

11111 ,ABCAl l•••rit:al ,,,,,,,,, ,,,,,,,,TM
Borland's No-Nonsense License Statement!

This software is protected by both United States copyright law and international treaty provisions. There­
fore, you must treat this software just like a book, with the following single exception. Borland International
authorizes you to make archival copies of the software for the sole purpose of backing-up our software
and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this software may be used by any number of
people and may be freely moved from one computer location to another, so long as there is no possibility
of it being used at one location while it's being used at another. Just like a book that can't be read by two
different people in two different places at the same time, neither can the software be used by two differ­
ent people in two different places at the same time. (Unless, of course, Borland's copyright has been
violated.)

Borland International grants you (the licensed owner of the Turbo Pascal Numerical Methods Toolbox)
the right to incorporate toolbox routines into your programs. You may distribute your programs that
contain Numerical Toolbox routines in executable form without restriction or fee, but you may not give
away or sell any part of the actual Numerical Methods Toolbox source code. You are not, of course, res­
tricted from distributing your own source code.

Sample programs are provided on the Numerical Methods Toolbox diskettes as examples of how to use
the various toolbox features. You may edit or modify these sample programs and incorporate them into
the programs that you write. Use of these sample programs is governed by the same conditions and res­
trictions as outlined in the first paragraph above.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland International,
Inc. ("Borland") warrants the same to be free of defects in materials and workmanship for a period of 60
days from the date of purchase. In the event of notification within the warranty period of defects in mate­
rial or workmanship, Borland will replace the defective diskette or documentation. If you need to return a
product, call the Borland Customer Service Department to obtain a return authorization number. The
remedy for breach of this warranty shall be limited to replacement and shall not encompass any other
damages, including but not limited to loss of profit, and special, incidental, consequential, or other similar
claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but
not limited to implied warranties of merchantability and fitness for a particular purpose with respect to
defects in the diskette and documentation, and the program license granted herein in particular, and with­
out limiting operation of the program license with respect to any particular application, use, or purpose. In
no event shall Borland be liable for any loss of profit or any other commercial damage, including but not
limited to special, incidental, consequential or other damages.

GOVERNING LAW
This statement shall be construed, interpreted, and governed by the laws of the state of California.

First Edition
Printed in USA

987654321

READ ME FIRST
In order to provide you with the latest technical information o~ our products, announcements of future updates, and up-to­
the-minute information on new products, please complete and return this registration form. Be sure to read the Borland No­
Nonsense· License Statement on the other side.

Technical Support-To receive telephone technical supporjt, you must be the registered owner of the Borland product.
Prompt technical support is available through the Borland Forums on CompuServe; just type GO BOR at any CompuServe prompt.
If you need further assistance. write a letter or call Borland and be prepared to give the product name, version number, and
the serial number found on the label of your master diskette.

The README File-If present on your master diskette, this file contains important information that may not be in the
manual. To view this file. simply type README at the command :prompt. Be sure to read this file before you call for technical
support.

Thank you for completing this product registration card and returnirng it promptly. We want to keep you informed.

Name and address must be filled in by the person using the product for the registration form to be valid. (Please print legibly.)

Serial#-------------------------'--------- Date Purchased:---'---'---
M D Y

Name: ----------------------------------Title:---------------
!Bst first middle initial

CompanyName'----------------------+--------------Department _______ _

Address: ------------------------'---------------Mail Stop: ______ _

City: ----------------------State: _..,-______ Zip: ________ Country: _______ _

Phone#(---------------------~--~--------------- a Work a Home

I have read and agree to the terms of the Borland No-Nonsense License Agreement

Signature -----------------------------------Date:,___/___/ __ _

In order to help us serve your needs, please complete the following:

Microcomputer used:
0 IBM PC or compatible Cl Macintosh 0 other ----------'-------------------------­
Where did you purchase this program?
0 Borland direct
0 discount retailer

Software was bought for:

0 other mail order
0 full-service retailer

0 self 0 company I work for 0 company I own

Where will you use this program!
0 at home 0 at work 0 both 0 other

Where did you hear about this program!
D ad in computer publication
D ad in general interest publication
0 other user

Nature of business:
D finance/real estate/insurance
0 retail/wholesale
0 legal
D health

0 published review
0 retailer
0 trade show

D computer consulting
0 other consulting
0 software publishing
0 other publishing

0 other-------------------

0 other-------------------

D transportation/communication/utilities
D mining/construction
D governmemt
0 military

D professional services
D other services
Nature of occupation:

D computers/electronics manufacturing
0 other manufacturing

D education 0 other __________________ _

0 MIS/DP. systems analyst 0 administration
D programming D finance/accounting
D engineering/scientific D sales/marketing
D doctor/lawyer D manufacturing/production
0 other professional 0 purchasing

0 operations
D consulting
D teacher/trainer
0 clerical

0 student
D homemaker
0 retired
0 other--------------

Number of employees at business: 0 1-24
Number of mlcrocomputen at business: 0 1-9

0 25-99 0 100-499
0 10-49

0 500-1999
0 50-249

0 2000-9999
0 250-999

0 more than 9999
0 more than 999

Other Borland products owned:
Programming languages
0 Turbo Pascal

Turbo Pascal Toolboxes
0 Tutor
0 Database
0 Editor
0 Graphix
0 GameWorks
0 Numerical Methods

What other software do you use:

0 Turbo Prolog
0 Turbo Prolog TB

0 Turbo Basic
0 Turbo Basic Database TB
0 Turbo Basic Editor TB
0 Turbo Basic Telecom TB

0 Turbo C

0 spreadsheet 0 languages
D database D accounting
D word processor 0 communications
0 project management 0 network

What hardware peripherals do you use!
0 modem ·
0 laser printer
D mouse

0 hard disk
0 plotter
0 other peripheral

Business Appllcatlons
0 Reflex

0 Reflex Workshop
0 Sprint
For the Macintosh
0 Turbo Pascal
0 Reflex
0 SideKick
0 Eureka

0 desktop publishing
0 business graphics
0 CAD/CAM/CAE

Utllity Programs:
0 SideKick

0 Traveling Side Kick
0 SuperKey
0 Turbo Lightning

0 Lightning Word Wizard
Scientific & Engineering
0 Eureka

0 Other -----------

D RAM-resident utilities
0 games

0 other-------------------------

0 EGAcard
D other printer ----------------

BOR0045F

Turbo Pascal Numerical Methods Toolbox
Borland's No-Nonsense License Statement!

This software is protected by both United States copyright law and international treaty provisions. Therefore, you must treat this software just like
a book, with the following single exception. Borland International, Inc. authorizes you to make archival copies of the software for the sole purpose
of backing-up our software and protecting your investment from loss.

By saying, "just like a book,'' Borland means, for example, that this software may be used by any number of people and may be freely moved from
one computer -location to another. so long as there is no possibility of it being used at one location while it's being used at another. just like a book
that can't be read by two different people in two different places at the same time, neither can the ~oftware be used by two ·different people in
two different places at the same t ime. (Unless, of course, Borland's copyright has been violated.)

Borland International grants you (the licensed owner of the Turbo Pascal Numerical Methods Toolbox) the right to incorporate toolbox routines
into your programs. You may distribute your programs that contain Numerital Toolbox routines in executable form without restriction or fee. but
you may not give away or sell any part of the actual Numerical Methods Toolbox source code. You are not, of course, restricted from distributing
your own source code.

Sample programs are provided on the Numerical Methods Toolbox diskettes as examples of how to use the various toolbox features. You may edit
or modify these sample programs and incorporate them into the programs that you write. Use of these sample programs is governed by the same
conditions and restrictions as outlined in the first paragraph above.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland International, Inc. ("Borland") warrants the same to be free
of defects in materials and workmanship for a period of 60 days from the date of purchase. In the event of notification within the warranty period
of defects in material or workmanship, Borland will replace the defective Cliskette or documentation. If you need to return a product. call the Borland
Customer Service Department to obtain a return authorization number. The remedy for breach of this warranty shall be limited to replacement and
shall not encompass any other damages. including but not limited to loss of profit. and special. incidental, consequential, or other similar claims.

Borland International. Inc. specifically disclaims all other warranties, expressed or implied. including but not limited to implied warranties of merchantability
and fitness for a particular purpose with respect to defects in the diskette and documentation, and fhe program license granted herein in particular.
and without limiting operation of the program license with respect to any particular application, use, or purpose. In no. event shall Borland be liable
for any loss of profit or any other commercial damage, including but not limited to special, incidental, consequential or other damages.

GOVERNING LAW
This statement shall be construed, interpreted, and governed by the laws of the state of California.

BOR0420 Fold at dotted line. Tape closed. Drop in mail. No postage necessary.

11 11

BUSINESS REPLY MAIL
FIRST CLASS l"ERMIT NO. 200 SANTA CRUZ. CA

POSTAGE WILL BE PAID BY ADDRESSEE

BORLAND
INTERNATIONAL

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY. CALIFORNIA 95066-9987

11.1 ••• 1.1.11 11 ••• 11 .. 1.1 .. 1.1 .. 1 •• 1.1 ••• 1 ... 111

27

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Turbo Pascal
Numerical Methods

Toolbox TM

For the Macintosh

BORLAND INTERNATIONAL, INC.
4585 SCOTTS VALLEY DRIVE

SCOTTS VALLEY, CALIFORNIA 95066

Copyright © 1987
All Rights Reserved, First Printing, 1987

Printed in U.S.A.

10 9 8 7 6 5 4 3 2 I

Table of Contents

Introduction ... 1
Toolbox Functions .. 1
About this Manual ... 2
On the Distribution Disks .. 3
System Requirements .. 3
Acknowledgements .. 3

Chapter I. ROUTINE BEGINNINGS ... 5
Using the Toolbox: An Example ... 5
The Distribution Disks ... 7
Installation .. 8
Files on Distribution Disks .. 8
The Graphics Demos ... :····································· 10
Data Types and Defined Constants ... 10
Compiler Directives ... 11

Chapter 2. ROOTS TO EQUATIONS IN ONE VARIABLE 13
Stopping Criteria ... 15
Root of a Function Using the Bisection Method (Bisect.pas) 16

Description .. 16
User-Defined Function .. 16
Input Parameters .. 16
Output Parameters ... 17

Syntax of the Procedure Call .. 17
Comments .. 17
Sample Program .. 17

Example ... 18
Root of a Function Using the Newton-Raphson Method (Raphson.pas) 19

Description ... 19
User-Defined Functions ... 19
Input Parameters ... 19
Output Parameters ... 20
Syntax of the Procedure Call ... 20
Comments ... 20
Sample Program ... 20

Example ... 21
Root of a Function Using the Secant Method (Secant.pas) 23

Description .. 23
User-Defined Function .. 23
Input Parameters .. 23
Output Parameters ... 24
Syntax of the Procedure Call ... 24
Comments ... 24
Sample Program ... 24

Example .. 25
Real Roots of a Real Polynomial Equation Using the Newton-Horner

Method with Deflation (Newtdefl.pas) ... 26
Description .. 26
User-Defined Types ... 26
Input Parameters .. 26
Output Parameters ... 27
Syntax of the Procedure Call ... 28
Comments ... 28
Sample Program ... 28

Input Files .. 28
Example .. 28

Complex Roots of a Complex Function Using Muller's Method (Muller.pas) 31
Description ... 31
User-Defined Types .. 31
User-Defined Procedure ... 31
Input Parameters ... 31
Output Parameters ... 32
Syntax of the Procedure Call ... 32
Comments ... 32
Sample Program ... 33

Example .. 33

Turbo Pascal Numerical Methods Toolbox

Complex Roots of a Complex Polynomial Using Laguerre's Method
and Deflation (Laguerre.pas) ... 35

Description .. 35
User-Defined 'IYPes .. 35
Input Parameters .. 35
Output Parameters ... 36
Syntax of the Procedure Call ... 36
Comments .. 36
Sample Program .. 37

Input Files .. 37
Example .. 37

Chapter 3. INTERPOLATION .. 39
Polynomial Interpolation Using Lagrange's Method (Lagrange.pas) 41

Description .. 41
User-Defined Types .. 41
Input Parameters .. 41
Output Parameters ... 42
Syntax of the Procedure Call ... 42
Sample Program .. 42

Input Files .. 42
Example .. 43

Interpolation Using Newton's Interpolary Divided-Difference Method
(Divdi£pas) ... 45

Description .. 45
User-Defined 'IYPes .. 45
Input Parameters .. 45
Output Parameters ... 46
Syntax of the Procedure Call ... 46
Sample Program .. 46

Input Files .. 46
Example .. 46

Free Cubic Spline Interpolation (Cube....Fre.pas) .. 48
Description .. 48
User-Defined Types .. 48
Input Parameters .. 48
Output Parameters ... 49
Syntax of the Procedure Call ... 49
Sample Program .. 49

Input Files .. 50
Example .. 50

Clamped Cubic Spline Interpolation (Cube..Cla.pas) ... 53
Description .. 53
User-Defined Types .. 53

Table of Contents iii

Input Parameters .. 53
Output Parameters ... 54
Syntax of the Procedure Call ... 54
Sample Program ... 55

Input Files .. 55
Example .. 55

Chapter 4. NUMERICAL DIFFERENTIATION .. 59
First Differentiation Using Two-Point, Three-Point, or Five-Point Formulas

(Deriv.pas) ... 61
Description ... 61
User-Defined Types .. 61
Input Parameters ... 61
Output Parameters ... 62
Syntax of the Procedure Call ... 62
Comments ... 62
Sample Program ... 63

Input Files .. 63
Example .. 63

Second Differentiation Using Three-Point or Five-Point Formulas
(Deriv2.pas) .. 66

Description .. 66
User-Defined Types ... 66
Input Parameters .. 66
Output Parameters ... 67
Syntax of the Procedure Call ... 67
Comments ... 67
Sample Program ... 68

Input Files .. 68
Example .. 68

Differentiation with a Cubic Spline Interpolant (Interdrv.pas) 71
Description ... 71
User-Defined Types .. 71
Input Parameters ... 71
Output Parameters ... 72
Syntax of the Procedure Call ... 72
Sample Program ... 72

Input Files .. 73
Example .. 73

Differentiation of a User-Defined Function (Derivfn.pas) 75
Description .. 75
User-Defined Types ... 75
User-Defined Functions .. 75
Input Parameters .. 75

iv Turbo Pascal Numerical Methods Toolbox

Output Parameters ... 76
Syntax of the Procedure Call ... 76
Comments ... 76
Sample Program .. 76

Input Files .. 76
Example .. 77

Second Differentiation of a User-Defined Function (Deriv2fn.pas) 78
Description .. 78
User-Defined Types .. 78
User-Defined Function .. 78
Input Parameters .. 78
Output Parameters ... 79
Syntax of the Procedure Call ... 79
Comments .. 79
Sample Program .. 79

Input Files .. 80
Example .. 80

Chapter 5. NUMERICAL INTEGRATION .. 83
Integration Using Simpson's Composite Algorithm (Simpson.pas) 85

Description .. 85
User-Defined Function .. 85
Input Parameters .. 85
Output Parameters ... 86
Syntax of the Procedure Call ... 86
Sample Program .. 86

Example .. 86
Integration Using the Trapezoid Composite Rule (Trapzoid.pas) 88

Description .. 88
User-Defined Function .. 88
Input Parameters .. 88
Output Parameters ... 89
Syntax of the Procedure Call ... 89
Sample Program .. 89

Example .. 89
Integration Using Adaptive Quadrature and Simpson's Rule (Adapsimp.pas) 91

Description ... 91
User-Defined Function ; ... 91
Input Parameters .. 91
Output Parameters ... 92
Syntax of the Procedure Call ... 92
Comments .. 92
Sample Program .. 92

Example ... 93

Table of Contents v

Integration Using Adaptive Quadrature and Gaussian Quadrature
(Adapgaus.pas) ... 94

Description .. 94
User-Defined Function .. 94
Input Parameters .. 94
Output Parameters ... 95
Syntax of the Procedure Call ... 95
Comments ... 95
Sample Program ... 97

Example .. 97
Integration Using the Romberg Algorithm (Romberg.pas) 98

Description .. 98
User-Defined Function .. 98
Input Parameters .. 98
Output Parameters ... 99
Syntax of the Procedure Call ... 99
Sample Program ... 99

Example .. 99

Chapter 6. MAl'RIX ROUTINES ... 101
Determinant of a Matrix (Det.pas) ... 103

Description ... 103
User-Defined Types .. 103
Input Parameters ... 103
Output Parameters .. 104
Syntax of the Procedure Call .. 104
Sample Program .. 104

Input File .. 104
Example ... 105

Inverse of a Matrix (Inverse.pas) .. 106
Description ... 106
User-Defined Types .. 106
Input Parameters ... 106
Output Parameters .. 107
Syntax of the Procedure Call .. 107
Sample Program .. 107

Input Files ... 107
Example ... 108

Solving a System of Linear Equations with Gaussian Elimination
(Gauselim.pas) .. 109

Description ... 109
User-Defined Types .. 109
Input Parameters ... 109
Output Parameters .. llO

vi Turbo Pascal Numerical Methods Toolbox

Syntax of the Procedure Call .. llO
Sample Program ... 110

Input File .. llO
Example ... ill

Solving a System of Linear Equations with Gaussian Elimination and
Partial Pivoting (Partpivt.pas) .. 112

Description ... 112
User-Defined Types ... 112
Input Parameters ... 112
Output Parameters .. 113
Syntax of the Procedure Call .. ll3
Sample Program ... ll3

Input File .. ll3
Example ... 114

Solving a System of Linear Equations with Direct Factoring (Dirfact.pas) ll5
Description ... ll5
User-Defined Types ... ll5
Procedure LUJ)ecompose Input Parameters ... ll6
Procedure LUJ)ecompose Output Parameters .. ll6

Syntax of the Procedure Call ... ll6
Procedure LU-8olve Input Parameters .. ll6
Procedure LU-Solve Output Parameters ... ll7

Syntax of the Procedure Call ... ll 7
Sample Program ... ll 7

Input File .. ll 7
Example ... ll8

Solving a System of Linear Equations with the Iterative Gauss-Seidel Method
(Gaussidl.pas) ... 121
Description ... 121
User-Defined Types ... 121
Input Parameters .. 122
Output Parameters ... 122
Syntax of the Procedure Call ... 123
Sample Program .. 123

Input File ... 123
Example .. 124

Chapter 7. EIGENVALUES AND EIGENVEC'J;'ORS 127
Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using the

Power Method (Power.pas) ... 129
Description .. 129
User-Defined Types .. 129
Input Parameters .. 129
Output Parameters ... 130

Table of Contents vii

Syntax of the Procedure Call .. 130
Comments .. 130
Sample Program .. 131

Input File .. 131
Example ... 131

Real Eigenvalue and Eigenvector of a Real Matrix Using the Inverse
Power Method (InvPower.pas) .. 133

Description ... 133
User-Defined Types .. 133
Input Parameters ... 133
Output Parameters .. 134
Syntax of the Procedure Call .. 134
Comments .. 135
Sample Program .. 135

Input File .. 135
Example ... 136

Real Eigenvalues and Eigenvectors of a Real Matrix Using the Power
Method and Wielandt's Deflation (Wielandt.pas) .. 139

Description ... 139
User-Defined Types .. 139
Input Parameters ... 139
Output Parameters .. 140
Syntax of the Procedure Call .. 141
Comments .. 141
Sample Program .. 141

Input File .. 142
Example ... 142

The Complete Eigensystem of a Symmetric Real Matrix Using the Cyclic
Jacobi Method (Jacobi.pas) .. 144

Description ... 144
User-Defined Types .. 144
Input Parameters ... 144
Output Parameters .. 145
Syntax of the Procedure Call .. 145
Comments .. 146
Sample Program .. 146

Input File .. 146
Example ... 147

Chapter 8. INITIAL VALUE AND BOUNDARY VALUE MEIBODS 149
Solution to an Initial Value Problem for a First-Order Ordinary Differential

Equation Using the Runge-Kutta Method (Runge-I.pas) 153
Description ... 153
User-Defined Types .. 153

viii Turbo Pascal Numerical Methods Toolbox

User-Defined Function .. 154
Input Parameters .. 154
Output Parameters ... 154
Syntax of the Procedure Call ... 154
Comments .. 155
Sample Program .. 155

Example .. 155
Solution to an Initial Value Problem for a First-Order Ordinary Differential
Equation Using the Runge-Kutta-Fehlberg Method (RKF_l.pas) 157

Description .. 157
User-Defined Types .. 157
User-Defined Function .. 157
Input Parameters .. 158
Output Parameters ... 158
Syntax of the Procedure Call ... 158
Comments .. 159
Sample Program .. 159

Example .. 159
Solution to an Initial Value Problem for a First-Order Ordinary Differential
Equation Using the Adams-Bashforth/Adams-Moulton Predictor/Corrector
Scheme (Adams-I.pas) .. 162

Description .. 162
User-Defined Types .. 163
User-Defined Function .. 163
Input Parameters .. 163
Output Parameters ... 163
Syntax of the Procedure Call ... 164
Comments .. 164
Sample Program .. 164

Example .. 164
Solution to an Initial Value Problem for a Second-Order Ordinary Differential

Equation Using the Runge-Kutta Method (Runge-2.pas) 166
Description .. 166
User-Defined Types .. 167
User-Defined Function .. 167
Input Parameters .. 167
Output Parameters ... 168
Syntax of the Procedure Call ... 168
Comments .. 168
Sample Program .. 169

Example .. 169
Solution to an Initial Value Problem for an nth-Order Ordinary Differential

Equation Using the Runge-Kutta Method (Runge-N.pas) 172
Description .. 172

Table of Contents ix

User-Defined Types .. 174
User-Defined Function ... 174
Input Parameters ... 174
Output Parameters .. 175
Syntax of the Procedure Call .. 175
Comments. 175
Sample Program .. 176

Example ... 176
Solution to an Initial Value Problem for a System of Coupled First-Order
Ordinary Differential Equations Using the Runge-Kutta Method
(Runge-81.pas) ... 180

Description ... 180
User-Defined Types .. 182
User-Defined Functions ... 182
Input Parameters ... 183
Output Parameters .. 184
Syntax of the Procedure Call .. 184
Comments .. 184
Sample Program .. 185

Example ... 185
Solution to an Initial Value Problem for a System of Coupled Second-Order
Ordinary Differential Equations Using the Runge-Kutta Method
(Runge-82.pas) ... 190

Description ... 190
User-Defined Types .. 193
User-Defined Functions ... 193
Input Parameters ... 194
Output Parameters .. 195
Syntax of the Procedure Call .. 195
Comments .. 195
Sample Program .. 196

Example ... 197
Solution to Boundary Value Problem for a Second-Order Ordinary Differential

Equation Using the Shooting and Runge-Kutta Methods (Shoot2.pas) 202
Description .. 202
User-Defined Types ... 203
User-Defined Functions .. 203
Input Parameters .. 203
Output Parameters ... 204
Syntax of the Procedure Call ... 204
Comments ... 204
Sample Program ... 205

Example .. 205

x Turbo Pascal Numerical Methods Toolbox

Solution to a Boundary Value Problem for a Second-Order Ordinary Linear
Differential Equation Using the Linear Shooting and Runge-Kutta Methods
(Linshot2.pas) ... 209

Description .. 209
User-Defined Types ... 210
User-Defined Functions ... 210
Input Parameters ... 210
Output Parameters .. 210
Syntax of the Procedure Call .. 211
Comments ... 211
Sample Program ... 211

Example ... 212

Chapter 9. LEAST-SQUARES APPROXIMATION ... 215
Least-Squares Approximation (Least.pas) .. 216

Description ... 216
User-Defined Types ... 217
Input Parameters ... 217
Output Parameters .. 218
Syntax of the Procedure Call .. 218
Comments ... 218

Poly ... 218
Fourier ... 219
Power ... 219
Expo ... 219
Log .. 220
User ... 220

Sample Program .. 221
Input Files .. 221
Example .. 221

Chapter 10. FAST FOURIER TRANSFORM ROUTINES 227
The Application Programs .. 228
Data Sampling ... 232
User-Defined Types ... 233
Fast Fourier Transform Algorithms ... 234

Procedure Testlnput ... 234
Description ... 234
Input Parameters ... 234
Output Parameters .. 234
Syntax of the Procedure Call .. 234

Procedure MakeSinCosTable ... 235
Description ... 235
Input Parameters ... 235

Table of Contents xi

Output Parameters .. 235
Syntax of the Procedure Call .. 235

Procedure ComplexFFT, RealFFT ... 235
Description ... 235
Input Parameters , ... 236
Output Parameters .. 236
Syntax of the Procedure Call .. 236

Fast Fourier Transform Applications ... 237
ComplexFFT ... 237

Description ... 237
Input Parameters ... 237
Output Parameters .. 237
Syntax of the Procedure Call .. 238

RealFFT .. 238
Description ... 238
Input Parameters ... 238
Output Parameters .. 239
Syntax of the Procedure Call .. 239

ComplexConvolution .. 239
Description ... 239
Input Parameters ... 240
Output Parameters .. 240
Syntax of the Procedure Call .. 240

RealConvolution .. 240
Description ... 240
Input Parameters .. 241
Output Parameters ... 241
Syntax of the Procedure Call ... 241

ComplexCrossCorrelation .. 242
Description ... 242
Input Parameters ... 242
Output Parameters .. 243
Syntax of the Procedure Call .. 243
Comments .. 243

RealCrossCorrelation ... 244
Description ... 244
Input Parameters ... 244
Output Parameters .. 245
Syntax of the Procedure Call .. 245
Comments .. 245

Sample Program ... 245
Input File ... 245
Example .. 246

xii Turbo Pascal Numerical Methods Toolbox

Chapter 11. GRAPHICS PROGRAMS ... 255
Function of the Least-Squares Graphics Demonstration Program 256
Function of the Fourier Transform Graphics Demonstration Program 258
Rebuilding the Demonstration Programs .. 260

REFERENCES ... 261

INDEX ... 263

Table of Contents xiii

Introduction

The Turbo Pascal Numerical Methods Toolbox is a reference manual for both the
student of numerical analysis and the professional needing efficient routines. An
elementary background in calculus and linear algebra is assumed, although many
of the algorithms use only high-school-level mathematics. A general knowledge of
Turbo Pascal® is also assumed. If you need to brush up on your knowledge of
Pascal, we suggest looking at the Turbo Pascal for the Macintosh Reference Manual.

Before you begin using a particular routine, read through this brief introductory
chapter and then refer to the chapter that interests you.

Toolbox Functions

The Turbo Pascal Numerical Methods Toolbox provides routines for

• Finding solutions to equations

• Interpolations

• Calculus

• Numerical derivatives and integrals

• Matrix operations: inversions, determinants, and eigenvalues

• Differential equations

• Least-squares approximations

• Fourier transforms

About this Manual

The major areas in numerical analysis are represented in this Toolbox, with each
chapter focusing on a particular problem. Each routine begins with a general
description of the implemented algorithm or numerical method. (References to
numerical analysis texts are provided for each numerical procedure.) User-supplied
types, functions, and input and output parameters are defined, and the syntax of
the procedure call is provided. If appropriate, a "Comments" section is also pro­
vided.

Finally, every algorithm in the Toolbox is accompanied by a general-purpose pro­
gram that handles all the necessary 1/0, while allowing you to try each algorithm
without building any code. Handily, these sample programs will often reduce the
coding your own application may require.

As an example, let's say you want to find the roots to an equation in one variable.
First, you would read the introduction to Chapter 2, "Roots to Equations in One
Variable," and choose the numerical method best suited to your particular problem.
Second, you would run the sample program for the desired numerical method to
determine the necessary input and output. Third, you would write a Turbo Pascal
function defining your equation, using the function already coded in the sample
program as a guide. Fourth, you would run the sample program with your function
substituted for the original one. Of course, if these algorithms are to be part of a
larger program, you must build all the interfaces to the other parts of the system;
but this should only be done after you gain experience with the particular numeri­
cal method.

Several books are referred to throughout the text; complete references are listed at
the back of the book in the section entitled "References."

The body of this manual is printed in normal typeface; other typefaces serve to
illustrate the following:

Alternate

Italics

Boldface

2

This type displays program examples and procedure and function
declarations.

This type emphasizes certain concepts, first-mentioned terms, and
mathematical expressions.

This type marks the reserved words of Turbo Pascal in text and in
program examples.

Turbo Pascal Numerical Methods Toolbox

On the Distribution Disks

The routines for this Toolbox are contained on two packed disks. Their contents and
general installation instructions are covered in Chapter 1.

System Requirements

To use the Turbo Pascal Numerical Methods Toolbox you must have one of these
Macintosh computers: 512K, Plus, SE or II; with one BOOK or two 400K disk
drives.

You will also need Turbo Pascal version 1.0 to run the routines.

Acknowkdgements

We refer to the following products in this book.

• Turbo Pascal is a registered trademark and Turbo Pascal Numerical Methods
Toolbox for the Macintosh is a trademark of Borland International, Inc.

• ImageWriter and LaserWriter are trademarks of Apple Computers, Inc.

Introduction 3

c H A p T E R 1
Routine Beginnings

This chapter provides you with everything you need to start using the routines in
this Toolbox. We'll discuss the files supplied on the disks. We also briefly discuss
data types and defined constants used in the Toolbox, and the setting of compiler
directives.

First, though, before we thrust you into the middle of numerical madness, let's take
a look at one way to use this Toolbox.

Using the Toolbox: An Example

In late 1986 and early 1987, the America's Cup 12-meter yacht championship was
held. The 12-meter yachts are just large sailboats, but the competition is so intense
that the only way to be competitive is to use dozens of people, spend millions of
dollars, design a special boat, and spend a couple of years training for the race. The
race has become so sophisticated that many of the sailboats have on-board com­
puters and other electronic equipment.

To keep stride with other challengers, one yacht's crew used personal computers,
and of course, Borland software. They used Turbo Pascal to design the boat's hull.
They used Reflex®: The Database Manager to maintain their databases and to
display plots while the boat was sailing. And when it came time to do some mathe­
matical modeling, again they turned to Borland for its inimitable software and
chose the Turbo Pascal Numerical Methods Toolbox.

5

Simply speaking, the problem they had was one of"precision monitoring.D It takes a
crew of very highly skilled sailors to compete in America's Cup races, but even the
best skippers cannot act with sufficient precision to win. A typical race lasts for
several hours, and the winner usually wins by only a few feet.

The electronic equipment on a boat can sense with reasonable accuracy all of the
crucial variables: boat velocity, wind velocity, boat direction, boat position, and so
on. This data must then be made available to the skipper in a coherent form, and
he/she must decide at what angle to place the rudder based on that information.
The problem is too complex to rely on intuition alone.

Even just displaying the velocity is more complex than you might think at first.
When sailing on the ocean, the waves are big enough that the velocity is in constant
flux. Fortunately, the fluctuations due to the waves represents a steadily periodic
force. By using Fourier transforms (Chapter 10), the crew was able to identify the
periodic portion of the velocity and subtract it out. The result: the velocity as a
function of time but with the wave fluctuations eliminated. The graph of this modi­
fied velocity is much smoother, and allows the skipper to tell much more quickly
and accurately whether the boat is accelerating or decelerating.

To measure the acceleration quantitatively, the crew used the fact that the accelera­
tion is the derivative of the velocity. They were able to do this easily with differenti­
ation routines (Chapter 4). They were also able to directly measure the distance
travelled by using integration routines (Chapter 5), and the fact that distance is the
integral of the speed.

Perhaps the most difficult problem in navigating a sailboat is aiming the rudder.
You can't just aim the boat in the direction that you want to go, rather you have to
pick a direction that you can sail rapidly, depending on the wind direction. An
experienced skipper can judge this pretty well, but not well enough. Every boat is
a little different, and the best way to handle one boat is not necessarily the best way
to handle another.

So, the team ran extensive trial races with the boat to gather data on how the boat
performed in various circumstances. The data was collected automatically by elec­
tronic instruments on board, and stored digitally on floppy disks. They then used
Reflex to manage the data and to display graphs. But they lacked the tools to relate
their data to the data they would have under actual racing conditions.

In order to predict the behavior of their boat in an actual race, the team created a
model from their collected data using "least-squares routines (Chapter 9). With the
least-squares routines, you can create a multiparameter model and then find the
values of the parameters that make the model most accurately fit the data. With a
mathematical model of the boat's behavior, the team was then able to predict how
the boat would perform under circumstances similar but not identical to its prac­
tices.

6 Turbo Pascal Numerical Methods Toolbox

This, of course, is just one of many possible applications of this Toolbox. Now, let's
go on to the fundamentals.

The Distribution Disks

All of the Toolbox routines are contained on two disks. Each disk has folders corre­
sponding to chapters in the manual.

The files for each chapter are self-contained and do not require any files from any
other chapter, with these exceptions:

• All files require Turbo Pascal (not included).

• Most files require the IOSelection unit, located on Disk 2.

• The files for Chapter 11 require the compiled units from Chapters 9 and 10, as
well as the TurboGraph unit from Chapter 11.

The numerical analysis routines are in the files with the .unit suffix. The files with
the .pas suffix are demonstration programs. To run a demonstration program, get
into Turbo Pascal and load the .pas file of your choice. The menus are self-explana­
tory. The .dat files contain input data for specific .pas files.

Contents of the distribution disks:

NMTDisk 1:
Read Me
Read.file
FFTComplex
FFTDemo
FFTDemo.pas
FFTMenu.r
FFTMenu.rsrc
FFTReal
FFTRoutines
LeastSquares
LeastSquaresDemo
LSQDemo.pas
LSQMenu.r
LSQMenu.rsrc
SamplellA.dat
SamplellB.dat
TurboGraph.unit

Routine Beginnings

Read Me program (double click on this)
Text for the Read Me program
Compiled Unit from Chapter 10
Fast Fourier Transform Demo program
Source for Fast Fourier Transform Demo
RMaker source for FFTMenu.rsrc
RMaker output for Fast Fourier Transform Demo
Compiled Unit from Chapter 10
Compiled Unit from Chapter 10
Compiled Unit from Chapter 9
Least Squares Demo program
Source for Least Squares Demo
RMaker source for LSQMenu.rsrc
RMaker output for Least Squares Demo
Data file for Least Squares Demo
Data file for Fast Fourier Transform Demo
Source to the TurboGraph Unit

7

NMTDisk2:
Packed source for IO Selection
Packed source for Chapter 2
Packed source for Chapter 3
Packed source for Chapter 4
Packed source for Chapter 5
Packed source for Chapter 6
Packed source for Chapter 7
Packed source for Chapter 8
Packed source for Chapter 9
Packed source for Chapter 10

IO Selection
Chapter2
Chapter3
Chapter4
Chapter5
Chapter6
Chapter7
Chapter8
Chapter9
Chapter 10
UnPack The program to unpack the packed files

Installation

The files Chap2 through ChaplO on your disk are packed source for the corre­
sponding chapters in this manual. In order to use these files, you must first unpack
them with the UnPack program.

How to use the UnPack program:

1. Double-click on the icon for the UnPack program. You will be asked to name
the Packed file to U nPack.

2. Using the Standard File Dialog, select the Packed· file to UnPack. You will be
asked for the Volume/Folder to save all of the source files to.

3. Using the Standard File Dialog, select the Volume/Folder to hold the source
files in that Packed file.

And now you are ready to begin.

Fiks on Distribution Disks

Note: These files are not copy protected. All files are ordinary text files.

Contents of the folders.

IO Selection Routines common to all chapters

8

IO Selection
IO Selection.r

IO Selection.rsrc IO Selection.unit

Turbo Pascal Numerical Methods Toolbox

Chap2 "Roots to Equations in One Variable"

Bisect.pas
Laguerre.pas
Muller.pas

Chap3 "Interpolation"

Cube_cla.pas
CubeJre.pas
Divdi£pas
Interpolation
Interpolation. unit

N ewtdefl. pas
Raphson.pas
Raphson2.pas

Lagrange.pas
Sample3A.dat
Sample3B.dat
Sample3C.dat
Sample3D.dat

Chap4 "Numerical Differentiation"

Deriv.pas
Deriv2.pas
Derivfn.pas

Deriv2fn. pas
Differentiation
Differentiation. unit

Chap5 "Numerical Integration"

Adapgaus.pas Integration.unit
Adapsimp.pas Romberg.pas
Integration Simpson.pas

Chap6 "Matrix Routines"

Det.pas
Dirfact.pas
Gauselim.pas
Gaussidl.pas

Inverse.pas
MatrixRoutines
MatrixRoutines.unit
Partpivt.pas

Chap7 "Eigenvalues and Eigenvectors"

EigenRoutines
EigenRoutines.unit
lnvpower.pas

Jacobi.pas
Power.pas
Sample7 A.dat

Roots of Equat
Roots of Equat.unit
Secant.pas

Sample3E.dat
Sample3F.dat
Sample3G.dat
Sample3H.dat
Sample31.dat

Interdrv.pas
Sample4A.dat
Sample4B.dat

Trapzoid.pas

Sample6A.dat
Sample6B.dat
Sample6C.dat
Sample6D.dat

Wielandt.pas

Chap8 "Initial Value and Boundary Value Methods"

Adams_l.pas Runge-1.pas
DifferentialEquat.unit Runge-2.pas
Linshot2.pas Runge__N.pas
RKF-1.pas Runge_<;l.pas

Routine Beginnings

Runge-"2.pas
Shoot2.pas

9

Chap9 "Least-Squares Approximations"

Least.pas
LeastSquares

LeastSquares.unit
Sample9A.dat

ChaplO "Fast Fourier Transform Routines"

FFTComplex
FFTComplex.unit
FFTProgs.pas
FFTReal

FFTReal.unit
FFTRoutines
FFTRoutines.unit
SamplelOA.dat

SamplelOB.dat
SamplelOC.dat

All sample programs use the IO Selection unit from the disk. This file includes
procedures that are common to all sample programs. When copying any of the
sample programs to a disk, be sure to also copy the files IO Selection and IO
Selection.rsrc to that disk or the sample programs will not compile.

We have made the sample programs general and easy to use. For example, numeri­
cal input can originate from the keyboard (where improper input is trapped) or
from a text file; output can be sent to the printer, screen, or text file; other refine­
ments are also included. Since, to a beginner, the supporting code may obscure the
simplicity of calling the procedure, we have included a minimal sample program
for Newton-Raphson' s method of root-finding (Raphson2.pas).

The Graphics Demos

Because graphic displays are often an essential part of numerical analysis, we have
included two demonstration programs that involve display of numerical results.
These programs rely on graphics routines contained in the unit library TurboGraph
supplied on the distribution disk.

The demonstration programs are on Disk 1. For instructions about how to run or
recompile them, see Chapter 11.

Data Types and Defined Constants

Data types that might be confused with those in the calling program have been
prefixed with the letters TN (for Turbo Numerical); for example, TNmatrix or
TNvector. All Toolbox-type declarations are contained in the particular Toolbox
unit you are using in your program. Therefore, you must recompile the unit if you
want to modify one of the type declarations. (You might want to do this to dimen-

10 Turbo Pascal Numerical Methods Toolbox

sion arrays based on your particular needs.) For example, the Lagrange procedure
requires the definition

type TNvector = array[O .. TNArraySize] of Extended;

The identifier TNArraySize should be optimized by the user, although we have set
a default value in each of the Toolbox units. It may be replaced with an integer or
byte constant.

Compfler Directives

Aside from the usual default values of the compiler directives in standard Turbo
Pascal, we have set the compiler directive to {$R +}in all units that use arrays, and
to {$1 - } in all sample programs. The first directive checks to see that all array­
indexing operations are within the defined bounds and all assignments to scalar
and subrange variables are within range. The latter directive disables 1/0 error­
checking. All the sample programs have their own 1/0 error-checking procedures
(contained in the unit library IO Selection), so the {$1-} directive must remain
disabled in the sample programs. The array checker {$R +} should always be
active, since the performance penalty is slight and the advantages are significant.

Routine Beginnings II

c H A p T E R 2
Roots to Equations in One Variabl,e

The routines in this chapter are for finding the roots of a single equation in one real
variable. A typical problem is to solve

x * exp(x) - 10 = 0

In general, the routines find a value of x, where x is a scalar real variable, satisfying

f(x) = 0.0

where f is a real-valued function that you program in Pascal.

All of the methods are approximate methods, meaning that they find an approxi­
mate value of x that makes f(x) close to zero. Because of round-off error, it is usually
not possible to find the exact value of x. Furthermore, they are all iterative
methods, meaning that you specify some initial guess that is some value for x,
which you think is reasonably close to the solution. The routine repeats some calcu­
lations that replace the guess x with a more accurate guess until the required level
of accuracy is achieved.

The bisection method returns an approximation to a root of a real continuous func­
tion of the real variable x. This method always converges (as long as the function
changes signs at a root), but may do so relatively slowly.

The Newton-Raphson method also returns an approximation to a root of a real
functionf of the real variable x. When this algorithm converges, it is usually faster
than the bisection method. If more than one root of a polynomial equation is
desired, then use Newton-Horner s method.

13

The secant method is similar to the Newton-Raphson method, but doesn't require
knowledge of the first derivative of the function. Consequently, it is more flexible
than the Newton-Raphson method, though somewhat slower.

Newton-Homer's method applies Newton's method to real polynomials. It also
uses deflation techniques to attempt to approximate all the real roots of a real
polynomial. Both the Newton-Homer and Newton-Raphson methods are faster
than the bisection and secant methods, but are undefined if If '(x)I < = TNNear­
lyZero.

The Newton-Homer and Newton-Raphson methods both converge around multi­
ple roots, although convergence is slow. These algorithms depend upon an initial
approximation of the root. If the initial approximation is not sufficiently close to the
root, the Newton methods may not converge. In some instances, an initial choice
may lead to successive iterations that oscillate indefinitely about a value of x usu­
ally associated with a relative minimum or relative maximum off In either case,
the bisection method could be used to determine the root or to determine a close
approximation to the root that can be employed as an initial approximation in the
Newton-Raphson or Newton-Homer methods.

MiiUer' s method returns an approximation to a root (possibly complex) of a complex
function of the complex variable x. Although M iiller' s method can approximate the
roots of polynomials, we recommend that you use Newton-Homer's method, the
secant method, or (in the case of complex polynomials) Laguerre's method to find
the roots of polynomials.

Laguerre's method attempts to approximate all the real and complex roots of a real
or complex polynomial. Laguerre's method is very reliable and quick, even when
converging to a multiple root. This is the best general method to use with polyno­
mials.

A caution when solving polynomial equations: Polynomials can be ill-conditioned,
in the sense that small changes in the coefficients may lead to large changes in the
roots.

14 Turbo Pascal Numerical Methods Toolbox

Stopping Criteria

All the root-finding routines use the function TestForRoot to determine if a root has
been found.

function TestForRoot(X, OldX, Y, Tol : Real).: Boolean;

{--}
{ Here are four stopping criteria. If you wish to }
{ change the active criteria, simply comment off the current }
{ criteria (including the appropriate or) and remove the comment }
{ brackets from the criteria (including the appropriate or) you }
{ wish to be active. }
{--}
begin

TestForRoot :=
(ABS(Y) <= TNNearlyZero)

or

(ABS(X - OldX) < ABS(OldX*Tol))

(* or
(*
(* (ABS(X - OldX) < Tol)
(*
(* or
(*
(* (ABS(Y) <= Tol)

end; { procedure TestForRoot }

{-------------------------}
{ Y=O }
{ }
{ }
{ }
{ relative change in X }
{ }
{ }

*) { }
*) { }
*) { absolute change in X }
*) { }
*) { }
*) { }
*) { absolute change in Y }

{-------------------------}

The four separate tests provided by function TestForRoot may be used in any
combination. The default criteria tests the absolute value of Y and the relative
change in X. If you wish to change the active criteria, simply comment off the
current criteria (including the appropriate or) and remove the comment brackets
from the criteria (including the appropriate or) you wish to be active.

The first criterion simply checks to see ifY is zero (TNNearly'Zero is defined at the
beginning of the procedure). This criterion should usually be kept active.

The second criterion examines the relative change in X between iterations. To
avoid division by zero errors, OldX has been multiplied through the inequality.

The third criterion checks the absolute change in X between iterations.

The fourth criterion determines the absolute difference between Y and the allow­
able tolerance. Note: The parameter Tol(erance) means something different in each
test. Be sure you know which tests are active when you input a value for Tol.

Roots to Equations in One Variable 15

Root of a Function Using the Bisection Method (Bisect.pas)

Description

This method (Burden and Faires 1985, 28 ff.) provides a procedure for finding a
root of a real continuous function f, specified by the user on a user-supplied real
interval [a,b]. The functionsfia) andfib) must be of opposite signs. The algorithm
successively bisects the interval and converges to the root of the function. You must
also specify the desired accuracy to which the root should be approximated.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Bisect determines the roots of this function.

Input Parameters

LeftEndpoi nt: Extended; Left end of the interval

RightEndpoint:Extended; Right end of the interval

Tol:Extended;

Maxlter:Extended;

Indicates accuracy of solution

Maximum number of iterations permitted

The preceding parameters must satisfy the following conditions:

16

1. LeftEndpoint < RightEndpoint.

2. TNTargetF(LeftEndpoint) * TNTargetF(RightEndpoint) < O; the endpoints
must have opposite signs.

3. Tol > 0.

4. Maxlter ;;:::: 0.

Turbo Pascal Numerical Methods Toolbox

Output Parameters

Answer: Extended; An approximate root of TNTargetF

fAnswer:Extended; The value of the function at the value Answer

Iter: Integer;

Error: Byte;

Number of iterations to find answer

0: No error
1: lter > Maxlter
2: Endpoints are of the same sign
3: LeftErulpoint > RightErulpoint
4: Tol s 0
5: Maxlter < 0

If Error = 1 (maximum number of iterations exceeded}, Answer is set to the last x
value tested andfAnswer is set to TNTargetF(Answer}. If Error > 1, then the other
output parameters are not defined.

Syntax of the Procedure Call

Bisect(LeftEndpoint, RightEndpoint, Tol, Maxiter, Answer, yAnswer, Iter,
Error,@TNTargetF);

The procedure Bisect determines the roots of function TNTargetF.

Comments

If a root occurs at a relative maximum or relative minimum, the bisection method
will be unable to locate that value of p if p does not occur as an endpoint of a
subinterval.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Bisect.pas provides I/O functions that demonstrate the bisec­
tion algorithm. To modify this program for your own function, simply change the
definition of function TNTargetF. Note that the address of TNTargetF is passed into
the Bisect procedure.

Roots to Equations in One Variable 17

Examp"le

Problem. Determine the solution to the equation cos(x) = x.

1. Write the following code for function TNTargetF into Bisect.pas:

{----------- HERE IS THE FUNCTION ------------}

function TNTargetF(x : Extended) : Extended;
begin

TNTargetF := Cos(x) - x;
end; { function TNTargetF }

{---}
2. Run Bisect.pas:

Left endpoint: 0
Right endpoint: 100

Tolerance (> 0): lE-6

Maximum number of iterations (> O): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

· Left endpoint: O.OOOOOOOOOOOOOOetO
Right endpoint: l.00000000000000et2

Tolerance: l.OOOOOOOOOOOOOOe-6
Maximum number of iterations: 100

Number of iterations: 28
Calculated root: 7.39085301756859e-l

Value of the function
at the calculated root: -2.82073423997129e-7

18 Turbo Pascal Numerical Methods Toolbox

Root of a Function Using the Newton-Raphsan Method
(Raphson.pas)

Description

This example uses Newton-Raphson's algorithm (Burden and Faires 1985, 42 ff.) to
find a root of a real user-specified function when the derivative of the function and
an initial guess are given. The algorithm constructs the tangent line at each iterate
approximation of the root. The intersection of the tangent line with the x-axis
provides the next iterate value of the root. You must specify the desired tolerance to
which the root should be approximated.

User-Defined Functions

function TNTargetF(x : Extended) : Extended;

function TNDerivF(x : Extended) : Extended;

The procedure Newton Raphson determines the roots of the function TNTargetF.

The function TNDerivF must be the first derivative of function TNTargetF.

Input Parameters

InitGuess:Extended; User's initial approximation to the root

Tol:Extended;

Maxlter:Integer;

Tolerance in answer (see "Comments")

Maximum number of iterations permitted

The preceding parameters must satisfy the following conditions:

1. Tol > 0

2. Maxlter > 0

Roots to Equations in One Variable 19

Output Parameters

Root: Extended; Approximate root.

Va 1 ue: Extended; Value of the function at the approximate root.

Deri v: Extended; Value of the derivative at the approximated root.

Iter: Integer; Number of iterations needed to find the root.

Error:Byte; 0: No error.
1: Iter < Maxlter.
2: The slope is zero (see "Comments").
3: Tol s 0.
4: Maxlter < 0.

If a root is found, it is returned along with the value of the function at the root
(which, of course, should be close to zero) and the value of the derivative at the
root. If Error s 2, the data from the last iteration is returned.

Syntax of the Procedure Call

Newton....Raphson(InitGuess, Tol, Maxlter, Root, Value, Deriv, Iter, Error, @TNTargetf,
@TNDerivF);

Comments

Newton's method involves division by the value of the derivative of the function.
Should the algorithm attempt to do any calculations at a point where the derivative
is less than TNNearlyZero, the routine will stop and return an error message (Error
= 2).

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Raphson.pas provides 1/0 functions that demonstrate the
Newton-Raphson algorithm. Note that the addresses of TNTargetF and TNDerivF
are passed to the Newton...Raphson procedure.

The program Raphson2.pas also provides 1/0 functions that demonstrate the New­
ton-Raphson method. It is an extremely bare-bones program and is provided for

20 Turbo Pascal Numerical Methods Toolbox

the newcomer to Turbo Pascal who wants to see a simple, straightforward applica­
tion of a Toolbox routine.

Example

Problem. Determine the solution to the equation cos(x) = x.

1. Code the following two functions into Raphson.pas (or Raphson2.pas):

{---------- HERE IS THE FUNCTION -------------}

function TNTargetF(x : Extended) : Extended;
begin

TNTargetF := Cos(x) - x;
end; { function TNTargetF }

{---}

{-------- HERE IS THE DERIVATIVE -------------}

function TNDerivF(x : Extended) : Extended;
begin

TNDerivF := -Sin(x) - 1;
end; { function TNDerivF }

{---}
2. Run Raphson.pas:

Initial approximation to the root: 0

Tolerance (> O): lE-6

Maximum number of iterations (>= O): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Initial approximation: O.OOOOOOOOOOOOOOe+O
Tolerance: 1.00000000000000e-6

Maximum number of iterations: 100

Number of iterations: 5
Calculated root: 7.39085133215161e-1

Value of the function
at the calculated root: O.OOOOOOOOOOOOOOe+O

Value of the derivative
of the function at the

calculated root: -1.67361202918321e+O

Roots to Equations in One Variable 21

Here is the Raphson2.pas version of the same function:

Initial approximation to the root: 0
Tolerance(>O): lE-6

Maximum number of iterations(>=O): 100

Error = 0

Number of iterations: 5
Calculated root: 7.39085133215161e-1

Value of the
function at the root: O.OOOOOOOOOOOOOOe+O

Value of the derivative of the
function at the root: -l.6736120291832le+O

22 Turbo Pascal Numerical Methods Toolbox

Root of a Function Using the Secant Method (Secant.pas)

Description

This example uses the secant method (Gerald and Wheatley 1984, 11-13) to find a
root of a user-specified real function given two initial real approximations to the
root. The secant method constructs a secant through the two points specified by
the initial approximations. The intersection of this line and the x-axis is used as the
next best approximation to the root. The approximation to the root and its prede­
cessor are used to construct the next secant line. The process continues until a root
is approximated with specified accuracy or until a specified number of iterations
have been exceeded.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Secant will determine the roots of this function.

Input Parameters

InitGuessl:Extended; User's first approximation to the root

InitGuess2:Extended; User's second approximation to the root

Tol:Extended;

Maxlter:Integer;

Indicates accuracy in solution

Maximum number of iterations permitted

The preceding parameters must satisfy the following conditions:

1. Tol>O

2. Maxlter ~ 0

Roots to Equations in One Variable 23

Output Parameters

Root: Extended; Approximate root.

Value: Extended; Value of the function at the approximate root.

Iter: Integer; Number of iterations needed to find the root.

Error:Byte; 0: No error.
1: lter > Maxlter.
2: The slope is zero (see "Comments").
3: Tol s 0.
4: Maxlter < 0.

If a root is found, it is returned with the value of the function at the root (which, of
course, should be nearly zero). If Error S 2, then the data from the last iteration is
returned.

Syntax of the Procedure Call

Secant(InitGuessl, InitGuess2, Tol, Maxlter, Root, Value, Iter, Error, @TNTargetF);

The procedure Secant determines the roots of the function TNTargetF.

Comments

The secant algorithm constructs a line through two points and finds the intersec­
tion of that line with the x-axis. If the line has a slope whose absolute values are
less than TNNearly'Zero (that is, the two points have the same y-value), then it has
no intersection with the x-axis (or infinitely many if it lies on the x-axis) and the
algorithm will no longer continue. If this happens, Error 2 is returned. Error 2 will
also be returned if the absolute difference of the two initial approximations (Guessl
and Guess2) is less than TNNearly'Zero.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Secant.pas provides 1/0 functions that demonstrate the
secant algorithm. Note that the address ofTNTargetF is passed to the secant proce­
dure.

24 Turbo P'ascal Numerical Methods Toolbox

Example

Problem. Determine the solution to the equation cos(x) = x.

l. Write the following code for procedure TNTargetF into Secant.pas:

{----------- HERE IS THE FUNCTION ------------}

function TNTargetF(x : Extended) : Extended;
begin

TNTargetF := Cos(x) - x;
end; { function TNTargetF }

{---}
2. Run Secant.pas:

First initial approximation to the root: 0

Second initial approximation to the root:

Tolerance (> 0): lE-8

Maximum number of iterations (> O): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

First initial approximation:
Second initial approximation:

Tolerance:
Maximum number of iterations:

Number of iterations:
Calculated root:

Value of the function
at the calculated root:

Roots to Equations in One Variable

O.OOOOOOOOOOOOOOetO
1.00000000000000e+O
1.00000000000000e-8

100

6
7.39085133215161e-1

O.OOOOOOOOOOOOOOe+O

25

Real Roots of a Real Polynomial Equation Using the
Newton-Hamer Method with Deflation (Newtdefl.pas)

Description

This example uses Newton-Homer's algorithm and deflation. Newton-Homer is
the Newton-Raphson method applied to polynomials (Burden and Faires 1985, 42
ff). Deflation is used to find several roots of a user-specified real polynomial given
an initial guess specified by the user. This procedure approximates a real root and
then removes the corresponding linear factor from the given polynomial. The
newly obtained (deflated) polynomial is then analyzed for a real root. This process
continues until a quadratic remains, the remaining roots are complex, or the algo­
rithm is unable to approximate the remaining real roots. Should the polynomial
contain two complex roots, they may be determined using the quadratic formula.
You must specify (at most) the tolerance to which the roots should be approxi­
mated.

User-Defined Types

TNvector = array[O •. TNArraySize] of Extended;

TNintVector = array[O .• TNArraySize] of Integer;

Input Param£ters

Ini tDegree: Integer; Degree of user-defined polynomial

Ini tPo ly: TNvector; Coefficients of user-defined polynomial

Guess: Extended; User's initial approximation

Tol: Extended; Indicates accuracy in solution

Maxlter: Integer; Maximum number of iterations permitted

26 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. InitDegree > 0

2. Tol > 0

3. Maxlter :2!: 0

4. lnitDegree s TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is oot a variable name and is
never referenced by the procedure; hence there is no test for condition 4. If condi­
tion 4 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active).

Output Parameters

Degree: Integer; Degree of the deflated polynomial (> 2 if some of the roots are
not approximated).

NumRoots: Integer; Number of roots found.

Poly:TNvector; Coefficients of the deflated polynomial.

Root:TNvector; Real part of all roots found.

Imag:TNvector; Imaginary part of all roots found (nonzero for 2 at most).

Value:TNvector; Value of the polynomial at each approximate root.

Deriv:TNvector; Value of the derivative at each found root.

Iter:TNintVector; Number of iterations required to find each root.

Error: Byte; 0: No error.
1: Maximum number of iterations exceeded.
2: The slope is zero (see "Comments").
3: Degree s 0.
4: Tol s 0.
5: Maxlter < 0.

If a root is found, it is returned with the value of the polynomial at that root (which
should be close to zero) and with the value of the derivative at that root. If the last
two roots are complex (only two can be complex, since they are evaluated by the
quadratic formula), then the value and derivative at those points are arbitrarily set
to zero. If all the roots have not been found, then the unsolved deflated polynomial
is also returned.

Roots to Equations in One Variable 27

Syntax of the Procedure Call

Newt-Horn..Defl(InitDegree, InitPoly, InitGuess, Tol, Maxlter, Degree,
NumRoots, Poly, Root, Imag, Value, Deriv, Iter, Error);

Comments

Newton's method involves division by the derivative of the function. Should the
algorithm attempt to do any calculations at a point where the absolute values of the
derivative are less than TNNearlyZ£ro, the routine stops and returns an error mes­
sage (Error = 2).

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

Sample Program

The sample program Newtdefl.pas provides 1/0 functions that demonstrate the
Newton-deflation algorithm.

ln'{JUt Files

It is possible to input the coefficients from a text file. The format for the text file is
as follows:

1. The degree of the polynomial

2. The coefficients in descending order, beginning with the leading coefficient
and decreasing to the constant term

Spaces or carriage returns can be used to separate the data. It does not matter
whether the file ends with a carriage return; for example, the polynomial

F(x) = x3 - 2x

could be entered in a text file as

310 -2 0

Example

Problem. Determine the roots to the 7th degree polynomial:

x6 + x5 - 49x4 + 69x3 + l20x2 + 98x - 240

28 Turbo Pascal Numerical Methods Toolbox

Run Newtdefl.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Degree of the polynomial (<= 30)? 6

Input the coefficients of the polynomial
where Poly[n] is the coefficient of x·n

Poly[6]
Poly[S]
Poly[4]
Poly[3]
Poly[2]
Poly[l]
Poly[O]

1
1

-49
69

120
98

= -240

Initial approximation to the root: 0

Tolerance (> O): lE-8

Maximum number of iterations (>= O): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Initial Polynomial:
Poly[6]: 1.00000000000000e+O
Poly[S]: 1.00000000000000e+O
Poly[4]: -4.90000000000000e+l
Poly[3]: 6.90000000000000e+l
Poly[2]: 1.20000000000000e+2
Poly[l]: 9.80000000000000e+l
Poly[O]: -2.40000000000000e+2

Initial approximation: O.OOOOOOOOOOOOOOe+O
Tolerance: 1.00000000000000e-8

Maximum number of iterations: 100

Number of calculated roots: 6

Roots to Equations in One Variable 29

Root 1
Number of iterations: 7

Calculated root: 3.00000000000000etO
Value of the function

at the calculated root: 3.33066907387547e-16
Value of the derivative

of the function at
the calculated root: -7.48000000000000et2

Root 2
Number of iterations: 6

Calculated root: l.OOOOOOOOOOOOOOetO
Value of the function

at the calculated root: 3.4694469519536le-16
Value of the derivative

of the function at
the calculated root: 3.60000000000000et2

Root 3
Number of iterations: 32

Calculated root: -8.00000000000000e+O
Value of the function

at the calculated root: O.OOOOOOOOOOOOOOetO
Value of the derivative

of the function at
the calculated root: -6.43500000000000e+4

Root 4
Number of iterations: 25

Calculated root: 5.00000000000000e+O
Value of the function

at the calculated root: O.OOOOOOOOOOOOOOetO
Value of the derivative

of the function at
the calculated root: 3.84800000000000e+3

Root 5
Number of iterations: 0

Calculated root: -1.00000000000000e+O +-1.00000000000000e+O
Value of the function

at the calculated root: O.OOOOOOOOOOOOOOe+O
Value of the derivative

of the function at
the calculated root: O.OOOOOOOOOOOOOOe+O

Root 6
Number of iterations: 0

Calculated root: -1.00000000000000etO t 1.00000000000000e+O
Value of the function

at the calculated root: O.OOOOOOOOOOOOOOe+O
Value of the derivative

of the function at
the calculated root: O.OOOOOOOOOOOOOOe+O

30 Turbo Pascal Numerical Methods Toolbox

Complex Roots of a Complex Function Using Miiller's
Method (Muller.pas)

Description

This example uses Muller's method (Burden and Faires 1985, 71-75) to find a
possibly complex root of a user-defined complex function. The algorithm finds a
root of a parabola defined by three distinct points of the given function. This
approximation to the root and its two predecessors are used to construct the next
parabola. This is repeated until the convergence criteria is satisfied. Muller's
method has the advantage of nearly always converging; however, it is slow because
it uses complex arithmetic. You must create a complex function, input an initial
guess (which need not be very accurate), the tolerance in the answer, and the
maximum number of iterations.

User-Defined Types

TNcomplex = record
Re, Im:Extended;

end;

User-Defined Procedure

procedure TNTargetF(x:TNcomplex; var y:TNcomplex);

The Muller procedure approximates a complex root of this function.

Input Parameters

Guess:TNcomplex; An initial guess

Tol:Extended; Indicates accuracy in solution

Maxlter: Integer; Maximum number of iterations

Roots to Equations in One Variable 31

The preceding parameters must satisfy the following conditions:

1. Tol > 0

2. Maxlter ;;:: 0

Output Parameters

Answer:TNcornplex; An approximate root of the function

yAnswer:TNcomplex; Value of the function at the approximate root

Iter: Integer;

Error:Byte;

Number of iterations required to find the root

0: No error
1: lter > Maxlter
2: Parabola could not be formed (see "Comments")
3: Tol s 0
4: Maxlter < 0

If Error s 2, then the information from the last iteration is output.

Syntax of the Procedure Call

Muller(Guess, Tol, Maxiter, Answer, yAnswer, Iter, Error, @TNTargetF);

The procedure Mul.ler approximates a complex root of function TNTargetF.

Comments

Miiller's method involves constructing a parabola from three points. If they all lie
on a line whose slop~ in absolute value is less than TNNearlyZ,erv, then a parabola
that intersects the x-axis cannot be constructed. Such a construction will halt the
algorithm and return Error = 2. Fortunately, this does not commonly occur.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter. Complex arithmetic is used.

32 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Muller.pas provides 1/0 functions that demonstrate Muller's
method.

The user-defined function is contained in the procedure TNTargetF. It is necessary
to separately define the real and complex parts of the function. To define the com­
plex function F(x), you must code the following definitions:

y.Re : = Re[F(x.Re + ix.Im)];
y.Im : = lm[F(x.Re + ix.Im)];

where i is the square root of - 1.

For example, the complex function F(x): = exp(x) would be coded like this:

y.Re : = exp(x.Re) * cos(x.Im);
y.lm : = exp(x.Re) * sin(X.Im);

Note that the address of TNTargetF is passed to the Muller procedure.

Example

Problem. Find a solution to the complex equation cos(x) = x.

1. First, code the following procedure TNTargetF into Muller.pas:

{------------- HERE IS THE FUNCTION ------------------}

procedure TNTargetF(x : TNcomplex; vary : TNcomplex);

begin { this is the complex function y = Cos(x) - x }
y.Re := Cos(x.Re)*(Exp(-x.Im) + Exp(x.Im))/2 - x.Re;
y.Im := Sin(x.Re)*(Exp(-x.Im) - Exp(x.Im))/2 - x.Im;

end; { procedure TNTargetF }

{---}
2. ~un Muller.pas:

Initial approximation to the root:
Re(Approximation)= -4
Im(Approximation)= 4

Tolerance (> 0): lE-6

Maximum number of iterations (> O): 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Roots to Equations in One Variable 33

34

Initial approximation: -4.00000000000000e+O + 4.00000000000000e+O
Tolerance: 1.00000000000000e-6

Maximum number of iterations: 100·

Number of iterations: 18
Calculated root: -9.10998745393294e+O + 2.95017086170180e+O

Value of the function
at the calculated root: -1.42544604592176e-11 + 3.75013236610100e-11

Turbo Pascal Numerical Methods Toolbox

Complex Roots of a Complex Po"/ynomial Using Laguerre's
Method and Deflation (Laguerre.pas)

Description

This example uses Laguerre's method (Ralston and Rabinowitz 1978, 380--383} and
linear deflation to find the possibly complex roots of a complex (or real) polynomial.
You must input the coefficients of the polynomial, an initial guess, the tolerance
with which to find the answer, and the maximum number of iterations.

User-Defined Types

TNcomplex = record
Re, Im:Extended;

end;

TNintVector = array[O •• TNArraySize] of Integer;

TNCompVector = array[O •• TNArraySize] of TNcomplex;

Input Parameters

Degree: Integer; Degree of the user's polynomial

Poly:TNvector; Coefficients of the user's polynomial

InitGuess:TNcomplex; Initial guess of the root

Tol:Extended;

Maxiter:Integer;

Indicates accuracy in solution

Maximum number of iterations

The preceding parameters must satisfy the following conditions:

1. degree > 0

2. Tol > 0

3. Maxlter ~ 0

4. degree s TNArraySize

Roots to Equations in One Variable 35

TNArraySize flxes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 4. If condi­
tion 4 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +} is enabled).

Output Parameters

Degree:Integer:

Poly: Integer;

NumRoots:Integer:

Degree of the deflated polynomial

Coefficients of deflated polynomial

Number of approximate roots

Roots:TNCompVector: Approximate roots

yRoots: TNCompVector: Value of the polynomial at the approximate root

Iter:TNintVector;

Error: Byte;

Number of iterations required to find each root

0: No error
1: Iter ;;:: Maxlter
2: Degree s 0
3: Tol s 0
4: Maxlter < 0

Syntax of the Procedure CaU

Laguerre(Degree, Poly, Guess, Tol, Maxlter, NumRoots,
Answer, yAnswer, Iter, Error):

Comments

For some polynomials, certain starting values (Guess) will not yield convergence. If
the routine does not converge to a solution, try a different starting value. Note that
convergence is slower around multiple roots than around single roots.

Convergence is determined with the Boolean function TestForRoot described at
the beginning of this chapter.

36 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Laguerre.pas provides I/O routines that demonstrate
Laguerre's method.

Input Files

It is possible to input the coefficients from a text file. The format for the text file is
as follows:

1. The degree of the polynomial

2. The real and imaginary parts of the coefficients in descending order, begin­
ning with the leading coefficient and descending to the constant term

Spaces or carriage returns can be used to separate the data. It does not matter
whether the file ends with a carriage return; for example, the polynomial

F(x) = x4 - (2 + 2i)x3 + 4ix2 + (2 - 2i)x -1

where i represents the square root of -1, could be entered in a text file like this:

410 -2 -2042 -2 -10

Exampl.e

Problem. Find all the roots to the complex polynomial

F(x) = x4 - (2 + 2i)x3 + 4ix2 + (2 - 2i)x - 1

where i is the square root of - 1.

Run Laguerre.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Degree of the polynomial (<= 30)? 4

Input the complex coefficients of the polynomial
where Poly[n] is the coefficients of x·n

Re(Poly[4]) = 1
Im(Poly[4]) = 0

Re(Poly[3]) = -2
lm(Poly[3]) = -2

Re(Poly[2]) O
Im(Poly[2]) = 4

Roots to Equations in One Variable 37

Re(Poly[l]) = 2
Im(Poly[l]) = -2

Re(Poly[O]) = -1
Re(Poly[O]) = 0

Initial approximation to the root:
Re(Approximation) = 1
Im(Approximation) = 0

Tolerance (> O): lE-6
Maximum number of iterations (> O): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

38

Initial polynomial:

InitPoly[4]: l.OOOOOOOOOOOOOOe+O
InitPoly[3]:-2.00000000000000e+O
InitPoly[2]: O.OOOOOOOOOOOOOOe+O
InitPoly[l]: 2.00000000000000e+O
InitPoly[0]:-1.00000000000000e+O

+ O.OOOOOOOOOOOOOOe+O
t-2.00000000000000e+O
+ 4.00000000000000e+O
+-2.00000000000000e+O
+ o.ooooooooooooooe+o

Initial approximation: l.OOOOOOOOOOOOOOe+O
Tolerance: l.OOOOOOOOOOOOOOe-6

Maximum number of iterations: 100

+ O.OOOOOOOOOOOOOOe+O

Root 1
Number of iterations: 2

Calculated root: l.OOOOOOOOOOOOOOe+O + O.OOOOOOOOOOOOOOetO
Value of the function at

the calculated root: O.OOOOOOOOOOOOOOe+O + O.OOOOOOOOOOOOOOe+O

Root 2
Number of iterations: 2

Calculated root: l.OOOOOOOOOOOOOOetO + O.OOOOOOOOOOOOOOetO
Value of the function at

the calculated root: O.OOOOOOOOOOOOOOe+O + O.OOOOOOOOOOOOOOetO

Root 3
Number of iterations: 2

Calculated root: l.34424834689770e-10 + 9.99999999865575e-l
Value of the function at

the calculated root: -l.08420217248550e-19 + l.44222068471458e-19

Root 4
Number of iterations: 2

Calculated root: 6.71338828512027e-ll t l.000000000134lle+O
Value of the function at

the calculated root: O.OOOOOOOOOOOOOOe+O + 3.80353570607857e-20

Turbo Pascal Numerical Methods Toolbox

c H A p T E R 3
Interpolation

Interpolation is useful when some values of a function are known but others are
required. For example, suppose values are known for a functionf(x) at x = 2.3, 2.4,
2.5, 2.6, 2.7, 2.8, and the value off(x) is desired at x = 2.415. The routines in this
chapter provide the means to model to given values of f(x) with an appropriate
function, so that the function can be evaluated at other arbitrary points.

The goal of interpolation is to approximate the value of the function at a specified
value of x, given N values of the function at N distinct points. This approximation
will be a polynomial determined from the input data. The value of the polynomial
at x will be returned as the approximation to the value off(x).

The Lagrange method accepts points in any order. The x-values need not be
equally spaced. An interpolating polynomial is explicitly calculated. Although an
interpolating polynomial can be useful for computing derivatives (and more), the
Lagrange method is a lengthy process. Furthermore, high-degree polynomials may
cause significant round-off error in some interpolations.

Newton's general divided-difference algorithm does not require input to have
equally spaced x-values, nor is it necessary that the x-values be in either ascending
or descending order. For large amounts of data, the divided-difference routine is
more accurate than Lagrangian interpolation.

If there are many input points, the Lagrange and the divided-difference methods
may result in high-degree polynomials whose oscillatory nature can produce an
inaccurate approximation. This is especially true if the interpolation occurs at a

39

value near the midpoint between adjacent input x-values. In such cases, the cubi.c
spline methods are preferable.

The cubic spline methods require that the x-values be entered in ascending order.
The clamped cubi.c spline method may yield more accurate results than the free
cubic spline method but requires knowledge of the first derivative of the function at
the endpoints of the input data. When this information is not available, the free
cubic spline routine should be used.

The values at which interpolation is to occur should lie in the closed interval
bounded by the extreme values of the input x-values. The preceding methods will
not give accurate approximations to values outside this interval (extrapolation).

40 Turbo Pascal Numerical Methods Toolbox

Po"/ynamial Interpolation Using Lagrange's Method
(Lagrange.pas)

Description

This example provides an interpolation algorithm (Burden and Faires 1985, 84 ff;
Horowitz and Sahni 1984, 429-430). Given a set of N data points (x,y), the routine
uses Lagrange polynomials to construct a polynomial to fit the data points. The
degree of the polynomial is at most N - 1.

Note: The nature of high-degree polynomials may cause significant error if the
algorithm is used with large amounts of data (about N > 25). In such cases,
Divdi£pas, Cube--Fre.pas, or Cube-Gia.pas should be used. You must supply the
data points and the x-values at which interpolation will take place.

User-Defined Types

TNvector = array[O •• TNArraySize] of Extended;
TNmatrix = array[O •• TNArraySize] of TNvector;

Input Parameters

The parameters for Lagrange:

NumPoints:Integer; Number of data points

XData:TNvector; The x-coordinates of the data points

YData:TNvector; They-coordinates of the data points

Numlnter: Integer; Number of interpolations

Xlnter:TNvector The x-coordinates at which interpolation is to take place

The preceding parameters must satisfy the following conditions:

1. The x-coordinates of the data points (Xlnter) must be unique.

2. NumPoints, Numlnter ::;; TNArraySize.

3. NumPoints > 0.

Interpolation 41

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TN Array Size is rwt a variable name and is
never referenced by the procedure; hence there is no test for condition 2. If condi­
tion 2 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active).

Output Parameters

Yinter:TNvector; The interpolated values at Xlnter

Poly:TNvector; The coefficients of the interpolating polynomial

Error:Byte; 0: No error
1: X-values of the data points not unique
2: NumPoints < ~

Syntax of the Procedure Call

Lagrange(NumPoints, XData, YData, Numlnter, Xlnter, Ylnter, Poly, Error);

Sampl,e Program

The sample program Lagrange.pas provides 1/0 functions that demonstrate the
Lagrange interpolating algorithm.

Input Fiks

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

42

11
24
39
416
5 25

Turbo Pascal Numerical Methods Toolbox

Example

Problem. Construct and use an interpolating polynomial for the cosine function
between x = 1 degree and x = 20 degrees.

Run Lagrange.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the stan­
dard dialog box:

File name? Sample3A.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3B.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The Data :
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
9.0000000

10.0000000
11.0000000
12.0000000
13.0000000
14.0000000
15.0000000
16.0000000
17.0000000
18.0000000
19.0000000
20.0000000

Interpolation

9.9984769515639le-l
9.99390827019096e-l
9.98629534754574e-l
9.97564050259824e-l
9.96194698091746e-l
9.94521895368273e-l
9.92546151641322e-l
9.90268068741570e-l
9.87688340595138e-l
9.84807753012208e-l
9.81627183447664e-l
9.78147600733806e-l
9.74370064785235e-l
9.70295726275996e-l
9.65925826289068e-l
9.61261695938319e-l
9.56304755963035e-l
9.51056516295154e-l
9.45518575599317e-l
9.39692620785908e-l

43

The polynomial :
Poly[l9]=-l.72014247146006e-28
Poly[l8]= 3.54986012534706e-26
Poly[l7]=-3.41072664146385e-24
Poly[l6]= 2.02588035084664e-22
Poly[l5]=-8.33028761905346e-21
Poly[l4]= 2.51630894794110e-19
Poly[l3]=-5.78243038713688e-18
Poly[l2]= l.03284343326638e-16
Poly[ll]=-l.45263304267538e-15
Poly[lO]= l.61970333747745e-14
Poly[9]=-l.43449305975914e-13
Poly[8]= l.00656254399833e-12
Poly[7]=-5.55641265799623e-12
Poly[6]= 2.37976717179018e-ll
Poly[5]=-7.79913921901990e-ll
Poly[4]= 4.05555790625022e-9
Poly[3]=-3.26288947218059e-10
Poly[2]=-l.52308336619420e-4
Poly[l]=-2.49984780967393e-10
Poly[O]= l.00000000007260e+O

x
1.500
2.500
3.500
4.500
5.500
6.500
7.500
8.500
9.500

10.500
11.500
12.500
13.500
14.500
15.500
16.500
17.500
18.500
19.500
20.500

Interpolated Y value
9.99657324975254e-l
9.99048221581889e-l
9.98134798421861e-1
9.96917333733130e-l
9.95396198367178e-l
9.93571855676588e-l
9.91444861373810e-1
9.89015863361917e-l
9.86285601537232e-l
9.83254907563954e-l
9.79924704620830e-l
9.76296007119933e-l
9.72369920397676e-l
9.68147640378107e-l
9.63630453208623e-l
9.58819734868193e-1
9.53716950748227e-l
9.48323655206198e-l
9.42641491092216e-l
9.36672189246619e-l

The data is taken from a function of which the derivative could be computed
exactly.

44 Turbo Pascal Numerical Methods Toolbox

Interpolation Using Newton's lnterpolary Divided­
Difference Method (Divdif.pas)

Description

This example provides an interpolation algorithm. Given a set of data points (x,y),
the routine uses Newton's interpolary divided-difference equation to interpolate
between the points (Burden and Faires 1985, 100-102). The data points must have
unique x-values, but these values need not be evenly spaced nor set in any particu­
lar order. You must supply the data points and the x-values at which interpolation is
to take place.

User-Defined Types

TNvector = array[O •• TNArraySize] of Extended;

TNmatrix = array[O •• TNArraySize] of TNvector;

Input Parameters

NumPoi nts: Integer: Number of data points

XData:TNvector: The x-coordinates of the data points

YData:TNvector; They-coordinates of the data points

Numinter: Integer: Number of interpolations

XInter:TNvector The x-coordinates at which interpolation is to take place

The preceding parameters must satisfy the following conditions:

1. The x-coordinates of the data points (Xlnter) must be unique.

2. NumPoints, Numlnter :s;; TNArraySize.

3. NumPoints > 0.

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 2. If condi­
tion 2 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +} is active}.

Interpolation 45

Output Parameters

Ylnter:TNvector; The interpolated values at Xlnter

Error:Byte; 0: No error
1: X-values of the data points not unique
2: NumPoints < 1

Syntax of the Procedure Call

DividecLDffference(NumPoints, XData, YData, Numinter, XInter, Yinter, Error);

Samp'le Program

'nie sample program Divdi£pas provides 1/0 functions that demonstrate Newton's
interpolary divided-difference algorithm.

Input Fiks

Data may be entered from a text file. 'nie x and y coordinates should be separated
by a space and followed by a caniage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

Exampk

Problem. Interpolate the cosine function between x = Ix and x = 20x.

Run Divdi£pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. 'nien select the following file from the
standard dialog box:

Ffle name? Sample3C.dat

46 Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of points (0-50)?15

Point 1: 1.5
Point 2: 2.5
Point 3: 3.5
Point 4: 4.5
Point 5: 5.5
Point 6: 6.5
Point 7: 7.5
Point 8: 8.5
Point 9: 9.5
Point 10: 10.5
Point 11: 11.5
Point 12: 12.5
Point 13: 13.5
Point 14: 14.5
Point 15: 15.5

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

x
12.000
8.000
1.000

10.000
5.000

15.000
4.000
3.000
7.000

14.000

x
1.500
2.500
3.500
4.500
5.500
6.500
7.500
8.500
9.500

10.500
11.500
12.500
13.500
14.500
15.500

y
0.9781476
0.9902681
0.9998477
0.9848078
0.9961947
0.9659258
0.9975641
0.9986295
0.9925462
0.9702957

Interpolated Y value
9.99656668284607e-l
9.99047982204853e-l
9.98134846782587e-l
9.96917355869352e-l
9.95396200633579e-1
9.93571893532269e-l
9.91444906399794e-1
9.89015879894104e-1
9.86285623948171e-l
9.83254980952454e-l
9.79924765142406e-1
9.76295923083642e-1
9.72369781236267e-1
9.6814775733914le-l
9.63629212784400e-l

The data is taken from a function of which the derivative could be computed
exactly.

Interpolation 47

Free Cubic Spline Interpolation (Cube....Fre.pas)

Description

This example constructs a smooth curve through a given set of data points. The
curve is a cubic spline interpolant with the following properties:

1. It passes through every data point.

2. It is continuous.

3. Its first derivative is continuous.

4. Its second derivative is continuous.

The second derivative is assumed to be zero at both endpoints (thus the cubic
spline is "free") of the interval determined by the data (Burden and Faires 1985,
ll7 ff). Cubics that join adjacent data points are of the following form:

S[i](x) = CoefO[i] + Coefl[i](x - x[i]) + Coef2[i](x - x[i])2

+ Coe£3[i](x - x[i])3

where i ranges between 1 and the number of data points minus 1, the x[i]'s are the
x-coordinates of the input data, and x[i] S x < x[i + l]. The interpolated values of
f(x) are found by evaluating the ith cubic polynomial at x, where

x[i] s x s x[i + l].

User-Defined Types

TNvector = array[O .• TNArraySize] of Extended;

Input Parameters

NumPoi nts: Integer; Number of data points

XData:TNvector; The x-coordinates of the data points

YData:TNvector; They-coordinates of the data points

Numlnter: Integer; Number of interpolations

Xlnter:TNvector; X-coordinates of points at which to interpolate

48 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. X data points must be unique.

2. X data points must be in ascending order.

3. NumPoints, Numlnter s TNArraySize.

4. NumPoints > 1.

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 3. If condi­
tion 3 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active).

Output Parameters

CoefO:TNvector; Coefficient of the constant term

Coe fl: TNvector; Coefficient of the linear term

Coef2: TNvector; Coefficient of the squared term

Coef3:TNvector; Coefficient of the cubed term

Ylnter:TNvector; Interpolated values at Xlnter

Error: Byte; 0: No error
1: X-values of the data points not unique
2: X-values of the data points not in ascending order
3: NumPoints < 2

Syntax of th£ Procedure Ca/,l

CubicSplineFree(NumPoints, XData, YData, Numlnter, Xlnter,
CoefO, Coefl, Coef2, Coef3, Ylnter, Error);

Sample Program

The sample program Cube..Fre.pas provides 1/0 functions that demonstrate the
free cubic spline algorithm.

Interpolation 49

Input Fi"les

Data may be entered from a text file. The x and y coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525

Examp"le

Problem. Construct an interpolating spline for the following figure:

3

2

1

0 1 2 3 4 5 6

Because a cusp occurs at x = 3.55, we will construct two splines, one for each side
of the cusp.

Run Cube..Fre.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3D.dat

so Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3E.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Data : x y
1: 0.0000000000 2.8000000000
2: 0.1000000000 2.7000000000
3: 0.2000000000 2.6000000000
4: 0.6000000000 2.2000000000
5: 1.0000000000 1.8000000000
6: 1.4000000000 1.6000000000
7: 1.8000000000 1.4000000000
8: 2.0000000000 1.4200000000
9: 2.2000000000 1.4000000000

10: 2.6000000000 1.5000000000
11: 3.0000000000 1.8000000000
12: 3.4000000000 2.4000000000
13: 3.4500000000 2.6000000000
14: 3.5000000000 2.8000000000
15: 3.5500000000 2.9000000000

Splines: CoefO Coe fl Coef2
1: 2.8000000000 -0.9988332302 0.0000000000
2: 2.7000000000 -1.0023335396 -0.0350030942
3: 2.6000000000 -0. 9918326113 0 .1400123770
4: 2.2000000000 -1.0723397281 -0.3412801689
5: 1.8000000000 -0.7188084763 1.2251082984
6: 1.6000000000 -0.5524263669 -0.8091530249
7: 1.4000000000 -0.0714860563 2 .0115038012
8: 1.4200000000 0.0406713524 -1.4507167575
9: 1.4000000000 -0. 0911993534 0.7913632286

10: 1.5000000000 0.6158534153 0.9762686929
11: 1.8000000000 0.6277856923 -0.9464380003
12: 2.4000000000 3.6230038155 8.4344833084
13: 2.6000000000 4.3322682035 5. 7508044511
14: 2.8000000000 3.0479233704 -31. 4377011128

Interpolated Points: X y
2.5018157855
2.3042222482
1. 6916808945
1.4759529845
1.4132967676
1.3989477848
1.4480232575
1.5697457729
1.7293593063
1.9502390938
2 .1142270171

1: 0.3000000000
2: 0.5000000000
3: 1.2000000000
4: 1.6000000000
5: 2.1000000000
6: 2.3000000000
7: 2.5000000000
8: 2.7000000000
9: 2.9000000000

10: 3.2000000000
11: 3.3000000000

Interpolation

Coef3
-0.1166769808
0.5833849040

-0.4010771215
1. 3053237227

-1.6952177695
2.3505473551

-5.7703675978
3.7367999767
0.1540878869

-1.6022555777
7.8174344240

-17.8911923822
-247.9233704257
209.5846740851

51

Second half of the figure:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3F.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3G.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

52

Data : x y
1: 3.5500000000 2.9000000000
2: 3.6000000000 2.8000000000
3: 3.6500000000 2.6500000000
4: 3.8000000000 2.5000000000
5: 4.0000000000 2.3500000000
6: 4.3000000000 2.2000000000
7: 4.8000000000 1.9500000000
8: 5.3000000000 1.6000000000
9: 5.6000000000 1.3000000000

10: 5.8000000000 1.2000000000
11: 6.0000000000 0.0000000000

Splines: CoefO Coe fl Coef2 Coef 3
1: 2.9000000000 -1.6719664279 0.0000000000 -131.2134288293
2: 2.8000000000 -2.6560671441 -19.6820143244 256.0671441466
3: 2.6500000000 -2.7037649955 18.7280572976 -49.1308266290
4.: 2.5000000000 -0.4016786037 -3.3808146854 8.1960385189
5: 2.3500000000 -0. 7704798556 1.5368084259 -2 .1173630243
6: 2.2000000000 -0.4200828166 -0.3688182960 0.4179678583
7: 1.9500000000 -0.4754252188 0.2581334916 -1.4145661079
8: 1.6000000000 -1.2782163082 -1.8637156703 9.3036778805
9: 1.3000000000 0.1155473174 6.5095944222 -47.9366550462

10: 1.2000000000 -3.0330135193 -22.2523986055 37.0873310092

Interpolated Points: X y

2.5554905401
2.4342200313
2.2862027357
2.2404374617
2.1045744477
2.0520666406
1.8539237670
1.7105990402
1.3442375346
1. 3287140209
0.7112619930

1: 3.7000000000
2: 3.9000000000
3: 4.1000000000
4: 4.2000000000
5: 4.5000000000
6: 4.6000000000
7: 5.0000000000
8: 5. 2000000000
9: 5.5000000000

10: 5.7000000000
11: 5.9000000000

Turbo Pascal Numerical Methods Toolbox

Clamped Cubic Spline lnterpolatWn (Cube_Cla.pas)

Description

This example constructs a smooth curve through a given set of data points. The
curve is a cubic spline interpolant with the following properties:

1. It passes through every data point.

2. It is continuous.

3. Its first derivative is continuous.

4. Its second derivative is continuous.

The first derivative at the endpoints of the interval determined by the input data is
defined by the user (Burden and Faires 1985, 122 ff.). (This is what makes the cubic
spline "clamped.") The cubics that join adjacent data points are of the following
form:

S[i](x) = CoefO[i] + Coefl[i](x - x[i]) + Coe£2[i](x - x[i])2

+ Coe£3[i](x - x[i])3

where i ranges between 1 and the number of data points minus 1, the x[i]'s are the
x-coordinates of the input data, and x[i] s x < x[i + l]. The interpolated values
of f(x) are found by evaluating the ith cubic polynomial at x, where x[i] s x s
x[i + l].

User-Defined Types

TNvector = array[O •• TNArraySize] of Extended;

Input Parameters

NumPoints: Integer; Number of data points

XData:TNvector; The x-coordinates of the data points

YData:TNvector; They-coordinates of the data points

DerivLE:Extended; Derivative of the function at the left endpoint

Deri vRE: Extended; Derivative of the function at the right endpoint

Interpolation 53

Numlnter: Integer; Number of interpolations

XInter:TNvector; X-coordinates of points at which to interpolate

The preceding parameters must satisfy the following conditions:

1. X data points must be unique.

2. X data points must be in ascending order.

3. NumPoints, Numlnter :5: TNArraySize.

4. NumPoints > 1.

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector. TNArraySize is not a variable name and is
never referenced by the procedure; hence there is no test for condition 3. If condi­
tion 3 is violated, the program will crash with an Index Out of Range error (assum­
ing the directive {$R +}is active).

Output Parameters

CoefO: TNvector; Coefficient of the constant term

Coe fl: TNvector; Coefficient of the linear term

Coef2: TNvector; Coefficient of the squared term

Coef3: TNvector; Coefficient of the cubed term

Yinter:TNvector; Interpolated values at Xlnter

Error:Byte; 0: No error
1: X-values of the data points not unique
2: X-values of the data points not in ascending order
3: NumPoints < 2

Syntax of th£ Procedure Call

CubicSplineClamped(NumPoints, XData, YData, DerivLE, DerivRE, Numlnter,
Xlnter, CoefO, Coefl, Coef2, Coef3, Yinter, Error);

54 Turbo Pascal Numerical Methods Toolbox

Sample. Program

The sample program Cube..Cla.pas provides 1/0 functions that demonstrate the
clamped cubic spline interpolation algorithm.

Input Files

Data may be entered from a text file. The x- and y-coordinates should be separated
by a space and followed by a carriage return. The last two values in the file must be
the derivatives of the function at the endpoints. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
525
210

Note that the last two values are the derivatives of sqr(x) at the endpoints x = 1
andx = 5.

Example

Problem. Construct an interpolating spline for the following figure:

3

2

1

0 1 2 3 4 5 6

Interpolation 55

Because a cusp occurs at x = 3.55, we will construct two splines, one for each side
of the cusp.

Run Cube..Cla.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following fl.le from the
standard dialog box:

File name? Sample3H.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3E.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

56

Data :
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

x
0.0000000000
0.1000000000
0.2000000000
0.6000000000
1.0000000000
1.4000000000
1.8000000000
2.0000000000
2.2000000000
2.6000000000
3.0000000000
3.4000000000
3.4500000000
3.5000000000
3.5500000000

y
2.8000000000
2.7000000000
2.6000000000
2.2000000000
1.8000000000
1.6000000000
1.4000000000
1.4200000000
1.4000000000
1.5000000000
1.8000000000
2.4000000000
2.6000000000
2.8000000000
2.9000000000

Derivative at X= O.OOOOOOOOOOOOOOe+O
Derivative at X= 3.55000000000000e+O

-1.33333333333333e+O
3.00000000000000e+O

Splines:
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

CoefO
2.8000000000
2.7000000000
2.6000000000
2.2000000000
1.8000000000
1.6000000000
1.4000000000
1.4200000000
1.4000000000
1.5000000000
1.8000000000
2.4000000000
2.6000000000
2.8000000000

Coe fl
-1. 3333333333
-0. 9091317890
-1.0301395105
-1.0620777385
-0.7215495356
-0.5517241193
-0.0715539872
0.0405240212

-0.0905420975
0.6122045428
0.6417239262
3.5708997526
4.4477600660
2.6380599835

Coef2
5.7579845570

-1.5159691140
0.3058918989

-0.3857374687
1.2370579761

-0.8124944355
2.0129197658

-1. 4525297241
0.7971991306
0.9596674704

-0.8858690121
8.2088085781
9.3283976905

-45.5223993401

Coef3
-24.2465122365

6.0728700429
-0.5763578064
1. 3523295373

-1. 7079603429
2. 3545118344

-5.7757491499
3. 7 495480911
0.1353902832

-1. 5379470688
7.5788979919
7.4639274157

-365.6719802043
655.2239934014

Turbo Pascal Numerical Methods Toolbox

Interpolated Points: X
1: 0.3000000000
2: 0.5000000000
3: 1.2000000000
4: 1.6000000000
5: 2.1000000000
6: 2.3000000000
7: 2.5000000000
8: 2.7000000000
9: 2.9000000000

10: 3.2000000000
11: 3.3000000000

Second half of figure:

y
2.4994686101
2.3029267570
1. 6915087292
1.4759914934
1. 4132766530
1. 3990531718
1.4482408301
1. 5692791819
1.7285068643
1.9535412087
2 .1174192125

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample31.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample3G.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Data :
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

x
3.5500000000
3.6000000000
3.6500000000
3.8000000000
4.0000000000
4.3000000000
4.8000000000
5.3000000000
5.6000000000
5.8000000000
6.0000000000

y
2.9000000000
2.8000000000
2.6500000000
2.5000000000
2.3500000000
2.2000000000
1.9500000000
1.6000000000
1.3000000000
1. 2000000000
0.0000000000

Derivative at X= 3.55000000000000e+O
Derivative at X= 6.00000000000000e+O

-4.00000000000000e+O
-1.70000000000000e+l

Splines:
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

Interpolation

CoefO
2.9000000000
2.8000000000
2.6500000000
2.5000000000
2.3500000000
2.2000000000
1.9500000000
1.6000000000
1.3000000000
1.2000000000

Coe fl
-4.0000000000
-2.0111665197
-2.9553339213
-0.3238290709
-0. 7983524409
-0.3974941891
-0.5494435897
-1.0047314521
-0.7151931996
-0.4462017001

Coef2
80.2233303937

-40.4466607874
21. 5633127559
-4.0199470867
1.6473302365

-0. 3111360640
0.0072372629

-0.9178129877
1. 8829404961

-0.5379829989

coef3
-804.4666078741
413. 3998236224
-56.8516885392

9.4454622054
-2.1760736673
0.2122488846

-0.6167001671
3 .1119483153

-4.0348724916
-136 .1550425028

57

Interpolated Points: X
1: 3.7000000000
2: 3.9000000000
3: 4.1000000000
4: 4.2000000000
5: 4.5000000000
6: 4.6000000000
7: 5.0000000000
8: 5.2000000000
9: 5.5000000000

10: 5.7000000000
11: 5.9000000000

58

y
2.5490351248
2.4368630843
2.2844619846
2.2388141319
2 .1097537107
2.0584802174
1.8354671712
1.6919117155
1.3872367766
1.2432752125
1.0138449575

Turbo Pascal Numerical Methods Toolbox

c H A p T E R 4
Numerical Differentiation

Differentiation is a process used in calculus to quantify the rate of change of a given
function. The derivative of a real-valued function of a real variable is another real­
valued function of a real variable. For example, suppose you are driving down the
freeway in your car and f(t) gives the distance traveled at time t. Typical values
might be

t f\t)
1.0 45.0
1.1 49.2
1.2 54.5
1.3 59.8
1.4 65.1
1.5 70.4

The units are in hours and miles, and the data refers to a trip that started at noon.
f(l.O) = 45.0, so the distance traveled by one o'clock is 45.0 miles, andf(l.5) =
70.4, so by half past one you will be 70.4 miles from where you were at noon.

The derivative of this distance function gives the velocity function. The car's veloc­
ity at one o'clock is the value of the derivative at t = 1.0. From the previous data, it
is impossible to compute the derivative exactly, but it is possible to approximate
the derivative. The car traveled 49.2 - 45.0 = 4.2 miles in the six minutes after
one o'clock (1.1 - 1.0 = 0.1 hours = 6 minutes). Thus, the average velocity of the
car during those six minutes is 4.2 I 0.1 = 42 miles per hour. This gives an approxi­
mation to the velocity at one o'clock.

59

Each method described in this chapter approximates derivatives of a real function
of one real variable.

The routines Deriv.pas, Deriv2.pas, and Interdrv.pas compute derivatives of a
function that is represented by tabular data. Consequently, their accuracy depends
heavily upon the precision and spacing of the data points.

The routines Derivfn.pas and Deriv2fn.pas compute derivatives of a user-defined
function. Consequently, the accuracy of the values calculated with these routines is
limited by the precision of the computer.

Differentiation consists of subtracting two very close numbers and dividing by a
very small number; hence, it is extremely sensitive to round-off error. The accuracy
of the first derivative is approximately the square root of the precision with which
real numbers are represented; the accuracy of the second derivative is approxi­
mately equal to the fourth root.

The first derivative of a function that is represented by a table of values can be
approximated in Deriv.pas via a two-point formula, a three-point formula, or a five­
point formula. The accuracy of the formula increases with the number of points
used in the formula. In order to use the five-point formula, however, the domain
values of the data points (that is, the x-coordinates) must be equally spaced. This is
not required for the two-point and three-point formulas. Derivatives can only be
approximated at data points.

The second derivative of a function that is represented by a table of values can be
approximated in Deriv2.pas via a three-point formula or a five-point formula. The
domain values of the data points must be equally spaced (regardless of whether the
three-point formula or five-point formula is used}. Second derivatives can only be
approximated at data points.

The routine Interdrv.pas approximates a function by constructing a free cubic
spline to a set of data points. Cubic splines avoid the undesirable oscillatory
behavior of other interpolating polynomials. The derivative of the cubic spline at a
given domain value, which may be different from the input data values, will then
approximate the corresponding derivative of the function.

The first derivative of a user-supplied function is approximated in Derivfn.pas
via a three-point formula. The approximation is refined with Richardson extrapola­
tion. The derivative can be approximated at any point within the domain of the
function.

The second derivative of a user-supplied function is approximated in Deriv2fn.pas
via a three-point formula. The approximation is refined with Richardson extrapola­
tion. The second derivative can be approximated at any point within the domain of
the function.

60 Turbo Pascal Numerical Methods Toolbox

First Differentiation Using Two-Poi.nt, Three-Poi.nt, or
Five-Poi.nt Formulas (Deriv.pas)

Description

This example contains several algorithms for approximating the derivative of a
functionf(x), given several data points (x,f(x)). The user must specify whether a
two-point, three-point, or five-point formula should be used. Two points are used
in the two-point formula, three in the three-point formula, and five in the five­
point formula. The user must supply the data points (x,f(x)) and the x-values of the
data points at which to approximate the derivative. Note: Derivatives can only be
approximated at x-values corresponding to input data points.

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

Input Parameters

NumPoints : Integer; Number of data points

XData : TNvector; X-coordinates of data points

YData : TNvector; Y-coordinates of data points

Point : Byte; Two-point, three-point, or five-point differentiation

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated

XDeriv : TNvector; X-coordinates of data points at which the derivative is to be
approximated

The preceding parameters must satisfy the following conditions:

1. XData points must be unique.

2. XData points must be entered in ascending order.

3. At least two points are needed for two-point differentiation, three for three­
point differentiation, and five for five-point differentiation.

4. Point must equal two, three, or five.

Numerical Differentiation 61

5. XData points must be equally spaced for five-point differentiation.

6. XDeriv points must be a subset of the XData points.

7. NumPoints, NumDeriv :s TNArraySize.

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvecto'r. TN Array Size is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 7. If condition 7 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +}is active}.

Output Parameters

YDeri v : TNvector; Approximation to the first derivative at the points in XDeriv

Error : Byte; 0: No errors
1: WARNING! Not all the derivatives were computed

(see "Comments")
2: X-values not unique
3: X-values not in ascending order
4: Not enough data
5: Point not equal to 2, 3, or 5
6: X-values not equally spaced for the five-point formula

Syntax of the Procedure Call

First..Derivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDeriv, Error);

Comments

If an x-value at which the derivative is to be approximated is not among the data
points, the value - 9.999999999E35 is arbitrarily assigned to the derivative at that
point and Error = l is returned. When using five-point differentiation with only
five points, there is not enough information to approximate the derivative at the
first, second, fourth, or fifth points. Likewise, if only six points are input, there is
insufficient information for approximating the derivative at the second and fifth
data points. Should an attempt be made to approximate the derivative at any of
these points, the value of 9.999999999E35 is arbitrarily assigned the derivative at
that point and Error = l is returned.

62 Turbo Pascal Numerical Methods Toolbox

Sampl.e Program

The sample program Deriv.pas provides 1/0 functions that demonstrate differenti­
ation with two-point, three-point, and five-point formulas.

Input Fil.es

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
5 25

Derivative points may also be entered from a text file. Every derivative point must
be followed by a carriage return. For example, to determine the derivatives of the
preceding points, create the following file of derivative points:

1
2
3
4
5

Exampl.e

Problem. Approximate the first derivative offi.x) = sqr(x) * cos(x) at several points
between one and two radians. The output from three runs is given. Actual values of
the derivatives to eight significant figures are also given.

Run Deriv.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample4A.dat

Numerical Differentiation 63

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of X values (0-100)? 5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.5
Point 4: 2.0
Point 5: 2.2

2-, 3-, or 5-point differentiation ? 2

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

64

Input Data:
x

1.0000000
1.1000000
1.2000000
1.3000000
1.4000000
1.5000000
1.6000000
1.7000000
1.8000000
1.9000000
2.0000000

y
5.40302305868140e-l
5.48851306924949e-l
5.21795166446410e-l
4.52073020375553e-l
3.33135600084472e-l
l.59158703752332e-l

-7.47507770912994e-2
-3.72360588514066e-l
-7.36134786805602e-l
-l.16707533637725e+O
-l.66458734618857e+O

<* --------------------------- *>
<* WARNING *>

<* --------------------------- *>

Using 2-point differentiation:

X Derivative at X
1.100 8.54900105680900e-2
1.300 -6.97221460708570e-l
1.500 -l.73976896332140e+O
2.000 -4.97512009811320e+O
2.200 No derivative calculated

Using 3-point differentiation:

x
1.100
1.300
1.500
2.000
2.200

Derivative at X
-9.25356971086500e-2
-9.43297831809690e-l
-2.03943188587886e+O
-5.30797739931156e+O
No derivative calculated

Turbo Pascal Numerical Methods Toolbox

Using 5-point differentiation:

X Derivative at X
1.100 -B.08749392678308e-2
1.300 -9.32986606435739e-1
1.500 -2.03221450709713e+O
2.000 -5.30200229054730e+O
2.200 No derivative calculated

The data is taken from a function of which a derivative could be computed exactly.

The warning signal indicates that some derivatives were not calculated.

The derivative is not approximated for x = 2.2 in any of the examples because
x = 2.2 is not among the data points.

Numerical Differentiation 65

Secand Differentiation Using Three-Point or Five-Point
Formulas (Deriv2.pas)

Description

This example contains two algorithms that approximate the second derivative of a
functionf(x) when several data points (x,f(x)) are specified. You decide whether to
use a three-point or five-point formula (Gerald and Wheatley 1984, 236-237);
three points are used in the three-point formula, and five in the five-point formula.
You must supply the data points (x,fix)) and the x-values of the data points at which
the second derivative is to be approximated. The second derivative may only be
approximated at x-values that were input as data points.

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

Input Parameters

NumPoi nts : Integer; Number of data points

xoata : TNvector; X-coordinates of the data points

YData : TNvector; Y-coordinates of the data points

Point : Byte; Three-point or five-point differentiation

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated

XDeri v : TNvector; X-coordinates of points at which the derivative is to be approx­
imated

The preceding parameters must satisfy the following conditions:

66

1. XData points must be unique.

2. XData points must be entered in ascending order.

3. At least three points for three-point differentiation and five points for five­
point differentiation.

4. Point must equal 3 or 5.

Turbo Pascal Numerical Methods Toolbox

5. XData points must be equally spaced.

6. XDeriv points must be a subset of the XData points.

7. NumPoints, NumDeriv s TNArraySize.

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TN Array Size is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 7. If condition 7 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active).

Output Parameters

YDerfv : TNvector: Approximation to the second derivative at the XDeriv points

Error : Byte; 0: No errors
1: WARNING! At least one derivative was not approximated

(see "Comments")
2: X-values not unique
3: X-values not in increasing order
4: Not enough data
5: Point not equal to 3 or 5
6: X-value points not equally spaced

Syntax of the Procedure Call

Second_JJerivative(NumPoints, XData, YData, Point, NumDeriv, XDeriv, YDer1v, Error);

Comments

If an x-value at which the second derivative is approximated is not among the data
points, the value - 9.9999999E35 is arbitrarily assigned to the derivative at that
point and Error = 1 is returned. When using five-point second differentiation with
only five data points, there is insufficient information for approximating the second
derivative at the second and fourth data points. Should an attempt be made to
approximate the second derivative at these points, the value 9.9999999E35 is arbi­
trarily assigned to the second derivative at that point and Error = 1 is returned.

Numerical Differentiation 67

Sample Program

The sample program Deriv2.pas provides 1/0 functions that demonstrate second­
order differentiation with three-point and five-point formulas.

Input Files

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
5 25

Derivative points may also be entered from a text file. Every derivative point must
be followed by a carriage return. For example, to determine the second derivatives
of the preceding points, create the following file of derivative points:

1
2
3
4
5

Example

Problem. Approximate the second derivative of f(x) = sqr(x) * cos(x) at several
points between x = 1 and x = 2 radians. The output from two runs is given. Actual
values of the second derivatives to eight significant figures are also given.

Run Deriv2.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample4A.dat

68 Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of X values (0·100)?5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.5
Point 4: 2.0
Point 5: 2.2

3- or 5-point second differentiation ? 3

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Input Data:
x

1.0000000
1.1000000
1.2000000
1.3000000
1.4000000
1.5000000
1.6000000
1.7000000
1.8000000
1.9000000
2.0000000

y
5.40302305868140e-l
5.48851306924949e-l
5.2l795166446410e-l
4.52073020375553e-l
3.33135600084472e-l
l.59158703752332e-l

-7.47507770912994e-2
-3.72360588514066e-l
-7.36134786805602e-l
-l.16707533637725e+O
-l.66458734618857e+O

<* --------·------------------ *>
<"' WARNING "'>
(* ••••••a•••••-•••••••••••••• *>

Using 3•point second differentiation:

X Second Derivative at X
1.100 -3.56051415353480e+O
1.300 -4.92152742202240e+O
1.500 -5.99325845114914e+O
2.000 -6.65714602396720e+O
2.200 No 2nd derivative calculated.

Using 5-point second differentiation:

X Second Derivative at X
1.100 -3.61167369644120et0
1.300 -4.92756964541466et0
1.500 -6.00263647117238e+O
2.000 -6.59765691992320e+O
2.200 No 2nd derivative calculated.

Numerical Differentiation 69

The data is taken from a function of which the derivative could be computed
exactly.

The warning signal indicates that some second derivatives were not calculated.

The second derivative is not approximated at x = 2.2 for either run because x =
2.2 is not among the input x-value points.

70 Turbo Pascal Numerical Methods Toolbox

Differentiation with a Cubic Spline lnterpolant
(Interdro.pas)

Description

This example contains an algorithm for approximating the first and second deriva­
tives of a function given several data points (x,f(x)). The algorithm assumes that a
free cubic spline interpolant (Burden and Faires 1985, 117-122} is an adequate
approximation to the functionf(x), so that the slope of the interpolant at any value
x, is an adequate approximation tof'(x). See Chapter 3 (Cube-F're.pas} for more
information on free cubic splines. The user must supply the data points (x,f(x)) and
the x-values at which to approximate the derivatives. Derivatives may be approxi­
mated at any x-value contained in the closed interval determined by the data
points. This routine will likely give significant errors if interpolation (Gerald and
Wheatley 1984, 227-231} is attempted outside the range of x-values (extrapola­
tion}.

User-Defined 1flpes

TNvector = array[l •• TNArraySize] of Extended;

Input Parameters

NumPoints : Integer: Number of data points

XData : TNvector; X-coordinates of data points

YData : TNvector; Y-coordinates of data points

NumDeri v : Integer: Number of points at which the derivative is to be approxi­
mated

XDeri v : TNvector: X-coordinates of points at which the derivative is to be approx­
imated

Numerical Differentiation 71

The preceding parameters must satisfy the following conditions:

1. XData points must be unique.

2. XData points must be in ascending order.

3. NumPoints :=::: 2.

4. NumPoints, NumDeriv s TNArraySize.

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 4. If condition 4 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +}is active).

Output Parameters

Ylnter: TNvector; Interpolated y-values at the XDeriv points

YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv

YDeri v2 : TNvector; Approximation to the second derivative at the x-values in

Error : Byte;

XDeriv

0: No errors
1: X-values not unique
2: X-values not in ascending order
3: NumPoints < 2

Syntax of the Procedure Call

Interpolate-Derivative(NumPoints, XData, YData, NumDeriv,
XDeriv, Ylnter, YDeriv, YDeriv2, Error);

Sample Program

The sample program Interdrv.pas provides 1/0 functions that demonstrate differ­
entiation with a cubic spline interpolant.

72 Turbo Pascal Numerical Methods Toolbox

Input Ffles

Data points may be entered from a text file. The x- and y-coordinates should be
separated by a space and followed by a carriage return. For example, data values of
sqr(x) could be entered in a text file as

11
24
39
416
5 25

Derivative points may also be entered from a text file. Every derivative point must
be followed by a carriage return. For example, to determine the derivatives of the
preceding points, create the following file of derivative points:

1
2
3
4
5

Example

Problem. Determine the first and second derivative off(x) = sqr(x) * cos(x) at
several points between one and two radians. Actual values of the derivatives to
eight significant figures are given here.

Run Interdrv.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample48.dat

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of derivative points (0-100)?5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.55
Point 4: 1.95
Point 5: 2.20

Numerical Differentiation 73

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Input Data:
x

1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000

y
0.5403023
0.5488513
0.5217952
0.4520730
0.3331356
0.1591587

-0.0747508
-0.3723606
-0.7361348
-1.1670753
-1.6645873

Using free cubic spline interpolation:

x
1.100
1.300
1.550
1.950
2.200

Value at X
5.48851300000000e-l
4.52073000000000e-l
4.99429267146237e-2

-l.41057141673716e+O
-2.57545316779455e+O

1st Deri v at X
-5.86015666816464e-2
-9.31377366861403e-l
-2.33770918101853e+O
-5.01018588841894e+O
-3.43222090956673e+O

2nd Deriv at X
-4.32274700
-4.98862501
-6.19118137
-4.20790661
16.83162644

The data is taken from a function of which the derivative could be computed
exactly. The actual values are shown here:

x Value at X 1st Deriv at X 2nd Deriv at X
1.1 0.5488513 -0.0804494 -3.5629715
1.3 0.4520730 -0.9329164 -4.9275779
1.55 0.0499596 -2.3375165 -6.2070293
1.95 -1.4076126 -4.9760746 -6.5786348
2.20 -2.8483454 -6.5025275 -5.4434252

Note the poor results obtained at values outside the range of input data (x = 2.2).
Also note the large error in the second derivatives near the endpoints of the inter­
val determined by the data.

74 Turbo Pascal Numerical Methods Toolbox

Differentiation of a User-Defined Function (Derivfia.pas)

Description

Given a user-defined function.f{x), this example will approximate the first deriva­
tive of the function at a set of x values. The formula

f' (x) = [f(x + aX) - f(x - aX)]~•4X

gives a first approximation to the derivative. Richardson extrapolation is then used
to refine the approximation (Burden and Faires 1985, 137-152).

User-Defined 'JYpes

TNvector = array[l •• TNArraySize] of Extended;

User-Defined Functions

function TNTargetF(X : Extended) : Extended;

Input Parameters

NumDeriv: Integer; Number of points at which the derivative is to be approxi­
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be
approximated

Tolerance: Extended; Indicates accuracy of solution

The preceding parameters must satisfy the following conditions:

1. NumDeriv s TNArraySize

2. Tolerance > TNNearlyZ£ro

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is rwt a variable name and is never refer­
enced by the procedure; hence there is no test for condition 1. If condition 1 is

Numerical Differentiation 75

violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +} is active}.

Output Parameters

YDeriv : TNvector; Approximation to the first derivative at the x-values in XDeriv
Error : Byte; 0: No errors

1: Tolerance < TNNearlyZero

Syntax of the Procedure Call

FirstDerivative(NumDeriv, XDeriv, YDeriv, Tolerance, Error, @TNTargetF);

The procedure FirstDerivative approximates the first derivative of function TNTar­
getF.

Comments

Note that the address of TNTargetF is passed into the FirstDerivative procedure.

Sample Program

The sample program Derivfn.pas provides 1/0 functions that find the first deriva­
tive of a function at a set of points.

Input Files

Derivative points may be entered from a text file. Every derivative point must be
followed by a carriage return. For example, to determine the derivatives at x-values
1 through 5, create the following file of derivative points:

76

1
2
3
4
5

Turbo Pascal Numerical Methods Toolbox

Examp"le

Problem. Determine the first derivative of.f(.x) = sqr(x) * cos(x) at several points
between 1 and 2.2. Actual values of the derivatives to eight significant figures are
given here.

First, write the function into the Derivfn.pas program:

{ ----- here is the function to differentiate -------------------- }

function TNTargetF(X : Extended) : Extended;

begin
TNTargetF := Sqr(X)*Cos(X);

end; { function TNTargetF }

{ -- }
Run Derivfn.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of points (0-100)? 5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.55
Point 4: 1. 95
Point 5: 2.2

Tolerance (> 0)7 lE-4

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and cli~k
OK.

Tolerance =

x
1.100
1.300
1.550
1.950
·2.200

l.OOOOOOOOOOOOOOe-4

Derhative at X
-8.04494385380667e-2
-9.32916380187814e-l
-2.3375165294297le+O
-4.97607456093026e+O
-6.50252751007340e+O

The data is taken from a function of which the derivative could be calculated
exactly.

Numerical Differentiation 77

Second Differentiation of a User-Defined Function
(Deriv2fa.pas)

Description

Given a user-defined function.f\x), this example will approximate the second deriv­
ative of the function at a set of x values. The three-point formula

f"(x) = [f(x + .:U) - 2f(x) + f(x - aX)]/ax2

gives a first approximation to the second derivative. Richardson extrapolation is
then used to refine the approximation (Burden and Faires 1985, 142-152).

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

User-Defined Function

function TNTargetF(X : Extended) : Extended;

Input Parameters

NumDeriv : Integer; Number of points at which the derivative is to be approxi­
mated

XDeriv : TNvector; X-coordinates of points at which the derivative is to be
approximated

Tolerance : Extended; Indicates accuracy in solution

The preceding parameters must satisfy the following conditions:

1. NumDeriv ::;; TNArraySize

2. Tolerance ~ TNNearly'Zero

78 Turbo Pascal Numerical Methods Toolbox

TNArraySize represents the number of elements in each vector. It is used in the
type definition of TNvector. TNArraySize is not a variable name and is never refer­
enced by the procedure; hence there is no test for condition 1. If condition 1 is
violated, the program will crash with an Index Out of Range error (assuming the
directive {$R +}is active).

Output Parameters

YDeriv : TNvector; Approximation to the second derivative at the x-values in XDeriv

Error : Byte; 0: No errors
1: Tolerance < TNNear'lyZ-ero

Syntax of the Procedure Call

SecondDer;vat;ve(NumDer;v, XDer1v, YDer1v, Tolerance, Error, ~TNTargetF);

SecondDerivative approximates the derivative of function TNTargetF.

Comments

Note that the address of TNTargetF is passed into the SecondDerivative procedure.

Sample Program

The sample program Deriv2fh.pas provides 1/0 functions that find the second
derivative of a function at a set of points.

Numerical Differentiation 79

Input Files

Derivative points may be entered from a text file. Every derivative point must be
followed by a carriage return. For example, to determine the second derivatives at
x-values 1 through 5, create the following file of derivative points:

1
2
3
4
5

Examp/,e

Problem. Determine the second derivative of fi.x) = sqr(x)2 * cos(x) at several
points between 1 and 2.2. Actual values of the derivatives to eight significant fig­
ures are given here.

First, write the function into the Deriv2fn.pas program:

{ ----- here is the function to differentiate -------------------- }

function TNTargetF(X : Extended) : Extended;

begin
TNTargetF := Sqr(X)•Cos(X);

end; { function TNTargetF }

{ -- }

Run Deriv2fn.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Number of points (0-100)? 5

Point 1: 1.1
Point 2: 1.3
Point 3: 1.55
Point 4: 1. 95
Point 5: 2.2

Tolerance (> O)? lE-4

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

80 Turbo Pascal Numerical Methods Toolbox

Tolerance = 1.00000000000000e-4

X Second Derivative at X
1.100 -3.56297144833630e+O
1.300 -4.92757792729853e+O
1.550 -6.20702925616294e+O
1.950 -6.57863482851564e+O
2.200 -5.44342518062510e+O

The data is taken from a function of which the derivative could be calculated
exactly.

Numerical Differentiation 81

c H A p T E R 5
Numerical lntegratian

Integration is another concept used in calculus. It is just the opposite of differentia­
tion, for which routines are provided in Chapter 4. Differentiation tells you the
changes in a function, where integration tells you how to add those changes to get
the original function.

Integration is most easily understood in terms of areas under curves. Given a
functionf(x) and real numbers a and b with a < b, the area under the curve y =
f(x) and above the x-axis between x = a and x = b is given by the integral of f(x)
from a to b.

As with derivatives, the laws of calculus are required to compute integrals exactly.
The routines in this chapter provide very accurate approximations.

Several methods are described here that approximate the value of a definite inte­
gral of a real function of one real variable. Both limits of integration must be finite.

The trapezoid method and Simpson's method return an approximation of the inte­
gral when a number of equal length subintervals are specified. For a given number
of subintervals, Simpson's method is preferred over the trapezoid method when­
ever the function being integrated is sufficiently smooth.

It is sometimes possible to approximate the definite integral to within a user­
specified accuracy with fewer function evaluations using adaptive schemes. Adap­
tive schemes determine the length of each subinterval by the local behavior of the
integrand. Simpson's method and the Gaussian quadrature method are used with
adaptive schemes. The Gaussian quadrature method permits, in some instances,

83

the integrand to possess a singularity at an endpoint of integration, since the func­
tion is evaluated at points that are not the endpoints of the interval of integration.

The Romberg method uses the trapezoid method and Richardson extrapolation to
approximate the integral. It returns an approximation within a user-specified accu­
racy. Except for extremely oscillatory functions or functions that possess an end­
point singularity, this method is fastest and most accurate. If the function oscillates
substantially or possesses an endpoint singularity, the adaptive Gaussian quadra­
ture routine is preferred.

84 Turbo Pascal Numerical Methods Toolbox

Integration Using Simpson's Composite Algorithm
(Simpson.pas)

Description

This example uses Simpson's composite algorithm (Burden and Faires 1985, 156--
167) to approximate the definite integral of a functionftx) over an interval [a, b].
The interval is divided into N subintervals of equal length. The curve in each
subinterval is approximated by a second-degree Lagrange polynomial. The integral
of the resulting polynomial is then calculated. The sum of the integrals of the N
Lagrange polynomials approximates the integral of the function f over the interval
[a, b]. You must supply the function, the limits of integration, and the number of
subintervals.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Simpson approximates the integral of this function.

Input Parameters

Lowerlimit : Extended; Lower limit of integration

Upperl 1 mi t : Extended; Upper limit of integration

Numlnterva 1 s : Integer; Number of subintervals over which to apply Simpson's rule

The preceding parameters must satisfy the following condition:

Numlnteroals > 0

Numerical Integration 85

Output Parameters

Integral : Extended; Approximation to the integral of the function

Error : Byte; 0: No errors
1: Numlntervals s 0

Syntax of the Procedure Call

Simpson(Lowerlimit, Upperlimit, Numintervals, Integral, Error, @TNTargetF);

Simpson approximates the integral of TNTargetF.

Sample Program

The sample program Simpson.pas provides 1/0 functions that demonstrate Simp­
son's composite algorithm.

Examp/,e

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using Simpson's
composite algorithm.

1. Code function TNTargetF:

function TNTargetF(x : Extended) : Extended;

{--}
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
{--}
begin

TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

2. Run Simpson.pas:

Lower limit of integration? 0

Upper limit of integration? 5

Number of intervals (> O): 100

86 Turbo Pascal Numerical Methods Toolbox

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Lower limit: O.OOOOOOOOOOOOOOOOe+O
Upper limit: 5.0000000000000000e+O

Number of intervals: 100

Integral: 1.08968620446200e+6

To eight significant figures, the correct answer is 1,089,686.2.

Numerical Integration 87

Integration Using th£ Trapezoid Composite Rule
(Trapzoid.pas)

Description

This example uses the trapezoid composite rule (Burden and Faires 1985, 154-167)
to approximate the definite integral of a function fix) over an interval [a, b]. The
interval is divided into N subintervals of equal length. In each subinterval the
function is approximated by a straight line. The sum of the integrals of the result­
ing trapezoids approximates the integral of the function! over the interval [a, b].
You must supply the function, the limits of integration, and the number of subinter­
vals.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Trapezoid approximates the integral of this function.

Input Parameters

Lowerlimit : Extended; Lower limit of integration

Upperlimit : Extended; Upper limit of integration

Numlnterval s : Integer; Number of subintervals over which to apply the trapezoid
rule

The preceding parameters must satisfy the following condition:

Numlnteroals > 0

88 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Integral : Extended; Approximation to the integral of the function

Error : Byte; 0: No errors
1: Numlnterval.s s 0

Syntax of the Procedure Call

Trapezoid(Lowerlimft, Upperlfmft, Numintervals, Integral, Error, @TNTargetF);

'Irapezoid approximates the integral of TNTargetF.

Sample Program

The sample program Trapzoid.pas provides 1/0 functions that demonstrate the
trapezoid composite rule.

Example

Problem. Approximate the integral exp(3:t) + sqr(x)/J from 0 to 5 using the trape­
zoid composite rule.

I. Code function TNTargetF:

function TNTargetF(x : Extended) : Extended;

{--} {--- THIS IS THE FUNCTION TO INTEGRATE ---}
{--}
begtn

TNTargetF := Exp(3•X) + Sqr(X)/3;
end; { function TNTargetF }

Numerical Integration 89

2. Run Trapzoid.pas:

Lower limit of integration? 0

Upper limit of integration? 5

Number of intervals (> O)? 100

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Lower Limit: O.OOOOOOOOOOOOOOetO
Upper Limit: 5.00000000000000etO

Number of intervals: 100

Integral: l.0917283832080let6

To eight significant figures, the correct answer is 1,091,728.3.

90 Turbo Pascal Numerical Methods Toolbox

Integration Using Adaptive Quadrature and Simpson's Rule
(Adapsimp.pas)

Description

This example contains an algorithm for approximating the definite integral of a
functionf(x) over an interval [a,b] within a specified tolerance. By increasing the
number of subintervals in regions of large functional variation (adaptive quadra­
ture), the desired degree of accuracy can be reached (Burden and Faires 1985,
153-167). The integral within each subinterval is calculated with Simpson's rule.
The adaptive quadrature approximates the integral over a subinterval twice: once
over the whole subinterval, and again as the sum of the integral over each half of
the subinterval. The algorithm halts when the fractional difference between these
two approximations is less than the tolerance. You must supply the function, the
limits of integration, and the tolerance with which to approximate the integral.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Adaptive...Simpson approximates the integral of this function.

Input Parameters

Lowerlimi t : Extended; Lower limit of integration

Upperlimi t : Extended; Upper limit of integration

Tolerance: Extended; Indicates accuracy in solution

Maxlnterval s : Integer; Maximum number of subintervals

The preceding parameters must satisfy the following conditions:

1. Tolerance > 0
'

2. Maxlntervals > 0

Numerical Integration 91

Output Parameters

Integral : Extended; Approximation to the integral of the function

Numinterval s : Integer; Number of subintervals used

Error : Byte; 0: No errors
1: To'lerance s 0
2: Maxlnteroals s 0
3: Numlnteroals 2: Maxlnteroals

Syntax of the Procedure Call

Adaptive..Simpson(Lowerlimit, Upperlimit, Tolerance, Maxintervals,
Integral, Numintervals, Error, @TNTargetF);

Adaptive-Simpson approximates the integral of TNTargetF.

Comments

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure
calls (which slow down the execution), a stack is created on the heap to simulate
recursion.

Sample Program

The sample program Adapsimp.pas provides 1/0 functions that demonstrate the
adaptive quadrature method with Simpson's rule.

92 Turbo Pascal Numerical Methods Toolbox

Exampk

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using adaptive
quadrature and Simpson's rule.

I. Code function TNTargetF:

function TNTargetF(x : Extended) : Extended;

{--}
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
{--}
begin

TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

2. Run Adapsimp.pas:

Lower limit of integration? 0

Upper limit of integration? 5

Tolerance (> O): lE-8

Maximum number of subintervals (> O): 1000

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Lower limit:
Upper limit:

Tolerance:
Maximum number of subintervals:

Number of subintervals used:

Integral:

O.OOOOOOOOOOOOOOOOe+O
5.0000000000000000e+O
l.OOOOOOOOOOOOOOOOe-8

1000
511

l.08968601332499e+6

To eight significant figures, the correct answer is 1,089,686.0.

Numerical Integration 93

Integration Using Adaptive Quadrature and Gaussian
Quad,rature (Adapgaus.pas)

Description

This example contains an algorithm for approximating the integral of a functionf(x)
over an interval [a,b] within a specified tolerance. By increasing the number of
subintervals in regions of large functional variation (adaptive quadrature), the
desired degree of accuracy can be reached. The integral within each subinterval is
approximated by applying Gaussian quadrature (Burden and Faires 1985, 184-188)
with a 16th degree Legendre polynomial. Adaptive quadrature (Burden and Faires
1985, 172-176) approximates the integral over a subinterval twice: once over the
whole subinterval, and again as the sum of the integral over each half of the subin­
terval. The algorithm halts when the fractional difference between these two
approximations is less than the tolerance. You must supply the function, the limits
of integration, and the tolerance with which to approximate the integral.

User-Defined Function

function TNTargetF(x : Extended) : Extended;

The procedure Adaptive-Gauss-Quadrature approximates the integral of this func­
tion.

Input Parameters

Lowerl i mit : Extended; Lower limit of integration

Upperlimit: Extended; Upper limit of integration

Tolerance : Extended; Indicates accuracy in solution

Max Intervals : Integer; Maximum number of subintervals

The preceding parameters must satisfy the following conditions:

1. Tolerance > 0

2. Maxlntervals > 0

94 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Integra 1 : Extended; Approximation to the integral of the function

Numinterval s : Integer; Number of subintervals used

Error : Byte; 0: No errors
1: Tolerance ~ 0
2: Maxlnteroals ~ 0
3: Numlnteroals 2: Maxlnteroals

Syntax of the Procedure Call

Adaptive..Gauss_Quadrature(Lowerlimit, Upperlimit, Tolerance, Maxintervals,
Integral, Numintervals, Error, @TNTargetF);

Adaptive_Gauss-Quodrature approximates the integral of TNTargetF.

Comments

Adaptive quadrature is a recursive routine. In order to avoid recursive procedure
calls (which slow down execution), a stack is created on the heap to simulate recur­
sion.

Gaussian qtiadrature uses orthogonal polynomials (in this case, Legendre polyno­
mials) to approximate an integral. Generally, a higher degree polynomial will yield
a more accurate result, but will take more time to compute. The 16th degree
Legendre polynomial used in Aclapgaus. pas is very efficient. The values of its zeros
and weight factors follow (Abramowitz and Stegun 1972).

Numerical Integration 95

The following condition is satisfied by the numbers that follow it:

Integral from -1 to 1 of f(x) dx

equals

Sum from i = 1 to NumLegendreTerms of
Legendre[i].Weight * f(Legendre[i].Root)

for an arbitrary functionf(x).

Legendre[!] Root: 0.0950125098376370440185
Weight: 0.189450610455068496285

Legendre[2] Root: 0.281603550778258913230
Weight: 0.182603415044923588867

Legendre[3] Root: 0.458016777657227386342
Weight: 0.169156519395002538189

Legendre[4] Root: 0.617876244402643748447
Weight: 0.149595988816576732081

Legendre[5]•.......•..................... Root: 0.755404408355003033895
Weight: 0.124628971255533872052

Legendre[6] Root: 0.865631202387831743880
Weight: 0.095158511682492784810

Legendre[7] Root: 0.944575023073232576078
Weight: 0.062253523938647892863

Legendre[8] Root: 0.989400934991649932596
Weight: 0.027152459411754094852

Legendre[9] Root: - 0.0950125098376370440185
Weight: 0.189450610455068496285

Legendre[IO] Root: -0.281603550778258913230
Weight: 0.182603415044923588867

Legendre[ll] Root: -0.458016777657227386342
Weight: 0.169156519395002538189

Legendre[l2] Root: -0.617876244402643748447
Weight: 0.149595988816576732081

Leg~ndre[l3] Root: -0.755404408355003033895
Weight: 0.124628971255533872052

Legendre[l4] Root: -0.865631202387831743880
Weight: 0.095158511682492784810

Legendre[l5] Root: - 0.944575023073232576078
Weight: 0.062253523938647892863

Legendre[l6] Root: - 0.989400934991649932596
Weight: 0.027152459411754094852

96 Turbo Pascal Numerical Methods Toolbox

Sample Program

The sample program Adapgaus.pas provides 1/0 functions that demonstrate the
adaptive quadrature method with Gaussian quadrature.

Exampk

Problem. Approximate the integral exp(3x) + sqr(x)/J from 0 to 5 using adaptive
quadrature with Gaussian quadrature algorithm.

1. Code function TNTargetF:

function TNTargetF(x : Extended) : Extended;

{--} {--- THIS IS THE FUNCTION TO INTEGRATE ---}
{--}
begtn

TNTargetF := Exp(3•X) + Sqr(X}/3;
end; { funct;on TNTargetF }

2. Run Adapgaus.pas:

Lower limit of integration? 0

Upper limit of integration? 5

Tolerance in answer: (> 0): lE-8

Maximum number of sub;ntervals (> O): 1000

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Lower limit:
Upper limit:

Tolerance:
Max;mum number of subintervals:

Number of subintervals used:

Integral:

o.ooooooooooooooe+o
5.00000000000000e+O
l.OOOOOOOOOOOOOOe-8

1000
1

l.08968601304609e+6

To eight significant figures, the correct answer is 1,089,686.0.

Numerical Integration 97

Integration Using the Ramberg Algorithm (Romberg.pas)

Description

This example contains an algorithm (Burden and Faires 1985, 177-182) for approxi­
mating the integral of a function f(x) over an interval [a, b] within a specified
tolerance. The trapezoid rule is used to generate a preliminary approximation, and
Richardson extrapolation (Burden and Faires 1985, 148-152) is subsequently used
to improve the approximation. Extrapolation continues until the fractional differ­
ence between successive approximations of the integral is less than the tolerance.
You must supply the function, the limits of integration, and the tolerance with
which to approximate the integral.

User-Defin£d Function

function TNTargetF(x : Extended) : Extended;

The procedure Romberg approximates the integral of this function.

Input Parameters

Lowerlimit : Extended; Lower limit of integration

Upperli mi t : Extended; Upper limit of integration

To 1 erance : Extended; Indicates accuracy in solution

Maxlter : Integer; Maximum number of iterations allowed

The preceding parameters must satisfy the following conditions:

1. Tolerance > 0

2. Maxlter > 0

98 Turbo Pascal Numerical Methods Toolbox

Output Parameters

Integral : Extended; Approximation to the integral of the function

Iter : Integer;

Error : Byte;

Number of iterations

0: No errors
1: Tolerance :s; 0
2: Maxlter :s; 0
3: lter ;;:::; Maxlter

Syntax of the Procedure Call

Romberg(Lowerlimit, Upperlimit, Tolerance, Maxiter, Integral, Iter, Error,
@TNTargetF);

Ramberg approximates the integral of TNTargetF.

Sample Program

The sample program Romberg.pas provides 1/0 functions that demonstrate the
Romberg algorithm.

Example

Problem. Approximate the integral exp(3x) + sqr(x)/3 from 0 to 5 using the Rom­
berg algorithm.

I. Code function TNTargetF:

function TNTargetF(x : Extended) : Extended;

{--}
{--- THIS IS THE FUNCTION TO INTEGRATE ---}
{--}
begin

TNTargetF := Exp(3*X) + Sqr(X)/3;
end; { function TNTargetF }

Numerical Integration 99

2. Run Romberg.pas:

Lower limit of integration? 0

Upper limit of integration? 5

Tolerance (> O): IE-8

Maximum number of iterations: (> 0): 100

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Lower limit:
Upper limit:

Tolerance:
Maximum number of iterations:

Number of iterations:

Integral:

O.OOOOOOOOOOOOOOetO
5.00000000000000etO
1.00000000000000e-8

100
7

1.08968601696675e+6

To eight significant figures, the correct answer is 1,089,686.0.

100 Turbo Pascal Numerical Methods Toolbox

c H A p T E R 6
Matrix Routines

This chapter provides routines for dealing with systems of linear equations. An
example of a system of linear equations is as follows:

2X+Y+Z=7
X-Y+Z=2
X+Y-Z=O

Matrix algebra is a collection of notations that constitutes a technique for handling
such systems. With matrix algebra, the preceding system would be written

Ax= b

where

A= [~l -~l l] -~ ·= m b= m
In Pascal, x and b are represented as one-dimensional arrays, and A is represented
as a two-dimensional array. In matrix notation, the solution is given by

x = A- 1 b

where A -l is the inverse to A.

The determinant is an indicator of whether the matrix can be inverted. For exam­
ple, the equations

3X - 3Y = 4
-2X + 2Y = 5

IOI

cannot be solved. Even for different values of the right-hand side, the equations
can only be solved in certain exceptional cases. (If you change 4 and 5 to 3 and - 2,
then there are infinitely many solutions; but there are none if you change 4 and 5 to
3 and - 3.0001.)

Following is a description of several routines that operate on matrices and systems
of linear equations.

The determinant of a square matrix is found via Det.pas.

The inverse of a nonsingular matrix is found via Inverse.pas.

The direct techniques implemented to solve a system of N linear equations in N
unknowns are Gaussian elimination, Gaussian elimination with partial pivoting,
and direct factorization.

The Gauss-Seidel method, an iterative technique that converges to the solution, is
seldom used for solving small systems, since the time required for sufficient accu­
racy exceeds that required for the preceding direct techniques.

In general, Gaussian elimination with partial pivoting is the fastest, most accurate
algorithm. The following special cases may warrant the use of one of the other
routines:

• If you are considering systems where round-off is minimal (that is, small sys­
tems whose coefficients are all of nearly the same magnitude), Gaussian elimi­
nation without pivoting may be used. It is somewhat faster than its pivoting
counterpart.

• When considering sparse coefficient matrices, the Gaussian elimination rou­
tine with partial pivoting is the most efficient and accurate routine. If the
matrix is small and the nonzero coefficients do not differ wildly from each
other, regular Gaussian elimination can usually be used safely.

• For large, dense matrices, the iterative technique is the most efficient; it cre­
ates less round-off error than the direct methods. However, the Gauss-Seidel
algorithm has its own weaknesses (see the section, "Solving a System of Lin­
ear Equations with the Iterative Gauss-Seidel Method," for more details).

• When it is necessary to solve several systems with the same coefficient matrix
but a different vector of constant terms, the direct factorization method is the
most efficient. This is because it does not require reduction of the coefficient
matrix for each vector of constants.

102 Turbo Pascal Numerical Methods Toolbox

Detenninant of a Matrix (Det.pas)

Description

The determinant of an N x N matrix can be computed by the following algorithm
(Gerald and Wheatley 1984, 110-ill}:

1. Use elementary row operations to make the matrix upper triangular (that is,
all the elements below the main diagonal are zero).

2. Find the product of the main diagonal elements - this will be the determi­
nant.

User-Defined 'JYpes

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •• TNArraySize] of TNvector;

Input Parameters

Di men : Integer; Dimension of the data matrix

Data : TNmatrix; The square matrix

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen s TNArraySize

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Matrix Routines 103

Output Parameters

Det : Extended; Determinant of the data matrix

Error : Byte; 0: No errors
1: Dimen < 1

Syntax of the Procedure Call

Detenninant(Dimen, Data, Det, Error);

Sample Program

The sample program Det.pas provides 1/0 functions that demonstrate how to find
the determinant of a matrix.

In-put Fik

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be like this:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,

[l, l], [l, 2] ... [l, N], [2, l] ... [2, N] ... [N, N],
where N is the dimension of the matrix

For example, a text file containing the matrix

[-: ~]
could look like this:

2
2 3

-4 0

104 Turbo Pascal Numerical Methods Toolbox

Examp'le

Problem. Find the determinant of the following matrix:

[-~ ! ~ =~:~]
2 2 1 -3.0
0 0 3 -4.0

Run Det.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
1.00000000 2.00000000 0.00000000 -1.00000000

-1.00000000 4.00000000 3.00000000 -0.50000000
2.00000000 2.00000000 1.00000000 -3.00000000
0.00000000 0.00000000 3.00000000 -4.00000000

Determinant = -2.lOOOOOOOOOOOOOe+l

Matrix Routines 105

Inverse of a Matrix (Inverse.pas)

Description

The inverse of an N x N matrix A is an N X N matrix A- 1, such that A- 1A equals
the identity matrix (Burden and Faires 1985, 306-316). Gauss-Jordan elimination
(Gerald and Wheatley 1984, 96-98) is used to transform the original matrix into
the identity matrix. The same elementary row operations that reduce A to the
identity matrix transform the identity matrix into the inverse of the original matrix
A. If one or more of the main diagonal elements of the transformed original matrix
(that is, after Gauss-Jordan elimination) is zero, then the original matrix A is singu­
lar and its inverse does not exist.

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •• TNArraySize] of TNvector;

Input Parameters

Di men : Integer; Dimension of the data matrix

Data : TNmatrix; The elements of the square matrix

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen s TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

106 Turbo Pascal Numerical Methods Toolbox

OutTJUt Parameters

INV : TNmatrix; The inverse of the data matrix

Error : Byte; 0: No errors
1: Dimen < 1
2: No inverse exists

Syntax of the Procedure Call

Inverse(Dimen, Data, INV, Error);

Sample Program

The sample program Inverse.pas provides 1/0 functions that demonstrate how to
find the inverse of a matrix.

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
[l, l], [l, 2] ... [l, N], [2, l] ... [2, N] ... [N, N],

where N is the dimension of the matrix

For example, a text file containing the matrix

[-! ~]
could look like this:

2
2 3

-4 0

Matrix Routines 107

Examp"le

Problem. Invert the following matrix:

1 2 0 -1.0
-1 4 3 -0.5

2 2 1 -3.0
0 0 3 -4.0

Run Inverse.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
1.000000000 2.000000000 0.000000000 -1.000000000

-1.000000000 4.000000000 3.000000000 -0.500000000
2.000000000 2.000000000 1.000000000 -3.000000000
0.000000000 0.000000000 3.000000000 -4.000000000

Inverse:
-1.952380952 0.190476190 1.571428571 -0.714285714
0.761904762 0.047619048 -0.357142857 0.071428571

-1.904761905 0.380952381 1.142857143 -0.428571429
-1.428571429 0.285714286 0.857142857 -0.571428571

To continue this example, reinvert the matrix just obtained:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6B.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
-1.952380952 0.190476190 1.571428571 -0.714285714
0.761904762 0.047619048 -0.357142857 0.071428571

-1.904761905 0.380952381 1.142857143 -0.428571429
-1.428571429 0.285714286 0.857142857 -0.571428571

Inverse:
1.000000000 2.000000000 0.000000000 -1.000000000

-1.000000000 4.000000000 3.000000000 -0.500000000
2.000000000 2.000000000 1.000000000 -3.000000000

-0.000000000 -0.000000000 3.000000000 -4.000000000

108 Turbo Pascal Numerical Methods Toolbox

Solving a System of Linear Equations wi,th Gaussian
Elimination (Gauselim.pas)

DescriptWn

The solution to a system of N linear equations, AX = B, in N unknowns may be
found by simultaneously performing Gaussian elimination (Burden and Faires
1985, 291-304) on the matrix containing the coefficients of the equations (the coef­
ficient matrix A) and the vector containing the constant terms of the equations (the
constant vector B). First, elementary row operations are used to make A upper
biangular (that is, all the elements below the main diagonal are zero). Backward
substitution (whereby X[N] is calculated and used to calculate X[N -1], which is
then used to calculate X[N - 2], and so on) is then used to compute the solution
vector X. If one or more of the elements on the main diagonal of the upper triangu­
lar matrix is zero, then no unique solution to the system exists.

User-Defined 1flpes

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •• TNArraySize] of TNvector;

In-put Parameters

Di men : Integer; Dimension of the coefficients matrix

Coefficients: TNmatrix; The square matrix containing the coefficients of the equa­
tions

Constants: TNvector; The constant terms of each equation

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen s TNArraySize

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for

Matrix Routines 109

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution: TNvector; Solution to the set of equations.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: Coefficients matrix is singular; no unique solution exists.

Syntax of th£ Procedure Call

Gaussian..Elimination(Dimen, Coefficients, Constants, Solution, Error);

Samp'le Program

The sample program Gauselim.pas provides 1/0 functions that demonstrate how to
solve a system of linear equations with Gaussian elimination.

Input Fil.e

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the coefficient matrix

2. The elements of the matrix in row order; that is,

[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N],
where N is the dimension of the matrix

3. The elements of the constant vector, in the order [l], ... ,[N]

110 Turbo Pascal Numerical Methods Toolbox

For example, to solve the system

2x+3y=l0
-4x = 10

a text file could be created to look like this:

2
2 3

-4 0
10
10

Examp"le

Problem. Solve the following linear system:

w + 2x + Oy - z = 10.0
-w + 4x + 3y - 0.5z = 21.5

2w + 2x + y - 3z = 26.0
3y - 4z = 37.0

Run Gauselim.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK. .

The coefficients:
1.000000000 2.000000000 0.000000000 -1.000000000

-1.000000000 4.000000000 3.000000000 -0.500000000
2.000000000 2.000000000 1.000000000 -3.000000000
0.000000000 0.000000000 3.000000000 -4.000000000

The constants:
1.00000000000000e+l
2.lSOOOOOOOOOOOOe+l
2.60000000000000e+l
3.70000000000000e+l

The solution:
-1.00000000000000e+O
2.ooooooooooooooe+o
3.00000000000000e+O

-7.00000000000000e+O

Matrix Routines Ill

Solving a System of Linear Equations with Gaussian
Elimination and Partial Pivoting (Partpivt.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns may be
found by simultaneously performing Gaussian elimination (Burden and Faires
1985, 291-304) on the matrix containing the coefficients of the equations (the coef­
ficient matrix A) and the vector containing the constant terms of the equations (the
constant vector B). However, excessive round-off errors can occur when elements
on the main diagonal are small compared to the elements below them in the same
column. To avoid this, partial pivoting (maximal column pivoting) is performed
(Burden and Faires 1985, 324-327); that is, row interchanges are performed so that
each main diagonal element is greater than or equal to the elements below it in the
same column.

User-Defined 'fypes

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •• TNArrayS1ze] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the coefficients matrix

Coefficients: TNmatrix; The square matrix containing the coefficients of the equa­
tions

Constants : TNvector; The constant terms of.each equation

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen s TNArraySize

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmaflrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for

112 Turbo Pascal Numerical Methods Toolbox

condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution: TNvector; Solution to the set of equations.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: Coefficients matrix is singular; no unique solution exists.

Syntax of the Procedure Call

Partial..Pivoting(Dimen, Coefficients, Constants, Solution, Error);

Sample Program

The sample program Partpivt.pas provides 1/0 functions that demonstrate how to
solve a system of linear equation with Gaussian elimination and partial pivoting.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N],

where N is the dimension of the matrix

3. The elements of the constant vector, in the order [l], ... ,[N]

Matrix Routines 113

For example, to solve the system

2x+3y=10
-4x = 10

a text file could be created to look like this:

2
2 3

-4 0
10
10

Example

Problem. Solve the following linear system:

w+2x+Oy-z= 10
- w + 4x + 3y - 0.5z = 21.5

2w + 2x + y - 3z = 26
3y - 4z = 37

Run Partpivt.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6A.dat

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The coefficients:
1.000000000 2.000000000 0.000000000 -1.000000000

-1.000000000 4.000000000 3.000000000 -0.500000000
2.000000000 2.000000000 1.000000000 -3.000000000
0.000000000 0.000000000 3.000000000 -4.000000000

The constants:
l.OOOOOOOOOOOOOOe+l
2.lSOOOOOOOOOOOOe+l
2.60000000000000e+l
3.70000000000000e+l

The solution:
-1.00000000000000e+O
2.00000000000000e+O
3.00000000000000e+O

-7.00000000000000e+O

114 Turbo Pascal Numerical Methods Toolbox

Solving a System of Linear Equations with Direct Factoring
(Dir/act.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns can be
computed by factoring the matrix containing the coefficients of the N equations
(the coefficient matrix A) into an upper triangular matrix U (that is, all the elements
below the main diagonal are zero) and a lower triangular matrix L (that is, all the
elements above the main diagonal are zero) such that A = LU. Partial pivoting is
used to reduce round-off error. A record of the pivoting permutations are recorded
in a permutation matrix P, so that the equation is actually A = PLU. Forward
substitution (analogous to backward substitution; see "Solving a System of Linear
Equations with Gaussian Elimination") is used to solve the equations 'LZ = B
(actually 'LZ = PB, where P is the pivoting permutation matrix) and UX = Z
(where X is the solution to the N linear equations, and Z is an intermediate solu­
tion). If the coefficient matrix cannot be factored into nonsingular triangular
matrices, then no unique solution exists.

This module includes two procedures to perform this algorithm. Procedure
LUJJecompose performs the LU decomposition of a matrix, and procedure
LU-Solve performs forward and backward substitution to solve the linear equa­
tions.

The most efficient way to calculate the solutions to several systems with the same
coefficient matrix but different constant vectors is to first decompose the coefficient
matrix A into Land U (Burden and Faires 1985, 342--349). Then perform backward
substitution on this decomposed matrix and each of the constant vectors B. Thus,
the coefficient matrix is decomposed only once.

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •• TNArraySize] of TNvector;

Matrix Routines 115

Procedure LUJJecompose Input Parameters

Di men : Integer; Dimension of the coefficients matrix

Coefficients : TNmatri x; Square matrix containing the coefficients of the equations

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen s TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Procedure LUJJecompose Output Parameters

Decomp : TNmatri x; The LU decomposition of the coefficients matrix.

Permute: TNmatrix; A permutation matrix that records the effects of pivoting.

Error : Byte; 0: No errors.
1: Dimen < 1.
2: The coefficients matrix is singular.

Syntax of the Procedure Call

LU....Decompose (Di men, Coeffi ci en ts, Decomp, Permute, Error) ;

Procedure LU...Solve Input Parameters

Dimen : Integer;

Decomp: TNmatrix;

Dimension of the coefficients matrix

The LU decomposition of the coefficients matrix

Constants : TNmatrix; The constant terms of each equation

Permute: TNmatrix; A permutation matrix that records the effects of pivoting

116 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. Dimen > 0

2. Dimen s TNArraySize

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Procedure LU...Solve Output Parameters

Solution : TNvector; Solution to each system of equations

Error : Byte; 0: No errors
1: Dimen < 1

Syntax of th£ Procedure Call

LU-5olve(Dimen, Decomp, Constants, Permute, Solution, Error);

Sample Program

The sample program Dirfact.pas provides 1/0 functions that demonstrate how to
solve a system of linear equations with the method of direct factoring.

Input Fil.e

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,
[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N],

where N is the dimension of the matrix

Matrix Routines 117

3. The elements of the first constant vector, in the order [l], ... ,[N], with each
element followed by a carriage return

4. The elements of any additional constant vectors, in the order [l], ... ,[N], with
each element followed by a carriage return

For example, to solve the systems

2x+3y=l0
-4x = 10

2x + 3y = 1
-4x = 2

a text file could be created to look like this:

2
2 3

-4 0
10
10
1
2

Example

Problem. Given the following set of coefficients:

2w+ x+ 5y-8z
1w + 6x + 2y + 2z

- lw - 3x - lOy + 4z
2w + 2w + 2y + z

compute solutions for each of the five constant vectors:

[-:~ -!~ j ~~ -~]
7 17 1 37 10

Run Dirfact.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6C.dat

118 Turbo Pascal Numerical Methods Toolbox

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The coefficients:
2.000000000 1.000000000 5.000000000 -8.000000000
7.000000000 6.000000000 2.000000000 2.000000000

-1.000000000 -3.000000000-10.000000000 4.000000000
2.000000000 2.000000000 2.000000000 1.000000000

The constants:
O.OOOOOOOOOOOOOOetO
1.70000000000000etl

-1.00000000000000etl
7.00000000000000etO

The solution:
1.00000000000000etO
1.00000000000000etO
1.00000000000000etO
1.00000000000000etO

The constants:
-1.50000000000000etl
5.00000000000000etl

-5.00000000000000etO
1.70000000000000etl

The solution:
2.00000000000000etO
5.00000000000000etO

-2.26268279475236e-19
3.00000000000000etO

The constants:
1.40000000000000etl
1.00000000000000etO

-1.20000000000000etl
1.00000000000000etO

The solution:
1.00000000000000etO

-1.00000000000000etO
1.00000000000000etO

-1.00000000000000etO

The constants:
-1.30000000000000etl
8.40000000000000etl

-5.lOOOOOOOOOOOOOetl
3.70000000000000etl

The solution:
4.00000000000000etO
5.00000000000000etO
6.00000000000000etO
7.00000000000000etO

Matrix Routines 119

The constants:
5.00000000000000e+O
3.00000000000000e+l

-1.SOOOOOOOOOOOOOe+l
l.OOOOOOOOOOOOOOe+l

The solution:
l.98254111540207e-18
s.ooooooooooooooe+o
l.07686940416918e-18
7.38863702730862e-19

120 Turbo Pascal Numerical Methods Toolbox

Solving a System of Linear Equations with the Iterative
Gauss-Seidel Method (Gaussidl.pas)

Description

The solution to a system of N linear equations, AX = B, in N unknowns can be
approximated by the Gauss-Seidel iterative technique (Burden and Faires 1985,
42~32). The equation AX = B is transformed into X = TX + C. Given an initial
approximation XO, the sequence xm = TXm-1 + c is generated with the following
formula:

i-1 N - I A[i,j] XJj] - I (A[i,j] xm_,[j]) + B[i]

XJi] =
j=l j=l+l

A[i,i]

The algorithm halts when the fractional difference for each element of the vector X
between two iterations is less than a specified tolerance.

If A is diagonally dominant (that is, each of the diagonal terms is greater than or
equal to the sum of the off-diagonal terms in the same row), then the sequence will
converge to the solution X. If the matrix A is not diagonally dominant, then the
sequence may converge to the solution, but more likely it will not. You must supply
the tolerance with which to approximate a solution.

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l .. TNArraySize] of TNvector;

Matrix Routines 121

Input Parameters

Dimen : Integer: Dimension of the coefficients matrix

Coefficients : TNmatri x; The square matrix containing the coefficients of the equa­
tions

Constants : TNvector;

Tol : Extended;

Maxlter : Integer;

The constant terms of the equation

Indicates accuracy in solution

Maximum number of iterations

The preceding parameters must satisfy the following conditions:

1. Dimen > O.

2. Dimen s TNArraySize.

3. Tol > 0.

4. Maxlter ~ 0.

5. The coefficients matrix may not contain a zero on the main diagonal.

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error.

Output Parameters

Solution: TNvector; Solution to the set of equations.

Iter : Integer;

Error : Byte;

122

The number of iterations required to find the solution.

0: No errors.
l: lter > Maxlter and matrix is not diagonally dominant.
2: lter > Maxlter and matrix is diagonally dominant.
3: Dimen < 1.
4: Tol s 0.
5: Maxlter < 0.
6: Zero on the diagonal of the coefficients matrix.
7: Sequence is diverging.

Turbo Pascal Numerical Methods Toolbox

If the coefficients matrix is diagonally dominant, then the Gauss-Seidel method
will converge to a solution. If the coefficients matrix is not diagonally dominant,
then the Gauss-Seidel may converge to a solution, but more likely it will not. Error
7 can only occur when the coefficients matrix is not diagonally dominant. If Error 1
is returned, it is likely that convergence is not possible; if Error 2 is returned,
convergence is possible but will talce more than Maxlter iterations.

If the diagonal of the coefficients matrix contains a zero (Error 6), then the Gauss­
Seidel method may not be used to solve the system of equations.

If the system of equations is under-determined, the Gauss-Seidel method will
still converge to a (nonunique) solution. The Gauss-Seidel method cannot distin­
guish between unique and nonunique solutions. If you suspect that your system of
equations is under-determined, use one of the direct methods (for example,
Gauselim.pas) to attempt a solution; Gaussian elimination will give an error if it is
under-determined. Alternatively, you could use Det.pas to find the determinant; if
the determinant is zero, then the system is under-determined.

Syntax of the Procedure Call

Gauss-5eidel{Dimen, Coefficients, Constants, Tol, Maxiter, Solution, Iter, Error);

Sample Program

The sample program Gaussidl.pas provides 1/0 functions that demonstrate how to
solve a system of linear equations with the iterative Gauss-Seidel method.

Input File

Data may be input from a text file. All entries in the text file should be separated
by a space or carriage return, and it does not matter if the text file ends with a
carriage return. The format of the text file should be as follows:

1. The dimension of the matrix

2. The elements of the matrix in row order; that is,

[l, l], [l, 2], ... , [l, N], [2, l], ... , [2, N], ... , [N, N],
where N is the dimension of the matrix

3. The elements of the first constant vector, in the order [l], ... ,[N]

Matrix Routines 123

For example, to solve the systems

20x+3y=l0
-4y = 10

a text file could be created to look like this:

2
20 3

0 -4
10
10

Exampl,e

Problem. Solve the following linear system to within a tolerance of IE -12:

lOv + w + 2x - 3y + 2z = 29
4v+50w+ x+ z= 35

- 2v + 5w - 30x + y + z = 25
6v + 4w + lOy + 3z = 46

- 3v - 2w - x + 6y + 25z = - 106

Run Gaussidl.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample6D.dat

Tolerance (> O): lE-12

Maximum number of iterations (> O): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The coefficients:
10.000000000 1.000000000 2.000000000 -3.000000000 2.000000000
4.000000000 50.000000000 1.000000000 0.000000000 1.000000000

-2.000000000 5.000000000 -30.000000000 1.000000000 1.000000000
6.000000000 4.000000000 0.000000000 10.000000000 3.000000000

-3.000000000 -2.000000000 -1.000000000 6.000000000 25.000000000

The constants:
-2.90000000000000e+l
3.50000000000000e+l

-2.50000000000000e+l
-4.60000000000000e+l
-1.06000000000000e+2

124 Turbo Pascal Numerical Methods Toolbox

Tolerance: l.OOOOOOOOOOOOOOe-12
Maximum number of iterations: 100

Number of iterations: 15
The result:
-2.99999999999997e+O
9.99999999999999e-l
9.99999999999998e-l

-l.99999999999999e+O
-4.00000000000000etO

Matrix Routines 125

c H A p T E R 7
Eigenvalues and Eigenvectors

The routines in this chapter can find the eigenvalues and eigenvectors. A scalar c is
an eigenvalue (or characteristic value) of a square matrix A if there is a nonzero
vector v satisfying

Av= c v

The vector v is called the eigenvector corresponding to c.

The eigenvalues and eigenvectors of a matrix provide a lot of information about the
matrix. If a matrix is written in terms of a basis of eigenvectors, then it is diagonal,
meaning that its only nonzero terms are on the main diagonal.

Each procedure in this chapter attempts to approximate at least one real eigen­
value (and associated eigenvector) of a real square matrix. The eigenvector is nor­
malized so that the element with the largest magnitude is 1.

The power method approximates the eigenvalue that is largest in magnitude (domi­
nant eigenvalue). The iterative process will converge slowly or not at all if the
dominant eigenvalue is not simple or if it has nearly the same magnitude as the
next most-dominant eigenvalue.

The inverse power method approximates the eigenvalue nearest to a user-supplied
real value. This process usually converges more rapidly than the power method,
and may be used to refine the approximate value of the eigenvalue determined by
the latter method.

127

The Wielandt method attempts to approximate a user-specified number of eigen­
values of a given matrix. The power method is first used to approximate the domi­
nant eigenvalue of the matrix. Deflation is employed to form a deflated, square
matrix (that is, a square matrix whose dimension is one less than the original
matrix}. The eigenvalues of the deflated matrix are identical to those of the original
matrix except for the determined dominant eigenvalue. Eigenvectors of the
remaining eigenvalues from the original matrix are also contained in the deflated
matrix. The dominant eigenvalue of the new deflated matrix is then determined
using the power method. Wielandt' s method is susceptible to round-off error, thus
it may be desirable to use its results as input to the inverse power method.

The cyclic Jaco/Ji method approximates all the eigenvalues of a symmetric matrix.
The iterative process uses orthogonal plane rotations to reduce the given matrix
into a diagonal form. Although Jacobi's method is only applicable to symmetric
matrices, it is much more efficient and accurate than Wielandt' s method.

128 Turbo Pascal Numerical Methods Toolbox

Real Dominant Eigenvalue and Eigenvector of a Real
Matrix Using the Power Metlwd (Power.pas)

Description

The power method (Burden and Faires 1985, 452-456) approximates the dominant
real eigenvalue of a matrix and its associated eigenvector. The dominant eigen­
value is the eigenvalue of the largest absolute magnitude. Given a square matrix
A and a real nonzero vector v, a vector w is constructed by the matrix operation
Av = w. The vector w is normalized by dividing by its element of the largest
absolute magnitude q. If the absolute difference between each of the correspond­
ing elements in w and v is less than a specified tolerance, then the procedure halts.
Otherwise, v is set equal to w, and the operation repeats until a solution is found.
The magnitude q is the dominant eigenvalue, and w will be the associated eigen­
vector of the matrix A.

You must supply the matrix A, an initial approximation to the eigenvector v, and the
tolerance.

User-Defined Types

TNvector = array[l .. TNArraySize] of Extended;

TNmatrix = array[l •. TNArraySize] of TNvector;

Input Parameters

Dimen : Integer;

Mat : TNmatri x;

Dimension of the matrix Mat

The matrix

GuessVector : TNvector; Initial approximation to the eigenvector

Maxiter : Integer; Maximum number of iterations

Tolerance : Extended; Indicates accuracy in solution

Eigenvalues and Eigenvectors 129

The preceding parameters must satisfy the following conditions:

I. Dimen > I

2. Dimen s TNArraySize

3. Tolerance > 0

4. Maxlter > 0

TNArraySize fixes an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +}is active).

Output Parameters

Eigenvalue: Extended; Approximation to the dominant eigenvalue of the matrix

Eigenvector: TNvector; Approximate eigenvector associated with the dominant
eigenvalue

Iter : Integer; Number of iterations required to find the solution

Error : Byte; 0: No errors
1: Dimen s I
2: Tolerance s 0
3: Maxlter s 0
4: Iter <::: Maxlter

Syntax of the Procedure Call

Power(Dimen, Mat, GuessVector, Maxlter, Tolerance,
Eigenvalue, Eigenvector, Iter, Error);

Comments

The power method will not converge if the initial approximation (Guess) to the
eigenvector is orthogonal to the dominant eigenvector. If the initial approximation
is orthogonal, then the power method will converge to a different eigenvector with­
out warning. If you suspect this has happened, run the routine with several differ­
ent initial approximations.

130 Turbo Pascal Numerical Methods Toolbox

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem.

The eigenvectors are normalized such that the element of largest absolute magni­
tude in each vector is equal to one.

Sampl,e Program

The sample program Power.pas provides 1/0 functions that demonstrate the power
method of approximating eigenvalues.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order
[l, l], [l, 2], .. ., [l, N], .. ., [N, l], .. ., [N, N],

where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

you could first create the following text file:

4
1
2
3
4

Exampl,e

Problem. Find the dominant eigenvalue of the matrix:

[~ l~ ~]
0 2 4

using the initial guess (1, 2, 3).

Eigenvalues and Eigenvectors 131

Run Power.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[l, 1]: 2
Matrix[l, 2]: 10
Matrix[l, 3]: O
Matrix[2, 1]: 0
Matrix[2, 2]: 1
Matrix[2, 3]: 0
Matrix[3, 1]: O
Matrix[3, 2]: 2
Matrix[3, 3]: 4

Now input an initial guess for the eigenvector:
Vector[l]: 1
Vector[2] : 2
Vector[3]: 3

Tolerance (> O): lE-8

Maximum number of iterations (> O): 100

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
2.00000000000000etO
O.OOOOOOOOOOOOOOetO
O.OOOOOOOOOOOOOOetO

1.00000000000000etl
1.00000000000000etO
2.00000000000000etO

O.OOOOOOOOOOOOOOetO
O.OOOOOOOOOOOOOOetO
4.00000000000000etO

Tolerance: 1.00000000000000e-8
Maximum number of iterations: 100

Number of iterations: 12
The approximate eigenvector:
-2.30295124326775e-14
3.53562219190609e-30
1.00000000000000etO

The associated eigenvalue: 4.00000000000000etO

The exact solution is

Eigenvalue = 4
Eigenvector = (0, 0, 1)

132 Turbo Pascal Numerical Methods Toolbox

Real Eigenvalue and, Eigenvector of a Real Matrix Using
the Inverse Power Method (InvPower.pas)

Descriptwn

Where the power method converges to the dominant real eigenvalue of a matrix
(see Power.pas), the inverse power method (Burden and Faires 1985, 45~62)
converges to the real eigenvalue nearest to a user-supplied real value. Given a
square matrix A, an initial approximation p to the eigenvalue, and an initial approx­
imation v to the eigenvector, the linear system (A - pl)w = v (where I is the
identity matrix) is solved via LU decomposition (see Chapter 6, "Solving a System
of Linear Equations with Direct Factoring"). The vector w is normalized by divid­
ing through by the element q with the largest absolute magnitude. If the absolute
difference between each of the corresponding elements in v and w is less than a
specified tolerance, then the procedure halts. Otherwise, v is set equal to w, and
the previous matrix equation is solved again. The process repeats until a solution is
reached. The eigenvalue of A closest top will be (l/q + p), and w will be the
associated eigenvector.

You must supply the matrix A, the initial approximations p and v, and the tolerance.

User-Defined 'JYpes

TNvector = array[l •. TNArraySize] of Extended;

TNmatrix = array[l .• TNArraySize] of TNvector;

Input Parameters

Dimen : Integer;

Mat : TNmatrix;

Dimension of the matrix Mat

The matrix

GuessVector : TNvector; Initial approximation (Guess) of the eigenvector

ClosestVal : Extended; The approximate eigenvalue

Maxiter : Integer; Maximum number of iterations

Tolerance : Extended; Indicates accuracy of solution

Eigenvalues and Eigenvectors 133

The preceding parameters must satisfy the following conditions:

1. Dimen > I

2. Dimen :5 TNArraySize

3. Tolerance > 0

4. Maxlter > 0

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +} is active).

Output Parameters

Eigenvalue: Extended; Approximation to the eigenvalue closest to ClnsestVal

Eigenvector: TNvector; Approximation to the eigenvector associated with Eigen­
value

Iter : Integer;

Error : Byte;

Number of iterations required to find the solution

0: No errors
1: Dimen :5 I
2: Tolerance :5 0
3: Maxlter :5 0
4: Iter ~ Maxlter
5: Eigenvalue/Eigenvector not calculated (see "Comments")

Syntax of the Procedure Call

InversePower(Dimen, Mat, GuessVector, ClosestVal, Maxlter,
Tolerance, Eigenvalue, Eigenvector, Iter, Error);

134 Turbo Pascal Numerical Methods Toolbox

Comments

The inverse power method approximates the solution of a system of linear equa­
tions. If the matrix (Mat - Eigenvalue * I) is singular, where I is the identity matrix,
the method will not converge to a solution and Error 5 will be returned. If this
occurs, run the routine again with a slightly different initial approximation,
ClosestVal.

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem.

The inverse power method is sensitive to the initial approximation (ClosestVal,). If
ClosestVal is not close to an eigenvalue or lies midway between two eigenvalues,
the algorithm will converge very slowly, if at all.

The eigenvectors are normalized such that the element of the largest absolute
magnitude in each vector is equal to one.

Sample Program

The sample program lnvPower.pas provides 1/0 functions that demonstrate the
inverse power method of approximating eigenvalues.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order

[I, I], [I, 2], ... , [I, N], .. ., [N, I], ... , [N, N],

where N is the dimension of the matrix

3. Elements of the initial guess, in the order

[l], [2], ... , [N],
where N is the dimension of the matrix

Eigenvalues and Eigenvectors 135

For example, to find an eigenvalue of the matrix

12
34

with an initial guess of (ll, 10), you could first create the following text file:

4
1
2
3
4

11
10

Exampl,e

Problem. Suppose you know that two of the eigenvalues of the matrix

2 10 0
0 1 0
0 2 4

are approximately 1.999 and 0.7. Use the inverse power method with an initial
guess of (1, 2, 3) to refine these approximations.

Run InvPower.pas with 1.999 as the approximate eigenvalue:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[l, l]: 2
Matrix[l, 2]: 10
Matrix[l, 3]: 0
Matrix[2, l]: 0
Matrix[2, 2]: 1
Matrix[2, 3]: 0
Matrix[3, l]: 0
Matrix[3, 2]: 2
Matrix[3, 3]: 4

Now input an initial guess for the eigenvector:
Vector[l]: 1
Vector[2]: 2
Vector[3]: 3

Approximate eigenvalue : 1.999

Tolerance (> 0): lE-8

Maximum number of iterations (> 0): 200

136 Turbo Pascal Numerical Methods Toolbox

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
2.00000000000000e+O
o.ooooooooooooooe+o
O.OOOOOOOOOOOOOOe+O

l.OOOOOOOOOOOOOOe+l
l.OOOOOOOOOOOOOOe+O
2.00000000000000e+O

O.OOOOOOOOOOOOOOe+O
o.ooooooooooooooe+o
4.00000000000000e+O

Approximate eigenvalue: l.99900000000000e+O
Tolerance: l.OOOOOOOOOOOOOOe-8

Maximum number of iterations: 200

Number of iterations: 4
The approximate eigenvector:
l.OOOOOOOOOOOOOOe+O
9.56200019081920e-14

-5.08756039829010e-14

The associated eigenvalue: 2.00000000000096e+O

Run InvPower.pas with 0.7 as the approximate eigenvalue:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[l, l]: 2
Matrix[l, 2]: 10
Matrix[l, 3]: 0
Matrix[2, l]: 0
Matrix[2, 2]: 1
Matrix[2, 3]: 0
Matrix[3, l]: 0
Matrix[3, 2]: 2
Matrix[3, 3]: 4

Now input an initial guess for the eigenvector:
Vector[l] : 1
Vector[2] : 2
Vector[3]: 3

Approximate eigenvalue : 0.7

Tolerance (> 0): lE-8

Maximum number of iterations (> 0): 200

Eigenvalues and Eigenvectors 137

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
2.00000000000000e+O
o.ooooooooooooooe+o
o.ooooooooooooooe+o

l.OOOOOOOOOOOOOOe+l
l.OOOOOOOOOOOOOOe+O
2.00000000000000e+O

o.ooooooooooooooe+o
o.ooooooooooooooe+o
4.00000000000000e+O

Approximate eigenvalue: 7.00000000000000e-1
Tolerance: l.OOOOOOOOOOOOOOe-8

Maximum number of iterations: 200

Number of iterations: 12
The approximate eigenvector:
l.OOOOOOOOOOOOOOe+O

-l.00000002395103e-l
6.66666682633328e-2

The associated eigenvalue: 9.99999976048973e-l

The exact solutions are

Eigenvalue = 2; Eigenvector = (1, 0, 0)
Eigenvalue = l; Eigenvector = (1, - 0.1, 2/30)

138 Turbo Pascal Numerical Methods Toolbox

Real Eigenvalues and Eigenvectors of a Real Matrix Using
the Power Method and Wklandt's Deflation
(Wielandt.pas)

Description

Wielandt' s deflation is a technique that approximates each real eigenvalue and
related eigenvector of a matrix (Burden and Faires 1985, 452-456}. Once the domi­
nant real eigenvalue/vector of a matrix has been approximated with the power
method (see "Real Dominant Eigenvalue and Eigenvector of a Real Matrix Using
the Power Method"}, the next most dominant real eigenvalue/vector is approxi­
mated by removing the dominant solution. This deflates the matrix. The deflated
matrix will have the same eigenvalues as the original matrix (except for the
removed ones}. The eigenvectors of the deflated matrix will be related to the
eigenvectors of the original matrix. (They will not be identical because the dimen­
sion of the deflated matrix is less than the dimension of the original matrix.} The
power method then approximates the dominant eigenvalue of the deflated matrix.
This process is repeated until the appropriate number (user-supplied} of eigen­
values/vectors have been approximated.

You must supply the matrix, the number of eigenvalues/vectors to approximate,
and the tolerance with which to approximate the eigenvalues/vectors.

User-Defined 'Iijpes

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •. TNArraySize] of TNvector;

TNintVector = array[l •• TNArraySize] of Integer;

Input Parameters

Di men : Integer;

Mat : TNmatrix;

Dimension of the matrix Mat

The matrix

GuessVector : TNvector; Initial approximation (Guess) of an eigenvector

Eigenvalues and Eigenvectors 139

MaxEigens : Integer; Number of eigenvalues/vectors to find (at most, Dimen),
(see "Comments")

Maxlter : Integer; Maximum number of iterations

Tolerance : Extended; Indicates accuracy in solution

The preceding parameters must satisfy the following conditions:

1. Dimen > 1

2. Dimen s TNArraySize

3. Tolerance > 0

4. Maxlter > 0

5. MaxEigens > 0

6. MaxEigens s Dimen

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvector and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +}is active).

Output Parameters

NumEigens : Integer; The number of eigenvectors returned (will be s
MaxEigens).

Eigenvalues: TNvector; The first NumEigens eigenvalues of the matrix.

Eigenvectors : TNmatrix; The eigenvectors associated with the eigenvalues.

Iter : TNintVector; Number of iterations required to find each eigenvalue/vec­
tor.

Error : Byte;

140

0: No errors.
1: Dimen s 1.
2: Tolerance s 0.
3: Maxlter s 0.
4: MaxEigens S 0, MaxEigens > Dimen.
5: lter ~ Maxlter.
6: Warning! Not a fatal error!

The last two eigenvalues aren't real.

Turbo Pascal Numerical Methods Toolbox

Syntax of th£ Procedure Call

Wfelandt(Dimen, Mat, GuessVector, MaxEfgens, Maxlter, Tolerance,
NumEigens, Eigenvalues, Eigenvectors, Iter, Error);

Comments

It is often unnecessary to determine the complete eigensystem of a matrix. The
parameter MaxEigens prevents the routine from approximating more eigenvalues/
vectors than needed. For example, if the four most dominant eigenvalues of a 20 X

20 matrix are desired, set MaxEigens equal to 4. The algorithm will halt when it
has approximated the four most dominant eigenvalues, thus saving a considerable
amount of time. Note, however, that the dimension of the vector eigenvalues and
the matrix eigenvectors must still be TNArraySize (that is, the same as the dimen­
sion of the matrix).

The power method may not converge to repeated eigenvalues with linearly
dependent eigenvectors. Repeated eigenvalues with linearly independent eigen­
vectors do not pose a problem.

The eigenvectors are normalized such that the element of the largest absolute
magnitude in each vector is equal to one.

It is difficult to determine why the power method doesn't converge to a particular
eigenvector; usually the eigenvalue is complex, or eigenvectors of repeated eigen­
values are linearly dependent. However, when Wielandt' s deflation has deflated
the matrix to a 2 x 2, it is easy to determine if the eigenvalues of the 2 X 2 are
real or complex. If the last two eigenvalues are real, then they (and their associated
eigenvectors) are returned; if the last two eigenvalues are complex, Error 6 is
returned. (Error 6 is only a warning; it is not a fatal error.) It is returned to give you
some information about the undetermined eigenvectors.

Sample Program

The sample program Wielandt.pas provides 1/0 functions that demonstrate
Wielandt's method of approximating eigensystems.

Eigenvalues and Eigenvectors 141

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order

[l, l], [l, 2], ... , [l, N], ... , [N, l], ... , [N, N],
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

12
34

you could first create the following text file:

4
1
2
3
4

Example

Problem. Find all real eigenvalues and eigenvectors of the matrix

[~ l~ ~]
0 2 4

using an initial guess of (1, 2, 3).

Run Wielandt.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select Keyboard and click OK. Then input the data as follows:

Dimension of the matrix (1-30)? 3

Matrix[l, l]: 2
Matrix[l, 2]: 10
Matrix[l, 3]: 0
Matrix[2, l]: O
Matrix[2, 2]: 1
Matrix[2, 3]: 0
Matrix[3, l]: 0
Matrix[3, 2]: 2
Matrix[3, 3]: 4

142 Turbo Pascal Numerical Methods Toolbox

Now input an initial guess for the eigenvector:
Vector[l]: 1
Vector[2]: 2
Vector[3]: 3

Tolerance (> 0): lE-6

Maximum number of eigenvalues/eigenvectors to find (<= 3): 3

Maximum number of iterations (> O): 200

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
2.00000000000000etO
O.OOOOOOOOOOOOOOetO
O.OOOOOOOOOOOOOOetO

1.00000000000000etl
1.00000000000000etO
2.00000000000000etO

O.OOOOOOOOOOOOOOetO
O.OOOOOOOOOOOOOOetO
4.00000000000000etO

Tolerance: 1.00000000000000e-6
Maximum number of eigenvalues/eigenvectors to find: 3
Maximum number of iterations: 200

Number of iterations: 10
The approximate eigenvector:
-8.32731765655097e-7
4.60590248231668e-15
1.00000000000000etO

The associated eigenvalue: 4.00000000000004et0

Number of iterations: 0
The approximate eigenvector:
1.00000000000000etO

-0.00000000000000etO
-0.00000000000000etO

The associated eigenvalue: 2.00000000000000etO

Number of iterations: 0
The approximate eigenvector:
1.00000000000000etO

-9.99999888969116e-2
6.66666592646069e-2

The associated eigenvalue: 9.99999999999991e-1

The exact solution is

Eigenvalue = 4; Eigenvector = (0, 0, 1)
Eigenvalue = 2; Eigenvector = (1, 0, O)
Eigenvalue = l; Eigenvector = (1, - 0.1, 2/30)

Eigenvalues and Eigenvectors 143

The Complete Eigensystem of a Symmetric Real Matrix
Using the Cyclic]acom Method aacobi.pas)

Description

The eigensystem of a symmetric matrix can be computed much more simply and
efficiently than the eigensystem of an asymmetric matrix. The cyclic Jacobi method
(Atkinson and Harley 1983, 154-160) is an iterative technique for approximating
the complete eigensystem of a symmetric matrix to within a given tolerance. It
consists of multiplying the matrix A by a series of rotation matrices R1• The rotation
matrices are chosen so that the elements of the upper triangular part of A (exclud­
ing the diagonal) are systematically annihilated; that is, R1 is chosen so that A[l, 2]
becomes zero, R2 is chosen so thatA[l, 3] becomes zero, and so on. Since the matrix
is symmetric, this will also annihilate the lower triangular part of A. Because each
rotation will probably change the value of elements annihilated in previous rota­
tions, the method is iterative. Eventually, the matrix will be diagonalized. The
eigenvalues will be the elements of the main diagonal of the diagonal matrix; the
eigenvectors will be the corresponding rows of the matrix created by the product of
the rotation matrices R,.

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

TNmatrix = array[l •• TNArraySize] of TNvector;

Input Parameters

Dimen : Integer; Dimension of the matrix Mat

Mat : TNmatrix; The symmetric matrix

Maxlter : Integer; Maximum number of iterations

Tolerance : Extended; Accuracy in solution

144 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. Dimen > 1.

2. Dimen s TNArraySize.

3. Tolerance > 0.

4. Maxlter > 0.

5. Mat must be symmetric.

TNArraySize sets an upper bound on the number of elements in each vector. It is
used in the type definition of TNvect:or and TNmatrix. TNArraySize is not a vari­
able name and is never referenced by the procedure; hence there is no test for
condition 2. If condition 2 is violated, the program will crash with an Index Out of
Range error (assuming the directive {$R +}is active).

Output Parameters

Eigenvalues: TNvector; Approximation to the eigenvalues of the matrix

Eigenvectors : TNmatrix; Approximation to the eigenvectors associated with the
eigenvalues

Iter : Integer; Number of iterations required to find eigenvalues/vectors

Error: Byte; 0: No errors
1: Dimen s 1
2: Tolerance s 0
3: Maxlter s 0
4: Mat not symmetric
5: Iter ~ Maxlter

Syntax of the Procedure Call

Jacobi(Dimen, Mat, Maxlter, Tolerance, Eigenvalues, Eigenvectors, Iter, Error);

Eigenvalues and Eigenvectors 145

Comments

For symmetric matrices, the Jacobi method is preferred to Wielandt' s deflation.

Unlike the power and inverse power methods, the efficiency of the Jacobi method
is not affected by repeated eigenvalues with linearly dependent eigenvectors.

The eigenvectors are normalized such that the element of largest absolute magni­
tude in each vector is equal to one.

Sample Program

The sample program Jacobi.pas provides I/O functions that demonstrate Jacobi's
method of approximating the eigensystem of symmetric matrices.

Input File

Data may be input from a text file. Entries in the text file should be separated by
spaces or carriage returns, and it does not matter if the text file ends with a carriage
return. The format of the text file should be as follows:

1. Dimension of the matrix

2. Elements of the matrix, in the order

[l, l], [l, 2], ... , [l, N], ... , [N, l], ... , [N, N],
where N is the dimension of the matrix

For example, to find the dominant eigenvalue of the matrix

[~~]
you could first create the following text file:

4
1
2
2
1

146 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Find the complete eigensystem of the symmetric matrix

[! i =~ =~] -3 -1 1 2
-1 -3 2 1

Run Jacobi.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample7A.dat

Tolerance (> 0): lE-8

Maximum number of iterations (> O): 200

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The matrix:
1.000000000 2.000000000 -3.000000000 -1.000000000
2.000000000 1.000000000 -1.000000000 -3.000000000

-3.000000000 -1.000000000 1.000000000 2.000000000
-1.000000000 -3.000000000 2.000000000 1.000000000

Tolerance: l.OOOOOOOOOOOOOOe-8
Maximum number of iterations: 200

Number of iterations: 4

The approximate eigenvector:
-1.00000000000000etO
-1.00000000000000etO

l.OOOOOOOOOOOOOOetO
l.OOOOOOOOOOOOOOetO

The associated eigenvalue: 7.00000000000000e+O

The approximate eigenvector:
9.99999999977805e-l

-9.99999999977804e-l
-1.00000000000000etO

l.OOOOOOOOOOOOOOetO

The associated eigenvalue: l.OOOOOOOOOOOOOOe+O

Eigenvalues and Eigenvectors 147

The approximate eigenvector:
l.OOOOOOOOOOOOOOe+O

-9.99999556935429e-l
9.99999999977805e-l

-9.99999556913233e-l

The associated eigenvalue: -2.99999999999990e+O

The approximate eigenvector:
9.99999556935428e-l
l.OOOOOOOOOOOOOOe+O
9.99999556935429e-l
l.OOOOOOOOOOOOOOe+O

The associated eigenvalue: -1.000000000000lOetO

The exact solution is

Eigenvalue =
Eigenvalue =
Eigenvalue =
Eigenvalue =

148

7; Eigenvector = (1, 1, -1, -1)
- 3; Eigenvector = (1, - 1, 1, - 1)

l; Eigenvector = (-1, 1, 1, -1)
-1; Eigenvector = (1, l, 1, 1)

Turbo Pascal Numerical Methods Toolbox

c H A p T E R 8
Initial Value and Boundary Value Methods

A differential equation is like an ordinary equation except that the unlmown is a
function, and derivatives of the function appear in the equation. For example,

f"(x) + f(x) = 0

is a differential equation.f"(x) is the second derivative of.f(x). The solutions are the
functions of the form

f(x) = a * cos(x) + b * sin(x)

The function is uniquely determined by suitable initial conditions, such as

f(O) = 3
f'(O) = 4

in which case the solution is

f(x) = 3 * cos(x) + 4 * sin(x)

The routines in this chapter solve differential equations that are ordinary and lin­
ear. A differential equation is ordinary if there is only an independent variable (that
is, the unknown function is a function of only one variable), and thus the deriva­
tives are ordinary derivatives and not partial derivatives. A differential equation is
linear if the unknown function and its derivatives appear linearly in the equation.

This chapter describes routines that specifically solve: (1) initial value problems for
nth-order ordinary differential equations, (2) initial value problems for systems of
coupled first-order and second-order ordinary differential equations, and (3)
boundary value problems for second-order ordinary differential equations.

149

Note that these routines work only with ordinary differential equations, not partial
differential equations. All of the routines in this chapter can solve problems involv­
ing nonlinear equations.

Two one-step techniques that solve initial value problems for first-order ordinary
differential equations are implemented. The first technique employs the fourth­
order Runge-Kutta method, also known as the classical Runge-Kutta method. The
second employs the Runge-Kutta-Fehlberg method.

Each one-step technique approximates the value of the dependent variable at a
mesh point, which is a value of the independent variable, by using only the infor­
mation obtained from the preceding mesh point. The Runge-Kutta method em­
ploys equally spaced mesh points. On the other hand, the Runge-Kutta-Fehlberg
method varies the spacing of the mesh points in order to control the local trunca­
tion error. This produces a corresponding bound on the global error.

The Adams-Bashforth!Adams-Moulton predictor/corrector method is a multistep
method that uses information obtained at several preceding mesh points to approx­
imate the value of the dependent variable at the current mesh point. The proce­
dure employs the Adarns-Bashforth four-step method to obtain a predictor. It is
subsequently used as input for the Adams-Moulton three-step method to obtain a
corrector. The corrector is the approximate value of the solution. Mesh points are
equally spaced, and the starting values for the process are determined by the one
step, fourth-order Runge-Kutta method.

The Runge-Kutta methods are the most reliable and should be used when you are
uncertain of the behavior of the differential equation (for example, if the solution to
the differential equation is not very smooth). If you want the output to be evenly
spaced (in x) or do not require a high degree of accuracy, use the classical Runge­
Kutta method. Otherwise, the Runge-Kutta-Fehlberg method is the best general
purpose routine to use, since it provides control over the accuracy of the solution.

The Adams-Bashforth/Adarns-Moulton method achieves the same accuracy (for
equally spaced mesh points) as the fourth-order Runge-Kutta formula, but it is
significantly faster. Consequently, the Adarns-Bashforth/Adarns-Moulton method is
the most desirable method if you are reasonably certain that the differential equa­
tion is well-behaved.

Initial value problems for first-order ordinary differential equations are guaranteed
to have a unique solution on the interval a, b if the function

x' = f(t, x)

150 Turbo Pascal Numerical Methods Toolbox

is continuous over the interval a, b, and if the function satisfies the Lipshitz condi­
tion. The Lipshitz condition states that there exists a positive number L such that

I f(t, x2) - f(t, x1) I S Llx2 - x1I
for all a s t s b, - oo < x < oo •

Initial value problems for second-order ordinary differential equations can be
solved via a fourth-order Runge-Kutta method (Runge....2.pas). This procedure
reduces a given differential equation to a system of two, first-order ordinary differ­
ential equations. The solution to this system is approximated at equally spaced
mesh points with the fourth-order Runge-Kutta method.

Initial value problems for second-order ordinary differential equations are guaran­
teed to have a unique solution on the interval a, b if the function

x" = f(t, x, x')

is continuous over the interval a, b and if the function satisfies the Lipshitz condi­
tion. For a second-order differential equation, the Lipshitz condition states that
there exists a positive number L such that

lf(t, x2, x'2) - f(t, xi' x'2) I s L(lx2 - x1I + lx'2 - x' 1I)
for all a s t s b, - oo < x < oo, - oo < x' < oo.

The Runge-Kutta method can be generalized for any order ordinary differential
equation. The file Runge_N .pas contains an algorithm that can solve an initial
value problem for an nth-order differential equation with the fourth-order Runge­
Kutta formulas. The Lipshitz condition can be generalized for any order ordinary
differential equation. (For details, consult the reference book listed in the section,
·solution to an Initial Value Problem for a First-Order Ordinary Differential Equa­
tion Using the Runge-Kutta Method.")

Although Runge_N .pas can be used to solve initial value problems for first-order
and second-order ordinary differential equations, we recommend that Runge-1.pas
and Runge....2.pas be used instead. The notation used by these routines is somewhat
simpler than the general case. There is no significant difference in computation
time between the general program (Runge..N.pas) and the specific programs
(Runga.l.pas and Runge....2.pas).

Systems of coupled equations may also be solved with Runge-Kutta techniques. A
system of up to ten first-order ordinary differential equations can be solved with
the file Runge-81.pas. A system of up to ten second-order ordinary differential
equations can be solved with the file Runga.S2.pas. The algorithms in both these
files are based on the classical Runge-Kutta method with uniform spacing between
mesh points; hence, they do not allow for accuracy control (as in the Runge-Kutta­
Fehlberg method). (The Lipshitz condition for systems of equations is given in the
reference in the sections about Runge-81.pas and Runge-82.pas.)

Initial Value and Boundary Value Methods 151

Boundary value problems for second-order ordinary differential equations (where
the value of the dependent variable is specified at the two endpoints of interval)
can be solved using shooting techniqtres. Shooting techniques converge onto the
slope of the function at one boundary. This reduces the boundary value problem to
a series of initial value problems. The series concludes when the initial value prob­
lem satisfies the boundary condition at the other boundary.

If the second-order differential equation is linear (that is, linear in the dependent
variable(s), not necessarily linear in the independent variable), the linear-shooting
method (linshot2.pas) may be used. A linear combination of solutions to two initial
value problems yields the solution to the boundary value problem.

If the second-order differential equation is nonlinear, the routine Shoot2.pas must
be used. The secant method generates a sequence of solutions with different values
of the first derivative until the appropriate boundary condition, subject to a desired
accuracy, is satisfied. Although Shoot2.pas may be used to solve linear boundary
value problems, Linshot2.pas is more efficient for the linear case.

Boundary value problems for second-order differential equations are guaranteed to
have a unique solution on the interval a, b if the function

y" = f(x, y, y')

and the two partial derivatives of/oy, ofloy' are continuous on the interval [a, b].
Furthermore, ofloy must be positive and ofloy' must be bounded for all x, y, y' a s
x s b, - 00 < y < 00' - 00 < y' < 00 •

The convergence to the appropriate initial value of the first derivative is not
assured for nonlinear boundary value problems. A good guess of the derivative
boundary condition is often required and may involve considerable trial and error.

Interpolation techniques (see Chapter 3) may be used to approximate the solution
of values of the independent variable that are not mesh points.

152 Turbo Pascal Numerical Methods Toolbox

Solution to an Initial Value Prob"lem far a First-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (Runge--1.pas)

Description

This example uses the Runge-Kutta method (Burden and Faires 1985, 220-227} to
approximate the solution to a first-order ordinary differential equation with a speci­
fied initial condition.

Given a function of the form

dx/dt = TNTargetF(t, x)

which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = Xlnitial

and spacing

h = (UpperLimit - LowerLimit)/Numlntervals

the fourth-order Runge-Kutta method approximates x in the interval [LowerLimit,
UpperLimit].

The fourth-order Runge-Kutta formulas consist of the following:

Fl = h * TNTargetF(t, x[t])
F2 = h * TNTargetF(t + h/2, x[t] + Fl/2)
F3 = h * TNTargetF(t + h/2, x[t] + F2/2)
F4 = h * TNTargetF(t + h, x[t] + F3)
x[t + l] = x[t] + (Fl + 2 * F2 + 2 * F3 + F4)/6

where t ranges from LowerLimit to Upper Limit in steps of h. These formulas give a
truncation error of order h 4 •

You must supply LowerLimit, UpperLimit, Xlnitial, Numlnteroals, and TNTargetF.

User-Defiood Types

TNvector = array[l .• TNArraySize] of Extended;

Initial Value and Boundary Value Methods 153

User-Defined Function

TNTargetF(t, X : Extended) : Extended;

dx/dt = TNTargetF(t, x)

The function TNTargetF(t, x) is a user-defined function that calculates the deriva­
tive dx!dt.

Input Parameters

Lowerlimit: Extended; Lower limit of interval

Upperlimi t : Extended; Upper limit of interval

XInitial : Extended; Value of X at LowerLimit

NumReturn : Integer; Number of (t, x) pairs returned from the procedure

Numlnterval s : Integer; Number of subintervals used in calculations

The preceding parameters must satisfy the following conditions:

1. NumReturn > 0

2. Numlnteroals ;;::: NumReturn

3. LowerLimit ¢ UpperLimit

Output Parameters

TVa l ues : TNvector; Values oft between the limits

XValues: TNvector; Values of X approximated at the values in TValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: Numlntervals < NumReturn
3: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialCondlstOrder(Lowerlimit, Upperlimit, Xlnitial, NumReturn,
Numlntervals, TValues, XValues, Error, @TNTargetF);

The procedure InitialConditionlstOrder integrates the first-order differential
equation.

154 Turbo Pascal Numerical Methods Toolbox

Comments

This procedure will compute Numlnteroals values in its calculations; however, you
will rarely need to use all the values. The vectors TValues and XValues will contain
only NumReturn values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when Numlnteroals is a multiple of
NumReturn.) Thus, you can ensure a highly accurate solution (by making Numln­
teroals large) without generating an excessive amount of output (by making Num­
Return small).

Warning: A stiff differential equation occurs when there are at least two very dif­
ferent scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e- 100•. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (Numlnter­
vals).

Sample Program

The sample program Runge-1.pas provides 1/0 functions that demonstrate the
Runge-Kutta method of solving initial value problems. Note that the address of
TNTargetF is passed into the InitialConditionlstOrder procedure.

Example

Problem. Solve the following initial value problem with the Runge-Kutta method:

x' = x/t + t - 1 1 :s; t :s; 2
x(l) = 1

1. Code the equation into the program Runge_l.pas:

function TNTargetF(t, X : Extended) : Extended;

{--}
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---}
{--}
begin

TNTargetF := x/t t t - 1
end;

Initial Value and Boundary Value Methods

{ function TNTargetF }

155

2. Run Runge-1.pas:

Lower limit of interval? 1

Upper limit of interval? 2

X value at t = 1.00000e+O: 1

Number of values to return (1-40)? 10

Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower limit: 1.00000000000000e+O
Upper limit: 2.00000000000000e+O

Value of X at 1.0000: 1.00000000000000e+O
Number of intervals: 100

t
1.00000000
1.10000000
1.20000000
1.30000000
1.40000000
1.50000000
1.60000000
1.70000000
1.80000000
1.90000000
2.00000000

x
1.00000000000000e+O
1.10515880220649e+O
1.22121413182916e+O
1.34892645616477e+O
1.48893886869362e+O
1.64180233779216e+O
1.80799419315265e+O
1.98793197313186e+O
2.18198400310574e+O
2.39047761619428e+O
2.61370563879444e+O

The exact solution is

X = t2 - t * ln(t)
X(2) = 2.6137056

156 Turbo Pascal Numerical Methods Toolbox

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation
Using the Runge-Kutta-Fehlberg Method (RKFJ..pas)

Description

This example uses the Runge-Kutta-Fehlberg method (Burden and Faires 1985,
230-235) to approximate a solution within a specified tolerance to a first-order
ordinary differential equation with a specified initial condition.

Where the Runge-Kutta method (see Runge_l.pas) uses a constant spacing h, the
Runge-Kutta-Fehlberg method varies the spacing so that the solution can be
approximated with accuracy.

Given a function of the form

dx!dt = TNTargetF(t, x)

which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = Xlnitial

both the fourth-order and fifth-order Runge-Kutta formulas are used to approxi­
mate x in the intetval [LowerLimit, UpperLimit]. The number of subintetvals is
continually increased until the fractional difference between the results of the
fourth-order and fifth-order formulas (which give a truncation error of h4 and h5,

respectively) in each subintetval is less than the specified tolerance.

You must supply LowerLimit, UpperLimit, Tolerance, and TNTargetF.

User-Defined Types

TNvector = array[l .• TNArraySize] of Extended;

User-Defined Function

TNTargetF(t, X : Extended) : Extended;

dx!dt = TNTargetF(t, x)

Initial Value and Boundary Value Methods 157

Input Parameters

Lowerlimit : Extended; Lower limit of interval

Upperlim1 t : Extended; Upper limit of interval

Xlnitial : Extended; Value of X at LowerLimit

Tolerance: Extended; Maximum tolerable fractional difference between iterate
values

NumReturn : Integer; Number of (t, x) values to be returned

The preceding parameters must satisfy the following conditions:

1. Tolerance > 0

2. NumReturn > 0

3. LowerLimit ;ii! UpperLimit

Output Parameters

TValues: TNvector; Values oft at which X was approximated

XValues: TNvector; Values of X at the values in TValues

Error : Byte; 0: No errors
1: Tolerance s 0
2: NumReturn s 0
3: LowerLimit = UpperLimit
4: Tolerance not reached

Syntax of the Procedure Call

RungeKuttaFehlberg(Lowerlimit, Upperlimit, Xlnitial, Tolerance,
NumReturn, TValues, XValues, Error, @TNTargetF);

The procedure RungeK.uttaFehlberg integrates the first-order differential equation
TNTargetF.

158 Turbo Pascal Numerical Methods Toolbox

Comments

This procedure will compute more values in its calculations than it will return in
the vectors TValues and XValues. The vectors TValues and XValues will contain
only NumReturn values at subintervals between the lower and upper limits. More
values will be returned in regions of large functional variation than in regions of
small functional variation. Thus, you can ensure a highly accurate solution (by
malting the Tolerance small) without generating an excessive amount of output (by
malting NumReturn small).

The Runge-Kutta-Fehlberg method improves the accuracy in the solution by
reducing the spacing between successive values of t. However, if the Tolerance is
too small, the spacing required to reach Tolerance may be beyond the machine's
limit of precision. Consequently, the routine will not converge to a solution that
meets the required Tolerance and Error 5 will be returned.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e- 100.. The Runge-Kutta-Fehlberg method may
generate a numerical solution that bears no resemblance to the exact solution of the
differential equation. This unstable numerical solution usually grows exponentially
and may be oscillatory. However, if the exact solution of the differential equation
grows as the independent variable increases, the instability may be difficult to
detect. If a suspected instability has been encountered, reduce the interval size
(Numlntervals).

Samp'le Program

The sample program RKF-1.pas provides 1/0 functions that demonstrate the
Runge-Kutta-Fehlberg method of solving initial value problems. Note that the
address of TNTargetF is passed into the Runge-Kutta-Fe1dberg procedure.

Exam pk

Problem. Use the Runge-Kutta-Fehlberg method to solve the following initial
value problem with a tolerance of lE-6:

x' = x/t + t - 1
x(l) = 1

l:5t:52

Initial Value and Boundary Value Methods 159

I. Code the differential equation into the program RKF-1.pas:

function TNTargetF(t, X : Extended) : Extended;

{--}
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---}
{--}
begin

TNTargetF := x/t + t - l;
end; { function TNTargetF }

2. Run RKF-lpas:

Lower limit of interval? 1

Upper limit of interval? 2

X value at t = l.OOOOOe+O: 1

Number of values to return (1-40)? 10

Tolerance (> O)? lE-6

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower limit: l.OOOOOOOOOOOOOOe+O
Upper limit: 2.00000000000000e+O

Value of X at 1.0000: l.OOOOOOOOOOOOOOe+O
Tolerance: l.OOOOOOOOOOOOOOe-6

t
1.00000000
1.10000000
1.20000000
1.30000000
1.40000000
1.50000000
1.60000000
1.70000000
1.80000000
1.90000000
2.00000000

x
l.OOOOOOOOOOOOOOe+O
l.10515881708653e+O
l.22121416069278e+O
l.34892649817459e+O
l.4889389231035le+O
l.64180240395245e+O
l.80799427050390e+O
l.9879320611947le+O
2.18198410146987e+O
2.39047772450816e+O
2.61370575675625e+O

Now solve the same problem with a smaller tolerance, l.OOOE-08:

Lower limit of interval? 1

Upper limit of interval? 2

X value at t = l.OOOOOetO: 1

Number of values to return (1-40)? 10

Tolerance (> O)? lE-8

160 Turbo Pascal Numerical Methods Toolbox

Now a dialog box appears asking you whether you would like the output sent to the
Screen, directly to the Printer, or into a File. Make your selection and click OK.

Lower Limit: l.OOOOOOOOOOOOOOe+O
Upper Limit: 2.00000000000000e+O

Value of X at 1.0000 : l.OOOOOOOOOOOOOOe+O
Tolerance: l.OOOOOOOOOOOOOOe-8

T X
1.00000000 l.OOOOOOOOOOOOOOe+O
1.12208941 l.12982837401487e+O
1.20585321 l.22836146842843e+O
1.29271260 l.33921121932749e+O
1.38286653 l.46405185232472e+O
1.47648998 l.60468229893107e+O
1.57374241 l.76304147999705e+O
1.67477301 l.94122165035498e+O
1.77972398 2.14148082489667e+O
1.88873280 2.36625482901586e+O
2.00193373 2.61816928271558e+O

The exact solution is

X = t 2 - t ln(t)

X(2) = 2.6137056
X(2.00193373) = 2.6181693

In the first run, a solution could be approximated within tolerance with a spacing of
0.1. In the second run, the algorithm had to vary the spacing in order to approxi­
mate a solution within the tolerance.

Initial Value and Boundary Value Methods 161

Solution to an Initial Value Problem for a First-Order
Ordinary Differential Equation
Using the Adams-Bashforth!Adams-Moulton
Predictor/Corrector Scheme (Adams-1.pas)

Description

This example approximates the solution to a first-order ordinary differential equa­
tion with a specified initial condition using the four-step Adams-Bashforth/Adams­
Moulton formulas (Burden and Faires 1985, 238-247). Runge-Kutta methods are
one-step methods, because each calculation uses information from only one pre­
vious point. The Adams' formulas use information from four previous points, thus
the four-step method.

Given a function of the form

dx/dt = TNTargetF(t, x)

which satisfies the conditions given at the beginning of this chapter, and an initial
condition

x[LowerLimit] = Xlnitial

and spacing

h = (UpperLimit - LowerLimit)/Numlnteroals

the fourth-order Runge-Kutta formula (see Runge-1..pas) is used to find approxi­
mations at the first three points in the interval [LowerLimit, UpperLimit]. Then the
following explicit Adams-Bashforth formula:

x.[i + l] = x[i] + h/24 * { 55 * TNTargetF(t[i], x[i]}

- 59 * TNTargetF(t[i-1], x[i-1])

+ 37 * TNTargetF(t[i - 2], x[i - 2])

- 9 * TNTargetF(t[i - 3], x[i - 3]) }

and the following implicit Adams-Moulton formula:

x[i + l] = x[i] + h/24 * { 9 * TNTargetF(t[i + l], xJi + l])

+ 19 * TNTargetF(t[i], x[i])

- 5 * TNTargetF(t[i - l], x[i -1])

+ TNTargetF(t[i - 2], x[i - 2]) }

approximate (predict) and refine (correct) all other points in the interval.

162 Turbo Pascal Numerical Methods Toolbox

You must supply UpperLimit, LowerLimit, Xlnitial, Numlnteroals, and TNTargetF.

User-Defined Types

TNvector = array[l .. TNArraySize] of Extended;

User-Defined Function

TNTargetF(t, X : Extended) : Extended;

dx/dt = TNTargetF(t, x)

Input Parameters

Lowerlimit: Extended; Lower limit of interval

Upperlimit: Extended; Upper limit of interval

XInitial : Extended; Value of X at LowerLimit

NumReturn : Integer: Number of (t, x) values to be returned from the procedure

Numinterval s : Integer; Number of subintervals to be used in calculations

The preceding parameters must satisfy the following conditions:

1. NumReturn > 0

2. Numlnteroals 2= NumReturn

3. LowerLimit ¢ UpperLimit

Output Parameters

TValues: TNvector: Values oft between the limits

XValues: TNvector; Values of X determined at the values in TValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: Numlnteroals < NumReturn
3: LowerLimit = UpperLimit

Initial Value and Boundary Value Methods 163

Syntax of tlw Procedure Call

Adams(Lowerlimft, Upperlimit, Xlnitial, NumReturn,
Numintervals,TValues, XValues, Error, @TNTargetF);

The procedure Adams integrates the first-order differential equation TNTargetF.

Comments

This procedure will compute Numlnterools values in its calculations; however, you
will rarely need to use the values. The vectors TValues and XValues will contain
only NumRetum values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when Numlnteroals is a multiple of
NumRetum.) Thus, you can ensure a highly accurate solution (by making Numln­
teroals large) without generating an excessive amount of output (by making Num­
Retum small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e- 100... The Adams-Bashforth/Adams-Moulton
method may generate a numerical solution that bears no resemblance to the exact
solution of the differential equation. This unstable numerical solution usually
grows exponentially and may be oscillatory. However, if the exact solution of the
differential equation grows as the independent variable increases, the instability
may be difficult to detect. If a suspected instability has been encountered, reduce
the interval size (Numlnteroals).

Sample Program

The sample program Adams-I.pas provides 1/0 functions that demonstrate the
Adams-Bashforth/Adams-Moulton predictor/corrector method of solving initial
value problems. Note that the address of TNTargetF gets passed into the Adams
procedure.

Examp'le

Problem. Solve the following initial value problem with the Adams-Bashforth/
Adams-Moulton method:

x' = x/t + t - I
x(I) = I

164

Ists2

Turbo Pascal Numerical Methods Toolbox

1. Code the differential equation into the program Adams..1.pas:

function TNTargetF(t, X : Extended) : Extended;

{--}
{--- THIS IS THE FIRST-ORDER DIFFERENTIAL EQUATION ---}
{--}
begin

TNTargetF := x/t + t - 1;
end;

2. Run Adams-1..pas:

Lower l;m;t of ;nterval? 1

Upper l;m;t of ;nterval? 2

X value at t = 1.00000etO: 1

Number of values to return (1-40)? 10

Number of ;ntervals (>= 10)? 100

{ funct;on TNTargetF }

Now a dialog box appears asld.ng you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower lfm;t: 1.00000000000000e+O
Upper l;m;t: 2.00000000000000e+O

Value of X at 1.0000: 1.00000000000000e+O
Number of ;ntervals: 100

t
1.00000000
1.10000000
1.20000000
1.30000000
1.40000000
1.50000000
1.60000000
1.70000000
1.80000000
1.90000000
2.00000000

x
l.OOOOOOOOOOOOOOe+O
l.10515880229293e+O
1.22121413201736e+O
l.3489264564380le+O
l.48893886904034e+O
l.64180233820416e+O
1.80799419362396e+O
l.98793197365806e+O
2.18198400368348e+O
2.39047761682098e+O
2.6137056394681le+O

The exact solution is

X = t2 - t ln(t)
x(2) = 2.6137056

Initial Value and Boundary Value Methods 165

Solution to an Initial Value Prahl.em for a Second-Order
Ordinary Differential Equation Using the Runge-Kutta
Method (Runge--2.pas)

Description

This example approximates the solution to a second-order ordinary differential
equation with specified initial conditions using the two variable Runge-Kutta for­
mulas (Burden and Faires 1985, 261-269).

Given a function of the form

<fx!dt2 = TNTargetF(t, x, x')

where x' indicates dx/dt (which satisfies the Lipshitz condition given at the begin­
ning of this chapter), the initial conditions

x[LowerLimit] = lnitialValue
x'[LowerLimit] = lnitialDeriv

and spacing

h = (UpperLimit - LowerLimit)/Numlnteroals

rewrite the second-order differential equation as two, first-order differential equa­
tions:

x' = y
y' = TNTargetF(t, x, y)

Then the fourth-order, two-variable Runge-Kutta method can be used to approxi­
mate simultaneously x and y (x and x').

The fourth-order Runge-Kutta formulas for these equations consist of the follow­
ing:

Flx = h * y[t]

Fly = h * TNTargetF(t, x[t], y[t])

F2x = h * (y[t] + Fly/2)

F2y = h * TNTargetF(t + h/2, x[t] + Flx/2, y[t] + Fly/2)

F3x = h * (y[t] + F2y/2)

F3y = h * TNTargetF(t + h/2, x[t] + F2x/2, y[t] + F2y/2)

F4x = h * (y[t] + F3y)

F4y = h * TNTargetF(t + h, x[t] + F3x, y[t] + F3y)

166 Turbo Pascal Numerical Methods Toolbox

x[t+ l] = x[t] + (Flx + 2 * F2x + 2 * F3x + F4x)/6

y[t+ l] = y[t] + (Fly + 2 * F2y + 2 * F3y + F4y)/6·

where t ranges from Lower Limit to UpperUmit in steps of h. These formulas give a
truncation error of order h 4•

You must supply LowerUmit, UpperLimit, Xlnitial, Numlnteroals, and TNTargetF.

User-Defined JYpes

TNvector = array[l •• TNArraySize] of Extended;

User-Defined Function

TNTargetF(t, X, XPrime : Extended) : Extended;

dx2 !dt2 = TNTargetF(t, x, dx!dt)

Input Param£ters

Lowerli mi t : Extended: Lower limit of interval

Upperlimi t : Extended; Upper limit of interval

InitialValue: Extended; Value of X at LowerLimit

InitialDeriv : Extended; Derivative of X at LowerLimit

NumReturn : Integer: Number of (t, x) values returned from the procedure

Numinterval s : Integer; Number of subintervals used in the calculations

The preceding parameters must satisfy the following conditions:

1. NumRetum > 0

2. Numlnteroals ;;:: NumRetum

3. LowerUmit ¢ UpperLimit

Initial Value and Boundary Value Methods 167

Output Parameters

TValues : TNvector;

xv a 1 ues : TNvector;

Values oft between the limits

Values of X determined at the values in TValues

XDerivVal ues : TNvector; Values of the first derivative of X determined at the values
in TValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: Numlnteroals < NumReturn
3: LowerLimit = UpperLimit

Syntax of th£ Procedure Call

Initia1Cond2nd0rder(Lowerlimit, Upperlimit, InitfalValue, InitialDeriv,
NumReturn, Numintervals, TValues, XValues,
XDerivValues, Error, @TNTargetF);

The procedure lnitialCondition2ndOrder integrates the second-order differential
equation TNTargetF.

Comments

This procedure will compute Numlnt,eroals values in its calculations; however, you
will rarely need to use all these values. The vectors TValues, XValues, and XDeriv­
Values will contain only NumReturn values at roughly equally spaced t-values
between the lower and upper limits. (They will be equally spaced only when
Numlnt,eroals is a multiple of NumReturn.) Thus, you can ensure a highly accurate
solution (by making Numlnt,eroals large) without generating an excessive amount
of output (by making NumReturn small).

Warning: A differential equation occurs when there are at least two very different
scales of the independent variable on which the dependent variable(s) is changing;
for example, y = x + e- 100.. The Runge-Kutta method may generate a numerical
solution that bears no resemblance to the exact solution of the differential equation.
This unstable numerical solution usually grows exponentially and may be oscilla­
tory. However, if the exact solution of the differential equation grows as the inde­
pendent variable increases, the instability may be difficult to detect. If a suspected
instability has been encountered, reduce the interval size (Numlnt,eroals).

168 Turbo Pascal Numerical Methods Toolbox

Samp1.e Program

The sample program Runge-2.pas provides 1/0 functions that demonstrate the
Runge-Kutta method of solving initial value problems for second-order ordinary
differential equations. Note that the address of TNTargetF gets passed into the
lnitialCondition2ndOrder procedure.

Exam pk

Problem. A weight with mass m lies on a frictionless table and is connected to a
spring with spring constant k:

-wan

F(w)
k

m

Frictionl1ss surface

If the weight is subject to a driving force F sin(w t) (w represents the frequency of
the driving force and t is time), the equation of motion of the mass is as follows:

m rfx!df + k x = F sin(w t)

Given

m = 2kg
F=9N
k = 32 Nim
w = 5 cycles/sec
x(O) = 0 m
dx(O)/dt = -2.5 m/sec

find the position and velocity of the block from t = 0 second to t = 2 seconds.

I. Rewrite the preceding second-order differential equation:

rfx!dt1 = F/m sin(w t) - k!m x

Initial Value and Boundary Value Methods 169

2. Code this second-order differential equation into the program Runge-2.pas:

function TNTargetF(t : Extended;
X : Extended;
XPrime : Extended) : Extended;

{---}
{--- THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION ---}
{---}
begtn

TNTargetF := 9/2 * Sin (5 * t) - 32/2 * x;
end; { function TNTargetF }

3. Run Runge-2.pas:

170

Lower limit of interval? 0

Upper limit of interval? 2

Enter x value at t = o.oooooe+o: o
Enter derivative of X at t = O.OOOOOe+O: -2.5

Number of values to return (1-40)? 10

Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: O.OOOOOOOOOOOOOOe+O
Upper Limit: 2.00000000000000e+O

Value of X at 0.0000 : O.OOOOOOOOOOOOOOe+O
Value of X' at 0.0000 :-2.50000000000000e+O

Number of intervals: 100

T
0.00000000
0.20000000
0.40000000
0.60000000
0.80000000
1.00000000
1.20000000
1.40000000
1.60000000
1.80000000
2.00000000

Value of X
O.OOOOOOOOOOOOOOe+O

-4.20735284275848e-l
-4.54648724216734e-1
-7.05605786993375e-2
3.78400378699554e-l
4.79461767300631e-l
l.39708469016312e-1

-3.28491796183335e-l
-4.94677974769031e-1
-2.06059519715177e-1
2.72008842396951e-l

Derivative of X
-2.50000000000000e+O
-l.35075642830665e+O

l.04036531118478e+O
2.47497991717220e+O
1.63411037473655e+O

-7.09151289407566e-l
-2.40042152228323e+O
-1.88475529635975e+O
3.63745224811835e-1
2.27781864414105e+O
2.09767516082022e+O

Turbo Pascal Numerical Methods Toolbox

The exact solution is

F sin(w t)
x=-------

F cos(w t) ..
dx!dt = -------

m (w0
2 - w2)

where w0 is the natural frequency of the system

w 2 = k!m
0

The period of oscillation is given by

t = 2 -rr/w = 1.257 sec

The data is taken from a function of which the derivative could be computed
exactly. Following are the actual values:

t Values ofX
0.0 O.OOOOOOOOOOOOE + 000
0.2 -4.207354924039E-001
0.4 -4.546487134128E - 001
0.6 - 7.056000402993E - 002
0.8 3.784012476539E -001
1.0 4.794621373315E -001
1.2 1.397077 490994E - 001
1.4 - 3.284932993593E - 001
1.6 - 4.946791233116E - 001
1.8 - 2.060592426208E - 001
2.0 2.720105554446E-001

Initial Value and Boundary Value Methods

Derivative of X
- 2.500000000000E + 000
- l.350755764670E + 000

l.040367091367E + 000
2.474981241501E + 000
l.634109052159E + 000

- 7.091554636580E - 001
- 2.400425716625E + 000
- l.884755635858E + 000

3.637500845215E - 001
2.277825654711E + 000
2.097678822691E + 000

171

Sofution to an Initial Value Probkm for an nth-Order
Ordinary Differential Equation Using the Hunge-Kutta
Method (Hunge..N.pas)

Description

This example integrates an nth-order ordinary differential equation with specified
initial conditions using the generalized Runge-Kutta formulas (Burden and Faires
1985, 261-269).

Given a function of the form

Jll 1'dt" - T'"'l"'r. tF(t u> <•-I)\ u Xt• - LV .1.arge , X, X , .. ., X J

where xCJJ indicates dJx/dt', which satisfies the general Lipshitz condition (the Lip­
shitz condition for first-order and second-order ordinary differential equations is
given at the beginning of this chapter, and initial condition

x[LowerLimit] = a1

x<ll[LowerLimit] = a2

x<•- 1>[LowerLimit] = a .
and spacing

h = (UpperLimit - LowerLimit)/Numlnteroals

rewrite the nth-order differential equation as n first-order differential equations:

x<1> = Y1

x"-> = y<1\ = Y2

x<3> = yu>z = y3

x<•-1> = y<1> = y
n-2 n-1

x<•> = y<1>._1 = TNTargetF(t, x, y1, y2, ... , Y._1)

Then the fourth-order general Runge-Kutta method can be used to approximate
simultaneously the y's (x and its derivatives).

172 Turbo Pascal Numerical Methods Toolbox

The general Runge-Kutta formulas for these equations consist of the following:

Flx = h * yJt]

Fly, = h * y2[t]

Fly._2 = h * Y._Jt]

Fly._1 = h * TNTargetF(t, x[t], yJt], ... , Y._Jt])

F2x = h * (yJt] + Fly/2)

F2y1 = h * (y2[t] + Fly/2)

F2y._ 2 = h * (y._Jt] + Fly._/2)

F2y._ 1 = h * TNTargetF(t + h/2, x[t] + Flx/2, yJt] + Fly1/2, ... , Y._Jt]
+ FlY.-1/2)

F3x = h * (yJt] + F2y/2)

F3y1 = h * (y2[t] + F2y/2)

F3y,..2 = h * (y._Jt] + F2y._/2)

F3y._ 1 = h * TNTargetF(t + h/2, x[t] + F2x/2, yJt] + F2y1/2, ... , Y._ 1[t]
+ F2y._/2)

F4x = h * (yJt] + F3y.)

F4y1 = h * (y2[t] + F3y2)

F4y._2 = h * (y._ 1[t] + F3y._)

F4y._ 1 = h * TNTargetF(t + h, x[t] + F3x, yJt] + F3y1, •• ., Y._Jt]
+ F3Y.-1)

x[t+ l] = x[t] + (Flx + 2 * F2x + 2 * F3x + F4x)/6

yJt+ l] = yJt] + (Fly1 + 2 * F2y1 + 2 * F3y1 + F4y)/6

y2[t+ l] = y2[t] + (Fly2 + 2 * F2y2 + 2 * F3y2 + F4y2)/6

Y.-2[t+ l] = Y.-2[t] + (Flyn-2 + 2 * F2yn-2 + 2 * F3yn-2 + F4yn-2)/6

Y,..Jt+ l] = Y._Jt] + (Flyn-1 + 2 * F2yn-l + 2 * F3yn-l + F4y._,)!6

where t ranges from Lower Limit to Upper Limit in steps of h. These formulas give a
truncation error of order h 4•

Initial Value and Boundary Value Methods 173

You must supply the order, limits, initial values, and TNTargetF. The order may be
arbitrarily large.

User-Defined Types

TNvector = array[O •• TNRowSize] of Extended;
TNmatrix = array[O •• TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumRetum). TNColumnSize is an upper bound for the order of the differ­
ential equation (Order).

User-Defined Function

TNTargetF(V : TNvector) : Extended;

The elements of V are defined as

V[O] corresponds tot
V[l] corresponds to x
V[2] corresponds to first derivative of x
V[3] corresponds to second derivative of x

This is the differential equation:

il'x!dt = TNTargetF(t, x, x(l), ... x<•- 1» where n is the order of the equation.

The procedure InitialCondition integrates this nth-order differential equation.

Input Parameters

Order : Integer; Order of the differential equation

Lowerlimit : Extended; Lower limit of interval

Upperlimit: Extended; Upper limit of interval

Initial Values : TNvector; Values of X and its derivatives at lowerLimit

NumReturn : Integer; Number of (t, x, x<1>, ... , x <•» values returned from the
procedure

Numinterval s : Integer; Number of subinterva1s used in the calculations

174 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. NumRetum > 0

2. Numlnteroals Ci!:: NumRetum

3. Order> 0

4. I.owerLimit ;i! UpperLimit

Output Parameters

SolutfonValues : TNmatrb; Values oft, x and the derivatives of x between the limits

Error : Byte; 0: No errors
1: NumRetum < 1
2: Numlnteroals < NumRetum
3:0rder < 1
4: I.owerLimit = UpperLimit

Syntax of tlw Procedure Call

InftfalCondftion(Order, Lowerlfmit, Upperlfmft, InftfalValues,
NumReturn, Numintervals, Solut1onValues, Error, @TNTargetF);

Comments

The first row of Solution Values will be the values oft between the limits, the
second row of Solution Values will be the values of x between the limits, the third
row of Solution Values will be the values of x<1> between the limits, and so on.

This procedure will compute Numlntervals values in its calculations; however, you
will rarely need to use all those values. The rows of Solution Values will contain
only NumRetum values at roughly equally spaced t-values between the lower and
upper limits. (They will be equally spaced only when Numlntervals is a multiple of
NumRetum.) Thus, you can ensure a highly accurate solution (by making Numln­
tervals large) without generating an excessive amount of output (by making Num­
Retum small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e -ioo.:. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen-

Initial Value and Boundary Value Methods 175

tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (Numlnter­
va'ls).

Sample Program

The sample program Runge-N.pas provides 1/0 functions that demonstrate the
Runge-Kutta method of solving initial value problems for high-order ordinary dif­
ferential equations. Note that the address of TNTargetF gets passed into the Initial­
Condition procedure.

Examp'le

Problem. Find the solution to the following fourth-order ordinary differential equa­
tion from t = 0 to t = 1:

d4x(t)/dt = - 4 x(t) <f x(t)/dt3

x(O) = 1
dx(O)/dt = - 1

tfx(O)!df = 2
<f x(O)/df = - 6

176 Turbo Pascal Numerical Methods Toolbox

I. Code the equation into the program RungeJJ.pas:

function TNTargetF(V : TNvector) : Extended;

{---} { THIS IS THE DIFFERENTIAL EQUATION }
{---}
~ d" X (1) (n-1) !
{ = TNTargetF(t, x, x , ••• x }
{ }
{ d~ }
{ }
{where n is the order of the equation. }
{ }
{ The elements of V are defined: }
{ V[O] corresponds to t }
{ V[l] corresponds to X . }
{ V[2] corresponds to 1st derivative of X }
{ V[3] corresponds to 2nd derivative of X }
{ }
{ }
{ . }

{---}
begin

TNTargetF := -4 * V[l] * V[4];
end; { function TNTargetF }

2. Run RungeJJ .pas:

Order of the equation (1-40)? 4

Lower limit of interval? 0

Upper limit of interval? 1

Enter x value at t = o.oooooe+O: 1
Derivative 1 of x at t = o.oooooe+O: -1
Derivative 2 of X at t = O.OOOOOe+O: 2
Derivative 3 of X at t = O.OOOOOe+O: -6

Number of values to return (1-40)? 10

Number of intervals (>= 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: o.ooooooooooooooe+o
Upper Limit: l.OOOOOOOOOOOOOOe+O

Number of intervals: 100

Initial conditions at lower limit:
. X[l]= l.OOOOOOOOOOOOOOe+O

X[2]=-l.00000000000000e+O
X[3]= 2.00000000000000e+O
X[4]=-6.00000000000000e+O

Initial Value and Boundary Value Methods 177

178

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

t
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

Value X[l]
1.00000000000000e+O
9.09090909737517e-1
8.33333334189336e-1
7.69230770157394e-1
7.14285715280102e-1
6.66666667788519e-1
6.25000001337168e-l
5.88235295769619e-1
5.55555557625526e-l
5.26315792064849e-1
5.00000003213983e-l

Value X[2]
-1.00000000000000e+O
-8.26446283273189e-1
-6.94444446826215e-1
-5.91715977923112e-1
-5.10204082090465e-1
-4.44444443661452e-1
-3.90624997971428e-1
-3.46020758007956e-1
-3.08641970911504e-1
-2.77008304743045e-1
-2.49999993429933e-1

Value X[3]
2.00000000000000e+O
1.50262961438149e+O
1.15740742373768e+O
9.10332288053840e-1
7.28862989793594e-1
5.92592607536866e-1
4.88281263842229e-1
4.07083261374879e-1
3.42935540127152e-1
2.91587706310718e-1
2.50000010753536e-1

Value X[4]
-6.00000000000000e+O
-4.09808076056272e+O
-2.89351855059016e+O
-2.10076680857258e+O
-1.56184925333600e+O
-1.18518520443061e+O
-9.15527359078898e-1
-7.18382215400418e-1
-5.71559223064178e-1
-4.60401631119694e-1
-3.75000005740566e-1

Turbo Pascal Numerical Methods Toolbox

X[l] are the values of x(t).
X[2] are the values of dx(t)/dt.
X[3] are the values of d!x(t)/dt2•

X[4] are the values of d3x(t)/dt3•

The exact solution is

x(t) = (t+ ir1

dx(t)/dt = - (t+ ir2

d!x(t)/dt2 = 2(t+ ir3

d3x(t)!dt3 = - 6(t+ ir4

x(l) = 0.5
dx(I)/dt = - 0.25

d!x(I)/dt2 = 0.25
d3x(l)/dt3 = - 0.375

Initial Value and Boundary Value Methods 179

Solution to an Initial Value Problem for a System of
Coupled First-Order Ordinary Differential Equations Using
tlw Runge-Kutta Method (Runge-81.pas)

Description

This example integrates a system of coupled first-order ordinary differential equa­
tions with specified initial conditions using the generalized Runge-Kutta formulas
(Burden and Faires 1985, 261-269).

Given m first-order ordinary differential equations in the form

dx/dt = TNTargetFl(t, x1, x2, .. ., xJ
dx/dt = TNTargetF2(t, x1, x2, .. ., xJ

dx)dt = TNTargetFm(t, XI, X2, .. ., xm)

which satisfies the Lipshitz condition (the Lipshitz condition for first-order and
second-order ordinary differential equations is given at the beginning of this chap­
ter; consult the previous book reference for details of the Lipshitz condition for
systems), and initial conditions

xJLowerLimit] = a1

x2[LowerLimit] = a2

x [LowerLimit] = a
m m

and spacing

h = (UpperLimit - LowerLimit}/Numlntervals

the fourth-order general Runge-Kutta method can be used to approximate simulta­
neously the x1' s.

180 Turbo Pascal Numerical Methods Toolbox

The general Runge-Kutta formulas for these equations are as follows:

Flx1 = h * TNTargetFI(t, x1[t], x2[t], ... , xm[t])

Flx2 = h * TNTargetF2(t, xJt], x2[t], ... , xm[t])

Flxm = h * TNTargetFm(t, x1[t], x2[t], ... , xm[t])

F2x1 = h * TNTargetFI(t + h/2, xJt] + Flx1/2, x2[t] + Flx~, ... , xJt]
+ Flxm/2)

F2x2 = h * TNTargetF2(t + h/2, x1[t] + Flx1/2, x2[t] + Flx2/2, ... , xJt]
+ Flxm/2)

F2xm = h * TNTargetFm(t + h/2, x1[t] + Flx1/2, x2[t] + Flx~, ... , xm[t]
+ Flx /2) m

F3x1 = h * TNTargetFI(t + h/2, x1[t] + F2x1/2, x2[t] + F2x~, ... , xJt]
+ F2x /2) m

F3x2 = h * TNTargetF2(t + h/2, x1[t] + F2x1/2, x2[t] + F2x2/2, ... , xJt]
+ F2xm/2)

F4x1 = h * TNTargetFI(t + h, x1[t] + F3x1, x2[t] + F3x2, ... , xm[t] + F3xm)

F4x2 = h * TNTargetF2(t + h, x1[t] + F3x1, x2[t] + F3x2, ... , xJt] + F3x)

F4xm = h * TNTargetFm(t + h, xJt] + F3x1, x2[t] + F3x2, ... , xJt] + F3x)

xJt+ l] = x1[t] + (Flx1 + 2•F2x1 + 2•F3x1 + F4x1)/6

x2[t+ l] = x2[t] + (Flx2 + 2•F2x2 + 2•F3x2 + F4xJ!6

Initial Value and Boundary Value Methods 181

where t ranges from LowerUmit to UpperUmit in steps of h. These formulas give a
truncation error of order h 4•

You must supply the number of differential equations, the limits, initial values, and
TNTargetF' s.

This procedure can solve a system of up to ten differential equations (see "'Com­
ments" for information about how to increase this limit).

User-Defined Types

TNvector = array[O •• TNRowSize] of Extended;
TNmatrix = array[O •• TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumRetum). TNColumnSize is an upper bound for the number of differ­
ential equations (NumEquations).

User-Defined Functions

function TNTargetFl(V : TNvector) : Extended;

function TNTargetF2(V : TNvector) : Extended;

function TNTargetF3(V : TNvector) : Extended;

function TNTargetF4(V : TNvector) : Extended;

function TNTargetFS(V : TNvector) : Extended;

function TNTargetF6(V : TNvector) : Extended;

function TNTargetF7(V : TNvector) : Extended;

function TNTargetFS(V : TNvector) : Extended;

function TNTargetF9(V : TNvector) : Extended;

function TNTargetFlO(V : TNvector) : Extended;

These are the differential equations:

dx/dt = TNTargetFj(t, x1, x2, ••• , x)

where j ranges from 1 to 10.

182 Turbo Pascal Numerical Methods Toolbox

The elements of the vector V are defined as follows:

V[O] = t
V[l] = x1

V[2] = x2

V[lO] = X10

The procedure InitialConditionSystem solves this system of coupled differential
equations (a maximum of ten equations}. All ten functions must be defined, even if
your system contains less than ten equations.

Input Parameters

Number of first-order differential equations

Lower limit of interval

Upper limit of interval

Values of x1, x2, ''.'' xm at LowerUmit

NumEquat;ons : Integer;

Lowerlim;t : Extended;

UpperUm;t : Extended;

InithlValues : TNvector;

NumReturn : Integer; Number of (t, x1, x2, ... , x.) values returned from
the procedure

Numintervals : Integer; Number of subintervals used in the calculations

FuncVect: array[!. .10) of ProcPtr; Pointers to the ten equations

The preceding parameters must satisfy the following conditions:

1. NumRetum > 0

2. Numlnt,eroals ~ NumRetum

3. NumEquations > 0

4. LowerUmit ¢ UpperUmit

Initial Value and Boundary Value Methods 183

Output Parameters

SolutionValues: TNmatrix; Values oft, x1, x2, ••• xm between the limits

Error : Byte; 0: No errors
1: NumReturn < 1
2: Numlntervals < NumReturn
3: NumEquations < 1
4: LowerLimit = UpperLimit

Syntax of the Procedure Call

InitialConditionSystem(NumEquations, Lowerlimit, Upperlimit,
InitialValues, NumReturn, Numlntervals,
SolutionValues, Error, FuncVect);

Comments

The first row of Solution Values. will be the values oft between the limits, the
second row of Solution Values will be the values of x1 between the limits, the third
row of Solution Values will be the values of x2 between the limits, and so on.

All ten user-defined functions are called from the procedure. If your system has
less than ten equations, you must still define all ten functions or the program will
not compile. The superfluous functions should be defined as follows (TNTargetFlO
is used as an example):

function TNTargetFlO(V : TNvector) : Extended;

begin
TNTargetFlO : = 0.0;

end; { function TNTargetFlO }

If you need to solve a system with more than ten equations, then edit the include
file Runge-81.pas. The following line should be added to the end of procedure
Step:

F[ll] :=Spacing* TNTargetFll(CurrentValues);

More statements (for F[l2], and so on) may be added as necessary. All new func­
tions (for example, TNTargetFll) must be defined in your top-level program. Note:
Before making any changes to the include file, make sure you have a backup copy.

184 Turbo Pascal Numerical Methods Toolbox

This procedure will compute Numlntervals values in its calculations; however, you
will rarely need to use these values. The rows of Solution Values will contain only
NumReturn values at roughly equally spaced t-values between the lower and upper
limits. (They will be equally spaced only when Numlntervals is a multiple of Num­
Return.) Thus, you can ensure a highly accurate solution (by maldng Numlntervals
large) without generating an excessive amount of output (by maldng NumReturn
small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e-100.:. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (Numlnter­
vals).

Sample Program

The sample program Runge-81.pas provides 1/0 functions that demonstrate the
Runge-Kutta method of solving initial value problems for systems of first-order
ordinary differential equations. Note that the addresses of the ten equations get
passed into the procedure InitialConditionSystem in the variable FuncVect.

Example

Problem. A weight with mass m lays on a frictionless table and is connected to a
spring with spring constant k:

-wan

F(w)
k

m

Initial Value and Boundary Value Methods 185

If the mass is subject to a driving force F sin(oo t) (oo represents the frequency of the
driving force and t is time), the equation of motion of the mass is as follows:

m rfrJdi + k x = F sin(oo t)

Given

m = 2kg
F = 9N
k = 32 Nim
oo = 5 cycles/sec
x(O) = 0 m
dx(O)/dt = - 2.5 m/sec

find the position and velocity of the block from t = 0 second to t = 2 seconds.

I. Write the second-order ordinary differential equations as a system of two cou­
pled first-order ordinary differential equations:

dx/dt,;,,, x1

dx/dt = (F/m) sin(oo t) - (k/m) x1

2. Code these equations into the program Runge-SI.pas:

function TNTargetFl(V : TNvector) : Extended;

186

{--} { THIS IS THE FIRST DIFFERENTIAL EQUATION }
{--} { }
{ dx[l] }
{ ----- = TNTargetFl(t, x[l], x[2], ••• x[m]) }
{ ~ }
{ }
{ The vector V is defined: }
{ V[O] = t }
{ V[l] = X[l] }
{ V[2] = X[2] }
{ }
{ }
{ }
{ V[m] = X[m] }
{ }
{where m is the number of coupled equations. }
{--}

begtn
TNTargetFl := V[2];

end; { function TNTargetFl }

Turbo Pascal Numerical Methods Toolbox

function TNTargetF2(V : TNvector) : Extended;

{--}
{ THIS IS THE SECOND DIFFERENTIAL EQUATION }
{--}
{ }
{ dx[2] }
{ ----- = TNTargetF2(t, x[l], x[2], ••• x[m]) }
{ ft }
{ }
{The vector V is defined: }
{ V[O] = t }
{ V[l] = X[l] }
{ V[2] = X[2] }
{ }
{ }
{ }
{ V[m] = X[m] }
{ }
{ where m is the number of coupled equations. }
{--}
begin

TNTargetF2 := 9/2 * Sin(5 * V[O]) - 32/2 * V[l];
end; { function TNTargetF2 }

function TNTargetF3(V : TNvector) : Extended;

{--}
{ THIS IS THE THIRD DIFFERENTIAL EQUATION }
{--} { }
{ dx[3] }
{ ----- = TNTargetF3(t, x[l]. x[2]. ... x[m]) }
{ ft }
{ }
{ The vector V is defined: }
{ V[O] = t }
{ V[l] = X[l] }
{ V[2] = X[2] }
{ }
{ }
{ }
{ V[m] = X[m] }
{ }
{ where m is the number of coupled equations. }
{--}
begtn

TNTargetF3 : = 0.0;
end; { function TNTargetF3 }

Functions TNTarget4 to TNTargetlO should be defined like the function
TNTargetF3.

Initial Value and Boundary Value Methods 187

3. Run Runge-SI.pas:

Number of first order equations: (1-40)? 2

Lower limit of interval? 0

Upper limit of interval? 2

Enter X[l] value at t = O.OOOOOetO: 0
Enter X[2] value at t = O.OOOOOetO: -2.5

Number of values to return (1-40)? 10

Number of intervals {> = 10)? 100

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: o.ooooooooooooooe+o
Upper Limit: 2.00000000000000etO

Number of intervals: 100

Initial conditions at lower limit:

T
0.00000000
0.20000000
0.40000000
0.60000000
0.80000000
1.00000000
1.20000000
1.40000000
1.60000000
1.80000000
2.00000000

T
0.00000000
0.20000000
0.40000000
0.60000000
0.80000000
1.00000000
1.20000000
1.40000000
1.60000000
1.80000000
2.00000000

X[l]= O.OOOOOOOOOOOOOOe+O
X[2]=-2.50000000000000e+O

Value X[l]
O.OOOOOOOOOOOOOOe+O

-4.20735284275848e-1
-4.54648724216734e-1
-7.05605786993375e-2
3.78400378699554e-1
4.79461767300631e-1
1.39708469016312e-1

-3.28491796183335e-1
-4.94677974769031e-1
-2.06059519715177e-1
2.72008842396951e-1

Value X[2]
-2.SOOOOOOOOOOOOOe+O
-1.35075642830665e+O
1.04036531118478e+O
2.47497991717220e+O
1.63411037473655e+O

-7.09151289407566e-1
-2.40042152228323e+O
-1.88475529635975e+O
3.63745224811835e-1
2.27781864414105e+O
2.09767516082022e+O

X[l] are the values of x(t), the position. X[2] are the values of dx(t)/dt, the velocity.

188 Turbo Pascal Numerical Methods Toolbox

The exact solution is

F sin(w t)
x=-------

F cos(w t) ..
dx/dt = -------

m (000
2 - 002)

where w 0 is the natural frequency of the system:

w 2 = k!m
0

The period of oscillation is given by

T = 2 -rr/w = 1.257 sec

The data is taken from a function of which the derivative could be computed
exactly. The actual values are as follows:

t Values of X
0.0 O.OOOOOOOOOOOOE + 000
0.2 - 4.207354924039E - 001
0.4 - 4.546487134128E - 001
0.6 - 7.056000402993E - 002
0.8 3.784012476539E -001
1.0 4.794621373315E - 001
1.2 1.397077 490994E - 001
1.4 - 3.284932993593E - 001
1.6 - 4.946791233116E - 001
1.8 - 2.060592426208E - 001
2.0 2.720105554446E-001

Initial Value and Boundary Value Methods

Derivative of X
- 2.500000000000E + 000
- l.350755764670E + 000

l.040367091367E + 000
2.474981241501E + 000
l.634109052159E + 000

- 7.091554636580E - 001
- 2.400425716625E + 000
- l.884755635858E + 000

3.637500845215E - 001
2.277825654 711E + 000
2.097678822691E + 000

189

Solution to an Initial Value Problem for a System of
Coupkd Second-Order Ordinary Differential Equations
Using the "Runge-Kutta Method (Runge~2.pas)

Description

This example integrates a system of coupled second-order ordinary differential
equations with specified initial conditions using the generalized Runge-Kutta for­
mulas (Burden and Faires 1985, 261-269}.

Given m coupled second-order ordinary differential equations of the form

<fx/di = TNTargetFI(t, Xl, x' l' x2, x' 2• ••• , Xm, x' m>

<fx/dt2 = TNTargetF2(t, xl, x' l' X2, x' 2' ••• , xm, x')

<fxm/dt2 = TNTargetFm(t, x1, x' 1, x2, x' 2, •• ., xm, x')

where x'1 indicates dx/dt, which satisfies the Lipshitz condition (the Lipshitz con­
dition for first-order and second-order ordinary differential equations is given at
the beginning of this chapter; consult the previous book reference for details of the
Lipshitz condition for systems), and initial condition

x1[LowerLimit] = a1

x2[LowerLimit] = a2

x [LowerLimit] = a m m

and spacing

x' JLowerLimit] = b1

x' 2[LowerLimit] = b2

x' [LowerLimit] = b m m

h = (UpperLimit - LowerLimit)/Numlntervals

190 Turbo Pascal Numerical Methods Toolbox

rewrite each of the second-order differential equations as two, first-order differen­
tial equations:

dx/dt = y1

dy/dt = TNTargetFI(t, XI, Y1• x2, Y2' ... , xm, Ym)

dx/dt = y2

dx/dt = TNTargetF2(t, xi' y1, x2, y2, ... , xm, Ym)

dxm/dt = Ym

dx)dt = TNTargetFm(t, x1, y1, x2, y2, ••• , xm, yJ

Then the fourth-order general Runge-Kutta method can be used to approximate
the x; s and the y1' s simultaneously.

The general Runge-Kutta formulas for these equations are as follows:

Flx1 = h * Y1

Fly1 = h * TNTargetFI(t, x1[t], y1[t], x2[t], y2[t], ... , xJt], yJt])

Flx2 = h * Y2

Fly2 = h * TNTargetF2(t, x1[t], y1[t], x2[t], y2[t], ... , xJt], yJt])

Flxm = h * Ym
Flym = h * TNTargetFm(t, x1[t], y1[t], x2[t], y2[t], ... , xJt], yJt])

F2x1 = h * (y1 + Fly/2)

F2y1 = h * NTargetFI(t + h/2, x1[t] + Flx/2, yJt] + Fly/2, x2[t]

+ Flx/2, y2[t] + Fly2/2, ... , xJt] + Flxm/2, yJt] + Fly)2)

F2x2 = h * (y2 + Fly2/2)

F2y2 = h * NTargetF2(t + h/2, x1[t] + Flx1/2, yJt] + Fly/2, x2[t]

+ Flx/2, y2[t] + Fly/2, ... , xJt] + Flxm/2, yJt] + Flym/2)

F2xm = h * (ym + Fly)2)

F2ym = h * TNTargetFm(t + h/2, xJt] + Flx1/2, yJt] + Fly/2, x2[t]

+ Flx/2, y2[t] + Flyp, ... , xm[t] + Flxm/2, yJt] + Flym/2)

Initial Value and Boundary Value Methods 191

F3x1 = h * (y1 + F2y/2)

F3y1 = h * TNTargetFI(t + h/2, xJt] + F2x/2, y1[t] + F2y/2, x2[t]

+ F2x/2, y2[t] + F2y.j2, ... , xjt] + F2xJ2, ym[t] + F2yJ2)

F3x2 = h * (y2 + F2y/2)

F3y2 = h * NTargetF2(t + h/2, x1[t] + F2x1/2, y1[t] + F2y/2, x2[t]

+ F2x/2, y2[t] + F2y/2, ... , xjt] + F2xm/2, yjt] + F2ym/2)

F3xm = h * (ym + F2ym/2)

F3ym = h * TNTargetFm(t + h/2, xJt] + F2x1/2, yJt] + F2y1/2, x2[t]

+ F2x2/2, y2[t] + F2y2/2, ... , xjt] + F2xm/2, yJt] + F2ym/2)

F4x1 = h * (y1 + F3y)

F4y1 = h * TNTargetFI(t + h, x1[t] + F3x1, y1[t] + F3y1, x2[t] + F3x2, y2[t]

+ F3y2, ••• , xjt] + F3xm, yJt] + F3y)

F4x2 = h * (y2 + F3y2)

F4y2 = h * TNTargetF2(t + h, x1[t] + F3x1, yJt] + F3y1, xJt] + F3x2, y2[t]

+ F3y2, ••• , xJt] + F3xm, yJt] + F3y)

F4xm = h * (ym + F3y)

F4ym = h * TNTargetFm(t + h, xJt] + F3x1, y1[t] + F3y1, x2[t] + F3x2, y2[t]

+ F3y2, ••• , xjt] + F3xm, ym[t] + F3y)

x1[t+ I] = xJt] + (Flx1 + 2 * F2x1 + 2 * F3x1 + F4x1)/6

y1[t+ I] = yJt] + (Fly1 + 2 * F2y1 + 2 * F3y1 + F4y1)/6

x2[t+ l] = x2[t] + (Flx2 + 2 * F2x2 + 2 * F3x2 + F4x2)/6

y2[t+ I] = y2[t] + (Fly2 + 2 * F2y2 + 2 * F3y2 + F4y2)/6

xm[t+ I] = xm[t] + (Flxm + 2 * F2xm + 2 * F3xm + F4x)/6

yJt+ I] = yJt] + (Flym + 2 * F2ym + 2 * F3ym + F4y)/6

where t ranges from LowerLimit to UpperLimit in steps of h. These formulas give a
truncation error of order h 4•

192 Turbo Pascal Numerical Methods Toolbox

You must supply the number of equations, limits, initial values, and TNTargetF's.

This procedure can solve a system of up to ten, second-order ordinary differential
equations (see "Comments" for information about how to increase this limit).

User-Defined 'IYpes

TNData = record
x : Extended;
xDeriv : Extended;

end; { TNData record }
TNvector = array[O •• TNRowSize] of TNData;
TNmatrix = array[O •• TNColumnSize] of TNvector;

TNRowSize is an upper bound for the number of values returned for a particular
variable (NumReturn). TNColumnSize is an upper bound for the number of second­
order differential equations (NumEquations).

User-Defined Functions

function TNTargetFl(V TNvector) Extended;

function TNTargetF2(V TNvector) Extended;

function TNTargetF3(V TNvector) Extended;

function TNTargetF4(V : TNvector) Extended;

function TNTargetFS(V : TNvector) Extended;

function TNTargetF6(V : TNvector) Extended;

function TNTargetF7(V : TNvector) Extended;

function TNTargetF8(V : TNvector) Extended;

function TNTargetF9(V : TNvector) Extended;

function TNTargetFlO(V : TNvector) : Extended;

Here are the differential equations:

cf"x/dt2 = TNTargetFj(t, x1, x' 1, x2, x' 2, .. ., x10, x' 1~

where j ranges from 1 to 10.

Initial Value and Boundary Value Methods 193

The elements of the vector V are defined as follows:

V[O].x = t
V[I].x = x[I]

V[I].xDeriv = x'[I]
V[2].x = x[2]

V[2].xDeriv = x'[2]

V[IO].x = x[IO]
V[IO].xDeriv = x'[IO]

The procedure used in Runge-82.pas solves this system of coupled differential
equations (a maximum of ten equations}. All ten functions must be defined, even if
your system contains less than ten equations.

Input Parameters

NumEquati ons : Integer;

Lowerlimit : Extended;

Upperl imi t : Extended;

Initial Values : TNvector2;

NumReturn : Integer;

Numinterva ls : Integer;

Number of second-order differential equations

Lower limit of interval

Upper limit of interval

Values of x1's and x'1's at LowerLimit

Number of (t, XI' x' 1• X2, x' 2• ... , xm, x') values
returned from the procedure

Number of subintervals used in the calculations

FuncVect : array[l •• 10] of ProcPtr; Pointers to the ten equations

The preceding parameters must satisfy the following conditions:

1. NumReturn > 0

2. Numlnteroals ~ NumReturn

3. NumEquations > 0

4. LowerLimit ¢ UpperLimit

194 Turbo Pascal Numerical Methods Toolbox

Output Parameters

SolutionValues: TNmatrix2; Values oft, x1, and x'1 between the limits

Error : Byte; 0: No errors
1: NumRetum < 1
2: Numlnteroals < NumRetum
3: NumEquations < 1
4: LowerLimit = UpperLimit

Syntax of the Procedure Call

Initia1ConditionSystem2(NumEquations, Lowerlimit, Upperlimit,
InitialValues, NumReturn, Numlntervals,
SolutionValues, Error, FuncVect);

Comments

The first row of SolutionValues will be the values oft between the limits, the
second row of Solution Values will be the values of x1 and x' 1 between the limits, the
third row of Solution Values will be the values of x2 and x' 2 between the limits, and
so on.

All ten user-defined functions are called from the procedure. If your system has
less than ten equations, you must still define all ten functions or the program will
not compile. The superfluous functions should be defined as follows (TNTargetFlO
is used as an example):

function TNTargetFlO(V : TNvector) : Extended;

begin
TNTargetFlO : = 0.0

end; { function TNTargetFlO }

If you need to solve a system with more than ten equations, then edit the source
code for the InitialValRoutines unit. The following lines should be added to the end
of procedure Step:

F[ll].xDeriv :=Spacing* CurrentValues[ll].xDeriv;
F[ll].x :=Spacing* TNTargetFll(CurrentValues);

More statements (for F[l2], and so on) may be added as necessary. All new func­
tions (for example, TNTargetFll) must be defined in your top-level program. Note:
Before making any changes to the include file, make sure you have a backup copy.

Initial Value and Boundary Value Methods 195

The procedure will compute Numlntervals values in its calculations; however, you
will rarely need to use these values. The rows of Solution Values will contain only
NumRetum values at roughly equally spaced t-values between the lower and upper
limits. (They will be equally spaced only when Numlntervals is a multiple of Num­
Return.) Thus, you can ensure a highly accurate solution (by making Numlntervals
large) without generating an excessive amount of output (by making NumReturn
small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e- 100.. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (Numlnter­
vals).

Sample Program

The sample program Runge-82.pas provides 1/0 functions that demonstrate the
Runge-Kutta method of solving initial value problems for systems of first-order
ordinary differential equations. Note that the addresses of the ten equations gets
passed to the InitialConditionSystem2 procedure in the variable FuncVect.

196 Turbo Pascal Numerical Methods Toolbox

Example

Problem. Two weights of mass m each hang from a pendulum of length l and are
connected by a spring with spring constant k:

Ceiling

k

~
y uuuuuuuuuuuu x

The equations of motion of these two masses are as follows:

m O:x!dt2 = -mg x/l - k(x - y)
m O:y/dt2 = -mg y/l + k(x - y)

where g is the acceleration due to gravity, t is time, and x and y are the displace­
ments of the two weights from their rest positions. Given

m = 2kg
k = 32 Nim
g = 9.8 m/sec2

l = 0.6125 m
x(O) = 1 m
y(O) = -1 m
dx(O)!dt = 0 m/sec
dy(O)/dt = 0 m/sec

find the positions and velocities of the two weights from t = 0 second to t = 2
seconds.

1. Rewrite the equations of motion as shown here:

if x!dt2 = - g x/l - k!m(x - y)
ify!dt2 = - g y/l + k!m(x - y)

Initial Value and Boundary Value Methods 197

2. Code these equations into the program Runge..S2.pas:

function TNTargetFl(V : TNvector) : Extended;
{---} ·{ THIS IS THE FIRST DIFFERENTIAL EQUATION }
{---} { }
{ }
{ d2 x[l] }
{ = TNTargetFl(t, x[l], x'[l], x[2]. x'[2]. }
{ ... , x[m], x'[m] }
{ }
{ ~ }
{ }
{ The elements of the vector V are defined: }
{ V[O] .x = t }
{ V[l] .x = X[l] }
{ V[l].xDeriv = X'[l] }
{ V[2] .x = X[2] }
{ V[2] .xDeriv = X' [2] }
{ }
{ }
{ }
{ V[m] .x = X[m] }
{ V[m].xDeriv = X'[m] }
{ }
{ where m is the number of coupled equations. }
{---}
var

t : Extended;

begin
t := v[O].x;
TNTargetFl := -9.8 * V[l].x/0.6125 - 32/2 * (V[l].x - V[2].x);

end; { function TNTargetFl }

198 Turbo Pascal Numerical Methods Toolbox

function TNTargetF2(V : TNvector) : Extended;

{---} { THIS IS THE SECOND DIFFERENTIAL EQUATION }
{---} { }
{ }
{ lx[2] }
{ = TNTargetF2 (t, x[l], x' [1], x[2], x' [2], }
{ ••• , x[m], x'[m] }
{ dt2 }

{ }
{ }
{ The elements of the vector V are defined: }
{ V[O] .x = t }
{ V[l] .x = X[l] }
{ V[l].xDeriv = X'[l] }
{ V[2] .x = X[2] }
{ V[2].xDeriv = X'[2] }
{ }
{ }
{ }
{ V[m] .x = X[m] }
{ V[m] .xDeriv = X' [m] }
{ }
{where m is the number of coupled equations. }
{---}
var

t : Extended;

begin
t:=v[O].x;
TNTargetF2 := -9.8 * V[2].x/0.6125 + 32/2 * (V[l].x - V[2].x);

end; { function TNTargetF2 }

Initial Value and Boundary Value Methods 199

function TNTargetF3(V : TNvector) : Extended:

{---} { THIS IS THE THIRD DIFFERENTIAL EQUATION }
{---}
~ l
{ d2 x[3] }
{ = TNTargetF3(t, x[l]. x' [l], x[2]. x' [2], }
{ ... , x[m]. x' [m] }

~ dt2 ~
{ }
{ The elements of the vector V are defined: }
{ V[O] .x = t }
{ V[l] .x = X[l] }
{ V[l] .xDer1v = X' [l] }
{ V[2] .x = X[2] }
{ V[2].xDeriv = X'[2] }
{ }
{ }
{ }
{ V[m] .x = X[m] }
{ V[m] .xDer1v = X' [m] }
{ }
{where m is the number of coupled equations. }
{---}
var

t : Extended:
begtn

TNTargetF3 : = 0.0;
end: { function TNTargetF3 }

Functions TNTargetF4 to TNTargetFlO should be defined like function TNTargetF3.

3. Run Runge-82.pas:

200

Number of second order equations: (1-20)7 2

Lower limit of interval? 0

Upper limit of interval? 1

Enter X[l] value at t = o.oooooe+O: 0.01
Enter X'[l] value at t = O.OOOOOe+O: 0.00
Enter X[2] value at t = o.oooooe+O: -0.01
Enter X'[2] value at t = O.OOOOOe+O: 0.00

Number of values to return (1-70)7 10

Number of intervals (>= 10)? 100

Turbo Pascal Numerical Methods Toolbox

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: o.ooooooooooooooe+o
Upper Limit: l.OOOOOOOOOOOOOOe+O

Number of intervals: 100
Initial conditions at lower limit:

T
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

T
0.00000000
0.10000000
0.20000000
0.30000000
0.40000000
0.50000000
0.60000000
0.70000000
0.80000000
0.90000000
1.00000000

X[l]= l.OOOOOOOOOOOOOOe-2
X'[lJ= o.ooooooooooooooe+o
X[2]=-l.00000000000000e-2

X'[2]= O.OOOOOOOOOOOOOOe+O

Value X[l]
l.OOOOOOOOOOOOOOe-2
7.69447788485895e-3
l.84099813762452e-3

-4.86137387553900e-3
-9.32214486443693e-3
-9.48443369885918e-3
-5.27340834792187e-3
l.36920877108260e-3
7.3804775887409le-3
9.98857556718864e-3
7.99089728515028e-3

Value X[2]
-1.00000000000000e-2
-7.69447788485895e-3
-l.84099813762452e-3
4.86137387553900e-3
9.32214486443693e-3
9.48443369885918e-3
5.27340834792187e-3

-l.36920877108260e-3
-7.38047758874091e-3
-9.98857556718864e-3
-7.99089728515028e-3

Deriv X[l]
O.OOOOOOOOOOOOOOe+O

-4.42511063153028e-2
-6.80978317847279e-2
-6.05443464988731e-2
-2.50735962983904e-2
2.19586991271007e-2
5.88657408762406e-2
6.86295294795967e-2
4.67479393932010e-2
3.31066873866278e-3

-4.16531651968366e-2

Deriv X[2]
o.ooooooooooooooe+o
4.42511063153028e-2
6.80978317847279e-2
6.0544346498873le-2
2.50735962983904e-2

-2.19586991271007e-2
-5.88657408762406e-2
-6.86295294795967e-2
-4.67479393932010e-2
-3.31066873866278e-3
4.16531651968366e-2

The weights move in opposite directions; the system is in one of its normal modes.
The natural frequency w 0 is given by the following:

(1)01 = g/I + 2k!m
w0 = 6.928 cycles/sec

Thus the period of oscillation, t, is

t = 2-rr/w0

t = 0.9069 sec

Initial Value and Boundary Value Methods 201

Solution to Boundary Value Probkm for a Second-Order
Ordinary Differential Equation Using the Shooting and
"Runge-Kutta Methods (Shoot2.pas)

Description

This example uses the shooting method to approximate the solution to a second­
order ordinary differential equation with specified boundary conditions (Burden
and Faires 1985, 526-531).

Given a second-order differential equation (Burden and Faires 1985, 261-269) of
the form

d2y!dx2 = TNTargetF(x, y, y')

where y' represents dy/dx, which satisfies the conditions given at the beginning of
this chapter, boundary conditions

y[LowerLimit] = Lowerlnitial
y[UpperLimit] = Upperlnitial

and spacing

h = (UpperLimit - LowerLimit)/Numlntervals

and an initial approximation (guess) to the slope at LowerLimit

y'[LowerLimit] = InitialS"lope

the shooting method first solves the second-order initial value problem (using the
method described in Runge...2.pas). Based on a comparison of the solution at
UpperLimit with the boundary condition Upperlnitial, a new approximation to the
slope at LowerLimit is made. In this way, a new "shot" at the solution is made by
observing the result of the previous "shot." Subsequent iterations use information
from two previous shots and the secant method (see Chapter 2, "Roots of a Func­
tion Using the Secant Method") to approximate the slope at LowerLimit. This pro­
cess is repeated until the fractional difference between successive approximations
to the boundary condition at UpperLimit is less than a specified tolerance.

You must supply the LowerLimit, UpperLimit, Lowerlnitial, Upperlnitial, lnitial­
S"lope, Numlntervals, Tolerance, and TNTargetF.

202 Turbo Pascal Numerical Methods Toolbox

User-Defined Types

TNvector = array[l •• TNArraySize] of Extended;

User-Defined Functions

TNTargetF(x, y, yPrime : Extended) : Extended;

<!"y!dx2 = TNTargetF(x, y, dy/dx)

The procedure Shooting integrates this second-order differential equation.

Input Parameters

Lowerlimit : Extended; Lower limit of interval

Upperlimit : Extended; Upper limit of interval

Lowerinitial : Extended; Value of y at LowerLimit

Upperinitial : Extended; Value of y at UpperLimit

InitialSlope: Extended; Approximation to the slope at LowerLimit

NumReturn : Integer; Number of (x, y, y') values returned from the procedure

Tolerance : Extended; Indicates accuracy in solution

Maxlter : Integer; Maximum number of iterations

Numintervals : Integer; Number of subintervals used in calculations

The preceding parameters must satisfy the following conditions:

1. NumReturn > 0

2. Numlntervals ~ NumReturn

3. LowerLimit ¢ UpperLimit

4. Tolerance > 0

5. Maxlter > 0

Initial Value and Boundary Value Methods 203

Output Parameters

Iter : Integer;

XValues : TNvector;

YValues : TNvector;

Number of iterations required to reach a solution

Values of x between the limits

Values of y determined at values in XValues

YDeri vVa 1 ues : TNvector; Values of the first derivative of y determined at values in
XValues

Error : Byte; 0: No errors
1: NumReturn < 1
2: Numlnrervals < NumReturn
3: LowerLimit = UpperLimit
4: Tolerance s 0
5: Maxlt,er s 0
6: It,er > Maxlt,er
7: Convergence not possible

Syntax of the Procedure Call

Shooting(Lowerlimit, Upperlimit, Lowerlnitial, Upperinitial, InitialSlope,
NumReturn, Tolerance, Maxlter, Numlntervals, Iter, XValues,
YValues, YDerivValues, Error, @TNTargetF);

Comments

The parameter Tolerance can be misleading. The shooting method converges to the
initial slape, which satisfies the upper boundary condition. Convergence is
achieved when the fractional difference between Upperlnitial and the upper
boundary approximation is less than Tolerance. This does not mean that every
value between the boundaries has been approximated with the same degree of
accuracy. To improve the accuracy of the entire approximation, increase the num­
ber of intervals. The example demonstrates the different effects of Tolerance and
Numlnt,ervals.

The shooting algorithm will compute Numlntervals values in its calculations. How­
ever, you will rarely need to use all those values. The vectors XValues, YValues, and
YDerivValues will contain only NumReturn values at roughly equally spaced t­
values between the lower and upper limits. (They will be equally spaced only
when Numlnt,ervals is a multiple of NumReturn.) Thus, you can ensure a highly
accurate solution (by making Numlnt,ervals large) without generating an excessive
amount of output (by making NumReturn small).

204 Turbo Pascal Numerical Methods Toolbox

Boundary value problems are notoriously difficult to solve. The shooting method is
extremely sensitive to the approximation of the initial slope. If the shooting method
does not converge onto a solution (Error 7), run the program with a different value
of the initial slope lnitialSlope. You may also alleviate some stability problems by
solving the equation backwards (from UpperLimit to LowerLimit). Considerable
trial and error may be involved before a solution is found.

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s) is
changing; for example, y = x + e1oo.. The shooting method may generate a numeri­
cal solution that bears no resemblance to the exact solution of the differential equa­
tion. This unstable numerical solution usually grows exponentially and may be
oscillatory. However, if the exact solution of the differential equation grows as the
independent variable increases, the instability may be difficult to detect. If a sus­
pected instability has been encountered, reduce the interval size (Numlntervals).

Sampk Program

The sample program Shoot2.pas provides 1/0 functions that demonstrate the
shooting method of solving boundary value problems. Note that the address of
TNTargetF gets passed into the Shooting procedure.

Exampk

Problem. Use the nonlinear shooting method to solve the following boundary value
problem:

y " = 192 sqr(y/y')

y(l) = 1
y(2) = 16

O:s;x:s;l

1. Code the differential equation into the program:

function TNTargetF(x : Extended;
y : Extended;
yPrime : Extended) : Extended;

{---}
{ THIS IS THE SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION }
{---}
begin

TNTargetF := 192 * Sqr(y/yPrime);
end;

Initial Value and Boundary Value Methods

{function TNTargetF}

205

2. Run Shoot2.pas:

206

Lower limit of interval? 0

Upper limit of interval? 1

Enter Y value at X = O.OOOOOe+O: 1
Enter Y value at X = 1.00000e+O: 16

Enter a guess for the slope at X = O.OOOOOe+O : 15

Number of points returned (1-40)? 10

Number of intervals (>= 10)? 10

Tolerance (> O)? lE-12

Maximum number of iterations (> O)? 100

Now a dialog box appears asking you whether you .would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower Limit: o.ooooooooooooooe+o
Upper Limit: 1.00000000000000e+O

Value of Y at 0.0000 : 1.00000000000000e+O
Value of Y at 1.0000 : 1.60000000000000e+l

Initial slope at 0.0000 : 1.50000000000000e+l
Numlntervals: 10

Tolerance: 1.00000000000000e-12
Maximum number of iterations: 100

Number of iterations: 6

x
O.OOOOOOOOOOOOOOe+O
1.00000000000000e-1
2.00000000000000e-1
3.00000000000000e-1
4.00000000000000e-1
5.00000000000000e-1
6.00000000000000e-1
7.00000000000000e-1
8.00000000000000e-1
9.00000000000000e-1
1.00000000000000e+O

Y Value
1.00000000000000e+O
1.46417721408153e+O
2.07370562259973e+O
2.85621262766442e+O
3.84170902091389e+O
5.06259931530967e+O
6.55368547624580e+O
8.35216836918581e+O
1.04976483580762e+l
1.30321255669365e+l
1.60000000000094e+l

Derivative of Y
4.00053795390884e+O
5.32386904044879e+O
6.91162114244397e+O
8.78752756627335e+O
1.09754927855527e+l
1.34994802016423e+l
1.63834750611955e+l
1.96514712240017e+l
2.33274661179548e+l
2.74354587043772e+l
3.19994486182108e+l

Turbo Pascal Numerical Methods Toolbox

Now solve the same problem using a smaller spacing, but with a greater tolerance:

Lower limit of interval? O

Upper limit of interval? 1

Enter Y value at X = O.OOOOOe+O: 1
Enter Y value at X = l.OOOOOe+O: 16

Enter a guess for the slope at X = O.OOOOOe+O : 15

Number of points returned (1-40)? 10

Number of intervals (>= 10)? 100

Tolerance (> O)? lE-6

Maximum number of iterations (> 0)7 100

Now a dialog box appears asking you whether you would like the output sent to the
Screen, directly to the Printer, or into a File. Make your selection and click OK.

Lower Limit: o.ooooooooooooooe+o
Upper Limit: l.OOOOOOOOOOOOOOe+O

Value of Y at 0.0000 : l.OOOOOOOOOOOOOOe+O
Value of Y at 1.0000 : l.60000000000000e+l

Initial slope at 0.0000 : l.50000000000000e+l
Numlntervals: 100

Tolerance: l.OOOOOOOOOOOOOOe-6
Maximum number of iterations: 100

Number of iterations: 5

x
o.ooooooooooooooe+o
l.OOOOOOOOOOOOOOe-1
2.00000000000000e-1
3.00000000000000e-1
4.00000000000000e-1
5.00000000000000e-1
6.00000000000000e-1
7.00000000000000e-1
8.00000000000000e-1
9.00000000000000e-1
l.OOOOOOOOOOOOOOe+O

Y Value
l.OOOOOOOOOOOOOOe+O
l.46410005120828e+O
2.07360008576235e+O
2.85610011557157e+O
3.84160014547825e+O
5.06250017769403e+O
6.55360021337285e+O
8.35210025321452e+O
l.04976002977125e+l
l.30321003472617e+l
l.6000000402208le+l

Initial Value and Boundary Value Methods

Derivative of Y
4.00000062625639e+O
5.32400035609946e+O
6.91200027103432e+O
8.78800025750412e+O
l.09760002747783e+l
l.35000003070170e+l
l.63840003476283e+l
l.96520003937080e+l
2.33280004439140e+l
2.74360004976014e+l
3.20000005544507e+l

207

The exact solution is

y = (x + 1)4

x
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

YValue
1.0000000000
1.4641000000
2.0736000000
2.8561000000
3.8416000000
5.0625000000
6.5536000000
8.3521000000
1.0497600000
1.3032100000
1.6000000000

Derivative of Y
4.000000000
5.324000000
6.912000000
8. 788000000
1.097600000
1.350000000
1.638400000
1.965200000
2.332800000
2. 7 43600000
3.200000000

Although the tolerance is smaller (that is, more exacting) in the first case, the
accuracy of the approximation is greater in the second case. The spacing in the first
case is too large to permit a more accurate approximation.

208 Turbo Pascal Numerical Methods Toolbox

Solution to a Boundary Value Problem for a Second-Order
Ordinary Linear Differential Equation Using th£ Linear
Shooting and Runge-Kutta Methods (Linshot2.pas)

Description

This example uses the linear shooting method to approximate the solution to a
second-order linear ordinary differential equation with specified boundary condi­
tions (Burden and Faires 1985, 519-524).

Given a second-order differential equation (Burden and Faires 1985, 261-264) of
the form

<fy!dx2 = TNTargetF(x, y, y')

which is linear in both y and y', where y' represents dy/dx, and which satisfies the
conditions given at the beginning of this chapter, boundary conditions

y[LowerLimit] = Lowerlnitial
y[UpperLimit] = Upperlnitial

and spacing

h = (UpperLimit - LowerLimit)/Numlntervals

the shooting method solves the two initial value problems (see Rung~.pas):

y'[LowerLimit] = 0 y[LowerLimit] = Lowerlnitial

y'[LowerLimit] = 1 y[LowerLimit] = Lowerlnitial

(These values are particular to this implementation; any other nonidentical set of
initial conditions will suffice.) Since neither of these initial values of y' is likely to
be correct, the solutions generated are not likely to satisfy the boundary condition
at Upperlnitial. However, because of the linearity of the equation, an appropriate
linear combination of these two solutions will be a solution to the boundary value
problem. The linear shooting method requires that only two initial value problems
be solved, where the ordinary shooting method (Shoot2.pas) requires that an
unknown number of initial value problems be solved before the method converges
to a solution.

You must supply the LowerLimit, UpperLimit, Lowerlnitial, Upperlnitial, Numln­
tervals, and TNTargetF.

Initial Value and Boundary Value Methods 209

User-Defined 'lfJpes

TNvector = array[l •• TNArrayS;ze] of Extended;

User-Defined Functions

TNTargetF(x, y, yPr;me : Extended) : Extended;

cfy/dx1 = TNTargetF(x. y, thj!dx)

The procedure LinearShooting integrates this second-order differential equation.

Input Parameters

LowerUmit: Extended; Lower limit of interval

Upperlimit: Extended; Upper limit of interval

Lowerinitial : Extended; Value of y at LowerLimit

Upperinitial : Extended; Value of y at UpperLimit

Numintervals : Integer; Number of subintervals used in calculations

NumReturn : Integer; Number of (x, y, y') triples returned from the procedure

The preceding parameters must satisfy the following conditions:

1. NumReturn > 0

2. Numlnteroa"8 ~ NumReturn

3. LowerLimit ¢ UpperLimit

Output Parameters

XValues : TNvector; Values of x between the limits
YValues : TNvector; Values of y determined at values in XValues

YDeri vVa l ues : TNvector; Values of the first derivative of y determined at values in
XValues

Error : Byte; 0: No errors

210

1: NumRetum < 1
2: Numlnteroa"8 < NumRetum
3: LowerLimit = UpperLimit
4: Equation not linear

Turbo Pascal Numerical Methods Toolbox

Syntax of tlw Procedure Call

LinearShooting(Lowerlimit, Upperlimit, Lowerlnitial, Upperlnitial,
NumReturn, Numlntervals, XValues, YValues,
YDerivValues, Error, @TNTargetF);

Comments

If TNTargetF is a nonlinear function, the linear shooting algorithm will usually
compute a solution (albeit an incorrect one) without returning an error message.
Error 4 (nonlinear equation} will be returned in only a few cases where the
two initial value problems happen to yield solutions with the same y-value at
x = UpperLimit.

The procedure will compute Numlnteroals values in its calculations; however, you
will rarely need to use these values. The vectors XValues, YValues, and YDetiv­
Values will contain only NumRetum values at roughly evenly spaced intervals
between the lower and upper limits. (They will be exactly evenly spaced only when
Numlnteroals is a multiple of NumRetum.) Thus, you can ensure a highly accurate
solution (by making Numlnteroals large} without generating an excessive amount
of output (by making NumRetum small).

Warning: A stiff differential equation occurs when there are at least two very
different scales of the independent variable on which the dependent variable(s} is
changing; for example, y = x + e-100z. The Runge-Kutta method may generate a
numerical solution that bears no resemblance to the exact solution of the differen­
tial equation. This unstable numerical solution usually grows exponentially and
may be oscillatory. However, if the exact solution of the differential equation grows
as the independent variable increases, the instability may be difficult to detect. If a
suspected instability has been encountered, reduce the interval size (Numlnter­
vals).

Sample Program

The sample program Linshot2.pas provides 1/0 functions that demonstrate the
linear shooting method of solving boundary value problems. Note that the address
of TNTargetF gets passed into the LinearShooting procedure.

Initial Value and Boundary Value Methods 211

Example

Problem. Use the linear shooting method to solve the following boundary value
problem:

y" = y' Ix - y/sqr(x) + 1 1 = x s 10

y(l) = 1

y(lO) = 76.974149

1. Code the differential equation into the program Linshot2.pas:

function TNTargetF(x : Extended;
y : Extended;

yPrime : Extended) : Extended;

{---}
{ THIS IS THE SECOND-ORDER DIFFERENTIAL EQUATION }

{---}
begin

TNTargetF := yPrime/x - y/Sqr(x) + 1;
end; { function TNTargetF }

2. Run Linshot2.pas:

212

Lower limit of interval?

Upper limit of interval? 10

Enter Y value at X = 1.00000e+O: 1
Enter Y value at X = 1.00000e+l: 76.974149

Number of points returned (1-40)? 9

Number of intervals (>= 9)? 9

Now a dialog box appears asking you whether you would like the output sent to
the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Lower limit: 1.00000000000000e+O
Upper limit: 1.00000000000000e+l

Value of Y at 1.0000: l.OOOOOOOOOOOOOOe+O
Value of Y at 10.0000: 7.69741490000000e+l

Numintervals: 9.00000000000000e+O

x
l.OOOOOOOOOOOOOOe+O
2.00000000000000e+O
3.00000000000000e+O
4.00000000000000e+O
5.00000000000000e+O
6.00000000000000e+O
7.00000000000000e+O
8.00000000000000e+O
9.00000000000000e+O
l.OOOOOOOOOOOOOOe+l

Y Value
l.OOOOOOOOOOOOOOe+O
2.61170356138588e+O
5.70207271413620e+O
l.04528257144925e+l
l.69509897305375e+l
2.52478687612139e+l
3.53773649984557e+l
4.73635728977226e+l
6.12245068576119e+l
7.69741490000000e+l

Derivative of Y
l.00042467674563e+O
2.30627678512124e+O
3.9011529619183le+O
5.61367861126495e+O
7.39067355864438e+O
9.20845513089500e+O
l.10543869346579e+l
l.29209245920937e+l
l.48032011472994e+l
l.66978931711222e+l

Turbo Pascal Numerical Methods Toolbox

Now solve the same problem with a spacing of only 0.1:

Lower limit of interval? 1

Upper limit of interval? 10

Enter Y value at X = 1.00000etO: 1
Enter Y value at X = 1.00000etl: 76.974149

Number of points returned (1-40)? 9

Number of intervals (>= 9)? 90

Now a dialog box appears asking you whether you would like the output sent to the
Screen, directly to the Printer, or into a File. Make your selection and click OK.

Lower limit: 1.00000000000000etO
Upper limit: 1.00000000000000e+l

Value of Y at 1.0000: 1.00000000000000e+O
Value of Y at 10.0000: 7.69741490000000e+l

Numlntervals: 9.00000000000000etl

x
1.00000000000000etO
2.00000000000000e+O
3.00000000000000etO
4.00000000000000etO
5.00000000000000etO
6.00000000000000etO
7.00000000000000e+O
8.00000000000000etO
9.00000000000000e+O
1.00000000000000etl

The exact solution is

y = x * x - x * ln(x)

y(l} = 1

Y Value
1.00000000000000etO
2.61370547174514e+O
5.70416298088411e+O
1.04548224122436e+l
1.69528103026793etl
2.52494430584438etl
3.53786288412165e+l
4.73644675641047e+l
6.12249787166508e+l
7.69741490000000etl

y'(l) = 1

Derivative of Y
1.00000001942594e+O
2.30685275847028e+O
3.90138768358927e+O
5.61370562650429e+O
7.39056208402440e+O
9.20824053324639et0
1.10540898579729e+l
1.29205584690303e+l
1.48027754364805e+l
1.66974149235206e+l

y(lO} = 7.6974149 y'(lO} = 16.6974149

The second approximation is more accurate.

Initial Value and Boundary Value Methods 213

c H A p T E R 9
Least-Squares Approximation

Given a set of data points, this chapter provides routines to model the data with a
function of a given type. The most common application of this concept is linear
regression.

With linear regression, there is some control variable, say X, and some observed
variable, say Y. X and Y are known or suspected to have some linear relationship,
say

Y=a•X+b

but the parameters a and b are unknown. Usually there is some experimental error
or some other nonlinear influence on Y, so that there are no values of a and b for
which the preceding equation holds exactly. The method of regression provides a
formula for a and b in terms of the values of X and Y such that the enor is mini­
mized. The error is the sum of squares of the errors (a * X + b - Y) on each data
point. Except in certain unusual cases, there is exactly one value for a and one
value for b that makes this sum of squares the least possible. This is called the
least-squares solution.

This concept ofleast squares also applies when more variables are present-then it
is often called multiple regression. Using this method, you can find the best model
for a given set of data that is linear in a given set of other data sets or functions.
Models that are nonlinear variables can also be treated as long as the unknown
parameters appear linearly.

215

Least-Squares Approximation (Least.pas)

Description

This model provides a method for finding a least-squares approximation (Cheney
and Kincaid 1985, 362-387} to a set of data points (x, y). The approximation must
be a linear combination of a set of basis vectors. The functional form of the approxi­
mation (polynomw, logarithmic, and so on) is therefore determined by the user, as
long as it is represented linearly. (How to represent logarithmic, and other func­
tions linearly is discussed later.)

Given a set of m data points (x, y), an m x n matrix (m ~ n), A, is constructed,
where n is the number of basis vectors in the approximation. The elements of the
matrix are

A[i, j] = ~(X,)
where ~(X) is the jth basis vector evaluated at the data value X[i]. A vector Y is
constructed that contains the y-values of the data points. The coefficients of the
basis vectors that form the least-squares approximation will be the n vector C, such
that the Euclidean norm of (AC - Y) (represented by II AC - Y 112) is a minimum.
This requirement is converted to the requirement that

II BC - z 112 + II R 112

be a minimum. Here Bis an n X n matrix, Z is an n vector, and R is an (m - n)
vector. The equations BC = Z are the normal equations. The previous expression
will be minimized when C solves the equation BC = Z. Gaussian elimination with
partial pivoting (see Chapter 6, "Solving a System of Linear Equations with Gauss­
ian Elimination and Partial Pivoting") is used to solve the normal equations.

The goodness of fit is indicated by the standard deviation:

S.D. = ((Y[i] - F(X[i]))2/(m - n))112

where F(X[i]) is the least-squares solution at the point X[i], (Y[i] - F(X[i])) is the
residual, and (m - n) is the degree of freedom of the fit.

216 Turbo Pascal Numerical Methods Toolbox

User-Defined Types

TNColumnVector = array[l •• TNColumnSize] of Extended:
TNRowVector = array[l •• TNRowSize] of Extended:

(TNColumnSize will usually be much larger than TNRowSize.)

TNmatrix = array[l •• TNColumnSize] of TNRowVector:
TNSquareMatrix = array[l .• TNRowSize] of TNRowVector:
TNString40 = strtng[40]:
FitType = (Expo, Fourier, Log, Poly, Power, User):

Input Parameters

NumPoints : Integer: Number of data points

XData: TNColumnVector; X coordinates of the data points

YData : TNCol umnVector: Y coordinates of the data points

NumTerms : Integer:

Fit : FitType;

Number of terms in the least-squares approximation

Type of least-squares fit requested

The preceding parameters must satisfy the following conditions:

1. NumPoints > 1.

2. NumTerms s NumPoints.

3. NumPoints s TNColumnSize.

4. NumTerms s TNRowSize.

5. The XData points cannot all be identical.

TNColumnSize and TNRowSize set an upper bound on the number of elements in
a vector. Neither of these identifiers are variable names and are never referenced
by the procedure. If conditions 3 or 4 are violated, the program will crash with an
Index Out of Range error (assuming the directive {$R +}is active).

Least-Squares Approximation 217

Output Parameters

Solution : TNRowVector; Coefficients of the basis vectors that form the least-
squares approximation

YFi t : TNCo l umnVector; Values of the least-squares fit evaluated at the XData
values

Residual : TNColumnVector; Difference between YData and YFit values

StandardDeviation: Extended; Square root of the variance-indicates the goodness of
fit

Error : Byte; 0: No error
1: NumPoints < 2
2: NumTerms < 1
3: NumTerms > NumPoints
4: Least-squares solution does not exist (see "Com­

ments")

Syntax of the Procedure Call

LeastSquares(NumPoints, XData, YData, NumTerms, Solution,
YFit, Residual, StandardDeviation, Variance, Error, Fit);

Comments

The least-squares routine is defined in LeastSquares.unit. The choice of parameter
passed in for FitType will depend upon the functional form (basis vectors) to which
you fit the data. Following are the five choices for the Fit1tJpe parameter:

Poly

This method uses Che'byshev polyrwmials to fit a polynomial to the data points.
NumTerms must be one greater than the degree of the polynomial (for example, to
fit a fourth-degree polynomial, input NumTerms = 5). To get a straight-line least­
squares fit, use this module and fit a curve with only two coefficients. The elements
of the Solution vector will be as follows:

Solution[j] = a1 1 :::;; j :::;; NumTerms

where a1 is the coefficient of x1- 1•

218 Turbo Pascal Numerical Methods Toolbox

Fourier

This method will fit a finite Fourier series to the data points. The number of terms
in the approximation will be NumTerms. The elements of the Solution vector will
be as follows:

Solution[j] = F1_ 1 1 s j s NumTerms

where F1_ 1 is the (j- l)th term in the Fourier series. Following are the first few
terms in the Fourier series:

F[O] = 1
F[l] = cos(x)
F[2] = sin(x)
F[3] = cos(2x)
F[4] = sin(2x)
F[5] = cos(3x)
F[6] = sin(3x)

Power

This method will fit the function

y = ai
where a and b are real numbers to the data points. A linear equation is obtained by
taking the log of both sides, like so:

ln(y) = ln(a) + b * ln(x)

and expanding on basis vectors 1 and ln(x). The x-values of the data points must all
be positive, and the y-values of the data points must all have the same sign. The
number of coefficients in the approximation will be two regardless of the value of
NumTerms (unless NumTerms > NumPoints, in which case Error 3 will occur).
The elements of the Solution vector will be as follows:

Solution[!] = a
Solution[2] = b

Expo

This method will fit the function

y = ae,,.

where a and b are real numbers to the data points. A linear equation is obtained by
taking the log of both sides, like so:

ln(y) = ln(a) + bx

Least-Squares Approximation 219

and expanding on basis vectors 1 and x. They-values of the data points must all
have the same sign. The number of coefficients in the approximation will be two
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which
case Error 3 will occur). The elements of the Solution vector will be as follows:

Solution[!] = a
Solution[2] = b

Log

This method will fit the function

y = a ln(bx)

where a and b are real numbers to the data points. A linear equation is obtained by
rewriting the equation:

y = a ln(b) + a ln(x)

and expanding on basis vectors 1 and ln(x). The x-values of the data points must all
have the same sign. The number of coefficients in the approximation will be two
regardless of the value of NumTerms (unless NumTerms > NumPoints, in which
case Error 3 will occur). The elements of the Solution vector will be as follows:

Solution[!] = a
Solution[2] = b

User

This method is included if you need a least-squares approximation on a set of basis
vectors different from the ones listed earlier. This method allows you to create your
own set of basis vectors. The source code contains detailed instructions of how to
flesh out the skeleton for the user-defined method.

A least-squares solution may not exist for some input data and choice of basis
vectors (Error 4). The reasons for this will depend on the module you are using. For
example, it is impossible to fit an exponential function to data with y-values of
differing signs; Error 4 will occur if you try. The same data could be fit with a
polynomial and no error would result. Error 4 will also occur if all the x-values of
the data are identical.

220 Turbo Pascal Numerical Methods Toolbox

Sampl,e Program

The demonstration program Least.pas contains I/O routines that allow you to run
the least-squares approximation routine.

To change the basis vectors of the approximation, simply pass in a different para­
meter for FitType to select the method used.

Input Fil£s

Data may be entered from a text file. The x- and y-coordinates should be separated
by a space and followed by a carriage return. For example, data values of sqr(x)
could be entered in a text file as

11
24
39
416
5 25

Exampl,e

Problem. Given the following data (contained in the file Sample9Adat), fit a
fourth-degree polynomial and a logarithmic function to the data:

O.OOOOOOOOOOOOOOe+O l.33830225764886e-3
O.lOOOOOOOOOOOOOe+O 4.43184841193803e-2
0.20000000000000e+O 5.39909665131879e-l
0.30000000000000e+O 2.41970724519143e+O
0.40000000000000e+O 3.98942280401433e+O
0.02000000000000e+O 2.9194692579146le-3
0.04000000000000e+O 6.11901930113775e-3
0.06000000000000e+O l.23221916847303e-2
0.08000000000000e+O 2.38408820146486e-2
0.12000000000000e+O 7.9154515829800le-2
0.14000000000000e+O l.35829692336855e-l
0.16000000000000e+O 2.23945302948430e-l
O.lBOOOOOOOOOOOOe+O 3.54745928462313e-l
0.22000000000000e+O 7.89501583008939e-l
0.24000000000000e+O l.10920834679455e+O
0.26000000000000e+O l.49727465635745e+O
0.28000000000000e+O l.94186054983213e+O
0.32000000000000e+O 2.89691552761483e+O
0.34000000000000e+O 3.33224602891800e+O
0.36000000000000e+O 3.68270140303323e+O
0.38000000000000e+O 3.91042693975456e+O

(The function is the left-hand side of a Gaussian distribution curve with mean =
0.5 and standard deviation = 0.1.) Note that the points do not have to be in any
particular order.

Least-Squares Approximation 221

First fit the polynomial; set the FitType parameter to Poly in the call to procedure
leastSquares.

Run Least.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample9A.dat

Number of terms in the least squares fit (<= 21)? 5

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

The Data Points:
x

0.200
0.300
0.400
0.500
0.100
0.120
0.140
0.160
0.180
0.220
0.240
0.260
0.280
0.320
0.340
0.360
0.380
0.420
0.440
0.460
0.480

y
0.0443185
0.5399097
2.4197072
3.9894228
0.0013383
0.0029195
0.0061190
0.0123222
0.0238409
0.0791545
0.1358297
0.2239453
0.3547459
0.7895016
1.1092083
1.4972747
1.9418605
2.8969155
3.3322460
3.6827014
3.9104269

--
Polynomial Least Squares Fit

--
Coefficients in least squares approximation:

222

Coefficient 0: -3.1905595418e+O
Coefficient 1: 6.4048009603e+l
Coefficient 2: -4.3900537685e+2
Coefficient 3: l.2058567475e+3
Coefficient 4: -1.052335267le+3

Turbo Pascal Numerical Methods Toolbox

x
0.2000
0.3000
0.4000
0.5000
0.1000
0.1200
0.1400
0.1600
0.1800
0.2200
0.2400
0.2600
0.2800
0.3200
0.3400
0.3600
0.3800
0.4200
0.4400
0.4600
0.4800

Least Squares Fit
2.1944857693e-2
5.4757594259e-l
2.4228330082e+O
4.0432402964e+O

-7.5189129206e-2
3.9032402642e-2
7.6262215354e-2
6.8115144544e-2
4.2165058402e-2
2.6946475755e-2
7.262087850le-2
1. 7037806442e-l
3.2758706457e-l
8.2963179469e-l
l.1690007497e+O
1. 5568879689e+O
l.9804576462e+O
2.8630963140e+O
3.2762888552e+O
3.6334109560e+O
3.9014219733e+O

Standard Deviation : 5.381534e-2

Residual
-2.2373626426e-2
7.6662774599e-3
3.1257630445e-3
5.3817492388e-2

-7.6527431463e-2
3.6112933385e-2
7.0143196053e-2
5.5792952859e-2
l.8324176388e-2

-5.2208040075e-2
-6.3208813836e-2
-5.3567238529e-2
-2.7158863892e-2
4.0130211685e-2
5.9792402868e-2
5.9613312500e-2
3.8597096380e-2

-3.3819213603e-2
-5.595717372le-2
-4.9290447009e-2
-9.0049664558e-3

The fourth-degree polynomial that best fits this data is as follows:

y = - 1052.34 x4 + 1205.86 x3 - 439.005 x1 + 64.0480 x - 3.19056

Note that a fourth-degree polynomial requires five terms in the fit.

Now fit the logarithmic function; set the Fit'l!/pe parameter to Log in the call to
procedure LeastSquares.

Run Least.pas:

A dialog box appears asking you whether you will input data from the Keyboard or
from a File. Select File and click OK. Then select the following file from the
standard dialog box:

File name? Sample9A.dat

Number of terms in the least squares fit (<= 21)? 2

Now another dialog box appears asking you whether you would like the output sent
to the Screen, directly to the Printer, or into a File. Make your selection and click
OK.

Least-Squares Approximation 223

The Data Points:
x

0.200
0.300
0.400
0.500
0.100
0.120
0.140
0.160
0.180
0.220
0.240
0.260
0.280
0.320
0.340
0.360
0.380
0.420
0.440
0.460
0.480

y
0.0443185
0.5399097
2.4197072
3.9894228
0.0013383
0;0029195
0.0061190
0.0123222
0.0238409
0.0791545
0.1358297
0.2239453
0.3547459
0.7895016
1.1092083
1.4972747
1. 9418605
2.8969155
3.3322460
3.6827014
3.9104269

--
Logarithmic Least Squares Fit

--
Coefficients in least squares approximation:

Coefficient 0: 2.5984092388et0
Coefficient 1: 6.0253489684e+O

x
0.2000
0.3000
0.4000
0.5000
0.1000
0.1200
0.1400
0.1600
0.1800
0.2200
0.2400
0.2600
0.2800
0.3200
0.3400
0.3600
0.3800
0.4200
0.4400
0.4600
0.4800

Least Squares Fit
4.8470072527e-1
l.5382650082e+O
2.285780763le+O
2.8655990284e+O

-l.3163793126e+O
-8.4263329495e-1
-4.4208674432e-l
-9.5117540049e-2
2.1093098798e-1
7.3235557703e-l
9.5844674288e-1
l.1664304540e+O
l.3589932935e+O
l.7059624978e+O
l.8634900752e+O
2.0120110258e+O
2.152499793le+O
2.4125575764e+O
2.5334356149e+O
2.6489394854e+O
2.7595267807et0

Standard Deviation : 8.320742e-l

224

Residual
4.4038224115e-1
9.9835534307e-1

-1.3392648209e-1
-l.1238237756e+O
-1.3177176148e+O
-8.455527642le-l
-4.4820576362e-l
-l.0743973173e-1
1. 8709010596e-l
6.5320106120e-l
8.2261705055e-l
9.4248515105e-l
1.004247365le+O
9.1646091478e-l
7.5428172842e-1
5.1473636946e-l
2.1063924325e-l

-4.8435795117e-l
-7.9881041405e-l
-l.0337619176e+O
-l.1509001590et0

Turbo Pascal Numerical Methods Toolbox

The logarithmic function that best fits this data is as follows:

y = 2;59841 * ln(6.02535x)

The standard deviation of the polynomial fit is much smaller than that of the loga­
rithmic fit; a fourth-degree polynomial fits this data much better than a logarithmic
function.

Least-Squares Approximation 225

c H A p T E

Fast Fourier Transform Routines

Fourier transforms are used to analyze periodic phenomena such as waves. A con­
tinuous function/ that has period 21T (= 2 * 3.14159265 ...); that is, satisfies

f(x + 21T) = f (x)

for all x, can be decomposed into sines and cosines:

f (x) = a[O] + a[l] * cos(x) + b[l] * sin(x) + a[2] * cos(2x)
+ b[2] * sin(2x) + ...

This is an infinite series where the coefficients get closer and closer to zero. The
routines in this chapter can be used to calculate the coefficients.

The Fast Fourier Transform (FFT) is a particular algorithm for computing Fourier
transforms efficiently.

This chapter includes two kinds of units. One group consists of four variations of
the FIT method of calculating discrete Fourier transforms, each optimized for
certain conditions. All are variations of the original Cooky-Tukey method. The
second group consists of six applications: ComplexFIT, RealFIT, ComplexCon­
volution, RealConvolution, ComplexCrossCorrelation, and RealCrossCorrelation.
Each can be used with any of the FIT methods. You can select the FIT method
most appropriate to the circumstances and combine it with the appropriate appli­
cation or integrate it into another program (Brigham 1974; Nussbaumer 1982).

In each FIT unit the procedure calls have exactly the same form (although there
are different restrictions on the data) so that any one FIT unit can be combined

227

with any of the application units without rewriting code. Each of these algorithms
will compute either a forward or an inverse transform.

Each unit contains two procedures needed to prepare for the FFI' calculation:
procedure Testlnput and procedure MakeSinCosTabl.e. Testlnput examines the
input data to ensure that it satisfies certain conditions (for example, that there is
more than 1 data point). MakeSinCosTabl.e precalculates a table of the nth roots of
unity for look up in the FFT calculation.

When Radix2 is passed in for the Radix1f/pe parameter, the Cooley-Tukey powers­
of-two (radix2 or base2) Fast Fourier Transform is used. Complex multiplications
are done with four real multiplications and two real additions. By using this stan­
dard form of complex multiplication, storage overhead and assignment statements
are reduced. This algorithm is appropriate when the time for a real multiplication
is close to the time for a real addition.

When Radix4 is passed in for the RadixType parameter, the powers-of-four (radix4
or base4) Fast Fourier Transform is used. The powers-of-four method is the same
as the Cooley-Tukey algorithm except at each stage of reduction a given transform
is converted into four transforms each with one fourth the data points of its prede­
cessor (Nussbaumer 1982). When this algorithm is optimized, there are about 25
percent fewer multiplications and slightly fewer additions than in a radix-2 algo­
rithm. The algorithm has the disadvantage of only being applicable to data sets
where the number of points is a power of four up to a maximum of 4,096 points. A
reduction in execution time of about 20 percent is accomplished when Radix4 is
used over its Radix2 counterpart.

The Application Programs

Fast Fourier Transforms are particularly useful for analyzing periodic signals. Such
a signal is represented by a function f satisfying

f(t + 1j = f(t)
where tis time and Tis the period. Under mild hypotheses,/ can be expanded into
a Fourier series such as the following:

"'
f(t) = N- 112 L F(n) exp (2ir i n t/1j

n=-oo

where i is the square root of - 1. The term exp (2ir i n t/1j is a sinusoid of period
Tin and frequency n/T, and its coefficient F(n) gives the strength of that frequency
component in the original signal.

228 Turbo Pascal Numerical Methods Toolbox

To analyze a signal on a digital computer, the signal must be discretized. Let x(n)
be computed by discretizing the functionf at N equidistant points in one period.
Thus, let

x(n) = f(nT/N} n = 0, 1,. .. N - 1

Once we restrict attention to N points, it only makes sense to represent the signal
in terms of N of the functions

exp (2'TT in t/T)

since the rest are redundant. For example:

exp (2'Tl' i (- 1) t/T) = exp (2'TT i (N -1) t/T)

for t = nT/N, n = 0, 1, ... N - 1. The Fourier series for the signal is then a finite
sum, and has the form

N-1

x(n) = N- 112 L X(k) exp (2'TT i k n/N}
k = 0

(The factor of N- 112 is a matter of convention. Some books do not include it in this
formula, resulting in a factor of l/N in the formula for X that follows.)

The formula for the coefficients X(k) is as follows:

N-1

X(k) = N- 112 L x(n) exp (-i 2'Tl' n k!N)
n=O

This formula for X makes sense for any integer k. X is then periodic, satisfying

X(k + N) = X(k)

for all k. In formulas and programs, it is more convenient to let k run from 0 to
N - 1, but for analyzing signals it makes more sense to think of k as running from
(-N/2) to (N/2 - 1). This is because values of k near zero represent the low
frequency information, and values of k near or greater than N 12 represent frequen­
cies that are so high that the discretization is too coarse to realize them accurately
anyway. Therefore, if k is between N 12 and N, X(k) should be thought of as the
coefficient of

exp (2'TT i (k - N) t/T)

rather than

exp (2'TT i k t/T)

In other words, negative frequencies are represented on the right half of the trans­
form.

Fast Fourier Transform Routines 229

Com:pl.exFFT simply talces the complex Fast Fourier Transform of a set of complex
data points. The complex Fourier transform is defined as

N-1

X1 = N- 112 L xn exp (2'1T i n JIN) f = O .. N - 1
n=O

where i is the square root of -1. The inverse Fourier transform (which may also be
calculated with Comp'lexFFT) is defined as

N-1

in = N- 112 I X1 exp (2'1T if n/N) n = O .. N - 1

!= 0

where the bar stands for complex conjugation.

RealFFT provides a procedure that is optimized for a discrete Fourier transform
with all real data. It proceeds by mapping the N real data points onto N /2 complex
points, applying one of the FFT routines, then reconstructing the N points of the
desired transform. This reduces the computation time by about 25 percent com­
pared to applying the complex FFTroutine to the N real data points. RealFFT can
be used with any of the given FFT methods, but note that if a radix-4 method is
used, N /2 must be a power of four; so N must be of the form 2 * 4k.

Comp'lexConvolution provides a procedure for calculating convolutions of two com­
plex vectors (Brigham 1974; Nussbaumer 1982). The discrete convolution of two
complex functions x and h is defined by

m = 0, 1, ... N - 1

n=O

where subscripts are talcen modulo N (circular convolution). The basic theorem that
allows us to calculate these effectively using FFTs is shown in the following:

Y = X H m m m
m = 0, l, ... N - 1

where capital letters indicate the transforms of the functions represented by lower­
case letters. Thus the procedure for convolution works like this:

1. Transform both given data sets using FFTs.

2. Multiply the resulting transforms point by point.

3. Find the inverse transform of this product using FFTs.

230 Turbo Pascal Numerical Methods Toolbox

RealConvolution provides a procedure for calculating convolutions of two real vec­
tors (Brigham 1984; Nussbaumer 1982). This procedure is exactly the same as the
previous procedure (ComplexConvolution) for complex convolution except that only
one forward Fourier transform need be performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal plus iHReal, where i is the square root of - 1.

2. Transform this complex vector.

3. Extract the transforms of the two real functions from the transform of the
complex function (using the symmetry xf = x_f' where the bar stands for
complex conjugation).

4. Multiply the resulting transforms point by point.

5. Find the inverse transform of this product using FFTs. RealConvolution is
about 25 percent faster than its complex counterpart for the same set of real
data.

ComplexCrossCorrelation provides a procedure for calculating the crosscorrelation
of two discrete complex functions or the autocorrelation of one discrete complex
function (Brigham 1974). If x and h are the given discrete functions, then their cor­
relation is defined as

N-1

c =""xh
m L n n+rn

m = 0, 1, ... N - 1
n = 0

where subscripts are taken modulo N (circular convolution). This can be computed
using FFTs with a method analogous to that used in ComplexConvolution:

C = X H m m N-m
m = 0, 1, ... N - 1

Commonly x and h are real functions; in which case the preceding formula reduces
to C = X ii , where the bar stands for complex conjugation. Thus the procedure
for ~rrelatfon mworks like this:

1. Transform both given data sets using FFTs.

2. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data.

3. Find the inverse transform of this product using FFTs.

RealCrossCorrelation provides a procedure for calculating the crosscorrelation of
two discrete real functions or the autocorrelation of one discrete real function
(Brigham 1974). This procedure is exactly the same as the previous procedure for

Fast Fourier Transform Routines 231

complex correlation except that only one forward Fourier transform need be per­
formed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of -1.

2. Transform this complex vector.

3. Extract the transforms of the two real vectors from the transform of the
complex vector (using the symmetry x, = x_,, where the bar stands for
complex conjugation).

4. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data.

5. Find the inverse transform of this product using FFTs.

Any one of the FFT include files can be used with any of the applications.

Data Sampling

While sampling theory is beyond the scope of this Toolbox, we would like to men­
tion several common problems associated with data sampling (Brigham 1974; Press
et al. 1986, Ch.12). The most common frustration is aliasing. A Fourier transform
only represents frequencies up to a certain limit (called the Nyquist limit, or
Nyquist frequency), which is given by half the sampling rate. (For example, if a
signal is sampled sixty times a second, the Nyquist frequency will be 30 Hz.) A
sample containing frequencies greater than this limit will not be properly trans­
formed. The high frequencies will falsely contribute to the transform. This contri­
bution will be indistinguishable from a contribution of a frequency below the
Nyquist frequency.

There are several ways to combat aliasing. Increasing the sampling rate will
increase the Nyquist frequency and thus reduce aliasing effects. It is also possible
to pass the signal through a low pass filter, thus eliminating the high frequencies
before sampling. If the Fourier transform of a signal does not converge to zero at
the Nyquist frequency, the transform has very likely been aliased.

The Fourier transform assumes that the sample represents a periodic function and
that the sample is an integer multiple of one period. If the latter condition is not
true, spurious frequencies will show up in the transform. For example, if a sine
wave is sampled from 0 to 270 degrees (instead of the full period), a sharp bound­
ary is created because the sine of 0 does not equal the sine of 270. High frequen­
cies will be introduced into the transform to account for that sharp boundary.

232 Turbo Pascal Numerical Methods Toolbox

The assumption of periodicity can cause problems when convolving or correlating
two signals that are not periodic. The convolution of each point in a signal affects
the points surrounding it (the nature and extent of the affect depends on the partic­
ular convolving function). The assumption of periodicity means that the convolu­
tion at one end of the signal will affect the other end of the signal. This "end effect•
can be eliminated by padding the data (on either end) with a sufficient number of
zeros.

User-Defined 'lflpes

TNvector = array[O •• TNArraySize] of Extended;

TNvectorPtr = -rNvector;

RadfxType = (Radix2, Radfx4);

These user-defined types are different from others in this Toolbox, because they
involve pointers. Pointers are used to transcend the limitations imposed by the 32K
data segment size of Turbo Pascal. However, it is possible to store these arrays on
the heap, and to point to them with pointers that only require 4 bytes. The size of
the heap (and hence the maximum size and number of TNvectors) is determined
by the amount of memory in the machine.

Fast Fourier Transform Routines 233

Fast Fourier Transform .Afgarithms

The following documentation generally applies to all FFf algorithms. When a dif­
ference between the radix-2 and radix-4 algorithms needs to be described, the
radix-4 information will be placed in brackets following the radix-2 information (for
example, the number of points must be a power of two [four]).

Procedure Testlnput

Description

This example determines the number of data points in terms of a power of two
[four]. If the number of data points is not a power of two [four], then an error is
returned.

Input Parameters

NumPoints : Integer: Number of data points

The preceding parameter must satisfy the following conditions:

1. NumPoints ~ 2.

2. NumPoints must be a power of two [four].

Output Parameters

NumberOfBits : Byte: Number of data points as a power of two [four]

Error : Byte; 0: No errors
l: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

Testinput(NumPoints, NumberOfBits, Error):

234 Turbo Pascal Numerical Methods Toolbox

Procedure MakeSinCosTab"le

Description

This example creates a look-up table of NumPoints/2 [3/4 NumPoints] roots of unity.
The roots of unity are defined as follows:

Rootn = exp (- i 2ir n/NumPoints n = O .. NumPoints/2 [3/4 NumPoints]

where i is the square root of -1. These values are stored in two tables: SinTable,
containing the imaginary parts of the roots of unity, and CosTable, containing the
real parts of the roots of unity. It is faster to look up these values in a table than to
calculate them in the FFT procedure.

Input Parameters

NumPoi nts : Integer; Number of data points

The preceding parameter must satisfy the following conditions:

1. NumPoints ~ 2.

2. NumPoints must be a power of two [four].

Output Parameters

SinTable: TNvectorPtr; Table of sine values

CosTable: TNvectorPtr; Table of cosine values

Syntax of the Procedure Call

MakeSinCosTable(NumPoints, SinTable, CosTable);

Procedure Comp"lexFFT, Real,FFT

Description

This example implements the particular variation of the Cooley-Tukey algorithm.
The Fast Fourier 'fransform of the data XReal, Xlmag is made in place and is thus
returned in the vectors XReal, Xlmag. The inverse transform of the data can also
be calculated with this procedure.

Fast Fourier Transform Routines 235

It is essential that procedures Testlnput and MakeSinCosTable be called before
procedure Fast Fourier Transform is called. Testlnput will flag any errors in the
data (for example, number of points that are not a power of two [four]), and
MakeSinCosTable generates a table of sine and cosine values referenced by Fast
Fourier Transform. Testlnput and MakeSinCosTable need only be called once, even
if several calls to Fast Fourier Transform are made within the same program (for
example, when computing the discrete convolution), as long as the number of data
points is unchanged. If the number of data points changes between two calls of
Fast Fourier Transform, Testlnput and MakeSinCosTable must be called again.
(Interested readers are urged to consult the references given in the beginning of
the chapter for details about the Cooley-Tukey algorithm.)

Input Parameters

NumberOfBits : Byte;

NumPoi nts : Integer;

Inverse : Boolean;

XReal : TNvectorPtr;

XImag : TNvectorPtr;

Number of data points as a power of two [four]

Number of data points

FALSE equals forward transform; TRUE equals inverse
transform

Pointer to real values of the data points

Pointer to imaginary values of the data points

SinTable: TNvectorPtr; Table of sine values

CosTable: TNvectorPtr; Table of cosine values

Radix: RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:

1. NumPoints C!: 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the
input data

XImag : TNvectorPtr; Pointer to imaginary values of the discrete Fourier transform
of the input data

Syntax of the Procedure Call

RealFFT(NumberOfBits, NumPoints, Inverse, XReal, XImag, SinTable, CosTable, Radix);
ComplexFFT(NumberOfBits, Numpoints, Inverse, XReal, XImag, SinTable, CosTable,

Radix);

236 Turbo Pascal Numerical Methods Toolbox

Fast Fourier 'lransfonn Applications

ComplexFFT

Description

This example is the most basic application, performing a complex Fast Fourier
Transform. It simply calls Testlnput, MakeSinCosTable, and FFT sequentially; thus
accomplishing an in-place transformation of the complex data XReal, XI mag.

Input Parameters

NumPoints : Integer: Number of data points

Inverse: Boolean: FALSE equals forward transform; TRUE equals inverse trans-
form

XReal : TNvectorPtr: Pointer to real values of the data points

XImag : TNvectorPtr; Pointer to imaginary values of the data points

Radb : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:

1. NumPoints ;;::: 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the discrete Fourier transform of the
input data

XImag : TNvectorPtr: Pointer to imaginary values of the discrete Fourier transform
of the input data

Error : Byte: 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Fast Fourier Transform Routines 237

Syntax of the Procedure Call

ComplexFFT(NumPoints, Inverse, XReal, XImag, Error, Radix);

RealFFT

Description

This example performs a complex Fast Fourier Transform of real data. The Num­
Points real data points are first mapped onto NumPoints/2 complex data points. A
complex Fast Fourier Transform of these complex points is performed by calling
Testlnput, MakeSinCosTable, and FFT. The NumPoints/2 transform is then mapped
onto NumPoints complex points. The real part of the transformation will be even,
and the imaginary part of the transformation will be odd. If you are implementing
this application with a radix-4 algorithm, be sure that the number of real data
points (NumPoints) is twice the power of four.

Input Paramet;ers

NumPoints : Integer: Number of data points

Inverse: Boolean; FALSE equals forward transform; TRUE equals inverse trans-
form

XReal : TNvectorPtr; Pointer to real values of the data points

Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:

1. NumPoints ;;=:: 4.

2. NumPoints must be a power of two (twice a power of four for a radix-4
algorithm).

At least four data points are required, because this algorithm transforms the real
vector to a complex vector half the size. If only two real data points were entered,
the routine would have to take the transform of a single complex point.

238 Turbo Pascal Numerical Methods Toolbox

Output Parameters

XRea 1 : TNvectorPtr; Pointer to real values of the Fourier transform of the input data

Xlmag : TNvectorPtr; Pointer to imaginary values of the Fourier transform of the
input data

Error : Byte; 0: No errors
l: NumPoints < 4
2: NumPoints not a power of two [twice a power of four]

Syntax of the Procedure Call

RealFFT(NumPoints, Inverse, XReal, Xlmag, Error, Radix);

Camp"lexConvolution

Description

The calculation of the convolution of two complex vectors is facilitated with a Fast
Fourier Transform routine. The discrete convolution of two functions x and h is
defined by

N-1

Ym = Ixnhm-n m = O, l, ... N - 1
n=O

where subscripts are taken modulo N (circular convolution). The basic theorem
that allows us to calculate these effectively using FFTs is as follows:

Ym = Xm Hm m = O, l, ... N - 1

where capital letters indicate the transforms of the functions represented by lower­
case letters. Thus the procedure for convolution works like this:

1. Transform both given data sets using FFTs.

2. Multiply the resulting transforms point by point.

3. Find the inverse transform of this product using FFTs.

Fast Fourier Transform Routines 239

Input Parameters

NumPoints : Integer; Number of data points

XRea l : TNvectorPt r; Pointer to real values of the first set of data points

Xlmag : TNvectorPtr; Pointer to imaginary values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points

Hlmag : TNvectorPtr; Pointer to imaginary values of the second set of data points

Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:

1. NumPoints ~ 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal, Xlmag and
HReal, Hlmag

XImag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal, Xlmag
and HReal, Hlmag

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

ComplexConvolution(NumPoints, XReal, Xlmag, HReal, Himag, Error, Radix);

RealConvolution

Description

The calculation of the convolution of two real vectors is facilitated with a Fast
Fourier Transform routine. This procedure is exactly the same as the previous
procedure for complex convolution except that only one Fourier transform need be
performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of -1.

2. Transform this complex vector.

240 Turbo Pascal Numerical Methods Toolbox

3. Extract the transforms of the two real functions from the transform of the
complex function (using the symmetry xf = x_f' where the bar stands for
complex conjugation).

4. Multiply the resulting transforms point by point.

5. Find the inverse transform of this product using FFfs. RealConvolution is
about 25 percent faster than its complex counterpart for the same set of real
data.

Input Parameters

NumPoints : Integer; Number of data points

XReal : TNvectorPtr; Pointer to real values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points

Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:

1. NumPoints 2::: 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the convolution of XReal and HReal

Xlmag : TNvectorPtr; Pointer to imaginary values of the convolution of XReal and
HReal

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

RealConvolution(NumPoints, XReal, Xlmag, HReal, Error, Radix);

Fast Fourier Transform Routines 241

Comp"lexCrossCorrelation

Description

The calculation of the correlation of two complex vectors is facilitated with a Fast
Fourier Transform routine. The discrete correlation of two complex functions x and
h is defined by

N-1

y-""'xh
m - L n m+n

m = 0, 1, ... N - 1

where subscripts are taken modulo N (circular correlation). The basic theorem that
allows us to calculate these effectively using FFTs is as follows:

Y = X H m m N-m m = 0, 1, ... N - 1

where capital letters indicate the transforms of the functions represented by lower­
case letters and - indicates the complex conjugate. (Commonly x and hare real
functions, in which case the preceding formula reduces to the more familiar
expression Cm = Xm Hm, where the bar stands for complex conjugation. Thus the
procedure for correlation works like this:

1. Transform both given data sets using FFTs.

2. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data.

3. Find the inverse transform of this product using FFTs.

If the functions x and h are different, the correlation is called crosscorrelation; if the
functions x and h are the same, the correlation is called aut;ocorrelation.

Input Parameters

NumPoints : Integer; Number of data points

Auto: Boolean; FALSE equals cmsscorrelation; TRUE equals autocorrelation

XReal : TNvectorPtr; Pointer to real values of the first set of data points

Xlmag : TNvectorPtr; Pointer to imaginary values of the first set of data points

HRea 1 : TNvectorPt r; Pointer to real vallues of the second set of data points (for cross­
correlation)

Himag : TNvectorPtr; Pointer to imaginary values of the second set of data points (for
crosscorrelation)

Radix : RadixType; Radix2 or Radix4

242 Turbo Pascal Numerical Methods Toolbox

The preceding parameters must satisfy the following conditions:

1. NumPoints ~ 2.

2. NumPoints must be a power of two [four].

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the correlation of XReal, Xlmag and
HReal, Hlmag (or the autocorrelation of XReal, Xlmag if
Auto= TRUE)

XImag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal, Xlmag
and HReal, Hlmag (or the autocorrelation of XReal, Xlmag if
Auto= TRUE)

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of the Procedure Call

ComplexCorrelation(NumPoints, Auto, XReal, XImag, HReal, Himag, Error, Radix);

Comments

If you are performing an autocorrelation of the vector XReal, Xlmag, then set
Auto = TRUE. In this case, the vector HReal, Hlmag will not contain any informa­
tion but must still be passed into the procedure. Autocorrelations are faster to
compute, since only one forward transformation must be made, as opposed to two
for crosscorrelation.

Fast Fourier Transform Routines 243

RealCrossCorrelatinn

Description

The calculation of the convolution of two real vectors is facilitated with a Fast
Fourier Transform routine. This procedure is exactly the same as the previous
procedure for complex correlation except that only one forward Fourier transform
need be performed. The procedure is as follows:

1. Given two real vectors XReal and HReal, combine them into a complex vec­
tor XReal + iHReal, where i is the square root of - 1.

2. Transform this complex vector.

3. Extract the transforms of the two real vectors from the transform of the
complex vector (using the symmetry xf = x_f, where the bar stands for
complex conjugation).

4. Multiply each element of the transform of the first data set by the appropri­
ate element of the transform of the second data.

5. Find the inverse transform of this product using FFTs.

Input Parameters

NumPoints : Integer; Number of data points

Auto : Boolean; FALSE equals crosscorrelation; TRUE equals autocorrelation

XReal : TNvectorPtr; Pointer to real values of the first set of data points

HReal : TNvectorPtr; Pointer to real values of the second set of data points (for cross­
correlation)

Radix : RadixType; Radix2 or Radix4

The preceding parameters must satisfy the following conditions:

1. NumPoints 2: 2.

2. NumPoints must be a power of two [four].

244 Turbo Pascal Numerical Methods Toolbox

Output Parameters

XReal : TNvectorPtr; Pointer to real values of the correlation of XReal and HReal (or
the autocorrelation of XReal if Auto = TRUE)

Xlmag : TNvectorPtr; Pointer to imaginary values of the correlation of XReal and
HReal (or the autocorrelation of XReal if Auto = TRUE)

Error : Byte; 0: No errors
1: NumPoints < 2
2: NumPoints not a power of two [four]

Syntax of th£ Procedure Call

RealCorrelatfon(NumPofnts, Auto, XReal, Xlmag, HReal, Error, Radix);

Comments

If you are performing an autocorrelation of the vector XReal, then set Auto equal to
TRUE. In this case, the vector HReal will not contain any information but must
still be passed into the procedure. Autocorrelations are faster to compute, since
only one forward transformation must be made, as opposed to two for crosscorrela­
tion.

Sample Program

The sample program FFfProgs.pas provides 1/0 functions that demonstrate any of
the application programs.

Input File

Data may be entered from a text file. The real and imaginary parts of a complex
number should be separated by a space and followed by a carriage return. Real
numbers should each be followed by a carriage return.

The procedures ComplexFFT, ComplexConvolution, and ComplexCrossCorrelation
expect data to be in complex form. A data file containing a four-point complex
square wave could look like this:

00
11
11
00

Fast Fourier Transform Routines 245

The procedures RealFFT, RealConoolution, and RealCrossCorrelation expect data
to be in real form. A data file containing a four-point real square wave could look
like this:

0
1
1
0

Example

Problem. Perform a Fourier transform and an autocorrelation of a 32-point square
wave. Also, convolve and crosscorrelate this square wave with a saw-tooth wave.

1. The input data file SamplelOA.dat is as follows (note that this is in real format):

246

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0

Turbo Pascal Numerical Methods Toolbox

0
0
0

2. Run FFTProgs.pas:

1. Real Fast Fourier Transform
2. Real Convolution
3. Real Autocorrelation
4. Real Crosscorrelation
5. Complex Fast Fourier Transform
6. Complex Convolution
7. Complex Autocorrelation
8. Complex Crosscorrelation

Select a number (1-8): 1

********* Real Fast Fourier Transform *********

(F)orward or (I)nverse transform? F

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOA.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of real Fourier transform:
1.9445436482630le+O

-l.59057003804788e+O
7.5341743651573le-l
5.96901852132470e-2

-4.26776695296637e-l
2.89883706652938e-1
6.20757203331860e-2

-2.66655959906343e-l
l.76776695296637e-l
6.63840517512571e-2

-2.08522329739913e-l
l.27160952826887e-l
7.3223304703363le-2

-l.83841625879619e-l
l.00135954077543e-l
8.373516501642lle-2

-l.76776695296637e-l
8.37351650164211e-2
l.00135954077543e-1

-l.83841625879619e-1
7.32233047033631e-2
l.27160952826887e-1

-2.08522329739913e-l

Fast Fourier Transform Routines

O.OOOOOOOOOOOOOOetO
-3.56682381055970e-17
4.55292313916419e-17

-2.69289447846945e-16
-2.87492515628133e-20
-3.48529572466949e-16
l.09874847931145e-16
2.7719070048479le-18
O.OOOOOOOOOOOOOOetO
9.35764180659936e-17
l.097981832603lle-16

-l.28863728588383e-16
l.05413922396982e-19

-4.96595405328328e-17
4.53375697145565e-17
5.53423092584155e-17
o.ooooooooooooooe+o

-5.53423092584155e-17
-4.53375697145565e-17
4.96595405328328e-17

-l.05413922396982e-19
l.28863728588383e-16

-1.097981832603lle-16

247

6.6384051751257le-2
l.76776695296637e-l

-2.66655959906343e-l
6.20757203331860e-2
2.89883706652938e-l

-4.26776695296637e-l
5.96901852132470e-2
7.5341743651573le-l

-l.59057003804788e+O

-9.35764180659936e-17
-0.00000000000000etO
-2.7719070048479le-18
-l.09874847931145e-16
3.48529572466949e-16
2.87492515628133e-20
2.69289447846945e-16

-4.55292313916419e-17
3.56682381055970e-17

Note that the transform of the even real-square wave is an even real function. If
you take the inverse transform of this data, you should get back the original square
wave.

3. Run FFTProgs.pas:

248

1. Real Fast Fourier Transform
2. Real Convolution
3. Real Autocorrelation
4. Real Crosscorrelation
5. Complex Fast Fourier Transform
6. Complex Convolution
7. Complex Autocorrelation
8. Complex Crosscorrelation

Select a number (1-8): 5

********* Complex Fast Fourier Transform *********

(F)orward or (I)nverse transform? I

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOB.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of complex Fourier transform:
l.83845713893878e-15 -0.00000000000000e+O
l.6845911445746le-15 -6.70815869798976e-20
2.11375997190428e-15 -l.05413922396982e-19
l.89507399834982e-15 3.44909004811084e-17
l.18630911648793e-15 -0.00000000000000e+O
l.10496790073287e-15 3.42849429972988e-17
9.86928259751718e-16 l.68143873326862e-16
9.23818927547367e-16 2.37407332761055e-16
1.00487796352727e-15 -0.00000000000000etO
3.31468256684932e-16 2.37751564484486e-16

-7.03172956429440e-17 l.6814826252551le-16
l.OOOOOOOOOOOOOOe+O 2.03763730303779e-16
l.OOOOOOOOOOOOOOetO -0.00000000000000etO
l.OOOOOOOOOOOOOOetO 2.03969687787589e-16

Turbo Pascal Numerical Methods Toolbox

l.OOOOOOOOOOOOOOe+O
l.OOOOOOOOOOOOOOe+O
9.99999999999999e-l
l.OOOOOOOOOOOOOOe+O
l.OOOOOOOOOOOOOOe+O
9.99999999999999e-l
l.OOOOOOOOOOOOOOe+O
l.OOOOOOOOOOOOOOe+O

-l.44345194948787e-16
-6.60945902546872e-17
9.04264001920616e-16
l.13846180955400e-15
3.49146703466816e-16
l.49507607827254e-15
9.82879412429460e-16
l.52785022505415e-15
l.62624933006980e-15
l.58864530902564e-15

7.85812876050229e-19
l.60995808751754e-18

-0.00000000000000e+O
l.62912425522608e-19
l.05413922396982e-19

-2.02632926408975e-16
o.ooooooooooooooe+o

-2.02417228203197e-16
-l.68143873326862e-16
-2.38193145637105e-16
-0.00000000000000e+O
-2.37847395323029e-16
-l.681482625255lle-16
-3.56217043759124e-17
-0.00000000000000e+O
-3.58374025816908e-17
-7.85812876050229e-19
-8.24145211467314e-19

You get back the original square wave, accurate to 15 significant figures.

The autocorrelation of a square wave is simply a triangle. Let's take the
autocorrelation of the square wave.

4. Run FFfProgs.pas:

1. Real Fast Fourier Transfonn
2. Real Convolution
3. Real Autocorrelation
4. Real Crosscorrelation
5. Complex Fast Fourier Transfonn
6. Complex Convolution
7. Complex Autocorrelation
8. Complex Crosscorrelation

Select a number (1-8): 3

********* Real Autocorrelation *********

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOA.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Fast Fourier Transform Routines 249

250

Results of real autocorrelation:
l.9445436482630le+O
l.76776695296637e+O
l.59099025766973e+O
l.41421356237310e+O
l.23743686707646e+O
l.06066017177982e+O
8.83883476483185e-l
7.07106781186548e-l
5.303300858899lle-l
3.53553390593273e-l
l.76776695296636e-l

-7.13134768099437e-16
-8.91610121801382e-16
-6.53642983532122e-16
-6.24203749931802e-16
-7.13441426782774e-16
-4.75627617855183e-16
-7.13364762111940e-16
-6.24050420590133e-16
-6.54026306886293e-16
-8.91610121801382e-16
-7.13748085466111e-16
1.76776695296636e-1
3.53553390593273e-1
5.30330085889911e-1
7.07106781186548e-1
8.83883476483185e-1
1.06066017177982e+O
1.23743686707646e+O
1.41421356237310e+O
1.59099025766973e+O
1.76776695296637e+O

-1.86068547103024e-18
-7.31524706015784e-17
-1.20291519030913e-16
-2.28393637498843e-16
-1.08420217248551e-18
-3.11917400601706e-16
-2.67794627815503e-16
-3.24279578773716e-16
1.54428189954649e-19

-2.64227183800926e-16
-2.67190893532684e-16
-1.92763731728663e-16
l.08420217248551e-18

-1.08779980600795e-16
-1.18700727111104e-16
-1.28557069905047e-17
1.55182909112094e-18
1.34977736087408e-17
1.20128888705040e-16
1.09467566867339e-16
1.08420217248551e-18
1.92996121512129e-16
2.67957258141376e-16
2.64586549445461e-16
1.54428189954649e-19
3.23881880793764e-16
2.67353523858557e-16
3.11689802360167e-16

-1.0842021724855le-18
2.27701259690372e-16
1.18538096785231e-16
7.25487363187593e-17

Keeping in mind that this is a periodic function (see "Data Sampling"), you can
see that this is a triangle wave.

Let's now convolve the square wave with a saw-tooth wave. The input file for
the saw-tooth wave (SamplelOC.dat) is as follows:

0
0
0
0
0
0
0
0
0
0
0
1
2
3

Turbo Pascal Numerical Methods Toolbox

4
5
6
7
8
9

10
1
1
0
0
0
0
0
0
0
0
0
0

5. Run FFfProgs.pas:

1. Real Fast Fourier Transfonn
2. Real Convolution
3. Real Autocorrelation
4. Real Crosscorrelation
5. Complex Fast Fourier Transfonn
6. Complex Convolution
7. Complex Autocorrelation
8. Complex Crosscorrelation

Select a number (1-8): 2

********* Real Convolution *********

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

The first function:

File name? SamplelOA.dat

The second function:

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOC.dat

Fast Fourier Transform Routines 251

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of real convolution:
l.16672618895780e+l
l.14904851942814e+l
l.1136931803688le+l
l.06066017177982e+l
9.89949493661167e+O
9.01561146012848e+O
7.95495128834866e+O
6.71751442127220e+O
5.303300858899lle+O
3.71231060122937e+O
l.94454364826300e+O

-4.48963645339059e-15
-4.65630544778407e-15
-3.6565981401065le-15
-3.47045631932115e-15
-3.85439299085867e-15
-2.87891171916470e-15
-4.57044101644980e-15
-3.77067517030775e-15
-4.08070709916113e-15
-5.84767443254705e-15
-3.6599713856232le-15
l.76776695296633e-l
5.30330085889907e-l
l.06066017177982e+O
l.76776695296637e+O
2.65165042944955e+O
3.71231060122937e+O
4.94974746830584e+O
6.36396103067893e+O
7.95495128834866e+O
9.72271824131503e+O

-0.00000000000000e+O
5.39795947343382e-16

-l.17756934401283e-16
-6.23437103223460e-16
-0.00000000000000e+O
-l.63431828667510e-15
-l.33473191922288e-15
-2.27837818635295e-15
-0.00000000000000e+O
-2.05062661547234e-15
-l.87280291147249e-15
-l.68784939308506e-15
-0.00000000000000e+O
-l.09893055790468e-15
-l.31403245809765e-15
-2.51249292491279e-16
-0.00000000000000e+O
-9.33009044051833e-17
l.17756934401283e-16
2.09754539402286e-16

-0.00000000000000e+O
6.25142892149520e-16
l.33473191922288e-15
l.11725341423405e-15

-0.00000000000000e+O
l.60413157253415e-15
l.87280291147249e-15
2.10153195690623e-15

-0.00000000000000e+O
2.10810595243026e-15
l.31403245809765e-15
l.41237406461018e-15

Now let's crosscorrelate the square wave with the saw-tooth wave.

6. Run FFTProgs.pas:

1. Real Fast Fourier Transfonn
2. Real Convolution
3. Real Autocorrelation
4. Real Crosscorrelation
5. Complex Fast Fourier Transfonn
6. Complex Convolution
7. Complex Autocorrelation
8. Complex Crosscorrelation

Select a number (1-8): 4

********* Real Crosscorrelation *********

252 Turbo Pascal Numerical Methods Toolbox

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

The first function:

File name? SamplelOA.dat

The second function:

A dialog box appears asking you whether you will input data from the Key­
board or from a File. Select File and click OK. Then select the following file
from the standard dialog box:

File name? SamplelOC.dat

Now another dialog box appears asking you whether you would like the output
sent to the Screen, directly to the Printer, or into a File. Make your selection
and click OK.

Results of real crosscorrelation:
1.16672618895780e+l
9.72271824131503e+O
7.95495128834866e+O
6.36396103067893e+O
4.94974746830583e+O
3.71231060122937e+O
2.65165042944955e+O
1.76776695296637e+O
1.06066017177982e+O
5.30330085889907e-1
1.76776695296632e-1

-4.54836159124956e-15
-6.31870217015218e-15
-3.84059335010852e-15
-2.91417746774842e-15
-3.80256767337477e-15
-2.82248652143076e-15
-3.79950108654140e-15
-3.67714427189007e-15
-3.77895495475784e-15
-4.41588504004812e-15
-4.31192774639698e-15
1.94454364826300e+O
3.71231060122937et0
5.30330085889911e+O
6.71751442127221e+O
7.95495128834866e+O
9.01561146012849e+O
9.89949493661167e+O
1.06066017177982etl
1.11369318036881e+l
1.14904851942814e+l

Fast Fourier Transform Routines

-0.00000000000000e+O
-1.39794194032565e-15
-1.30705597305174e-15
-2.10114863355206e-15
-0.00000000000000e+O
-2.09953867546454e-15
-1.87232375727978e-15
-1.61001558602067e-15
-0.00000000000000e+O
-1.12643400856644e-15
-1.34178506893962e-15
-6.36393432594434e-16
-0.00000000000000e+O
-2.20870916673240e-16
-1.27416682926388e-16
8.09195600654651e-17

-0.00000000000000e+O
2.39002111325521e-16
1.30705597305174e-15
1.08963496656604e-15

-0.00000000000000e+O
1.67956960863497e-15
1.87232375727978e-15
2.05122076667131e-15

-0.00000000000000e+O
2.28537383756657e-15
1.34178506893962e-15
1.64790709958046e-15

-0.00000000000000etO
6.40839983502816e-16
1.27416682926388e-16

-5.22124740716106e-16

253

c H A p T E R 11
Graphics Programs

There are some programs that graphically demonstrate the usefulness of the least­
squares routines in Chapter 9 and the Fourier transforms in Chapter 10. Each
program reads a data set from an input file, and displays the results. You will see
curves being fitted to data using the least-squares routines and also see a signal
being transformed into its Fourier spectrum.

The programs LSQDemo and FFIDemo graphically illustrate the power and util­
ity of the Turbo Pascal Numerical Methods Toolbox.

255

Function of th£ uast-Squares Graphics Demonstration
Program

The program LSQDemo demonstrates the least-sqtiares capabilities of the Tool­
box. A default input file SamplellA.dat contains the x and y values (in ASCII form)
separated by carriage returns. Running LSQDemo will provide five different least­
squares fits to the input data.

The different fits are based on the function forms: logarithm, exponential, polyno­
mial, power law, and finite Fourier series. The fits are displayed graphically on the
screen and can be printed on an lmageWriter or LaserWriter printer.

The first plot shows the input data from SamplellA.dat along with three curves.
The three curves are the graphs of the power function

y = aX'
the exponential function

Y =a exp (bX)

and the logarithm function

Y =a ln(bX)

The header to the plot tells which curve corresponds to which function. The next
plot shows the same input data plotted with a five-term Fourier series:

Y = a + b * cos(x) + c * sin(x) + d * cos(2X) + e * sin(2X)

and a five-term polynomial (that is, a polynomial of degree four). The coefficients
are found using the routines from Chapter 9, and they give the least-square error
among all functions of that form. (In some cases, the problem is transformed into a
linear problem, and the error is actually the least for the transformed problem but
possibly not exactly the least for the original problem.) Again, the header to the plot
tells which curve corresponds to which function.

Finally, a bar chart shows the error for each function. The data is not at all periodic,
so the Fourier series model is the worst. The five-degree polynomial gives the best
fit, but it is not much better than the fit obtained by using power, exponential, or
logarithm functions.

The LSQDemo program offers three pulldown menus-File, Edit and Window.
The Edit menu does not offer any executable commands while the File and Win­
dow menus offer three and six selections respectively.

256 Turbo Pascal Numerical Methods Toolbox

The File menu offers:

Print Screen Prints everything displayed on the screen on an ImageWriter™,
ImageWriter™ II, or LaserWriter™

Print Window Prints the currently selected window on an ImageWriter,
ImageWriter II, or LaserWriter

Quit Terminates program execution

The Window menu gives you control of the various windows displayed on the
screen and offers the following window-related commands:

Zoom Windows Zooms all windows to the largest possible size

Stack Windows Layers all windows on the screen

Tile Windows Displays all windows in a row, from the top to the bottom
of the screen

Power, Exp, Log Selects and brings forward the window displaying the
power, exponential, and logarithm least-squares fits

Fourier, Polynomial Selects and brings forward the window displaying the fou­
rier and polynomial least-squares fits

Sum of Squares Selects and brings forward the window displaying the sum
of the squares of the residuals for the five least-squares fits

Graphics Programs 257

Function of the Fourier Transform Graphics Demonstration
Program

The program FFTDemo demonstrates the Fourier capabilities of the Toolbox.

A default input file SamplellB.dat contains 1024 real values (in ASCII form) sepa­
rated by carriage returns. These values represent sample points from a two-second
signal sampled at a rate of 512 points per second. The program will display four
FFT transforms at the following sampling rates: 8 per second (16 points), 32 per
second (64 points), 128 per second (256 points), and 512 per second (1,024 points).
For the last two samplings, the default data yields the same transforms, demon­
strating that a sample rate higher than twice the highest frequency adds no new
information (the Nyquist limit). The transforms are shown on a scale of - 64 to
+ 63 cycles per second.

In addition to the real and imaginary transforms, the program displays the inverse
transform over the original data, illustrating the degree to which information is lost
at different sampling rates. The header tells which curve is the original data and
which is the inverse transform.

A default output data file can easily be arranged by changing the constant
WriteToFile in FFTDemo.pas and recompiling it.

The FFTDemo program offers five pulldown menus - File, Edit, Sample, Win­
dow, and Graph. File and Window additionally provide three and six options
respectively.

The File menu offers:

Print Screen Prints everything displayed on the screen on an ImageWriter,
ImageWriter II, or LaserWriter

Print Window Prints the currently selected window on an ImageWriter,
ImageWriter II, or LaserWriter

Quit Terminates the program

The Edit menu does not offer any executable commands.

The Sample menu allows you to select one of the four sampling rates (mentioned
earlier), and indicates the currently selected sample rate with a check mark.

258 Turbo Pascal Numerical Methods Toolbox

The Window menu gives you control of the various windows displayed on the
screen and offers the following window-related commands:

Zoom Windows

Stack Windows

Tile Windows

Real 'lransform

Imaginary Transform

Inverse Transform

Zooms all windows to the largest possible size

Layers all windows on the screen

Displays all windows in a row, from the top to the bottom
of the screen

Selects and brings forward the window displaying the
real transformation

Selects and brings forward the window displaying the
imaginary transformation

Selects and brings forward the window displaying the
inverse transformation

The Graph menu offers only one selection, Display new graph, which lets you
display a new set of graphs with the currently selected sampling rate.

Graphics Programs 259

Relmil.ding the Demonstration Programs

This procedure assumes that Turbo Pascal is on your hard disk or in a floppy disk
drive.

How to recompile the Demos:

1. Copy Disk 1 to a folder on your hard disk or onto another disk. (You don't
need to copy the Read Me program or the file Read.file.)

2. Double click on the TurboGraph.unit file. (This should bring up Turbo Pas­
cal.)

3. Compile this Unit to disk. (Type Command-K to Select "Compile To Disk" in
Turbo Pascal.)

4. Open either FFTDemo.pas or LSQDemo.pas.

5. Select Command-R to run the Demos in memory.

260 Turbo Pascal Numerical Methods Toolbox

References

Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tab"les. Washington, D.C.:
National Bureau of Standards Applied Mathematics Series, 55, 1972.

Atkinson, L.V., and P.J. Harley. An Introduction to Numerical Methods with Pascal.
Reading: Addison-Wesley Publishing Co., 1983. This is an excellent text for learn­
ing numerical methods, with an emphasis on the implementation of various numer­
ical algorithms.

Brigham, E. Oran. The Fast Fourier Transform. Englewood Cliffs: Prentice-Hall,
Inc., 1974. A very complete, easy-to-read text on the use and implementation of the
fast Fourier transform algorithm.

The next three texts are excellent for learning numerical analysis, emphasizing the
mathematical theory underlying the algorithms in this toolbox.

Burden, Richard L., and J. Douglas Faires. Numerical Analysis, 3rd ed. Boston:
Prindle, Weber & Schmidt, 1985.

Cheney, Ward, and David Kincaid. Numerical Mathematics and Computing, 2nd
ed. Monterey: Brooks/Cole Publishing Co., 1985.

Dahlquist, Germund, and Ake Bjorck. Numerical Methods, trans. Ned Anderson.
Englewood Cliffs: Prentice-Hall, Inc., 1974.

Gerald, Curtis F., and Patrick 0. Wheatley. Applied Numerical Analysis, 3rd ed.
Reading: Addison-Wesley Publishing Co., 1984. This is another excellent source for
learning numerical analysis.

261

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes: The Arl of Scientific Computing. New York: Cambridge Univer­
sity Press, 1986. This book discusses many of the subtle problems encountered
when implementing numerical methods, and has program listings in Turbo Pascal.

Ralston, Anthony, and Philip Rabinowitz. A First Course in Numerical Ancilysis.
New York: McGraw-Hill Book Co., 1978. A well-written mathematics text that is a
step more sophisticated than the preceding ones.

262 Turbo Pascal Numerical Methods Toolbox

Index

263

.\'

.A
Adams-I.pas, 164-165
Adams-Bashforth/Adams-Moulton

predictor-corrector method, 150,
162-165

Adams-Bashforth formula, 162
Adams-Moulton formula, 162
Adapgaus.pas, 97
Adapsimp.pas, 92-93
Adaptive schemes, 83

quadrature, 91-97
Aliasing, 232

B

Backward substitution, 109, 115
Basis vectors, 216
Bisection method, 13

root of a function using, 16-18
: Bisect.pas, 17-18
·Boundary value problems, 149-152

using Linear Shooting/Runge-Kutta
methods, 209-213

c

using Shooting/Runge-Kutta methods,
202-208

Chebyshev polynomials, 218
ComplexConvolution, 227, 230-231

application, 239-240
ComplexCrossCorrelation, 227, 231

application, 242-243
ComplexFFf, 227, 230

application, 237-238
Compiler directives, 11

·Convergence, rate of, 13-14
Cooley-Tukey method, 227-228
Cube_Cla.pas, 55-58
Cube-Fre.pas, 49-52
Cubic spline methods

clamped, 40, 53-58
free,40,48-52, 60, 71-74

Cyclic Jacobi method, 128, 144-148

D

Data sampling, 232-233
Data types, 10
Defined constants, 10
Deflation, 14

and Laguerre, 35--38

264

and Newton-Horner, 26--30
of a matrix, 128, 139-143

Deriv2fn.pas, 79-81
Deriv2.pas, 68-70
Derivative, 59

approximation of, 60-81
Derivfn.pas, 76-77
Deriv.pas, 63-65
Determinant of a matrix, 101-105
Det.pas, 104-105
Diagonally dominant, 121
Diagonal matrix, 127
Differential equations

first-order, 153-165
coupled, 180-187

linear, 149
nth order, 151, 172-179
ordinary, 149
second-order, 152, 166-171, 186,

202-213
coupled, 190-201

stiff, 155
systems of, 151

Direct factorization of matrices, 102,
115-120

Dirfact.pas, 117-120
Distribution disks, 7-10
Divdif.pas, 46-47

E

Eigensystem, 144
Eigenvalue, 127-128
Eigenvector, 127
Expo, 219-220

F

Fast Fourier Transform, 227
algorithms, 234-236
applications, 237-253
sample program, 245-253

FFfDemo, 255, 258
FFf Progs.pas, 245-253
Forward substitution, 115
Forward transform, 228
Fourier, 219
Fourier series, 219

in graphics programs, 256
Fourier transform, 227-253

in graphics demo, 258-259

Turbo Pascal Numerical Methods Toolbox

G

Gauselim. pas, 110-111
Gaussian elimination, 102

with partial pivoting, 102, 112-114
Gaussian quadrature, 83

using Legendre polynomials, 94-97
Gaussidl.pas, 123-125
Gauss-Jordan elimination, 106
Gauss-Seidel iterative method, 102,

121-125
Goodness of fit, 216
Graphics

I

demo programs, 10, 256-260
rebuilding, 260

Initial value problems, 149-151
Adams-Bashforth/Adams-Moulton

162-165 '
Runge-Kutta order five, 157-161
Runge-Kutta order four, 153-161,

166-201
Installation, 8-10
Integration, 83-100
Interdrv.pas, 72-74
Interpolation, 39, 152

cubic splines, 48-58
Lagrange polynomials, 41-44
Newton's divided-difference method
45-47 '

Inverse of a matrix, 101-102, 106-108
Inverse.pas, 107-108
Inverse power method, 127-128, 133-138
Inverse transform, 228
InvPower.pas, 135-138
Iterative methods, 13

J

cyclic Jacobi, 144-148
Gauss-Seidel, 102

Jacobi.pas, 146-148

L

Lagrange method, 39, 41-44
Lagrange.pas, 42-44
Laguerre.pas, 37-38
Laguerre's method, 14

finding roots of complex polynomial,
35-38

Least.pas, 221-225

Index

Least-squares approximation, 216-225
Least-squares solution

graphics demo, 256-257
linear regression, 215
multiple regression, 215

Linear equations, 101-102
differential, 149
with direct factoring, 115-120
with Gaussian elimination, 109--114

Linshot2.pas, 211-213
Lipshitz condition, 151
Log,220
LSQDemo, 255-256
LU.J)ecompose, 115-116
LU-Solve, 115-117

M

MakeSinCosTable, 235-236
Matrix

algebra, 101
diagonal, 127
direct factorization, 102, 115
identity, 135
nonsingular, 102, 115-120
orthogonal, 130
permutation, 115
rotation, 144
square, 102, 127-129, 133
symmetric, 128, 144-148

Mesh points, 150
Muller.pas, 33-34
Muller's method, 14

finding roots of complex function
31-34 '

N

Newtdefl.pas, 28-30
Newton-Horner method, 13-14

with deflation, 26-30
Newton-Raphson method, 13-14

root of a function using, 19--22
Newton's general divided-difference
algorithm, 39, 45-47

Nonlinear shooting method, 152,
202-208

Numerical differentiation, 59-60
five-point formulas, 60, 61-70
three-point formulas, 60, 61-70
two-point formulas, 60, 61-65

Nyquist frequency, 232, 258

265

p

Partial pivoting, 102, 112
and direct factoring, 115

Partpivt.pas, 113-114
Poly, 218
Polynomials

Lagrange, 85
Legendre, 94-96
methods to approximate roots of; 14,
23-38

Power, 219
Power method, 127-132

and Wielandt's deflation, 139-143
Power.pas, 131-132
Powers-of-four, 228
Powers-of-two, 228

R

Raphson.pas, 10, 20-22
RealConvolution, 227, 231

application, 240-241
RealCrossCorrelation, 227, 231-232

application, 244-245
RealFFf, 227, 230

application,238-239
Richardson extrapolation

and numerical integration, 60, 75-77
and Romberg method, 84, 98-100

numerical integration, 60, 75-77
RKF_l.pas, 159-161
Romberg algorithm, 98-100
Romberg method, 84

using trapezoidal rule, 98-100
Romberg.pas, 99-100
Roots of an equation, 13-38
Rotation matrix, 144-148
Runge-Kutta-Fehlberg, 150, 157-161
Runge-I.pas, 155-156
Runge.-2.pas, 169-171
Runge-Kutta formulas, 173, 181-182,

191-193
Runge-Kutta methods, 150

fifth-order, 157
fourth-order, 150-151, 153-161,

166-179
Runge-N.pas, 176-179
Runge_Sl.pas, 185-189
Runge-82.pas, 196-201

266

s
Secant method, 14

in nonlinear equations, 152, 202-208
root of a function using, 23-25

Secant.pas, 24-25
Shoot2.pas, 205-208
Shooting method, 152

linear, 209-213
nonlinear, 202-208

Simpson.pas, 86-87
Simpson's method, 83-93
Splines (see Cubic spline methods)
System requirements, 3

T

TestForRoot, 15
Testlnput, 234, 236
TNArraySize, 11
TNcomplex, 31-32
TNCompVector, 35-36
TNintVector, 26-27
TNNearlyZero, 14-15
TNTargetF, 16
TNvector, 10
Trapezoid composite rule, 88-90
Trapezoid method, 83-84
Trapzoid.pas, 89-90
Turbo Pascal, 1-3

rebuilding with, 260

u
Unpack, 8

w
Wielandt.pas, 141-143

Turbo Pascal Numerical Methods Toolbox

Borland
Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts valley, CA 95066

Available at better dealers natJ.onwide.
To order by credit caro, call (800) 255-8008; CA (800) 742-1133;
CANADA (800) 237-1136.

11111

PABCAI. ~At:/11011"
The ultimate Pascal development environment

Borland's new Turbo Pascal for the Mac is so incredibly fast that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and "Units"
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units,"
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa• that they should be living together
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 27-second Guide to Turbo Pascal for the Mac
• Compilation speed of more than 12,000 lines

per minute
• "Unit" structure lets you create programs in

modular form
• Multiple editing windows-up to 8 at once
• Compilation options include compiling to disk or

memory, or compile and run
• No need to switch between programs to compile

or run a program
• Streamlined development and debugging
• Compatibility with Macintosh Programmer 's

Workshop Pascal (with minimal changes)
• Compatibility with Hierarchical File System of

your Mac
• Ability to define default volume and folder names

used in c0mpiler directives
• Search and change features in the editor speed up

and simplify alteration of routines
• Ability to use all available Macintosh memory

without limit
• "Units" included to call all the routines provided by

Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

BORLAND
INTERNATIONAL

Turbo Pascal and SideKick are registered trademarks ot Borland lnlernational , Inc. and Reflex is a
registered lrademark of Borland/ Analytica, Inc. Macintosh is a trademark of Mcintosh Laboratories, Inc.
licensed to Apple Computer with its express permission. Lisa is a registered trademark of Apple
Computer, Inc. Inside Macintosh is a copyr~ht of Apple Computer, Inc.
Copyright 1ga7 Borland International BOA 0167A

11111 ,AICAl®

11111
From the folks who created Turbo Pascal. Borland's new
Turbo Pascal Tutor is everything you need to start pro­
gramming in Turbo Pascal on the Macintosh!™ It takes

you from the bare basics to advanced programming in a
simple, easy-to-understand fashion.

No gimmicks. It's all here.
The manual, the Tutor application, and 30 sample
programs provide a step-by-step tutorial in three
phases: programming in Pascal, programming on
the Macintosh, and programming in Turbo Pascal
on the Macintosh. Here's how the manual is set
up:
Turbo Pascal far the Absolute Novice
delivers the basics-.-a concise history of Pascal,
key terminology, your first program.
A Programmer's Guide ta Turbo Pascal
covers Pascal specifics-program structure,
procedures and functions, arrays, strings, and so
on. We've also included Turbo Typist, a textbook
sample program.
Advanced Programming
takes you a step higher into stacks, queues,
binary trees, linked structures, writing large pro­
grams, and more.

Using the Power al the Macintosh
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the
600-plus utility routines in the Apple Toolbox.
Programming the Macintosh in 1Urba Pascal
shows you how to create true.Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com­
plete stand-alone application featuring animated
graphics, builds on Turbo Typist and demon-
strates what you can do with ·a11 the knowledge
you've just acquired.

The disk contains the source code for all the
sample programs, including Turbo Typist, MacTy­
pist, and Turbo Tutor. The Tutor's split screen lets
you run a procedure and view its source code
simultaneously. Alter running it, you can take a
test on the procedure. If you're stuck for an
answer, a Hint option steers you in the right
direction.

Macintosh topics included are
~ memory management ~ menus
~ resources and resource files ~ desk accessory support
~ OuickDraw ~ dialogs
~ events ~ File Manager
~ windows ~ debugging
~ controls

Suggested Retail Price: $69.95

Minimum syatem requlrementr. Alrf Macintosh wilh al least 512K ol RAM. Requires Turbo Pascal.

'inbo Pascal and Turoo Tufol are registered lrademarks ol Borland 1-ional, ~" Olher brand and pio<IJd names
•• lrade11'81ks or registered lra-rks of Ille< respo:live l'<llders. Cowiglll 1987 Borland lnterrmlifllal. BOR 0381

L

~11rr1tlfll ® THE IEBITBP
d~ 111111~ : BBSAllllEB Release 2.0

Macintosh'"

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook'": The Outliner
and MacPlan··: The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
• Works hand-in-hand with MacPlan
• Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
• Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

~ Outlook: The Outliner
~ MacPlan: The Spreadsheet
~ Mini word processor
~ Calendar
~ Phonelog
~ Analog clock
E1 Alarm system
E1 Calculator
E1 Report generator
E1 Telecommunications (new version now

supports XModem file transfer protocol)

• o:i ex...,su
0 01 1<;; L>lot

0 •t6'Ji lhlf0'1ih
e 621~ 0..trt...U

Q 11 ltli To!~L<,...•H

El ..
• 11~ •3'E llolF~f>t

MacPfan does both spreadsheets and business
graphs . Paste them into your Outlook fifes and

generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One SOOK or two 400K drives are recommended.
With one 400K drive, a limited number ol desk accessories will be installable per disk.

BORLAND
INTERNATIONAL

SideKick is a regis1ered lrademark and Outlook and MacPlan are trademarks of Bor~nd
International, Inc. Macintosh is a trademark of Mcintosh laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 198 7 Borland International BOA 00690

l ,£ri111; TIE IAlAIAIE
~I] • llAIAIEI

The easy-to-use relational database that thinks like a spreadsheet.
Reflex for the Mac lets you crunch numbers by entering formulas

and link databases by drawing on-screen lines.

s free ready-to-use templates are included on the examples disk:

• A sample 1040 tax application
with Schedule A, Schedule B, and 't· ,
Schedule D, each contained in a f. ·
separate report document.

• A portfolio analysis application with
linked databases of stock purchases,
sales, and dividend payments.

• A checkbook application.
• A client billing application set up for

a law office, but easily customized
by any professional who bills time.

• A parts explosion application that
breaks down an object into its
component parts for cost analysis.

Reflex for the Mac accomplishes all of these tasks without programming-using
spreadsheet-like formulas. Some other Reflex for the Mac features are:

• Visual database design.
• "What you see is what you get" report

and form layout with pictures.
• Automatic restructuring of database files when

data types are changed, or fields
are added and deleted.

• Display formats which include General, Decimal,
Scientific, Dollars, Percent.

·J•ew---~-- - . ' ._ -- - -... - .

• Data types which include variable length text,
number, integer, automatically incremented
sequence number, date, time, and logical.

• Up to 255 fields per record.
• Up to 16 files simultaneously open.
• Up to 16 Mac fonts and styles are selectable

for individual fields and labels.

After openilllJ lhe "Overview" window, you
draw link lines belWeen databases directly
onto your Macintosh screen.

The link lines yoo draw establish both visual
and electronic relationships belWeen your
databases.

You can have multiple windows open
simultaneously to view all members of a
linked set-which are interactive and truly
relational.

Critic's Choice
" .. a powerful relational database ... uses a visual approach to information management." lnfoWorld

" ... gives you a lot of freedom in report design; you can even import graphics." A+ Magazine
" ... bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Letter

Suggested Retail Price: $99.95*
(not copy protected)

Mia/mum 11111m caan1anUoa: Macirtosh 512K or Macinlosfl Plus with one disk dlive. Second extema/ drive recommended.
ReHex is a registered trademark of Bcrlanll'Analytica, Inc. Macintosh is a trademark of Mcintosh laboralory, Inc. and is used wilh eXf)ress permission of its owner.
Copyright 1987 Berland lnlernalional BOR0149A

-
Borland
Software
O.Bl>Ell !'ODAY

I 4585 Scotts Valley Drive Scotts Valley, California , 95066 I
I ~ f I · To Orde~ ,~-..,California ,

By Credit call
I Card, \.__.I (800)

I r~~gJ 142-1133
I 255-8008 In Canada call

(800) 237-1136

BOR 0234

D
For The Apple® Macintosh'"

ReDex®: The Database
Manager
Combines the analytic capability of a relational
database with the number-crunching power
of a spreadsheet to let you organize. analyze
and report information faster than ever
before. Creating database designs. forms.
and reports is as easy as drawing them
on your screen. Comes with sample appli­
cations which can be customized to your
needs. Minimum memory: 512K.

Eureka: The Solver'"*
Anyone who routinely works with equations
needs Eureka: The Solver. Using a mouse.
Macintosh pull-down menus and online
help screens. you can solve complex equations
while interacting with your computer in
an almost conversational way. Eureka also
lets you plot graphs of the functions and
generate reports showing the equation file.
the solutions and the graphs. Support for
the 68881 math co-processor chip is also
provided. Minimum memory: 512K.
*Available Third Quarter 1987.

II

INTERNATIONAL

SideK.ick®: The Desktop
Organizer, Release 2.0
A complete and comprehensive collection
of desk accessories. Includes Outlook.'" a
powerful outline processor. and MacPlan.'"
a 20x50 cell spreadsheet that supports 30
mathematical functions and standard business
graphics. Also includes notepad. calculator.
modem communications package. phone
directory, autodialer. appointment scheduler.
alarm system and quicksheet reminder tem­
plates. Minimum memory: 512K.

Turbo Pascal®
The fastest. most efficient and easy-to-use
Pascal compiler! Compiles and runs over
12.000 lines of source code per minute.
Multiple editing windows let you work with
up to 8 programs at a time. Compatible
with your Macintosh's Hierarchical File
System, Macintosh Programmer's Workshop
Pascal and Inside Macintosh. Minimum
memory: 512K.

4584 SCOTTS VALLEY DRIVE SCOTTS VALLEY, CA 95066 PHONE (408) 438-8400 TELEX: 172373

m
Scientific &

Turbo Pascal Numerical
Methods Toolbox~
Implements the latest high-level mathemati-
cal methods to solve the most common problems.
An essential programming tool for mathe­
maticians. engineers. statisticians. or physicists.
Supports the 8087 chip and comes com-
plete with source code. Minimum memory:
256K Requires Turbo Pascal 2.0 or later.

Business P
Sprint®: The Professional
\Vord Processor*
The most powerful. easy-to-use word processor
ever written. Can be used "as is" or told to
function like WlrdPerfect.~ WlrdStar" or
Microsoft" Wlrd. Includes pop-up menus.
incremental saving. multiple windows and
files. and Autospell (with 100.000-word
dictionary and 300.000-word thesaurus).
Drives practically every printer. Minimum
memory: 256K.
' Available Serond Half 1987.

Reflex®: The Database
Manager
No matter what business you're in. Reflex
is the database management system for you.
With its Form. List. Graph, Crosstab and
Report views that give you instant graphic
analyses of your data. Reflex shows you patterns
and relationships otherwise hidden in data
and numbers. Minimum memory: 384K.

Reflex: The \Vorkshop ··
Taps Reflex's powerful analytical capabilities
and makes them work for your business.
Comes with 22 models and five samples
on disk that you can adapt to your needs.
It can also generate form letters. help you
through common analysis problems. and explain
advanced reporting and graphing techniques.
Minimum memory: 384K.

SuperKey®: The Productivity
Booster
With SuperKey you can turn a thousand
keystrokes into the one keystroke of your
choice! You can encrypt your confidential
files in seconds. And SuperKey is RAM­
resident. so you can encrypt files or create
macros while you're running another program.
Minimum memory: 128K.

Engineering
Eureka: The Solver"
Any solvable problem that can be expressed
as a linear or non-linear equation can be
solved using Eureka. Its pull-down menus
and context-sensitive help screens make
it easy to use and learn. Eureka can also
plot graphs of functions and print them
out. Minimum memory: 384K

'roductivity
SideKick®: The Desktop
Organizer
The # 1 best-seller for the IBM PC and true
compatibles. SideKick is a powerful. RAM­
resident desktop management program.
Comes with notepad. calendar. calculator.
appointment scheduler. telephone directory.
and autodialer. Can be called up at the touch
of a key. even while you run other programs.
Minimum memory: 128K.

Traveling SideKick ®

Your SideKick's sidekick and the organizer
for the Computer Age! It's both a notebook
that travels with you and a software program.
The software lets you organize. format and
print your address book. phone list. mailing
labels and calendar engagements in daily,
weekly. monthly or yearly formats from
its own files or your SideKick files. So you
can stay up-to-date. at home and on the
road. Minimum memory: 256K

Turbo Lightning®: The Spell­
Checker & Thesaurus
Gives you a RAM-resident spell-checker
and thesaurus. Beeps every time you make
a mistake and lets you correct a misspelled
word instantly. Synonyms are available­
at the touch of a key! Minimum memory:
256K

Lightning Word Wizard"
With the help of Turbo Lightning. you can
incorporate Lightning Word Wizard's procedures
and functions into your own word programs.
Includes source code for Turbo Lightning.
Comes with seven games and solvers to
give you ideas on how to implement the
routines in your own applications-or play
the games just for fun! Minimum memory:
256K

But we haven't stopped there.
We are constantly developing
new products. Improving our

existing products. And exploring
new and better ways to make your
computer's potential more accessi­
ble. your software more friendly,
more affordable.

Our commitment extends over
several categories of software
development. From programming
languages and Artificial Intel­
ligence to business productivity
and scientific and engineering pro­
ducts. And our products in every
category are faster. more powerful
and technically more advanced.

So whether you're a PC user or
a Macintosh user; whether you're
an expert programmer or a begin­
ner; a business user or someone
who just likes tapping at a key­
board, you can be sure that Bor­
land has the software to match
your needs. At a price to match
your pocket. And a performance
level that's unmatched.

Take a look inside. Make your
choice. Then, if you have any
further questions, call us at
(408) 438-8400.

Turbo Pascal,
Turbo C, Sprint,

and Reflex
are4of our

famous products.

The other 20 are inside . . .

opment Languages
- Turbo Pascal Tutor® 2.0
.:. This interactive tutorial for Turbo Pascal

takes you from "What's a computer?" through
complex data structures. assembly languages.
trees and tips on writing long Turbo Pascal
programs. Includes a 400-page, quick-study
tutorial and 10,000 lines of fully commented
source code. Minimum memory: 192K
Requires Turbo Pascal 3.0 (CP/M-80

m

version available.)

Turbo Pascal Graphlx Toolbox®
A library of graphics routines for Turbo
Pascal programs. Lets even beginning pro­
grammers create high-resolution graphics
on the IBM" PC. true compatibles, and
the Zenith Z-100." Gives you a set of pro­
gramming tools for complex business graphics.
easy windowing and storing screen images
to disk and to memory. Minimum memory:
192K Requires Turbo Pascal 3.0.

Turbo Pascal Database
Tuolbox®
A perfect companion to Turbo Pascal, it
contains a complete library of Pascal proce­
dures that allows you to search and sort
data and build powerful database applications.
Comes with source code for a free sample
database-right on the disk. Minimum memory:
128K Requires Turbo Pascal 2.0 or later.
(CP/M-80 version available.)

Turbo Pascal Editor Toolbox®
It's the only tool you need to build your
own text editor or word processor. Comes
with two sample editors-Simple Editor
and MicroStarR -and their complete source
code. plus information on how to install
the features you need into your programs.
Minimum memory: 192K. Requires Turbo
Pascal 3.0.

Turbo Pascal GameWorks ®

Teaches you techniques to quickly create
your own computer games using Turbo Pascal.
The secrets and strategies of the Masters
are revealed for the first time in three classic
games of strategy-Chess. Bridge and Go­
Moku. Complete source code is included.
You can play them "as is," customize them
for greater challenge or build a whole new
set of games! Minimum memory: 192K
Requires Turbo Pascal 3.0.

a

II

II

Programming Devel
Turbo Basic®
With a compilation speed of up to 12,000*
lines per minute, Turbo Basic combines
an interactive editor. fast memory-to-memory
compiler and a trace debugging system.
Program size not limited by 64K Compatible
with BASICA. Offers 8087 math support and
true recursion. Comes with a free MicroCalc'"
spreadsheet and source code. Minimum
memory: 320K.
•Run on a 4.77 MHz IBM PC With 20MB hard disk using Turbo

Basic version 1.0.

Turbo C®
With its RAM-based compiler and high­
performance linker. Turbo C offers a compilation
speed of up to 7,000* lines per minute.
Fully compatible with the ANSI C standard.
Generates native in-line code and linkable
object modules. Supports tiny, small. compact.
medium. large and huge memory model
libraries. Minimum memory: 384K.
'Run on a 6 MHz IBM /IJ using Turbo C version 1.0 and Turbo

Linker version 1.0.

Turbo Prolog®
The high-speed Prolog compiler. Brings
5th-generation programming language and
supercomputer power to your IBM PC and
compatibles. Both amateurs and professionals
can build powerful expert systems. customized
knowledge bases. natural language interfaces.
and smart information-management systems.
Minimum memory: 384K

Turbo Prolog Toolbox,.
A professional developer's toolbox to help
you build powerful commercial applications
in Prolog. Enhances Turbo Prolog with over
80 tools. 40 sample programs and 8.000
Ii nes of source code that can easily be
incorporated into your programs.
Minimum memory: 512K

Turbo Pascal ® 3.0
The worldwide standard in high-speed Pascal
compilers. Gives you a high-performance devel­
opment tool featuring a completely integrated
programming environment. a compiler which
instantly locates programming errors. a full­
screen editor. BCD reals. 8087 support and
much more. Minimum memory: 128K
(CP/M-80" version available.)

All Borland products are trademarks or registered trademarks of Borland lnlernational, Inc. or
Borland/Anatytica, Inc. Other brand and prcxfuct names are trademarks or registered trade-
marks ol their respective holders. Copyright 1987 BOA 0291

If you're looking for software
that outperforms anything else
on a disk. at a price that beats

everything else on a disk, you're
looking to the right people! Bor­
land International. And here's
why:

Our products are guaranteed to
perform better than anything else.
They're packed with more speed
and power than you'll find any­
where else. And they come with
a friendly user-interface design
that'll get you started right away.
They are products built with a
long-standing commitment to Qual­
ity, Speed. Power and Price!

We invented RAM-resident desk­
top organizers with SideKick. We
set the Pascal and Prolog language
standards worldwide with Turbo
Pascal and Turbo Prolog. We
changed the way people look at
data with Reflex: The Database
Manager. We also introduced the
concept of not copy-protected
software.

,
urbo Pascal Numerical Methods Toolbox for the Macintosh
implements the latest high-level mathematical methods ti
solve common scientific and engineering problems. Fast.

So every time you need to calculate
an integral, work with Fourier trans­
forms, or incorporate any of the classi­
cal numerical analysis tools into your
programs, you don't have to reinvent
the wheel, because the Numerical
Methods Toolbox is a complete collec­
tion of Turbo Pascal routines and pro­
grams that gives you applied state-of­
the-art math tools. It also includes two
graphics demo programs that use
least-square and Fast Fourier Trans­
form routines to give you the picture
along with the numbers.

The Turbo Pascal Numerical
Methods Toolbox is a must if you're
involved with any type of scientific or
engineering computing on the Macin­
tosh. Because it comes with complete
source code, you have total control
of your application at all times.

What Numerical Methods ·
Toolbox will do for you:
• Find solutions to equations
• Interpolations
• Calculus: numerical derivatives and

integrals

• Matrix operations: inversions, dete
minants, and eigenvalues

• Differential equations
• Least-squares approximations
• Fourier transforms ·
• Graphics

Five free ways to look at
Least-Squares Fit!

As well as a free demo of
Fast Fourier Transforms, you
also get the Least-Squares Fit in
five different forms-which
gives you five different methods
of fi tting curves to a collection of
data points. You instantly get the
picture! The five different forms
are

1. Power 4. 5-term Fourier
i Exponenti~ 5. 5~erm
3. Logarithm Polynomial
They're all ready to compile and
run as is.

Minimum system requirements: Macintosh 512K, Macintosh Plus, SE, or II, with one BOOK disk drive (or two 400K).

All BoOand procix:ts are trademlrl<s or registered traderrart<s o! BoOand lnterrelional, Inc or Borland/Analytica, Inc. Macintosh~ a
trademar1< licensed to Apple ConµJler, Inc. Copyright 1987 BoOand lntematioral. A BoOand Ubo Toolbox prO<IJcl BOA 0416

