
lf-oW {iJ Wlffi a..~'it.fv,(A A(cdt_ 6-aML

?ll~~

~e(, Lfef, A1t4
Vf4ef ~A,.,ef

Addison-Wesley Developers Press
Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario •Wokingham, England • Amsterdam
Bonn • Sydney• Singapore •Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations have
been printed in initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for er
rors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs con
tained herein.

ISBN 0-201-40757-4
Copyright© 1996 by Bill Hensler
A-W Developers Press is a division of Addison-Wesley Publishing Company.

All rights reserved. No part of this publication may be reproduced, stored in a re
trieval system, or transmitted, in any form or by any means, electronic, mechani
cal, photocopying, recording, or otherwise, without the prior written permission of
the publisher. Printed in the United States of America. Published simultaneously
in Canada.

Sponsoring Editor: Keith Wollman
Project Manager: Vicki L. Hochstedler
Cover design: Jean Seal
Set in 11-point Palatino by A & B Typesetting

1 2 3 4 5 6 7 8 9 -MA- 9998979695
First printing, December 1995

Addison-Wesley books are available for bulk purchases by corporations, institu
tions, and other organizations. For more information please contact the Corporate,
Government and Special Sales Department at (800) 238-9682.

Find A-W Developers Press on the World-Wide Web at:
http://www.aw.com.devpress/

P~Aa ... XI

~.w~ .. xiv

~d """' F~ .. xv

Who This Book Is For ... xv
Who This Book Is Not For ... xvii
What's in This Book .. xvii
What You Will Need .. xix
What You Should Already Know .. xviii
How to Use This Book .. xviii
Conventions Used in This Book .. xx
Solely Responsible ... xx

iii

iv~

~1: ~~,,..,lo~~··························· 1
Computer Game Field Guide .. 1
Adventure: "Anybody Bring a Map?" ... 2
Role-playing: "What Is an 80-sided Die Called Again?" 4
Simulation: "Watch Your Six!" ... 4
Strategy: "How Does the Castle Thing Work Again?" 5
War Games: "Incoming!" .. 6
Sports: "Golf on a Computer? Why?" .. 8
Puzzle: "It's Those Darn Russians' Fault" 9
Arcade: "Please Give Me Just One More Quarter" 9
Arcade Game Origins 10
Spacewar ... 11
Pong and Nolan ... 12
"Have Fun and Make Money" .. 14
And the Rest Is .. 16
Classic Arcade Games ... 16
Asteroids (Atari) .. 16
Battlezone (Atari) ... 17
Centipede (Atari) ... 18
Crazy Climber (Taito) .. 19
Death Race (Exidy) .. 19
Defender/Stargate (Williams) ... 19
Dig Dug (Atari) .. 20
Donkey Kong (Nintendo) ... 21
Food Fight (Atari) .. 21
Galaga (Midway) ... 22
Joust/Joust II (Atari) ... 22
Marble Madness (Atari) .. 23
Missile Command (Atari) ... 24
Pac-Man/Ms. Pac-Man et al. (Midway) 24
Qix (Taito) 25
Robotron 2084 (Williams) 26
Space Invaders (Tai to) 27
Tail Gunner (Cinematronics) .. 28
Tempest (Atari) .. 29
Closing Ceremonies .. 31

~v

What Makes a Game Fun? ... 32
Reinforcement 32
Schedules of Reinforcement ... 33
Extinction 35
Magnitude of Reinforcement 36
Delay of Reinforcement 37
Psychological Undo ... 38
Addiction Is the Name of the Game ... 39

(!~ 2: ~ka;.c""'4,o ~ ~ 41
Arcade Games and Animation 41
How Animation Works ... 42
Computer Animation .. 43
Computer Graphics Flavors ... 43
Three Ways to Animate Graphics on a Mac 46
Why Buffered Animation? ... 57

~ 3: ott~~#l, H~ s1
How QuickDraw Sees Memory ... 60
Off screen Elements 62
Classic Off screens 62
Color Off screens 68
Let's Build Some Off screens 87
Color Does Not Include Black and White 87
Make an Offscreen ... 88
Destroying Off screens 102
Using Color Offscreens ... 104

~ Cf: H~ Ott~ .. 101
A Brave New GWorld ... 109
What the Heck is a GWorld? .. 110
What's the Catch? .. 113
Playing with GWorlds ... 114

vi~

Bit Banging ... 121
What Is Blitting? .. 122
A Simple Blitter .. 123
The Mac's Built-in Blitter: CopyBits() 125
Who Is That Masked Blitter? .. 132
Blitting Speed ... 137

~ S: ~ ~ ... 1S7
Sprite? .. 157
Anatomy of a Sprite .. 158
Hardware Sprites ... 160
Who Was That Masked Sprite? .. 163
Brain Dead Again .. 163
CopyBits Redux ... 165
Rolling Your Own .. 168
Logical Masking 169
Brain Dead III ... 171
Simple Optimizations ... 173
Unrolling Your Own .. 184
Run Length Masking ... 190
Sprite Compiling ... 199
But Which One? ... 221

~ 6: ~ Co~"'* ... 221

What Is a Sprite Collision? ... 229
What Is a Collision? ... 230
Collisions and Holes 230
CopyBits Collisions ... 232
Logical Masking Collisions 232
Compiled Mask Collisions 235
Speed ... 235
What's the Problem? ... 235
Speeding Up Collisions 238
Sorting 238
Sectors 240

~vii

Simplifying by Design .. 243
Frame Rates and Collision Detection 245

~ !: ~p~ ... 24?
Design Goals 248
C++ and Games ... 248
The Pieces 254
Lists .. 255
Handling Errors 257

~ ~= P~ F~ .. 2549

Double-Buffered Animation .. 260
Play Field Creation .. 261
Adding Sprites to a Play Field ... 264
Removing Sprites from a Play Field ... 265
Performing Sprite Animation .. 267
Erasing the Sprites 268
Drawing the Sprites 270
From Off screen to On-screen 271
Moving the Sprites 273
Checking for Collisions 275
Play Field Miscellany .. 276
Handling Update Events .. 276
Drawing in the Off screen Buffers 278
Drawing in the Host Window 280
Play Field Summary .. 280

~1= ~~~&4 zg3

Creating a Sprite .. 284
Sprite Templates .. 285
Building Sprite Cels ... 287
Cloning a Sprite ... 293
Cel Lists 295
Cel List Reuse 296
Disposing of a Sprite 296

viii~

Sprite Timers .. 248
Moving a Sprite 300
SetStartingPosition .. 301
SetAutoMove ... 302
SetAutoMoveTime ... 303
Movement Central 305
Direct sprite Movement .. 306
Move To .. 306
Offset ... 307
Changing the Sprite's Cel ... 308
SetCelCycleTime .. 308
SetCurrentCel ... 309
GetCurrentCellndex and GetCurrentCel 310
ChangeCel .. 310
Sprite Visibility ... 311
Sprite Miscellany ... 312
Sprite IDs .. 312
Movement Extents ... 313

~10: P~ttAllT.o~ 31S

Game Rules ... 316
Ping's Code-Overview ... 317
Bouncing Ball 317
Mouse Tracking .. 320
Paddle AI ... : 321
Volleying 323
Ping's Code-Implementation .. 325
Main, Where It Always Begins .. 325
Building Them Sprites 327
Play That Game 329
Redecorating 330
Experiment ... 331

~ 11: Sc~... 333

What Is Sound? .. 334

~ix

Measuring Sound .. 335
Amplitude ... 335
What's the Frequency, Kenneth? ... 337
Digital Sound 338
Sampling ... 339
Sampling Rate .. 339
Sample Resolution ... 342
Why You Care .. 343
Sound on the Mac .. 344
Sound Manager: A Brief History ... 344
Playing Sound .. 347
Sound Commands ... 347
Sound Channels ... 350
The Easy Way ... 351
From a Disk .. 351
Asynchronously-Get Used to It .. 353
Sound Class Kit: "The Audience Is Listening" 358
Priorities 359
Starting Up 360
Shutting Down ... 362
Playing Sounds .. 363
Tidying Up .. 367
Silence Is Golden 368
Enabling and Disabling Playback 369

~ 12: t>~ ... 371
Game Rules ... 372
Data Structures ... 373
Tunnel Layout .. 374
Level Template ... 375
Building Levels 377
Game Loop ... 379
Sprite States 383
Player ... 384
Moving .. 387

x~

Freeze Ray 388
Falling Rock .. 389
Squishing 390
Dying ... 391
Death ... 391
Monsters 392
Experiment ... 393
Game Over .. 393

~ .. .31$

About the title-Sex, Lies, and Video Games-I lied about the sex. To
try to compensate for this close brush with false advertising, I offer
you this joke.

A game programmer is a walking down the street and hears a
voice coming from the gutter. He looks down and sees a frog.

"Hi," says the frog. "I'm really a beautiful princess. Pick me up,
give me a kiss, and I'll let you gaze upon my beauty for a whole
hour."

xi

xii P~~

So the game programmer bends down, picks up the frog, puts it
in his pocket, and keeps walking.

"HEY! Wait a minute," says the frog. "Let me out!" So the game
programmer pulls the frog out of his pocket. Now the frog says, "If
you kiss me I'll turn into a beautiful princess and I'll give you great
sex for a week!"

The game programmer puts the frog back into his pocket.
"WHAT? Hey, get me out of here!" He pulls the frog out again.
"If you kiss me I'll turn into a beautiful princess and I'll give

you great sex for a whole year!"
Back into the pocket. The game programmer keeps on walking.
"WAIT A MINUTE! Get me out of here! Please, take me out of

your pocket," begs the frog.
So the game programmer does, and the frog asks him, "What's

the deal here? I promise you a beautiful princess and great sex for a
year, yet you keep putting me back into your pocket?"

The game programmer replies, "I'm a game programmer. I
don't have time for sex. But a talking frog is WAY COOL!"

Having charmed you with this attempt at humor, this is where
I'm supposed to convince you to part with your hard-earned dol
lars and purchase this book. I suppose just asking you to trust me
and purchase the book won't work, so I'll have to try being honest.

Warning: Unblushingly biased statements follow.

In this book you'll be exposed to the techniques of producing
games on Macintosh computers. Several chapters deal with produc
ing animation to use in your games. A few more give insight into
how to produce sounds for your games. Another chapter demon
strates how to tie together the elements of graphics and sounds.
And in the last chapter, a full-blown arcade game is programmed
right before your eyes.

After reading this book you will have passed Game Program
ming 101: Structure and Techniques. You'll have been exposed to
many of the techniques used in producing commercial games, and
you'll have established a foundation for producing your own
games. The goal of this book is to provide the basis for you to go on
to produce fun games that I can acquire and play.

PM(Aa xiii

This book exists because another one didn't. I wanted a book for
myself that explained how to apply the hidden powers of the Mac
Toolbox to produce games. More specifically, I wanted to program
arcade games. Games with captivating animation and objectionable
sounds. In vain I searched B. Dalton for a copy of Inside Mac: Games,
but failed in my quest. I found a few books focusing on game pro
gramming for IBMs and their ilk, but not a single one on program
ming games for the one true computer, the Mac.

Over pizza I lamented this unbelievable situation to a friend; I
know she was a friend because she pretended to care about what I
was complaining about. Her insightful solution was for me to write
a book. Not exactly the advice I was looking for. Her forceful argu
ment was based on the premise that someone needed to write a
book on this oh-so-important subject, so why not me.

With encouragement like that I thought, "Gee, that's a good
idea. Why don't I write a book on game programming? I spend
way too much time sleeping and doing other useless activities. I
owe it to my programming brethren to write this book."

Plus, this mysterious voice kept repeating, "If you write it they
will code."

With voices in my head and pizza in my stomach, I decided I
would write a book that would be an introduction to game pro
gramming for the Macintosh. I received lots of encouragement from
the other programmers I knew. Statements like "I guess I would
buy a copy if I couldn't find anything better." And "Will you give
me a raise if I buy a copy?"

I hope you'll find this book as useful as I. wanted the book I
couldn't find to be. And here's a bit of advice: If your friends sug
gest that you write a book, get new friends.

xiv

While writing this book I have intruded on the lives of many of my
friends. This is where I try to suck up and earn their forgiveness by
apologizing, I hope that seeing their names in print will make up
for any transgression I may have made.

Large thanks goes to my wife, Rhonda Thurlow-Hensler, my
editor, conscience, coach, and most of all my friend.

A huge indebtedness goes to Jonathan Swift (no relation to the
writer). I call him by his middle name, Dean, to avoid any confu
sion. He loaned me his Atari game collection-for which I am eter
nally grateful. Dean also owns a full-sized Marble Madness game
that he occasionally lets me play. Dean is also responsible for the
title; that and the title Hex, Bugs and Rock & Roll was already taken.

Recognition-or is it blame-goes to my friend Rachel Ruther
ford, who talked me into to this whole crazy project and then ran
off to Microsoft. All of the Microsoft barbs contained herein are di
rected at you Rachel, not you Mr. Gates (you never know when I
might need a new job up near Redmond, Wash.). In her copious
spare time Rachel also whipped up the nifty cover for this book.

The rest of the illustrations in the book were cooked up by the
team of Clint and Jessica Spencer. Without them you'd be looking at
my stick figure drawings.

I'd like to thank Andy Peterman, for making sure I crossed my
technical T's and dotted my programming i's. Thanks Andy.

My final thanks goes to all my editors at Addison-Wesley. First,
Dave Clark, who started this whole thing and then ran off to Micro
soft Press (are you starting to detect a trend here?). Then Martha Stef
fen, who dragged me and this book kicking and screaming to the
finish line. A dinner and a book in no way covers the debt I owe her.
Thanks also to Martha's assistant Kaethin Prizer, who made sure my
AOL messages didn't disappear into the great bit bucket in the sky
for which she deserves great thanks. Vicki Hochstedler, who picked
up for Martha and actually saw me cross the finish line; I thank her
and her copy editing cohorts for suffering through my "School
House Rock" inspired grammar ("conjunction junction what's your
function?"). I'm sure there are many others at Addison-Wesley I owe
a few beers to. So, if I missed you come find me.

As with any piece of software you install these days, this book has a
"Read Me First" section. Contained in this Read Me First is the
summary of who should read this book, who shouldn't, what you'll
need to take full advantage of the code contained in the book, and
the general instructions for how to read this book.

This book's intended audience is anyone who is interested in learn
ing how to program games on Macintosh computers. You don't need
any previous game programming experience or an extensive back-

xv

xvi~

ground in graphics or sound programming. It might help, but it isn't
necessary. What you will need is a fondness for computer games.

While a game programming background isn't assumed, you
must have some experience programming a Macintosh. This book
assumes that you are capable of producing a simple Mac program
that involves windows, menus, and other Mac interface elements.
Here's a quick prerequisites test.

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEinit();
InitDialogs(OL);
InitCursor();
FlushEvents(everyEvent, 0);

If this code looks like any other anci~nt incantation you've run
across, then this book isn't for you. I suggest you purchase it any
way as a goal to strive for on your path to Mac programming en
lightenment, but then again, I have a few shekels to gain if you
decide to purchase this volume.

While this book is intended to teach the techniques of game
programming, these skills aren't limited to game programming.
The core skills of game programming-animation and sound pro
gramming-are useful in many other programming disciplines.
Multimedia and music programmers can benefit from the assets
contained in this book even if they have no interest in writing
games-although I find it hard to imagine a programmer who
wouldn't want to write a game. Actually, I can imagine a program
mer who doesn't want to write games. They're the ones who write
those annoying pieces of software that enable computers to call me
up in the middle of the morning to ask if I've thought of having my
septic tank cleaned.

This book is for you if you want to program computer games,
you possess some experience programming Macs, and you have
plenty of spare time and no life. It will also help if you own a Mac
or can borrow one for an indeterminate length of time.

~.u.J H,e, F~ xvii

While I'd like to think this book has universal appeal, the reality is
there are some readers this book is not intended for.

If you've written your own game with over 9,000 lines of 68000
assembly code in it, then this book is not for you.

This book isn't for anyone who answers every game-oriented
question with, "When I was at Atari, we did the ... "

If you think reading this book will enable you to get a job at
Nintendo, Electronic Arts, or any other game-programmer's dream
employer, you will be greatly disappointed; and unemployed.

If you think that three weeks after reading this book you'll write
the next Doom, Mortal Kombat, or F-18 Hornet, put this book back
on the shelf and head over to the reality section.

Chapter 1: An introduction of arcade games. Their history, origins,
and a theory of why they're fun to play.

Chapter 2: How animation works in your brain and in a
computer.

Chapter 3: An in-depth discussion of hand-built offscreens on
the Mac. What are they, how to build them, and how to use them
for animation within your game.

Chapter 4: Building offscreens using GWorlds and how using
GWorlds differs from the hand-built offscreens in the previous
chapter.

Chapter 5: An introduction to the techniques of sprite blitting
building a sprite system, or engine.

Chapter 6: A discussion of the heart of any arcade game-sprite
collisions.

Chapter 7: The beginnings of building a game-programming
class library.

Chapter 8: The play field class, which is the central focus of the
sprite library.

xviii~

Chapter 9: Using what you've learned to understand the rela
tionship between sprites and sprite eels so that you end up with
sprites leaping and frolicking across the screen.

Chapter 10: An example game that is a take-off of the first video
game, Pong.

Chapter 11: An introduction to the second most essential ele
ment of any game--sound.

Chapter 12: Putting it all together in a complex game called
Digger.

This book assumes that you either own or have access to the
following:

+ Color-capable Macintosh

+ Color monitor with at least a 12-inch screen

+ Symantec's C++ compiler of at least version 7.0

+ A few megabytes of free hard-disk space

+ Spare time

To get the most out of this book, you should be experienced with
the C language, have a familiarity with C++, and have at least the
ability to read 68000 assembly language or a real desire to learn. If
the last part intimidates you, don't let it. The amount of assembly
code in this book is slight and is explained in excruciating detail.

Mac programming experience is also a prerequisite. You should
be comfortable with the Mac and most of the major Mac Toolbox
managers: QuickDraw, Window Manager, Dialog Manager, Event
Manager. These managers will be enough to get you started. If
you've read Dave Mark's books (Learn Con the Macintosh and Learn

R~ H.t- f-'Mi xix

C++ on the Macintosh), you will have the required knowledge to
take advantage of this book's contents.

You need to be acquainted with Symantec's development envi
ronment: the editor, the compilers, and the debugger. Regrettably,
this book isn't a substitute for a good tutorial on Symantec's devel
opment products. The tutorials provided with the Symantec system
are satisfactory preparation for compiling and running the exam
ples in this book.

Most people should read this book starting at the beginning and
working toward the end. That seems obvious, but I personally have
the habit of jumping around in technical books searching for just
the right juicy intellectual morsel. You probably don't want to fol
low my example when you read this book. The best way to read it
is to pick a starting point based on your previous experience.

The first chapter has only light reading with no code; it's more
like history and design precepts. You could skip this section, but re
member, those who skip game history are bound to repeat it. And
you don't want to be the second programmer to create a game
based on the dancing, smiling, Kool-Aid pitcher-do you?

Honor students who already have experience with color off
screen graphics, CopyBi ts, and the other elements of offscreen an
imation can skip right to Chapter 3. If you find you missed
something, you can always go back and read the previous chapters.

If you're only interested in the sound area of game program
ming, you could jump right to Chapter 6 and ignore all this super
fluous graphics programming. Likewise, if you have no interest in
writing games with sounds, you can read all the chapters except
six. But remember, games without sounds are like movies without
sound. People only watch them for a little while before yelling
"Projectionist!" and demanding their money back.

xx~

Whenever you see a block of text that looks like this:

II Useless code
for(i = O; i < kLoopForABit; i++)
{

II Nothing of interest here.

you are looking at a chunk of code of some interest.
All words that are in the Courier font are Mac Toolbox names,

field, or structure names used in Mac headers files, or references to
functions that are developed as part of the book.

A section that look like this is a sidebar to the main body of text. These
sidebars contain auxiliary technical" information that you might be in
terested in. You can skip these sections, but you won't be getting your
full money's worth.

All numbers are decimal unless they are preceded by a dollar
sign or use C's or assembly hexadecimal notation, like this: $AB3C,
OxFF34.

You'll find this kind of boxed text whenever I want to provide some
game-related information. These morsels range from great moments in
game history to games I think you should try.

Game programs aren't the only things that go bump in the night;
technical books have been known to contain bugs. I've tried to
make sure this tome is pest-free, but if you happen to spot one
please notify me. I can be reached either through Addison-Wesley
or electronically at SLVGl@aol.com.

,

Before rushing into the "how" of Mac arcade game programming,
let's spend some time looking into the what, where, when, and
why. What are arcade games, and how are they differentiated from
other types of computer games? Where and when did these things
come into existence? And finally, why the heck do people play
these contraptions?

There are tens of thousands of computer games spread across hard
disks all over the world (some are even legally owned). All of these

1

2 ~1

games can be placed in one of eight categories: adventure, role
playing, simulation, strategy, war -games, sports, puzzles, and, fi
nally, arcade games.

Even though this book focuses on arcade games, you should be
aware of the other types of games. As blasphemous as it sounds,
you might someday wish to write another style of game. Why, I
can't understand, but you might. So here's an overview of the vari
ous game genres in case you wish to travel down that heretical
path.

"Somewhere nearby is Colossal Cave, where others have found for
tunes in treasure and gold, though it is rumored that some who en
ter are never seen again. The object of the game is for you to explore
the cave and return (safely) with as much treasure as possible. The
cave is a mysterious and magical place. You will face many puz
zling and perilous challenges as you explore."

- Hit <RETURN> to continue -

If you were in a computer room in the 1960s, a quick press
of the return key would have propelled you from the harsh
fluorescent-lit world of reality into the magical and puzzling realm
of the Colossal Caves. With that same keystroke, you would have
started a journey into the fresh new world of adventure games.

The original adventure games, like Willie Crowther's and Dan
Woods' s classic FORTRAN game Adventure, were strictly text
based. No nifty 3D graphics, no thunderous 44.lkHz stereo sam
pled sounds, just the machine-gun rattle of the line printer as it
spewed forth paragraph after paragraph of descriptive text. From
this humble beginning the path was cleared for all adventure
games.

All adventure games, whether the original Adventure or to
day's Myst, are based on what is called interactive fiction. Interac
tive fiction differs from normal fiction in the way the flow of the

plot line is traversed. In noninteractive fiction, like books and
movies, the stories are linear. Boy meets girl. Girl dumps boy. Boy
gets a computer. Boy trashes girl's credit report. Interactive fiction
is nonlinear. The reader/player controls the flow of events that
make up the story.

Interactive fiction is a misnomer; it isn't totally interactive. The
player can only alter the plot line in ways the game designer pre
dicted. Truly interactive fiction would allow the user to control
every aspect of the story. This would require the game designer to
anticipate and program for all possible scenarios, no matter how
trivial. The number of branch points in even a simple story would
quickly become too large for even a horde of game programmers to
manage. The only way to accomplish full interactivity would be to
have the game generate the story as it went along, taking into ac
count all of the actions of the player. The technology for this kind of
interactive game isn't quite here yet. You'd need a setup like a
holodeck from "Star Trek: The Next Generation."

Adventure games circumvent the restrictions of interactive fic
tion by giving the player a directed goal. This goal is almost always
a quest. The quest plot line enables the game designer to easily
move the player along within the plot and yet seemingly allows the
player to control the story's flow. Interaction within a quest is usu
ally generated by having the player encounter puzzles. Without
solving each puzzle, the player cannot accomplish the quest's goal.
Not true interactivity, but still fun.

The only thing about adventure games that has changed over
the past few decades has been the medium of delivery. Text was the
original form of expression. The player responded by typing simple
commands: "Take rock." "Eat Food." "Kill Dragon." The complex
ity of the commands available to the user increased, but the
medium of delivery was still text. Eventually, graphic adventure
games were created that allowed the player to see without the bur
den of reams of descriptive text. Still, the player interacted with the
game through the use of text commands. Adventure games evolved
to the point they are today with games like Myst, fully graphic ad
ventures completely driven by mouse clicks. Not a single command
needs to be typed. Is this a loss? I don't know, but I sure miss being

4 ~1

able to tell the game to perform anatomically impossible actions
when I can't get past a puzzle.

Role-playing games center on the player's assuming the identity of
a character. The same could be said for adventure games, but role
playing games go into much greater depth. A character in a role
playing game starts the game with predefined skill levels for the
character's attributes. These attributes can include strength, intelli
gence, fighting skills, or spell-casting ability. As you play, the char
acter's attributes grow. And, as in life, your character starts with an
affinity for certain characteristics. During play the character's mas
tery of his or her natural attributes improves faster than other at
tributes. A sorceress has natural talents for magic, not swordplay.
And no matter how swashbuckling your sorceress is, her true tal
ents lie in thaumaturgy.

While the Mac is role playing game-challenged, it does have a few
worth playing. One of my favorites is Westwood Studios' The Legend
of Kyrandia. Even with its "DOS port" stigma, it's a pretty good romp
through the lands of might and magic.

Pull a screaming F-18 into a gut-wrenching Immelmann. Drop a
Ferrari Formula One into sixth gear and tear down the straight
away at the Monaco Gran Prix. Reload the cannon in an Abrahms
M-1 tank before the smoke coverage clears. Run silent, run deep as
the commander of a nuclear attack submarine. All of these fantasies
and more can be yours for the price of a couple of floppies. Wel
come to computer simulations.

A computer simulation, as the name implies, is an attempt to
simulate reality with a computer. Simulations allow the players to
participate in activities that might otherwise be impossible. The

odds of someone's giving me the keys to a Ferrari are only slightly
better than of their giving me the launch codes for a nuclear subma
rine. Computer simulations are the only way I'm ever going to get
next to a Ferrari without hearing it ask me to "Step away from the
vehicle." Simulations allow you to play out any Walter Mitty fantasy
you might have without risking cash, life, or future incarceration.

Computer simulations originated with the military. The armed
forces figured they could save a few million dollars each day by
having F-16s crash in a computer rather than into the ground. Less
wear and tear on the pilots too. From these million-dollar toys
eventually came the technology that enables me to ram my F-18
Hornet into the middle of the Golden Gate Bridge without a
scratch, except to my ego.

The majority of computer simulation games have the player
driving an expensive piece of machinery, be it a plane, car, subma
rine, or a carrier task force. With the player at the helm, the simula
tion attempts to re-create what it would be like to drive the real
thing. True simulators are used for training, and their entire em
phasis is on realistic accuracy. Game simulator designers have to
strive for accuracy but have to balance accuracy with good game
play. A game simulation could easily be accurate to the point of
boredom.

You either like simulation games or you don't. You either love
the idea of a game with a half-inch-thick manual or you don't. You
either think the game designer of Microsoft's Flight Simulator is a
genius for making sure the instrument-panel light bulb will bum
out if left on too long, or you think she's seriously anal-retentive.

When you play chess, backgammon, or poker, you are playing
what is classified as a strategy game. Strategy games don't have
plot lines or characters. What they have is rules. Mastering the rules
and their constraints is the goal of strategy games. Well, not the
whole goal. Mastering the rules and beating your opponent to a
pulp is the whole goal.

6 ~1

What a computer brings to a strategy game is a built-in oppo
nent. Playing poker by yourself isn't enjoyable or profitable. Play
ing strip poker alone is even worse. A computer supplies you with
an instant opponent. You want to play a good game of chess, but
everyone in your house starts every game by asking, "How does
the horsie move again?" Well, fire up your computer and chal
lenge it to a game. It never forgets the rules and very rarely
cheats.

Most strategy games can also be used as on-line tutors. Your
chess is a little rusty? Have the computer show you where you
make your mistakes while you're playing. Or save the entire game
for later playback and study.

Playing Monopoly with a computer is more enjoyable because
it can take care of the mundane game elements and let you focus
on your strategy (which should be to buy Boardwalk). This house
keeping can be done even if you're playing with other people and
not the computer. In that situation the computer is the game mas
ter and referee.

Recently computer implementations of strategy games have
added little touches of animation and sound effects to the games.
Play a game of chess with Interplay's BattleChess, and a short ani
mation is performed anytime a piece is captured. You haven't
played chess until you've seen your rook lumber over and swallow
your opponent's bishop. While these vignettes don't change the
rules of the game, they make losing more enjoyable.

w~ ~= "~~!"
Do you think Patton was overrated and Rommel should have
cleaned his clock? Feel you could have been the difference at Wa
terloo? Think Custer only made one small mistake? With war
games you can put your money where your mouth is. Become a
general, an admiral, or a lowly private. Fight the great battles of
history. Try out "what if" skirmishes. Practice the battle tactics of
the next century.

War games, as the name implies, are strategy games played
within the framework of warfare. In becoming a paper general
you'll have to deal with all the messy details that prevent real war
from being any fun. You'll have to manage supplies, roads, morale,
ammunition, communications, strategy, and tactics. Not to mention
the death of your soldiers if you make an error.

War games existed long before computers. Heck, they've proba
bly been around as long as war. The level of minutiae that is main
tained in advanced board war games is staggering. You need a CPA
to get through the first skirmish. What a computer brings to war
gaming-besides a built-in opponent-is bookkeeping. The com
puter can keep track of troop movements and supply levels, simu
late the weather and its effect on progress, and take care of all of the
other junk that distracts from the game. That lets you focus on the
tactics and strategy needed to win.

If you've never played a war game before and are slightly intimidated
by the history-book-size manuals that come with most computer war
games, I suggest you purchase a copy of Chris Crawford's Patton
Strikes Back. This re-creation of the Battle of the Bulge is a great entry
point for acquiring a taste for war games. It also serves as a great ex
ample of game design.

Another ease-of-entry game is Dan Bunten's Command H.Q. Pic
ture Milton Bradley's game Risk on steroids, and you'll have a idea of
Command H.Q.

If war games aren't your thing, maybe you'd like to try a peace
game instead. Chris Crawford's Balance of Power is just the ticket. In
Balance of Power you get the daunting task of preventing global nu
clear war. Your only weapons are carefully worded telegrams, covert
actions, foreign aid, and brains. Someday I hope Balance of Power is
used as an entry test for presidential candidates. If you can't stop a
game from blowing up the world, what chance do you have with the
real thing?

Like simulations, war games have conflicting goals. They must
provide accurate realism while still maintaining a good fun quo
tient. The balancing of these two elements is what separates a good
war game from just another statistics final.

8 ~1

Pick a sport, any sport, and there is a computer version of it. I've
played everything from cliff diving to tiddlywinks (which is more
fun on a computer, but then again, how could it be any less fun?).
Why would anyone want to play a sport on a computer instead of
doing the real thing? Safety, for one. I'd like to box, but I have a
close relationship with my frontal lobes. With Electronic Arts' 4D
Boxing I can get pummeled round after round and still enunciate
all my vowels. Another reason might be hero worship. By booting
up Michael Jordan In Flight-which is only out for IBMs, dam!-I
can soar and slam just like the Great One.

I classify computer sports games in three categories: arcade, sta
tistical simulation, and combination. An arcade sports game is one
where eye-hand coordination is the primary interface to the game.
Most sports game on Nintendo and the Sega system fall into this
category. The antithesis of the arcade sports game is the statistical
simulation. In these games you play strictly through the statistics.
How you play is determined by your strategy and has no bearing
on your reflexes. But the type I prefer is a combination of the two: a
game that provides a statistical basis on which to play but still al
lows for a miracle moment to occur.

I have one problem with sports games-they aren't really
sports. They're not even close. Playing a computer in a game of
one-on-one will never replace the real thing. Making two points on
the computer does not provide the same sensation of stopping
short, popping up, and draining one from long-distance. Moving a
joystick to the right does not provide the sweet feel of hitting a
baseball right on the money. And don't get me started about com
puter golf. Why anyone would want to take golf, a complicated
way to take a long walk, and make it into a computer game is a
mystery to me. Without the excuse of being outside, why would
anyone play golf? With the body removed from the game there is
no sport, only a game that uses the sport's rules and paraphernalia
as a framework. This doesn't mean they're not fun. Good sports
games are great fun (except for golf), but they are no substitute for
the real thing.

A computer puzzle game is the electronic equivalent of a Rubik's
Cube. Unlike other computer games, there is no plot or long-term
goal. Well, solving the puzzles might tum out to be a long-term
commitment. Puzzle games are addictive. The combination of sim
ple rules and great game play make good games hard to shut
down. The archetype of the computer puzzle game is Tetris.

Two of the best puzzle games you can play on the Mac are Psygnosis's
Lemmings and Dynamix's The Even More Incredible Machine.

The Even More Incredible Machine provides you with an entire
Rube Goldberg toolkit. Build contraptions out of bowling balls, con
veyor belts, squirrel cages, magnifying glasses, and even weirder stuff.
Schedule at least a week off from your job to work through all the levels.

With Lemmings, you get to control the destiny and job skills of a
group of tiny lemmings. Your simple goal is to get your lemmings from
one side of the playing field to the other, but whole sets of devious ob
stacles stand in your way. A word of caution: Don't boot up Lemmings
right before an important deadline. You'll have a lot of explaining to do
come the next morning.

One of the more interesting aspects of puzzle games is their uni
versal appeal. Young people, old people (those over 25), men,
women-it doesn't matter, they all like puzzle games. No other
game category has the same broad appeal.

Question: What the hell is an arcade game? Answer: A game whose
original design purpose was to separate you from your money, one
quarter at a time. To do this, an arcade game needs to have simple
instructions. If the game comes with more than a single page of in
structions, it's not an arcade game. If it comes with more than a
hundred pages, you can be sure it's a simulation. To take your

10 ~1

money, an arcade game needs to make sure that you eventually
(and hopefully quickly) lose the game. To keep the quarters coming
in, the game must continue to be challenging.

What are arcade games?

+ Short-lived

+ Meant to extract money from your pockets

+ Develop eye-hand coordination

+ Manipulation of limited resources

+ Highly addictive

+ Creative

+ Follow no formula

+ Novellas or short stories of computer games

+ Tons of animation and sounds

Because this book is about producing arcade games for the Mac,
you need to know a smattering about the "roots of your labor." In
any discipline, it is important to understand where the idioms of
your culture originated. Luckily, game history is an enjoyable
ride-and there won't be any pop quizzes.

The quickie history presented here covers arcade games from
their creation in the 1960s through the mid-1980s. I've skipped or
ignored almost anything after the mid '80s. Why? Because not one
dam machine installed in an arcade during the last decade has
added much of historical interest. Most of the games since the mid
'80s are derivative at best; the rest just suck.

Get the idea that this might be a revisionist history of arcade
games? You're right-with me as your guide and head revisioner.
Enough delay. Let's set the dial of the wayback machine for
Boston, 1961.

In 1961 at the Massachusetts Institute of Technology, a PDP-1 was
unceremoniously uncrated and installed by Digital Equipment
Corp. On that day I'm sure no one turned on the juice to this
$120,000 piece of iron and said, "All right, now we can make some
cool arcade games." But they should have.

One person at MIT knew the true purpose of the existence of
the PDP-1: games. That was Steve Russel, whose friends referred to
him as "Slug." Which makes me wonder about Steve's view of
friendship. Steve (I refuse to call someone I've never met Slug) was
one of the legendary hackers that MIT was giving birth to at an
alarming rate during the early 1960s. You couldn't throw a stick
into a computer room at MIT without hitting some current or future
computer genius.

Steve Russel first saw the PDP-1 as a better machine for doing
LISP research than the IBM he was currently shackled to. But after
seeing a few graphic demos, Steve overcame his burden of trying to
accomplish something useful and decided to create the grand
daddy of all arcade games: Spacewar.

Spacewar was inspired by early graphic demos on the PDP-1
mixed with some campy science fiction. The game's goal was to fly
around in your spaceship and blow the other player's spaceship to
smithereens. A game design that still works today.

The game began simply enough. You flew a dot by toggling the
switches on the computer's front panel. While entertaining, a game
this did not make. The dot eventually became a triangular ship, and
the ship spawned a cylinder-shaped opponent. With an opponent,
the need for a weapon generated the code that allowed one player
to shoot at the other. When your torpedo (a dot) hit your opponent,
you were rewarded with a simulated pyrotechnic explosion (a
bunch of dots flew around the screen where the ship used to be).

Steve's game gave the programmers at MIT what they wanted:
a cool game to play and access to the source code. Soon revisions of
Spacewar spawned gravity wells that could suck your ship in and
crush it; solar winds that required a steady hand on the toggle
switches for a successful flight; multiple torpedoes you could have

12 ~1

on the screen simultaneously; and hyperspace jumps, which gave
you an element of last-chance escape.

Spacewar was not only a source of software inspiration, but a
hardware one to boot. Trying to fly your ship through the perils of
space by flipping toggle switches was a challenge. Those inspired
guys at MIT took up the challenge and whipped up some joysticks.
Scores immediately doubled.

Spacewar appeared on DEC computers everywhere. The 27-
page assembly program was even used as a diagnostic test at DEC.
I would have loved to hear that rationalization to management:
"Yep, Bob, the only program that really tests this machine is this
game from MIT. It was written by a Slug Somebody."

Lots of games came out for computers in the 1960s, but none
that you could call an arcade game. It took almost a decade for the
seeds that Steve Russel and Spacewar planted to bear fruit. It might
have happened faster, but the seeds were planted in Utah. So let's
set the dial of the wayback machine for 1968 and the University of
Utah.

In 1968 the University of Utah granted Nolan Bushnell a degree in
electrical engineering. Little did they know that Nolan had also
graduated with a minor in arcade games, with emphasis on becom
ing an industry icon. Like thousands of other engineering students,
Nolan spent his spare time Spacewarring in the university's com
puter labs. This experience, combined with the knowledge of how
to apply solder cleanly, prepared Nolan for a rosy future as the Obi
Wan Kenobi of arcade games.

While Nolan worked for the videotape giant Ampex by day, he
was concocting the future at night. Nolan had decided that people
would pay real money to play Spacewar. Of course he was right
students had been paying tuition for years to satisfy their Spacewar
cravings. All he had to do was make Spacewar affordable to build.
While it was a neat game, at $120,000 a pop a PDP-1 was not a
thrifty delivery medium. Nolan's plan of attack was to build a sys-

tern dedicated to playing Spacewar. By throwing out all the elec
tronic junk that wasn't used by Spacewar, he figured that he could
build them cheaply enough to resell them. The dedicated Space
warring system was christened Computer Space. Nolan's plan was
to have a Computer Space console raking in money right next to
every pinball machine in America. With this dream in his pocket, he
quit his day job at Ampex.

He went to work for a pinball manufacturer and convinced
them to build a few thousand Computer Space games. They were
placed right next to the company's pinball machines, just like in
Nolan's dream. The trouble was nobody played them.

In theorizing that everyone who played pinball would want to
play his Computer Space game, Nolan had forgotten where those
pinball machines hang out: bars, pool halls, and bowling alleys-all
locations known to serve alcohol to their patrons. Drunken pinball
players aren't usually receptive to a new entertainment medium
that requires reading a full page of instructions before mastering
challenges like acceleration vectors and gravity wells. Computer
Space was a flop, actually more like a thud. Nolan quit the pinball
company and went off to try again.

He realized that Computer Space wasn't a bad game, it had just
been directed at the wrong audience. What he needed to create was
an arcade game with training wheels.

Back at his house Nolan created the simplest of all arcade
games, Pong. "Avoid missing the ball for high score" were its in
structions. Pong, for those of you who somehow missed the 20th
century, was played like Ping-Pong. The name didn't come from
Ping-Pong; it came from the sonar pulse sound the game emitted
when it served. I guess no one told Nolan that a sonar pulse is
called a ping and not a pong. While the name may have been inaccu
rate, the game play wasn't. The computer served the ball and the
players volleyed it back and forth with their paddles. If you missed
the ball, your opponent scored a point. Miss enough and you lost.
The players moved their paddles by gently spinning the rotary
knobs located at the front of the game. The game play could not
have been easier. You could hold a beer and a conversation and still
play the game.

14 ~1

Pong's first public appearance was in 1972, in a bar in Silicon
Valley. In its first week, it raked in $300. It would have been more,
but the coin bucket couldn't hold any more quarters. Pong's
maiden voyage had proved a success, and an industry was born.

To raise money to build Pongs, Nolan needed to form a company.
And to form a company you need a name. The first attempt at a
name was Syzygy. As hard as it is to believe, some other company
had decided to use that tongue twister as its name. Sticking with
the theme of hard-to-pronounce, esoteric names, Nolan branded his
new company Atari. It's etymology trivia time. Atari comes from
the Japanese game go. In go, atari roughly translates as being in
check in chess.

After a name, the next thing Atari needed was cash. Nolan asked
Bally-Midway if they would like to invest in this new adventure.
Some executive at Bally-Midway told Nolan, "Thanks, but no thanks,
and my girl will validate your parking ticket on your way out." I've
always wondered what happened to the executive who made that
mistake. Do his friends tease him? "Hey Bob, bypass any three
billion-dollar deals today?" In an ironic twist of fate, Nolan Bushnell
would later have his own chance at rejecting a few billion dollars.

Through persistence and strength of personality, Nolan gath
ered enough money to start building and shipping Pong games.
Atari couldn't keep up with demand without more cash. The cash
was provided through venture capital, and with more cash Atari
was able to produce games beyond Pong.

Gran Trak was Atari's and the world's first arcade driving
game. Atari continued the driving theme with Le Mans, Monte
Carlo, Night Driver, and Sprint (one, two, four, and eight).

The next big hit for Atari was Tank. In Tank you drove your tank
around in a maze, looking for and shooting at your opponent's tank.
This was a great game. It made a great rumbling tank sound, and
you had to drive the tank with two joysticks, each of which moved
only up and down. To move your tank forward, you pushed both

sticks forward. For reverse, both sticks were pulled back. To tum
your tank left or right, you pushed the sticks in opposite directions.

The Tank game I played was in a bowling alley in Columbus,
Ohio. I'd force my Dad to play me in between frames. He always
won, but I still loved the game. I think it was the controls. The
funky way you had to steer the tank made me feel like Patton. I was
a kid, I didn't know that Patton was a general and didn't have to
drive his own tank.

While I was playing Tank in Ohio, Steve Jobs was joining the
ranks of Atari employees. With help from Steve Wozniak, Jobs de
signed the Atari game Breakout. Steve and Steve later went on to
form a small company of their own. Jobs first approached Nolan
Bushnell for the initial funding of Apple, but Nolan didn't see a
market for the underpowered little computers. Nolan, like the Bally
executive before him, had just passed on a few billion dollars.
Smart move, Pong boy.

It's brush-with-fame time. I met Nolan Bushnell twice. Neither time
was very exciting, but it did happen. The first was in his hotel suite,
where he was demonstrating a new videotape editing device for his
new company, Vent. Vent didn't last the year, but for about an hour I
got to hang with the founder of Atari and drink his free sodas.

The second time was when Nolan tried to sell the Vent technology
to the company I was working for at the time. I somehow wangled (I
begged) my way into the high-level schmoozing party going on in the
CEO's office. I was treated like the peon I was until I asked Mr. Bush
nell if he could fix my broken Petster. The room went silent. No one
else knew that Nolan was also the father of robotic pets, Petsters. They
were supposed to run around and act like annoying live pets, but with
an off switch. Petsters was one of the long list of companies that Nolan
had founded.

Mr. Bushnell declined to extend my Petster's warranty and went
back to schmoozing with the people with money. I went back to being
an ignored peon.

After passing on the personal-computer thing, Nolan and Atari
decided the real money was in the home market, so Pong was
squeezed into a box that you could attach to your TV. Now kids

16 ~1

could annoy their parents until they purchased them their very
own Pong. That year I convinced my Mom that my Dad wanted
one for Christmas.

In 1976 Warner Communications bought Atari. Warner was in
terested in the home game division and left the arcade division to
fend for itself. Which it did, helping make arcade games a six
billion-dollar-a-year industry.

Atari showed the world that people would pay billions of dollars (a
quarter at a time) to play video games. From Atari came the rest of the
arcade game alumni: Sega/Gremlin, Centuri, Game Plan, Bally
Midway, Cinematronics, Taito, Stem, Rock-Ola, Universal, Williams,
Exidy, Pacific Novelty, Nintendo, Game-A-Tron, Venture Line, Gottleib.

There's no respect for history in the arcade game industry. A classic
of yesterday will be gutted for its monitor and coin box without
even a moment of silence for what's been lost. With the cannibals of
history owning most of the arcades you're likely to patronize, your
odds of being able to play a classic are about nil. To try to overcome
this injustice, I offer Sex, Lies, and Video Games's List of Classic Ar
cade Games. This list contains a short summary of each of the
game's plots and what I think made the game a classic.

This is my list; these are the games I think established the video
game industry. If I've snubbed your favorite classic of the past, then
I either forgot about that game or I think it sucked.

With its five controls-rotate left, rotate right, thrust, fire, and hy
perspace-and its space theme, Asteroids is a direct descendant of
Spacewar. Instead of battling another player, you pilot your ship

around an asteroid field. Watch out for the UFOs that are also fly
ing around in the asteroid field and don't take kindly to your un
wanted presence.

Each level starts with a few large asteroids that split when shot
by you into smaller and more dangerous asteroids. Your goal is to
clear each level of all the asteroids without being clobbered by one.
Every so often a UFO will appear and try to blast you out of the
sky. UFOs come in two flavors: large and slow, with the inability to
hit the broad side of a barn; and small and quick, with enhanced
shooting skills. The best way to get a high score is to leave only one
tiny asteroid and wait for the UFOs to show up. When the UFOs fi
nally appear-and they will-blast away.

Besides being a great game, Asteroids was the first arcade game
to let you personalize your high score. Score big enough and you
could brag that DOG, GOD, or SEX had come, seen, and conquered.

If you want to try a blast from the past, several Mac game program
mers have created their own tributes to Asteroids. Asterax, by Michael
Hanson, and Maelstrom, by Andrew Welch, are both excellent share
ware tributes. Space Madness, by High Risk Ventures, is a commercial
salute to Asteroids.

You are a tank on a barren, alien battlefield of the future. In this fu
ture, you are placed in a valley filled with wire-frame squares and
pyramids, and you aren't alone. Out to destroy you are enemy
tanks, super-tanks, missiles, and landers, each more dangerous
than the first. Watch your radar and never stop moving, and you
might stay alive.

Battlezone was the first game that provided a first-person view
of a playing field. Instead of looking down on the game, you were
in the game. That, combined with the same realistic control scheme
borrowed from the original Tank game and great sounds, produced
one of the first realistic arcade games.

18 ~1

Battlezone boasted other firsts: it was the first 3D first-person
game, and it was the first arcade game to enlist in the army. In 1980
the U.S. Army ordered up a few thousand modified Battlezones for
training soldiers. The Army couldn't have its soldiers driving
around in something called a Battlezone, so they had the name
changed to a proper Army-sounding one, MK-60. At $15,000 each,
Atari let the Army call them anything they wanted to.

The closest Mac equivalent is Randy Frank's Mac BZone, a shareware
version of Battlezone. A close cousin of Atari's tank classic is Velocity's
Spectre, a combination of capture the flag and Battlezone.

A switch from Atari's space-theme games was Centipede. Occupy
ing the bottom quarter of the screen, you are the defender of the
mushroom patch. With your bug zapper you must exterminate spi
ders, fleas, scorpions, and of course centipedes. The centipedes are
the true challenge of this game. They weave their multipart bodies
through the mushroom patch, trying to get to you at the bottom of
the screen. If a centipede (or any other resident of the garden)
touches you you lose a life. Lose 3 lives dig out another quarter.

The fun in Centipede is in how the centipedes split into smaller
centipedes when you hit them. You have to hit every section of the
centipede. Each section hit turns into a mushroom that can either
aid or hinder you, depending on its location.

Created in 1981, Centipede stands out as the first whimsical ar
cade game. Its bright colors and innovative use of a trackball won
over many people who had never played video games before, in
cluding my wife.

The game FireFall, by Inline games, is a commercial Mac descendant of
Centipede. I haven't played this game (hint for a free copy), but I hear
it maintains the Centipede tradition of being graphically spectacular.

You are a human fly scaling the outside of a building using suction
cup handles. Get to the top and you move on to a more challenging
building. Trying to stop your ascent are anonymous people who
open their windows, birds who do some dropping, mad scientists
who throw flowerpots at you, and of course Kong himself, who
will give you a playful swat if you get too close.

Crazy Climber was controlled through two four-way joysticks.
A joystick in each hand, you attempted your ascent.

This game makes the list based on its uniqueness and ability to
pull quarters directly from my pocket. No one has attempted a
clone of Crazy Climber on any computer that I know of, leaving it
the first and only human fly game.

Drive around the playing field in a little car and run over any people
you find blocking your path. A tombstone, which you must avoid
from now on, and a funeral dirge reward a successful hit and run.

This is a sick game, and one I reluctantly admit to liking. I in
clude it in my classic list as a reminder that Mortal Kombat was not
the first game to irk parents and enrage members of Congress.

Exidy, the makers of Death Race, tried to justify the maniacal
driving by explaining that the player was slaughtering gremlins, not
innocent pedestrians. Nobody bought this weak excuse, and public
pressure forced Exidy to pull this popular game from the arcades.

With the popularity of splatter games today, I'm sure that some
one will revise this classic. Tasteless ideas never die, they just come
back as sequels.

You zip along in this horizontal scrolling game in a spaceship pro
tecting the citizens below from being kidnapped. Your ship can
move up, down, left, and right. The sky is populated with Landers,

20 ~1

Mutants, Baiters, Bombers, Pods, and Swarmers. The Landers at
tempt to steal your ten citizens on the surface and drag them to the
top of the screen. You prevent this by blasting the Landers with
your laser. The rest of the enemies provide cover for the Landers,
each in its own unique way.

If all the citizens are removed from the surface, the planet will
explode, leaving you to fight in empty space. Don't let this happen.
After all, you are the defender.

You are provided with a radar screen that shows the entire sur
face of the planet at once. In Defender, your weapons complement
consists of a laser shot and a smart bomb that destroyed any ene
mies on the screen when activated. Defender's sequel, Stargate,
added Inviso, or cloaking, to your arsenal. Both games offered a hy
perspace jump as a last resort.

Defender and Stargate were only for the dedicated gamer. With
a button for thrust, reverse direction, hyperspace, smart bombs,
laser fire, and invisible on Stargate, combined with the joystick that
controlled your altitude, mastering either of these games required
several pounds of quarters.

Both games are the archetypes of arcade games, offering relent
less action. If you breathe, you'll lose. I've seen several attempts at
Defender on both the Mac and the IBM. None of them even comes
close to the original. A keyboard is not a replacement for dedicated
input controls.

Try to score points and vegetables by digging tunnels into the
ground. Also in the ground are balloonlike Pookas and fire-breathing
Fygars. Your only weapons are an air pump and your wits. With
your pump you can inflate the Pookas and Fygars until they pop.
Using your wits (and a shovel), you can dig tunnels under rocks,
which will fall and squish anyone following you too closely. Be care
ful digging out the rocks-a little too slow and you'll be crushed.

I included Dig Dug in my list for the sole reason that I like it. It
was an enjoyable game to play, with a good balance of action and
strategy. You'll see later how much I like this game.

A simian, looking very much like King Kong, kidnaps the fair
princess Daisy and climbs to the top of the unfinished structure of a
skyscraper. You guide the hero, Mario, up the beams and ladders,
avoiding all the junk the big ape hurls at you.

This game is too cute for words. But nothing is too cute about
the $200 million the game brought Nintendo. The designer of Don
key Kong, Sigeru Miyamoto, went on to cast Mario as the star of
Nintendo's rise to domination of the home video-game industry.

Donkey Kong makes the list because of the first appearance of
Mario and because of the legal battles between Nintendo and MCA
Universal. MCA Universal felt that Donkey Kong infringed on their
trademark gorilla, King Kong, and wanted some of the cash that
Donkey Kong had generated. This battle was to be the first of many
focusing on who owned the rights to the characters in video games.
For an in-depth view of this battle, check out a copy of Game Over,
by David Scheff.

As of the writing of this book Nintendo has released a new
Donkey Kong for the GameBoy portable game system. Beyond the
original level Nintendo added about a hundred more.

As Charley Chuck, you must cross the playing field and get to an
ice cream cone before it melts. Trying to stop you are the four chefs:
Oscar, Angelo, Jaques, and Zorba. These chefs rise out of holes in
the ground (don't all chefs?) and start chasing Chuck. Spread out
on the floor are piles of food. Chuck grabs some of the food when
ever he passes over a pile, and with food in hand Chuck starts
chucking food at the chefs. Watch out-the chefs are accomplished
food £lingers as well. That's it. Throw food and avoid chefs and
holes in the ground. No hyperspace, no laser, just one button and
one joystick.

Besides being one of my favorite games (I own a full-size arcade
version), Food Fight had two firsts. It was the first arcade game to
use the Motorola 68000 processor. More important, it was the first

22 ~1

game to have instant replay. If you had an incredible run on your
way to the ice cream cone, you might be rewarded with a high
speed instant replay of the entire level, just like on "Monday Night
Football." People who played Food Fight ignored the high score;
their whole goal was to get an instant replay.

The instant replay feature of Food Fight (as far as I know) has
never been used in another arcade game. The Electronic Arts com
puter game One on One-Larry Bird vs. Dr. J. had an instant-replay
feature, but not a single arcade game had it. I have no idea why, it's
a great feature.

This sequel to Midway's Galaxian had the player as the pilot of a
ship being attacked by buglike enemies. These bug-eyed monsters
perform intricate dances as they dive-bomb your ship. Your only
defenses are a particle cannon and quick reflexes.

You have a chance to double your firepower if one of the mon
sters captures your ship with its tractor beam and drags it to the top
of the screen. Hit the monster that nabbed your ship and you can
have your previous ship dock up with your current ship and pro
vide another particle cannon. Two ships, twice the firepower.

Galaga earns its classic status for its introduction of power-ups.
A power-up is where the programmer allows the player to tem
porarily increase the abilities of his or her character. Power-ups can
add a unique twist to an otherwise monotonous game.

You are a lance-wielding knight riding a flying ostrich. You defend
yourself against evil knights with lances of their own. Besides the
evil knights, you have to worry about falling in the lava, being
pulled into the lava by something that lives in there, and, of course,
those screaming pterodactyls.

Your controls are a button that causes your ostrich to flap its
wings and a joystick for directing your ostrich left or right. Tap the
button for one flap. Keep tapping gently to keep your ostrich air
borne. Tap too hard and you bang into the ceiling; tap too infre
quently and your ostrich will plunge into the lava.

Your goal is to ram the other knight with your lance. The victor
is whosever lance is the highest. Knock over an evil knight and he
will be transformed into an egg. Pick up the eggs for more points.
Don't pick up the eggs fast enough and they will hatch into fresh
knights. These new knights are meaner and faster than the knights
that spawned them.

Joust earns its classic status on originality alone. It was a great
game with exceptional graphics. For a Mac version of Joust, down
load a copy of John Calhoun's Glypha.

How do you describe a game that has the player be a marble (an
aggie, I think), with the player racing against a clock or another
marble through a maze right out of a Dr. Seuss book? On your jour
ney through the maze you must avoid the marble munchers, steel
ies, and acid pools.

Your marble moves when you spin a large trackball in the
same direction that you want your marble to roll. No buttons. No
joysticks. Marble Madness is one of the simplest games ever
designed.

This was one of the more inventive games to come out of Atari,
but the Seussesque graphics and premise are not the reason I've in
cluded Marble Madness. The reason is the sound. Marble Madness
is filled with great sounds, from the underlying musical scores for
each level, to the wacky sound effects, finishing off with the tribute
to Hendrix when you get a high score. If you are ever lucky enough
to get a Marble Madness game of your own, do yourself a favor
and hook it up to your stereo.

If you've never played Marble Madness, consider it your duty
to find one and play it.

24 ~1

In Missile Command you get to play out your own nuclear war
nightmares. You are the commander of three batteries of antimissile
missiles protecting six cities on the California coast. Enemy missiles
come streaking in from the top of the screen. Enemy bombers fly
through, dropping cruise missiles targeted for your cities. The en
emy also has deadly satellites and smart bombs.

Your controls are one large trackball for aiming your defensive
missiles and three buttons that choose which base will fire your
missile. Playing tip: The center base's missiles travel faster than
those of the other bases.

Missile Command is a classic. No imitation will suffice.

Wooka. Wooka. Wooka. If you've never played Pac-Man then
you're either ten years old or have spent the last few decades on a
South Seas island. Pong may have created arcade games, but Pac
Man created a monopoly.

For those who don't know how to play Pac-Man, here is the gist
of the game. You control the Pac-Man, a yellow circle with a smile
resembling the logo from the "Sonny & Cher" show, with a four
way joystick. The Pac-Man is in a maze filled with dots. The dots
are for the Pac-Man to eat. When all the dots are digested, the level
is over. Also in the maze are four ghosts who are trying to catch
you. In the four comers of the maze are the power pills that will
give Pac-Man the energy to eat the ghosts. He only has the energy
for a limited amount of time. On each level a bonus item appears
for the Pacster to munch on. These bonus items can range from
fruits to galaxians and even hardware like bells and keys.

Pac-Man was the first crossover game. Women liked playing
Pac-Man as much as men. This was a first in arcade history. Pac
Man was also the first game with reward sequences. Whenever you
got past a certain level you were rewarded with a cartoon vignette.
People kept playing to see what the next intermission would be.

My favorite part of Pac-Man were the four ghosts. Each had its
own name and personality. Blinky, the red ghost, is hard to shake
off your tail once he sees you. Pinky, the pink ghost, is faster than
Pac-Man. Do not try to outrun Pinky. Weave through the maze in
stead; Pinky is easily lost. Inky, the light-blue ghost, is afraid of the
Pac-Man and might run away if you run right at him. Watch his
eyes-they give away the direction Inky is going to head. Clyde,
the yellow ghost, is the aggressive one and will charge at Pac-Man.
Clyde is also the slowest of the ghosts. Having characters with dis
tinct personality traits added depth to a delightfully simple game.
You could not progress beyond the easy levels without understand
ing your competition.

Pac-Man became the first video game that had merchandising
rights. You could get Pac-Man hats, shirts, watches, lunch boxes,
sheets, sleeping bags. If it had a flat surface there was somebody
hawking it with a Pac-Man printed on it. Pac-Man even inspired a
hit song, "Pac-Man Fever."

Pac-Man led to Ms. Pac-Man, the first politically correct video
game. You can tell the difference between Pac-Man and Ms. Pac
Man by the red bow she wears in her, um, circle. Ms. Pac-Man was a
huge hit. So in that Hollywood tradition of "a sequel is better than
thinking up something new," Midway created Baby Pac-Man, Super
Pac-Man, and 3D Pac-Man. These all bombed. And deservedly so.

For a Mac version of Pac-Man, try John Butler's shareware Macman
Classic Pro. It's so accurate that all the level patterns I memorized so
long ago still work.

One of the more original games ever designed was Qix (pro
nounced kicks). No cute plumbers. No swarming UFOs. Just col
ored rectangles and something called a Qix.

As the player you move a point, called the stix, around the
perimeter of the playing field with a four-way joystick. With your stix

26 ~1

you attempt to acquire screen real estate by drawing a border around
the area you want. Once a rectangle's boundary has been completed,
it is filled with a tastefully chosen color. The larger the area you in
scribe, the larger your score. You and your stix move on to the next
level after you have secured more than 75 percent of the screen. The
speed at which your stix moves is controlled by two buttons. Pressing
the slow button cuts your stix's movement speed in half, but doubles
the value of any areas you surround. The other button doubles your
stix' s speed and halves the value of any areas you encompass.

Without some adversaries, Qix would be just a color Etch-A
Sketch that costs you a quarter and gives you a hernia when you
try to erase the screen. Your main foe to screen dominance is the
Qix. The Qix bounces around the screen like an electronic butterfly,
trying to thwart your attempts at area acquisition. If the Qix inter
cepts your stix or any line of the area you are currently trying to en
close, you lose your stix. Lose three and you'll be digging for a new
quarter. The best way to avoid the Qix is to wait until it has flitted
to another part of the screen and then grab a chunk of screen. Too
bad it won't work. Hang around in one spot too long and a fuse
will start that retraces your path. Once the fuse burns down to
where your stix is loitering, you're a goner. To keep you on your
toes, the perimeters of the areas are patrolled by the Sparxs. Don't
let a Sparx touch your stix. You won't like it.

Qix earns its place in the list with its combination of incredibly
balanced game play, avoidance of overly cute characters, and the
fact that it's probably influenced more screen savers than any other
video game.

The year is 2084 and the world is being overrun by evil robots. You
are the only person who can save mankind; well, not all of
mankind, but at least Mom, Dad, and Mikey.

You have two eight-way joysticks, one for movement and the
other for directing your relentless laser fire. There are no fire but
tons, as you are always shooting. Moving and shooting.

On the screen with you and Mom, Dad, and Mikey are the ro
bots. Not a few robots. Not even tens of robots. Try hundreds of ro
bots. Your goal is to destroy all the robots before they can get to and
reprogram Mom, Dad, and Mikey. While you're blasting away at
the robots, make sure you don't accidentally blow away Mikey.
Mom won't approve and will Dad be mad when he gets home.

Robotron, like Defender, was not a game for beginners. Your
first game of Robotron would be over before your quarter hit the
bottom of the coin box. I think I spent more money on mastering
Robotron than my first-year college tuition. That also probably ex
plains my grades that year. The mastery of Robotron required a
dedication that bordered on religious fervor and the acquisition of
eye-hand coordination that fighter pilots would kill for. The reward
for this commitment was as great as the sacrifices: a nine-digit high
score. Only true video game wizards could attain this holy grail of
arcadedom.

Robotron 2084 secures its spot on sheer adrenaline alone. Robot
ron was the first arcade game that made it possible to lose weight
while playing.

You're the commander of a lunar base that is being attacked by
some rather rhythmically inclined aliens. At first you only hear the
thumpa, thumpa, thumpa of the aliens' footsteps. Then you see
them, the Space Invaders. It's just you, your roving laser cannon,
and four bunkers that stand between the aliens and the American
way of life. The aliens march slowly down the screen lined up in
neat rows and columns as if they are trying out for A Chorus Line.
The aliens at the bottom of the columns will start pelting your base
with missiles and laser fire. You must avoid the incoming and dish
out some laser fire of your own. The only drawback to destroying
aliens is that it makes the rest of them increase their pace down the
screen.

Three buttons control the laser cannon. Two move your cannon
right or left, with the third being the required fire button. Your only

28 ~1

defenses are the four bunkers between you and the alien horde.
And the bunkers won't last long, as they are quickly chipped away
by the alien laser blasts.

While you're tearing into the marching aliens, pay attention to
the top of your screen. Every so often a UFO will skitter across. Nail
the UFO with a laser blast and you'll get a 300-point bonus.

Space Invaders was a megahit when released. Today its monot
onous game play (you could count your shots to determine when
the alien would fire) would relegate it to being quickly gutted for
its monitor and cabinet. Space Invaders is a classic not for its stay
ing power but for the path it blazed in game history. Here is just a
partial list of the games that can trace their roots back to Space In
vaders: Galaxians, Galaga, Gorf, Intruder, Centipede, Millipede,
Astro-Blaster, KickMan, Missile Command, Phoenix, Pleiades, and
of course Deluxe Space Invaders.

You're flying along at the back end of fast-moving space freighter.
As the tail gunner your mission is to prevent the enemy fighters
from getting past your laser batteries and attacking the more vul
nerable parts of your ship. Let ten ships get by you and it's game
over time.

You target the opposing fighters with your joystick. On screen,
your aiming graticule tracks your joystick movements. Move the
joystick, lead the target just the right amount, and press the fire stud
on the top of the stick. Boom! Instant space junk. If a fighter sneaks
past your barrage of fire, press the shield button under your other
hand. A shield grid will be thrown up around your ship. Any fight
ers hitting this barrier will be instantly repelled and momentarily
stunned, making them an easy target for your guns. Even with your
awesome weaponry, you'll need great reflexes and an affinity with
the Force to stop wave after weaving wave of enemy fighters.

Tail Gunner won its place in my list (and an immense number
of my quarters) through the smooth, graceful flights of the enemy
ships. They dipped, barrel-rolled, spun, and twisted their way

across the screen, always slightly ahead of my constant laser fire. It
didn't matter to me that the ships followed prescribed paths. The
thrill of lining up a three-ship kill with one laser shot more than
made up for the lack of the originality in their flying.

Cinematronics, the maker of Tail Gunner, produced a whole line
of innovative and enjoyable games. With smash games like Star
Castle, Rip Off, Armor Assault, Warrior, and even a remake of
Spacewar called Space Wars (now there's an original name), Cine
matronics established a reputation of great designs. Regrettably, the
company was a victim of the arcade industry crash of the mid '80s.
Now that Cinematronics is long gone, its games are being heralded
as the Citizen Kanes of the arcade.

If you wish to experience a classic on your Mac, give High Risk Ven
tures' shareware homage to Cinematronics' Star Castle, Cyclone, a run.
Make sure you set Cyclone's preferences to emulate the original game.
Now, if only some kind soul would code up a remake of Tail Gunner.

1~(~)
Atari's Tempest can best be described as Euclid meets the Space In
vaders. You flit around the edge of a geometric tube, blasting the
various linear enemies into vector dust. The enemies' whole reason
for existence is to climb to the top of the tube and haul you down to
the bottom to your doom. Clear the tube of all the enemies and
you'll get to zoom through the tube on your way to a new geomet
ric shape on the next level. While you're zooming through the tube,
make sure you avoid any leftover debris. Failure to do so will ruin
your day and your ascent to the next level.

Your interface for playing Tempest is one spinning dial and two
buttons. The player's proxy, which resembles a yellow, bent staple,
is controlled by spinning the dial. Spinning the dial moves your sta
ple around the edge of the tube. With the first button, you control
the blaster fire of your commando staple. By tapping the fire button
like a rat slamming a lever in a Skinner box, you can set up a blaz-

30 ~1

ing, deadly line of fire. Combine rapid spinning of the dial with a
furious firing of your blaster and you can quickly clear the inside of
the tube. When the "spin & shoot" technique isn't enough and you
are about to be overrun, slam your hand on the last button, the Su
per Zapper. One touch of the Super Zapper button and all the Tem
pest enemies currently climbing the tube are zapped into pixel
heaven. You only get one zapper recharge per level, so be frugal in
your zapping.

The challenge of Tempest lies in the various enemies that are
thrown at you. Each of them has its own method of attack, and all
are despicable. Bad as each enemy is individually, it's the combina
tion of their attack methods that will have you heading to the
change machine again and again.

On the first level you'll be introduced to the Flippers. A Flipper
is red and moves by flip-flopping its way to the top. A Flipper is
harmless until it reaches the top, where it becomes lethal. When a
Flipper flops on top of you, you will be dragged kicking and
screaming to your ruin.

A Tanker is the troop carrier in Tempest. Shoot a tanker and sur
prise, you get two irritated Flippers. If a Tanker actually makes it to
the top of the tube, it will then split into two Flippers that will hunt
you down like you owe them money.

While you're playing Tempest you'll see green spirals that move
up and down the tube, leaving green spikes in their wake. The
beasties that spins out these spikes are called Spikers (of course). A
Spiker cannot do any harm by itself; it's the spikes it creates that are
your problem. A spike can be slowly chopped down with repeated
blaster fire. But while a spike is in the tube it provides an express
way to the top for any Flippers that wish to munch on you. You
can't shoot the Flippers riding to the top until you chop down the
spike providing the lift. And while you're chopping down that spike
you can be sure a Spiker is planting another. Any spikes left lying
around at the end of the level become a hazard to your health as you
go zooming through the tube on to the next level.

On higher levels, you are introduced to Pulsars. These aren't
just neutron stars spewing radio waves; these Pulsars mean busi
ness. When a Pulsar is pulsating, the adjacent sections have the

volts and amps of a subway's third rail. And remember, it's the
amps that kill you, not the volts.

When, or more probably, if you get beyond the 11th level, you
get to do battle with the FuseBalls. Don't be deceived by its inno
cent, electrified-hairball appearance. A FuseBall's whole reason for
existence is to stop you from getting to the 12th level. They lurk
around the tube, and when you aren't looking they zip up at light
speed and slam into your staple.

Tempest is one of the most lusted after arcade games. Owning a
full-size standup version grants you major bragging rights around
any group of arcade game aficionados. But be prepared for the jeal
ousy backlash.

If you aren't lucky enough to have inherited a Tempest machine, you
can get a taste by playing Juri Munkkis's Arashi. Or if you're brave
enough to own an Atari Jaguar, or know someone who is, check out
Atari's rehashing of the classic: Tempest 2000. However, after playing ei
ther clone you'll soon discover that the spinning dial was a necessity,
not an option.

That's the end of the list. The games were listed in alphabetical or
der, ending with T. I wish I knew of an arcade game that began
with the letter Z. Hold on. Zaxxon. There, I knew I would think of
one. How could I forget the first orthographically scrolling game?
Too late for this list, but who knows about next time.

After reading my list you might get the idea that I haven't
stepped into an arcade since the Rolling Stones' first farewell tour.
You couldn't be further from the truth. I have dropped some seri
ous coinage into some of today's more popular games. I've mas
tered all of Ryu's moves and can work through all the fatalities in
Mortal Kombat (I'm working on my Mortal Kombat II moves, but
it's hard when you're snubbed by all the 12-year-olds in the neigh
borhood). It's not that these games aren't successful. They are, ob
scenely so. Mortal Kombat alone has brought in over a billion

32 ~1

dollars. That's billion with a B. But money and popularity don't
make a classic. If that were true, Arnold Schwarzenegger would
have a shelf full of Oscars. The inverse is also true; otherwise Cine
matronics would still be around producing great games.

Why do people drop good money on these contraptions? What
makes a sane man spend hundreds of dollars for the latest 3DO
hardware and then try to justify it as research? Psychology. Psychol
ogy is what makes a game fun to play. Your brain is what tells your
hand you can go on to the next level of Super Mario Land even
though your hands and thumbs have been urging you to quit for the
last hour. Now, of course, you would like your game creations to
provoke the same next-day wrist-numbing pain that all good arcade
games provide. The secret to this is a total understanding of how
your player's brain works. Well, at least a little insight into what's
going on among those frontal lobes while a player is blasting away
enemy aliens. Keep in mind that this section is not a substitute for a
degree in cognitive psychology, but then again, what is?

You're a rat in a small cage with just a water bottle and one of those
spinning-wheel things that hamsters love and rats don't. Color you
one bored rat. Then one day B. F. Skinner, looking particularly dap
per in his starched white lab coat, drills a hole in your cage and
above the hole installs a lever. Of course, you're a rat so you don't
know it's a lever. You think it's a stick. As a rat your first instinct is
to eat the stick. Lucky for ol' B. F., the stick is inedible. In your at
tempt to consume the lever you inadvertently pull it down. A small
swoosh announces the arrival of a Purina Rat Chow pellet as it slides
out of the hole. Being a rat, you aren't surprised at this; food myste
riously appears all the time. After chowing down on that nugget of
balanced nutrition, you go back to attacking the stick. Once again
the lever is pulled down and once again a scrumptious morsel ap-

pears. Sixteen hours and 354 pellets later, your rodent-size brain
spots a connection. If you attack the stick you get food. Cool. This is
as close as a rat can get to Nirvana. B. F. Skinner and all future rat
torturers would refer to this particular rat heaven as reinforcement.

Reinforcement is the psychological term for getting a subject, be
it a rat or a 16-year-old, to do your bidding; this is accomplished by
providing a reward for a desired behavior. A behavior that is positively
reinforced by a reward will likely be repeated. As with most ideas in psy
chology, this seems obvious to any person with an ounce of common
sense. But by giving it a name with at least three syllables, you get to
talk about it like it was a great insight into the human psyche.

But how does this tie in with video games? Easy. In your video
games you want a certain behavior-playing the game-to be rein
forced so that it will continue. So, following in B. F.'s size nine foot
steps, you want your game to provide rewards for playing it. What
kind of rewards? If your game could spit out a slice of pizza, a cou
ple twenties, and give me a vigorous back massage after I've com
pleted a particularly arduous level, it would be a game I'd continue
playing. I'd have no reason ever to leave the house.

In lieu of this, your game can provide the classical rewards of
video games: high scores, new levels, fresh puzzles, cute animation,
zany sounds, and a whole litany of others. The main point is that
your game has to provide some form of reward for playing it, or no
one will. The trick is to find the rewards that your players will find
enjoyable. Unlike rats, whose reward needs are easily predicted,
humans are slightly trickier. For every player that is reinforced by
your designed rewards, there is some number of others who will
rate playing your game right up there with hernia surgery. Your job
is to find the proper balance of rewards that minimizes the hernia
flashbacks and promotes future game playing.

Providing rewards in your creation is not enough to insure a suc
cessful game. You must dole out your rewards at the right time.
Again, psychologists have coined a phrase for the rate at which re
wards are presented: schedules of reinforcement.

34 ~1

The easiest form of scheduling is the one B. F. used in his fa
mous experiment. It's called continuous reinforcement. Every time
the rat repeats the behavior, a reward is delivered. Now, the inter
esting part is that the pattern does not have to be continuous to
keep that rat interested. If the pellets appear on a random schedule,
say, at least once in every ten pulls, the rat will still keep slamming
on that lever like a slot machine junkie down to his last quarter.
And by avoiding continuous reinforcement, practicing what's re
ferred to as partial reinforcement, B. F. can cut down greatly on his
rat chow bill.

What's true for rats, as anyone who has been to Vegas can tell
you, is also true for humans. Reinforcement every so often is
enough to keep people playing. And interestingly enough, certain
behaviors are more strongly reinforced by occasional rather than
continuous rewards. In fact, continuous reinforcement can some
times be detrimental. Slot machines are obviously a bad example
here. The best is an old episode of "Family Affair." Buffy and Jody
are given everything they desire. You name it-Hot Wheels, candy,
ice cream, horsy rides on Mr. French's back, Misses Beasleys-are
handed out like tapwater. At the end of 23 minutes Buffy and Jody
learn that continuous reinforcement is boring. And that Brian Keith
is an idiot. That was a bad example. But it won me one-third of a
bet that I could fit in three '60s sitcoms as game-programming ex
amples. Pay attention. Working in "I Dream of Jeannie" and "My
Favorite Martian" is going to take deft avoidance of actual informa
tion, and I don't want you to miss it.

Enough of this, back to the subject at hand. A better example is
food. At one point in my life I pretty much lived on any nutrition
that could be extracted from the contents of vending machines. At
first I thought my substitution of riboflavin and artificial colors for
the basic four food groups was the correct dietary direction for a fu
ture programming career. I liked the reinforcement that I was giv
ing my ego, even if Cheetos fingerprints on all my books did reduce
what I could get for them at the end of the semester. Fairly quickly,
the reward of this continuous reinforcement of proving myself as a
worthy programmer through the consuming of meals that can be
purchased with loose change died out. Something I liked was killed

by continuous reinforcement. And only through a strict therapy of
continental French cuisine and fine wines was I able once again to
enjoy the sharp tang and crispy crunch of a handful of Cheetos.
Proving that partial reinforcement is better in the long run.

This applies to video games as well. A game that hands out re
wards continuously will be quickly discarded for a more challeng
ing one. And a game that doesn't provide any rewards would be
boring. Even Pong provided a score.

You've been playing the lottery religiously for months. Every week
you bet one dollar, and you always win a hundred (I want your
system). Then one week you stop winning. You'd probably keep
playing for a few more weeks. But you keep losing, so eventually
you go cold turkey and quit playing the lottery. You have just suf
fered through extinction. And it didn't take a giant meteor slam
ming into the Earth. Your continuous reinforcement was cut off and
you decided that it would never come back, so you stopped play
ing. How long it takes for you to decide to stop playing without re
inforcement is called the extinction period.

Now, if you had been playing the same fantasy lottery game for
the same number of months and you had only won a single C-note,
you would probably keep playing. You won once, so it must be pos
sible for you to win again. And since you can't predict how you won
your past windfall, you can't determine when you'll win the next.
Partial reinforcement has kept you from ceasing your behavior, ex
tending the extinction period. And it keeps those jobs manufactur
ing numbered Ping-Pong balls in this country, where they belong.

The trick is to find the right combination of rewards and the
proper amount of time between them. Too long, and the user might
think that another reward is never going to come. Too short, and
the game seems too easy.

The time between rewards might even vary as the game pro
gresses. Good games provide a bevy of rewards at the beginning to
encourage the new player to keep playing, and then as the player's

36 ~1

skills increase, the rewards are separated by larger extinction peri
ods. As the time between rewards stretches out, the value of the re
ward should increase proportionally. It's one those inverse ratio
things, like gravity. And like gravity, if you don't have proper bal
ance things can start sucking.

While the rewards that a game produces need to be spread out over
time and be unpredictable in their arrival, the size of the rewards
also needs to vary. You can't go giving out free games for every
simple task accomplished during a game. Little deeds deserve little
rewards. But if you only give out small rewards, your player will
eventually cease playing. So you need to scale the rewards to match
your game's challenges.

If you were offered a buck to transcribe Inside Macintosh: AOCE,
all gazillion pages of it, you'd probably mention something about a
life to live as you wondered off to the arcade. But if I offered you
$100,000 for the same daunting task, your only comment would be,
"Single or double spaced?" as you fired up your copy of Word 6.
Welcome to magnitude of reinforcement, the psychological term that
means by varying the size of the reward you can directly alter be
havior. It also implies the inverse-if the rewards are too paltry for
the task, the task will be ignored. You can't ask a player in an ad
venture game to go off and save the kingdom with only a thank
you and nice atta-boy. There has to be something worth fighting for,
gold, love, a free T-shirt. Something important.

Welcome to the second round of "Jeopardy." The categories are:
Words That Rhyme with Munger, Bill Gates' s Past Love Interests,
Foods Found in Vending Machines, Things Only Steve Jobs Could
Say, Famous Apple Code Names, and Macworld Parties of the Past.
You're behind by around $2,000. So on the next round do you go for
the $500 question or sit by and be beaten by the player who looks
amazingly like Andy Hertzfeld? You bet the $2,000, of course. The
gain is much larger than the risk. And anyway, it's Alex Trebek's
money, not yours. Now if you're in the lead by, oh say, a million

bucks (these are your dream categories, remember), do you risk
doubling your winnings and possibly losing it all in the final Jeop
ardy round? No way, a million bucks in the hand is a heck of a lot
better than the home version of "Jeopardy." The point being that at
a certain level, players will stick with a sure thing instead of risking
their hard-won high scores, especially when the difference between
$1,000,000 and $10,000,000 is psychologically minimal. They're both
just really large numbers.

Any behavior that is followed by reinforcement will happen more
often. The shorter the delay between the behavior and the rein
forcement, the faster the behavior will increase in frequency. Short
periods between reinforcement amplify the reinforcement.

Any behavior that is not quickly reinforced will be killed by a
behavior that is. Most New Year's resolutions fall into this category.
A good example that proves this principle is my last New Year's
resolution. I decided that starting the new year I would try to re
duce my ever-expanding girth. Each day I resolved that during par
ticularly long compiles (I also resolved to switch to MPW to aid this
resolution) I'd take a walk around the industrial park where my
day job is located. After a week of this behavior, during which I had
been sacrificing my juggling practice in the quest for good health, I
stepped onto the scales. You got it. I gained two pounds. I was not
reinforced. Undaunted, I kept at it for another week. I didn't gain
any weight that week, but then again I didn't lose any. I was neither
amused nor reinforced here. After another week I lost a pound.
Three weeks had passed and I lost one lousy pound. The delay be
tween behavior and reinforcement was too long for me. During my
next long compile I decided to practice with the local Nerf militia,
effectively terminating my desired behavior. I wasn't reinforced fast
enough, while the competing behavior of goofing off delivered an
immediate reward. So it is not a lack of willpower or self-discipline
but a preordained psychological behavior that keeps me in size XL
World Wide Developers Conference T-shirts.

38 ~1

Luckily in good video games there are all kinds of reinforce
ment; an on-screen score, new sounds, fresh challenges, interesting
levels. And all of these reinforcements are delivered instantly after
the behavior is performed. Grab enough points and instantly you
are transported to the next level.

All the psychological ideas that have been discussed so far are based
around the principle that rewards are given for accomplishing the
challenges that the game provides. Another psychological behavior
that leads to further game play is the concept of regret. This is not
the kind of regret that occurs after you've eaten too many pepperoni
and-pineapple pizzas. The form of regret I'm referring to is best ex
plained by another lottery example. Yes, another one. Remember, if
you don't play you can't win. Then again, the odds of winning with
out buying a ticket are about the same as with one.

You and a friend both buy a lottery ticket for the upcoming $300
million Programmers Sweepstakes. You both pick six numbers. Your
numbers are 3, 7, 11, 23, 29, 31 (yes, they're prime, this is a program
mers' sweepstakes). You friend's numbers are 3, 6, 12, 20, 31, 36. On
the evening of the drawing you and your friend stop playing Don
key Kong Country (and just as you were about to finish Kong's
Mines) for five minutes to tune into the drawing. Bill Gates has been
asked to draw the numbered Ping-Pong balls as he's one of the few
programmers who won't be upset by being disqualified from the
lottery. Bill starts pressing the big red button that releases each ball
into the chute. The first number is 3. The next number is 7. You're
starting to get interested. Bill pushes the button and 11 falls out.
You're starting to think that this could actually happen. One more
button push, one more number; it's 23. Not only are your numbers
coming up but they're arriving in ascending order, proving of
course that God wants you to have this money. Next number ... 29.
Even your friend has stopped whining about Donkey Kong and her
wasted dollar, while you're wondering if the Ferrari dealership is
still open. The suspense is as thick as ... something really thick. You

hear the slight click as Bill's index finger depresses the button. There
is a momentary pause before one of the balls heads down the chute.
While it's rolling you can't make out the number. Slowly it comes
into focus: S. The only thing you can think is that S's not prime,
don't they know that S's not prime? That Bill Gates and his damn
finger. No wonder he can't create a decent 0. S., he doesn't even
know S isn't prime. Poof! Gone. No pool, no Ferrari, no joining the
Mac-of-the-Month club. You're crushed.

Now that's regret. The kind of regret that keeps you whining
for days. But why are you so upset in comparison to your friend?
You both lost only a dollar, and she's not going around telling
everyone how she lost three hundred million bucks. What's your
problem? Your problem is that the difference between the desired
reality and the actual reality for you was only one number, but for
your friend actual reality never even came close to her desired real
ity. The closer a desired reality is to actual reality, the greater the re
gret. Why? Because you know that only one thing had to change to
enable the realities to match. Your friend's reality differs so greatly
from actual reality that her mind is unable to construct a reasonable
fantasy of how things should have been.

Again, what does this have to do with video games? A whole
bunch. Video games give you the ability to instantly fix any situation
that causes regret. I forget to put down the landing gear on my F-lS
Hornet and end up leaving a large silicon stain all over the deck of my
aircraft carrier. I have regret and lots of it. And instantly, or at least as
long as it takes to get through the pilot briefing, I'm able to undo the
fatal mistake. This makes me happy and I keep playing the game.

When using regret, keep in mind that you need to allow players
to undo their mistakes as close to when it happened as possible.
Nothing is more infuriating than getting to a point in a game that
you can't get past due to a mistake made hours or even days before.

If you haven't noticed by now, the goal of a video game is to get the
player addicted. Addicted to playing. All of the psychological prin-

40 ~1

ciples discussed contribute to providing a pleasing gaming experi
ence. So pleasing that the game will become hopelessly addictive.
You want your player to give up food, sleep, even personal hygiene
just to spend five more minutes playing your game.

Now that you know your final devious goal with all this psy
chological mumbo-jumbo, let's move on.

t1tt''"t-tet4 '" t1
~A"'e /J1t4,,.At4 f ft

Whenever you play an arcade game on the Mac or in an arcade, one
thing is guaranteed to happen: things will be animated. Every ele
ment on the screen will be moving, bouncing, or exploding. An ar
cade game without animation is like ... it's like nothing. An arcade
game without animation is mah jong. Imagine Space Invaders with
no invading, Pong with no ponging, Pac-Man with no pacing!? An
arcade game without animation is boring. Arcade games should
never (say it loud), never be boring. Repeat that with me: fl Arcade
games should never be boring." The best way to fight off boredom

41

42 ~2

is to keep things on the screen moving. Moving fast. This is the part
of the book where you begin thinking, duh-of course games
should have animation. But how am I, a poor, lowly Mac program
mer, going to learn to make things animate? A good question. A
good answer is in this chapter.

When a Ren & Stimpy cartoon flips by at thirty (twenty-five for you
readers in Europe) frames a second, can you see each frame flip as a
discrete movement? What magic happens that causes Ren to appear
to sneeze so smoothly? The magic is persistence of vision. Persis
tence of vision is what allows television, movies, video games, and
Ren and Stimpy to work. You can think of this persistence as a de
fect in the human brain. We should only see television as thirty lit
tle pictures per second, but we don't. Each image your brain
receives lingers until the next image is received. Conveniently, our
brain "forgets" the gap in time between the first and second image.
This forgetfulness of the brain to time-stamp each image as it comes
in results in the seemingly continuous stream of images that we
perceive as video, films, and animation.

Just how rapidly must a series of images change in order to fool
the brain? The quality varies with the rate. If the images are pre
sented at commercial video rates (thirty frames per second), you
see an animation of good quality. Good enough for Nickelodeon
must be good enough for me, right? Wrong. Get your game anima
tion to run at thirty frames per second if you can. But if you can't,
do you take your compilers and go home? No, the frame rate can
drop and the brain will still pick up the pieces. How low can the
frame rate go? Low. There are remnants of persistence of vision at
even the pokey rate of eight frames per second but, that rate is not
the goal of a game writer. If eight frames is the basement of accept
able frame rates, where's the penthouse? At this point in hardware
development, most game makers view the video rate of thirty
frames per second as the ultimate. Is there any point in going after
a higher frame rate than 30 fps? Realism is heightened by frame

rates higher than those of television. This is evident at the StarTours
ride at Disneyland. StarTours runs at the rate of 60 fps. This in
creased frame rate is one reason the ride is so realistic; the room full
of hydraulics is the other. Still, I think it's mainly the frame rate in
crease. Is there a top limit for frame rates where we can't tell live
from Memorex? I don't know, but I like to think the future of frame
rates is similar to that of audio CD sampling rates. A CD's sampling
rate of 44.1 kHz is fine for my ears and I can't tell the CD from the
real thing, but some mutant's ears can. Some future frame rate will
be the equivalent of the CD sampling rate, good enough to fool
most of us-but not all of us. There will always be that one mutant
who needs a higher rate to fool his senses. Usually these people are
game critics.

I'm sure the big question on your mind is why does this persis
tence thing exist? If everything seen before the birth of flickering
images didn't depend on persistence of vision to stitch images to
gether, why is our brain blessed with this small anomaly? Why, in
the battle of natural selection a million years ago, was this one de
fect kept that would allow humans to view animations in the
proper way?

Video games. Isn't evolution wonderful?

After computers were given the ability to display images (beyond
the Snoopy calendar printouts from a Dec Writer III), programmers
began creating animations. Of course these animations of space
ships trying to blow each other up were built for games, but they
were animations nevertheless.

Graphics in video games come in two flavors: vector graphics
and raster graphics. These two techniques have formed the
history of computer graphics. Vector games came first. They estab-

44 ~2

lished the field but began fading out in the mid '80s. Raster games
arrived just before the death of vector games and are the only type
of games you can put a quarter in today.

Vector-graphic hardware is like a silicon Etch-a-Sketch: the only
thing it can draw is lines. The classic arcade games-Asteroids, Bat
tlezone, Omega Race, Tail Gunner, Space Duel, and my favorite,
Tempest-were all created using vector graphics.

A vector graphics system's hardware draws lines that are con
tained in what is called the display list. Each line has its starting
and ending point as an entry in a display list. The graphics hard
ware of a vector system grabs the endpoints of the first line to draw
and then etches that line on the vector display. This line is etched
when the electron beam of the display excites the points of phos
phor coating on the inside of the monitor. The excited dots of phos
phor cause the line to glow on the monitor. The hardware then
moves on to draw the next line in the display list. When the hard
ware reaches the end of the display list, it returns to first line entry
in the list.

Lines on the vector monitor do not last forever. Eventually the
phosphor loses it excited state (a snappy line here would be too
easy) and the line fades away. How fast the line fades away is de
termined by the type of monitor the vector system uses. To keep the
image on the screen from fading away, the vector hardware must
keep redrawing the same lines over and over again. If a line's end
points are changed, the line will be drawn in its new position dur
ing the next run through the display list. It's the process of a line
fading away and the hardware drawing a line in a new position
that produces vector animation.

In the category of best vector arcade game of all time, the winner is ...
darn, these envelopes always stick. Yes, it's Tempest! This game is di
rectly responsible for my retaking linear algebra (my high score is
around 610,000). Brought to you in 1981 by Dave Theurer. Produced
and directed by Atari.

Interesting note: Dave Theurer went on to become a Macintosh
programmer and helped create the premier graphics conversion pro
gram, Debabelizer. Debabelizer excels in converting raster files from
one format to another. It's ironic that the creator of the best vector game
of all time went on to a career in raster graphics. O.K., so maybe it isn't
that ironic, but it's a nice tidbit for the next time you play Trivial Pur
suit (the Mac programmers edition).

If you wish to follow in the footsteps of Tempest's creator, you
might want to check out Juri Munkkis's game Arashi. Arashi is a fairly
complete tribute to Tempest that runs on the Mac. As a bonus it comes
with the complete C source code to the game and a vector animation
toolkit that implements the game. You can find the Arashi package on
most major on-line services.

Raster animation is the flip side of the computer graphics coin. To
get an idea of how raster graphics works, put your face right up to
your television until your nose touches the screen. You will see
nothing but lines of colored fuzzy dots. Your television screen is
made up of roughly 482 lines of colored fuzzy dots. Each line has
about 640 of these dots. Now take your nose away from the screen
and don't forget to wipe the dust off the end.

Your television signal is converted to the lines of dots you see as a
picture. A computer screen is made up of the same lines of dots, but
in a computer they don't originate as an analog source, as your tele
vision signal does. The picture on a computer screen originates as a
memory image. What you see on your computer screen is just a
bunch of bit patterns stored in an area of memory referred to as
raster, or display memory. Since raster displays reflect the setting of
the display memory, any changes to the display memory result in
almost instantaneous changes on the screen. Unlike a picture pro
duced by vector graphics, one produced by a raster display can be
much more than lines. A raster image can be anything that can be
composed of tiny fuzzy dots. This flexibility comes at the cost of

46 ~2

memory. A vector system requires very little memory, while a raster
system requires large chunks of RAM. This memory appetite is
why raster-based arcade games took so long to dominate the vector
game system. Arcade designers couldn't afford to build raster sys
tems until memory became as cheap as old leisure suits. Once this
price point was reached, vector games' lifetime clock ran out
overnight.

The animation process for a raster system is like traditional cell
animation. Instead of quickly replacing one piece of celluloid with
another over a static background, a raster animation quickly re
places one chunk of memory with another chunk, combining both
chunks with the existing background image that is already in the
raster memory.

All Macintosh models (so far) are built on raster graphics sys
tems. The memory for the raster display can be part of the main
memory (the original Mac), on the video card (Mac II), or as separate
video RAM SIMMs on the motherboards (most Macs sold today).

There are three basic methods to animate graphics on a raster-based
system such as the Macintosh. The techniques presented here range
from the very easy to implement and use exclusive-or animation to
the more difficult, yet more flexible buffered animation.

The exclusive-or operation gets its name from the exclusive-or logic
operator. Looking at the Table 2-1, you can see how the logic of ex
clusive-or works.

Table 2-1. Animation Truth Table

1 xor 0 = 1
0 xor 1 = 1
0 xor 0 = 0
1 xor 1 = 0

The above table implies the basic idea of exclusive-or animation.
After drawing an image you can erase that image by drawing the im
age again. Not only does the image erase by your drawing it twice
but the screen is restored to its previous state as if no drawing had
taken place. This animation technique is used by almost all Mac ap
plications. For an example, go to the Finder and drag out a marquee
in a window. The code that animates the marquee resizing to match
the mouse is being done using the exclusive-or animation technique.

To use exclusive-or animation on the Mac, you set the transfer
mode of the current port to srcXor. Before starting the animation
you must draw the object once to prime the exclusive-or cycle.
Once the animation has been primed, draw the object again at its
original position. This second operation will erase the object and re
store the screen. Calculate the next position of the object, draw the
object at the calculated position, and repeat. You have animation.

Let's look at the code that demonstrates exclusive-or animation.

void NextFrameXOrAnimation(Rect *bounds)
{

PenMode(srcXor); II set the PenMode to exclusive or

II Erase the rect at the previous frames position
PaintRect(&demoRect);

II Offset the rect to the next position
OffsetRect(&demoRect, delta_X, delta_Y);

II Check to see if rect has hit the edge of the bounds
CheckBoundsEdges(&demoRect, bounds);

II draw the current frame
PaintRect(&demoRect);

PenMode(srcCopy); II turn off xor

First, we set the transfer mode of the current port to srcXor. The
rectangle that is bounced around the screen is erased by painting its
interior with black. The rectangle is then moved to its new position
for the next frame. After the movement the rectangle is checked
against the bounds of the window to see if the rectangle has hit a

48 ~2

window edge. If the rectangle has gone past a window edge, the rec
tangle is set to simulate that the rectangle has hit the edge. The rec
tangle is painted with black again, this time causing the rectangle to
actually appear on the screen. Before leaving the function, we tidy up
by setting the transfer mode to the port's default, srcCopy.

When you run the exclusive-or example you will see the worst
thing in game animation: flickering. When animation flickers, the il
lusion of smooth motion is destroyed. The flickering results from the
delay between erasing the previous frame and drawing the current
frame. To remove the flicker in exclusive-or animation, you can either
try to reduce the delay between erasing and drawing, or remove the
delay altogether. Reducing the time between erasing and drawing is
usually not possible without a lot of work, and work is what
exclusive-or animation is supposed to save us. To remove the delay
completely, you need to alter the above code sample slightly so that
the erasing and drawing of the rectangle are done in one operation.

void NextFrameBetterXOrAnirnation(Rect *bounds)
{

Rect prevRect, newRect;

prevRect = dernoRect;
PenMode(srcXor); II set the PenMode to the xor

II Offset the rect to the next position
OffsetRect(&dernoRect, delta_X, delta_Y);

II Check to see if rect has hit the edge of the bounds
CheckBoundsEdges(&dernoRect, bounds);

II convert the prev position and the current position
II to regions
RectRgn(prevFrameRgn, &prevRect);
RectRgn(thisFrarneRgn, &dernoRect);

II get the union minus the intersection as a region
XorRgn(prevFrameRgn, thisFrarneRgn, sectFrarnesRgn);

II draw the sectFrarnesRgn in the new position
PaintRgn(sectFramesRgn);

PenMode(srcCopy); II turn off xor

To erase and draw the rectangle in a single action, we resort to us
ing QuickDraw regions. Before we set the transfer mode to srcXor,
we make a copy of where the rectangle is currently. As in the previ
ous code sample, the rectangle is moved and checked against the
window edges. Then previous and current frame rectangles are con
verted to regions by calling RectRgn ().The regions we pass in were
built with NewRgn () when the demo was initialized. Another region
that is the union of the two regions minus the area of overlap is cre
ated with XorRgn ().With one call to PaintRgn we get an erase of
the previous frame and a draw of the current frame. By running the
sample code and selecting Better Xor, you can see that this greatly
reduces flicker compared to ordinary exclusive-or animation.

To compute the Xor /
of these two squares: \....._

The region
The union The Xor result

Figure 2-1. The XorRgn of frame one and frame two

50 ~2

Why would you want to use exclusive-or animation? Exclusive
or animation is memory-frugal. Other than the memory used by the
object you are drawing and a region or two, exclusive-or animation
is cheap. Cheap cheap. Besides being inexpensive, exclusive-or ani
mation is pretty simple to implement. Easy to program, no memory
usage to speak of. What's the catch? Catch: It's almost impossible to
program more than one-element animating, and if you do, the flick
ering will drive you into epileptic fits. Color? Forget it, exclusive-or
animation on top of 256 color backgrounds can produce some really
freaky graphic side effects. With these disadvantages, about the only
game that can be programmed with exclusive-or animation is Pong.

Run the sample application for this section and then choose the
primitive option from the animation. The demo will animate an
icon around the demo window, with the icon bouncing off the win
dow edges. After watching the demo for about a nanosecond you
can see why I called this form of animation primitive. Primitive ani
mation is brute force animation. Erase the image. Calculate the im
age's next position. Draw the image at the calculated position.
Nothing fancy. Draw it, erase it.

void NextFrarnePrirnitiveAnirnation(Rect *bounds)
{

II Erase the rect at the previous frames position
EraseRect(&dernoRect);

II Offset the rect to the next position
OffsetRect(&dernoRect, delta_X, delta_Y);

II Check to see if rect has hit the edge of the bounds
CheckBoundsEdges(&dernoRect, bounds);

II draw the current frame
PlotCicon(&dernoRect, dernoicon);

In the demo code a rectangle is used as the frame for placing the
icon on the screen. The previous frame of animation is erased. The

icon's future position is then determined. PlotCicon displays the
icon at its next location. Repeatedly calling this function results in
some really bad animation.

To reduce the amount of flickering in primitive animation, you
need to reduce the time between erasing and drawing the image
at its next location. In the sample code not much time is spent be
tween erasing and drawing. This in-between code could be com
pletely rewritten in assembler, but you have better things to do.
Optimization isn't needed here. What's needed is a better way.

Buffered animation is the promised "better way" to solve the prob
lems of primitive animation. The erasing and drawing of the image
is performed in a chunk of memory and not on screen. After the
whole frame is built offscreen, or buffered, the frame as a whole is
then moved onto the screen. Since the on-screen frame is replaced
in one operation, the eyes see a smooth transition from one frame to
the next. An erase followed by a draw is never viewed on-screen.
As long as you can replace the frames fast enough, the animation
will appear flicker-free.

In discussing the code for the animation style sampler, I'll be
skipping the gory details. The point of this sample is to introduce
you to buffered animation, not explore it in excruciating detail;
we'll do that in a later chapter.

Before the buffered animation demo is run, we create the off
screen chunk of memory that we will buffer our drawing into.
NewGWorld is a Toolbox trap provided by QuickDraw that creates
what you can think of as a virtual screen. If an error is returned the
demo displays the error and then bails. You'll provide better error
handling than this, right? If there was no error, the parameter off
screenGWorld holds the offscreen buffer.

err= NewGWorld(&offscreenGWorld,0,
&((**((WindowPeek)animWPtr)->contRgn) .rgnBBox),

NULL, NULL, 0);
if(err != noErr)
{

52 ~2

PostErrorAlert(err);
ExitToShell();

After creating the virtual screen buffer, we need to clear its con
tents to match that of the on-screen window. It takes these four
cryptic lines just to erase the buffer. LockPixels makes sure that
the buffer doesn't wander off while we draw in it. Through SetG
World, QuickDraw is convinced to draw in to the buffer instead of
the screen. Finally, the buffer is cleared by erasing it. The buffer is
set free to roam the heap. To get QuickDraw to draw on-screen,
once again SetGWorld is called. From looking at the code you can
see that with buffering you spend most of the time getting Quick
Draw to draw into the buffer instead of on the screen. Well, you do.
Get used to it.

II erase the offscreen background
LockPixels(offscreenGWorld->portPixMap);
SetGWorld(offscreenGWorld, NULL);
EraseRect(&thePort->portRect);
UnlockPixels(offscreenGWorld->portPixMap);

II reset the current graphics environment
SetGWorld(currPort, currDev);

Enough setup, let's bore into the animation code. Before we
start animating in the offscreen buffer, the QuickDraw's current
drawing environment is retrieved with a call to GetGWorld. After
locking down the pixel, QuickDraw is then told to draw into the
buffer that was created earlier.

void NextFrameBufferedAnimation(Rect *bounds)

GDHandle
CGraf Ptr
Rect
Rect

oldGDh;
oldPort;
prevPosition;
oldAndNewPosition;

II remember the current graphic world
GetGWorld(&oldPort, &oldGDh);

II prepare the offscreen for drawing.
II Don't want our pixels wanderin' off
LockPixels(offscreenGWorld->portPixMap);

II Make the offscreen the current port for
II QuickDraw to draw quickly in
SetGWorld(offscreenGWorld, NULL);

Enough setting up QuickDraw, let's animate. As in the primi
tive animation code, the icon's former position is erased and the fu
ture location of the icon is calculated. The icon is then drawn at this
position. Nothing different here from the primitive example other
than that nothing is shown on-screen. QuickDraw is redirected to
the drawing environment that was remembered earlier. The whole
buffer is then blasted on-screen in one shot with CopyBits, the
workhorse of buffered animation. After moving the frame to on
screen, we let the buffer's pixels roam with UnlockPixels.

II Erase the rect at the previous frames position
EraseRect(&demoRect);

II Offset the rect to the next position
OffsetRect(&demoRect, delta_X, delta_Y);

II Check to see if rect has hit the edge of the bounds
CheckBoundsEdges(&demoRect, bounds);

II draw the current frame
PlotCicon(&demoRect, demoicon);

II Done drawing in the offscreen so reset back to the
II previous port and graphics world
SetGWorld(oldPort, oldGDh);

II Copy from the buffer to the screen
CopyBits((BitMap *) (*(offscreenGWorld->portPixMap)),

&thePort->portBits,
&thePort->portRect,
&thePort->portRect,
srcCopy, NULL);

II let the offscreens' bits roam
UnlockPixels(offscreenGWorld->portPixMap);

54 ~2

The buffered animation looks much better than the primitive
animation, but it also runs slower. Much slower. This slowdown is
due to the huge amount of pixels CopyBits is moving from the off
screen buffer to the screen. At 256 colors with a window that is 640
pixels by 480 pixels, CopyBits is having to haul 307,200 bytes
around per frame. It takes some time to drag that many pixels
around. The best way to increase the speed of buffered animation is
reduce how much work CopyBits has to perform.

The better buffered example code shows how to reduce the
amount of pixels CopyBits has to move by moving only the bits that
have changed from one frame to the next. To determine the minimum
amount of pixels that need to be moved, we make a copy of the rec
tangle that defines where to put the icon. The icon rectangle is then
offset as in all the previous animation samples. Before we call Copy
Bits we get a rectangle that is the union of the area we erased and the
area that was just drawn. This union area is much smaller than the
whole screen, which results in a lot fewer pixels being moved. With
the rectangle at 35 pixels by 35 pixels and the screen at 256 colors, we
are moving 1225 bytes. Wow, 1225 bytes versus 307,200 bytes, and all
this by adding only two lines of code. I love programming.

II Remember where the icon was
prevRect = demoRect;

II Offset the rect to the next position
OffsetRect(&demoRect, delta_X, delta_Y);

II Check to see if rect has hit the edge of the bounds
CheckBoundsEdges(&demoRect, bounds);

II draw the current frame
PlotCicon(&demoRect,demoicon);

II Done drawing in the offscreen so reset back to the
II previous port and graphics world
SetGWorld(oldPort,oldGDh);

UnionRect(&demoRect, &prevRect, &blitRect);

II Copy from the buffer to the screen
CopyBits((BitMap *) (*(offscreenGWorld->portPixMap)),

&thePort->portBits,
&blitRect, &blitRect,srcCopy, NULL);

If buffered animation produces the smoothest display, why would
you even bother with any other method? 'Cause there's no such
thing as a free lunch. Buffered animation has a very high cost when
it comes to memory. Compared to exclusive-or animation, the
buffered technique is an absolute memory pig. Since you'll be using
buffered animation for the majority of the animation in this book,
let's look at what the memory cost will run us.

To determine how much memory a pixel buffer will use, you
need to know the height, width, and number of colors you plan to
store in the buffer. The typical buffer you will use will match the
screen's attributes, so we'll use that as the example here. The aver
age color monitor is a 13-inch screen, which has a height of 480 pix
els and a width of 640 pixels. The number of colors or shades of
gray that can be displayed usually runs from straight black and
white, increases to 16 colors, and usually stops at 256 colors or
grays. The formula for how much memory a buffer will use is sim
ple: multiply the height times the width times the pixel depth ex
pressed as bits or bytes. Table 2-2 gives the memory usage for a
13-inch screen at all possible color depths.

Table2-2. Memory Usage for a 13-lnch Screen

Width Height Pixel Depth Memory Usage

640 480 1 bit (black & white) 38,400 bytes

640 480 4 bit (16 colors) 153,600 bytes

640 480 8 bit (256 colors) 307,200 bytes

640 480 16 bits (Thousands of colors) 614,400 bytes

640 480 32 bit (Millions of colors) 1,228,800 bytes

At 256 colors, the depth we'll be using for most of this book,
the buffer will eat up close to 300K of memory. This is where most
programmers over thirty immediately launch into war stories of
how they had to program the entire Apollo space program in an
BK ROM and could only use chopsticks to toggle the bits in. These

56 ~2

stories always start when you talk about using any more memory
than 16K. Ignore them, or if you are over thirty quit telling them.
Memory is cheap and plentiful. Games on the Mac take that to
heart in their memory appetites. A Mac game that runs in 256 col
ors will usually run in a memory partition of 1 MB of memory or
even more. Buffered animations do use a lot of memory, but
buffering the drawing is the easiest way to create professional
looking games.

You really can't do much about how much memory your games
will use, so let's move on and look at something you can do some
thing about-the speed of moving all those bits.

Buffered animation has two strikes against it, memory and
speed. We'll ignore memory usage for now, but the speed of the an
imation is something you have control over. Speed is measured in
how fast the computer can move the bits from your offscreen buffer
to on-screen. The slower that the bits are moved, the slower the
frame rate of your animation. It's easy to underestimate how long it
takes to move a buffer full of pixels, since it takes only one call to
CopyBits and your offscreen bits are on-screen bits. If it takes only
one line of code to have those bits moved, it's easy to forget how
long CopyBits can take to move them. Glaciers have melted in less
time than it takes CopyBits to transfer a screen full of pixels. Reduc
ing this glacial aspect of buffered animation is the major goal of any
game programmer.

Reducing how long it takes to copy or blit pixels from offscreen
to on-screen is the holy grail of Mac game programming. About the
only thing limiting the speed of buffered animation is how fast the
buffer be can moved. If you want to increase your animation's
frame rate, reduce your time in CopyBits. Speeding up blitting can
be done in two ways on the Mac. Use CopyBits ideally or write
your own replacement for CopyBits that is optimized strictly for
game programming.

If you've ever looked at a spec sheet for a Super Nintendo or a Sega
Genesis, you've seen that these systems have at their cores some puny
little microprocessors compared to our wonderful Macintoshes. So
how can these tiny processors produce such fast-paced games with
seemingly hundreds of things going at once? Hardware. Game systems
and even some computers have dedicated hardware for shuffling pix
els around. This dedicated hardware is usually referred to as a blitter.
The little microprocessor only has to tell the blitter where the pixels are
and where it would like them, and bang, the pixels are moved. That's
all a blitter can do, blit pixels. No adding, no subtracting, just blitting,
very fast blitting.

For the rest of the examples in this book we will have to use one of
the forms of animation presented. The Mac does not have vector
hardware support, so that decision is an easy one. Exclusive-or ani
mation cannot support the complex animations that appear in ar
cade games, so strike exclusive-or as a possible candidate. Primitive
animation produced so much flashing that you'd have to tie your
players down to a chair to force them to play your game. That
leaves buffered animation as the only candidate for the rest of the
book. In spite of the memory and performance cost, buffered ani
mation is the choice of all Mac arcade games. The rest of the book
will be dedicated to building and using buffered animation as the
main means of moving your game elements.

Offscreens allow us to redirect where QuickDraw renders its im
ages. QuickDraw operations are normally visible on the screen as
they execute. Call Line () with the parameters 10, 10 and you
will see on-screen a diagonal line from the current pen position that
is ten pixels long. All QuickDraw does is set the appropriate pixels
in the chunk of memory that is the video memory. This video mem
ory can exist on a NuBus card, a section of video RAM (VRAM) on
the motherboard, or just an area of memory reserved for the screen
display. The Mac hardware takes care of turning the video memory
into signals that your monitor can display. QuickDraw doesn't
know or care which chunk of memory it's drawing in. As long as

59

60 ~3

the memory is described in enough detail, QuickDraw can image
into the buffer. In this section we will build a library that will allow
us to allocate, dispose, and manage offscreen buffers on the Macin
tosh. This library will become the foundation of all our future game
programming.

QuickDraw is the raster graphics package that operates on Macin
tosh displays. As we saw in Chapter 2, a raster display is one that
maps the pixels contained in an area of memory into analog signals
needed to display the images on the monitor. We're interested in the
area of memory that QuickDraw draws or rasterizes into. This area
of memory is called a frame buffer, or video memory. QuickDraw
slices this memory into a coordinate system with the origin located
in the upper left of the buffer, with x coordinates increasing to the
right and y coordinates increasing downward (see Figure 3-1).

The height and width of the video memory establishes the
boundaries QuickDraw will draw within. If you ask QuickDraw to
color a pixel whose coordinates lie outside the buffer's extent, it
will just ignore the request. If QuickDraw didn't ignore these re
quests, it would be changing memory that doesn't belong to the
frame store. If this memory doesn't belong to the frame store, it be
longs to something else, probably your program. Indiscriminately
writing into memory that doesn't belong to you is a quick way to
crash a Mac. When QuickDraw knows the dimensions of the frame
buffer, it is able to overlay a coordinate system on top of the mem
ory in the video buffer. With this coordinate system in place, a pro
gram can then address each pixel in the video buffer.

For QuickDraw to turn a pixel black at location 0,0 (the upper
left hand corner of the screen), QuickDraw sets the bit that maps
into the row 0, column 0 to 1. This assumes that one pixel equals
one bit in the video buffer, just like the original black-and-white
Macs. The video circuitry will eventually (a microsecond later) dis
play the black pixel on the screen. For QuickDraw to color a pixel, it
needs to convert the x, y coordinate of the pixel to the location of

Origin,
X=O

(/0

"
l""1 r-1···· ..

X=640

y:O~

~\

'
i

~· r-W,-P /.-'
,-

Figure 3-1. The pixel layout in a frame store

62 ~>

the bit in the video buffer's memory. To accomplish this mapping
from graphical coordinates to memory locations, QuickDraw needs
to know the dimensions of the frame buffer and how many bytes it
has to skip in the video memory to get to the next row. Supplied
with this information, QuickDraw can cleanly draw without going
outside the lines.

In order to get QuickDraw to use our offscreen buffers, we need to
convince it that our offscreen buffer is an appropriate place for it
to draw in. Getting QuickDraw to image in our buffers depends
on what version of QuickDraw we use. These samples will work
with black-and-white QuickDraw, referred to as Classic Quick
Draw, and Color QuickDraw. Color QuickDraw is the version of
QuickDraw that appeared with the introduction of the Mac II. The
last version you'll work with is 32-Bit QuickDraw, which was in
troduced to allow the Mac to deal with more colors than 256. This
version of QuickDraw was once referred to as TrueColor Quick
Draw. Each version of QuickDraw requires a slightly different ap
proach to get it to use the buffers. The goal of our offscreen library
is to hide the differences needed for each version of QuickDraw
and present one interface that will work with all versions of
QuickDraw.

In the QuickDraw version that originally shipped with the first
Macs, QuickDraw could only draw in black and white. To use off
screens with the original version of QuickDraw, you need to under
stand two parts, bitmaps and grafPorts.

In order to use black-and-white offscreen, you need to understand
how to talk the talk of Mac offscreens. And the first word of the lan
guage is bitmaps. The techno definition is below.

struct Bitmap{
QDPtr baseAddr;
short rowBytes;
Rect bounds;

} ;

The bitmap structure provides a coordinate view of a chunk of
memory. The memory chunk is usually referred to as the bit image,
or the pixel image. The baseAddr field points to the chunk of mem
ory that the bitmap will use as its bit image. This bit image is where
QuickDraw will work its graphical magic. This field can point to
anywhere in the Mac's memory map. For offscreens, its baseAddr
will usually point to a piece of memory in main memory allocated
by a call to NewPtr.

You can have any number of bitmaps pointing to the same area of
memory through their baseAddr fields. This is the foundation of how
the Mac displays multiple windows on one screen. Each window has
in it, deeply buried, a bitmap with the bitmap's baseAddr pointing at
the video buffer of the screen. There's plenty of other programming
voodoo that makes windows on the Mac work, but the basis is laid
with bitmaps all pointing to the same area of memory.

The bounds rectangle field of a bitmap overlays a coordinate sys
tem on top of the bit image pointed to by baseAddr. The bounds
rectangle doesn't have to include all the pixels contained in the bit
image. Besides providing a coordinate system, the bounds field es
tablishes the dimensions of the bitmap. With the bounds rectangle

64 ~3

QuickDraw can calculate the height and width of the bitmap. When
QuickDraw knows where the bit image is and how to address each
pixel, it has almost enough information to draw in the bitmap.
QuickDraw needs only to know the rowBytes to have full access
to the bitmap.

IW14'~
The rowBytes field is a small bit of information that QuickDraw
needs to draw into a bitmap. With the row Bytes filled, QuickDraw
can determine how many bytes a bit image has in each row. row
Bytes is an optimization field that QuickDraw uses to get from one
row to the next even though the bit image is in a linear chunk of
memory. Without the rowBytes field, QuickDraw would have used
the width of the bounds rectangle to determine how many pixels to
skip to get to each row. This would be slow. Worse than that is the
case where the width of the bitmap doesn't fit evenly into a number
of bytes. Here there would be pixels that are at the extreme right
and the extreme left of the bit image and yet would be contained
within one byte. This would be terribly slow. To make sure this split
byte never happens, QuickDraw uses the rowBytes field instead of
depending on the bounds rectangle. Using rowBytes does mean
there will be a small amount of memory at the right edge of the bit
image that is unused. A little memory loss for a big gain in speed is
what QuickDraw believes in. QuickDraw also requires that row
Bytes be an even number of bytes.

Now that you know all the dirty details of QuickDraw bitmaps,
let's look at the programming steps it takes to build a bitmap.

The first step is to create the bit image that will hold the pixels.
The bit image that the baseAddr points to must be large enough to
hold all the pixels. QuickDraw needs rowBytes to be big enough to
contain a row of pixels and be an even number of bytes. This re
quirement prompts the weird math that divides the width of a row
of pixels by 16, adds one to· make sure the row Bytes will be even,

and then multiplies the total by two to get the number of bytes.
Let's make sure this works with our sample numbers. We'll use as
an example a bitmap width of 53 pixels.

53 I 16 = 3, 3 + 1 = 4, 4 v 2 = 8

Figure 3-2. Weird math

Eight as a value for row Bytes would give you room for 64 pix
els, which is the closest number that satisfies QuickDraw needs of
having row Bytes be big enough to hold all the pixels and yet be
even. Yea! The math works.

BitMap MakeBitMap(short wantedHeight,
short wantedWidth)
{

BitMap aBitMap;ll the bitmap we'll create and return
short numberRows; //number of rows in the bitmap
short
Rect

tempRowBytes;
bitMapBounds;

tempRowBytes = ((wantedWidth I 16) + 1) * 2);

II create the bit image, we cast up to longs so we
II don't get an overflow at 32,767 pixels
aBitMap.baseAddr = NewPtr((long)tempRowBytes *

(long)wantedHeight);

II you should check for failure to get a pointer and do
II some appropriate error handling

II set up the rowBytes and the bounds fields of the
II bitMap
aBitMap.rowBytes = tempRowBytes;
SetRect(&aBitMap.bounds ,0, 0, wantedWidth,

wantedHeight);

return (aBitMap);

After the size of rowBytes is determined, a bit image is created
that is the number of rows times the value stored in rowBytes. Since
row Bytes and the bitmap height are both shorts, you need to cast

66 ~3

them both up to longs or else you could get an overflow when you
request a bit image that is bigger than 32,767. This is a bug that has
bitten me many times, so don't forget those casts. No error checking
is done to verify that the memory request was fulfilled. You would
never do this, right?

After building the bit image you need to fill in the other fields of
the bitmap. You have already calculated the rowBytes, so just assign
the value to the bitmaps rowBytes field. The bitmaps bounds is set
to be a rectangle that upper, left is at 0,0 and has the width and
height that was passed in to the function. I like my bitmaps aligned
to 0,0 because it seems neater, but you could have set the bounds to
any rectangle that has the correct height and width. After you assign
the bounds rectangle, the bitmap is complete and you are done.

In order for QuickDraw to draw in a bitmap, it needs a graphic en
vironment wrapped around the bitmap. This graphic environment
is called a gra£Port. I like to think of gra£Ports as the studio in
which QuickDraw works, and a bitmap as QuickDraw' s canvas.
That's really the way I think. Here's the propeller-head description
of a gra£Port.

struct
short

graf Port {

BitMap
Re ct
RgnHandle
RgnHandle
Pattern
Pattern
Point
Point
short
Pattern
short
short
Style
char

device;
portBits;
portRect;
visRgn;
clipRgn;
bkPat;
fillPat;
pnLoc;
pnSize;
pnMode;
pnPat;
pnVis;
txFont;
txFace;
filler;

short txMode;
short txSize;
Fixed spExtra;
long fgColor;
long bkColor;
short colrBit;
short patStretch;
Handle picSave;
Handle rgnSave;
Handle polySave;
QDProcsPtr grafProcs;

} i

Most of these fields hold the status of the drawing environment
and are not really important to you at this point. See Inside Mac,
volume I, page 165, for the in-depth skinny on gra£Ports. The field
that's important to you is the portBits structure; it's the bitmap that
gra£Port is associated with. Every gra£Port structure has a bitmap
field. The port's (gra£Ports are called ports for short) bitmap is
where QuickDraw will do its job. When a gra£Port is created and
initialized with a call to OpenPort(), portBits has a copy of the
bitmap of the main screen.

Now you have both parts of offscreens, the gra£Ports and the
bitmaps. You need to know how to get these two to work together.
It seems simple enough. Create a grafFort. Create a bitmap that will
hold your offscreen drawing. Then somehow get the gra£Port to use
your bitmap instead of the screen's bitmap. This isn't very hard be
cause the smart people at Apple already did the hard part. Call Set
PortBits() with your bitmap and the current port will then use the
passed bitmap. Easy, as the code shows.

BitMap
Graf Port
Graf Ptr

offscreenBitmap;
offscreenPort;
prevPortPtr;

II remember the original port
GetPort(&prevPortPtr);

II open our port
OpenPort(&offscreenPort);

68 ~3

II create our offscreen bitmap, 30 pixels wide and high
offscreenBitmap = MakeBitMap(30,30);

II Let the offscreen port use the offscreen bits
II First make the offscreen port the current port
SetPort(&offscreenPort);
SetPortBits(&offscreenBitmap);

I I Now all QuickDraw calls will be drawing in our off screen

Before 1987, programming a Mac was pretty simple. Not only could
you count on the size of the screen, you could count on the user's
having a fixed number of screens-one. Color? Who needed color,
you already had two-black and white. But that was 1987. Then
Apple decided that Mac programmers were getting lazy. To shape
up the programming masses Apple unleashed the Mac II, and pro
gramming offscreens was never simple again. Two colors. Gone.
You could now program with 256 colors. And not just 256 Apple
approved colors. You could pick any 256 colors out of 16 million
choices. One screen. Gone. You could have up to six screens. The
screens could be huge or small. To program in this new Technicolor
world you have to understand the color equivalents for bitmaps
and gra£Ports: pixmaps and color gra£Ports. The year 1987 also in
troduced graphic devices that have no black-and-white ancestor.

How Color QuickDraw manipulates the raster memory to generate
colors on-screen must be explained before we jump into color
off screens.

Color QuickDraw works in the RGB color space. A color space
is a geometric view of the space as mapped out by colors. The RGB
color, which is short for red, green, and blue, space is a three
dimensional cube with each color representing one of the three
axes. Every point in this cube of color is a unique color that is a
mixture of red, green, and blue. The color black is at one comer of

the cube and has the RGB value of 0,0,0. White is located at the di
agonally opposite corner from black, and its RGB values are fully
saturated. Color QuickDraw deals with RGB values through the
RGBColor structure.

typedef struct RGBColor
unsigned short red;
unsigned short green;
unsigned short blue;

} RGBColor;

The RGBColor structure is a high-precision definition of a
color, with each component ranging from 0 ... 65,535. Color Quick
Draw internally scales down the precision of each component from
an unsigned integer to an unsigned byte. By scaling each compo
nent down to a byte, Color QuickDraw can access over 16 million
colors. The RGBColor structure allows QuickDraw to maintain pre
cision through various color operations without any visible changes
on-screen. You will be working with RGB colors exclusively in the
game programming that follows.

The RGB color space is not the only color space in use with computers.
Some of the other color spaces you could dabble in are HLS (hue, light
ness, saturation), CMYK (cyan, magenta, yellow, and black), and HSV
(hue, saturation, value). Each color model has its benefits and disad
vantages. Some are great for dealing with color printers, while others
are better at matching color photography. For games, the best color
space to work in is RGB. Oh, if you can explain why CMYK is an
acronym for cyan, magenta, yellow, and black, please drop me a note.

In 1987, building a Mac that could display all 16 million colors
at one time seemed out of the question. Memory was just too darn
expensive. A 640 v 480 frame buffer capable of displaying all those
colors would need 1,228,800 bytes of RAM. This would have been
more RAM than was shipped with the original Mac II. And 1987
was also a time when the U.S. government helped make a

70 ~3

megabyte of RAM run over $400. Since memory was scarce and
thus expensive, Apple decided that we would only need to see
256 colors at one time on-screen. After three years of being served
only cold, stale black and white, while the dreaded PC crowd had
a paltry choice of 16 colors, 256 vibrant colors seemed like a feast
too good to be true. To achieve this feast without using over a
megabyte of memory, Color QuickDraw uses a technique called
indirect colors.

A bit of background first. Apple cut the amount of video mem
ory that Color QuickDraw used for a screen 640 w 480 from over a
megabyte to 307,200 bytes. Of course they also cut back the number
of colors from millions to 256. This was done by using indirect col
ors. Indirect colors works on the principle that instead of storing
the actual RGB values in the raster memory, why not just store a
smaller number-a number that uses less memory and can point to
the RGB color that will appear on-screen. When Color QuickDraw
is displaying 256 colors, the size of the entry is one byte. This byte
is used as an index into a table of 256 RGB colors. Say the first item
in the RGB array is red (65535, 0, 0) and the next is a nice vermilion
(59628, 11236, 65535). To put a pixel of red on the screen you write a
byte of value zero into the raster memory. For vermilion the byte
would have a value of one. The values that are written into raster
memory are called indirect colors. Indirect colors work like pointers
in C. The size of the entry in the raster memory can range from one
bit to one byte. With a one-bit entry size, QuickDraw assumes that
you only want the colors black and white and hence there is no cor
responding RGB table. The entry size, for reasons of speed, is
forced to be in powers of two. This gives Color QuickDraw the abil
ity to draw in black and white and in 4, 16, and 256 colors. Each
smaller entry size means a smaller amount of raster memory is
needed. This economy of memory and the fact that a processor can
move one byte faster than three is why Color QuickDraw has indi
rect colors.

When an indirect color is used, the place the color indirectly
points at is a color table. A color table is an array of RGB colors.
Let's look at the structure definition of a color table and then go
over the few esoteric details of the structure.

typedef struct ColorTable {
long ctSeed;
short ctFlags;
short ctSize;
CSpecArray ctTable;

ColorTable, * CTabPtr, ** CTabHandle;

The ctSeed field is used as a unique identifier so that Color
QuickDraw can quickly tell that one color table is different from an
other. Without the use of the ctSeed, Color QuickDraw would have
to compare each table by comparing its RGB colors with the others'.
This would be so slow that you would think you were running
Windows. Whenever a color table is created by Color QuickDraw it
will make sure the ctSeed is set correctly. If you handcraft a color
table, you will need to call GetCTSeed to make sure you get an
Apple-approved value for use in the ctSeed field.

The ctFlags field is currently used only for distinguishing
who owns a color table. If the high bit of the flag field is set (the
only flag defined at this point), the color table is owned by a graph
ics device. For other color table uses, make sure this high bit is
cleared.

The ctSize field is a zero-based count (number of entries mi
nus one) of the number of RGB color entries in the color table.

The ct Table is where the array of RGB colors is located. Of
course this field couldn't just be a simple array of RGB color struc
tures. No, that would be too simple. Color QuickDraw needs to de
fine yet another structure. 0.K., here is the definition of a
CSpecArray.

typedef struct ColorSpec {
short value;
RGBColor rgb;

ColorSpec, * ColorSpecPtr;

typedef ColorSpec CSpecArray[l];

For many years I have been able to safely ignore what the
value field of a ColorSpec is actually used for. If you really must
know, check out Inside Mac, volume V, page 137. But trust me, for

72 ~>

game programming you can remain ignorant of this field and just
use the RGB field as God intended.

Now that you know a ColorSpecArray can just be thought of as
an array of RGB color structures, you can move on to where the real
fun is in color tables-inverse color tables.

With indirect colors, color tables have two purposes. The first
use is, if given an indirect color, what is the RGB value that corre
sponds to that color? This seems pretty easy, as the indirect pixel
value is an index into the ctTable field of the color table. The sec
ond use of color tables is the inverse of the first use. If given an
RGB value, what index value in the color table comes closest to
matching the RGB color? The simple way to do this is to look
through all the entries of RGB colors in the table and return the in
dex that came closest to matching the requested RGB color. This
process is very slow. Speed wouldn't be a problem if Color Quick
Draw only did this once a day. The trouble is Color QuickDraw
can sometimes use this look-up process thousands of times in one
graphic operation. To avoid being compared to a Commodore 64,
Color QuickDraw uses a structure called an inverse color table to
speed up this process. Here is the structure definition of an inverse
color table.

typedef struct ITab {
long
short
unsigned char

iTabSeed;
iTabRes;
iTTable;

ITab, * ITabPtr, ** ITabHandle;

An inverse color table is a dictionary for color tables. Given
an RGB value, Color QuickDraw uses it to look up the indexed
color value in the inverse color table. To understand how this
search process works let's look at how an inverse color table is
built.

When building an inverse color table, Color QuickDraw takes
each RGB value from the color table and processes that RGB value
to produce an index into the inverse color table's i TTable array.

At the proper entry in the inverse color table, Color QuickDraw
stuffs the indexed color value that matches the RGB value it is
currently inverting. Color QuickDraw processes the RGB value by
concatenating so many upper bits of each of the red, green, and
blue components together to build a 16-bit word. How many of
the upper bits extracted from each color component used to build
that 16-bit word is set in the i TabRes field of the inverse table
structure. Valid values for the i TabRes field are three, four, and
five bits. Based on the bit size or resolution of this field, you can
determine how large the inverse table is going to be. For a three
bit resolution the table size would be 29, or 1024 bytes. Four- and
five-bit resolution tables would have sizes of 4K (212) and 32K
(215). The default resolution for inverse color tables is four bits.
You might have noticed that since the inverse table is built by lop
ping off the insignificant bits of the RGB color, there might be a
problem with RGB values that are only differentiated by those
lower bits. And you would be right. Those colors that can only be
told apart from their lower bits are referred to as hidden colors. So
how does QuickDraw solve the hidden color conundrum? Got
me, and Apple isn't telling. Inside Mac just refers to some propri
etary information appended to the end of the inverse color table
that is used to find the hidden colors. One last detail of inverse
color tables is the i TabSeed field. This field is just a copy of the
ctSeed field of the color table that is used to build the inverse
color table.

Now that you have an understanding of what color tables are and
how they work within Color QuickDraw, you are ready to explore
the color side of bitmaps-pixel maps. A pixel map, or pixmap for
short, is used for exactly the same purpose as a bitmap is in classic
QuickDraw, to hold a pixel image. Here is the structural definition
for a pixmap. You'll notice that a pixmap structure has a few more
fields than a bitmap. Twelve more fields, to be exact. Makes you
wonder if writing color games is worth the effort.

74 ~3

typedef struct PixMap {
Ptr baseAddr;
short
Rect
short
short
long
Fixed
Fixed
long
CTabHandle
long

rowBytes;
bounds;
pmVersion;
packType;
packSize;
hRes;
vRes;
planeBytes;
pmTable;
pmReserved;

PixMap, *PixMapPtr, ** PixMapHandle;

The first three fields match the three fields that make up a bitmap.
Again the baseAddr field is a pointer to the chunk of memory
where the pixel image is stored. Like the baseAddr field, the
bounds field has not changed from its bitmap counterpart. The
bounds field still inscribes a coordinate system on top of the pixel
image. Unlike the first two fields, the rowBytes field has
changed slightly from the bitmap version. The rowBytes field
still contains the number of bytes that are contained in one row of
the pixmap. Where a bitmap was limited to a rowBytes value of
$2000 or less, a pixmap can have a rowBytes value up to $4000.
In a bitmap the upper two bits must be cleared. When building a
pixmap the most significant bit of rowBytes must be set. Color
QuickDraw uses these upper bits of rowBytes as flags to deter
mine if a passed-in parameter is a pixmap or bitmap. By using
these flags Color QuickDraw lets you use the same Toolbox calls
you used with ordinary bitmaps. As before, rowBytes must be an
even number, but with Color QuickDraw if you force rowBytes
to be a multiple of four, your graphic operations will be snappier.
You don't have to, but your graphics will be slower. You can't pos
sibly want that.

With bitmaps QuickDraw knows that one pixel is equal to one bit.
Pixmaps don't have this luxury. Since pixmap pixels can vary in
size from one bit up to 32 bits, the pixmap structure needs some
fields that inform Color QuickDraw how many bits make up a
pixel. These fields are pixelSize, cmpCount, and cmpSize.

The pixel Size field contains the number of bits that make up
each pixel. This can be any value as long as it's either 1,2,4,8,16, or
32. For most of this book you will be using either 4 or 8 bits as the
pixel size for your pixmaps.

The cmpCount field, which is short for component count, con
tains the number of color components that make up one pixel in the
pixmap. In an indexed color system the pixel is represented by an
index into a color table. This would give you a component count of
one. This value of one is good for pixel sizes up to 8 bits. At this
time the only other value that is legal for this field is three. Three
would be the setting if your pixel size was either 16 or 32 bits. Since
you'll be programming games that only use a pixel size of either 4
or 8 bits, you can safely set the cmpCount field to one.

The cmpSize field, which is short for component size, holds
the actual size of each pixel. Don't confuse this with the pixel
Size field. I did. It has a different purpose for pixel sizes greater
than 8 bits. And since you won't be dealing with pixel sizes greater
than 8 bits, you can safely set this field to be the same value as the
pixelSize field. You can look up the in-depth definition for
cmpSize in Inside Mac, volume V.

Up till now you have been exposed to only one type of pixel layout
in pixmaps-chunky pixels. Chunky pixels are not pixels that need
to cut back on the Cheetos and Jolt cola. Chunky pixels are pixels in
which the bits that make up the pixel are laid out consecutively in
memory.

The other pixel layout types are planar and planar I chunky. The
packType field is where you set what style of pixel layout your

76 ~3

pixmap will use. In a planar layout the bits that make up a pixel are
spread across the several planes of bits. The number of planes is
equal to the number of bits that comprise a pixel. The planeBytes
field is the offset in memory needed to jump from one bit plane to
the next. Aneat system, one that can be very useful for game pro
gramming. Trouble is, Color QuickDraw does not support planar
pixel images.

Combine chunky pixels and planes of pixels and you get
chunky /planar. Chunky /planar pixel images have each of the color
components of an RGB pixel split across three planes, one for each
color component. The field planeBytes is again the offset needed
to get from one color plane to the next. Again, this sounds useful,
again Color QuickDraw disappoints. At this point Color Quick
Draw does not support this layout style (yet). Inside Mac can be
such a tease at times.

Before leaving the fascinating world of pixmaps, let's quickly go
over the remaining fields of a pixmap.

+ pmVersion The version number of the pixmap, which is nor
mally zero. If the pixmap's baseAddr field is 32-bit clean and
cannot be used as 24-bit address, then pm Version should be set
to 4. All other bits of the version are reserved and are not to be
touched.

+ hRes, vRes A pixmap's resolution is measured in the number
of pixels per inch. The two resolution fields being fixed point
number allows for fractional resolutions in a pixmap. The de
fault resolution of a pixmap is 72.0 pixels per inch (ppi) in both
directions.

+ pmTable The pmTable field holds a handle to the color table
used by your pixmap.

+ pmReserved To make sure that your pixmaps work in the fu
ture, make sure you set pmReserved to 0.

First, let me get this off my chest. Graphic Devices, or GDevices,
confuse me. Actually, GDevices confuse almost everybody. The
chapter in Inside Mac on GDevices isn't of much help; the Book of
Revelations is more easily interpreted than this section of the usu
ally lucid Inside Mac. I hope to fix that. At least, I hope to educate
myself on just what these GDevices are and why the heck a game
programmer would care.

When Apple created Color QuickDraw they threw in the capabil
ity to have QuickDraw use more than one display monitor. Along
with the ability to use more than one monitor Apple allowed
hardware manufacturers other than Apple to build these extra
displays. Apple was smart enough to realize that if you allow
three different hardware manufactures to build three different dis
play cards the programmers would have to support, you guessed
it, you'd get three different software interfaces. This situation al
ready existed in the DOS market, and the endless grief DOS pro
grammers have to go to in order to support these various displays
inspired Graphic Devices. Here is the structure definition for a
GDevice.

typedef struct GDevice
short
short
short
ITabHandle
short
SProcHndl
CProcHndl
short
PixMapHandle
long
Handle
Re ct
long

gdRefNurn;
gdID;
gdType;
gdITable;
gdResPref;
gdSearchProc;
gdCompProc;
gdFlags;
gdPMap;
gdRefCon;
gdNextGD;
gdRect;
gdMode;

78 ~>

short gdCCBytes;
short gdCCDepth;
Handle gdCCXData;
Handle gdCCXMask;
long gdReserved;

GDevice, * GDPtr, ** GDHandle;

A Graphic Device is an abstract interface that describes what
Color QuickDraw can image into. The device part of GDevice is a
misnomer. The device can be an actual device such as a display
monitor or a printer. The device can also be a nondevice such as an
area of memory used for a color offscreen. By having programs and
Color QuickDraw always work through GDevices, the user can
switch, add, or delete monitors and the software still works.

If you ever find yourself in a death duel of "my computer platform is
better than yours," remember to take advantage of GDevices and drag
a window across several monitors. If you can, make sure each monitor
is a different color depth and at least one is set to black and white.
When your combatant finally notices that one window is stretching
across all the monitors and the Mac is doing depth conversion on the
fly, you will have delivered the coup de grace. I've personally had sev
eral diehard Windows users burst into tears at the sight of this. Re
member to only use this maneuver as a last resort.

A GDevice's responsibilities include describing the pixel
arrangement the device will use, providing the bottlenecks for color
mapping, and supplying the interface for accessing the GDevices
device driver.

A GDevice describes to Color QuickDraw the pixel arrange
ment the device uses. Pixel arrangement includes whether the de
vice uses indexed or direct pixels, the color depth of the pixels, and
the colors that the device can currently display. Along with the
pixel arrangement the horizontal and vertical resolution of the de
vice is stored in the GDevice.

The Color Manager of the Mac Toolbox uses GDevices to define
what colors the GDevice is capable of displaying. If a color is re-

quested by the Color Manager that the GDevice is unable to dis
play, the GDevice contains the information that enables the Color
Manager to convert the desired color into one that the GDevice can
display. The GDevice gives the programmer the ability to override
the default color-mapping process.

The GDevice contains a reference to the device driver that is asso
ciated with either a display monitor or a printer. This device driver ar
bitrates access to hardware-specific features of the GDevice. Color
QuickDraw uses the device driver of a GDevice to determine the loca
tion and addressing mode of the memory used by the display device.

Let's go over the specific fields of the GDevice. If you want fur
ther information on GDevice fields, I suggest reading the second
edition of Designing Card and Device Driver for the Macintosh Family.
This book is intended more for the programmer who needs to pro
vide software for a display card. And yes, it is as boring as it
sounds, but at this point it's the only halfway clear description of
GDevices and their role that Apple has published.

+ gdRefNum The gdRefNum contains the reference number for
the device driver used by the GDevice. Offscreen-based GDe
vices don't have a device driver associated with itself.

+ gdID Application-assignable identification for the GDevice.
This identification tag is typically used by the applications over
riding color-matching procedures.

+ gdType The pixel type of the GDevice: direct, fixed, or indexed.

+ gdITable A handle to the inverse color table used by the
GDevice.

+ gdResPref The resolution of the inverse color table.

+ gdSearchProc A pointer to a list of search procedures regis
tered with the GDevice.

+ gdCompProc A pointer to a list of complement procedures reg
istered with the GDevice.

+ gdFlags The attribute flags for the GDevice.

80 ~3

+ gdPMap The gdPMap field contains a handle to the pixel map
that holds the dimensions of the pixel image, pixel resolution,
color depth, and the color table for the GDevice.

+ gdRefCon The gdRefCon is unlike other refcons in the Mac;
this one is used to pass device-related values. Don't store any in
formation in this field of the GDevice.

+ gdNextGD The gdNextGD is a handle to another GDevice. The
Mac uses this field to build a singly linked list of GDevices. If the
GDevice is at the end of the list, this field will be set to nil. A
GDevice that is associated with an offscreen buffer will not be in
cluded in the linked list, and this field will also be set to nil.

+ gdRec t The gdRect defines the boundaries of the GDevice.

+ gdMode The gdMode field tells the driver how to set the de
vice's mode .

• gdCCBytes,gdCCDepth,gdCCXData,gdCCXMask Allfour
fields hold information for managing the mouse cursor on color
screens.

+ gdReserved Apple's placeholder for future growth; make
sure this field is set to zero.

Working in conjunction with GDevices are several interrelated data
structures. Some of these data structures are as important as a
GDevice itself. Let's go over them.

A GDevice is either a public GDevice or a private GDevice. A public
GDevice is one that is available to every piece of code running on the
Mac. The GDevice that represents your monitor is a public GDevice.
A private GDevice is a GDevice that only your code has access to.
Usually if your program creates a GDevice, you are creating a pri
vate GDevice. The GDevices that you will be creating in your game

programming will be private. In game programming the only public
GDevice you'll run into is the display monitor's GDevice.

Every public GDevice that is created is added to a list of GDevices
maintained by the Macintosh Toolbox. This list has the original
name of GDevice list. Access to this list should only be through the
functions GetDeviceList, which returns a handle to the first
GDevice in the list, or GetNextDevice, which is passed a handle to
a GDevice and will return a handle to the GDevice following the
passed one in the list. Using the combination of these two traps, you
can iterate through all the public GDevices. Make sure when you
create a private GDevice that you do not add it to the GDevice list.

The public GDevice that represents the display monitor showing
you the menu bar is referred to as the Main GDevice. Just as there
can be only one menu bar on a Mac, there can be only one Main
GDevice. Besides being the holder of the menu bar, the Main GDe
vices establishes the origin (location 0,0) for the global coordinate
space used by QuickDraw. The global origin is located at the upper
left-hand corner of the Main GDevice. All other public GDevice
monitors are located relative to the Main GDevice and its estab
lished origin.

The most important global data structure used with GDevices is the
current GDevice. Whenever Color QuickDraw draws, it always
draws within the context of the current GDevice. When you create a
private GDevice, you must make it the current GDevice to insure
that QuickDraw will use your GDevice. You can retrieve a handle
to the current GDevice by calling the function GetGDevice ().To
make your GDevice the current GDevice, pass a handle to your
GDevice as the parameter to the function SetGDevice () .

82 ~3

Once you have created a PixMap and a GDevice, you still need to cre
ate a grafPort for QuickDraw to render into. Since you'll be creating
your port in a color environment, an old-fashioned black-and-white
gra£Port will not do. You'll need the new and improved color graph
ics port or CGra£Port. Here is a CGrafPort in its full C structure glory.

typedef struct CGraf Port {
short device;
PixMapHandle portPixMap;
short
Handle
short
short
Rect
RgnHandle
RgnHandle
PixPatHandle
RGBColor
RGBColor
Point
Point
short
PixPatHandle
PixPatHandle
short
short
Style
char
short
short
Fixed
long
long
short
short
Handle
Handle
Handle
CQDProcsPtr

CGrafPort, * CGrafPtr;

portVersion;
grafVars;
chExtra;
pnLocHFrac;
portRect;
visRgn;
clipRgn;
bkPixPat;
rgbFgColor;
rgbBkColor;
pnLoc;
pnSize;
pnMode;
pnPixPat;
fillPixPat;
pnVis;
txFont;
txFace;
filler;
txMode;
txSize;
spExtra;
fgColor;
bkColor;
colrBit;
patStretch;
picSave;
rgnSave;
polySave;
grafProcs;

When building Color QuickDraw, Apple needed to make sure that
existing black-and-white-based applications still worked on color
Macintoshes. Color graphic ports were created as part of this
backward-compatibility goal. In this creation Apple made sure that
all the necessary fields of the original grafPort maintain their type
and location within the structure. This magic is accomplished by ei
ther reinterpreting the existing fields or overlaying new fields while
keeping the CGrafPort structure the same size as the original graf
Port. The main difference is the lack of a bitmap field. The bitmap
has been replaced by a handle to a pixmap. When building a color
offscreen you will have to build a pixmap and then connect it up to
your CGrafPort. Color QuickDraw can distinguish between a graf
Port and CGrafPort by examining the portVersion field of the
CGrafPort. If the two most significant bits are set, then the port is a
CGrafPort. The portVersion field of a CGrafPort occupies the same
offset as the rowBytes field of the grafPort bitmap structure. And
since black-and-white QuickDraw required that the row Bytes field
have the two uppermost bits cleared, this provided a quick and
dirty method of determining which port type was created. You
know why God could create Heaven and Earth in six days ... no
backward compatibility.

You'll be creating a bevy of color graphic ports in your game pro
gramming, so let's break out each field of the structure that differs
from the grafPorts and examine it.

+ portPixMap A handle to the port's pixel map into which Color
QuickDraw will image. On opening a CGrafPort the portPixMap
handle will be referencing the pixel map of the main device.

+ portVersion The two uppermost bits will be set to flag that
the port is a color port; the rest of the field holds the version
number of Color QuickDraw that created the color port.

84 ~3

+ chExtra, pnLocHFrac, grafVars These three fields aren't of
much importance in game programming. Check out Inside Mac,
volume V, if truly interested.

+ portRect Does the exact same thing as the portRect field did
for a black-and-white grafPort. It defines the boundaries and co
ordinate space for the color port.

+ bkPixPat Whenever Color QuickDraw needs to update the
background of the port, it will use a pixel pattern referenced by
the handle of this field.

+ rgbFgColor Holds the requested RGB color you want Color
QuickDraw to draw with.

+ rgbBkColor Holds the requested RGB color you want Color
QuickDraw to erase with.

+ fillPixPat Holds a handle to a pixel pattern for filling. This
field is used internally by Color QuickDraw.

+ fgColor Where rgbFgColor holds the RGB color you re
quested, fgColor contains the pixel value Color QuickDraw will
actually use for drawing.

+ bkColor Same situation as fgColor but as applied to back
ground colors.

The remaining fields aren't of much interest to you in game pro
gramming. You've been introduced to the main player involved in
color offscreens for pixel depths of 8 bits and less. Before we plow
ahead and start building color offscreens, let's spend a few pages
going over bit depths greater than 8.

In 1989 Color QuickDraw celebrated its second birthday, maturing
with the introduction of 32-Bit QuickDraw. 32-Bit QuickDraw, or
TrueColor QuickDraw, as Apple's marketing people attempted to

have us call it, enabled Color QuickDraw to have more than 256
colors on the screen at once. A lot more than 256 colors, like around
16,000,000 colors.

32-Bit QuickDraw was originally released as a system extension
for system 6 and has been included as part of all system software
since system 7. 32-Bit QuickDraw included a giant bag of enhance
ments and changes for Color QuickDraw, which were first docu
mented in Inside Mac, volume VI (the volume that's bigger than the
Manhattan white pages). We'll be going over just the parts of 32-Bit
QuickDraw that affect color offscreens.

All pixels that you have dealt with to this point have been indi
rect pixels. Indirect, since the pixel value does not hold the ac
tual RGB color value, but only points to it. With 32-Bit
QuickDraw you can now have pixel values that are the actual
color and not just a pointer. These types of pixels are called di
rect pixels.

32-Bit QuickDraw allows two sizes of direct pixels: 16-bit pixels
and 32-bit pixels. With 16-bit pixels you can see 32,767 colors at
once, and with 32-bit pixels Color QuickDraw can display
16,777,216 colors. A direct pixel is a scaled RGB color, where only so
many bits of each color component of the full RGB color structure
are used. In the case of 16-bit direct pixels, each color component is
assigned 5 bits. Each component of red, green, and blue can hold a
value from 0 to 32. With only 5 bits used for each color component,
a leftover bit-the most significant bit of the word-is not used and
is marked as reserved. A 32-bit direct pixel uses 8 bits for each color
component, so that each component of red, green, and blue can
hold a value from 0 to 255. By assigning 8 bits per color component,
a 32-bit direct pixel uses only 24 bits to describe a color. The re
maining 8 bits (the most significant byte of the long word) is
marked as reserved, the same as the remaining 1 bit of a 16-bit di
rect pixel.

86 ~3

In programming with direct pixels you might see the unused bits at the
top of the pixel referred to as the alpha channel pixels. An alpha chan
nel is a technique in computer graphics that allows graphic images to
have levels of transparency. With 32-bit pixels you could have 256 lev
els of transparency per pixel, where a value of 0 is a fully opaque pixel
and a value 255 gives a pixel that is fully transparent. Some video cards
for the Mac will display the levels of transparency for the use of com
bining the Mac signal with external video source. Another use of alpha
channels can be found in high-end game consoles like 300, whose sys
tems can combine one chunk of pixels with a background image using
the alpha channel. By using the alpha channel these systems can pro
duce effects such as semitransparent game elements. An alpha channel
is sometimes referred to as a linear key by programmers with more of
a video than a computer background.

32-Bit QuickDraw introduced some great features, and along with
those features came some interesting problems. The main one was
how to put all those pixels on a video card. A video card with the
dimensions 640 ~ 480 pixels with a depth of 32-bit pixels will need
1,228,800 bytes of memory on board the video card. For QuickDraw
to render within this card, it needs to have memory access to all the
bytes on the video card. Herein lies the problem. The Mac address
ing scheme before 32-bit QuickDraw was a 24-bit addressing sys
tem, which gave the Macintosh access to 16 megabytes of memory.
In this memory map each NuBus card is allocated a 1-megabyte
slice of the memory-map pie. A 1-megabyte slice is not large
enough to hold a full 32-bit deep frame buffer. To overcome this sit
uation, 32-Bit QuickDraw gave the Mac the ability to switch its
memory mode from 24-bit to 32-bit access. With a range of 32 bits
the Mac can now address a memory map of 4 gigabytes of memory.
Each NuBus card now gets a slice of 256 megabytes, more than
enough to hold a 32-bit deep frame buffer. Whenever 32-Bit Quick
Draw needs to draw in a 32-bit frame buffer, the addressing mode
is temporarily switched from 24-bit to 32-bit addressing. After the
drawing operation the memory mode is set back to 24-bit address-

ing. You can do the same thing by using the Toolbox function
SwapMMUMode.

The above description assumed that the Mac was using the 24-
bit memory mode that was available in 1989. In the modem times
we live in you can set your Macintosh to use 32-bit memory access
at all times. If this is the case, then SwapMMUMode will return the
memory mode the Mac was in before it was switched into 32-bit
mode. Forgetting to set the memory mode to 32-bit access before
using a NuBus card and forgetting to restore the original memory
mode after changing it are both sources of many crashes in game
programming-a good tip to remember in your future game pro
gramming adventures.

All right, enough is enough. Let's stop messing with the bit players
of color offscreens and get down to the real business of building
some.

The library you will build is designed to work with any Mac model
that includes Color QuickDraw. This requirement includes all Macs
built since 1987, except the original Mac portable (Apple followed
the television industry naming convention here-if you can put a
handle on it, you can call it portable). This demand for Color
QuickDraw still leaves several million Macs that this library will
work correctly on.

All public functions in the offscreen library are passed a para
meter of type OffscreenHdl. This handle to the structure of type
OffscreenStruct contains all the information an offscreen needs
to do its job. The library includes functions to build, destroy, and
draw with these OffscreenHdls. Here is the structure definition
for the offscreen handle.

88 ~3

typedef struct Off screenStruct {
short depth;
Rect
CGraf Port
GDHandle
PixMapHandle

bounds;
off Port;
offDevice;
off Pixels;

OffscreenStruct, * OffscreenPtr, ** OffscreenHdl;

To build a color offscreen you'll call the function CreateOff
screen. This function will return an error code and build you an
OffscreenHdl. CreateOffscreen uses the following prototype.

OSErr CreateOffscreen(short
Rect *
CTabHandle
OffscreenHdl *

depth,
globalBounds,
startColors,
offscreen) ;

The depth you pass CreateOffscreen can be any of the fol
lowing pixel depths: 1, 2, 4, 8, 16, or 32 bits per pixel. If you pass in
0 as a wanted depth, CreateOffscreen will create an offscreen
that is the depth of the monitor that intersects the rectangle you
pass in as the parameter globalbounds. The rectangle that you
will give to CreateOffscreen will be in global coordinates. Hav
ing the rectangle expressed in global coordinates allows us to be in
dependent of any port's coordinates and easily find which monitor
our offscreen intersects. The color table passed in will be copied
and attached to the pixel map that CreateOffscreen will create.
For requested pixel depths of 16 bits or greater, the color table para
meter is unnecessary and can safely be set to nil. If you set the color
table to nil for color depths of 8 bits or less, CreateOffscreen
will use the color table that matches the requested depths that are
included in the Mac ROMs. CreateOffscreen will return an er
ror code as a result. If the result indicates that no error occurred,
you will have created a living, breathing offscreen. Enough pream
ble. Let's look at some code.

OSErr CreateOffscreen{ short depth,
globalBounds,
startColors,
off screen)

{

OS Err
CGraf Ptr
CTabHandle
GDHandle
short
Graf Ptr
PixMapHandle

Rect *
CTabHandle
OffscreenHdl *

err;
port;
colorTable;
gDevice;
buildDepth;
oldPort;
pixMap;

II Initialize the temporary variables
err = noErr;
port = nil;
colorTable = nil;
gDevice = nil;
pixMap = nil;
*offscreen = nil;
buildDepth = 8;

II Find out at what depth the offscreen will be created at

if{depth)
{

}

else
{

II First verify that the requested depth
II is supported

if {depth == 1 I I depth == 2 I I depth = 4 I I
depth == 8 11 depth == 16 11 depth == 32)
buildDepth = depth;

else
return{paramErr);

GDHandle gd;

II Find the GDevice that intersects the rectangle
gd = GetMaxDevice{globalBounds);
if{gd)

gd = {*{*gd)->gdPMap)->pixelSize;
else

return{paramErr);
}

90 ~3

First, check that requested depth is realistic. If the requested
depth isn't valid, a generic parameter error is returned. If the re
quested depth is zero, you ask the Mac, through GetMaxDevice,
to find the screen with the biggest pixel depth that intersects the
offscreen's bounds rectangle. If GetMaxDevice does not return an
intersecting screen, you respond with another parameter error.

After determining what pixel depth your offscreen will be, you
need to create a color graphics port for your offscreen.

II Make a color graphics port for our offscreen

II First save the current port for later restoration
GetPort(&oldPort);

//Allocate a chunk of memory for our future port
port= (CGrafPtr) NewPtrClear(sizeof(CGrafPtr));
error= MemError();

if (port)
{

//OpenCPort indirectly changes the current port
OpenCPort(port);

//Set the port to coincide with the offscreen's rect
port->portRect = *globalsBounds;
//Cut down the visRgn
RectRgn(port->visRgn, globalsBounds);
//Do the same with the clipping region
ClipRect(globalBounds);

II Just in case we can't make a color table later
(*(port->portPixMap))->pmTable =nil;

Creating a color port for the offscreen is fairly simple. Allocate
enough memory for a color port through NewPtrClear. Use
OpenCPort to initialize and open the port. After OpenCPort the
current port will be your offscreen's port. OpenCPort directs the
port to use the pixels owned by the main screen and sizes the port
to match that screen.

Once the port has been opened cleanly, it is sized to match the
off screen's bounds rectangle. The port's regions are chopped down
to match the bounds of the port. If this step is skipped, future draw
ing in your offscreen may be incorrectly clipped.

As a precaution for a failure in creating a color table for your
offscreen, you should zero out the color table of the port's pixel
map.

II Just in case we can't make a color table later
(*(port->portPixMap))->pmTable =nil;

II Create or copy a color table for the offscreen

II Only make a copy of the table if the pixmap
II contains indirect pixels. If the pixmap contains
II direct pixels create a dummy color table to satisfy
II code that requires a color table in a pixmap.

if(buildDepth <= 8)
{

}

else

if(startColors
{

}

else
{

}

SignedByte state;

II Make sure the color don't fade away
state= HGetState((Handle) startColors);
HNoPurge((Handle) startColors);

colorTable = startColors;
err= HandToHand(&colorTable);

II Restore table to its previous state
HSetState((Handle) startColors, state);

colorTable = GetCTable(buildDepth > 1 ?

64 + buildDepth: 33);
err = colorTable ? noErr : resNotFound;

92 ~3

colorTable (CTabHandle) NewHandle(
sizeof(ColorTable) -
sizeof(CSpecArray));

err= MemError();

II On failure clean up and return error
if(err != noErr)
{

SetPort(oldPort);
CloseCPort(port};
DisposePtr(port);
return err;

II Create a pixmap for the offscreen
err = CreatePixMap(buildDepth, colorTable,

globalBounds,
port->portPixMap);

if(err == noErr)
{

II Copy the ports pixMap reference
pixMap = port->portPixMap;

II Erase the pixels in the pixel map
EraseRect(&port->portRect);

II Build the GDevice
err= CreateGDevice(pixMap, &gDevice);

After the color port is properly created you'll need to allocate a
pixel buffer for that port to draw within. Without a pixel map you
have an offscreen that's not of much use, like a wallet with no
money. To create a pixel map for your offscreen you will need to
create a color table for that pixel map. In the example code a color
table is made by copying a color table that was passed in to
CreateOffscreen or a default color table matching the pixel
depth of the offscreen is retrieved from the system.

Before copying the color table with a call to HandToHand, you
will mark the source color table as nonpurgeable. Unless you mark
the source color table it could be purged during the copying. The
result will be a useless color table or a bus error. Best to avoid both
of these by the simple call to HNoPurge.

If the source color table is nil, you should create a valid color
table for the pixel map. This is easily done since the Mac has several
color tables just lying around in its innards. To resurrect one of
these color tables for your own use, call GetCTable with the magic
resource id. The magic resource id for color tables is 64 plus the
pixel depth. GetCTable will then return a color table that matches
the pixel depth. By passing 32, instead of 64, plus the pixel depth,
you will get a gray-scale color table. For the pixel depth of one
you'll need a gray-scale color table containing only the colors black
and white.

Creating or copying a full-color table for a direct pixel map is a
waste of memory. Theoretically direct pixels do not require a color
table to work correctly, but in reality some code still assumes that a
pixel map needs a color table regardless of the pixel map's depth.
To satisfy these regressive pieces of code, you need to create the
smallest possible color table for your pixel map.

Now that you have made a color port and a color table, you have
the pieces to build a pixel map for your offscreen. Since building a
pixel map chews up a fair number of lines of code, I have declared
a separate function to perform this task. CreateOffscreen calls
this function to build the pixel map for your offscreen.

OSErr CreatePixMap(

OSErr err;

short
CTabHandle
Rect *
PixMapHandle

Ptr pixelsPtr;
short width;
short prnRowBytes;

II Initialize the locals
err = noErr;
pixelsPtr = nil;

depth,
colorTable,
bounds,
pixMap)

width = bounds->right--bounds->left;

94 ~3

II figure out the rowBytes size for the pixmap
pmRowBytes = ((depth* (width+ 31) I 32) * 4;

II Make sure the rowBytes is realistic
if(pmRowBytes > kMaxRowBytes}

return paramErr;

II Allocate a pixel buffer
pixelsPtr = NewPtr((long} pmRowBytes *

(long} width} ;

In order to allocate a memory buffer large enough for the off
screen, you first need to determine the number of bytes per row
used by the pixel map. You remember this value, right-it's the
rowBytes field. Who could ever forget the wonderful formula that
produces the proper number for the rowBytes field? Last time you
saw the calculation for the rowBytes, the goal was a number large
enough to hold all the bits in a row and an even number. This is still
the goal, except now you want the number to be divisible by four.
Why? By making it divisible by four you are forcing the bytes to be
long-word-aligned in memory. Color QuickDraw likes long-word
alignment and rewards it with increased drawing speed. As part of
the rowBytes calculation you also need to account for the bit
depth being greater than one by multiplying by the pixel depth.
That sums up the rowBytes formula.

After figuring out how wide the pixel map needs to be, you al
locate a buffer wide enough and tall enough to hold all the pixels.
Then you make sure the buffer is there, after which you can move
on to the really exciting part, filling in all those pixel map fields.
First you fill in the fields that are common to direct and indirect
pixel maps.

II Allocate a pixel buffer
pixelsPtr = NewPtrClear((long} pmRowBytes *

(long} width};

if(pixelsPtr)
{

II Need to set all the non-zero fields
(*pixMap}->bounds = *bounds;

(*pixMap)->rowBytes = prnRowBytes I Ox8000;
(*pixMap)->baseAddr = pixelsPtr;
(*pixMap)->hRes = 72 << 16; // 72.0 ppi
(*pixMap)->vRes = 72 << 16; // 72.0 ppi
(*pixMap)->pixelSize =depth;
(*pixMap)->prnVersion = O;
(*pixMap)->packType = O;
(*pixMap)->packSize = O;
(*pixMap)->planeBytes = O;
(*pixMap)->prnReserved = O;
(*pixMap)->prnTable = colorTable;

+ bounds Copy the offscreen' s bounds to the pixel map's bounds.

+ rowBytes Set the most significant bit of the rowBytes field to
tell Color QuickDraw that it is dealing with a pixel map.

+ baseAddr Copy the pointer to the pixel buffer you allocated
earlier.

+ hRes, vRes The resolution of an offscreen is usually 72 pixels
per inch. Since hRes and vRes are fixed point numbers, you
need to build a fixed-point version of 72.0. This is easily accom
plished by shifting the integer portion (72) up into the high word
of the resolution long word.

+ pixelSize The pixel size of an indirect pixel map is equal to
the requested pixel depth.

+ pmVersion Set the pixel map version to zero.

+ packType The pixel map you are building is not compressed
or packed.

+ packSize Since the pixel map is not compressed, set this field
to zero.

+ planeBytes The pixel map is not built from planes of color,
so set the set the plane offset to zero.

+ pmReserved For future compatibility, make sure you zero out
this field.

+ pmTable Assign the color table that was created for the pixel map.

96 ~3

Now that all the common fields have been assigned, you need
to set the pixel map's fields that are specific to direct or indirect
pixel maps. If the pixel depth is 8 bits or less, you have an indirect
pixel map. We'll go over the indirect option first.

II Set the indirect vs. direct fields
if (depth <= 8)
{

(*pixMap)->pixelType = O;
(*pixMap)->cmpCount = 1;
(*pixMap)->cmpSize =depth;

+ pixel Type For indirect pixels this value should be zero.

+ cmpCount The number of pixel components for an indirect
pixel is one.

+ cmpSize The size of each pixel component in an indirect pixel
is equal to the pixel's depth.

Now let's go over the field settings for a direct pixel map.

else

else

(*pixMap)->pixelType = RGBDirect;
(*pixMap)->cmpCount = 3;
(*pixMap)->cmpSize = depth== 16 ? 5 : 8;

II Set the fields in the direct pixmaps
II dummy color table
(*colorTable)->ctSeed

3 * (*pixMap)->cmpSize;
(*colorTable)->ctSize = O;
(*colorTable)->ctFlags = O;

err= MemError();

II Return the functions result
return err;

+ pixel Type Set the field to the constant RGBDirect to show
that this pixel map holds direct pixels.

+ cmpCount For direct pixels the component count is equal to
three-one for each color component of red, green, and blue.

+ cmpSize For direct pixels with a pixel depth of 16, each color
component is made up of 5 pixels. For 32-bit-deep pixels, the
component size is 8 pixels per each RGB component.

To clean up for a direct pixel map, you need to fix up the
dummy color table that was built for use with your direct pixel map.

+ ct Seed This can be set to any value. I picked what you see by
copying what Apple suggested. If in doubt copy Apple.

+ ctSize Show that the color table has no color entries by set
ting this field to zero.

+ ctFlags Make sure this field is cleared.

To finish up, CreatePixMap returns the function's result back
to CreateOffscreen. The pixel map just created will be at
tached to the color port that you created earlier. The only missing
piece for building a color offscreen is a graphics device.

Once the pixel map has been created, you need to clear out the
pixel map. The easiest way is to let QuickDraw clear it out for you.
EraseRect will fill the offscreen with the current background
color. Your offscreen has its port and pixel map; the only thing that
is missing is the graphics device. A call to Crea teGDevice will
rectify this deficiency in your offscreen.

II Create a pixmap for the offscreen
err = CreatePixMap(buildDepth, colorTable,

globalBounds,
port->portPixMap);

if(err noErr)

98 ~3

{

}

II Copy the ports pixMap reference
pixMap = port->portPixMap;

II Erase the pixels in the pixel map
EraseRect(&port->portRect};

II Build the GDevice
err= CreateGDevice(pixMap, kinvRes, &gDevice};

To build a graphics device you will need to give Create
GDevice a reference to the pixel map you just built. Like Create
PixelMap, CreateGDevice spends most of its time filling in the
fields of the graphics device based on the pixel depth of the off
screen and building an inverse color table.

OSErr CreateGDevice(PixMapHandle pixMap,
short inverseRes,
Handle * resultGDevice}

{

OS Err
GDHandle
ITabHandle

err;
aGDevice;
baseITab;

II Initialize the locals
err = noErr;
aGDevice = nil;
baseITab = nil;
*resultGDevice = nil;

II Create a handle for the GDevice
aGDevice = (GDHandle) NewHandleClear(sizeof (GDevice));

if(aGDevice)
{

baseITab = (ITabHandle) NewHandleClear(2);
if (! baseITab)
{

DiposeHandle((Handle) aGDevice);
return MemError();

II Start filling in the fields of the gDevice
(*aGDevice)->gdType =
(**pixMap)->pixelSize ? clutType : directType;
(*aGDevice)->gdITable = baseITab;
(*aGDevice)->gdResPref = inverseRes;
(*aGDevice)->gdPMap pixMap;
(*aGDevice)->gdRect (*pixMap)->bounds;
(*aGDevice)->gdMode -1;

The buffer that will become your graphics device is zeroed out
by allocating the handle with a call to NewHandleClear instead of
calling NewHandle. Having the buffer cleared saves you the te
dium of clearing all the fields directly.

A handle is created that holds only two bytes. This handle will
later become the inverse color table for the pixel map. If the starter
inverse table could not be created, you should dispose of the graph
ics device and bail from CreateGDevice (remembering to return
the error result).

Let's go over the few fields in the graphic device you need to set
to something other than zero.

+ gdType Set whether the graphics device will be addressing di
rect or indirect pixels.

+ gdITable This field holds the handle to an inverse color table.

+ gdResPref Set this field to the inverse color table's resolution
that is passed in as a parameter to CreateGDevice. The normal
value passed is four.

+ gdPMap Assign this field the pixel map used by your offscreen.

+ gdRec t Copy the bounds rectangle from the pixel map to this
field.

+ gdMode Make sure this field is -1 to alert Color QuickDraw that
this graphic device has nothing to do with a display monitor.

100 ~3

else

if((*pixMap)->pixelSize > 1)
SetDeviceAttributes(aGDevice,

gdDevType, TRUE);

SetDeviceAttributes(aGDevice, noDriver, TRUE);

if((*pixMap)->pixelSize <= 8)
{

MakeITable((*pixMap)->pmTable,
(*aGDevice)->gdITable,
(*aGDevice)->gdResPref);

err QDError();

err= MemError();

If the offscreen is color, the graphic device flags field, gdFlags,
needs to show that the graphic device is for a color offscreen. Addi
tionally, since the graphic device is for an offscreen the gdFlags
field needs to show that there is no driver associated with the
graphic device. Both of these flag settings are made through the use
of SetDeviceAttributes.

After all the fields and flags have been set, a check is made to
see if the graphic device will be interfacing with indirect pixels. If
so, you need to create an inverse color table for the graphic de
vice to use. You need to pass to MakeITable a color table, the
starter inverse table that was created earlier, and the requested
resolution for the inverse table. MakeITable will then attempt to
create an inverse color table for the graphic device. To verify that
MakeITable was able to create the inverse table, a call to QD
Error is made.

Notice that a graphic device that uses direct pixels will end
up with a reference to the two-byte inverse table that was cre
ated earlier. This does no harm, as long as you remember to dis
pose of the inverse table when you throw away the graphic
device.

II Check for any errors
if(err)
{

if(baseITab)
DisposeHandle((Handle) baseITab);

if(aGDevice)
DisposeHandle((Handle) aGDevice);

else
*resultGDevice = aGDevice;

return err;

Finally, before exiting the function you should check for any er
rors. If there was an error you need to dispose of any handles you
created. On the fantastic occurrence that no errors were generated,
return the handle to the graphic device you just created. The error
result is also passed along to the calling function.

Now that the graphic port, pixel map, and graphic device have all
been built, it's time to finish building the off screen. A handle to the
offscreen structure is allocated and filled in with the elements of the
offscreen you created. At this point all you need to do is return the
handle that holds the offscreen to the caller along with the error result.

if (!err)
{

OffscreenHdl aOffScreen;

aOffScreen = (OffscreenHdl)
NewHandle(sizeof(OffscreenStruct));

if(aOffScreen)
{

(*aOffScreen)->depth =depth;
(*aOffscreen)->bounds = *globalBounds;
(*aOffscreen)->offPort =port;
(*aOffscreen)->offDevice gDevice;
(*aOffscreen)->offPixels = pixMap;

102 ~3

*of fscreen = aOffscreen;

else
err= MemError();

}

If an error was encountered while building the parts for the off
screen, you need to dispose of all data structures that were allo
cated from the heap. One detail on handling an error result is to
make sure that you restore the current port setting before leaving
the function. If you forget to do this, you will have disposed of the
port QuickDraw thinks is the current port. On the next call to
QuickDraw your day will be rudely interrupted by a visit from
your friendly debugger.

if (err)
{

II Restore the original port
SetPort(oldPort);
if (gDevice)
{

DisposeHandle(
(Handle) (*gDevice)->gdITable);

DisposeHandle((Handle)gDevice);
}

CloseCPort(port);
DisposePtr(port);
DisposeHandle((Handle) colorTable);

return err

If there is a function that creates offscreens, there should be a func
tion that destroys them. DestroyOffscreen will terminate the
offscreen with extreme prejudice.

void DestroyOffscreen{ OffscreenHdl offscreen)
{

}

ASSERT{offscreen);

if{{*offscreen)->offPort)
{

GrafPtr currPort;

II Make sure that the current port isn't
II our port

GetPort{&currPort);
if{currPort == {*offscreen)->offPort)
{

}

GetCWMgrPort{&currPort);
SetPort{currPort);

II Kill off the pixel buffer
Disposeptr{{{*offscreen)->portPixMap)->baseAddr);

II Kill off the color table
if{{**{*offscreen)->portPixMap) .pmTable)

DisposeCTable{
{**{*offscreen)->portPixMap).pmTable);

II Close and kill the port
CloseCPort{{*offscreen)->offPort);
DisposePtr{{Ptr) {*offscreen)->offPort);

if{{*offscreen)->offDevice)
{

}

if{GetGDevice{) == offDevice)
SetGDevice{ GetMainDevice{));

{**{*offscreen)->offDevice) .gdPMap =nil;
DisposeGDevice{{*offscreen)->offDevice);

DisposeHandle((Handle)offscreen);

DestroyOffscreen disposes of all the hard work you went to
in CreateOffscreen. If the offscreen has a color graphics port
reference, the pixel buffer is destroyed followed by the retrieval and

104 ~3

destruction of the pixel map's color table. The wanton destruction
is continued with the disposing of the color port. Before disposing
of the port make sure you close the port with CloseCPort. If the
offscreen has a handle to a graphic device, you'll need to free the
graphic device and its inverse color table through Dispos
GDevice. The pixel map reference in the graphic device should be
cleared out before your call to DisposGDevice just in case
DisposGDevice gets ambitious and tries to dispose of the pixel
map again.

One detail you need to take care of when disposing of an off
screen is to make sure that QuickDraw doesn't think that your off
screen is the current drawing environment. Failure to do this is a
quick trip to Macsbug. Destro_yOffscreen first checks that the
current port is the same port you're about to destroy. If the two
ports are one and the same, you should redirect QuickDraw to use
another port. You can choose any port you want, but the easiest
port is one that's guaranteed always to exist, like the window man
ager's port. The same fatal situation can arise if you dispose of the
graphic device that QuickDraw is currently focused on. An equiva
lent test to see if the current graphic device is the same as the off
screen' s graphic device is made. If they match you need to have
QuickDraw focus on any graphic device other than the one you're
about to wipe off the face of the earth. Again, choose any graphic
device, but the best one is one you know will be there. Since every
Mac has a main graphic device, telling QuickDraw to use the main
device will always be a safe choice.

Now that you can create and destroy offscreens at will, let's build a
program that will exercise these functions. On your disk you will
find the sample program for this section of the book. Run the com
piled sample application. To execute the offscreen demo select the
demo item from the action menu. A graphic rainbow, reminiscent of
a Grateful Dead T-shirt, will be drawn on screen. After following
the on-screen prompt to click the mouse button, the screen will be

erased and the same rainbow will, after a delay, appear on-screen.
The first rainbow was drawn on-screen using Color QuickDraw.
The second rainbow is drawn using Color QuickDraw in an off
screen buffer and then transferred on-screen. To see where the ac
tion is, let's look at the function DemoOffscreenLib.

void DemoOffscreenLib(WindowPtr aWindow)
{

OffscreenHdl off screen;
Rect globalRect;
Point of fsetAmount {0,0};

OSErr err;
CTabHandle colors;
GDHandle currDevice, offDevice;
CGraf Ptr off Port;

SetPort(aWindow);

DwiddleBits(aWindow,
"On Screen Drawing (Click to continue)");

while(!Button())

The function DemoOffscreenLib calls DwiddleBits to draw
the rainbow on-screen. The demo then sits in a tight loop until the
user hits the mouse button.

globalRect = aWindow->portRect;
GlobalToLocal(&offsetAmount);
OffsetRect(&globalRect, offsetAmount.h,

offsetAmount.v);

EraseRect(&aWindow->portRect);

currDevice = GetGDevice();

err = Create0ffscreen(8, &globalRect,
(**(*currDevice)->gdPMap) .pmTable,
&offscreen) ;

Before an offscreen is created, the bounds rectangle of the on
screen window is converted to global coordinates. Before creating

106 ~3

the offscreen, the demo stashes away the current graphic device so
that it can be restored when the demo is finished. Now with every
thing in place, the offscreen buffer is created into which the demo
will draw. In creating the offscreen I passed the color table of the
current graphic; this will insure that the offscreen has a color envi
ronment that matches the screen.

if(err == noErr)
{

CGraf Ptr off Port;

UseOffscreen(offscreen);
DwiddleBits(aWindow, "Offscreen Drawing");
ReleaseOffscreen(offscreen);

Making sure that there were no errors in creating the offscreen,
the demo then calls the function UseOffscreen, a function of the
offscreen library that you haven't seen before. The function Use
Offscreen sets up QuickDraw to image into your offscreen in
stead of the monitor's screen. Before you change the focus of
QuickDraw to one of your offscreens, you'll want to remember the
graphic port and device that QuickDraw is currently using. Guess
what? UseOffscreen does exactly that.

void UseOffscreen(OffscreenHdl offscreen)
{

ASSERT(offscreen);

II Remember the current graphic environment
GetPort(&(*offscreen)->prevPort);
(*offscreen)->prevGDevice = GetGDevice();

II Set our offscreen as
II the current graphic environment

ASSERT((*offscreen)->offPort);
ASSERT((*offscreen)->offDevice);
Set Port ((Graf Ptr) (*off screen) ->off Port) ;
SetGDevice((*offscreen)->offDevice);

Now that QuickDraw is wearing graphic blinders and can only
draw in the offscreen, DwiddleBi ts is called to generate a rain
bow in the offscreen pixel buffer. On-screen you will see nothing,
but offscreen QuickDraw is slamming pixels left and right. Off
screen drawing requires a certain element of trust that QuickDraw
is really doing something back there.

I've been throwing around the word blit quite a bit without the benefit
of a definition. Sorry about that. Here you go, the full definition of blit.

blit I blit I v. blitted, blitting, blits. To transfer a large matrix of bits
from one location in computer memory to another; usually the mem
ory being copied is being used to alter the screen's display ("The pixel
image is blit from offscreen to on-screen")

Derived from the PDP-lO's Block Transfer instruction whose as
sembler mnemonic was BLT. Not to be confused with the 68000 Branch
Less Than, BLT, instruction.

blitter I blit' r I n. A dedicated piece of hardware or software used
to perform pixel blits

After DwiddleBi ts is done re-creating the '60s, QuickDraw's
graphic environment must be restored to its original state. The utility
function ReleaseOffscreen will do exactly that. ReleaseOff
screen is the matching function for UseOffscreen. Whenever you
make a call to UseOffscreen, make sure you have a matching call
to ReleaseOffscreen. Your goal when using offscreens is to make
no sounds, leave no footprints.

void ReleaseOffscreen(OffscreenHdl offscreen)
{

ASSERT(offscreen);

II Set the saved graphic environment as the
II current graphic environment.

ASSERT((*offscreen)->prevPort);
ASSERT((*offscreen)->prevGDevice);
SetPort((GrafPtr) (*offscreen)->prevPort);
SetGDevice((*offscreen)->prevGDevice);

108 ~3

Sitting somewhere in the demo program's memory is your rain
bow. To make the offscreen graphic appear on-screen you'll use the
Toolbox call CopyBi ts . We won't be going into any details con
cerning CopyBi ts at this point. We'll save that for later, where
we'll go into so much detail it'll make your ears bleed. For right
now, all you need to know is that CopyBi ts will transfer your off
screen pixels to your on-screen display. In order to make your pix
els visible CopyBi ts needs to know where to find your offscreen
buffer. Regrettably, CopyBi ts is ignorant of the offscreen structure
you have created. In order to educate CopyBi ts, the offscreen li
brary has a function that will return the offscreen's graphic port.
This function goes by the original name of GetOffscreenPort
and does just that, gets the port for the offscreen. With the off
screen' s graphic port CopyBi ts can now copy all of the pixels from
the offscreen to on-screen.

}

offPort = GetOffscreenPort(offscreen);

II Blit the offscreen to the window
CopyBits(&((GrafPtr)offPort)->portBits,

&((GrafPtr)aWindow)->portBits,
&aWindow->portRect,
&aWindow->portRect,
srcCopy, nil);

DestroyOffscreen(offscreen);

After blitting the rainbow on-screen you no longer need the off
screen. Get rid of it. One call to DestroyOffscreen will dispose
of any unsightly remains or messy streaks left by Crea teof f
screen.

Now that you've experienced the thrill of building your very
own off screens, let's go see how you can let the Mac make the job
easier.

You may have noticed in the preceding chapter that creating a Mac
offscreen is not what you would call obvious. On the scale of obtuse
things you can do on the Mac, offscreens ranks right up there with
SCSI termination. Funny thing is that Apple seemed to understand
this and in a very un-Apple way decided to fix the confusion over
offscreens by writing better code instead of writing bigger Inside
Macs. The improved offscreen support from Apple first appeared
with the 32-Bit QuickDraw extension and has been included in
every system version since 7.0. Apple combined all the graphic

109

110 ~Cf

port, graphic device, pixel map, and color table minutiae in one
cute little structure they called Graphic Worlds, or GWorlds for
short. GWorlds are amazing, they make your code simpler and yet
enable it to run faster.

Before you can run amok with GWorlds you need to understand
what the heck a GWorld is. Let's look at the Apple header QDOff
screen.h and see what the structure definition for a GWorld is.

/* Type definition of a GWorldPtr */
typedef CGrafPtr GWorldPtr;

Wow ... now that's a useful declaration. Glad I looked that up.
Apple views GWorlds as their private territory, so that you have no
need to know what is in a GWorld. Just pretend a GWorldPtr is
CGrafPtr, and nobody gets hurt. This data hiding prevents you and
I from messing with GWorlds in a way that will blow up in later
Apple system software. Hide the cookies and you remove the
temptation to eat the cookies. You can assume from the previous
chapters that a graphic world contains a graphic port, pixel map,
and graphic device and is very similar to the offscreen library you
built.

All manipulation of GWorlds is accomplished through Toolbox
calls. The main functions you will use with GWorlds are

+ NewGWorld

+ DisposeGWorld

+ UpdateGWorld

There are about a dozen lesser calls you will use when working
with GWorlds, but these three are the main ones you'll be using.
Let's go over each one and see what makes it tick.

QDErr NewGWorld(

11~ O/t~ 111

GWorldPtr *off screenGWorld,
short PixelDepth,
canst Rect *boundsRect,
CTabHandle cTable,
GDHandle aGDevice,
GWorldFlags flags);

A GWorld is created by calling NewGWorld and passing in the pa
rameters describing how you would like your GWorld to look. The
declaration is similar to the CreateOffscreen function in the off
screen library, and they should be similar since they do the same
thing. You'll need to see how the parameters interact with each
other to understand the call fully.

• offscreenGWorld This field is where the allocated and cor
rectly filled-in GWorldPtr will be if the function executes cleanly.

• PixelDepth A GWorld can have pixels that are 1,2,4,8,16, or
32 bits deep. You can also pass in a pixel depth of 0, which
should give you invisible pixels but doesn't. By passing a depth
of zero you are asking NewGWorld to create an offscreen with a
pixel depth that matches the deepest screen your GWorlds
bounds rectangle intersects. This is handy since most GWorlds
are created to shadow an on-screen window.

• boundsRect Establishes the size and the coordinate system of
theGWorld.

• cTable The color table you want the GWorld to copy and use.
If you pass a nil handle for the color table, a default color table
will be used that matches the requested pixel depth. If the re
quested pixel depth is 0 this field is ignored and the color table
of the intersecting screen will be used instead.

• aGDevice If you set the noNewDevice flag in the GWorld
Flags, this field will be used as the graphic device for the GWorld.
Most of the time you'll want to create a fresh graphic device for

112 ~4

your GWorld, so you can set this field to nil in those cases. Also if
you request a pixel depth of zero this field will be ignored.

+ flags The flags field can be set as a combination of four flags:
pixPurge, noNewDevice, keepLocal, and useTempMem. If
you set the pixPurge flag, your pixel image will be located in a
purgeable handle. If memory gets tight, your pixel image will be
purged from the heap. By setting noNewDevice a graphic device
will not be created as part of your GWorld. If using noNew-
Devi ce, make sure to pass in a graphic device for your offscreen
to use. If the keepLocal flag is set, the pixel image will be lo
cated in main memory and not in the onboard memory of a
graphics card. By setting this flag you give up one of the major
advantages of NewGWorld, which is its ability to use the memory
of a graphics card instead of main memory. Many display cards
can greatly increase the speed of QuickDraw operations when the
graphic world is located in the display card's memory space.
Having the graphic world memory sitting next to the display
hardware also means that the pixels will not have to be pushed
through the bus's bottleneck on their way to the screen, again im
proving the speed of QuickDraw. The useTempMem flag will ask
NewGWorld to allocate the graphic world from memory outside
of your application. This is handy if you need to create an off
screen that will only be used temporarily.

If NewGWorld is able to satisfy the memory demands of your
graphic world request, you'll be presented with an a no Err result
code and handed a brand-spanking-new GWorld to play with.

void DisposeGWorld(GWorldPtr offscreenGWorld);

When you're done abusing your GWorld, you will need to call
DisposeGWorld in order to release the memory allocated to the
GWorld. After freeing the GWorld, make sure you don't use that
GWorld reference again, otherwise you'll be knee-deep in bus errors.

GWorldFlags UpdateGWorld(

H~ott~ 113

GWorldPtr *off screenGWorld,
short pixelDepth,
const Rect *boundsRect,
CTabHandle cTable,
GDHandle aGDevice,
GWorldFlags flags) ;

In order to change an existing GWorld you can make a call to
UpdateGWorld with the new settings that you wish your GWorld
to adapt to. The parameters for UpdateGWorld are the same as
NewGWorld. Changes to your GWorld through UpdateGWorld

will not destroy the image in the GWorld, although the image may
be altered due to changes in pixel depth or color table changes.

UpdateGWorld accomplishes its task by duplicating your
GWorld, making the changes to the original and then copying the
pixels back to the original pixel image. When the pixel's depth or
color table is changed a pixel copy will then be performed. Keeping
this process in mind you can see that if you call Upda t eGWor 1 d

you'll need enough memory not only for your GWorld but also for
the scratch copy. This can add up to a lot of memory quickly, so be
prepared for this call to fail occasionally.

Graphic Worlds give you a convenient wrapper that encapsulates
GDevices, pixmaps, and color graphic ports all in one easy-to-use
APL Along with the convenience, GWorlds are your entry into
QuickDraw hardware accelerators. There's got to be a catch, right?
Heinlein was accurate about that free-lunch thing. The cost for this
lunch is lack of backward compatibility. The GWorld routines are
only in either the 32-Bit QuickDraw system extension or System 7.0
and beyond. If you wish your games to run on systems older than
these systems, you'll have to give up using GWorlds.

GWorld routines are well over five years old, and the majority
of people who would play your games will have them in their

114 ~4

ROMs. Keeping this in mind, we'll be using GWorlds for the rest of
the book.

Now that you can create, destroy, and adjust GWorlds at will, let's
find something fun to do with them. How about animating some
thing? Seems to fit this chapter. One of my favorite code anima
tions on the Mac is the original About Box for Lightspeed C (which
became Think C and then finally Symantec C++). In the Light
speed C's About Box you appeared to be flying through a star field
right out of Star Wars. After spending a few minutes being mes
merized by this effect, you would click in the About Box to close it.
Before the About Box would close you would get a hyperspace ef
fect like the one you see whenever the Millennium Falcon makes a
jump to hyperspace. This was a great About Box. I used to stare at
it while trying to determine why my code would not compile.
(While Lightspeed C had a great About Box, it had truly lame error
messages. Most of the time it would just say you had a "Syntax Er
ror" and give you the thrill of guessing of the hundreds of subtle
things you could have goofed up which one it did not wish to
compile.)

To demonstrate GWorlds in action, I thought you'd like to re
create this great moment in About Box History. On your disk you'll
find a project called "GWorld Fun." Run the built application.
You'll see a dialog box with flying stars. To end the demo, click the
mouse button. Before exiting, the program will jump to hyperspace
(the effect is increased greatly if you make whooshing sound ef
fects) and then quit.

This is a quick and dirty demo. Don't confuse it with a proper Mac
program. Any error in the program results in the program's quit
ting. No alert, no beeps, it just quits. With the recriminations out of
the way, let's tear into the code. Let's start with main().

~o.et~ 115

The first thing we do is initialize the Mac Toolbox. Next a dialog
window is created that is nicely centered on the main monitor. If
the dialog window creation was successful, a GWorld is created
that matches the size and pixel depth of the dialog window. To ac
complish this, the requested pixel depth to the NewGWorld call is
passed a zero. Which if you remember tells NewGWorld to create
an offscreen that is of the size of the passed-in bounds and is of the
pixel depth of the deepest monitor that the passed-in bounds inter
sects. For this to work correctly the bounds must be in global coor
dinates. The quickest way to get the dialog window's bounds into
global coordinates is to grab the bounding rectangle of the content
region of the window. This region is already in global coordinates
and saves you the trouble of translating coordinate spaces. By pass
ing nil for the color table, NewGWorld will use the color table of
whatever device it uses for the offscreen. When using zero as the
pixel depth, whatever GDevice you would pass in is promptly ig
nored by NewGWorld, so don't bother passing one. None of the
NewGWorld flags are used.

void main(void)
{

DialogPtr demoWindow;

InitToolbox();

II Center the demo window
HIG_PositionDialog('DLOG', 128);
demoWindow = GetNewDialog(128, nil, (WindowPtr)-lL);

if(demoWindow)
{

GWorldPtr
QDErr

starWorld;
err;

II Create a GWorld the size of the window and
II then depth of the screen the window occupies.

err = NewGWorld(&starWorld, 0,
& ((* * ((WindowPeek)

demoWindow)->contRgn) .rgnBBox),
ni 1 , nil , 0) ;

116 ~4

If the GWorld was created without any problems, the demo will
then copy the bounds of the dialog window into a globally accessi
ble rectangle that the rest of the animation code uses. Then the star
field is initialized by calling BuildStars (I love having function
names that resemble godlike powers-BuildStars, BuildMoon,
BuildGuilt). BuildStars just fills in the array of stars by giving each
star an initial random position in X, Y, Z space.

if(err == noErr)
{

long time;

II Set the bounds that the stars will
II exist in.
gStarBnds = demoWindow->portRect;

II Create a sky full of stars
BuildStars();

II Prepare the GWorld for QuickDraw

LockPixels(starWorld->portPixMap);
SetGWorld(starWorld,nil);

Now that the stars have been created, the GWorld is prepared
for future drawing by using LockPixels. Since you'll be using
LockPixels frequently in your game programming, let's take a
break from looking at the demo and examine LockPixels.

Boolean LockPixels(PixMapHandle pm);

When a pixel map is created the image buffer that the pixel map
owns is pointed at by a handle, not a pointer, as with a bitmap. Be
fore any drawing can take place in the pixel image, the handle to
the pixel image must be converted to a pointer. This is exactly what
LockPixels does. It locks the handle and then replaces the handle
reference in the pixel map with the direct pointer to the pixel im
age. Failure to call LockPixels will cause QuickDraw to think the
handle is a pointer. QuickDraw will dereference the handle only
once and will be pointing at a master pointer block and not the

pixel image. QuickDraw will then spray pixels all over this very
important Memory Manager structure. You might crash right away,
if you're lucky. If you're not so lucky, you won't crash until some
undetermined time in the future, and then you get to spend some
quality time with your debugger. I've been to this movie and you
won't like the ending. Always remember to call LockPixels before
drawing in your GWorld.

If you look at the LockPixels declaration you'll see that it re
turns a Boolean result. This Boolean result comes into use if you de
clared that the pixel image was purgeable when you created your
GWorld. If the pixels have been purged from memory, LockPixels
will return FALSE. You'll need to reallocate the pixels by either re
creating the GWorld or using UpdateGWorld. In the case of
"GWorld Fun" the GWorld was not created with purgeable pixels,
so the result from LockPixels can be safely ignored.

Now that the GWorld is prepared, let's move to impulse speed.
The star field is kept moving until the mouse button is clicked. Each
frame of the star field animation is built by calling CycleThru

Stars. CycleThruStars is called with a parameter of TRUE to make
sure the previously drawn stars are erased. CycleThruStars draws all
the stars into the offscreen area that was created with NewGWorld.

II Fly through the stars until the mouse is clicked
while(!Button())
{

}

II Create the next frame of the star animation,
II erasing all the previously drawn stars.
CycleThruStars(TRUE);

II Move the animation frame to the screen.
CopyBits((BitMap *) (*(starWorld->portPixMap)),

&(demoWindow)->portBits,
&demoWindow->portRect,
&demoWindow->portRect,
srcCopy, nil);

After CycleThruStars has finished creating the next frame of the
star field animation, CopyBits is called to move the offscreen anima-

118 ~4

tion frame to on-screen. Continuously repeating this cycle produces a
nice illusion that would even make Industrial Light and Magic proud.

After the user presses the mouse button, "GWorld Fun" makes
the jump to hyperspace or engages warp drive, depending on
which sci-fi religion you belong to. The hyperspace jump animation
uses the same code as the flying stars loop. The only difference is
that CycleThruStars is called with a FALSE parameter. By passing
FALSE, CycleThruStars does not erase the stars at their previous
positions. This produces trails of stars that resemble the hyperspace
effect from Star Wars.

time = TickCount() + kNumHyperTicks;
while(TickCount() < time)
{

II Create the next frame of the star animation,
II previously drawn stars are not erased
//producing a hyper space/warp effect.
CycleThruStars(FALSE);

II Move the animation frame to the screen
CopyBits((BitMap *) (*(starWorld->portPixMap)),

&(demoWindow)->portBits,
&demoWindow->portRect,
&demoWindow->portRect,
srcCopy, nil);

The hyperspace loop runs for a fixed length of time (four sec
onds) by setting the time in ticks. The loop is controlled by adding
how many ticks the hyperspace animation should run and then cy
cling through the hyperspace frames until TickCount returns that
the allotted amount of ticks have passed.

Now seems as good a time as any to explore just what a tick is
and why TickCount wants to count them.

unsigned long TickCount(void);

TickCount returns the number of ticks that have passed since
your Mac was turned on. A tick is equal to 1I60 of a second, or

~O{t~ 119

16.66 milliseconds for the electrical engineers among us. TickCount
gives game programmers an easy-to~use heartbeat that is precise
enough timing for most tasks. To time events with greater precision
than TickCount can provide, you'll need to look at the Time Man
ager. If you're requiring QuickTime for your game, you could use
the clock component to provide a high-precision timer.

To clean up after itself "GWorld Fun" first resets the pixel map
reference in the GWorld back to a handle by calling Unlock.Pixels.
After you let the pixels wander around, you tear down the GWorld
by calling DisposeGWorld. Finally, the dialog window is destroyed
with a call to DisposeDialog, and "GWorld Fun" is now done.

II Let the pixels wonder around
UnlockPixels{starWorld->portPixMap);

II Then free the graphic world
DisposeGWorld{starWorld);

DisposeDialog{demoWindow);
}

}

I first learned how to do a star field in an article in MacTutor (now
MacTech) by Mike Morton. The basic idea is that each star is repre
sented by an x, y, and z coordinate, where the z axis is considered
going into and coming out of the screen.

typedef struct
short x;
short y;
short z;

} Star, * StarPtr;

The stars are animated by reducing the z value, effectively mov
ing the star toward you. The 30 appearance of the star field is given
by mapping the x, y, and z position of each star to a two-dimensional

120 ~t,.

position in the window. The mapping transformation includes the
impact that perspective will have on the viewer. The perspective por
tion of the mapping is what provides the 3D-ness of the animation.
The mapping is done for each star in the star field by calling Map

StarToScreen with a pointer to the star to map. The star's on
screen position is returned as a QuickDraw Point.

Point MapStarToScreen(StarPtr star)

Point result;

result.h star->x * kProjectDistance I star->z +
gStarCenter.h;

result.v = star->y * kProjectDistance I star->z +
gStarCenter.v;

return result;

The two equations provide the perspective 3D mapping. For
more information on perspective mappings, check out any good
reference on 3D graphics. The constant kProjectDistance can be
thought of as the focal length of the camera the user is viewing the
star field through. Try changing this constant to see its impact on
the transformation.

Combining all of the above to produce an animation is the re
sponsibility of CycleThruStars. If the caller has asked CycleThru
Stars to erase the previous frame, the QuickDraw pen is reset to its
normal setting, then the entire offscreen is painted with black. The
pen pattern is set to white in preparation for drawing all the stars.

void CycleThruStars(Boolean eraseStars)
{

short i;

II Erase all the existing stars in the star field
if(eraseStars)
{

PenNormal();
PaintRect(&gStarBnds);

11~0/J~ 121

PenPat(&white);

for(i = O; i < kMaxNumberStars; i++)
{

Point screenPosition;

II Calculate where the star will move to
MoveTheStar(&gStars[i]);

II Now Draw the star in its new position
screenPosition = MapStarToScreen(&gStars[i]);
MoveTo (screenPosition.h, screenPosition.v);
LineTo (screenPosition.h, screenPosition.v);

The array of stars is indexed with each star's new position be
ing calculated and then projected onto the window. The star is ren
dered in the offscreen by first positioning QuickDraw's pen to the
star's position and then making a one-pixel white dot with a call to
LineTo. LineTo is passed the same coordinates as the MoveTo call,
which will produce a rectangle the size of the current pen. The pen
was set to 1v1 with the earlier call to PenNormal.

Morton's article showed how to produce the star field effect
without resorting to offscreen buffering. In fact the offscreen isn't
necessary to produce this effect at all. I only combined the star field
with the GWorlds to provide something a little more fun than
bouncing rectangles.

For Mac game animation you need two things: offscreen pixel
buffers and something to move those pixels around with. That
something is referred to as a blitter.

A blitter's purpose is to copy, or blit, pixels from one area of
memory to another place in memory. Usually the blitter takes pixels
from the offscreen buffers and moves them to the screen. Slitting
done rapidly enough produces animation.

122 ~4-

A blitter is either a piece of code or a hunk of dedicated hard
ware. Whether it's hardware or software, the blitter does the same
job-it move chunks of memory around. Hardware blitters just do
the job a lot faster than software blitters.

A blitter is the workhorse of any arcade game. All elements that
are moved or animated in an arcade game are done through the
blitter. The number of elements a game can animate on-screen at
once is tied directly to the horsepower of the blitter. The faster the
blitter, the more pixels it can move. The pixels can result in either
filling the screen with hundreds of tiny elements or just a few very
large elements. The tradeoff is between size and quantity. A game
like Lemmings requires a whole bunch of tiny elements animating
at once, while a game like Street Fighter II only has a few elements,
but those elements are huge compared to the diminutive lemmings.
A blitter will be tuned to provide better performance for the size of
elements the game will need to animate.

A blitter is responsible for how many and how large your game
elements can be. Tied in with size and quantity is frame rate. How
many frames per second your game animates at is a function of how
fast your blitter can move the game elements to their location from
offscreen to on-screen. A weak blitter combined with either too
many elements or elements that are too large will result in a low
frame rate. A low frame rate will result in jerky-looking animation
that translates into a hard-to-play arcade game. A good blitter won't
make for a great arcade game, but a bad blitter will help produce a
mediocre game. This section's goal is to help you avoid making
mediocre games and give you the first step in creating great games.

All right, so a blitter is the heart of any arcade game you write. But
what does it really do? A blitter copies a rectangular hunk of pixels
from one area of memory to another rectangular area of memory. To
see blitting in action on your Mac, grab a draggable window and
move it to a new location on the same monitor. When you release
the mouse button the pixel image on your screen that looks like
your window will be blitted to its new location. You just saw a soft
ware blitter in action.

Now, you might be wondering what's the difference between
blitting pixels around and a simple block move of memory that you
would perform with a call like BlockMove or memcpy. In a stan
dard block copy of memory the bytes copied are required to be se
quential in memory. Visually the memory looks like one long line of
bytes, with no gaps or jumps. A blitter copies rectangular chunks of
memory, where the address of each pixel is not necessarily sequen
tial to the previous or next pixel. This detail makes all the difference
between a block copy and a simple blit of pixels.

To illustrate a simple blitter, let's create one. Our blitter assumes
that it's copying 8 bits per pixel and that the pixels are arranged in
a chunky layout. This blitter is just for illustration purposes. Don't
use this blitter at home, kids.

124 ~4

BrainDeadBli t takes two pointers to pixel maps. The first
pixel map is where the source pixels are stored. The second
PixMapPtr is indicating where the pixels will be blitted to. The
third parameter is the rectangular bounds that will be cut (actually
copied) from the source to destination. The final rectangle indicates
where the pixels should be slammed. Even though the destination
location is described as a rectangle, only its top-left coordinate is
used.

Before the actual blitting is done, the base address of where the
pixels lie in each pixel map is copied to local variables. The same is
done with the pixel maps row Bytes field. Copying the data out of
the pixel map saves the code from having to retrieve these values
continuously inside the blitting loops.

After stashing away those values, the blitting starts. The first
blitting loop works down from the top of the source rectangle to the
bottom. Before the real blitting starts, you need a pointer to the first
pixel of the current source row. This pointer is found by starting
with the base address of the pixel image and finding how many
bytes to add to get to the current row. The current row that the
outer loop is on, times the number of bytes per row, added to the
base address will give you the starting address of the row. Adding
the left coordinate to the previous sum will get you to the address
of the first pixel you want to blit for this row. The same calculation
is done to find the address of the first pixel of the destination row.
Once the start of the source and destination are found, the blitting
starts. The innermost loop works from the left side of the source
bounds to the right side, blitting each pixel in between.

void BrainDeadBlit(PixMapPtr
PixMapPtr
Rect *
Rect *

char *
char *
short
short
short

srcAddr;
dstAddr;
srcRowbytes;
dstRowbytes;
row, pixel;

srcMap,
dstMap,
srcR,
dstR)

}

H~<J«~ 125

II Extract the start of the pixels out of the pixmap
srcAddr = srcMap->baseAddr;
dstAddr = dstMap->baseAddr;

II Extract the rowBytes out of the pixmap
srcRowbytes = srcMap->rowBytes & Ox3FFF;
dstRowbytes = dstMap->rowBytes & Ox3FFF;

for(row = srcR->top; row <= srcR->bottom; row++)
{

}

char *
char *

srcPtr;
dstPtr;

II Calculate the start of each row
srcPtr = srcAddr +

(row* srcRowbytes + srcR->left);

dstPtr dstAddr +
(row* dstRowbytes + dstR->left);

for(pixel = srcR->left;
pixel <= srcR->right;
pixel++)

*dstPtr++ = *srcPtr++;

Blitting as presented here seems pretty simplistic, and it is. As
long as you're willing to have a blitter that is as slow as MPW link
ing and that can only copy rectangular sections, then your blitter
will be simple. The hard part of writing a blitter is writing a fast one.

The Mac doesn't have a hardware blitter built into it, but it does
have one of the best general purpose software blitters ever. This
built-in blitter can copy pixels from anywhere to anywhere (lim
ited to memory locations). And the pixels can be stretched,
shrunk, colorized, dithered, quantized, or masked while being

126 ~lf

copied. Each of these effects can be done individually or, amaz
ingly enough, all at once. And what is the name of this wun
derkind function? CopyBits. Such a utilitarian name for such a
cool chunk of code is a shame; it should be called the WhizzoBlit
Banger or something that sounds like it has the fins of a '59 Cad
die. When the original version of CopyBits was written, one bit
was equal to one pixel; so copying bits was equal to copying pix
els, and the name has stuck even though it copies more bytes
than bits.

void CopyBits(const BitMap *srcBits,
const BitMap *dstBits,
const Rect *srcRect,
const Rect *dstRect,
short mode,
RgnHandle maskRgn) ;

The first two parameters to pass to CopyBits are pointers to the
bitmaps where the pixels start and where you want them to go. In
order to use pixel maps you'll need to cast a pointer to a PixMap as
a pointer to a bitmap. CopyBits will look at the row Bytes field of
the passed pointer to determine if you have passed it a pointer to a
bitmap or one pointing at a pixel map.

The next two parameters describe the bounds of the pixels that
CopyBits should blit. If the rectangles are the same size you'll get a
straight pixel copy (at least the pixels won't change size); otherwise
CopyBits will stretch or shrink the pixels to fit the destination
bounds.

The mode parameter allows you to set the logical operation
CopyBits will perform when transferring the pixels. Most of the
time you'll pass the constants srcCopy as your mode of choice.
This mode asks CopyBits to just copy the pixels and not do any
thing fancy. With other mode settings you can have CopyBits per
form various logical operations that produce a resultant pixel that
is a combination of the source and destination pixel. The resultant
pixel will replace the destination pixel.

The final parameter can be a region handle that will be used as a
filter for which pixels should be transferred. Pixels in the source that

~oet~ 121

lie within the region bounds will be copied. Pass nil to indicate to
CopyBits that you wish to have all your pixels transferred without
any clipping.

Several QuickDraw settings external to the parameters you pass
control how CopyBits will move your pixels. If the destination pixel
map is part of a graphics port, CopyBits will clip the pixels to the
intersection of the content region and the visible region. By setting
the foreground color and background color of the destination port
to other than black and white, you can colorize your pixel map like
you're Ted Turner.

Wt4 All 1)-o# C.CN-~ 1)-o?

Looking at the prototype for CopyBits can fool you. It looks like a
straightforward Toolbox call. Hah, CopyBits has options like a '59
Caddie has chrome. The only Toolbox call more mysterious is
Munger, and at least it has the good sense to have a name that
sounds strange. By changing just one parameter (heck, it doesn't
even have to be a parameter, you can change something in the
graphic port), you can get your pixels to do some strange and won
derful things. Occasionally those things are even what you ex
pected. Enough complaining, let's go over the various incantations
you can make with CopyBits.

By carefully setting the ratio of the source rectangle and destina
tion rectangle, you can have CopyBits scale your image as it copies
it. CopyBits is capable of shrinking the image in one direction
while at the same time stretching it in the other direction. When
CopyBits scales the pixels it does so with no filtering, which results
in the image becoming blocky when it is scaled up and looking
pixelly when it is shrunk. This aliasing of the imaging during the
transfer is fine for games and you shouldn't worry about it, but
you shouldn't be using CopyBits as a replacement for the scale
function in PhotoShop.

128 ~4

SetRect(&sourceRect, 0, 0, 16, 16);
SetRect(&destinationRect, 0, 0, 32, 32);

CopyBits(srcBitsPtr, &thePort->portBits,
&sourceRect,
&destinationRect,
srcCopy, nil);

In this code snippet the destination rectangle is twice as large as
the source. The resultant image will be enlarged twice its original
size through the call to CopyBits.

By changing the mode parameter to CopyBits you can get your pix
els to combine with the destination pixels in useful and sometimes
very strange ways.

Classic QuickDraw defined the original eight transfer modes:
srcCopy, srcOr, srcXor, srcBic, notSrcCopy, notSrcOr, notSrcXor, not
SrcBic. Color QuickDraw added nine more transfer modes for
working with color pixels; addOver, addPin, subOver, subPin, ad
Max, adMin, blend, transparent, hilite.

Each of the transfer modes is a logical operation that Quick
Draw will perform on each pixel as it copies them. Of the original
eight transfer modes, the ones used the most in game programming
are srcCopy, srcOr, and srcXor. The rest are used in rare circum
stances. The color modes are fairly esoteric and not used that much
in game programming. For a good discussion of transfer modes
and some really nice color plates, look at Inside Mac, volume VI.

To clip your transferred pixel to some arbitrary shape other than a
rectangle, you can pass a region describing the shape. The region
can come from either the standard OpenRgn-CloseRgn construct
or from the nifty BitMapToRegion function. The region is applied
to the pixels after any scaling or stretching is performed, so don't
expect the region to adjust to match the destination rectangle. If

H~O({~ 129

that's what you want, you can use the MapRgn call before calling
Copy Bits.

When Color QuickDraw was introduced, the Mac Toolbox pro
vided a neat hack that allowed for CopyBits to colorize black-and
white bitmaps as they were copied. To perform this Tumeresque
magic you set the foreground and background colors of the destina
tion graphics port to the colors you would like the bitmap to be
converted to. Black pixels in the source bitmap are changed to the
foreground color, and likewise the white pixels are altered to match
the background color. CopyBits performs the following mapping
using the table indices of the colors, not the RGB values.

src = color table index of source pixel
fg = color table index of foreground color
bg = color table index of background color

FinalPixelValue = (-(src) & bg) I (src & fg)

The mapping that CopyBits performs indicates several restric
tions on what can be colorized. Your source bit map must be black
and white; shades of gray don't count. The first and last entry in the
source color table must be black and white, respectively. Your
source and destination must be using indexed colors. Failure to
meet these prerequisites will result in some very strange results,
neither predictable nor useful. In game programming the colorizing
is rarely used intentionally. Usually it's the result of forgetting to re
store the foreground and background colors before performing a
Copy Bits.

1)~ C-o-M'~,,...

If the pixel depth of the source pixel map doesn't match the destina
tion pixel map's depth, CopyBits will convert each pixel from the
source depth to the proper depth in destination. While in normal ap
plication programming this feature of CopyBits is convenient, in

130 ~4-

game programming you'll go to great lengths to insure that CopyBits
is not put in the position of having to perform a depth conversion.

Along with 32-Bit QuickDraw's other goodies, Apple created the
di therCopy transfer mode. This transfer mode can be added to
any other mode you are using with CopyBits: srcCopy + dither
Copy. With the ditherCopy transfer addition enabled, CopyBits will
dither (or error-diffuse, for you graphic heads) the source pixel onto
the background. By using dithering you can get more apparent
color depth than the destination truly has. Like depth conversion,
dithering is a useful adjunct for application programs but not that
useful for game programming because of its need to chew on the
pixels for extended periods of time.

The one reason some games use the dither mode is to achieve a
cheap alternative to anti-aliasing text. If you image the text in an
offscreen that is four times larger than the destination and render
the text at four times the wanted size, you can then Copy Bits the
text on-screen using ditherCopy and get a good approximation of
anti-aliased (otherwise know as fuzzy) text. This trick is good for
making professional-looking About Boxes.

Before we move on, let's look at a few things Copy Bits does that
might not seem obvious but are useful to know about. One of the
neater things CopyBits does that I've always found impressive is it
allows you to have the source and destination rectangles of the blit
overlap. To appreciate this feature take a few hours or weeks and
try to write a fast blitter that allows overlapping source and desti
nation. If you're ever feeling really impressed with yourself as a
programmer, give it a shot. It'll give you a new appreciation of the
programmers at Apple.

CopyBits is also capable of blitting with one call a pixel image
that spans across several monitors. This can be real handy and an
other feature of CopyBits that would be an effort to duplicate.

M~O{(~ 131

The last bit of minutiae about CopyBits is that it is the one call
that any QuickDraw accelerator card is guaranteed to speed up.
CopyBits is used by so many programs that by accelerating this one
call an accelerator board will improve almost any program on the
Mac. The impact this has on Mac game programming is that if a sys
tem has a QuickDraw accelerator, using CopyBits will almost always
be faster than any blitter you could write. No matter how good a pro
grammer you are, it's hard to beat well-designed hardware.

If you've ever spent any time talking to Mac game programmers,
you could get the idea that CopyBits is a barely able to run, let
alone be the main engine for an arcade game. With all the knowl
edge about CopyBits you now possess, you would chalk up all this
CopyBits bashing as a case of NIH syndrome (NIH: not invented
here, a derisive term applied to all software not invented by you or
your company, on the idea that if you didn't write the code, then
the code must be inferior). Before you go defending the good code
from Cupertino, you need to step back and see that for games in
volving screenfuls of animation CopyBits might not be the best
choice as an animation engine. Heresy, say you. Not, say I. Copy
Bits, in its never-ending drive to be the Vegematic™ of blitters,
gives up speed for generality.

When programming Mac arcade games it's accepted form to
force the user into using a fixed number of colors and only one
monitor. By enforcing these restrictions on the user, the program
mer gains a known graphic environment. It's this foreknowledge
that lets you easily write a blitter that is faster than CopyBits. Copy
Bits won't be aware of the restrictions you've placed on the user,
and it has to perform a multitude of checks before it finally begins
slamming pixels around. Your blitter on the other hand can skip all
those checks and start blasting bits right away.

The speed advantage your blitter will have is that you get to
start blitting while CopyBits is still figuring out what and where to
blit. Once CopyBits has these details in hand it can kick into high
gear. Given this insight into CopyBits, you can see that it would

132 ~4-

probably be roughly the same speed as your blitter for moving large
areas of pixels. But CopyBits' initial overhead makes it a bad choice
for moving a large number of small areas of pixels. Now what's in
most Mac arcade games? Usually lots of areas of small pixels.

However, before you leap into writing your own blitter for your
game, make sure that CopyBits is not cut out for the job. No point
in reinventing the wheel if you can borrow your neighbor's.

A straight blitter like Copy Bits only copies rectangular chunks of
pixels. Now, this limitation is all right if your game consists of
nothing but animating bricks. But for most games you'll be ani
mating elements that are more complex than squares. The tech
nique for copying nonrectangular pixel areas is referred to as
masked blitting.

Using a mask while blitting allows you to place a pixel image on
screen without destroying the background. Using CopyBits to
transfer the pixel image without some form of masking will result
in part of the background being obliterated (see Figure 4-1). To rid
yourself of this unsightly background destruction, you need to
implement one of the several methods of masking your blits.

+

Figure 4-1. CopyBits() with a mask

If you've ever watched one of those Making of Star Wars/Star
Trek/Superman or any special-effects extravaganza, you have seen

H-c~Ott~ 133

masking in action. Anytime the Starship Enterprise flies, its flight is
assisted by a mask, or a flying matte, as it's called in these specials.
The mask is used to mask out the area of the background where the
Starship will be dropped in place. The same general idea is used
with a blitter. The mask is a data structure that tells the blitter
which bits of the source image should be copied and which pixels
to ignore. Generally, the mask for a blitter is a 1-bit-deep shadow of
the pixel image where the black pixels represent the pixels of the
source image that the blitter needs to copy. Anywhere there is a
white pixel in the mask, the blitter will not transfer the correspond
ing source pixel (see Figure 4-2).

Figure 4-2. A pixel blit using a mask

Masking not only stops you from destroying the background but
also enables you to have several overlapping elements on the screen
at one time. There are very few games you could design that would
avoid the elements' overlapping one another at some point. And even
if you could design a game without overlapping shapes, it would
probably be boring. Tetris, of course, is the exception that proves the
rule. Using a mask also allows your game elements to be any conceiv
able shape. Even ones with holes. With one mask you can create a
game element that can preserve the background, overlap other shapes
politely, and appear transparent in areas (see Figure 4-3).

0
Figure 4-3. Slitting a source image with a hole

134 ~Cf

The traditional method of implementing a masked blitter is to have
each pixel in the source image perform the following logical opera
tions. First, the mask is used to punch a hole in the background
where the source image will go, using the logical Or operator. Then
the source image is combined with the mask/background combina
tion through the logical And operator. The result is a masked pixel
on-screen.

II source & (mask I background)

II First mask or'ed with the background
CopyBits(maskBits, backgndBits,

&bounds, &bounds,
srcOr, nil);

II Now that a hole has been punched out
II add in the element
CopyBits(sourceBits, backgndBits,

&bounds, &bounds,
srcAnd, nil) ;

CopyBits can perform a masked blit by breaking up the blit into
two steps and taking advantage of the transfer modes. Beyond the
two steps and some source pixels to copy, you will need a bitmap
that provides the matching mask. Following the magic formula, the
mask bitmap is combined with the background using CopyBits'
srcOr transfer mode. After the hole has been punched out with the
mask, the source pixels are cut into place with the srcAnd transfer
mode.

Using CopyBits in a two-step process for your game blitter has
a couple of holes in it. The first one is that if CopyBits' blit is per
formed on-screen with large enough pixel areas, the two separate
CopyBits operations will be visible. If the player can see your blit
ting in progress, it diminishes the suspension of disbelief. Plus, it
just looks bad. The second problem is a performance issue. One call
to Copy Bits can be expensive in processor time, and two such calls
can be exorbitant. If in analyzing your blitting needs neither of
these hindrances is an obstacle, then go ahead and use CopyBits

~O{(~ 135

and forget about using a custom blitter. You don't need a chain saw
just to cut butter.

Luckily, if it does look like you need a chain saw, the Mac Tool
box has a few buried in the ROM that you can test out before build
ing your own.

Within the Mac ROM is a simple blitter that supports using a sepa
rate bitmap I pixmap to mask the pixel copying. The Mac function
CopyMask was introduced in the Mac Plus and System
3.something.

void CopyMask(const BitMap * srcBits,
canst BitMap * maskBits,
canst BitMap * dstBits,
canst Rect * srcRect,
canst Re ct * maskRect,
canst Rect * dstRect);

At the time of CopyMask's introduction, Color QuickDraw was
just a gleam in some Apple programmer's eye. That meant bitmaps
were the only pixel structures around at the time to be copied and
masked. With the introduction of Color QuickDraw, CopyMask
was altered to work with color pixmaps.

As with CopyBi ts, CopyMask takes a source and destination
bitmap pointer. It can be a real bitmap pointer, a pixel map pointer
masquerading as a bitmap pointer, or a pointer to a graphics port.

The mask that filters out the unwanted pixels is a bitmap or a
pixmap. Either is passed as a pointer to a bitmap. Normally in
game programming you'll just use a bitmap as the mask. With a
bitmap as a mask CopyMask will only copy pixels from the source
pixel image where the mask has black pixels.

If the mask is a pixel map of a depth greater than 1 bit, Copy
Mask will transfer the source pixel if the mask pixel is black and
leave the destination pixel alone if the mask is white. Any other
color in the mask will generate an output pixel that is a weighted

136 ~Cf

average between the source and destination pixels. The weighting
is done using the color components of the pixels and the mask ac
cording to the formula

(mask - 1) * source + mask * destination

While the blending effects that can be produced using a color
mask can be spectacular, speedy they are not. For game program
ming stick with 1 bit black-and-white masks.

The source and destination bounds of the pixel copy are passed
as rectangle pointers. The rectangle that defines the mask bounds
needs to be the same size as the source rectangle. Again as with
CopyBi ts, you can scale the image as it is copied by setting the
source and destination rectangles to the correct ratio. If you do scale
the image, make sure you adjust the mask rectangle to match the
source rectangle-or suffer the debugging consequences.

Sometime during the development of 32-Bit QuickDraw, an Apple
engineer was struck with the idea of combining CopyBi ts and
CopyMask.

From CopyBi ts the transfer mode and region mask were
grafted onto the end of the parameter list for CopyMask, giving the
world CopyDeepMask.

void CopyDeepMask(const BitMap *srcBits,
const BitMap *maskBits,
const BitMap *dstBits,
const Rect *srcRect,
const Rect *maskRect,
const Rect *dstRect,
short mode,
RgnHandle maskRgn);

The number of ways you can muck with pixel maps using
CopyDeepMask is a really big number, and none of them are of any
use for game programming. They're great if you're writing the next

~O(t~ 137

PhotoShop, but not an arcade game. For blitting stick with the sim
pler CopyBi ts or CopyMask.

In order to use either CopyBi ts or CopyMask as your game's ani
mation engine, you'll need to squeeze out every drop of perfor
mance from them. By setting some parameters in one manner you
can get monstrous gains in blitting speed; tweak the same parame
ters in a different way and you'll be able to watch each pixel draw
on-screen. Understanding how these two traps work will give you
the insight needed to push the blitting envelope.

The key to achieving the maximum speed with CopyBi ts is un
derstanding CopyBi ts. You must become one with CopyBi ts.
Think like a bit, be a bit. Or you could skip the Zen portion of the
lesson and look at the nifty flowchart (Figure 4-4) that describes the
steps CopyBi ts can pass through on the way to putting pixels on
your screen.

Looking at the flowchart you can see that the path to speed is to
bypass all those darn steps that the flowchart shows. Your goal in
using CopyBi ts is to try to get to the "transfer" step directly, skip
ping all the other time-consuming steps in between.

To paraphrase Lord Kelvin, "To understand CopyBits you
must measure Copy Bi ts." In following Lord Kelvin's advice I've
measured how long it takes CopyBi ts to get through its various
machinations. With these timings you can see how certain optimiza
tions can dramatically improve the blitting speed of CopyBi ts.

The timings for CopyBi ts were carried out on my Quadra 700,
running System 7.1.1. The QuickDraw version is listed as 2.30. All
tests were performed with the monitors set to 8 bits per pixel.

The benchmark consisted of timing CopyBi ts as it copies a
chunk of pixels 256 v 256. This blit is performed 100 times for each
test with the results measured in ticks.

138 ~4

,. ~

\~
(~;~~· :;~--
~ ~

Current port \~\
foreground and • Co)'ze...)
background colors

Current port r ~. £ Mask region
vi~Rgn and ../""\ \ __::: ~
cllpRgn '~- _ ,

,. ... \
Transfer mod~\ Transfer \

Current graphic ~
device invvrse table " . ~,
and search proc F Dei co~

Resulting pixel map
....--~~~.....:....~~~~

Figure 4-4. CopyBits flowchart

H~OIJ~ 139

To normalize the results of the tests, a straight memory copy of
the same number bytes as CopyBi ts will have to blit (256 v 256, or
65,536 bytes) is performed using Block.Move. The Block.Move
function is used to establish how fast a perfect blitter could move
the pixels. On my system Block.Move is able to transfer 65,536
bytes 100 times in 28 ticks. Not bad for a machine that has been
rode hard and put up wet too many times.

The perfect blitter can move the test chunk 100 times in 28 ticks,
but how does a straight CopyBi ts fare? Using a straight Copy-
Bi ts, my machine can copy the test pixel image 100 times in 95
ticks. The straight CopyBi ts copies from an offscreen GWorld to
on-screen with no scaling, a transfer mode of srcCopy, and passing
nil for the masking region. The offscreen GWorld uses the screens
GDevice for its color table and has the same pixel depth as the
screen, 8 bits per pixel.

Now that a baseline measurement has been established, you can
see how the various optimizations to CopyBi ts impact its blitting
performance. First, let's examine the trivial ways to increase Copy
Bi ts ' performance.

The easiest way to accelerate CopyBi ts is to reduce the number of
pixels it has to haul around. In my test I reduced the offscreen and
on-screen bounds by half, leaving a blitting bounds of 128 v 128 pix
els. With these smaller bounds a straight CopyBi ts executed 100
times in 39 ticks. Interesting that copying quarter of the pixels was
done in 41 percent of the time as the baseline CopyBi ts. The re
sults of this test can be placed in the excruciatingly obvious cate
gory. It doesn't take a rocket scientist to figure out that how many
pixels CopyBi ts has to copy is proportional to how long it takes to
copy the pixels. But you never know if you don't measure.

If you remember the code for the trivial blitter that was pre
sented earlier, you might be able to predict that CopyBi ts' blitting
of a bounds that is wider will be faster than its blitting of one that is
taller. The theory is that CopyBi ts will spend less time figuring
out where the next row starts and more time copying the pixels in a

140 ~4

row. To test this theory I altered my test to copy a rectangle that is
four times as wide as high, 512 wide by 128 high in this case. The
same number of pixels will be copied, just a fewer number of rows.
The test produced a result of 93 ticks to copy the wider image 100
times. Not much of an improvement, but faster is faster.

Conclusion? You can speed up CopyBi ts by reducing the
number of pixels it has to copy or by making sure those pixels are
contained in as few as rows as possible.

The next obvious way to increase the speed of CopyBi ts is to
move fewer bytes. Reducing the bounds reduces the number of pix
els to be copied, which reduces the number of bytes. Likewise, re
ducing the pixel depth reduces the number of bytes to copy. A test
using an offscreen at 4 bits per pixel blitting to the screen at a
matching pixel depth results in a timing of 63 ticks. Halving the
bytes does not result in halving the time. This is because CopyBi ts

has to deal with partial bytes. Processors hate dealing with partial
bytes, and they vent their aggressions by slowing CopyBi ts down.
Still, reducing the pixel depth does reduce the time, although the
reduction might not be directly linear.

A pixel depth of less than eight is used primarily in games that
need to move screenfuls of data at once, such as scrolling platform
games or flight simulators.

Now that we've explored the obvious ways to help out CopyBi ts,
it's time to look into the more subtle factors that affect CopyBi ts'

performance. The first one you'll examine is the impact of clipping.
Looking at the Clipping stage in the CopyBi ts flowchart, you

can see that clipping is only involved when CopyBi ts is moving
the pixels to a graphics port on-screen or when a mask region was
passed in as the last parameter.

In the first case the clipping is done with the visible region and
the clip region of the current graphics port. This clipping only affects

~ott~ 141

CopyBi ts when it's moving pixels to a port on~screen. Like any
other call to QuickDraw, the results are clipped to the intersection of
the visible region (visRgn) and the port's clipping region (clipRgn).

The second clipping situation arises when CopyBi ts is passed
in a mask region. A mask region given to CopyBi ts will mask or
clip any pixels that don't lie within the masking region. If the blitter
is moving pixels to a port on-screen, the final clipping region will
be an intersection of the clip region, the visible region, and the
mask region.

To measure the speed of CopyBi ts when using regions, the
benchmark creates a mask region that inscribes the pixel bounds of
the blit. One hundred CopyBi ts operations with this mask results
in a timing of 111 ticks. Not bad, a paltry 15 percent increase in time
with a good-sized mask. CopyBi ts never ceases to amaze me.

A region is an arbitrarily complex shape that impacts the speed
of CopyBi ts directly in proportion to the region's complexity. I de
fine a complex region as one that is not made up of strictly horizon
tal and vertical edges. A circular region qualifies by my definition
as a complex region, but let's see how CopyBi ts does with a
doozy of a mask region (Figure 4-5).

Using the doozy region as a mask for CopyBi ts gives a time of
153 ticks. Still dam respectable given the region CopyBi ts has to
struggle with.

Conclusion? To reduce CopyBi ts' clipping effort, don't pass in
a mask region. And if you must pass in a mask region, pass in a
simple one. Controlling the dipping when it comes to the graphic
port's region gets a little more complicated. Well, slightly more
complicated, since when you have control of the clip region of the
graphic port you can just set it to match the bounds of the port, ef
fectively removing it from the clipping equation. That leaves the
visible region of the port. Inside Mac warns you repeatedly not to
mess with the visRgn-that would be bad. To remove the visible re
gion as easily as the clipping region you have to understand how
the visible region is changed by the Mac.

The visible region of a port defines the area of the port that is
visible on-screen. When you move one window partially in front of
another window, the visible region of the lower window is altered

142 ~4

Figure 4-5. A doozy of a mask region

to remove the area where the upper window intersects the port.
Knowing this, the answer is simple: make sure the window that is
the destination of the CopyBi ts is the topmost window and is not
overlapped by any other windows. Then the visible region will co
incide with the port bounds and CopyBi ts will be free to start
slamming pixels around with minimal hindrance from clipping.

Forcing a window to be topmost and not overlap any other
window would be difficult to do in a normal Mac application. Your
users wouldn't stand for it. Luckily, this same restriction is widely
accepted as the norm for games on the Mac.

The last stage of CopyBi ts before the pixels appear on-screen is to
map the colors from the source color table to the destination color

~ott~ 143

table. This is a very costly operation. Using CopyBi ts to copy from
an offscreen with a different color table than the one the screen uses
results in a timing of 228 ticks. From 95 ticks to 228 is a big decline
in blitting performance and one to be avoided.

If the color tables of the source and destination pixel maps don't
match, CopyBi ts has to color map each pixel from the source color
environment to the destination. To color map one pixel CopyBi ts
first converts the index value of the pixel to an RGBColor structure
using a process similar to the one used by Index2Color. After get
ting the source pixel as an RGBColor structure, CopyBi ts then finds
the index of the destination color table that belongs to the current
graphics device, coming closest to the matching source color. This
RGB to index is done through the Toolbox function Color2 Index.
The Index2Color, Color2Index process is done for each and
every pixel CopyBi ts is asked to copy. Sounds slow. It is. Avoid it.

The secret to avoiding color mapping is not to have any colors in
your offscreen color table that are different than the colors in the
color table that the current GDevice owns. Plus, you need to tell
CopyBi ts that the two color tables are the same and that color map
ping would be a waste of your precious time. CopyBi ts determines
that two color tables are different by checking the ctSeed field of the
color tables. If the ctSeeds of both tables match, CopyBi ts assumes
that the colors in them are the same, skips the color mapping, and
jumps right to the pixel-blasting stage. If the ctSeeds don't match,
CopyBi ts scans each color in the source color table, checking to see
if the color matches the one in the destination color table. If each
color has a matching color in the destination table, CopyBi ts is
again free to start transferring pixels in overdrive without worrying
about mismatching the colors. If both tests fail, CopyBi ts starts the
laborious process of color mapping each pixel as it is copied.

Color mapping within CopyBi ts is only a problem with indi
rect pixel maps. Pixels in a direct color pixel map are transferred by
CopyBi ts without interference from any color mapping. Too bad
direct color maps are so dam big and slow. They would save you
the worry that color mapping will slow down your game. Conclu
sion? Make sure the colors in your offscreens match the colors used
by the current GDevice. And don't forget to tell CopyBits about

144 ~f.f

all the trouble you went to by setting the ctSeeds of all the color ta
bles to the same value. The easiest way to assure that all the color
tables are set correctly is to use the GWorld routines and let them
worry about it.

A separate stage from color mapping is CopyBi ts ' colorizing step.
Right before the clipping stage, CopyBi ts checks the foreground
and background color of the current graphics port. If the fore
ground and background are not black and white, CopyBi ts fig
ures you want to colorize the pixels as they are copied and that you
are not in a hurry about it. In the CopyBi ts test with the fore
ground color to red and background set to blue, the 100 times loop
takes 241 ticks.

Colorizing usually happens in a game as a bug. You set the fore
ground or background color in order to draw in to the game win
dow (drawing the current score for example) and forget to restore
the foreground and background to black and white when you're
done. The next thing you know your next call to CopyBi ts
screeches into slow-mo.

It's obvious that scaling the pixel image through CopyBi ts is a
sure path to glacial game performance. But it's that path that's often
taken. The situation I'm referring to is where you have an "off by
one" error in your code that calculates the source or destination rec
tangles. This error is not always visible but has a dramatic impact
on performance. So if your game is running sluggishly and every
thing else seems sane, verify the blitting bounds. You won't be the
first person to be snagged by this problem.

The table lists the timings for copying the standard block of pixels
with each of the transfer modes that CopyBi ts supports. If you

ever have a thought about using one of the transfer modes within
your core animation engine, Table 4-1 will quickly chase that dan
gerous thought out of your head.

Table 4-1. Transfer Modes Timings

srcCopy 95 notSrcOr 383 subOver 926

srcOr 111 notSrcBic 382 sub Pin 1087

srcBic 202 notSrcXor 210 ad Max 1064

srcXor 217 addOver 928 ad Min 1005

notSrcCopy 681 add Pin 1026 blend 1747

The blend transfer mode takes 1,747 ticks, close to five seconds.
Yikes, that would be one slow blit. You could hand-draw each pixel
on the screen faster than CopyBi ts performing a blend.

Conclusion? Easy. Transfer modes are evil. Don't use them in
anything that you want to happen in your lifetime.

When working with a processor such as the Motorola 68020 and
above, you need to keep in mind how data moves in and out of
the processor. The processor wants to munch on the data in four
byte gulps, with these gulps starting on long word boundaries. If
the data being moved is smaller than four bytes, the processor
has to shift out of its natural stride to handle the smaller parts of
data. This shifting in and out of high gear results in a speed
reduction.

By forcing your pixel maps to lie on long word boundaries,
you'll get another increase in CopyBi ts' speed. The straight
CopyBi ts test altered for long word alignment gives a timing of 58
ticks for the 100-count loop. That's a mammoth increase in speed
for being a little more careful about how the row Bytes is calculated.

You don't even have to be that careful. Pass NewGWorld with a
pixel depth of zero and NewGWorld will hand you back a GWorld
with long word alignment.

146 ~4

Conclusion? Make sure your pixel data is long word aligned.
You'll have to look hard to find an optimization that almost doubles
CopyBi ts' speed that is as cheap as long word alignment.

If you follow all the performance suggestions in this section, you'll
reduce the stages CopyBi ts has to pass through down to two, clip
ping and transferring of the pixels. You can't get rid of the transfer
stage-well, you could, but then why use CopyBi ts when a NOP
will work? That leaves the clipping stage. As long as you're moving
the pixels to a position on-screen, you're stuck with that stage and
the best you can do is reduce the amount of clipping to be done.

Now, if you aren't moving the pixels to a position on-screen,
you're talking a whole new ball game. Without clipping to worry
about, CopyBi ts can leap right to the transfer stage. How new is
the ball game for a pixel map to pixel map transfer? I altered the
standard test to copy from one offscreen to another offscreen. Trans
ferring the pixels from the two maps 100 times with CopyBi ts
gave a timing of 39 ticks.

Conclusion? Removing clipping gives back a huge increase,
right? Not quite. This statistic can be misleading. The speed in
crease is due more to where the pixel images exist in memory than
to avoiding the clipping stage. The next section goes into more de
tail on the memory differences. For now, chalk up a slight increase
in performance to the removal of the clipping stage and read on to
find out where the rest of the time went.

Want an easy way to speed up CopyBi ts with no work on your
part? Convince your players to buy faster Macs. The odds of that
occurring are slim unless you're writing games for Microsoft. An
other way to faster hardware is to find some that is faster that al
ready exists in your players' machines.

To prove this nebulous point I altered my tests to use the built
in video instead of my video display card (see Table 4-2). Results?

H~ott~ 147

Table 4-2. NuBus Card versus Built-in Video

Macintosh
Radius Quadra Built-in

CopyBits Option DirectColor/GX Video

Normal CopyBits 95 46

Aligned CopyBits 58 36

Half-Size CopyBits 39 14

Wider CopyBits 94 46

Region CopyBits 217 67

srcOr 111 114

srcBic 202 107

srcXor 217 112

notSrcCopy 681 595

notSrcOr 383 152

notSrcBic 382 155

notSrcXor 210 112

add Over 928 806

add Pin 1026 900

subOver 926 804

sub Pin 1087 969

ad Max 1064 941

adMin 1005 888

blend 1747 1628

Colorize 241 224

Different Color Table 228 211

GWorld To GWorld 39 39

Dramatic: the straight CopyBi ts test that took 95 ticks with the
display card timed out to a scant 46 ticks with the built-in video.
The long word aligned test dropped from 58 to 36 ticks. Almost
doubling the speed of CopyBi ts without having to upgrade the
hardware is a pleasant surprise.

148 ~c,.

When CopyBi ts is transferring pixels to video RAM on my
display card, it has to move that data across NuBus. The NuBus is
clocked at 16 Mhz and has a top transfer rate of 10 megabytes per
second. When the first Mac II was designed the NuBus specifica
tion was an ideal match for the 16 Mhz 68020. The trouble began
when Motorola started producing faster processors. What once
was a nicely balanced design began to suffer from I/ 0
bottlenecks.

My Quadra 700 has a 25 MHz '040 that is still tied to that same
old NuBus. So whenever CopyBits has to move pixels over to my
NuBus video card, the processor is kept waiting until NuBus has
transferred the data. The built-in video of my Quadra 700 is not lo
cated on a NuBus slot and does not suffer for its sins. When Copy

Bi ts directs its attention to the built-in video, it can do so at the
full bandwidth the processor is capable of.

Your players might not have built-in video, but they might
have invested in a QuickDraw acceleration card. These NuBus
display cards are intended to off-load the processor from having
to perform all the graphics grunt work and shift that work load
to dedicated processors on the display card. The work load shift
ing has three benefits: first, the main processor has more time to
do other nongraphic operations, like play sounds. Second, the
dedicated silicon is usually faster at graphic operations than the
general purpose processor it replaces. And last, most accelerators
cache the pixel data on the display card in order to avoid the
NuBus bottleneck.

Conclusion? You need to test CopyBi ts against whatever blit
ter you might have concocted. On some of your players' systems
your custom blitter might easily be outperformed by the built-in
hardware. Plus, if your users paid for the hardware, you should be
nice enough to use it.

In an attempt to sum up, let's go over the care and feeding of
CopyBi ts to insure blissful blitting.

• Minimize the number of pixels copied

• Minimize the pixel depth

• Minimize the amount of clipping

• Match color tables and ctSeeds

• Avoid scaling

• Avoid transfer modes-they are evil

• Take advantage of long word alignment

+ Time CopyBi ts to maximize hardware

• Do not feed after midnight

+ Keep away from water

H~O{,(~ 149

Increasing the performance of CopyMask should be relatively easy
given that CopyMask is a close cousin of CopyBi ts. All the tips
and tricks used for CopyBi ts can be used with CopyMask.

The flowchart of CopyMask (Figure 4-6) adds a new step:
"Combine with mask." In this step the destination pixels are deter
mined from the intersection of the mask, the destination pixels, and
the output of the scaling stage. The output from the mask stage is
passed along to the clipping stage, and processing continues ex
actly as in CopyBi ts.

The same test that was used for testing CopyBi ts' masking ca
pabilities-masking out a circle that inscribes the bounds-is used
to test CopyMask. Instead of a region, a 1-bit-deep offscreen with a
black circle painted inside is used as the mask passed to Copy
Mask. As with CopyBi ts, the CopyMask test is run a hundred
times with a resultant timing of 369 ticks.

When I first ran this test I was slightly taken aback by the re
sults. The time of 369 ticks with CopyMask seemed strange when
compared to the test with CopyBi ts that resulted in a time of 111
ticks. I couldn't believe that CopyBi ts with a region could be three

150 C~4

Mask pixel map

, #\

\
Stretch or \

Cuffentpon ~nk ~
foreground and ~ ~
background colors \' #\

~
Currentpon
visRgn and
c/ipRgn

'c b' #\
\

om me I

Pusifg!'as:/

~, #\

.;::)
Transfer mode ~ ... ,' ¢\

~\~
n ·' #\

Current GDevice .J ~ \ ~e;c: Col;)
inverse table and '
search proc

:7~~
Figure 4-6. CopyMask flowchart

Destination pixel map

times faster than CopyMask. Luckily, I asked other programmers
about my apparent mystery. I was looked at as if I had asked if they
had noticed that the world was round. It seems Apple had an
nounced this stunning finding that CopyBi ts with a mask region
was significantly faster than CopyMask a while back, when I
wasn't paying attention. This tidbit of useful information was con
tained in a sample snippet called "CopyBits vs. CopyMask." Guess
the outcome.

Even with Apple engineering-generated proof, I still resisted the
evidence. My theory was that CopyMask was spending most of its
time trying to extract the bits that make up the mask. When using
masks it's common to expand the mask so that each mask value
takes up one byte instead of one bit. The expansion allows the blit
ter' s loops to move along the mask at the same pace at which it
moves through the source pixels. At least that was my theory. To test
my theory I altered my test to use an 8-bit-deep mask in conjunction
with CopyMask. Results? For the simple circle mask, the 8-bit-deep
mask produced a time of 3,500 ticks. 3,500 ticks, that's close to a
minute. I've booted, played, and lost games in less than a minute.

As a last, desperate act to prove my theory, I altered the test to
use the infamous "doozy" picture as a mask for CopyMask. The
doozy mask generated a time of 3,485 ticks. A 15-tick speedup
doesn't account for much when the blit takes over 58 seconds.

Conclusion? Let's see ... CopyBi ts with a circle region takes
111 ticks to mask, while CopyMask clicks off in 369 ticks, or you can
blow eight times as much memory with a deeper mask and get a
time of 3500 ticks. My conclusion is to get out your copy of Inside
Mac. Find the section for CopyMask. Grab a big red marker and
write "Skip it. Use CopyBi ts."

I accepted that CopyBi ts is the superior A-Trap. What I wanted to
know now was how. What's in a region that's better than a classic
mask bitmap? Grabbing my freshly annotated copy of Inside Mac, I
looked up the definition of a region. Once again I found the Book of
Revelations more direct than this entry in this book.

152 C~4

typedef struct Region
short rgnSize;
Rect rgnBBox;

Region, * RgnPtr, **RgnHandle;

Inside Mac gives a description on how useful regions are and
says that for your own safety you don't need to know how they
work internally. I was bored that weekend and decided to find out
what exactly a region is composed of.

My starting point was finding and looking at a few regions un
der the debugger. A region made from a square 32 pixels on a side
produces a region with no data (see Figure 4-7).

Figure 4-7. Simple region

Region Raw Dump: OOOA 0000 0000 OOlF OOlF
Region Size: 10
Region Bounding Box: 0,0,31,31
Region Data : empty

Rectangular regions are indicated by a size of 10 bytes. The re
gion's bounding box then defines the actual region. Since the region
is fully described from the size and the bounding box, its data is
empty.

CJ
Figure 4-8. Square wheel region

The next region I looked at was the same rectangle with a hole
in the middle (Figure 4-8). This produced a region of some interest,
as the data dump shows.

Size: 44
Bounding Box: 0,0,31,31
Data: 0000 0000 OOlF 7FFF OOOA OOOA 0015 7FFF

0015 OOOA 0015 7FFF OOlF 0000 OOlF 7FFF
7FFF

I figured I needed to look at a region that had some curvature to
it. So I created a wheel the same size as the other regions (Figure
4-9). Its data dump provided the most insight into the region data
internal structure.

0
Figure 4-9. Ordinary wheel region

Size: 324
Bounding Box: 0,0,31,31
Data: 0000 oooc 0013 7FFF 0001 0009 oooc 0013

0016 7FFF 0002 0007 0009 0016 0018 7FFF
0003 0006 0007 0018 0019 7FFF 0004 0005
0006 0019 OOlA 7FFF 0005 0004 0005 OOlA
OOlB 7FFF 0006 0003 0004 OOlB OOlC 7FFF
0007 0002 0003 OOlC OOlD 7FFF 0009 0001
0002 OOlD OOlE 7FFF OOOA OOOD 0012 7FFF
OOOB oooc OOOD 0012 0013 7FFF oooc 0000
0001 OOOB oooc 0013 0014 OOlE OOlF 7FFF
OOOD OOOA OOOB 0014 0015 7FFF 0012 OOOA
OOOB 0014 0015 7FFF 0013 0000 0001 OOOB
oooc 0013 0014 OOlE OOlF 7FFF 0014 oooc
OOOD 0012 0013 7FFF 0015 OOOD 0012 7FFF
0016 0001 0002 OOlD OOlE 7FFF 0018 0002

154 ~4

0003 OOlC OOlD 7FFF 0019 0003 0004 OOlB
OOlC 7FFF OOlA 0004 0005 OOlA OOlB 7FFF
OOlB 0005 0006 0019 OOlA 7FFF OOlC 0006
0007 0018 0019 7FFF OOlD 0007 0009 0016
0018 7FFF OOlE 0009 oooc 0013 0016 7FFF
OOlF oooc 0013 7FFF 7FFF

After spending some time contemplating these data dumps. I
gave up unraveling the innermost mysteries of regions by myself
and asked some friends if they knew the internal layout of a region.
And of course they all did. Every last one of them. I hate having
smart friends.

Regions turn out to be a form of compressed bitmaps. The com
pressing is done through run length encoding the binary data. For
those without the benefit of a classical education, run length encod
ing is a compression method that looks at a length of data and re
places runs of like data with a count of the items in the run. With
data that has a high level of redundancy, like bitmaps, you can re
place a lot of bits with just a few bytes. Regions then go beyond
simple run length compression by taking advantage of the fact that
in bitmaps the next row of pixels is very likely to be similar to, if
not an exact copy of, the previous row. With run length compres
sion applied to both dimensions, regions squeeze every bit of re
dundancy out of a bitmap.

Let's walk through the first image with a hole and see how the
region falls out (see Figure 4-10).

Data: 0000 0000 OOlF 7FFF OOOA OOOA 0015 7FFF
0015 OOOA 0015 7FFF OOlF 0000 OOlF 7FFF
7FFF

Quick overview first. Each chunk of a region starts with the ver
tical coordinate of the scan line being compressed. Following that
entry are horizontal coordinates that indicate where a pixel run
starts and s~ops. The value Ox7FFF is used as a sentinel to signify
that there is no longer any data in this scan line. Using the above
road map, the first scan line is

H-ti~Ott~ 155

pl,31
Figure 4-10. First image with a hole (detail)

0000 0000 OOlF 7FFF

and decodes as starting at coordinate 0 with only one run of pixels
starting at pixel 0 and ending at pixel 31.

OOOA OOOA 0015 7FFF

The second entry of the region starts at scan line 10. Which
means that all scan lines between 0 and 10 are duplicates of the first
scan line and don't need to be listed in the region. The second entry
in this chunk starts at position 10, which is the beginning of the
hole. Now, obviously this "10" isn't where a run of pixels starts. So
what's going on? The snag here is that any run of pixels inherits the
run values of the previous scan lines, in this case the values 0 and
31. With these inherited values the pixel runs for scan line "10" turn
out to be 0 to 10 and 21to31. The next entry in the region exposes
the last technique that regions use.

0015 OOOA 0015 7FFF

On scan line "15" the hole in the bitmap ends. So shouldn't the
encoding for this scan line be the same as the first scan line, pixel 0

156 ~c,.

to pixel 31? Trouble is, the data we have is the same as scan line
"10," not "0." This introduces the last encoding method that regions
use. Remember that each scan line inherits the horizontal run indi
cators from the previous scan lines, so this scan line inherits the
runs 0 to 10 and 21to31. Notice that the scan line declares two
components that it also inherits; this is region-ese for any two like
values, so remove them from consideration. According to this new
rule, line "15" then has a single run from 0 to pixel 31.

OOlF 0000 OOlF 7FFF 7FFF

The final section of the region is now a breeze. Scan line "31"
writes out the last line of the region and then ends the region with
the standard region epilogue: 7FFF to end the line and 7FFF to end
the region. Every region ends with 7FFF 7FFF.

Now back to the original reason for this departure into the inner
workings of regions. Why is CopyBits with a mask region faster
than CopyMask? The answer lies in the run lengths. Each scan line
of the region has the information embedded within it to describe to
CopyBits just which pixels to copy over and which pixels to skip.
And more important, the pixels that need to be copied are de
scribed in whole chunks. Processors love to move chunks of pixels.
While Copy Bits is blasting pixels like there's no tomorrow, Copy
Mask has to process every single pixel, performing those awful
masking operations on each of them, including the pixels that
won't end up being transferred. What a waste of time. Add all these
obstacles up and CopyMask just runs into too many speed bumps
to keep up with CopyBits. You'll take this keen insight into account
when you start writing you own replacement for CopyBits. That
sounds a little ominous, doesn't it? Without any further foreshad
owing let's head right for the heart of game programming. Sprites.

A long time ago, in a computer far, far away, some nameless yet tal
ented engineers created some nifty hardware blessed with the abil
ity to move small chunks of pixels around on a video screen very
quickly. These small chunks of pixels could be moved around the
screen without disrupting the video image underneath. Even better,
these pixel chunks could be moved just by setting a few registers.
Change a few other registers and the hardware would overlay a
different chunk of pixels on the screen. As a final bonus the hard
ware could even detect when two of these pixel chunks overlapped.

157

1sa ~s

These engineers couldn't go around talking about "chunk of pixels
this" and "chunk of pixels that." They'd have seemed silly, well at
least sillier. So according to game programming folklore, these duti
ful engineers looked at the on-screen splotches that could be barely
distinguished from one another and dubbed them sprites.

Since then, any animation system, whether implemented in
software or hardware, that gives a programmer the facility to
move multiple, overlapping chunks of pixels on the screen with
out destroying the background screen image has been referred to
as sprite animation. Except for Atari, which named its sprite sys
tems player-missiles. Which while more accurate doesn't have any
pizzazz. Along with moving your pixels around, a sprite system
will throw in the ability to have multiple frames of animation for
each sprite, notification when two sprites touch, and with multi
ple sprites, a method of setting the order in which the sprites are
drawn.

In this chapter you'll be introduced to the techniques used to
build a sprite system, or engine. You can think of this chapter as the
salad bar of sprite techniques, from which in a later chapter you'll
reach under the sneeze guard to pick out just the perfect, juicy parts
you'll need.

Rip into any sprite, on any system, and you'll find pretty much the
same innards.

+ Frame or series of frames of animation that represent the sprite

+ Mask for each frame in the sprite

+ Bounding rectangle for each frame

+ On-screen location for the sprite

+ Speed and direction for sprite movement

+ Drawing priority

~~ 159

Let's use sprite "Tommy" here as an illustrative example (Fig
ure 5-1). There are four separate frames of animation for Tommy. As
you cycle through these frames Tommy appears to run.

Figure 5·1. Tommy

Tommy, as a sprite, has two needs that are tied to time: how
many pixels per second should he move, and at what rate will he
cycle through his frames of animations. Without any velocity,
Tommy will run in place. Giving Tommy a horizontal velocity of 6
pixels per second (vertical velocity for Tommy is set to zero; he
doesn't have much vertical lift), he will cycle through all of his
frames of animation three times a second, giving an effective frame
rate of 12 frames per second.

Figure 5-2. Tommy's masks

For each frame of animation Tommy needs a matching mask
(Figure 5-2). For sprites whose outline does not change between
frames, such as a revolving moon, a single mask will do for all the
frames of animation. The masks don't have to be bitmaps; they
could as easily be stored as regions.

Surrounding each of Tommy's frames is a bounding box. The
bounding rectangle is the minimum bounds that encompass each
pixel in the frame. This frame is used by the blitter and other parts

1&0 ~s

of the sprite engine. Notice that each of Tommy's frames does not
have to fit within the same size bounding box.

Tommy will have to be positioned somewhere on-screen. His
position could be stored as a point. But what would the point refer
to? It could refer to any point in the sprite, or it could even refer to
a point outside of the sprite, but that would be a pain. Some sprite
systems use the upper left corner for the sprite's position. Others
use the lower left corner. The style is determined by the type of
game being programmed. A game where the sprites have to walk
and jump on solid platforms a la Mario Brothers usually will pick
the bottom left. For Tommy we would choose also to use the bot
tom left. Why? If we picked the top left, Tommy's feet would not be
on the ground for any frame other than the first one. Which would
be O.K. if Tommy were running on the moon but would seem out
of whack for the run-of-the-mill earthbound sprite.

The last essential element a sprite must have is priority. In sprite
systems priority refers to the drawing order of the sprites. A sprite
with a higher priority will be drawn last and on top of all the other
sprites with lower priorities. The sprite with the lowest priority will
be the one on the bottom. The priority can be changed for each
sprite, but all of the sprite's frames share the sprite's priority.

Sprite priority becomes important when you need the illusion
of depth in your game. If you want Tommy to walk behind a fence,
a car, or a 40-foot T-Rex, you need to set Tommy's priority to a
lower value than any of the sprites he needs to walk behind. Other
wise Tommy will be stepping on some T-Rex toes. And when the
T-Rex is chomping on Tommy's beanie-topped noggin, make sure
you set T-Rex's chompers' priorities to one higher than Tommy's.

Before diving into the software implementation of sprites let's take
a quick tour of a hardware-based sprite system. Warning! After
reading this section, every time you have to write some sprite code
you'll end up screaming in the direction of Cupertino: "Hey Apple,
if you're serious about supporting the home market how about

~~ 161

some hardware support. Stop wasting your time with things like
Geoports and Newtons and build sprite hardware into the next
Mac. Jeez C-64s had 'em way back ... " Slow fadeout into a Com
modore nostalgia. Well, at least that's what happens with me.
Hopefully you'll have more self-control.

A hardware sprite system relieves the main processor of two
tasks: blitting the sprite image onto the screen and detecting when
two sprites collide. All the other features of a sprite engine have to
be provided by the programmer or operating system. But this is a
fair trade, as these two tasks are where software sprite engines bum
most of their cycles. With the main processor now freed from the
burden of blitting, it can go off and do more important stuff. Like
making annoying sounds. Though usually by tossing in a sprite
processor the hardware designer can now use a slower, cheaper mi
croprocessor for the heart of the system.

With a hardware blitter the programmer only has to provide a
pointer to where the pixel image for the sprite is stored, punch in
the on-screen location for the sprite into a couple of registers, and
stand back. The single frame of the sprite is now on-screen. Change
the location registers and on the next refresh cycle of the screen the
sprite will have moved. Place a pointer to a different sprite image
and the sprite changes. Do both at the same time and you have a
moving, animating sprite.

So what technological marvel does the hardware perform that
software cannot? Unlike most hardware versus software imple
mentations, the hardware is not just a faster version. A hardware
blitter actually does blitting a better way. Remember back a hun
dred pages or so, there was a discussion of how a raster display
works by converting the frame buffer memory into analog signals
that produce your picture. A hardware blitter works downstream
from this frame buffer scanning. As the video memory is being
processed, the blitter detects when the scanning process is on a
scan line that a sprite intersects. When this happens the blitter
switches from scanning pixels out of the frame buffer to scanning
them from the area addressed by the pointer you installed in the
sprite's pixel image register. When the current scan line leaves the
bounds of the current sprite, it falls back to scanning the frame

1&2 ~s

buffer. This scanning process is performed for each scan line that a
sprite intersects and repeated for every refresh cycle of the moni
tor. The truly neat part, at least to me, about this process is that
the underlying image in the frame buffer remains untouched by
the sprites.

Hardware blitters, just like other blitters, need to provide for
masking the unwanted pixels of the sprite. Older hardware blit
ters performed the masking by treating one of the colors in the
pixel image as transparent. When the blitter is scan-converting the
sprite, it checks each pixel value and when it crosses a pixel that
has the same value as the designated transparent color, instead of
converting that pixel it reaches back into the frame buffer and
writes the pixel found there to the screen. More modern blitters
have a separate pointer to a pixel image that is used as the mask
for the pixel image. The pixel image used for the sprite's mask
doesn't just encode which pixels are displayed or not. Each value
in the mask maps to a transparency level for each of the sprite's
pixels. If the mask is stored with a byte for each pixel, a value of
zero would give you a fully transparent pixel. Where a mask
value of 255 would make the sprite's pixel fully opaque, obscur
ing the background, any mask value in between will result in a
semitransparent pixel. Just the thing if you need to write a
haunted house game.

The other function a hardware sprite system usually provides is
collision detection. While the hardware is scan-converting the
sprites to the screen, it looks at each sprite and determines if the
sprite intersects any of the other sprites. When a sprite collides with
another sprite the hardware notifies the programmer and passes
along which sprites are doing the colliding, usually through an in
terrupt. A collision is only detected when the two masks for the
sprites intersect where the mask values are nontransparent. This al
lows the sprite to have holes that other pixels can travel through
without triggering a collision. The hardware will usually provide
another signal when the sprites are finished colliding. What hap
pens when two sprites collide is strictly up to the programmer. The
hardware reports only the facts of the collision-the cause, not the
effect. That's up to the programmer.

~~ 163

We've reached the end of our tour into hardware blitters, and
you can now see why it would be impossible to perform sprite ma
nipulations using the same techniques. So unless System 8 gives us
the ability to reprogram the Mac's video scanning, we're stuck with
a severe case of hardware envy.

Now that you know the internals of a sprite and the inner workings
of a hardware system that you'll never have access to, it's time to
move on to the real works: making a software sprite engine for the
Mac. The first part you'll need for your engine is a masked blitter.
In order to pick just the right blitter you'll need to know your vari
ous options.

First off in our masked blitter rundown is a variation of the "brain
dead blitter" that was presented earlier. The original blitter just
copied over the pixels. In this version of the blitter a pixel value is
passed in that represents the color index for the pixels we want to
mask. This could be hard-coded to a preordained color index, but
for now we'll just pass in the transparent value.

void BrainDeadMaskedBlit(PixMapPtr
PixMapPtr
Rect *
Rect *
char

{

char *
char *
short
short
short

srcAddr;
dstAddr;
srcRowbytes;
dstRowbytes;
row, pixel;

srcMap,
dstMap,
srcR,
dstR,
transparentValue)

II Extract the start of the pixels out of the pixmap

164 ~s

srcAddr
dstAddr

srcMap->baseAddr
dstMap->baseAddr

II Extract the rowBytes out of the pixmap
srcRowbytes srcMap->rowBytes & Ox3FFF;
dstRowbytes = dstMap->rowBytes & Ox3FFF;

for(row = srcR->top; row<= srcR->bottom; row++)
{

char *
char *

srcPtr;
dstPtr;

II Calculate the start of each row
srcPtr = srcAddr +

(row* srcRowbytes + srcR->left);

dstPtr dstAddr +
(row* dstRowbytes + dstR->left);

for(pixel = srcR->left;
pixel <= srcR->right;
pixel++, dstPtr++, srcPtr++)

if(*dstPtr != transparentValue)
*dstPtr = *srcPtr;

Down in the innermost loop instead of blindly copying the pix
els, the code now checks to see if the sprite's pixel matches the
transparent color. If so, it's skipped and the code goes on to the next
pixel. Nothing complicated here. Brute force coding in its purest
form. Advantages of this blitter? Low on memory and ... that's it.
Nothing else but low on memory. By encoding the mask within the
pixel image you can get a big savings in the memory area. The
penalty is the classic one: speed. CopyBi ts with a region will
handily wipe the floor with this blitter. Even CopyMask can easily
outrun this blitter. So why would you use this blitter? I have no
idea. Under duress, I guess.

~~ 165

Next up on the blitter hit parade is the classic CopyBi ts, including
a region for the mask. You already have intimate details and tim
ings for every aspect of CopyBi ts, so let's get right to the missing
detail of CopyBi ts-getting the sprite's pixel mask into a region
handle.

Regions are usually built programmatically, between calls of
OpenRgn and CloseRgn, like so.

NewRgn()
OpenRgn()
FillRect ()
InsetRect ()
FillRect ()
CloseRect ()

This works great if you need a region that can be built strictly
out of simple geometric shapes. Try building a mask for a sprite like
Tommy out of QuickDraw calls and you'll quickly create more lines
of code between OpenRgn and CloseRgn than are used in your en
tire game. Yikes. Can't have that happening.

Reach down into the Mac Toolbox; lying right next to NewOld
Call is Bi tmapToRegion. Don't you love these self-documenting
Toolbox names like Bi tmapToRegion, DisposeHandle, and
Munger. For an example of this nifty routine let's get a region out
of the mask contained in 'cicn.' But first let's look at Bi tMapTo
Region in a little detail.

OSErr BitMapToRegion(RegionHandle region, BitMap * bMap);

The region handle passed to Bi tMapToRegion must have al
ready been allocated with a call to NewRgn or any other function
that will give you back a region. Failure to do this will rip apart
your heap or another innocent application's heap. Anytime you're
dealing with regions and you start experiencing catastrophic fail
ures, start looking for where you forgot to allocate a region.

166 ~s

The BitMap pointer can point to either a real bitmap or a pixel
map. If you use a pixel map make sure its depth is set to one. Other
wise you'll get an error "pixmapTooDeepErr" or-148 as your de
bugger will show. If you pass in a bitmap that results in a region too
complex to encode in 32K, you'll get a "rgnTooBigErr" or-500. Of
course, if you're trying to create a region that large your sprites are
probably larger than the screen, and masking is just a waste of time.

Before using Bi tMapToRegion you need to make sure that the
routine exists within the Mac you're currently trying to run your
game on. This routine came out with 32-Bit QuickDraw, so any test
for that version of QuickDraw or better will insure that the code ex
ists somewhere in the Mac. If you're a real stickler for operating on
any system, you can always get the Bi tMapToRegion object file
from Apple that you can link into your own game. Apple used to
charge a $50 licensing fee for this bit of code. That is no longer the
case. I can't believe they tried to squeeze a few more drops of cash
out of programmers for this snippet of code. Back to the example.

BitMap
RgnHandle
CiconHandle

bitmapMask;
rgnMask;
coloricon;

coloricon = GetCicon(kSampleiconID);
if(coloricon)
{

HLock(coloricon);

bitmapMask = (*coloricon)->iconMask;

II Re-point the bitmap's image Ptr to the mask data
II in the cicn
bitmapMask.baseAddr = (*coloricon)->iconMaskData;

rgnMask = NewRgn();
if(rgnMask)
{

if(!BitMapToRegion(rgnMask, &bitmapMask))
{

II Got the region. Do whatever you
II want with the region.

~~ 167

DisposeRgn(rgnMask);

HUnlock(coloricon);

DisposeCicon (coloricon);

The snippet first gets a color icon (from where isn't relevant),
and after locking down the handle wraps a bitmap structure
around the icon's mask. The only thing left is a quick call to
NewRgn. Finish with a stunning dispatch to Bi tMapToRegion. Af
ter disposing of the region and the color icon we're done. If we can
nail the dismount I'm sure we can rack up a 9.9 from the coding
judges.

A quick debugging tip when working with cicn. Don't use Dispose
Handle or ReleaseResource on ClconHandles. While they'll ap
pear to work (with the proper casting to pacify the compiler), you'll
have created a memory leak. DisposeCicon is one of those few Get
WhateverResource routines that do not return a handle to the resource
data, but instead they load in the resource as a template. From this tem
plate the actual handle is created and returned to you. In the case of
GetCicon, it creates the handle it returns to you and a few other han
dles as part of the pixel map that makes up the color icon. If you call
DisposeHandle instead of DisposeCicon, you'll only be throwing
out the root handle, leaving the handle that holds the icon's pixels
stranded in the heap.

The other gotcha is assuming that this is like any other GetRe
source call and that if you call it more than once for the same ID you'll
always get back the same handle to the data. Each time GetCicon is
called it creates a fresh color icon in your heap.

Failure to call DisposeCicon in either if these cases will quickly
deplete all of the good stuff from your heap, and next thing you know
you'll be staring at a -108 error.

Now that you can rip a mask region out of just about anything
that has two dimensions, your CopyBits arsenal is complete. But be
wary. You'll see a lot of fancy blitters in the future, but don't fall for
the high-octane, nitro-burning blitter of your dreams without first

1sa ~s

considering whether the Volvo of blitters will do. It might not be
fancy, but it's safe, reliable, and best of all, paid for. Done. No more
lectures on how you should try to use CopyBits. Let's go take a
look at the nasty boys of blitting.

The trick to making a blitter that is faster than CopyBi ts is special
ization. CopyBi ts has to be general in its usage. You don't. You
can hard-code anything you need to gain that required extra
amount of juice. Remember that as a mantra: "Hard-code for
speed." While constantly repeating that under your breath, read the
list of hard-coded assumptions that our blitters will be coded
around.

• 8-bit indexed color

• Matching color tables

• Source and destination are the same-sized areas

• 8-bit expanded mask

• Motorola 68020 processor or better

• Assembly language is good for the soul

With these preconditions it's not much of a task to have your
game blasting pixels faster than CopyBi ts.

Whenever you need to optimize code for speed that you need to
work, recall the optimization credo: "Get it working. Then get it to
work fast." Blazingly fast code that doesn't work isn't much better
than no code at all. The other programming cliche that needs to be
repeated here, if for no other reason than to reinforce it as a cliche,
is "Use a better algorithm before falling back to assembly." No
point in hand-crafting an assembly version when a smarter version
could be whipped out in a higher-level language. Heck, with the
right algorithm you could code a fast blitter with HyperTalk. Now

~~ 169

if you can just find that magic algorithm. Until then we'll work
with C and small doses of assembly language.

The next few examples of blitters will employ logical masking as
their core technique. So before jumping into the blitters you should
spend a few paragraphs reviewing how logical masking works.

For the masking to work you need a mask, the background, and
the sprite. Let's use the first frame of our Tommy sprite. We'll need
a background, so let's put Tommy in an environment he's familiar
with, a pixelly brick background (see Figure 5-3).

Figure 5-3. The 'hood

The steps for logical masking are easy and even fun. You get to
use those nifty C logical bit operators like '&,' ' I ,' and my favorite,

+ Step 1: Invert the mask (see Figure 5-4)

Figure 5-4. Invert the mask

170 ~$

• Step 2: Bit-wise 'and' the inverted mask with the background
(Figure 5-5)

Figure 5-5. Inverted mask with background

• Step 3: Bit-wise 'or' sprite with the result of Step two (Figure 5-6)

Figure 5-6. Tommy in the 'hood

After these three steps you'll have a sprite properly composited
over the background.

As the quick-to-optimize among you noticed, Step one can be
done as part of building the sprites and stored in that form. The
only ones who will know that you skipped this step are you, me,
and any player with a copy of ResEdit.

Now that you reduced your blitting operations by a third, it's
time to move on to Steps two and three. Regrettably, these two
steps aren't so easy to get rid of. Darn.

~~ 171

As a base platform let's take the BrainDeadBlitter and add logical
masking. From here we'll start examining the areas that can be im
proved. Don't worry, there are lots of them.

void BrainDeadLogicalMaskedBlit(PixMapPtr
PixMapPtr
PixMapPtr
Rect *
Rect *

srcMap,
dstMap,
rnaskMap,
srcR,
dstR)

{

char * srcAddr;
char * dstAddr;
char * rnaskAddr;
short srcRowbytes;
short dstRowbytes;
short row, pixel;

II Extract the start of the pixels out of the pixmap
srcAddr = srcMap->baseAddr;
dstAddr = dstMap->baseAddr;
rnaskAddr = rnaskMap->baseAddr;

II Extract the rowBytes out of the pixmap
srcRowbytes srcMap->rowBytes & Ox3FFF;
dstRowbytes = dstMap->rowBytes & Ox3FFF;

for(row = srcR->top; row<= srcR->bottorn; row++)

char *
char *
char *

srcPtr;
dstPtr;
rnaskPtr;

II Calculate the start of each row
srcPtr = srcAddr +

(row* srcRowbytes + srcR->left);

dstPtr dstAddr +
(row* dstRowbytes + dstR->left);

rnaskPtr rnaskAddr +
(row* srcRowbytes + srcR->left);

112 ~s

}

for(pixel = srcR->left;
pixel <= srcR->right;
pixel++)

char scratch;

II Combine the sprite on top of background
II using the mask to punch out a hole.

scratch = *dstPtr & *maskPtr;
scratch I= *srcPtr;
*dstPtr = scratch;

II March along to the next pixel
dstPtr++;
srcPtr++;
maskPtr++;

The major change from the previous version is the addition of
the masking code. This chunk of code assumes that the mask
matches the size, height, and rowBytes of the sprite pixel image.
The mask is also wrapped up in a pixel map, with each byte col
ored white (OxOO) or black(OxFF). As mentioned previously, the
mask is expanded to a byte per pixel so that the code can march
through the mask at the same stride that it moves through the
source and destination pixels.

char scratch;

II Combine the sprite on top of background
II using the mask to punch out a hole.

scratch = *dstPtr & *maskPtr;
scratch I= *srcPtr;
*dstPtr = scratch;

These three lines of code are the C equivalent of the logical op
erations we performed on Tommy. First the pointer to the back
ground is dereferenced to get at the background pixel. The

~~ 173

background pixel is then "and-ed" with the matching part of the
mask. The resultant pixel is saved in a temporary variable. This
step of the masking operation punches a hole in the background
only where the sprite will appear opaque. The temporary variable
that holds the mask and the background is then "or-ed" with the
sprite pixel. The pixel in the temporary variable now holds what
we need. The pixel that is referenced by the destination pointer is
replaced with the fully composited pixel. If the destination was on
screen you would then see a one-pixel chunk of the sprite over the
background.

Time to start making this code run faster. The best place to optimize
is obviously where the processor spends most of its time. And in
the case of the brain dead blitter it's spending all of its waking
hours in the loop that combines the mask and the sprite with the
background. Anything that happens before the loop is inconse
quential in comparison to the amount of cycles burned in the bow
els of that "for" loop. For our first crack at optimization let's knock
down the amount of time spent in that loop.

The best way to reduce the amount of time in the loop is to increase
the amount of work that is done per cycle of the loop. And that's
easy to do with this loop. For each cycle of the loop only one com
posited pixel is produced. Since each pixel is a byte, the loop is
working on a single byte at a time. This would be great if this code
were running on an 8-bit processor, but it isn't. It's running on a 32-
bit processor. The code should be working at the natural width of
the processor, 32 bits, or a long word at a time. That's easy enough
to arrange.

114 ~s

for(row = srcR->top; row <= srcR->bottom; row++)
{

}

short longsPerRow;
long * srcPtr;
long * dstPtr;
long * maskPtr;

II Calculate the start of each row
srcPtr = srcAddr +

(row* srcRowbytes + srcR->left);

dstPtr dstAddr +
(row* dstRowbytes + dstR->left);

maskPtr maskAddr +
(row* srcRowbytes + srcR->left);

longsPerRow = (srcR->right--srcR->left) I 4;

for(pixel = O; pixel <= longsPerRow; pixel++)
{

}

long scratch;

II Combine the sprite on top of background
II using the mask to punch out a hole.

scratch = *dstPtr & *maskPtr;
scratch I= *srcPtr;
*dstPtr = scratch;

II March along to the next 4 pixels.
dstPtr++;
srcPtr++;
maskPtr++;

Because you've changed the pointers that accessed the sprite,
background, and mask into long pointers instead of char pointers,
the innermost loop is now doing four times as much work per cycle
as it was before. Now that the loop is moving four pixels at a time,
the 'for' loop needs to loop four fewer times. This is accomplished by
dividing the number of pixels per row by four. Which is great-by
reducing the number of times you loop you also spend more time in
the body of the loop and less time in the overhead code of the loop.

~~ 175

A fourfold speedup with a few changes in the code-that was
easy. Too easy. The code now only works correctly for blits with
pixel widths that are evenly divisible by four. Great if you're trying
to blit 32 pixels per row, but if you're trying to blit 30 pixels across
you'll end up only moving 28 pixels. Not a good thing for a blitter.
You'd be pretty upset if CopyBi ts only bothered to blit 28 out of
your 30 pixels. There are two ways to fix this bug. The easiest is to
use the Sun Tzu approach and win the battle by not being there.
Which if you somehow missed your Eastern Philosophy classes
translates to only using sprites that have widths divisible by four.
This isn't as ridiculous as its sounds. Most arcade games could eas
ily be forced to follow the divisible-by-four constraint without af
fecting the game play. The other way is to ignore Mr. Tzu and head
right into the battle and fix the bug.

for(row = srcR->top; row <= srcR->bottorn; row++)
{

short longsPerRow;
short extraPixels;
long * srcPtr;
long * dstPtr;
long * rnaskPtr;

char * srcBytePtr;
char * dstBytePtr;
char * rnaskBytePtr;

II Calculate the start of each row
srcPtr srcAddr +

(row* srcRowbytes + srcR->left);

dstPtr = dstAddr +
(row* dstRowbytes + dstR->left);

rnaskPtr = rnaskAddr +
(row* srcRowbytes + srcR->left);

longsPerRow = (srcR->right--srcR->left) I 4;
extraPixels = (srcR->right--srcR->left) -

(longsPerRow * 4);

for(pixel
{

O; pixel <= longsPerRow; pixel++)

11& ~s

}

long scratch;

II Combine the sprite on top of background
II using the mask to punch out a hole.

scratch = *dstPtr & *maskPtr;
scratch I= *srcPtr;
*dstPtr = scratch;

II Skip over four pixels
dstPtr++;
srcPtr++;
maskPtr++;

II set up the Byte pointers
srcBytePtr = srcPtr;
dstBytePtr = dstPtr;
maskBytePtr = maskPtr;

II Now copy over the extra 1, 2, or 3 pixels
for(pixel = O; pixel <= extraPixels; pixel++)
{

char scratch;

II Combine the sprite on top of background
II using the mask to punch out a hole.

scratch = *dstBytePtr & *maskBytePtr;
scratch I= *srcBytePtr;
*dstBytePtr = scratch;

II March along to the next pixel
dstBytePtr++;
srcBytePtr++;
maskBytePtr++;

To copy over the few extra bytes, which will be between one
and three pixels, another loop is set up with byte pointers instead
of the long pointers used previously. The loop looks like a sinkhole
of cycles, but since it maxes out at three pixels its bark is worse than
its byte. Ohhhh. You knew it had to happen. I held back for over
two hundred pages. Anyway, the fourfold gain in moving to long

~~ 177

pointers more than makes up for the three extra bytes that might
have to moved.

The blitter is now masking out as many bytes at a time as the
processor is capable of. A quick look at the remaining code shows
several targets of opportunity. The first is what compiler writers re
fer to as an invariant. An invariant expression is a chunk of code
that does not vary during the execution of a loop. A classic example
is the following line from the blitter.

longsPerRow
extraPixels

(srcR->right--srcR->left) I 4;
(srcR->right--srcR->left)

(longsPerRow * 4);

During the execution of the loop the number of long words per
row or the number of extra pixels will not change. But each of these
expressions will be executed for each row of pixels that is trans
ferred. What a waste. Moving these invariant expressions to outside
of the loop will speed up the blitter a slight amount. Not as great as
a gain as moving to longs, but a cycle saved is a cycle earned. Good
compilers will be able to spot most common invariants and move
them for you. You trust your compiler, don't you? Right, neither do
I. Let's move those wastes of time ourselves.

short longsPerRow;
short extraPixels;

longsPerRow (srcR->right
extraPixels = (srcR->right

srcR->left) I 4;
srcR->left) -

(longsPerRow * 4);

for(row = srcR->top; row<= srcR->bottom; row++)
{

long *
long *
long *

char *

srcPtr;
dstPtr;
maskPtr;

srcBytePtr;

11a ~s

char *
char *

dstBytePtr;
maskBytePtr;

The next target of optimization is where the address for the start
of each row is calculated. For every row of pixels the same code is
executed, producing a different address for each row. The invariant
here is that the number of bytes between one row and the next re
mains constant. With this invariant we can recode the address cal
culations, a multiply and a subtract, to use only one add. A good
rule of thumb is, if you see a multiply in a loop you are probably
looking at an absolute calculation. And that absolute calculation
can probably be replaced with an addition, making the calculation
now a relative one.

II Calculate the start of each row
srcPtr = srcAddr;
dstPtr = dstAddr;
maskPtr = maskAddr;

II Find the byte offset from one row to the next
diffBetweenRows = srcRowbytes--(srcR->right--srcR->left);

for(row = srcR->top; row <= srcR->bottom; row++)
{

dstPtr = dstBytePtr + diffBetweenRows;
srcPtr = srcBytePtr + diffBetweenRows;
maskPtr = maskBytePtr + diffBetweenRows;

Before the outermost row loop is started, the long pointers are
initialized to point at the first line of the pixel map. Then the num
ber of bytes from the end of one row to the start of the next is
stashed away. After the pixels have been blitted and masked for the
current row, the long pointers are set to the next rows by simply

~~ 179

adding the stashed value to the byte pointers, which conveniently
enough are sitting at the last logical pixel of the row.

In each of the "for" loops the current index is checked against a
value that is not going to change. These for loops can be replaced
with the slightly more efficient "while" loops. And while we're go
ing after microefficiencies, let's get rid of those scratch variables.
They annoy me.

From this unsightly code

long scratch;

II Combine the sprite on top of background
II using the mask to punch out a hole.

scratch = *dstPtr & *maskPtr;
scratch I= *srcPtr;
*dstPtr = scratch;

II Skip over four pixels
dstPtr++;
srcPtr++;
maskPtr++;

to this. Notice the almost unreadable, condensed lines of code: the
telltale sign that optimization has taken place.

*dstPtr = (*dstPtr & *maskPtr++) I *srcPtr++;
dstPtr++;

You might try to make this code a little more unreadable by do
ing this.

*dstPtr++ = (*dstPtr & *maskPtr++) I *srcPtr++;

Don't. It might work. It might not. It's strictly up to the com
piler. If the compiler wants to, it can dereference the left side and
then increment the pointer before doing anything on the right side.
Which will leave the destination pointer staring at the wrong value.
And this is the value that will be "and-ed" with the mask. You
won't crash. You'll just end up with a very difficult-to-spot bug.

1ao e~s

The mask and source pointer can be postincremented, as they are
used only once within the statement.

After those last few hack-and-slash edits, the inner part of the
blitter looks like this.

short
short
short
short
short
short

long *
long *
long *

longsPerRow
extraPixels

longsPerRow;
extraPixels;
diffBetweenRows;
rowCount;
row;
pixels;

srcPtr;
dstPtr;
rnaskPtr;

(srcR->right--srcR->left) I 4;
(srcR->right--srcR->left)

(longsPerRow * 4);

diffBetweenRows = srcRowbytes--(srcR->right--srcR->left);

II Calculate the start of each row
srcPtr = srcAddr;
dstPtr = dstAddr;
rnaskPtr = rnaskAddr;

row = rowCount = srcR->bottorn--srcR->top;

while(row--)
{

char *
char *
char *

pixels

srcBytePtr;
dstBytePtr;
rnaskBytePtr;

longsPerRow;

while (pixels--)
{

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstPtr = (*dstPtr & *rnaskPtr++)
dstPtr++;

*srcPtr++;

II set up the Byte pointers
srcBytePtr = srcPtr;
dstBytePtr =,dstPtr;
maskBytePtr = maskPtr;

~~ 181

II Copy over the extra 1, 2, or 3 pixels
pixels = extraPixels;

while(pixels--)
{

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstBytePtr = (*dstBytePtr & *maskBytePtr++) I
*srcBytePtr++;

dstBytePtr++;

dstPtr = dstBytePtr + diffBetweenRows;
srcPtr = srcBytePtr + diffBetweenRows;
maskPtr = maskBytePtr + diffBetweenRows;

You might feel compelled to start sprinkling "register" declara
tions all over this code. Don't. Modern compilers can usually do a
better job of figuring out which variables should be placed into reg
isters than you can. If in doubt, look at the assembly dumps with
your register suggestions and the one your compiler produces. Re
member to tum on the register coloring optimization for your com
piler if you want this to be a fair comparison. If you can do a better
job than the compiler reward yourself ten hacker points and start
pasting "register" wherever you feel like it.

After you have a blitter working at the natural data size of the
processor, in our case 32 bits wide, the next optimization step is
alignment.

A long word is properly aligned if its starting address begins on
a long word boundary. In our case the long's address must be
evenly divisible by four, otherwise some of the long's bytes will lie

1a2 ~s

across a long word boundary. When this happens every access to
the badly placed long made by the processor will have to be broken
up into several smaller and slower memory fetches. And since you
are moving a long at a time within the row, you'll be suffering with
the misalignment you started with for every pixel you process.
When your pointers are properly aligned you will have the proces
sor working at its peak speed.

In the case of our blitter there are three pointers-the source,
destination, and mask-that we need to worry about. The source
and mask pointers reference memory blocks that don't change for
the life of the sprite. Which makes them easy candidates for long
word alignment. Simply force the alignment when they are initially
created. Both the memory manager and 32-Bit QuickDraw allow
you to create long word blocks of pixels. The memory manager
always returns aligned blocks when you use NewPtr or New

Handle. Or by setting the proper align flag you can force your
GWorlds to proper alignment. With the source and mask handily
taken care of, that leaves the destination pointer as our only opti
mization candidate.

As the sprite moves across the screen the location of the destina
tion pointer changes accordingly. Without forcing your sprite to
move in four-pixel increments, you'll end up with a misaligned
destination pointer for around one out of every four pixels. To han
dle alignment for the destination pointer you just need to follow the
same plan of attack as when the blitter changed from a byte at a
time to processing longs. First find out if the destination pointer is
misaligned.

unalignedBytes = 4--((long)dstPtr & 3L);

If a long pointer is misaligned one or both of its least significant
bits will be set. By masking all the bits above the lowest two, you
end up with the number of bytes the pointer is off by.

if(unalignedBytes)
{

srcBytePtr = srcPtr;
dstBytePtr = dstPtr;
maskBytePtr = maskPtr;

while(unalignedBytes--)
{

~~ 183

*dstBytePtr = (*dstBytePtr & *maskBytePtr++)
*srcBytePtr++;

dstBytePtr++;
}

extraPixels -= unalignedBytes;

srcPtr = (long *) srcBytePtr;
dstPtr = (long *) dstBytePtr;
maskPtr = (long *) maskBytePtr;

If the pointer is misaligned this snippet of code copies over each
misbehaving byte, masking as it goes. Once those few bytes have
been blitted over, the destination pointer is long word aligned. Af
ter the loop is finished the number of misaligned pixels is sub
tracted from the number of extras pixels per row and the long
pointers are reestablished.

while(pixels--)
{

}

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstPtr = (*dstPtr & *maskPtr++) I *srcPtr++;
dstPtr++;

II set up the Byte pointers
srcBytePtr = srcPtr;
dstBytePtr = dstPtr;
maskBytePtr = maskPtr;

II Copy over the extra l, 2, or 3 pixels
pixels = extraPixels;

while(pixels--)

1s4 ~s

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstBytePtr = (*dstBytePtr & *maskBytePtr++)
*srcBytePtr++;

dstBytePtr++;

The rest of the blitter works as previously discussed with the
only note relating to handling the extra pixels. After the blitter has
run through all the full-sized longs in the row, it then drops down
to blitting the few extra bytes at the end of the row. Because of the
processing to force alignment, the number of pixels left at the end
of the row might have changed. But as before you'll never be copy
ing more than three bytes per row.

The last few optimizations have tuned up this chunk of code nicely.
A quick scan with the OptimoMeter™ shows that we have yet to
perform everyone's favorite code tuning technique: loop unrolling.

When you have a piece of code that spends most of its processing
time in a loop as our blitter does, one sure way to increase execution
speed is to spend more time in the loop's core code. Every loop you
write spends some percentage of its time in code that handles the
looping construct. And if the code is just counting off iterations, it's
not doing the truly important stuff, like blitting our pixels. By un
rolling a loop your code spends less time in the fat and more time in
the meat. Let's look at our blitter as a prime place for some unrolling.

while(pixels--)
{

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstPtr = (*dstPtr & *maskPtr++)
dstPtr++;

*srcPtr++;

~~ 185

At the core of our blitter the code loops for the number of longs
in each row. I'm ignoring the alignment loops since for average
sized sprites most of the blitting time is spent in this loop. For each
long word processed the looping code must test if the "pixels" vari
able has been depleted, and if not it is then decremented by one.
This extra processing done for loop is straight overhead. Loop un
rolling attempts to reduce the amount of overhead by doing more
work for each loop iteration. Here is the blitting loop unrolled
slightly.

pixels I= 4;

while{pixels--)
{

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstPtr = {*dstPtr & *maskPtr++) *srcPtr++;
dstPtr++;

*dstPtr = (*dstPtr & *maskPtr++) *srcPtr++;
dstPtr++;

*dstPtr = (*dstPtr & *maskPtr++) *srcPtr++;
dstPtr++;

*dstPtr = (*dstPtr & *maskPtr++) *srcPtr++;
dstPtr++;

}

Inside the loop the blitting code has been duplicated or unrolled
four times. To match the amount of unrolling performed, the loop
counter has been reduced by four before entering the loop. Now the
loop is processing four times as much data for each loop test. Net
result is usually faster code.

Remembering that TANSTAFL (there ain't no such thing as free
lunch) is a primal force; you need to look at what you lost in the
trade for speed. Memory, for starters. This blitting loop compiles
down to code that is around four times larger than the original ver
sion. The next trade-off is generality. The original loop worked for
all row sizes. This unrolled version will only work correctly when

186 C~S

the number of longs to be blitted is divisible by the number of times
the loop was unrolled. Deja vu. This is the same problem the code
had when it was updated to blit whole long words instead of bytes.
And you can apply the technique. Loop for the whole amounts and
then pick up the remainders at the end.

#define kUnrolledAmt 4

long counter = pixels I kUnrolledAmt;

while(counter--)
{

II Combine the sprite on top of background
II using the mask to punch out a hole.

*dstPtr = (*dstPtr & *maskPtr++)
dstPtr++;

*dstPtr = (*dstPtr & *maskPtr++)
dstPtr++;

*dstPtr = (*dstPtr & *maskPtr++)
dstPtr++;

*dstPtr = (*dstPtr & *maskPtr++)
dstPtr++;

II Copy over the longs left over

*srcPtr++;

*srcPtr++;

*srcPtr++;

*srcPtr++;

counter= pixels--((pixels I kUnrolledAmt) * kUnrolledAmt);

while(counter--)
{

*dstPtr = (*dstPtr & *maskPtr++) J *srcPtr++;
dstPtr++;

What if you'd like to increase the amount of unrolling for this
loop? You'd have to unroll the correct number of lines and, after
changing the proper constant, recompile the code. Not exactly the
most efficient way of tuning to different-sized sprites. What you
would like is a piece of code that has the speed benefits of unrolled
loops without the loss in generality. Thankfully, someone else had

~~ 187

the exact same dilemma. Digging through my archive of "Great
E-mails of American History" I uncovered this beauty.

>From research!ucbvax!dagobah!td Sun Nov 13 07:35:46
1983
Received: by ucbvax.ARPA (4.16/4.13)
Received: by dagobah.LFL (4.6/4.6b)
Date: Thu, 10 Nov 83 17:57:56 PST
From: ucbvax!dagobah!td (Tom Duff)
Message-Id: <8311110157.AA01034@dagobah.LFL>
To: ucbvax!decvax!hcr!rrg, ucbvax!ihnp4!hcr!rrg,
ucbvax!research!dmr, ucbvax!research!rob

Consider the following routine, abstracted from code
which copies an array of shorts into the Programmed IO
data register of an Evans & Sutherland Picture System II:

send(to, from, count)
register short *to, *from;
register count;
{

do
*to = *from++;

while(--count>O);

(Obviously, this fails if the count is zero.) The VAX C
compiler compiles the loop into 2 instructions (a movw
and a sobleq, I think.) As it turns out, this loop was
the bottleneck in a real-time animation playback pro
gram which ran too slowly by about 50%. The standard
way to get more speed out of something like this is to
unwind the loop a few times, decreasing the number of
sobleqs. When you do that, you wind up with a leftover
partial loop. I usually handle this in C with a switch
that indexes a list of copies of the original loop
body. Of course, if I were writing assembly language
code, I'd just jump into the middle of the unwound loop
to deal with the leftovers. Thinking about this yester
day, the following implementation occurred to me:

send(to, from, count)
register short *to, *from;
register count;

188 ~s

{

register n=(count+7)/8;
switch(count%8){

case 0: do{ *to *from++;
case 7: *to = *from++;
case 6: *to *from++;
case 5: *to = *from++;
case 4: *to *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to *from++;

}while(--n > 0) ;

}

Disgusting, no? But it compiles and runs just fine. I
feel a combination of pride and revulsion at this dis
covery. If no one's thought of it before, I think I'll
name it after myself.

It amazes me that after 10 years of writing C there are
still little corners that I haven't explored fully.
(Actually, I have another revolting way to use switches
to implement interrupt driven state machines but it's
too horrid to go into.)

Many people (even bwk?) have said that the worst fea
ture of C is that switches don't break automatically
before each case label. This code forms some sort of
argument in that debate, but I'm not sure whether it's
for or against.

yrs trly
Tom

Thanks a million, Tom, that was just the thing our blitter
needed and provided proof that my Internet account is tax
deductible. A few cut and pastes later our blitter is now sporting
the best, if not the most obscure, that C has to offer.

~~ 189

#define kUnrolled.Amt 8

switch(pixels % kUnrolled.Amt
{

}

case 0:
do
{

*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 7:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 6:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 5:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 4:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 3:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 2:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

case 1:
*dstPtr = (*dstPtr & *rnaskPtr++) I *srcPtr++;
dstPtr++;

} while(--pixels);

After that last round of surgery the blitter has an unrolled in
ner core that will transfer 32 pixels for each iteration of the loop.
It's got the benefits of assembly programming with the same level
of readability. Isn't Ca wonderful language? Makes you wonder
what that interrupt-state machine code looks like. By the way,
since no one else claimed to have invented this exotic code morsel
before Tom, he made good on his threat and named it after him
self: "Duff's Device."

190 ~s

Now that you've seen the parade of brute-force methods of blitting
images, let's look over a couple of more elegant solutions than just
looping and slamming pixels around.

The first method that'll come under our code microscope is
what I call "Run Length Masking." The general idea is to encode
the mask in such a way that the blitting code can quickly copy over
only the pixels of the source image that need to be copied. The pre
vious blitting examples moved over every pixel of the sprite re
gardless of whether all those pixels would need to be displayed. If
the pixels aren't going to end up on the screen, then you're wasting
time for each one of those masked pixels.

When CopyBi ts is passed a mask region, it goes on to copy
only the pixels that lie within the region and ignores the rest.
That's exactly what you want to do, but faster. Digging out those
handy guidelines on how to be faster than CopyBi ts, you can see
that you just need to program your blitter in a less general manner.
Easy; let's use the same constraints as last time.

~~Eight bit indexed color

~~Matching color tables

~~Source and destination areas are the same size

For even greater speed (and to avoid potential lawsuits), the
mask needs to be encoded into something other than a region and
yet still provide the ability to determine quickly that you have a run
of pixels. What would such an encoding look like? Interestingly
enough, it could look like an ordinary bitmap.

If you make a call to GetCleon you'll get handed back a Cleon
Handle. This handle will point to a Cleon structure that holds all the
goodies that make up a color icon. First off the Cleon structure con
tains a pixel map that contains all the color pixels that comprise the
full-color version of the icon. After the color portion of the structure
comes the mask for the icon. The mask is used just like a region mask
in CopyBi ts, to discriminate which pixels get copied from the color

~~ 191

icon's pixel map and which don't. Unlike CopyBi ts this mask is en
coded as a bitmap, not as a region. You've seen bitmaps used as masks
before with the Toolbox routine CopyMask, so this is nothing new.
With CopyMask, a bit set in the bitmap indicates that the correspond
ing pixel in the pixel map should be copied and when a bit is cleared
the matching pixel stays where it lies. So what does this all have to do
with finding the runs of pixels that need to be blitted? Plenty.

The trick to finding a run of pixels is to look at a bitmap not as a
collection of individual bits. But to look at it instead as an array of
larger ordinal types, like bytes-shorts or longs. When viewed from
this angle, finding a run of pixels to copy is as easy as using a
switch statement.

As an example, let's imagine that you have a color icon that is
only one line high and eight pixels across. With only eight color
pixels in the source image the mask bitmap will consist of only
eight bits or a single byte (for this example I'm ignoring the row
Bytes padding). Now if you compare that byte containing all eight

. mask bits against OxFF you can determine quickly if you have run
of eight consecutive pixels. Or you could perform the inverse test
and compare the byte mask against 0 to see if you need to bother
copying any pixels at all.

Between 0 and OxFF are 254 other combinations of pixel runs
perfect for a switch statement. For each byte in the mask, you
would have your blitter switch to the appropriate mask value.

switch(maskByte)
{

case OxO: II no need to do anything
break;

case Oxl: II bOOOO 0001: copy the last pixel
break;

case Ox2: II bOOOO 0010: copy the second to last pixel
break;

192 ~s

}

case OxFE II bllll 1110: copy all pixels but last
break;

case OxFF II copy all eight pixels
break;

Once the switch statement has branched to one of the mask
value labels you'll want to start copying those pixels. And while
copying the pixels you'll want to take full advantage of any consec
utive runs of pixels indicated by the mask. This is easy enough to
do if you switch from thinking of the mask as a byte and back to
thinking of it as a collections of bits. As a collection of bits the mask
becomes a recipe for how most efficiently to copy only the pixels
that need copying.

Again, an example will help. Say your switch statement has
been handed a mask value of 111, or Ox6F. As a collection of bits,
this byte looks like b0110 1111. The binary-encoded blitting recipe
reads as follows: Skip the first pixel; copy the next two pixels; finish
off by copying the last four pixels in one long gulp. This recipe tran
scribed for C would look like the following (assuming, of course,
that you have source and destination pointers).

II srcPtr is char * into the icon's color pixels
II dstPtr is another char * into the destination
II offscreen

switch(maskByte)
{

case OxO: II no need to do anything
break;

case Oxl: II bOOOO 0001: copy the last pixel
*(dstPtr + 7) = *(srcPtr + 7);
break;

case Ox2: II bOOOO 0010: copy the second to last pixel
*(dstPtr + 6) = *(srcPtr + 6);
break;

~~ 193

case Ox6F: II b0110 1111
II skip the first pixel and copy two
(short) (dstPtr + 1) *(short*) (srcPtr + 1);
(long) (dstPtr + 4) =*(long*) (srcPtr + 4);

case OxFE II bllll 1110: copy all pixels but last
(long) (dstPtr) =*(long*) (srcPtr);
(short) (dstPtr + 4) =*(short*) (srcPtr + 4);
*(dstPtr + 6) = *(srcPtr + 6);
break;

case OxFF II copy all eight pixels
(long) (dstPtr) = *(long*) (srcPtr);
(long) (dstPtr + 4) =*(long*) (srcPtr + 4);
break;

Each possible value of the mask is broken down into the mini
mum number of bytes, short or long transfers needed to blit the
pixels from the source into the destination offscreen. This is a pretty
efficient way to blit pixels. To copy an eight-pixel run of pixels with
the previous blitter would have required eight separate masking
operations. Here you only needed two long transfers. And for a
case like Ox6F, the previous blitter would have wasted time process
ing two pixels that will never be seen. With this technique, you
transfer only the pixels that are needed.

For our example blitter, let's write the transfer portion to use
only the lower nybble of the mask byte. This reduction will give the
switch only fifteen different blitting combinations to worry about
and save a few pages of code. This reduction also makes this func
tion a good candidate for inlining.

194 ~s

void BlitFourPixelRun(char * srcAddr,
char * dstAddr,
char runMask)

II Use only the lower nybble of the mask.
II One nybble equals four 8 bit pixels
switch(runMask & OxOF)
{

case 1: II bOOOl, skip first 3 pixels copy last
*(dstAddr + 3) = *(srcAddr +3);
break;

case 2: II bOOlO, skip over 2 pixels
*(dstAddr + 2) = *(srcAddr + 2);
break;

case 3: II bOOll, copy a shorts worth of pixels
(short) (dstAddr + 2) =

(short) (srcAddr + 2);
break;

case 4: II bOlOO, need to skip first pixel
*(dstAddr + 1) = *(srcAddr + 1);
break;

case 5: II b0101, skip first, copy second,
II skip third, copy last

*(dstAddr + 1) *(srcAddr + 1);
*(dstAddr + 3) = *(srcAddr + 3);
break;

case 6: II bOllO, copy another shorts worth
*(short *) (dstAddr + 1) =

(short) (srcAddr + 1);
break;

case 7: II bOlll, copy a short then a byte
*(short *) (dstAddr + 1) =

(short) (srcAddr + 1);
*(dstAddr + 3) = *(srcAddr + 3);
break;

case 8: llblOOO, copy the first byte

}

~~ 195

*dstAddr *srcAddr;
break;

case 9: llblOOl, copy first and last byte
*dstAddr = *srcAddr;
*(dstAddr + 3) = *(srcAddr + 3) ;

break;

case 10: II blOlO, copy first and second to last
*dstAddr = *srcAddr;
*(dstAddr + 2) = *(srcAddr + 2) ;

break;

case 11: llblOll, copy first byte
II and a short at the end

*dstAddr = *srcAddr;
(short) (dstAddr + 2)

(short) (srcAddr + 2);
break;

case 12: llbllOO, copy first short
*(short *)dstAddr = *(short *)srcAddr;
break;

case 13: llbllOl, copy first short and last byte
*(short *) dstAddr = *(short *)srcAddr;
*(dstAddr + 3) = *(srcAddr + 3);
break;

case 14: llblllO, copy first short and next byte
*(short *)dstAddr =*(short *)srcAddr;
*(dstAddr + 1) = *(srcAddr + 1);
break;

case 15: II bllll copy a whole long
*(long *)dstAddr *(long *)srcAddr;
break;

196 ~s

The function Bli tFourPixelRun is no different from the pre
vious examples, except that the masking of the upper nybble of the
mask byte is part of the switch statement. With that upper nybble
gone there are only fifteen tiny cases to worry about. If you want to
avoid the performance penalty of calling BlitFourPixelRun
twice, you can always code up a Bli tEightPixelRun that han
dles all 255 cases.

A blitter that uses Bli tFourPixelRun is not very different
from all of the other blitters presented. With the one presented here,
RLEBli tter, you pass in a pixel map pointer for the source and
destination and a bitmap pointer to the 1-bit deep mask. This exam
ple assumes that source and destination bounds match and that
you are blitting the full source pixel image.

void RLEBlitter(PixMapPtr
PixMapPtr
BitMap *
Rect *
Rect *

char * srcAddr;
char * dstAddr;
char * maskAddr;
short srcRowbytes;
short dstRowbytes;
short maskRowbytes;
short row;
short maskCnt;

srcMap,
dstMap,
maskMap,
srcR,
dstR)

II Extract the start of the pixels out of the pixmap
srcAddr = srcMap->baseAddr;
dstAddr = dstMap->baseAddr;
maskAddr = maskMap->baseAddr;

II Extract the rowBytes out of the maps
srcRowbytes = srcMap->rowBytes & Ox3FFF;
dstRowbytes = dstMap->rowBytes & Ox3FFF;
maskRowbytes = maskMap->rowBytes & Ox3FFF;

for(row = srcR->top; row <= srcR->bottom; row++)
{

}

}

~~ 197

II The copying of each row of pixels is
II controlled by the number
II of bytes in the mask (including any
II extra due to rowBytes padding).
maskCnt = maskRowbytes;

while(maskCnt--)
{

II Copy the first four pixels of
II the mask's run
BlitFourPixelRun(srcAddr,

dstAddr,
(*maskAddr) >> 4);

II Copy the next four pixels of the run
II Get pointers to the next four pixels
srcAddr += 4;
dstAddr += 4;

II No need to shift the mask this time
BlitFourPixelRun(srcAddr,

maskAddr++;
srcAddr += 4;
dstAddr += 4;

dstAddr,
*maskAddr) ;

II Move the source and destination pointers to
II the beginning of the next row of pixels to blit

II The mask pointer will already be
II pointing at its next row

srcAddr =
srcMap->baseAddr + (row * srcRowbytes);

dstAddr = dstMap->baseAddr +
(row* dstRowbytes + dstR->left);

}

1sa ~s

After setting up all the appropriate pointers, RLEBl it ter falls
into the usual blitter habit of cycling through all of the pixel rows
contained in the source. Inside this loop is where each row is blit
ted across with two calls to Bli tFourPixelRun for each byte
contained in the mask's row of bits. After each call of Bli t
FourPixelRun, the source and destination pointers are moved
over four bytes to account for the four pixels just transferred. On
the second completion of Bli tFourPixelRun, the mask's pointer
is then bumped up to the next byte of the mask's row. This inner
loop exits when all of the bytes with the row have been processed.
At this point the source and destination pointers are adjusted so
that they point to the next row of pixels to be moved. There is no
need to adjust the mask pointer as it is already pointing at its next
row-one of the benefits of using rowBytes as the inner loop's
control variable.

What happens when the mask's rowBytes width does not
match a natural number of pixels in the source pixel map; for in
stance, when the source image is 33 pixels across? In this case, the
rowBytes of the mask's bitmap would have to be the largest even
number of bytes that could hold 33 bits. Which, of course, would be
six bytes containing 48 bits or 15 bits too many. The way the blitter
is currently coded, the inner loop would cycle through the second
to-last byte just to handle that thirty-third bit contained in the mask
and then continue on to waste time coping with the padding byte.
Now there aren't any pixels in the source image beyond the thirty
third pixel. So what happens? Nothing, if those padding bits in the
mask are cleared. With those bits clear, the calls to Bli tFour
PixelRun return without transferring any pixels at all. The worst
that happens is that a couple of extra calls are made to Blit
FourPixelRun without anything to show for it.

If these few extra calls bother you, you could fix the problem
the easy way by defining your source images so that their width is
an even number of bytes. Or you could be a little more adventurous
and recode the blitter so that the mask is not encoded as a bitmap
but as an array of bytes. In the previous example this would re
move the extra padding byte at the end and the subsequent call to
BlitFourPixelRun.

~~ 199

Our blitting tour ends here with the most esoteric version of blit
ting, sprite compiling. Sprite compiling does exactly what it says, it
compiles a sprite. The data from the sprite is compiled into machine
code that when executed draws the sprite's image into memory.
Cool, huh?

Don't be too intimidated by the compiler part of this blitter. There
are no Backus-Naur descriptions, no state machines, no LEX or
YACCs to master; the sprite data is simply converted into the assem
bly instructions a scan line at a time. Sprite macros would be a much
more accurate term, but nowhere near as impressive-sounding.

There are two techniques to sprite compiling, generally referred
to as sprite compiling and mask compiling. The first takes the sprite's
source and mask data and produces machine code that contains the
source image along with the assembly instructions to copy that data
into memory. Code is only generated where the mask image says to
do so. After the sprite has been compiled, its source and mask data,
having been cemented into the code, are no longer needed. Mask
compiling encodes only the masking information as code. The
sprite's source image data is passed to the compiled mask code just
like any other parameter. Speaking of parameters, both types of
compiled sprites need to be passed a pointer to the sprites' final
destination.

Decisions, decisions. Given two sprite-compiling methodolo
gies which one to choose? It depends on the host platform. With the
sprite's image data compiled directly into the code, the processor
can only move data as fast as its immediate mode will allow. In the
case of the 68K family, the immediate mode is limited to moving a
long at a time, while other, better-endowed processors might have
data movement instructions that can blast away data at rates far
faster than our beloved 68K. Luckily, what the 68K family lacks in
immediate data movement it more than makes up for in its ability
to indirectly move data. Given a couple of pointers the 68K must
have a gajillion ways of moving the data referenced by those point
ers. And a couple of those instructions are barn-burners, much
faster than the immediate modes offered by our host. Since the

200 ~s

mask compiler uses a pointer to the source image and another to
the destination pixel map, and has no need for immediate data in
structions, your choice of compiler has been preordained.

Your strategy for compiling a sprite's mask starts by expanding the
mask into an offscreen at a depth of eight bits per pixel. Then create a
resizable block of memory to hold the compiled code. Generate the
prologue code for the compiled sprite. Loop through each scan line
of the mask, producing the code that will blit over the pixels. After all
the lines of the mask have been exhausted, the cleanup code is ap
pended to the end of the block. At the end of this process the block of
memory will hold a code block just as if it had come from your fa
vorite C compiler. By creating a function pointer referencing this
freshly compiled sprite, you can blit that sprite anywhere you want.
Here is the prototype for the function that you will be compiling.

void CompiledBlitter(long srcPitch, II bytes to next row
long destPitch, II ditto
Ptr srcPtr, II Sprites image data
Ptr destPtr); II Dest. pixel map

The compiled code is built around this prototype. It has to
know what the parameters are and in what order they will be
passed. And failure to do so will cause your craftily compiled code
to promptly explode. Keeping that in mind let's head off to build a
compiler.

Within the core of the compiler each scan line will be broken down
into runs of consecutive pixels. The compiler will then want to en
code these runs using the most efficient transfer modes the proces
sor has to offer. And just what might those be?

In the previous blitters presented you were stuck with moving a
long at a time due to the logical masking. Without this constraint in

~~ 201

your way you can use the widest instructions possible to copy over
the pixel runs. Without a background in 680x0 esoterica you would
probably produce a compiler that generated assembly sequences
like this.

movea.l (aO}, (al} ; copy the four source pixels to dest

Closed-captioning for the assembly-impaired: This code deref
erences the pointer stashed in register aO and copies the long found
there into the long pointed at by the register al.

While this will work, there is a better instruction: movem. 1 .
If you disassemble almost any function you have written you
will see movem. 1 used, mainly to set up and restore the stack,
like so.

movem.l d3-d51a2-a4,-(sp) II save off registers

II lots of neat code utilizing the registers saved

movem.l (sp}+,d3-d51a2-a4 II restore registers

This nifty instruction can take a list of registers and copy their
contents to the location pointed at by the destination pointer (in this
example, the stack pointer, sp). This instruction can even be con
vinced to pre- or postincrement and decrement the destination
pointer. What more could you want? An inverse instruction? You
got it. The same instruction can take a pointer as the source and
copy the data into the supplied destination registers. By combining
these two variations you can get two lines of assembly code that
can move 13 longs at a time.

movem.l
movem.l

(aO), d0-d71a2-a6
d0-d71a2-a6, al

Only 13 longs, as registers aO and al hold the source and desti
nation and the a 7 is the stack pointer. Still, 13 longs moved with
only two instructions is a heap better than 13 movea • 1 . In case

202 ~s

you're wondering, it is assumed that a5, and the a5 world it refer
ences, has been safely stashed away.

With a full arsenal of assembly instructions in our kit bag, it's
now time to head off and build our mask compiler.

On 68040 processors and greater, Motorola added the Move16 instruction,
which will move 16 bytes without disturbing any registers at all, and it does
it blazingly fast. The problem is that to use this instruction your source and
destination pointers must line up on 16-byte boundaries. The other problem
is that the darn thing is only available on '040 or above. That limits its use to
those machines only, which are probably not the machines where you could
truly use this added horsepower. Now if Motorola had only retrofitted all

Just like any other compiler, our mask compiler must generate a
function prologue before generating the meat of the function. The
purpose of any function prologue is to save off the registers used by
the function, set up the stack space for any automatic variables de
clared by the function, and load up any parameters that are passed
in to their appropriate register locations.

void CornpiledBlitter(long srcPitch, //bytes to next row
long destPitch, //ditto
Ptr srcPtr, // Sprites image data
Ptr destPtr); //Dest. pixel map

First off, you want to move the four parameters over to their ap
propriate registers. Our compiler is hard-coded with the idea that
the source RowBytes value and its associated pixel image pointer
will be loaded into dO and aO, respectively. Same for the destina
tion arguments, except they'll reside in dl and al .

Following the C calling convention, the calling function will
have erected a call frame by pushing the parameter in right-to-left
order, with destPtr pushed first and ending with srcPitch.
Before executing our compiled function the caller will push the re-

~~ 203

Table 5-1. Stack Frame

dstPtr

srcPtr

dstPitch

srcPitch

Return Address • SP

turn address on the stack, producing the stack frame illustrated in
Table 5-1.

With one quick stroke of the movem. 1 brush, the entire stack is
broken up and loaded into the proper registers. The offset of four in
the 4 (a 7) is used to skip over the return address.

movem.l 4(a7), dO-dl/aO-al

Normally I would have declared our blitter prototype in reverse
order from that shown. I like to have pointers listed first followed
by any other auxiliary data. But then I couldn't have used
movem. 1, as it requires that data registers precede address regis
ters, and I would have been forced to use four ordinary move . 1.

After copying over the parameters the prologue needs to stash
away any registers that the body of the code will use. The values
stored in these registers will be restored to their appropriate regis
ters at the end of the function. Again, movem. 1 will be used, but
this time the way you would normally see it in the wild.

movem.l d3-d7/a2-a6,-(a7)

With dO, dl, aO, and al busy holding our needed parameters
and the stack pointer (register a7) off doing what stack pointers do,
the compiler is left with 10 registers to play with. The registers that
hold our arguments don't have to be saved. These four registers are
declared scratch registers and their values do not have to be saved
across function calls. The enforcement for this policy is strictly vol-

204 ~s

untary; if you're feeling paranoid you can go ahead and save these
registers.

Two lines of assembly is all it takes to set up our function's pro
logue, and neither line is tied to the parameters used by our func
tion. Great. This means that these two lines can be hard-coded as
defines and you can start building the mask compiler.

Our compiler takes two pixel map pointers, one to the source
image and the other to the mask. The resultant compiled sprite is
returned in the handle passed by the caller (the compilee?). The
caller is responsible for allocating a handle for the generated code.
In the case of an error, which could only happen if there isn't
enough memory, the compiler will return an OS error.

II Hex for movem.l 4(a7), dO-dllaO-al 4CEF 0303 0004
#define kCopyParametersPartl Ox4CEF0303
#define kCopyParametersPart2 Ox0004

II Hex for movem.l d3-d71a2-a6,-(a7) ; 48E7 1F3E
#define kSaveRegisters Ox48E71F3E

#define kMaxinstructionLength 8 II 8 bytes max. length

The first two defines hold the hex values for copying the para
meters followed by the hex code for saving off our needed registers.
The hex codes were found by disassembling the code in Macsbug
after creating a bogus function in an existing program (the Syman
tec bull's-eye tutorial works well) using the inline assembler. Turn
ing on Macsbug's logging output will help here or TMONs
playmen feature.

OSErr CompileSpriteMask(const PixMap *
const PixMap *
Handle

{

OSErr err;

*compiledMaskH nil;

ASSERT(srcPixels !=nil);
ASSERT(maskPixels !=nil);
ASSERT(compiledMaskH !=nil);

srcPixels,
maskPixels,
compiledMaskH)

~~ 205

ASSERT(EqualRect(&srcPixels->bounds,
&maskPixels->bounds));

A safety check is performed to verify that the caller didn't try to
slip us any bogus data and, most important, that the source and
mask images are the same size. After this check the source pointer
is no longer needed. You could drop passing the source pointer all
together. I kept it in to try stop any bonehead 3 A.M. mistakes I
might make.

if(compiledMaskH)
{

unsigned char* codePtr;
long rowCount;
long maskRowBytes;
long startingSize;

rowCount = maskPixels->bounds.bottom -
maskPixels->bounds.top;

maskRowBytes = maskPixels->rowBytes & Ox7FFF;

//Make the handle as large as possible
startingSize = rowCount * (maskRowBytes *

kMaxinstructionLength);
SetHandleSize(compiledMaskH, startingSize);
err= MemError();
if(err == noErr)

The handle that will hold our crispy fresh code needs to be set to
a size large enough to hold any amount of code that the mask might
direct us to deliver. The handle will be trimmed back after all the
processing is finished, when the actual size of the compiled code is
known. For now, you just want the largest size it could possibly be.
Which equates to the worst case of a mask without any consecutive
runs of pixels (picture a mask that is a 50 percent gray pattern). This
would require that each byte be moved individually, and the in
structions needed to do that are a maximum of eight bytes long.
Multiply this maximum by the number of rows and again by the
number of bytes per row and you get the largest code size possible.

20s ~s

If you're lucky enough to have that kind of memory lying around,
the code then heads off to write out the blitter' s prologue.

{

long scanLine;

II Got the memory. Start compiling,
II starting with the prologue
HLock(compiledMaskH);
codePtr = *compiledMaskH;

*(unsigned long *)codePtr
kCopyParametersPartl;

((unsigned long *)codePtr)++;

*(unsigned short *)codePtr =
kCopyParametersPart2;

((unsigned short*)codePtr)++;

After locking down the handle and grabbing a pointer to the out
put handle, the code starts writing out the prologue. The code pointer
is dereferenced after being cast to the size of the partial instruction be
ing written. The pointer is then advanced by the size of that same par
tial instruction. Repeating the same process for the second part of our
first movem. 1 completes the first line of the prologue.

//Stash away registers
*(unsigned long *)codePtr = kSaveRegisters;
((unsigned long*)codePtr)++;

The second movem. 1 is written out in the same manner as the
first: write out the hex value for the wanted assembly instruction,
bump the pointer up. There. The prologue has been written out
successfully. And you thought this compiling business was tricky.

The core of the mask blitter works a scan line at a time. The outer
most loop simply loops though each scan line in the mask. From
within each scan line consecutive runs of pixels will be extracted

~~ 207

and then compiled. Our compiler will take each run of pixels and
break it down into a series of consecutively smaller movem. 1 in
structions until the pixel run is down to four pixels. At that point
the compiler will switch from using movem. 1 to the more pedes
trian move .1. After the long's worth of pixels are exhausted, the
compiler will drop down to moving two pixels at a time and finally
finishes off moving a single pixel. This scenario assumes that the
run starts longer than four pixels. Otherwise the compiler starts
working with move . 1 and winds down from there.

II For each scanline in the mask compile it
for (scanLine = O; scanLine < rowCount; scanLine++)
{

EncodeScanLine(&codePtr, maskPixels, maskRowBytes);
maskPixels += maskRowBytes;

II Need to move the src and dest pointers
II to the next scan line
if (scanLine != rowCount--1)
{

llDlCO ADDA.L DO,AO
(unsigned short)codePtr = OxDlCO;
((unsigned short*)codePtr)++;

llD3Cl ADDA.L Dl,Al
(unsigned short)codePtr = OxD3Cl;
((unsigned short*)codePtr)++;

The code that loops around the scan lines is straightforward
enough; start with the mask pointer at the first scan line in the
mask, finish at the last scan line, and in between compile the cur
rent scan line. After the scan line is compiled move the mask
pointer to the next row in the mask pixel image. And since the com
piler is generating code for each scan line, it needs to generate code
for moving the source and destination pixel pointers to their next
rows. This is easily accomplished by hard-coding a couple of
adda. 1 into the output stream. In order to save a few cycles the
compiler skips the bumping of the row pointers for the last scan

20s ~s

line in the mask. It would do no harm to do so, other than wasting
time. Obviously, the real fun is inside EncodeScanLine.

void EncodeScanLine(unsigned char ** originalCodePtr,
const unsigned char * rnaskPixels,

long rnaskRowBytes);

The core of our compiler, EncodeScanLine takes a pointer to
our output stream, a pointer to the scan line it is about to compile
and also determines how many bytes that scanline contains. The
output stream pointer is passed by reference so that it can be up
dated to reflect its new p0sition after all of the code has been
streamed out. Before diving into the code generation, let's get an
idea of how the runs are extracted from each line.

void EncodeScanLine(unsigned char ** originalCodePtr,
const unsigned char * rnaskPixels,

long rnaskRowBytes)

long
unsigned short
unsigned char

pixelsinLine;
runStart;
*codePtr = *originalCodePtr;

runStart = O;
pixelsinLine = rnaskRowBytes;

while (pixelsinLine)

long pixelsinRun = O;

II Find a pixel run
while (pixelsinLine && *rnaskScanPixelP)

rnaskScanPixelP++;
pixelsinRun++;
pixelsinLine--;

II compile the run
while (pixelsinRun)
{

EncodeRun(&codePtr,

}

~~ 209

&runStart,
&pixelsinRun) ;

II scan over transparent pixels
while (pixelsinLine && !*rnaskScanPixelP)
{

runStart++;
rnaskScanPixelP++;
pixelsinLine--;

II Update the caller's code Ptr
*originalCodePtr = codePtr;

For ease of access the code stream reference is assigned to a local
pointer. I hate typing"**" everywhere. The variable runs tart,
which keeps track of how many pixels from the beginning of the
scan line the pixel run starts at, is initialized to zero, while pixels
InLine is set to the rowBytes of the mask's scan line.

The first loop is controlled by the number of pixels in the scan
line. The code inside this loop counts down the variable pixels
InLine while it looks for pixel runs. When the guts of the loop is
done it will have knocked pixelsinLine down to zero, and that
scan line will have been transformed into 68K assembly code.

Within the outermost loop you need to know exactly how many
pixels are in each run. That value is stored in the variable pixels
InRun, which starts its life at zero. After that you start looking for
a run of pixels in the mask.

A run is found by counting the number of nonzero pixels in the
scan line. When a zero pixel is found the run has terminated. For
every pixel in the run, the variable pixelsinLine is decremented,
pixelsinRun is incremented and the mask pointer is moved
along the scan line.

If a run of pixels is found before a zeroed mask pixel, you then
have something to compile and you can start hacking away at the
run. If a run was not found before a zeroed mask pixel, the compil
ing section is skipped and you drop into the loop that scans across

210 ~s

the run of zero pixels until it finds a nonzero pixel or runs out of
pixels. While this loop is searching for a nonzero pixel it keeps in
crementing the variable runStart so that when the loop termi
nates it will contain the number of pixels from the beginning of the
scan line to the start of the run.

The run-finding section is a little confusing at first glance, but if
you think of it Ping-Ponging back and forth from finding runs to
finding antiruns you'll get it. If not, it'll get clearer when a few ex
amples are run through the code.

When (or if) a run of pixels is found, the size of that run along
with the output stream pointer and the run's offset are handed off
to EncodeRun. All three parameters will be altered by EncodeRun,
hence the need for passing them by reference. Inside EncodeRun is
where the actual compiling is performed.

The code listing for EncodeRun is about 400 lines, and very
repetitive. I'll use the Reader's Digest version here. For the
unabridged version check your source listings.

unsigned char * codePtr = *originalCodePtr;

switch(*pixelsinRun)
{

case 44:
default:

if (*runStart)
{

II movem.l $xxxx(AO) ,D2-D71A2-A6
(unsigned long)codePtr = Ox4CE87CFC;
(unsigned short)codePtr = *runStart;

II movem.l D2-D71A2-A6,$xxxx(A1)
(unsigned long)codePtr = Ox48E97CFC;
(unsigned short)codePtr = *runStart;

codePtr += 4 + 2 + 4 + 2;

else

llmovem.l (AO),D2-D71A2-A6
(unsigned long)codePtr Ox4CD07CFC;

~~ 211

//rnovern.l D2-D7/A2-A6, (Al)
(unsigned long)codePtr

codePtr += 4 + 4;

*runStart += 44;
*pixelsinRun -= 44;

break;

Ox48D17CFC;

Once again a local pointer is used for accessing the output
buffer. I meant it when I said I really hate typing those "**"s every
where. Why doesn't C have a with thingamabob like Pascal. After
getting an easier-to-type pointer to our output buffer, we enter the
main core of the function. The switch statement branches on the
number of pixels contained in the current run.

Each case label specifies the number of bytes/pixels that will
be copied over by the generated code, with the largest run being
the first or default label: 44 pixels. So for any run 44 bytes or greater
this section will generate the assembly code that blits over a 44-byte
run of pixels. After the proper assembly code is generated, deter
mined by the value of the run offset, the output buffer pointer is
bumped up to point past the amount of code produced. The pointer
to the current pixel, runs tart, is moved forward by the number of
bytes that will be blitted, in this case 44. The variable that keeps
track of the number of pixels in the run, pixelsinRun, is decre
mented by the same amount. With all three of these variables up
dated the code returns to the caller, who will keep calling this
function until pixelsinRun is emptied out. On each subsequent
call, pixelsinRun will be smaller and a matching case label will
produce a little more code to handle the smaller run.

case 43:
case 42:
case 41:
case 40:

if (*runStart)
{

//rnovern.l $xxxx(AO),D2-D7/A2-A5
(unsigned long)codePtr = Ox4CE83CFC;

212 ~s

(unsigned short)codePtr = *runStart;

//movem.l D2-D7/A2-A5,$xxxx(Al)

}

else
{

(unsigned long)codePtr = Ox48E93CFC;
(unsigned short)codePtr = *runStart;

codePtr += 4 + 2 + 4 + 2;

//movem.l (AO),D2-D7/A2-A5
(unsigned long)codePtr = Ox4CD03CFC;

//movem.l D2-D7/A2-A5, (Al)
(unsigned long)codePtr = Ox48Dl3CFC;

codePtr += 4 + 4;
}

*runStart += 40;
*pixelsinRun -= 40;

break;

•
•

Missing cases 39-12. See the real code listing

case
case
case
case

•
•

11:
10:
9:
8:
if (*runStart)
{

//movem.l $xxxx(A0),D2-D3
(unsigned long)codePtr = Ox4CE8001C;
(unsigned short)codePtr = *runStart;

//movem.l D2-D3,$xxxx(Al)

}

else

(unsigned long)codePtr = Ox48E9001C;
(unsigned short)codePtr = *runStart;

codePtr += 4 + 2 + 4 + 2;

~~ 213

{

//movem.l (AO) ,D2-D3
(unsigned long)codePtr = Ox4CD0001C;

//movem.l D2-D3, (Al)
(unsigned long)codePtr = Ox48Dl001C;

codePtr += 4 + 4;

*runStart += 8;
*pixelsinRun 8;

break;

The sections that handle runs greater than seven bytes all use
the same movem. 1 code with only slight variations for the number
of registers used. For smaller runs the code drops down to using
move . 1, move . w, and drops down to move . b as a last resort.

case
case
case
case

7:
6:
5:
4:
if (*runStart)
{

//move.l $xxxx(A0) ,$xxxx(Al)
(unsigned short)codePtr = Ox2368;
{unsigned short)codePtr *runStart;
(unsigned short)codePtr *runStart;

}

else
{

codePtr += 2 + 2 + 2;

//move.l (AO), (Al)
(unsigned short)codePtr
codePtr += 2;

*runStart += 4;
*pixelsinRun - 4;

Ox2290;

break;

case 3:
case 2:

214 ~~

break;

if (*runStart)
{

//move.w $xxxx(A0),$xxxx(Al)

else
{

(unsigned short)codePtr
(unsigned short)codePtr
(unsigned short)codePtr

codePtr += 2 + 2 + 2;

//move.w (AO), (Al)
(unsigned short)codePtr

codePtr += 2;

*runStart += 2;
*pixelsinRun 2;

Ox3368;
*runStart;
*runStart;

Ox3290;

In the actual code there are 13 sections that handle runs greater
than or equal to 44, 43-40, 39-36, 35-32, 31-28, 27-24, 23-20, 19-16,
15-12, 11-8, 7-4, 3-2, and 1. Each run section after 44 simply drops
one of the registers used in the movem. 1, reducing the number of
bytes blitted by four.

case 1:
if (*runStart)
{

//move.b $xxxx(A0),$xxxx(Al)

else

(unsigned short)codePtr = Oxl368;
(unsigned short)codePtr *runStart;
(unsigned short)codePtr = *runStart;

codePtr += 2 + 2 + 2;

//move.b (AO), (Al)
(unsigned short)codePtr = Oxl290;

codePtr += 2;

break;

*runStart++;
*pixelsinRun--;

} II switch(*pixelsinRun)

II Pass back the updated pointer
*originalCodePtr = codePtr;

~~ 215

Using the actual code listings let's walk through an example
run. If you already understand the flow of the compiler at this point
feel free to skip the section.

The first example run will be 107 pixels starting from the begin
ning of a 128-pixel scan line. After EncodeScanline finds our
pixel run it passes EncodeRun output pointer, the number of pixels
between the start of the scan line and the start of the run (in this
case zero) and the pixel size of this run (107).

As this run is greater than 44 bytes the switch will bop right
down to the default label. After a quick check of runStart, to
see if the generated assembly code needs to deal with offset (it
doesn't this time), this section generates a 44-byte blit.

movem.l (A0),D2-D7/A2-A6
movem.l D2-D71A2-A6, (Al)

;Ox4CDO 7CFC
;Ox48Dl 7CFC

Following this exciting phase the mundane details of updating the
status variables is performed; codePtr is bumped up by the size of
the written instructions, runStart is updated to show that the next
section of the current run will start 44 bytes later, and pixelsinRun
is decremented by the number of bytes removed from this run.

Having chopped off 44 bytes from our initial run size of 107 pix
els, the next call EncodeScanline makes to EncodeRun will be
passing a run length of 63 pixels with an offset starting 44 pixels
from the beginning of the scan line. Again the run is greater than 44
pixels. Again the default branch is taken, but this time the code
has to handle the pixel offset. Taking into account the 44-pixel off
set, 2C in hex, another 44-pixel blit is produced.

21s ~s

movem.l $2C(A0),D2-D7/A2-A6 ;Ox4CE8 7CFC 002C
movem.l D2-D7/A2-A6,$2C(Al) ;Ox48E9 7CFC 002C

The run offset is incremented once again, its value now be
ing 88. The output pointer is moved along by the size of the in
structions generated; this time you have to take the size of the
indirect moves, which are two bytes longer than their direct
versions. And the size of the pixel run is again knocked down
by44.

On the next visit to EncodeRun the run is 19 pixels with an 88-
pixel offset. Finally the run has been reduced below 44 pixels, so
you can see another part of the code in action. A run of this size
drops us into the 19-16 case section, which will produce the in
structions to blit over 16 bytes. The same code is generated as be
fore, but this time with about half as many registers. And again the
code has to produce indirect moves to account for the 88 (Ox58) byte
offset.

MOVEM.L $58(A0),D2-D5
MOVEM.L D2-D5,$58(Al)

;4CE8 003C 0058
;48E9 003C 0058

After updating all the status variables the code returns what is
left of the run back to EncodeScanline.

That previous run through EncodeRun pared the run from 19
to a measly 3 pixels. And with that massive reduction the code will
stop using the movem variations. For this subrun the function will
produce code to move a single short word at an offset of 88 + 16, or
104 (Ox68) bytes.

MOVE.W $68(A0),$68(Al) ;3368 0068 0068

After handling that short EncodeScanline is left with a single
pixel to pass to EncodeRun. For this one pixel with an offset of 106
(Ox6A) the switch statement will generate a single indirect
move . b. Hardly worth the effort.

MOVE.B $6A(A0),$6A(Al) ;1368 006A 006A

~~ 217

There. That 107-byte pixel run has been compiled to eight lines
of assembly. Not bad. With the masking blitter you would have had
to execute 128 logical masking operations for the entire scan line. If
you count each logical pixel-masking operation as four lines of as
sembly, you end up with 512 lines of code to accomplish the same
thing as these eight. So the code is shorter, but is it faster? Those
movem. 1 aren't free. They burn up 40 CPU cycles per movem. 1

with the number of cycles increasing with the number of registers
involved. While the combination of and-ing/ or-ing/ negating to
logically mask the pixels chews up about 60 cycles per pixel, both
of these cycles' counts are rough estimates due to cache hits, pipe
lining, and cosmic rays. Even with a cache fudge factor thrown in
the compiling wins hands down in the speed race with logical
masking. As with any comparison, your mileage may vary.

movem.l (A0),D2-D7/A2-A6 ;Ox4CDO 7CFC
movem.l D2-D7/A2-A6, (Al) ;Ox48Dl 7CFC

movem.l $2C(A0),D2-D7/A2-A6 ;Ox4CE8 7CFC 002C
movem.l D2-D7/A2-A6,$2C(Al) ;Ox48E9 7CFC 002C

movem.l $58(AO),D2-D5 ;4CE8 003C 0058
movem.l D2-D5,$58(Al) ;48E9 003C 0058

move.w $68 (AO) I $68 (Al) ;3368 0068 0068

move.b $6A (AO) I $6A (Al) ; 1368 006A 006A

Now that the guts of the compiler have been laid bare it is time
to move on and write out the function epilogue.

Cleaning up after the compiler is easy enough: write out the func
tion epilogue and then tighten up the buffer that holds the gener
ated code. After those two steps your compiler is done and can
return a freshly compiled mask to whoever called it.

At the end of the function the stack holds the contents of the
nonscratch registers, return address, and the passed parameters
(Table 5-2).

21a ~s

Table 5-2. What the Stack Holds Now

dstPtr

srcPtr

dstPitch

srcPitch

Return Address

Registers d3-d7 & a2-a6

.. SP

Again using movem. 1 as it is supposed to be used will restore
the stashed registers. After restoring the registers a simple RTS fin
ishes off the mask compiling.

movem.l (a7)+,d3-d7la2-a6
rts

48E7 1F3E
4E75

You don't have to worry about cleaning up the parameters on
the stack; our compiled function is following C calling conventions.
Which make the calling function responsible for removing what
ever parameters it stuck on the stack.

The code for generating the epilogue is a direct mirror of the
prologue code-write out the assembly instructions and move the
code pointer along by the size of those instructions.

II After compiling write out the function's epilogue
*(unsigned long *)codePtr = kRestoreRegisters
((unsigned long *)codePtr)++;

*(unsigned short *)codePtr = kRTS;
((unsigned short *)codePtr)++;

Before returning the compiled mask to the caller you need to re
size the output handle to its correct size. This size is found by sub-

~~ 219

tracting the address of the code pointer from the starting point of
the buffer. The starting point is the master pointer of the handle so
you need to dereference the handle once before subtracting the
addresses.

II Done writing code, handle may be freed
HUnlock(cornpiledMaskH);

//Shorten up the code handle
SetHandleSize(cornpiledMaskH, codePtr - cornpiledMaskH);
err= MernError();

Since even paranoids have enemies, the code checks MemError

to see if there were any problems in shortening the handle. About
the only problem that can occur would be caused by a trashed
heap, which would be easy enough to do with a simple error in the
compiler. Keep that in mind if you alter this code and start getting
memory errors returned.

There are two stages to using compiled sprites: development time
and run time. Just as during the development stage you need to re
compile your code for every change made, you'll need to do the
same for every change made to your game's sprite images. At run
time you'll need a way to associate each sprite image with its com
piled mask. From this association you can load the mask into mem
ory and execute the compiled code.

My simple approach for the first problem is a little utility pro
gram that goes through the resource fork of my game and compiles
each color icon it finds and places the output data into a resource of
type '68ic' using the same id for this resource as the 'den' it com
piled. The only problem with this process is that I have to remem
ber to do it. Luckily, altering your game's sprites is performed
much less frequently than changing the code. If you are an MPW
aficionado you could easily make an MPW tool that compiles the
sprites and add this stage to your make file. I'd rather have to re
member this stage than be forced to use MPW, but that's me. If you

220 ~s

have a torrid passion for command lines and option key characters,
by all means use MPW. Don't think that I don't like MPW. I do. In a
weird kind of way it is a love-hate relationship. Love the About
Box, hate the scripting language. Any scripting system that requires
the use of Key Caps has a fundamental design flaw. But then again
it does have one of the coolest About Boxes going.

Instead of precompiling the sprites you might decide that the
game could compile them at run time. While your user is gazing at
your colorful splash screen you could just load in those icons and
start compiling away. This would work but would probably be un
bearably slow and error-prone. That it would be slow is obvious;
the errors can occur because you will be compiling code into data
space and then executing that freshly compiled code. Unless you're
careful to flush the processor's caches you can end up executing
garbage. Another nit can be future memory protection-if you try
to execute code from data space in a future protected OS you'll gen
erate an access violation.

Assuming that the sprites have been compiled into '68ic' re
sources at compile time, the code for loading and blitting a sprite is
straightforward. Load the resource. Lock it down, dereference the
handle to get to the function pointer, and then call it as you would
with any other C function pointer.

typedef void (*CompiledBlitterPtr)
long srcPitch, //bytes to next row
long destPitch, // ditto
Ptr srcPtr, // Sprites image data
Ptr destPtr); //Dest. pixel map

typedef CompiledBlitterPtr *CompiledBlitterHnd;

CompiledBlitterHnd spriteCode;

spriteCode = (CompiledBlitterHnd)

Get1Resource(128, '68ic'); if(
{

HLock((Handle) spriteCode);

spriteCode

(*spriteCode) (srcRowBytes, dstRowBytes,
srcPixels, dstPixels);

HUnlock((Handle) spriteCode);

~~ 221

ReleaseResource(Handle) spriteCode);
}

In your game, and as shown in future examples, you would not
want to load and reload the compiled mask every time you blitted
the sprite. You would be wasting so much time you may as well use
CopyBi ts. You'd want to load the masks at the beginning of the
program or at the start of each level. Which is exactly what later ex
amples will do.

When you start programming your own games you'll need to de
cide how you want to blit your sprites. Your game might not need
to use anything faster than CopyBi ts. Or you might need more
speed but find yourself stuck with tight memory limitations. In this
case you'll have to compromise between speed and size. All of the
blitters presented trf!.de some amount of memory for gains in speed.
And then there is that one last messy detail, clipping, to deal with.

Timing the various blitters in operation is a tricky business. You'll
need to decide the average platform you'll support and test your
blitters on that piece of hardware. This doesn't mean that you need
to run on the lowest-level Mac produced. You just have to run on
the lowest-level Mac that you want to run on. If your game only
runs well on a 40 Mhz '040 and you don't want to optimize the
code to run on a 16 Mhz '020, don't. If your game is not a commer
cial endeavor then don't sweat it. Then again, if it is you'll have to
decide what size of market you're willing to give up. The point is to
have fun. Make sure it is clear to your players what your hardware
requirements are and be done with it. Players with enough hard
ware will enjoy your game and those that don't will have an incen
tive to upgrade. And hopefully with the time you save you can
implement a better game, not just a faster one.

222 ~s

As for picking the right blitter, you might want to delay that de
cision for the player or at least the user player's hardware. Even if
you have every sprite compiled, nothing's stopping you from de
ciding to use a different blitter at run time. Some of the more so
phisticated game programmers time their various blitters when the
game first starts up and then use the winner for the rest of the
game. This is a great idea. If the platform's hardware isn't fast
enough to use CopyBits, you go ahead and use your own blitters.
But if your timings show that CopyBi ts is outperforming your
blitter, which could easily happen with hardware QuickDraw accel
erator cards, then you get a better blitter and probably a better shot
at future compatibility. Other programmers implement the same
concept but allow the user to pick which blitters are used through a
preference item. Usually the blitter preference is named something
like "QuickDraw Compatibility." No matter how you implement it,
it's a good idea and one you should keep in mind while designing
your game.

Sprites chew up memory at a voracious rate, and that rate is in di
rect relationship to their blitting implementation. You need to keep
this in mind. No point in having the fastest blitter in the world if it
has to use so much memory that no one could afford to play the
game. And, like blitting speed, each game will have different mem
ory requirements.

Of the three blitters presented here, each uses the same amount
of memory to hold the sprite's source image; height times width is
equal to the number of bytes for the source image. The differences lie
in the encoding of the masks. Storing the mask as a region usually
gives CopyBi ts the smallest mask of the three. But a rare degenera
tive mask could cause the region to be larger than an equivalent logi
cal blitter's mask. The logical blitter's mask is fixed in size, one byte
(due to the expansion) for each byte in the source image. Like Copy
Bi ts' regions, the mask compiler's memory usage varies with the
complexity of the mask. A sprite with lots of holes will produce a
mask that is larger than the same size sprite without any holes. If you

~~ 223

look back at the compiler code you can see that a run of one pixel
produces mask code of a minimum of two bytes (more likely six).
Shove the wrong mask into the compiler and you'll get handed back
one huge chunk of mask code. A mask that produces a huge mask
will also blit slower than a memory-efficient mask. You get a double
bonus for developing sprites with tiny masks, small memory foot
print, and faster blitting times. Think about that when you design
your next game around a Swiss cheese theme.

Every sprite used within your game increases the game's mem
ory usage (duh!). You'll want to look for ways to reduce the mem
ory baggage associated with your sprites. Besides using a smaller
mask you can take advantage of the fact that your game probably
uses only a few unique sprites. If you have a few dozen identical
looking baddies on screen at one time, you don't want to duplicate
sprite images sitting in memory for each. Write your game so that
you can share common graphic images for identical sprites.

The last tip on memory usage is to take advantage of levels.
Levels don't just provide a ladder of success for the player, they
give you an opportunity to throw away sprites not needed for the
next level and to bring into memory even more diabolical evildoers.
Using levels allows you to have graphic variations without having
to load up all those sprites into memory at program boot time. Plan
out not only what you'll load into memory, and what you'll purge,
but when. You don't want to try loading sprites in and out of mem
ory while your players are in the middle of a heated battle. Nothing
ruins a good game like an inappropriate disk hit.

As hard as it is to believe, the previous sprite blitters ignored one
important detail: clipping. I'm sure you've experienced clipping in
your past programming experience on the Mac. Of course you
might not have thought about it. Why should you? When you cre
ate a window and then ask QuickDraw to fill a rectangle the size of
Montana with a nice vermilion, does it? No. Only the content re
gion of the window is filled with your favorite color, and the state
of Montana is spared your attempts at exterior decorating. Quick-

224 ~s

Figure 5-7.

Draw has clipped your graphic request. Anytime you try to color
outside of the lines QuickDraw will intervene and force your re
quest to light up only the pixels that lie within your window and
the window's port's clipping region. Without QuickDraw clipping
your stray pixels you could end up writing over memory that
doesn't belong to you. An invitation to disaster. Clipping comes
into the picture when the sprite's bounds isn't completely within
the destination offscreen (Figure 5-7).

Sprite not needing clipping Sprite in need of clipping

Our blitters as written go straight ahead and start blasting pix
els without any consideration of where they lie with respect to the
destination's offscreens bounds. No problem if the sprite is totally
enclosed by the offscreen' s bounds; disaster otherwise.

Obviously you need to take clipping into consideration. The
easiest way is to use CopyBi ts. Being part of QuickDraw, Copy
Bi ts will give you the same level of clipping as any other Quick
Draw command. If your game requires more speed than
QuickDraw can provide, then you have to worry about doing your
own clipping.

One quick and dirty way to provide clipping is to design your
game so that a situation that would require you to clip never oc
curs. This is pretty easy to do and for the right type of game
would be a satisfactory solution. If you take this route I would
suggest adding some debugging code that verifies that sprites are
fully enclosed by the destination offscreen. It's easy to slip in a

~~ 225

mistake that would have your sprite slip over the destination's
border. And the consequences of that penetration might not be ex
perienced until the chunk of memory that was stomped on inad
vertently is used. This could be a microsecond after the said
stomping or it could be hours. A bug with hours between cause
and effect can be the only incentive you need to start writing ac
counting software.

If you can't cheat-I mean design-your way out of clipping,
you will need to code clipping into your sprite engine. The naive
way to do clipping is to look at each pixel that you want to write
and after verifying that it lies within the destination's bounds you
go ahead and write the pixel into the destination offscreen. This
will work. It'll be glacially slow, but it will work. The best way is to
follow the example of computer graphics greats and do your clip
ping on the logical level.

When you ask a graphics package to draw a line that needs to
be clipped, it starts off by first asking itself if the line needs to be
clipped. Yes, in this example case. Then it finds the intersection
points of the line and the legal drawing bounds. If the line does in
tersect the legal bounds (it might not), the graphic package uses the
intersection points as the real line it needs to light up pixels for. The
requested line is clipped by finding a smaller line segment for the
line that lies within the drawing bounds. Our blitter needs to do the
same thing, but only with rectangles.

void LogicalMaskedBlit(PixMapPtr
PixMapPtr

srcMap,
dstMap,

PixMapPtr maskMap,
Rect * srcR,
Rect * dstR)

The logical blitter presented earlier has enough data passed to it
to easily add clipping. First find out if any clipping needs to take
place at all. A quick test with the Mac's Sec tRec t combined with
EqualRect will quickly provide the answer and as a bonus will
give you the sprite's bounds clipped to the destination's bounds.

22s ~s

Rect clippedRect;

if(SectRect (srcR, dstR, &clippedRect))
{

if(!EqualRect(&clippedRect, srcR))
{

II Prepare the blitter for copying less than the
II full sprite
}

else
{

II Sprite fit completely within the destination.
II No clipping is necessary

clippedRect = *srcR;

else II Sprite is completely outside the destination
return;

You got the bad news and you do have to clip this particular
blit. No problem. Replace the loop controls with the clipped rectan
gle instead of the sprite's bounding rectangle that it currently is us
ing. Also you need to adjust the destination's starting address to
point to the first byte of the destination pixel map after taking into
account the clipping. After taking those two steps this blitter is now
a clipping blitter. A little slower than before but a lot more versatile.

To avoid the inevitable slowdown imparted by clipping some
programmers use two blitters, one with clipping and one without.
Others wrap the details in a higher-level function that does the clip
ping if necessary and then calls a lower-level function that just blits
what it's told without asking any embarrassing clipping questions.

Adding clipping to the logical blitter didn't seem too difficult. I
wish the same could be said of the mask compiler blitter. Adding
clipping to this baby is quite a challenge. The problem is that the
compiler has hard-coded all the blitting operations into the code. To
account for general clipping you'd basically have to recompile the
mask at run time. You don't want to do that. You can hack in verti
cal clipping in a sprite compiler by taking advantage of the fact that
each raster line of the mask is compiled independently of the oth-

~~ 227

ers. After generating the compiled functions prologue, the compiler
would need to build a jump table that would index each line of the
mask. You'd then write the compiler to execute the blitting code by
jumping through the table to only the rows of the sprite that are in
cluded by the clipping. This is doable but nasty. And even if you
did the necessary retool you'd still have horizontal clipping to deal
with. I'd give up and punt at this point. By the time you added gen
eral clipping to the compiler you'd have added enough code to
obliterate the whole reason for having a compiler.

The solution? Combine the mask compiler with another blitter.
You build a general blitter function that determines if clipping is
necessary and if not goes right ahead and executes the compiled
mask. If clipping is necessary the wrapper function calls another
blitter. In my case I call CopyBi ts. I take a big time hit for the
clipped blits, but on average most sprites don't need to be clipped.
During development I keep a couple counters running. One for
each time the mask compiler gets called and the other for when I'm
forced to use CopyBi ts. At the end of the games run I drop into
the debugger and check out the counters. If the clipping counter
was too high I'd redesign the game to avoid this situation as much
as possible. I don't know if it's the solution, but it's the one I use.

6

When you fire off your last adamtanium-enriched missile, watching
it streak its death arc across the battlefield, ripping into the Vargon
mother ship's main lepton reactor and setting off a chain reaction
that wipes out the entire Vargon fleet, you have not only saved the
world from four-legged creatures with bad haircuts and even worse
table manners, you have experienced a sprite collision.

Collisions are the most important part of arcade games, after
blitting, that is. Without collisions you'd just have a bunch of
sprites running around the screen without any form of interaction.

229

230 ~6

That's not a game, that's a screen-saver. Collisions are the messen
gers of interaction. When you get a message that a sprite collision
has occurred, you then get to decide what should happen as a re
sult of that collision. This is where your game ideas start to unfold.
Sprite A has collided with sprite B. What should happen? Your
game. Your choice. I suggest blowing something up.

Two sprites collide when one sprite occupies the same screen real
estate as another sprite. In the overdramatized example above,
your missile sprite traveled across the screen until it was at the
same location as the mother ship. The game detected that these
two sprites were occupying the same place at the same time and
informed the program. The program kicked in and blew some
thing up.

As you can see, the term collision is a misnomer. Sprites don't
collide. Collisions require mass and acceleration and momentum
and a whole bunch of other physical properties that sprites don't
have. Sprites can't collide. They touch. They lie on top of one an
other. But sprite touching sounded too wimpy for the manly game
programmers of long ago, so you're stuck with the aggressive term
sprite collision.

Determining if two sprites collide is very similar to blitting the
sprites. If the sprites are simple rectangles you can easily see if they
collide by performing a quick intersection test on their bounding
rectangles. If the bounding rectangles intersect, then the sprites
have collided. The tricky part occurs when the sprites are not sim
ple rectangles.

~~231

Figure 6-1. Vargon ship with tunnel

If the Vargon ship was constructed with a tunnel down its mid
dle (as in Figure 6-1) and your shot passed cleanly through the tun
nel you would not expect a collision to be registered. With only the
bounding rectangles to go by, a collision would be generated. If you
were playing the part of the Vargon captain you'd be pretty upset
that your entire fleet was wiped out by a shot that clearly missed
you by a parsec. Your collision detecting needs to account for not
only holes but close shots.

Figure 6-2. Detecting a close shot

In Figure 6-2, the missile will pass by the mother ship without
even coming close, yet once again the simple bounding-box method
of determining collisions will fail and end up reporting a newly

232 ~6

formed hull breach. And again the player will be outraged that this
damn game is obviously cheating.

To correctly determine a sprite collision you need to involve the
sprite's masks. Only the mask contains enough information to accu
rately determine if two sprites have collided. Instead of performing
a bounding rectangle intersection test you'll need to perform a
mask intersection. If the mask of either sprite intersects with the
other's mask, you have a bona fide collision.

If you're using CopyBi ts with the a mask regions, detecting a col
lision is as easy as calling SectRgn. Pass SectRgn your two mask
region test candidates and it will give you back a region that equals
the intersection of those two regions. Pass this resultant region to
EmptyRgn and you'll be given a pass-fail grade on the sprites' pos
sible collision. If the region is nonempty your two sprites are in
volved in a head-on. Empty region? No collision.

void SectRgn (RgnHandle rnaskRgnA, RgnHandle rnaskRgnB,
RgnHandle dstRgn);

You'll have to allocate storage for the result of Sec tRgn with a
call to NewRgn. I would suggest doing this once and keeping this
region handle around as a global. No need to involve the memory
manager in a simple collision test.

If your blitter choice is the logical blitter you'll want to do your col
lision testing using the same masks used by your blitter. Checking
for a collision turns out to be a heck of lot easier than the masked
blitter.

Boolean IsLogicalCollision(PixelMapPtr spriteMasklPtr,
PixelMapPtr spriteMask2Ptr,
const Rect * spritelBnds,
const Rect * sprite2Bnds,
const Rect * sectBnds)

{

short
char *
Rect *
short
short
short

xDiff

xDiff, yDiff;
masklPtr, mask2Ptr;
bndsl, bnds2;
masklRowBytes, mask2rowBytes;
xCnt, yCnt;
offsetl, offset2;

= spritelBnds->left - sprite2Bnds->left;

II verify that sprite one is to the left of sprite 2
II If not swap our local references so that the maskl
II is to the left
if (xDiff > 0)
{

else

bndsl = sprite2Bnds;
bnds2 = spritelBnds;
masklPtr = spriteMask2Ptr->baseAddr + xDiff;
mask2Ptr = spriteMasklPtr->baseAddr;
masklRowBytes =

spriteMask2Ptr->rowBytes & Ox7FFF;
mask2RowBytes =

offsetl
off set2

spriteMasklPtr->rowBytes & Ox7FFF;
0;
xDiff;

bndsl = spritelBnds;
bnds2 = sprite2Bnds;
masklPtr = spriteMasklPtr->baseAddr - xDiff;
mask2Ptr = spriteMask2Ptr->baseAddr;
masklRowBytes =

spriteMasklPtr->rowBytes & Ox7FFF;
mask2RowBytes =

spriteMask2Ptr->rowBytes & Ox7FFF;

234 ~6

off setl
off set2

-xDiff;
0;

yDiff = bndsl->top - bnds2->top;

if (yDiff < 0)
masklPtr += masklRowBytes * (-yDiff);

else
masklPtr += masklRowBytes * yDiff;

for(yCnt = sectBnds->top;
yCnt <= sectBnds->bottom; yCnt++)

for(xCnt = sectBnds->left;
xCnt <= sectBnds->right; xCnt++)

if(*masklPtr++ && *mask2Ptr)
return TRUE;

II move the mask pointers to the next row
masklPtr += masklRowBytes - offsetl;
mask2Ptr += mask2RowBytes - offsetl;

return FALSE;

You first find the intersection rectangle of the two sprites. Cal
culate the two pointers that index into the masks so that both that
pointers correspond to the top-left coordinate of the intersection
rectangle. Using two nesting loops, work your way across and then
down the common rows of the two masks, testing each entry in the
masks. If you find a spot where both masks have nonzero entries,
you have found a mask intersection. The two sprites have collided.
Return that information to the caller. If you make it through both
loops you will have exhausted all the common entries between the
two masks without finding a collision. Return to the caller your
failure to find a collision.

I wish I knew of a way to check for a collision between two com
piled masks. I don't. My cop-out solution is the same one as for
clipping. Carry around the mask regions that match the compiled
masks and use those to check for a collisions. I guess you could
write a mask collision compiler. You being the operative word here.
I'll stick with my cheesy cop-out.

As you probably guessed, all of these accurate methods of detecting
collisions are slightly slower than the simple bounding-box tests.
With "slightly" being on the order of a few magnitudes slower.
Why do you care about the speed of the collision? Before each
frame of game animation your game will want to do all of its colli
sion testing. The longer the collision testing takes, the less time you
have for moving your sprites around. No point in having hand
crafted blitters if they spend most of their time waiting for the colli
sion code.

Your best bet for faster collision testing is to avoid the expensive
mask-based tests until you have at least checked that the bounding
rectangles for the sprites are already intersecting. The bounding
rectangle test isn't free, it's just insignificant in comparison to the
time consumed by the mask-based tests. And given that most colli
sion tests return false, you don't want to spend any more time on
them than absolutely necessary. The rest of this chapter is dedicated
to finding even niftier ways to avoid these expensive tests.

The main problem with collision testing is not that accurate testing
takes too much time, even though it does. The main problem is that
time taken for collision testing grows at a nonlinear rate.

236 ~6

When you blit a sprite it takes a fairly fixed amount of time.
Add another sprite roughly the same size and shape and your ani
mation phase now takes a predictable amount longer. The growth
in the time to blit all the sprites grows in a linear fashion. Linear is
good. Linear is fast. Collision detection is not linear.

Picture a game called Solitaire Pong or better yet check out Fig
ure 6-3. In this, the most boring game ever invented, there are only
two sprites; the player's paddle and the ball.

•
-

G---;a
Figure 6-3. Solitaire Pong

With only two sprites on-screen there are only two possible sprite
collisions: ball hits paddle, paddle hits ball. Since collisions are com
mutative, you know if A= B then B =A, so with two sprites you only
have to perform one collision test. With two sprites the time eaten up
by the collision testing isn't even worth measuring. But what if you
add five more balls to the game. Besides creating a more challenging
game you have increased the collision complexity by a whole bunch.
But how much is a whole bunch? This sounds suspiciously like one
of those problems you get in Comp. Sci. 201: Algorithms.

Let's see, given x sprites, to test every sprite for a collision with
every other would be x2. Of course, x2 means you are testing each
sprite against every other sprite including the sprite itself. While the

~~237

existential question of whether a sprite can truly ever intersect itself
is interesting, for our purpose we're going to go ahead and say yes.
Removing self-intersections allows you to remove x sprites from the
testing, giving you the equation x2 - x. Remember, if sprite x1 collides
with sprite x2 you don't want to bother wasting time testing x2

against x1• Using this tidbit you can divide the total equation in half,
leaving the simple equation shown in Figure 6-4 and leaving me with
an excuse to use my equation editor. Maybe later I can work in some
excuse to throw in some integrals. I love reading books with inte
grals. It allows me to justify all that money I spent for college.

(x2 - x)
2

Figure 6-4. Collision equation

Now that you have derived the infamous collision equation, you
are set to answer the original question. How many collision tests have
to be performed with five balls? With the paddle that would make six
sprites. A few dicks of a handy HP and you get 15 as your answer. Fif
teen tests for six sprites. I hope those tests don't take too long.

A quick look at Figure 6-5, and its corresponding table shows
that adding even a few sprites to our game will increase the num
ber of tests performed by some obscene amounts.

Sprites #ofTests

2 1
Yaxis

4 6
8 28

10 45
20 190
30 435 -'- ._ ___________ __,
40 780
50 1225 1-- Xaxis

~I

Figure 6-5. Sprite tests

238 ~6

For you algorithmic studs out there the big 0 notation for this
equation would be just plain O(x2). For the others among us that
missed those first few days of Comp. Sci. 201, big 0 notation is not a
way of keeping track of your orgasms. If you need an equation for
that, you are wasting your talents programming. Big 0 notation is the
accepted manner of classifying an algorithm's run time performance.
In our case the notation O(x2) means the collision testing run time per
formance demands increase approximately like x2. With the big 0 you
ignore the -x and division by two on the basis that their impact on
performance is insignificant in comparison to the rate that x2 grows.
It's like ignoring your weight when calculating the weight of the
planet; yes, you add some weight but not enough for anyone to care.

The solution to speeding up your collision testing lies in rethinking
what the problem really is. Instead of thinking of the problem as
one of finding the other sprites that are colliding with the test
sprite, rephrase it as, Given a sprite search through all of the other
sprites, looking for any that share the same screen space. Now
sprite collisions has become a classical computer science searching
problem. And with classical problems there are classical solutions.
Time to dig out one of your dozens of algorithms textbooks. I sug
gest Sedgewick's Algorithms. The fact that it was published by the
publisher of this book is purely coincidence. Be careful if you have
the copy that uses C for the implementation language. It has a slew
of "off by one" errors, with most of them appearing in the sorting
chapters. Thought you might want to be warned, as that is the opti
mization I'll use first.

One way to speed up a searching problem is to place the data to be
searched into a well-known order. If you were searching for a zip
code among thousands, a good approach would be to sort the zip

codes into ascending order before searching. With the zip codes
sorted you could then apply a more sophisticated searching tech
nique like a binary search to find the zip code you are looking for.

The same idea can be used for sprite collisions. After you move
each sprite to its next location for the next frame and before you
start the blitting for that frame, sort the sprites according to their
new on-screen locations. Then for each sprite you can quickly look
to see if any other sprites overlap. If you do find a sprite that over
laps you then only have to check the few sprites surrounding the
first for additional collisions. You stop checking the surrounding
sprites when you find a sprite that is over half the distance of the
test sprite away from the original hit sprite. Because of the sorting
you're guaranteed that no other sprites can overlap once you find
one that doesn't. After checking both sides of the sorted list around
the initial hit sprite your collision testing is done. And you will only
have had to test a small sample of the sprites on the screen .

• • •
•

•
Figure 6-6. Sorting sprites

You'll have to decide on what axis, x or y, you want to sort your
sprites. You want to pick the axis that will give you the most even
distribution of sprites across the screen. In the oversimplified Fig
ure 6-6 you'd want to sort on the x axis. The x axis usually is the
predominant candidate for most games, as there are usually more x

240 ~6

pixels than y pixels. More pixels means more space for the sprites,
although the axis you pick will be eventually be driven by your
game's layout.

After deciding on what axis to sort the sprites you'll need to de
cide how to sort them. In choosing your sorting algorithm keep in
mind that each of the sprites moves only a few pixels at a time.
You'll want to choose a sort that deals well with already sorted
data, as that is what you'll have most of the time. Insertion sorts
and radix sorts work well within these constraints. Heck, even the
much-maligned bubble sort could be used here without fear of
ridicule. Or you might forgo a sorting algorithm and just move
each sprite within the sorted list after you calculate its new posi
tion. The sprite will usually only have to move up or down one
place in the list. That is if it has to move at all. Most of the time it
won't.

No matter how efficiently you sort your sprites you are burning
up some amount of processor cycles. You only want to resort to
sorting if the costs of sorting are covered by the savings in search
ing. In other words, don't jump right into sorting your sprites until
you've seen whether your game can get by with the simple brute
force methods of collision detection.

Another way to speed up collision testing is to apply the old divide
and-conquer axiom. Instead of testing for collisions on a huge bunch
of sprites across only one screen, divide the screen into several
smaller screens with each divided screen holding only the sprites
that lie within that screen's bounds. Let's call each of these divided
screens a sector. Your collision testing procedure becomes one of
first finding the sector your test sprite is currently lying within. Af
ter that you need only test that one sprite against the other sprites
that are also in the same sector. You still have a O(x2) performance
bounds, but you have reduced x to a reasonable number.

If you decide to try the sector method you want to make your
sector sizes such that they are a power of two larger than the

~~241

matching dimension of the largest sprite. If your largest sprite is 30
w 56, then you want to your sectors to be 32 w 64, the closest powers
of two that are larger than the sprite's dimensions. With the sector
size based on powers of two you just have to shift your sprite's co
ordinates to the left to find what sector the sprite belongs in. Much
better than a nasty divide.

Sectoring the screen sounds easy enough, but, of course, there is a
catch. The catch is what to do about sprites that lie on sector bound
aries. A sprite could easily lie in one, two, or four (and eight if you al
low objects bigger than sectors) sectors at once. If this situation were
to occur you would have to check each sector the sprite intersects for
possible collisions. This isn't all that slow as it is annoying.

When I was writing this section I stumbled across a posting that shows
that shifting the sector grid four times gives better performance than a
static sector grid and then checking for overlaps.

This careful analysis is brought to you by Tom Moertel. You got to
just love any analysis that uses the word asymptotically.

ANALYSIS: FOUR-SHIFTS vs. ADJACENT-SECTORS

Before you begin thinking that this shift-and
repeat technique is terribly inefficient, consider
the alternative, checking adjacent sectors. Let's
say you've got a sector in the middle of the screen;
call it S. Objects in S could collide with objects in
adjacent sectors, so you'd have to include all eight
of them in your collision testing of S. How does that
affect running time?

Assume that objects are randomly distributed over
the screen and that there are on average K objects in
each sector. Recall that to test for collisions in
each sector, we use a brute force technique that re
quires n (n-1) /2 rectangle intersection operations
(check it) for n objects. Now we can compare the
four-shifts method with the test-adjacent-sectors
method.

. . . Four-shifts method: each sector is checked
by itself, at a cost of K(K-1)/2 rectangle tests, but

242 ~6

the process is repeated 4 times. Consequently, the
cost to entirely check a sector is 4 * K(K-1)/2 =
2K(K-l) 2KA2 - 2.

Adjacent-sectors method: Each sector is
checked only once, but its eight neighboring sectors
are included in the check. Define L = (1+8)K be the
average number of objects in these 9 sectors. So the
cost per sector is L(L-1)/2 (9K)((9K)-1)/2
(81KA2 - 9K) /2.

Now, let's calculate the ratio of the two meth
ods' expected number of rectangle tests:

cost of adjacent-sectors (81KA2 - 9K)/2
R =
cost of four-shifts 2KA2 - 2

Note that the limit of R as K -> Infinity is
20.25. Asymptotically, then, the four-shifts method
is about 20 times faster than the adjacent-sectors
method. Admittedly, it's unlikely you'll have an in
finite number of objects on the screen. That fact
begs the question, how much faster is the four
shifts method for the more common cases in which
there are, on average, one, two, or three objects in
a sector? Answer: For one object, it's *much*
faster; for two, 38 - faster; for three, 30 - faster.

The four-shifts method needs to perform *no*
tests when there's only a single object in a sector
a very common case. The adjacent-sectors method, on
the other hand, needs an average of 36 tests to han
dle the same situation.

Cool. Thanks again Tom.

Dividing up the screen will only give you better performance if
your sprites are evenly distributed across the sectors. A game that
has hundreds of swarming bees surrounding the player, forcing all
those sprites into the same sector, will end up with O(x2) perfor-

~~243

mance. If you find yourself in this situation, writing a game with
bad clustering not surrounded by hundreds of swarming bees, you
can take a hint from ray tracing algorithms.

Ray tracing algorithms have some of the same problems of colli
sion detection. As each ray is shot into the modeled scene the pro
grammer must find the objects that the ray intersects with as it
passes through the 3D world. Since the programmer will be shoot
ing a gazillion rays into the scene, she needs a way to efficiently
find what object will intersect the rays. Sound familiar? This is a
heavy area of research and one of the cooler ways found is to parti
tion the 3D world in the same manner as the sector collisions. The
main difference is that the 3D rendering folks divide their space
around the objects themselves, effectively creating a hierarchy of
sectors in which the more objects there are, the more sectors there
are. If you applied the same idea to collision detection you would
have a sectoring scheme that did not require the sprites to be
evenly distributed across the screen.

/
Frame 1 Frame 2

Figure 6-7. Sector-mapping the screen

Now that you've explored the more advanced methods of collision
detection let's take a look at the simplest way to reduce collision
testing time: design around the problem. All of the previous exam
ples of collisions assumed that each sprite has to test against every
other sprite for a possible collision. This would be true only if your

244 ~6

game's design needed every sprite to collide with every other
sprite. Very few games match this description.

In almost every game designed, the sprites can be divided into
three categories: player's, enemy's, and maintenance. The player
sprite would be the sprite that represents the player and anything
the player can launch-missiles, lasers, bombs, bananas. Enemy
sprites are the player's targets along with anything they might start
slinging at the player. Maintenance sprites are those sprites you
don't pay much attention to-your score, floating bonus tags, ex
plosions, miscellaneous debris. With this categorization you can re
duce the number of possible collisions by programming within a
few constraints. Like: the players can't shoot themselves, the ene
mies can't shoot themselves, and nobody can shoot the mainte
nance sprites. With these rules you've reduced the number of
possible collisions by at least two-thirds. You don't have to bother
checking each player missile with any of the other player missiles
or the player. Same goes for the enemies; their missiles pass right
through their brethren and only collide with the player.

You'll have to program your game to enforce these rules. In the
above example you might keep three lists of sprites, one for each
category. When it comes time to start testing for collisions you'd
test the player's list against the enemy's list and then repeat the
process for the enemy's list. You'd skip the maintenance list
altogether.

Let's use the above rules with an example. There is one ship for
the player who has fired four missiles. There are 30 enemy ships
with 7 missiles currently homing in on the player. And don't forget
the maintenance sprites, one for the current score, another for the
high score, and one more for the current level. Thirty-eight sprites
total, with the brute force number of collision tests at 703. I hope
those tests don't take too long. By applying the game's rules you
get 37 tests by testing the player's ship against the enemy sprites
and their deadly missiles. Each of the player's missiles must be
tested against the enemies and their missiles, adding another, let's
see 4*30 + 4*7 = 148, 148 additional tests. The maintenance sprites
contribute a big fat zero. Giving us 37 + 148 + 0 = 185 tests total. So
by programming a few constraints into the game you're able to re-

~~245

duce the number of possible collision tests from 703 to the slightly
more reasonable figure 185. And you always thought game pro
grammers were just being nice by not letting you blow up your
own ship.

Collision detection requires that your sprites don't move too much
during one frame of animation. By having your sprites take large
leaps for each frame you'll end up missing collisions. The problem
is temporal. Your frames of animations are snapshots of time. As
with a strobe light at a disco, you don't see what happens between
the flashes of light. You're only able to see during the flashes. Be
tween two flashes of the strobe you only see the start and finish of a
suave disco move. In between the two flashes you only hear the
faint rustling of Angel Flight slacks. You miss all the visual move
ment in between. Each frame of your game provides the same sen
sation as that disco beacon.

Frame 1 Frame2

Figure 6-8.

Between any two frames of your game you could potentially
end up with the problem illustrated in Figure 6-8. Two, uh, pucks I
guess, are moving toward a sure edge-on collision in frame one. Be
tween frame one and frame two the game has moved the pucks too
many pixels forward in time, bypassing the preordained collisions.

246 ~~

Your players won't like this. Their brains have already calculated
the pucks' trajectories and laid 100-1 odds that they'll collide.
Cheat the brain and it will seek revenge by creating an emotional
response in the player, "This game sucks!" being the typical gypped
brain response.

If you can't crank your frame rate high enough to provide for pixel
based collision detection, you can always fall back on your high-school
physics to find your collisions points.

Instead of moving the sprites and then seeing if they have collided,
and maybe missing a collision or twenty, you could calculate your
sprites' trajectories as vector equations and algebraically determine if
they collide. You'll be removing the sampling of time from the collision
process and applying a continuous function to the task. You'll gain
mathematical accuracy at the cost of processing time and you might
end up with a collision calculating out to occur at frame 3.236 instead
of a nice wholesome number like 4, but you won't ever miss one.

To avoid this situation you need to balance the speed of your
targets with the speeds of the player's projectiles and the animation
frame rate of your game. To insure accurate collision detection your
sprites need to move only a few pixels, at most, between each ani
mation frame. But to have fast-moving targets or faster-moving
missiles, they need to cover large screen distances in small amounts
of time. The equalizer is frame rate. A faster frame rates allows your
sprites to make smaller leaps between frames. Smaller leaps pro
vide for more accurate collision detection. And accurate collision
detection leads to happy players who'll keep playing your games.
Happy players who keep playing will keep buying. Buying players
make you more money. More money makes you rich. Rich game
programmers stop writing games, allowing a new generation to
start programming games. These new players will need an intro
ductory game programming book. Ta-da! Therefore accurate colli
sion detection equals rich author. Isn't predicate logic fun? Next
time we'll watch Rush Limbaugh and play Spot the Fallacy!

'

With the previous chapters you constructed the graphical building
blocks of knowledge needed for game programming. It's now time
to take these Legos of technology and start snapping them to
gether into larger objects. In the next few chapters you'll take this
kit bag of knowledge and build a game-programming class library.
The first pass of this library will encompass everything you've
read-offscreens, sprites, blitter, collision detection, everything.
With this library you'll have a foundation to start programming
your own games.

247

248 (!~/

This library needs to provide a foundation for the graphical elements
needed to program games on the Mac. Easy enough. Its main goal is
ease of understanding for the game programmer. This library's pur
pose on Earth is to help you to learn write your own Mac games. The
library will not carry you from your first fumbling game program
ming steps to the time you decide to hang up your carpal tunnel
braces, but it will provide hooks for your own customizations. When
you fully understand the limits of this library and are able to sit down
and fix them, you'll have snatched the pebble from my hand and
earned the right to pave your own way in the game programming
world. Don't forget to stop and brand yourself on your way out.

Easy to understand library that allows for customization. Not a
bad signature for a library. To accomplish these goals the library
will be written in C++. C++ allows the core code to stay in plain old
C and still have the advantage of customization through its class in
heritance mechanism. To gain customization through inheritance
the library will create classes for the major elements of the library.

Other than C++ classes and inheritance, the library will ignore
the other interesting features of C++. No operator overloading, no
streams, no exceptions. No exceptions. I know recoding the'+' op
erator to balance your checkbook and change your car's oil instead
of simply adding two tiny numbers is fun. But you'll have to do
that on your own time, ditto with all the other shiny linguistic fea
tures that C++ brings on Christmas morning. Classes and inheri
tance are all you'll need for the library. If you're lucky enough to be
an operator overloading, paramaterized types using, i/ o stream
streamer, Shao Lin master of C ++, then feel free to fold in as many
C++ master moves as you want.

The trouble with using C++ as an implementation language for
our library is its reputation. For some reason C++ has the reputa
tion of being slower than C. And game programmers, the speed

~p~ 249

junkies that they are, have believed these distasteful rumors and
have avoided C++ in droves. Is there any truth to the rumors? De
pends. C++ in its full glory is a hefty language. If you use each of
the features of C++ without a feel for their costs, you could easily
produce code that runs slower than the functionally equivalent C
code. This isn't C++'s problem, it's just a tool. Tools need to be
used properly.

The root of C++'s tarnished reputation is its inheritance
mechanism. Programmers brought up on the concept of no free
lunch look at inheritance and see a huge black box that will suck
processor cycles faster than M&Ms disappear at a Weight Watch
ers meeting. Since our library will be grounded in inheritance,
now would be good time to see if there is any truth to this nasty
rumor.

For those of you who have been stuck in a DP cave writing
COBOL applications, inheritance is a mechanism of a programming
language that allows the programmer to specialize or completely
replace the behavior of a preexisting chunk of code. In C ++ this
chunk of code must belong to a class and is called a member func
tion. I hope a simple example will make things clearer before I
muddy them up with implementation details.

For you language lawyers out there, I sometimes refer to C++ member
functions as methods and, occasionally, member data as instance vari
ables. If this bothers you I'm sorry. I was raised on a steady diet of Ob
ject Pascal and it's a hard habit to break. Plus, I break out in a Beavis
and Butt-head-like giggle whenever I say "member function."

To inherit from a class you must have a class to inherit from.
Most C++ texts refer to this class as the base class. Usually the base
class provides an interface that the derived classes can specialize
for their own needs. Let's declare a base class of "Car." The C in
front of the "Car" is a tag that quickly lets the reader of the code
know that the variable being played with is a C ++ class. Other con
ventions use the letter T, for type, I think.

250 ~'

class CCar {
public:

virtual float TopSpeed() {return 55;}
} ;

Suppose a simple class with TopSpeed as its only method,
which will return the top speed the car is capable of in miles per
hour. If you instantiated (one of my favorite words) a car of this
class you would get 55 as its top speed.

class CLotusEsprit : public CCar
public:

virtual float TopSpeed() {return 167;}
} ;

A descendant of the base class CCar, CLotusEsprit, has inher
ited the TopSpeed method from CCar and replaced it with code
that returns a top speed that your insurance company would be im
pressed with.

One of the advantages to inheritance is that code that uses the
objects doesn't have to know the exact identity of the object that it's
playing with. Knowing about the base class is good enough.

void PrintTopSpeed(CCar & car)
{

printf("Top speed: %f\n" car.TopSpeed());

/*---
Driver function that creates a few car objects
and prints their top speed.

---*/
void TestDriver()
{

CCar
CLotusEsprit

sirnpleCar;
fasterCar;

PrintTopSpeed(sirnpleCar);
PrintTopSpeed(fasterCar);

~Pk 251

Here the driver function creates two car objects and then passes
them to PrintTopSpeed, which will request the car to output its
top speed. The cool thing is that PrintTopSpeed only knows
about one type of object, CCar. But through the magic of inheri
tance it will still write out the correct top speed of the Lotus. This
nifty trick is what worries game programmers so much. For C++ to
pull off this stunt it has to determine at run time what type of car
object is really being asked to show its top speed and then call that
object's specific implementation of the TopSpeed method. How
long it takes C ++ to look up the proper method is the problem. So
how long does it take? In the immortal words of that Tootsie Pop
commercial, "Let's find out!"

To determine the costs of inheritance we'll need a baseline to mea
sure from. In this example let's use CCar without any descendants
and without the virtual specifier. An additional method, Turbo

charged, has been added to help make the assembly dumps clearer.

class CCar {
public:

} ;

Boolean
long

Turbocharged();
TopSpeed () ;

If the code creates a CCar object and then calls its TopSpeed

method, your compiler will produce the same code it would for any
other function call.

main()
{

long scratch;
CCar plainCar;

scratch plainCar.TopSpeed();

This tiny driver function, according to Macsbug, will output
this simple three lines of assembly. The only tricky C++ thing is the
parameter being pushed on the stack before the function call. Even
though TopSpeed doesn't ask for any arguments in its declaration,

252 ~..,

C++ will always pass one to it: the pointer to "this." The "this"
pointer provides a pointer to the object and is pushed onto the
stack for every method of every class you use in C++. So without
any inheritance C++ has already bloated a single function call with
an extra line of code.

PEA
JSR
MOVE.L

-$0004 (A6)
'CODE 0002 23A0'+000C
DO,D3

01D472DC
486E
4EBA
2600

To see how much inheritance adds to the code from the baseline
you'll need to redeclare the methods to be virtual and to provide
some descendants of the base class CCar.

class CCar {
public:

virtual
virtual

} i

Boolean Turbocharged();
long TopSpeed();

class CLotusEsprit : public CCar
public:

virtual long TopSpeed();
} ;

class CLotusEspritTurbo : public CLotusEsprit
public:

virtual Boolean Turbocharged();
virtual long TopSpeed();

} ;

class CLotusEspritTurboS4 : public CLotusEspritTurbo {
public:

virtual long TopSpeed();
} ;

Four descendant classes will insure that the compiler can't do
any optimizations for the method look-up.

~p~ 253

long PrintTopSpeed(CCar & car)
{

main()
{

return car.TopSpeed();

long

CCar
CLotusEsprit
CLotusEspritTurbo
CLotusEspritTurboS4

scratch;

plainCar;
plainLotus;
fasterLotus;
thisYearsLotus;

scratch
scratch
scratch
scratch

PrintTopSpeed(plainCar);
PrintTopSpeed(plainLotus);
PrintTopSpeed(fasterLotus);
PrintTopSpeed(thisYearsLotus);

Each call to PrintTopSpeed will pass a reference to a specific
car object, but as far as PrintTopSpeed is concerned it only gets
handed a reference to a CCar object. This forces the function to use
inheritance to find the correct method to call. A quick trip to Macs
bug reveals the number of instructions required to implement in
heritance in C++.

LINK A6,#$0000
MOVE.L $0008(A6) ,-(A7)
MOVEA.L $0008 (A6) ,AO
MOVEA.L (AO) ,AO
MOVEA.L $0004 (AO) ,AO
JSR (AO)
UNLK A6
MOVEA.L (A7)+,AO
ADDQ.W #$4,A7
JMP (AO)

Ignoring the function prologues and epilogue you end up with
only four lines of code that contribute to the method look and even
tual execution.

254 ~)

MOVEA.L
MOVEA.L
MOVEA.L
JSR

$0008{A6),AO
{AO) ,AO
$0004 {AO) ,AO
{AO)

Again the first line pushes the "this" pointer onto the stack. Af
ter that the code dereferences the object until it gets to the jump
table of methods for that object. After loading the address of the
correct method the code indirectly jumps to the proper implemen
tation of TopSpeed. Usually the jump point will be into your appli
cations jump table, which will require another jump before really
getting to the proper method.

Four or five instructions is all it costs for inheritance. Not a bad
price to pay for the design elegance of inheritance, but a cost
nonetheless. You wouldn't want to have a method look-up for
every pixel you process during a blit, but one method look-up that
determines the correct blitter to invoke wouldn't be too bad. It
would probably be faster than using a nest of if-elses to pick the
proper blitter.

However, four or five instructions aren't the only cost of inheri
tance. That jump table used by the classes takes up a few bytes of
memory. And the number of bytes used increases as the number of
methods is added to each class. Not a big deal, but like the five ad
ditional instructions, something to keep in mind while designing
your games.

Based on the previous sections of this book, the main classes that
cry out to be coded are, in no particular order of appearance:
sprites, of course; a wrapper object for each frame of the sprite's im
age; and a place for the sprites to play that handles the double
buffering and other animation details. And in order to reduce colli
sion detection, a class to group sprites into rule-based units; good
guys, bad guys, and maintenance guys.

~pfA+., 255

Given the four classes, you'll need four name tags for them. The
class that manages the double buffering will be called a Play field.
Sprite I think can stay as is. I like Sprite Cel for the single frames of
animation for the sprite. And Sprite Group sounds like a good
name for a class that groups sprites.

The four classes will be grouped in a hierarchy formation. Play
fields will be the root container class. Play fields will hold all of the
sprite groups used by the play field. Each sprite group will hold a
list of sprites. Every sprite can hold zero or more sprite eels, as in
Figure 7-1.

a -.... Source

~ {j~r@
U Spnte Sprite \,,._

Sprite
Group

Ce/

Play Field

Figure 7-1. Class hierarchy

Mask

To implement this hierarchy the classes will need a way to link
all the pieces together. So you can add another class to our shopping
list, a list class. A shopping list that has a list on it, how LISP-ian.

Our design calls for a simple list class that will allow the code to
store sprite groups, sprites themselves, and sprite frames. The list
must provide easy access to each entry on the list, a count of the ob-

256 ~7

jects currently in the list, and a path to iterating across the entries
on the list.

For ease of use let's base the design of the list class around the
idea of a variable length array. A variable length array is an array
that allows you to add or delete entries at run time, unlike C arrays,
which are fixed in size at run time.

class CObjectList
public:

II Creation and Destruction
CObjectList(long initialitems = 4);
-CObjectList ();

II Status
long
Boolean

GetObjectCount() { return fCount;}
IsEmpty() { return fCount == O; }

II Inserting and removing from list
void Add(void *object);
void Remove(void *object);

II Indexing through list
void* GetNthObject(long index);

private:

} i

long **
long

void
long

void *

long

fArray; II Holds the handle of objects
fCount; II Number of objects in list

ResizeArray(long slots);
ObjectOffset(long index)
{return (index-1) * sizeof(void *); }

ObjectPtr(long index)
{

}

return &((char*)*fArray)
[ObjectOffset(index)];

Findindex(void *object);

The implementation of the list class provides no insight into
game programming. So let's skip it. If you're curious go ahead and
check out the source package supplied. Before heading on to the

~p~ 257

real classes let's spend some time going over how you can use the
list class.

Creating a list is performed like any other C++ class. You can
pass the number of slots you want preallocated to the list's con
structors. A default of four has been provided, so you can ignore
the details of the class.

The list's destructor throws away the Mac handle that holds the
pointers to the objects stored in the list. Out of paranoia the de
structor zeroes out the object count and the array storage handle.

CObjectList *
CSprite

list;
sprite;

list= new(CObjectList);

list->Add(sprite);
list->Remove(sprite);

(list);

Creating, adding, and then removing an object (in this case a
sprite object) and then disposing of the list takes only a few lines of
code. Taking the list class along with us, let's begin building the
sprite class kit, starting with the play fields.

Regrettably, our class library will have to provide some form of er
ror notification. It's nasty but it has to be done. The class kit will re
spond to any abnormal condition by calling an error handler
passed in by your program at boot time. What you choose to do at
this point is up to you. You could simply quit, as just about any er
ror returned by the sprite library is likely to be fatal, or you can use
the callback as a spot to throw a C ++ exception.

At the beginning of your program, before actually using the
sprite library, you'll want to install your error handler. Call Set
SLVGErrorHandler with your function pointer and any other
long value that you'd like to be passed back to your error handler.

258 ~..,

void SetSLVGErrorHandler(SLVGErrorProcPtr errorProc,
long refcon) ;

If you don't install an error handler you'll be stuck with the de
fault error handler. You don't want this. The default error handler
simply makes a Debugs tr call with a string that shows the OS er
ror that tripped up the library. If you don't have a debugger in
stalled you'll be greeted by a unimplemented trap error. Your error
handler will follow this function prototype.

void MyErrorHandler(OSErr error, long refcon);

If you ever need to retrieve the last error encountered by the
sprite library, you can call the error support function GetLast

SLVGError.

OSErr GetLastSLVGError(void);

This function will return the last error condition that the library
experienced even after the error handler has been executed. The re
sult of this function is "sticky." That is, by calling the function you
don't clear the error. Subsequent calls will return the same error
code unless the sprite library has performed an action that has ei
ther cleared the error or created a new and different error.

The play field class will be the central focus of the sprite library. The
three main stages of your game-moving sprites, checking for colli
sions, and, finally, animating the sprites onto your Mac screen-will
be the responsibility of the play field objects.

CPlayField *gameField;

II Play field and misc. sprite creations skipped

while{ GameStillRunning{))
{

gameField->MoveSprites{);
gameField->CheckForCollisions{);
gameField->ShowNextFrame{);

259

260 (!~~

A game loop is like an event loop but is driven by the stages of
sprite animation instead of external events. The break condition for the
loop depends on your game. The loop usually breaks when the player
runs out of lives or pauses the game. Inside the game loop is where all
the fun stuff happens with play fields. All the sprites belonging to the
play field are first moved, then checked for potential collisions. The
play field is then requested to show the results of the previous two
stages through the play field's ShowNextFrame method.

Since one of the main purposes of the play field is to manage the
double buffering animation process, it would be a good idea to ex
plore that process before going on.

The purpose of double-buffering animation is to provide flicker
free animation of sprites over a background image. Double-buffered
animation achieves this goal by providing two offscreen buffers and
the screen itself to build one frame of animation (see Figure 8-1). As
suming that the animation will appear within a window on the Mac
screen, the two offscreen buffers will be the same dimensions as the
on-screen window. The first offscreen buffer holds a copy of the back
ground image. The other buffer is a scratch, or workplace, buffer.
With the two buffers allocated and the first buffer holding a copy of
the background, the animation process works in these four steps.

First, move each sprite to its new location. For each sprite, con
struct a rectangle that is the union of the sprite's previous location
and its new location.

Next, copy the pixels that fall within the combined locations of
the sprite from the background buffer to the workplace buffer. This
pixel copy will erase the previous location of the sprite with a piece
of the background. If you remember, this step was an optimization
from copying the entire background for each animation frame. This
optimization is referred to as dirty rectangle animation.

The third step is to blit the sprite's current frame to its new lo
cation within the workplace buffer. Only the pixels included by the
sprite frame's mask are copied over during this step.

PLA.,F~ 261

::::s:lound Buffer

Figure 8-1. Buffering scheme

Finally, copy over all the areas of the workplace buffer that have
changed from the previous animation frame to the on-screen window.

The play field will perform the sprite's erasure and the final
blitting onto the Mac's screen stages itself. It will only orchestrate
the sprite's movements and the sprite's blitting of its own internal
frames. The actual work will be performed by the sprites them
selves at the request of the play field.

To create a play field object, its C++ name being CPlayField, you
need a window and a big chunk of available memory. The memory
will be eaten up by the two offscreen buffers needed by the play
field. The constructor also takes a rectangle that describes the area
of the window that the sprites should animate across. If you pass a
nil pointer for the rectangle pointer the play field will automatically
create a play field the size of the window passed in.

262 ~g

CPlayField(CWindowPtr * hostWindow, const Rect* hostBounds);

Because the library works only on color-capable Macs, the win
dow parameter is expected to be a color window.

The constructor spends most of its time creating the offscreen
buffers. Both buffers are implemented using GWorlds, which are
created using the play fields utility function CreateGWorld.

CPlayField::CPlayField(CWindowPtr * hostWindow,
const Rect* hostBounds)

OSErr err = noErr;

fBkgndBuffer = nil;
fWorkplaceBuffer = nil;
fHostPort = nil;
fSpriteGroups = nil;

ASSERT(hostWindow !=nil);
fHostPort hostWindow;
fHostBnds = hostBounds == nil ?

hostWindow->portRect *hostBounds;

II Create the offscreens
err= CreateGWorld(&fBkgndBuffer, &fHostBnds);
if (err)
{

fBkgndBuff er = nil
PostFatalError(err);
return;

err= CreateGWorld(&fWorkplaceBuffer, &fHostBnds);
if(err)
{

}

fWorkplaceBuffer = nil
PostFatalError(err);
return;

II Create the list that will hold all the groups
fSpriteGroups = new(CObjectList);
if(!fSpriteGroups)

PostFatalError(rnernFullErr);

}

P~f;.dh 263

II Create the list that will reference all the sprites
fAllSprites = new(CObjectList);
if(!fAllSprites)

PostFatalError(memFullErr);

Both buffers are created at the depth of the deepest monitor
that the host window intersects. If there was enough memory to
create both buffers, the code constructor continues constructing
by building an empty object list. This list will eventually hold the
sprite groups that reference all the sprites involved. The construc
tor finishes off by building a list that will hold a reference to every
sprite in the play field. This list will save the play field the effort
of having to work through each of the groups to get to the indi
vidual sprites.

CPlayField: :-CPlayField()
{

II Kill off the background buffer
if(fBkgndBuffer)

DisposeGWorld(fBkgndBuffer);
fBkgndBuffer = nil;

II Ditto with the working buffer
if(fWorkplaceBuffer)

DisposeGWorld(fWorkplaceBuffer);
fWorkplaceBuffer = nil;

II Get rid of the master sprite list
if (fAllSpri tes)

(fAllSpri tes) ;
fAllSprites = nil;

II Get rid of all the sprite groups
if(fSpriteGroups)
{

fSpriteGroups->FreeAll();
(fSpri teGroups) ;

fSpriteGroups = nil;

264 ~g

Disposing of the play field is a simple matter of throwing every
thing away that was allocated in the constructor, taking care that
what is going to be disposed has actually been allocated. An error
in constructing could result in the destructor's being called with the
play field in a partially constructed state. This is not an unlikely
scenario given the size of the offscreen buffers the play field is
likely to create.

The sprites contained in the sprite groups are destroyed com
pletely before freeing the group list owned by the play field. By
freeing the sprites in the play field destructor you can forget
about having to free them individually. One call to free the play
field should be enough kill off everything associated with the
play field. You free the master list of sprites without having to
worry about the sprites it references. They'll all but have disap
peared by then.

The only thing you have to be careful about is having two
play fields referencing the same sprite. When you dispose of
one of play field it will destroy all of the sprites that have been
attached to it. No problem yet. The fun happens when you dis
pose of the other play field. When it reaches the point where it
disposes of all of its sprites, it will attempt to call a destructor
for a sprite that no longer exists. BOOM! If you're lucky. A
trashed heap that you don't discover until a few hours later if
you're not.

After successfully attaching a play field to an on-screen window
you can start adding sprites to that play field. More accurately,
you can start adding sprite groups. The process for adding
sprites is to first add the sprite to a sprite group and when you
have all the sprites attached to the group add that group to a play
field. Like so.

playerGroup->AddSprite(playerSprite);
enemyGroup->AddSprite(enemySprite);

II •
II additional sprites added
II •

playField->AddGroup(playerSprite);
playField->AddGroup(enemyGroup);

P.L.., FAJJ+ 265

The order in which the sprite groups are added to the play field
determines the level at which the sprites contained by the group
will be drawn. Groups added earlier will appear closer to the back
ground, and later groups will obscure the sprites of earlier added
groups.

The code for adding a group to a play field is fairly direct. Add
the passed-in group to the play field's group list. Then iterate
through the passed list extracting each sprite and adding it to the
master sprite list held by the play field.

void CPlayField::AddGroup(CSpriteGroup * newGroup)
{

}

ASSERT(newGroup);
fSpriteGroups->Add(newGroup);

II Copy the sprite references to the master list
for(long i = l; i <= newGroup->GetObjectCount(); i++)
{

}

CSprite * sprite;

sprite= (CSprite *)newGroup->GetNthObject(i);
fAllSprites->Add(sprite);

At some point in a game you might need to replace a whole group
of sprites with another. At that point you'll need to use the play
field's RemoveGroup method. One call and the play field will for-

266 ~g

get all about the group and the sprites it contained. Then you can
add another group to the play field and start your game running
again.

void CPlayField::RemoveGroup(CSpriteGroup * doa_Group}

}

ASSERT(doa_Group};
fSpriteGroups->Remove(doa_Group};

II Copy the sprite references to the master list
for(long i = 1; i <= doa_Group->GetObjectCount(}; i++)
{

}

CSprite * sprite;

sprite= (CSprite *)doa_Group->GetNthObject(i);
fAllSprites->Remove(sprite};

The RemoveGroup method is the exact inverse of the Add
Group method, so no point in spending much time analyzing it.
You only need to take notice of one thing with this method. It
doesn't do any erasing. That means that if you want the sprites con
tained in the group you're about to remove not to appear on-screen,
you'll need to erase them yourself before calling this method. Oth
erwise if the sprites were visible and on-screen you would get
graphic artifacts whenever a sprite from another group is moved
across a sprite belonging to the removed group. "Graphic artifacts"
is a nice way of saying your program won't crash, it'll just look like
it did.

By using the two group methods together you can build the
ability to rearrange the drawing order of the sprites. Remove all the
groups from the play field. Sort the groups into your new desired
order. Add the groups back into the play field in the new desired
order. With the next frame of animation your sprites will appear in
their new order.

P~F~ 267

Now that you can create, destroy, and add sprites to a play field at
will, it's time to get to the meat. The reason for being here. The real
magilla. Animating those sprites. As discussed before, the anima
tion of the sprites takes four stages (ignoring collisions): erasing
where the sprites were, drawing the sprites at their new location,
and finishing up by copying the sprites from the working buffer to
on-screen. I know that makes only three, but let's skip the sprite
movement phase for now. All three of these stages are orchestrated
by the play field's ShowNextFrame method.

void CPlayField::ShowNextFrarne()

PixMapHandle
PixMapHandle

workingPixels;
bkgndPixels;

II Lock down the pixels
bkgndPixels = GetGWorldPixMap(fBkgndBuffer);
workingPixels = GetGWorldPixMap(fWorkplaceBuffer);

if(LockPixels(bkgndPixels) &&
LockPixels(workingPixels))

II Erase where the sprites have been
EraseSprites();

II Draw the sprites where they are now
BlitSpritesToWorkspace();

II Finally copy the corrposited areas to onscreen
BlitSpritesOnscreen();

II Free the pixels
UnlockPixels (bkgndPixels);
UnlockPixels (workingPixels);

As you can tell, this method is only a wrapper that dispatches
to the play field's internal methods, which do the actual work.
Before jumping to the core methods, you need to lock down the

268 ~g

pixels belonging to the workplace and background buffers. These
pixels will be unlocked after the animation methods have been
called.

This wrapper method can be overridden if you wish to do more
than simply animate sprites as part of the animation loop. A good
example would be if you would like to have twinkling stars ani
mating in the background. You would create a subclass of the base
play field (CTwinklingPlayfield?) and override this method to in
sert your twinkling code.

Erasing the sprites is as easy as walking through each sprite group
currently attached to the play field, then walking through each
sprite in the current group. After the sprite has been gotten out of
the current group, it is asked if it needs to be erased. Not every
sprite needs to be erased for every frame of animation. If the sprite
didn't move or change its visibility from the previous frame, it
won't need be erased-or drawn for that matter. Being a good de
sign doobie I've let the sprite decide if it needs to be erased. If the
sprite requests erasure it will be asked to give the bounds that the
play field should erase. The bounds need to be expressed in the lo
cal coordinates of the working and background offscreen buffers.
After getting the extent of the impending erasure EraseSpri tes
cops out and defers the actual erasing to another method of the
play field, EraseChunk.

void CPlayField:EraseSprites()

II Point at the working buffer
SetGWorld(fWorkplaceBuffer, nil);

II Loop through all the play fields
for(long i = l;

i <= fSpriteGroups->GetObjectCount(); i++)
{

P~F~ 269

CSpriteGroup * currGroup;

currGroup =
(CSpriteGroup *)fSpriteGroups->GetNthObject(i);

II Loop through all the sprites in the group
for(long j = l;

j < currGroup->GetObjectCount(); j++)

CSprite * currSprite;

currSprite
(CSprite *) currGroup->GetNthObject(j);

I I Only erase the sprite if it wants to be
if(currSprite->ShouldErase())
{

Rect eraseRect;

II out of each sprite in the group
II get the sprite's rect that it
II wants erased. The sprite takes
II care of calculating this
II rectangle as it is moved

currSprite->GetEraseRect(&eraseRect);

II Got the rect, erase it by
II blitting from the background
II to the working buffer. Override
II this method to provide for
II different erasing styles
EraseChunk(&eraseRect);

The EraseChunk method takes the bounds of what you want
blitted from the background to the working buffer. The default im
plementation uses CopyBi ts as its blitter.

270 ~g

void CPlayField: :EraseChunk(Rect * blitRect)

CopyBits(((GrafPtr)fBkgndBuffer)->portBits,
((GrafPtr)fWorkplaceBuffer)->portBits,
&blitRect,
&blitRect,
srcCopy,
nil);

If you check out the declaration for this method you'll see that
is declared as virtual. This is no accident. By replacing this low
level method through the magic of inheritance you can easily drop
in your own erasing blitter. And if your hot new blitter finds itself
in a bind it will always have a backup in the super classes method.

Drawing the sprite into the workplace buffer follows the same gen
eral outline as the EraseSpri tes method. Loop through the
groups. Loop through each sprite in these groups. The only real dif
ference is where the blitting responsibility lies.

void CPlayField::BlitSpritesToWorkspace()

II Point at the working buffer
SetGWorld(fWorkplaceBuffer, nil);

II Loop through all the play fields
for(long i = 1;

i <= fSpriteGroups->GetObjectCount(); i++)

CSpriteGroup * currGroup;

currGroup =
(CSpriteGroup *)fSpriteGroups->GetNthObject(i);

II Loop through all the sprites in the group
for(long j = 1;

j < currGroup->GetObjectCount(); j++)

{

}

P~F.<dh 271

CSprite * curSprite;

curSprite =
(CSprite *) currGroup->GetNthObject(j);

II Only blit the sprite if it wants to be
if(curSprite->ShouldDraw())
{

curSprite->BlitFrame(fWorkplaceBuffer);

Instead of calling a low-level method of the play field to blit the
sprite onto the working buffer, this method relies on the sprite itself
to handle the blitting of its frames. The sprite's Bli tFrame method
only needs to be passed in the GWorld that you want the sprite to
be blitted to. This method is where you get to apply all that
masked-blitting knowledge that you so dutifully crammed into
your frontal lobes.

Like the play field's EraseChunk method, the Bli tFrame
method was designed to be replaced. When you need more speed
you simply override the base call and drop in your own masked
blitter. The details of this method and overriding it will be dis
cussed in the upcoming sprite chapter.

At this stage the workplace buffer has exactly the image you would
like on-screen. Good thing the play field has a method for copying
the working buffer to the screen. After focusing QuickDraw at the
play field's host window, the Bli tSpri tesOnscreen method fol
lows the same looping through sprites and groups pattern as the
previous animation stages. In order to save time this method only
copies over the sprites that need to be copied. This is determined by
asking the sprite through its NeedCopiedOnscreen method.

272 ~g

voidCPlayField::BlitSpritesOnscreen()
{

II Point at the host window
SetPort(fHostPort);

II Loop through all the play fields
for(long i = 1;

i <= fSpriteGroups->GetObjectCount(); i++)

CSpriteGroup * currGroup;

currGroup =
(CSpriteGroup *)fSpriteGroups->GetNthObject(i);

II Loop through all the sprites in the group
for (long j = 1;

{

j < currGroup->GetObjectCount(); j++)

CSprite * currSprite;

currSprite
(CSprite *) currGroup->GetNthObject(j);

II Only copy onscreen if need to
if(currSprite->NeedCopiedOnscreen())
{

}

Rect copyRect;

II Need to move erased and freshly
II drawn sprite onscreen. The erase
II rectangle will return both
currSprite->GetEraseRect(©Rect);

II Use low-level onscreen blitter
CopyChunkOnscreen(&eraseRect);

currSprite->MarkAsOnscreen();

The bounds of the upcoming pixel copy are retrieved by asking
the sprite for its erasing bounds, which matches the pixels that need
be copied from the working buffer to the host window. The actual

P~f,;dk 273

pixel blasting is again performed by a lower-level method of the play
field. After the blitting, the sprite is informed that it has been success
fully displayed on-screen. After calling this method the sprite will tell
future passes through the animation loop to ignore this sprite. Un
less, of course, something happens to the sprite that would require its
on-screen persona to be updated, moving being a good example.

void CPlayField::CopyChunkOnscreen(Rect * copyBnds)
{

}

CopyBits(((GrafPtr)fWorkplaceBuffer)->portBits,
((GrafPtr)fHostPort)->portBits,
©Bnds,
©Bnds,
srcCopy,
nil);

The core method CopyChunkOnscreen uses CopyBi ts as its
default blitter. Like the play field's EraseChunk method, Copy
ChunkOnscreen is meant to be replaced if you desire a faster blit
ter. As this method moves the composited sprites on-screen, any
replacement method will have to follow all the proper precautions
of drawing directly to the screen. These all-important rules of on
screen drawing will be discussed later.

With all those blitting steps out of the way, you can now look at
the fourth, and final, stage of animating your sprites: the play
field's MoveSpri tes method. First off, the method's name does
n't describe it fully. While MoveSpri tes does move the sprite
around the play field, it has the added responsibility of coordinat
ing the changing of the sprite's internal animation frames. I felt
that the two tasks were linked together and should be performed
at the same time and that the movement of the sprite was the
dominant task of the method; hence its name. Who cares what the
method is called? Let's check out the code.

274 ~i

void CPlayField::MoveSprites()
{

II Loop through all the sprite groups
for(long i = l; i <=

fSpriteGroups->GetObjectCount(); i++)
{

CSpriteGroup * currGroup;

currGroup =
(CSpriteGroup *)fSpriteGroups->GetNthObject(i);

II Loop through all the sprites in the group
for(long j = 1;

{

j < currGroup->GetObjectCount(); j++)

CSprite * currSprite;

currSprite =
(CSprite *) currGroup->GetNthObject(j);

if(currSprite->IsTimeToMove())
currSprite->Move();

if(currSprite->IsTimeToChangeCels())
currSprite->ChangeCel();

Like all the other methods that work with the sprites, this
method spends its time looping through groups to get down to the
individual sprites. Before rushing right ahead and moving the
sprite, the play field must verify that it is time to move the sprite
through the sprite's IsTimeToMove method. Not every sprite will
need to be moved on every cycle of the game loop; therefore the
need to check before moving the sprite. If the sprite says its O.K. to
move it, then the play field turns right around and asks the sprite to
get up off its fat butt and move itself.

The same sequence of asking the sprite and then telling the
sprite to do it itself is performed for cycling through the sprite's
various image eels. Like the sprite movements the eels will move at

P~FAJ.h 275

a rate that isn't guaranteed to match the game loops, and the play
field needs to ask permission before forcing the sprite to cycle its
current animation eel.

If you said to yourself. "Hey, Self, this guy must be an idiot.
How can the program be in a tight loop, like this game loop thing,
and ever have the method IsTimeToMove change state? There's
only one processor and it's busy doing all this animation. I sure
can't see where the sprite's getting the time to figure out it needs to
be moved let alone the time to check whether its eel needs chang
ing." Good question and stop calling me an idiot.

The answer to that question is that the sprite's code that deter
mines whether it's time to move the sprite or cycle to its next eel is
run as a time manager task. And since these tasks run at interrupt
level they are running asynchronously-a big word that means not
running at the same time-of the game loop. In the chapter on
sprites and sprite eels you'll be up to your knees in this time man
ager stuff so for now ignore the implementation details. I do this by
pretending that it's done by magic. Keeps my life simpler and con
versations shorter.

During your game you'll want to use CheckForCollisions to
ask the play field to check for any possible sprite collisions with
the play fields. You usually want to administer the collision test
right after moving the sprites and before showing the next frame
of animation.

The play field's only role in collision checking is as a starting
point. All it does is loop through each of the sprite groups and ask
them to check for any collisions they might have had. Each sprite
group has a list of other sprite groups that they are, according to the
rules of the game, allowed to collide with. You tell each group what
other groups to collide against when you are creating the groups
for the play field.

276 ~g

void CPlayField: :CheckForCollisions()
{

II Loop through all the play fields
for(long i = 1;

i <= fSpriteGroups->GetObjectCount(); i++)

CSpriteGroup * currGroup;

currGroup =
(CSpriteGroup *)fSpriteGroups->GetNthObject(i);
currGroup->CheckForCollisions();

Like the other core methods of the play field, CheckForCol
lisions can be overridden. If you need to use one of the more so
phisticated collision-detection methods go right ahead. None of the
other code for the play field knows or cares how the collision test
ing is performed. Override at will.

The only thing left on the play field discussion table are condi
ments. The tiny little methods that you'll need but are only sup
plied for convenience. Luckily, there only a few of these methods
so you can quickly read this section and move on to the next
chapter.

When you stop your game and are outside of the game loop and
back in the normal event loop, you'll need to handle any update
events that the Mac passes out to you. You could handle the update
event by calling the method ShowNextFrame, except that method
advances the game one sprite eel. Another problem would be that
ShowNextFrame expects to be able to update correctly for every

P~ F.:.dh 277

sprite that moved. This might not be possible because the update
region clips the host window. If the update region intersects a
sprite's movement bounds, then only the part of the sprite that lies
within the region will be updated. Your update will have trashed
your screen.

Now, in your quest for speed you might have upgraded the de
fault working buffer to on-screen blitter to completely ignore the
windows' various clipping regions (visible, update, and clip). This
would eliminate the sprite breakup due to the update region, but if
your window is overlapped by any other window you'll end up
spraying your pixels all over someone else's window. Not a neigh
borly thing to do.

To prevent these and other update event faux pas, the play field
has a method strictly for dealing with update events, creatively
named HandlePlayFieldUpdate. Pass it the rectangle that sur
rounds the area in need of updating and you're done.

void CPlayField::HandlePlayFieldUpdate(Rect * updateBounds)
{

}

SetPort(fHostPort);

CopyBits(((GrafPtr)fWorkplaceBuffer)->portBits,
((GrafPtr)fHostPort)->portBits,
©Bnds,
©Bnds,
srcCopy,
nil);

This method won't win any award for ingenuity. But it works
and that's all you need. Don't try speeding this method up. It isn't
worth the effort. You should only be receiving update events in ar
eas of your game that are not time-critical. Like when the game is
paused, or when it's in the background. Basically anytime you're
not in a tight game loop. Your update handling code should smell
something like this example.

278 ~g

•

case updateEvt:

break;

WindowPtr updateWind = (WindowPtr)event->rnessage;
WindowPeek windinards = (WindowPeek)event->rnessage;
Rect bnds;

bnds = *((windinards->updateRgn))->rgnBBox
SetPort(updateWind);
BeginUpdate(updateWind);

rnyPlayField->HandlePlayFieldUpdate(&bnds);
EndUpdate(updateWind);

One word of caution. Actually a sentence of a caution. What
would one word of caution be, anyway? "Duck!" The sentence of
caution: Don't perform an update in the middle of a game loop.
You want the whole move, collide, and animate cycle to complete.
Otherwise you could end up with a workplace buffer that is out of
synchronization with the game, and when you drop back to the
game loop your screen will be trashed.

At the start of your game, or at the start of a level, you'll want to es
tablish the background image your sprites will be moving across.
The easiest way would be to have QuickDraw render your back
ground with a call to DrawPicture. Your problem, and the reason
for these paragraphs, is that you get QuickDraw focused at the
background buffer. As both offscreen buffers of the play field are
declared protected and therefore invisible to any code outside of
the play field and its descendants, you'll need some assistance from

P~F~ 279

the play field to get to those shy buffers. That assistance is provided
in these four methods.

void PreDrawOnBackground();
void PostDrawOnBackground();

void PreDrawOnWorkplace();
void PostDrawOnWorkplace();

Using these methods follows the same pattern as BeginUp
date and EndUpdate. Prepare the buffer for QuickDraw drawing.
Go crazy with QuickDraw. Turn off drawing. The indenting of
PaintRect is just a style I use. I like to indent any code that is
bracketed by two phases like these two methods.

Rect bkgndBnds;

myPlayField->GetBounds(&bkgndBnds);

II Paint background with a nice gray pattern
myPlayField~>PreDrawOnBackground();

PaintRect(&bkgndBnds, &qd.grey);
myPlayField->PostDrawOnBackground();

On the rare occasion that you need to draw into the working
buffer, use the pattern but replace the background focusing meth
ods with their twin working buffer ones.

void CPlayField: :PreDrawOnBackground()
{

ASSERT(fBkgndBuffer);

GetGWorld(&fOldCPort, &fOldGDevice);
SetGWorld(fBkgndBuffer, nil);

The buffers are prepared for drawing by first saving the current
port and graphic device that QuickDraw is now using. The port and
device are saved into reference variables owned by the play field.
These variables are used by both sets of methods. While this is con
venient for you it also means that you don't want to nest calls to

280 ~~

these methods. No calling PreDrawOnWorkplace after or between
calls to PreDrawOnBackground and PostDrawOnBackground.

void CPlayField: :PostDrawOnBackground()

SetGWorld(fOldCPort, fOldGDevice);

The method PostDrawOnBackground cleans up after your
offscreen drawing adventures by simply restoring QuickDraw's
previous focus.

If you want to draw in the host window and have somehow man
aged to misplace your window pointer (I'm always doing that),
you'll be relieved that you can quit looking for it and just ask your
play field what window it is attached to.

CGraf Ptr GetHostGrafPort() { return fHostPort;}

This method is declared inline for those rare times when you
have to call it thousands of times in a row.

Nothing quite says chapter summary like a full dump of the play
field's class definition.

class CPlayField {
public:

CPlayField(CWindowPtr * hostWindow,
const Rect* hostBounds);

virtual -CPlayField();

virtual void MoveSprites();

virtual
virtual

P~F~ 281

void CheckForCollisions();
void ShowNextFrarne();

void AddGroup(CSpriteGroup * newGroup);
void RernoveGroup(CSpriteGroup * doa_Group);

void PreDrawOnBackground();
void PostDrawOnBackground();

void PreDrawOnWorkplace();
void PostDrawOnWorkplace();

virtual void
HandlePlayFieldUpdate(Rect * updateBounds);

CGraf Ptr GetHostGrafPort()
{return fHostPort;}

void GetBounds(Rect * playFieldBnds)
{ return fPlayfieldBnds; }

protected:
GWorldPtr
GWorldPtr
CGraf Ptr
Rect
Rect
CObjectList *
CObjectList *

fBkgndBuffer;
fWorkplaceBuffer;
fHostPort;
fHostBnds;
fPlayfieldBnds;
fSpriteGroups;
fAllSprites;

void CreateGWorld(GWorldPtr * resultGWorld,
Rect * bounds);

void EraseSprites();
void BlitSpritesToWorkspace();
void BlitSpritesOnscreen();

II Core routines that blit.
II Default version use CopyBits

virtual
virtual

void EraseChunk(Rect * blitRect);
void CopyChunkOnscreen(Rect * copyBnds);

private:

} ;

GDHandle
CGraf Ptr

fOldGDevice;
fOldCPort;

To get sprites leaping and frolicking across the screen, you'll have
to understand the relationship between sprites and sprite eels.
It's a simple relationship. Sprites take the play field's request for
sprightly actions and either the sprite eel either really performs
the task or the sprite schedules the task to be performed at a
more appropriate time. Sprite eels are the containers for the
sprites' animation frames and masks. With the sprite eel hiding
the details of how the sprite is stored and how the eel is blitted,
the sprite is freed from the tedious responsibility of doing any
work.

283

284 ~1

You can either create a sprite raw, forcing you to embed all the
sprite's attributes within your code, or you can create the sprite
from a resource template, allowing you to change the sprite's set
tings without resorting to a recompile of your game. Guess which
method I prefer.

CSprite::CSprite(SpriteID spriteID)
{

SpriteX ();
fDogTag = spriteID;

Before going into the template method let's get the ordinary
constructor out of the way. This sprite constructor takes a four
character OSType as its only argument. This tag will be used to
properly identify the sprite. Tagging your sprites will help in the fu
ture when you need to see what type of sprite has collided with
your sprite. Other than assigning the tag to the object's dog tag
field, this constructor's only other duty is to call the sprite's private
initialization function, CSpri teX.

This method initializes the sprite to a known state for the
sprite's destructor. If you add any other type of constructors to this
object make sure they make a mandatory call on CSpri teX before
moving on and doing anything that might bring the sprite's de
structor into action.

This constructor is of little practical use with this class. Its real
purpose is to provide a construction stage for any descendants of
the sprite class that don't use the sprite eels to accomplish their on
screen rendering. A good example of such a situation would be a
sprite that showed the player's current score. This sprite would
only need to override the sprite's drawing method and replace it
with code that drew the current score as a text string. Since this
type of sprite would not be using the sprite eels, it would want to
use this constructor in order to prepare the sprite. A later game ex
ample will use this exact tactic to display the player's score.

To create a sprite from template install the sprite's resource tem
plate (the resource type of the template is 'SpTm') into your fa
vorite resource editor, or copy the template into your game's
resource file. If you're more the command line-oriented type you
can use the Rez file provided. It's sitting right next to the ResEdit
template on the source disk.

To create a sprite you'll first need to fill out a sprite ("SpTm")
template. For example, the sprite has an id of "Rock," a starting po
sition of 100, 150, a movement delay of 20 milliseconds, a eel
change delay of 25 milliseconds, its visibility set to true, a starting
index of 1, and an array of 2 color icon ids starting at the number
3000. With this resource template the sprite's constructor can build
a fully functioning sprite.

CSprite::CSprite(short templateID
{

OSErr err;
SpriteTempHand templateH;
short index;

SpriteX();

II Get the sprite load template resource
templateH = GetResource(kSpriteTemplate, templateID);
if(templateH == nil)
{

}

PostFatalError(ResError());
return;

II Create each eel and add it to the eel list
err = noErr;
HLock((Handle) templateH);
for(short i = O; i < (*templateH)->celCount; i++)
{

}

CSpriteCel * eel;

eel= new(CSpriteCel, (*templateH)->cicnIDs[i]);
fCels->Add(cel);

286 ~q

II Fill in the rest of the fields
fDogTag = (*templateH)->id;
fVisible = (*templateH)->visible != O;
index= (*templateH)->celindex;
if(index > (*templateH)->celCount)

index = 1;

moveTime = (*templateH)->moveDelay;
celChangeTime = (*templateH)->celDelay;

HUnlock((Handle) templateH);
ReleaseResource((Handle) templateH);

II Mark the eel list as used
fCels->IncrementRefCount();

II Show correct eel
SetCurrentCel(index);

II Fire up them timers
SetAutoMoveTime(moveTime);
SetCelCycleTime(celChangeTime);

The constructor takes the resource id of the sprite template for
this sprite as its only parameter. After scrubbing the sprite clean in
case of an unexpected creation failure, the constructor loads in the
sprite template. For each color icon listed in the template a match
ing sprite eel is created. The eels are added to the eel list maintained
by the sprite. Once all the sprite's eels have been built, the rest of
the sprite's fields are initialized to the template's matching values.
After the template is stripped of its useful information it is quickly
unlocked and discarded.

The sprite's eel list needs to have its reference count incre
mented to reflect that at least one sprite is currently using the eels
contained in the list. This will make more sense later in the section
that talks about reusing sprite eels.

The sprite is requested to use the starting eel specified by the
template with a call to SetCurrentCel.

Finishing up the sprite's construction are the calls to SetAuto
MoveTime and SetCelCycleTime. These two calls fire up the
timers that tell the sprite when enough time has elapsed and it can

safely move the sprite, or, in the case of SetCelCycleTime, when
it is time to change to the next eel owned by the sprite. Both func
tions are passed the number of milliseconds that the timers should
delay between actions.

Before moving on to the other responsibilities of sprites, let's take a
quick side journey into the sources of sprite eels. A sprite eel is a
fairly simple class with only a few public responsibilities to worry
about: creation, destruction, blitting the eel's image to a graphic
world, and determining if it and another sprite eel are intersecting.

class CSpriteCel {
public:

virtual

virtual

CSpriteCel();
CSpriteCel(short cicnID);

-CSpriteCel();

void BlitToBuffer(GWorldPtr buffer,
const Rect *target);

virtual Boolean Intersect(CSpriteCel * testCel,
const Rect * testCelBnds,
const Rect * myBnds);

protected:
GWorldPtr
RgnHandle
PixMapHandle
Rect
short
short

fCelirnage;
fMaskRgn;
fCelPixels;
fCelBnds;
fHorzMaskOffset;
fVertMaskOffset;

OSErr MakeRgnMask(CiconHandle iconH);
OSErr MakeCelGWorld(CiconHandle iconH);

private:
void CSpriteXCel();

} i

288 ~~

Sprite eels are the containers for the sprite's imagery and masks.
Each sprite eel holds one frame of the sprite's imagery and that im
age's matching mask. The sprite, and the rest of the program for
that matter, has no idea how the pixels making up the sprite and
mask are stored. All it knows is that it has a list of sprite eels. With
the sprite eel being the only class aware of how the sprite's image
and mask are stored, it is also given the job of blitting that image
whenever requested.

While the eel does have a default constructor, the one we're
most interested in is the constructor that takes a color icon's re
source id. This is the constructor that the sprites you create will be
using the most. The default constructor is provided for the more es
oteric descendants of sprite eels.

CSpriteCel::CSpriteCel(short cicnID)
{

CiconHandle iconH;

CSpriteXCel();

II Load in the Color icon
iconH = GetCicon(cicnID);
if(iconH)
{

OSErr err;

HLock((Handle) iconH);

II Create the eel's pixel image
err= MakeCelGWorld(iconH);

II Turn icon's mask into a region
if (!err)

err= MakeRgnMask(iconH);

II Before posting potential error get rid of the icon
DisposeCicon(iconH);

if (err)
PostFatalError();

The sprite eel is prepared for potential destruction with the
starting call to the sprite's private helper function, CSpri teCelX.

Like the sprite's helper function, the eel's prepares the eel for a po
tential call of the eel's destructor. And again like the sprite's con
structors, any added constructors you might tack onto this class
should make a call to this helper function before doing anything
else.

After scrubbing the eel clean for the destructor, the color icon
specified by the passed argument is loaded into memory with a call
to the Toolbox routine GetCicon. If the color icon exists and there
is enough memory to load it in (keep your fingers crossed), you'll
be handed back a handle to a color icon structure.

struct Cleon
PixMap
BitMap
BitMap
Handle
short

iconPMap; /*the icon's pixMap*/
iconMask; /*the icon's mask*/
iconBMap; /*the icon's bitMap*/
iconData; /*the icon's data*/
iconMaskData[l];

/*icon's mask and BitMap data*/
} ;

This structure will contain the pixel map that holds the eel's fu
ture image and a bitmap representing the icon's mask. It also has a
bitmap holding a black-and-white version of the color icon that this
type of sprite eel ignores. If you wanted to support black-and-white
screens in your game you could easily add a descendant of the
sprite eel that uses the black-and-white bitmap of the icon in addi
tion to the color version.

Next, a graphic world is created that holds a copy of the color
pixels contained in the icon with a call to the eel's protected method
MakeCelGWorld. This method creates a graphic world and copies
the pixels from the color icon to the pixel map contained within the
graphic world.

OSErr CSpriteCel::MakeCelGWorld(CiconHandle iconH)
{

290 ~~

OSErr err;
Rect celBnds;

ASSERT (iconH} i

celBnds = (*iconH}->iconPMap.bounds;

II Fix the gworld's coordinates
OffsetRect(&celBnds, -celBnds.left, -celBnds.top};
err= MakeGWorld(&fCelimage, &celBnds};
if (!err}
{

}

CGraf Ptr
GDHandle
PixMapHandle

oldPort;
oldDevice;
celPixels;

GetGWorld(&oldPort, &oldDevice};
SetGWorld(fCelimage, nil};
celPixels = GetGWorldPixMap(fCelimage};
if(celPixels !=nil && LockPixels(celPixels}}
{

}

II Blit the pixels
PlotCicon(&celBnds, iconH};

II Save the pixel handle.
II Cel's pixel handle will stayed locked
II until its destruction
fCelPixels = celPixels;

SetGWorld(oldPort, oldDevice};

return err;

The sprite eel needs to have dimensions that match the icons
but with the buffer's top-left coordinates at 0,0. Thus the reason
ing for the OffsetRect of the bounds rectangle copied from the
icon pixel map bounds. Using the freshly normalized bounds rec
tangle, MakeGWorld will attempt to create an offscreen buffer for
the sprite eel. If it is successful, the pixels of the world will be
locked and the icon's color image transferred through the Mac's

PlotCicon procedure. Everything after the icon plotting is sim
ply closure.

You'll notice that as part of copying the icon's pixels the graphic
world's pixels are locked with a call to LockPixels and that they
are never unlocked. This isn't a bug. It's an optimization. The pixels
are kept locked for the entire lifespan of the sprite eel. The one-time
locking is done so that the eel's drawing code can avoid the costs of
locking and unlocking the pixels before and after every blit. This
simplifies and speeds up the eel's implementation at the cost of po
tential heap fragmentation. A fair trade-off, as most of your eels will
probably be brought in at the beginning of the game where the po
tential for fragmentation will be minimized.

To complete the sprite color icon constructor, the eel's mask re
gion needs to be extracted from the icon's mask bitmap. The sprite
eel's utility method MakeRgnMask will perform that exact trick.

void CSpriteCel::MakeRgnMask(CiconHandle iconH)
{

BitMap
OSErr err;

maskBits;

ASSERT (iconH) ;
ASSERT(fMaskRgn);

HLock((Handle) iconH);
maskBits = (*iconH)->iconMask;
II Patch up the bitmap's address and bounds
OffsetRect(&maskBits.bounds,

-maskBits.bounds.left,
-maskBits.bounds.top);

maskBits.baseAddr
(ptr) (*iconH)->iconMaskData;

II Make a mask
err= BitMapToRegion(fMaskRgn, &maskBits);

HUnlock((Handle) iconH);

II Remember the delta from the mask's pixels upper
II left to the region's upper left. We'll need this
II info to properly reposition the mask relative to
II eel's blitting destination
if(!err)

292 ~1

fHorzMaskOffset = (*fMaskRgn)->rgnBBox.left;
fVertMaskOffset = (*fMaskRgn)->rgnBBox.top;

return err;

A bitmap structure pointing at the 1-bit-deep image date con
tained within the color icon is generated. Again the bounds rectan
gle is normalized so that the upper left is at 0,0. After you build the
bitmap the truly cool Toolbox routine Bi tMapToRegion is used to
transform the mask bitmap into a region. This nifty function will ei
ther return a successfully built region or an error, with the possible
choices being pixmapTooDeepErr (-148) or rgnTooBigErr
(-500). The first result means you handed Bi tMapToRegion a
pixel map that is deeper than 1 bit, not easy to do in this method.
The other result means that the generated region would be larger
than QuickDraw allows (64K). If you get this error you must have
created a monster of a sprite, probably one too hairy to be of any
practical use. Fire up that copy of Super Paint-the official painting
program of Sex, Lies, and Video Games-and make a simpler sprite.
Any other problems than these two you don't need to worry about,
as QuickDraw will have crashed and you'll be wondering who this
Jackson guy is and why his name shows up whenever QuickDraw
decides to take a dirt nap.

Before returning the mask region the code needs to stash away
the offsets from the mask bitmap's upper-left corner to the upper
left corner of the resultant region. You need to do this because the
region could end up being smaller than the bitmap and when you
move the region to match the on-screen position of the sprite,
you'll need to adjust for this difference in sizes. Otherwise the re
gion will be incorrectly aligned around the sprite eel's upper-left
corner.

With sprite eel creation having been fully dissected under the
harsh halogen lights of this section, it's now time to look at the
only other way of creating sprites. Cloning. Boy, that sure sounds
ominous.

Sprite cloning is not done by binding down the original sprite on
one half of a giant lazy Susan and placing a lump of gray clay
looking stuff on the other side and spinning the plate at torturous
speeds until the lump gains all the characteristics, including the
bad toupee, of the original sprite. This never works. The source
sprite always keeps repeating something about "stupid half-breed
Vulcan" screwing up the process. Too bad though, that would be
much cooler than how you'll do it.

CSprite * clonedSprite;

clonedSprite = sourceSprite->Clone();
if(clonedSprite ==nil)

PostFatalError(rnernFullErr);

One call and some error checking and you'll have successfully
cloned a sprite. Now comes the tricky part-the clone created
would not match a sprite created from scratch. Cloned sprites are
memory-optimized versions of the original sprites.

The reasoning behind sprite cloning is that most games have
several sprites that are duplicates of each other except for their on
screen locations. Think of a game like Asteroids. Each one of those
chunks of space debris looks exactly like the other floating chunks
with the only distinguishing feature being that one chunk is in the
upper-left comer and the other closer to the center of the screen rip
ping your ship apart. With several identical sprites on-screen at
once you would be chewing up gobs of memory (gobs comes right
after kilobytes and before megabytes) for each sprite. And each
sprite would be holding sprite eels that are exact duplicates of the
other sprite's eels. Wouldn't it be nice if all the sprites could share
the same sprite eels between themselves instead of wasting all that
precious memory? Yes, it would, and that's why sprites have a
cloning method.

virtual void *Clone() {return new(CSprite, (*this)); }

294 ~~

The Clone function of a sprite class is a simple one-line inliner
that calls new passing the source sprite you would like cloned. The
new operator will end up calling the sprite's copy constructor, pass
ing it along the original sprite.

CSprite::CSprite{CSprite & source)
{

}

SpriteX{);

fDogTag = source.fDogTag
fCurrBnds = source.fCurrBnds;
fPrevBnds = source.fPrevBnds;
fEraseBnds = source.fEraseBnds;
fCurrWidth = source.fCurrWidth;
fCurrHeight = source.fCurrHeight;
fMoveExtent = source.fMoveExtent;

fEraseMe = source.fEraseMe;
fDrawMe = source.fDrawMe;
fVisible = source.fDrawMe;

fTimerMoveFlag = source.fTimerMoveFlag;
fTimerCelFlag = source.fTimerCelFlag;
fMoveHoriz = source.fMoveHoriz;
fMoveVert = source.fMoveVert;

fCels = source.feels;
if {feels)

fCels->IncrementRefCount{);
fCurrentCel = source.fCurrentCel;
fCelindex = source.fCelindex;

fMoveDelay = source.fMoveDelay;
fCelDelay = source.fCelDelay;

Like any good sprite constructor, the copy constructor calls the
sprite's private initialization function, CSpri tex. From there the
constructor runs through all the fields of the source sprite, copying
them over to the newly built clone. Copying over the eel list refer
ence (feels) is where the memory saving takes place.

If the source sprite bothered to have a live eel list, that refer
ence is copied over to the cloned sprite's eel list reference. The eel

list now has two sprites currently referencing it. To reflect that fact
the copy constructor asks the eel list to up its internal reference
count by one with a call to the eel list's IncrementRefCount
function.

Now that the original sprite eels have been cloned in a memory
efficient manner, the copy constructor finishes up by copying over
the rest of the source sprite's internal fields.

For the cost of a new sprite object the clone function has re
turned a duplicate of the source sprite that can then be used as an
independent sprite without your having to worry about wasting
any more priceless memory.

Sprite eel lists are descendants of our standard list class that have a
few added functions that keep track of how many sprites have ref
erenced the list.

class CCelList : public CObjectList {
public:

CCelList() { fRefCount = l};
-CCelList();

void IncrementRefCount() { fRefCount++; }
void DecrementRefCount() { fRefCount-; }
short GetRefCount() { return fRefCount; }

protected:
short fRefCount;

} i

Upon construction the eel list has its reference count set to one,
based on the thinking that if someone bothered to create a eel list they
must want to use it and they'll want the reference count to reflect that.

Destruction of the list just performs a safety check before letting
the real destruction take place. The safety check verifies that the ref
erence count is one or below. A reference count above one at de-

296 ~~

struction time would be bad. A reference count greater than one
would imply that a sprite is still out there that thinks this eel list is
valid. On that uninformed sprite's next access to its sprite eel list it
will find a nasty surprise. No list, just memory that looks like a list
once lived there. You don't want that, hence the safety check.

Reuse of the eel list comes through the proper use of the eel list's
other three functions. These functions allow the sprite to maintain
the usage counts of the list.

Each time a sprite copies over its eel list it needs to call Incre
mentRefCount. Which does exactly what its name says. Whenever
the sprite is done using a sprite list it will use the other two func
tions: DecrementRefCount and GetRefCount. Again their
names describe their entire implementations.

A design problem with the eel lists is the dependency on the
sprite to do the right thing with the lists. Depending on one object
to correctly use another always leaves room for disaster. How much
room does a disaster take up, anyways? A better design would
have the whole reference counting scheme hidden from the sprite.
This would require trickier C ++ code than I wanted to use for this
book, things like operator overloading and such.

Anyway, let's get back to the real subject of this chapter, sprites.

Having created a sprite, at some later time you might want to dis
pose of the dam thing. Easy enough, just use the delete operator
or if the sprite is attached to a play field through: a sprite group, the
sprite will be disposed of when the play field is destroyed. Either
way, the sprite's destructor will eventually will be called.

The sprite's destructor has only two tasks to worry about: take
care of the sprite eel's under the sprite's control, and shut down the
timers used by the sprite.

CSprite::-CSprite()
{

if(fMoveTimer.tmAddr)
RmvTime((QElemPtr)&fMoveTimer);

fMoveTimer.tmAddr = nil;

if(fCelTimer.tmAddr)
RmvTime((QElemPtr)&fCelTimer);

fCelTimer.tmAddr = nil;

if(fCels && fCels->GetRefCount() <= 1)
{

else

fCels->FreeAll();
(fCels);

fCels->DecrementRefCount();

feels = nil;

Making sure that the sprite's timers were installed with a quick
check of the timer's function pointer, we remove both sprite timers
from the Mac's time manager's consideration with a call to Rmv

Time. In the spirit of paranoia the timer's function pointers are
cleared out.

With the sprite's timers shut down the destructor turns its at
tention to the sprite's eels. The sprite should only dispose of the
sprite eels if the reference count returned by the list's GetRef
Count function returns one or less. If the list gives the all-clear sig
nal the eels contained in the list are released back into the memory
pool and the list itself is then wiped from the sprite's memory. If the
list indicates that it is still in use by some other sprites through a
reference count greater than one, then the destructor's only respon
sibility is to knock the list's reference count by one with a swift call
to DecrementRefCount. One of the other sprites sharing the eel
list will have the pleasure of wiping out the eels and list when its
destructor finally gets called. Maintaining our paranoia, the sprite
eel list reference is zeroed out.

298 ~'I

Now that you can create and destroy sprites like some sort of game
programming demi-god, it's time to start moving those sprites. The
first thing you need to know about sprite movement is timing.

In order for your sprites to move around on the screen they have
to have a sense of time. Your sprites must move so many pixels in a
certain amount of time. The question is, what provides that time?
Sounds like a simple question, doesn't it? What is time? In your case
time can be established from a couple of sources. One is the game's
animation frame rate. In this case, your sprite would move so many
pixels per frame of animation. The other basis of timing could be
wall-clock time, or time as it exists in the world independent of the
game. Here, your sprite would move so many pixels per second or,
more realistically, so many pixels per millisecond.

Timing your sprite's movements through the game's frame rate
is an easy way to provide a clocking source for your sprites. Inside
your game and before or after each screen update you simply ask
all the sprites to move. Each sprite will know how many pixels and
in what direction and they will trudge along a little for each frame
of animation generated. Simple enough. So simple that you know
that there has to be problem with it. The problem arises when the
frame rate of the game varies. If the frame rate slows down, all of
the sprites slow down with it. Move your game to some parallel
processing monster Mac of the future and your sprites will be skit
tering across the screen like a five-year-old filled to the gills with
chocolate-covered expresso beans.

The too fast case is pretty simple to fix. Just throttle the frame
rate back. No matter how fast the hardware is capable of blasting
up frames of animation, don't let it. Cut it off at some playable
level-thirty frames per second is a good choice. The hard case is
hardware that is slower than average. Here you're stuck. Your only
solution is to try and speed up the frame rate as much as possible
on these cycle-challenged processors.

The other method of timing your sprites is with a clock that is
external to the game. In this scenario, you would establish a move
ment distance per unit of time that your sprite would move; say,
two pixels every twenty milliseconds. Since the timing for the sprite
is independent of the game, your sprites will move two pixels

every 20 milliseconds no matter what the speed of the host proces
sor is. To accomplish this temporal feat, you need some way for
your sprite to know when it's time to move. The best way for you
to do this would be for each sprite to establish a timer that counts
down the appropriate number of milliseconds; when the timer ex
pires, your sprite shuffles itself over slightly. And, of course, you
would want the timers to run parallel with the rest of the game.

As you've seen from the previous sections, establishing a timer
per sprite is the timing approach that the class kit takes. Actually,
two timers are set up: one for timing the sprite's movements and
another for controlling the rate of change for the sprite's eels. The
guts of these sprite timers are based on the Mac's built-in timing
mechanism, cleverly named the Time Manager (see Inside Macin
tosh: Processes). This chunk of ROM code gives us almost exactly
what we want.

Using the time manager to set up a timer is fairly straightfor
ward. Create a time manager structure. Fill it out and register it
with the Time Manager with a call to its InsTime function. To start
the timer off you now only need to call the Time Manager's Prime
Time function. This function takes a pointer to the time manager
structure and the number milliseconds that you want the timer to
count down. When that number of milliseconds has elapsed, you
will be notified via the function pointer you thoughtfully installed
in the time manager structure as part of filling it out. To kill off the
timer, make a call to RmvTime, passing it the address of the timer
structure, and it will gladly eradicate your timer from existence
both spatially and temporally.

The fun part of dealing with the Time Manager is when it calls
the function you supplied as part of the time manager structure.
Your function will be called when the timer expires. Inside your
function you would like to move the sprite along or have it move
on to displaying its next eel. That's what you would like to happen.
Dream on. When your supplied timer function is called, you are op
erating at interrupt level. When a Mac is at interrupt level you can't
do much, and you have to do it fast. Almost any Toolbox routine
you would like to call will, if you're lucky, immediately crash your
Mac. At interrupt time you can call only Toolbox routines that Inside

300 ~'i

Mac has declared as safe. Nothing in QuickDraw is safe. Nothing
that is any fun is safe.

The standard technique for dealing with this dilemma is to have
your interrupt service routine simply set a flag that the timer has
expired and boogie on out of there. Later, while at a non-interrupt
level, your main thread of the application can check this flag and
then perform, with impunity, the functions it would have preferred
to have done at interrupt time.

In our case the timers installed by the sprite set flags internal to
the sprite when they expire. Later, when it's safe, during the game
loop, the flags are checked and if they have been set by the timers
the sprite is asked to move along or cycle to the next eel in its series.
After the sprite is moved, its eel is changed, the timers are reset,
and the whole process starts over again.

With the nature of time out of the way, you are now free to head
on to sprite movement. Have fun.

There are two ways to move your sprites around on the screen, au
tomatically and by hand. Each has its advantages and disadvan
tages. Automatic movement is a great way to "fire and forget" a
sprite's movements but doesn't allow for very complex move
ments. The opposite method of sprite movement requires you to do
all the work in moving the sprite. With your code in control of all
sprite movements, it has absolute flexibility in what your sprites do
on-screen.

Setting a sprite to move automatically takes only three lines of
code. The first one establishes the starting point for the sprite's
upper-left corner (all screen positions are in play field coordi
nates); in this case the sprite starts in the play field's upper-left
corner at 10,10. The second tells the sprite how many pixels you
want the sprite to move when the movement timer fires off. With
a horizontal delta of 3 and a vertical delta of 2 the sprite will move
from the upper-left corner of the play field down to the lower
right corner in a roughly 45-degree line. The third line tells the

sprite how many milliseconds it should delay between movement
requests. Here the code requests that the sprite should move
every 20 milliseconds.

sprite->SetStartingPosition(lO, 10);
sprite->SetAutoMove(3, 2);
sprite->SetAutoMoveTime(20);

There are only two functions methods for moving the sprite di
rectly. The first, MoveTo, repositions the sprite so that its upper-left
comer is at the coordinates passed to the function. The other func
tion, Offset, displaces the sprite from its current position by the
pixel distances passed into the function. In other words, MoveTo is
used when you need to set the sprite's absolute location and Off
set when you need to move it in relative amounts. Both functions
are independent of the sprite's movement timer. When you use ei
ther of these functions the sprite will be erased and redrawn on the
next cycle through your game loop.

You can combine automatic movement with the other two
movement functions. You might want a sprite to move automati
cally until a certain condition occurs, like hitting the edge of the
screen, and then use one of the other functions to reposition the
sprite so it can continue its automatic march across the screen.

Let's look at the automatic methods of the sprite first, starting with
setting the sprite's starting position, SetStartingPosi ti on. As
the name implies you should use this function to establish the
sprite's starting location.

void CSprite::SetStartingPosition(short h, short v)
{

fCurrBnds.top = v;
fCurrBnds.left = h;
fCurrBnds.bottom = v + fCurrHeight;

302 ~~

fCurrBnds.right = h + fCurrWidth;

fEraseBnds = fCurrBnds;
fPrevBnds = fCurrBnds;

The sprite's bounding box is adjusted to match the new position
and then those bounds are copied to the erasure and previous posi
tion rectangles maintained by the sprite. This copying wipes out
any history previously maintained by the sprite. So if the sprite was
already in a play field it won't be erased correctly before being
moved. If you wish to move a sprite that already has a position es
tablished in a play field, you'll want to use the MoveTo function.
This function is to be used only for establishing the sprite's initial
position within the play field.

Setting the number of pixels you want the sprite to move on each
timer heartbeat is easy enough with a call to SetAutoMove. This
function takes the number of pixels you want the sprite to be off
set by on each cycle of the movement timer. Negative values rep
resent movements to the left and up, and positive values move
the sprite to the right and down, just like QuickDraw relative
movements.

void CSprite::SetAutoMove(short dh, short dv)
{

fMoveHoriz = dh;
fMoveVert = dv;

The function only assigns the deltas you pass to the fields main
tained by the sprite. Notice that the sprite is not moved by a call to
this function. The actual sprite movement doesn't take place until

the sprite's main movement function, Move, is called from the
play field's MoveSpri tes function during your game loop.

Establishing the frequency at which you want your sprite to move
is done through SetAutoMoveTime. You need to pass the function
the number of milliseconds delay you require between sprite move
ments. If you pass the flag kASAP as the delay amount you'll force
the sprite to be moved as often as possible, which really means the
sprite will be moved on every call to the play field's MoveSpri tes
function. Which as far as your game is concerned is as often as
possible.

If you don't want your sprite to move at all, pass in the enumer
ated value kNoMovement. With this delay value your sprite's delay
is now, depending on how you look at it, either zero or an infinite
delay. Either way the timer will never fire and your sprite's core
movement function, Move, will never be called.

If you end up passing a real delay value and not one of the enu
merated constants you'll force the sprite's movement timer to be
reestablished using the delay you passed in.

void CSprite::SetAutoMoveTime(long moveDelay)

if(moveDelay == kASAP)
{

fTimerMoveFlag = TRUE;

else if(moveDelay <= kNoMovement)

I I if the task is primed ...
if (IsTaskPrimed(&fMoveTimer))
{

RmvTime((QElemPtr)&fMoveTimer);
InsTime((QElemPtr)&fMoveTimer);

II Don't let the sprite ever move

304 ~q

fTimerMoveFlag = FALSE;
}

II Use the delay passed in
else if (!IsTaskPrimed(&fMoveTimer))

II Force the sprite to allow movement.
II This will force a reset of the timer
II task on the next pass of the game loop
fTimerMoveFlag = TRUE;

fMoveDelay = moveDelay;

Internally the function works by dispatching upon the delay
passed in and setting up the sprite timer values appropriately. The
first test is against kASAP. If the test is true the sprite's timer flag,
fTimerMoveFlag, is set indicating to the world outside of the
sprite that the sprite's timer has fired. Every time the play field in
quires if enough time has passed between sprite movements it will
be told yes, forcing the sprite to be moved as fast as the play field
can manage.

Next the delay value is checked against the kNoMovement flag.
If the delay indicates that the caller does want the sprite to freeze at
its current location and stay there until told otherwise, the function
first checks to see if the movement timer is currently active. If so,
the function removes it and disables the timer with calls to the time
manager functions RmvTime and InsTime. The first function re
moves the task from the time manager list of active tasks. The next
line reinserts the function back into the same queue. The newly in
stalled task will just take up space in the time manager's queue un
til a call to PrimeTime is performed on the task. The sprite's
movement timer flag, fTimerMoveFlag, is then forced to false.
With this flag set to false every inquiry performed by the play field
to the sprite asking if the sprite needs to be moved will be rebuked,
forcing the sprite to remain frozen at its current location.

If the caller did bother to pass in an actual delay amount, the
function will check if a timer task is currently pending. If not, the
fTimerMoveFlag is forced to true. This will force a reestablish-

ment of the timer with its new delay amount on the next pass
through the game loop. If there is a timer task pending, nothing is
done. The new delay value will be established after the current
timer task is spent. This means that if you accidentally pass in a
huge value for the delay amount, like say MaxLong, you'll have to
wait 24 days before you can establish a new movement delay.

After handling all the combinations of possible delay values,
the function finally assigns the new delay amount to the sprite's
movement delay slot, fMoveDelay.

All of the sprite's automatic movement functions eventually get the
sprite animating through its Move function. This function is move
ment central for all of the other movement functions. The other au
tomatic functions only set variables maintained by the sprite that
are used by the Move function.

void CSprite::Move()
{

}

if (fMoveHoriz I I fMoveVert)
{

}

OffsetRect(&fCUrrBnds, fMoveHoriz, fMoveVert);
fDrawMe = TRUE;

if (fMoveDelay > kASAP)
{

II Reset timer
fTimerMoveFlag = FALSE;

PrimeTime((QElemPtr)&fMoveTimer, fMoveDelay);
}

If either of the two automatic delta variables has a variable
greater than zero, the sprite's bounding rectangle is offset by the
amount stored in those variables. To make sure that the sprite will

306 ~~

be redrawn on the next animation cycle, the sprite flag, fDrawMe ,
which says to the world, "Hey, I need to be redrawn," is set to true.

Next the function check to see if the sprite's movement delay is
a real delay value. If so, the timer is reset by first clearing the
sprite's timer flag and then starting up the sprite's time manager
task with a call to PrimeTime.

To complement the automated ways of moving a sprite there are
other sprite movement functions, MoveTo and Offset. Both func
tions move the sprite's bounding rectangle to a new on-screen posi
tion, effectively moving the sprite. And like the other sprite
movement functions these two functions don't perform any blit
ting, instead setting the sprite's internal flags that reflect that the
sprite needs to be blitted.

As previously mentioned, the MoveTo method of the sprite lets
you move the sprite to an absolute location within the sprite's play
field. On the next pass trough the game loop the sprite will be
erased at its previous location and redrawn at the one specified by
the arguments to MoveTo.

void CSprite::MoveTo(short h, short v)

if(h 11 vl
{

fCurrBnds.top = v;
fCurrBnds.left = h;
fCurrBnds.bottom = v + fCurrHeight;
fCurrBnds.right = h + fCurrWidth;

fDrawMe = TRUE;

The code for MoveTo moves the sprite by reconstructing the
sprite's bounding rectangle with its upper-left corner matching the
horizontal and vertical positions passed in. After that the sprite
drawing indicator flag is set to true so that on the next pass of the
play field animation cycle the sprite can inform the play field that it
needs to be redrawn.

One problem that can arise with MoveTo is if you decide to
move the sprite in large chunks while the sprite is visible. Doing this
will end up creating a blitting bounds that is the union of the sprite's
previous location and its new location. If you moved the sprite from
the lower-right comer up to the upper left you'd end up creating a
blit from the working buffer to on-screen that is about the same size
as the whole screen. Can you say incredibly slow? To avoid this par
ticular situation you'd be better off hiding the sprite than moving it.

Rounding out the finalists in the sprite movement hit parade is the
sprite function Offset. This nice little function offsets the sprite
from its current position by the number of pixels specified by the
horizontal and vertical deltas passed into the function.

void CSprite::Offset(short dh, short dv)

if (dh 11 dvl
{

OffsetRect(&fCurrBnds, dh, dv);
fDrawMe = TRUE;

Like the function MoveTo this function repositions the sprite's
bounding rectangle to reflect the sprite's movement. And after the
changes to the bounding rectangle, the sprite's drawing flag is set
to reflect that the sprite's current on-screen position is stale and
needs to be updated at the play field's earliest convenience.

308 ~~

The other aspect of sprites controlled by a timer is the rate at which
the sprite cycles through the eels owned by the sprite. Like sprite
movement the sprite eels can be cycled automatically or manually.
It's up to you.

A call to SetCelCycleTime tells the sprite how long it should
wait before cycling to the next sprite eel. This method of the sprite
is a mirror function of the sprite's SetAutoMoveTime function. It
even takes the same parameters: the number of milliseconds of de
lay between changes or the enumerated constant kASAP to indicate
that the sprite should cycle through the eels as fast as it possibly
can, and the other constant kNoMovement to tell the sprite that you
never want the sprite's eel to change.

void CSprite::SetCelCycleTime(long cycleDelay)
{

if(cycleDelay == kASAP)
{

fTimerCelFlag = TRUE;
}

else if(cycleDelay <= kNoMovement)
{

}

I I if the task is primed ..
if (IsTaskPrimed(&fCelTimer))
{

}

RmvTime((QElemPtr)&fCelTimer);
InsTime((QElemPtr)&fCelTimer);

II Don't let the sprite ever move
fTimerCelFlag = FALSE;

II Use the delay passed in
else if (!IsTaskPrimed(&fCelTimer))

II Force the eel to change
II This will force a reset of the timer
II task on the next pass of the game loop
fTimerCelFlag = TRUE;

fCelDelay = cycleDelay;

The function's implementation is also a mirror of SetAutoMove
Time. Depending on the value of the delay, the sprite's eel change flag
fTimerCelFlag is either permanently set to true or permanently set
to false and the timer task shut down. Or if you pass in an actual mil
lisecond amount, the flag is set and the timer reset. Somewhere at the
end of the function the code finally gets around to copying over the
new delay amount to the sprite's new fCelDelay variable.

You specify which eel of the sprite is to be used by the sprite by
passing the eel's index in the sprite's eel list to the function
SetCurrentCel. The indices start at one and rise to the number of
eels. If you pass in an index less than one you'll get the first eel.
Pass in an index larger than the number of eels and you'll get
handed back the last eel in the eel list.

If you have established an automatic eel change with a call
SetCelCycleTime this function serves to set the starting eel for
the eel changing animation. After the proper delay the sprite will
switch to the next eel in the list. When the sprite eel cycling reaches
the last eel the sprite starts over at the beginning of the eel list.

On the other hand if you don't have the eel cycling timer run
ning SetCurrentCel serves to tell the sprite to use the eel pointed
at by the passed index. Without the timer the sprite will use the re
quested eel indefinitely.

310 ~q

Use the sprite's GetCurrentCelindex function to determine the
index of the eel that the sprite is displaying. If you want access to
the current eel instead of its index, use GetCurrentCel instead.

The GetCurrentCelindex function is useful when you want
to cycle through the eels manually.

sprite->SetCurrentCel(sprite->GetCurrentCelindex() + 1);

Both GetCurrentCelindex and GetCurrentCel are imple
mented as inline functions. And since their only code is a return
statement the compiler should have no problem actually inlining
these functions.

short GetCurrentCelindex() { return fCelindex; }

CSpriteCel *GetCurrentCel() { return fCurrentCel;

Be aware that GetCurrentCel could potentially return a nil
sprite eel object if the sprite doesn't go to the effort of building a
couple of sprite eels. It could happen, so code accordingly.

The function ChangeCel, like its sprite movement counterpart
Move, is the core function used by the play field to cycle through
the eels owned by each sprite. The play field calls the sprite's
ChangeCel once each time through its event loop for each sprite
that returns true to its IsTimeToChangeCels function.

void CSprite: :ChangeCel()

fCelindex++;
if(fCelindex > fCels->GetObjectCount())

fCelindex = l;

}

SetCurrentCel(fCelindex);

if (fCelDelay > kASAP)
{

II reset the timer
fTimerCelFlag = FALSE;

PrimeTime((QElemPtr)&fCelTimer, fCelDelay);

The ChangeCel function bumps the sprite's current eel index
by one, and if the new index is still within range the eel is changed
with a call to SetCurrentCel. After the eel is changed the timer
flag for eel cycling is reset and the eel timer reset through a call to
the time manager's PrimeTime routine.

You control the sprite's on-screen visibility with the sprite's twin
complementary functions, Hide and Show. These two functions are
about as self-explanatory as you can get. The only note, indicated
by their implementation, is that the sprites don't change their visi
bility directly through these functions. The sprites won't change
their on-screen state until the next go-through of the play field's an
imation loop.

These two functions come in handy when you would like to
reposition a sprite without having to move it on-screen. Also
they're awfully useful during collisions. After detecting a colli
sion you can get rid of the collided with sprite with a quick call
to Hide.

void Hide ()

}

fVisible = FALSE;
fDrawMe = TRUE;
fEraseMe = TRUE;

312 ~~

void Show()
{

fVisible = TRUE;
fDrawMe = TRUE;
fEraseMe = FALSE;

Both functions work by toggling the appropriate sprite's visibil
ity flags. To hide the sprite the visibility flag, fVisible, is set to
false, telling the sprite to act like it's invisible. The drawing and
erasing flags, fDrawMe and fEraseMe, are set to true so that on the
next pass through the animation loop the now visible sprite will be
erased from the screen.

Making a sprite visible on-screen is performed with a simple in
version of the sprite's Hide implementation. Flip the flags and on
the next animation cycle the sprite will pop on-screen.

The base sprite class has only a couple of functions that fail to fall into
any of the categories presented earlier. To avoid coming up with a po
tentially original category let's just throw these few functions under
the sprite melange banner and be done with it. Melange. What a great
word. Would make a great name for a new programming language.

"What did you program that incredible game in?"
"Melange."
"Uhm, yeah, right."
It's better than Dylan and odds are that there won't be any off

key, own-press-believing folk singers dragging themselves out of
impending obscurity to sue you.

When two sprites slam face-first into each other, you might want to
know who ran into what. That's where the first two functions of
our sprite's melange (it's still a great word) come in handy.

I've referred to the sprite identification field as its dog tag for
no other reason than that I liked the idea of programmers' having
to check the sprite's dog tags after a fatal collision. Ignoring the
overly macho name, a sprite's dog tag is simply a four-character
identifier like the ones you use with the Mac's resource manager.
You can tag the sprite with any value that fits within a long inte
ger, but I like to use tags that I can read in the debugger. Tags like
'rock' and 'ship' are so much more readable at 3 A.M. than a tag
like 2,345,235,678.

To assign a sprite's dog tag use the inline function SetDogTag.

void SetDogTag(SpriteID id) { fDogTag = id; }

Retrieving a sprite's dog tag is done by the simple replacement
of the Sin the previous function's definition with a G, turning Set
DogTag into GetDogTag.

SpriteID GetDogTag() { return fDogTag; }

Like SetDogTag, GetDogTag is implemented as an inline dec
laration so that you won't feel tempted to make the fDogTag field
visible to the public.

Just like small children and programmers, sprites need to know
their limits. In a sprite's case its limits are expressed as a rectangle
that defines the extent that the sprite should be allowed to move.
You establish a sprite's bounding limits with a call to the sprite's
SetSpri teExtent method.

void SetSpriteExtent(const Rect * extent)
{

fMoveExtent = *extent;
}

314 ~q

Following suit with the sprite's dog tag functions, retrieving the
sprite's cautionary boundaries is provided with a Get instead of a
Set.

void GetSpriteExtent(Rect * extent)

*extent = fMoveExtent;

The default sprite implementation, again like small children
and programmers, ignores the limits established by the boundary
rectangle. These functions are provided as a convenience for future
sprite classes you might concoct that have a need to know their
place and how far they are allowed to wander within it.

10

Time to put all that sprite code to some use. A use, and maybe even
a good one, would be a simple example game that ties in most of
the pieces of the sprite class kit. And as fortune and preplanning
would have it, that is exactly what this chapter does.

I thought a fitting first example would be to produce a version
of the first video game, Pong. What could be a better example than
coding up a tribute to the game that started it all. Somewhat like a
rite of passage for the budding game programmer. Pong has all the
essentials for a great first example: small number of objects on
screen, not a lot of complicated' algorithms to get in the way, and lit
tle chance of any of Atari's lawyers showing up at my doorstep.

315

316 ~10

And to doubly insure that my entryway remains an attorney-free
zone, let's name this copy of Pong "Ping." Did I say "copy"? Sorry,
I meant homage. Let's name this homage to Pong "Ping."

For those of you who somehow missed the '70s here is a quick
overview of how Pong plays out. The game has only three elements
on-screen: two paddles and one ball. The game begins with the ball
being fired at one of the paddles. The paddles can only move up
and down. You want to move your paddle so that it deflects the
path of the ball toward the other paddle. If you miss the ball the
other players scores a point. First player to score eleven points
wins. Amazingly, a copy of this simple game made it into almost
every home in America. I personally believe the hypnotic simplicity
of this game was directly responsible for Jimmy Carter's being
elected and the success of Abba.

I
I

Figure 10-1. Pong

In Figure 10-1 the player controls the paddle on the left side of
the screen with the Mac's mouse, with the computer controlling the

P~ttAllT~ 317

paddle on the right, leaving the ball controlled by some incredibly
simplified rules of physics.

This example skips all those fluffy game details like scoring,
menu bars, high scores, or anything else that would have you con
fuse it with anything other than what it really is, an excuse to try
out all that sprite code. Fire up the game and you're instantly play
ing, first mouse click and the game quits. Can't get much simpler
than that. Try it once or twice before heading on to the other sec
tions of this chapter.

To build the game Ping you'll need three sprites, one window, one
play field, and a couple of sprite groups. Mix together with only a
few pages of code and you end up with a cheap silicon souvenir of
the seventies.

The game design breaks down into four problems:

+ Tracking the mouse's movements with the player's paddle

+ Making the computer's paddle play a reasonable game

+ Collisions between the ball and paddles

+ Bouncing the ball off the edges of the window

Let's be original and handle the last problem first: how to get the
darn ball to bounce off the edges of the window. First off the ball
will have to be moving. Easy enough, use the sprite's SetAuto

Move function with a predefined speed. With the ball moving
you'll need a point for checking if the sprite has hit the bottom
or top edges of the play field. Overriding the sprite's Move func
tion provides a perfect vantage point for keeping the sprite in
check.

318 ~10

Bal/width

~
I I

I •
Ball\
height

Figure 10-2. Perceived play field

The ball's movement will need to be checked against the
bounds of the user-perceived play field. Which is not to be con
fused with the actual play field. The perceived play field for the ball
is shown in Figure 10-2 by the dotted rectangle. This rectangle is the
sprite's extent rectangle and is calculated by insetting the right and
bottom edges of the play field by the width and height of the sprite.
With this extent rectangle the Move method can use the sprite's top
left corner as the test case against all the extent's edges.

void CBall::Move()

II See if the ball has banged into
II the walls or past a paddle
if (fCurrBnds.top > fMoveExtent.bottom)
{

II Flip the sprite's direction
fMoveVert = -fMoveVert;

II Correct the sprite's position
OffsetRect(&fCurrBnds, 0,

-(fCurrBnds.bottom - fMoveExtent.bottom));

else if (fCurrBnds.top <= fMoveExtent.top)

P~ttAll~ 319

II Flip the sprite's direction
fMoveVert = -fMoveVert;

II Correct the sprite's position
OffsetRect(&fCurrBnds, 0,

fMoveExtent.top - fCurrBnds.top);

II See if the ball made it past a paddle
if(fCurrBnds.left < fMoveExtent.left)
{

II Made it past the player's paddle.
II Reset the ball's position
MoveTo(fMoveExtent.right + 40,

fMoveExtent.top - 40);
SetAutoMove(-kBallDelta, -kBallDelta);

else if(fCurrBnds.left > fMoveExtent.right)

else

II Made it past the computer's paddle
MoveTo(fMoveExtent.left - 40,

fMoveExtent.top - 40);
SetAutoMove(kBallDelta, kBallDelta);

inherited: :Move();

During the Move function the ball's current position is checked
against its extent. When the ball slams into the top or the bottom
you'll just need to flip the direction of the sprite's vertical compo
nent of its automatic movement pair. A negative velocity-pro
pelling the ball upward-will be inverted when the ball hits the top
of the window, giving the ball a positive velocity. Ditto but in re
verse for the bottom. While the flipping of the sprite's velocity
leaves a little to be desired in the physically accurate department, it
looks and acts accurate enough for our game's needs.

Once the ball has been checked against the top and bottom ex
tents, it's time to see if the ball has made it past either of the pad
dles with a check of the ball's left edge. If the ball has made it past

320 ~10

one of the paddles the function resets for the next serve of the ball.
If the ball scored for the player, the next serve will be toward the
computer. Reverse that if the computer sneaked one past the player.
In a real game this is the point you would change the scoreboard
and check to see if the game has been won. But this is only an ex
ample so we do squat besides changing the serving direction.

Getting the player's paddle to echo the mouse's movements is an
other task custom-made for overriding the sprite Move method. In
stead of giving the player's paddle an automatic velocity you'll use
the Move function to look at the mouse's current vertical position
with a call to GetMouse-and then position the paddle to match
with a call to the sprite's MoveTo method. Since the paddles only
move up and down, the mouse's horizontal position is completely
ignored.

void CPlayerPaddle::Move()
{

Point mouse;

GetMouse(&mouse);

II If the mouse is trying to move the paddle
II past its limit then pin the paddle within the
II sprite's extent
if (mouse.v < fMoveExtent.top)

MoveTo(fCurrBnds.left, fMoveExtent.top);
else if (mouse.v > fMoveExtent.bottom)

MoveTo(fCurrBnds.left, fMoveExtent.bottom);
else

II Move the paddle to its new location
MoveTo(fCurrBnds.left, mouse.v);

II Make sure we get redrawn
fDrawMe = TRUE;
inherited::Move();

P~At

p~ tt All 1~ 321

The only matter that'll you'll have to worry about is whether
your window is smaller than the screen it resides on. Which will be
true for this example. In this case GetMouse can give you coordi
nates that would fling your paddle right off the play field. So after
adjusting the paddle to match the mouse you'll want to pin the
paddle's sprite to the visible portion of the window. After adjusting
the paddle make sure you indicate that you want the sprite re
drawn on the next cycle of the game loop.

The illusion of the player's paddle moving smoothly is attained
by the assumption that the mouse hasn't had a chance to move too
much between frames of animation. This, of course, depends on
sampling the mouse position frequently as the player moves it. Too
much time between mouse-position snapshots and the paddle will
appear to jump around the screen instead of smoothly sliding into
position.

To make Ping a game worth playing for three minutes (that's
about all it's worth) the computer needs to be able to hit the ball
with its paddle. More accurately, you want the computer to have
to move its paddle in the same manner as the human player. You
can't just plop the computer's paddle right in front of the ball at
the last minute. That would be cheating. You need for the com
puter to track the ball with its paddle, smoothly bringing the pad
dle from one end of the screen to the other so it can get a good
whack at the ball.

void CComputerPaddle::Move()
{

Rect ballBnds;

II The computer's paddle moves by tracking the ball's
II position. If the ball is moving towards the
II computer's paddle and it has passed center ice
II start the paddle moving up or down.

gBall->GetPosition(&ballBnds);

322 ~10

if(ballBnds.right > gHalfWindowSize &&
gBall->GetAutoMoveHorz() > 0)

}

else

II Determine which direction the paddle should
II be moving. The function MissFactor() gives a
II random error term that allows the computer's
II paddle to occasionally miss.

if (ballBnds.top + MissFactor() < fCurrBnds.top)
fMoveHoriz = -kComputerPaddleSpeed;

else if (ballBnds.bottom -
MissFactor() > fCurrBnds.bottom)

fMoveHoriz kComputerPaddleSpeed;
else

fMoveHoriz O;

fMoveHoriz = O;

inherited::Move();

Since the computer will be moving the paddle it makes sense to
override the computer paddle's Move function for our ball tracking.
Within this function you'll get the ball's position and compare it to
the computer's paddle. Based on the difference between the ball's
position and the computer's paddle, the Move function will adjust
the paddle's vertical velocity direction so that the paddle moves in
the direction of the ball.

You'll notice that the function doesn't start tracking the ball po
sition unless it is traveling toward the computer's paddle. It would
look very mechanical for the paddle to be tracking the ball when it
doesn't have to. As another realistic touch, the function delays
tracking a ball heading toward it until the ball has passed the play
field center line. This small addition stops the computer from jitter
ing its paddle like it's hopped up on Jolt cola.

The final attempt at simulating a human foe is giving the com
puter a way to fail. On each look at the ball's position the function
will make a call to the ball's private MissFactor function. This
function randomly returns a factor that is applied to the paddle's

P~ ttNt T~ 323

top position. This fudge factor adds some random slop to the pad
dle's tracking, allowing it to occasionally miss the ball.

short CComputerPaddle::MissFactor()

return Random() % 2 == 0 ? 8 : O;

The best way to understand these simplistic attempts at a realis
tic opponent is to comment them out and watch the game's reaction.
You'll then notice that this simple feedback loop is a reasonable
compromise between a passable implementation and getting a de
gree in artificial intelligence.

Our only remaining challenge is making sure that the ball bounces
off the paddles instead of traveling right through them. Testing
whether two sprites have touched each other? Sounds like collision
detection to me. But what to test, the paddles or the ball? It's an ex
istential problem. Is the ball colliding with the paddle or is the pad
dle colliding with the ball? I'm a ball-hitting-the-paddle kind of
guy. I also always see the glass as half full and think that a tree does
make a sound and you can fit only fifty-five angels on a pin, but
only if they know each other rather well.

To provide for the thrill of Ping volleys let's override the ball's
Collision function. With the paddles being the only other sprites
around for miles, you can be pretty sure when the ball's Colli
sion method is called you have had a legitimate head-on with one
of the paddles. Which one is irrelevant.

void CBall::Collide(CSprite *source)
{

short paddleSpeed;

II Flip the ball's direction
fMoveHoriz = -fMoveHoriz;

324 ~10

}

II Use the paddle's momentum to change the ball's
II relection angle and speed

II Scale the paddle's delta to calculate
II a psuedo speed for the paddle
paddleSpeed = (source->fCurrBnds.top -

source->fPrevBnds.top) I 4;
if(paddleSpeed && paddleSpeed < 4)

fMoveVert += paddleSpeed;

Offset(fMoveHoriz, 0);

When the ball hits the paddle, and not the other way around,
the ball's horizontal direction is reversed by inverting the ball's
horizontal velocity. After giving the ball a 180, the Collision
function tries to impart a little variation in the ball's vertical veloc
ity. This change in velocity is based on the speed the paddle was
moving at the time of collision. The speed of the paddle is faked by
subtracting the paddle's previous position from its current position.
This difference, or faux speed, is then scaled down by a factor of
four, and if the scaled value is under the arbitrary threshold (in this
case I again chose four) the scaled speed factor is combined with
the ball's vertical velocity component.

The three sprites' class definitions are pretty simple to deter
mine from the five member functions provided.

class CBall : public CSprite {
public:

} i

virtual
virtual

void Collide(CSprite *source);
void Move();

class CPlayerPaddle : public CSprite {
public:

virtual void Move ();
} i

class CComputerPaddle : public CSprite
public:

virtual void Move();

P~ ttAll 1~ 325

private:
short MissFactor();

} i

With these three Ping sprites fully defined let's move on to the
fun part-stitching these sprites into a play field and finally into a
game. A simple game, but a game nonetheless.

With a cache of Ping custom-designed sprites you now have the
parts for building this fun little exercise in Newtonian mechanics.
Though a game of Pong based on quantum mechanics would be a
blast to play. But would the ball travel as a particle or a wave? I
guess you wouldn't know until you ran the game.

The main for Ping does all the good things a well-behaved main
function should. First let's fire up the Mac with a call to our handy
dandy utility function Ini tMacApplication. In this example the
memory needs are simple so only two master pointer blocks and a
overly generous stack of fifty kilobytes are generated.

void main()
{

II fire up all the mac managers.
InitMacApplication(2, 50 * 1024);

II Install error handler
SetSLVGErrorHandler(PingErrorHandler, OL);

II Create the play field and sprites
BuildPingParts();

II Play game
GameLoop () ;

326 ~10

II Throw away the play field and sprites
(gPingField);

II Clean up any stray mouse clicks or key presses
FlushEvents(everyEvent, 0);

Before launching into the game-part building code, main estab
lishes the error handler for the sprite library used for this example.
As you can see the error handling is incredibly robust. The kind
you would expect in a Dorf on Mac Programming videotape.

void PingErrorHandler(OSErr error, long refcon)

DebugStr("\pFatal Error. See Ya!");
ExitToShell ();

After installing the error handler the game parts are built
through a call to BuildPingParts. This function will construct
Ping's window, play field, and any needed sprites.

With the window and play field up and walking, the real action
can finally begin. The function GameLoop launches into-you
guessed it-Ping's game loop. The program will live in this loop
until the user clicks the mouse button or hits the command option
escape key combination. Either way the loop will exit.

If the player was kind enough to exit the game loop in the
proper manner, control will return to main where it can clean up
before hitting its final brace. Before that brace we get overly fastidi
ous and throw away Ping's play field, disposing of the play field
and all of its associated sprites and offscreens. This of course isn't
necessary; quitting the game will nuke the entire heap of our
sprites, offscreens, and anything else that was left lying around.

As a final nicety to the user before quitting, main flushes any
events lying around in the event queue. This prevents the user who
banged on the mouse like it was a stuck telegraph key from getting
those extra mouse clicks sprinkled within the program that become
active after Ping quits.

p~ tt All 1~ 327

Building the parts used for Ping is the responsibility of Build
PingParts. It constructs all the necessary game elements: window
(got to have a window), sprites, play field, sprite groups. And ties
all these necessary elements together. Along the way the function
also caches most of these elements into global variables for easy re
trieval at a later day.

void BuildPingParts()

Rect
CSpriteGroup *
CSpriteGroup *

II Create Window

windowBnds;
paddleGroup;
ballGroup;

gPingWindow = GetNewCWindow (kPingWindowID, nil,
(WindowPtr) -lL);

windowBnds = gPingWindow->portRect;
gHalfWindowSize =

(windowBnds.right - windowBnds.left) I 2;

II Create play field for game
gPingPlayfield = new CPlayField(gPingWindow,

&windowBnds) ;

Before we build any of Ping's animation elements, we need to erect
a window on the screen to hold those elements. After the window has
been reincarnated from its resource template description, half of its
width is measured and stashed away in the global gHalfWindow
Size for use with the computer paddle's ball-tracking code. With a
Windex-clean window on-screen a play field is then constructed that
takes up all the visible space within the window. The global gPing
Playf ield will hold the reference to this new play field.

II Create the play field's sprite groups;
paddleGroup = new CSpriteGroup;
ballGroup = new CSpriteGroup;

II Create ball sprite
gBall = new CBall (kBallTemplateID);

328 ~10

gBall->SetAutoMove(-kBallsSpeed, kBallsSpeed);

II Create player's paddle sprite
gPlayerPaddle =new CPlayerPaddle (kPlayerPaddleID);

II Create computer's paddle sprite
gComputerPaddle = new CComputerPaddle

(kComputerPaddleID);
gComputerPaddle->SetAutoMove(O, kComputerPaddleSpeed);

Before creating Ping's sprites, we need a couple of sprite groups
to hold those sprites. One group will hold the paddle sprites, the
other the ball. I guess in that group's case the term sprite group is a
misnomer. A whole group that holds only one lonely sprite. Seems
kind of cruel. Oh well, game programming is cruel.

With a cruelly created sprite group just itching to get its hands
on some new sprites, BuildPingParts does the right thing and
creates the three sprites for the game. All three are constructed
through sprite templates, avoiding a whole bunch of boring initial
ization code. Speaking of boring initialization code, here's some
now that establishes the auto-movement rates of the ball and the
computer's paddle. Remember that the player's paddle is moved by
tracking the mouse and doesn't need or want any initial velocities.

II Fix up the sprite's movement extents
Rect paddleExtent = windowBnds;

II Assumes that the two paddles are the same height
paddleExtent.bottom -= gPlayerPaddle->GetHeight();
gPlayerPaddle->SetSpriteExtent(&paddleExtent);
gComputerPaddle->SetSpriteExtent(&paddleExtent);

Rect ballExtent = windowBnds;

II Suck in the the ball's extent at
II the right,left and bottom edges
ballExtent.bottom -= gBall->GetHeight();
ballExtent.right -= gBall->GetWidth() +

kPlayfieldMargin;
ballExtent.left += gBall->GetWidth() +

kPlayfieldMargin;
gBall->SetSpriteExtent(&ballExtent);

P~ tt All T~ 329

After establishing the sprite's initial velocities BuildPing
Parts goes the extra mile and calculates the movement extent rec
tangles for each sprite. The two paddle sprites are able to use the
same extent bounds as long as they're the same height. If you de
cide to give the computer or the player a handicap by shortening
one of the paddles, make sure you account for the new sizes in the
paddle's extent calculation code. Luckily there is only one ball in
volved so its extent is adjusted for its height and width and then
handed to the ball sprite. It'll know what to do with it.

}

II Add the sprites to their proper groups
paddleGroup->AddSprite(gPlayerPaddle);
paddleGroup->AddSprite(gComputerPaddle);

ballGroup->AddSprite(gBall);

II Add the groups to the playfield
gPingPlayfield->AddGroup(paddleGroup);
gPingPlayfield->AddGroup(ballGroup);

gPingPlayfield->HandlePlayFieldUpdate(&windowBnds);

The sprites are assigned to their proper sprite groups, and these
groups are then placed in the care of the game's play field. Before
returning to the caller BuildPingParts makes sure the window
is correctly showing the beginning of the game with a call to the
play field update method HandlePlayFieldUpdate.

Actual game play is accomplished from the GameLoop function.
Here the program is held in a loop until the mouse button is de
tected as being held down. During that potentially endless loop the
game executes the three necessary steps for getting the sprites to do
their thing. All other needed sprite handling will be performed by
the sprites themselves. After performing the requisite sprightly du
ties required of a proper game loop, the loop attempts to behave

330 ~10

like a proper Mac citizen and gives some processing time to the Op
erating System with a call to Mac's SystemTask function. Failure
to do this could cause some of your background programs to start
skipping a few beats. Not a problem if you're downloading a fresh
batch of "art" from alt.binaries.pictures.your.mom.would.not.want.
you.to.be.looking.at, but a major problem if you're experimenting
with that new Mac heart monitor.

void GameLoop ()
{

}

while(!Button())
{

}

gPingField->MoveSprites();
gPingField->CheckForCollisions();
gPingField->ShowNextFrame();
SystemTask();

In a real game-wait, this is a real game-in a good game you
would have the break condition tied to actual elements of the game,
like the number of lives and the pause key. Future game loops will
cover this.

With a fully functioning game example under wraps it's now time
to show off the advantages of the sprite library. In the folder next to
the Ping project is the alternative Ping project, Wacky Ping, which is
based on the same source as the original Ping. All that's been
changed are the sprite templates. You can think of this as a beauty
makeover for Ping. Just like on Jenny Jones. We started out with the
Plain Jane or Plain Joe look of our original Ping and performed a
pixel makeover.

p~ ft All T~ 331

The two paddles are now constructed out of some really nice
scans of fine polished exotic wood. Brushed steel seemed too cold
for a friendly game of Ping. The ball sprite has been given the ap
pearance of a real tennis ball, complete with a few additional sprite
eels to give it that slowly-rotating-ball-in-zero-gravity-with
absolutely-no-friction look.

Now the game not only looks better-well, if not better at least
different-and with its new look it now takes up twice as much
disk and memory space as the "before" version. Bigger is better.
Right?

Now it's your turn. Take this simple example and do something
goofy with it. Maybe you can build a cross between Mortal Kombat
and Pong. Call it Primal Pong. You could have the paddles spew
blood every time they return a volley. The ball could be one of those
polished chrome Phantasm Swiss Army Knife death balls. I hate
that ball. I still break out in a cold sweat whenever I'm in a room
with some ball bearings.

,,

Sound is the second most essential element of any game, the first
being graphics. If you could make a game that used only sound,
then sound would obviously be the most important element of that
game, but for now I'm sticking with my original assertion. You can
create a game without sound just like you can have sex without
moaning, pizza without pepperoni, and Pink Floyd without Roger
Waters, but why on earth would you want to? Sound is the essen
tial icing for the great game recipe. The graphics of a game hold
your interest, the design of the game play brings the players back
for more, but it is sound that provides the total immersive experi
ence that a great game gives you.

333

334 ~11

This chapter will help you on that road to the total Mac game
experience. So drop some Hendrix into your CD player, crank the
volume up to eleven, and start reading.

Time for an eighth-grade science review of sound. Put a CD on
your stereo that has a good beat and that you can dance to. I would
suggest some Parliament. George Clinton (no relation to Bill that
I'm aware of) is great for science experiments. Remove the cover
from one of your speakers and find the big speaker cone that is
beating in a funkadelic fashion. Lightly put your hand on the
speaker cone. On second thought, maybe you shouldn't perform
this experiment on your own stereo. Try your local electronics
megastore instead. They'll have much larger speakers and private
little rooms with lots expensive speakers for you to experiment
with. Remember to bring your own CD or you might be forced to
listen to Dan Fogerty. No matter whose speaker cone you're de
stroying, your fingertips will feel the pulsating rhythm (unless
you're listening to Dan) of the speaker cone as it moves back and
forth in time to the beat. The motion of the speaker cone is produc
ing the deep bass rhythms you are hearing. The higher-pitched
sound is the store's manager. Ignore him for now as we'll get to
pitch and frequency a little later in the chapter.

As the speaker cone vibrates back and forth in time to the mu
sic, it is pushing and pulling at the air surrounding the surface of
the speaker cone. Air is composed of (use your best Carl "Humor
less" Sagan here) billions and billions of tiny molecules. So when
the speaker cone pushes forward, billions of those air molecules
next to the surface of the cone are crammed together. These mole
cules react to the cramming by pushing against the molecules in
front of them, and they then start pushing against their neighbors
until a veritable riot of pushing molecules ensues. This riot sets a
sound compression wave on its journey to your ear.

The single compression wave produced by the forward move
ment of the speaker cone will not be detected by your ear as sound.

~ 335

As the cone continues to wiggle back and forth, each forward
movement generates another compression wave moving toward
your ear. Between each pair of these waves is an area of relative
peace and calm where the air molecules have been spread apart
more than they usually like. These moments of peace match the
movement of the speaker cone inward. And it is the combinations
of these compression waves and bits of silence that make up what
your ear hears as sound. You can take your fingers off the speaker
now.

Before you can talk about sound-" talk about sound," isn't that re
dundant?-you need to get the important sound terminology
down.

If you were to put the output of your stereo into an oscilloscope
you would see your stereo generating a picture of the sound like
the one in Figure 11-1. Well, probably not like that unless you were
listening to the emergency broadcasting signal.

Figure 11-1 represents the sound as a waveform display, what
you would see with the oscilloscope coming out of your stereo,
with time represented by the horizontal axis and the strength of the
sound using the vertical axis. The vertical axis is what we're inter
ested in at the moment-the strength of the sound signal given by
the amplitude of the wave. The amplitude of the signal is what you
are adjusting when you turn up the volume of your stereo. Some
stereos even name that control the amplitude knob. No matter what
it is called, the amplitude reflects the loudness of the sound signal.

The loudness of the signal is strictly a function of the height, or
amplitude, of the waveforms that make up the sound. In Figure
11-2 the sound on the right is louder than the sound on the left.
Though both are pretty boring sounds.

336 ~11

1

-f-----+---+------t------t---- 1 Amplitude

1 2 3 4

- 1 Time

Figure 11-1. Sound as waveform

1 1

2 1 2

- 1 - 1

Figure 11-2. Right side is louder

~ 337

The loudness of a sound is measured in bels. Named after
Alexander Graham Bell (why they dropped the second l is a mys
tery to me). Actually one bel is too large to measure sound, so its
smaller metric cousin the decibel (abbreviated dB, pronounced dee
bee) is used instead. The bel is a logarithmic scale of measurement.
To increase the loudness of a signal by one whole bel, or ten deci
bels, you would have to increase the power of the signal ten times.

The human ear can only detect changes in the loudness of a sig
nal of about one decibel. Below that the increase in power is indis
tinguishable. By increasing a signal's loudness by one decibel you
are increasing the sound's strength by about 26 percent. The impact
on the human ear means that while it isn't all that sensitive to incre
mental changes in volume, it has the ability to cover a large dy
namic range of sound levels.

Your ears can hear a whisper across a room with a signal
strength of 20 dB. They easily manage a normal conversation of
about 40 dB. And they tolerate traffic noise at a busy intersection
measuring in at 70 dB. You can even manage to be next to a small
explosion that propels violent shock waves of 120 dB without going
permanently deaf. Anything above 120 decibels becomes painful.
Which would place a good Nine Inch Nails concert at 125 dB and
worth every one.

Measuring the amplitude of a sound will only tell you how loud
the sound is. To get a mathematical representation of what the
sound actually sounds like you need to examine the frequency of
the sound wave.

To measure the frequency of a sound you first need to know
what the period of the wave is. The period of a waveform is the dis
tance the waveform traverses to complete one full cycle, or you can
measure it (see Figure 11-3) as the distance from one peak of the
wave to the next.

The frequency of a sound is then expressed as the number of pe
riods or cycles the sound goes through in one second. The number

338 ~11

Period
1

1 2 3 4

- 1

Figure 11-3. Measuring frequency

of cycles per second is usually expressed in units called Hertz (Hz),
named after Heinrich Hertz, who after coining this term went on to
make his fortune renting carriages to tourists visiting Hamburg.

Depending on how close to the concert speakers you were dur
ing your youth, you may be able to hear sounds with frequencies as
low as a gut-vibrating 20 Hz to the high of a screeching 20 kilohertz
(kHz). Pretty good range; not as good as my Labrador retriever,
Bob, who can hear you thinking about food, but pretty good.

All of the sounds your ears hear are analog sounds. Even if they are
generated from digital sources, like your Mac, the sounds end up as
analog waveforms bouncing off your eardrum. Problem is, your
Mac isn't an analog computer. It can't store a sound as a continuous
analog function. The best it can do is store a digital approximation
of an analog sound.

~ 339

For sound to come out of its speaker, the Mac has to convert the
discrete digital representation of the sound it has stored into a contin
uous analog signal that your ears can understand. Somewhere in
your Mac is a piece of silicon that does just that; it converts the digital
sound in the Mac to analog impulses that drive the speaker. This
nifty piece of circuitry is called a digital-to-analog converter or DAC
for short. You have another DAC converting the digital frame buffer
of your Mac into an analog signal that your monitor can display.

That explains how the Mac plays digital sounds, but how does
it create them? Glad you asked.

An analog sound source is converted to digital by first being con
verted to an electrical signal; that's what a microphone does. Then
that signal is converted into its digital counterpart when the analog
signal is sampled. Sampling is the process of capturing the signal's
voltage, which equals the signal's amplitude, as a stream of digital
samples, or numbers. Each of the numbers in this stream is a snap
shot of the original signal's voltage at that specific moment in time.
The hardware that produces this stream is referred to as an audio
digitizer. Feed the captured numeric stream from a digitizer back
out through the Mac's DAC and speaker combination and you will
hear a signal that approximates the original.

And it is this approximation part that makes digital sound
tricky. You want the digital sound to be as nearly accurate as the
original as possible. The two factors that determine the accuracy of
your digital copy are the sampling rate used to sample the original
signal and the resolution that those samples are stored at.

The more frequently you can sample a sound source, the more ac
curate the digital representation will be. In Figure 11-4 a low sam
pling rate has produced a stream of samples that would not very
accurately represent the original source signal.

340 ~11

1

2 4

- 1

Figure 11-4. Low sampling rate

By increasing the sampling rate, or sampling frequency, as
shown in Figure 11-5, you get a digital representation that can faith
fully reproduce the original source signal. The rate or frequency that
the sound is sampled at is measured in hertz. Just like the frequency
of the analog source, isn't that convenient. The higher the frequency,
the better the sound reproduction. For computers, common low
quality sampling rates are 7 and 11 kHz. These rates will give you
about the same quality of playback as your telephone does. Good
enough for a Sys Beep but not much else. A medium-quality sam
pling rate is 22 kHz. This is the natural sampling rate of the Mac,
and though you wouldn't want to listen to any music that you care
about at this rate, it's good enough for most games. Commercial
quality audio is sampled at audio CD rates, 44.1 kHz, and digital
audio tape rates of 48 kHz. Both provide sampling rates frequent
enough to capture any source frequency that your ears could detect.

In a perfect world your sampling .rate would be continuous,
giving you an infinite number of samples for any slice of sample
time. Of course you would need an infinite amount of memory and

~ 341

1

2

- 1
Figure 11-5. Higher sampling rate

disk space to store and play back this perfect sound. Without infi
nite storage you need to determine the proper sampling rate for a
signal that will accurately represent that signal upon playback.

So what sampling rate will adequately represent the original
signal? I don't know but a smart guy named H. Nyquist did.
Nyquist derived that the minimum sampling rate is twice that of
the highest frequency that the source signal contains. So if your
source signal's highest possible frequency is 22.05 kHz (the highest
frequency most people can perceive), then the minimum sampling
rate would be twice that or 44.1 kHz. This calculated rate is known
as the Nyquist rate.

If you decide to ignore Mr. Nyquist in order to save a few bytes
you'll end up with a sample stream that cannot accurately repre
sent the original source. In fact, the samples will sound like an alto
gether different sound. You will have created a clone or an alias of a
lower-frequency sound. Having this happen is known as aliasing.
The technique of trying to interpolate the needed extra information
between the infrequent samples is known as antialiasing.

342 ~11

1

- 1

Sample frequency is only one part of the sampling Oreo cookie.
The cream for that cookie is made from the sampling resolution.
Each sample point must be contained in a finite-sized number of
bits, which means that the voltage of the sound has to be scaled or
quantized into that number of bits. If you use the Mac's typical
sample size of 8 bits you'll have to map the strength of the source
signal at each sample point into only 255 different values. You can
think of the sample resolution as being the error term for each
sample. In Figure 11-6 the quantizing error has been exaggerated
to show the effects that 8-bit samples could have on a digitized
signal.

The same signal sampled at the same frequency but with 16-bit
samples would provide signal samples with almost no perceptible
level of error (see Figure 11-7). Remember, it's not the number of
bits that is important but the numeric range that those bits provide.
With 16 bits the sample range has been extended from 255 different

2 4

Figure 11-6. 8-bit sample size

Sc~ 343

1

2 4

- 1

Figure 11-7. 16-bit sample size

voltage representations to a whopping 65,535. So by doubling the
number of bits the sample's potential range has increased 256
times.

Why would you care all about this digital audio trivia? One simple
reason is that sound quality equals space used-used by the mem
ory that your game requires and the space that your game files take
up on disk.

Since for reasonable playback on the Mac you must have the
sounds you want to play resident in memory before you try to play
them, the amount of memory they use is important. Digitized
sounds can easily end up using more memory than the offscreen
buffers used by the sprite engine.

Disk space is really only a problem in delivery. The larger your
game, the more disks it takes to ship on, which can drastically affect

344 ~11

the shipping cost of goods and thus your profits. Or in the case of
shareware the larger the sounds, the longer your players will have
to spend on-line downloading your game. Stuff your game with big
enough sounds and you could end up limiting your audience to
those with super-fast modems. Though with a compressed installer
the disk problem isn't as big an issue as the sounds chewing up
run-time memory. Luckily, sounds compress rather well, usually
yielding a 30- to SO-percent on-disk space savings. Regrettably, de
compression takes time and can't be used at run time.

So the trick is to figure out what is a reasonable sample rate and
size for your game that will provide enough audio fidelity and yet
not eat up all your disk and memory space. On the Mac this isn't
much of a trick. Most games use 8-bit samples at 22 kHz for all
sounds. This is the natural rate and size that the Mac sound system
expects to see. Try to feed it anything else and you'll slow down
playback. Slow down playback and your sprites will start to creep
across the screen. All the examples presented will be based around
8-bit samples with a 22 kHz frequency.

Sound has always been an integral part of the Mac experience, from
the startup gong to when it spoke those three famous words on its
unveiling: "Hello, I'm Macintosh."

From that initial halting speech the Mac team has always made
sure that the Mac was able to make noise. And with each new
model the Mac's sound capabilities have increased. The software
interface for these ever-increasing sound capabilities has always
been through the Mac's Sound Manager.

The Mac sound system has had an interesting past. From a simple
driver that barely kept the speaker fed to the CD-quality sound
playback systems of the current Mac lineup, it's been a case of

~ 345

"You've come a long way, baby." So on with our history tour of the
Sound Manager. Keep your hands in the vehicle at all times and
please, no flash photography.

The original Mac came with a sound driver. You wouldn't want to
call it a Sound Manager as it barely managed play sounds. The
original, phone-book edition of Inside Mac documented the sound
driver's simple square wave synthesizer, which could produce
Atari 2600-like buzzing sounds. It contained a four-tone synthe
sizer that allowed the programmer to set the waveform that
would be used for each of the four channels. You could use any 8-
bit sample you wanted as long as it fit into 255 bytes. And the
coolest part of the Mac's sound driver was the sampled sound
playback. With this part of the driver you could play back 22 kHz
8-bit samples that sounded really impressive. Unless your Mac
was parked next to an Amiga.

You could play back sampled sounds with the sound driver but
you had no built-in way of recording them. You'd have to drop
$125 and buy yourself a MacNifty sound digitizer if you wanted to
record annoying sounds for your Mac.

Time marched on and the Mac II rolled out. Along with a 68020
and color displays, the Mac II had the first Apple sound chip,
known as the Apple Sound Chip or the ASC by the technologi
cally hip. With the chip came a whole redesign of the sound
driver to support it. The new software interface to the sound
hardware was so impressive that the name changed from the
sound driver to the Sound Manager and a gained a huge chapter
in the new Inside Mac, volume V. Trouble was, the only thing this
new Sound Manager managed to do was lie. The documentation
for the Sound Manager was not just slightly wrong, it outright
lied. And where it did document features that actually existed, it
was usually wrong.

346 ~11

Apple tried to fix up the Sound Manager with the release of
System 6.0. Strike one. Not only were old bugs not fixed but they
introduced new ones. Apple tried again with system 6.0.2. Strike
two, a total whiff. Fixed more bugs and added a few more, though
6.0.2 did fix more bugs than it introduced. The preliminary new In
side Mac Sound Manager managed to lie about only a few things.
Strike three, you're outta' here. Next batter.

The next Sound Manager to take the plate was the one contained in
system 6.0.7, Sound Manager version 2.0. This Sound Manager
came with a whole new chapter in the new Inside Mac, volume VI, a
tome so large it has its own climate. This new manager docu
mented how you could record sounds from your Mac without buy
ing a third-party digitizer. How you could play sound files directly
off the disk. How you could compress sounds in a format that the
Mac could play back from other programs. How you could play
multiple channels of sound. And for the game programmer, an ap
proved way to handle double buffering. The best part about these
features was that they actually existed. You could read about them
and spend a few evenings coding and actually get sounds out of
the speaker just as it was documented. This Sound Manager wasn't
a home run, but it was a legitimate stand-up triple.

The pitch: low and inside. The swing. Whack! It's going ... going
... gone. With Sound Manager 3.0 Apple said good-bye to Mr.
Spaulding and said hello to a whole feast of features. Backwards
compatible with Sound Manager 2.0, it also managed to squeeze in
support for 16-bit, 44.1 kHz sound. A plug-in sound component ar
chitecture. Support for third-party sound boards. And best of all a
two- to threefold increase in speed. This gain in speed allowed
many game programmers to stop handling their own sound pro
cessing and use the Mac's. Which was the goal of the Sound Man
agers from day one.

~ 347

Enough history. Let's make some noise. This section will give you
an overview of how to use the Sound Manager to produce sounds
for your games. The information covered here will be used in the
next section to construct a sound kit specific to games.

Sound is generated by the Sound Manager through the use of sound
commands. Every sound you play on the Mac is ultimately pro
duced by directing sound commands at the Sound Manager. The
commands supported by the Sound Manager are listed in the table.

en um
nullCmd == 0,
quietCmd 3'
flushCmd 4,
reinitCmd 5,
waitCmd 10,
pauseCmd == 11,
resumeCmd 12,
callBackCmd == 13,
syncCmd 14,
availableCmd == 24,
versionCmd 25,
totalLoadCmd 26'
loadCmd 27,
freqDurationCmd == 40,
restCmd 41,
freqCmd 42,
ampCmd 43,
timbreCmd == 44,
getAmpCmd == 45,
volumeCmd == 46,
getVolumeCmd == 47,
waveTableCmd 60,
phaseCmd == 61
soundCmd 80,

348 ~11

bufferCmd 81,
rateCmd = 82,
continueCmd 83,
doubleBufferCmd = 84,
getRateCmd 85,
rateMultiplierCmd 86,
getRateMultiplierCmd = 87,
sizeCmd 90,
convertCmd = 91

} ;

When you pass one of these 33 commands to the Sound Man
ager you do so by first wrapping the command in a SndCommand

structure. This structure has not only space for the command but
space for two additional parameters that can go along with the
command. Not all commands require parameters, but all communi
cations with the Sound Manager must take place through this
structure.

typedef struct
unsigned short
short
long

SndCommand;

cmd;
paraml;
param2;

We'll be using only a few of these commands in this chapter, so
if you want the full dope on all of these commands drag out your
copy of Inside Mac: Sound.

You can only send sound commands to the Sound Manager
through three entry points. The first, SndDoCornmand, executes the
commands sent with it in FIFO order. This allows you to stack com
mands up faster than the hardware can process them without hav
ing to worrying about the Sound Manager dropping commands.
Unless of course the command queue is full, in which case you'll be
handed back a queueFull error. That is, you'll get that error back
if you pass in True for the queue waiting parameter. Otherwise
SndDoCommand will wait until an earlier posted command has
been processed and removed from the queue in order to insert the
fresh command you passed in.

OSErr SndDoCommand(SndChannelPtr chan,
canst SndCommand *cmd,
Boolean noWait);

~ 349

All commands handed to SndDoCommand are executed at interrupt
level by the Sound Manager asynchronously to the main thread of
your program.

The second method of executing sound commands is with a
call to SndDoimmediate. As its name implies this function allows
you to cut to the front of the command line and have your com
mand executed without waiting for any commands in the queue to
be processed. This function is useful for things like quickly shut
ting down sound playback.

OSErr SndDoimmediate(SndChannelPtr chan,
canst SndCommand *cmd);

The third command-processing entry point is to package your
commands in a snd resource that you then play back with a call to
the Sound Manager's SndPlay command. The snd resource con
tains all the sound commands that you want to execute along with
their parameters and any needed data.

OSErr SndPlay(SndChannelPtr chan,
SndListHandle sndHdl,
Boolean async);

The commands contained in the resource are executed from the
start of the resource to the end. These commands will either be exe
cuted synchronously or asynchronously depending on the value of
the Boolean passed as the async parameter. To refresh your mem
ory, calling the SndPlay synchronously will force the caller of
SndPlay to wait until the Sound Manager is done processing the
commands contained within the snd resource. Calling SndPlay
asynchronously lets the Sound Manager return control immediately
to the calling function, with the Sound Manager executing the snd
commands at interrupt time parallel to your program's execution.

350 ~11

The function SndControl was introduced as another method
of sending commands to the Sound Manager with version 2.0. With
Sound Manager 3.0 it is being phased out.

As you probably noticed, all the methods of passing sound com
mands to the Sound Manager require a sound channel. Before you
can generate any sounds on the Mac you have to open a path to the
Sound Manager for your sound to travel. That path is a sound
channel. Commands are sent to the Sound Manager through a
sound channel, which manages the commands in a FIFO queue
(unless the command was sent with SndDoimmediate). The
Sound Manager finds all its commands within sound channels.
Even calls to the Sound Manager that don't require you to pass in a
sound channel will probably construct one internally.

typedef struct {
struct SndChannel *nextChan;
Ptr firstMod; //Used internally
SndCallBackUPP
long
long
SndConunand
short
short
short
short
SndConnnand

} SndChannel ;

callBack;
userinfo; // Refcon
wait;
cmdinProgress;
flags;
qLength;
qHead;
qTail;
queue[stdQLength];

If you use the Sound Manager at a high level you'd probably
never need to know what a sound channel is. But game program
mers never get to use the high-level functions. In order to play
sounds asynchronously you'll need to get down and dirty with the
sound channels.

~ 351

The easiest way to play a sound from the Mac is to copy the sound
you want to play into the system. Select that sound as the alert
sound from the sound control panel. Call SysBeep. Bingo, your
sound will beep. Easy, but not very practical.

The second-easiest way is to have your sound stored as a snd
resource and to play it back with a call to SndPlay.

II Play back a snd resource with SndPlay

SndListHandle sndResource;

sndResource = GetResource('snd' 1000);
if(sndResource)
{

}

OSErr err;

HLock((Handle) sndResource);
err= SndPlay(nil, sndResource, FALSE);
HUnlock((Handle) sndResource);
ReleaseResource((Handle) sndResource);

In this example the sound channel parameter of SndPlay is nil,
which is the signal to SndPlay that you are too lazy to build your
own sound channel and that it will need to build a temporary one
for you. SndPlay will only perform this kindness if you ask it to
play the sound synchronously. If you attempt to play the sound
asynchronously and still ask SndPlay to create the sound channel,
you'll be indirectly forcing it to ignore you and play the sound
synchronously.

One of the cooler things introduced with version 2.0 of the
Sound Manager was the ability to play sounds larger than avail
able memory directly from disk. You always could do this before
2.0, it was just that you'd probably prefer an IRS audit to the

352 ~11

task of writing all the interrupt level code necessary to perform
such a feat. With 2.0 playing from disk is about as easy as using
SndPlay.

To play a file from disk you'll first need a sound file to play. Be
fore you scream "Duh!" at me you need to know that you have sev
eral choices of sound files to choose from. You can use a resource
file with a snd resource contained within it. Otherwise if you prefer
your sounds in the data fork or if you really miss programming an
Amiga you can put your sounds into an AIFF files or its com
pressed cousin, an AIFF-C file. To convert your sound into an AIFF
file you can use any one of the public domain utilities written to
convert sound files; my favorite is SoundApp by Norman Franke.
Or you can use the program that originally created the sound file.
Most can also save the file as AIFF or AIFF-C.

The Sound Manager's function to play back an AIFF file is
SndStartSndFilePlay. Don't be intimidated by all those argu
ments in the prototype. Most of them you can set to nil and let the
Sound Manager do all the hard work for you. The only two param
eters you have to provide are an open file reference and whether
you want to play the sound synchronously or asynchronously. You
might need to pass in the resource id of the snd if you're not play
ing back an AIFF file. SndStartFilePlay, like SndPlay, will
only let you play the file synchronously if you ask it to build a tem
porary sound channel for you.

OSErr SndStartFilePlay(SndChannelPtr chan,
short fRefNum,
short resNum,
long bufferSize,
void *theBuffer,
AudioSelectionPtr theSelection,
FilePlayCorrpletionUPP theCorrpletion,
Boolean async);

Playing a disk file is then as simple as opening the file, calling
SndStartFilePlay, waiting for the sound to play, and then
cleaning up by closing the input file.

~ 353

II Give an FSSpec play back the AIFF file it points to

short refNum;

if(FSpOpenDF(&fileSpec, fsRdPerrn, &refNum) -- noErr)
{

OSErr err;

err = SndStartFilePlay(nil, refNurn, 0, 0, nil,
nil, nil, nil, FALSE);

FSClose(refNum);

The processor resources required to play a file directly from
disk rule this out as a core technique for high-speed action
games. But other types of games without as many processing de
mands could probably benefit greatly from this nifty and easy-to
use capability.

While your game sound effects are playing you still want to have
your sprites running around on the screen. This requires that you
play all your sounds asynchronously. Asynchronous sounds are
played at interrupt level by the Sound Manager while control of the
main thread of execution is returned to your game.

Playing a sound asynchronously is easy enough. Create a sound
channel. Load in the sound resource. Call SndPlay, passing it the
sound channel you created, as well as the loaded sound, and setting
the function's asynchronous flag to true. If everything goes accord
ing to plan SndPlay will return immediately to the function that
called it and you'll have a sound playing in parallel with your
program.

The problem with asynchronous sound (you knew there had to
be a problem) is deciding when the sound is done playing. Without
this knowledge you would never know when you could start play
ing your next sound effect. A game that can only play one sound
would have to be a very short game.

354 ~11

What you would like is a notification from the Sound Manager
when it is done playing your sound. And that is exactly what the
Sound Manager provides. When you create your own sound chan
nel you are given the chance to install a "sound done playing" noti
fication function with the sound channel. You would think that
your installed callback function would be called as soon SndPlay
was done playing. You'd think that. But no, that would be too easy.

The callback function associated with your sound channel will
only be executed by the Sound Manager when the channel pro
cesses a command of the type cal lBackCmd. When the Sound
Manager is handed a callBackCmd it immediately calls the call
back function tied to the sound channel that the callBackCmd
came from.

This method is a lot more flexible than having a simple comple
tion function called when the channel is done processing sound
commands. With this method you can have your callback function
executed at any point in the sound processing stream. All you have
to do is embed the callBackCmd into the channel's playback
queue whenever you would like to be called back.

In your case you would like to be called back right after the
sound is done playing, simulating a completion routine. This can be
done by making sure that you insert callBackCmd as the absolute
last sound command given to the sound channel. As commands are
processed in a FIFO order your callback will be the last command
extracted from the sound channel's queue. From this you can see
that you must use the SndDoCommand, which places commands in
the queue, and not SndDoimmeadiate, which calls your callback
immediately and defeats the whole purpose of the callback.

Let's look at an example that plays a sound resource. The exam
ple will keep playing back a sound resource until you click the
mouse button or hit the restart button.

/*
Simple driver function to test Asynch sound

*/
OSErr PlaySoundForever(short sndID)

{

OSErr err = noErr;

while(!Button() && err== noErr)
{

if(gChannel.stillPlaying == FALSE)
err= PlaySndAsynch(sndID);

return err;

~ 355

The test function for the asynchronous sound playback takes a
resource id of the sound that you would like to hear endlessly. This
function watches the stillPlaying flag contained within the
global AsynchChannel structure. When this flag is false the sound
channel is done playing the sound and you're free to replay it.

typedef struct {
SndChannelPtr
Boolean

AsynchChannel;

channel Used;
stillPlaying;

AsynchChannel gChannel = { nil, FALSE };

The AsynchChannel structure is a convenient way of passing
a global flag to the callback without having to worry about AS
worlds.

To play the sound, the test function uses PlaySndAsynch,
passing it the resource id of the sound it wants played. Before
PlaySndAsynch starts whipping up a fresh sound channel, the
global sound channel reference is checked to see if a channel al
ready exists.

/* --
Play a 'snd' asynch with the global channel

-- *I

OSErr PlaySndAsynch(short sndID)
{

OSErr err = noErr;

356 ~11

II Create a sound channel for playback
if(gChannel.channel ==nil)

err= SndNewChannel(&gChannel.channel,
sampledSynth,

0'
DonePlaying) ;

If a sound channel does need to be created a call is made to
SndNewChannel. By passing a pointer to a nil channel pointer,
PlaySndAsynch is requesting that the Sound Manager create the
memory needed for the sound channel and pass back a pointer to
it. After the channel pointer you need to specify to SndNewChan
nel what type of synthesizer, or type, of sound you'll be playing
through the channel. In this case you'll be playing back sampled
sound, so you need to use the sampled synthesizer. Next you pass
any channel initialization flags that you want used to configure
the sound channel. In this example zero is passed, telling Snd
NewChannel to take its best guess according to the Mac's hard
ware on how to initialize the channel. The last parameter for
creating a sound channel is the address of the function that you
want the sound channel to execute whenever it encounters a
callBackCmd.

The prototype of the callback function must match this declara
tion. When the callback is executed it is handed a pointer to the
sound channel that the callback was associated with and a pointer
to a copy of the sound command structure that contains the call
BackCmd. So along with the command your callback gets handed
a pointer to the two parameters that are in every sound command.

pascal void CallBack(SndChannelPtr channel,
SndCommand * cmd);

Using the sound command's parameters is how our callback
communicates with the global sound done flag. Our sound callback
function, DonePlaying, casts the second parameter of the sound
command as a pointer to an AsynchChannel structure. From this
pointer the flag that indicates whether the sound is still playing is
set to false. This method, while little more indirect than setting and

~ 357

restoring the AS world, is a heck of a lot faster. I always hated mess
ing with AS anywise.

I* --
Sound completion routine

-- *I

pascal void DonePlaying(SndChannelPtr channel,
SndCommand *cmd)

{

((AsynchChannel *)cmd->param2)->stil1Playing =FALSE;
}

The really important thing you have to remember about sound
callback functions is that they operate as interrupt-level. Which
makes sense as the callback is called from an interrupt handler.
Since the function is interrupt-level code, you can't do anything
with the memory manager or resource manager, really anything
that would be cool. Just stay away from all Toolbox calls unless you
check that they are interrupt-safe, and you should be safe.

if(err == noErr && gChannel.stillPlaying -- FALSE)
{

SndListHandle sndHandle;

II Load in the resource
sndHandle = (SndListHandle) GetResource('snd '

sndID);
if (sndHandle)
{

SndCommand cmd;

HLock((Handle)sndHandle);

II Play the sound
err = SndPlay (gChannel.channel,

sndHandle, TRUE);

II Install call back
if (err == noErr)
{

gChannel.stillPlaying TRUE;
cmd.cmd = callBackCmd;

358 ~11

else

cmd.param2 = (long)&gChannel;
err = SndDoCommand(gChannel.channel,

&cmd, FALSE) ;

gChannel.channel nil;

return err;

The rest of the function PlaySndAsynch loads the sound han
dle into memory and then makes an asynchronous call to SndPlay
using the sound channel created earlier. If SndPlay returns the all
clear sign, PlaySndAsynch sets the global flag stillPlaying to
true, indicating to the outside world that the sound is currently
playing. The callback is initiated by building a sound command that
contains a pointer to the gChannel structure in its second parame
ter. This is the pointer that will be passed to your callback function
when SndPlay is done playing. The command is then inserted into
the sound channel's queue with a call to SndDoCommand. On insert
ing the command the function requests that SndDoCommand not
wait until there is room in the channel's queue. If the sound you
passed in happened to have more than the default number of sound
commands (around 128) SndDoCommand would return an error. You
needn't concern yourself, though, as sampled sounds usually use
two or three commands at most. Most of the space used by the snd
resource is dedicated to sample data used by the commands, which
don't eat up much of the sound channel's command queue.

For the game class kit to be complete you need an interface for
playing sounds. That condition is satisfied with the inclusion of the
CSoundFX class. This class will manage all the sounds tasks needed
by our examples and provide a sound platform for you to build

~ 359

upon in the future. Sound platform. Get it? Oh never mind, it's late
and you have better things to read than bad puns. Like that upcom
ing bold section heading.

About the only new wrinkle that the CSoundFX class brings to
sound playback is the idea of sound priorities. Each sound that is
played by the class must be assigned one of the priorities defined
by the class's interface. This assignment is done at the time the
sound is played with the priority usually determined at compile
time.

typedef enum {
kLowestPriority = 0
kMedPriority,
kHighPriority,
kExplosionPriority,
kBonusPriority,
kAlarmPriority = 255

} SoundPriority;

Sou;nd priorities come into play when all of the sound channels
are busy playing and you want to play back yet another sound. The
CSoundFX class will take your sound and its priority and look for a
sound channel that is currently playing a lower-priority sound. If it
finds one the class will interrupt the lower-priority sound and start
playing back your sound immediately. If your sound ends up hav
ing a priority lower than all the sounds currently playing, your play
request is dropped into the bit bucket.

When you write your code you have to decide at what priority
you want each sound to be played. General background and envi
ronment noises should be given the lowest priority. Give average
sound effects like missiles shots and laser beams a rating around
the mid-range. You want actions that signify accomplishments and
disappointments-blowing up an enemy ship or having your ship
destroyed-to have a high sound priority. Can't have your player

360 ~11

missing a significant event like that. The highest priority is the
kAlarmPriori ty, which should only be used to indicate some
thing really important that the player has to be aware of. Winning a
free life would be play back a sound of an alarm priority.

Initializing is done by creating an instance of CSoundFX class. You
should do this at the beginning of your program. It would be best if
you created only one instance of the class and kept a global refer
ence to it that the rest of the objects have access to. You don't want
to be creating a CSoundFX class, playing a sound, and throwing the
class away. You could do it that way, but it would be painful.

All of the sound channels used by the class are contained in a
wrapper similar to the one used in the asynchronous playing exam
ple. It's even called the same thing and used for the same purpose:
communicating the state of the channel between the callback rou
tine and the rest of the code.

typedef struct {
SndChannelPtr
Boolean
SoundPriority
SndListHandle

} AsynchChannel;

channel Used;
stillPlaying;
priority;
currSnd;

The first two fields you already know about; the first of the
other two tells us the priority of the sound currently playing, with
the remaining field keeping a copy of the sound handle that is be
ing played. The handle is kept around so the class can unlock it af
ter it is done playing back.

CSoundFX::CSoundFX()
{

OSErr err = noErr;

fSoundStopped = FALSE;

}

Sc~ 361

for(short i = O; i < kMaxChannels; i++)
{

}

fChannels[i] .channelUsed = nil;
fChannels[i] .stillPlaying = FALSE;
fChannels[i] .priority = kNothingPlaying;
fChannels[i] .currSnd = nil;

II Create all the channels upon creation
err= SndNewChannel(&fChannels[i] .channelUsed,

sarnpledSynth,

if(err != noErr)
{

initMono + initNointerp,
DonePlaying);

PostFatalError(err);
break;

if(err == noErr)
fSoundStopped = TRUE;

The constructor for CSoundFX is the only initialization needed
to use the class. The constructor creates a number of sound chan
nels for use with the sampled sound synthesizer in the same man
ner as before, letting SndNewChannel create the memory used by
the channel.

Each channel is initialized at creation so that it will play back a
sound in mono and skip interpolating the samples. Normally a
channel will attempt to convert sounds that are sampled at a rate
lower than 22 kHz up to 22 kHz during playback by interpolating
between the missing samples. With interpolation off, the Sound
Manager will instead duplicate existing samples to make up for the
missing samples. This does result in audible degradation of sounds
sampled at rates lower than 22 kHz, but is much faster than inter
polating. You shouldn't be able to notice the difference with noisy
sounds like explosions.

The same callback routine is used by all the sound channels.
This is one of the benefits of passing at the address of the sound

362 ~11

done flags instead of depending on setting up and global world. To
use an AS world in the manner that Inside Mac: Sound suggests, you
would need a separate callback function for each channel allocated.

If any problems are encountered during channel creation, the
constructor will call PostFatalError, the same function used by
the play field and sprite classes to report error conditions. This
function will call the error handler that you installed at the begin
ning of the program to handle any sprite or play field problems. So
your error handler will now be doing double duty, watching out for
any problems with the graphics system and now the sound system.

With all the channels successfully erected, the constructor en
ables the master sound playback switch by setting fSound
Stopped to true. It had set this to false at the beginning of the
constructor in case of any trouble.

At the end of your game you'll want to free the sound channels
used by the sound class by freeing the class. The class's destructor
will handle the rest.

CSoundFX::-CSoundFX()
{

Silence ();

for(short i = O; i < kNumChan; i++)
{

OSErr err;

err= SndDisposeChannel(
fChannels[i] .channelUsed, TRUE);

fChannels[i] .channelUsed =nil;
fChannels[i] .stillPlaying = FALSE;
fChannels[i] .priority= kNothingPlaying;
fChannels[i] .currSnd = nil;

~ 363

Handling the rest means shutting up any sounds that are cur
rently playing with a call to Silence. After any remaining rogue
sounds are clammed up, the channels used by the class are then
disposed of with a few quick calls to the Sound Manager's Snd
Di sposeChannel.

It would have been safe to dispose of the channels without si
lencing them, as SndDisposeChannel is capable of silencing the
channel before throwing it on the bit heap. That's exactly what the
last parameter tells SndDisposeChannel to do. If you pass true as
this parameter the channel will be immediately shushed before be
ing disposed of. Pass in false and the channel will wait until it has
finished all of the commands in its queue.

The main sound playback function of the CSoundFX class is the
PlaySnd function. All you need to pass to the function is the re
source id of the sound you want to play and the priority that you
want the sound associated with.

Playing the sound is accomplished by first seeing if the class
wants any sound at all to be played with a quick check of the
fSoundStopped sound-enable flag. If it's true, then the class
doesn't want any more sounds being played, so the function bails
early.

CSoundFX::PlaySnd(short sndID, SoundPriority priority)
{

SndListHandle
AsynchChannel *

if(fSoundStopped)
return;

sndH;
channel nil;

Next the desired sound is loaded into memory from whatever
resource file it lies in. After the sound resource is successfully
grabbed, the handle is locked down. Sound handles you don't want
wandering around while you're trying to play them back asynchro-

364 ~11

nously. If you want playback to occur reliably you'll want to pre
load your sounds by either marking them to be preloaded with
your favorite resource editor or loading them programmatically at
the start of your game or at the beginning of each l~vel.

sndH = (SndListHandle) GetResource('snd ', sndID);
if (sndH == nil)
{

}

PostFatalError(ResError());
return;

HLock((Handle) sndH);

For playback a free channel must be found. First check all the
channels to see if any if them are already free. If one is found its ad
dress is assigned to the local channel pointer.

II Find a channel to play from, first looking for one
II that isn't already busy
channel nil;
for(short i = O; i < kNumChan; i++)
{

if(fChannels[i] .stillPlaying == FALSE)
{

}

channel= &fChannels[i];
break;

If all the channels are currently busy, the code starts to look for
a channel that is playing a sound of lower priority than the one that
has been requested to be played.

II If all the channels were busy try to find one with
II a lower priority snd
if(channel == nil)
{

for(short i = O; i < kNumChan; i++)

}

~ 365

if(fChannels[i] .priority< priority)
{

channel= &fChannels[i];
break;

With a channel found ready for playback, you need to know if
it's already busy playing. If so, the channel is silenced by immedi
ately sending a quiet command to the channel. Following that com
mand is the flush command, which wipes all the commands still
lying around in the channel's queue.

II If a channel was found silence it if necessary and
II then start playback
if (channel)
{

OSErr err;

II Shutdown a channel that is still playing
if(channel->stillPlaying)
{

SndCommand crnd;

crnd.crnd = quietCrnd;
crnd.pararnl = O;
crnd.pararn2 = O;
err = SndDoimmediate(channel->channelUsed,

&crnd) ;
crnd.crnd = flushCrnd;
err = SndDoimmediate(channel->channelUsed,

&crnd) ;

With the channel successfully shushed and flushed the sound is
set to begin playing with a call to SndPlay. Other than copying a
reference to the sound handle and its priority, this playback code
works just like the previous asynchronous example.

366 ~11

Playing back sounds efficiently on the Mac is a matter of keeping the
Apple Sound Chip fed and happy. The ASC is happy and at its best
when it gets fed regularly and in the right proportions.

Any sound you feed to the ASC that isn't at its natural appetite
of 22 kHz it will have to rate-convert. This is time-consuming. The
best way to avoid this delay is to always feed the ASC a diet of 22
kHz sounds. The next best substitute is to turn off rate-sampling in
terpolation when creating the sound channel, as the sample code
does.

The ASC has a 1-K appetite. All sound data fed to it is done so in
1-K chunks. When the ASC is done processing half of this chunk it will
interrupt the Sound Manager and ask for seconds, thirds, etc. This
large appetite means that smaller sounds or sounds that don't end on
1-K boundaries could end up feeding the remainder of a padded buffer
before the next sound in the queue can be processed. This padding will
be silence and will sound like a pop between sounds.

By feeding the ASC high-nutrition 22-kHz sounds that are larger
than lK you can keep it happily playing 100 percent of the recom
mended daily allowance of game sounds.

The channel's flags are set before SndPlay is called to prevent
a potential race condition. This condition could occur if the chan
nel's flag was set after the callback command is set. The race is be
tween the point the callback command is sent to the channel and
the amount of time needed to set the callback flags. If the channel's
callback function is called before that flag can be set, which could
happen for very short sounds, then the channel's callback will exe
cute, marking the channel as no longer busy. When the Sound
Manager's interrupt handler finishes up, control will be passed
back to the code, which will dutifully mark the channel as busy,
even though the callback has already completed. With no chance of
a callback, the channel will remain marked as busy and only a
sound of a higher priority could ever grab the channel back. Nasty.
Try to avoid it.

}

~ 367

if(err = noErr)
{

else

II Show that the sound is playing before
II calling SndPlay. This avoids a
II potential race condition that would
II close off the channel forever

channel->stillPlaying = TRUE;
channel->priority = priority;
channel->currSnd = sndH;

err = SndPlay (channel->channelUsed,
sndH,
TRUE);

if (err == noErr)
{

cmd.cmd = callBackCmd;
cmd.pararn2 = (long)channel;
err = SndDoCornrnand (

channel->channelUsed, &crnd,
FALSE);

else II SndPlay failed for some reason,
II mark channel as unused

channel->stillPlaying = FALSE;
HUnlock((Handle)channel->currSnd);
channel->currSnd = nil;
PostFatalError(err);

PostFatalError(err);

During your game loop or event loop you'll want to make periodic
calls to CSoundFX's SoundFXTask function. This function cleans
up after any sound channels that are no longer being used.

368 ~11

void CSoundFX::SoundFXTask()

for(short i = O; i < kNumChan; i++)
{

if(fChannels[i] .stillPlaying ==FALSE)
{

II Mark the channel as empty
fChannels[i] .stillPlaying = FALSE;
fChannels[i] .priority= kNothingPlaying;
if(fChannels[i] .currSnd)

HUnlock((Handle)
fChannels[i] .currSnd);

fChannels[i] .currSnd =nil;

For our sounds the channels are marked as being completely
free. If a sound handle is still hanging around it is unlocked and all
references to it are forgotten.

At any point you can silence all playback channels with one call to
the class's Silence method. From this method all the channels are
checked to see if any sounds are currently playing back and if so,
they are silenced with a quiet command followed by a flush
command.

void CSoundFX::Silence()

for(short i = O; i < kNumChan; i++)
{

if(fChannels[i] .stillPlaying)
{

SndCommand cmd;
OSErr err;

cmd.cmd = quietCmd;
cmd.paraml = O;

}

}

}

~ 369

cmd.param2 = O;
err = SndDoimmediate{

fChannels[i] .channelUsed,
&cmd);

cmd.cmd = flushCmd;
err = SndDoimmediate{

fChannels[i] .channelUsed,
&cmd);

II Mark the channel as empty
fChannels[i].stillPlaying =FALSE;
fChannels[i] .priority= k:NothingPlaying;
HUnlock{(Handle)fChannels[i] .currSnd);

The only functions of the class left are the ones that enable and dis
able master playback. By using the functions Enable and Disable
you simply toggle the variable that controls whether any future
sounds can be played through the PlaySnd method.

12

In this chapter it all comes together. Here a complete example
game is built that uses all the techniques discussed so far plus a
few others yet to be covered. The arcade game presented here is a
compromise between a full-featured game and a teaching exam
ple with enough features to be interesting. Which means that this
example is rather large in scope in comparison to the other exam
ples presented earlier. With such a large example only the essen
tial core code of the game will be covered in detail in this chapter.
For the rest you can wander around the full source provided on
disk.

371

372 ~12

Digger, the name of this chapter's example, is based on an old ar
cade game, Dig-Dug. If you've ever played that arcade relic, this
game will seem immediately familiar.

The rules for Digger are simple. You control Doug, who loves to
dig in his backyard. Trouble is, deep in his backyard are buried
alive some ferocious fire-breathing monsters that don't much ap
preciate Doug's digging around in their territory.

Doug's mission, if he decides to accept it, is to dig a network of
tunnels throughout the underground of his backyard and rid him
self of these fire-breathing pests. To help with this job Doug is
equipped with a freeze ray that his sister built from the spare Nin
tendo cartridges lying around his garage. By shooting the freeze ray
at a monster Doug can start to turn it into a chunk of prehistoric ice.
If the ray is applied long enough, the monster will freeze solid and
shatter. No more monster. If Doug doesn't freeze a monster solid it
will eventually melt the block of ice surrounding it and return to
the task of trying to fricassee Doug. Doug's freeze ray has a limited
range and takes a while to fully freeze a monster. While Doug is us
ing his freeze ray he has to remain calm and still, which makes him
a perfect target for any other monsters still stalking around.

Doug's other advantage is his tunneling speed. Doug is one fast
digger. He can dig tunnels slightly faster than the monsters can fol
low. Doug uses this speed advantage by digging tunnels under the
boulders lying around in his yard and moving out of the way in the
nick of time. The boulders come crashing down and with luck squish
any monsters that were trailing Doug. But if Doug isn't careful the
boulders can as easily end up bashing in his noggin. Boulders don't
squish people. Gravity does.

The monsters occupying Doug's backyard aren't without their
own arsenal. Their first line of offense is some really offensive breath.
Every so often these babies can shoot a stream of fire that'll deep-fry
Doug in no time. Their other evolutionary advantage over Doug is
their ability to change their density and pass right through the earth
that makes up Doug's yard. They can only stay in this ghost state for
short periods of time, but usually long enough to get Doug a-running.

~ 373

That's the basic plot line. You control Doug's movements with
the four arrow keys. Doug will automatically dig a tunnel wherever
he goes. You fire Doug's freeze ray by pressing and holding the
space bar. Pause the game with the escape key.

You score a fresh new Doug on the first 10,000 points and every
20,000 more after that. Squishing a monster with rocks is worth
more than simply turning them into popsicles. Freezing them from
the side is worth more than doing it by sneaking up on them from
the top or bottom. But it's more dangerous too, since a monster can
only breathe fire to the left or right.

Doug goes on to the next level when all the rocks have been re
leased or all the monsters removed, whichever occurs first. Doug
loses a life if a boulder pounds him into the ground or a monster
sautes him with fire or even touches him. When Doug loses all his
lives the game is over.

The main data structure Digger works with is the TunnelState.
The play field is divided into a two-dimensional array of cells that
hold a TunnelState.

typedef enum {
Blocked = 0,
OpenOnLeft = 1,
OpenOnRight = l<<l,
OpenOnTop = 1<<2,
OpenOnBottom = 1<<3,
PlayerScent = 1<<4

}TunnelState;

AB Doug digs his network of tunnels each cell is marked with the
proper tunnel state for the path passing through that cell. H Doug
makes a long tunnel from left to right all the cells he digs through will
be marked as OpenOnLeft and OpenOnRight except for the end
points of the tunnel. Those points will be blocked at one of the ends
and will only be marked OpenOnLef t or OpenOnRight but not both.

374 ~12

A tunnel cell is initially marked as Blocked, indicating that no
tunneling has occurred in that cell. The state of the tunneling is cu
mulative upon the cell. A cell that Doug has dug through from top
to bottom will first be marked as OpenOnTop as Doug digs through
the top of the cell. When Doug makes his way through to the bottom
of the cell it is then marked as also being OpenOnBot tom. If at a
later time Doug were to dig through the left side of the same cell, it
would be indicated by marking the cell OpenOnLeft. If Doug con
tinues on to the right side of the cell, the creation of a four-way inter
section will be celebrated by tagging the cell as OpenOnRight. So
with four least significant bits set in this cell, the game's code will
know that this cell is open on the top, bottom, left, and right.

The game's code uses this array of TunnelStates to deter
mine where the monster can stroll, how far the fire and freeze rays
can travel before running into a wall, and whether a rock can start
falling and after it starts falling when it runs into the ground.

The game's main data structure for keeping track of the tunnels is
maintained by the global gPathArray. This is the array that is
marked up; Doug moves around within it.

TunnelState gPathArray[kRowCnt] [kColumnCnt];

This is also the array that will be checked before moving any of
the monsters to see if there is a clear path in the direction the mon
ster is trying to move.

One of the limits of using a cell-based data structure like this to
indicate play field state is that the player's and monsters' move
ments must happen on grid boundaries. When you tap the dig
right key for Doug he will dig to the right one full cell width as de
fined by kGridWidth. Ditto for monster movement, they'll always
advance the distance of one full cell. This would look pretty bad if
the sprite representing these characters jumped a whole cell dis
tance every time the sprite moved. Since it would look bad the

'/)~ 375

game doesn't do that. When a sprite decides to move it moves a
few pixels at a time until is has crossed one full cell. To the player
the characters are moving smoothly and yet are still constrained to
the grid enforced by the play field.

Each level of Digger is described by a template resource. This al
lows each level to be constructed with ResEdit or any other re
source editor.

typedef struct
short tunnelStartX;
short tunnelStartY;
short tunnelEndX;
short tunnelEndY;

}TunnelRec, *TunnelRecPtr;

typedef struct
short tunnelCount;
TunnelRec tunnels;

}TunnelLayout, *TunnelsPtr;

typedef Point RockPos;
typedef PointPtr *RockPosPtr;

typedef struct
short rockCount;
RockPos rocks;

RockLayout, *RockLayoutPtr;

typedef Point MonsterPos;
typedef PointPtr *MonsterPosPtr;

typedef struct {
short rnonsterCount;
Point monsters;

} MonsterLayout, *MonsterLayoutPtr;

The level resource (type Levl) starts with a TunnelLayout as
the header. The first field of the header gives how many tunnels are

376 ~12

preexisting for this level. A tunnel must exist in order to have a
monster. You can't have a monster suspended in the middle of
bedrock. Following the tunnel count in the resource is a variable
length array of TunnelRec structures. These structures define the
bounds of the tunnel and are expressed in grid coordinates, not pix
els. A tunnel record is either vertical or horizontal and cannot be
wider or taller than one grid height.

After the tunnels are the rock positions for this level. Like the
tunnel structure, the rock structure starts with a rock count and
then a variable length array of rock positions. Like the tunnels the
rock positions are given in grid coordinates, not pixels.

Following the rocks are the monsters, which are packed into the
level resource in the same manner: monster count followed by an
array of monster grid positions.

§ii~ Leul 1000 from D~er.Tr.rsrc ~l!.i§
,. •""; ;, ~ ~ %11fff

Tunnel Count 6
, ... ··· ·· Tunnel Count •1 · · ·

Tunnel Start 'X' position 9
Tunnel Start 'Y' position 3
Tunnel End 'X' position 10
Tunnel End 'Y' Position 10

Tunnel Count •2 · .. ·
Tunnel Start 'X' position 8
Tunnel Start 'Y' position 9
Tunnel End 'X' position 11
Tunnel End 'Y' Position 10

;... Tunnel Count •3
Tunnel Start 'X' position 4
Tunnel Start 'Y' position 5
Tunnel End 'X' position 5
Tunne 1 End 'Y' Position 8

,............... Tunne 1 Count •4

Tunne 1 Start 'X' position 4
Tunnel Start 'Y' position 11
Tunnel End 'X' position B
Tunnel End 'Y' Position 12 ~

,.......... Tunnel Count •5

Tunnel Start 'X' position 14
Tunnel Start 'Y' position 4
Tunnel End 'X' position 1 B
Tunnel End 'Y" Position 5

,.. Tunnel Count •5 ·

.

Tunne 1 Start 'X' position 14
Tunnel Start 'V' position 10
Tunnel End 'X' position 15 ~
Tunnel End 'Y" Position 13 li!J

lwtc -:_-_--N:e:w:~_.=-.. ""::)-,-E-ll-it......,,~=:D-. :--" ----......,,c+""'wawn""":""· e"'""I_,

Figure 12-1. Digger levels

1)~ 377

With the levels as resources it only takes a few clicks with your
favorite resource editor to construct a new level (see Figure 12-1).
Much better than encoding all the information in the source code.

At the start of each level of the game the gPathArray is initialized
by setting all the cells representing dirt to the Blocked state. After
all the tunnels are cleared, the new level is constructed with a call to
SetupNextLevel. This function does as its name says, taking the
level number and converting it to a resource id of the new level
template and constructing that level by parsing the template.

void SetupNextLevel(short currentLevel)

short
Handle
TunnelsPtr
RockLayoutPtr
MonsterLayoutPtr
long

i;
levelHandle;
tunnels;
rocks;
monstersPtr;
final Ticks;

II Get the level layout resource
levelHandle = GetResource(kLevelResType,

currentLevel + kBaseLevelID);
if (! levelHandle)

return;
HLock(levelHandle);
II Setup ptrs to the elements in the layout
tunnels= (TunnelsPtr)*levelHandle;

rocks= (RockLayoutPtr) ((*levelHandle) +
(tunnels->tunnelCount * sizeof(TunnelRec) +

sizeof(short)));

monstersPtr = (MonsterLayoutPtr) (((char *)rocks) +
rocks->rockCount * sizeof(MonsterPos) +

sizeof(short)));

378 ~12

The first phase of building a level is getting pointers to the tun
nel, rock, and monster positions within the level template. This is
done by first starting with a pointer to the head of the tunnel sec
tion at the start of the resource. The start of the rock section is found
by adding the size of the tunnel section to the start of the resource.
The tunnel section size is calculated by taking the number of tun
nels and multiplying by the size of the tunnel structure and finally
adding the size of the tunnel count itself into the equation.

The start of the monster section is found in a similar manner by
calculating a pointer that skips over the rock section.

II Clear out the tunnels
gDiggerPF->PreDrawOnBackground();

for(i = O; i < tunnels->tunnelCount; i++)
DigOutTunnel(&tunnels->tunnels[i]);

gDiggerPF->PostDrawOnBackground();

With the proper pointers pointing at the proper things, the code
can now start constructing the level. First it loops through all the
tunnels in the template and has them dug out with a call to
DigOutTunnel. Dig out tunnel will mark the cells properly and
even blacken in the tunnel that it has dug in the background off
screen from the play field. That is why before the loop was started
PreDrawOnBackground was called. Wouldn't want the on-screen
buffer screwed up. After the tunnels are dug, the proper graphics
port is restored with a call to PostDrawOnBackground.

II Position the monstersPtr in the tunnels
for(i = O; i < monstersPtr->monsterCount; i++)
{

if(AddMonsterToLevel(
monstersPtr->monsters[i] .h,
monstersPtr->monsters[i] .v,

gSpriteGroup) != noErr)
break;

II Position the rocks
for(i = 0; i < rocks->rockCount; i++)

1)~ 379

{

if(AddRockToLevel(rocks->rocks[i] .h,
rocks->rocks[i] .v,
gSpriteGroup) != noErr)

break;

Then the monsters and rocks are put in their proper positions.

gBonusSprite->Hide();
gBonusSprite->SetStartingPosition(kPlayerHorzStart,

kPlayerVertStart);

In case the bonus gem sprite was left visible at the end of the pre
vious level, it is hidden and then positioned to its default location.

HUnlock(levelHandle);

ReleaseResource(levelHandle);

II Set up the player to the correct position
InitPlayer();

II Force redraw of play field
gDiggerPF->HandlePlayFieldUpdate(

MainWindow->portRect);

With the level resource now done, it is unlocked and set free.
The player's sprite is then reinitialized with Ini tPlayer. This
function sets back to its proper state for the start of a new level.

The fully constructed level is then copied on-screen through the
play field's update mechanism, HandlePlayFieldUpdate.

As you can see, this game loop is a little more complicated than the
others you've encountered. It has to be. This one handles more situ
ations when a game is paused, when the player loses a life, when
the game is over. And moving to the next level.

380 ~12

void RunGameLoop(void)
{

gGameRunning = TRUE;

Ini tPlayer () ;

HideMenuBar(gMainWindow);
HideCursor();

gDiggerPF->HandlePlayFieldUpdate(

gSound->Silenece();
PerforrnLevelGetReady(2);

gMainWindow->portRect);

At the start of the game loop the global, gGameRunning, that
tells the rest of the game that the game loop is running is set to true.
The player's sprite is moved to its starting blocks. And then the
screen is prepared for the game to begin by hiding the menu bar
and hiding the cursor. The menu bar is hidden so that the Mac
looks like a real arcade game and to indicate to the user that the
game is currently playing, as well as to indicate that if the player
wants to switch to another program he or she must first pause the
game. The cursor is hidden to avoid having it flicker or interfere
with the game sprites.

In further preparation for the game loop, the screen is updated
and currently playing sounds are shut down.

At the start of the game, and the start of every level afterward,
PerformLevelGetReady is used to warn the player that the level
is about to begin. You pass the function the number of seconds you
wish it to delay and it waits that long. While it is waiting it puts up
a display that prepares the player for the impending melee.

while(gGameRunning && gPlayerLives > 0)
{

if(KeyisDown(kEscapeKey))
{

RemoveGemFromPlayField();
gSound->PlaySnd(kPauseGame,

k:AlarmPriority);

1)~ 381

gGameRunning FALSE;

The game loop is controlled by two factors, the game running
global and the number of the player's lives. The first factor just in
dicates if the game has been paused or not. If the game is paused
you don't want to be going inside the game loop. The resume menu
command turns the game back on by simply setting gGameRun
ning to true again.

The second control is the number of lives the player has. When
the player's number dwindles down to zero the game is over and
there is no need to stay in the game loop.

The first action of the game loop is to check if the user wants the
game paused. If so, the code removes any bonus gems from the
play field. Why? Because I'm mean. There should be a penalty for
pausing. After the bonuses are snatched away, the pause sound is
requested to be played and the global pause flag is set to false so
that on the next pass of the game loop, pause will finally take effect.

if(LevelComplete())
{

while(RocksAreStillFalling())
{

gDiggerPF->MoveSprites();
gDiggerPF->ShowNextFrame();

if(!LastLevel())
{

}

else
{

++gCurrentLevel;
InitPlayField();
SetupNextLevel(gCurrentLevel);
PerformLevelGetReady(2);

InitPlayField();
CelebrateLastLevelPlayed();
gCurrentLevel = O;
gScore = O;

382 ~12

}

SetupNextLevel(gCurrentLevel);
break;

Next the game loop handles the level checking code. If the cur
rent level is complete the game loop waits for all the rocks to finish
falling and then checks to see if this was the last level of the game.
If not, then the level indicator is bumped up by one and the next
level is constructed. Before starting the new level the game is once
again paused so that the player can catch his or her breath before
starting again.

If the level completed was the last level, the game is over. To
handle this case the game loop cleans up the play field and then
calls CelebrateLastLevelPlayed. Which does just that. After
the celebration, which isn't much for this example (but then again
there are only three levels so it isn't much a challenge to complete
them all), the game is reset back to the starting level and the game
loop is exited.

}

gDiggerPF->CheckForCollisions();
gDiggerPF->MoveSprites();
gDiggerPF->ShowNextFrame();
gSound->SoundFXTask();

if(gBonusSprite->IsVisible() &&
(TickCount() - gBonusTimer > (60 * 10)))
RemoveGemFromPlayField();

SystemTask();

With all the level-handling code out of the way, the game loop
gets down to the trinity of any game loop: checking for collisions,
moving the sprites, and showing the results on-screen. Added to
this trinity is the new task of cleaning up after the sound system.

Every pass through the game loop, the program checks to see if
the bonus gem is on-screen. The gem should only stay on-screen for
the length of gBonusTimer. If enough time has passed, the game

l>~ 383

needs to deprive the player of one bonus gem. You snooze, you
lose.

The Toolbox function SystemTask is called as part each cycle
through the game loop so that any of those pesky background tasks
that need some time, get some.

}

ShowCursor();
ShowMenuBar(gMainWindow);

II If the player runs out of lives,
II perform a game over celebration
if(gPlayerLives == 0)

PerformGameOverCelebration();

When code breaks out of the game loop the main screen is re
stored to its proper state by restoring the cursor and the menu bar.
Before leaving RunGameLoop it checks to see if the player left the
game loop by running out of lives, and if so a game-over celebration
is performed before returning control back to the main event loop.

You probably noticed that the game loop doesn't have any code
that seems to deal with any of the actions of the main character
sprites used by the game. You'd be right. All of the actions of the
sprites are contained within the sprites themselves.

Each character sprite operates within the game through the use
of states. A state is the mode that the sprite is in at a certain point in
time. For the player sprite it could potentially be in moving-left
state or shooting-a-freeze-ray state or being-squished-by-a-rock
state. Everything the player's sprite can do is a state (even standing
still is a state), and the sprite can only be in one state at a time. The
player can't be moving left while shooting and being squished at
the same time. With only one state at a time possible the sprite han
dles transitioning from one state to the next as the core part of its
state handling.

384 ~12

If you're familiar with finite-state machines you'll feel right at
home. Well, maybe not right at home unless your home is deco
rated with state-transition diagrams.

The player sprite will be our first chance to look at a state-driven
character. But before diving into the states and their transitions you
need to know how the sprites are constructed.

The player sprite has several sprite eels that cover all states that
the sprite can be in except firing the freeze ray. The freeze ray is a
separate sprite that is managed by the player sprite. Normally this
sprite is hidden and only becomes visible when the player hits the
freeze ray firing key. When that key is hit the player detects it and
positions the freeze ray sprite in its correct orientation with respect
to the player's position. Then if the firing key is still down the freeze
ray sprite is made visible and starts its journey toward a monster.

Here is a list of all the possible states that the player and freeze
ray combo can possibly be in.

typedef en um
movingLeft,
movingRight,
movingUp,
movingDown,
standingStill,
shootingLeft,
shootingRight,
shootingUp,
shootingDown,
retractingLeft,
retractingRight,
retractingUp,
retractingDown,
playerPushedByRock,
playerSquishing,
playerDying,
killPlayer

}MovementState;

l)~ 385

The ordering of these states is important, as you'll see. The
states are grouped within state groups, which will allow quick test
ing of where the sprite is currently.

The states of the sprite are maintained through its overridden
methods, Move and Collide, with most of the action happening
within Move .

void CPlayer: :Move()

#define kTunnelWidth 32
#define kTunnelHeight 32

switch(fPlayerState)
{

case movingLeft:
case movingRight:
case movingUp:
case movingDown:

DigTunnel();
break;

case shootingRight:
case shootingDown:
case shootingLeft:
case shootingUp:

ShootRay ();
break;

case playerPushedByRock:
PushByRock();
break;

case playerSquishing:
Squish();
break;

case playerDying:
Dying();
break;

case killPlayer:
KillOffCurrentPlayer();

break;
}

386 ~12

The player's movement function first handles the state that it is
currently in. Each state set is managed by a separate method within
the sprite. After the state switch code is done, the Move function
starts dealing with key presses that activate the player sprite's
movements.

if(fPlayerState == standingStill)
{

}

if(IsFiringFreezeRay())
{

StartFiringRay();

else if (MovingRightKey())

fPlayerState = movingRight;

else if(MovingLeftKey())

PlayerState = movingLeft;

else if(MovingUpKey())

PlayerState = movingUp;

else if(MovingDownKey())

PlayerState = movingDown;

A player can only transition to another state if it is currently
standing still. Don't worry, this sounds worse than it looks. At the
completion of the movement state in the previous switch code, the
state is always reverted to the standing-still state when the player
moves to a full grid coordinate.

if(!EqualRect(&fCurrBnds, &fPrevBnds))
{

Rect tunnelRect;

gDiggerPF->PreDrawOnBackground();

}

1)~ 387

tunnelRect.top = fCurrBnds.top + 4;
tunnelRect.left = fCurrBnds.left + 2;
tunnelRect.right = tunnelRect.left +

kPlayerWidth;
tunnelRect.bottom = tunnelRect.top +

kPlayerHeight;

II Now adjust the top
tunnelRect.top = Max(tunnelRect.top,

kTopOfGround) ;

PaintRoundRect(&tunnelRect,10,10);
gDiggerPF->PostDrawOnBackground();

Once all the state and keyboard handling is done, the Move
function checks to see if any of the previous code bothered to move
the sprite. A sprite that moved needs to paint the background black
at its previous location to give the illusion that Doug is digging. Be
fore background is painted, a check is made to see if Doug is above
ground. Can't dig tunnels above ground. At least not one the player
should see.

The function that handles the sprite movements is DigTunnel.
This function handles movement of the player. In this extract from
the function the code is handling moving to the left. All the other
directions are clones of this section with only the names changed.

if((fCurrBnds->left - fkeyDownPt.h == 0) I I
Abs(fCurrBnds->left - fkeyDownPt.h) >= kTunnelHeight)

//Clear the Tunnel section we just left
ClearTunnel(&fkeyDownPt,OpenOnLeft);

//Clear the Tunnel wall we are going to move through
ClearTunnel(TopLeft(fCurrBnds),OpenOnRight);

388 ~12

gPlayerState standingStill;

else
OffsetRect(&fCurrBnds, -kPlayerSpeed, 0);

The sprite's current position is checked to see if it has moved
one full grid cell to the left from the point the move-left key was
pressed. If it has, then the cell array is marked showing that a tun
nel has been dug from left to right on the cell that the player cur
rently occupies.

If the sprite hasn't moved a full cell's width yet, it is simply pushed
a little more to the left by offsetting the sprite's current bounds.

Shooting the freeze ray is handled by the ShootRay. This function
manages the positioning of the player's water sprite and shooting
it. The shooting of the freeze ray is simulated by changing the
sprite's current eel index. Each eel is slightly longer than the next
until the index kShootingRightLastFrame is reached.

This extract from ShootRay only shows firing the ray to the
right, but all of the other directions are managed in the same manner.

if(fWaterSprite->GetCurrentCelindex() <
kShootingRightLastFrame && !fFreezingMonster)

Point futurePos;

fWaterSprite->SetCurrentCel(
fWaterSprite>GetCurrentCelindex() + 1);

fWaterSprite->MoveTo(fCurrBnds.left + kPlayerWidth/2,
fCurrBnds . top) ;

if(!fWaterSprite->IsVisible())
fWaterSprite->Show();

futurePos.h = gWaterSprite->fCurrBnds.right;
futurePos.v = gWaterSprite->fCurrBnds.top;
if(! CanMoveToRight(&futurePos, 0))

1)~ 389

fWaterSprite->SetCurrentCel(
fWaterSprite->GetCurrentCelindex() -1);

fPlayerState = retractingRight;

else if(!fWaterinflating I I !fSpaceKeyDown)
fPlayerState = retractingRight;

If the water I freeze ray sprite is not at its rightmost position and
a monster is not in the process of being frozen (fFreezingMon
ster shows this), then the freeze ray's eel is moved to the next one.
The ray sprite is moved to its correct position next to the sprite. If it
isn't already visible it is made so. Next the path of the ray is
checked to see if it is a clear shot. A collision with a wall or rock
prevents the ray from firing. To show this the sprite state is re
versed by setting the player's state to retractingRight.

The same retraction state is set if the ray has reached the limit of
its range or the ray-firing key was released.

When a rock collides with the player the collision method will
change the state of the players to reflect that the player is now be
ing pushed by a sprite. The PushByRock function handles all as
pects of the player on its way to being squished.

void CPlayer::PushByRock()

Tunnel State
Point

section;
tempPos = TopLeft(fCurrBnds);

tempPos.v += fCurrBnds.bottom - fCurrBnds.top;
section = gPathArray

[(tempPos.v + kPlayerSpeed) I kGridHeight]
[tempPos.h I kGridWidth];

if(fCurrBnds->top >= fMoveExtent.bottom I I
section == Blocked)

390 ~12

}

fPlayerState = playerSquishing;
SetCurrentCel(kStartPlayerSquishFrame);

OffsetRect(&fCurrBnds, 0, kRockSpeed);
SetAutoMoveTime(Max(

playerSpriteP->moveTirneinterval -1,
kMaxFallRate));

The whole goal of this function is to detect when the player has
finally hit a hard place-the bottom of a screen or a blocked piece of
earth. When between a rock and a hard place the sprite's state tran
sitions to the playerSquishing state. If the player has not yet
fallen to the bottom, it is moved in synchronization with the rate
that rocks fall. This gives the illusion of the rock pushing the player
down the screen.

When the rock is pounding the player into a pancake it is in the
squishing state. In this state the function Squish is called until the
player displays all of its squishing eels; then the player is hidden
and the rest of the game is notified of the player's untimely demise
with a call to KillOffCurrentPlayer.

void CPlayer::Squish()

if(fCelindex < kLastPlayerSquishFrarne)
{

}

else

SetCurrentCel(fCelindex + 1);

Hide();
KillOffCurrentPlayer();

'{)~ 391

Dealing with the player's death is the responsibility of the Dying
function. Like the Squish function (don't you just love these
names) this function cycles through the player's death eel sequence
before hiding the player's ray gun and the player itself. Finally true
death occurs by transitioning to the killPlayer state.

void CPlayer: :Dying()
{

if(fCelindex < kLastDieingFrame)
{

else
{

}

SetCurrentCel(fCelindex + 1);

fWaterSprite->Hide();
Hide();
fPlayerState = killPlayer;

Upon the loss of the one of the player's lives the Move function will
make a call to the function KillOffCurrentPlayer. This func
tion decrements the global count of player's lives by one, and if the
player still has any lives left the level is restarted by repositioning
the monsters to their original locations. The rocks are not reset. The
player's sprite is then reinitialized and the player is given warning
that the level is about to start over with the call to PerformLevel
GetReady.

void KillOffCurrentPlayer(void)

gPlayerLives-;

ResetMonstersToStart();
if(gPlayerLives)

392 ~12

InitPlayer();
PerforrnLevelGetReady(2);

gDiggerPF->HandlePlayFieldUpdate(
&gMainWindow->portRect);

With the level reset, the screen needs to be updated to reflect
this fact to the user before letting the game loop take over again.

The monsters are almost complete code clones of the player sprite.
They carry around an invisible fire sprite that is positioned when
the monster decides it is time to relieve itself. This fire sprite is
managed in the exact manner that the player sprite manages its
freeze ray sprite. The shootings are retractions done in a similar
manner. The only difference is that monster can only spew fire to
the left or right while the player can fire the freeze ray in all four
directions.

The monsters move in the same manner as the player sprite,
sliding along until the sprite reaches a grid point and then deciding
where to go next. The only added wrinkle is that the monsters
move in the direction of the player's sprite and do not respond to
the player's keyboard presses.

Rocks squish monsters as easily as they can squish you. Ex
cept that when a monster gets squished you get bonus points;
when you get squished you get a headache and a chance to try
again.

For the full tour of monsters check out the source file
CMonster.cp & .h. Any questions you have will be answered
there.

1)~ 393

That about covers Digger. The best way to discover every nook and
cranny of the code is to experiment with it by adding new features
or adjusting the existing ones. Some suggestions are listed below.

+ Add new monster types

• Create new falling objects, like bowling balls

• Add an instant-replay feature

• Give the player new weapons

• Add new types of bonuses

• Have lava rise up from the bottom if the player takes too long

Or you can skip trying to alter this game and start on your own
game.

You've made it through the whole book (or you're cheating and
you skipped to the end to see who did it) and are just itching to
start writing your own games. Great, have at it. The only piece of
advice I can offer is always program games you would want to
play. That way you're guaranteed to have at least one person who
likes it. The only other piece of advaice I have to offer is not to try
and create your dream game on your first outing. Too many begin
ning game programmers start with wanting to create their ultimate
fantasy game. "This game will be the coolest. It'll have the action of
DOOM but the depth of chess. You'll be able to fly your F-16 from
site to site, battling enemy planes all the way. And if your F-16 is
shot down you'll have to fight your way out of the prison camp by
competing in a martial arts tournament. And it'll have graphics bet
ter than Myst, but combined with full-motion video and full 16-bit
sound. Oh, and 3D. It'll come with 3D glasses and when you're in

394 ~12

the space battle mode the asteroids will be flying right at you.
That'll be nifty." You might want to try and scale down your first
attempt, to start with something do-able. Then do another game.
After a few more you can start digging out those 3D glasses. But no
matter what you decide to program, make sure you have fun doing
it. After all, it's only game.

Accelerator card speedup (CopyBits), 131
Addiction as design goal, 39-40
Adventure games, 2-4
AIFF sound files, 352
Alpha channel (linear key) pixels, 86
Animation,41-43

See also Buffered animation; Xor animation
flickering in, 48-49, 50, 51
graphics types for, 43-44
memory usage, 55-56
performance costs, 54, 56
programming requirements
raster animation, 45-46
raster animation techniques

buffered, 51-57
primitive, 50-51

vector graphics, 44-45
Anti-aliasing text with CopyBits, 130

Apple Sound Chip (ACS), 366
Arcade games, 9-10

appeal of, 10, 32-40
classics, 16-32

Macintosh versions, 17, 18, 25, 29
origin, 10-16
Pong as prototype, 12-16
program examples

major (DigDugout), 371-94
minor (Pongoid), 315-31

psychology of, 10, 32-40
Asteroids (Atari classic), 16-17
Asynchronous sound, 353-58
Atari

classic games
Battlezone, 17-18
Centipede, 18-19
DigDug,20

395

396 ~

Atari, classic games (continued)
FoodFight, 21-22
Joust/Joust II, 22-23
Marble Madness, 23
Missile Command, 24
Tempest, 29-31, 44-45

origin, 14-16

Battlezone (Atari classic), 17-18
Bit banging. See Blitting; Blitters
Bitmaps,63

bounding rectangles, 63--64
building, 64-66
colorizing black-and-white, 129
pixel maps compared to, 73-74
rowBytes field, 64

Black-and-white/ color compatibility, 62--63, 83, 87
Black-and-white colorizing, 129
Blitters, 57, 107, 121-23

See also CopyBits
CopyBits as, 125-27
hardware,160-63
making (BrainDead examples), 123-25, 163-64,

171-72
masked,132-37

Blitting, 107, 121-23. See also Blitters; CopyBits;
Sprite blitters

Bounding rectangles
bitmaps and, 63-64
sprites and, 159--60

collisions, 230-31
Buffered animation

See also Offscreen buffers; Color offscreen
buffers

double-buffered, 260-62
memory usage, 55-56
performance costs, 54, 56--57
setup, 51-53
speed of, 54, 56--57

Buffering. See Offscreen buffers; Color offscreen
buffers

Bushnell, Nolan (arcade game god), 12-16

C++ and games programming, 248-54
Centipede (Atari classic), 18-19

CGrafPorts (color graphic ports), 82-84
fields, 83-84
making,90-92

Chunky pixel layout, 75, 76
Cinematronics classic games, 28-29
Class inheritance, 249-54
Class library, 247

C++ implementation, 248-54
classes for, 254
class hierarchy, 255
class inheritance, 249-54
design goals, 248
error handling, 257-58
list class, 255-57
play field class, 259

See also Play fields
Clipping

pixels/images, 128-29, 140-42
sprites, 223-27

Collision detection. See Sprite collision detection
Color /black-and-white compatibility, 62--63, 83, 87
Color graphics ports (CGrafPorts), 82-84

fields, 83-84
making,90-92

Colorizing black-and-white bitmaps, 129
Color mapping problems (CopyBits), 143-44
Color offscreen buffers, 68

black-and-white/ color compatibility, 83, 87
color options, 68-70, 84-86
color tables, 70-72

inverse,71-73, 100
error result for, 101-2
example of use, 104-8
graphic device in, 100
indirect colors in, 70, 72
inverse color tables, 72-73, 100
memory usage, 68-70
pixel depths, 88-90
pixel maps (PixMaps), 73-76

making,93-97
transparency of graphics images, 86
using(example), 104-8

Color tables, 70-73
color mapping problems, 143-44
creating and copying, 92-93

graphics devices and, 100
gray-scale, 93
inverse, 71-73

Compression of sound, 343-44
Conventions used in book, xxi-xxii
CopyBits, 53-54, 108, 125-27, 138

anti-aliasing text, 130
as benchmark for blitters, 148
blitting bounds, 139-40
blitting with, 125-27
color mapping, 142-44
CopyMask and, 149-51
flowchart, 138
functions, 127

accelerator card speedup, 131
clipping, 128-29
colorizing, 129
cross-monitor blitting, 130
depth conversion, 129-30
dithering, 130
overlapping source and destination, 130,

130-31
scaling, 127-28
transfer modes, 128

hardware speedup, 146-48
limitations, 131-32
mask blitting with, 132-37
memory alignment, 145-46
pixel depth, 140
regions and, 151-56
speeding up, 137-49
screen bypass, 146
sprite blitters and, 222
sprites and, 165--68
text (anti-aliasing), 130
unmasking regions, 151-56

CopyDeepMask, 136-37, 149-51
CopyMask, 135-36, 156

flowchart, 150
speeding up, 149-51

Crazy Climber (Taito classic), 19
CSoundFX class, 358

See also Sound
Apple Sound Chip and, 366
cleaning up, 367-68
disenabling playback, 369

enabling playback, 369
playing sounds, 363-67, 369
priorities, 359-60
shutting down, 362-63
silence,365,368-69
starting up, 36-62

Death Race (Exidy classic), 19

~ 397

Debabelizer (graphics coversion program), 45
DEC's PDP-1 and the origins of arcade games,

11
Defender (Williams classic), 19-20
Depth conversions of pixels, 129-30
Device drivers. See GDevices
DigDug (Atari classic), 20
Direct pixels, 85-86
Dithering, 130
Donkey Kong (Nintendo classic), 21
Double-buffered animation, 260-61

Error handling in C++, 257-58
Exclusive-or animation. See Xor animation
Extinction and the timing of rewards, 35-36

Flickering in animation, 48-49, 50, 51
FoodFight (Atari classic), 21-22
Frame buffer (video memory), 59-62
Frame rates

limits, 42-43
sprite collisions and, 235, 245-46
sprites and, 159-60
sprite timers and, 298

Fun and games psychology, 32-40

Galaga (Midway classic), 22
Gameloops,260,378-83
Game playing psychology, 32-40
Game types

See also Arcade games
adventure, 2-4
arcade, 9-40
interactive fiction, 2-3
puzzle, 9
role-playing, 4
simulation, 4-5
sports, 8

398 ~

Game types (continued)
strategy, 5-6
war,6-8

GDevices (graphics devices), 77-79
current, 81
data structures in, 80-82
device drivers and, 78, 79
fields,77-78,79-80

setting,99-100
GDevice list, 81
Main,81
making,97-101
private, 80-81
public, 80-81

Gra£Ports (graphics ports), 66-68
fields, 66-67

Graphics conversion program (Debabelizer), 45
Graphics Devices. See GDevices
Graphics environment for bitmaps. See Gra£Ports
Graphics ports (gra£Ports), 66-68

See also Color graphics ports
in clipping (CopyBits), 140-42
fields, 67-68

Graphic Worlds. See GWorlds
Gray-scale color table, 93
Gworlds (Graphic Worlds), 110

backward compatibility, 113
caveat, 113-14
fields, 111-12
function calls, 110

DisposeGWorld, 112
NewGWorld, 111-12
UpdateGWorld, 113

using (star field example), 114-21

Indirect colors (in color offscreens), 70, 72
Invariant expressions in sprite blitters, 177-81
Inverse color tables (in offscreens), 72-73, 100

Joust/Joust II (Atari classic), 22-23

Levels of the game (example), 375-83
Library for programming. See Class library
Linear key (alpha channel) pixels, 86

Logical masking, 164-72
See also Masking

Loop unrolling in sprite blitters, 184-88
Lottery as gaming metaphor, 35-36, 38-39

Marble Madness (Atari classic), 23
Mask blitters, 132-37, 163-227

See also Masking; Sprite blitters
Masking

class hierarchy for masks, 255
CopyDeepMask, 136-37
CopyMask, 135-36, 149-51
logical, 169-73
mask blitters, 132-35

See also Sprite blitters
mask compiling, 200-217
run length masking, 190-221
sprite collisions and, 232-35
unmasking, 151-56

Memory usage
See also Offscreen buffers
animation,45-46,50,51,55-56
blitting (CopyBits), 145-46
buffered animation, 55-56
digital sound, 343-44
offscreens, 60

color, 68-69
sprites, 222-23
video cards, 86-87, 146-47

Memory-mapped video, 45-46
Midway classic games

Galaga,22
PacMan/Ms.PacMan,24-25

Missile Command (Atari classic), 24
MIT and the origins of arcade games, 11-12
Monitors. See GDevices; Pixels

Nintendo's Donkey Kong, 21
NuBuscard

memory mode setting, 87
speed compared to built-in video card, 146-47

Offscreen buffers, 59-60
advanced, 109-56

See also Blitters; Color offscreen buffers;
CopyBits; GWorlds

basics (QuickDraw originals), 62-68
bitmaps, 63-68

color, 73-74
black-and-white/ color compatibility, 62-63,

83,87
blitters and blitting, 121-56
building an offscreen, 87-102
color graphics ports (GraIPorts), 82-84

making,93-97
color offscreens, 68-75

using, 104--8
color options, 68-70, 84--86
CopyBits, 126-48, 151-56
Copyl\1ask,149-51,156
destroying an offscreen, 102-4
direct pixels, 85--86
erasing, 52
frame buffers. 60-62
GDevices, 77-82

making,97-101
GWorlds, 109-21
memory usage, 60

color, 68-70
pixelmaps,73-76

making,93-97
pixel memory usage, 55-56
play fields and, 260-64, 270-73, 278-80
QuickDraw versions and, 62
setup, 51-53
transparency of graphics images, 86
video memory and, 60-62
virtual screens, 51-52

Offscreen pixel buffers. See Offscreen buffers
Offscreens. See Offscreen buffers

Pacl\1an/l\1s. Pacl\1an (l\1idway classic), 24-25
PDP-1 and the origins of arcade games, 11
Performance (speed)

animation, 54-55
blitting

CopyBits, 137-40
Copyl\1ask, 149-51

collision detection, 235, 238-43
sprites, 221-22
video cards, 86-87, 146-47

Pixel maps (Pixl\1aps), 73-74

bitmaps compared to, 73-74
building, 93-97
color ports for, 90-92
color tables for, 92-93
fields, 74, 75, 76

setting, 95-97
pixel layout types, 75-76
pixel size, 75

Pixels

~ 399

blitting.See Blitters; CopyBits; Offscreen
buffers

buffering.See Offscreen buffers
clipping,128-29, 140-42
copying. See CopyBits
depths,88-90,140

conversions, 129-30
direct, 85--86
dithering, 130
layout, 60-62
layout types (in Pixl\1aps), 75-76
offsetting,302-3,307
scaling,127-28,144
size (in Pixl\1aps), 75
transfer modes, 128, 144-45
unused bits of (alpha channel pixels), 86

Pixl\1aps. See Pixel maps
Planar I chunky pixel layout, 76
Planar pixel layout, 75-76
Play fields

See also Sprite animation
class definition (code), 280-81
class hierarchy, 255
collision checking, 275-76
creating, 261-64
disposal, 264
host window drawing, 280
offscreen buffers, 260-61

drawing in, 278-80
on-screen copying, 271-73
play field creation and, 262-63

sprites in
adding,264-65
animating,267-75
removing,265-66

update events handling, 276-78

400 ~

Pong, 12-16
rules, 316-17
tribute to, 317-31

Ports. See Graphics ports; Color graphics ports
Primitive animation, 50-51
Programming examples

major (DigDugout), 371-94
minor (Pongoid), 315-31

Psychological undo as gaming motivation, 38-39
Psychology of game playing, 32-40

Qix (Taito classic), 25-26

Raster animation
buffered, 51-57
primitive, 50-51
xor (exclusive-or), 46-50

Regions, 152-56
unmasking,151-56

Regret as gaming motivation, 38-39
Reinforcement and gaming psychology, 32-35
Robotron 2084 (Williams classic), 26-27
Russel, Steve ("Slug") and Spacewar, 11

Sampling sound, 339-44
rate, 339-41

standard (22-Hz), 344, 366
resolution, 342-43

Scaling pixels/images, 127-28, 144
Silence,365,368-69
Sound, 333. See also CSoundFX class

amplitude,335-37
asynchronous,353-58
basics, 334-38
channels, 350
commands,347-50
CSoundFX class, 358-69
digital sound, 338-44
file choices, 352-53
frequency, 337-38
memory usage, 343-44
physics, 334-38
playing back, 351-53

asynchronous,353-58

CSoundFX class, 358-69
from disk, 351-53
functions for, 363-68

priorities, 359--60
sampling, 339-44

rate,339-41,344,366
resolution, 342-43

silence,365,368-69
Sound Manager, 344-50

channels, 350
commands,347-50

Space Invaders (Taito classic), 27
Spacewar (MIT proto-game), 11-13
Speed of performance. See Performance
Sprite animation, 267

copying sprites to onscreen, 271-73
drawing sprites, 270-72
erasing sprites, 268-70
moving,273-75

Sprite blitters, 157
See also Masking; Sprite compiling
clipping, 223-27
coding assumptions, 168
debugging tip, 167
examples,163-64,315-31
logical masking, 169-73
long word alignment, 181-84
mask blitting, 132-35, 163-227
mask compiling, 199-217
memory, 222-23
optimizations, 173

code moving, 177-81
long word alignment, 181-84
loop unrolling, 184-89
run length masking, 190-221
time per loop, 173-77

run length masking, 190-221
speed,221-22
sprite compiling, 199-200, 217-219

Sprite eels, 287
building, 287-92
changing, 308-11

eel cycle time, 308-9
current eel, 309-10

class hierarchy, 255
lists, 295-96

Sprite class library. See Class library
Sprite collision detection, 229-30, 235-36

bounding rectangles and, 230
collisions defined, 230
CopyBits and, 222, 232
designing to simplify, 243-45
frame rates and, 235, 245-46
masks and, 232-35
nonlinear growth of, 235
speeding up, 238

sectoring, 240-43
sorting,238-40

speed of collisions, 235
time costs, 235-38

Sprite compiling, 199-200
cleaning up after, 217-19
maskcompiling,200-17

core, 206-17
prologue, 202--6

use of results, 219-21
Sprite movement, 300-1

animation, 267-75
See also Sprite animation

automatic, 300--6
movement frequency, 303-4
pixel offset, 302-3
starting position, 301-2

direct, 301, 306
absolute, 306-7
offset, 307

movement extents, 313-14
sprite timers, 298-300

by external clock, 298-99
by frames, 298

Sprite play fields. See Play fields
Sprites, 157--60

activity (eels}, 283-314
in animation, 267-75
See also Sprite animation

blitting, 163-227
bounding rectangle, 159--60

in collisions, 230-31
eels, 283-314

See also Sprite eels

class hierarchy, 255
class library. See Class library
clipping, 223-27
cloning, 293-95
collisions, 229-46

sprite visibility, 311
compiling,199-221
copying

cloning as, 293-95

~ 401

offscreen to on-screen, 271-73
creating, 284--87

templates for, 285-87
drawing,270-71
drawing order priorities, 160
elements, 158--60
erasing, 268-70
frame masks, 159
frame rates, 159--60
hardware sprites, 160--63
identification field, 312-13
invariant expressions, 177-81
library. See Class library
location onscreen, 160
movemen~300-7,313-14,387-88

celsand,283-314,384--87
See also Sprite movement

offscreen to on-screen copying, 271-73
play fields and, 259-82

See also Play fields
position onscreen, 160
priorities (drawing order), 160
software,163-227
states of, 383-87
templates, 285-87
timers, 298-300
velocity, 159
visibility onscreen, 311-12

Stargate (Williams classic}, 20

Tail Gunner (Cinematronics classic}, 28-29
Taito classic games

Qix,25-26
Space Invaders, 27

Tempest (Atari classic}, 29-31, 44-45
Text (anti-aliasing) with CopyBits, 130
Tune Manager and sprite timers, 298

402 ~

Transfer modes for pixels, 128, 144-45
Transparency of graphics images, 86

U.S. Army and Battlezone, 18
University of Utah and the origins of arcade games,

11-12
Unmasking regions, 151-56. See also Masking

Vector graphics animation, 44-45
Video cards, 86--87

CopyBits and, 146-47
Video frame rates. See Frame rates

Video games. See Game types; Arcade games
Video memory (frame buffer), 59--62
Virtual screen buffer, 51-52

Williams classic games
Defender/Stargate, 19-20
Robotron 2084, 26-27

Xor (exclusive-or) animation, 46-50
flickering in, 48-49
limitations, 50, 57
settings for, 47

,---

. ; Addison-Wesley warrants the enclosed disk to be free of defects in materials and faulty
c, workmanship under normal use for a period of ninety days after purchase. If a defect

is discovered in the disk during this warranty period, a replacement disk can be
obtained at no charge by sending the defective disk, postage prepaid, with proof of
purchase to:

Addison-Wesley Publishing Company
Editorial Department

Trade Computer Books Division
One Jacob Way

Reading,J\.1A 01867

After the 90-day period, a replacement will be sent upon receipt of the defective disk
and a check or money order for $10.00, payable to Addison-Wesley Publishing
Company.

Addison-Wesley makes no warranty or representation, either express or implied, with
respect to this software, its quality, performance, merchantability, or fitness for a
particular purpose. In no event will Addison-Wesley, its distributors, or dealers be
liable for direct, indirect, special, incidental, or consequential damages arising out of
the use or inability to use the software. The exclusion of implied warranties is not
permitted in some states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific legal rights. There may be other rights that you
may have that vary from state to state.

Macintosh Programming

nothing? Here's the book that brings the fun back to writing Macintosh® programs. Sex, Lies,

and Video Games exposes you to the techniques of producing games on the Macintosh

games with captivating animation and objectionable sounds. You don't need any previous

game programming experience, or an extensive background in graphics or sound program

ming, just an ability to write a simple program that involves windows, menus, and other

interface elements.

In a light-hearted, unintimidating style, Bill Hensler explores the ins and outs of arcade-style

programming inc and c++, introducing basic game theory, animation, sound, and interac
tion techniques. Along the way you'll learn the arcane lore of game programming, including:

• sprite blitting

• off-screen and on-screen animation

• sprite eels and directing sprite movement

• ins and outs of producing sounds within your games.

You'll also learn how to put it all together in the full-blown arcade game that's included on

the enclosed disk. Now all Macintosh programmers can satisfy their secret desire to become
game programming mavens.

During the day, Bill Hensler programs video editing software. At night he has been known

to write books, play way too many computer games, and sneak up on perfect strangers and
ask them to "Pick a card. Any card."

Cover design by Rachel Rutherford

Addison-Wesley Publishing Company
Find A-W Developers Press on the World-Wide Web at:
http://www.aw.com/devpress/

eORDERS PRICE S!4.95

,::'f liili f If" iTl 'f 59
HENSLER B 3826 Ma c Reference
954313 QP 1 21296 ADDW
1428 I 28 ?3

ISBN 0-201-40'/.) /-4

$34.95 us
$48.00 CANADA

