Fourier Trans-
form routines to give you the picture
along with the numbers.

The Turbo Pascal Numerical
Methods Toolbox is a must if you're
involved with any type of scientific or
engineering computing on the Macin-
tosh. Because it comes with complete
source code, you have total control
of your application at all times.

What Numerical Methods

Toolbox will do for you:

® Find solutions to equations

= |nterpolations

® (alculus: numerical derivatives and
integrals

Matrix operations: inversions, dete
minants, and eigenvalues
Differential equations
Least-squares approximations
Fourier transforms :
Graphics

Five free ways to look at
Least-Squares Fit!

As well as a free demo of
Fast Fourier Transforms, you
also get the Least-Squares Fit in
five different forms—which
gives you five different methods
of fitting curves to a collection of
data points. You instantly get the
picture! The five different forms
are

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term

3. Logarithm Polynomial

They're all ready to compile and
run as is.

Minimum system requirements: Macintosh 512K, Macintosh Plus, SE, or II, with one 800K disk drive (or two 400K).
Al Borland products are trademarks or registered trademarks of Borland International, Inc. or Borland/Analytica, Inc. Macintosh is a

trademark licensed to Apple Computer, Inc. Copyright 1987 Boriand Intemational. A Borland furbo Toolbox product.

INTERNATIONAL

2,5 BORLAND

BOR 0416

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CA 95066

ISBNO-&87524-1bb-¢

