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Borland's No-Nonsense License Statement! 

This software is protected by both United States copyright law and international treaty provisions. There­
fore, you must treat this software just like a book, with the following single exception. Borland International 
authorizes you to make archival copies of the software for the sole purpose of backing-up our software 
and protecting your investment from loss. 

By saying, "just like a book," Borland means, for example, that this software may be used by any number of 
people and may be freely moved from one computer location to another, so long as there is no possibility 
of it being used at one location while it's being used at another. Just like a book that can't be read by two 
different people in two different places at the same time, neither can the software be used by two differ­
ent people in two different places at the same time. (Unless, of course, Borland's copyright has been 
violated.) 

Borland International grants you (the licensed owner of the Turbo Pascal Numerical Methods Toolbox) 
the right to incorporate toolbox routines into your programs. You may distribute your programs that 
contain Numerical Toolbox routines in executable form without restriction or fee, but you may not give 
away or sell any part of the actual Numerical Methods Toolbox source code. You are not, of course, res­
tricted from distributing your own source code. 

Sample programs are provided on the Numerical Methods Toolbox diskettes as examples of how to use 
the various toolbox features. You may edit or modify these sample programs and incorporate them into 
the programs that you write. Use of these sample programs is governed by the same conditions and res­
trictions as outlined in the first paragraph above. 

WARRANTY 
With respect to the physical diskette and physical documentation enclosed herein, Borland International, 
Inc. ("Borland") warrants the same to be free of defects in materials and workmanship for a period of 60 
days from the date of purchase. In the event of notification within the warranty period of defects in mate­
rial or workmanship, Borland will replace the defective diskette or documentation. If you need to return a 
product, call the Borland Customer Service Department to obtain a return authorization number. The 
remedy for breach of this warranty shall be limited to replacement and shall not encompass any other 
damages, including but not limited to loss of profit, and special, incidental, consequential, or other similar 
claims. 

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but 
not limited to implied warranties of merchantability and fitness for a particular purpose with respect to 
defects in the diskette and documentation, and the program license granted herein in particular, and with­
out limiting operation of the program license with respect to any particular application, use, or purpose. In 
no event shall Borland be liable for any loss of profit or any other commercial damage, including but not 
limited to special, incidental, consequential or other damages. 

GOVERNING LAW 
This statement shall be construed, interpreted, and governed by the laws of the state of California. 

First Edition 
Printed in USA 
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READ ME FIRST 
In order to provide you with the latest technical information o~ our products, announcements of future updates, and up-to­
the-minute information on new products, please complete and return this registration form. Be sure to read the Borland No­
Nonsense· License Statement on the other side. 

Technical Support-To receive telephone technical supporjt, you must be the registered owner of the Borland product. 
Prompt technical support is available through the Borland Forums on CompuServe; just type GO BOR at any CompuServe prompt. 
If you need further assistance. write a letter or call Borland and be prepared to give the product name, version number, and 
the serial number found on the label of your master diskette. 

The README File-If present on your master diskette, this file contains important information that may not be in the 
manual. To view this file. simply type README at the command :prompt. Be sure to read this file before you call for technical 
support. 

Thank you for completing this product registration card and returnirng it promptly. We want to keep you informed. 

Name and address must be filled in by the person using the product for the registration form to be valid. (Please print legibly.) 

Serial#-------------------------'--------- Date Purchased:---'---'---
M D Y 

Name: ----------------------------------Title:---------------
!Bst first middle initial 

CompanyName'----------------------+--------------Department _______ _ 

Address: ------------------------'---------------Mail Stop: ______ _ 

City: ----------------------State: _..,-______ Zip: ________ Country: _______ _ 

Phone#(---------------------~--~--------------- a Work a Home 

I have read and agree to the terms of the Borland No-Nonsense License Agreement 

Signature -----------------------------------Date:,___/___/ __ _ 

In order to help us serve your needs, please complete the following: 

Microcomputer used: 
0 IBM PC or compatible Cl Macintosh 0 other ----------'-------------------------­
Where did you purchase this program? 
0 Borland direct 
0 discount retailer 

Software was bought for: 

0 other mail order 
0 full-service retailer 

0 self 0 company I work for 0 company I own 

Where will you use this program! 
0 at home 0 at work 0 both 0 other 

Where did you hear about this program! 
D ad in computer publication 
D ad in general interest publication 
0 other user 

Nature of business: 
D finance/real estate/insurance 
0 retail/wholesale 
0 legal 
D health 

0 published review 
0 retailer 
0 trade show 

D computer consulting 
0 other consulting 
0 software publishing 
0 other publishing 

0 other-------------------

0 other-------------------

D transportation/communication/utilities 
D mining/construction 
D governmemt 
0 military 

D professional services 
D other services 
Nature of occupation: 

D computers/electronics manufacturing 
0 other manufacturing 

D education 0 other __________________ _ 

0 MIS/DP. systems analyst 0 administration 
D programming D finance/accounting 
D engineering/scientific D sales/marketing 
D doctor/lawyer D manufacturing/production 
0 other professional 0 purchasing 

0 operations 
D consulting 
D teacher/trainer 
0 clerical 

0 student 
D homemaker 
0 retired 
0 other--------------

Number of employees at business: 0 1-24 
Number of mlcrocomputen at business: 0 1-9 

0 25-99 0 100-499 
0 10-49 

0 500-1999 
0 50-249 

0 2000-9999 
0 250-999 

0 more than 9999 
0 more than 999 

Other Borland products owned: 
Programming languages 
0 Turbo Pascal 

Turbo Pascal Toolboxes 
0 Tutor 
0 Database 
0 Editor 
0 Graphix 
0 GameWorks 
0 Numerical Methods 

What other software do you use: 

0 Turbo Prolog 
0 Turbo Prolog TB 

0 Turbo Basic 
0 Turbo Basic Database TB 
0 Turbo Basic Editor TB 
0 Turbo Basic Telecom TB 

0 Turbo C 

0 spreadsheet 0 languages 
D database D accounting 
D word processor 0 communications 
0 project management 0 network 

What hardware peripherals do you use! 
0 modem · 
0 laser printer 
D mouse 

0 hard disk 
0 plotter 
0 other peripheral 

Business Appllcatlons 
0 Reflex 

0 Reflex Workshop 
0 Sprint 
For the Macintosh 
0 Turbo Pascal 
0 Reflex 
0 SideKick 
0 Eureka 

0 desktop publishing 
0 business graphics 
0 CAD/CAM/CAE 

Utllity Programs: 
0 SideKick 

0 Traveling Side Kick 
0 SuperKey 
0 Turbo Lightning 

0 Lightning Word Wizard 
Scientific & Engineering 
0 Eureka 

0 Other -----------

D RAM-resident utilities 
0 games 

0 other-------------------------

0 EGAcard 
D other printer ----------------
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Introduction 

The Turbo Pascal Numerical Methods Toolbox is a reference manual for both the 
student of numerical analysis and the professional needing efficient routines. An 
elementary background in calculus and linear algebra is assumed, although many 
of the algorithms use only high-school-level mathematics. A general knowledge of 
Turbo Pascal® is also assumed. If you need to brush up on your knowledge of 
Pascal, we suggest looking at the Turbo Pascal for the Macintosh Reference Manual. 

Before you begin using a particular routine, read through this brief introductory 
chapter and then refer to the chapter that interests you. 

Toolbox Functions 

The Turbo Pascal Numerical Methods Toolbox provides routines for 

• Finding solutions to equations 

• Interpolations 

• Calculus 

• Numerical derivatives and integrals 

• Matrix operations: inversions, determinants, and eigenvalues 



• Differential equations 

• Least-squares approximations 

• Fourier transforms 

About this Manual 

The major areas in numerical analysis are represented in this Toolbox, with each 
chapter focusing on a particular problem. Each routine begins with a general 
description of the implemented algorithm or numerical method. (References to 
numerical analysis texts are provided for each numerical procedure.) User-supplied 
types, functions, and input and output parameters are defined, and the syntax of 
the procedure call is provided. If appropriate, a "Comments" section is also pro­
vided. 

Finally, every algorithm in the Toolbox is accompanied by a general-purpose pro­
gram that handles all the necessary 1/0, while allowing you to try each algorithm 
without building any code. Handily, these sample programs will often reduce the 
coding your own application may require. 

As an example, let's say you want to find the roots to an equation in one variable. 
First, you would read the introduction to Chapter 2, "Roots to Equations in One 
Variable," and choose the numerical method best suited to your particular problem. 
Second, you would run the sample program for the desired numerical method to 
determine the necessary input and output. Third, you would write a Turbo Pascal 
function defining your equation, using the function already coded in the sample 
program as a guide. Fourth, you would run the sample program with your function 
substituted for the original one. Of course, if these algorithms are to be part of a 
larger program, you must build all the interfaces to the other parts of the system; 
but this should only be done after you gain experience with the particular numeri­
cal method. 

Several books are referred to throughout the text; complete references are listed at 
the back of the book in the section entitled "References." 

The body of this manual is printed in normal typeface; other typefaces serve to 
illustrate the following: 

Alternate 

Italics 

Boldface 
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This type displays program examples and procedure and function 
declarations. 

This type emphasizes certain concepts, first-mentioned terms, and 
mathematical expressions. 

This type marks the reserved words of Turbo Pascal in text and in 
program examples. 
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On the Distribution Disks 

The routines for this Toolbox are contained on two packed disks. Their contents and 
general installation instructions are covered in Chapter 1. 

System Requirements 

To use the Turbo Pascal Numerical Methods Toolbox you must have one of these 
Macintosh computers: 512K, Plus, SE or II; with one BOOK or two 400K disk 
drives. 

You will also need Turbo Pascal version 1.0 to run the routines. 

Acknowkdgements 

We refer to the following products in this book. 

• Turbo Pascal is a registered trademark and Turbo Pascal Numerical Methods 
Toolbox for the Macintosh is a trademark of Borland International, Inc. 

• ImageWriter and LaserWriter are trademarks of Apple Computers, Inc. 
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c H A p T E R 1 
Routine Beginnings 

This chapter provides you with everything you need to start using the routines in 
this Toolbox. We'll discuss the files supplied on the disks. We also briefly discuss 
data types and defined constants used in the Toolbox, and the setting of compiler 
directives. 

First, though, before we thrust you into the middle of numerical madness, let's take 
a look at one way to use this Toolbox. 

Using the Toolbox: An Example 

In late 1986 and early 1987, the America's Cup 12-meter yacht championship was 
held. The 12-meter yachts are just large sailboats, but the competition is so intense 
that the only way to be competitive is to use dozens of people, spend millions of 
dollars, design a special boat, and spend a couple of years training for the race. The 
race has become so sophisticated that many of the sailboats have on-board com­
puters and other electronic equipment. 

To keep stride with other challengers, one yacht's crew used personal computers, 
and of course, Borland software. They used Turbo Pascal to design the boat's hull. 
They used Reflex®: The Database Manager to maintain their databases and to 
display plots while the boat was sailing. And when it came time to do some mathe­
matical modeling, again they turned to Borland for its inimitable software and 
chose the Turbo Pascal Numerical Methods Toolbox. 
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Simply speaking, the problem they had was one of"precision monitoring.D It takes a 
crew of very highly skilled sailors to compete in America's Cup races, but even the 
best skippers cannot act with sufficient precision to win. A typical race lasts for 
several hours, and the winner usually wins by only a few feet. 

The electronic equipment on a boat can sense with reasonable accuracy all of the 
crucial variables: boat velocity, wind velocity, boat direction, boat position, and so 
on. This data must then be made available to the skipper in a coherent form, and 
he/she must decide at what angle to place the rudder based on that information. 
The problem is too complex to rely on intuition alone. 

Even just displaying the velocity is more complex than you might think at first. 
When sailing on the ocean, the waves are big enough that the velocity is in constant 
flux. Fortunately, the fluctuations due to the waves represents a steadily periodic 
force. By using Fourier transforms (Chapter 10), the crew was able to identify the 
periodic portion of the velocity and subtract it out. The result: the velocity as a 
function of time but with the wave fluctuations eliminated. The graph of this modi­
fied velocity is much smoother, and allows the skipper to tell much more quickly 
and accurately whether the boat is accelerating or decelerating. 

To measure the acceleration quantitatively, the crew used the fact that the accelera­
tion is the derivative of the velocity. They were able to do this easily with differenti­
ation routines (Chapter 4). They were also able to directly measure the distance 
travelled by using integration routines (Chapter 5), and the fact that distance is the 
integral of the speed. 

Perhaps the most difficult problem in navigating a sailboat is aiming the rudder. 
You can't just aim the boat in the direction that you want to go, rather you have to 
pick a direction that you can sail rapidly, depending on the wind direction. An 
experienced skipper can judge this pretty well, but not well enough. Every boat is 
a little different, and the best way to handle one boat is not necessarily the best way 
to handle another. 

So, the team ran extensive trial races with the boat to gather data on how the boat 
performed in various circumstances. The data was collected automatically by elec­
tronic instruments on board, and stored digitally on floppy disks. They then used 
Reflex to manage the data and to display graphs. But they lacked the tools to relate 
their data to the data they would have under actual racing conditions. 

In order to predict the behavior of their boat in an actual race, the team created a 
model from their collected data using "least-squares routines (Chapter 9). With the 
least-squares routines, you can create a multiparameter model and then find the 
values of the parameters that make the model most accurately fit the data. With a 
mathematical model of the boat's behavior, the team was then able to predict how 
the boat would perform under circumstances similar but not identical to its prac­
tices. 
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This, of course, is just one of many possible applications of this Toolbox. Now, let's 
go on to the fundamentals. 

The Distribution Disks 

All of the Toolbox routines are contained on two disks. Each disk has folders corre­
sponding to chapters in the manual. 

The files for each chapter are self-contained and do not require any files from any 
other chapter, with these exceptions: 

• All files require Turbo Pascal (not included). 

• Most files require the IOSelection unit, located on Disk 2. 

• The files for Chapter 11 require the compiled units from Chapters 9 and 10, as 
well as the TurboGraph unit from Chapter 11. 

The numerical analysis routines are in the files with the .unit suffix. The files with 
the .pas suffix are demonstration programs. To run a demonstration program, get 
into Turbo Pascal and load the .pas file of your choice. The menus are self-explana­
tory. The .dat files contain input data for specific .pas files. 

Contents of the distribution disks: 

NMTDisk 1: 
Read Me 
Read.file 
FFTComplex 
FFTDemo 
FFTDemo.pas 
FFTMenu.r 
FFTMenu.rsrc 
FFTReal 
FFTRoutines 
LeastSquares 
LeastSquaresDemo 
LSQDemo.pas 
LSQMenu.r 
LSQMenu.rsrc 
SamplellA.dat 
SamplellB.dat 
TurboGraph.unit 

Routine Beginnings 

Read Me program (double click on this) 
Text for the Read Me program 
Compiled Unit from Chapter 10 
Fast Fourier Transform Demo program 
Source for Fast Fourier Transform Demo 
RMaker source for FFTMenu.rsrc 
RMaker output for Fast Fourier Transform Demo 
Compiled Unit from Chapter 10 
Compiled Unit from Chapter 10 
Compiled Unit from Chapter 9 
Least Squares Demo program 
Source for Least Squares Demo 
RMaker source for LSQMenu.rsrc 
RMaker output for Least Squares Demo 
Data file for Least Squares Demo 
Data file for Fast Fourier Transform Demo 
Source to the TurboGraph Unit 

7 



NMTDisk2: 
Packed source for IO Selection 
Packed source for Chapter 2 
Packed source for Chapter 3 
Packed source for Chapter 4 
Packed source for Chapter 5 
Packed source for Chapter 6 
Packed source for Chapter 7 
Packed source for Chapter 8 
Packed source for Chapter 9 
Packed source for Chapter 10 

IO Selection 
Chapter2 
Chapter3 
Chapter4 
Chapter5 
Chapter6 
Chapter7 
Chapter8 
Chapter9 
Chapter 10 
UnPack The program to unpack the packed files 

Installation 

The files Chap2 through ChaplO on your disk are packed source for the corre­
sponding chapters in this manual. In order to use these files, you must first unpack 
them with the UnPack program. 

How to use the UnPack program: 

1. Double-click on the icon for the UnPack program. You will be asked to name 
the Packed file to U nPack. 

2. Using the Standard File Dialog, select the Packed· file to UnPack. You will be 
asked for the Volume/Folder to save all of the source files to. 

3. Using the Standard File Dialog, select the Volume/Folder to hold the source 
files in that Packed file. 

And now you are ready to begin. 

Fiks on Distribution Disks 

Note: These files are not copy protected. All files are ordinary text files. 

Contents of the folders. 

IO Selection Routines common to all chapters 
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IO Selection 
IO Selection.r 

IO Selection.rsrc IO Selection.unit 
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Chap2 "Roots to Equations in One Variable" 

Bisect.pas 
Laguerre.pas 
Muller.pas 

Chap3 "Interpolation" 

Cube_cla.pas 
CubeJre.pas 
Divdi£pas 
Interpolation 
Interpolation. unit 

N ewtdefl. pas 
Raphson.pas 
Raphson2.pas 

Lagrange.pas 
Sample3A.dat 
Sample3B.dat 
Sample3C.dat 
Sample3D.dat 

Chap4 "Numerical Differentiation" 

Deriv.pas 
Deriv2.pas 
Derivfn.pas 

Deriv2fn. pas 
Differentiation 
Differentiation. unit 

Chap5 "Numerical Integration" 

Adapgaus.pas Integration.unit 
Adapsimp.pas Romberg.pas 
Integration Simpson.pas 

Chap6 "Matrix Routines" 

Det.pas 
Dirfact.pas 
Gauselim.pas 
Gaussidl.pas 

Inverse.pas 
MatrixRoutines 
MatrixRoutines.unit 
Partpivt.pas 

Chap7 "Eigenvalues and Eigenvectors" 

EigenRoutines 
EigenRoutines.unit 
lnvpower.pas 

Jacobi.pas 
Power.pas 
Sample7 A.dat 

Roots of Equat 
Roots of Equat.unit 
Secant.pas 

Sample3E.dat 
Sample3F.dat 
Sample3G.dat 
Sample3H.dat 
Sample31.dat 

Interdrv.pas 
Sample4A.dat 
Sample4B.dat 

Trapzoid.pas 

Sample6A.dat 
Sample6B.dat 
Sample6C.dat 
Sample6D.dat 

Wielandt.pas 

Chap8 "Initial Value and Boundary Value Methods" 

Adams_l.pas Runge-1.pas 
DifferentialEquat.unit Runge-2.pas 
Linshot2.pas Runge__N.pas 
RKF-1.pas Runge_<;l.pas 

Routine Beginnings 

Runge-"2.pas 
Shoot2.pas 
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Chap9 "Least-Squares Approximations" 

Least.pas 
LeastSquares 

LeastSquares.unit 
Sample9A.dat 

ChaplO "Fast Fourier Transform Routines" 

FFTComplex 
FFTComplex.unit 
FFTProgs.pas 
FFTReal 

FFTReal.unit 
FFTRoutines 
FFTRoutines.unit 
SamplelOA.dat 

SamplelOB.dat 
SamplelOC.dat 

All sample programs use the IO Selection unit from the disk. This file includes 
procedures that are common to all sample programs. When copying any of the 
sample programs to a disk, be sure to also copy the files IO Selection and IO 
Selection.rsrc to that disk or the sample programs will not compile. 

We have made the sample programs general and easy to use. For example, numeri­
cal input can originate from the keyboard (where improper input is trapped) or 
from a text file; output can be sent to the printer, screen, or text file; other refine­
ments are also included. Since, to a beginner, the supporting code may obscure the 
simplicity of calling the procedure, we have included a minimal sample program 
for Newton-Raphson' s method of root-finding (Raphson2.pas). 

The Graphics Demos 

Because graphic displays are often an essential part of numerical analysis, we have 
included two demonstration programs that involve display of numerical results. 
These programs rely on graphics routines contained in the unit library TurboGraph 
supplied on the distribution disk. 

The demonstration programs are on Disk 1. For instructions about how to run or 
recompile them, see Chapter 11. 

Data Types and Defined Constants 

Data types that might be confused with those in the calling program have been 
prefixed with the letters TN (for Turbo Numerical); for example, TNmatrix or 
TNvector. All Toolbox-type declarations are contained in the particular Toolbox 
unit you are using in your program. Therefore, you must recompile the unit if you 
want to modify one of the type declarations. (You might want to do this to dimen-
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sion arrays based on your particular needs.) For example, the Lagrange procedure 
requires the definition 

type TNvector = array[O .. TNArraySize] of Extended; 

The identifier TNArraySize should be optimized by the user, although we have set 
a default value in each of the Toolbox units. It may be replaced with an integer or 
byte constant. 

Compfler Directives 

Aside from the usual default values of the compiler directives in standard Turbo 
Pascal, we have set the compiler directive to {$R +}in all units that use arrays, and 
to {$1 - } in all sample programs. The first directive checks to see that all array­
indexing operations are within the defined bounds and all assignments to scalar 
and subrange variables are within range. The latter directive disables 1/0 error­
checking. All the sample programs have their own 1/0 error-checking procedures 
(contained in the unit library IO Selection), so the {$1-} directive must remain 
disabled in the sample programs. The array checker {$R +} should always be 
active, since the performance penalty is slight and the advantages are significant. 

Routine Beginnings II 



c H A p T E R 2 
Roots to Equations in One Variabl,e 

The routines in this chapter are for finding the roots of a single equation in one real 
variable. A typical problem is to solve 

x * exp(x) - 10 = 0 

In general, the routines find a value of x, where x is a scalar real variable, satisfying 

f(x) = 0.0 

where f is a real-valued function that you program in Pascal. 

All of the methods are approximate methods, meaning that they find an approxi­
mate value of x that makes f(x) close to zero. Because of round-off error, it is usually 
not possible to find the exact value of x. Furthermore, they are all iterative 
methods, meaning that you specify some initial guess that is some value for x, 
which you think is reasonably close to the solution. The routine repeats some calcu­
lations that replace the guess x with a more accurate guess until the required level 
of accuracy is achieved. 

The bisection method returns an approximation to a root of a real continuous func­
tion of the real variable x. This method always converges (as long as the function 
changes signs at a root), but may do so relatively slowly. 

The Newton-Raphson method also returns an approximation to a root of a real 
functionf of the real variable x. When this algorithm converges, it is usually faster 
than the bisection method. If more than one root of a polynomial equation is 
desired, then use Newton-Horner s method. 
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The secant method is similar to the Newton-Raphson method, but doesn't require 
knowledge of the first derivative of the function. Consequently, it is more flexible 
than the Newton-Raphson method, though somewhat slower. 

Newton-Homer's method applies Newton's method to real polynomials. It also 
uses deflation techniques to attempt to approximate all the real roots of a real 
polynomial. Both the Newton-Homer and Newton-Raphson methods are faster 
than the bisection and secant methods, but are undefined if If '(x)I < = TNNear­
lyZero. 

The Newton-Homer and Newton-Raphson methods both converge around multi­
ple roots, although convergence is slow. These algorithms depend upon an initial 
approximation of the root. If the initial approximation is not sufficiently close to the 
root, the Newton methods may not converge. In some instances, an initial choice 
may lead to successive iterations that oscillate indefinitely about a value of x usu­
ally associated with a relative minimum or relative maximum off In either case, 
the bisection method could be used to determine the root or to determine a close 
approximation to the root that can be employed as an initial approximation in the 
Newton-Raphson or Newton-Homer methods. 

MiiUer' s method returns an approximation to a root (possibly complex) of a complex 
function of the complex variable x. Although M iiller' s method can approximate the 
roots of polynomials, we recommend that you use Newton-Homer's method, the 
secant method, or (in the case of complex polynomials) Laguerre's method to find 
the roots of polynomials. 

Laguerre's method attempts to approximate all the real and complex roots of a real 
or complex polynomial. Laguerre's method is very reliable and quick, even when 
converging to a multiple root. This is the best general method to use with polyno­
mials. 

A caution when solving polynomial equations: Polynomials can be ill-conditioned, 
in the sense that small changes in the coefficients may lead to large changes in the 
roots. 
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Stopping Criteria 

All the root-finding routines use the function TestForRoot to determine if a root has 
been found. 

function TestForRoot(X, OldX, Y, Tol : Real).: Boolean; 

{------------------------------------------------------------------} 
{ Here are four stopping criteria. If you wish to } 
{ change the active criteria, simply comment off the current } 
{ criteria (including the appropriate or) and remove the comment } 
{ brackets from the criteria (including the appropriate or) you } 
{ wish to be active. } 
{------------------------------------------------------------------} 
begin 

TestForRoot := 
(ABS(Y) <= TNNearlyZero) 

or 

(ABS(X - OldX) < ABS(OldX*Tol)) 

(* or 
(* 
(* (ABS(X - OldX) < Tol) 
(* 
(* or 
(* 
(* (ABS(Y) <= Tol) 

end; { procedure TestForRoot } 

{-------------------------} 
{ Y=O } 
{ } 
{ } 
{ } 
{ relative change in X } 
{ } 
{ } 

*) { } 
*) { } 
*) { absolute change in X } 
*) { } 
*) { } 
*) { } 
*) { absolute change in Y } 

{-------------------------} 

The four separate tests provided by function TestForRoot may be used in any 
combination. The default criteria tests the absolute value of Y and the relative 
change in X. If you wish to change the active criteria, simply comment off the 
current criteria (including the appropriate or) and remove the comment brackets 
from the criteria (including the appropriate or) you wish to be active. 

The first criterion simply checks to see ifY is zero (TNNearly'Zero is defined at the 
beginning of the procedure). This criterion should usually be kept active. 

The second criterion examines the relative change in X between iterations. To 
avoid division by zero errors, OldX has been multiplied through the inequality. 

The third criterion checks the absolute change in X between iterations. 

The fourth criterion determines the absolute difference between Y and the allow­
able tolerance. Note: The parameter Tol(erance) means something different in each 
test. Be sure you know which tests are active when you input a value for Tol. 
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Root of a Function Using the Bisection Method (Bisect.pas) 

Description 

This method (Burden and Faires 1985, 28 ff.) provides a procedure for finding a 
root of a real continuous function f, specified by the user on a user-supplied real 
interval [a,b]. The functionsfia) andfib) must be of opposite signs. The algorithm 
successively bisects the interval and converges to the root of the function. You must 
also specify the desired accuracy to which the root should be approximated. 

User-Defined Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Bisect determines the roots of this function. 

Input Parameters 

LeftEndpoi nt: Extended; Left end of the interval 

RightEndpoint:Extended; Right end of the interval 

Tol:Extended; 

Maxlter:Extended; 

Indicates accuracy of solution 

Maximum number of iterations permitted 

The preceding parameters must satisfy the following conditions: 
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1. LeftEndpoint < RightEndpoint. 

2. TNTargetF(LeftEndpoint) * TNTargetF(RightEndpoint) < O; the endpoints 
must have opposite signs. 

3. Tol > 0. 

4. Maxlter ;;:::: 0. 
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Output Parameters 

Answer: Extended; An approximate root of TNTargetF 

fAnswer:Extended; The value of the function at the value Answer 

Iter: Integer; 

Error: Byte; 

Number of iterations to find answer 

0: No error 
1: lter > Maxlter 
2: Endpoints are of the same sign 
3: LeftErulpoint > RightErulpoint 
4: Tol s 0 
5: Maxlter < 0 

If Error = 1 (maximum number of iterations exceeded}, Answer is set to the last x 
value tested andfAnswer is set to TNTargetF(Answer}. If Error > 1, then the other 
output parameters are not defined. 

Syntax of the Procedure Call 

Bisect(LeftEndpoint, RightEndpoint, Tol, Maxiter, Answer, yAnswer, Iter, 
Error,@TNTargetF); 

The procedure Bisect determines the roots of function TNTargetF. 

Comments 

If a root occurs at a relative maximum or relative minimum, the bisection method 
will be unable to locate that value of p if p does not occur as an endpoint of a 
subinterval. 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program Bisect.pas provides I/O functions that demonstrate the bisec­
tion algorithm. To modify this program for your own function, simply change the 
definition of function TNTargetF. Note that the address of TNTargetF is passed into 
the Bisect procedure. 
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Examp"le 

Problem. Determine the solution to the equation cos(x) = x. 

1. Write the following code for function TNTargetF into Bisect.pas: 

{----------- HERE IS THE FUNCTION ------------} 

function TNTargetF(x : Extended) : Extended; 
begin 

TNTargetF := Cos(x) - x; 
end; { function TNTargetF } 

{---------------------------------------------} 
2. Run Bisect.pas: 

Left endpoint: 0 
Right endpoint: 100 

Tolerance (> 0): lE-6 

Maximum number of iterations (> O): 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

· Left endpoint: O.OOOOOOOOOOOOOOetO 
Right endpoint: l.00000000000000et2 

Tolerance: l.OOOOOOOOOOOOOOe-6 
Maximum number of iterations: 100 

Number of iterations: 28 
Calculated root: 7.39085301756859e-l 

Value of the function 
at the calculated root: -2.82073423997129e-7 
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Root of a Function Using the Newton-Raphsan Method 
(Raphson.pas) 

Description 

This example uses Newton-Raphson's algorithm (Burden and Faires 1985, 42 ff.) to 
find a root of a real user-specified function when the derivative of the function and 
an initial guess are given. The algorithm constructs the tangent line at each iterate 
approximation of the root. The intersection of the tangent line with the x-axis 
provides the next iterate value of the root. You must specify the desired tolerance to 
which the root should be approximated. 

User-Defined Functions 

function TNTargetF(x : Extended) : Extended; 

function TNDerivF(x : Extended) : Extended; 

The procedure Newton Raphson determines the roots of the function TNTargetF. 

The function TNDerivF must be the first derivative of function TNTargetF. 

Input Parameters 

InitGuess:Extended; User's initial approximation to the root 

Tol:Extended; 

Maxlter:Integer; 

Tolerance in answer (see "Comments") 

Maximum number of iterations permitted 

The preceding parameters must satisfy the following conditions: 

1. Tol > 0 

2. Maxlter > 0 
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Output Parameters 

Root: Extended; Approximate root. 

Va 1 ue: Extended; Value of the function at the approximate root. 

Deri v: Extended; Value of the derivative at the approximated root. 

Iter: Integer; Number of iterations needed to find the root. 

Error:Byte; 0: No error. 
1: Iter < Maxlter. 
2: The slope is zero (see "Comments"). 
3: Tol s 0. 
4: Maxlter < 0. 

If a root is found, it is returned along with the value of the function at the root 
(which, of course, should be close to zero) and the value of the derivative at the 
root. If Error s 2, the data from the last iteration is returned. 

Syntax of the Procedure Call 

Newton....Raphson(InitGuess, Tol, Maxlter, Root, Value, Deriv, Iter, Error, @TNTargetf, 
@TNDerivF); 

Comments 

Newton's method involves division by the value of the derivative of the function. 
Should the algorithm attempt to do any calculations at a point where the derivative 
is less than TNNearlyZero, the routine will stop and return an error message (Error 
= 2). 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program Raphson.pas provides 1/0 functions that demonstrate the 
Newton-Raphson algorithm. Note that the addresses of TNTargetF and TNDerivF 
are passed to the Newton...Raphson procedure. 

The program Raphson2.pas also provides 1/0 functions that demonstrate the New­
ton-Raphson method. It is an extremely bare-bones program and is provided for 
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the newcomer to Turbo Pascal who wants to see a simple, straightforward applica­
tion of a Toolbox routine. 

Example 

Problem. Determine the solution to the equation cos(x) = x. 

1. Code the following two functions into Raphson.pas (or Raphson2.pas): 

{---------- HERE IS THE FUNCTION -------------} 

function TNTargetF(x : Extended) : Extended; 
begin 

TNTargetF := Cos(x) - x; 
end; { function TNTargetF } 

{---------------------------------------------} 

{-------- HERE IS THE DERIVATIVE -------------} 

function TNDerivF(x : Extended) : Extended; 
begin 

TNDerivF := -Sin(x) - 1; 
end; { function TNDerivF } 

{---------------------------------------------} 
2. Run Raphson.pas: 

Initial approximation to the root: 0 

Tolerance (> O): lE-6 

Maximum number of iterations (>= O): 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Initial approximation: O.OOOOOOOOOOOOOOe+O 
Tolerance: 1.00000000000000e-6 

Maximum number of iterations: 100 

Number of iterations: 5 
Calculated root: 7.39085133215161e-1 

Value of the function 
at the calculated root: O.OOOOOOOOOOOOOOe+O 

Value of the derivative 
of the function at the 

calculated root: -1.67361202918321e+O 
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Here is the Raphson2.pas version of the same function: 

Initial approximation to the root: 0 
Tolerance(>O): lE-6 

Maximum number of iterations(>=O): 100 

Error = 0 

Number of iterations: 5 
Calculated root: 7.39085133215161e-1 

Value of the 
function at the root: O.OOOOOOOOOOOOOOe+O 

Value of the derivative of the 
function at the root: -l.6736120291832le+O 
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Root of a Function Using the Secant Method (Secant.pas) 

Description 

This example uses the secant method (Gerald and Wheatley 1984, 11-13) to find a 
root of a user-specified real function given two initial real approximations to the 
root. The secant method constructs a secant through the two points specified by 
the initial approximations. The intersection of this line and the x-axis is used as the 
next best approximation to the root. The approximation to the root and its prede­
cessor are used to construct the next secant line. The process continues until a root 
is approximated with specified accuracy or until a specified number of iterations 
have been exceeded. 

User-Defined Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Secant will determine the roots of this function. 

Input Parameters 

InitGuessl:Extended; User's first approximation to the root 

InitGuess2:Extended; User's second approximation to the root 

Tol:Extended; 

Maxlter:Integer; 

Indicates accuracy in solution 

Maximum number of iterations permitted 

The preceding parameters must satisfy the following conditions: 

1. Tol>O 

2. Maxlter ~ 0 
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Output Parameters 

Root: Extended; Approximate root. 

Value: Extended; Value of the function at the approximate root. 

Iter: Integer; Number of iterations needed to find the root. 

Error:Byte; 0: No error. 
1: lter > Maxlter. 
2: The slope is zero (see "Comments"). 
3: Tol s 0. 
4: Maxlter < 0. 

If a root is found, it is returned with the value of the function at the root (which, of 
course, should be nearly zero). If Error S 2, then the data from the last iteration is 
returned. 

Syntax of the Procedure Call 

Secant(InitGuessl, InitGuess2, Tol, Maxlter, Root, Value, Iter, Error, @TNTargetF); 

The procedure Secant determines the roots of the function TNTargetF. 

Comments 

The secant algorithm constructs a line through two points and finds the intersec­
tion of that line with the x-axis. If the line has a slope whose absolute values are 
less than TNNearly'Zero (that is, the two points have the same y-value), then it has 
no intersection with the x-axis (or infinitely many if it lies on the x-axis) and the 
algorithm will no longer continue. If this happens, Error 2 is returned. Error 2 will 
also be returned if the absolute difference of the two initial approximations ( Guessl 
and Guess2) is less than TNNearly'Zero. 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program Secant.pas provides 1/0 functions that demonstrate the 
secant algorithm. Note that the address ofTNTargetF is passed to the secant proce­
dure. 

24 Turbo P'ascal Numerical Methods Toolbox 



Example 

Problem. Determine the solution to the equation cos(x) = x. 

l. Write the following code for procedure TNTargetF into Secant.pas: 

{----------- HERE IS THE FUNCTION ------------} 

function TNTargetF(x : Extended) : Extended; 
begin 

TNTargetF := Cos(x) - x; 
end; { function TNTargetF } 

{---------------------------------------------} 
2. Run Secant.pas: 

First initial approximation to the root: 0 

Second initial approximation to the root: 

Tolerance (> 0): lE-8 

Maximum number of iterations (> O): 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

First initial approximation: 
Second initial approximation: 

Tolerance: 
Maximum number of iterations: 

Number of iterations: 
Calculated root: 

Value of the function 
at the calculated root: 

Roots to Equations in One Variable 

O.OOOOOOOOOOOOOOetO 
1.00000000000000e+O 
1.00000000000000e-8 

100 

6 
7.39085133215161e-1 

O.OOOOOOOOOOOOOOe+O 
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Real Roots of a Real Polynomial Equation Using the 
Newton-Hamer Method with Deflation (Newtdefl.pas) 

Description 

This example uses Newton-Homer's algorithm and deflation. Newton-Homer is 
the Newton-Raphson method applied to polynomials (Burden and Faires 1985, 42 
ff). Deflation is used to find several roots of a user-specified real polynomial given 
an initial guess specified by the user. This procedure approximates a real root and 
then removes the corresponding linear factor from the given polynomial. The 
newly obtained (deflated) polynomial is then analyzed for a real root. This process 
continues until a quadratic remains, the remaining roots are complex, or the algo­
rithm is unable to approximate the remaining real roots. Should the polynomial 
contain two complex roots, they may be determined using the quadratic formula. 
You must specify (at most) the tolerance to which the roots should be approxi­
mated. 

User-Defined Types 

TNvector = array[O •. TNArraySize] of Extended; 

TNintVector = array[O .• TNArraySize] of Integer; 

Input Param£ters 

Ini tDegree: Integer; Degree of user-defined polynomial 

Ini tPo ly: TNvector; Coefficients of user-defined polynomial 

Guess: Extended; User's initial approximation 

Tol: Extended; Indicates accuracy in solution 

Maxlter: Integer; Maximum number of iterations permitted 
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The preceding parameters must satisfy the following conditions: 

1. InitDegree > 0 

2. Tol > 0 

3. Maxlter :2!: 0 

4. lnitDegree s TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector. TNArraySize is oot a variable name and is 
never referenced by the procedure; hence there is no test for condition 4. If condi­
tion 4 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active). 

Output Parameters 

Degree: Integer; Degree of the deflated polynomial ( > 2 if some of the roots are 
not approximated). 

NumRoots: Integer; Number of roots found. 

Poly:TNvector; Coefficients of the deflated polynomial. 

Root:TNvector; Real part of all roots found. 

Imag:TNvector; Imaginary part of all roots found (nonzero for 2 at most). 

Value:TNvector; Value of the polynomial at each approximate root. 

Deriv:TNvector; Value of the derivative at each found root. 

Iter:TNintVector; Number of iterations required to find each root. 

Error: Byte; 0: No error. 
1: Maximum number of iterations exceeded. 
2: The slope is zero (see "Comments"). 
3: Degree s 0. 
4: Tol s 0. 
5: Maxlter < 0. 

If a root is found, it is returned with the value of the polynomial at that root (which 
should be close to zero) and with the value of the derivative at that root. If the last 
two roots are complex (only two can be complex, since they are evaluated by the 
quadratic formula), then the value and derivative at those points are arbitrarily set 
to zero. If all the roots have not been found, then the unsolved deflated polynomial 
is also returned. 
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Syntax of the Procedure Call 

Newt-Horn..Defl(InitDegree, InitPoly, InitGuess, Tol, Maxlter, Degree, 
NumRoots, Poly, Root, Imag, Value, Deriv, Iter, Error); 

Comments 

Newton's method involves division by the derivative of the function. Should the 
algorithm attempt to do any calculations at a point where the absolute values of the 
derivative are less than TNNearlyZ£ro, the routine stops and returns an error mes­
sage (Error = 2). 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 

Sample Program 

The sample program Newtdefl.pas provides 1/0 functions that demonstrate the 
Newton-deflation algorithm. 

ln'{JUt Files 

It is possible to input the coefficients from a text file. The format for the text file is 
as follows: 

1. The degree of the polynomial 

2. The coefficients in descending order, beginning with the leading coefficient 
and decreasing to the constant term 

Spaces or carriage returns can be used to separate the data. It does not matter 
whether the file ends with a carriage return; for example, the polynomial 

F(x) = x3 - 2x 

could be entered in a text file as 

310 -2 0 

Example 

Problem. Determine the roots to the 7th degree polynomial: 

x6 + x5 - 49x4 + 69x3 + l20x2 + 98x - 240 
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Run Newtdefl.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Degree of the polynomial (<= 30)? 6 

Input the coefficients of the polynomial 
where Poly[n] is the coefficient of x·n 

Poly[6] 
Poly[S] 
Poly[4] 
Poly[3] 
Poly[2] 
Poly[l] 
Poly[O] 

1 
1 

-49 
69 

120 
98 

= -240 

Initial approximation to the root: 0 

Tolerance (> O): lE-8 

Maximum number of iterations (>= O): 100 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Initial Polynomial: 
Poly[6]: 1.00000000000000e+O 
Poly[S]: 1.00000000000000e+O 
Poly[4]: -4.90000000000000e+l 
Poly[3]: 6.90000000000000e+l 
Poly[2]: 1.20000000000000e+2 
Poly[l]: 9.80000000000000e+l 
Poly[O]: -2.40000000000000e+2 

Initial approximation: O.OOOOOOOOOOOOOOe+O 
Tolerance: 1.00000000000000e-8 

Maximum number of iterations: 100 

Number of calculated roots: 6 
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Root 1 
Number of iterations: 7 

Calculated root: 3.00000000000000etO 
Value of the function 

at the calculated root: 3.33066907387547e-16 
Value of the derivative 

of the function at 
the calculated root: -7.48000000000000et2 

Root 2 
Number of iterations: 6 

Calculated root: l.OOOOOOOOOOOOOOetO 
Value of the function 

at the calculated root: 3.4694469519536le-16 
Value of the derivative 

of the function at 
the calculated root: 3.60000000000000et2 

Root 3 
Number of iterations: 32 

Calculated root: -8.00000000000000e+O 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOetO 
Value of the derivative 

of the function at 
the calculated root: -6.43500000000000e+4 

Root 4 
Number of iterations: 25 

Calculated root: 5.00000000000000e+O 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOetO 
Value of the derivative 

of the function at 
the calculated root: 3.84800000000000e+3 

Root 5 
Number of iterations: 0 

Calculated root: -1.00000000000000e+O +-1.00000000000000e+O 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOe+O 
Value of the derivative 

of the function at 
the calculated root: O.OOOOOOOOOOOOOOe+O 

Root 6 
Number of iterations: 0 

Calculated root: -1.00000000000000etO t 1.00000000000000e+O 
Value of the function 

at the calculated root: O.OOOOOOOOOOOOOOe+O 
Value of the derivative 

of the function at 
the calculated root: O.OOOOOOOOOOOOOOe+O 
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Complex Roots of a Complex Function Using Miiller's 
Method (Muller.pas) 

Description 

This example uses Muller's method (Burden and Faires 1985, 71-75) to find a 
possibly complex root of a user-defined complex function. The algorithm finds a 
root of a parabola defined by three distinct points of the given function. This 
approximation to the root and its two predecessors are used to construct the next 
parabola. This is repeated until the convergence criteria is satisfied. Muller's 
method has the advantage of nearly always converging; however, it is slow because 
it uses complex arithmetic. You must create a complex function, input an initial 
guess (which need not be very accurate), the tolerance in the answer, and the 
maximum number of iterations. 

User-Defined Types 

TNcomplex = record 
Re, Im:Extended; 

end; 

User-Defined Procedure 

procedure TNTargetF(x:TNcomplex; var y:TNcomplex); 

The Muller procedure approximates a complex root of this function. 

Input Parameters 

Guess:TNcomplex; An initial guess 

Tol:Extended; Indicates accuracy in solution 

Maxlter: Integer; Maximum number of iterations 
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The preceding parameters must satisfy the following conditions: 

1. Tol > 0 

2. Maxlter ;;:: 0 

Output Parameters 

Answer:TNcornplex; An approximate root of the function 

yAnswer:TNcomplex; Value of the function at the approximate root 

Iter: Integer; 

Error:Byte; 

Number of iterations required to find the root 

0: No error 
1: lter > Maxlter 
2: Parabola could not be formed (see "Comments") 
3: Tol s 0 
4: Maxlter < 0 

If Error s 2, then the information from the last iteration is output. 

Syntax of the Procedure Call 

Muller(Guess, Tol, Maxiter, Answer, yAnswer, Iter, Error, @TNTargetF); 

The procedure Mul.ler approximates a complex root of function TNTargetF. 

Comments 

Miiller's method involves constructing a parabola from three points. If they all lie 
on a line whose slop~ in absolute value is less than TNNearlyZ,erv, then a parabola 
that intersects the x-axis cannot be constructed. Such a construction will halt the 
algorithm and return Error = 2. Fortunately, this does not commonly occur. 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. Complex arithmetic is used. 
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Sample Program 

The sample program Muller.pas provides 1/0 functions that demonstrate Muller's 
method. 

The user-defined function is contained in the procedure TNTargetF. It is necessary 
to separately define the real and complex parts of the function. To define the com­
plex function F(x), you must code the following definitions: 

y.Re : = Re[F(x.Re + ix.Im)]; 
y.Im : = lm[F(x.Re + ix.Im)]; 

where i is the square root of - 1. 

For example, the complex function F(x): = exp(x) would be coded like this: 

y.Re : = exp(x.Re) * cos(x.Im); 
y.lm : = exp(x.Re) * sin(X.Im); 

Note that the address of TNTargetF is passed to the Muller procedure. 

Example 

Problem. Find a solution to the complex equation cos(x) = x. 

1. First, code the following procedure TNTargetF into Muller.pas: 

{------------- HERE IS THE FUNCTION ------------------} 

procedure TNTargetF(x : TNcomplex; vary : TNcomplex); 

begin { this is the complex function y = Cos(x) - x } 
y.Re := Cos(x.Re)*(Exp(-x.Im) + Exp(x.Im))/2 - x.Re; 
y.Im := Sin(x.Re)*(Exp(-x.Im) - Exp(x.Im))/2 - x.Im; 

end; { procedure TNTargetF } 

{-----------------------------------------------------} 
2. ~un Muller.pas: 

Initial approximation to the root: 
Re(Approximation)= -4 
Im(Approximation)= 4 

Tolerance (> 0): lE-6 

Maximum number of iterations (> O): 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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Initial approximation: -4.00000000000000e+O + 4.00000000000000e+O 
Tolerance: 1.00000000000000e-6 

Maximum number of iterations: 100· 

Number of iterations: 18 
Calculated root: -9.10998745393294e+O + 2.95017086170180e+O 

Value of the function 
at the calculated root: -1.42544604592176e-11 + 3.75013236610100e-11 

Turbo Pascal Numerical Methods Toolbox 



Complex Roots of a Complex Po"/ynomial Using Laguerre's 
Method and Deflation (Laguerre.pas) 

Description 

This example uses Laguerre's method (Ralston and Rabinowitz 1978, 380--383} and 
linear deflation to find the possibly complex roots of a complex (or real) polynomial. 
You must input the coefficients of the polynomial, an initial guess, the tolerance 
with which to find the answer, and the maximum number of iterations. 

User-Defined Types 

TNcomplex = record 
Re, Im:Extended; 

end; 

TNintVector = array[O •• TNArraySize] of Integer; 

TNCompVector = array[O •• TNArraySize] of TNcomplex; 

Input Parameters 

Degree: Integer; Degree of the user's polynomial 

Poly:TNvector; Coefficients of the user's polynomial 

InitGuess:TNcomplex; Initial guess of the root 

Tol:Extended; 

Maxiter:Integer; 

Indicates accuracy in solution 

Maximum number of iterations 

The preceding parameters must satisfy the following conditions: 

1. degree > 0 

2. Tol > 0 

3. Maxlter ~ 0 

4. degree s TNArraySize 
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TNArraySize flxes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector. TNArraySize is not a variable name and is 
never referenced by the procedure; hence there is no test for condition 4. If condi­
tion 4 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +} is enabled). 

Output Parameters 

Degree:Integer: 

Poly: Integer; 

NumRoots:Integer: 

Degree of the deflated polynomial 

Coefficients of deflated polynomial 

Number of approximate roots 

Roots:TNCompVector: Approximate roots 

yRoots: TNCompVector: Value of the polynomial at the approximate root 

Iter:TNintVector; 

Error: Byte; 

Number of iterations required to find each root 

0: No error 
1: Iter ;;:: Maxlter 
2: Degree s 0 
3: Tol s 0 
4: Maxlter < 0 

Syntax of the Procedure CaU 

Laguerre(Degree, Poly, Guess, Tol, Maxlter, NumRoots, 
Answer, yAnswer, Iter, Error): 

Comments 

For some polynomials, certain starting values (Guess) will not yield convergence. If 
the routine does not converge to a solution, try a different starting value. Note that 
convergence is slower around multiple roots than around single roots. 

Convergence is determined with the Boolean function TestForRoot described at 
the beginning of this chapter. 
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Sample Program 

The sample program Laguerre.pas provides I/O routines that demonstrate 
Laguerre's method. 

Input Files 

It is possible to input the coefficients from a text file. The format for the text file is 
as follows: 

1. The degree of the polynomial 

2. The real and imaginary parts of the coefficients in descending order, begin­
ning with the leading coefficient and descending to the constant term 

Spaces or carriage returns can be used to separate the data. It does not matter 
whether the file ends with a carriage return; for example, the polynomial 

F(x) = x4 - (2 + 2i)x3 + 4ix2 + (2 - 2i)x -1 

where i represents the square root of -1, could be entered in a text file like this: 

410 -2 -2042 -2 -10 

Exampl.e 

Problem. Find all the roots to the complex polynomial 

F(x) = x4 - (2 + 2i)x3 + 4ix2 + (2 - 2i)x - 1 

where i is the square root of - 1. 

Run Laguerre.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Degree of the polynomial (<= 30)? 4 

Input the complex coefficients of the polynomial 
where Poly[n] is the coefficients of x·n 

Re(Poly[4]) = 1 
Im(Poly[4]) = 0 

Re(Poly[3]) = -2 
lm(Poly[3]) = -2 

Re(Poly[2]) O 
Im(Poly[2]) = 4 
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Re(Poly[l]) = 2 
Im(Poly[l]) = -2 

Re(Poly[O]) = -1 
Re(Poly[O]) = 0 

Initial approximation to the root: 
Re(Approximation) = 1 
Im(Approximation) = 0 

Tolerance (> O): lE-6 
Maximum number of iterations (> O): 100 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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Initial polynomial: 

InitPoly[4]: l.OOOOOOOOOOOOOOe+O 
InitPoly[3]:-2.00000000000000e+O 
InitPoly[2]: O.OOOOOOOOOOOOOOe+O 
InitPoly[l]: 2.00000000000000e+O 
InitPoly[0]:-1.00000000000000e+O 

+ O.OOOOOOOOOOOOOOe+O 
t-2.00000000000000e+O 
+ 4.00000000000000e+O 
+-2.00000000000000e+O 
+ o.ooooooooooooooe+o 

Initial approximation: l.OOOOOOOOOOOOOOe+O 
Tolerance: l.OOOOOOOOOOOOOOe-6 

Maximum number of iterations: 100 

+ O.OOOOOOOOOOOOOOe+O 

Root 1 
Number of iterations: 2 

Calculated root: l.OOOOOOOOOOOOOOe+O + O.OOOOOOOOOOOOOOetO 
Value of the function at 

the calculated root: O.OOOOOOOOOOOOOOe+O + O.OOOOOOOOOOOOOOe+O 

Root 2 
Number of iterations: 2 

Calculated root: l.OOOOOOOOOOOOOOetO + O.OOOOOOOOOOOOOOetO 
Value of the function at 

the calculated root: O.OOOOOOOOOOOOOOe+O + O.OOOOOOOOOOOOOOetO 

Root 3 
Number of iterations: 2 

Calculated root: l.34424834689770e-10 + 9.99999999865575e-l 
Value of the function at 

the calculated root: -l.08420217248550e-19 + l.44222068471458e-19 

Root 4 
Number of iterations: 2 

Calculated root: 6.71338828512027e-ll t l.000000000134lle+O 
Value of the function at 

the calculated root: O.OOOOOOOOOOOOOOe+O + 3.80353570607857e-20 
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c H A p T E R 3 
Interpolation 

Interpolation is useful when some values of a function are known but others are 
required. For example, suppose values are known for a functionf(x) at x = 2.3, 2.4, 
2.5, 2.6, 2.7, 2.8, and the value off(x) is desired at x = 2.415. The routines in this 
chapter provide the means to model to given values of f(x) with an appropriate 
function, so that the function can be evaluated at other arbitrary points. 

The goal of interpolation is to approximate the value of the function at a specified 
value of x, given N values of the function at N distinct points. This approximation 
will be a polynomial determined from the input data. The value of the polynomial 
at x will be returned as the approximation to the value off(x). 

The Lagrange method accepts points in any order. The x-values need not be 
equally spaced. An interpolating polynomial is explicitly calculated. Although an 
interpolating polynomial can be useful for computing derivatives (and more), the 
Lagrange method is a lengthy process. Furthermore, high-degree polynomials may 
cause significant round-off error in some interpolations. 

Newton's general divided-difference algorithm does not require input to have 
equally spaced x-values, nor is it necessary that the x-values be in either ascending 
or descending order. For large amounts of data, the divided-difference routine is 
more accurate than Lagrangian interpolation. 

If there are many input points, the Lagrange and the divided-difference methods 
may result in high-degree polynomials whose oscillatory nature can produce an 
inaccurate approximation. This is especially true if the interpolation occurs at a 
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value near the midpoint between adjacent input x-values. In such cases, the cubi.c 
spline methods are preferable. 

The cubic spline methods require that the x-values be entered in ascending order. 
The clamped cubi.c spline method may yield more accurate results than the free 
cubic spline method but requires knowledge of the first derivative of the function at 
the endpoints of the input data. When this information is not available, the free 
cubic spline routine should be used. 

The values at which interpolation is to occur should lie in the closed interval 
bounded by the extreme values of the input x-values. The preceding methods will 
not give accurate approximations to values outside this interval (extrapolation). 
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Po"/ynamial Interpolation Using Lagrange's Method 
(Lagrange.pas) 

Description 

This example provides an interpolation algorithm (Burden and Faires 1985, 84 ff; 
Horowitz and Sahni 1984, 429-430). Given a set of N data points (x,y), the routine 
uses Lagrange polynomials to construct a polynomial to fit the data points. The 
degree of the polynomial is at most N - 1. 

Note: The nature of high-degree polynomials may cause significant error if the 
algorithm is used with large amounts of data (about N > 25). In such cases, 
Divdi£pas, Cube--Fre.pas, or Cube-Gia.pas should be used. You must supply the 
data points and the x-values at which interpolation will take place. 

User-Defined Types 

TNvector = array[O •• TNArraySize] of Extended; 
TNmatrix = array[O •• TNArraySize] of TNvector; 

Input Parameters 

The parameters for Lagrange: 

NumPoints:Integer; Number of data points 

XData:TNvector; The x-coordinates of the data points 

YData:TNvector; They-coordinates of the data points 

Numlnter: Integer; Number of interpolations 

Xlnter:TNvector The x-coordinates at which interpolation is to take place 

The preceding parameters must satisfy the following conditions: 

1. The x-coordinates of the data points (Xlnter) must be unique. 

2. NumPoints, Numlnter ::;; TNArraySize. 

3. NumPoints > 0. 
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TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector. TN Array Size is rwt a variable name and is 
never referenced by the procedure; hence there is no test for condition 2. If condi­
tion 2 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active). 

Output Parameters 

Yinter:TNvector; The interpolated values at Xlnter 

Poly:TNvector; The coefficients of the interpolating polynomial 

Error:Byte; 0: No error 
1: X-values of the data points not unique 
2: NumPoints < ~ 

Syntax of the Procedure Call 

Lagrange(NumPoints, XData, YData, Numlnter, Xlnter, Ylnter, Poly, Error); 

Sampl,e Program 

The sample program Lagrange.pas provides 1/0 functions that demonstrate the 
Lagrange interpolating algorithm. 

Input Fiks 

Data may be entered from a text file. The x and y coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x) 
could be entered in a text file as 

42 

11 
24 
39 
416 
5 25 
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Example 

Problem. Construct and use an interpolating polynomial for the cosine function 
between x = 1 degree and x = 20 degrees. 

Run Lagrange.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the stan­
dard dialog box: 

File name? Sample3A.dat 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3B.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The Data : 
1.0000000 
2.0000000 
3.0000000 
4.0000000 
5.0000000 
6.0000000 
7.0000000 
8.0000000 
9.0000000 

10.0000000 
11.0000000 
12.0000000 
13.0000000 
14.0000000 
15.0000000 
16.0000000 
17.0000000 
18.0000000 
19.0000000 
20.0000000 

Interpolation 

9.9984769515639le-l 
9.99390827019096e-l 
9.98629534754574e-l 
9.97564050259824e-l 
9.96194698091746e-l 
9.94521895368273e-l 
9.92546151641322e-l 
9.90268068741570e-l 
9.87688340595138e-l 
9.84807753012208e-l 
9.81627183447664e-l 
9.78147600733806e-l 
9.74370064785235e-l 
9.70295726275996e-l 
9.65925826289068e-l 
9.61261695938319e-l 
9.56304755963035e-l 
9.51056516295154e-l 
9.45518575599317e-l 
9.39692620785908e-l 
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The polynomial : 
Poly[l9]=-l.72014247146006e-28 
Poly[l8]= 3.54986012534706e-26 
Poly[l7]=-3.41072664146385e-24 
Poly[l6]= 2.02588035084664e-22 
Poly[l5]=-8.33028761905346e-21 
Poly[l4]= 2.51630894794110e-19 
Poly[l3]=-5.78243038713688e-18 
Poly[l2]= l.03284343326638e-16 
Poly[ll]=-l.45263304267538e-15 
Poly[lO]= l.61970333747745e-14 
Poly[ 9]=-l.43449305975914e-13 
Poly[ 8]= l.00656254399833e-12 
Poly[ 7]=-5.55641265799623e-12 
Poly[ 6]= 2.37976717179018e-ll 
Poly[ 5]=-7.79913921901990e-ll 
Poly[ 4]= 4.05555790625022e-9 
Poly[ 3]=-3.26288947218059e-10 
Poly[ 2]=-l.52308336619420e-4 
Poly[ l]=-2.49984780967393e-10 
Poly[ O]= l.00000000007260e+O 

x 
1.500 
2.500 
3.500 
4.500 
5.500 
6.500 
7.500 
8.500 
9.500 

10.500 
11.500 
12.500 
13.500 
14.500 
15.500 
16.500 
17.500 
18.500 
19.500 
20.500 

Interpolated Y value 
9.99657324975254e-l 
9.99048221581889e-l 
9.98134798421861e-1 
9.96917333733130e-l 
9.95396198367178e-l 
9.93571855676588e-l 
9.91444861373810e-1 
9.89015863361917e-l 
9.86285601537232e-l 
9.83254907563954e-l 
9.79924704620830e-l 
9.76296007119933e-l 
9.72369920397676e-l 
9.68147640378107e-l 
9.63630453208623e-l 
9.58819734868193e-1 
9.53716950748227e-l 
9.48323655206198e-l 
9.42641491092216e-l 
9.36672189246619e-l 

The data is taken from a function of which the derivative could be computed 
exactly. 
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Interpolation Using Newton's lnterpolary Divided­
Difference Method (Divdif.pas) 

Description 

This example provides an interpolation algorithm. Given a set of data points (x,y), 
the routine uses Newton's interpolary divided-difference equation to interpolate 
between the points (Burden and Faires 1985, 100-102). The data points must have 
unique x-values, but these values need not be evenly spaced nor set in any particu­
lar order. You must supply the data points and the x-values at which interpolation is 
to take place. 

User-Defined Types 

TNvector = array[O •• TNArraySize] of Extended; 

TNmatrix = array[O •• TNArraySize] of TNvector; 

Input Parameters 

NumPoi nts: Integer: Number of data points 

XData:TNvector: The x-coordinates of the data points 

YData:TNvector; They-coordinates of the data points 

Numinter: Integer: Number of interpolations 

XInter:TNvector The x-coordinates at which interpolation is to take place 

The preceding parameters must satisfy the following conditions: 

1. The x-coordinates of the data points (Xlnter) must be unique. 

2. NumPoints, Numlnter :s;; TNArraySize. 

3. NumPoints > 0. 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector. TNArraySize is not a variable name and is 
never referenced by the procedure; hence there is no test for condition 2. If condi­
tion 2 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +} is active}. 
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Output Parameters 

Ylnter:TNvector; The interpolated values at Xlnter 

Error:Byte; 0: No error 
1: X-values of the data points not unique 
2: NumPoints < 1 

Syntax of the Procedure Call 

DividecLDffference(NumPoints, XData, YData, Numinter, XInter, Yinter, Error); 

Samp'le Program 

'nie sample program Divdi£pas provides 1/0 functions that demonstrate Newton's 
interpolary divided-difference algorithm. 

Input Fiks 

Data may be entered from a text file. 'nie x and y coordinates should be separated 
by a space and followed by a caniage return. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
525 

Exampk 

Problem. Interpolate the cosine function between x = Ix and x = 20x. 

Run Divdi£pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. 'nien select the following file from the 
standard dialog box: 

Ffle name? Sample3C.dat 
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A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Number of points (0-50)?15 

Point 1: 1.5 
Point 2: 2.5 
Point 3: 3.5 
Point 4: 4.5 
Point 5: 5.5 
Point 6: 6.5 
Point 7: 7.5 
Point 8: 8.5 
Point 9: 9.5 
Point 10: 10.5 
Point 11: 11.5 
Point 12: 12.5 
Point 13: 13.5 
Point 14: 14.5 
Point 15: 15.5 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

x 
12.000 
8.000 
1.000 

10.000 
5.000 

15.000 
4.000 
3.000 
7.000 

14.000 

x 
1.500 
2.500 
3.500 
4.500 
5.500 
6.500 
7.500 
8.500 
9.500 

10.500 
11.500 
12.500 
13.500 
14.500 
15.500 

y 
0.9781476 
0.9902681 
0.9998477 
0.9848078 
0.9961947 
0.9659258 
0.9975641 
0.9986295 
0.9925462 
0.9702957 

Interpolated Y value 
9.99656668284607e-l 
9.99047982204853e-l 
9.98134846782587e-l 
9.96917355869352e-l 
9.95396200633579e-1 
9.93571893532269e-l 
9.91444906399794e-1 
9.89015879894104e-1 
9.86285623948171e-l 
9.83254980952454e-l 
9.79924765142406e-1 
9.76295923083642e-1 
9.72369781236267e-1 
9.6814775733914le-l 
9.63629212784400e-l 

The data is taken from a function of which the derivative could be computed 
exactly. 
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Free Cubic Spline Interpolation (Cube....Fre.pas) 

Description 

This example constructs a smooth curve through a given set of data points. The 
curve is a cubic spline interpolant with the following properties: 

1. It passes through every data point. 

2. It is continuous. 

3. Its first derivative is continuous. 

4. Its second derivative is continuous. 

The second derivative is assumed to be zero at both endpoints (thus the cubic 
spline is "free") of the interval determined by the data (Burden and Faires 1985, 
ll7 ff). Cubics that join adjacent data points are of the following form: 

S[i](x) = CoefO[i] + Coefl[i](x - x[i]) + Coef2[i](x - x[i])2 

+ Coe£3[i](x - x[i])3 

where i ranges between 1 and the number of data points minus 1, the x[i]'s are the 
x-coordinates of the input data, and x[i] S x < x[i + l]. The interpolated values of 
f(x) are found by evaluating the ith cubic polynomial at x, where 

x[i] s x s x[i + l]. 

User-Defined Types 

TNvector = array[O .• TNArraySize] of Extended; 

Input Parameters 

NumPoi nts: Integer; Number of data points 

XData:TNvector; The x-coordinates of the data points 

YData:TNvector; They-coordinates of the data points 

Numlnter: Integer; Number of interpolations 

Xlnter:TNvector; X-coordinates of points at which to interpolate 
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The preceding parameters must satisfy the following conditions: 

1. X data points must be unique. 

2. X data points must be in ascending order. 

3. NumPoints, Numlnter s TNArraySize. 

4. NumPoints > 1. 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector. TNArraySize is not a variable name and is 
never referenced by the procedure; hence there is no test for condition 3. If condi­
tion 3 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active). 

Output Parameters 

CoefO:TNvector; Coefficient of the constant term 

Coe fl: TNvector; Coefficient of the linear term 

Coef2: TNvector; Coefficient of the squared term 

Coef3:TNvector; Coefficient of the cubed term 

Ylnter:TNvector; Interpolated values at Xlnter 

Error: Byte; 0: No error 
1: X-values of the data points not unique 
2: X-values of the data points not in ascending order 
3: NumPoints < 2 

Syntax of th£ Procedure Ca/,l 

CubicSplineFree(NumPoints, XData, YData, Numlnter, Xlnter, 
CoefO, Coefl, Coef2, Coef3, Ylnter, Error); 

Sample Program 

The sample program Cube..Fre.pas provides 1/0 functions that demonstrate the 
free cubic spline algorithm. 

Interpolation 49 



Input Fi"les 

Data may be entered from a text file. The x and y coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
525 

Examp"le 

Problem. Construct an interpolating spline for the following figure: 

3 

2 

1 

0 1 2 3 4 5 6 

Because a cusp occurs at x = 3.55, we will construct two splines, one for each side 
of the cusp. 

Run Cube..Fre.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3D.dat 
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A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3E.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Data : x y 
1: 0.0000000000 2.8000000000 
2: 0.1000000000 2.7000000000 
3: 0.2000000000 2.6000000000 
4: 0.6000000000 2.2000000000 
5: 1.0000000000 1.8000000000 
6: 1.4000000000 1.6000000000 
7: 1.8000000000 1.4000000000 
8: 2.0000000000 1.4200000000 
9: 2.2000000000 1.4000000000 

10: 2.6000000000 1.5000000000 
11: 3.0000000000 1.8000000000 
12: 3.4000000000 2.4000000000 
13: 3.4500000000 2.6000000000 
14: 3.5000000000 2.8000000000 
15: 3.5500000000 2.9000000000 

Splines: CoefO Coe fl Coef2 
1: 2.8000000000 -0.9988332302 0.0000000000 
2: 2.7000000000 -1.0023335396 -0.0350030942 
3: 2.6000000000 -0. 9918326113 0 .1400123770 
4: 2.2000000000 -1.0723397281 -0.3412801689 
5: 1.8000000000 -0.7188084763 1.2251082984 
6: 1.6000000000 -0.5524263669 -0.8091530249 
7: 1.4000000000 -0.0714860563 2 .0115038012 
8: 1.4200000000 0.0406713524 -1.4507167575 
9: 1.4000000000 -0. 0911993534 0.7913632286 

10: 1.5000000000 0.6158534153 0.9762686929 
11: 1.8000000000 0.6277856923 -0.9464380003 
12: 2.4000000000 3.6230038155 8.4344833084 
13: 2.6000000000 4.3322682035 5. 7508044511 
14: 2.8000000000 3.0479233704 -31. 4377011128 

Interpolated Points: X y 
2.5018157855 
2.3042222482 
1. 6916808945 
1.4759529845 
1.4132967676 
1.3989477848 
1.4480232575 
1.5697457729 
1.7293593063 
1.9502390938 
2 .1142270171 

1: 0.3000000000 
2: 0.5000000000 
3: 1.2000000000 
4: 1.6000000000 
5: 2.1000000000 
6: 2.3000000000 
7: 2.5000000000 
8: 2.7000000000 
9: 2.9000000000 

10: 3.2000000000 
11: 3.3000000000 

Interpolation 

Coef3 
-0.1166769808 
0.5833849040 

-0.4010771215 
1. 3053237227 

-1.6952177695 
2.3505473551 

-5.7703675978 
3.7367999767 
0.1540878869 

-1.6022555777 
7.8174344240 

-17.8911923822 
-247.9233704257 
209.5846740851 
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Second half of the figure: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3F.dat 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3G.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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Data : x y 
1: 3.5500000000 2.9000000000 
2: 3.6000000000 2.8000000000 
3: 3.6500000000 2.6500000000 
4: 3.8000000000 2.5000000000 
5: 4.0000000000 2.3500000000 
6: 4.3000000000 2.2000000000 
7: 4.8000000000 1.9500000000 
8: 5.3000000000 1.6000000000 
9: 5.6000000000 1.3000000000 

10: 5.8000000000 1.2000000000 
11: 6.0000000000 0.0000000000 

Splines: CoefO Coe fl Coef2 Coef 3 
1: 2.9000000000 -1.6719664279 0.0000000000 -131.2134288293 
2: 2.8000000000 -2.6560671441 -19.6820143244 256.0671441466 
3: 2.6500000000 -2.7037649955 18.7280572976 -49.1308266290 
4.: 2.5000000000 -0.4016786037 -3.3808146854 8.1960385189 
5: 2.3500000000 -0. 7704798556 1.5368084259 -2 .1173630243 
6: 2.2000000000 -0.4200828166 -0.3688182960 0.4179678583 
7: 1.9500000000 -0.4754252188 0.2581334916 -1.4145661079 
8: 1.6000000000 -1.2782163082 -1.8637156703 9.3036778805 
9: 1.3000000000 0.1155473174 6.5095944222 -47.9366550462 

10: 1.2000000000 -3.0330135193 -22.2523986055 37.0873310092 

Interpolated Points: X y 

2.5554905401 
2.4342200313 
2.2862027357 
2.2404374617 
2.1045744477 
2.0520666406 
1.8539237670 
1.7105990402 
1.3442375346 
1. 3287140209 
0.7112619930 

1: 3.7000000000 
2: 3.9000000000 
3: 4.1000000000 
4: 4.2000000000 
5: 4.5000000000 
6: 4.6000000000 
7: 5.0000000000 
8: 5. 2000000000 
9: 5.5000000000 

10: 5.7000000000 
11: 5.9000000000 
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Clamped Cubic Spline lnterpolatWn (Cube_Cla.pas) 

Description 

This example constructs a smooth curve through a given set of data points. The 
curve is a cubic spline interpolant with the following properties: 

1. It passes through every data point. 

2. It is continuous. 

3. Its first derivative is continuous. 

4. Its second derivative is continuous. 

The first derivative at the endpoints of the interval determined by the input data is 
defined by the user (Burden and Faires 1985, 122 ff.). (This is what makes the cubic 
spline "clamped.") The cubics that join adjacent data points are of the following 
form: 

S[i](x) = CoefO[i] + Coefl[i](x - x[i]) + Coe£2[i](x - x[i])2 

+ Coe£3[i](x - x[i])3 

where i ranges between 1 and the number of data points minus 1, the x[i]'s are the 
x-coordinates of the input data, and x[i] s x < x[i + l]. The interpolated values 
of f(x) are found by evaluating the ith cubic polynomial at x, where x[i] s x s 
x[i + l]. 

User-Defined Types 

TNvector = array[O •• TNArraySize] of Extended; 

Input Parameters 

NumPoints: Integer; Number of data points 

XData:TNvector; The x-coordinates of the data points 

YData:TNvector; They-coordinates of the data points 

DerivLE:Extended; Derivative of the function at the left endpoint 

Deri vRE: Extended; Derivative of the function at the right endpoint 
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Numlnter: Integer; Number of interpolations 

XInter:TNvector; X-coordinates of points at which to interpolate 

The preceding parameters must satisfy the following conditions: 

1. X data points must be unique. 

2. X data points must be in ascending order. 

3. NumPoints, Numlnter :5: TNArraySize. 

4. NumPoints > 1. 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector. TNArraySize is not a variable name and is 
never referenced by the procedure; hence there is no test for condition 3. If condi­
tion 3 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active). 

Output Parameters 

CoefO: TNvector; Coefficient of the constant term 

Coe fl: TNvector; Coefficient of the linear term 

Coef2: TNvector; Coefficient of the squared term 

Coef3: TNvector; Coefficient of the cubed term 

Yinter:TNvector; Interpolated values at Xlnter 

Error:Byte; 0: No error 
1: X-values of the data points not unique 
2: X-values of the data points not in ascending order 
3: NumPoints < 2 

Syntax of th£ Procedure Call 

CubicSplineClamped(NumPoints, XData, YData, DerivLE, DerivRE, Numlnter, 
Xlnter, CoefO, Coefl, Coef2, Coef3, Yinter, Error); 
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Sample. Program 

The sample program Cube..Cla.pas provides 1/0 functions that demonstrate the 
clamped cubic spline interpolation algorithm. 

Input Files 

Data may be entered from a text file. The x- and y-coordinates should be separated 
by a space and followed by a carriage return. The last two values in the file must be 
the derivatives of the function at the endpoints. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
525 
210 

Note that the last two values are the derivatives of sqr(x) at the endpoints x = 1 
andx = 5. 

Example 

Problem. Construct an interpolating spline for the following figure: 

3 

2 

1 

0 1 2 3 4 5 6 
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Because a cusp occurs at x = 3.55, we will construct two splines, one for each side 
of the cusp. 

Run Cube..Cla.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following fl.le from the 
standard dialog box: 

File name? Sample3H.dat 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3E.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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Data : 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

x 
0.0000000000 
0.1000000000 
0.2000000000 
0.6000000000 
1.0000000000 
1.4000000000 
1.8000000000 
2.0000000000 
2.2000000000 
2.6000000000 
3.0000000000 
3.4000000000 
3.4500000000 
3.5000000000 
3.5500000000 

y 
2.8000000000 
2.7000000000 
2.6000000000 
2.2000000000 
1.8000000000 
1.6000000000 
1.4000000000 
1.4200000000 
1.4000000000 
1.5000000000 
1.8000000000 
2.4000000000 
2.6000000000 
2.8000000000 
2.9000000000 

Derivative at X= O.OOOOOOOOOOOOOOe+O 
Derivative at X= 3.55000000000000e+O 

-1.33333333333333e+O 
3.00000000000000e+O 

Splines: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 

CoefO 
2.8000000000 
2.7000000000 
2.6000000000 
2.2000000000 
1.8000000000 
1.6000000000 
1.4000000000 
1.4200000000 
1.4000000000 
1.5000000000 
1.8000000000 
2.4000000000 
2.6000000000 
2.8000000000 

Coe fl 
-1. 3333333333 
-0. 9091317890 
-1.0301395105 
-1.0620777385 
-0.7215495356 
-0.5517241193 
-0.0715539872 
0.0405240212 

-0.0905420975 
0.6122045428 
0.6417239262 
3.5708997526 
4.4477600660 
2.6380599835 

Coef2 
5.7579845570 

-1.5159691140 
0.3058918989 

-0.3857374687 
1.2370579761 

-0.8124944355 
2.0129197658 

-1. 4525297241 
0.7971991306 
0.9596674704 

-0.8858690121 
8.2088085781 
9.3283976905 

-45.5223993401 

Coef3 
-24.2465122365 

6.0728700429 
-0.5763578064 
1. 3523295373 

-1. 7079603429 
2. 3545118344 

-5.7757491499 
3. 7 495480911 
0.1353902832 

-1. 5379470688 
7.5788979919 
7.4639274157 

-365.6719802043 
655.2239934014 
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Interpolated Points: X 
1: 0.3000000000 
2: 0.5000000000 
3: 1.2000000000 
4: 1.6000000000 
5: 2.1000000000 
6: 2.3000000000 
7: 2.5000000000 
8: 2.7000000000 
9: 2.9000000000 

10: 3.2000000000 
11: 3.3000000000 

Second half of figure: 

y 
2.4994686101 
2.3029267570 
1. 6915087292 
1.4759914934 
1. 4132766530 
1. 3990531718 
1.4482408301 
1. 5692791819 
1.7285068643 
1.9535412087 
2 .1174192125 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample31.dat 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample3G.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Data : 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

x 
3.5500000000 
3.6000000000 
3.6500000000 
3.8000000000 
4.0000000000 
4.3000000000 
4.8000000000 
5.3000000000 
5.6000000000 
5.8000000000 
6.0000000000 

y 
2.9000000000 
2.8000000000 
2.6500000000 
2.5000000000 
2.3500000000 
2.2000000000 
1.9500000000 
1.6000000000 
1.3000000000 
1. 2000000000 
0.0000000000 

Derivative at X= 3.55000000000000e+O 
Derivative at X= 6.00000000000000e+O 

-4.00000000000000e+O 
-1.70000000000000e+l 

Splines: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

Interpolation 

CoefO 
2.9000000000 
2.8000000000 
2.6500000000 
2.5000000000 
2.3500000000 
2.2000000000 
1.9500000000 
1.6000000000 
1.3000000000 
1.2000000000 

Coe fl 
-4.0000000000 
-2.0111665197 
-2.9553339213 
-0.3238290709 
-0. 7983524409 
-0.3974941891 
-0.5494435897 
-1.0047314521 
-0.7151931996 
-0.4462017001 

Coef2 
80.2233303937 

-40.4466607874 
21. 5633127559 
-4.0199470867 
1.6473302365 

-0. 3111360640 
0.0072372629 

-0.9178129877 
1. 8829404961 

-0.5379829989 

coef3 
-804.4666078741 
413. 3998236224 
-56.8516885392 

9.4454622054 
-2.1760736673 
0.2122488846 

-0.6167001671 
3 .1119483153 

-4.0348724916 
-136 .1550425028 
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Interpolated Points: X 
1: 3.7000000000 
2: 3.9000000000 
3: 4.1000000000 
4: 4.2000000000 
5: 4.5000000000 
6: 4.6000000000 
7: 5.0000000000 
8: 5.2000000000 
9: 5.5000000000 

10: 5.7000000000 
11: 5.9000000000 
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y 
2.5490351248 
2.4368630843 
2.2844619846 
2.2388141319 
2 .1097537107 
2.0584802174 
1.8354671712 
1.6919117155 
1.3872367766 
1.2432752125 
1.0138449575 
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c H A p T E R 4 
Numerical Differentiation 

Differentiation is a process used in calculus to quantify the rate of change of a given 
function. The derivative of a real-valued function of a real variable is another real­
valued function of a real variable. For example, suppose you are driving down the 
freeway in your car and f(t) gives the distance traveled at time t. Typical values 
might be 

t f\t) 
1.0 45.0 
1.1 49.2 
1.2 54.5 
1.3 59.8 
1.4 65.1 
1.5 70.4 

The units are in hours and miles, and the data refers to a trip that started at noon. 
f(l.O) = 45.0, so the distance traveled by one o'clock is 45.0 miles, andf(l.5) = 
70.4, so by half past one you will be 70.4 miles from where you were at noon. 

The derivative of this distance function gives the velocity function. The car's veloc­
ity at one o'clock is the value of the derivative at t = 1.0. From the previous data, it 
is impossible to compute the derivative exactly, but it is possible to approximate 
the derivative. The car traveled 49.2 - 45.0 = 4.2 miles in the six minutes after 
one o'clock (1.1 - 1.0 = 0.1 hours = 6 minutes). Thus, the average velocity of the 
car during those six minutes is 4.2 I 0.1 = 42 miles per hour. This gives an approxi­
mation to the velocity at one o'clock. 
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Each method described in this chapter approximates derivatives of a real function 
of one real variable. 

The routines Deriv.pas, Deriv2.pas, and Interdrv.pas compute derivatives of a 
function that is represented by tabular data. Consequently, their accuracy depends 
heavily upon the precision and spacing of the data points. 

The routines Derivfn.pas and Deriv2fn.pas compute derivatives of a user-defined 
function. Consequently, the accuracy of the values calculated with these routines is 
limited by the precision of the computer. 

Differentiation consists of subtracting two very close numbers and dividing by a 
very small number; hence, it is extremely sensitive to round-off error. The accuracy 
of the first derivative is approximately the square root of the precision with which 
real numbers are represented; the accuracy of the second derivative is approxi­
mately equal to the fourth root. 

The first derivative of a function that is represented by a table of values can be 
approximated in Deriv.pas via a two-point formula, a three-point formula, or a five­
point formula. The accuracy of the formula increases with the number of points 
used in the formula. In order to use the five-point formula, however, the domain 
values of the data points (that is, the x-coordinates) must be equally spaced. This is 
not required for the two-point and three-point formulas. Derivatives can only be 
approximated at data points. 

The second derivative of a function that is represented by a table of values can be 
approximated in Deriv2.pas via a three-point formula or a five-point formula. The 
domain values of the data points must be equally spaced (regardless of whether the 
three-point formula or five-point formula is used}. Second derivatives can only be 
approximated at data points. 

The routine Interdrv.pas approximates a function by constructing a free cubic 
spline to a set of data points. Cubic splines avoid the undesirable oscillatory 
behavior of other interpolating polynomials. The derivative of the cubic spline at a 
given domain value, which may be different from the input data values, will then 
approximate the corresponding derivative of the function. 

The first derivative of a user-supplied function is approximated in Derivfn.pas 
via a three-point formula. The approximation is refined with Richardson extrapola­
tion. The derivative can be approximated at any point within the domain of the 
function. 

The second derivative of a user-supplied function is approximated in Deriv2fn.pas 
via a three-point formula. The approximation is refined with Richardson extrapola­
tion. The second derivative can be approximated at any point within the domain of 
the function. 
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First Differentiation Using Two-Poi.nt, Three-Poi.nt, or 
Five-Poi.nt Formulas (Deriv.pas) 

Description 

This example contains several algorithms for approximating the derivative of a 
functionf(x), given several data points (x,f(x)). The user must specify whether a 
two-point, three-point, or five-point formula should be used. Two points are used 
in the two-point formula, three in the three-point formula, and five in the five­
point formula. The user must supply the data points (x,f(x)) and the x-values of the 
data points at which to approximate the derivative. Note: Derivatives can only be 
approximated at x-values corresponding to input data points. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

Input Parameters 

NumPoints : Integer; Number of data points 

XData : TNvector; X-coordinates of data points 

YData : TNvector; Y-coordinates of data points 

Point : Byte; Two-point, three-point, or five-point differentiation 

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated 

XDeriv : TNvector; X-coordinates of data points at which the derivative is to be 
approximated 

The preceding parameters must satisfy the following conditions: 

1. XData points must be unique. 

2. XData points must be entered in ascending order. 

3. At least two points are needed for two-point differentiation, three for three­
point differentiation, and five for five-point differentiation. 

4. Point must equal two, three, or five. 
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5. XData points must be equally spaced for five-point differentiation. 

6. XDeriv points must be a subset of the XData points. 

7. NumPoints, NumDeriv :s TNArraySize. 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvecto'r. TN Array Size is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 7. If condition 7 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R +}is active}. 

Output Parameters 

YDeri v : TNvector; Approximation to the first derivative at the points in XDeriv 

Error : Byte; 0: No errors 
1: WARNING! Not all the derivatives were computed 

(see "Comments") 
2: X-values not unique 
3: X-values not in ascending order 
4: Not enough data 
5: Point not equal to 2, 3, or 5 
6: X-values not equally spaced for the five-point formula 

Syntax of the Procedure Call 

First..Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error); 

Comments 

If an x-value at which the derivative is to be approximated is not among the data 
points, the value - 9.999999999E35 is arbitrarily assigned to the derivative at that 
point and Error = l is returned. When using five-point differentiation with only 
five points, there is not enough information to approximate the derivative at the 
first, second, fourth, or fifth points. Likewise, if only six points are input, there is 
insufficient information for approximating the derivative at the second and fifth 
data points. Should an attempt be made to approximate the derivative at any of 
these points, the value of 9.999999999E35 is arbitrarily assigned the derivative at 
that point and Error = l is returned. 
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Sampl.e Program 

The sample program Deriv.pas provides 1/0 functions that demonstrate differenti­
ation with two-point, three-point, and five-point formulas. 

Input Fil.es 

Data points may be entered from a text file. The x- and y-coordinates should be 
separated by a space and followed by a carriage return. For example, data values of 
sqr(x) could be entered in a text file as 

11 
24 
39 
416 
5 25 

Derivative points may also be entered from a text file. Every derivative point must 
be followed by a carriage return. For example, to determine the derivatives of the 
preceding points, create the following file of derivative points: 

1 
2 
3 
4 
5 

Exampl.e 

Problem. Approximate the first derivative offi.x) = sqr(x) * cos(x) at several points 
between one and two radians. The output from three runs is given. Actual values of 
the derivatives to eight significant figures are also given. 

Run Deriv.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample4A.dat 
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A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Number of X values (0-100)? 5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.5 
Point 4: 2.0 
Point 5: 2.2 

2-, 3-, or 5-point differentiation ? 2 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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Input Data: 
x 

1.0000000 
1.1000000 
1.2000000 
1.3000000 
1.4000000 
1.5000000 
1.6000000 
1.7000000 
1.8000000 
1.9000000 
2.0000000 

y 
5.40302305868140e-l 
5.48851306924949e-l 
5.21795166446410e-l 
4.52073020375553e-l 
3.33135600084472e-l 
l.59158703752332e-l 

-7.47507770912994e-2 
-3.72360588514066e-l 
-7.36134786805602e-l 
-l.16707533637725e+O 
-l.66458734618857e+O 

<* --------------------------- *> 
<* WARNING *> 

<* --------------------------- *> 

Using 2-point differentiation: 

X Derivative at X 
1.100 8.54900105680900e-2 
1.300 -6.97221460708570e-l 
1.500 -l.73976896332140e+O 
2.000 -4.97512009811320e+O 
2.200 No derivative calculated 

Using 3-point differentiation: 

x 
1.100 
1.300 
1.500 
2.000 
2.200 

Derivative at X 
-9.25356971086500e-2 
-9.43297831809690e-l 
-2.03943188587886e+O 
-5.30797739931156e+O 
No derivative calculated 
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Using 5-point differentiation: 

X Derivative at X 
1.100 -B.08749392678308e-2 
1.300 -9.32986606435739e-1 
1.500 -2.03221450709713e+O 
2.000 -5.30200229054730e+O 
2.200 No derivative calculated 

The data is taken from a function of which a derivative could be computed exactly. 

The warning signal indicates that some derivatives were not calculated. 

The derivative is not approximated for x = 2.2 in any of the examples because 
x = 2.2 is not among the data points. 
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Secand Differentiation Using Three-Point or Five-Point 
Formulas (Deriv2.pas) 

Description 

This example contains two algorithms that approximate the second derivative of a 
functionf(x) when several data points (x,f(x)) are specified. You decide whether to 
use a three-point or five-point formula (Gerald and Wheatley 1984, 236-237); 
three points are used in the three-point formula, and five in the five-point formula. 
You must supply the data points (x,fix)) and the x-values of the data points at which 
the second derivative is to be approximated. The second derivative may only be 
approximated at x-values that were input as data points. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

Input Parameters 

NumPoi nts : Integer; Number of data points 

xoata : TNvector; X-coordinates of the data points 

YData : TNvector; Y-coordinates of the data points 

Point : Byte; Three-point or five-point differentiation 

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated 

XDeri v : TNvector; X-coordinates of points at which the derivative is to be approx­
imated 

The preceding parameters must satisfy the following conditions: 
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1. XData points must be unique. 

2. XData points must be entered in ascending order. 

3. At least three points for three-point differentiation and five points for five­
point differentiation. 

4. Point must equal 3 or 5. 
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5. XData points must be equally spaced. 

6. XDeriv points must be a subset of the XData points. 

7. NumPoints, NumDeriv s TNArraySize. 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TN Array Size is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 7. If condition 7 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R +} is active). 

Output Parameters 

YDerfv : TNvector: Approximation to the second derivative at the XDeriv points 

Error : Byte; 0: No errors 
1: WARNING! At least one derivative was not approximated 

(see "Comments") 
2: X-values not unique 
3: X-values not in increasing order 
4: Not enough data 
5: Point not equal to 3 or 5 
6: X-value points not equally spaced 

Syntax of the Procedure Call 

Second_JJerivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDer1v, Error); 

Comments 

If an x-value at which the second derivative is approximated is not among the data 
points, the value - 9.9999999E35 is arbitrarily assigned to the derivative at that 
point and Error = 1 is returned. When using five-point second differentiation with 
only five data points, there is insufficient information for approximating the second 
derivative at the second and fourth data points. Should an attempt be made to 
approximate the second derivative at these points, the value 9.9999999E35 is arbi­
trarily assigned to the second derivative at that point and Error = 1 is returned. 
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Sample Program 

The sample program Deriv2.pas provides 1/0 functions that demonstrate second­
order differentiation with three-point and five-point formulas. 

Input Files 

Data points may be entered from a text file. The x- and y-coordinates should be 
separated by a space and followed by a carriage return. For example, data values of 
sqr(x) could be entered in a text file as 

11 
24 
39 
416 
5 25 

Derivative points may also be entered from a text file. Every derivative point must 
be followed by a carriage return. For example, to determine the second derivatives 
of the preceding points, create the following file of derivative points: 

1 
2 
3 
4 
5 

Example 

Problem. Approximate the second derivative of f(x) = sqr(x) * cos(x) at several 
points between x = 1 and x = 2 radians. The output from two runs is given. Actual 
values of the second derivatives to eight significant figures are also given. 

Run Deriv2.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample4A.dat 
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A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Number of X values (0·100)?5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.5 
Point 4: 2.0 
Point 5: 2.2 

3- or 5-point second differentiation ? 3 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Input Data: 
x 

1.0000000 
1.1000000 
1.2000000 
1.3000000 
1.4000000 
1.5000000 
1.6000000 
1.7000000 
1.8000000 
1.9000000 
2.0000000 

y 
5.40302305868140e-l 
5.48851306924949e-l 
5.2l795166446410e-l 
4.52073020375553e-l 
3.33135600084472e-l 
l.59158703752332e-l 

-7.47507770912994e-2 
-3.72360588514066e-l 
-7.36134786805602e-l 
-l.16707533637725e+O 
-l.66458734618857e+O 

<* --------·------------------ *> 
<"' WARNING "'> 
(* ••••••a•••••-•••••••••••••• *> 

Using 3•point second differentiation: 

X Second Derivative at X 
1.100 -3.56051415353480e+O 
1.300 -4.92152742202240e+O 
1.500 -5.99325845114914e+O 
2.000 -6.65714602396720e+O 
2.200 No 2nd derivative calculated. 

Using 5-point second differentiation: 

X Second Derivative at X 
1.100 -3.61167369644120et0 
1.300 -4.92756964541466et0 
1.500 -6.00263647117238e+O 
2.000 -6.59765691992320e+O 
2.200 No 2nd derivative calculated. 
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The data is taken from a function of which the derivative could be computed 
exactly. 

The warning signal indicates that some second derivatives were not calculated. 

The second derivative is not approximated at x = 2.2 for either run because x = 
2.2 is not among the input x-value points. 
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Differentiation with a Cubic Spline lnterpolant 
(Interdro.pas) 

Description 

This example contains an algorithm for approximating the first and second deriva­
tives of a function given several data points (x,f(x)). The algorithm assumes that a 
free cubic spline interpolant (Burden and Faires 1985, 117-122} is an adequate 
approximation to the functionf(x), so that the slope of the interpolant at any value 
x, is an adequate approximation tof'(x). See Chapter 3 (Cube-F're.pas} for more 
information on free cubic splines. The user must supply the data points (x,f(x)) and 
the x-values at which to approximate the derivatives. Derivatives may be approxi­
mated at any x-value contained in the closed interval determined by the data 
points. This routine will likely give significant errors if interpolation (Gerald and 
Wheatley 1984, 227-231} is attempted outside the range of x-values (extrapola­
tion}. 

User-Defined 1flpes 

TNvector = array[l •• TNArraySize] of Extended; 

Input Parameters 

NumPoints : Integer: Number of data points 

XData : TNvector; X-coordinates of data points 

YData : TNvector; Y-coordinates of data points 

NumDeri v : Integer: Number of points at which the derivative is to be approxi­
mated 

XDeri v : TNvector: X-coordinates of points at which the derivative is to be approx­
imated 
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The preceding parameters must satisfy the following conditions: 

1. XData points must be unique. 

2. XData points must be in ascending order. 

3. NumPoints :=::: 2. 

4. NumPoints, NumDeriv s TNArraySize. 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 4. If condition 4 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R +}is active). 

Output Parameters 

Ylnter: TNvector; Interpolated y-values at the XDeriv points 

YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv 

YDeri v2 : TNvector; Approximation to the second derivative at the x-values in 

Error : Byte; 

XDeriv 

0: No errors 
1: X-values not unique 
2: X-values not in ascending order 
3: NumPoints < 2 

Syntax of the Procedure Call 

Interpolate-Derivative(NumPoints, XData, YData, NumDeriv, 
XDeriv, Ylnter, YDeriv, YDeriv2, Error); 

Sample Program 

The sample program Interdrv.pas provides 1/0 functions that demonstrate differ­
entiation with a cubic spline interpolant. 
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Input Ffles 

Data points may be entered from a text file. The x- and y-coordinates should be 
separated by a space and followed by a carriage return. For example, data values of 
sqr(x) could be entered in a text file as 

11 
24 
39 
416 
5 25 

Derivative points may also be entered from a text file. Every derivative point must 
be followed by a carriage return. For example, to determine the derivatives of the 
preceding points, create the following file of derivative points: 

1 
2 
3 
4 
5 

Example 

Problem. Determine the first and second derivative off(x) = sqr(x) * cos(x) at 
several points between one and two radians. Actual values of the derivatives to 
eight significant figures are given here. 

Run Interdrv.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample48.dat 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Number of derivative points (0-100)?5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.55 
Point 4: 1.95 
Point 5: 2.20 
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Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Input Data: 
x 

1.000 
1.100 
1.200 
1.300 
1.400 
1.500 
1.600 
1.700 
1.800 
1.900 
2.000 

y 
0.5403023 
0.5488513 
0.5217952 
0.4520730 
0.3331356 
0.1591587 

-0.0747508 
-0.3723606 
-0.7361348 
-1.1670753 
-1.6645873 

Using free cubic spline interpolation: 

x 
1.100 
1.300 
1.550 
1.950 
2.200 

Value at X 
5.48851300000000e-l 
4.52073000000000e-l 
4.99429267146237e-2 

-l.41057141673716e+O 
-2.57545316779455e+O 

1st Deri v at X 
-5.86015666816464e-2 
-9.31377366861403e-l 
-2.33770918101853e+O 
-5.01018588841894e+O 
-3.43222090956673e+O 

2nd Deriv at X 
-4.32274700 
-4.98862501 
-6.19118137 
-4.20790661 
16.83162644 

The data is taken from a function of which the derivative could be computed 
exactly. The actual values are shown here: 

x Value at X 1st Deriv at X 2nd Deriv at X 
1.1 0.5488513 -0.0804494 -3.5629715 
1.3 0.4520730 -0.9329164 -4.9275779 
1.55 0.0499596 -2.3375165 -6.2070293 
1.95 -1.4076126 -4.9760746 -6.5786348 
2.20 -2.8483454 -6.5025275 -5.4434252 

Note the poor results obtained at values outside the range of input data (x = 2.2). 
Also note the large error in the second derivatives near the endpoints of the inter­
val determined by the data. 
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Differentiation of a User-Defined Function (Derivfia.pas) 

Description 

Given a user-defined function.f{x), this example will approximate the first deriva­
tive of the function at a set of x values. The formula 

f' (x) = [f(x + aX) - f(x - aX)]~•4X 

gives a first approximation to the derivative. Richardson extrapolation is then used 
to refine the approximation (Burden and Faires 1985, 137-152). 

User-Defined 'JYpes 

TNvector = array[l •• TNArraySize] of Extended; 

User-Defined Functions 

function TNTargetF(X : Extended) : Extended; 

Input Parameters 

NumDeriv: Integer; Number of points at which the derivative is to be approxi­
mated 

XDeriv : TNvector; X-coordinates of points at which the derivative is to be 
approximated 

Tolerance: Extended; Indicates accuracy of solution 

The preceding parameters must satisfy the following conditions: 

1. NumDeriv s TNArraySize 

2. Tolerance > TNNearlyZ£ro 

TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is rwt a variable name and is never refer­
enced by the procedure; hence there is no test for condition 1. If condition 1 is 
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violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R +} is active}. 

Output Parameters 

YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv 
Error : Byte; 0: No errors 

1: Tolerance < TNNearlyZero 

Syntax of the Procedure Call 

FirstDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error, @TNTargetF); 

The procedure FirstDerivative approximates the first derivative of function TNTar­
getF. 

Comments 

Note that the address of TNTargetF is passed into the FirstDerivative procedure. 

Sample Program 

The sample program Derivfn.pas provides 1/0 functions that find the first deriva­
tive of a function at a set of points. 

Input Files 

Derivative points may be entered from a text file. Every derivative point must be 
followed by a carriage return. For example, to determine the derivatives at x-values 
1 through 5, create the following file of derivative points: 
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1 
2 
3 
4 
5 
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Examp"le 

Problem. Determine the first derivative of.f(.x) = sqr(x) * cos(x) at several points 
between 1 and 2.2. Actual values of the derivatives to eight significant figures are 
given here. 

First, write the function into the Derivfn.pas program: 

{ ----- here is the function to differentiate -------------------- } 

function TNTargetF(X : Extended) : Extended; 

begin 
TNTargetF := Sqr(X)*Cos(X); 

end; { function TNTargetF } 

{ ---------------------------------------------------------------- } 
Run Derivfn.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Number of points (0-100)? 5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.55 
Point 4: 1. 95 
Point 5: 2.2 

Tolerance (> 0)7 lE-4 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and cli~k 
OK. 

Tolerance = 

x 
1.100 
1.300 
1.550 
1.950 
·2.200 

l.OOOOOOOOOOOOOOe-4 

Derhative at X 
-8.04494385380667e-2 
-9.32916380187814e-l 
-2.3375165294297le+O 
-4.97607456093026e+O 
-6.50252751007340e+O 

The data is taken from a function of which the derivative could be calculated 
exactly. 

Numerical Differentiation 77 



Second Differentiation of a User-Defined Function 
(Deriv2fa.pas) 

Description 

Given a user-defined function.f\x), this example will approximate the second deriv­
ative of the function at a set of x values. The three-point formula 

f"(x) = [f(x + .:U) - 2f(x) + f(x - aX)]/ax2 

gives a first approximation to the second derivative. Richardson extrapolation is 
then used to refine the approximation (Burden and Faires 1985, 142-152). 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

User-Defined Function 

function TNTargetF(X : Extended) : Extended; 

Input Parameters 

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated 

XDeriv : TNvector; X-coordinates of points at which the derivative is to be 
approximated 

Tolerance : Extended; Indicates accuracy in solution 

The preceding parameters must satisfy the following conditions: 

1. NumDeriv ::;; TNArraySize 

2. Tolerance ~ TNNearly'Zero 

78 Turbo Pascal Numerical Methods Toolbox 



TNArraySize represents the number of elements in each vector. It is used in the 
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 1. If condition 1 is 
violated, the program will crash with an Index Out of Range error (assuming the 
directive {$R +}is active). 

Output Parameters 

YDeriv : TNvector; Approximation to the second derivative at the x-values in XDeriv 

Error : Byte; 0: No errors 
1: Tolerance < TNNear'lyZ-ero 

Syntax of the Procedure Call 

SecondDer;vat;ve(NumDer;v, XDer1v, YDer1v, Tolerance, Error, ~TNTargetF); 

SecondDerivative approximates the derivative of function TNTargetF. 

Comments 

Note that the address of TNTargetF is passed into the SecondDerivative procedure. 

Sample Program 

The sample program Deriv2fh.pas provides 1/0 functions that find the second 
derivative of a function at a set of points. 
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Input Files 

Derivative points may be entered from a text file. Every derivative point must be 
followed by a carriage return. For example, to determine the second derivatives at 
x-values 1 through 5, create the following file of derivative points: 

1 
2 
3 
4 
5 

Examp/,e 

Problem. Determine the second derivative of fi.x) = sqr(x)2 * cos(x) at several 
points between 1 and 2.2. Actual values of the derivatives to eight significant fig­
ures are given here. 

First, write the function into the Deriv2fn.pas program: 

{ ----- here is the function to differentiate -------------------- } 

function TNTargetF(X : Extended) : Extended; 

begin 
TNTargetF := Sqr(X)•Cos(X); 

end; { function TNTargetF } 

{ ---------------------------------------------------------------- } 

Run Deriv2fn.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Number of points (0-100)? 5 

Point 1: 1.1 
Point 2: 1.3 
Point 3: 1.55 
Point 4: 1. 95 
Point 5: 2.2 

Tolerance (> O)? lE-4 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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Tolerance = 1.00000000000000e-4 

X Second Derivative at X 
1.100 -3.56297144833630e+O 
1.300 -4.92757792729853e+O 
1.550 -6.20702925616294e+O 
1.950 -6.57863482851564e+O 
2.200 -5.44342518062510e+O 

The data is taken from a function of which the derivative could be calculated 
exactly. 
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c H A p T E R 5 
Numerical lntegratian 

Integration is another concept used in calculus. It is just the opposite of differentia­
tion, for which routines are provided in Chapter 4. Differentiation tells you the 
changes in a function, where integration tells you how to add those changes to get 
the original function. 

Integration is most easily understood in terms of areas under curves. Given a 
functionf(x) and real numbers a and b with a < b, the area under the curve y = 
f(x) and above the x-axis between x = a and x = b is given by the integral of f(x) 
from a to b. 

As with derivatives, the laws of calculus are required to compute integrals exactly. 
The routines in this chapter provide very accurate approximations. 

Several methods are described here that approximate the value of a definite inte­
gral of a real function of one real variable. Both limits of integration must be finite. 

The trapezoid method and Simpson's method return an approximation of the inte­
gral when a number of equal length subintervals are specified. For a given number 
of subintervals, Simpson's method is preferred over the trapezoid method when­
ever the function being integrated is sufficiently smooth. 

It is sometimes possible to approximate the definite integral to within a user­
specified accuracy with fewer function evaluations using adaptive schemes. Adap­
tive schemes determine the length of each subinterval by the local behavior of the 
integrand. Simpson's method and the Gaussian quadrature method are used with 
adaptive schemes. The Gaussian quadrature method permits, in some instances, 
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the integrand to possess a singularity at an endpoint of integration, since the func­
tion is evaluated at points that are not the endpoints of the interval of integration. 

The Romberg method uses the trapezoid method and Richardson extrapolation to 
approximate the integral. It returns an approximation within a user-specified accu­
racy. Except for extremely oscillatory functions or functions that possess an end­
point singularity, this method is fastest and most accurate. If the function oscillates 
substantially or possesses an endpoint singularity, the adaptive Gaussian quadra­
ture routine is preferred. 
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Integration Using Simpson's Composite Algorithm 
(Simpson.pas) 

Description 

This example uses Simpson's composite algorithm (Burden and Faires 1985, 156--
167) to approximate the definite integral of a functionftx) over an interval [a, b]. 
The interval is divided into N subintervals of equal length. The curve in each 
subinterval is approximated by a second-degree Lagrange polynomial. The integral 
of the resulting polynomial is then calculated. The sum of the integrals of the N 
Lagrange polynomials approximates the integral of the function f over the interval 
[a, b]. You must supply the function, the limits of integration, and the number of 
subintervals. 

User-Defined Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Simpson approximates the integral of this function. 

Input Parameters 

Lowerlimit : Extended; Lower limit of integration 

Upperl 1 mi t : Extended; Upper limit of integration 

Numlnterva 1 s : Integer; Number of subintervals over which to apply Simpson's rule 

The preceding parameters must satisfy the following condition: 

Numlnteroals > 0 
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Output Parameters 

Integral : Extended; Approximation to the integral of the function 

Error : Byte; 0: No errors 
1: Numlntervals s 0 

Syntax of the Procedure Call 

Simpson(Lowerlimit, Upperlimit, Numintervals, Integral, Error, @TNTargetF); 

Simpson approximates the integral of TNTargetF. 

Sample Program 

The sample program Simpson.pas provides 1/0 functions that demonstrate Simp­
son's composite algorithm. 

Examp/,e 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using Simpson's 
composite algorithm. 

1. Code function TNTargetF: 

function TNTargetF(x : Extended) : Extended; 

{------------------------------------------------------------------------} 
{--- THIS IS THE FUNCTION TO INTEGRATE ---} 
{------------------------------------------------------------------------} 
begin 

TNTargetF := Exp(3*X) + Sqr(X)/3; 
end; { function TNTargetF } 

2. Run Simpson.pas: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Number of intervals (> O): 100 
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Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Lower limit: O.OOOOOOOOOOOOOOOOe+O 
Upper limit: 5.0000000000000000e+O 

Number of intervals: 100 

Integral: 1.08968620446200e+6 

To eight significant figures, the correct answer is 1,089,686.2. 
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Integration Using th£ Trapezoid Composite Rule 
(Trapzoid.pas) 

Description 

This example uses the trapezoid composite rule (Burden and Faires 1985, 154-167) 
to approximate the definite integral of a function fix) over an interval [a, b]. The 
interval is divided into N subintervals of equal length. In each subinterval the 
function is approximated by a straight line. The sum of the integrals of the result­
ing trapezoids approximates the integral of the function! over the interval [a, b]. 
You must supply the function, the limits of integration, and the number of subinter­
vals. 

User-Defined Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Trapezoid approximates the integral of this function. 

Input Parameters 

Lowerlimit : Extended; Lower limit of integration 

Upperlimit : Extended; Upper limit of integration 

Numlnterval s : Integer; Number of subintervals over which to apply the trapezoid 
rule 

The preceding parameters must satisfy the following condition: 

Numlnteroals > 0 
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Output Parameters 

Integral : Extended; Approximation to the integral of the function 

Error : Byte; 0: No errors 
1: Numlnterval.s s 0 

Syntax of the Procedure Call 

Trapezoid(Lowerlimft, Upperlfmft, Numintervals, Integral, Error, @TNTargetF); 

'Irapezoid approximates the integral of TNTargetF. 

Sample Program 

The sample program Trapzoid.pas provides 1/0 functions that demonstrate the 
trapezoid composite rule. 

Example 

Problem. Approximate the integral exp(3:t) + sqr(x)/J from 0 to 5 using the trape­
zoid composite rule. 

I. Code function TNTargetF: 

function TNTargetF(x : Extended) : Extended; 

{------------------------------------------------------------------------} {--- THIS IS THE FUNCTION TO INTEGRATE ---} 
{------------------------------------------------------------------------} 
begtn 

TNTargetF := Exp(3•X) + Sqr(X)/3; 
end; { function TNTargetF } 
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2. Run Trapzoid.pas: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Number of intervals (> O)? 100 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Lower Limit: O.OOOOOOOOOOOOOOetO 
Upper Limit: 5.00000000000000etO 

Number of intervals: 100 

Integral: l.0917283832080let6 

To eight significant figures, the correct answer is 1,091,728.3. 
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Integration Using Adaptive Quadrature and Simpson's Rule 
(Adapsimp.pas) 

Description 

This example contains an algorithm for approximating the definite integral of a 
functionf(x) over an interval [a,b] within a specified tolerance. By increasing the 
number of subintervals in regions of large functional variation (adaptive quadra­
ture), the desired degree of accuracy can be reached (Burden and Faires 1985, 
153-167). The integral within each subinterval is calculated with Simpson's rule. 
The adaptive quadrature approximates the integral over a subinterval twice: once 
over the whole subinterval, and again as the sum of the integral over each half of 
the subinterval. The algorithm halts when the fractional difference between these 
two approximations is less than the tolerance. You must supply the function, the 
limits of integration, and the tolerance with which to approximate the integral. 

User-Defined Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Adaptive...Simpson approximates the integral of this function. 

Input Parameters 

Lowerlimi t : Extended; Lower limit of integration 

Upperlimi t : Extended; Upper limit of integration 

Tolerance: Extended; Indicates accuracy in solution 

Maxlnterval s : Integer; Maximum number of subintervals 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 
' 

2. Maxlntervals > 0 
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Output Parameters 

Integral : Extended; Approximation to the integral of the function 

Numinterval s : Integer; Number of subintervals used 

Error : Byte; 0: No errors 
1: To'lerance s 0 
2: Maxlnteroals s 0 
3: Numlnteroals 2: Maxlnteroals 

Syntax of the Procedure Call 

Adaptive..Simpson(Lowerlimit, Upperlimit, Tolerance, Maxintervals, 
Integral, Numintervals, Error, @TNTargetF); 

Adaptive-Simpson approximates the integral of TNTargetF. 

Comments 

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure 
calls (which slow down the execution), a stack is created on the heap to simulate 
recursion. 

Sample Program 

The sample program Adapsimp.pas provides 1/0 functions that demonstrate the 
adaptive quadrature method with Simpson's rule. 
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Exampk 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using adaptive 
quadrature and Simpson's rule. 

I. Code function TNTargetF: 

function TNTargetF(x : Extended) : Extended; 

{------------------------------------------------------------------------} 
{--- THIS IS THE FUNCTION TO INTEGRATE ---} 
{------------------------------------------------------------------------} 
begin 

TNTargetF := Exp(3*X) + Sqr(X)/3; 
end; { function TNTargetF } 

2. Run Adapsimp.pas: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Tolerance (> O): lE-8 

Maximum number of subintervals (> O): 1000 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Lower limit: 
Upper limit: 

Tolerance: 
Maximum number of subintervals: 

Number of subintervals used: 

Integral: 

O.OOOOOOOOOOOOOOOOe+O 
5.0000000000000000e+O 
l.OOOOOOOOOOOOOOOOe-8 

1000 
511 

l.08968601332499e+6 

To eight significant figures, the correct answer is 1,089,686.0. 
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Integration Using Adaptive Quadrature and Gaussian 
Quad,rature (Adapgaus.pas) 

Description 

This example contains an algorithm for approximating the integral of a functionf(x) 
over an interval [a,b] within a specified tolerance. By increasing the number of 
subintervals in regions of large functional variation (adaptive quadrature), the 
desired degree of accuracy can be reached. The integral within each subinterval is 
approximated by applying Gaussian quadrature (Burden and Faires 1985, 184-188) 
with a 16th degree Legendre polynomial. Adaptive quadrature (Burden and Faires 
1985, 172-176) approximates the integral over a subinterval twice: once over the 
whole subinterval, and again as the sum of the integral over each half of the subin­
terval. The algorithm halts when the fractional difference between these two 
approximations is less than the tolerance. You must supply the function, the limits 
of integration, and the tolerance with which to approximate the integral. 

User-Defined Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Adaptive-Gauss-Quadrature approximates the integral of this func­
tion. 

Input Parameters 

Lowerl i mit : Extended; Lower limit of integration 

Upperlimit: Extended; Upper limit of integration 

Tolerance : Extended; Indicates accuracy in solution 

Max Intervals : Integer; Maximum number of subintervals 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. Maxlntervals > 0 
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Output Parameters 

Integra 1 : Extended; Approximation to the integral of the function 

Numinterval s : Integer; Number of subintervals used 

Error : Byte; 0: No errors 
1: Tolerance ~ 0 
2: Maxlnteroals ~ 0 
3: Numlnteroals 2: Maxlnteroals 

Syntax of the Procedure Call 

Adaptive..Gauss_Quadrature(Lowerlimit, Upperlimit, Tolerance, Maxintervals, 
Integral, Numintervals, Error, @TNTargetF); 

Adaptive_Gauss-Quodrature approximates the integral of TNTargetF. 

Comments 

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure 
calls (which slow down execution), a stack is created on the heap to simulate recur­
sion. 

Gaussian qtiadrature uses orthogonal polynomials (in this case, Legendre polyno­
mials) to approximate an integral. Generally, a higher degree polynomial will yield 
a more accurate result, but will take more time to compute. The 16th degree 
Legendre polynomial used in Aclapgaus. pas is very efficient. The values of its zeros 
and weight factors follow (Abramowitz and Stegun 1972). 
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The following condition is satisfied by the numbers that follow it: 

Integral from -1 to 1 of f(x) dx 

equals 

Sum from i = 1 to NumLegendreTerms of 
Legendre[i].Weight * f(Legendre[i].Root) 

for an arbitrary functionf(x). 

Legendre[!] ....................................... Root: 0.0950125098376370440185 
Weight: 0.189450610455068496285 

Legendre[2] ....................................... Root: 0.281603550778258913230 
Weight: 0.182603415044923588867 

Legendre[3] ....................................... Root: 0.458016777657227386342 
Weight: 0.169156519395002538189 

Legendre[4] ....................................... Root: 0.617876244402643748447 
Weight: 0.149595988816576732081 

Legendre[5] .........•.......•..................... Root: 0.755404408355003033895 
Weight: 0.124628971255533872052 

Legendre[6] ....................................... Root: 0.865631202387831743880 
Weight: 0.095158511682492784810 

Legendre[7] ....................................... Root: 0.944575023073232576078 
Weight: 0.062253523938647892863 

Legendre[8] ....................................... Root: 0.989400934991649932596 
Weight: 0.027152459411754094852 

Legendre[9] ....................................... Root: - 0.0950125098376370440185 
Weight: 0.189450610455068496285 

Legendre[IO] ..................................... Root: -0.281603550778258913230 
Weight: 0.182603415044923588867 

Legendre[ll] ..................................... Root: -0.458016777657227386342 
Weight: 0.169156519395002538189 

Legendre[l2] ..................................... Root: -0.617876244402643748447 
Weight: 0.149595988816576732081 

Leg~ndre[l3] ..................................... Root: -0.755404408355003033895 
Weight: 0.124628971255533872052 

Legendre[l4] ..................................... Root: -0.865631202387831743880 
Weight: 0.095158511682492784810 

Legendre[l5] ..................................... Root: - 0.944575023073232576078 
Weight: 0.062253523938647892863 

Legendre[l6] ..................................... Root: - 0.989400934991649932596 
Weight: 0.027152459411754094852 
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Sample Program 

The sample program Adapgaus.pas provides 1/0 functions that demonstrate the 
adaptive quadrature method with Gaussian quadrature. 

Exampk 

Problem. Approximate the integral exp(3x) + sqr(x)/J from 0 to 5 using adaptive 
quadrature with Gaussian quadrature algorithm. 

1. Code function TNTargetF: 

function TNTargetF(x : Extended) : Extended; 

{------------------------------------------------------------------------} {--- THIS IS THE FUNCTION TO INTEGRATE ---} 
{------------------------------------------------------------------------} 
begtn 

TNTargetF := Exp(3•X) + Sqr(X}/3; 
end; { funct;on TNTargetF } 

2. Run Adapgaus.pas: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Tolerance in answer: (> 0): lE-8 

Maximum number of sub;ntervals (> O): 1000 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Lower limit: 
Upper limit: 

Tolerance: 
Max;mum number of subintervals: 

Number of subintervals used: 

Integral: 

o.ooooooooooooooe+o 
5.00000000000000e+O 
l.OOOOOOOOOOOOOOe-8 

1000 
1 

l.08968601304609e+6 

To eight significant figures, the correct answer is 1,089,686.0. 
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Integration Using the Ramberg Algorithm (Romberg.pas) 

Description 

This example contains an algorithm (Burden and Faires 1985, 177-182) for approxi­
mating the integral of a function f(x) over an interval [a, b] within a specified 
tolerance. The trapezoid rule is used to generate a preliminary approximation, and 
Richardson extrapolation (Burden and Faires 1985, 148-152) is subsequently used 
to improve the approximation. Extrapolation continues until the fractional differ­
ence between successive approximations of the integral is less than the tolerance. 
You must supply the function, the limits of integration, and the tolerance with 
which to approximate the integral. 

User-Defin£d Function 

function TNTargetF(x : Extended) : Extended; 

The procedure Romberg approximates the integral of this function. 

Input Parameters 

Lowerlimit : Extended; Lower limit of integration 

Upperli mi t : Extended; Upper limit of integration 

To 1 erance : Extended; Indicates accuracy in solution 

Maxlter : Integer; Maximum number of iterations allowed 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. Maxlter > 0 
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Output Parameters 

Integral : Extended; Approximation to the integral of the function 

Iter : Integer; 

Error : Byte; 

Number of iterations 

0: No errors 
1: Tolerance :s; 0 
2: Maxlter :s; 0 
3: lter ;;:::; Maxlter 

Syntax of the Procedure Call 

Romberg(Lowerlimit, Upperlimit, Tolerance, Maxiter, Integral, Iter, Error, 
@TNTargetF); 

Ramberg approximates the integral of TNTargetF. 

Sample Program 

The sample program Romberg.pas provides 1/0 functions that demonstrate the 
Romberg algorithm. 

Example 

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the Rom­
berg algorithm. 

I. Code function TNTargetF: 

function TNTargetF(x : Extended) : Extended; 

{------------------------------------------------------------------------} 
{--- THIS IS THE FUNCTION TO INTEGRATE ---} 
{------------------------------------------------------------------------} 
begin 

TNTargetF := Exp(3*X) + Sqr(X)/3; 
end; { function TNTargetF } 
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2. Run Romberg.pas: 

Lower limit of integration? 0 

Upper limit of integration? 5 

Tolerance (> O): IE-8 

Maximum number of iterations: (> 0): 100 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Lower limit: 
Upper limit: 

Tolerance: 
Maximum number of iterations: 

Number of iterations: 

Integral: 

O.OOOOOOOOOOOOOOetO 
5.00000000000000etO 
1.00000000000000e-8 

100 
7 

1.08968601696675e+6 

To eight significant figures, the correct answer is 1,089,686.0. 
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c H A p T E R 6 
Matrix Routines 

This chapter provides routines for dealing with systems of linear equations. An 
example of a system of linear equations is as follows: 

2X+Y+Z=7 
X-Y+Z=2 
X+Y-Z=O 

Matrix algebra is a collection of notations that constitutes a technique for handling 
such systems. With matrix algebra, the preceding system would be written 

Ax= b 

where 

A= [~l -~l l] -~ ·= m b= m 
In Pascal, x and b are represented as one-dimensional arrays, and A is represented 
as a two-dimensional array. In matrix notation, the solution is given by 

x = A- 1 b 

where A -l is the inverse to A. 

The determinant is an indicator of whether the matrix can be inverted. For exam­
ple, the equations 

3X - 3Y = 4 
-2X + 2Y = 5 

IOI 



cannot be solved. Even for different values of the right-hand side, the equations 
can only be solved in certain exceptional cases. (If you change 4 and 5 to 3 and - 2, 
then there are infinitely many solutions; but there are none if you change 4 and 5 to 
3 and - 3.0001.) 

Following is a description of several routines that operate on matrices and systems 
of linear equations. 

The determinant of a square matrix is found via Det.pas. 

The inverse of a nonsingular matrix is found via Inverse.pas. 

The direct techniques implemented to solve a system of N linear equations in N 
unknowns are Gaussian elimination, Gaussian elimination with partial pivoting, 
and direct factorization. 

The Gauss-Seidel method, an iterative technique that converges to the solution, is 
seldom used for solving small systems, since the time required for sufficient accu­
racy exceeds that required for the preceding direct techniques. 

In general, Gaussian elimination with partial pivoting is the fastest, most accurate 
algorithm. The following special cases may warrant the use of one of the other 
routines: 

• If you are considering systems where round-off is minimal (that is, small sys­
tems whose coefficients are all of nearly the same magnitude), Gaussian elimi­
nation without pivoting may be used. It is somewhat faster than its pivoting 
counterpart. 

• When considering sparse coefficient matrices, the Gaussian elimination rou­
tine with partial pivoting is the most efficient and accurate routine. If the 
matrix is small and the nonzero coefficients do not differ wildly from each 
other, regular Gaussian elimination can usually be used safely. 

• For large, dense matrices, the iterative technique is the most efficient; it cre­
ates less round-off error than the direct methods. However, the Gauss-Seidel 
algorithm has its own weaknesses (see the section, "Solving a System of Lin­
ear Equations with the Iterative Gauss-Seidel Method," for more details). 

• When it is necessary to solve several systems with the same coefficient matrix 
but a different vector of constant terms, the direct factorization method is the 
most efficient. This is because it does not require reduction of the coefficient 
matrix for each vector of constants. 
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Detenninant of a Matrix (Det.pas) 

Description 

The determinant of an N x N matrix can be computed by the following algorithm 
(Gerald and Wheatley 1984, 110-ill}: 

1. Use elementary row operations to make the matrix upper triangular (that is, 
all the elements below the main diagonal are zero). 

2. Find the product of the main diagonal elements - this will be the determi­
nant. 

User-Defined 'JYpes 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •• TNArraySize] of TNvector; 

Input Parameters 

Di men : Integer; Dimension of the data matrix 

Data : TNmatrix; The square matrix 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen s TNArraySize 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 
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Output Parameters 

Det : Extended; Determinant of the data matrix 

Error : Byte; 0: No errors 
1: Dimen < 1 

Syntax of the Procedure Call 

Detenninant(Dimen, Data, Det, Error); 

Sample Program 

The sample program Det.pas provides 1/0 functions that demonstrate how to find 
the determinant of a matrix. 

In-put Fik 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be like this: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 

[l, l], [l, 2] ... [l, N], [2, l] ... [2, N] ... [N, N], 
where N is the dimension of the matrix 

For example, a text file containing the matrix 

[-: ~] 
could look like this: 

2 
2 3 

-4 0 
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Examp'le 

Problem. Find the determinant of the following matrix: 

[-~ ! ~ =~:~] 
2 2 1 -3.0 
0 0 3 -4.0 

Run Det.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6A.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
1.00000000 2.00000000 0.00000000 -1.00000000 

-1.00000000 4.00000000 3.00000000 -0.50000000 
2.00000000 2.00000000 1.00000000 -3.00000000 
0.00000000 0.00000000 3.00000000 -4.00000000 

Determinant = -2.lOOOOOOOOOOOOOe+l 
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Inverse of a Matrix (Inverse.pas) 

Description 

The inverse of an N x N matrix A is an N X N matrix A- 1, such that A- 1A equals 
the identity matrix (Burden and Faires 1985, 306-316). Gauss-Jordan elimination 
(Gerald and Wheatley 1984, 96-98) is used to transform the original matrix into 
the identity matrix. The same elementary row operations that reduce A to the 
identity matrix transform the identity matrix into the inverse of the original matrix 
A. If one or more of the main diagonal elements of the transformed original matrix 
(that is, after Gauss-Jordan elimination) is zero, then the original matrix A is singu­
lar and its inverse does not exist. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •• TNArraySize] of TNvector; 

Input Parameters 

Di men : Integer; Dimension of the data matrix 

Data : TNmatrix; The elements of the square matrix 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen s TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 
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OutTJUt Parameters 

INV : TNmatrix; The inverse of the data matrix 

Error : Byte; 0: No errors 
1: Dimen < 1 
2: No inverse exists 

Syntax of the Procedure Call 

Inverse(Dimen, Data, INV, Error); 

Sample Program 

The sample program Inverse.pas provides 1/0 functions that demonstrate how to 
find the inverse of a matrix. 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[l, l], [l, 2] ... [l, N], [2, l] ... [2, N] ... [N, N], 

where N is the dimension of the matrix 

For example, a text file containing the matrix 

[-! ~] 
could look like this: 

2 
2 3 

-4 0 
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Examp"le 

Problem. Invert the following matrix: 

1 2 0 -1.0 
-1 4 3 -0.5 

2 2 1 -3.0 
0 0 3 -4.0 

Run Inverse.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6A.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 
0.000000000 0.000000000 3.000000000 -4.000000000 

Inverse: 
-1.952380952 0.190476190 1.571428571 -0.714285714 
0.761904762 0.047619048 -0.357142857 0.071428571 

-1.904761905 0.380952381 1.142857143 -0.428571429 
-1.428571429 0.285714286 0.857142857 -0.571428571 

To continue this example, reinvert the matrix just obtained: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6B.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
-1.952380952 0.190476190 1.571428571 -0.714285714 
0.761904762 0.047619048 -0.357142857 0.071428571 

-1.904761905 0.380952381 1.142857143 -0.428571429 
-1.428571429 0.285714286 0.857142857 -0.571428571 

Inverse: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 

-0.000000000 -0.000000000 3.000000000 -4.000000000 
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Solving a System of Linear Equations wi,th Gaussian 
Elimination (Gauselim.pas) 

DescriptWn 

The solution to a system of N linear equations, AX = B, in N unknowns may be 
found by simultaneously performing Gaussian elimination (Burden and Faires 
1985, 291-304) on the matrix containing the coefficients of the equations (the coef­
ficient matrix A) and the vector containing the constant terms of the equations (the 
constant vector B). First, elementary row operations are used to make A upper 
biangular (that is, all the elements below the main diagonal are zero). Backward 
substitution (whereby X[N] is calculated and used to calculate X[N -1], which is 
then used to calculate X[N - 2], and so on) is then used to compute the solution 
vector X. If one or more of the elements on the main diagonal of the upper triangu­
lar matrix is zero, then no unique solution to the system exists. 

User-Defined 1flpes 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •• TNArraySize] of TNvector; 

In-put Parameters 

Di men : Integer; Dimension of the coefficients matrix 

Coefficients: TNmatrix; The square matrix containing the coefficients of the equa­
tions 

Constants: TNvector; The constant terms of each equation 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen s TNArraySize 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
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condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Output Parameters 

Solution: TNvector; Solution to the set of equations. 

Error : Byte; 0: No errors. 
1: Dimen < 1. 
2: Coefficients matrix is singular; no unique solution exists. 

Syntax of th£ Procedure Call 

Gaussian..Elimination(Dimen, Coefficients, Constants, Solution, Error); 

Samp'le Program 

The sample program Gauselim.pas provides 1/0 functions that demonstrate how to 
solve a system of linear equations with Gaussian elimination. 

Input Fil.e 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the coefficient matrix 

2. The elements of the matrix in row order; that is, 

[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N], 
where N is the dimension of the matrix 

3. The elements of the constant vector, in the order [l], ... ,[N] 
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For example, to solve the system 

2x+3y=l0 
-4x = 10 

a text file could be created to look like this: 

2 
2 3 

-4 0 
10 
10 

Examp"le 

Problem. Solve the following linear system: 

w + 2x + Oy - z = 10.0 
-w + 4x + 3y - 0.5z = 21.5 

2w + 2x + y - 3z = 26.0 
3y - 4z = 37.0 

Run Gauselim.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6A.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. . 

The coefficients: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 
0.000000000 0.000000000 3.000000000 -4.000000000 

The constants: 
1.00000000000000e+l 
2.lSOOOOOOOOOOOOe+l 
2.60000000000000e+l 
3.70000000000000e+l 

The solution: 
-1.00000000000000e+O 
2.ooooooooooooooe+o 
3.00000000000000e+O 

-7.00000000000000e+O 
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Solving a System of Linear Equations with Gaussian 
Elimination and Partial Pivoting (Partpivt.pas) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns may be 
found by simultaneously performing Gaussian elimination (Burden and Faires 
1985, 291-304) on the matrix containing the coefficients of the equations (the coef­
ficient matrix A) and the vector containing the constant terms of the equations (the 
constant vector B). However, excessive round-off errors can occur when elements 
on the main diagonal are small compared to the elements below them in the same 
column. To avoid this, partial pivoting (maximal column pivoting) is performed 
(Burden and Faires 1985, 324-327); that is, row interchanges are performed so that 
each main diagonal element is greater than or equal to the elements below it in the 
same column. 

User-Defined 'fypes 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •• TNArrayS1ze] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the coefficients matrix 

Coefficients: TNmatrix; The square matrix containing the coefficients of the equa­
tions 

Constants : TNvector; The constant terms of.each equation 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen s TNArraySize 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmaflrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
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condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Output Parameters 

Solution: TNvector; Solution to the set of equations. 

Error : Byte; 0: No errors. 
1: Dimen < 1. 
2: Coefficients matrix is singular; no unique solution exists. 

Syntax of the Procedure Call 

Partial..Pivoting(Dimen, Coefficients, Constants, Solution, Error); 

Sample Program 

The sample program Partpivt.pas provides 1/0 functions that demonstrate how to 
solve a system of linear equation with Gaussian elimination and partial pivoting. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N], 

where N is the dimension of the matrix 

3. The elements of the constant vector, in the order [l], ... ,[N] 
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For example, to solve the system 

2x+3y=10 
-4x = 10 

a text file could be created to look like this: 

2 
2 3 

-4 0 
10 
10 

Example 

Problem. Solve the following linear system: 

w+2x+Oy-z= 10 
- w + 4x + 3y - 0.5z = 21.5 

2w + 2x + y - 3z = 26 
3y - 4z = 37 

Run Partpivt.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6A.dat 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The coefficients: 
1.000000000 2.000000000 0.000000000 -1.000000000 

-1.000000000 4.000000000 3.000000000 -0.500000000 
2.000000000 2.000000000 1.000000000 -3.000000000 
0.000000000 0.000000000 3.000000000 -4.000000000 

The constants: 
l.OOOOOOOOOOOOOOe+l 
2.lSOOOOOOOOOOOOe+l 
2.60000000000000e+l 
3.70000000000000e+l 

The solution: 
-1.00000000000000e+O 
2.00000000000000e+O 
3.00000000000000e+O 

-7.00000000000000e+O 
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Solving a System of Linear Equations with Direct Factoring 
(Dir/act.pas) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns can be 
computed by factoring the matrix containing the coefficients of the N equations 
(the coefficient matrix A) into an upper triangular matrix U (that is, all the elements 
below the main diagonal are zero) and a lower triangular matrix L (that is, all the 
elements above the main diagonal are zero) such that A = LU. Partial pivoting is 
used to reduce round-off error. A record of the pivoting permutations are recorded 
in a permutation matrix P, so that the equation is actually A = PLU. Forward 
substitution (analogous to backward substitution; see "Solving a System of Linear 
Equations with Gaussian Elimination") is used to solve the equations 'LZ = B 
(actually 'LZ = PB, where P is the pivoting permutation matrix) and UX = Z 
(where X is the solution to the N linear equations, and Z is an intermediate solu­
tion). If the coefficient matrix cannot be factored into nonsingular triangular 
matrices, then no unique solution exists. 

This module includes two procedures to perform this algorithm. Procedure 
LUJJecompose performs the LU decomposition of a matrix, and procedure 
LU-Solve performs forward and backward substitution to solve the linear equa­
tions. 

The most efficient way to calculate the solutions to several systems with the same 
coefficient matrix but different constant vectors is to first decompose the coefficient 
matrix A into Land U (Burden and Faires 1985, 342--349). Then perform backward 
substitution on this decomposed matrix and each of the constant vectors B. Thus, 
the coefficient matrix is decomposed only once. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •• TNArraySize] of TNvector; 
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Procedure LUJJecompose Input Parameters 

Di men : Integer; Dimension of the coefficients matrix 

Coefficients : TNmatri x; Square matrix containing the coefficients of the equations 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen s TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Procedure LUJJecompose Output Parameters 

Decomp : TNmatri x; The LU decomposition of the coefficients matrix. 

Permute: TNmatrix; A permutation matrix that records the effects of pivoting. 

Error : Byte; 0: No errors. 
1: Dimen < 1. 
2: The coefficients matrix is singular. 

Syntax of the Procedure Call 

LU....Decompose (Di men, Coeffi ci en ts, Decomp, Permute, Error) ; 

Procedure LU...Solve Input Parameters 

Dimen : Integer; 

Decomp: TNmatrix; 

Dimension of the coefficients matrix 

The LU decomposition of the coefficients matrix 

Constants : TNmatrix; The constant terms of each equation 

Permute: TNmatrix; A permutation matrix that records the effects of pivoting 
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The preceding parameters must satisfy the following conditions: 

1. Dimen > 0 

2. Dimen s TNArraySize 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Procedure LU...Solve Output Parameters 

Solution : TNvector; Solution to each system of equations 

Error : Byte; 0: No errors 
1: Dimen < 1 

Syntax of th£ Procedure Call 

LU-5olve(Dimen, Decomp, Constants, Permute, Solution, Error); 

Sample Program 

The sample program Dirfact.pas provides 1/0 functions that demonstrate how to 
solve a system of linear equations with the method of direct factoring. 

Input Fil.e 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 
[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N], 

where N is the dimension of the matrix 
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3. The elements of the first constant vector, in the order [l], ... ,[N], with each 
element followed by a carriage return 

4. The elements of any additional constant vectors, in the order [l], ... ,[N], with 
each element followed by a carriage return 

For example, to solve the systems 

2x+3y=l0 
-4x = 10 

2x + 3y = 1 
-4x = 2 

a text file could be created to look like this: 

2 
2 3 

-4 0 
10 
10 
1 
2 

Example 

Problem. Given the following set of coefficients: 

2w+ x+ 5y-8z 
1w + 6x + 2y + 2z 

- lw - 3x - lOy + 4z 
2w + 2w + 2y + z 

compute solutions for each of the five constant vectors: 

[-:~ -!~ j ~~ -~] 
7 17 1 37 10 

Run Dirfact.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6C.dat 
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Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The coefficients: 
2.000000000 1.000000000 5.000000000 -8.000000000 
7.000000000 6.000000000 2.000000000 2.000000000 

-1.000000000 -3.000000000-10.000000000 4.000000000 
2.000000000 2.000000000 2.000000000 1.000000000 

The constants: 
O.OOOOOOOOOOOOOOetO 
1.70000000000000etl 

-1.00000000000000etl 
7.00000000000000etO 

The solution: 
1.00000000000000etO 
1.00000000000000etO 
1.00000000000000etO 
1.00000000000000etO 

The constants: 
-1.50000000000000etl 
5.00000000000000etl 

-5.00000000000000etO 
1.70000000000000etl 

The solution: 
2.00000000000000etO 
5.00000000000000etO 

-2.26268279475236e-19 
3.00000000000000etO 

The constants: 
1.40000000000000etl 
1.00000000000000etO 

-1.20000000000000etl 
1.00000000000000etO 

The solution: 
1.00000000000000etO 

-1.00000000000000etO 
1.00000000000000etO 

-1.00000000000000etO 

The constants: 
-1.30000000000000etl 
8.40000000000000etl 

-5.lOOOOOOOOOOOOOetl 
3.70000000000000etl 

The solution: 
4.00000000000000etO 
5.00000000000000etO 
6.00000000000000etO 
7.00000000000000etO 
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The constants: 
5.00000000000000e+O 
3.00000000000000e+l 

-1.SOOOOOOOOOOOOOe+l 
l.OOOOOOOOOOOOOOe+l 

The solution: 
l.98254111540207e-18 
s.ooooooooooooooe+o 
l.07686940416918e-18 
7.38863702730862e-19 
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Solving a System of Linear Equations with the Iterative 
Gauss-Seidel Method (Gaussidl.pas) 

Description 

The solution to a system of N linear equations, AX = B, in N unknowns can be 
approximated by the Gauss-Seidel iterative technique (Burden and Faires 1985, 
42~32). The equation AX = B is transformed into X = TX + C. Given an initial 
approximation XO, the sequence xm = TXm-1 + c is generated with the following 
formula: 

i-1 N - I A[i,j] XJj] - I (A[i,j] xm_,[j]) + B[i] 

XJi] = 
j=l j=l+l 

A[i,i] 

The algorithm halts when the fractional difference for each element of the vector X 
between two iterations is less than a specified tolerance. 

If A is diagonally dominant (that is, each of the diagonal terms is greater than or 
equal to the sum of the off-diagonal terms in the same row), then the sequence will 
converge to the solution X. If the matrix A is not diagonally dominant, then the 
sequence may converge to the solution, but more likely it will not. You must supply 
the tolerance with which to approximate a solution. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l .. TNArraySize] of TNvector; 
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Input Parameters 

Dimen : Integer: Dimension of the coefficients matrix 

Coefficients : TNmatri x; The square matrix containing the coefficients of the equa­
tions 

Constants : TNvector; 

Tol : Extended; 

Maxlter : Integer; 

The constant terms of the equation 

Indicates accuracy in solution 

Maximum number of iterations 

The preceding parameters must satisfy the following conditions: 

1. Dimen > O. 

2. Dimen s TNArraySize. 

3. Tol > 0. 

4. Maxlter ~ 0. 

5. The coefficients matrix may not contain a zero on the main diagonal. 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error. 

Output Parameters 

Solution: TNvector; Solution to the set of equations. 

Iter : Integer; 

Error : Byte; 
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The number of iterations required to find the solution. 

0: No errors. 
l: lter > Maxlter and matrix is not diagonally dominant. 
2: lter > Maxlter and matrix is diagonally dominant. 
3: Dimen < 1. 
4: Tol s 0. 
5: Maxlter < 0. 
6: Zero on the diagonal of the coefficients matrix. 
7: Sequence is diverging. 
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If the coefficients matrix is diagonally dominant, then the Gauss-Seidel method 
will converge to a solution. If the coefficients matrix is not diagonally dominant, 
then the Gauss-Seidel may converge to a solution, but more likely it will not. Error 
7 can only occur when the coefficients matrix is not diagonally dominant. If Error 1 
is returned, it is likely that convergence is not possible; if Error 2 is returned, 
convergence is possible but will talce more than Maxlter iterations. 

If the diagonal of the coefficients matrix contains a zero (Error 6), then the Gauss­
Seidel method may not be used to solve the system of equations. 

If the system of equations is under-determined, the Gauss-Seidel method will 
still converge to a (nonunique) solution. The Gauss-Seidel method cannot distin­
guish between unique and nonunique solutions. If you suspect that your system of 
equations is under-determined, use one of the direct methods (for example, 
Gauselim.pas) to attempt a solution; Gaussian elimination will give an error if it is 
under-determined. Alternatively, you could use Det.pas to find the determinant; if 
the determinant is zero, then the system is under-determined. 

Syntax of the Procedure Call 

Gauss-5eidel{Dimen, Coefficients, Constants, Tol, Maxiter, Solution, Iter, Error); 

Sample Program 

The sample program Gaussidl.pas provides 1/0 functions that demonstrate how to 
solve a system of linear equations with the iterative Gauss-Seidel method. 

Input File 

Data may be input from a text file. All entries in the text file should be separated 
by a space or carriage return, and it does not matter if the text file ends with a 
carriage return. The format of the text file should be as follows: 

1. The dimension of the matrix 

2. The elements of the matrix in row order; that is, 

[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N], 
where N is the dimension of the matrix 

3. The elements of the first constant vector, in the order [l], ... ,[N] 
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For example, to solve the systems 

20x+3y=l0 
-4y = 10 

a text file could be created to look like this: 

2 
20 3 

0 -4 
10 
10 

Exampl,e 

Problem. Solve the following linear system to within a tolerance of IE -12: 

lOv + w + 2x - 3y + 2z = 29 
4v+50w+ x+ z= 35 

- 2v + 5w - 30x + y + z = 25 
6v + 4w + lOy + 3z = 46 

- 3v - 2w - x + 6y + 25z = - 106 

Run Gaussidl.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample6D.dat 

Tolerance (> O): lE-12 

Maximum number of iterations (> O): 100 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The coefficients: 
10.000000000 1.000000000 2.000000000 -3.000000000 2.000000000 
4.000000000 50.000000000 1.000000000 0.000000000 1.000000000 

-2.000000000 5.000000000 -30.000000000 1.000000000 1.000000000 
6.000000000 4.000000000 0.000000000 10.000000000 3.000000000 

-3.000000000 -2.000000000 -1.000000000 6.000000000 25.000000000 

The constants: 
-2.90000000000000e+l 
3.50000000000000e+l 

-2.50000000000000e+l 
-4.60000000000000e+l 
-1.06000000000000e+2 
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Tolerance: l.OOOOOOOOOOOOOOe-12 
Maximum number of iterations: 100 

Number of iterations: 15 
The result: 
-2.99999999999997e+O 
9.99999999999999e-l 
9.99999999999998e-l 

-l.99999999999999e+O 
-4.00000000000000etO 
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c H A p T E R 7 
Eigenvalues and Eigenvectors 

The routines in this chapter can find the eigenvalues and eigenvectors. A scalar c is 
an eigenvalue (or characteristic value) of a square matrix A if there is a nonzero 
vector v satisfying 

Av= c v 

The vector v is called the eigenvector corresponding to c. 

The eigenvalues and eigenvectors of a matrix provide a lot of information about the 
matrix. If a matrix is written in terms of a basis of eigenvectors, then it is diagonal, 
meaning that its only nonzero terms are on the main diagonal. 

Each procedure in this chapter attempts to approximate at least one real eigen­
value (and associated eigenvector) of a real square matrix. The eigenvector is nor­
malized so that the element with the largest magnitude is 1. 

The power method approximates the eigenvalue that is largest in magnitude (domi­
nant eigenvalue). The iterative process will converge slowly or not at all if the 
dominant eigenvalue is not simple or if it has nearly the same magnitude as the 
next most-dominant eigenvalue. 

The inverse power method approximates the eigenvalue nearest to a user-supplied 
real value. This process usually converges more rapidly than the power method, 
and may be used to refine the approximate value of the eigenvalue determined by 
the latter method. 
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The Wielandt method attempts to approximate a user-specified number of eigen­
values of a given matrix. The power method is first used to approximate the domi­
nant eigenvalue of the matrix. Deflation is employed to form a deflated, square 
matrix (that is, a square matrix whose dimension is one less than the original 
matrix}. The eigenvalues of the deflated matrix are identical to those of the original 
matrix except for the determined dominant eigenvalue. Eigenvectors of the 
remaining eigenvalues from the original matrix are also contained in the deflated 
matrix. The dominant eigenvalue of the new deflated matrix is then determined 
using the power method. Wielandt' s method is susceptible to round-off error, thus 
it may be desirable to use its results as input to the inverse power method. 

The cyclic Jaco/Ji method approximates all the eigenvalues of a symmetric matrix. 
The iterative process uses orthogonal plane rotations to reduce the given matrix 
into a diagonal form. Although Jacobi's method is only applicable to symmetric 
matrices, it is much more efficient and accurate than Wielandt' s method. 
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Real Dominant Eigenvalue and Eigenvector of a Real 
Matrix Using the Power Metlwd (Power.pas) 

Description 

The power method (Burden and Faires 1985, 452-456) approximates the dominant 
real eigenvalue of a matrix and its associated eigenvector. The dominant eigen­
value is the eigenvalue of the largest absolute magnitude. Given a square matrix 
A and a real nonzero vector v, a vector w is constructed by the matrix operation 
Av = w. The vector w is normalized by dividing by its element of the largest 
absolute magnitude q. If the absolute difference between each of the correspond­
ing elements in w and v is less than a specified tolerance, then the procedure halts. 
Otherwise, v is set equal to w, and the operation repeats until a solution is found. 
The magnitude q is the dominant eigenvalue, and w will be the associated eigen­
vector of the matrix A. 

You must supply the matrix A, an initial approximation to the eigenvector v, and the 
tolerance. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Extended; 

TNmatrix = array[l •. TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; 

Mat : TNmatri x; 

Dimension of the matrix Mat 

The matrix 

GuessVector : TNvector; Initial approximation to the eigenvector 

Maxiter : Integer; Maximum number of iterations 

Tolerance : Extended; Indicates accuracy in solution 
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The preceding parameters must satisfy the following conditions: 

I. Dimen > I 

2. Dimen s TNArraySize 

3. Tolerance > 0 

4. Maxlter > 0 

TNArraySize fixes an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R +}is active). 

Output Parameters 

Eigenvalue: Extended; Approximation to the dominant eigenvalue of the matrix 

Eigenvector: TNvector; Approximate eigenvector associated with the dominant 
eigenvalue 

Iter : Integer; Number of iterations required to find the solution 

Error : Byte; 0: No errors 
1: Dimen s I 
2: Tolerance s 0 
3: Maxlter s 0 
4: Iter <::: Maxlter 

Syntax of the Procedure Call 

Power(Dimen, Mat, GuessVector, Maxlter, Tolerance, 
Eigenvalue, Eigenvector, Iter, Error); 

Comments 

The power method will not converge if the initial approximation (Guess) to the 
eigenvector is orthogonal to the dominant eigenvector. If the initial approximation 
is orthogonal, then the power method will converge to a different eigenvector with­
out warning. If you suspect this has happened, run the routine with several differ­
ent initial approximations. 
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The power method may not converge to repeated eigenvalues with linearly 
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem. 

The eigenvectors are normalized such that the element of largest absolute magni­
tude in each vector is equal to one. 

Sampl,e Program 

The sample program Power.pas provides 1/0 functions that demonstrate the power 
method of approximating eigenvalues. 

Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 
[l, l], [l, 2], .. ., [l, N], .. ., [N, l], .. ., [N, N], 

where N is the dimension of the matrix 

For example, to find the dominant eigenvalue of the matrix 

you could first create the following text file: 

4 
1 
2 
3 
4 

Exampl,e 

Problem. Find the dominant eigenvalue of the matrix: 

[~ l~ ~] 
0 2 4 

using the initial guess (1, 2, 3). 
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Run Power.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Dimension of the matrix (1-30)? 3 

Matrix[l, 1]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: O 
Matrix[2, 1]: 0 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, 1]: O 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[l]: 1 
Vector[2] : 2 
Vector[3]: 3 

Tolerance (> O): lE-8 

Maximum number of iterations (> O): 100 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
2.00000000000000etO 
O.OOOOOOOOOOOOOOetO 
O.OOOOOOOOOOOOOOetO 

1.00000000000000etl 
1.00000000000000etO 
2.00000000000000etO 

O.OOOOOOOOOOOOOOetO 
O.OOOOOOOOOOOOOOetO 
4.00000000000000etO 

Tolerance: 1.00000000000000e-8 
Maximum number of iterations: 100 

Number of iterations: 12 
The approximate eigenvector: 
-2.30295124326775e-14 
3.53562219190609e-30 
1.00000000000000etO 

The associated eigenvalue: 4.00000000000000etO 

The exact solution is 

Eigenvalue = 4 
Eigenvector = (0, 0, 1) 
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Real Eigenvalue and, Eigenvector of a Real Matrix Using 
the Inverse Power Method (InvPower.pas) 

Descriptwn 

Where the power method converges to the dominant real eigenvalue of a matrix 
(see Power.pas), the inverse power method (Burden and Faires 1985, 45~62) 
converges to the real eigenvalue nearest to a user-supplied real value. Given a 
square matrix A, an initial approximation p to the eigenvalue, and an initial approx­
imation v to the eigenvector, the linear system (A - pl)w = v (where I is the 
identity matrix) is solved via LU decomposition (see Chapter 6, "Solving a System 
of Linear Equations with Direct Factoring"). The vector w is normalized by divid­
ing through by the element q with the largest absolute magnitude. If the absolute 
difference between each of the corresponding elements in v and w is less than a 
specified tolerance, then the procedure halts. Otherwise, v is set equal to w, and 
the previous matrix equation is solved again. The process repeats until a solution is 
reached. The eigenvalue of A closest top will be (l/q + p), and w will be the 
associated eigenvector. 

You must supply the matrix A, the initial approximations p and v, and the tolerance. 

User-Defined 'JYpes 

TNvector = array[l •. TNArraySize] of Extended; 

TNmatrix = array[l .• TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; 

Mat : TNmatrix; 

Dimension of the matrix Mat 

The matrix 

GuessVector : TNvector; Initial approximation (Guess) of the eigenvector 

ClosestVal : Extended; The approximate eigenvalue 

Maxiter : Integer; Maximum number of iterations 

Tolerance : Extended; Indicates accuracy of solution 
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The preceding parameters must satisfy the following conditions: 

1. Dimen > I 

2. Dimen :5 TNArraySize 

3. Tolerance > 0 

4. Maxlter > 0 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R +} is active). 

Output Parameters 

Eigenvalue: Extended; Approximation to the eigenvalue closest to ClnsestVal 

Eigenvector: TNvector; Approximation to the eigenvector associated with Eigen­
value 

Iter : Integer; 

Error : Byte; 

Number of iterations required to find the solution 

0: No errors 
1: Dimen :5 I 
2: Tolerance :5 0 
3: Maxlter :5 0 
4: Iter ~ Maxlter 
5: Eigenvalue/Eigenvector not calculated (see "Comments") 

Syntax of the Procedure Call 

InversePower(Dimen, Mat, GuessVector, ClosestVal, Maxlter, 
Tolerance, Eigenvalue, Eigenvector, Iter, Error); 
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Comments 

The inverse power method approximates the solution of a system of linear equa­
tions. If the matrix (Mat - Eigenvalue * I) is singular, where I is the identity matrix, 
the method will not converge to a solution and Error 5 will be returned. If this 
occurs, run the routine again with a slightly different initial approximation, 
ClosestVal. 

The power method may not converge to repeated eigenvalues with linearly 
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem. 

The inverse power method is sensitive to the initial approximation (ClosestVal,). If 
ClosestVal is not close to an eigenvalue or lies midway between two eigenvalues, 
the algorithm will converge very slowly, if at all. 

The eigenvectors are normalized such that the element of the largest absolute 
magnitude in each vector is equal to one. 

Sample Program 

The sample program lnvPower.pas provides 1/0 functions that demonstrate the 
inverse power method of approximating eigenvalues. 

Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 

[I, I], [I, 2], ... , [I, N], .. ., [N, I], ... , [N, N], 

where N is the dimension of the matrix 

3. Elements of the initial guess, in the order 

[l], [2], ... , [N], 
where N is the dimension of the matrix 
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For example, to find an eigenvalue of the matrix 

12 
34 

with an initial guess of (ll, 10), you could first create the following text file: 

4 
1 
2 
3 
4 

11 
10 

Exampl,e 

Problem. Suppose you know that two of the eigenvalues of the matrix 

2 10 0 
0 1 0 
0 2 4 

are approximately 1.999 and 0.7. Use the inverse power method with an initial 
guess of (1, 2, 3) to refine these approximations. 

Run InvPower.pas with 1.999 as the approximate eigenvalue: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Dimension of the matrix (1-30)? 3 

Matrix[l, l]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: 0 
Matrix[2, l]: 0 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, l]: 0 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[l]: 1 
Vector[2]: 2 
Vector[3]: 3 

Approximate eigenvalue : 1.999 

Tolerance (> 0): lE-8 

Maximum number of iterations (> 0): 200 
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Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
2.00000000000000e+O 
o.ooooooooooooooe+o 
O.OOOOOOOOOOOOOOe+O 

l.OOOOOOOOOOOOOOe+l 
l.OOOOOOOOOOOOOOe+O 
2.00000000000000e+O 

O.OOOOOOOOOOOOOOe+O 
o.ooooooooooooooe+o 
4.00000000000000e+O 

Approximate eigenvalue: l.99900000000000e+O 
Tolerance: l.OOOOOOOOOOOOOOe-8 

Maximum number of iterations: 200 

Number of iterations: 4 
The approximate eigenvector: 
l.OOOOOOOOOOOOOOe+O 
9.56200019081920e-14 

-5.08756039829010e-14 

The associated eigenvalue: 2.00000000000096e+O 

Run InvPower.pas with 0.7 as the approximate eigenvalue: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Dimension of the matrix (1-30)? 3 

Matrix[l, l]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: 0 
Matrix[2, l]: 0 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, l]: 0 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 

Now input an initial guess for the eigenvector: 
Vector[l] : 1 
Vector[2] : 2 
Vector[3]: 3 

Approximate eigenvalue : 0.7 

Tolerance (> 0): lE-8 

Maximum number of iterations (> 0): 200 
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Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
2.00000000000000e+O 
o.ooooooooooooooe+o 
o.ooooooooooooooe+o 

l.OOOOOOOOOOOOOOe+l 
l.OOOOOOOOOOOOOOe+O 
2.00000000000000e+O 

o.ooooooooooooooe+o 
o.ooooooooooooooe+o 
4.00000000000000e+O 

Approximate eigenvalue: 7.00000000000000e-1 
Tolerance: l.OOOOOOOOOOOOOOe-8 

Maximum number of iterations: 200 

Number of iterations: 12 
The approximate eigenvector: 
l.OOOOOOOOOOOOOOe+O 

-l.00000002395103e-l 
6.66666682633328e-2 

The associated eigenvalue: 9.99999976048973e-l 

The exact solutions are 

Eigenvalue = 2; Eigenvector = (1, 0, 0) 
Eigenvalue = l; Eigenvector = (1, - 0.1, 2/30) 

138 Turbo Pascal Numerical Methods Toolbox 



Real Eigenvalues and Eigenvectors of a Real Matrix Using 
the Power Method and Wklandt's Deflation 
(Wielandt.pas) 

Description 

Wielandt' s deflation is a technique that approximates each real eigenvalue and 
related eigenvector of a matrix (Burden and Faires 1985, 452-456}. Once the domi­
nant real eigenvalue/vector of a matrix has been approximated with the power 
method (see "Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using 
the Power Method"}, the next most dominant real eigenvalue/vector is approxi­
mated by removing the dominant solution. This deflates the matrix. The deflated 
matrix will have the same eigenvalues as the original matrix (except for the 
removed ones}. The eigenvectors of the deflated matrix will be related to the 
eigenvectors of the original matrix. (They will not be identical because the dimen­
sion of the deflated matrix is less than the dimension of the original matrix.} The 
power method then approximates the dominant eigenvalue of the deflated matrix. 
This process is repeated until the appropriate number (user-supplied} of eigen­
values/vectors have been approximated. 

You must supply the matrix, the number of eigenvalues/vectors to approximate, 
and the tolerance with which to approximate the eigenvalues/vectors. 

User-Defined 'Iijpes 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •. TNArraySize] of TNvector; 

TNintVector = array[l •• TNArraySize] of Integer; 

Input Parameters 

Di men : Integer; 

Mat : TNmatrix; 

Dimension of the matrix Mat 

The matrix 

GuessVector : TNvector; Initial approximation (Guess) of an eigenvector 
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MaxEigens : Integer; Number of eigenvalues/vectors to find (at most, Dimen), 
(see "Comments") 

Maxlter : Integer; Maximum number of iterations 

Tolerance : Extended; Indicates accuracy in solution 

The preceding parameters must satisfy the following conditions: 

1. Dimen > 1 

2. Dimen s TNArraySize 

3. Tolerance > 0 

4. Maxlter > 0 

5. MaxEigens > 0 

6. MaxEigens s Dimen 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R +}is active). 

Output Parameters 

NumEigens : Integer; The number of eigenvectors returned (will be s 
MaxEigens). 

Eigenvalues: TNvector; The first NumEigens eigenvalues of the matrix. 

Eigenvectors : TNmatrix; The eigenvectors associated with the eigenvalues. 

Iter : TNintVector; Number of iterations required to find each eigenvalue/vec­
tor. 

Error : Byte; 
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0: No errors. 
1: Dimen s 1. 
2: Tolerance s 0. 
3: Maxlter s 0. 
4: MaxEigens S 0, MaxEigens > Dimen. 
5: lter ~ Maxlter. 
6: Warning! Not a fatal error! 

The last two eigenvalues aren't real. 
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Syntax of th£ Procedure Call 

Wfelandt(Dimen, Mat, GuessVector, MaxEfgens, Maxlter, Tolerance, 
NumEigens, Eigenvalues, Eigenvectors, Iter, Error); 

Comments 

It is often unnecessary to determine the complete eigensystem of a matrix. The 
parameter MaxEigens prevents the routine from approximating more eigenvalues/ 
vectors than needed. For example, if the four most dominant eigenvalues of a 20 X 

20 matrix are desired, set MaxEigens equal to 4. The algorithm will halt when it 
has approximated the four most dominant eigenvalues, thus saving a considerable 
amount of time. Note, however, that the dimension of the vector eigenvalues and 
the matrix eigenvectors must still be TNArraySize (that is, the same as the dimen­
sion of the matrix). 

The power method may not converge to repeated eigenvalues with linearly 
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem. 

The eigenvectors are normalized such that the element of the largest absolute 
magnitude in each vector is equal to one. 

It is difficult to determine why the power method doesn't converge to a particular 
eigenvector; usually the eigenvalue is complex, or eigenvectors of repeated eigen­
values are linearly dependent. However, when Wielandt' s deflation has deflated 
the matrix to a 2 x 2, it is easy to determine if the eigenvalues of the 2 X 2 are 
real or complex. If the last two eigenvalues are real, then they (and their associated 
eigenvectors) are returned; if the last two eigenvalues are complex, Error 6 is 
returned. (Error 6 is only a warning; it is not a fatal error.) It is returned to give you 
some information about the undetermined eigenvectors. 

Sample Program 

The sample program Wielandt.pas provides 1/0 functions that demonstrate 
Wielandt's method of approximating eigensystems. 
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Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 

[l, l], [l, 2], ... , [l, N], ... , [N, l], ... , [N, N], 
where N is the dimension of the matrix 

For example, to find the dominant eigenvalue of the matrix 

12 
34 

you could first create the following text file: 

4 
1 
2 
3 
4 

Example 

Problem. Find all real eigenvalues and eigenvectors of the matrix 

[ ~ l~ ~] 
0 2 4 

using an initial guess of (1, 2, 3). 

Run Wielandt.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select Keyboard and click OK. Then input the data as follows: 

Dimension of the matrix (1-30)? 3 

Matrix[l, l]: 2 
Matrix[l, 2]: 10 
Matrix[l, 3]: 0 
Matrix[2, l]: O 
Matrix[2, 2]: 1 
Matrix[2, 3]: 0 
Matrix[3, l]: 0 
Matrix[3, 2]: 2 
Matrix[3, 3]: 4 
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Now input an initial guess for the eigenvector: 
Vector[l]: 1 
Vector[2]: 2 
Vector[3]: 3 

Tolerance (> 0): lE-6 

Maximum number of eigenvalues/eigenvectors to find (<= 3): 3 

Maximum number of iterations (> O): 200 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
2.00000000000000etO 
O.OOOOOOOOOOOOOOetO 
O.OOOOOOOOOOOOOOetO 

1.00000000000000etl 
1.00000000000000etO 
2.00000000000000etO 

O.OOOOOOOOOOOOOOetO 
O.OOOOOOOOOOOOOOetO 
4.00000000000000etO 

Tolerance: 1.00000000000000e-6 
Maximum number of eigenvalues/eigenvectors to find: 3 
Maximum number of iterations: 200 

Number of iterations: 10 
The approximate eigenvector: 
-8.32731765655097e-7 
4.60590248231668e-15 
1.00000000000000etO 

The associated eigenvalue: 4.00000000000004et0 

Number of iterations: 0 
The approximate eigenvector: 
1.00000000000000etO 

-0.00000000000000etO 
-0.00000000000000etO 

The associated eigenvalue: 2.00000000000000etO 

Number of iterations: 0 
The approximate eigenvector: 
1.00000000000000etO 

-9.99999888969116e-2 
6.66666592646069e-2 

The associated eigenvalue: 9.99999999999991e-1 

The exact solution is 

Eigenvalue = 4; Eigenvector = (0, 0, 1) 
Eigenvalue = 2; Eigenvector = (1, 0, O) 
Eigenvalue = l; Eigenvector = (1, - 0.1, 2/30) 
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The Complete Eigensystem of a Symmetric Real Matrix 
Using the Cyclic ]acom Method aacobi.pas) 

Description 

The eigensystem of a symmetric matrix can be computed much more simply and 
efficiently than the eigensystem of an asymmetric matrix. The cyclic Jacobi method 
(Atkinson and Harley 1983, 154-160) is an iterative technique for approximating 
the complete eigensystem of a symmetric matrix to within a given tolerance. It 
consists of multiplying the matrix A by a series of rotation matrices R1• The rotation 
matrices are chosen so that the elements of the upper triangular part of A (exclud­
ing the diagonal) are systematically annihilated; that is, R1 is chosen so that A[l, 2] 
becomes zero, R2 is chosen so thatA[l, 3] becomes zero, and so on. Since the matrix 
is symmetric, this will also annihilate the lower triangular part of A. Because each 
rotation will probably change the value of elements annihilated in previous rota­
tions, the method is iterative. Eventually, the matrix will be diagonalized. The 
eigenvalues will be the elements of the main diagonal of the diagonal matrix; the 
eigenvectors will be the corresponding rows of the matrix created by the product of 
the rotation matrices R,. 

User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

TNmatrix = array[l •• TNArraySize] of TNvector; 

Input Parameters 

Dimen : Integer; Dimension of the matrix Mat 

Mat : TNmatrix; The symmetric matrix 

Maxlter : Integer; Maximum number of iterations 

Tolerance : Extended; Accuracy in solution 
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The preceding parameters must satisfy the following conditions: 

1. Dimen > 1. 

2. Dimen s TNArraySize. 

3. Tolerance > 0. 

4. Maxlter > 0. 

5. Mat must be symmetric. 

TNArraySize sets an upper bound on the number of elements in each vector. It is 
used in the type definition of TNvect:or and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for 
condition 2. If condition 2 is violated, the program will crash with an Index Out of 
Range error (assuming the directive {$R +}is active). 

Output Parameters 

Eigenvalues: TNvector; Approximation to the eigenvalues of the matrix 

Eigenvectors : TNmatrix; Approximation to the eigenvectors associated with the 
eigenvalues 

Iter : Integer; Number of iterations required to find eigenvalues/vectors 

Error: Byte; 0: No errors 
1: Dimen s 1 
2: Tolerance s 0 
3: Maxlter s 0 
4: Mat not symmetric 
5: Iter ~ Maxlter 

Syntax of the Procedure Call 

Jacobi(Dimen, Mat, Maxlter, Tolerance, Eigenvalues, Eigenvectors, Iter, Error); 
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Comments 

For symmetric matrices, the Jacobi method is preferred to Wielandt' s deflation. 

Unlike the power and inverse power methods, the efficiency of the Jacobi method 
is not affected by repeated eigenvalues with linearly dependent eigenvectors. 

The eigenvectors are normalized such that the element of largest absolute magni­
tude in each vector is equal to one. 

Sample Program 

The sample program Jacobi.pas provides I/O functions that demonstrate Jacobi's 
method of approximating the eigensystem of symmetric matrices. 

Input File 

Data may be input from a text file. Entries in the text file should be separated by 
spaces or carriage returns, and it does not matter if the text file ends with a carriage 
return. The format of the text file should be as follows: 

1. Dimension of the matrix 

2. Elements of the matrix, in the order 

[l, l], [l, 2], ... , [l, N], ... , [N, l], ... , [N, N], 
where N is the dimension of the matrix 

For example, to find the dominant eigenvalue of the matrix 

[~~] 
you could first create the following text file: 

4 
1 
2 
2 
1 
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Example 

Problem. Find the complete eigensystem of the symmetric matrix 

[ ! i =~ =~] -3 -1 1 2 
-1 -3 2 1 

Run Jacobi.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample7A.dat 

Tolerance (> 0): lE-8 

Maximum number of iterations (> O): 200 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The matrix: 
1.000000000 2.000000000 -3.000000000 -1.000000000 
2.000000000 1.000000000 -1.000000000 -3.000000000 

-3.000000000 -1.000000000 1.000000000 2.000000000 
-1.000000000 -3.000000000 2.000000000 1.000000000 

Tolerance: l.OOOOOOOOOOOOOOe-8 
Maximum number of iterations: 200 

Number of iterations: 4 

The approximate eigenvector: 
-1.00000000000000etO 
-1.00000000000000etO 

l.OOOOOOOOOOOOOOetO 
l.OOOOOOOOOOOOOOetO 

The associated eigenvalue: 7.00000000000000e+O 

The approximate eigenvector: 
9.99999999977805e-l 

-9.99999999977804e-l 
-1.00000000000000etO 

l.OOOOOOOOOOOOOOetO 

The associated eigenvalue: l.OOOOOOOOOOOOOOe+O 
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The approximate eigenvector: 
l.OOOOOOOOOOOOOOe+O 

-9.99999556935429e-l 
9.99999999977805e-l 

-9.99999556913233e-l 

The associated eigenvalue: -2.99999999999990e+O 

The approximate eigenvector: 
9.99999556935428e-l 
l.OOOOOOOOOOOOOOe+O 
9.99999556935429e-l 
l.OOOOOOOOOOOOOOe+O 

The associated eigenvalue: -1.000000000000lOetO 

The exact solution is 

Eigenvalue = 
Eigenvalue = 
Eigenvalue = 
Eigenvalue = 
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7; Eigenvector = (1, 1, -1, -1) 
- 3; Eigenvector = (1, - 1, 1, - 1) 

l; Eigenvector = ( -1, 1, 1, -1) 
-1; Eigenvector = (1, l, 1, 1) 
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c H A p T E R 8 
Initial Value and Boundary Value Methods 

A differential equation is like an ordinary equation except that the unlmown is a 
function, and derivatives of the function appear in the equation. For example, 

f"(x) + f(x) = 0 

is a differential equation.f"(x) is the second derivative of.f(x). The solutions are the 
functions of the form 

f(x) = a * cos(x) + b * sin(x) 

The function is uniquely determined by suitable initial conditions, such as 

f(O) = 3 
f'(O) = 4 

in which case the solution is 

f(x) = 3 * cos(x) + 4 * sin(x) 

The routines in this chapter solve differential equations that are ordinary and lin­
ear. A differential equation is ordinary if there is only an independent variable (that 
is, the unknown function is a function of only one variable), and thus the deriva­
tives are ordinary derivatives and not partial derivatives. A differential equation is 
linear if the unknown function and its derivatives appear linearly in the equation. 

This chapter describes routines that specifically solve: (1) initial value problems for 
nth-order ordinary differential equations, (2) initial value problems for systems of 
coupled first-order and second-order ordinary differential equations, and (3) 
boundary value problems for second-order ordinary differential equations. 
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Note that these routines work only with ordinary differential equations, not partial 
differential equations. All of the routines in this chapter can solve problems involv­
ing nonlinear equations. 

Two one-step techniques that solve initial value problems for first-order ordinary 
differential equations are implemented. The first technique employs the fourth­
order Runge-Kutta method, also known as the classical Runge-Kutta method. The 
second employs the Runge-Kutta-Fehlberg method. 

Each one-step technique approximates the value of the dependent variable at a 
mesh point, which is a value of the independent variable, by using only the infor­
mation obtained from the preceding mesh point. The Runge-Kutta method em­
ploys equally spaced mesh points. On the other hand, the Runge-Kutta-Fehlberg 
method varies the spacing of the mesh points in order to control the local trunca­
tion error. This produces a corresponding bound on the global error. 

The Adams-Bashforth!Adams-Moulton predictor/corrector method is a multistep 
method that uses information obtained at several preceding mesh points to approx­
imate the value of the dependent variable at the current mesh point. The proce­
dure employs the Adarns-Bashforth four-step method to obtain a predictor. It is 
subsequently used as input for the Adams-Moulton three-step method to obtain a 
corrector. The corrector is the approximate value of the solution. Mesh points are 
equally spaced, and the starting values for the process are determined by the one 
step, fourth-order Runge-Kutta method. 

The Runge-Kutta methods are the most reliable and should be used when you are 
uncertain of the behavior of the differential equation (for example, if the solution to 
the differential equation is not very smooth). If you want the output to be evenly 
spaced (in x) or do not require a high degree of accuracy, use the classical Runge­
Kutta method. Otherwise, the Runge-Kutta-Fehlberg method is the best general 
purpose routine to use, since it provides control over the accuracy of the solution. 

The Adams-Bashforth/Adarns-Moulton method achieves the same accuracy (for 
equally spaced mesh points) as the fourth-order Runge-Kutta formula, but it is 
significantly faster. Consequently, the Adarns-Bashforth/Adarns-Moulton method is 
the most desirable method if you are reasonably certain that the differential equa­
tion is well-behaved. 

Initial value problems for first-order ordinary differential equations are guaranteed 
to have a unique solution on the interval a, b if the function 

x' = f(t, x) 
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is continuous over the interval a, b, and if the function satisfies the Lipshitz condi­
tion. The Lipshitz condition states that there exists a positive number L such that 

I f(t, x2) - f(t, x1) I S Llx2 - x1I 
for all a s t s b, - oo < x < oo • 

Initial value problems for second-order ordinary differential equations can be 
solved via a fourth-order Runge-Kutta method (Runge....2.pas). This procedure 
reduces a given differential equation to a system of two, first-order ordinary differ­
ential equations. The solution to this system is approximated at equally spaced 
mesh points with the fourth-order Runge-Kutta method. 

Initial value problems for second-order ordinary differential equations are guaran­
teed to have a unique solution on the interval a, b if the function 

x" = f(t, x, x') 

is continuous over the interval a, b and if the function satisfies the Lipshitz condi­
tion. For a second-order differential equation, the Lipshitz condition states that 
there exists a positive number L such that 

lf(t, x2, x'2) - f(t, xi' x'2) I s L( lx2 - x1I + lx'2 - x' 1I) 
for all a s t s b, - oo < x < oo, - oo < x' < oo. 

The Runge-Kutta method can be generalized for any order ordinary differential 
equation. The file Runge_N .pas contains an algorithm that can solve an initial 
value problem for an nth-order differential equation with the fourth-order Runge­
Kutta formulas. The Lipshitz condition can be generalized for any order ordinary 
differential equation. (For details, consult the reference book listed in the section, 
·solution to an Initial Value Problem for a First-Order Ordinary Differential Equa­
tion Using the Runge-Kutta Method.") 

Although Runge_N .pas can be used to solve initial value problems for first-order 
and second-order ordinary differential equations, we recommend that Runge-1.pas 
and Runge....2.pas be used instead. The notation used by these routines is somewhat 
simpler than the general case. There is no significant difference in computation 
time between the general program (Runge..N.pas) and the specific programs 
(Runga.l.pas and Runge....2.pas). 

Systems of coupled equations may also be solved with Runge-Kutta techniques. A 
system of up to ten first-order ordinary differential equations can be solved with 
the file Runge-81.pas. A system of up to ten second-order ordinary differential 
equations can be solved with the file Runga.S2.pas. The algorithms in both these 
files are based on the classical Runge-Kutta method with uniform spacing between 
mesh points; hence, they do not allow for accuracy control (as in the Runge-Kutta­
Fehlberg method). (The Lipshitz condition for systems of equations is given in the 
reference in the sections about Runge-81.pas and Runge-82.pas.) 
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Boundary value problems for second-order ordinary differential equations (where 
the value of the dependent variable is specified at the two endpoints of interval) 
can be solved using shooting techniqtres. Shooting techniques converge onto the 
slope of the function at one boundary. This reduces the boundary value problem to 
a series of initial value problems. The series concludes when the initial value prob­
lem satisfies the boundary condition at the other boundary. 

If the second-order differential equation is linear (that is, linear in the dependent 
variable(s), not necessarily linear in the independent variable), the linear-shooting 
method (linshot2.pas) may be used. A linear combination of solutions to two initial 
value problems yields the solution to the boundary value problem. 

If the second-order differential equation is nonlinear, the routine Shoot2.pas must 
be used. The secant method generates a sequence of solutions with different values 
of the first derivative until the appropriate boundary condition, subject to a desired 
accuracy, is satisfied. Although Shoot2.pas may be used to solve linear boundary 
value problems, Linshot2.pas is more efficient for the linear case. 

Boundary value problems for second-order differential equations are guaranteed to 
have a unique solution on the interval a, b if the function 

y" = f(x, y, y') 

and the two partial derivatives of/oy, ofloy' are continuous on the interval [a, b]. 
Furthermore, ofloy must be positive and ofloy' must be bounded for all x, y, y' a s 
x s b, - 00 < y < 00' - 00 < y' < 00 • 

The convergence to the appropriate initial value of the first derivative is not 
assured for nonlinear boundary value problems. A good guess of the derivative 
boundary condition is often required and may involve considerable trial and error. 

Interpolation techniques (see Chapter 3) may be used to approximate the solution 
of values of the independent variable that are not mesh points. 
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Solution to an Initial Value Prob"lem far a First-Order 
Ordinary Differential Equation Using the Runge-Kutta 
Method (Runge--1.pas) 

Description 

This example uses the Runge-Kutta method (Burden and Faires 1985, 220-227} to 
approximate the solution to a first-order ordinary differential equation with a speci­
fied initial condition. 

Given a function of the form 

dx/dt = TNTargetF(t, x) 

which satisfies the conditions given at the beginning of this chapter, and an initial 
condition 

x[LowerLimit] = Xlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

the fourth-order Runge-Kutta method approximates x in the interval [LowerLimit, 
UpperLimit]. 

The fourth-order Runge-Kutta formulas consist of the following: 

Fl = h * TNTargetF(t, x[t]) 
F2 = h * TNTargetF(t + h/2, x[t] + Fl/2) 
F3 = h * TNTargetF(t + h/2, x[t] + F2/2) 
F4 = h * TNTargetF(t + h, x[t] + F3) 
x[t + l] = x[t] + (Fl + 2 * F2 + 2 * F3 + F4)/6 

where t ranges from LowerLimit to Upper Limit in steps of h. These formulas give a 
truncation error of order h 4 • 

You must supply LowerLimit, UpperLimit, Xlnitial, Numlnteroals, and TNTargetF. 

User-Defiood Types 

TNvector = array[l .• TNArraySize] of Extended; 
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User-Defined Function 

TNTargetF(t, X : Extended) : Extended; 

dx/dt = TNTargetF(t, x) 

The function TNTargetF(t, x) is a user-defined function that calculates the deriva­
tive dx!dt. 

Input Parameters 

Lowerlimit: Extended; Lower limit of interval 

Upperlimi t : Extended; Upper limit of interval 

XInitial : Extended; Value of X at LowerLimit 

NumReturn : Integer; Number of (t, x) pairs returned from the procedure 

Numlnterval s : Integer; Number of subintervals used in calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlnteroals ;;::: NumReturn 

3. LowerLimit ¢ UpperLimit 

Output Parameters 

TVa l ues : TNvector; Values oft between the limits 

XValues: TNvector; Values of X approximated at the values in TValues 

Error : Byte; 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: LowerLimit = UpperLimit 

Syntax of the Procedure Call 

InitialCondlstOrder(Lowerlimit, Upperlimit, Xlnitial, NumReturn, 
Numlntervals, TValues, XValues, Error, @TNTargetF); 

The procedure InitialConditionlstOrder integrates the first-order differential 
equation. 
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Comments 

This procedure will compute Numlnteroals values in its calculations; however, you 
will rarely need to use all the values. The vectors TValues and XValues will contain 
only NumReturn values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlnteroals is a multiple of 
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
teroals large) without generating an excessive amount of output (by making Num­
Return small). 

Warning: A stiff differential equation occurs when there are at least two very dif­
ferent scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 100•. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 

Sample Program 

The sample program Runge-1.pas provides 1/0 functions that demonstrate the 
Runge-Kutta method of solving initial value problems. Note that the address of 
TNTargetF is passed into the InitialConditionlstOrder procedure. 

Example 

Problem. Solve the following initial value problem with the Runge-Kutta method: 

x' = x/t + t - 1 1 :s; t :s; 2 
x(l) = 1 

1. Code the equation into the program Runge_l.pas: 

function TNTargetF(t, X : Extended) : Extended; 

{----------------------------------------------------------------------} 
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---} 
{----------------------------------------------------------------------} 
begin 

TNTargetF := x/t t t - 1 
end; 
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2. Run Runge-1.pas: 

Lower limit of interval? 1 

Upper limit of interval? 2 

X value at t = 1.00000e+O: 1 

Number of values to return (1-40)? 10 

Number of intervals (>= 10)? 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower limit: 1.00000000000000e+O 
Upper limit: 2.00000000000000e+O 

Value of X at 1.0000: 1.00000000000000e+O 
Number of intervals: 100 

t 
1.00000000 
1.10000000 
1.20000000 
1.30000000 
1.40000000 
1.50000000 
1.60000000 
1.70000000 
1.80000000 
1.90000000 
2.00000000 

x 
1.00000000000000e+O 
1.10515880220649e+O 
1.22121413182916e+O 
1.34892645616477e+O 
1.48893886869362e+O 
1.64180233779216e+O 
1.80799419315265e+O 
1.98793197313186e+O 
2.18198400310574e+O 
2.39047761619428e+O 
2.61370563879444e+O 

The exact solution is 

X = t2 - t * ln(t) 
X(2) = 2.6137056 
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Solution to an Initial Value Problem for a First-Order 
Ordinary Differential Equation 
Using the Runge-Kutta-Fehlberg Method (RKFJ..pas) 

Description 

This example uses the Runge-Kutta-Fehlberg method (Burden and Faires 1985, 
230-235) to approximate a solution within a specified tolerance to a first-order 
ordinary differential equation with a specified initial condition. 

Where the Runge-Kutta method (see Runge_l.pas) uses a constant spacing h, the 
Runge-Kutta-Fehlberg method varies the spacing so that the solution can be 
approximated with accuracy. 

Given a function of the form 

dx!dt = TNTargetF(t, x) 

which satisfies the conditions given at the beginning of this chapter, and an initial 
condition 

x[LowerLimit] = Xlnitial 

both the fourth-order and fifth-order Runge-Kutta formulas are used to approxi­
mate x in the intetval [LowerLimit, UpperLimit]. The number of subintetvals is 
continually increased until the fractional difference between the results of the 
fourth-order and fifth-order formulas (which give a truncation error of h4 and h5, 

respectively) in each subintetval is less than the specified tolerance. 

You must supply LowerLimit, UpperLimit, Tolerance, and TNTargetF. 

User-Defined Types 

TNvector = array[l .• TNArraySize] of Extended; 

User-Defined Function 

TNTargetF(t, X : Extended) : Extended; 

dx!dt = TNTargetF(t, x) 
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Input Parameters 

Lowerlimit : Extended; Lower limit of interval 

Upperlim1 t : Extended; Upper limit of interval 

Xlnitial : Extended; Value of X at LowerLimit 

Tolerance: Extended; Maximum tolerable fractional difference between iterate 
values 

NumReturn : Integer; Number of (t, x) values to be returned 

The preceding parameters must satisfy the following conditions: 

1. Tolerance > 0 

2. NumReturn > 0 

3. LowerLimit ;ii! UpperLimit 

Output Parameters 

TValues: TNvector; Values oft at which X was approximated 

XValues: TNvector; Values of X at the values in TValues 

Error : Byte; 0: No errors 
1: Tolerance s 0 
2: NumReturn s 0 
3: LowerLimit = UpperLimit 
4: Tolerance not reached 

Syntax of the Procedure Call 

RungeKuttaFehlberg(Lowerlimit, Upperlimit, Xlnitial, Tolerance, 
NumReturn, TValues, XValues, Error, @TNTargetF); 

The procedure RungeK.uttaFehlberg integrates the first-order differential equation 
TNTargetF. 
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Comments 

This procedure will compute more values in its calculations than it will return in 
the vectors TValues and XValues. The vectors TValues and XValues will contain 
only NumReturn values at subintervals between the lower and upper limits. More 
values will be returned in regions of large functional variation than in regions of 
small functional variation. Thus, you can ensure a highly accurate solution (by 
malting the Tolerance small) without generating an excessive amount of output (by 
malting NumReturn small). 

The Runge-Kutta-Fehlberg method improves the accuracy in the solution by 
reducing the spacing between successive values of t. However, if the Tolerance is 
too small, the spacing required to reach Tolerance may be beyond the machine's 
limit of precision. Consequently, the routine will not converge to a solution that 
meets the required Tolerance and Error 5 will be returned. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 100.. The Runge-Kutta-Fehlberg method may 
generate a numerical solution that bears no resemblance to the exact solution of the 
differential equation. This unstable numerical solution usually grows exponentially 
and may be oscillatory. However, if the exact solution of the differential equation 
grows as the independent variable increases, the instability may be difficult to 
detect. If a suspected instability has been encountered, reduce the interval size 
(Numlntervals ). 

Samp'le Program 

The sample program RKF-1.pas provides 1/0 functions that demonstrate the 
Runge-Kutta-Fehlberg method of solving initial value problems. Note that the 
address of TNTargetF is passed into the Runge-Kutta-Fe1dberg procedure. 

Exam pk 

Problem. Use the Runge-Kutta-Fehlberg method to solve the following initial 
value problem with a tolerance of lE-6: 

x' = x/t + t - 1 
x(l) = 1 

l:5t:52 
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I. Code the differential equation into the program RKF-1.pas: 

function TNTargetF(t, X : Extended) : Extended; 

{----------------------------------------------------------------------} 
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---} 
{----------------------------------------------------------------------} 
begin 

TNTargetF := x/t + t - l; 
end; { function TNTargetF } 

2. Run RKF-lpas: 

Lower limit of interval? 1 

Upper limit of interval? 2 

X value at t = l.OOOOOe+O: 1 

Number of values to return (1-40)? 10 

Tolerance (> O)? lE-6 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower limit: l.OOOOOOOOOOOOOOe+O 
Upper limit: 2.00000000000000e+O 

Value of X at 1.0000: l.OOOOOOOOOOOOOOe+O 
Tolerance: l.OOOOOOOOOOOOOOe-6 

t 
1.00000000 
1.10000000 
1.20000000 
1.30000000 
1.40000000 
1.50000000 
1.60000000 
1.70000000 
1.80000000 
1.90000000 
2.00000000 

x 
l.OOOOOOOOOOOOOOe+O 
l.10515881708653e+O 
l.22121416069278e+O 
l.34892649817459e+O 
l.4889389231035le+O 
l.64180240395245e+O 
l.80799427050390e+O 
l.9879320611947le+O 
2.18198410146987e+O 
2.39047772450816e+O 
2.61370575675625e+O 

Now solve the same problem with a smaller tolerance, l.OOOE-08: 

Lower limit of interval? 1 

Upper limit of interval? 2 

X value at t = l.OOOOOetO: 1 

Number of values to return (1-40)? 10 

Tolerance (> O)? lE-8 
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Now a dialog box appears asking you whether you would like the output sent to the 
Screen, directly to the Printer, or into a File. Make your selection and click OK. 

Lower Limit: l.OOOOOOOOOOOOOOe+O 
Upper Limit: 2.00000000000000e+O 

Value of X at 1.0000 : l.OOOOOOOOOOOOOOe+O 
Tolerance: l.OOOOOOOOOOOOOOe-8 

T X 
1.00000000 l.OOOOOOOOOOOOOOe+O 
1.12208941 l.12982837401487e+O 
1.20585321 l.22836146842843e+O 
1.29271260 l.33921121932749e+O 
1.38286653 l.46405185232472e+O 
1.47648998 l.60468229893107e+O 
1.57374241 l.76304147999705e+O 
1.67477301 l.94122165035498e+O 
1.77972398 2.14148082489667e+O 
1.88873280 2.36625482901586e+O 
2.00193373 2.61816928271558e+O 

The exact solution is 

X = t 2 - t ln(t) 

X(2) = 2.6137056 
X(2.00193373) = 2.6181693 

In the first run, a solution could be approximated within tolerance with a spacing of 
0.1. In the second run, the algorithm had to vary the spacing in order to approxi­
mate a solution within the tolerance. 
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Solution to an Initial Value Problem for a First-Order 
Ordinary Differential Equation 
Using the Adams-Bashforth!Adams-Moulton 
Predictor/Corrector Scheme (Adams-1.pas) 

Description 

This example approximates the solution to a first-order ordinary differential equa­
tion with a specified initial condition using the four-step Adams-Bashforth/Adams­
Moulton formulas (Burden and Faires 1985, 238-247). Runge-Kutta methods are 
one-step methods, because each calculation uses information from only one pre­
vious point. The Adams' formulas use information from four previous points, thus 
the four-step method. 

Given a function of the form 

dx/dt = TNTargetF(t, x) 

which satisfies the conditions given at the beginning of this chapter, and an initial 
condition 

x[LowerLimit] = Xlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlnteroals 

the fourth-order Runge-Kutta formula (see Runge-1..pas) is used to find approxi­
mations at the first three points in the interval [LowerLimit, UpperLimit]. Then the 
following explicit Adams-Bashforth formula: 

x.[i + l] = x[i] + h/24 * { 55 * TNTargetF(t[i], x[i]} 

- 59 * TNTargetF(t[i-1], x[i-1]) 

+ 37 * TNTargetF(t[i - 2], x[i - 2]) 

- 9 * TNTargetF(t[i - 3], x[i - 3]) } 

and the following implicit Adams-Moulton formula: 

x[i + l] = x[i] + h/24 * { 9 * TNTargetF(t[i + l], xJi + l]) 

+ 19 * TNTargetF(t[i], x[i]) 

- 5 * TNTargetF(t[i - l], x[i -1]) 

+ TNTargetF(t[i - 2], x[i - 2]) } 

approximate (predict) and refine (correct) all other points in the interval. 
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You must supply UpperLimit, LowerLimit, Xlnitial, Numlnteroals, and TNTargetF. 

User-Defined Types 

TNvector = array[l .. TNArraySize] of Extended; 

User-Defined Function 

TNTargetF(t, X : Extended) : Extended; 

dx/dt = TNTargetF(t, x) 

Input Parameters 

Lowerlimit: Extended; Lower limit of interval 

Upperlimit: Extended; Upper limit of interval 

XInitial : Extended; Value of X at LowerLimit 

NumReturn : Integer: Number of (t, x) values to be returned from the procedure 

Numinterval s : Integer; Number of subintervals to be used in calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlnteroals 2= NumReturn 

3. LowerLimit ¢ UpperLimit 

Output Parameters 

TValues: TNvector: Values oft between the limits 

XValues: TNvector; Values of X determined at the values in TValues 

Error : Byte; 0: No errors 
1: NumReturn < 1 
2: Numlnteroals < NumReturn 
3: LowerLimit = UpperLimit 
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Syntax of tlw Procedure Call 

Adams(Lowerlimft, Upperlimit, Xlnitial, NumReturn, 
Numintervals,TValues, XValues, Error, @TNTargetF); 

The procedure Adams integrates the first-order differential equation TNTargetF. 

Comments 

This procedure will compute Numlnterools values in its calculations; however, you 
will rarely need to use the values. The vectors TValues and XValues will contain 
only NumRetum values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlnteroals is a multiple of 
NumRetum.) Thus, you can ensure a highly accurate solution (by making Numln­
teroals large) without generating an excessive amount of output (by making Num­
Retum small). 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 100... The Adams-Bashforth/Adams-Moulton 
method may generate a numerical solution that bears no resemblance to the exact 
solution of the differential equation. This unstable numerical solution usually 
grows exponentially and may be oscillatory. However, if the exact solution of the 
differential equation grows as the independent variable increases, the instability 
may be difficult to detect. If a suspected instability has been encountered, reduce 
the interval size (Numlnteroals). 

Sample Program 

The sample program Adams-I.pas provides 1/0 functions that demonstrate the 
Adams-Bashforth/Adams-Moulton predictor/corrector method of solving initial 
value problems. Note that the address of TNTargetF gets passed into the Adams 
procedure. 

Examp'le 

Problem. Solve the following initial value problem with the Adams-Bashforth/ 
Adams-Moulton method: 

x' = x/t + t - I 
x(I) = I 
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1. Code the differential equation into the program Adams..1.pas: 

function TNTargetF(t, X : Extended) : Extended; 

{----------------------------------------------------------------------} 
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---} 
{----------------------------------------------------------------------} 
begin 

TNTargetF := x/t + t - 1; 
end; 

2. Run Adams-1..pas: 

Lower l;m;t of ;nterval? 1 

Upper l;m;t of ;nterval? 2 

X value at t = 1.00000etO: 1 

Number of values to return (1-40)? 10 

Number of ;ntervals (>= 10)? 100 

{ funct;on TNTargetF } 

Now a dialog box appears asld.ng you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower lfm;t: 1.00000000000000e+O 
Upper l;m;t: 2.00000000000000e+O 

Value of X at 1.0000: 1.00000000000000e+O 
Number of ;ntervals: 100 

t 
1.00000000 
1.10000000 
1.20000000 
1.30000000 
1.40000000 
1.50000000 
1.60000000 
1.70000000 
1.80000000 
1.90000000 
2.00000000 

x 
l.OOOOOOOOOOOOOOe+O 
l.10515880229293e+O 
1.22121413201736e+O 
l.3489264564380le+O 
l.48893886904034e+O 
l.64180233820416e+O 
1.80799419362396e+O 
l.98793197365806e+O 
2.18198400368348e+O 
2.39047761682098e+O 
2.6137056394681le+O 

The exact solution is 

X = t2 - t ln(t) 
x(2) = 2.6137056 
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Solution to an Initial Value Prahl.em for a Second-Order 
Ordinary Differential Equation Using the Runge-Kutta 
Method (Runge--2.pas) 

Description 

This example approximates the solution to a second-order ordinary differential 
equation with specified initial conditions using the two variable Runge-Kutta for­
mulas (Burden and Faires 1985, 261-269). 

Given a function of the form 

<fx!dt2 = TNTargetF(t, x, x') 

where x' indicates dx/dt (which satisfies the Lipshitz condition given at the begin­
ning of this chapter), the initial conditions 

x[LowerLimit] = lnitialValue 
x'[LowerLimit] = lnitialDeriv 

and spacing 

h = (UpperLimit - LowerLimit)/Numlnteroals 

rewrite the second-order differential equation as two, first-order differential equa­
tions: 

x' = y 
y' = TNTargetF(t, x, y) 

Then the fourth-order, two-variable Runge-Kutta method can be used to approxi­
mate simultaneously x and y (x and x'). 

The fourth-order Runge-Kutta formulas for these equations consist of the follow­
ing: 

Flx = h * y[t] 

Fly = h * TNTargetF(t, x[t], y[t]) 

F2x = h * (y[t] + Fly/2) 

F2y = h * TNTargetF(t + h/2, x[t] + Flx/2, y[t] + Fly/2) 

F3x = h * (y[t] + F2y/2) 

F3y = h * TNTargetF(t + h/2, x[t] + F2x/2, y[t] + F2y/2) 

F4x = h * (y[t] + F3y) 

F4y = h * TNTargetF(t + h, x[t] + F3x, y[t] + F3y) 
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x[t+ l] = x[t] + (Flx + 2 * F2x + 2 * F3x + F4x)/6 

y[t+ l] = y[t] + (Fly + 2 * F2y + 2 * F3y + F4y)/6· 

where t ranges from Lower Limit to UpperUmit in steps of h. These formulas give a 
truncation error of order h 4• 

You must supply LowerUmit, UpperLimit, Xlnitial, Numlnteroals, and TNTargetF. 

User-Defined JYpes 

TNvector = array[l •• TNArraySize] of Extended; 

User-Defined Function 

TNTargetF(t, X, XPrime : Extended) : Extended; 

dx2 !dt2 = TNTargetF(t, x, dx!dt) 

Input Param£ters 

Lowerli mi t : Extended: Lower limit of interval 

Upperlimi t : Extended; Upper limit of interval 

InitialValue: Extended; Value of X at LowerLimit 

InitialDeriv : Extended; Derivative of X at LowerLimit 

NumReturn : Integer: Number of (t, x) values returned from the procedure 

Numinterval s : Integer; Number of subintervals used in the calculations 

The preceding parameters must satisfy the following conditions: 

1. NumRetum > 0 

2. Numlnteroals ;;:: NumRetum 

3. LowerUmit ¢ UpperLimit 
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Output Parameters 

TValues : TNvector; 

xv a 1 ues : TNvector; 

Values oft between the limits 

Values of X determined at the values in TValues 

XDerivVal ues : TNvector; Values of the first derivative of X determined at the values 
in TValues 

Error : Byte; 0: No errors 
1: NumReturn < 1 
2: Numlnteroals < NumReturn 
3: LowerLimit = UpperLimit 

Syntax of th£ Procedure Call 

Initia1Cond2nd0rder(Lowerlimit, Upperlimit, InitfalValue, InitialDeriv, 
NumReturn, Numintervals, TValues, XValues, 
XDerivValues, Error, @TNTargetF); 

The procedure lnitialCondition2ndOrder integrates the second-order differential 
equation TNTargetF. 

Comments 

This procedure will compute Numlnt,eroals values in its calculations; however, you 
will rarely need to use all these values. The vectors TValues, XValues, and XDeriv­
Values will contain only NumReturn values at roughly equally spaced t-values 
between the lower and upper limits. (They will be equally spaced only when 
Numlnt,eroals is a multiple of NumReturn.) Thus, you can ensure a highly accurate 
solution (by making Numlnt,eroals large) without generating an excessive amount 
of output (by making NumReturn small). 

Warning: A differential equation occurs when there are at least two very different 
scales of the independent variable on which the dependent variable(s) is changing; 
for example, y = x + e- 100.. The Runge-Kutta method may generate a numerical 
solution that bears no resemblance to the exact solution of the differential equation. 
This unstable numerical solution usually grows exponentially and may be oscilla­
tory. However, if the exact solution of the differential equation grows as the inde­
pendent variable increases, the instability may be difficult to detect. If a suspected 
instability has been encountered, reduce the interval size (Numlnt,eroals). 
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Samp1.e Program 

The sample program Runge-2.pas provides 1/0 functions that demonstrate the 
Runge-Kutta method of solving initial value problems for second-order ordinary 
differential equations. Note that the address of TNTargetF gets passed into the 
lnitialCondition2ndOrder procedure. 

Exam pk 

Problem. A weight with mass m lies on a frictionless table and is connected to a 
spring with spring constant k: 

-wan 

F( w) 
k 

m 

Frictionl1ss surface 

If the weight is subject to a driving force F sin(w t) (w represents the frequency of 
the driving force and t is time), the equation of motion of the mass is as follows: 

m rfx!df + k x = F sin(w t) 

Given 

m = 2kg 
F=9N 
k = 32 Nim 
w = 5 cycles/sec 
x(O) = 0 m 
dx(O)/dt = -2.5 m/sec 

find the position and velocity of the block from t = 0 second to t = 2 seconds. 

I. Rewrite the preceding second-order differential equation: 

rfx!dt1 = F/m sin(w t) - k!m x 
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2. Code this second-order differential equation into the program Runge-2.pas: 

function TNTargetF(t : Extended; 
X : Extended; 
XPrime : Extended) : Extended; 

{-----------------------------------------------------------------------} 
{--- THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION ---} 
{-----------------------------------------------------------------------} 
begtn 

TNTargetF := 9/2 * Sin (5 * t) - 32/2 * x; 
end; { function TNTargetF } 

3. Run Runge-2.pas: 

170 

Lower limit of interval? 0 

Upper limit of interval? 2 

Enter x value at t = o.oooooe+o: o 
Enter derivative of X at t = O.OOOOOe+O: -2.5 

Number of values to return (1-40)? 10 

Number of intervals (>= 10)? 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower Limit: O.OOOOOOOOOOOOOOe+O 
Upper Limit: 2.00000000000000e+O 

Value of X at 0.0000 : O.OOOOOOOOOOOOOOe+O 
Value of X' at 0.0000 :-2.50000000000000e+O 

Number of intervals: 100 

T 
0.00000000 
0.20000000 
0.40000000 
0.60000000 
0.80000000 
1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 

Value of X 
O.OOOOOOOOOOOOOOe+O 

-4.20735284275848e-l 
-4.54648724216734e-1 
-7.05605786993375e-2 
3.78400378699554e-l 
4.79461767300631e-l 
l.39708469016312e-1 

-3.28491796183335e-l 
-4.94677974769031e-1 
-2.06059519715177e-1 
2.72008842396951e-l 

Derivative of X 
-2.50000000000000e+O 
-l.35075642830665e+O 

l.04036531118478e+O 
2.47497991717220e+O 
1.63411037473655e+O 

-7.09151289407566e-l 
-2.40042152228323e+O 
-1.88475529635975e+O 
3.63745224811835e-1 
2.27781864414105e+O 
2.09767516082022e+O 
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The exact solution is 

F sin(w t) 
x=-------

F cos(w t) .. 
dx!dt = -------

m (w0
2 - w2) 

where w0 is the natural frequency of the system 

w 2 = k!m 
0 

The period of oscillation is given by 

t = 2 -rr/w = 1.257 sec 

The data is taken from a function of which the derivative could be computed 
exactly. Following are the actual values: 

t Values ofX 
0.0 O.OOOOOOOOOOOOE + 000 
0.2 -4.207354924039E-001 
0.4 -4.546487134128E - 001 
0.6 - 7.056000402993E - 002 
0.8 3.784012476539E -001 
1.0 4.794621373315E -001 
1.2 1.397077 490994E - 001 
1.4 - 3.284932993593E - 001 
1.6 - 4.946791233116E - 001 
1.8 - 2.060592426208E - 001 
2.0 2.720105554446E-001 
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Derivative of X 
- 2.500000000000E + 000 
- l.350755764670E + 000 

l.040367091367E + 000 
2.474981241501E + 000 
l.634109052159E + 000 

- 7.091554636580E - 001 
- 2.400425716625E + 000 
- l.884755635858E + 000 

3.637500845215E - 001 
2.277825654711E + 000 
2.097678822691E + 000 
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Sofution to an Initial Value Probkm for an nth-Order 
Ordinary Differential Equation Using the Hunge-Kutta 
Method (Hunge..N.pas) 

Description 

This example integrates an nth-order ordinary differential equation with specified 
initial conditions using the generalized Runge-Kutta formulas (Burden and Faires 
1985, 261-269). 

Given a function of the form 

Jll 1'dt" - T'"'l"'r. tF(t u> <•-I)\ u Xt• - LV .1.arge , X, X , .. ., X J 

where xCJJ indicates dJx/dt', which satisfies the general Lipshitz condition (the Lip­
shitz condition for first-order and second-order ordinary differential equations is 
given at the beginning of this chapter, and initial condition 

x[LowerLimit] = a1 

x<ll[LowerLimit] = a2 

x<•- 1>[LowerLimit] = a . 
and spacing 

h = (UpperLimit - LowerLimit)/Numlnteroals 

rewrite the nth-order differential equation as n first-order differential equations: 

x<1> = Y1 

x"-> = y<1\ = Y2 

x<3> = yu>z = y3 

x<•-1> = y<1> = y 
n-2 n-1 

x<•> = y<1>._1 = TNTargetF(t, x, y1, y2, ... , Y._1) 

Then the fourth-order general Runge-Kutta method can be used to approximate 
simultaneously the y's (x and its derivatives). 
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The general Runge-Kutta formulas for these equations consist of the following: 

Flx = h * yJt] 

Fly, = h * y2[t] 

Fly._2 = h * Y._Jt] 

Fly._1 = h * TNTargetF(t, x[t], yJt], ... , Y._Jt]) 

F2x = h * (yJt] + Fly/2) 

F2y1 = h * (y2[t] + Fly/2) 

F2y._ 2 = h * (y._Jt] + Fly._/2) 

F2y._ 1 = h * TNTargetF(t + h/2, x[t] + Flx/2, yJt] + Fly1/2, ... , Y._Jt] 
+ FlY.-1/2) 

F3x = h * (yJt] + F2y/2) 

F3y1 = h * (y2[t] + F2y/2) 

F3y,..2 = h * (y._Jt] + F2y._/2) 

F3y._ 1 = h * TNTargetF(t + h/2, x[t] + F2x/2, yJt] + F2y1/2, ... , Y._ 1[t] 
+ F2y._/2) 

F4x = h * (yJt] + F3y.) 

F4y1 = h * (y2[t] + F3y2) 

F4y._2 = h * (y._ 1[t] + F3y._) 

F4y._ 1 = h * TNTargetF(t + h, x[t] + F3x, yJt] + F3y1, •• ., Y._Jt] 
+ F3Y.-1) 

x[t+ l] = x[t] + (Flx + 2 * F2x + 2 * F3x + F4x)/6 

yJt+ l] = yJt] + (Fly1 + 2 * F2y1 + 2 * F3y1 + F4y)/6 

y2[t+ l] = y2[t] + (Fly2 + 2 * F2y2 + 2 * F3y2 + F4y2)/6 

Y.-2[t+ l] = Y.-2[t] + (Flyn-2 + 2 * F2yn-2 + 2 * F3yn-2 + F4yn-2)/6 

Y,..Jt+ l] = Y._Jt] + (Flyn-1 + 2 * F2yn-l + 2 * F3yn-l + F4y._,)!6 

where t ranges from Lower Limit to Upper Limit in steps of h. These formulas give a 
truncation error of order h 4• 
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You must supply the order, limits, initial values, and TNTargetF. The order may be 
arbitrarily large. 

User-Defined Types 

TNvector = array[O •• TNRowSize] of Extended; 
TNmatrix = array[O •• TNColumnSize] of TNvector; 

TNRowSize is an upper bound for the number of values returned for a particular 
variable (NumRetum). TNColumnSize is an upper bound for the order of the differ­
ential equation (Order). 

User-Defined Function 

TNTargetF(V : TNvector) : Extended; 

The elements of V are defined as 

V[O] corresponds tot 
V[l] corresponds to x 
V[2] corresponds to first derivative of x 
V[3] corresponds to second derivative of x 

This is the differential equation: 

il'x!dt = TNTargetF(t, x, x(l), ... x<•- 1» where n is the order of the equation. 

The procedure InitialCondition integrates this nth-order differential equation. 

Input Parameters 

Order : Integer; Order of the differential equation 

Lowerlimit : Extended; Lower limit of interval 

Upperlimit: Extended; Upper limit of interval 

Initial Values : TNvector; Values of X and its derivatives at lowerLimit 

NumReturn : Integer; Number of (t, x, x<1>, ... , x <•» values returned from the 
procedure 

Numinterval s : Integer; Number of subinterva1s used in the calculations 
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The preceding parameters must satisfy the following conditions: 

1. NumRetum > 0 

2. Numlnteroals Ci!:: NumRetum 

3. Order> 0 

4. I.owerLimit ;i! UpperLimit 

Output Parameters 

SolutfonValues : TNmatrb; Values oft, x and the derivatives of x between the limits 

Error : Byte; 0: No errors 
1: NumRetum < 1 
2: Numlnteroals < NumRetum 
3:0rder < 1 
4: I.owerLimit = UpperLimit 

Syntax of tlw Procedure Call 

InftfalCondftion(Order, Lowerlfmit, Upperlfmft, InftfalValues, 
NumReturn, Numintervals, Solut1onValues, Error, @TNTargetF); 

Comments 

The first row of Solution Values will be the values oft between the limits, the 
second row of Solution Values will be the values of x between the limits, the third 
row of Solution Values will be the values of x<1> between the limits, and so on. 

This procedure will compute Numlntervals values in its calculations; however, you 
will rarely need to use all those values. The rows of Solution Values will contain 
only NumRetum values at roughly equally spaced t-values between the lower and 
upper limits. (They will be equally spaced only when Numlntervals is a multiple of 
NumRetum.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Retum small). 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e -ioo.:. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen-
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tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
va'ls ). 

Sample Program 

The sample program Runge-N.pas provides 1/0 functions that demonstrate the 
Runge-Kutta method of solving initial value problems for high-order ordinary dif­
ferential equations. Note that the address of TNTargetF gets passed into the Initial­
Condition procedure. 

Examp'le 

Problem. Find the solution to the following fourth-order ordinary differential equa­
tion from t = 0 to t = 1: 

d4x(t)/dt = - 4 x(t) <f x(t)/dt3 

x(O) = 1 
dx(O)/dt = - 1 

tfx(O)!df = 2 
<f x(O)/df = - 6 
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I. Code the equation into the program RungeJJ.pas: 

function TNTargetF(V : TNvector) : Extended; 

{---------------------------------------------} { THIS IS THE DIFFERENTIAL EQUATION } 
{---------------------------------------------} 
~ d" X (1) (n-1) ! 
{ = TNTargetF(t, x, x , ••• x } 
{ } 
{ d~ } 
{ } 
{where n is the order of the equation. } 
{ } 
{ The elements of V are defined: } 
{ V[O] corresponds to t } 
{ V[l] corresponds to X . } 
{ V[2] corresponds to 1st derivative of X } 
{ V[3] corresponds to 2nd derivative of X } 
{ } 
{ } 
{ . } 

{---------------------------------------------} 
begin 

TNTargetF := -4 * V[l] * V[4]; 
end; { function TNTargetF } 

2. Run RungeJJ .pas: 

Order of the equation (1-40)? 4 

Lower limit of interval? 0 

Upper limit of interval? 1 

Enter x value at t = o.oooooe+O: 1 
Derivative 1 of x at t = o.oooooe+O: -1 
Derivative 2 of X at t = O.OOOOOe+O: 2 
Derivative 3 of X at t = O.OOOOOe+O: -6 

Number of values to return (1-40)? 10 

Number of intervals (>= 10)? 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower Limit: o.ooooooooooooooe+o 
Upper Limit: l.OOOOOOOOOOOOOOe+O 

Number of intervals: 100 

Initial conditions at lower limit: 
. X[l]= l.OOOOOOOOOOOOOOe+O 

X[2]=-l.00000000000000e+O 
X[3]= 2.00000000000000e+O 
X[4]=-6.00000000000000e+O 
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t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

t 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

Value X[l] 
1.00000000000000e+O 
9.09090909737517e-1 
8.33333334189336e-1 
7.69230770157394e-1 
7.14285715280102e-1 
6.66666667788519e-1 
6.25000001337168e-l 
5.88235295769619e-1 
5.55555557625526e-l 
5.26315792064849e-1 
5.00000003213983e-l 

Value X[2] 
-1.00000000000000e+O 
-8.26446283273189e-1 
-6.94444446826215e-1 
-5.91715977923112e-1 
-5.10204082090465e-1 
-4.44444443661452e-1 
-3.90624997971428e-1 
-3.46020758007956e-1 
-3.08641970911504e-1 
-2.77008304743045e-1 
-2.49999993429933e-1 

Value X[3] 
2.00000000000000e+O 
1.50262961438149e+O 
1.15740742373768e+O 
9.10332288053840e-1 
7.28862989793594e-1 
5.92592607536866e-1 
4.88281263842229e-1 
4.07083261374879e-1 
3.42935540127152e-1 
2.91587706310718e-1 
2.50000010753536e-1 

Value X[4] 
-6.00000000000000e+O 
-4.09808076056272e+O 
-2.89351855059016e+O 
-2.10076680857258e+O 
-1.56184925333600e+O 
-1.18518520443061e+O 
-9.15527359078898e-1 
-7.18382215400418e-1 
-5.71559223064178e-1 
-4.60401631119694e-1 
-3.75000005740566e-1 

Turbo Pascal Numerical Methods Toolbox 



X[l] are the values of x(t). 
X[2] are the values of dx(t)/dt. 
X[3] are the values of d!x(t)/dt2• 

X[4] are the values of d3x(t)/dt3• 

The exact solution is 

x(t) = (t+ ir1 

dx(t)/dt = - (t+ ir2 

d!x(t)/dt2 = 2(t+ ir3 

d3x(t)!dt3 = - 6(t+ ir4 

x(l) = 0.5 
dx(I)/dt = - 0.25 

d!x(I)/dt2 = 0.25 
d3x(l)/dt3 = - 0.375 
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Solution to an Initial Value Problem for a System of 
Coupled First-Order Ordinary Differential Equations Using 
tlw Runge-Kutta Method (Runge-81.pas) 

Description 

This example integrates a system of coupled first-order ordinary differential equa­
tions with specified initial conditions using the generalized Runge-Kutta formulas 
(Burden and Faires 1985, 261-269). 

Given m first-order ordinary differential equations in the form 

dx/dt = TNTargetFl(t, x1, x2, .. ., xJ 
dx/dt = TNTargetF2(t, x1, x2, .. ., xJ 

dx)dt = TNTargetFm(t, XI, X2, .. ., xm) 

which satisfies the Lipshitz condition (the Lipshitz condition for first-order and 
second-order ordinary differential equations is given at the beginning of this chap­
ter; consult the previous book reference for details of the Lipshitz condition for 
systems), and initial conditions 

xJLowerLimit] = a1 

x2[LowerLimit] = a2 

x [LowerLimit] = a 
m m 

and spacing 

h = (UpperLimit - LowerLimit}/Numlntervals 

the fourth-order general Runge-Kutta method can be used to approximate simulta­
neously the x1' s. 
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The general Runge-Kutta formulas for these equations are as follows: 

Flx1 = h * TNTargetFI(t, x1[t], x2[t], ... , xm[t]) 

Flx2 = h * TNTargetF2(t, xJt], x2[t], ... , xm[t]) 

Flxm = h * TNTargetFm(t, x1[t], x2[t], ... , xm[t]) 

F2x1 = h * TNTargetFI(t + h/2, xJt] + Flx1/2, x2[t] + Flx~, ... , xJt] 
+ Flxm/2) 

F2x2 = h * TNTargetF2(t + h/2, x1[t] + Flx1/2, x2[t] + Flx2/2, ... , xJt] 
+ Flxm/2) 

F2xm = h * TNTargetFm(t + h/2, x1[t] + Flx1/2, x2[t] + Flx~, ... , xm[t] 
+ Flx /2) m 

F3x1 = h * TNTargetFI(t + h/2, x1[t] + F2x1/2, x2[t] + F2x~, ... , xJt] 
+ F2x /2) m 

F3x2 = h * TNTargetF2(t + h/2, x1[t] + F2x1/2, x2[t] + F2x2/2, ... , xJt] 
+ F2xm/2) 

F4x1 = h * TNTargetFI(t + h, x1[t] + F3x1, x2[t] + F3x2, ... , xm[t] + F3xm) 

F4x2 = h * TNTargetF2(t + h, x1[t] + F3x1, x2[t] + F3x2, ... , xJt] + F3x) 

F4xm = h * TNTargetFm(t + h, xJt] + F3x1, x2[t] + F3x2, ... , xJt] + F3x) 

xJt+ l] = x1[t] + (Flx1 + 2•F2x1 + 2•F3x1 + F4x1)/6 

x2[t+ l] = x2[t] + (Flx2 + 2•F2x2 + 2•F3x2 + F4xJ!6 

Initial Value and Boundary Value Methods 181 



where t ranges from LowerUmit to UpperUmit in steps of h. These formulas give a 
truncation error of order h 4• 

You must supply the number of differential equations, the limits, initial values, and 
TNTargetF' s. 

This procedure can solve a system of up to ten differential equations (see "'Com­
ments" for information about how to increase this limit). 

User-Defined Types 

TNvector = array[O •• TNRowSize] of Extended; 
TNmatrix = array[O •• TNColumnSize] of TNvector; 

TNRowSize is an upper bound for the number of values returned for a particular 
variable (NumRetum). TNColumnSize is an upper bound for the number of differ­
ential equations (NumEquations). 

User-Defined Functions 

function TNTargetFl(V : TNvector) : Extended; 

function TNTargetF2(V : TNvector) : Extended; 

function TNTargetF3(V : TNvector) : Extended; 

function TNTargetF4(V : TNvector) : Extended; 

function TNTargetFS(V : TNvector) : Extended; 

function TNTargetF6(V : TNvector) : Extended; 

function TNTargetF7(V : TNvector) : Extended; 

function TNTargetFS(V : TNvector) : Extended; 

function TNTargetF9(V : TNvector) : Extended; 

function TNTargetFlO(V : TNvector) : Extended; 

These are the differential equations: 

dx/dt = TNTargetFj(t, x1, x2, ••• , x) 

where j ranges from 1 to 10. 
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The elements of the vector V are defined as follows: 

V[O] = t 
V[l] = x1 

V[2] = x2 

V[lO] = X10 

The procedure InitialConditionSystem solves this system of coupled differential 
equations (a maximum of ten equations}. All ten functions must be defined, even if 
your system contains less than ten equations. 

Input Parameters 

Number of first-order differential equations 

Lower limit of interval 

Upper limit of interval 

Values of x1, x2, ''.'' xm at LowerUmit 

NumEquat;ons : Integer; 

Lowerlim;t : Extended; 

UpperUm;t : Extended; 

InithlValues : TNvector; 

NumReturn : Integer; Number of (t, x1, x2, ... , x.) values returned from 
the procedure 

Numintervals : Integer; Number of subintervals used in the calculations 

FuncVect: array[!. .10) of ProcPtr; Pointers to the ten equations 

The preceding parameters must satisfy the following conditions: 

1. NumRetum > 0 

2. Numlnt,eroals ~ NumRetum 

3. NumEquations > 0 

4. LowerUmit ¢ UpperUmit 
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Output Parameters 

SolutionValues: TNmatrix; Values oft, x1, x2, ••• xm between the limits 

Error : Byte; 0: No errors 
1: NumReturn < 1 
2: Numlntervals < NumReturn 
3: NumEquations < 1 
4: LowerLimit = UpperLimit 

Syntax of the Procedure Call 

InitialConditionSystem(NumEquations, Lowerlimit, Upperlimit, 
InitialValues, NumReturn, Numlntervals, 
SolutionValues, Error, FuncVect); 

Comments 

The first row of Solution Values. will be the values oft between the limits, the 
second row of Solution Values will be the values of x1 between the limits, the third 
row of Solution Values will be the values of x2 between the limits, and so on. 

All ten user-defined functions are called from the procedure. If your system has 
less than ten equations, you must still define all ten functions or the program will 
not compile. The superfluous functions should be defined as follows (TNTargetFlO 
is used as an example): 

function TNTargetFlO(V : TNvector) : Extended; 

begin 
TNTargetFlO : = 0.0; 

end; { function TNTargetFlO } 

If you need to solve a system with more than ten equations, then edit the include 
file Runge-81.pas. The following line should be added to the end of procedure 
Step: 

F[ll] :=Spacing* TNTargetFll(CurrentValues); 

More statements (for F[l2], and so on) may be added as necessary. All new func­
tions (for example, TNTargetFll) must be defined in your top-level program. Note: 
Before making any changes to the include file, make sure you have a backup copy. 
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This procedure will compute Numlntervals values in its calculations; however, you 
will rarely need to use these values. The rows of Solution Values will contain only 
NumReturn values at roughly equally spaced t-values between the lower and upper 
limits. (They will be equally spaced only when Numlntervals is a multiple of Num­
Return.) Thus, you can ensure a highly accurate solution (by maldng Numlntervals 
large) without generating an excessive amount of output (by maldng NumReturn 
small). 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e-100.:. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals ). 

Sample Program 

The sample program Runge-81.pas provides 1/0 functions that demonstrate the 
Runge-Kutta method of solving initial value problems for systems of first-order 
ordinary differential equations. Note that the addresses of the ten equations get 
passed into the procedure InitialConditionSystem in the variable FuncVect. 

Example 

Problem. A weight with mass m lays on a frictionless table and is connected to a 
spring with spring constant k: 

-wan 

F( w) 
k 

m 
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If the mass is subject to a driving force F sin(oo t) (oo represents the frequency of the 
driving force and t is time), the equation of motion of the mass is as follows: 

m rfrJdi + k x = F sin(oo t) 

Given 

m = 2kg 
F = 9N 
k = 32 Nim 
oo = 5 cycles/sec 
x(O) = 0 m 
dx(O)/dt = - 2.5 m/sec 

find the position and velocity of the block from t = 0 second to t = 2 seconds. 

I. Write the second-order ordinary differential equations as a system of two cou­
pled first-order ordinary differential equations: 

dx/dt,;,,, x1 

dx/dt = (F/m) sin(oo t) - (k/m) x1 

2. Code these equations into the program Runge-SI.pas: 

function TNTargetFl(V : TNvector) : Extended; 

186 

{------------------------------------------------} { THIS IS THE FIRST DIFFERENTIAL EQUATION } 
{------------------------------------------------} { } 
{ dx[l] } 
{ ----- = TNTargetFl(t, x[l], x[2], ••• x[m]) } 
{ ~ } 
{ } 
{ The vector V is defined: } 
{ V[O] = t } 
{ V[l] = X[l] } 
{ V[2] = X[2] } 
{ } 
{ } 
{ } 
{ V[m] = X[m] } 
{ } 
{where m is the number of coupled equations. } 
{------------------------------------------------} 

begtn 
TNTargetFl := V[2]; 

end; { function TNTargetFl } 
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function TNTargetF2(V : TNvector) : Extended; 

{------------------------------------------------} 
{ THIS IS THE SECOND DIFFERENTIAL EQUATION } 
{------------------------------------------------} 
{ } 
{ dx[2] } 
{ ----- = TNTargetF2(t, x[l], x[2], ••• x[m]) } 
{ ft } 
{ } 
{The vector V is defined: } 
{ V[O] = t } 
{ V[l] = X[l] } 
{ V[2] = X[2] } 
{ } 
{ } 
{ } 
{ V[m] = X[m] } 
{ } 
{ where m is the number of coupled equations. } 
{------------------------------------------------} 
begin 

TNTargetF2 := 9/2 * Sin(5 * V[O]) - 32/2 * V[l]; 
end; { function TNTargetF2 } 

function TNTargetF3(V : TNvector) : Extended; 

{------------------------------------------------} 
{ THIS IS THE THIRD DIFFERENTIAL EQUATION } 
{------------------------------------------------} { } 
{ dx[3] } 
{ ----- = TNTargetF3(t, x[l]. x[2]. ... x[m]) } 
{ ft } 
{ } 
{ The vector V is defined: } 
{ V[O] = t } 
{ V[l] = X[l] } 
{ V[2] = X[2] } 
{ } 
{ } 
{ } 
{ V[m] = X[m] } 
{ } 
{ where m is the number of coupled equations. } 
{------------------------------------------------} 
begtn 

TNTargetF3 : = 0.0; 
end; { function TNTargetF3 } 

Functions TNTarget4 to TNTargetlO should be defined like the function 
TNTargetF3. 
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3. Run Runge-SI.pas: 

Number of first order equations: (1-40)? 2 

Lower limit of interval? 0 

Upper limit of interval? 2 

Enter X[l] value at t = O.OOOOOetO: 0 
Enter X[2] value at t = O.OOOOOetO: -2.5 

Number of values to return (1-40)? 10 

Number of intervals {> = 10)? 100 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower Limit: o.ooooooooooooooe+o 
Upper Limit: 2.00000000000000etO 

Number of intervals: 100 

Initial conditions at lower limit: 

T 
0.00000000 
0.20000000 
0.40000000 
0.60000000 
0.80000000 
1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 

T 
0.00000000 
0.20000000 
0.40000000 
0.60000000 
0.80000000 
1.00000000 
1.20000000 
1.40000000 
1.60000000 
1.80000000 
2.00000000 

X[l]= O.OOOOOOOOOOOOOOe+O 
X[2]=-2.50000000000000e+O 

Value X[l] 
O.OOOOOOOOOOOOOOe+O 

-4.20735284275848e-1 
-4.54648724216734e-1 
-7.05605786993375e-2 
3.78400378699554e-1 
4.79461767300631e-1 
1.39708469016312e-1 

-3.28491796183335e-1 
-4.94677974769031e-1 
-2.06059519715177e-1 
2.72008842396951e-1 

Value X[2] 
-2.SOOOOOOOOOOOOOe+O 
-1.35075642830665e+O 
1.04036531118478e+O 
2.47497991717220e+O 
1.63411037473655e+O 

-7.09151289407566e-1 
-2.40042152228323e+O 
-1.88475529635975e+O 
3.63745224811835e-1 
2.27781864414105e+O 
2.09767516082022e+O 

X[l] are the values of x(t), the position. X[2] are the values of dx(t)/dt, the velocity. 
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The exact solution is 

F sin(w t) 
x=-------

F cos(w t) .. 
dx/dt = -------

m (000
2 - 002) 

where w 0 is the natural frequency of the system: 

w 2 = k!m 
0 

The period of oscillation is given by 

T = 2 -rr/w = 1.257 sec 

The data is taken from a function of which the derivative could be computed 
exactly. The actual values are as follows: 

t Values of X 
0.0 O.OOOOOOOOOOOOE + 000 
0.2 - 4.207354924039E - 001 
0.4 - 4.546487134128E - 001 
0.6 - 7.056000402993E - 002 
0.8 3.784012476539E -001 
1.0 4.794621373315E - 001 
1.2 1.397077 490994E - 001 
1.4 - 3.284932993593E - 001 
1.6 - 4.946791233116E - 001 
1.8 - 2.060592426208E - 001 
2.0 2.720105554446E-001 

Initial Value and Boundary Value Methods 

Derivative of X 
- 2.500000000000E + 000 
- l.350755764670E + 000 

l.040367091367E + 000 
2.474981241501E + 000 
l.634109052159E + 000 

- 7.091554636580E - 001 
- 2.400425716625E + 000 
- l.884755635858E + 000 

3.637500845215E - 001 
2.277825654 711E + 000 
2.097678822691E + 000 
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Solution to an Initial Value Problem for a System of 
Coupkd Second-Order Ordinary Differential Equations 
Using the "Runge-Kutta Method (Runge~2.pas) 

Description 

This example integrates a system of coupled second-order ordinary differential 
equations with specified initial conditions using the generalized Runge-Kutta for­
mulas (Burden and Faires 1985, 261-269}. 

Given m coupled second-order ordinary differential equations of the form 

<fx/di = TNTargetFI(t, Xl, x' l' x2, x' 2• ••• , Xm, x' m> 

<fx/dt2 = TNTargetF2(t, xl, x' l' X2, x' 2' ••• , xm, x') 

<fxm/dt2 = TNTargetFm(t, x1, x' 1, x2, x' 2, •• ., xm, x') 

where x'1 indicates dx/dt, which satisfies the Lipshitz condition (the Lipshitz con­
dition for first-order and second-order ordinary differential equations is given at 
the beginning of this chapter; consult the previous book reference for details of the 
Lipshitz condition for systems), and initial condition 

x1[LowerLimit] = a1 

x2[LowerLimit] = a2 

x [LowerLimit] = a m m 

and spacing 

x' JLowerLimit] = b1 

x' 2[LowerLimit] = b2 

x' [LowerLimit] = b m m 

h = (UpperLimit - LowerLimit)/Numlntervals 
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rewrite each of the second-order differential equations as two, first-order differen­
tial equations: 

dx/dt = y1 

dy/dt = TNTargetFI(t, XI, Y1• x2, Y2' ... , xm, Ym) 

dx/dt = y2 

dx/dt = TNTargetF2(t, xi' y1, x2, y2, ... , xm, Ym) 

dxm/dt = Ym 

dx)dt = TNTargetFm(t, x1, y1, x2, y2, ••• , xm, yJ 

Then the fourth-order general Runge-Kutta method can be used to approximate 
the x; s and the y1' s simultaneously. 

The general Runge-Kutta formulas for these equations are as follows: 

Flx1 = h * Y1 

Fly1 = h * TNTargetFI(t, x1[t], y1[t], x2[t], y2[t], ... , xJt], yJt]) 

Flx2 = h * Y2 

Fly2 = h * TNTargetF2(t, x1[t], y1[t], x2[t], y2[t], ... , xJt], yJt]) 

Flxm = h * Ym 
Flym = h * TNTargetFm(t, x1[t], y1[t], x2[t], y2[t], ... , xJt], yJt]) 

F2x1 = h * (y1 + Fly/2) 

F2y1 = h * NTargetFI(t + h/2, x1[t] + Flx/2, yJt] + Fly/2, x2[t] 

+ Flx/2, y2[t] + Fly2/2, ... , xJt] + Flxm/2, yJt] + Fly)2) 

F2x2 = h * (y2 + Fly2/2) 

F2y2 = h * NTargetF2(t + h/2, x1[t] + Flx1/2, yJt] + Fly/2, x2[t] 

+ Flx/2, y2[t] + Fly/2, ... , xJt] + Flxm/2, yJt] + Flym/2) 

F2xm = h * (ym + Fly)2) 

F2ym = h * TNTargetFm(t + h/2, xJt] + Flx1/2, yJt] + Fly/2, x2[t] 

+ Flx/2, y2[t] + Flyp, ... , xm[t] + Flxm/2, yJt] + Flym/2) 
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F3x1 = h * (y1 + F2y/2) 

F3y1 = h * TNTargetFI(t + h/2, xJt] + F2x/2, y1[t] + F2y/2, x2[t] 

+ F2x/2, y2[t] + F2y.j2, ... , xjt] + F2xJ2, ym[t] + F2yJ2) 

F3x2 = h * (y2 + F2y/2) 

F3y2 = h * NTargetF2(t + h/2, x1[t] + F2x1/2, y1[t] + F2y/2, x2[t] 

+ F2x/2, y2[t] + F2y/2, ... , xjt] + F2xm/2, yjt] + F2ym/2) 

F3xm = h * (ym + F2ym/2) 

F3ym = h * TNTargetFm(t + h/2, xJt] + F2x1/2, yJt] + F2y1/2, x2[t] 

+ F2x2/2, y2[t] + F2y2/2, ... , xjt] + F2xm/2, yJt] + F2ym/2) 

F4x1 = h * (y1 + F3y) 

F4y1 = h * TNTargetFI(t + h, x1[t] + F3x1, y1[t] + F3y1, x2[t] + F3x2, y2[t] 

+ F3y2, ••• , xjt] + F3xm, yJt] + F3y) 

F4x2 = h * (y2 + F3y2) 

F4y2 = h * TNTargetF2(t + h, x1[t] + F3x1, yJt] + F3y1, xJt] + F3x2, y2[t] 

+ F3y2, ••• , xJt] + F3xm, yJt] + F3y) 

F4xm = h * (ym + F3y) 

F4ym = h * TNTargetFm(t + h, xJt] + F3x1, y1[t] + F3y1, x2[t] + F3x2, y2[t] 

+ F3y2, ••• , xjt] + F3xm, ym[t] + F3y) 

x1[t+ I] = xJt] + (Flx1 + 2 * F2x1 + 2 * F3x1 + F4x1)/6 

y1[t+ I] = yJt] + (Fly1 + 2 * F2y1 + 2 * F3y1 + F4y1)/6 

x2[t+ l] = x2[t] + (Flx2 + 2 * F2x2 + 2 * F3x2 + F4x2)/6 

y2[t+ I] = y2[t] + (Fly2 + 2 * F2y2 + 2 * F3y2 + F4y2)/6 

xm[t+ I] = xm[t] + (Flxm + 2 * F2xm + 2 * F3xm + F4x)/6 

yJt+ I] = yJt] + (Flym + 2 * F2ym + 2 * F3ym + F4y)/6 

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a 
truncation error of order h 4• 
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You must supply the number of equations, limits, initial values, and TNTargetF's. 

This procedure can solve a system of up to ten, second-order ordinary differential 
equations (see "Comments" for information about how to increase this limit). 

User-Defined 'IYpes 

TNData = record 
x : Extended; 
xDeriv : Extended; 

end; { TNData record } 
TNvector = array[O •• TNRowSize] of TNData; 
TNmatrix = array[O •• TNColumnSize] of TNvector; 

TNRowSize is an upper bound for the number of values returned for a particular 
variable (NumReturn). TNColumnSize is an upper bound for the number of second­
order differential equations (NumEquations). 

User-Defined Functions 

function TNTargetFl(V TNvector) Extended; 

function TNTargetF2(V TNvector) Extended; 

function TNTargetF3(V TNvector) Extended; 

function TNTargetF4(V : TNvector) Extended; 

function TNTargetFS(V : TNvector) Extended; 

function TNTargetF6(V : TNvector) Extended; 

function TNTargetF7(V : TNvector) Extended; 

function TNTargetF8(V : TNvector) Extended; 

function TNTargetF9(V : TNvector) Extended; 

function TNTargetFlO(V : TNvector) : Extended; 

Here are the differential equations: 

cf"x/dt2 = TNTargetFj(t, x1, x' 1, x2, x' 2, .. ., x10, x' 1~ 

where j ranges from 1 to 10. 
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The elements of the vector V are defined as follows: 

V[O].x = t 
V[I].x = x[I] 

V[I].xDeriv = x'[I] 
V[2].x = x[2] 

V[2].xDeriv = x'[2] 

V[IO].x = x[IO] 
V[IO].xDeriv = x'[IO] 

The procedure used in Runge-82.pas solves this system of coupled differential 
equations (a maximum of ten equations}. All ten functions must be defined, even if 
your system contains less than ten equations. 

Input Parameters 

NumEquati ons : Integer; 

Lowerlimit : Extended; 

Upperl imi t : Extended; 

Initial Values : TNvector2; 

NumReturn : Integer; 

Numinterva ls : Integer; 

Number of second-order differential equations 

Lower limit of interval 

Upper limit of interval 

Values of x1's and x'1's at LowerLimit 

Number of (t, XI' x' 1• X2, x' 2• ... , xm, x') values 
returned from the procedure 

Number of subintervals used in the calculations 

FuncVect : array[l •• 10] of ProcPtr; Pointers to the ten equations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlnteroals ~ NumReturn 

3. NumEquations > 0 

4. LowerLimit ¢ UpperLimit 
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Output Parameters 

SolutionValues: TNmatrix2; Values oft, x1, and x'1 between the limits 

Error : Byte; 0: No errors 
1: NumRetum < 1 
2: Numlnteroals < NumRetum 
3: NumEquations < 1 
4: LowerLimit = UpperLimit 

Syntax of the Procedure Call 

Initia1ConditionSystem2(NumEquations, Lowerlimit, Upperlimit, 
InitialValues, NumReturn, Numlntervals, 
SolutionValues, Error, FuncVect); 

Comments 

The first row of SolutionValues will be the values oft between the limits, the 
second row of Solution Values will be the values of x1 and x' 1 between the limits, the 
third row of Solution Values will be the values of x2 and x' 2 between the limits, and 
so on. 

All ten user-defined functions are called from the procedure. If your system has 
less than ten equations, you must still define all ten functions or the program will 
not compile. The superfluous functions should be defined as follows (TNTargetFlO 
is used as an example): 

function TNTargetFlO(V : TNvector) : Extended; 

begin 
TNTargetFlO : = 0.0 

end; { function TNTargetFlO } 

If you need to solve a system with more than ten equations, then edit the source 
code for the InitialValRoutines unit. The following lines should be added to the end 
of procedure Step: 

F[ll].xDeriv :=Spacing* CurrentValues[ll].xDeriv; 
F[ll].x :=Spacing* TNTargetFll(CurrentValues); 

More statements (for F[l2], and so on) may be added as necessary. All new func­
tions (for example, TNTargetFll) must be defined in your top-level program. Note: 
Before making any changes to the include file, make sure you have a backup copy. 
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The procedure will compute Numlntervals values in its calculations; however, you 
will rarely need to use these values. The rows of Solution Values will contain only 
NumRetum values at roughly equally spaced t-values between the lower and upper 
limits. (They will be equally spaced only when Numlntervals is a multiple of Num­
Return.) Thus, you can ensure a highly accurate solution (by making Numlntervals 
large) without generating an excessive amount of output (by making NumReturn 
small). 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e- 100.. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 

Sample Program 

The sample program Runge-82.pas provides 1/0 functions that demonstrate the 
Runge-Kutta method of solving initial value problems for systems of first-order 
ordinary differential equations. Note that the addresses of the ten equations gets 
passed to the InitialConditionSystem2 procedure in the variable FuncVect. 
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Example 

Problem. Two weights of mass m each hang from a pendulum of length l and are 
connected by a spring with spring constant k: 

Ceiling 

k 

~ 
y uuuuuuuuuuuu x 

The equations of motion of these two masses are as follows: 

m O:x!dt2 = -mg x/l - k(x - y) 
m O:y/dt2 = -mg y/l + k(x - y) 

where g is the acceleration due to gravity, t is time, and x and y are the displace­
ments of the two weights from their rest positions. Given 

m = 2kg 
k = 32 Nim 
g = 9.8 m/sec2 

l = 0.6125 m 
x(O) = 1 m 
y(O) = -1 m 
dx(O)!dt = 0 m/sec 
dy(O)/dt = 0 m/sec 

find the positions and velocities of the two weights from t = 0 second to t = 2 
seconds. 

1. Rewrite the equations of motion as shown here: 

if x!dt2 = - g x/l - k!m(x - y) 
ify!dt2 = - g y/l + k!m(x - y) 
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2. Code these equations into the program Runge..S2.pas: 

function TNTargetFl(V : TNvector) : Extended; 
{-----------------------------------------------------} ·{ THIS IS THE FIRST DIFFERENTIAL EQUATION } 
{-----------------------------------------------------} { } 
{ } 
{ d2 x[l] } 
{ = TNTargetFl(t, x[l], x'[l], x[2]. x'[2]. } 
{ ... , x[m], x'[m] } 
{ } 
{ ~ } 
{ } 
{ The elements of the vector V are defined: } 
{ V[O] .x = t } 
{ V[l] .x = X[l] } 
{ V[l].xDeriv = X'[l] } 
{ V[2] .x = X[2] } 
{ V[2] .xDeriv = X' [2] } 
{ } 
{ } 
{ } 
{ V[m] .x = X[m] } 
{ V[m].xDeriv = X'[m] } 
{ } 
{ where m is the number of coupled equations. } 
{-----------------------------------------------------} 
var 

t : Extended; 

begin 
t := v[O].x; 
TNTargetFl := -9.8 * V[l].x/0.6125 - 32/2 * (V[l].x - V[2].x); 

end; { function TNTargetFl } 
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function TNTargetF2(V : TNvector) : Extended; 

{-----------------------------------------------------} { THIS IS THE SECOND DIFFERENTIAL EQUATION } 
{-----------------------------------------------------} { } 
{ } 
{ lx[2] } 
{ = TNTargetF2 (t, x[l], x' [1], x[2], x' [2], } 
{ ••• , x[m], x'[m] } 
{ dt2 } 

{ } 
{ } 
{ The elements of the vector V are defined: } 
{ V[O] .x = t } 
{ V[l] .x = X[l] } 
{ V[l].xDeriv = X'[l] } 
{ V[2] .x = X[2] } 
{ V[2].xDeriv = X'[2] } 
{ } 
{ } 
{ } 
{ V[m] .x = X[m] } 
{ V[m] .xDeriv = X' [m] } 
{ } 
{where m is the number of coupled equations. } 
{-----------------------------------------------------} 
var 

t : Extended; 

begin 
t:=v[O].x; 
TNTargetF2 := -9.8 * V[2].x/0.6125 + 32/2 * (V[l].x - V[2].x); 

end; { function TNTargetF2 } 
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function TNTargetF3(V : TNvector) : Extended: 

{-----------------------------------------------------} { THIS IS THE THIRD DIFFERENTIAL EQUATION } 
{-----------------------------------------------------} 
~ l 
{ d2 x[3] } 
{ = TNTargetF3(t, x[l]. x' [l], x[2]. x' [2], } 
{ ... , x[m]. x' [m] } 

~ dt2 ~ 
{ } 
{ The elements of the vector V are defined: } 
{ V[O] .x = t } 
{ V[l] .x = X[l] } 
{ V[l] .xDer1v = X' [l] } 
{ V[2] .x = X[2] } 
{ V[2].xDeriv = X'[2] } 
{ } 
{ } 
{ } 
{ V[m] .x = X[m] } 
{ V[m] .xDer1v = X' [m] } 
{ } 
{where m is the number of coupled equations. } 
{-----------------------------------------------------} 
var 

t : Extended: 
begtn 

TNTargetF3 : = 0.0; 
end: { function TNTargetF3 } 

Functions TNTargetF4 to TNTargetFlO should be defined like function TNTargetF3. 

3. Run Runge-82.pas: 

200 

Number of second order equations: (1-20)7 2 

Lower limit of interval? 0 

Upper limit of interval? 1 

Enter X[l] value at t = o.oooooe+O: 0.01 
Enter X'[l] value at t = O.OOOOOe+O: 0.00 
Enter X[2] value at t = o.oooooe+O: -0.01 
Enter X'[2] value at t = O.OOOOOe+O: 0.00 

Number of values to return (1-70)7 10 

Number of intervals (>= 10)? 100 
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Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower Limit: o.ooooooooooooooe+o 
Upper Limit: l.OOOOOOOOOOOOOOe+O 

Number of intervals: 100 
Initial conditions at lower limit: 

T 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

T 
0.00000000 
0.10000000 
0.20000000 
0.30000000 
0.40000000 
0.50000000 
0.60000000 
0.70000000 
0.80000000 
0.90000000 
1.00000000 

X[l]= l.OOOOOOOOOOOOOOe-2 
X'[lJ= o.ooooooooooooooe+o 
X[2]=-l.00000000000000e-2 

X'[2]= O.OOOOOOOOOOOOOOe+O 

Value X[l] 
l.OOOOOOOOOOOOOOe-2 
7.69447788485895e-3 
l.84099813762452e-3 

-4.86137387553900e-3 
-9.32214486443693e-3 
-9.48443369885918e-3 
-5.27340834792187e-3 
l.36920877108260e-3 
7.3804775887409le-3 
9.98857556718864e-3 
7.99089728515028e-3 

Value X[2] 
-1.00000000000000e-2 
-7.69447788485895e-3 
-l.84099813762452e-3 
4.86137387553900e-3 
9.32214486443693e-3 
9.48443369885918e-3 
5.27340834792187e-3 

-l.36920877108260e-3 
-7.38047758874091e-3 
-9.98857556718864e-3 
-7.99089728515028e-3 

Deriv X[l] 
O.OOOOOOOOOOOOOOe+O 

-4.42511063153028e-2 
-6.80978317847279e-2 
-6.05443464988731e-2 
-2.50735962983904e-2 
2.19586991271007e-2 
5.88657408762406e-2 
6.86295294795967e-2 
4.67479393932010e-2 
3.31066873866278e-3 

-4.16531651968366e-2 

Deriv X[2] 
o.ooooooooooooooe+o 
4.42511063153028e-2 
6.80978317847279e-2 
6.0544346498873le-2 
2.50735962983904e-2 

-2.19586991271007e-2 
-5.88657408762406e-2 
-6.86295294795967e-2 
-4.67479393932010e-2 
-3.31066873866278e-3 
4.16531651968366e-2 

The weights move in opposite directions; the system is in one of its normal modes. 
The natural frequency w 0 is given by the following: 

(1)01 = g/I + 2k!m 
w0 = 6.928 cycles/sec 

Thus the period of oscillation, t, is 

t = 2-rr/w0 

t = 0.9069 sec 
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Solution to Boundary Value Probkm for a Second-Order 
Ordinary Differential Equation Using the Shooting and 
"Runge-Kutta Methods (Shoot2.pas) 

Description 

This example uses the shooting method to approximate the solution to a second­
order ordinary differential equation with specified boundary conditions (Burden 
and Faires 1985, 526-531). 

Given a second-order differential equation (Burden and Faires 1985, 261-269) of 
the form 

d2y!dx2 = TNTargetF(x, y, y') 

where y' represents dy/dx, which satisfies the conditions given at the beginning of 
this chapter, boundary conditions 

y[LowerLimit] = Lowerlnitial 
y[UpperLimit] = Upperlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

and an initial approximation (guess) to the slope at LowerLimit 

y'[LowerLimit] = InitialS"lope 

the shooting method first solves the second-order initial value problem (using the 
method described in Runge...2.pas). Based on a comparison of the solution at 
UpperLimit with the boundary condition Upperlnitial, a new approximation to the 
slope at LowerLimit is made. In this way, a new "shot" at the solution is made by 
observing the result of the previous "shot." Subsequent iterations use information 
from two previous shots and the secant method (see Chapter 2, "Roots of a Func­
tion Using the Secant Method") to approximate the slope at LowerLimit. This pro­
cess is repeated until the fractional difference between successive approximations 
to the boundary condition at UpperLimit is less than a specified tolerance. 

You must supply the LowerLimit, UpperLimit, Lowerlnitial, Upperlnitial, lnitial­
S"lope, Numlntervals, Tolerance, and TNTargetF. 
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User-Defined Types 

TNvector = array[l •• TNArraySize] of Extended; 

User-Defined Functions 

TNTargetF(x, y, yPrime : Extended) : Extended; 

<!"y!dx2 = TNTargetF(x, y, dy/dx) 

The procedure Shooting integrates this second-order differential equation. 

Input Parameters 

Lowerlimit : Extended; Lower limit of interval 

Upperlimit : Extended; Upper limit of interval 

Lowerinitial : Extended; Value of y at LowerLimit 

Upperinitial : Extended; Value of y at UpperLimit 

InitialSlope: Extended; Approximation to the slope at LowerLimit 

NumReturn : Integer; Number of (x, y, y') values returned from the procedure 

Tolerance : Extended; Indicates accuracy in solution 

Maxlter : Integer; Maximum number of iterations 

Numintervals : Integer; Number of subintervals used in calculations 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlntervals ~ NumReturn 

3. LowerLimit ¢ UpperLimit 

4. Tolerance > 0 

5. Maxlter > 0 
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Output Parameters 

Iter : Integer; 

XValues : TNvector; 

YValues : TNvector; 

Number of iterations required to reach a solution 

Values of x between the limits 

Values of y determined at values in XValues 

YDeri vVa 1 ues : TNvector; Values of the first derivative of y determined at values in 
XValues 

Error : Byte; 0: No errors 
1: NumReturn < 1 
2: Numlnrervals < NumReturn 
3: LowerLimit = UpperLimit 
4: Tolerance s 0 
5: Maxlt,er s 0 
6: It,er > Maxlt,er 
7: Convergence not possible 

Syntax of the Procedure Call 

Shooting(Lowerlimit, Upperlimit, Lowerlnitial, Upperinitial, InitialSlope, 
NumReturn, Tolerance, Maxlter, Numlntervals, Iter, XValues, 
YValues, YDerivValues, Error, @TNTargetF); 

Comments 

The parameter Tolerance can be misleading. The shooting method converges to the 
initial slape, which satisfies the upper boundary condition. Convergence is 
achieved when the fractional difference between Upperlnitial and the upper 
boundary approximation is less than Tolerance. This does not mean that every 
value between the boundaries has been approximated with the same degree of 
accuracy. To improve the accuracy of the entire approximation, increase the num­
ber of intervals. The example demonstrates the different effects of Tolerance and 
Numlnt,ervals. 

The shooting algorithm will compute Numlntervals values in its calculations. How­
ever, you will rarely need to use all those values. The vectors XValues, YValues, and 
YDerivValues will contain only NumReturn values at roughly equally spaced t­
values between the lower and upper limits. (They will be equally spaced only 
when Numlnt,ervals is a multiple of NumReturn.) Thus, you can ensure a highly 
accurate solution (by making Numlnt,ervals large) without generating an excessive 
amount of output (by making NumReturn small). 
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Boundary value problems are notoriously difficult to solve. The shooting method is 
extremely sensitive to the approximation of the initial slope. If the shooting method 
does not converge onto a solution (Error 7), run the program with a different value 
of the initial slope lnitialSlope. You may also alleviate some stability problems by 
solving the equation backwards (from UpperLimit to LowerLimit). Considerable 
trial and error may be involved before a solution is found. 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s) is 
changing; for example, y = x + e1oo.. The shooting method may generate a numeri­
cal solution that bears no resemblance to the exact solution of the differential equa­
tion. This unstable numerical solution usually grows exponentially and may be 
oscillatory. However, if the exact solution of the differential equation grows as the 
independent variable increases, the instability may be difficult to detect. If a sus­
pected instability has been encountered, reduce the interval size (Numlntervals). 

Sampk Program 

The sample program Shoot2.pas provides 1/0 functions that demonstrate the 
shooting method of solving boundary value problems. Note that the address of 
TNTargetF gets passed into the Shooting procedure. 

Exampk 

Problem. Use the nonlinear shooting method to solve the following boundary value 
problem: 

y " = 192 sqr(y/y') 

y(l) = 1 
y(2) = 16 

O:s;x:s;l 

1. Code the differential equation into the program: 

function TNTargetF(x : Extended; 
y : Extended; 
yPrime : Extended) : Extended; 

{-----------------------------------------------------------------} 
{ THIS IS THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION } 
{-----------------------------------------------------------------} 
begin 

TNTargetF := 192 * Sqr(y/yPrime); 
end; 
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2. Run Shoot2.pas: 

206 

Lower limit of interval? 0 

Upper limit of interval? 1 

Enter Y value at X = O.OOOOOe+O: 1 
Enter Y value at X = 1.00000e+O: 16 

Enter a guess for the slope at X = O.OOOOOe+O : 15 

Number of points returned (1-40)? 10 

Number of intervals (>= 10)? 10 

Tolerance (> O)? lE-12 

Maximum number of iterations (> O)? 100 

Now a dialog box appears asking you whether you .would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower Limit: o.ooooooooooooooe+o 
Upper Limit: 1.00000000000000e+O 

Value of Y at 0.0000 : 1.00000000000000e+O 
Value of Y at 1.0000 : 1.60000000000000e+l 

Initial slope at 0.0000 : 1.50000000000000e+l 
Numlntervals: 10 

Tolerance: 1.00000000000000e-12 
Maximum number of iterations: 100 

Number of iterations: 6 

x 
O.OOOOOOOOOOOOOOe+O 
1.00000000000000e-1 
2.00000000000000e-1 
3.00000000000000e-1 
4.00000000000000e-1 
5.00000000000000e-1 
6.00000000000000e-1 
7.00000000000000e-1 
8.00000000000000e-1 
9.00000000000000e-1 
1.00000000000000e+O 

Y Value 
1.00000000000000e+O 
1.46417721408153e+O 
2.07370562259973e+O 
2.85621262766442e+O 
3.84170902091389e+O 
5.06259931530967e+O 
6.55368547624580e+O 
8.35216836918581e+O 
1.04976483580762e+l 
1.30321255669365e+l 
1.60000000000094e+l 

Derivative of Y 
4.00053795390884e+O 
5.32386904044879e+O 
6.91162114244397e+O 
8.78752756627335e+O 
1.09754927855527e+l 
1.34994802016423e+l 
1.63834750611955e+l 
1.96514712240017e+l 
2.33274661179548e+l 
2.74354587043772e+l 
3.19994486182108e+l 
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Now solve the same problem using a smaller spacing, but with a greater tolerance: 

Lower limit of interval? O 

Upper limit of interval? 1 

Enter Y value at X = O.OOOOOe+O: 1 
Enter Y value at X = l.OOOOOe+O: 16 

Enter a guess for the slope at X = O.OOOOOe+O : 15 

Number of points returned (1-40)? 10 

Number of intervals (>= 10)? 100 

Tolerance (> O)? lE-6 

Maximum number of iterations (> 0)7 100 

Now a dialog box appears asking you whether you would like the output sent to the 
Screen, directly to the Printer, or into a File. Make your selection and click OK. 

Lower Limit: o.ooooooooooooooe+o 
Upper Limit: l.OOOOOOOOOOOOOOe+O 

Value of Y at 0.0000 : l.OOOOOOOOOOOOOOe+O 
Value of Y at 1.0000 : l.60000000000000e+l 

Initial slope at 0.0000 : l.50000000000000e+l 
Numlntervals: 100 

Tolerance: l.OOOOOOOOOOOOOOe-6 
Maximum number of iterations: 100 

Number of iterations: 5 

x 
o.ooooooooooooooe+o 
l.OOOOOOOOOOOOOOe-1 
2.00000000000000e-1 
3.00000000000000e-1 
4.00000000000000e-1 
5.00000000000000e-1 
6.00000000000000e-1 
7.00000000000000e-1 
8.00000000000000e-1 
9.00000000000000e-1 
l.OOOOOOOOOOOOOOe+O 

Y Value 
l.OOOOOOOOOOOOOOe+O 
l.46410005120828e+O 
2.07360008576235e+O 
2.85610011557157e+O 
3.84160014547825e+O 
5.06250017769403e+O 
6.55360021337285e+O 
8.35210025321452e+O 
l.04976002977125e+l 
l.30321003472617e+l 
l.6000000402208le+l 
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Derivative of Y 
4.00000062625639e+O 
5.32400035609946e+O 
6.91200027103432e+O 
8.78800025750412e+O 
l.09760002747783e+l 
l.35000003070170e+l 
l.63840003476283e+l 
l.96520003937080e+l 
2.33280004439140e+l 
2.74360004976014e+l 
3.20000005544507e+l 
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The exact solution is 

y = (x + 1)4 

x 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

YValue 
1.0000000000 
1.4641000000 
2.0736000000 
2.8561000000 
3.8416000000 
5.0625000000 
6.5536000000 
8.3521000000 
1.0497600000 
1.3032100000 
1.6000000000 

Derivative of Y 
4.000000000 
5.324000000 
6.912000000 
8. 788000000 
1.097600000 
1.350000000 
1.638400000 
1.965200000 
2.332800000 
2. 7 43600000 
3.200000000 

Although the tolerance is smaller (that is, more exacting) in the first case, the 
accuracy of the approximation is greater in the second case. The spacing in the first 
case is too large to permit a more accurate approximation. 
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Solution to a Boundary Value Problem for a Second-Order 
Ordinary Linear Differential Equation Using th£ Linear 
Shooting and Runge-Kutta Methods (Linshot2.pas) 

Description 

This example uses the linear shooting method to approximate the solution to a 
second-order linear ordinary differential equation with specified boundary condi­
tions (Burden and Faires 1985, 519-524). 

Given a second-order differential equation (Burden and Faires 1985, 261-264) of 
the form 

<fy!dx2 = TNTargetF(x, y, y') 

which is linear in both y and y', where y' represents dy/dx, and which satisfies the 
conditions given at the beginning of this chapter, boundary conditions 

y[LowerLimit] = Lowerlnitial 
y[UpperLimit] = Upperlnitial 

and spacing 

h = (UpperLimit - LowerLimit)/Numlntervals 

the shooting method solves the two initial value problems (see Rung~.pas): 

y'[LowerLimit] = 0 y[LowerLimit] = Lowerlnitial 

y'[LowerLimit] = 1 y[LowerLimit] = Lowerlnitial 

(These values are particular to this implementation; any other nonidentical set of 
initial conditions will suffice.) Since neither of these initial values of y' is likely to 
be correct, the solutions generated are not likely to satisfy the boundary condition 
at Upperlnitial. However, because of the linearity of the equation, an appropriate 
linear combination of these two solutions will be a solution to the boundary value 
problem. The linear shooting method requires that only two initial value problems 
be solved, where the ordinary shooting method (Shoot2.pas) requires that an 
unknown number of initial value problems be solved before the method converges 
to a solution. 

You must supply the LowerLimit, UpperLimit, Lowerlnitial, Upperlnitial, Numln­
tervals, and TNTargetF. 
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User-Defined 'lfJpes 

TNvector = array[l •• TNArrayS;ze] of Extended; 

User-Defined Functions 

TNTargetF(x, y, yPr;me : Extended) : Extended; 

cfy/dx1 = TNTargetF(x. y, thj!dx) 

The procedure LinearShooting integrates this second-order differential equation. 

Input Parameters 

LowerUmit: Extended; Lower limit of interval 

Upperlimit: Extended; Upper limit of interval 

Lowerinitial : Extended; Value of y at LowerLimit 

Upperinitial : Extended; Value of y at UpperLimit 

Numintervals : Integer; Number of subintervals used in calculations 

NumReturn : Integer; Number of (x, y, y') triples returned from the procedure 

The preceding parameters must satisfy the following conditions: 

1. NumReturn > 0 

2. Numlnteroa"8 ~ NumReturn 

3. LowerLimit ¢ UpperLimit 

Output Parameters 

XValues : TNvector; Values of x between the limits 
YValues : TNvector; Values of y determined at values in XValues 

YDeri vVa l ues : TNvector; Values of the first derivative of y determined at values in 
XValues 

Error : Byte; 0: No errors 
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1: NumRetum < 1 
2: Numlnteroa"8 < NumRetum 
3: LowerLimit = UpperLimit 
4: Equation not linear 
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Syntax of tlw Procedure Call 

LinearShooting(Lowerlimit, Upperlimit, Lowerlnitial, Upperlnitial, 
NumReturn, Numlntervals, XValues, YValues, 
YDerivValues, Error, @TNTargetF); 

Comments 

If TNTargetF is a nonlinear function, the linear shooting algorithm will usually 
compute a solution (albeit an incorrect one) without returning an error message. 
Error 4 (nonlinear equation} will be returned in only a few cases where the 
two initial value problems happen to yield solutions with the same y-value at 
x = UpperLimit. 

The procedure will compute Numlnteroals values in its calculations; however, you 
will rarely need to use these values. The vectors XValues, YValues, and YDetiv­
Values will contain only NumRetum values at roughly evenly spaced intervals 
between the lower and upper limits. (They will be exactly evenly spaced only when 
Numlnteroals is a multiple of NumRetum.) Thus, you can ensure a highly accurate 
solution (by making Numlnteroals large} without generating an excessive amount 
of output (by making NumRetum small). 

Warning: A stiff differential equation occurs when there are at least two very 
different scales of the independent variable on which the dependent variable(s} is 
changing; for example, y = x + e-100z. The Runge-Kutta method may generate a 
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and 
may be oscillatory. However, if the exact solution of the differential equation grows 
as the independent variable increases, the instability may be difficult to detect. If a 
suspected instability has been encountered, reduce the interval size (Numlnter­
vals). 

Sample Program 

The sample program Linshot2.pas provides 1/0 functions that demonstrate the 
linear shooting method of solving boundary value problems. Note that the address 
of TNTargetF gets passed into the LinearShooting procedure. 
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Example 

Problem. Use the linear shooting method to solve the following boundary value 
problem: 

y" = y' Ix - y/sqr(x) + 1 1 = x s 10 

y(l) = 1 

y(lO) = 76.974149 

1. Code the differential equation into the program Linshot2.pas: 

function TNTargetF(x : Extended; 
y : Extended; 

yPrime : Extended) : Extended; 

{-------------------------------------------------------------} 
{ THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION } 

{-------------------------------------------------------------} 
begin 

TNTargetF := yPrime/x - y/Sqr(x) + 1; 
end; { function TNTargetF } 

2. Run Linshot2.pas: 

212 

Lower limit of interval? 

Upper limit of interval? 10 

Enter Y value at X = 1.00000e+O: 1 
Enter Y value at X = 1.00000e+l: 76.974149 

Number of points returned (1-40)? 9 

Number of intervals (>= 9)? 9 

Now a dialog box appears asking you whether you would like the output sent to 
the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

Lower limit: 1.00000000000000e+O 
Upper limit: 1.00000000000000e+l 

Value of Y at 1.0000: l.OOOOOOOOOOOOOOe+O 
Value of Y at 10.0000: 7.69741490000000e+l 

Numintervals: 9.00000000000000e+O 

x 
l.OOOOOOOOOOOOOOe+O 
2.00000000000000e+O 
3.00000000000000e+O 
4.00000000000000e+O 
5.00000000000000e+O 
6.00000000000000e+O 
7.00000000000000e+O 
8.00000000000000e+O 
9.00000000000000e+O 
l.OOOOOOOOOOOOOOe+l 

Y Value 
l.OOOOOOOOOOOOOOe+O 
2.61170356138588e+O 
5.70207271413620e+O 
l.04528257144925e+l 
l.69509897305375e+l 
2.52478687612139e+l 
3.53773649984557e+l 
4.73635728977226e+l 
6.12245068576119e+l 
7.69741490000000e+l 

Derivative of Y 
l.00042467674563e+O 
2.30627678512124e+O 
3.9011529619183le+O 
5.61367861126495e+O 
7.39067355864438e+O 
9.20845513089500e+O 
l.10543869346579e+l 
l.29209245920937e+l 
l.48032011472994e+l 
l.66978931711222e+l 
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Now solve the same problem with a spacing of only 0.1: 

Lower limit of interval? 1 

Upper limit of interval? 10 

Enter Y value at X = 1.00000etO: 1 
Enter Y value at X = 1.00000etl: 76.974149 

Number of points returned (1-40)? 9 

Number of intervals (>= 9)? 90 

Now a dialog box appears asking you whether you would like the output sent to the 
Screen, directly to the Printer, or into a File. Make your selection and click OK. 

Lower limit: 1.00000000000000etO 
Upper limit: 1.00000000000000e+l 

Value of Y at 1.0000: 1.00000000000000e+O 
Value of Y at 10.0000: 7.69741490000000e+l 

Numlntervals: 9.00000000000000etl 

x 
1.00000000000000etO 
2.00000000000000e+O 
3.00000000000000etO 
4.00000000000000etO 
5.00000000000000etO 
6.00000000000000etO 
7.00000000000000e+O 
8.00000000000000etO 
9.00000000000000e+O 
1.00000000000000etl 

The exact solution is 

y = x * x - x * ln(x) 

y(l} = 1 

Y Value 
1.00000000000000etO 
2.61370547174514e+O 
5.70416298088411e+O 
1.04548224122436e+l 
1.69528103026793etl 
2.52494430584438etl 
3.53786288412165e+l 
4.73644675641047e+l 
6.12249787166508e+l 
7.69741490000000etl 

y'(l) = 1 

Derivative of Y 
1.00000001942594e+O 
2.30685275847028e+O 
3.90138768358927e+O 
5.61370562650429e+O 
7.39056208402440e+O 
9.20824053324639et0 
1.10540898579729e+l 
1.29205584690303e+l 
1.48027754364805e+l 
1.66974149235206e+l 

y(lO} = 7.6974149 y'(lO} = 16.6974149 

The second approximation is more accurate. 
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c H A p T E R 9 
Least-Squares Approximation 

Given a set of data points, this chapter provides routines to model the data with a 
function of a given type. The most common application of this concept is linear 
regression. 

With linear regression, there is some control variable, say X, and some observed 
variable, say Y. X and Y are known or suspected to have some linear relationship, 
say 

Y=a•X+b 

but the parameters a and b are unknown. Usually there is some experimental error 
or some other nonlinear influence on Y, so that there are no values of a and b for 
which the preceding equation holds exactly. The method of regression provides a 
formula for a and b in terms of the values of X and Y such that the enor is mini­
mized. The error is the sum of squares of the errors (a * X + b - Y) on each data 
point. Except in certain unusual cases, there is exactly one value for a and one 
value for b that makes this sum of squares the least possible. This is called the 
least-squares solution. 

This concept ofleast squares also applies when more variables are present-then it 
is often called multiple regression. Using this method, you can find the best model 
for a given set of data that is linear in a given set of other data sets or functions. 
Models that are nonlinear variables can also be treated as long as the unknown 
parameters appear linearly. 
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Least-Squares Approximation (Least.pas) 

Description 

This model provides a method for finding a least-squares approximation (Cheney 
and Kincaid 1985, 362-387} to a set of data points (x, y). The approximation must 
be a linear combination of a set of basis vectors. The functional form of the approxi­
mation (polynomw, logarithmic, and so on) is therefore determined by the user, as 
long as it is represented linearly. (How to represent logarithmic, and other func­
tions linearly is discussed later.) 

Given a set of m data points (x, y), an m x n matrix (m ~ n), A, is constructed, 
where n is the number of basis vectors in the approximation. The elements of the 
matrix are 

A[i, j] = ~(X,) 
where ~(X) is the jth basis vector evaluated at the data value X[i]. A vector Y is 
constructed that contains the y-values of the data points. The coefficients of the 
basis vectors that form the least-squares approximation will be the n vector C, such 
that the Euclidean norm of (AC - Y) (represented by II AC - Y 112) is a minimum. 
This requirement is converted to the requirement that 

II BC - z 112 + II R 112 

be a minimum. Here Bis an n X n matrix, Z is an n vector, and R is an (m - n) 
vector. The equations BC = Z are the normal equations. The previous expression 
will be minimized when C solves the equation BC = Z. Gaussian elimination with 
partial pivoting (see Chapter 6, "Solving a System of Linear Equations with Gauss­
ian Elimination and Partial Pivoting") is used to solve the normal equations. 

The goodness of fit is indicated by the standard deviation: 

S.D. = ( (Y[i] - F(X[i]))2/(m - n))112 

where F(X[i]) is the least-squares solution at the point X[i], (Y[i] - F(X[i])) is the 
residual, and (m - n) is the degree of freedom of the fit. 
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User-Defined Types 

TNColumnVector = array[l •• TNColumnSize] of Extended: 
TNRowVector = array[l •• TNRowSize] of Extended: 

(TNColumnSize will usually be much larger than TNRowSize.) 

TNmatrix = array[l •• TNColumnSize] of TNRowVector: 
TNSquareMatrix = array[l .• TNRowSize] of TNRowVector: 
TNString40 = strtng[40]: 
FitType = (Expo, Fourier, Log, Poly, Power, User): 

Input Parameters 

NumPoints : Integer: Number of data points 

XData: TNColumnVector; X coordinates of the data points 

YData : TNCol umnVector: Y coordinates of the data points 

NumTerms : Integer: 

Fit : FitType; 

Number of terms in the least-squares approximation 

Type of least-squares fit requested 

The preceding parameters must satisfy the following conditions: 

1. NumPoints > 1. 

2. NumTerms s NumPoints. 

3. NumPoints s TNColumnSize. 

4. NumTerms s TNRowSize. 

5. The XData points cannot all be identical. 

TNColumnSize and TNRowSize set an upper bound on the number of elements in 
a vector. Neither of these identifiers are variable names and are never referenced 
by the procedure. If conditions 3 or 4 are violated, the program will crash with an 
Index Out of Range error (assuming the directive {$R +}is active). 
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Output Parameters 

Solution : TNRowVector; Coefficients of the basis vectors that form the least-
squares approximation 

YFi t : TNCo l umnVector; Values of the least-squares fit evaluated at the XData 
values 

Residual : TNColumnVector; Difference between YData and YFit values 

StandardDeviation: Extended; Square root of the variance-indicates the goodness of 
fit 

Error : Byte; 0: No error 
1: NumPoints < 2 
2: NumTerms < 1 
3: NumTerms > NumPoints 
4: Least-squares solution does not exist (see "Com­

ments") 

Syntax of the Procedure Call 

LeastSquares(NumPoints, XData, YData, NumTerms, Solution, 
YFit, Residual, StandardDeviation, Variance, Error, Fit); 

Comments 

The least-squares routine is defined in LeastSquares.unit. The choice of parameter 
passed in for FitType will depend upon the functional form (basis vectors) to which 
you fit the data. Following are the five choices for the Fit1tJpe parameter: 

Poly 

This method uses Che'byshev polyrwmials to fit a polynomial to the data points. 
NumTerms must be one greater than the degree of the polynomial (for example, to 
fit a fourth-degree polynomial, input NumTerms = 5). To get a straight-line least­
squares fit, use this module and fit a curve with only two coefficients. The elements 
of the Solution vector will be as follows: 

Solution[j] = a1 1 :::;; j :::;; NumTerms 

where a1 is the coefficient of x1- 1• 
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Fourier 

This method will fit a finite Fourier series to the data points. The number of terms 
in the approximation will be NumTerms. The elements of the Solution vector will 
be as follows: 

Solution[j] = F1_ 1 1 s j s NumTerms 

where F1_ 1 is the (j- l)th term in the Fourier series. Following are the first few 
terms in the Fourier series: 

F[O] = 1 
F[l] = cos(x) 
F[2] = sin(x) 
F[3] = cos(2x) 
F[4] = sin(2x) 
F[5] = cos(3x) 
F[6] = sin(3x) 

Power 

This method will fit the function 

y = ai 
where a and b are real numbers to the data points. A linear equation is obtained by 
taking the log of both sides, like so: 

ln(y) = ln(a) + b * ln(x) 

and expanding on basis vectors 1 and ln(x). The x-values of the data points must all 
be positive, and the y-values of the data points must all have the same sign. The 
number of coefficients in the approximation will be two regardless of the value of 
NumTerms (unless NumTerms > NumPoints, in which case Error 3 will occur). 
The elements of the Solution vector will be as follows: 

Solution[!] = a 
Solution[2] = b 

Expo 

This method will fit the function 

y = ae,,. 

where a and b are real numbers to the data points. A linear equation is obtained by 
taking the log of both sides, like so: 

ln(y) = ln(a) + bx 
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and expanding on basis vectors 1 and x. They-values of the data points must all 
have the same sign. The number of coefficients in the approximation will be two 
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which 
case Error 3 will occur). The elements of the Solution vector will be as follows: 

Solution[!] = a 
Solution[2] = b 

Log 

This method will fit the function 

y = a ln(bx) 

where a and b are real numbers to the data points. A linear equation is obtained by 
rewriting the equation: 

y = a ln(b) + a ln(x) 

and expanding on basis vectors 1 and ln(x). The x-values of the data points must all 
have the same sign. The number of coefficients in the approximation will be two 
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which 
case Error 3 will occur). The elements of the Solution vector will be as follows: 

Solution[!] = a 
Solution[2] = b 

User 

This method is included if you need a least-squares approximation on a set of basis 
vectors different from the ones listed earlier. This method allows you to create your 
own set of basis vectors. The source code contains detailed instructions of how to 
flesh out the skeleton for the user-defined method. 

A least-squares solution may not exist for some input data and choice of basis 
vectors (Error 4). The reasons for this will depend on the module you are using. For 
example, it is impossible to fit an exponential function to data with y-values of 
differing signs; Error 4 will occur if you try. The same data could be fit with a 
polynomial and no error would result. Error 4 will also occur if all the x-values of 
the data are identical. 
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Sampl,e Program 

The demonstration program Least.pas contains I/O routines that allow you to run 
the least-squares approximation routine. 

To change the basis vectors of the approximation, simply pass in a different para­
meter for FitType to select the method used. 

Input Fil£s 

Data may be entered from a text file. The x- and y-coordinates should be separated 
by a space and followed by a carriage return. For example, data values of sqr(x) 
could be entered in a text file as 

11 
24 
39 
416 
5 25 

Exampl,e 

Problem. Given the following data (contained in the file Sample9Adat), fit a 
fourth-degree polynomial and a logarithmic function to the data: 

O.OOOOOOOOOOOOOOe+O l.33830225764886e-3 
O.lOOOOOOOOOOOOOe+O 4.43184841193803e-2 
0.20000000000000e+O 5.39909665131879e-l 
0.30000000000000e+O 2.41970724519143e+O 
0.40000000000000e+O 3.98942280401433e+O 
0.02000000000000e+O 2.9194692579146le-3 
0.04000000000000e+O 6.11901930113775e-3 
0.06000000000000e+O l.23221916847303e-2 
0.08000000000000e+O 2.38408820146486e-2 
0.12000000000000e+O 7.9154515829800le-2 
0.14000000000000e+O l.35829692336855e-l 
0.16000000000000e+O 2.23945302948430e-l 
O.lBOOOOOOOOOOOOe+O 3.54745928462313e-l 
0.22000000000000e+O 7.89501583008939e-l 
0.24000000000000e+O l.10920834679455e+O 
0.26000000000000e+O l.49727465635745e+O 
0.28000000000000e+O l.94186054983213e+O 
0.32000000000000e+O 2.89691552761483e+O 
0.34000000000000e+O 3.33224602891800e+O 
0.36000000000000e+O 3.68270140303323e+O 
0.38000000000000e+O 3.91042693975456e+O 

(The function is the left-hand side of a Gaussian distribution curve with mean = 
0.5 and standard deviation = 0.1.) Note that the points do not have to be in any 
particular order. 
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First fit the polynomial; set the FitType parameter to Poly in the call to procedure 
leastSquares. 

Run Least.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample9A.dat 

Number of terms in the least squares fit (<= 21)? 5 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 

The Data Points: 
x 

0.200 
0.300 
0.400 
0.500 
0.100 
0.120 
0.140 
0.160 
0.180 
0.220 
0.240 
0.260 
0.280 
0.320 
0.340 
0.360 
0.380 
0.420 
0.440 
0.460 
0.480 

y 
0.0443185 
0.5399097 
2.4197072 
3.9894228 
0.0013383 
0.0029195 
0.0061190 
0.0123222 
0.0238409 
0.0791545 
0.1358297 
0.2239453 
0.3547459 
0.7895016 
1.1092083 
1.4972747 
1.9418605 
2.8969155 
3.3322460 
3.6827014 
3.9104269 

*----------------------------------------* 
Polynomial Least Squares Fit 

*----------------------------------------* 
Coefficients in least squares approximation: 
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Coefficient 0: -3.1905595418e+O 
Coefficient 1: 6.4048009603e+l 
Coefficient 2: -4.3900537685e+2 
Coefficient 3: l.2058567475e+3 
Coefficient 4: -1.052335267le+3 
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x 
0.2000 
0.3000 
0.4000 
0.5000 
0.1000 
0.1200 
0.1400 
0.1600 
0.1800 
0.2200 
0.2400 
0.2600 
0.2800 
0.3200 
0.3400 
0.3600 
0.3800 
0.4200 
0.4400 
0.4600 
0.4800 

Least Squares Fit 
2.1944857693e-2 
5.4757594259e-l 
2.4228330082e+O 
4.0432402964e+O 

-7.5189129206e-2 
3.9032402642e-2 
7.6262215354e-2 
6.8115144544e-2 
4.2165058402e-2 
2.6946475755e-2 
7.262087850le-2 
1. 7037806442e-l 
3.2758706457e-l 
8.2963179469e-l 
l.1690007497e+O 
1. 5568879689e+O 
l.9804576462e+O 
2.8630963140e+O 
3.2762888552e+O 
3.6334109560e+O 
3.9014219733e+O 

Standard Deviation : 5.381534e-2 

Residual 
-2.2373626426e-2 
7.6662774599e-3 
3.1257630445e-3 
5.3817492388e-2 

-7.6527431463e-2 
3.6112933385e-2 
7.0143196053e-2 
5.5792952859e-2 
l.8324176388e-2 

-5.2208040075e-2 
-6.3208813836e-2 
-5.3567238529e-2 
-2.7158863892e-2 
4.0130211685e-2 
5.9792402868e-2 
5.9613312500e-2 
3.8597096380e-2 

-3.3819213603e-2 
-5.595717372le-2 
-4.9290447009e-2 
-9.0049664558e-3 

The fourth-degree polynomial that best fits this data is as follows: 

y = - 1052.34 x4 + 1205.86 x3 - 439.005 x1 + 64.0480 x - 3.19056 

Note that a fourth-degree polynomial requires five terms in the fit. 

Now fit the logarithmic function; set the Fit'l!/pe parameter to Log in the call to 
procedure LeastSquares. 

Run Least.pas: 

A dialog box appears asking you whether you will input data from the Keyboard or 
from a File. Select File and click OK. Then select the following file from the 
standard dialog box: 

File name? Sample9A.dat 

Number of terms in the least squares fit (<= 21)? 2 

Now another dialog box appears asking you whether you would like the output sent 
to the Screen, directly to the Printer, or into a File. Make your selection and click 
OK. 
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The Data Points: 
x 

0.200 
0.300 
0.400 
0.500 
0.100 
0.120 
0.140 
0.160 
0.180 
0.220 
0.240 
0.260 
0.280 
0.320 
0.340 
0.360 
0.380 
0.420 
0.440 
0.460 
0.480 

y 
0.0443185 
0.5399097 
2.4197072 
3.9894228 
0.0013383 
0;0029195 
0.0061190 
0.0123222 
0.0238409 
0.0791545 
0.1358297 
0.2239453 
0.3547459 
0.7895016 
1.1092083 
1.4972747 
1. 9418605 
2.8969155 
3.3322460 
3.6827014 
3.9104269 

*----------------------------------------* 
Logarithmic Least Squares Fit 

*----------------------------------------* 
Coefficients in least squares approximation: 

Coefficient 0: 2.5984092388et0 
Coefficient 1: 6.0253489684e+O 

x 
0.2000 
0.3000 
0.4000 
0.5000 
0.1000 
0.1200 
0.1400 
0.1600 
0.1800 
0.2200 
0.2400 
0.2600 
0.2800 
0.3200 
0.3400 
0.3600 
0.3800 
0.4200 
0.4400 
0.4600 
0.4800 

Least Squares Fit 
4.8470072527e-1 
l.5382650082e+O 
2.285780763le+O 
2.8655990284e+O 

-l.3163793126e+O 
-8.4263329495e-1 
-4.4208674432e-l 
-9.5117540049e-2 
2.1093098798e-1 
7.3235557703e-l 
9.5844674288e-1 
l.1664304540e+O 
l.3589932935e+O 
l.7059624978e+O 
l.8634900752e+O 
2.0120110258e+O 
2.152499793le+O 
2.4125575764e+O 
2.5334356149e+O 
2.6489394854e+O 
2.7595267807et0 

Standard Deviation : 8.320742e-l 
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Residual 
4.4038224115e-1 
9.9835534307e-1 

-1.3392648209e-1 
-l.1238237756e+O 
-1.3177176148e+O 
-8.455527642le-l 
-4.4820576362e-l 
-l.0743973173e-1 
1. 8709010596e-l 
6.5320106120e-l 
8.2261705055e-l 
9.4248515105e-l 
1.004247365le+O 
9.1646091478e-l 
7.5428172842e-1 
5.1473636946e-l 
2.1063924325e-l 

-4.8435795117e-l 
-7.9881041405e-l 
-l.0337619176e+O 
-l.1509001590et0 

Turbo Pascal Numerical Methods Toolbox 



The logarithmic function that best fits this data is as follows: 

y = 2;59841 * ln(6.02535x) 

The standard deviation of the polynomial fit is much smaller than that of the loga­
rithmic fit; a fourth-degree polynomial fits this data much better than a logarithmic 
function. 
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c H A p T E 

Fast Fourier Transform Routines 

Fourier transforms are used to analyze periodic phenomena such as waves. A con­
tinuous function/ that has period 21T ( = 2 * 3.14159265 ... ); that is, satisfies 

f(x + 21T) = f (x) 

for all x, can be decomposed into sines and cosines: 

f (x) = a[O] + a[l] * cos(x) + b[l] * sin(x) + a[2] * cos(2x) 
+ b[2] * sin(2x) + ... 

This is an infinite series where the coefficients get closer and closer to zero. The 
routines in this chapter can be used to calculate the coefficients. 

The Fast Fourier Transform (FFT) is a particular algorithm for computing Fourier 
transforms efficiently. 

This chapter includes two kinds of units. One group consists of four variations of 
the FIT method of calculating discrete Fourier transforms, each optimized for 
certain conditions. All are variations of the original Cooky-Tukey method. The 
second group consists of six applications: ComplexFIT, RealFIT, ComplexCon­
volution, RealConvolution, ComplexCrossCorrelation, and RealCrossCorrelation. 
Each can be used with any of the FIT methods. You can select the FIT method 
most appropriate to the circumstances and combine it with the appropriate appli­
cation or integrate it into another program (Brigham 1974; Nussbaumer 1982). 

In each FIT unit the procedure calls have exactly the same form (although there 
are different restrictions on the data) so that any one FIT unit can be combined 
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with any of the application units without rewriting code. Each of these algorithms 
will compute either a forward or an inverse transform. 

Each unit contains two procedures needed to prepare for the FFI' calculation: 
procedure Testlnput and procedure MakeSinCosTabl.e. Testlnput examines the 
input data to ensure that it satisfies certain conditions (for example, that there is 
more than 1 data point). MakeSinCosTabl.e precalculates a table of the nth roots of 
unity for look up in the FFT calculation. 

When Radix2 is passed in for the Radix1f/pe parameter, the Cooley-Tukey powers­
of-two (radix2 or base2) Fast Fourier Transform is used. Complex multiplications 
are done with four real multiplications and two real additions. By using this stan­
dard form of complex multiplication, storage overhead and assignment statements 
are reduced. This algorithm is appropriate when the time for a real multiplication 
is close to the time for a real addition. 

When Radix4 is passed in for the RadixType parameter, the powers-of-four (radix4 
or base4) Fast Fourier Transform is used. The powers-of-four method is the same 
as the Cooley-Tukey algorithm except at each stage of reduction a given transform 
is converted into four transforms each with one fourth the data points of its prede­
cessor (Nussbaumer 1982). When this algorithm is optimized, there are about 25 
percent fewer multiplications and slightly fewer additions than in a radix-2 algo­
rithm. The algorithm has the disadvantage of only being applicable to data sets 
where the number of points is a power of four up to a maximum of 4,096 points. A 
reduction in execution time of about 20 percent is accomplished when Radix4 is 
used over its Radix2 counterpart. 

The Application Programs 

Fast Fourier Transforms are particularly useful for analyzing periodic signals. Such 
a signal is represented by a function f satisfying 

f(t + 1j = f(t) 
where tis time and Tis the period. Under mild hypotheses,/ can be expanded into 
a Fourier series such as the following: 

"' 
f(t) = N- 112 L F(n) exp (2ir i n t/1j 

n=-oo 

where i is the square root of - 1. The term exp (2ir i n t/1j is a sinusoid of period 
Tin and frequency n/T, and its coefficient F(n) gives the strength of that frequency 
component in the original signal. 
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To analyze a signal on a digital computer, the signal must be discretized. Let x(n) 
be computed by discretizing the functionf at N equidistant points in one period. 
Thus, let 

x(n) = f(nT/N} n = 0, 1,. .. N - 1 

Once we restrict attention to N points, it only makes sense to represent the signal 
in terms of N of the functions 

exp (2'TT in t/T) 

since the rest are redundant. For example: 

exp (2'Tl' i ( - 1) t/T) = exp (2'TT i (N -1) t/T) 

for t = nT/N, n = 0, 1, ... N - 1. The Fourier series for the signal is then a finite 
sum, and has the form 

N-1 

x(n) = N- 112 L X(k) exp (2'TT i k n/N} 
k = 0 

(The factor of N- 112 is a matter of convention. Some books do not include it in this 
formula, resulting in a factor of l/N in the formula for X that follows.) 

The formula for the coefficients X(k) is as follows: 

N-1 

X(k) = N- 112 L x(n) exp (-i 2'Tl' n k!N) 
n=O 

This formula for X makes sense for any integer k. X is then periodic, satisfying 

X(k + N) = X(k) 

for all k. In formulas and programs, it is more convenient to let k run from 0 to 
N - 1, but for analyzing signals it makes more sense to think of k as running from 
(-N/2) to (N/2 - 1). This is because values of k near zero represent the low 
frequency information, and values of k near or greater than N 12 represent frequen­
cies that are so high that the discretization is too coarse to realize them accurately 
anyway. Therefore, if k is between N 12 and N, X(k) should be thought of as the 
coefficient of 

exp (2'TT i (k - N) t/T) 

rather than 

exp (2'TT i k t/T) 

In other words, negative frequencies are represented on the right half of the trans­
form. 
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Com:pl.exFFT simply talces the complex Fast Fourier Transform of a set of complex 
data points. The complex Fourier transform is defined as 

N-1 

X1 = N- 112 L xn exp (2'1T i n JIN) f = O .. N - 1 
n=O 

where i is the square root of -1. The inverse Fourier transform (which may also be 
calculated with Comp'lexFFT) is defined as 

N-1 

in = N- 112 I X1 exp (2'1T if n/N) n = O .. N - 1 

!= 0 

where the bar stands for complex conjugation. 

RealFFT provides a procedure that is optimized for a discrete Fourier transform 
with all real data. It proceeds by mapping the N real data points onto N /2 complex 
points, applying one of the FFT routines, then reconstructing the N points of the 
desired transform. This reduces the computation time by about 25 percent com­
pared to applying the complex FFTroutine to the N real data points. RealFFT can 
be used with any of the given FFT methods, but note that if a radix-4 method is 
used, N /2 must be a power of four; so N must be of the form 2 * 4k. 

Comp'lexConvolution provides a procedure for calculating convolutions of two com­
plex vectors (Brigham 1974; Nussbaumer 1982). The discrete convolution of two 
complex functions x and h is defined by 

m = 0, 1, ... N - 1 

n=O 

where subscripts are talcen modulo N (circular convolution). The basic theorem that 
allows us to calculate these effectively using FFTs is shown in the following: 

Y = X H m m m 
m = 0, l, ... N - 1 

where capital letters indicate the transforms of the functions represented by lower­
case letters. Thus the procedure for convolution works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply the resulting transforms point by point. 

3. Find the inverse transform of this product using FFTs. 
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RealConvolution provides a procedure for calculating convolutions of two real vec­
tors (Brigham 1984; Nussbaumer 1982). This procedure is exactly the same as the 
previous procedure (ComplexConvolution) for complex convolution except that only 
one forward Fourier transform need be performed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal plus iHReal, where i is the square root of - 1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real functions from the transform of the 
complex function (using the symmetry xf = x_f' where the bar stands for 
complex conjugation). 

4. Multiply the resulting transforms point by point. 

5. Find the inverse transform of this product using FFTs. RealConvolution is 
about 25 percent faster than its complex counterpart for the same set of real 
data. 

ComplexCrossCorrelation provides a procedure for calculating the crosscorrelation 
of two discrete complex functions or the autocorrelation of one discrete complex 
function (Brigham 1974). If x and h are the given discrete functions, then their cor­
relation is defined as 

N-1 

c =""xh 
m L n n+rn 

m = 0, 1, ... N - 1 
n = 0 

where subscripts are taken modulo N (circular convolution). This can be computed 
using FFTs with a method analogous to that used in ComplexConvolution: 

C = X H m m N-m 
m = 0, 1, ... N - 1 

Commonly x and h are real functions; in which case the preceding formula reduces 
to C = X ii , where the bar stands for complex conjugation. Thus the procedure 
for ~rrelatfon mworks like this: 

1. Transform both given data sets using FFTs. 

2. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

3. Find the inverse transform of this product using FFTs. 

RealCrossCorrelation provides a procedure for calculating the crosscorrelation of 
two discrete real functions or the autocorrelation of one discrete real function 
(Brigham 1974). This procedure is exactly the same as the previous procedure for 
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complex correlation except that only one forward Fourier transform need be per­
formed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of -1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real vectors from the transform of the 
complex vector (using the symmetry x, = x_,, where the bar stands for 
complex conjugation). 

4. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

5. Find the inverse transform of this product using FFTs. 

Any one of the FFT include files can be used with any of the applications. 

Data Sampling 

While sampling theory is beyond the scope of this Toolbox, we would like to men­
tion several common problems associated with data sampling (Brigham 1974; Press 
et al. 1986, Ch.12). The most common frustration is aliasing. A Fourier transform 
only represents frequencies up to a certain limit (called the Nyquist limit, or 
Nyquist frequency), which is given by half the sampling rate. (For example, if a 
signal is sampled sixty times a second, the Nyquist frequency will be 30 Hz.) A 
sample containing frequencies greater than this limit will not be properly trans­
formed. The high frequencies will falsely contribute to the transform. This contri­
bution will be indistinguishable from a contribution of a frequency below the 
Nyquist frequency. 

There are several ways to combat aliasing. Increasing the sampling rate will 
increase the Nyquist frequency and thus reduce aliasing effects. It is also possible 
to pass the signal through a low pass filter, thus eliminating the high frequencies 
before sampling. If the Fourier transform of a signal does not converge to zero at 
the Nyquist frequency, the transform has very likely been aliased. 

The Fourier transform assumes that the sample represents a periodic function and 
that the sample is an integer multiple of one period. If the latter condition is not 
true, spurious frequencies will show up in the transform. For example, if a sine 
wave is sampled from 0 to 270 degrees (instead of the full period), a sharp bound­
ary is created because the sine of 0 does not equal the sine of 270. High frequen­
cies will be introduced into the transform to account for that sharp boundary. 
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The assumption of periodicity can cause problems when convolving or correlating 
two signals that are not periodic. The convolution of each point in a signal affects 
the points surrounding it (the nature and extent of the affect depends on the partic­
ular convolving function). The assumption of periodicity means that the convolu­
tion at one end of the signal will affect the other end of the signal. This "end effect• 
can be eliminated by padding the data (on either end) with a sufficient number of 
zeros. 

User-Defined 'lflpes 

TNvector = array[O •• TNArraySize] of Extended; 

TNvectorPtr = -rNvector; 

RadfxType = (Radix2, Radfx4); 

These user-defined types are different from others in this Toolbox, because they 
involve pointers. Pointers are used to transcend the limitations imposed by the 32K 
data segment size of Turbo Pascal. However, it is possible to store these arrays on 
the heap, and to point to them with pointers that only require 4 bytes. The size of 
the heap (and hence the maximum size and number of TNvectors) is determined 
by the amount of memory in the machine. 
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Fast Fourier Transform .Afgarithms 

The following documentation generally applies to all FFf algorithms. When a dif­
ference between the radix-2 and radix-4 algorithms needs to be described, the 
radix-4 information will be placed in brackets following the radix-2 information (for 
example, the number of points must be a power of two [four]). 

Procedure Testlnput 

Description 

This example determines the number of data points in terms of a power of two 
[four]. If the number of data points is not a power of two [four], then an error is 
returned. 

Input Parameters 

NumPoints : Integer: Number of data points 

The preceding parameter must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

NumberOfBits : Byte: Number of data points as a power of two [four] 

Error : Byte; 0: No errors 
l: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

Testinput(NumPoints, NumberOfBits, Error): 
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Procedure MakeSinCosTab"le 

Description 

This example creates a look-up table of NumPoints/2 [3/4 NumPoints] roots of unity. 
The roots of unity are defined as follows: 

Rootn = exp ( - i 2ir n/NumPoints n = O .. NumPoints/2 [3/4 NumPoints] 

where i is the square root of -1. These values are stored in two tables: SinTable, 
containing the imaginary parts of the roots of unity, and CosTable, containing the 
real parts of the roots of unity. It is faster to look up these values in a table than to 
calculate them in the FFT procedure. 

Input Parameters 

NumPoi nts : Integer; Number of data points 

The preceding parameter must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

SinTable: TNvectorPtr; Table of sine values 

CosTable: TNvectorPtr; Table of cosine values 

Syntax of the Procedure Call 

MakeSinCosTable(NumPoints, SinTable, CosTable); 

Procedure Comp"lexFFT, Real,FFT 

Description 

This example implements the particular variation of the Cooley-Tukey algorithm. 
The Fast Fourier 'fransform of the data XReal, Xlmag is made in place and is thus 
returned in the vectors XReal, Xlmag. The inverse transform of the data can also 
be calculated with this procedure. 
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It is essential that procedures Testlnput and MakeSinCosTable be called before 
procedure Fast Fourier Transform is called. Testlnput will flag any errors in the 
data (for example, number of points that are not a power of two [four]), and 
MakeSinCosTable generates a table of sine and cosine values referenced by Fast 
Fourier Transform. Testlnput and MakeSinCosTable need only be called once, even 
if several calls to Fast Fourier Transform are made within the same program (for 
example, when computing the discrete convolution), as long as the number of data 
points is unchanged. If the number of data points changes between two calls of 
Fast Fourier Transform, Testlnput and MakeSinCosTable must be called again. 
(Interested readers are urged to consult the references given in the beginning of 
the chapter for details about the Cooley-Tukey algorithm.) 

Input Parameters 

NumberOfBits : Byte; 

NumPoi nts : Integer; 

Inverse : Boolean; 

XReal : TNvectorPtr; 

XImag : TNvectorPtr; 

Number of data points as a power of two [four] 

Number of data points 

FALSE equals forward transform; TRUE equals inverse 
transform 

Pointer to real values of the data points 

Pointer to imaginary values of the data points 

SinTable: TNvectorPtr; Table of sine values 

CosTable: TNvectorPtr; Table of cosine values 

Radix: RadixType; Radix2 or Radix4 

The preceding parameters must satisfy the following conditions: 

1. NumPoints C!: 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the 
input data 

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform 
of the input data 

Syntax of the Procedure Call 

RealFFT(NumberOfBits, NumPoints, Inverse, XReal, XImag, SinTable, CosTable, Radix); 
ComplexFFT(NumberOfBits, Numpoints, Inverse, XReal, XImag, SinTable, CosTable, 

Radix); 
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Fast Fourier 'lransfonn Applications 

ComplexFFT 

Description 

This example is the most basic application, performing a complex Fast Fourier 
Transform. It simply calls Testlnput, MakeSinCosTable, and FFT sequentially; thus 
accomplishing an in-place transformation of the complex data XReal, XI mag. 

Input Parameters 

NumPoints : Integer: Number of data points 

Inverse: Boolean: FALSE equals forward transform; TRUE equals inverse trans-
form 

XReal : TNvectorPtr: Pointer to real values of the data points 

XImag : TNvectorPtr; Pointer to imaginary values of the data points 

Radb : RadixType; Radix2 or Radix4 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ;;::: 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the 
input data 

XImag : TNvectorPtr: Pointer to imaginary values of the discrete Fourier transform 
of the input data 

Error : Byte: 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 
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Syntax of the Procedure Call 

ComplexFFT(NumPoints, Inverse, XReal, XImag, Error, Radix); 

RealFFT 

Description 

This example performs a complex Fast Fourier Transform of real data. The Num­
Points real data points are first mapped onto NumPoints/2 complex data points. A 
complex Fast Fourier Transform of these complex points is performed by calling 
Testlnput, MakeSinCosTable, and FFT. The NumPoints/2 transform is then mapped 
onto NumPoints complex points. The real part of the transformation will be even, 
and the imaginary part of the transformation will be odd. If you are implementing 
this application with a radix-4 algorithm, be sure that the number of real data 
points (NumPoints) is twice the power of four. 

Input Paramet;ers 

NumPoints : Integer: Number of data points 

Inverse: Boolean; FALSE equals forward transform; TRUE equals inverse trans-
form 

XReal : TNvectorPtr; Pointer to real values of the data points 

Radix : RadixType; Radix2 or Radix4 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ;;=:: 4. 

2. NumPoints must be a power of two (twice a power of four for a radix-4 
algorithm). 

At least four data points are required, because this algorithm transforms the real 
vector to a complex vector half the size. If only two real data points were entered, 
the routine would have to take the transform of a single complex point. 
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Output Parameters 

XRea 1 : TNvectorPtr; Pointer to real values of the Fourier transform of the input data 

Xlmag : TNvectorPtr; Pointer to imaginary values of the Fourier transform of the 
input data 

Error : Byte; 0: No errors 
l: NumPoints < 4 
2: NumPoints not a power of two [twice a power of four] 

Syntax of the Procedure Call 

RealFFT(NumPoints, Inverse, XReal, Xlmag, Error, Radix); 

Camp"lexConvolution 

Description 

The calculation of the convolution of two complex vectors is facilitated with a Fast 
Fourier Transform routine. The discrete convolution of two functions x and h is 
defined by 

N-1 

Ym = Ixnhm-n m = O, l, ... N - 1 
n=O 

where subscripts are taken modulo N (circular convolution). The basic theorem 
that allows us to calculate these effectively using FFTs is as follows: 

Ym = Xm Hm m = O, l, ... N - 1 

where capital letters indicate the transforms of the functions represented by lower­
case letters. Thus the procedure for convolution works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply the resulting transforms point by point. 

3. Find the inverse transform of this product using FFTs. 
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Input Parameters 

NumPoints : Integer; Number of data points 

XRea l : TNvectorPt r; Pointer to real values of the first set of data points 

Xlmag : TNvectorPtr; Pointer to imaginary values of the first set of data points 

HReal : TNvectorPtr; Pointer to real values of the second set of data points 

Hlmag : TNvectorPtr; Pointer to imaginary values of the second set of data points 

Radix : RadixType; Radix2 or Radix4 

The preceding parameters must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal, Xlmag and 
HReal, Hlmag 

XImag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal, Xlmag 
and HReal, Hlmag 

Error : Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

ComplexConvolution(NumPoints, XReal, Xlmag, HReal, Himag, Error, Radix); 

RealConvolution 

Description 

The calculation of the convolution of two real vectors is facilitated with a Fast 
Fourier Transform routine. This procedure is exactly the same as the previous 
procedure for complex convolution except that only one Fourier transform need be 
performed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of -1. 

2. Transform this complex vector. 
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3. Extract the transforms of the two real functions from the transform of the 
complex function (using the symmetry xf = x_f' where the bar stands for 
complex conjugation). 

4. Multiply the resulting transforms point by point. 

5. Find the inverse transform of this product using FFfs. RealConvolution is 
about 25 percent faster than its complex counterpart for the same set of real 
data. 

Input Parameters 

NumPoints : Integer; Number of data points 

XReal : TNvectorPtr; Pointer to real values of the first set of data points 

HReal : TNvectorPtr; Pointer to real values of the second set of data points 

Radix : RadixType; Radix2 or Radix4 

The preceding parameters must satisfy the following conditions: 

1. NumPoints 2::: 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal and HReal 

Xlmag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal and 
HReal 

Error : Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

RealConvolution(NumPoints, XReal, Xlmag, HReal, Error, Radix); 

Fast Fourier Transform Routines 241 



Comp"lexCrossCorrelation 

Description 

The calculation of the correlation of two complex vectors is facilitated with a Fast 
Fourier Transform routine. The discrete correlation of two complex functions x and 
h is defined by 

N-1 

y-""'xh 
m - L n m+n 

m = 0, 1, ... N - 1 

where subscripts are taken modulo N (circular correlation). The basic theorem that 
allows us to calculate these effectively using FFTs is as follows: 

Y = X H m m N-m m = 0, 1, ... N - 1 

where capital letters indicate the transforms of the functions represented by lower­
case letters and - indicates the complex conjugate. (Commonly x and hare real 
functions, in which case the preceding formula reduces to the more familiar 
expression Cm = Xm Hm, where the bar stands for complex conjugation. Thus the 
procedure for correlation works like this: 

1. Transform both given data sets using FFTs. 

2. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

3. Find the inverse transform of this product using FFTs. 

If the functions x and h are different, the correlation is called crosscorrelation; if the 
functions x and h are the same, the correlation is called aut;ocorrelation. 

Input Parameters 

NumPoints : Integer; Number of data points 

Auto: Boolean; FALSE equals cmsscorrelation; TRUE equals autocorrelation 

XReal : TNvectorPtr; Pointer to real values of the first set of data points 

Xlmag : TNvectorPtr; Pointer to imaginary values of the first set of data points 

HRea 1 : TNvectorPt r; Pointer to real vallues of the second set of data points (for cross­
correlation) 

Himag : TNvectorPtr; Pointer to imaginary values of the second set of data points (for 
crosscorrelation) 

Radix : RadixType; Radix2 or Radix4 
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The preceding parameters must satisfy the following conditions: 

1. NumPoints ~ 2. 

2. NumPoints must be a power of two [four]. 

Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the correlation of XReal, Xlmag and 
HReal, Hlmag (or the autocorrelation of XReal, Xlmag if 
Auto= TRUE) 

XImag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal, Xlmag 
and HReal, Hlmag (or the autocorrelation of XReal, Xlmag if 
Auto= TRUE) 

Error : Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of the Procedure Call 

ComplexCorrelation(NumPoints, Auto, XReal, XImag, HReal, Himag, Error, Radix); 

Comments 

If you are performing an autocorrelation of the vector XReal, Xlmag, then set 
Auto = TRUE. In this case, the vector HReal, Hlmag will not contain any informa­
tion but must still be passed into the procedure. Autocorrelations are faster to 
compute, since only one forward transformation must be made, as opposed to two 
for crosscorrelation. 

Fast Fourier Transform Routines 243 



RealCrossCorrelatinn 

Description 

The calculation of the convolution of two real vectors is facilitated with a Fast 
Fourier Transform routine. This procedure is exactly the same as the previous 
procedure for complex correlation except that only one forward Fourier transform 
need be performed. The procedure is as follows: 

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of - 1. 

2. Transform this complex vector. 

3. Extract the transforms of the two real vectors from the transform of the 
complex vector (using the symmetry xf = x_f, where the bar stands for 
complex conjugation). 

4. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data. 

5. Find the inverse transform of this product using FFTs. 

Input Parameters 

NumPoints : Integer; Number of data points 

Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation 

XReal : TNvectorPtr; Pointer to real values of the first set of data points 

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross­
correlation) 

Radix : RadixType; Radix2 or Radix4 

The preceding parameters must satisfy the following conditions: 

1. NumPoints 2: 2. 

2. NumPoints must be a power of two [four]. 
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Output Parameters 

XReal : TNvectorPtr; Pointer to real values of the correlation of XReal and HReal (or 
the autocorrelation of XReal if Auto = TRUE) 

Xlmag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal and 
HReal (or the autocorrelation of XReal if Auto = TRUE) 

Error : Byte; 0: No errors 
1: NumPoints < 2 
2: NumPoints not a power of two [four] 

Syntax of th£ Procedure Call 

RealCorrelatfon(NumPofnts, Auto, XReal, Xlmag, HReal, Error, Radix); 

Comments 

If you are performing an autocorrelation of the vector XReal, then set Auto equal to 
TRUE. In this case, the vector HReal will not contain any information but must 
still be passed into the procedure. Autocorrelations are faster to compute, since 
only one forward transformation must be made, as opposed to two for crosscorrela­
tion. 

Sample Program 

The sample program FFfProgs.pas provides 1/0 functions that demonstrate any of 
the application programs. 

Input File 

Data may be entered from a text file. The real and imaginary parts of a complex 
number should be separated by a space and followed by a carriage return. Real 
numbers should each be followed by a carriage return. 

The procedures ComplexFFT, ComplexConvolution, and ComplexCrossCorrelation 
expect data to be in complex form. A data file containing a four-point complex 
square wave could look like this: 

00 
11 
11 
00 
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The procedures RealFFT, RealConoolution, and RealCrossCorrelation expect data 
to be in real form. A data file containing a four-point real square wave could look 
like this: 

0 
1 
1 
0 

Example 

Problem. Perform a Fourier transform and an autocorrelation of a 32-point square 
wave. Also, convolve and crosscorrelate this square wave with a saw-tooth wave. 

1. The input data file SamplelOA.dat is as follows (note that this is in real format): 

246 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
0 

2. Run FFTProgs.pas: 

1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 1 

********* Real Fast Fourier Transform ********* 

(F)orward or (I)nverse transform? F 

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

File name? SamplelOA.dat 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Results of real Fourier transform: 
1.9445436482630le+O 

-l.59057003804788e+O 
7.5341743651573le-l 
5.96901852132470e-2 

-4.26776695296637e-l 
2.89883706652938e-1 
6.20757203331860e-2 

-2.66655959906343e-l 
l.76776695296637e-l 
6.63840517512571e-2 

-2.08522329739913e-l 
l.27160952826887e-l 
7.3223304703363le-2 

-l.83841625879619e-l 
l.00135954077543e-l 
8.373516501642lle-2 

-l.76776695296637e-l 
8.37351650164211e-2 
l.00135954077543e-1 

-l.83841625879619e-1 
7.32233047033631e-2 
l.27160952826887e-1 

-2.08522329739913e-l 
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O.OOOOOOOOOOOOOOetO 
-3.56682381055970e-17 
4.55292313916419e-17 

-2.69289447846945e-16 
-2.87492515628133e-20 
-3.48529572466949e-16 
l.09874847931145e-16 
2.7719070048479le-18 
O.OOOOOOOOOOOOOOetO 
9.35764180659936e-17 
l.097981832603lle-16 

-l.28863728588383e-16 
l.05413922396982e-19 

-4.96595405328328e-17 
4.53375697145565e-17 
5.53423092584155e-17 
o.ooooooooooooooe+o 

-5.53423092584155e-17 
-4.53375697145565e-17 
4.96595405328328e-17 

-l.05413922396982e-19 
l.28863728588383e-16 

-1.097981832603lle-16 
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6.6384051751257le-2 
l.76776695296637e-l 

-2.66655959906343e-l 
6.20757203331860e-2 
2.89883706652938e-l 

-4.26776695296637e-l 
5.96901852132470e-2 
7.5341743651573le-l 

-l.59057003804788e+O 

-9.35764180659936e-17 
-0.00000000000000etO 
-2.7719070048479le-18 
-l.09874847931145e-16 
3.48529572466949e-16 
2.87492515628133e-20 
2.69289447846945e-16 

-4.55292313916419e-17 
3.56682381055970e-17 

Note that the transform of the even real-square wave is an even real function. If 
you take the inverse transform of this data, you should get back the original square 
wave. 

3. Run FFTProgs.pas: 
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1. Real Fast Fourier Transform 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transform 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 5 

********* Complex Fast Fourier Transform ********* 

(F)orward or (I)nverse transform? I 

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

File name? SamplelOB.dat 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Results of complex Fourier transform: 
l.83845713893878e-15 -0.00000000000000e+O 
l.6845911445746le-15 -6.70815869798976e-20 
2.11375997190428e-15 -l.05413922396982e-19 
l.89507399834982e-15 3.44909004811084e-17 
l.18630911648793e-15 -0.00000000000000e+O 
l.10496790073287e-15 3.42849429972988e-17 
9.86928259751718e-16 l.68143873326862e-16 
9.23818927547367e-16 2.37407332761055e-16 
1.00487796352727e-15 -0.00000000000000etO 
3.31468256684932e-16 2.37751564484486e-16 

-7.03172956429440e-17 l.6814826252551le-16 
l.OOOOOOOOOOOOOOe+O 2.03763730303779e-16 
l.OOOOOOOOOOOOOOetO -0.00000000000000etO 
l.OOOOOOOOOOOOOOetO 2.03969687787589e-16 
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l.OOOOOOOOOOOOOOe+O 
l.OOOOOOOOOOOOOOe+O 
9.99999999999999e-l 
l.OOOOOOOOOOOOOOe+O 
l.OOOOOOOOOOOOOOe+O 
9.99999999999999e-l 
l.OOOOOOOOOOOOOOe+O 
l.OOOOOOOOOOOOOOe+O 

-l.44345194948787e-16 
-6.60945902546872e-17 
9.04264001920616e-16 
l.13846180955400e-15 
3.49146703466816e-16 
l.49507607827254e-15 
9.82879412429460e-16 
l.52785022505415e-15 
l.62624933006980e-15 
l.58864530902564e-15 

7.85812876050229e-19 
l.60995808751754e-18 

-0.00000000000000e+O 
l.62912425522608e-19 
l.05413922396982e-19 

-2.02632926408975e-16 
o.ooooooooooooooe+o 

-2.02417228203197e-16 
-l.68143873326862e-16 
-2.38193145637105e-16 
-0.00000000000000e+O 
-2.37847395323029e-16 
-l.681482625255lle-16 
-3.56217043759124e-17 
-0.00000000000000e+O 
-3.58374025816908e-17 
-7.85812876050229e-19 
-8.24145211467314e-19 

You get back the original square wave, accurate to 15 significant figures. 

The autocorrelation of a square wave is simply a triangle. Let's take the 
autocorrelation of the square wave. 

4. Run FFfProgs.pas: 

1. Real Fast Fourier Transfonn 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transfonn 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 3 

********* Real Autocorrelation ********* 

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

File name? SamplelOA.dat 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 
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Results of real autocorrelation: 
l.9445436482630le+O 
l.76776695296637e+O 
l.59099025766973e+O 
l.41421356237310e+O 
l.23743686707646e+O 
l.06066017177982e+O 
8.83883476483185e-l 
7.07106781186548e-l 
5.303300858899lle-l 
3.53553390593273e-l 
l.76776695296636e-l 

-7.13134768099437e-16 
-8.91610121801382e-16 
-6.53642983532122e-16 
-6.24203749931802e-16 
-7.13441426782774e-16 
-4.75627617855183e-16 
-7.13364762111940e-16 
-6.24050420590133e-16 
-6.54026306886293e-16 
-8.91610121801382e-16 
-7.13748085466111e-16 
1.76776695296636e-1 
3.53553390593273e-1 
5.30330085889911e-1 
7.07106781186548e-1 
8.83883476483185e-1 
1.06066017177982e+O 
1.23743686707646e+O 
1.41421356237310e+O 
1.59099025766973e+O 
1.76776695296637e+O 

-1.86068547103024e-18 
-7.31524706015784e-17 
-1.20291519030913e-16 
-2.28393637498843e-16 
-1.08420217248551e-18 
-3.11917400601706e-16 
-2.67794627815503e-16 
-3.24279578773716e-16 
1.54428189954649e-19 

-2.64227183800926e-16 
-2.67190893532684e-16 
-1.92763731728663e-16 
l.08420217248551e-18 

-1.08779980600795e-16 
-1.18700727111104e-16 
-1.28557069905047e-17 
1.55182909112094e-18 
1.34977736087408e-17 
1.20128888705040e-16 
1.09467566867339e-16 
1.08420217248551e-18 
1.92996121512129e-16 
2.67957258141376e-16 
2.64586549445461e-16 
1.54428189954649e-19 
3.23881880793764e-16 
2.67353523858557e-16 
3.11689802360167e-16 

-1.0842021724855le-18 
2.27701259690372e-16 
1.18538096785231e-16 
7.25487363187593e-17 

Keeping in mind that this is a periodic function (see "Data Sampling"), you can 
see that this is a triangle wave. 

Let's now convolve the square wave with a saw-tooth wave. The input file for 
the saw-tooth wave (SamplelOC.dat) is as follows: 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2 
3 
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4 
5 
6 
7 
8 
9 

10 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

5. Run FFfProgs.pas: 

1. Real Fast Fourier Transfonn 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transfonn 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 2 

********* Real Convolution ********* 

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

The first function: 

File name? SamplelOA.dat 

The second function: 

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

File name? SamplelOC.dat 
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Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Results of real convolution: 
l.16672618895780e+l 
l.14904851942814e+l 
l.1136931803688le+l 
l.06066017177982e+l 
9.89949493661167e+O 
9.01561146012848e+O 
7.95495128834866e+O 
6.71751442127220e+O 
5.303300858899lle+O 
3.71231060122937e+O 
l.94454364826300e+O 

-4.48963645339059e-15 
-4.65630544778407e-15 
-3.6565981401065le-15 
-3.47045631932115e-15 
-3.85439299085867e-15 
-2.87891171916470e-15 
-4.57044101644980e-15 
-3.77067517030775e-15 
-4.08070709916113e-15 
-5.84767443254705e-15 
-3.6599713856232le-15 
l.76776695296633e-l 
5.30330085889907e-l 
l.06066017177982e+O 
l.76776695296637e+O 
2.65165042944955e+O 
3.71231060122937e+O 
4.94974746830584e+O 
6.36396103067893e+O 
7.95495128834866e+O 
9.72271824131503e+O 

-0.00000000000000e+O 
5.39795947343382e-16 

-l.17756934401283e-16 
-6.23437103223460e-16 
-0.00000000000000e+O 
-l.63431828667510e-15 
-l.33473191922288e-15 
-2.27837818635295e-15 
-0.00000000000000e+O 
-2.05062661547234e-15 
-l.87280291147249e-15 
-l.68784939308506e-15 
-0.00000000000000e+O 
-l.09893055790468e-15 
-l.31403245809765e-15 
-2.51249292491279e-16 
-0.00000000000000e+O 
-9.33009044051833e-17 
l.17756934401283e-16 
2.09754539402286e-16 

-0.00000000000000e+O 
6.25142892149520e-16 
l.33473191922288e-15 
l.11725341423405e-15 

-0.00000000000000e+O 
l.60413157253415e-15 
l.87280291147249e-15 
2.10153195690623e-15 

-0.00000000000000e+O 
2.10810595243026e-15 
l.31403245809765e-15 
l.41237406461018e-15 

Now let's crosscorrelate the square wave with the saw-tooth wave. 

6. Run FFTProgs.pas: 

1. Real Fast Fourier Transfonn 
2. Real Convolution 
3. Real Autocorrelation 
4. Real Crosscorrelation 
5. Complex Fast Fourier Transfonn 
6. Complex Convolution 
7. Complex Autocorrelation 
8. Complex Crosscorrelation 

Select a number (1-8): 4 

********* Real Crosscorrelation ********* 
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A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

The first function: 

File name? SamplelOA.dat 

The second function: 

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file 
from the standard dialog box: 

File name? SamplelOC.dat 

Now another dialog box appears asking you whether you would like the output 
sent to the Screen, directly to the Printer, or into a File. Make your selection 
and click OK. 

Results of real crosscorrelation: 
1.16672618895780e+l 
9.72271824131503e+O 
7.95495128834866e+O 
6.36396103067893e+O 
4.94974746830583e+O 
3.71231060122937e+O 
2.65165042944955e+O 
1.76776695296637e+O 
1.06066017177982e+O 
5.30330085889907e-1 
1.76776695296632e-1 

-4.54836159124956e-15 
-6.31870217015218e-15 
-3.84059335010852e-15 
-2.91417746774842e-15 
-3.80256767337477e-15 
-2.82248652143076e-15 
-3.79950108654140e-15 
-3.67714427189007e-15 
-3.77895495475784e-15 
-4.41588504004812e-15 
-4.31192774639698e-15 
1.94454364826300e+O 
3.71231060122937et0 
5.30330085889911e+O 
6.71751442127221e+O 
7.95495128834866e+O 
9.01561146012849e+O 
9.89949493661167e+O 
1.06066017177982etl 
1.11369318036881e+l 
1.14904851942814e+l 

Fast Fourier Transform Routines 

-0.00000000000000e+O 
-1.39794194032565e-15 
-1.30705597305174e-15 
-2.10114863355206e-15 
-0.00000000000000e+O 
-2.09953867546454e-15 
-1.87232375727978e-15 
-1.61001558602067e-15 
-0.00000000000000e+O 
-1.12643400856644e-15 
-1.34178506893962e-15 
-6.36393432594434e-16 
-0.00000000000000e+O 
-2.20870916673240e-16 
-1.27416682926388e-16 
8.09195600654651e-17 

-0.00000000000000e+O 
2.39002111325521e-16 
1.30705597305174e-15 
1.08963496656604e-15 

-0.00000000000000e+O 
1.67956960863497e-15 
1.87232375727978e-15 
2.05122076667131e-15 

-0.00000000000000e+O 
2.28537383756657e-15 
1.34178506893962e-15 
1.64790709958046e-15 

-0.00000000000000etO 
6.40839983502816e-16 
1.27416682926388e-16 

-5.22124740716106e-16 
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c H A p T E R 11 
Graphics Programs 

There are some programs that graphically demonstrate the usefulness of the least­
squares routines in Chapter 9 and the Fourier transforms in Chapter 10. Each 
program reads a data set from an input file, and displays the results. You will see 
curves being fitted to data using the least-squares routines and also see a signal 
being transformed into its Fourier spectrum. 

The programs LSQDemo and FFIDemo graphically illustrate the power and util­
ity of the Turbo Pascal Numerical Methods Toolbox. 
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Function of th£ uast-Squares Graphics Demonstration 
Program 

The program LSQDemo demonstrates the least-sqtiares capabilities of the Tool­
box. A default input file SamplellA.dat contains the x and y values (in ASCII form) 
separated by carriage returns. Running LSQDemo will provide five different least­
squares fits to the input data. 

The different fits are based on the function forms: logarithm, exponential, polyno­
mial, power law, and finite Fourier series. The fits are displayed graphically on the 
screen and can be printed on an lmageWriter or LaserWriter printer. 

The first plot shows the input data from SamplellA.dat along with three curves. 
The three curves are the graphs of the power function 

y = aX' 
the exponential function 

Y =a exp (bX) 

and the logarithm function 

Y =a ln(bX) 

The header to the plot tells which curve corresponds to which function. The next 
plot shows the same input data plotted with a five-term Fourier series: 

Y = a + b * cos(x) + c * sin(x) + d * cos(2X) + e * sin(2X) 

and a five-term polynomial (that is, a polynomial of degree four). The coefficients 
are found using the routines from Chapter 9, and they give the least-square error 
among all functions of that form. (In some cases, the problem is transformed into a 
linear problem, and the error is actually the least for the transformed problem but 
possibly not exactly the least for the original problem.) Again, the header to the plot 
tells which curve corresponds to which function. 

Finally, a bar chart shows the error for each function. The data is not at all periodic, 
so the Fourier series model is the worst. The five-degree polynomial gives the best 
fit, but it is not much better than the fit obtained by using power, exponential, or 
logarithm functions. 

The LSQDemo program offers three pulldown menus-File, Edit and Window. 
The Edit menu does not offer any executable commands while the File and Win­
dow menus offer three and six selections respectively. 
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The File menu offers: 

Print Screen Prints everything displayed on the screen on an ImageWriter™, 
ImageWriter™ II, or LaserWriter™ 

Print Window Prints the currently selected window on an ImageWriter, 
ImageWriter II, or LaserWriter 

Quit Terminates program execution 

The Window menu gives you control of the various windows displayed on the 
screen and offers the following window-related commands: 

Zoom Windows Zooms all windows to the largest possible size 

Stack Windows Layers all windows on the screen 

Tile Windows Displays all windows in a row, from the top to the bottom 
of the screen 

Power, Exp, Log Selects and brings forward the window displaying the 
power, exponential, and logarithm least-squares fits 

Fourier, Polynomial Selects and brings forward the window displaying the fou­
rier and polynomial least-squares fits 

Sum of Squares Selects and brings forward the window displaying the sum 
of the squares of the residuals for the five least-squares fits 

Graphics Programs 257 



Function of the Fourier Transform Graphics Demonstration 
Program 

The program FFTDemo demonstrates the Fourier capabilities of the Toolbox. 

A default input file SamplellB.dat contains 1024 real values (in ASCII form) sepa­
rated by carriage returns. These values represent sample points from a two-second 
signal sampled at a rate of 512 points per second. The program will display four 
FFT transforms at the following sampling rates: 8 per second (16 points), 32 per 
second (64 points), 128 per second (256 points), and 512 per second (1,024 points). 
For the last two samplings, the default data yields the same transforms, demon­
strating that a sample rate higher than twice the highest frequency adds no new 
information (the Nyquist limit). The transforms are shown on a scale of - 64 to 
+ 63 cycles per second. 

In addition to the real and imaginary transforms, the program displays the inverse 
transform over the original data, illustrating the degree to which information is lost 
at different sampling rates. The header tells which curve is the original data and 
which is the inverse transform. 

A default output data file can easily be arranged by changing the constant 
WriteToFile in FFTDemo.pas and recompiling it. 

The FFTDemo program offers five pulldown menus - File, Edit, Sample, Win­
dow, and Graph. File and Window additionally provide three and six options 
respectively. 

The File menu offers: 

Print Screen Prints everything displayed on the screen on an ImageWriter, 
ImageWriter II, or LaserWriter 

Print Window Prints the currently selected window on an ImageWriter, 
ImageWriter II, or LaserWriter 

Quit Terminates the program 

The Edit menu does not offer any executable commands. 

The Sample menu allows you to select one of the four sampling rates (mentioned 
earlier), and indicates the currently selected sample rate with a check mark. 
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The Window menu gives you control of the various windows displayed on the 
screen and offers the following window-related commands: 

Zoom Windows 

Stack Windows 

Tile Windows 

Real 'lransform 

Imaginary Transform 

Inverse Transform 

Zooms all windows to the largest possible size 

Layers all windows on the screen 

Displays all windows in a row, from the top to the bottom 
of the screen 

Selects and brings forward the window displaying the 
real transformation 

Selects and brings forward the window displaying the 
imaginary transformation 

Selects and brings forward the window displaying the 
inverse transformation 

The Graph menu offers only one selection, Display new graph, which lets you 
display a new set of graphs with the currently selected sampling rate. 

Graphics Programs 259 



Relmil.ding the Demonstration Programs 

This procedure assumes that Turbo Pascal is on your hard disk or in a floppy disk 
drive. 

How to recompile the Demos: 

1. Copy Disk 1 to a folder on your hard disk or onto another disk. (You don't 
need to copy the Read Me program or the file Read.file.) 

2. Double click on the TurboGraph.unit file. (This should bring up Turbo Pas­
cal.) 

3. Compile this Unit to disk. (Type Command-K to Select "Compile To Disk" in 
Turbo Pascal.) 

4. Open either FFTDemo.pas or LSQDemo.pas. 

5. Select Command-R to run the Demos in memory. 
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Backward substitution, 109, 115 
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Bisection method, 13 

root of a function using, 16-18 
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·Boundary value problems, 149-152 

using Linear Shooting/Runge-Kutta 
methods, 209-213 

c 

using Shooting/Runge-Kutta methods, 
202-208 

Chebyshev polynomials, 218 
ComplexConvolution, 227, 230-231 

application, 239-240 
ComplexCrossCorrelation, 227, 231 

application, 242-243 
ComplexFFf, 227, 230 

application, 237-238 
Compiler directives, 11 

·Convergence, rate of, 13-14 
Cooley-Tukey method, 227-228 
Cube_Cla.pas, 55-58 
Cube-Fre.pas, 49-52 
Cubic spline methods 

clamped, 40, 53-58 
free,40,48-52, 60, 71-74 

Cyclic Jacobi method, 128, 144-148 

D 

Data sampling, 232-233 
Data types, 10 
Defined constants, 10 
Deflation, 14 
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264 

and Newton-Horner, 26--30 
of a matrix, 128, 139-143 

Deriv2fn.pas, 79-81 
Deriv2.pas, 68-70 
Derivative, 59 

approximation of, 60-81 
Derivfn.pas, 76-77 
Deriv.pas, 63-65 
Determinant of a matrix, 101-105 
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Diagonal matrix, 127 
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first-order, 153-165 
coupled, 180-187 

linear, 149 
nth order, 151, 172-179 
ordinary, 149 
second-order, 152, 166-171, 186, 

202-213 
coupled, 190-201 

stiff, 155 
systems of, 151 

Direct factorization of matrices, 102, 
115-120 

Dirfact.pas, 117-120 
Distribution disks, 7-10 
Divdif.pas, 46-47 

E 

Eigensystem, 144 
Eigenvalue, 127-128 
Eigenvector, 127 
Expo, 219-220 

F 

Fast Fourier Transform, 227 
algorithms, 234-236 
applications, 237-253 
sample program, 245-253 

FFfDemo, 255, 258 
FFf Progs.pas, 245-253 
Forward substitution, 115 
Forward transform, 228 
Fourier, 219 
Fourier series, 219 

in graphics programs, 256 
Fourier transform, 227-253 

in graphics demo, 258-259 

Turbo Pascal Numerical Methods Toolbox 



G 

Gauselim. pas, 110-111 
Gaussian elimination, 102 

with partial pivoting, 102, 112-114 
Gaussian quadrature, 83 

using Legendre polynomials, 94-97 
Gaussidl.pas, 123-125 
Gauss-Jordan elimination, 106 
Gauss-Seidel iterative method, 102, 

121-125 
Goodness of fit, 216 
Graphics 

I 

demo programs, 10, 256-260 
rebuilding, 260 

Initial value problems, 149-151 
Adams-Bashforth/Adams-Moulton 

162-165 ' 
Runge-Kutta order five, 157-161 
Runge-Kutta order four, 153-161, 

166-201 
Installation, 8-10 
Integration, 83-100 
Interdrv.pas, 72-74 
Interpolation, 39, 152 

cubic splines, 48-58 
Lagrange polynomials, 41-44 
Newton's divided-difference method 
45-47 ' 

Inverse of a matrix, 101-102, 106-108 
Inverse.pas, 107-108 
Inverse power method, 127-128, 133-138 
Inverse transform, 228 
InvPower.pas, 135-138 
Iterative methods, 13 

J 

cyclic Jacobi, 144-148 
Gauss-Seidel, 102 

Jacobi.pas, 146-148 

L 

Lagrange method, 39, 41-44 
Lagrange.pas, 42-44 
Laguerre.pas, 37-38 
Laguerre's method, 14 

finding roots of complex polynomial, 
35-38 

Least.pas, 221-225 

Index 

Least-squares approximation, 216-225 
Least-squares solution 

graphics demo, 256-257 
linear regression, 215 
multiple regression, 215 

Linear equations, 101-102 
differential, 149 
with direct factoring, 115-120 
with Gaussian elimination, 109--114 

Linshot2.pas, 211-213 
Lipshitz condition, 151 
Log,220 
LSQDemo, 255-256 
LU.J)ecompose, 115-116 
LU-Solve, 115-117 

M 

MakeSinCosTable, 235-236 
Matrix 

algebra, 101 
diagonal, 127 
direct factorization, 102, 115 
identity, 135 
nonsingular, 102, 115-120 
orthogonal, 130 
permutation, 115 
rotation, 144 
square, 102, 127-129, 133 
symmetric, 128, 144-148 

Mesh points, 150 
Muller.pas, 33-34 
Muller's method, 14 

finding roots of complex function 
31-34 ' 

N 

Newtdefl.pas, 28-30 
Newton-Horner method, 13-14 

with deflation, 26-30 
Newton-Raphson method, 13-14 

root of a function using, 19--22 
Newton's general divided-difference 
algorithm, 39, 45-47 

Nonlinear shooting method, 152, 
202-208 

Numerical differentiation, 59-60 
five-point formulas, 60, 61-70 
three-point formulas, 60, 61-70 
two-point formulas, 60, 61-65 

Nyquist frequency, 232, 258 
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Partial pivoting, 102, 112 
and direct factoring, 115 

Partpivt.pas, 113-114 
Poly, 218 
Polynomials 

Lagrange, 85 
Legendre, 94-96 
methods to approximate roots of; 14, 
23-38 

Power, 219 
Power method, 127-132 

and Wielandt's deflation, 139-143 
Power.pas, 131-132 
Powers-of-four, 228 
Powers-of-two, 228 

R 

Raphson.pas, 10, 20-22 
RealConvolution, 227, 231 

application, 240-241 
RealCrossCorrelation, 227, 231-232 

application, 244-245 
RealFFf, 227, 230 

application,238-239 
Richardson extrapolation 

and numerical integration, 60, 75-77 
and Romberg method, 84, 98-100 

numerical integration, 60, 75-77 
RKF_l.pas, 159-161 
Romberg algorithm, 98-100 
Romberg method, 84 

using trapezoidal rule, 98-100 
Romberg.pas, 99-100 
Roots of an equation, 13-38 
Rotation matrix, 144-148 
Runge-Kutta-Fehlberg, 150, 157-161 
Runge-I.pas, 155-156 
Runge.-2.pas, 169-171 
Runge-Kutta formulas, 173, 181-182, 

191-193 
Runge-Kutta methods, 150 

fifth-order, 157 
fourth-order, 150-151, 153-161, 

166-179 
Runge-N.pas, 176-179 
Runge_Sl.pas, 185-189 
Runge-82.pas, 196-201 

266 

s 
Secant method, 14 

in nonlinear equations, 152, 202-208 
root of a function using, 23-25 

Secant.pas, 24-25 
Shoot2.pas, 205-208 
Shooting method, 152 

linear, 209-213 
nonlinear, 202-208 

Simpson.pas, 86-87 
Simpson's method, 83-93 
Splines (see Cubic spline methods) 
System requirements, 3 

T 

TestForRoot, 15 
Testlnput, 234, 236 
TNArraySize, 11 
TNcomplex, 31-32 
TNCompVector, 35-36 
TNintVector, 26-27 
TNNearlyZero, 14-15 
TNTargetF, 16 
TNvector, 10 
Trapezoid composite rule, 88-90 
Trapezoid method, 83-84 
Trapzoid.pas, 89-90 
Turbo Pascal, 1-3 

rebuilding with, 260 

u 
Unpack, 8 

w 
Wielandt.pas, 141-143 

Turbo Pascal Numerical Methods Toolbox 
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The ultimate Pascal development environment 

Borland's new Turbo Pascal for the Mac is so incredibly fast that it can 
compile 1,420 lines of source code in the 7.1 seconds it took you to read this! 

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac 
to compile at least 60,000 more lines of source code! 

Turbo Pascal for the Mac does both Windows and "Units" 
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units," 
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can 
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the 
time it takes to develop large programs. 

Turbo Pascal for the Mac is so compatible with Lisa• that they should be living together 
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run 
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File 
System of the Macintosh. 

The 27-second Guide to Turbo Pascal for the Mac 
• Compilation speed of more than 12,000 lines 

per minute 
• "Unit" structure lets you create programs in 

modular form 
• Multiple editing windows-up to 8 at once 
• Compilation options include compiling to disk or 

memory, or compile and run 
• No need to switch between programs to compile 

or run a program 
• Streamlined development and debugging 
• Compatibility with Macintosh Programmer 's 

Workshop Pascal (with minimal changes) 
• Compatibility with Hierarchical File System of 

your Mac 
• Ability to define default volume and folder names 

used in c0mpiler directives 
• Search and change features in the editor speed up 

and simplify alteration of routines 
• Ability to use all available Macintosh memory 

without limit 
• "Units" included to call all the routines provided by 

Macintosh Toolbox 

Suggested Retail Price: $99.95* (not copy protected) 

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive. 

BORLAND 
INTERNATIONAL 

Turbo Pascal and SideKick are registered trademarks ot Borland lnlernational , Inc. and Reflex is a 
registered lrademark of Borland/ Analytica, Inc. Macintosh is a trademark of Mcintosh Laboratories, Inc. 
licensed to Apple Computer with its express permission. Lisa is a registered trademark of Apple 
Computer, Inc. Inside Macintosh is a copyr~ht of Apple Computer, Inc. 
Copyright 1ga7 Borland International BOA 0167A 
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From the folks who created Turbo Pascal. Borland's new 
Turbo Pascal Tutor is everything you need to start pro­
gramming in Turbo Pascal on the Macintosh!™ It takes 

you from the bare basics to advanced programming in a 
simple, easy-to-understand fashion. 

No gimmicks. It's all here. 
The manual, the Tutor application, and 30 sample 
programs provide a step-by-step tutorial in three 
phases: programming in Pascal, programming on 
the Macintosh, and programming in Turbo Pascal 
on the Macintosh. Here's how the manual is set 
up: 
Turbo Pascal far the Absolute Novice 
delivers the basics-.-a concise history of Pascal, 
key terminology, your first program. 
A Programmer's Guide ta Turbo Pascal 
covers Pascal specifics-program structure, 
procedures and functions, arrays, strings, and so 
on. We've also included Turbo Typist, a textbook 
sample program. 
Advanced Programming 
takes you a step higher into stacks, queues, 
binary trees, linked structures, writing large pro­
grams, and more. 

Using the Power al the Macintosh 
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the 
600-plus utility routines in the Apple Toolbox. 
Programming the Macintosh in 1Urba Pascal 
shows you how to create true.Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com­
plete stand-alone application featuring animated 
graphics, builds on Turbo Typist and demon-
strates what you can do with ·a11 the knowledge 
you've just acquired. 

The disk contains the source code for all the 
sample programs, including Turbo Typist, MacTy­
pist, and Turbo Tutor. The Tutor's split screen lets 
you run a procedure and view its source code 
simultaneously. Alter running it, you can take a 
test on the procedure. If you're stuck for an 
answer, a Hint option steers you in the right 
direction. 

Macintosh topics included are 
~ memory management ~ menus 
~ resources and resource files ~ desk accessory support 
~ OuickDraw ~ dialogs 
~ events ~ File Manager 
~ windows ~ debugging 
~ controls 

Suggested Retail Price: $69.95 

Minimum syatem requlrementr. Alrf Macintosh wilh al least 512K ol RAM. Requires Turbo Pascal. 

'inbo Pascal and Turoo Tufol are registered lrademarks ol Borland 1-ional, ~" Olher brand and pio<IJd names 
•• lrade11'81ks or registered lra-rks of Ille< respo:live l'<llders. Cowiglll 1987 Borland lnterrmlifllal. BOR 0381 
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Macintosh'" 

The most complete and comprehensive collection of 
desk accessories available for your Macintosh! 

Thousands of users already know that SideKick is the best collection of desk accessories available 
for the Macintosh. With our new Release 2.0, the best just got better. 

We've just added two powerful high-performance tools to SideKick-Outlook'": The Outliner 
and MacPlan··: The Spreadsheet. They work in perfect harmony with each other and while you 
run other programs! 

Outlook: The Outliner 
• It's the desk accessory with more power than a stand-alone outliner 
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics 

into your outlines 
• Works hand-in-hand with MacPlan 
• Allows you to work on several outlines at the same time 

MacPlan: The Spreadsheet 
• Integrates spreadsheets and graphs 
• Does both formulas and straight numbers 
• Graph types include bar charts, stacked bar charts, pie charts and line graphs 
• Includes 12 example templates free! 
• Pastes graphics and data right into Outlook creating professional memos and reports, complete 

with headers and footers. 

SideKick: The Desktop Organizer, 
Release 2.0 now includes 

~ Outlook: The Outliner 
~ MacPlan: The Spreadsheet 
~ Mini word processor 
~ Calendar 
~ Phonelog 
~ Analog clock 
E1 Alarm system 
E1 Calculator 
E1 Report generator 
E1 Telecommunications (new version now 

supports XModem file transfer protocol) 

• o:i ex...,su 
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MacPfan does both spreadsheets and business 
graphs . Paste them into your Outlook fifes and 

generate professional reports. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One SOOK or two 400K drives are recommended. 
With one 400K drive, a limited number ol desk accessories will be installable per disk. 

BORLAND 
INTERNATIONAL 

SideKick is a regis1ered lrademark and Outlook and MacPlan are trademarks of Bor~nd 
International, Inc. Macintosh is a trademark of Mcintosh laboratory, Inc. licensed to Apple 
Computer, Inc. Copyright 198 7 Borland International BOA 00690 
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The easy-to-use relational database that thinks like a spreadsheet. 
Reflex for the Mac lets you crunch numbers by entering formulas 

and link databases by drawing on-screen lines. 

s free ready-to-use templates are included on the examples disk: 

• A sample 1040 tax application 
with Schedule A, Schedule B, and 't· , 
Schedule D, each contained in a f. · 
separate report document. 

• A portfolio analysis application with 
linked databases of stock purchases, 
sales, and dividend payments. 

• A checkbook application. 
• A client billing application set up for 

a law office, but easily customized 
by any professional who bills time. 

• A parts explosion application that 
breaks down an object into its 
component parts for cost analysis. 

Reflex for the Mac accomplishes all of these tasks without programming-using 
spreadsheet-like formulas. Some other Reflex for the Mac features are: 

• Visual database design. 
• "What you see is what you get" report 

and form layout with pictures. 
• Automatic restructuring of database files when 

data types are changed, or fields 
are added and deleted. 

• Display formats which include General, Decimal, 
Scientific, Dollars, Percent. 

·J•ew---~-- - . ' ._ -- - -... - . 

• Data types which include variable length text, 
number, integer, automatically incremented 
sequence number, date, time, and logical. 

• Up to 255 fields per record. 
• Up to 16 files simultaneously open. 
• Up to 16 Mac fonts and styles are selectable 

for individual fields and labels. 

After openilllJ lhe "Overview" window, you 
draw link lines belWeen databases directly 
onto your Macintosh screen. 

The link lines yoo draw establish both visual 
and electronic relationships belWeen your 
databases. 

You can have multiple windows open 
simultaneously to view all members of a 
linked set-which are interactive and truly 
relational. 

Critic's Choice 
" .. a powerful relational database ... uses a visual approach to information management." lnfoWorld 

" ... gives you a lot of freedom in report design; you can even import graphics." A+ Magazine 
" ... bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Letter 

Suggested Retail Price: $99.95* 
(not copy protected) 

Mia/mum 11111m caan1anUoa: Macirtosh 512K or Macinlosfl Plus with one disk dlive. Second extema/ drive recommended. 
ReHex is a registered trademark of Bcrlanll'Analytica, Inc. Macintosh is a trademark of Mcintosh laboralory, Inc. and is used wilh eXf)ress permission of its owner. 
Copyright 1987 Berland lnlernalional BOR0149A 
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For The Apple® Macintosh'" 

ReDex®: The Database 
Manager 
Combines the analytic capability of a relational 
database with the number-crunching power 
of a spreadsheet to let you organize. analyze 
and report information faster than ever 
before. Creating database designs. forms. 
and reports is as easy as drawing them 
on your screen. Comes with sample appli­
cations which can be customized to your 
needs. Minimum memory: 512K. 

Eureka: The Solver'"* 
Anyone who routinely works with equations 
needs Eureka: The Solver. Using a mouse. 
Macintosh pull-down menus and online 
help screens. you can solve complex equations 
while interacting with your computer in 
an almost conversational way. Eureka also 
lets you plot graphs of the functions and 
generate reports showing the equation file. 
the solutions and the graphs. Support for 
the 68881 math co-processor chip is also 
provided. Minimum memory: 512K. 
*Available Third Quarter 1987. 

II 

INTERNATIONAL 

SideK.ick®: The Desktop 
Organizer, Release 2.0 
A complete and comprehensive collection 
of desk accessories. Includes Outlook.'" a 
powerful outline processor. and MacPlan.'" 
a 20x50 cell spreadsheet that supports 30 
mathematical functions and standard business 
graphics. Also includes notepad. calculator. 
modem communications package. phone 
directory, autodialer. appointment scheduler. 
alarm system and quicksheet reminder tem­
plates. Minimum memory: 512K. 

Turbo Pascal® 
The fastest. most efficient and easy-to-use 
Pascal compiler! Compiles and runs over 
12.000 lines of source code per minute. 
Multiple editing windows let you work with 
up to 8 programs at a time. Compatible 
with your Macintosh's Hierarchical File 
System, Macintosh Programmer's Workshop 
Pascal and Inside Macintosh. Minimum 
memory: 512K. 

4584 SCOTTS VALLEY DRIVE SCOTTS VALLEY, CA 95066 PHONE (408) 438-8400 TELEX: 172373 
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Scientific & 

Turbo Pascal Numerical 
Methods Toolbox~ 
Implements the latest high-level mathemati-
cal methods to solve the most common problems. 
An essential programming tool for mathe­
maticians. engineers. statisticians. or physicists. 
Supports the 8087 chip and comes com-
plete with source code. Minimum memory: 
256K Requires Turbo Pascal 2.0 or later. 

Business P 
Sprint®: The Professional 
\Vord Processor* 
The most powerful. easy-to-use word processor 
ever written. Can be used "as is" or told to 
function like WlrdPerfect.~ WlrdStar" or 
Microsoft" Wlrd. Includes pop-up menus. 
incremental saving. multiple windows and 
files. and Autospell (with 100.000-word 
dictionary and 300.000-word thesaurus). 
Drives practically every printer. Minimum 
memory: 256K. 
' Available Serond Half 1987. 

Reflex®: The Database 
Manager 
No matter what business you're in. Reflex 
is the database management system for you. 
With its Form. List. Graph, Crosstab and 
Report views that give you instant graphic 
analyses of your data. Reflex shows you patterns 
and relationships otherwise hidden in data 
and numbers. Minimum memory: 384K. 

Reflex: The \Vorkshop ·· 
Taps Reflex's powerful analytical capabilities 
and makes them work for your business. 
Comes with 22 models and five samples 
on disk that you can adapt to your needs. 
It can also generate form letters. help you 
through common analysis problems. and explain 
advanced reporting and graphing techniques. 
Minimum memory: 384K. 

SuperKey®: The Productivity 
Booster 
With SuperKey you can turn a thousand 
keystrokes into the one keystroke of your 
choice! You can encrypt your confidential 
files in seconds. And SuperKey is RAM­
resident. so you can encrypt files or create 
macros while you're running another program. 
Minimum memory: 128K. 



Engineering 
Eureka: The Solver" 
Any solvable problem that can be expressed 
as a linear or non-linear equation can be 
solved using Eureka. Its pull-down menus 
and context-sensitive help screens make 
it easy to use and learn. Eureka can also 
plot graphs of functions and print them 
out. Minimum memory: 384K 

'roductivity 
SideKick®: The Desktop 
Organizer 
The # 1 best-seller for the IBM PC and true 
compatibles. SideKick is a powerful. RAM­
resident desktop management program. 
Comes with notepad. calendar. calculator. 
appointment scheduler. telephone directory. 
and autodialer. Can be called up at the touch 
of a key. even while you run other programs. 
Minimum memory: 128K. 

Traveling SideKick ® 

Your SideKick's sidekick and the organizer 
for the Computer Age! It's both a notebook 
that travels with you and a software program. 
The software lets you organize. format and 
print your address book. phone list. mailing 
labels and calendar engagements in daily, 
weekly. monthly or yearly formats from 
its own files or your SideKick files. So you 
can stay up-to-date. at home and on the 
road. Minimum memory: 256K 

Turbo Lightning®: The Spell­
Checker & Thesaurus 
Gives you a RAM-resident spell-checker 
and thesaurus. Beeps every time you make 
a mistake and lets you correct a misspelled 
word instantly. Synonyms are available­
at the touch of a key! Minimum memory: 
256K 

Lightning Word Wizard" 
With the help of Turbo Lightning. you can 
incorporate Lightning Word Wizard's procedures 
and functions into your own word programs. 
Includes source code for Turbo Lightning. 
Comes with seven games and solvers to 
give you ideas on how to implement the 
routines in your own applications-or play 
the games just for fun! Minimum memory: 
256K 



But we haven't stopped there. 
We are constantly developing 
new products. Improving our 

existing products. And exploring 
new and better ways to make your 
computer's potential more accessi­
ble. your software more friendly, 
more affordable. 

Our commitment extends over 
several categories of software 
development. From programming 
languages and Artificial Intel­
ligence to business productivity 
and scientific and engineering pro­
ducts. And our products in every 
category are faster. more powerful 
and technically more advanced. 

So whether you're a PC user or 
a Macintosh user; whether you're 
an expert programmer or a begin­
ner; a business user or someone 
who just likes tapping at a key­
board, you can be sure that Bor­
land has the software to match 
your needs. At a price to match 
your pocket. And a performance 
level that's unmatched. 

Take a look inside. Make your 
choice. Then, if you have any 
further questions, call us at 
( 408) 438-8400. 



Turbo Pascal, 
Turbo C, Sprint, 

and Reflex 
are4of our 

famous products. 

The other 20 are inside . . . 



opment Languages 
- Turbo Pascal Tutor® 2.0 
.:. This interactive tutorial for Turbo Pascal 

takes you from "What's a computer?" through 
complex data structures. assembly languages. 
trees and tips on writing long Turbo Pascal 
programs. Includes a 400-page, quick-study 
tutorial and 10,000 lines of fully commented 
source code. Minimum memory: 192K 
Requires Turbo Pascal 3.0 (CP/M-80 

m 

version available.) 

Turbo Pascal Graphlx Toolbox® 
A library of graphics routines for Turbo 
Pascal programs. Lets even beginning pro­
grammers create high-resolution graphics 
on the IBM" PC. true compatibles, and 
the Zenith Z-100." Gives you a set of pro­
gramming tools for complex business graphics. 
easy windowing and storing screen images 
to disk and to memory. Minimum memory: 
192K Requires Turbo Pascal 3.0. 

Turbo Pascal Database 
Tuolbox® 
A perfect companion to Turbo Pascal, it 
contains a complete library of Pascal proce­
dures that allows you to search and sort 
data and build powerful database applications. 
Comes with source code for a free sample 
database-right on the disk. Minimum memory: 
128K Requires Turbo Pascal 2.0 or later. 
(CP/M-80 version available.) 

Turbo Pascal Editor Toolbox® 
It's the only tool you need to build your 
own text editor or word processor. Comes 
with two sample editors-Simple Editor 
and MicroStarR -and their complete source 
code. plus information on how to install 
the features you need into your programs. 
Minimum memory: 192K. Requires Turbo 
Pascal 3.0. 

Turbo Pascal GameWorks ® 

Teaches you techniques to quickly create 
your own computer games using Turbo Pascal. 
The secrets and strategies of the Masters 
are revealed for the first time in three classic 
games of strategy-Chess. Bridge and Go­
Moku. Complete source code is included. 
You can play them "as is," customize them 
for greater challenge or build a whole new 
set of games! Minimum memory: 192K 
Requires Turbo Pascal 3.0. 
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Programming Devel 
Turbo Basic® 
With a compilation speed of up to 12,000* 
lines per minute, Turbo Basic combines 
an interactive editor. fast memory-to-memory 
compiler and a trace debugging system. 
Program size not limited by 64K Compatible 
with BASICA. Offers 8087 math support and 
true recursion. Comes with a free MicroCalc'" 
spreadsheet and source code. Minimum 
memory: 320K. 
•Run on a 4.77 MHz IBM PC With 20MB hard disk using Turbo 

Basic version 1.0. 

Turbo C® 
With its RAM-based compiler and high­
performance linker. Turbo C offers a compilation 
speed of up to 7,000* lines per minute. 
Fully compatible with the ANSI C standard. 
Generates native in-line code and linkable 
object modules. Supports tiny, small. compact. 
medium. large and huge memory model 
libraries. Minimum memory: 384K. 
'Run on a 6 MHz IBM /IJ using Turbo C version 1.0 and Turbo 

Linker version 1.0. 

Turbo Prolog® 
The high-speed Prolog compiler. Brings 
5th-generation programming language and 
supercomputer power to your IBM PC and 
compatibles. Both amateurs and professionals 
can build powerful expert systems. customized 
knowledge bases. natural language interfaces. 
and smart information-management systems. 
Minimum memory: 384K 

Turbo Prolog Toolbox,. 
A professional developer's toolbox to help 
you build powerful commercial applications 
in Prolog. Enhances Turbo Prolog with over 
80 tools. 40 sample programs and 8.000 
Ii nes of source code that can easily be 
incorporated into your programs. 
Minimum memory: 512K 

Turbo Pascal ® 3.0 
The worldwide standard in high-speed Pascal 
compilers. Gives you a high-performance devel­
opment tool featuring a completely integrated 
programming environment. a compiler which 
instantly locates programming errors. a full­
screen editor. BCD reals. 8087 support and 
much more. Minimum memory: 128K 
(CP/M-80" version available.) 

All Borland products are trademarks or registered trademarks of Borland lnlernational, Inc. or 
Borland/Anatytica, Inc. Other brand and prcxfuct names are trademarks or registered trade-
marks ol their respective holders. Copyright 1987 BOA 0291 



If you're looking for software 
that outperforms anything else 
on a disk. at a price that beats 

everything else on a disk, you're 
looking to the right people! Bor­
land International. And here's 
why: 

Our products are guaranteed to 
perform better than anything else. 
They're packed with more speed 
and power than you'll find any­
where else. And they come with 
a friendly user-interface design 
that'll get you started right away. 
They are products built with a 
long-standing commitment to Qual­
ity, Speed. Power and Price! 

We invented RAM-resident desk­
top organizers with SideKick. We 
set the Pascal and Prolog language 
standards worldwide with Turbo 
Pascal and Turbo Prolog. We 
changed the way people look at 
data with Reflex: The Database 
Manager. We also introduced the 
concept of not copy-protected 
software. 



,
urbo Pascal Numerical Methods Toolbox for the Macintosh 
implements the latest high-level mathematical methods ti 
solve common scientific and engineering problems. Fast. 

So every time you need to calculate 
an integral, work with Fourier trans­
forms, or incorporate any of the classi­
cal numerical analysis tools into your 
programs, you don't have to reinvent 
the wheel, because the Numerical 
Methods Toolbox is a complete collec­
tion of Turbo Pascal routines and pro­
grams that gives you applied state-of­
the-art math tools. It also includes two 
graphics demo programs that use 
least-square and Fast Fourier Trans­
form routines to give you the picture 
along with the numbers. 

The Turbo Pascal Numerical 
Methods Toolbox is a must if you're 
involved with any type of scientific or 
engineering computing on the Macin­
tosh. Because it comes with complete 
source code, you have total control 
of your application at all times. 

What Numerical Methods · 
Toolbox will do for you: 
• Find solutions to equations 
• Interpolations 
• Calculus: numerical derivatives and 

integrals 

• Matrix operations: inversions, dete 
minants, and eigenvalues 

• Differential equations 
• Least-squares approximations 
• Fourier transforms · 
• Graphics 

Five free ways to look at 
Least-Squares Fit! 

As well as a free demo of 
Fast Fourier Transforms, you 
also get the Least-Squares Fit in 
five different forms-which 
gives you five different methods 
of fi tting curves to a collection of 
data points. You instantly get the 
picture! The five different forms 
are 

1. Power 4. 5-term Fourier 
i Exponenti~ 5. 5~erm 
3. Logarithm Polynomial 
They're all ready to compile and 
run as is. 

Minimum system requirements: Macintosh 512K, Macintosh Plus, SE, or II, with one BOOK disk drive (or two 400K). 

All BoOand procix:ts are trademlrl<s or registered traderrart<s o! BoOand lnterrelional, Inc or Borland/Analytica, Inc. Macintosh~ a 
trademar1< licensed to Apple ConµJler, Inc. Copyright 1987 BoOand lntematioral. A BoOand Ubo Toolbox prO<IJcl BOA 0416 




