

PROGRAMMING

THE MACINTOSH

IN c

PROGRAMMING

THE MACINTOSHTM

IN c
BRYAN ...J. CUMMINGS

LAWRENCE ...J. POLLACK

Berkeley • Paris • Dusseldort • London

Cover art by Jean-Francois Penichoux
Book design by Lisa Amon

We have taken great care in preparing this book. All information is deemed to be accurate at
time of publication. All programming examples have been thoroughly tested on a Macintosh
with two disk drives, the Consulair Mac C compiler (release 2.0), and the Macintosh Devel­
opment System.

Aztec C68K compiler is copyrighted by Manx Software Systems.
The Consulair Mac C compiler is copyrighted by Consulair Corporation.
C/PM-80 and C/PM-86 are trademarks of Digital Research, Inc.
Macintosh is a trademark of Apple Computer Incorporated.
The Macintosh Development System is copyrighted by Apple Computer Incorporated.
MS.DOS is a trademark of Microsoft Corporation.
PC-DOS is a trademark of IBM Corporation.
UNIX is a trademark of Bell Laboratories.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX
assumes no responsibility for its use, nor for any infringements of patents or other rights of
third parties which would result.

Copyright©1986 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World rights reserved.
No part of this publication may be stored in a retrieval system, transmitted, or reproduced
in any way, including but not limited to photocopy, photograph, magnetic or other record,
without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 85-63244
ISBN 0-89588-328-7
Printed by Haddon Craftsmen
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

For Judy, Lydia, Matt, and Steve

\

~CKNOWLEDGEMENTS
The production of a book requires many steps and many people.

For ourselves, and on behalf of DATATECH Publications, the authors
would like to thank those people who have helped to create this book.
First of all, we want to thank Geta Carlson for her magnificent edito­
rial support. At SYBEX, we would like to thank Dr. R. S. Langer and
Karl Ray for managing this project so well. Also at SYBEX, thanks to
Lisa Amon for her book design, Joel Kroman for technical support,
Brenda Walker for typesetting, Dave Clark and Scott Campbell for
word processing, Jon Strickland for proofreading, and Jannie Dresser
for the tedious task of indexing.

B. C.
L. P.

TABLE OF CONTENTS

INTRODUCTION

How This Book Is Organized xv
What You Need to Use This Book xvii

A REVIEW OF SOME PROGRAMMING BASICS

A BRIEF LOOK INSIDE THE COMPUTER 1

The Central Processing Unit 1
Memory 2

NUMBERING SYSTEMS 3

The Binary Numbering System 3
Converting from Binary to Decimal 4
Converting from Decimal to Binary 5
Binary Arithmetic 6
Other Numbering Systems: Octal and Hexidecimal 6

How DATA IS STORED 7

How Numbers Are Represented 9
Character Representation 12

AN OVERVIEW OF MEMORY ORGANIZATION 13

Files 15
The Operating System 16

WRITING A PROGRAM 18

The Programming Process 18
Dealing with Errors 19

PROGRAMMING LANGUAGES

WHAT PROGRAMMING LANGUAGES DO 23

The Differences Between Programming Languages 26
The Jobs a Language Is Designed For 26

vii

ONE

TWO

viii

The Levels of a Language 26
A Language's Special Tools 27
Interpreted vs Compiled Languages 27

THE SPECIAL CHARACTERISTICS OF C 28

Data Storage and Definition 28
Portability 29
Tools for Building Commands 30
Writeability: Structured Programming 30
Readability: Internal Program Documentation 31

DEVELOPING PROGRAMS: SYNTAX, LOGIC,
AND THE ROLE OF STATEMENTS 32

The Programmer's Axioms 32
The Syntax of C 33
Basic Programming Logic 36
Developing a Program Statement 36

INTRODUCTION TO USING C

USING COMMENTS TO OUTLINE YOUR PROGRAM 39

CREATING, COMPILING, AND EXECUTING SOURCE CODE 40

BASIC OPERATORS 44

Arithmetic Operators 44
Combined Forms of Arithmetic and Assignment

Operators 46

INTRODUCTION TO DATA TYPES 48

A Sample Program 49

RELATIONAL AND LOGICAL OPERATORS 52

Definition and Background of Logic Statements 52
Forming Logical Expressions 54

CONTROLLING PROGRAM FLOW 55

Control Statements 55
Statement Blocks 55

THREE

CONDITIONAL EXECUTION STATEMENTS 56

The IF Statement 56
The IF-ELSE Statement 58
The ELSE-IF Statement 60
The?: Operator 62

REPETITION STATEMENTS 63

The WHILE Statement 63
The FOR Statement 65
The DO-WHILE Statement 67
The CONTINUE Statement 68
The BREAK Statement 69
The SWITCH-CASE-DEFAULT Statement 70

THE GOTO STATEMENT 72

PROGRAMMING TECHNIQUE

STRUCTURED PROGRAMMING 75

FUNCTIONS 78

Scoping 80
Local Variables 80
Global Variables 82
Storage Classes 84

PARAMETERS 86

A SAMPLE PROGRAM 88

RETURNED VALUES 90

USING FUNCTIONS 91

Library Functions 92
Our GETNUM() Function 96

RECURSION 97

ix

FOUR

x

DATA TYPES

THE DATA TYPES 103

CONSTANT VALUES 105

DATA TYPE DETERMINATION 106

DATA TYPE CONVERSION 107

DATA STRUCTURES

STRUCTURING YOUR DATA 113

WORKING WITH POINTERS AND ADDRESSES 115

The Addresses Operator: & 116
Pointers 116
The Pointer Operator: * 116
A Warning About Pointers 120
Functions and Pointers 121

WORKING WITH ARRAYS 123

What Is an Array? 123
Using Arrays 124
Arrays and Pointers 128
Array and Pointer Arithmetic 130
Array Initialization 131
Strings 132
Multidimensional Arrays 133
Arrays of Pointers 134
Pointers to Functions 135

DATA STRUCTURES 137

Creating Data Structures: STRUCT 138
Pointers to Structures 140
Structures and Functions 141

DATA STRUCTURING TECHNIQUES: A SAMPLE PROGRAM 143

Fields and Unions 154
Th.{' TYPEDEF Facility 157

FIVE

SIX

BIT MANIPULATION OPERATORS 159

SUMMING UP 161

THE STANDARD LIBRARY

C AND UNIX 166

The Standard Input and Output 166
Portability 167

USING THE STANDARD 1/0 LIBRARY 168

Console Routines 168
Character and String Functions 179
Mathematical Functions 181
Memory Allocation and System Interface Functions 181

ACCESSING FILES FROM WITHIN YOUR PROGRAM 182

Using Disk Files for Input and Output 183
Types of file Access 183
File Functions 184
Stream vs File 1/0 186
Using Standard 1/0 Files 189
Command Line Arguments 192

SEVEN

THE MACINTOSH ENVIRONMENT VS THE UNIX ENVIRONMENT 196

A Note About Using Toolbox Routines 197

COMPILING YOUR PROGRAM

COMPILING YOUR PROGRAM 201

USING COMPUTER DIRECTIVES 203

The #DEFINE Directive 203
The #INCLUDE Directive 206
Conditional Compilation Directives 207
Miscellaneous Directives 209

DEALING WITH COMPILER ERRORS 211

EIGHT

xi

xii

LINKING YOUR RELOCATABLE FILES 213

CREATING YOUR OWN LIBRARIES 215

REFERENCE GUIDE

DEFINITIONS 219

STATEMENT CONSTRUCTION 220

Whitespace 220
Comments 220
Statement Blocks: {} 221
Statement Termination: The Semicolon 221

DATA DECLARATION 221

Data Types 221
Storage Classes 222
Data Declaration 223
Initialization 224
Scoping Rules 226
Data Type Operators 227
Bitwise Operators: & : " > > < < - 230
Assignment Combinations 230
The Increment and Decrement

Operators: ++ and - - 231
Relational Operators: < > < = > = 233

CONTROLLING PROGRAM FLOW 233

Repetition 233
Conditional Execution 234
Unconditional Program Flow 237

FUNCTIONS 238

Function Definition 238
External Function Definition 239
Returning Values from Functions 239
Parameter Passing Conventions 239
Recursion 239

NINE

POINTERS AND ADDRESSES 240

The Indirection Operator: * 240
Pointer Declaration 240
The Address Operator: & 241
Pointer Restrictions and Conventions 241

ARRAYS 241

Array Declaration 241
Arrays and Pointers 242
Strings 243

STRUCTURES 243

Structure Declaration 243
Structure Member Declaration 244
Structure and Union Operators 245

A TABLE OF ASCII VALUES 250

KEYWORDS 258

CHARACTER ESCAPE SEQUENCES 260

PRECEDENCE OF OPERATORS 262

CONVERSION RULES AND CONSTANT FORMATS 264

CONVERSION RULES 265

CONSTANT FORMATS 265

Integer Constants 266
Floating Point 266
Character Constants 267
Strings 267

xiii

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

xiv

TRUTH TABLES 268

GLOSSARY 270

BIBLIOGRAPHY 288

INDEX 290

APPENDIX F

APPENDIX G

APPENDIX H

INTRODUCTION

This book was written for people who have an interest in designing
and writing their own software for the Macintosh. We have devel­
oped this tutorial to the C programming language for you, the Macin­
tosh user, and for programmers at all levels of expertise, whether you
have done just a little programming in BASIC or Pascal or whether
you are skilled in several languages. This book will guide you through
all phases of computer programming and give you opportunities to
learn, to be challenged, and to experience the success of writing and
running your own programs.

The tutorial nature of this book makes it easy for a programmer at
any experience level to learn a new language. When reading Pro­
gramming the Macintosh in C, you will encounter many sample
programs that should be treated as programming exercises. As you
encounter the programming samples, enter them into your computer
and run them. Make any indicated changes and note the results. As
we all know, the best way to learn something is to do it!

How THIS BOOK IS ORGANIZED

Chapter 1 describes the structure of the computer from a program­
mer's viewpoint and defines basic elements such as the CPU, bytes,
and words. It also discusses important topics like memory, memory
management, storage representations, and the binary, octal, and hex­
adecimal numbering systems. Chapter 1 continues with a description
of how to get data into and out of your C programs. The chapter con­
cludes with a brief illustration of how to use the computer to write
and operate C software. Those readers who feel comfortable with
these concepts may quickly review the material and skip directly to
Chapter 2.

Chapter 2 is devoted to the topic of the elements of a programming
language and to the task of writing a program. The first part of the
chapter describes what programming languages do, focusing on
the task of machine-level language and on the need for higher-level
languages. Next the chapter addresses the question of the differences

xv

xvi

between programming languages in regard to four key factors: the
jobs the language is designed to accommodate; the levels of the lan­
guage; the programming tools available in the language; and when
language translation is performed. All of this leads up to an introduc­
tion to the special characteristics of the C programming language in
which we explain why C is such a popular language among pro­
grammers today. Chapter 2 conludes with an overview of the
programming process and a definition of some of the elements and
conventions of C.

Chapter 3 lists the basic constructs used in all programming
languages. For each construct, the appropriate C syntax, a descrip­
tion of its use, and an example are provided.

Chapter 4 details the organization of a C program. The basic com­
ponent of a C program is the function. Chapter 4 describes the
function and its various attributes with respect to the use of functions
in a C program.

Chapter 5 continues the discussion of data storage by specifically
detailing the method that C uses for data storage. The chapter begins
with an introduction to the basic types of data that you may use in C.
Topics such as constants, determining the data type to use, and con­
verting from one data type to another complete the chapter.

Chapter 6 builds upon the information introduced in Chapter 5.
Chapter 6 begins with the topic of addressing data and using pointers
to access the data. The second and third sections of this chapter
cover the more sophisticated data handling methods available in C,
such as arrays and structures.

Chapter 7 presents the standard input and output routines. From a
technical standpoint, these input and output routines are not part of
the C programming language. Chapter 7 explains why these routines
are provided and how to use them.

Chapter 8 completes our description of the process of writing a
program in C. This chapter focuses on the utility programs you will
be using to generate a working C program. The chapter begins with
the compiler and its options. The linker is described next, followed
by the librarian.

Chapter 9 is a reference guide for you to use while you are writing
your C programs. The topics in the reference guide are presented in
the same order as they are in Chapters 2 through 6. This portion of
the book is intended to make the book a useful reference text as well
as a learning tool.

This book is designed to teach you about the C programming lan­
guage and how to use it with the Macintosh. It is beyond the scope

xvii

of this book to teach you how to program the Macintosh (for
example, topics such as creating windows and menus and using the
graphics routines are not covered). In order to program the Macin­
tosh, your programs must make use of the support routines built into
the Macintosh ROM, called the User Interface Toolbox. Before you
can write sophisticated programs of this sort, you need to know a
language in which to program the Mac. By teaching you C, this book
will give you the background you need before you move on to pro­
gramming the Macintosh.

WHAT YOU NEED TO USE THIS BOOK

C is a compiled language and requires several auxiliary pieces of
software in order to translate your program into a code that the
computer can understand. Of course, before you can do any C pro­
gramming, you need a computer that will run this software. The
hardware required for this book is the basic Macintosh, an external
floppy disk drive, and a printer. The basic Macintosh consists of 128
kilobytes of memory, a display screen, a keyboard, a mouse, an inter­
nal floppy disk drive, and the software required to make the
computer function.

Although the basic Macintosh will suffice for some C development
systems, the lack of the second disk drive means that you will be
doing an extensive amount of disk swapping. The ideal Macintosh C
development system hardware consists of a Macintosh with 512 kilo­
bytes of memory, an external hard disk drive, and a printer. The
larger memory allows the Macintosh to operate a little bit faster.
The hard disk drive eliminates the need to swap disks while you are
developing a program. In addition, the hard disk drive runs much
faster than the floppy disk drive, which reduces the amount of time
you spend waiting for your program to compile (see Chapter 2).

As for the software, the first program you need is a C development
package. Several companies are now producing such packages for the
Macintosh. The development package, also called a development
system, will at least consist of a program called a compiler. Along with
the compiler, you will need an editor, a linker, and possibly an
assembler.

This set of software is used in various combinations in order to
create a program file that can be executed by the computer. The edi­
tor is a program that allows you to type your C program into the

xviii

computer and save it on disk. It is actually a specialized word
processor that has features unique to the needs of a programmer. The
compiler takes your C program and creates a file to be used by either
the linker (a relocatable object file) or the assembler (an assembly file).
If the compiler creates an assembly file, then the assembler must be
used to create the relocatable file. The linker takes the relocatable file
and generates an executable program file. (This is just a brief over­
view of what the development· software does. For a more complete
description, refer to Chapters 1, 2 and 8.) The editor, assembler, and
linker programs-that is, the programs other than the compiler-may
or may not be included in your development package, depending
upon the manufacturer. Some systems will provide all of these pro­
grams plus some other utilities, while other systems will only provide
a compiler.

To provide continuity through the many examples used in this text,
we have selected the Consulair Mac C Compiler available from Con­
sulair Corporation. The Consulair system is designed to be used with
the Macintosh Development System (MDS). The Mac C compiler con­
sists of the C compiler and several supplementary files (the use for
these files will be explained in Chapter 8). The MDS includes the
assembler, the linker, and the editor. For this book, it is irrelevant
whose development system you choose as long as you have all of the
necessary programs and as long as the compiler implements the stan­
dard Kernighan and Ritchie C programming language. Kernighan
and Ritchie designed C and have provided a list of specifications
about what programming constructs the compiler must support, and
in some cases how the compiler must work. If your compiler's man­
ual states that it supports the I<® standard C, then it will work With
this book and can be used for many of your programming tasks.

Take the security precautions necessary when dealing with any
computer: make duplicate copies of all your important software.
Never use your originals, and use only those disks that have informa­
tion of relatively low value on them for experimentation. If you take
these two simple precautions, it will be impossible to ''break" your
computer's software.

A REVIEW

OF SoME

PROGRAMMING

BASICS

A REVIEW OF SOME PROGRAMMING BASICS 1

The purpose of Chapter 1 is to provide a refresher course on the
basic concepts needed in order to program effectively. The chapter
begins with a look inside the computer at the basic components
called the CPU, RAM, and ROM. Next comes a discussion on num­
bering systems including decimal, binary, hexadecimal, octal systems,
as well as converting values between the various systems. Following
the discussion about numbers, the chapter covers data representation
and memory usage. Chapter 1 concludes with a brief overview of the
program development process. Those of you who already feel
comfortable with this information may skip this chapter and move
immediately on to Chapter 2.

A BRIEF LOOK INSIDE THE COMPUTER
All personal computers now available have essentially the same set

of internal hardware: a central processing unit (called a CPU), a main
memory storage unit, and various devices for communication with
the operator (a keyboard, a mouse, and a video display terminal).
From the point of view of programming in C, the hardware of pri­
mary concern is the CPU and the computer's memory.

THE CENTRAL PROCESSING UNIT

We will begin with the heart of the computer: the central processing
unit, or CPU for short. This small silicon microchip controls the oper­
ation of your computer. Technically, it does not physically operate all
the parts of the computer, since this would place a tremendous work­
load upon the CPU. Instead, certain instructions will cause the CPU
to activate an auxiliary piece of hardware, which in turn has its own
unique task that it can do much more efficiently than the CPU could.
For example, to read data from a disk, the CPU will issue a read
instruction to a microchip in charge of the disk drives.

The CPU contains an instruction set that programmers refer to as
machine language, a language in which the instructions are immedi­
ately executable by the CPU. Machine language consists exclusively
of ones and zeros representing "on" and "off" states within the

2 PROGRAMMING THE MACINTOSH IN C

circuitry of the machine. This makes machine language much too dif­
ficult for humans to remember and use. This language is sometimes
confused with assembly language, which uses symbols (like ADD,
MOV, and so on) to represent the machine instructions. We will dis­
cuss these languages later.

MEMORY

The CPU has significantly limited storage facilities, so programs
and data are stored outside the CPU. This part of the hardware is
called memory. Currently, most .smaller computers contain two types
of memory: read-only memory (ROM) and random-access memory
(RAM).

ROM AND RAM

The term read-only memory is almost self-explanatory: ROM con­
tains information that can be read by the CPU but not changed. Just
as one might write in permanent ink, the contents of read-only mem­
ory are written once (usually by the manufacturer) and then are
forever available for reading. This type of memory is also termed
nonvolatile memory, indicating its persistence even after the power is
turned off.

In contrast, RAM is volatile memory and will lose its contents
when the power is terminated. Much like writing in pencil, the con­
tents of RAM can be written and then changed. Random-access mem­
ory is the major memory portion of your personal. computer. It is
theoretically thought of as a separate unit that allows you to retrieve
data independently of the order in which it was stored; hence the
name "random" access. RAM also allows you both to read from and
write to it, and is thus sometimes known as read/write memory.
Throughout the remainder of this book, references to memory will
imply the RAM portion of your computer unless otherwise specified.

You may have heard that a computer only uses two values: on or
off. Electronically, this is a relatively easy task to implement. How­
ever, using only two values requires some creative thinking in order
to represent data within a computer's memory. This problem has
been solved through the use of various numbering systems.

A REVIEW OF SOME PROGRAMMING BASICS 3

NUMBERING SYSTEMS

The various numbering systems used when programming consist of
the decimal, binary, hexadecimal, and octal numbering systems. The
decimal numbering system is the one that we use daily. It is provided
by the compiler as a convenience to the programmer. The binary
numbering system is the numbering system used by the computer. In
cases where you need to access the computer's hardware (for
example, to control a modem or disk drive), you will use the binary
numbering system. The last two systems, hexadecimal and octal, are
just variations on the binary system.

THE BINARY NUMBERING SYSTEM

In the section discussing the representation of data in the com­
puter's memory (later in this chapter), a knowledge of the binary
numbering system, also known as base 2, will be very helpful.

The decimal numbering system has ten digits labeled zero through
nine with each digit representing a power of ten. As you can see in
Figure 1.1, the decimal number 51,035 is equal to 50,000 plus 1,000
plus 30 plus 5.

Decimal Position ExamP-le:

5 x 1 0000 = 50000
1 x 1000 1000
0 x 100 0
3 x 10 30
5 x 1 5

51035

I ' 2 l L,,.. I
~101 :10

102= 100 Value

103 = 1000
104 = 10000

Figure 1.1: Powers of 10 for the Decimal Numbering System

4 PROGRAMMING THE MACINTOSH IN C

CONVERTING FROM BINARY TO DECIMAL

The binary numbering system contains only two digits: zero and
one. Each digit represents a power of 2 (see Figure 1.2). The binary
number 10011 is equal to 19: that is, to 16 plus 2 plus 1.

This last example illustrates how to convert from the binary num­
bering system to the decimal numbering system. Converting from
decimal to base two by hand takes a little more effort than converting
from binary to decimal and consists of a series of repeated steps.

Decimal Position

Value
in decimal

Examgle:

1 x 16 = 16
0 x 8 = 0
0 x 4 = 0
1 x 2 = 2
1 x 1 = 1

19 in decimal

Figure 1.2: Powers of 2 for the Binary Numbering System

19 divided by 2 = 9, with a remainder of 1;
so we write down the number 1:

9 divided by 2 = 4, with a remainder of 1;
so we write down the number 1: 11

4 divided by 2 = 2, with a remainder of O;
so we write down the number 0: 011

2 divided by 2 = 1, with a remainder of O;
so we write down the number O: 0011

Add the number 1 to the left of the digits: 10011

Figure 1.3: Converting the Decimal Number 19 into Binary

A REVIEW OF SOME PROGRAMMING BASICS 5

CONVERTING FROM DECIMAL TO BINARY

Figure 1.3 shows a simple example of converting the decimal num­
ber 19 into binary. As you can see, 19 in decimal is 10011 in binary.

To convert a number from decimal to binary, follow these generic
steps. As you perform the steps, write all the answers to the ques­
tions backwards: that is, right to left.

1. Divide the decimal number by 2.

2. If you have a remainder, write down the number 1. If you do
not have a remainder, write down the number 0.

3. Discard the remainder you might have obtained earlier and
use the quotient as the dividend in the next division.

4. Repeat steps 1 through 3 until you obtain 1 as the quotient.
The number 1 will always be added to the left of the digits you
have already obtained.

The easiest way to completely understand these procedures is to
practice them. Table 1.1 contains a list of powers of two and Table
1.2 contains several conversion examples.

Common Powers of 2

n 2" n 2"
0 1 11 2,048
1 2 12 4,096
2 4 13 8,192
3 8 14 16,384
4 16 15 32,768
5 32 16 65,536
6 64 17 131,072
7 128 I 18 262,144
8 256 19 524,288
9 512 20 1,048,576

10 1,024 21 2,097,152

Table 1.1: Common Powers of 2

6 PROGRAMMING THE MACINTOSH IN C

Decimal

0
1
2

19
101
255

10,354

Binary

0
1

10
10011

1100101
11111111

10100001110010

Table 1.2: Decimal to Binary Conversion Examples

BINARY ARITHMETIC

Addition of binary numbers is analogous to addition in the decimal
number system. If two digits, when added, generate a value that can­
not be represented with a single digit, the rightmost digit is retained
and the remaining digits are carried to the next column. Figure 1.4
shows some sample additions in binary.

Using the binary number system has important implications for in­
depth computer use in, for example, engineering, programming, and
design. But for the purposes of this book, you need only understand
the principles discussed in this section.

OTHER NUMBERING SYSTEMS: OCTAL AND

HEXADECIMAL

Along with the binary number system, you will encounter two other
number systems: octal (base 8) and hexadecimal (base 16). These two

Conversion from Binary to Octal

000 = 0
001 = 1
010 = 2
011 = 3

Table 1.4: Conversion from Binary to Octal

100 = 4
101 = 5
110 = 6
111 = 7

A REVIEW OF SOME PROGRAMMING BASICS 7

bases were chosen because their base values are powers of two, malc­
ing conversion among all three numbering systems relatively easy.

For example, to convert from binary to hexadecimal, split the
binary number into groups of four digits, starting from the right; the
four binary digits will represent the values 0 through 15 of
the hexadecimal system. Then convert each group to its appropriate
hexadecimal value. By convention, the values 10 through 15 are rep­
resented by the letters A through F, respectively (see Table 1.3). Octal
conversion is similarly easy. Split the binary number into sets of three
digits, starting from the right, and then convert each set to its appro­
priate octal value (see Table 1.4).

These two numbering systems are used at various points in com­
puter programming. For simplicity, decimal numbers will be used
throughout the remaining chapters of this book, with any exceptions
explicitly noted. In the next section of this chapter, we will see the
binary system in use for data representation.

How DATA IS STORED

Information to be stored in a computer memory needs to be in a
form the computer can use and manipulate with efficiency. After
much experimentation, it became standard to use the two electrical
conditions of on and off. (The words "on" and "off'' do not necessar­
ily correspond to an electric current; they merely represent the rela­
tive electric state of the unit.) Since a unit of memory can have only

Conversion from Binary to Hexadecimal

0000 = 0
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0101 = 5
0110 = 6
0111 = 7

1000 = 8
1001 = 9
1010 = A
1011 = B
1100 = c
1101 = D
1110 = E
1111 = F

Table 1.3: Conversion from Binary to Hexadecimal

8 PROGRAMMING THE MACINTOSH IN C

Carry-+ 1
1101

+0001

1110

1111
1111

+0001

10000

11
0110

+0110

1100

1010
+0101

1111

Figure 1.4: Some Sample Additions in Binary

111111
01110101

+ 11011110

101010011

one of two values, it is called a bit, which is short for binary digit.
This representation works well for the computer and is also a
relatively easy representation for humans to use if one of the states is
defined to be the value 0 and the other state is defined as the value 1.
Thus, the contents of any memory unit at a given time will have the
value of either 1 or 0.

As we have seen in the previous section, placing several O's and l's
(bits) together will form a positive integer number in binary. Unfortu­
nately, other types of data also exist and need to be represented-for
example, negative and real numbers or alphanumeric and other char­
acters. By using standardized conventions, these other types of data
can be represented with little difficulty. Before these conventions are
discussed, however, you need to know some of the terms used for
strings of bits-that is, you need to know about bytes and words.

The term byte refers to a string made up of a specified number of
bits. The number of bits in a byte depends on the particular represen­
tation system chosen. Byte sizes can be six, seven, or eight bits in
length, depending upon the computer. Most microcomputers and
minicomputers use an 8-bit byte. We will deal with only 8-bit bytes in
later sections of this book. The memory inside personal computers
and the storage capacity of external storage devices are measured in
bytes. Greek prefixP.s have been used to express large quantities
of bytes: for example, a kilobyte (KB or simply K) equals one thou­
sand bytes, and a megabyte (MB) equals one million bytes.

The term word indicates a division of memory. The size of the
word equals the number of bits the CPU uses during the execution of
an instruction. The Macintosh processes 32 bits per instruction and
therefore has a word size of 32 bits; hence its designation as a 32-bit

A REVIEW OF SOME PROGRAMMING BASICS 9

computer. Other common word sizes are 8 and 16 bits. The word is a
machine-related concept that you will come across when you write
complex systems software like an operating system, compiler, or a
word processor.

There are some important points about the byte that you should
know about. First, let's return to the point that initiated the explana­
tion of bits and bytes: data representation.

How NUMBERS ARE REPRESENTED

Positive integer numbers are easily represented through the binary
numbering system: one byte can represent any number from 0
through 255 (00000000 to 11111111); two bytes together, or 16 bits,
can represent any number from 0 through 65,535, and so on, using as
many bytes as will provide enough bits to represent the number
desired.

Negative integer numbers are a little trickier. The manufacturers of
CPUs use the convention that the leftmost bit of a string of bits is
used to indicate (flag) whether or not the number is negative (assum­
ing the data represents a number). You will notice that the range of
numbers that the binary string can represent doubles each time we
add a digit to a binary string. For example, one digit can represent
the two values 0 and 1. Two digits can represent four values, and
three digits can represent eight values.

Now, if we dedicate the leftmost bit to be a sign bit that indicates
the sign of the number, then the largest value that can be represented
by the remaining bits will be half that of the original string of bits.
For example, assuming you have an 8 bit string, you can represent
the numbers O through 255, or 256 different values. Now take the left­
most bit and call it the sign bit. The remaining 7 bits can now only
represent the numbers 0 through 127, or 128 different values.

Don't despair because what we lost in the positive range of values,
we gained in the negative range of values. The sign bit plus the seven
bit number can also represent the values - 1 through - 128, or 128
different values. Thus, an 8-bit string will always be able to represent
256 different values whether the values range from 0 through 256 or
from -128 through +127.

Another consideration in representing negative numbers is the
need to insure the proper numerical order, so that - 2 comes before

10 PROGRAMMING THE MACINTOSH IN C

-1, for example, and -1 comes before 0. The latter of these two
conditions is more easily implemented. For negative versus positive
numbers, the computer can simply compare the sign bit and con­
clude that a negative number will always be less than a positive
number because a negative number has a 1 in the leftmost digit and a
positive number has a 0 in the leftmost digit.

To allow the computer to compare two negative numbers, a more
involved scheme of representation is required. The number - 2 can­
not be represented as 10000010 in binary since this would not be less
than 10000001 in binary, or -1. Rather, a method called two's
complement is used to generate negative binary numbers. This is a
three-step process, carried out as follows:

1. Take the binary representation of the positive of the number to
be converted.

2. Convert all l's into O's and all O's into l's.

3. Add 1 to the resulting number.

One property of the two's complements (and complements in
general) is that the conversion of a two's-complement negative number
into a positive number can be done using exactly the same procedure!

Two's-complement numbers satisfy the requirement of having the
number -2 (11111110 binary) be less than the number -1 (11111111
binary). For these reasons, the two's-complement representation of
negative numbers has been adopted for almost all programming uses.

Figure 1.5 shows two examples of creating negative binary num­
bers in two's-complement form. Figure 1.6 shows two examples of
converting negative binary numbers in two's-complement form into
positive binary numbers.

Another property of the two's complement makes it easy to add
binary numbers (where negative numbers are represented in two's
complement). The numbers are added as if they were both unsigned
binary numbers. No special alterations are needed. Figure 1.7 shows
some binary arithmetic using two's-complement numbers. Any carry
beyond the seventh digit is ignored.

Real numbers-also called rational or floating point numbers-have
an even more involved method for representation, which we will not
discuss here. If you are interested, the Consulair Mac C has an inter­
nal floating point format and also supports the IEEE 80-bit standard
format.

A REVIEW OF SOME PROGRAMMING BASICS 11

Example 1:

8 decimal 00001000 binary
Convert 11110111
Add 1 +
-8 decimal = 11111000 binary

Example 2:

47 decimal = 00101111 binary
Convert = 11010000
Add 1 = +
-47 decimal = 11010001 binary

Figure 1.5: Examples of Creating a Two's-Complement Number

Example 1:

-8 decimal = 11111000 binary
Convert 00000111
Add 1 = + 1

8 decimal = 00001000 binary

Example 2:

-47 decimal = 11010001 binary
Convert = 00101110
Add 1 = + 1

47 decimal = 00101111 binary

Figure 1.s:Converting Negative Number to Positive Using Two's Complement

12 PROGRAMMING THE MACINTOSH IN C

8 decimal = 00001000 47 decimal 00101111
-8 decimal = +11111000 -8 decimal = +11111000

0 decimal = 00000000 39 decimal = 00100111

8 decimal = 00001000 -47 decimal = 11010001
-47 decimal = + 11010001 -8 decimal = +11111000

-39 decimal = 11011001 -55 decimal = 11001001

Figure 1.7: Binary Arithmetic Using Two's-Complement Numbers

CHARACTER REPRESENTATION

Binary numbers are also used to represent text characters.
Computers, as we have seen, work exclusively with numbers. There­
fore, the easiest way to present text so that the computer can under­
stand it is to transform the text into numbers. Several character set
representations exist today, the most popular of which are ASCII
(American Standard Code for Interface Interchange) and EBCDIC
(Extended Binary Coded Decimal Interchange Code). The EBCDIC
representation system was developed by IBM and is used primarily
on their larger computer systems. The ASCII system is widely used
among most other computer systems, and we will only discuss this
system here.

Since character representation requires only that a character be
converted to some unique numeric value, the ordering of characters
within the set tends to be arbitrary. Appendix A contains an ASCII
chart showing each character and its associated numeric value in
decimal, binary, octal, and hexadecimal. The arrangement of the
chart breaks the character set into eight 32-character segments. The
first segment (O through 31 decimal) contains nongraphic (unprint­
able) characters used for device and information control. The next
three segments (32 through 127 decimal) contain graphic (printable)
characters, including the alphabet, punctuation characters, and other
symbols. The remaining four segments are not defined by ASCII con­
vention. Some devices will use these segments to duplicate the first
four segments into the second four segments. However, most pro­
grams and other devices will distinguish between characters with
values less than 128 and those greater than or equal to 128.

A REVIEW OF SOME PROGRAMMING BASICS 13

AN OVERVIEW OF MEMORY
ORGANIZATION

At this point we are ready to return to the subject of memory.
Understanding the mechanisms at work while your program
executes, or carries out its tasks, will help you to understand the tools
available in the programming language, to design more efficient pro­
grams, and to determine why, where, and how programming errors
occur.

Memory itself consists of a large block of stored bits divided into
bytes or words. Each byte in memory has an address, used by the
CPU to request data from the location or store information at that
location. Since the memory contains only the binary representation
of the data, the data stored in memory may be used to supply a pro­
gram with information, or it may be a program instruction for the
CPU to execute. Thus, the term "data" refers only to the contents
of a memory location and not necessarily to what the contents
represent.

At one point in computer history, data and program instructions
resided in physically separate units of the machine; this was ineffi­
cient and wasteful. Today, the data and program instructions reside
in the same physical piece of hardware and are differentiated merely
by their location within the memory. The program instructions reside
in a contiguous block of memory that the CPU processes in sequence
(according to address), with the remaining available memory contain­
ing the data for the program. In this case, the program will tell the
CPU where to find the data it requires by supplying the address of
the data to the CPU.

Fortunately for the programmer, a language like C frees you from
all this addressing and internal data structure. The placement of your
program and its data are taken care of by subordinate programs (the
compiler, for example).

In languages like C, the programmer deals with variables rather
than with addresses in memory to be used by the computer. A vari­
able is an identifier that allows the programmer to name a place in
memory. The name, for convenience purposes, associates the con­
tents of the location with the meaning of the contents. You can call
the location "partnumber" or ''total" instead of just using the address
which might be 08AO or F08D (both in hexadecimal). The numbers
don't tell you what is at that location, whereas a variable can give
you an exact meaning of that location's contents.

14 PROGRAMMING THE MACINTOSH IN C

The variable can be used like a variable in an algebraic or mathe­
matical expression. For example:

(1) x = 6
(2)y=2
(3)z=x+y

Here x, ~ and z are variables. In line 1, x is assigned a value of 6.
In line 2, y is assigned a value of 2; and line 3 contains an expression
that assigns z the value of the contents of x added to the contents of
y. Thus, z will have a final value of 8.

A variable can be used on both sides of the assignment symbol (=)
within the same expression:

(4) z = z + x;

This takes the value of the contents of z and adds it to the value of
the contents of x-in this case, 8 + 6. The resulting value of 14 is
now put back into location z. Note that when a variable is used in an
expression, its value will not change unless it is being assigned a
value. For example, the values of variables x and y in lines 3 and 4 of
the preceding example remain the same.

Variables are just simply a method of naming a location in memory.
The data at that location is literally a string of bits, or perhaps a
string of bytes if a larger data space is required. The data may be
interpreted in any way that is appropriate for the context. It may be a
number, a character, or some other object you want to call it. In
Chapters 3 and 5 you will see how the compiler knows how to inter­
pret the data associated with a particular variable.

FILES, OPERATING SYSTEMS, AND
OTHER ESSENTIALS

The tutorial nature of this book virtually requires you to use your
computer to create, compile, and execute programs. Therefore, you
should have some familiarity with operating your computer. Specifi­
cally, you will need to be familiar with the use of the desktop, the file
editing program, and your peripheral and other hardware in general
(the Macintosh itself, disks, printers, and so on). If you do not have
this familiarity, learn it now! Read the manuals and practice using

A REVIEW OF SOME PROGRAMMING BASICS 15

your machine. From this point on, we will assume that you have a
basic knowledge of computer operation.

In the following sections, we will explain what you will need to
know about files and the Macintosh operating system-that is, the
desktop environment-in order to begin programming in C on
the Macintosh. As a programmer, you will eventually need to use
either files, or the operating system, or both, within a program. Both
of these terms-files and operating system-are discussed here as
concepts rather than tangibles.

FILES

Files provide a place within the computer system's architecture to
store vast amounts of data permanently. Files usually exist on a sec­
ondary storage unit such as disks, tapes, or punch cards (the main
memory is considered the primary storage unit of the computer). The
most popular of these devices in use today is the disk, which is avail­
able in two varieties: floppy and hard. We will be concerned only
with files residing on disks in drives. From a programmer's perspec­
tive, there is no difference between a file on a floppy disk and a file
on a hard disk, except for the size limitation of the file itself.

How FILES EXIST IN MEMORY

Conceptually, a file consists of a block of contiguous data. Storing
data in a file is not very different from storing data in computer
memory, although data storage within a file is not done as automati­
cally as storing data in memory because of the way files are designed
and used.

Two types of files exist: sequential files, which require data to be
read or written in a sequential manner, and which do not allow spe­
cific placement of data within the file; and random-access files, which
allow data to be read or written at any specified point within the file.
Random-access files require some overhead in programming (like
determining how much space the data will require) so that the point
where data will be read or written can be specified. In either case,
file accessing has some strict rules associated with it which will be
discussed later.

From the program's point of view, the file is an extended area of
memory with the added benefit of being nonvolatile. Like random­
access memory, a random-access file permits the programmer to

16 PROGRAMMING THE MACINTOSH IN C

place data at any desired location. For now, all you need to know
about files is the overall data organization within the file.

How FILES ARE ORGANIZED

A file may contain any set of data-a program, for example, or data
for a program. Whatever the file contains, the program using the file
must be able to understand the nature of the data the file contains. In
other words, the data within a file will have a specific format that
satisfies the particular program's expectations. For example, a file
that contains data for a program (called a data file) will usually con­
sist of data records.

Let's take a closer look at how data records organize the informa­
tion in a data file. A data record is a logical grouping of pieces of
data, all of which describe or pertain to a particular item. The pieces
of data that make up a record are collectively referred to as fields of
the record. An employee record is an example of a data record (the
employee being the item described). This record contains fields for
the employee's name, his or her address, telephone number, social
security number, and any other information used by the program for
processing. The record will be constructed with the fields in a fixed
order for ease of use. In other words, the employee's name will
always be found in the same place within the record. Finally, the file
will contain a set of data records (for several employees, for
example), and the records in the file will all be of the same format,
thereby eliminating the programming overhead that would be needed
to determine the format of the record (each time a record is read).
This also makes the file much easier to use.

We have described the most general case for a data file. In practice,
other types of files can take on any format the programmer chooses.
As a rule, the format of a file will imitate the format of the applica­
tion. For example, a program file ready for execution will look like
that portion of memory in which the program will reside; or the files
containing the C programs you will write will consist of a continuous
sequence of characters. In essence, the format of the file is the orga­
nization of the data within the file.

THE OPERATING SYSTEM

Operating systems control hardware. Actually a program in itself, the
operating system resides within the computer while other programs

A REVIEW OF SOME PROGRAMMING BASICS 17

execute. The operating system provides preprogrammed sets of
instructions to perform specific hardware functions such as writing to
the disk or displaying data on the video screen.

For the programmer, the operating system provides a standardized
environment in which to create programs. Each system of computer
hardware has intrinsic operating characteristics. The author of the
operating system takes as many of these differences into account and
supplies the user of the operating system with a consistent set of
functions that will perform defined operations in conjunction with
the various pieces of hardware. Thereafter, when the operating sys­
tem is used on different machines, the programmer need only know
the operating system's commands and need not know about the oper­
ation of the hardware.

This, in turn, reduces programming time and provides a consistency
among programs written by different programmers. On the Macintosh,
for example, the windows are handled through special routines that
are part of the Interface Toolbox. If each programmer had to write his
or her own window routines, each program produced might have win­
dows that look different from one another. Some programmers might
not even supply windows. However, with the Toolbox, each program­
mer can use the same window routines so that all of the programs
written for the Macintosh have a consistent look.

Most computer users do not even realize that the disk operating sys­
tem, or DOS, is a program and that it is separate from the hardware
and controls the operation of the computer. The term disk operating
system is used to differentiate the operating systems used on the
smaller personal computers from those used on larger computers.
The larger computers' operating systems contain many more facilities
for the programmer and the user, and control many more functions
than just operating the disk drives. When you program with a lan­
guage like C, you will not need to use the operating system directly,
because much of the operating system interfacing is provided for you
by the compiler. When you have learned C, you may want to access
these fundamental controls of the computer directly. Then you will be
able to create menus and windows, control the mouse, and so on.

Programmers also need to know something about the external view
of the operating system-that is, how the operating system is per­
ceived by the general user. For aesthetic and functional reasons, this
is an important consideration in designing a computer program. The
program cannot violate the 'rules set by the operating system; for
example, all file names must be of valid construction. Also, a pro­
gram that looks similar to other application programs will seem

18 PROGRAMMING THE MACINTOSH IN C

"friendly" to the user. Since the programmer uses the operating sys­
tem (as a user, that is) while writing a program in order to edit and
compile the program, he or she will become familiar with using the
operating system quite rapidly.

WRITING A PROGRAM

This section defines the overall process of creating and executing a
program in C, and then discusses the way in which programming
errors are handled.

THE PROGRAMMING PROCESS

Creating a program requires a goal. Once you decide what aspect
of life you want to automate, the program can be designed. After the
design stage, the program can be written. To write or code the pro­
gram, you use a text editing program to create a file containing the
necessary programming language instructions. This file is called the
source file; it contains the source code, or programming statements.

After completion of the program coding, you will need to execute
at least two programs in sequence to create a program file the com­
puter can understand. In most cases, the first program, the
compiler, takes your source code and creates a relocatable file. The
second program, usually called the linker, links the relocatable file to
create the executable file. You can now execute this file just as you
would any other command (commands are really programs) available
on the system.

Other compilers, like the Consulair Mac C, generate an assembly
file that contains the source code translated into assembly code.
Therefore, you must run an intermediate program, called the assem­
bler, to convert the assembly file into a relocatable file. This multistep
process provides the very valuable facility of being able to write and
test the program in small sections.

The relocatable file contains the machine-language instructions cor­
responding to your source code. However, no addresses have been
specified for the location of the program or the variables. The linker
takes the relocatable file, locates the actual address in memory where

A REVIEW OF SOME PROGRAMMING BASICS 19

the program will execute, and appends these actual addresses to the
machine code and variables.

The term "link" rather accurately describes the process taking
place, especially with multiple relocatable files. When large program­
ming systems are developed, they are usually coded in small, individ­
ualized sections, with each source file defining a unique function
within the system. Each section can be tested separately to make sure
it works. When all sections have been tested, they are linked into one
program so that all functions can work together as a system. (We will
not go into any further detail about programming large systems. This
explanation simply provides the reason for the linking step when an
executable file is created.)

DEALING WITH ERRORS

Either the compiler, the assembler, the linker, or the executable file
may produce an error, which for our purposes is a message that indi­
cates a problem. An error that occurs during compilation is called a
compile-time error. Such errors indicate that the compiler did not
understand a source code instruction in the source file, an error usu­
ally due to a typographical mistake on the part of the programmer,
such as omitting a closing parenthesis or mistyping a variable name.
Other errors include the misuse of variables, inconsistent use of
terms, and incorrect use of program instructions. The compiler will
tell you, via an error message, what the problem is, and where it
occurred.

The linker may also produce errors, but these errors will be rare in
your situation since (for the duration of this book, in any case) you
are neither linking nor referencing multiple files to produce one pro­
gram. The most common error message that results during a link
process indicates a reference from one file to another for a function
or variable that does not exist.

Errors that occur while your program is running are known as
run-time eITOrs. Some compilers place diagnostic code within the exe­
cutable file to handle any errors that occur during execution. Your
compiler may or may not have this added feature. If it does, your
compiler's manual should contain a section, table, or appendix
describing run-time error messages. At the time the error occurs,
your program will display an error message, usually describing the
reason for termination, and then abort the program. If your compiler
does not have this facility, your program will probably terminate

20 PROGRAMMING THE MACINTOSH IN C

abruptly when the error occurs, or stop execution of the program and
the whole computer system as well. When the latter happens, you
must restart (reboot) your computer.

Some languages provide methods of trapping errors. With this tech­
nique, you can place instructions within the source code to indicate a
specific action to be taken when an error occurs. This is known as
error handling or exception handling. C does not provide an error
trapping facility.

If you have had any difficulty understanding any section in this
chapter, reread that section and then continue with Chapter 2. If you
still have difficulty understanding the bit, the byte, the character sets,
or memory organization, you should find and read some reference
materials in these areas before proceeding.

PROGRAMMING

LANGUAGES

PROGRAMMING LANGUAGES 23

In this chapter, we will take an overall look at programming lan­
guages: what they are designed to do, how different levels of
languages evolved, and what factors are taken into account in catego­
rizing a language. We will also explain how C fits into this overall
context. In the second part of the chapter, we will focus in on some
of the specific characteristics of C. We will expand our discussion of
the features that make C such a popular language to work with. We
will also describe C's syntax and briefly discuss the basic logical flow
of programs and the purpose of program statements.

WHAT PROGRAMMING
LANGUAGES DO

Your Macintosh is a data processor. Processing data, however, covers
a broad range of tasks. In practice, a programmer evaluates a particu­
lar task and determines whether or not it is suitable for a computer
program. The assignment could be as simple as balancing a checkbook
or as complex as "reading" and summarizing a full-length novel. Most
tasks are easily definable and repetitive, making them ideal for comput­
erization, because a computer can perform calculations much faster
and more accurately than a human can. By computerizing such repeti­
tive assignments, we can apply more manpower to other areas, which
can result in significantly higher productivity.

Although computers are versatile, there are many jobs they cannot
yet perform: for example, driving an automobile in heavy traffic.
Computers are bound by the limitations of current technology.

How does a job become computerized? Not all tasks can be. Tasks
that can be well-defined as a sequential progression of activities,
match the computer's ability to perform a series of instructions in a
specified order. The set of instructions that anyone would have to fol­
low to complete the task is the essence of a computer program. Since
the computer cannot select the instructions it will perform, however,
someone must select the appropriate instructions and express them
in computer language. This is the function of a computer program­
mer. The programmer examines the job and determines what actions
the computer will have to take in order to complete the job.

Suppose that you wanted the computer to balance your checkbook.
For a computer to balance a checkbook, you must instruct it to find
the total of all uncashed checks and other debits listed in the check­
book and not listed on the bank's printed statement. Then the

24 PROGRAMMING THE MACINTOSH IN C

computer must find the total of all deposits and other credits listed in
the checkbook and not listed on the bank statement. Next it must
add the statement balance to the credit total, and subtract the debit
total. If this new total equals the balance in the checkbook, all is well.
Otherwise, a mistake has occurred somewhere in the checkbook, and
another process begins to find the mistake.

Most of us would find this description clear and straightforward.
Computers, on the other hand, have a language far removed from the
abstract concepts humans use to communicate. Their language con­
sists exclusively of l's and O's. For example, the instruction set of a
computer does not include the concept of "find" (as in "find the
total") in its limited vocabulary. The computer's commands allow
adding, subtracting, even multiplying and dividing, moving, and com­
paring pieces of data. The computer programmer must now define
for the computer what our English word "find" means, and he must
tell it what series of instructions will perform this operation.

The programmer could, in effect, ''teach" a computer how to per­
form a new task by communicating to it in its own machine
language-the language of the CPU. This language consists of a set of
instructions provided by the designer of the CPU. These instructions
will be one data word in length; any required data (depending upon
the syntax of the specific instruction) will follow the instruction. Most
machine language instructions have a very simple action, such as add­
ing or moving. Each bit in the word has a specific meaning, and the
machine language programmer must construct each instruction manu­
ally; this can be a very laborious and error-ridden task.

Since this method of communication is so repetitive and time­
consuming, however, programmers decided to computerize the very
art of communicating with the CPU. Today's programming languages
are the result of such computerization. In the early stages of program­
ming language development, the programmer only required a format
easier for humans to read. This gave rise to a program called an
assembler. The programmer creates a source file containing the CPU
instructions in a format humans can read, like ADD, SUB, and MOV.
The programmer executes the assembler program, which converts
these commands into their respective machine codes (l's and O's).
Thus, assembly language provides ease of use, but only with respect to
the commands provided by the CPU; it does not make representing the
concepts of the programming task at hand any easier. For this reason,
assembly language is considered a low-level language.

It's important to note at this point that the level of a language does
not necessarily reflect its quality; that is, a high-level language is not

PROGRAMMING LANGUAGES 25

necessarily better than a low-level language. The term "level" refers
to the ability of a language to represent abstract concepts used in
explaining and defining the programming task. Thus in our previous
example, for instance, the computer does not know that a check con­
tains information regarding the payee of the check, the amount of the
check, the check's number, and the date of the check. But if a
programming language has the ability to define the word "check" to
collectively refer to the associated data, the programmer may use the
word in his or her description of the task to the computer.

Being able to use the word "check" yields two benefits. First, pro­
gramming will proceed more rapidly, because the programmer is no
longer required to monitor every bit of data that comprises a
machine-language program. The programmer can now collectively
refer to groups of data with a single, natural word. Second, the pro­
gram becomes maintainable or easily readable. This second point is
important because often relatively small programs are written with
little regard for readability. At some later time, when the program
requires alteration (that is, maintenance), the original programmer
may either be unavailable or have forgotten the details of the logic
used when writing the program. In both cases, a programmer will
have to waste valuable time learning the program from scratch. If
you have had experience with programming, you have probably
encountered this situation already. If not, you will become aware of
the possible difficulties with such situations as we begin program­
ming later in the book.

To provide for the kinds of expanded capabilities we have been
discussing, programming languages more complex than machine lan­
guage or assembly language were developed. The vocabulary of a
programming language is often closely related to the kinds of tasks
the language was designed to perform. Since it would be rather cum­
bersome to design a programming language that included enough
commands to perform all specific tasks, most programming lan­
guages provide programmers with the tools to construct their own
commands. These new commands may be called functions, proce­
dures, subroutines, or subprograms. A created command of this sort is
really a structure made up out of simpler, single-word commands that
have either been provided by the language or previously created by
the programmer. With this ability to create commands, one can
define, for example, what the English word "find" means. Moreover,
because the programmer can define new commands, the initial
vocabulary of the programming language can be relatively small,
making it easy to learn for first-time users of the language.

28 PROGRAMMING THE MACINTOSH IN C

THE DIFFERENCES BETWEEN
PROGRAMMING LANGUAGES

Why do so many different languages exist? There are four major
differences between programming languages: 1) the jobs the lan­
guages were designed to accommodate; 2) the levels of the languages;
3) the tools available within the languages; and 4) when language
translation is performed. Let's take a brief look at each one of these
differences and how the C language fits into this picture.

THE JOBS A LANGUAGE IS DESIGNED FOR

First of all, let's consider the matter of the tasks that programming
languages are designed to accomplish. Programming languages have
been designed to facilitate the translation of ideas into instructions
the computer will use to perform the task. The languages FORTRAN
(for FORmula TRANslator) and APL (for A Programming Language)
have extensive mathematical functions that make them ideal for sci­
entific programs. A language called LISP (for LISt Processing), on the
other hand, has the ability to define more abstract concepts, and is
used in many applications based on artificial intelligence. Because of
certain characteristics that will be explained later on, the C language
is ideal for writing system programs. Many operating system pro­
grams and real-time applications (for example, a program that con­
trols a robotic welding machine) are written in C.

THE LEVEL OF A LANGUAGE

The level of a language, the second factor in determining the differ­
ences between languages, is often more difficult to identify. Level has
in fact become a vague term. In general, there are high-level lan­
guages and low-level languages. The lower the level of the language,
the closer it is to the actual workings of the machine. The higher the
level of the language, the further removed the instructions get from
the underlying design of the computer. C is considered a mid-level
language. While C originally began as an elevated assembly language,
today's version of C can match the capabilities of high-level
languages.

PROGRAMMING LANGUAGES 27

A LANGUAGE'S SPECIAL TOOLS

The third factor involved in classifying a language is the tools or
special programming features that the language offers. The tools
available within the language affect the ease with which the language
can be used to write programs. As we mentioned earlier, a program­
ming language may be quite general and provide the ability to define
new commands and data groups. C is such a language. It provides a
relatively small set of tools that can be combined (and even altered)
by the programmer. These new tools may be designed either for
general use or to meet the specific requirements of the job at hand.
Other languages try to include all the specific tools required for the
task for which the programming language was designed. These
languages are less flexible than C and are often difficult to extend to
other tasks.

INTERPRETED VS COMPILED LANGUAGES

Translation, the final category that differentiates languages, can be
done by an interpreter or a compiler. When a language is interpreted,
the source code files (see Chapter 1) that are written by the program­
mer are loaded into the computer's memory in a form readable by
humans. The computer then begins execution by taking the first
instruction of the source file, translating it into the appropriate
machine code, and executing the machine code instructions. Actually,
two programs are being executed: the applications program itself and
the program to interpret the source code. In general, an interpreted
program executes much more slowly than a compiled program, and
usually lacks the complex abilities and constructs of a compiled pro­
gram, such as being able to define the data object "check" or the
command "find." However, interpreted languages do not need to be
pretranslated so you don't need to wait before running your program.
This makes finding and correcting errors faster and easier than with
compiled languages.

In a compiled language, like C, the programmer writes instructions
in a source file, and then runs a program called a compiler to trans­
late the source code into machine code. When the program is to be
executed, the machine code file can be loaded into the computer and
used without delay. One advantage of a compiled language is that
because compiled programs are, in effect, pretranslated, they will run
faster than interpreted programs. A second advantage of compiled

28 PROGRAMMING THE MACINTOSH IN C

languages is the access to the more abstract and complex concepts
that make general and large-scale programming easier to do. The
drawback is the time spent waiting before a program can be tested
and run.

THE SPECIAL CHARACTERISTICS OF C

At this point, it might be helpful for us to explain some of the
special characteristics of C in a little more detail. These special char­
acteristics include C's data storage and definition capabilities, its
portability, its flexible and consistent set of tools for building new
commands, its modular structure, and the ease with which programs
can be documented internally.

Don't be concerned if you don't completely understand the con­
cepts we will be presenting in the next few pages. Our intention here
is simply to give you an overview of C's advantages as a program­
ming language. As you learn more about C in upcoming chapters, the
significance of the characteristics we are about to describe will
become clearer.

DATA STORAGE AND DEFINITION

In regard to data storage and definition, C combines the advantages
of assembly language with those of a higher level language. Let's take
a brief look at why this is so.

As we mentioned previously, programs and data reside in the same
memory. The computer does not know the difference between bytes
of a program and bytes of data. Some languages, like assembly lan­
guage, require the programmer to explicitly define the location of the
instructions and the location of the data. This requirement increases
the complexity of programming as different types of data become
necessary, because different types of data have different storage
requirements. For instance, a number between 0 and 255 needs only
eight bits of storage space, whereas the word "HELLO" requires at
least five bytes. Higher-level languages relieve the programmer of the
tedious practice of allocating space for the data, and so does C.

On the other hand, a programmer may want to know where and
how the data resides in memory. The semantics of a programming

PROGRAMMING LANGUAGES 29

language define how each data type is stored, and this usually cannot
be changed The semantics also determine the storage location of a
piece of data. Many languages will provide some method of deter­
mining the addresses of the data. These methods vary as much in
ease of use as the programming languages themselves. C provides a
very capable and flexible set of operators used to manipulate pieces
of data and to determine the location of data storage. We will discuss
this topic in depth in Chapter 6.

PORTABILITY

Processing power would be useless without the ability to receive
the original sets of data (input) and the ability to return the new sets
of data (output) to the outside world. The input/output facilities of a
language determine the ease with which the programmer can access
or communicate with the standard peripheral devices connected to
the computer, such as the video display terminal (VDT) and the key­
board. But what happens when the computer has to communicate
with a nonstandard device-for example, when another machine
such as a CAT-scan (computer-assisted tomography) device wants to
supply data to the computer, or when a device such as a robotic
welding machine is dependent upon instructions from the computer,
or when both situations exist, for example, in a Cruise missile?

Not all languages allow communication with nonstandard input/
output (1/0) devices. In fact, this facility is quite difficult to imple­
ment, because different devices have different requirements for
communication and operation. Some programming languages have
no facilities for adaptation to new devices; other languages, like C,
can adapt easily. While in general, the ability to adapt lies predomi­
nantly within the operating system, the programming language must
also be able to communicate with the operating system so that mean­
ingful data can be exchanged.

The C language specification contains no input/output facilities.
This means the language does not have any "wired-in" data access­
ing mechanisms, with the result that the language is not hardware
dependent-that is, tied to particular machinery. Most C compilers
include a set of commands for accessing some peripherals like the
keyboard, VDT, disk drives, and printer. This means that a program­
mer's source code can be moved directly from one machine (with its
hardware-dependent compiler) to another (with its own compiler) and
be recompiled with few, if any, changes. This is a big plus for a
programmer's productivity.

30 PROGRAMMING THE MACINTOSH INC

TOOLS FOR BUILDING COMMANDS

Earlier we mentioned that C is quite general and provides the abil­
ity to build new commands and data groups. Why is this the case?

C deals with the same data objects used by most computers-for
example, numbers, characters, and addresses. While the C language
provides a wide variety of mathematical operators to manipulate
these objects, however, C does not supply complex data objects.
Instead, the programmer has the ability to define additional data
objects as needed. Neither complex data objects nor operations on
these data objects are provided for in C; so the programmer must
create new commands to define operations for the data objects in
use. In summary, C has a relatively small vocabulary with a well­
defined and consistent set of operators.

WRITEABILITY: STRUCTURED PROGRAMMING

When writing a program, a programmer must plan carefully and
keep a multitude of thought tracks organized. Unplanned programs
tend to reflect the complexity of the workings of the programmer's
mind, with the result that the program itself tends to become con­
fused. Unplanned programming leads to error-prone, unmanageable
source code.

Structured programming was developed to help programmers avoid
the pitfalls of unplanned programming. In structured programming
the programmer breaks up the entire task into logical segments or
modules. Each segment consists of a single-step function used in
processing the task. For example, a single step during checkbook
reconciliation involves totaling all uncashed checks. Structured pro­
gramming breaks down and describes the task to the computer in a
defined and logical manner, and simultaneously clarifies and orga­
nizes the source code for the programmer. The result: decreased
program development time, improved performance, and fewer errors
in the program logic.

Because of the advantages of structured programming, many of the
newer programming languages, including C, have been designed to
use this modular programming style. By providing a framework for
grouping programming instructions into processing segments, these
languages create an environment for structured programming. We

PROGRAMMING LANGUAGES 31

will discuss the organization of source code in greater depth when
we begin examining the use of these constructs.

READABILITY: INTERNAL PROGRAM DOCUMENTATION

As we just saw, structured programming yields a two-fold benefit.
It aids the programmer both in segmenting the task and in describing
the task to the computer. This, in turn, provides for more readable
programs that are also easier to maintain. However, the mere fact
that a program is structured may not always mean that there is
enough information for you or a subsequent programmer to make
changes to the system. A good structured programming language like
C will in addition provide a method for you to place comments­
explanations that you can read but that the compiler ignores-within
your code.

As a rule, comments are most helpful in the following areas of
your program:

• At the beginning of the source code file. These comments will
contain the title and function of the program, the name of the
programmer(s), and the date on which the program was
written (or started). These comments may be followed by infor­
mation regarding any major changes made to the program
after it was written. This subsequent information contains the
name of the programmer who made the change, the date of
the change, and why and where the change was made.

• At the beginning of program segments. This highlights the
beginning of a segment. It could include a description of the
function the segment will perform, as well as any useful infor­
mation about the logic of the segment itself.

• At ail points of the source code where the purpose may be any­
thing less than perfectly clear. In some cases, for example, you
may need to use a "programming trick." Programming tricks
are small portions of code that have an effect that is not obvi­
ous to a person reading the code. Comments should be used
extensively with these programming segments to make their
purpose clear.

We will provide examples of how to use comments throughout the
programming exercises in this book.

32 PROGRAMMING THE MACINTOSH IN C

DEVELOPING PROGRAMS: SYNTAX,
LOGIC, AND THE ROLE OF STATEMENTS

We will wrap up this chapter with a brief examination of some of
the syntax of the C language. We will also discuss programming logic
and the role of statements in programs. Before we get down to
specifics, however, some general remarks about writing programs
may be helpful.

THE PROGRAMMER'S AXIOMS

The syntax of a language, operating system, or program describes
the format in which the computer expects to receive data. Being very
"dumb" machines, computers do not understand typographical errors
or commands that the programmer has inadvertently rephrased. For
example, if you want to open a file called FILE and you type FIEL
instead, the operating system will give you an error message. If in
your source code you type x = y instead of x - y, the compiler
accepts the command as valid, but your program may not perform as
you had intended. This tendency of the computer to take instructions
literally leads to two important axioms for computer programmers.

Axiom 1: Garbage in, garbage out. This is a point for a programmer
to consider when designing a program. If an operator supplies mean­
ingless data, the results of the program will also be meaningless.
However, this should not be justification for the programmer to avoid
building data error checking in the program. The programmer has
the responsibility to protect the operator from entering values that
will cause abnormal termination of the program or unpredictable
results due to invalid data. For example, you don't want the operator
to enter in any alphabetic characters when an amount is expected.
For the sake of clarity, the programming examples given here provide
very little data validation because data validation requires extra code
that would clutter our examples.

Axiom 2: Computers do what you tell them to do, not what you want
them to do. The language computers use must be very precise in
order to be specific. When checking your programs for errors, you
may often find that you have not completely articulated what you
wanted the computer to do in language the computer could under­
stand. Structured programming aids significantly in finding these
sorts of errors.

PROGRAMMING LANGUAGES 33

THE SYNTAX OF C

As a matter of convention, various special characters and types of
terms are part of the syntax of a language. Here is an overview of
some of the syntactical elements of the C language.

WHITESPACE CHARACTERS

Blanks, tabs, newlines, and comments are collectively termed
whitespace and are ignored by the compiler, except when they are
used to provide separation of elements. Blanks and tabs are self­
explanatory; they are analogous to the same functions on a type­
writer. A newline is a character or set of characters that separates
lines of print on the display or listing. This character is analogous in
effect to the carriage return on a typewriter.

There are also special characters or sets of characters used to intro­
duce the comments that provide description of the source code for
purposes of readability and understanding. In C, comments begin with
the first occurrence of the characters I* and end with first occurrence
of the characters *I. In general, a comment will look like this:

I* This is a comment and will be ignored by the compiler *I

This format is generally used to clarify your program statements
within the program. At the beginning of the source file or before a
major program segment, you will want a more noticeable comment
format like:

/**************************************
* *
* This text will name the program segment and *
* provide the reader with information about what *
* the segment does, what data it needs for input, *
* and what data it provides as output. *
* *
**************************************/

You may place any valid characters and as many lines as you want
between the I* and *I delimiters. Remember that the first I* encoun­
tered will start the comment, and the first *I found will end the
comment.

34 PROGRAMMING THE MACINTOSH IN C

The comment format you choose is not important as long as it
is easy to see and read. You should also choose a format that is
relatively quick to type. You don't want to spend all of your time
writing comments.

Also, specific to the Consulair Mac C compiler is the character set
11. If this character is found on a line, any characters following the 11
on that line are ignored. The I* and *I comment delimiters may
include several lines of comment, but the 11 comment indicator is
active only until the end of the line.

IDENTIFIERS

An identifier is simply a name. One kind of identifier is a group of
letters and digits created by the program to identify a specific object.
An example of such an identifier, as we learned in Chapter 1, is a
variable name. An identifier may contain any combination of letters
and digits as long as the first character is a letter. Note that the _
(underscore character) is also considered a letter and the uppercase
letters differ from lowercase letters. You can use as many characters
as you want for the identifier.

Most compilers, including the Consulair, will use up to 31 charac­
ters to determine the uniqueness of an identifier. The authors of the
C programming language require that the compiler use at least
the first 8 characters to differentiate between identifiers. Thus the
identifier abcdefghooo would be the same to the abcdefghzzz. There­
fore, the more characters your compiler uses, the more combinations
you can have for identifier names.

The term keywords refers to the set of identifiers that are used for
specific C functions and commands, and may not be used otherwise.
Chapters 3 through 7 cover all of the keywords used in the C
programming language.

A constant is an explicity defined value that never changes during
the program's execution. For example, in the statement

x = 36

the number 36 is a constant and the character x is an identifier for a
variable. Throughout the rest of the program, the variable x may be
assigned new values, but each time this statement is executed, x will
be assigned the constant value 36.

Each type of data (numbers and characters) has a special format for
creating a constant of that type. Chapter 5 discusses how to make
constants for the different data types.

PROGRAMMING LANGUAGES 35

PUNCTUATION CHARACTERS

Programming languages give special definitions to many punctua­
tion characters in order to create code that describes its own
function visually. In C, the most commonly used punctuation charac­
ter is the semicolon (;). The semicolon is used to signify the end of an
instruction. This allows an instruction to be formatted in the way
that best suits the meaning of the instruction. For instance, you could
have an instruction formatted in either of the following two ways.
First,

x = 6;

And second,

x
=
6

Obviously, the first format is much easier to read, although both for­
mats are completely valid. This example just demonstrates that every
instruction must end with a semicolon.

PROGRAM FORMAT

As we know, structured programming is emphasized under C. In
structured programming, the programmer writes code in a logical
fashion by dividing the code into blocks. Each block contains a set of
instructions pertaining to a single idea or purpose. C uses the open
brace character-{-to indicate the beginning of a block and the
close brace character-} -to signal the end of a block. Blocks may be
contained within blocks; this is known as nesting. Structured pro­
gramming will be discussed in detail in Chapter 4.

Finally, all C programs must contain the following segment some­
where within the source code:

main()
{

program code
}

36 PROGRAMMING THE MACINTOSH IN C

The heading main() names the block of code. This is known as a
function definition. All C programs must have a function block
entitled main() to indicate the program starting point. We will address
the subject of blocks and functions in Chapter 4.

BASIC PROGRAMMING LOGIC

Once you have conceptualized a program, you can provide a natu­
ral structuring of your program by simply describing each step
required to accomplish the goal. Beginning with the first step in the
task and coding each subsequent step in order yields a program that
is written from the top down. Each large step can then be broken
into substeps for further structuring. You should stop this fine tuning
when you reach a point when the substep definition describes a
single process.

In our example for a check reconciliation program, we have
already split the problem into its major steps as follows:

1. List all checks, debits, and credits written in your checkbook,
as well as those checks outstanding since the last bank
statement.

2. List all checks, debits, and credits on your bank statement.

3. Remove each item that appears on both lists from both lists.

4. Total the remaining debits in the first list. Total the credits in
the first list.

5. Add the credit total from the first list to the statement balance.
Then subtract the debit total.

6. If this new balance equals your checkbook balance, then all is
well. If not a mistake has been made.

This outline by no means defines all the individual processes
needed to reconcile a bank statement. It does, however, list the major
divisions of the task at hand. With experience, you will be able to
describe the steps and substeps within a task with greater accuracy.

DEVELOPING A PROGRAM STATEMENT

After the program has been outlined and subdivided into single
process steps, we can begin writing the code for each process. Each

PROGRAMMING LANGUAGES 37

process consists of a sequence of programming statements or instruc­
tions, each of which in turn consists of some combination of opera­
tors and expressions. An expression may include any combination of
constants and identifiers. An operator performs a function on an
expression or set of expressions. For example, the plus sign and .
minus sign for addition and subtraction are operators. They perform
an operation on two expressions such as exprl + expr2 and exprl -
expr2. The terms exprl and expr2 can represent a variable, a con­
stant, or even another expression.

A program statement performs one of three actions: data process­
ing, data input or output, or program flow control.

• Data processing uses data known to the program and alters it
to produce the desired result. A data processing routine we ·
might use in our example would take the checks written dur­
ing the month and total their amounts.

• Input and output greatly enhance a program's usefulness.

• Flow control heavily influences the capabilities of a program­
ming language. Normally, the flow, or order, of execution
begins with the first statement, continues to the second state­
ment, and so on. Flow control statements alter this natural
sequence by allowing for repetition and conditional execution
of selected statements. They also make it easier to write struc­
tured programs.

The remainder of this book details the tools available in the C pro­
gramming language for creating program instructions. We will begin
with simple arithmetic operators and introduce some of the program­
ming overhead (like defining the main() segment) needed to get a
program to run, and follow with program control statements. We will
first treat the process of defining custom-tailored functions; then we
will discuss why and how to use a structured algorithm in a pro­
gram. Next we will discuss how to structure the data used by your
program to complete the requirements of a structured program.
Finally, we will examine the input and output functions and other
miscellaneous functions supplied with the compiler for use in your
C programs.

INTRODUCTION

To Us1NG C

INTRODUCTION TO USING C 39

Now it's time to get to work. This chapter begins with a more
explicit example of how to use comments in your programs. The
next section of the chapter deals with the actual process of writing,
compiling, and executing your program. Read the corresponding
section in your user's manual for the compiler you are using before
continuing in this book. That way you will have an idea about the
variations that might exist between our explanation and your actual
system. For example, your compiler might come with its own editor
and linker, or the entire process may be invoked by a single com­
mand instead of a series of commands. It's important to be sure you
understand the steps you need to take to get a program running. If
you do not understand your manual, find some assistance (perhaps a
local user's group or a computer store); otherwise, you will not be
able to try the examples given throughout this book.

The remainder of this chapter introduces you to the basic tools of
the C programming language. These tools include arithmetic opera­
tors, program flow control, and statement blocks.

USING COMMENTS TO OUTLINE
YOUR PROGRAM

We have already discussed the need for defining the goals of a pro­
gram; this should be done before the program is written. For smaller
programs (like those exemplified and mentioned here), one method of
planning your program involves using comments to outline the pro­
gram in the source file. For instance, a preliminary source file for a
program that prints a list of all even numbers starting with zero
might look like this:

I* EVEN-A program to print even numbers starting with zero* I
I* Initialize starting point *I
I* Display even number *I
/*Add2 */
I* Continue displaying *I

Using comments to outline your program has several additional
benefits, one of which is that you avoid the hassle of trying to put
comments into your completed program. Commenting before coding

40 PROGRAMMING THE MACINTOSH IN C

also helps to insure that your algorithm will be correct and encour­
ages you to find errors in logic early in the programming process. If
you do not comment before or while you write your code, the
chances of becoming confused increase. Moreover, if you don't look
for errors until the program executes, you waste time and effort.

Creating a specified comment format will help you get the most use
from your comments. For example, start your comments at a speci­
fied column (somewhere in the middle of the screen). This makes
them readily recognizable as comments rather than program state­
ments. You may also want to use a decorative format to highlight the
comment; for example:

>>>Wow! What a comment! < < <

Any such highlighting should be quick and easy to type; otherwise,
you might stop using comments in your programs. Overall, your
comments should be short and informative.

Using comments in your programs is important. Do not fool your­
self into thinking yoq·will remember everything about a program you
write without including comments.

CREATING, COMPILING, AND
EXECUTING SOURCE CODE

Before we explain the different operators available in C, we will
present a sample program to familiarize you with the program genera­
tion, compilation, and execution processes. Use your text-editing pro­
gram to create a file called list301.c and enter Listing 3.1 into this file.

/**
list301 First programming example

**/

#include "stdio.h"

main()
I

printf("Welcome to the world of programming"):

Listing 3.1

INTRODUCTION TO USING C 41

The basic procedure you will follow after typing in the code as it
appears in the listings is as follows. First you should confirm that you
have typed everything exactly as shown in the listing. Next, exit your
editor and execute the compiler. The compiler requires the name of
the source code file that it is to translate. (Check your manual for the
proper procedure to execute your compiler.) When the compiler has
completed its processing, you will use the program called the linker
to generate the actual program file. (Again, check your manual for
the proper procedure.)

If you are using the Consulair Mac C compiler, you will be using
the Macintosh Development System to compile, assemble, and link
your programs. To facilitate automatic processing of the compilation
procedure, you should create the following two files. First, using the
editor, create a file called output.link. This file will tell the linker how
to create your program. It contains the following statements:

;Linker control file
!start

;Include the following libraries
fstdlib
stdfileio
stdioprim
floatlib
floatconv
Math lib
sanelib

;Place program name to link on the next line
list301
$

The next file you need to create controls the process of compiling,
linking, and running your program. It assumes that you have the Mac
C compiler disk in the internal drive, and a disk called "Source" in the
external drive. You may change the name of the external drive if you
desire. The file is called output.job and it contains the following:

c list301.c
link output.link
Source:output

exec
exec

edit
edit

42 PROGRAMMING THE MACINTOSH INC

I

To initiate compilation from the EDIT editor, make output.job the
active window and from the Transfer menu, select Exec Source:out­
put.job. This will compile, assemble (an action automatically initiated
by the compiler), link, and run the program in file list301.c. Now,
each time you want to recompile this program, simply open the out­
put.job file and initiate the Exec command.

For the remaining programs in this book, follow this procedure:

1. Enter the program using the EDIT editor.

2. Open the output.link file and change the program file name
list301.c to the current program name.

3. Open the output.job file and change the program file name to
the current program name.

4. Choose the Exec command from the Transfer menu.

If you perform these steps in the order listed, you should have an
automated compiling sequence. If the compiler or linker should
encounter any errors, you will be returned to the editor to make the
necessary changes. Hereafter, for the sake of brevity, we will use
the term "compile" to refer to the process of both compiling (and
optionally assembling if necessary) and linking your source code file
into an executable file.

When the compilation is complete, execute your program by select­
ing it from the desktop. You should see

This is a C program.

You will quickly return to the desktop right after the line is printed.
You have just compiled and linked your program. Of course, the com­
piler and linker provide many options other than those we have dem­
onstrated, which we will see in Chapter 8, but let us take one step at
a time.

Now edit your list301.c file again and change it to read like
Listing 3.2. In this listing we introduce the characters \n used by C
to indicate the end of a display line. Now recompile and link your
program. After the new program is compiled and run, you should see
the following on the screen:

This is a C program.
Welcome to the world of programming.

INTRODUCTION TO USING C 43

/**
list302 Second programming example

**/

#include •stdio.h"

main()
I

printf("This is a C program.\n");
printf("Welcome to the world of programming.\n");

Listing 3.e

Next, remove the \n from the first line, and compile and execute
your program once more. You will see this:

This is a C program.Welcome to the world of programming.

A metacharacter is a special symbol that changes the meaning of
the character following it. In C, the backslash (\) is a metacharacter
when used in a text or character constant (see Chapter 5) or in a
string used for input and output (for example, in a printf statement).
In the preceding example, the backslash followed by a lowercase "n"
is the symbol for the newline character, which causes any subsequent
output to be placed at the beginning of the following line.

Because of technical difficulties in writing the compiler, there are
certain characters that cannot appear in a string or character con­
stant. Therefore, the metacharacter is used to tell the compiler to
"escape" from its normal interpretation of the next character and
replace it with a specified alternate charater. Thus, the metacharacter
followed by another character is called an escape sequence. Appendix
C lists the escape sequences available in C and their actions.

The instruction printf used in the program provides for output of
data. All of the following examples will utilize some form of the printf
print function and you will have to use it without specific description
until Chapter 7, which presents and explains the formats for input
and output instructions. A brief explanation will accompany most of
the new forms of the printf instruction as they are encountered.

To experiment with the newline character, try Listing 3.3. After
compilation, run the program. You should see the following display:

This is a C program.
Welcome to the world of programming.

44 PROGRAMMING THE MACINTOSH IN C

/**
list303 Third programming example

**/

#include "stdio.h"

main()
[

Listing 3.3

printf("This is a c ");
printf("program.\n");
printf("Welcome to");
printf("the world of programming.");
printf("\n");

Notice that the printf instruction does not output a newline character
until explicitly told to do so. This allows an output line to be con­
structed dynamically while the program executes. We will discuss the
use of dynamic construction later.

BASIC OPERATORS
Every programming language has a basic set of words and symbols

that are used in writing programs. The C programming language has
a relatively small set of words with a great amount of flexibility. This
section introduces most of the operational words and symbols used
by C. The words are divided into distinct groups. The first group
mentioned here is the arithmetic operators. These symbols are used
to change the data used by the program. The purpose of the second
group we will introduce is to control which program statements are
executed. Once you have mastered these two groups of basic ele­
ments in C, you can easily write many simple programs.

ARITHMETIC OPERATORS

The simplest operators to understand are the· arithmetic operators
+ , - , * , and /. The + and - are the symbols for addition and

INTRODUCTION TO USING C 45

subtraction, respectively. However, the standard cross symbol used
for multiplication would too closely resemble the letter "x", and the
division symbol does not exist on most keyboards. Therefore,
the asterisk (*) is used to signify multiplication and the slash (/) is
used for division.

All of these operators are binary operators, meaning that they
require two expressions to perform their operation and that
they yield only one result. For example, x + y gives the single result of
adding y to x. A binary operator will always be used in the form

expressionl operator expression2

More complex formulas are formed similarly. The expressions used
with an operator can even be other formulas, as in the following
example:

a*b+c*d

In this case, the expression a * b can be thought of as replacing
the variable x in the first example; the expression c * d would be the
variable y. This more complex example should raise some question
regarding its evaluation. Would a * b, b + c, or c * d be evaluated
first?

This question introduces the concept of precedence, or the order in
which expressions are evaluated. Under mathematical convention,
multiplication and division have a higher precedence than addition
and subtraction and are always evaluated first. Multiplication and
division have equal precedence with respect to each other and will be
evaluated left to right in the order of their occurrence in the equa­
tion. Addition and subtraction also have equal precedence with
respect to themselves. In this example, a * b is first to be evaluated,
and then c * d. The results of these expressions are then added
together to yield the final result. If we were to replace the variables
with actual values, for example, the expression would be evaluated
like this:

6*5+4*3 30 + 12 42

Parentheses have the highest precedence and can be used to alter
the precedence of any other operators. This is the explicitly paren­
thetical version of our example:

(a * b) + (c * d)

46 PROGRAMMING THE MACINTOSH IN C

In this example, the parentheses provide for readability. As far as
the compiler is concerned, however, they are redundant. As a matter
of style and habit, when expressions begin to get complicated, paren­
theses should always be used to provide clarity.

If the use of parentheses alters the precedence of other operators,
expressions within parentheses will be evaluated from the innermost
set to the outermost. Sets of equal precedence are evaluated left to
right, in the natural order of the equation.

(a * (b + c)) * d
(6 * (5 + 4)) * 3 (6 * 9) * 3 54 * 3 162

Each operator in C has a precedence. Appendix D gives a list of
the operators, their precedence, and their associativity (order of eval­
uation) in a nonparenthetical expression.

One other arithmetic operator is the modulo operator (%). This
operator yields the remainder of an integer division. Thus, for
example, 5 O/o 3 equals 2. Modulo can be defined as follows:

x modulo y = x - (y * floor(x/y))

where floor(x/y) is the highest integer less than (x/y). The modulo
operator comes in handy when you need to determine if x is evenly
divisible by y (that is, when x O/o y equals O) and in various advanced
programming applications.

The final arithmetic operator is the assignment operator, the equal
sign (=). The assignment operator assigns the value of the expres­
sion, which is to the right of the = symbol, to the identifier (usually a
variable) on the left side of the operator. For example:

z = x + y
t = 3.1416 * (d I 2)
a = a + b
c = c + 1
d = d / 2
i = i - 1

COMBINED FORMS OF ARITHMETIC

AND ASSIGNMENT OPERATORS

Arithmetic and assignment operators account for a substantial
percentage of all operations within a program. Some combinations of

INTRODUCTION TO USING C 47

arithmetic and assignment operations occur quite frequently in pro­
gram code. To make the code less wordy (and to reduce the amount
of typing), C has special combined forms of the assignment and
arithmetic operators.

One common assignment operation is

variable = variable operator expression

which changes the value of a specific variable. The shorthand version
combines the arithmetic and assignment operators into a single form,
as follows:

variable combined-form operator expression

Here are some examples of these combined forms:

a+= b equivalent to a= a+ b
c + = 1 equivalent to c = c + 1
d /= 2 equivalent to d = d / 2
i - = 1 equivalent to i = i - 1

The most common of these combined operations is the increment
operation (for example, c + = 1), which increases the value of a vari­
able by one. This operation is often used for counting repetitions of a
program step. The opposite combined operation is the decrement
operation (for example, i - = 1); this decreases the value of a vari­
able by one.

A further simplification of the increment/decrement operators is
provided by two more combined operators. If you want to increment
or decrement by one, you can use these forms: + + to increment by
one, and - - to decrement by one.

c++
i- -

has the same function as
has the same function as

c=c+1andc+=1
i=i-1andi-=1

C allows you to place the increment or decrement operator before
the variable (+ + c or - - i) to perform the incrementing or decre­
menting before the variable is used, or to place the operator after the
variable (c + + or i - -) to use the value of the variable first, and
then increment or decrement the variable. We will be using these two
forms extensively in the programming examples, so you should
become quite familiar with their different uses.

48 PROGRAMMING THE MACINTOSH IN C

INTRODUCTION TO DATA TYPES

In Chapter 1 we discussed how data is represented in the com­
puter's memory. C and other structured programming languages
require declaration statements that define for the compiler the data
type each variable will represent. With this information, the compiler
allocates the amount of memory required to store the variable and
generates the most efficient machine code for performing operations
on this particular data type.

In this chapter, we will be using the integer, floating point, and
character data types. An integer variable can be any number with no
fractional part from - 32,768 through 32,767 (for most compilers),
inclusive. A floating point number is a rational number. (A rational
number is a number that is an integer, or that can be expressed as
the quotient of two integers.) The range for floating point numbers is
machine-and-implementation-dependent. Character data is a set of
characters from the ASCII character set.

Floating point notation is the computerized version of exponential
notation. For example, 23,445,389,001 is represented by
2.3445389001 E + 10, where the value preceding the E signifies the
value of the mantissa, and the value following the E indicates
the exponent as expressed as a power of ten. This notation evaluates
to 2.3445389001 x 1010 This format is commonly used throughout the
computer industry because most computer displays cannot form a
superscript character for the exponent.

The other data types that exist within C are extensions of the three
basic types. We will introduce these other types in Chapter 5.

A declaration instruction consists of a data type declaration fol­
lowed by the list of variables that have this particular data type. The
items in the list are separated by commas. Integer data is represented
by int, floating point data is represented by double, and character
data is represented by char. For example:

int i, j, k;
double x, y, z;
char a, b, c;

In this example, i, j, and k have been declared as integers; x, y, and z
represent floating point values; and a, b, and c have character values.
Notice the use of blank space in the example. The blank space means
nothing to the compiler, but it makes the program easier to read.

INTRODUCTION TO USING C 49

A SAMPLE PROGRAM

With the small amount of information we already have about C pro­
gramming, we can write a program to demonstrate the effects of
assignment operators and the differences in data types. Our sample
program will use the declaration statements. We will initialize the vari­
ables by assigning them appropriate constant values, perform a series
of operations on them, and display the results after each operation.

The format of the printf statement we will use contains some new
information. Using O/od causes a decimal value to be printed. The O/oc
symbol signifies that a character will be printed, and the O/of indicates
a floating point value printed in decimal notation.

The term constant holds the same meaning in computer program­
ming jargon as in the general vocabulary: a constant does not change
its value during the course of a program's execution. It is usually
used to initialize variables, and we will use it that way in our pro­
gram. The data type of the variable being assigned will determine the
format of the constant. Appendix E has a listing of the different
formats for constants for each data type. For the purposes of this pro­
gram, notice that character constants are enclosed in single quotation
marks, or apostrophes. Floating point constants have a trailing frac­
tional part (although the fraction may be zero) to highlight the use of
a floating point value.

The printf statement used in this program demonstrates the neces­
sity of matching data types within an expression. In many
expressions, especially assignment expressions, the type of the identi­
fier being assigned must match the type of the result from the expres­
sion. If it does not, the memory space allocated for the assigned
identifier may not provide enough room for the value. Some lan­
guages perform dynamic memory allocation automatically. This
means that memory is allocated as it becomes needed, so that the
"size" of the information to be stored determines how much space is
alloted. Arguments can be made for and against this practice. C does
not automatically allocate memory. However, it can dynamically allo­
cate memory if explicitly told to do so, as we will see in Chapter 6.

When an expression contains two or more different types of data,
it is called a mixed-mode expression. C will convert the operands of
the expression based upon the conversion procedures outlined in
Appendix E. Allowing C to perform automatic conversion is consid­
ered poor programming practice. C does let you explicitly convert
from one data type to another (if the conversion is logical). We will
show you how to do all of this in Chapter 5.

50 PROGRAMMING THE MACINTOSH IN C

Listing 3.4 shows how operations vary for different data types.
Enter and compile this program now.

Notice what happened when we performed arithmetic operations
on character variables. The character variables were first converted
to integer types and then operated on (see Appendix A for the
mapping of characters to integers). Our sample program has also
demonstrated the division of the source code into segments.

/**
list304 Program to practice usage of data types

**/

tinclude •stdio.h"

main Cl
{

int
double
char

Listing 3.4

i. j. k; /* integer variables */
x, y, z; /* floating point variables */
a, b, c; I* character variables *I

/* variable initialization */
10; /* integer assignments *I

j 5;
k 3;

x 10.7; /* floating point assignments */
y 5.0;
z = 3.0;

a 'O'; /* character assignments */
b 'A';
c = 'a':

/* print initial values ~/
printf("Integers: i = %d, j = %d, k = %d\n", i, J, k);
printf("Floating Point: x = %f, y = %f, z = %f\n", x, y, z);
printf("Characters: a= %c, b = %c, c = %c\n\n", a, b, c);

/* last printf provides */
/* for double spacing */

i++;
/* integer manipulation */

printf("i has been incremented to %d\n", i);
printf("Combine increment of i in printf statement %d\n", i++);
printf(ni incremented after value was used. New i is %d\n•, i);
printf(•rncrement i first. i = %d\n", ++i);
printf("i after above statement= %d\n", i);
printf("Integer division j / k = %d\n", j/k);
printf("Modulo operator j %% k = %d\n", j%k);

/* Note %% is correct */
j += k;
~rin~f("After += k, j is %d\n", j);
1 = J + k;
printf("After = j + k, i = %d, j = %d, k = %d\n\n", i, j, k);

printf("Press Return to continue program\n");
scanf (111 %*s");

/* floating point */

INTRODUCTION TO USING C 51

x++;
printf("Increment of xis •f\n", x)1
printf("Floating point division y I z = •f\n", y/z);
x *= y;
printf("After x *= y, xis %f\n", x);
x = y * z;
printf("After x = y * z, x = %f, y = tf, z = tf\n\n", x, y, z);

/* character manipulation */
a++;
printf("Increment of a is %c\n", a);
a+= b;
printf("After a+= b, a is %c\n", a);
a = b + c;
printf("After a= b + c, a= •c, b = •c, c = •c\n\n", a, b, c)1

printf("Press Return to exit pro9ram\n")1
scanf("%*s")1 /*hit the Return key to end the program*/
printf("End of pro9ram.\n")1

/* End main() */

Usting :3.4 (continued)

Notice that the program includes a function called scanf(). This is
like the printf statement mentioned earlier except that it accepts input
instead of producing output. The statement is used to suspend the
program. execution so that you have time to look over what is shown
on the screen before it scrolls off the top. Many of the programs in
the rest of this book will use this pause feature. The scanf() function
will be covered in depth with the printf function later on.

At this point, let's experiment with the program in order to see the
effects of some other operators and operations. This is an important
step toward understanding the uses of what you have just learned. As
you make changes to the program, try to predict the results before
running the program in order to test your understanding of these
operators.

First let's alter the program by deleting the sections that manipulate
floating point numbers and characters. Recompile the program and
run it to check your work. Now change the program to test other
operators, such as the decrement operator. Using only the integer sec­
tion of the program reduces the possibility of errors. Using the printf
statements in the sample program as models, create your own
printf statements to reflect the changes you make. After you have
tested the integer manipulation, experiment with floating point and
then character variables. Using many printf statements will make it
easier to understand the order of execution and the functions of the
operators.

You should also try some mixed-mode operations. If the compiler
gives you error messages regarding illegal operations, determine

52 PROGRAMMING THE MACINTOSH IN C

which operation caused the error and either fix it, if possible, or
remove it. Before you run any of these programs, write down what
you think the computer will display at each printf statement. Use
Appendix E to help in the conversion of mixed-mode operands. Do
these experiments now.

RELATIONAL AND LOGICAL
OPERATORS

One of the most powerful capabilities a programming language has
to offer is the ability to perform a specified set of tasks based upon a
certain condition. For example, if you were to write a program for an
automatic bottle-filling machine, you might say, "Fill the bottle until it
contains 12 ounces." Thus, your program continues to pour the prod­
uct into a bottle under the condition that less than 12 ounces have
been output. When 12 ounces of product are in the bottle, the
program will move to its next task.

There is some good news and bad news in all this. The bad news
is that it is very difficult for a computer to understand a complex
condition like "If it looks like rain or snow." The computer can only
understand a comparison between two numeric values. The good
news is that we can break apart the statment and represent each seg­
ment as a value either numerically or as a true or false statement. For
example, we could rewrite "If it looks like rain or snow" as "If the
chance or rain is more than 80 percent or the chance of snow is
more than 80 percent". The branch of mathematics that deals with
these types of statements is called logic.

DEFINITION AND BACKGROUND OF LOGIC STATEMENTS

Logic is very important in computer programming. The logic used
in today's computers is based on Boolean algebra, developed by the
English mathematician George Boole. In Boolean algebra, an operand
or expression may be equal to one of two values, either true or false.
The four common logical, or Boolean, operators are NOT, AND,
inclusive-OR (called simply OR), and exclusive-OR (called XOR).

INTRODUCTION TO USING C 53

The NOT or negation operator performs the same function as it
does when used in spoken language. If an element P has the value of
true, then NOT P will yield false, and vice versa. Figure 3.1 shows
the results of the logical operators in the commonly used truth table
format.

The AND operator corresponds to the conjunction of two oper­
ands. Note that for the expression to yield a "true" value, both
operands must have the value of true; otherwise, the entire expres­
sion evaluates to false.

The inclusive-OR operator corresponds to the common use of the
word "or" in spoken language (a disjunction). When either operand
has a value of true, the expression will evaluate to true. The
exclusive-OR, commonly referred to as XOR, is true when either
operand, but not both, is true.

All programming languages provide for implementation of these
operations, and some even provide a special data type called Boolean
to handle variables that will be used in these operations. To under­
stand how these operations function in a programming language,
notice that an operand can represent one of two binary values and
that we can equate the operand to be a binary digit. By convention,
the value of true is equal to 1, and the value of false is equal to 0.

Furthermore, by definition in Boolean algebra, a series of
elements-in our case bits-can be operated on element by element,
or bit by bit. For these operations the C programming language uses

tfF
p Q P AND Q

F T T T
T T F F

F T F
F F F

p Q P OR Q p Q P XOR Q

T T T T T F
T F T T F T
F T T F T T
F F F F F F

Figure 3.1: Truth Tables

54 PROGRAMMING THE MACINTOSH IN C

bitwise operators: the bitwise AND (called &}, the bitwise inclusive
OR (called:}, and the bitwise exclusive OR (called ").These operators
use integer values as operands and perform their respective opera­
tions in a bitwise manner (see Figure 3.2). See Appendix F for the
numerical representation of the truth tables.

Two more bitwise operators perform a shifting of bits within an
integer operand. These bitwise operators have a relatively small set of
uses in general programming. They are restricted to hardware manip­
ulation, and their use requires advanced data structuring techniques.
Bitwise operators will be discussed in greater detail in Chapter 6.

Logical operators follow the same truth tables as their bitwise coun­
terparts, but operate on the entire value of the operand. Valid
operands for a logfoal operator evaluate to either true or false. In C,
any nonzero value operand is considered true, and a zero value oper­
and is considered false. Logical expressions equal 1 if the expression
evaluates as true or O if it is false. The logical operators include logi­
cal AND (&&}, logical inclusive OR (: }, equal to (= = }, NOT (I}, and
not equal to (! =).

Relational operator expressions also result in a 1 or 0, depending on
whether the specified relation is true or false, respectively. The four
relational operators are less than (<}, greater than (> }, less than or
equal to (< = }, and greater than or equal to (> =).

FORMING LOGICAL EXPRESSIONS

The objective of a programming language is to relate a task to the
computer. The more similar the tools of the programming language
and the language spoken by the programmer, the faster and easier it
is to program the task. The relational and logical operators provide a
great deal of flexibility in expressing the conditional requirements of
a procedure. For example, to determine if your checkbook balances

Bitwise AND

01101001
& 11100011

01100001

Bitwise OR

01101001
: 11100011

11101011

Figure ae: Examples of Bitwise Operators

Bitwise XOR

01101001
11100011

10001010

INTRODUCTION TO USING C 55

after reconciliation, you would ask, "Is my reconciled checkbook bal­
ance equal to (= =) the balance on the bank statement?" Expressions
containing relational and logical operators form the basis for condi­
tional processing and controlling the flow of program execution.

CONTROLLING PROGRAM FLOW

Program flow control in C consists of a statement to evaluate some
condition and set of statements to be executed when the condition
evaluates to true. The evaluation statements for C come in three vari­
eties: conditional execution, loops, and forced flow interruption. Let's
first begin by looking at the general structure of a flow control code
segment, and then move on to the specific types of statements.

CONTROL STATEMENTS

As we mentioned earlier, a program is simply a sequential execu­
tion of instructions. Besides carrying out these instructions, the
computer may have to evaluate certain conditions, data, and relation­
ships between conditions and data. Statements in C that cause such
evaluation and conditional execution are known as control
statements.

Control statements provide increased programming structure. Each
control statement has associated with it a conditional expression and
a statement or block of statements. In C, a block of statements
appears as a single statement in relation to the rest of the program.
This compound statement structure removes code from the main
flow of the program, making the program easier for the compiler and
programmer to read.

STATEMENT BLOCKS

If a statement block appears in a program, it will be executed as if
it were a statement itself. We will discuss the advantages of this in
Chapter 4.

56 PROGRAMMING THE MACINTOSH IN C

If a statement block follows a control statement, then the block will
be executed only if the conditional expression in the control state­
ment evaluates to true. If the conditional expression evaluates to
false, then the entire block will be skipped and the statement follow­
ing the block will be executed.

Statement blocks can also be defined within other blocks. This use
of a block within a block illustrates the principle of nesting, some­
thing we will use in several programs.

CONDITIONAL EXECUTION
STATEMENTS

Conditional execution statements are used for one-time execution;
either the statement block associated with the statement is to be exe­
cuted (the condition is true) or it is to be skipped (the condition is
false). Once the condition has been evaluated and the statement block
is executed or skipped, the next statement in the program is
processed. Thus the conditional flow returns to the statement). The
basic construct for conditional execution is the if statement.

THE IF STATEMENT

Control statements, the most fundamental of which is the if state­
ment, are based on conditional expressions and determine program
flow. The construction of an if statement is quite simple.

if (expression)
statement;

The if statement will execute the statement (which may also be a
statement block) when the expression evaluates to a nonzero value,
which, of course, we call true. The expression must be enclosed
within parentheses. Because an if statement implies a then portion of
the statement, C assumes the existence of the word "then," and you
do not need to write it in your programs. Figure 3.3 shows some
examples of if statements.

INTRODUCTION TO USING C 57

Example l:

if(x==yl
z /= 2;

if(xl=O)
z = y I x:

Figure 3.3: Examples of the if Statement

if (--i > O){
z ::I i * 2:

a = b + c; }

The third example in this figure shows the use of the decrement
operator within an expression. The variable i will be decremented
first and then compared to 0. If the new value of i is greater than
(and not equal to) 0, then the statement block will be executed. Note
the placement of the braces to structure the format of the source
code. As the examples become more complex, you will see how this
indentation and formatting aids in the readability of your program.

The conditional expression following the if statement can be as
complex as you need it to be. You may use virtually any combination
of relational and logical operators.

Suppose, for example, that you needed to know if x is greater than
y, and i is less than or equal to 7; or if x is less than 3 and y is less
than 3. In either case you would perform some set of instructions.
Here is a conditional expression you could use:

if ((x>y && i<=7) l (x<3 && y<3)){
statement block;

}

Here the outermost parenthetical set is required by the syntax of the
if statement. The two inner sets of parentheses are used to divide
the two possible conditions, just as the semicolon was used in the
text sentence above. The first set corresponds to the case in which x
is greater than y, and i is less than or equal to 7. The second set
requires x to be less than 3 and y to be less than 3. If either of these
conditions evaluates to true, then the whole statement is considered
true (as prescribed by the OR condition).

Relational operators have a higher precedence than logical
operators, making parentheses around the relational expressions
unnecessary. Of course, the statement we just considered could also
be explicitly written as

if (((x>y) && (i< = 7)) l ((x<3) && (y<3))){
statement block;

}

58 PROGRAMMING THE MACINTOSH IN C

However, when parentheses become too deeply nested, the expres­
sions become difficult to read. Because the logical OR operator has a
lower precedence than the logical AND operator, this expression does
not need any parentheses except those required by the syntax of the
if statement.

if (x>y && i< =7: x<3 && y<3){
statement block;

}

But this again makes a difficult-to-read expression. Find a happy
medium. You should use parentheses for syntax, precedence, and to
enhance readability.

By definition of the C programming language, when a program
evaluates an expression containing a logical operator, evaluation
stops when the truth of the expression has been determined. In a log­
ical AND expression, if the first operand is false, then the entire
expression must be false. Comparison halts and this saves execution
time. In a logical OR expression, if the first operand is true, then the
entire expression must be true, and again additional testing is not
performed on the rest of the if expression.

THE IF-ELSE STATEMENT

On many occasions, you will want to execute one set of statements
if the condition is true and another set of statements if the condition
is false, but not both. In English, we would use the phrase "if . . .
then ... otherwise " In C, we use the following syntax:

if (conditional expression)
statement-1

else
statement-2

This is the full-length version of the if statement we were using
before; the else is optional, and statement-1 and statement-2 may be
statement blocks. The if-else statement operates in the same manner
as in English: if the conditional expression is true, statement-1 is exe­
cuted; otherwise, statement-2 is executed. Both statements will never
be executed under the same condition.

INTRODUCTION TO USING C 59

This if-else statement will set z equal to whichever value is
greater~a or b:

if (a > b)
z =a;

else
z = b;

The fact that if statements can be nested means that an if statement
can appear in the statement portion of another if statement. For
example:

1 if (n > 0)
2 if (a > b)
3 z = a;
4 else
5 z = b;
6 else
7 if (x < y)
8 x = y;

Here the indentation is used to indicate that the else in line 4
belongs to the if in line 2; the else in line 6 matches the if in line 1.
Another else statement in our example would then pair with the if in
line 7. By definition, an else always pairs with the closest previous
nonpaired if. This is a very important point, as multiple (nested) if
statements can become quite confusing.

Consider the following example:

1 if (n > 0)
2 if (x < y)
3 x = y;
4 else I* INCORRECT MATCHING *I
5 if (a > b)
6 z =a;
7 else
8 z = b;

Although the indentation in this example shows what the program­
mer intended, the compiler will generate code based upon the
definition of the C language. The else in line 4 will be matched with
the if in line 2 since it is the closest previous if without an else. The

80 PROGRAMMING THE MACINTOSH IN C

proper formatting of this code is as follows:

1 if (n > O)
2 if (x < y)
3 x = y;
4 else
5 if (a > b)
6 z = a;
7 else
8 z = b;

The if in line 1 has no corresponding else statement.
The use of braces to identify statement blocks tells the compiler to

produce code of the correct intent. Braces are to program flow as
parentheses are to expression evaluation: they tell the compiler to
segment the code and treat everything between the braces as if it
were a single statement. Another version of our last code example is

1 if (n > 0) { /* Start of block */
2 if (x < y)
3 x = y; } I* End of block *I
4 else
5 if (a > b)
6 z =a;
7 else
8 z = b;

The else in line 4 is paired with the if in line 1. In effect, the else
does not know about the if in line 2 because of the braces. Remem­
ber: the braces hide what is inside from the rest of the program.

THE ELSE-IF STATEMENT

The else-if statement is not a special statement by definition.
Instead it arises from the ability to nest if-else statements. The else-if
construct, written as

if (expression-1)
statement-1

else if (expression-2)
statement-2

else if (expression-3}
statement-3

else if (expression-n)
statement-n

else
no-match statement

INTRODUCTION TO USING C 61

is simply a more clearly formatted version of

if (expression-1}
statement-1

else
if(expression-2}

statement-2
else

if (expression-3)
statement-3

else if

else if (expression-n)
statement-n

else
no-match statement

This indented format tends to push the code off the edge of the
screen during coding and does not communicate the one-to-one cor­
respondence of conditional expression to statements. The first expres­
sion evaluating to true will have its associated statement executed,
and it will be the only statement executed; this is called a multiway
decision. The final else statement with its associated no-match state­
ment will be executed if and only if one of the previous statements
has not been executed

No-match statements are useful as default procedures that execute
if no special conditions have arisen. They can also be used to catch
any "impossible" situations; for example, you may expect one of the
listed expressions to be true, and for some reason none of them is.
This can be an important tool in debugging (that is, removing the
errors from) your program. This type of no-match statement can be

62 PROGRAMMING THE MACINTOSH IN C

as simple as printing a message indicating that no matches occurred,
or as elaborate as printing a diagnostic message and then executing a
special error-handling routine. Of course, the form of the statement
will depend upon the programming assignment.

THE ?: OPERATOR

A special three-operand assignment operator is available in C. It
functions exactly like the if-else statement used earlier to find the
greater value of two numbers. The ?: operator has the form

(conditional expression) ? expression-1 : expression-2

Should the conditional expression be true, the?: operator evaluates
expression-1; otherwise it evaluates expression-2. The value of the
expression evaluated can be assigned to a variable. Thus, the if-else
statement from before

if (a > b)
z =a;

else
z = b;

can be rewritten as

z = (a > b) ? a : b;

Because the ?: operator is an expression itself, it can be used any­
where an expression is required. Notice that it differs from the if-else
in that it cannot have statements within its construction: the ?: is an
operator that returns a value and that must contain valid expressions.

Listing 3.5 is somewhat skeletal, allowing you to experiment with
the statements introduced in this section without too much overhead.
Enter and compile this program. When you are satisfied you under­
stand the operation of the statements contained in this segment of
code, make changes, and observe the results. What happens if you
remove the braces in the else-if section? Or if you move the?: opera­
tor into the printf statement following it and use the ?: operator
instead of the variable i?

INTRODUCTION TO USING C 63

REPETITION STATEMENTS

Most programming tasks will require a number of repetitions of
some kind within your program. A structure that performs repetition
is called a loop. C has three types of loop statements: while, for, and
do-while.

THE WHILE STATEMENT

A while statement has the following format:

while (expression)
loop body

rest of program

/**
list305 Experimenting with If

**/

#include "stdio.h"

main()
{
int

Listing 3.5

i. j. k;

j 2; /* initialization */
k 10;

i (j > k) ? j : k; /* find max(j, k) */
printf("Maximum of %d and %dis %d\n", j, k, i);

i = 5;
if (i == 1)

printf("*> This should not be printed. <*\n");
else

printf("This should be printed.\n");

k = 3;
if (j > k)

printf("j is greater than k.\n");
else if (j < k) {

)

printf("j is less than k.\n");
j++; /* notice this does

/* cause the next
/* else-if to be
/* to be executed

else if (j == k)
printf("j equals k.\n");

scanf ("%*s");
/* end main */

not */
*/
*/
*/

64 PROGRAMMING THE MACINTOSH IN C

When the while statement is encountered, the expression is evalu­
ated. If the expression is true (nonzero), the loop body is executed
and control returns to the while statement for reevaluation of the
expression. This process will be repeated until the expression
becomes false, at which point program execution continues with the
rest of program segment. If the expression was false on the first
encounter, the loop body is skipped and the rest of program is exe­
cuted. The loop body may be a single statement or a statement block.

Listing 3.6 demonstrates the while loop with a program that is simi­
lar to Listing 3.5. Notice that the while statement executes the
statement block as long as the variable j is less than 10. How many
iterations will this loop perform? If you removed the instruction that
increments j, the loop would never terminate.
The while statement is used in situations where the program is wait­
ing for a particular condition either to arise or to cease. For example,
if the program is to do analysis on a set of data and the quantity of
data is unknown, the while statement could be used as follows:

end of data is false
while (not end of data)
get more data

/**
list306 Experimenting with the While Loop

**/

tinclude "stdio.h"

main()
I

Listing 3.B

int j, k;

k = 51
j = l;

/* initialization *I

while (j < 101 { /* begin loop body */
printf("j = %d, k = %d: •, j, kl;

if (j > kl
printf("j is greater than k.\n"l;

else if (j < kl
printf("j is less than k.\n"li

else if (j == kl
printf("j equals k.\n"l;

j++;
I /* end while (j < 101 */
scanf("%*s")1

I* end main *I

INTRODUCTION TO USING C 65

In this symbolic . example, the loop body (get more data) would be
required to retrieve the data and to set the end of data flag when it
encounters that situation.

The while statement can also be used in converting a decimal num­
ber to a binary number. Try writing an algorithm to do this using the
while statement. Use the printf statement to output a 1 or O when
appropriate.

THE FOR STATEMENT

The for statement simply reorders the while statement. Compare
the two constructs. On the one hand, the for statement:

for (expression-1; conditional expression; expression-2)
loop body

And on the other hand, the while statement:

expression-1;
while (conditional expression) {

loop body
expression-2;

}

As you can see, the for statement will execute expression-1 before
entering the actual loop. The expression is usually an initializing
assignment statement, although it can be any valid expression. The
loop continues to execute as long as the conditional expression evalu­
ates to true. Expression-2 is also any valid expression, usually an
expression to change the values used in the conditional expression.

Thus we can use the for statement to rewrite the while loop from
program list306. The for statement centralizes the loop-controlling
statements, making the program clearer and more concise. The for
statement and the while statement can be nested and can also appear
within the loop body of any other loop statement. Under these condi­
tions, centralizing controlling statements becomes essential for
making a program understandable.

Any of the expressions in the for statement can be omitted, but the
semicolons must remain. If either expression-1 or expression-2 is left

66 PROGRAMMING THE MACINTOSH IN C

out, no special action is taken. If the conditional expression is omit­
ted, it is assumed to be permanently true. The statement

for (;;) {
loop body

}

has no intialization, no loop end expressions, and no exit condition.
This is known as an infinite loop because it will execute ad infinitum,
or until the loop is terminated by outside intervention.

Expression-1 and expression-2 can consist of multiple statements
separated by the comma(,) operator. The for statement in Listing 3.7
can be written as

for 0 = 1, k = 5; j < 1 O; j + +) {

which incorporates the initialization of k into expression-1. The
comma operator may appear in any expression. It has the lowest
precedence of all operators.

Listing 3.8 uses the for statement in this way to print a table of the
powers of 2. The table will include all powers of 2 between O and 10.
The inner for loop initializes j and p to 1. What happens when i
equals 0 on the first iteration? If we look back at the while equivalent

/**
list307 Experimenting with the For Loop

**/

iinclude "stdio.h"

main()
{
int j, ki

k = 51 /* initialization */

for (j = 11 j < 101 j++) { /* begin loop body */

Listing 3.7

printf("j = td, k = td: ", j, kli

if (j > kl
printf("j is greater than k.\n")i

else if (j < kl
printf("j is less than k.\n")i

else if (j == kl
printf("j equals k.\n"li

} /* end for (j) */
scanf("t*s")i

/* end main */

INTRODUCTION TO USING C 67

of the for statement, we see that first the two statements of
expression-1 are executed, and then the conditional expression is exe­
cuted. In this case, the condition evaluates to false, and the inner
loop is not executed at all. This sets 2 to the o power equal to 1,
which, by mathematical definition, is correct.

The inner for statement also has only one statement within its loop
body. In this specific example, this statement could be placed in
expression-2 of the for statement by using the comma in this manner:

for O = 1, p = 1; j < = i; p * = 2, j + +)

Although this format performs the same function as the original
version, it clouds the intent of the for statement, its control state­
ments, and the purpose of using the loop. The semicolon is required
because a for statement must be followed by a loop body, either a
statement or statement block. Since we do not have anything in the
loop body, we need a placeholder for the statement. A pair of empty
braces can also be used to indicate the nonexistent statement.

THE DO-WHILE STATEMENT

The for and while statements test their conditional expressions at
the top of the loop. The expression is tested before the loop ever

/**
list308 Print a table of powers of 2

**/

linclude •stdio.h"

main()
{
int i, j, p;

printf("Powers Of 2\n\n"); /*print a title */

for (i = O; i <= 10; i++) { /* range of powers to calc */
for (j = 1, p = 1; j <= i; j++)

p *= 2; /* calculate power */

printf("2 to the power of %d = ld\n", i, p);
l /* end for (i)
scanfc•••s•);

/* end main

Listing 3.8

*/

*/

68 PROGRAMMING THE MACINTOSH IN C

begins; this means that the loop body might never execute, as in our
program Listing 3.8. On occasion, however, you may wish to execute
the loop at least once regardless of the evaluation of the conditional
expression. The do-while statement provides this ability.

The do-while statement is used as follows:

do
loop body

while (conditional expression);

Upon reaching the do portion of the do-while statement, the program
will immediately execute the loop body and then test the conditional
expression. As in the for and while statements, the program will con­
tinue to process the loop body as long as the conditional expression
remains true.

THE CONTINUE STATEMENT

A continue statement causes the next iteration of the enclosing
loop. In the case of while or do-while, a continue will cause immedi­
ate execution of the conditional expression controlling the loop, and
program execution will continue from this point. In a for statement, a
continue statement causes expression-2 to be executed, and program
execution continues from there.

A continue statement is generally used to avoid nesting large por­
tions of the program within an if statement. For example, if you want
to process only one certain item from a large list of possibilities, you
could write

for (appropriate values) {
if (!condition) I* skip items not matching condition *I

continue;
. I~ process items otherwise *I

}

Use of the continue statement is entirely the programmer's preroga­
tive. If using the continue statement clarifies the intentions of the
code, then it should be used; otherwise, use a different construct.

INTRODUCTION TO USING C 69

THE BREAK STATEMENT

The break and the continue statements are related by the nature of
their usage. While the continue statement will start the next iteration
of its enclosing loop, the break statement actually "breaks out of," or
exits, the enclosing loop.

The break statement may be used in a loop that continues process­
ing until a certain condition is met, after which control passes to the
statement following the loop.

For example, Figure 3.4 shows a program fragment that demon­
strates a crude method of checking incoming data. An external
device may have difficulty communicating with a computer due to
poor conditions such as long cable distances; or the device may be in
a hostile environment. In these instances, the data received by a com­
puter will need to be checked for quality by some prearranged
method. In this example, the program receives a list of characters.
Under the error-checking routine installed, if it is determined that
any charater is invalid, the entire list is considered invalid; otherwise,
each character needs to be processed.

The algorithm gets a list of characters. Each character can be refer­
enced by an index, and in this example we use i (ignore how this is
done for now). The variable n is the number of characters in the list.
We process each character in the list using the for loop. The for state­
ment sets a flag, listok, to true, to signify that the list is OK to begin
with. If we find a bad character, listok is set to false, and the loop is
broken since there is no need to process further characters. The
remainder of the while loop checks the status of the listok flag. If
the list was completely processed, a new list is requested; otherwise,
a retransmission of the list is requested.

while (more character lists) {
get list of characters;
for {i = l, listok = true; i < n; i++) {

if {current character is invalid) {
listok = false:
break;

process this character;
}
if {listok)

signal for new list;
else

signal to repeat list;

Figure 3.4: Use of the break Statement

70 PROGRAMMING THE MACINTOSH IN C

THE SWITCH-CASE-DEFAULT STATEMENT

A specialized form of the else-if construct can be found in the
switch-case-default statement, which we will simply call switch.
The switch statement is written as follows:

switch (integer expression) {
case constant-1:

statement-1
case constant-2:

statement-2

case constant-n:
statement-n

default:
default statement

}

The integer expression in the switch statement can be any expression
that evaluates to an integer value. Each case statement must have a
unique integer or character associated with it. This statement will
match the integer expression in the switch statement to the constant
of the case statement.

One of the two major differences between this construct and the
else-if construct is that this construct is limited to the use of integer
constants. The second major difference is the execution of sub­
sequent statements. With the else-if statement, only one statement (or
statement block) will be executed from the entire construct. In a
switch statement, execution begins with the first matching case state­
ment and will continue until the end of the block (notice the braces).
To stop execution of the rest of the block, use the break statement to
force the program flow out of the block. Finally, execution will begin
at the default programming segment if no other case statements
match the integer expression. The default case may appear anywhere
within the block. If no matches occur and no default statement exists,
then no action is taken.

Figure 3.5 shows a sample program fragment that validates a date.
This program fragment receives a date with the components year,
month, and day, which are treated as separate variables. The year is
assumed to be a complete 4-digit year.

INTRODUCTION TO USING C 71

/* Date verification routine */

int month, day, year;

if (day > 0) {

else

switch (month)
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:

if (day > 31)

/* January */
/* March */
/* May */
/* July */
/* August */
/* October •/
/* December *I

printf("Invalid Day\n");
break:

case 4:
case 6:
case 9:
case 11:

if (day > 30)

/* April */
/* June •/
/* September *I
/* November •I

printf("Invalid Day\n"):
break:

case 2: /* February *I
if (year \ 4 == 0)

if ((year \ 100 != 0) 11 (year \ 400 == 0))
if (day<= 29)

break;

if (day > 28)
printf("Invalid Day\n"):

break:

default:
printf("Invalid Month\n"l:

/* end switch */
/* end if */

printf("Invalid Day\n"):

Figure 3.5: Date Verification Routine

Examine this segment of code now. Notice that the first test checks
to see if day is greater than zero. The switch statement then passes
control to the case statement containing the month. The first set of
case statements processes the months that have 31 days. The second
set processes those months with 30 days. The final case statement
processes February, which can have 29 days in all leap years (those
years divisible by 4 and not divisible by 100, unless they are divisible
by 400), and 28 days in all other years. The default statement catches
an invalid month reference. The printf statements could be altered to
change the truth value of a date validity flag instead of just printing
the diagnostic message in the sample.

72 PROGRAMMING THE MACINTOSH IN C

THE GOTO STATEMENT

The goto statement consists of two parts. The first part consists of
the keyword goto and the name of the line where the program should
go to. The second part of the goto statement is the line that is named
by the label.

A label is an identifier terminated by a colon (label:). The label
gives a name to a particular line within your source code file. The
only use for a label is to target a line for a goto statement.

The goto statement immediately transfers execution to the location
of the label following the goto. For example:

goto wayout;

wayout:

The goto statement disrupts the continuity of a program's struc­
ture. When a goto is encountered, it causes an explicit jump to some
other location. The goto itself does not provide any information about
why the jump is to be made, nor about why the particular location
named was chosen as the target of the goto. Abuse of the goto state­
ment can easily lead to "spaghetti-code" -that is, code in which if
you trace the path of the program's flow with a pencil, your page
quickly begins to resemble a plate of spaghetti.

The goto statement should be used in specialized situations: for
example, if you want to exit from more than one loop with one
statement. The break statement will not work as it only exits the
enclosing loop. The goto statement has little allegiance to the pro­
gram's structure and will allow you to jump to a point outside the
loops you wish to exit. Unless you have a compelling or unique
reason for using the goto statement, you should try to avoid it. In
most circumstances, code that uses a goto statement can be rewritten
without it.

PROGRAMMING

TECHNIQUE

PROGRAMMING TECHNIQUE 75

Chapter 4 presents you with the actual nitty-gritty of writing a com­
plete program in C. We will begin by examining the organization of a
program. The organization technique presented here, called
structured programming, is the most widely accepted practice for
designing and writing programs.

The principle structuring device in a C program is called the func­
tion. The function provides the programmer with the tool to develop
a larger vocabulary for his programming use. For example, the
function can be used to define the procedure of getting a date from
the program operator and checking to see if it is a legitimate date (for
example, that February does not have 31 days).

Associated with the function are several concepts that need to be
studied in order to be able to understand how a program works.
These concepts include scoping of variables, defining storage classes,
parameters, and recursion. All of these concepts will be covered in
this chapter.

STRUCTURED PROGRAMMING

When writing a program, even the most experienced programmer
rarely writes an algorithm from top to bottom without making some
alterations or backtracking to include some detail he or she forgot.
The algorithms shown in this book were not written with a single
pass of our cursor!

Programming usually follows a path from the general to the speci­
fic. Beginning with an idea, the program designer starts with an
outline of the algorithm. (The program designer is sometimes the
same person who will later write the code for the program and some­
times a different person.) Relatively short programs, such as most of
the examples presented here, require only an outline of comments in
your source code file as a first step. Larger programs written for
larger systems require more extensive and rigorous planning.

The outline covers the general program flow. Each section of the
outline represents a separate task within the program for which a
section of code will be expressly written. For example, the date rou­
tine used in Chapter 3 would be considered a separate task within a
larger program.

The process of writing code is divided into stages corresponding to
the sections of the outline. For larger programs, each major stage

76 PROGRAMMING THE MACINTOSH IN C

may have an outline, and each part of each stage may also have an
outline. The depth of the outline depends upon the size of the
program (the number of functions it must perform) as well as its
intricacy. The outline will illustrate the different procedures within
the program and clearly define the requirements of each procedure.
At this point, coding can begin.

As the programmer begins coding, he or she is actually finalizing
the outline. In essence, the coding begins from the innermost level
of the outline. The completion of each sublevel provides a base upon
which the next level can be built.

Explaining the process in English will clarify the outline. In telling
someone else how to proceed with check reconciliation, you may
begin with something like "Get a check," and we would use this as a
section heading for our outline. However, the computer is relatively
dumb and does not know how to get a check; it requires more detail.
A check is simply a piece of paper with bits of information on it and
getting a check implies obtaining this information. Now our outline
looks like this:

Get a check
Get the check number
Get the date
Get the payee
Get the amount

This would provide sufficient information to a programmer, who in
turn would continue to refine the outline to include data validation:

Get a check
Get the check number

Get a number
Is this a valid number (nonnegative; within range)?
Is this an unused number?

Get the date
Get a date input
Is this a valid date?

Get the payee
Get the amount

Our outline for getting a check is now ready to be used to write the
section of the program it describes. If the questions (which become
conditional statements in the program) evaluate to true, the proce­
dure continues. If any of these statements evaluates to false, then the
program would take special action.

PROGRAMMING TECHNIQUE 77

For example, if the response to "Is this an unused number?" is
false, your program can perform any of a variety of procedures. The
program can give an error message indicating the number has
already been used and then request another number. Or it can dis­
play the check corresponding to the number entered and then request
another number (this would allow the user to verify whether the
check has already been entered or whether the check number was
entered incorrectly). Or finally the program can display the corre­
sponding check and allow the user to change the information on this
check (that is, essentially allow the operator to use an editing facility).
The method chosen would appear in the outline under the heading of
the conditional statement

As you can see, the outline can become extremely complex. As a
rule of thumb, the final level of any section will refer to a single step
in that section of the program. The section "Get the amount" refers
to one self-explanatory segment of the program. This level of detail is
by no means developed on one pass. The general outline and a few
sublevels are produced, and as each sublevel is coded the details are
supplied. The structure of the code follows from the structure of the
outline.

The final step in developing the outline is to specify the data
requirements of each section. This means that you must specify what
data the section needs from other parts of the program once the task
is completed. For example, in the "Get a check" section of our hypo­
thetical check-balancing program, the routine does not require any
data from other parts of the program. When the routine finishes, it
provides the check information entered by the operato~ which can be
used by another part of the program (perhaps a routine to perma­
nently store the data on disk).

Now that a program outline has been written and data require­
ments for each section have been specified, the program design is
complete. Notice that the design does not explain or list how to write
the program; the outline only explains what the program will do.
Essentially, the outline defines the flow and processing of data, and
not the manner in which it is processed. This is called the black box
principle.

A black box is an object (or in this case a portion of programming
code) into which a known set of data enters, is altered through some
mechanism, and exits. The alteration mechanism is purposely hidden
from the outside world. By defining the input data and output data,
and leaving the processing unexplained, each subsection in our out­
line corresponds to a black box in the program, whose only require­
ment is to follow the data structures assigned to it.

78 PROGRAMMING THE MACINTOSH IN C

The division of the program in the outline stage into single-concept
portions forces program structuring once actual coding is underway.
The designer should give a well-defined description of the program
subsection, leaving the programmer to write the actual code. The def­
inition of input and output data requirements is the first step in the
process of data structuring (which we will cover in the next section).
Program sections can then be given to several programmers on a pro­
gramming team, or if a single programmer is coding the project, the
work can be scheduled. The flexibility of this method of program pro­
duction makes it applicable to any size or level of programming task.

The C programming language provides constructs called functions
that make this type of design easy. We have already seen the use
of the braces to block program statements together. The braces group
the enclosed statements into a form resembling a single program
statement. From the point of view of the rest of the program, this
single statement has known inputs and outputs with a hidden mecha­
nism for processing the data. We will use these statement blocks
more and more frequently. The function is, however, C's major struc­
tural division.

FUNCTIONS

Functions are named blocks of code within a program. All C pro­
grams consist of sets of functions. At the top of all the programs we
have written, we have used the statement main(}, which is the name
of the function first executed upon initialization of a program. The
function statements are then enclosed with a pair of braces.

Thus, a trivial program could be written as:

main()
{
}

This code is just a shell, of course, serving no purpose except to exer­
cise your disk drives in order to load the "program" and return to
the desktop.

The intent of using a function is to move repeated code outside of
the program's main flow. Thus, in practice, programs are usually orga­
nized so that main() contains the program's general outline, and each

PROGRAMMING TECHNIQUE 79

major program section is written as a function. Suppose, for example,
that you were writing program requiring our date validation routine in
several places. Rewriting the date-checking code each time would
greatly increase both the size of the code and the chances for typo­
graphical or logical errors. But if the date-checking code were con­
tained in a function, you would only need to use the name of the
function when you want to check a date, as in this program fragment:

main()
{
. . . some program statements . . .
datecheck();
. . . more program statements . . .
datecheck();
. . . more program statements . . .
}

datecheck()
{
code for date validation
}

When a function name is used to transfer program flow to the start
of the function, it is said that the function is called. Any valid identi­
fier may be used as a function name, but a good function name will
indicate the purpose or nature of the function. This is because the
function definition code may not be located near the calling state­
ment. The function definition code may occur following main(),
preceding main(), or in another source file altogether (see Chapter 8).

Functions separate the code that defines them from the code that
calls them. In a program, for example, we may have the function
main() call the function datecheck() to validate the correctness of the
date entered. Immediately after main() calls datecheck(), program
execution jumps to the start of datecheck(). Likewise, if our pro­
gram has other functions, these other functions could also call date­
check() at any time and vice versa.

You will notice that the function main() is always followed by at least
one pair of braces. These braces act, in effect, to hide what is con­
tained inside them from the rest of the program. Therefore, when
datecheck() is called, it does not know what main() contains. What the
function main() would contain is, of course, some data declaration
statements, as you will recall from our work with main() in Chapter 3.

80 PROGRAMMING THE MACINTOSH IN C

And just as the program statements within a pair of braces are
invisible to any other function, so are these data declarations.

SCOPING
This leads us in fact to an important principle in C programming

called scoping. The scope of a variable is restricted to the enclosing
braces in which it is defined. Variables declared within braces are
called local variables. A data declaration can also appear outside any
particular set of braces, however. This kind of declaration produces
global variables.

LOCAL VARIABLES

Any variables declared within a set of braces are considered local
to the block defined by the braces. Figure 4.1 demonstrates the
scoping of local variables.

The scope, or range, of statements over which a variable is
accessible greatly facilitates the ease of programming in a structured

main()
{
int i, j, k;

••• AAA •••

double x, y, z;
char i;

I
{

••• BBB •••

double a, b, c;
... CCC ...

... .!!!!!!, ...

/* begin main */

I* statements in main */

/* begin block 1 */

/* statements in block 1 */
/* end block 1 */

/* begin block 2 */

/* statements in block 2 */
/* end block 2 */

/* more statements in main */
/* end main */

Figure 4.1: Scoping of Local Variables

PROGRAMMING TECHNIQUE 81

format by allowing you to hide the data you are using under the
black box principle. In the function shown in Figure 4.1, we have
declared the variables i, j, and k as integers. These integers are then
accessible only within function main(). Processing continues through
statements AAA, and we reach block 1, where x, y, and z are floating
point variables and i is a character variable. The variables x, y, z, and
i from block 1 and the variables j and k from main() are accessible for
processing within the statements for BBB, and so on. In short, the
scope of a variable is the block in which the variable is defined and
any other blocks nested within the defining block.

Note that in our example there is a duplication of variable
identifiers-namely, of the variable i. The rule in such cases states
that the last declared variable is the one that the program uses for
reference. In essence, the i declared in main() has been "layered
over," or hidden, by the i declared in block 1, but the original i still
exists in memory.

Upon exiting a block, all variables declared within the block are
removed from access (literally erased from memory in most cases),
and the active variable list prior to entering the block is reinstated. As
our program exits block 1, the floating point variables (x, y, and z) and
the character variable i are removed, leaving the original three integer
variables (i, j, and k) active. The same process applies to block 2, which
has access to three floating point variables (a, b, and c) declared within
the block and three integer variables 0, j, and k) declared in main().
Upon exit from block 2, variables a, b, and c are removed and i, j, and
k remain during the processing of statements DDD.

To sum up, then, the rules for local variable scoping are as follows:

• Variables are only accessible within the block in which they
are defined and all blocks nested therein.

• If more than one variable has the same identifier, the variable
declared last has precedence in any reference made to that
identifier.

• Upon exiting from a block, all variables declared within the
block and their associated data are removed from the system.

A function will always have an associated statement block; there­
fore these scoping rules apply not only to blocks but to functions as
well. Two major differences exist between functions and blocks.

BE PROGRAMMING THE MACINTOSH IN C

First, a block can only be entered through the natural flow of the pro­
gram (one can use a goto to jump into a block, but this would most
likely confuse the programmer, the compiler, and the program execu­
tion). A function, on the other hand, can be entered from anywhere
by referencing its name. Second, blocks can be nested and functions
cannot. C will not allow a function to be defined within another
function.

You may be wondering why someone would use the same variable
name in a subordinate block? Actually, this is not such a good idea,
as it tends to confuse anyone reading the program, including the pro­
grammer! Although you may want to use this facility for loop-control
variables (so you don't have to keep inventing new names), it is not
recommended. And if you are using the Consulair Mac C Compiler,
it is illegal to redefine local variables in a subordinate block. The
manual tells us, in effect, that the designers of the Mac C Compiler
decided not to allow this practice by defining the following example
as illegal:

p()
{ inti;

}

{ inti;
}

This should not cause you much difficulty, however, unless you are
transferring a C program from another compiler.

GLOBAL VARIABLES

Global variables, as the name implies, are accessible to all parts of
the program. A C program can be separated into several source files.
The files themselves act like function blocks and provide a degree of
privacy among variables. If a variable from one source file needs to
be transported into another source file, or if a variable is required
among several functions within the same source file, then a global
variable should be used.

A variable is made global by placing its declaration outside any
function block. Such a variable can be used in any program state­
ment following the declaration until the end of the source file. C calls
variables of this type external variables, because of the placement of
their declaration. In the source file shown in Figure 4.2, functions
fun2() and fun3() have access to the variables i, j, and c. If fun2()
makes a change to any of these variables, then fun3() will be affected

PROGRAMMING TECHNIQUE 83

by the change when it uses the variables, and vice versa. The fun1 ()
function has no access to these variables because it occurs before the
variable declaration. Functions fun2() and fun3() can use these vari­
ables with no further declarations required.

Now assume that fun3() resides in a second source file, as shown
in Figure 4.3. The function has been written to use variables i, j, and
c as external variables; therefore, some kind of declaration needs to
be made in the second source file.

The variables are defined in file SOURCE1 and declared in
SOURCE2. This brings up the fine point of distinction between
defining and declaring an external variable. The variable's definition
includes a data type and the optional storage class (storage classes
will be discussed in a moment). This definition actually reserves
space within memory for the variable. If this definition occurs out­
side of a function block, then the variable can be used as an external

funl()
{ statements }

int i, j;
char c;

fun2 ()
{ statements }

fun3 ()
{ statements }

Figure 4.2: Examples of External variables in the Same Source File

file SOURCEl:

funl()
{ statements J
int i, j;
char cr

fun2 ()
{ statements J

file SOURCE2:

extern int i, j;
extern char c;

fun3()
{ statements }

Figure 4.3: External Variables Used Across Two Source Files

84 PROGRAMMING THE MACINTOSH IN C

variable. The variable's declaration indicates to the compiler the exist­
ence of the variable's name somewhere among the program's source
files. For practical purposes, this difference in terminology applies
only to external variables.

Declarations for external variables can appear in any source file.
The declaration indicates to the compiler the type of the variable and
the fact that it has been defined (that is, storage has been allocated)
somewhere else among the program files. If one or more external
declarations appear within a set of program files, then that variable
must have one and only one definition.

When writing large systems using many source files or creating a
library of files containing useful functions, you may have a file with
several related functions requiring external variables between them (a
series of functions to process a graphics screen for example). Assume
that these functions follow the black box principle so that you don't
need to look at them for several months-you just use them. By this
time, you probably don't remember what variable names you used.
Now, when you are writing a new program that uses these functions,
it is quite possible for you to redeclare a global variable name in your
program that was made global in your function file. You now have
two declarations for the same variable name and this is not allowed.
You therefore need a variable type that will make the variable global
throughout the function source file and invisible to other source files.
In such a case, you can use a static external variable in order to limit
the external variable's scope solely to the file containing your func­
tions. (We will explain what "static external" means in more detail in
a moment.)

Figure 4.4 illustrates the use of such a static external variable. In
file SOURCE2, variables i, j, and c have been defined. They are
external because they are defined outside any function. And, because
they are static, no other files have access to the same data referred to
as i, j, and c in file SOURCE2. Another programmer's file,
SOURCE1, is part of the same program as SOURCE2 and has
defined the same variable names to refer to completely different data.
There will be problems, however, as the variables in SOURCE2 have
been defined as static. As you can see, this particular conjunction of
scoping rules represents a very powerful tool for reducing variable
name duplication errors in programs spanning multiple files.

STORAGE CLASSES
Each variable has a storage class associated with it. The storage

class tells the compiler how and when the storage space for the

PROGRAMMING TECHNIQUE 85

file SOURCE!:

int i, j;
double c:

funa()
{ statements }

funb()
{ statements }

Figure 4.4: Using Static External Variables

file SOURCE2:

static int i, j;
static char c;

fun2 ()
{ statements }

fun3()
{ statements }

variable is to be allocated. C has four storage classes: automatic,
external, static and register.

The automatic storage class is the default storage class for local
variables. If a function or statement block declares automatic vari­
ables, the storage space for the variables will be allocated when the
function of statement block is entered during program execution.
When the function or statement block is exited, the storage space is
released from use by these variables (hence the ability to have local
variables). You may use the keyword auto before the variable declara­
tion. Since automatic is the default storage class, however, the
keyword is redundant.

The second storage class, external, tells the compiler that the stor­
age space for the variable is allocated somewhere else. A variable is
declared to be external by placing the keyword extern before the vari­
able declaration. We have seen the external storage class in action to
declare global variables.

The third storage class, static, is kind of an oddball. It actually has
two functions. The first application is to set the storage class of a
local variable. Instead of creating and removing the data space from
memory each time the function or block is entered, a static variable
is given storage space at the start of the program and remains active
as long as the program is running. The advantage to this is if you
want to retain a specific value (perhaps a running total of an
account), you don't need to use a global variable. With a static vari­
able, you can maintain the black box principle of programming.

The second application for a static variable is to limit the scope of
a global variable to the source file in which it is defined. We saw an
example of this in the previous section on external variables. To
define a variable as being of the static storage class, use the keyword
static in front of the definition.

86 PROGRAMMING THE MACINTOSH IN C

The final storage class is known as the regj.ster class. A register
variable is stored in one of the data registers within the CPU. The
advantage of using a CPU register is that it operates much faster than
normal memory. If you have a very time-sensitive situation, therefore,
you would probably want to use a register storage class for a vari­
able. To define a variable as a register variable, use the keyword reg­
ister before the variable definition.

There are some limitations to using a register variable. First, the
number of register variables you may use is limited (usually four or
six different variables). Second, only certain types of data may be
stored in a register variable (that is, integers, characters, and
pointers). Finally, not all compilers support the use of register vari­
ables. You should check your compiler manual for the restrictions on
using register variables.

PARAMETERS

Although it is possible to use external variables to make data from
one function accessible to another function, this defeats the entire
structuring design of the program. If all of the variables were
declared outside of any function, then their reason for existing would
be vague, if not lost entirely, since there would no longer be any asso­
ciation between the variable and its use. When declaring variables,
you should always declare the variable within the block (and sub­
blocks) in which the variable will be used. This announces to anyone
reading the program that the particular variable contains data neces­
sary for the task currently being performed.

On the other hand, if the data is kept hidden within its declaration
block, how can this data be used by another function without making
the variables global? Notice that following the function name is a pair
of parentheses. Within these parentheses, the programmer can place
data from the calling function which causes the values of data to be
"passed" to the called function. The pieces of data listed within the
parentheses are called parameters. The full function definition looks
like this:

function name(formal parameter list if required)
formal parameter declarations if required
{

declarations if required
statements
return();

}

PROGRAMMING TECHNIQUE 87

(In case you were wondering how to get back to the main flow of the
program, the return() statement is what causes program flow to
resume at the point from which the function was called. The return()
statement is discussed in greater detail in the next section.)

Figure 4.5 shows an example function declaration using parame­
ters. This test function has three parameters or arguments, as they
are called in C. Parameter declarations follow the function declara­
tion and perform two roles. The parameter declaration 1) tells the
compiler what type of data to expect and 2) declares the arguments
to be used within the function. Thus the parameter declaration per­
mits these parameters to be used exactly like local variables. In fact,
you may not declare a local variable to have the same name as an
argument. And just like locally declared variables, the parameters are
removed from use when the function returns. There are some restric­
tions on the types of data that can be passed using parameters. These
restrictions will be discussed when we introduce pointers and
addresses.

The parameters listed in the function declaration are called formal
parameters. They formally define what data the function requires
when it is called and serve mainly to provide a variable name for the
data supplied. When a function is called, the function name is listed,
followed by an actual parameter list. The actual parameter list con­
tains expressions for all the formal parameters named, separated by
commas (,). An actual parameter must evaluate to the same data type
as its formal parameter. They are matched in order, from left to right,

test(i, z, c)
int i;
double z;
char c;
{

function body

Figure 4.5: Example of a Function Declaration Using Parameters

BB PROGRAMMING THE MACINTOSH IN C

with the formal parameters. The expressions used as actual parame­
ters are usually simply variables that are currently being used by the
calling function.

A SAMPLE PROGRAM

Listing 4.1 is a new version of the LIST308 program that appeared
in Chapter 3. Moving the power calculation into a function designed
expressly for this task has provided increased flexibility. For example,
the program now prints five tables for the powers of the numbers 1
through 5. This is done through a nested for loop. The outer loop,
using the variable i, controls which table is being printed, and the
inner loop controls which power is calculated. The second printf
statement uses the function power_() as an integer expression.

You may be wondering why there is an underscore character fol­
lowing the name of the power function. You will recall from Chapter
3 that in order to translate your source code into an executable pro­
gram, you need to use a compiler and linker. The output.link file
specified in the last chapter referred to other files such as fstdlib,
stdfileio, and Mathlib. These files are called libraries, and they con­
tain routines used by the compiler. The routines cover such varied
tasks as handling input and output, initializing memory, calculating
mathematical routines, and so on. Since there already exists a func­
tion called power in one of these libraries, the linker would give you
an error message stating that the name is "multiply defined" if you
were to use the name without the underscore for the function in List­
ing 4.1. The message means, of course, that the same name has been
used to reference two different items in the program. To avoid this
problem, we simply add the underscore to our function name. (See
Chapter 8 for more information about libraries and linking.)

Notice that the method for calculating a power has also been
changed slightly from that used in Chapter 3. The for loop in the
function power counts backwards by decrementing the parameter i.
The loop could have been written as follows:

for (j = 1, p = 1 ; j < = y; j + +) I* calculate power *I
p * = x;

This, however, requires an extra local variable, j. While the variable­
saving process we have used in Listing 4.1 is not a requirement for

PROGRAMMING TECHNIQUE 89

/**
list401 Print tables of powers

**/

1•

•/

This version prints tables for base values l through 5
and powers of each of these number from 0 through 5.

tinclude "stdio.h"

main()
{
int i, /* base value counter */

/* power value counter */ j:

for (i = 1: i <= S: i++) { /* base value loop */
printf("Powers Of %d\n", i):

for (j = O: j <=S: j++) /* power value loop */
printf("%d to the power of %d = %d\n", i, j, power_(i,j)):

printf("Press Return"):
scanf(.i*s");
printf("\n\n"):

/* pause between tables */

/* space between tables */
/* end for (i) */
/* end main */

/**
power compute x to the power of y

**/
power (x, y)
int - x, y: /* formal parameters */
{
int p: /* local variable */

for (p = 1: y > O: y--)
p *= X1

return (p) :

Listing 4.1

/* calculate power */

/* return calculated power */
/• end power */

good programming, it does save space for the disk and computer. You
should select whichever method produces the most understandable
program. Our primary reason for using this decrementing method is
to show how parameters are passed to and used within the function.

One of the primary things you should notice in this example is that
the variables i and j in main() correspond to the formal parameters x
and y of power_(). When power_() is called, the value of j is copied
to the variable y, allowing y to be altered without affecting j. The
same is true for i and x. This is consistent with our black box meth­
odology, because it maintains the locality of variables declared to a
function.

90 PROGRAMMING THE MACINTOSH INC

RETURNED VALUES

The return() statement causes program flow to resume at the point
from which the function was called. Execution continues with the
next statement to be executed in the calling program. The return()
statement may contain an expression within the parentheses whose
value will be returned to the calling function. The function need not
receive nor return data, of course, but it is a good idea to return at
least one value to indicate whether the function performed its opera­
tion correctly or not. If the return() statement does not exist, then
when the function reaches the right brace, the function will return to
the calling program with some undefined value. If the calling func­
tion expects a proper value, this undefined value may cause problems
or erroneous data.

In our example, the function power_() returns the value of p. By
default, all functions are assumed to return an integer data type. To
make a function return a different data type requires two steps. First,
the type of the function must be declared as part of the function dec­
laration itself. Do this by simply preceding the function declaration
with a type declaration. Since integers limit our ability to calculate
powers of a number, we will change our function data type to
double, so that the function can return a floating point value.

double power(x, y)

When the function reaches a return() statement, the expression inside
the parentheses will be converted to the data type of the function (in
this case, a double type) before returning to the calling function.
Within the functions, we also need to convert the local variable p to a
double, so that it too can calculate the larger powers.

The second step for changing the data type returned by a function
is to tell the calling function what data type will be returned. To do
this, simply declare the function with the appropriate data type, this
time listing only the parentheses, not the formal parameters. The new
program now looks like Listing 4.2 (Notice the change in the printf
statement to handle the printing of the double data types. The substi­
tution of O/of for O/od allows for the output of double and floating-point
numbers as fixed-decimal numbers.)

Test the new ranges that you can calculate by changing the limits
of the for loop. For example, change the maximum power value to 10.
Now recompile and test your new version of the table power
program.

PROGRAMMING TECHNIQUE 91

/**
list402 Print tables of powers (using 'double')

**/

/*

•/

This version prints tables for base values 1 through
and powers of each of these number from 0 through 5.

finclude •stdio.h"

main()
I
int i. I* base value counter

j ~ /* power value counter
•/
•/

double power (): /* power returns a double

for (i = 1: i <= S: i++) { /* base value loop */
printf("Powers Of \d\n", i):

for (j = O: j <=5: j++) /* power value loop */

*/

printf("%d to the power of %d = %f\n", i, j, power (i,j)):
/* change last %d to %f •;-

printf("Press Return"); /* pause between tables •/
scanf ("i*s"):
printf("\n\n"l: /* space between tables */

/* end for (i) •/
/* end main *I

/**
power . compute x to the power of y

**/
double power (x, y)
int x, yl /* formal parameters */
I
double p: /* local variable */

for (p = 1.0: y > O: y--)
p *:;::::: x;

return(p):

Listing 4.e

USING FUNCTIONS

/* calculate power •/

/* return calculated power */
/* end power *I

When we talk about using functions in C, we are really talking
about two things: first, using functions of the standard input/output
library supplied with your compiler, and second, creating your own
functions specifically tailored to meet the needs of your program. We
have already gotten a basic sense of how to create customized func­
tions, and we will study customized functions in greater depth

SE PROGRAMMING THE MACINTOSH IN C

throughout the rest of this book. With some sense of how functions
work, we are ready to learn about the library functions, which will,
by the way, expand our programming capabilities.

LIBRARY FUNCTIONS

The design philosophy of C emphasizes portability, which means that
programs written on one machine will operate in the same manner on
another machine. In other words, the programmer can write a pro­
gram, compile and test it on a development machine, and then transfer
the source code file to the target machine and compile the source code
there by making only a few changes, if any. This greatly increases a
programmer's efficiency, as well as the program's usefulness and life
span. For example, when a company switches to a larger computer
system, the software can be moved with relative ease.

In moving a program from computer to computer, we encounter
certain logistical and physical problems, such as differences in oper­
ating systems and differences in the capabilities of the hardware.
Because of these differences, the designers of C chose not to include
any input/output facilities in the language itself. However, most appli­
cations require input and output.

To accommodate this need for input and output, C compilers are
accompanied by a standard I/O library. For some C compilers,
including the Consulair, this library may be a file called stdio which
contains a variety of functions used for input and output. Using the
functions supplied by the library is as simple as using a function you
create yourself. Your compiler manual will list all the functions avail­
able in your library file and how to access them.

The library functions are referred to as "standard" because most C
compilers have them, and the method of calling them and their
parameters will be the same for all compilers and all machines. The
inner workings of the functions may differ from machine to machine,
but as programmers in C, we need not concern ourselves with what
is actually happening inside the computer. Because these functions
are in fact fairly similar from the programmer's point of view, we
can give an idea of how to use the range of library functions you are
likely to encounter by zeroing in on some of the basic ones.

Because the standard library resides in a separate file, you must tell
the compiler to load this file at the same time it compiles your source

PROGRAMMING TECHNIQUE 83

code program. To do this, use the following compiler directive:

#include <stdio.h >

or

#include "stdio.h"

The number symbol (#), which must appear in the first column of
your source file, instructs the compiler to perform a specific action
before or during compilation. The #include directive tells the com­
piler to include the file named in the broken brackets (< >). Note that
broken brackets or quotation marks (" '1 are required. The file named
in the #include statement contains source code that will be included
in the compilation of the source file in which it is named. (We will
encounter a few other compiler directives throughout the rest of this
book. A complete list of the directives available under C is given in
Chapter 8.) ·

THE GETCHAR() AND PUTCHAR() FUNCTIONS

The first two library functions we will explore are console 1/0
functions: getchar() and putchar(). As you might assume, these func­
tions are opposites, performing complementary tasks. getchar()
returns a character from the standard input and has no parameters,
whereas putchar() sends its one-character argument to the standard
output and returns no useful information. (Note that the terms stan­
dard input and standard output for the Macintosh refer to the
keyboard and the screen, respectively.

Listing 4.3 exercises the functions getchar() and putchar() by get­
ting a character from the console (that is, from the keyboard) and
displaying it back to the user. In the program, the function getchar()
returns a defined character called EOF (for "end-of-file") to indicate
that no more characters are available for input and that the end of
the file has been reached. We must check for this flag to know when
to stop reading characters from the keyboard. The algorithm under­
lining this procedure looks like this:

while (another character is available)
output the character

Although short, this algorithm does everything we need it to do.

94 PROGRAMMING THE MACINTOSH INC

/**
list403 Using getchar() and putchar()

**/

#include "stdio.h"

/**** Use only if your system cannot generate a standard EOF signal ***/
iundef EOF
idefine EOF 4
/**/

main()
(
int c;

while ((c = getchar ()) I= EOF)
putchar(c)
I

/* end main *I

Listing 4.3

/* remove this line if echoing */
/* this completes the line above */
/* so it can be removed if necessary*/

The program as written follows our algorithm perfectly. The
expression within the while statement first assigns the character
returned by getchar() to variable c in case it is needed. Then the
character returned is evaluated. If it is valid, (that is, not an EOF
character) the character is displayed and another is fetched from the
console; otherwise, the program ends.

You may experience an echo effect on your display depending
upon the implementation of the getchar() function in your compiler.
Because getchar() is not a specified part of the C programming lan­
guage, the developer of the compiler has several options for the
design of this function. If you are experiencing duplicate characters
on your screen, then your getchar() version echoes the characters it
receives. In this case, you do not need the subsequent putchar() func­
tion. Take it out now and in following programs where it causes
echoing.

Notice that we use the #include statement to obtain the 1/0 func­
tions. When you test this program, press the Command key (the one
with the cloverleaf on it) and the D key simultaneously to produce
the required EOF character. (The Command key on the Macintosh
emulates the function of the Control key on other terminal key­
boards.) This key sequence creates the character code for Control-D
which is the end-of-file character used by UNIX. (Control-D is a
carry-over from UNIX because C was developed for UNIX.)

PROGRAMMING TECHNIQUE 95

At this point, we need to take note of a special problem associated
with the EOF value for users of the Consulair Mac C compiler. C
handles all characters through the numeric representation of the char­
acter set that is in use by the machine. In the case of the Macintosh,
this is an extended ASCII set. The values of the characters range from
0 to 255. Therefore, the EOF character is usually assigned the value of
- 1 to avoid confusion with an actual character. Most compilers will
arbitrarily use the Control-D character sequence to indicate the end-of­
file character. This sequence causes the getchar() function to return the
EOF value instead of the value of the character entered.

Because of this, the Consulair compiler does not assign any charac­
ter to signify the end-of-file character. To get around the problem of
the lack of an EOF character, add the following two lines to your pro­
gram immediately following the #include line like this:

#include "stdio.h"

#undef EOF
#define EOF 4

This sets the EOF character to have the value of 4 (the ASCII value
of a Control-DJ so you can use the Command-D key sequence to
emulate an EOF character. Include these two lines in your program
until Chapter 7, where we will use a different technique.

In demonstrating the use of the getchar() and putchar() functions,
we introduce a concept used in many C programs to develop com­
pact and fast running code. When an assignment statement is used
as an expression, it evaluates to the data being assigned. In other
words, the expression

a= b = c;

explicitly written as

a = (b = c);

causes the assignment of c to b, which evaluates to the value of c
and is assigned to a. At first, using an assignment statement as an
expression may seem a bit confusing. Give the program some thought
and write an alternate algorithm without using this concept. The
alternate program will undoubtedly be longer than this program and
may be more difficult to read. Make sure your alternate algorithm
does not output the EOF character.

96 PROGRAMMING THE MACINTOSH IN C

OUR GETNUM() FUNCTION

In an example of using standard library functions, we will create a
function to accept and validate a positive integer entry. Our new
function is called getnum{) and it has no arguments. getnum{)
returns either the integer depressed or an EOF character if an EOF
was entered.

Listing 4.4 shows getnum() in action. The do-while construct is
appropriate for this situation since we require the loop to be done at
least once. A new standard library function, isdigit(), is used to check
if its argument has an ASCII value ranging from the digit 0 through
the digit 9. A \n, generated by the carriage return key or an EOF
character signals the termination of our function. If the \n was
entered, then the number is returned. If an EOF character is entered,

/**
list404 Input test program

**/

#include •stdio.h"

/**** Use only if your system cannot generate a standard EOF signal ***/
iundef EOF
idef ine EOF 4
/**/

main()
{
int i;

while ((i = getnwn()) I= EOF)
printf("\nThe number entered= %d\n", i);

/* end main */

/**
getnum Get an integer from the console

**/
yetnum()

int c, num a 01

do { /* begin character fetch */
c = getr.har ();
if (isdigit(c)) {

num = (num * 10) + (c - 'O');

}
putchar(c); /*remove if getchar() echoes*/

while (c I= EOF && c I= '\n');

return(c == EOF? EOF: num);

Listing 4.4

PROGRAMMING TECHNIQUE 97

it is returned. Although this function is not very useful, since it
allows us to input only positive integers, we will soon design a func­
tion for general numeric input.

Finally, our declaration statement for the variable num also con­
tains an assignment expression. Any statement which sets the initial
value of a variable is called an .initialization statement. This format­
that is, combining the declaration and the initialization-provides a
shorthand method for setting a declared variable to a specific value.

It's important to note that in C and most other programming lan­
guages, a variable that has not yet been assigned a value contains an
undefined value. Thus, you should not assume that a variable starts
with a value of zero. To test this feature, first remove the assignment
expression from the declaration statement in Listing 4.4. Then run
this program and enter just a carriage return to see what value is
returned by the function. Remember that it can be quite dangerous to
use uninitialized variables in a program since you cannot be sure
what values (if any) the computer may have assigned them.

RECURSION

Recursion, derived from the Latin word recurrere, meaning to run
back or return, is an extremely powerful tool in both mathematics
and computer science. It is even found in everyday life. For example,
on television when a studio camera takes a picture of the monitor
showing the camera's point of view, you will see the monitor with a
picture of a monitor, with a picture of a monitor, and so on. Essen­
tially, something which is recursive will contain part of itself in its
definition. In some programming languages, functions can be written
so that within the function there is a call to the function itself. This is
known as a recursive call.

When a function calls itself, all of the scoping rules apply. Program
execution begins at the start of the function and assigns a completely
new set of local variables. This is like calling another function that
does exactly the same task as the function the program is currently in.

To illustrate how recursion works, we will write a program to print
a recursively-defined mathematical sequence of numbers. One such
sequence, the Fibonacci number set, is defined as

fib(n) = fib(n - 1) + fib(n - 2) for n > 0,

98 PROGRAMMING THE MACINTOSH IN C

where fib(1) = 1 and fib(O) = o. This algorithmic definition means that
the next number in the mathematical sequence is the sum of the pre­
vious two numbers of the sequence. The sequence begins as follows:

Counter:
Fibonacci:

0 1 2 3 4 5 6 7 8 9 10
0 1 1 2 3 5 8 13 21 34 55

The counter refers to the position of the Fibonacci number within the
sequence; thus, the number 13 is the seventh Fibonacci number. In
Listing 4.5 our function fib(} will be supplied with the counter (also
called an index) and will calculate the Fibonacci number correspond­
ing to that index.

/**
list405 Calculate Fibonacci numbers using recursion

**/

#include "stdio.h"

/**** Use only if your system cannot generate a standard EOF signal ***/
iundef EOF
#define EOF 4
/**/

main()
I
int n1 /* Fibonacci index */

printf("Enter Fibonacci Index: ")1
while ((n = getnum()) I= EOF) {/*Cannot use index four if EOF=4 */

printf("\n")I

J

printf("fib(\d) = \d\n", n, fib(n, 0))1
printf("\nindex: ")1

/* end main */

/**
getnum Get an integer from the console

**/
yetnum()

int c, num = O:

do I /* begin character fetch
c = getchar()1
if (isdigit(c)) {

num = (num * 10) + (c - 'O'll

J
putchar(c)1

while (c I= EOF && c I= '\n')I

return(c == EOF? EOF: num)1

/**
fib Calculate Fibonacci sequence recursively

**/
fib (n, level)

Listing 4.5

*/

int

{

n,
level:

PROGRAMMING TECHNIQUE 99

/* Fib number index
/* level counter

*/
*/

int fnum, indent; /* local variables */

/* print indentation */
for (indent = l; indent < level; indent++)

printf(".");
printf("Calculating %d\n", n);

if (n > 1) /* recursive call */
fnum = fib(n-1, level+l) + fib(n-2, level+l);

else if (n == 1)
fnum = 1;

else if (n == 0)
fnum = O:

return (fnum);
/* end fib */

Listing 4.5 [continued)

Let's scrutinize what happens when Listing 4.5 executes. First, the
function getnum() is called to retrieve a positive integer number,
which is the total number of Fibonacci nwnbers to be displayed. If
getnum() returns EOF, then the program ends. (If your compiler must
use the EOF modification mentioned above, then you cannot use the
Fibonacci index with a value of 4.) After the program retrieves this
number, it calls fib() to calculate the associated Fibonacci number.

The function fib() demonstrates several important concepts. First,
the function is recursive just like the definition of the sequence. It
calls itself to determine the two preceding numbers in the sequence
by using two arguments. The first holds the index of the Fibonacci
number to be calculated. The second is used to trace the number of
recursions the function makes to calculate the value.

This tracing technique is used frequently in program error detec­
tion and error correction. It uses what we might tell the "locality
principle" of variables. It is important to understand that when a
function calls itself, it is as if it calls another function that performs
the same operations. In both cases, the called function is oblivious to
where the call came from-whether from main(), another function, or
itself-and the arguments and locally-declared variables are local to
the called function. Our Fibonacci number program demonstrates
this very well, because each recursive call is considered a level of
recursion in which a new set of variables is allocated.

100 PROGRAMMING THE MACINTOSH IN C

Figure 4.6 shows the levels of our function for an index of 4. The
addition symbols (+) indicate the two calls resulting from the
statement

fnum = fib(n - 1, level + 1) + fib(n - 2, level + 1)

Recursive calls will continue until the first argument reaches the
value of 1 or 0. Because the sequence is defined for these two values,
they will be returned without further calculations. If these definitions
did not exist, the function would call itself continuously.

To indicate the level being calculated, the for loop at the beginning
of the function indents a "level status" message. The number of dots
printed equals the level number. Enter and run this program if you
have not already. From the display output, manually trace the execu­
tion of the program. Although we will not be using recursion in any
other examples in this book, you should understand its use because it
is a powerful tool.

In this chapter, we have seen how to construct progrms written in
C. We began with the concept of structured programming and creat­
ing an outline of the program. This led to the use of statement blocks
and the black box principle, which eventually provided us with C's
most powerful structuring tool-the function.

Using the function required an understanding of local and global
variable scoping, as well as of the use of various storage classes. With

from main():

At level 0:

At level 1:

At level 2:

At level 3:

I

I
fib(3,1)

I
fib(2,2) +

.L,
fib(l,3) + fib(0,3)

I I
= 1 = 0

fib(4,0)

I
+

I
fib(1,2)

I
= 1

Figure 4.B: Four Levels of Recursive Calls to fib()

I
fib(1,2)

I
= 1

I
fib(2, 1)

I
+

I
fib(0,2)

I
=0

PROGRAMMING TECHNIQUE 101

this information we created our own function and used some of the
functions provided in the standard 1/0 library. Finally, we examined
the powerful technique of recursion.

The purpose of this chapter has been to introduce you to the tools
for writing a program in C. As you progress through the rest of the
book, you will see how these tools are used to create complete and
structured programs.

DATA

TYPES

DATA TYPES 103

In Chapter 1 we briefly looked at how data is represented in a com­
puter's memory. At this point, you should note that different types of
data require different amounts on memory. For example, a character
represented by a number in the ASCII character set uses only eight
bits, which equals one byte, while an integer will use two bytes to
represent values from 0 to 65,535. In order for the compiler to know
how much memory space to allocate for a particular variable, each
variable's data type is specified in a declaration statement.

So far we have explored only three basic data types available in C;
the other predefined data types are merely extensions of these three.
In this chapter, we will discuss all of the data types in more detail,
how to determine when to use these types, and how constant values
are created for different types.

THE DATA TYPES

There are several variations on the int (for integer) data type that
act more like adjectives than data type declarations: the short int,
long int, and unsigned int. These alternative integer data types are
used to indicate the amount of storage (in bits) you wish to provide
for a particular integer variable. The actual number of bits used for
any data type is both machine- and implementation-specific; however,
a long integer will usually be twice as large as a plain integer. Check
with your compiler manual for the exact size and numeric range of
data types used in your compiler.

These alternative integer data types are used in the same way as an
int. Whenever no specific data type is stated, the type is assumed to
be int, as is shown in this example.

short i;
long j;
unsigned k;

Also, if an identifier has not been declared, then by definition it is
assumed to be of type int. If you forget to declare a variable in your
program, the compiler will give you a warning message that identi­
fies the undeclared variable and that tells you that this variable is
assumed to be of type int. Depending upon what you are using the
variable for, this assumption can cause many more errors throughout

104 PROGRAMMING THE MACINTOSH IN C

your program. It is considered poor programming style to leave any
variables undeclared.

This assumption that an undeclared type is an integer also applies
to the values returned by functions. In the last chapter, the original
power() function had no declaration type and it could only return an
integer value. AB a matter of style, it is acceptable to leave out the
declaration type in a function declaration if the function returns an
integer or no values at all.

A char type variable will hold the numeric representation of the
character assigned to the variable. This generally equates a char to an
int (a short int most likely) and allows char type variables to be used
in arithmetic expressions.

Floating point values can be represented by the float or double data
types. The term double implies double precision which allows for a
large range and precision of values to be represented. Floating point
values can represent any number up to a certain amount of precision
(the number 6.12345 is considered more precise than 6.123).

The final data type, called a pointer, will be discussed in the next
chapter because it is most often used with data structuring tech­
niques. The sizes for data types under the Consulair compiler are
listed in Table 5.1.

Data Type

char
unsigned char
short int
unsigned short int
int
unsigned int
long int
unsigned long int
float
double float
pointer

Size in Bits

8
8

16
16
32
32
32
32
32
64
32

Table 5.1: Sizes for data types used by the Consulair Mac C Compiler

DATA TYPES 105

CONSTANT VALUES

A constant is a value that never changes and is explicitly defined
prior to compilation. In our previous program examples, all the expli­
cit values used have been constants. As there are different data types
for variables, so too are there different types of constants.

Integer constants can be represented by a sequence of digits. The
digit sequence may define a decimal number, an octal number, or a
hexadecimal number, depending upon the leading characters. If the
sequence is preceded by the digit zero (O}, it is considered to be an
octal number. If the sequence is preceded by "Ox" or "OX," the num­
ber is considered to be a hexadecimal constant and may contain the
digits "a" through "f" or "~' through "F," as well as O through 9
numbering systems.

Integer constants evaluate to int data types. If an integer constant
exceeds the range of values associated with the data type, the con­
stant will be considered a long int type. If an octal or hexadecimal
constant exceeds the largest unsigned integer value, it, too, will be
considered a long int type. You may explicitly define a constant to be
a long int type by appending the letter "L" to the constant. Figure 5.1
shows some examples of integer constants.

Character constants consist of a single character enclosed in apos­
trophes ("). As we explained in Chapter 1, this expression translates
into the ASCII integer value corresponding to the character. The spe­
cial character sequences listed in Appendix C can also be used as
character constants.

Floating point constants consist of a sequence of at least one digit,
with an optional decimal point appearing anywhere within the digit
sequence. The sequence may be followed by an exponent of the
form, "E integer-number." If an exponent is used, the letter "E" must
be present in the exponent and may be in either upper or lowercase.

Octal Hexadecimal Decimal Long decimal Long octal
0123 Ox3E4C -2548 125496L 055432L

Figure 5.1: Examples of Integer Constants

106 PROGRAMMING THE MACINTOSH IN C

The integer number must fall within the range of precision available
with your compiler.

All this yields a number of the form: n.nnnnnnExxx. This format is
the computerized version of the familiar scientific notation n.nnnn­
nnn x 10XX" which says "take the number n.nnnnnn and multiply it
by 10 raised to the xxx power." This format is used instead of super­
scripts because most computer displays have a difficult time generat­
ing superscripts. Figure 5.2 shows some examples of floating point
constants. All floating point constants are assumed to be double.

DATA TYPE DETERMINATION

A general set of rules determines which data type to use. Integers,
named for the integer number set from mathematics, handle values
without fractional parts. Because integers can be represented inter­
nally to the computer with a straightforward bit pattern, the int data
type can be manipulated with great speed and can be stored effi­
ciently. The application determines which kind of integer type to use.
Basically, you should use the integer type which best fits the range of
values you expect your program to require. Integers should be used
for control variables in loops, Boolean values (true or false), and
counters that do not reach large values (for example, our variable
level in Listing 4.5 from the last chapter.)

Floating point values represent numbers with fractional quantities.
The float data type can also represent a much larger range of values
than integer data types, at the price of reduced speed and increased
storage requirements.

Character data types are represented as integers within memory
and can be used as integers in expressions. However, the use of a
char type makes the program easier to read and understand since

l.2354E9 .0083 le-3 4.333

Figure 5.e: Examples of Floating Point Constants

DATA TYPES 107

anyone reading the program would know that the variable declared
as char could only represent a character value. This data type uses
the most efficient storage size for a character on the machine being
programmed. The usual size of a char is one byte, but it may be
longer if a larger size is more efficient for speed and storage space.
Obviously, the character data type is used in situations requiring
manipulation of text.

Listing 5.1 illustrates the differences in efficiency of manipulation
obtained with various data types. The program's objective is to pro­
vide a common algorithm that tests the speed (and therefore the effi­
ciency) at which the different data types are manipulated. The
program shown uses an integer variable. In running this program,
you probably will not detect the elapsed time between the printing of
"Begin" and the printing of "End" as the integer data types work
extremely fast. After testing the execution time of this program,
change the data declaration type to a float, and time the interval
again. This time you will notice a much longer pause. As a third test,
use a double declaration; you will need to give the program some
time to run with this data type. The actual execution speed will
depend upon the compiler you use.

DATA TYPE CONVERSION

Earlier in this book we saw the automatic data type conversion
done by C in expressions involving operands of differing data types.

/**
listSOl Test data type manipulation efficiency

**/

#include •stdio.h"

main()
I
double i; /* change this declaration */

printf("Press Return to begin ••• ");
scanf("%*sR);
for (i = l; i <= 10000; i++)

printf("End.\n");
/* end main

Listing 5.1

*/

108 PROGRAMMING THE MACINTOSH IN C

Although the practice of using mixed-mode expressions is not recom­
mended (some languages or compilers may even give you error
messages), C will handle such an expression by converting the values
of the operands into a common data type. The conversion is well­
behaved and follows the set of rules outlined in Appendix E. In
general, the common data type selected will be the largest data type
(with respect to the number of bits) found within the expression.

The conversion process works only on the values of the operands
and not on the operands themselves. In the following expression,
assume that the variable x is of type float, and that the variable i is of
type int.

x = x + i;

This statement will convert the value of both x and i to a double
based on the conversion rules. The result of x + i is now a double,
so what happens when the result has to be placed into x, which is a
float? The result is "squeezed" into the data type of the variable. In
this case, the double result is rounded to fit into a float variable. The
rules for other result conversions are also listed in Appendix E.

Function parameters are also regarded as expressions requiring data
types; the data types of the parameters are converted into alternative
data types based upon the conversion rules during a function call.
Even though you may call a function with a parameter of the char
type, its value will be converted to an int, and float parameters will be
converted to double. The two sample functions listed in Figure 5.3
indicate the data type conversions performed· during a function call.
The formal parameter declarations use the converted data type.

testl(c) /* called with a char */
int c1 /* declared as an int */
{ function body I
test2(x) /* called with a float */
double x1 /* declared as a double */
{ function body J

Figure 6.:3: Type Conversion During Function Calls

DATA TYPES 109

Under certain circumstances, you will be required to supply a spe­
cific data type. For instance, mathematical library function calls will
usually require a double type parameter. Supplying an integer may
cause some very strange results.

Experiment with Listing 5.2. You may need to include a file like the
stdio.h file in order for your compiler to recognize the sqrt() function.
Use the #include statement for the stdio.h file as a guide and add the
line required by your compiler. (The Consulair compiler uses the file
sane.h to define the functions and data types used.) The program
itseH finds the square roots of the numbers 1 through 10. The impor­
tant point is that the function sqrt() requires a double type parameter.

Now run the program and see how your compiler handles the
sqrt() function. Several possibilities exist: your compiler may give you
an error message (this is unlikely); your program may give you an
error message; your program may print very strange results; or your
program may not run at all (if this happens, we suggest that you
restart your computer). Of the tools listed so far in this book, the only
one which will make this program operate properly is changing the
declaration of n to a double. This would make for an extremely
inefficient program, as we have seen from our comparison of execu­
tion speeds using the different data types.

/**
list502 Using math library functions il

**/

tinclude "stdio.h"

/**
WARNING! This program may cause strange results depending upon
your compiler. Be prepared to reboot your computer.
**/

main()
{
int n;

for (n g 1; n <=10; n++)
printf("The square root of %d = %f\n", n, sqrt(n));

scanf("%*s");
/* end main

Listing 5.2

*I

110 PROGRAMMING THE MACINTOSH IN C

To avoid this inefficiency, C provides a cast operator for such an
occasion. Its form is:

(type name) expression

The parentheses indicate the cast operator and convert the expres­
sion into the data type named within. Unfortunately, C has a ten­
dency to use characters like the parentheses in several different
contexts. You will have to read the programs with care and define
the characters based upon the context in which you find them. For
the most part, their definition will be obvious; they should also be
well-documented by the programmer.

Now let's rewrite Listing 5.2 using the cast operator. The revised
program, shown in Listing 5.3, should operate properly. Note that the
cast operator converts only the value of the expression and not
the expression itself, allowing n to remain an integer and to continue
to be used by the for statement.

Cast operators provide a mechanism for explicitly telling the reader
what data type is expected in an expression. Of course, the compiler
could provide the necessary conversion (at the expense of a longer
compilation time and probably less efficient code), but this would

/**
list503 Using math library functions 12

**/

linclude •stdio.h"
tinclude "sane.h"

main()
I
int n;

/*

for (n = l; n <=10; n++)
printf("The square root of td = tf\n",

n, sqrt((extended) n)) 1

Most systems use sqrt((double) n). The Consulair uses a special data
type called extended which is an 80-bit, floating point value.

*/

scanf(.%*s");
/* end main *I

Listing 5.3

DATA TYPES 111

obscure the intent of the statement. Casts are used mostly in dynamic
storage allocation. Dynamic storage allocation is used quite often
with complex data structures, which we will examine in the next
chapter.

DATA

STRUCTURES

DATA STRUCTURES 113

When we discussed structured programming, we mentioned two
parallel structuring concepts: structured code and structured data. So
far we have covered the basic principles involved in structuring the
source code of a program, including the use of functions and state­
ment blocks. In this chapter we will discuss the fundamentals of
structured data. As a subject, structured data in fact comprises a
broad range of topics. After defining the term structured data itself
and explaining why it is an essential aspect of programming in C, the
chapter will discuss the two fundamental tools used for handling
your data: pointers and addresses.

Our examination of actual data structure techniques will begin with
the simple structure called an 01Tay. With the array, we will see how
large sets of similar types of data can be manipulated in a consistent
and rapid manner. Our focus on the array will then lead us toward
an explanation of the numerous applications for pointers, including
pointer arithmetic, using pointers as function parameters, and using
pointers to call a function.

Having dealt with arrays and pointers, we will go over the method
used for handling several objects of different data types as a single
group called a structure. A structure is what will allow us to define
the more abstract concepts of human thought (like the term "date")
in basic terms that the computer will understand (like a value for the
month, day, and year).

All of this information will be summed up in a program that dem­
onstrates how to implement a data structure called a linked list. The
program demonstrates such techniques as dynamic memory alloca­
tion and the use of C structures, pointers, and addresses.

The chapter concludes by presenting some tools related to data
structuring that are available in C. These tools include bit-oriented
operators and a statement that allows you to give C structures a
name for easy reference.

Before we begin this chapter, we will look at how data is stored in
the computer's memory and why data structuring is important. Those
readers who have had experience with data structures may skip this
section and proceed to the section entitled "Working with Pointers
and Addresses."

STRUCTURING YOUR DATA

This book has stressed the importance of writing structured pro­
grams as a means of controlling the quite complex process of

114 PROGRAMMING THE MACINTOSH IN C

programming a computer. The task that you want to computerize can
have several steps where each step can have substeps, and each sub­
step can have sub-substeps, and so on. By programming the lowest
substeps first and combining these to form the next level of substeps,
you begin to build a structured program.

What benefits does this programming method have7 First of all,
you can easily visualize how to represent the major task to the com­
puter. You tell the computer that the major task requires some
subtasks to be performed. The subtasks, in turn, are defined in sub­
subtasks. Once the program is written, you can review it and follow
the steps that the computer is taking. This allows you to quickly ver­
ify that the program is operating properly. If you haven't written your
program in a structured fashion, however, you may find yourself
jumping from statement to statement trying to follow what the pro­
gram is doing.

Other benefits of structured programming include more efficient
programs and faster program generation. Because each subdivided
task consists of a single process performed by a C function, it can be
reused by the program whenever needed. In addition, because you
don't need to rewrite the same code over and over, new programs
can be generated more quickly. Once you have developed a set of
common functions (for example, for input, display, and data verifica­
tion), then you can simply include these functions in the new
programs you write.

Using structured data is just as important as writing structured pro­
grams. Structured data works on two levels. First, it allows you to
define a term that refers to a collection of data that can be logically
grouped together. For example, a date would contain three numbers
representing the month, day, and year. C allows you to group data
items together into a structure under one name.

The second level of data structuring operates in a more theoretical
manner than the first level. At this level, structuring your data allows
you to define how you want to represent that data to your program,
much in the same way as your program structure represents the task
to the computer. There are many different types of data structures,
each having a set of tasks that it is best suited for. For example, if
you just wanted to manipulate a list of data objects (another term for
the first level of data structuring), you could use a structure called an
array, which is the first data structure we will look at.

When you design a data structure, it should be a natural represen­
tation of the data that you are working with. After all, the reason
why a language like C provides a data structuring ability is to make

DATA STRUCTURES 115

the task of programming the computer easier. Before we investigate
data structures any further, let's look at the concepts of addresses and
pointers, which play an important role in data structures.

WORKING WITH POINTERS
AND ADDRESSES

In Chapter 1, we saw that memory actually consists of many indi­
vidual bits. These bits are grouped together, eight at a time, into a
unit called a byte. When the CPU needs data from memory, it fetches
the data one byte at a time. (Actually, the hardware itself might fetch
several bytes at a time, but we will only consider the processing of
individual bytes.)

In order for the CPU to know which byte to fetch out of the thou­
sands of bytes in memory, each byte is given a unique number called
an address. You might think of a byte as a post office box where each
box has a number associated with it. And just like in the post office,
the addresses are listed sequentially, so that the byte with address 100
is followed by the byte with address 101.

Of course, not all of the data types provided by C will fit into one
byte. An integer (data type int), for example, uses 16 bits to represent
the number, which requires two bytes of storage. A long int uses 32
bits, or four bytes. When the program uses a data type that requires
more than one byte, it will use consecutive bytes. Thus, if a long inte­
ger starts at address 150, it will utilize the four bytes at addresses
150, 151, 152, and 153.

Because the compiler takes care of allocating space and addressing
the data associated with variables, we do not need to concern our­
selves with these matters unless we want to manipulate memory
directly. For example, if a program has the following two statements,

int x, y, z;
z = x + y;

the compiler will generate the instructions necessary to create space
to hold the data for x, y, and z. At the same time, because the space
for the data is located in memory, it has an address. Let's assume, for
example, that the data space for x is at address 204, the space for y is

116 PROGRAMMING THE MACINTOSH IN C

at 202, and the space for z at 200. When the compiler translates the
addition statement, it will generate instructions that tell the computer
to take the data from locations 204 and 202, add them together, and
then put this result into location 200.

Through this example, you can see that the variable is just another
name for the memory location used to store the data. Conversely, we
say that a variable has an address associated with it. Therefore, the
address of the variable x is 204, while the address for variable y is
202 and for variable z 200.

THE ADDRESS OPERATOR: &

C allows us to determine the address of a variable by using the
address operator, the ampersand (&). Thus the expression &x, for
example, returns the address of variable x. Remember: an address is
just a number used to locate a position in memory. The data type
used to declare the variable does not affect the address because the
data type only determines the number of bytes required to store
the data, not where the data will be stored.

POINTERS

A pointer is a data type used to store an address. Thus, if px is
declared to be a pointer, you can assign it the address of a variable
using the address operator, like this:

px = &x;

The variable px now contains the address of the variable x.

THE POINTER OPERATOR: *
Because a pointer is a specific data type, a pointer variable needs to

be declared as such. The pointer operator, the asterisk (*), tells the
compiler to use next variable as a pointer. Thus the pointer declaration

datatype *identifier

uses the pointer operator to declare the identifier as a pointer.

DATA STRUCTURES 117

Notice that the identifier specifies a specific type of variable. If we
have the declarations

int x, *px;
double y;

then the statement

px = &y;

would be illegal since the declaration for px is associated with an
integer data type and the statement px = &y is associated with a
double. The statement we presented at the outset of our discussion of
pointers

px = &x

is the one that would be associated with this declaration. The main
point then is that although an address for one data type is effectively
the same as an address for another data type, the compiler must
know what data type is at the location pointed to when we want to
use the data stored there.

Now that we know what a pointer contains (an address) and how
to give it a value, what do we do with it? Obviously, as the name
implies, a pointer is used to point to something. In order to get at the
purpose of pointers, let's look more closely at the use of the pointer
operator. In order to do this, we will use the following declarations:

int x, y, * px, * py;

In the declaration statement, the pointer operator indicates which vari­
ables are to be used as pointers and to what data types they point.
With these declarations, we can make the following assignments:

px = &x;
PY= &y;

The address of x is placed into the variable px and the address for y
in py. Using the pointer operator, we can assign a value to variables x
and y, like this:

*PX = 5;
*PY = 3;

118 PROGRAMMING THE MACINTOSH IN C

In this example, the pointer operator says to place the value 5 into the
location pointed at by px, and the value 3 into the location pointed at
by py. Since px contains the address of x and PY contains the address
of y, the statements place the value 5 at the location of x and the value
3 at the location of y. This procedure is therefore the same as writing
x = 5 and y = 3. Because in using the pointer operator we have indi­
rectly referred to variables x and y, the technical term for using the
pointer operator and a pointer variable is indirection.

Indirection can be used almost anywhere you want to use a normal
variable. You can use it in an expression such as x = * px + * py or as
a parameter for a function like test(* px).

When using pointer variables, you must be careful to include the
pointer operator when you are referring to the data at the address
contained in the pointer variable and not to the address itself. The
statement y = px/10 is not the same as y= *px/10. In the first state­
ment, you would be dividing the address of variable x by 10. Per­
forming division or multiplication on an address does not make any
sense because of the way memory is organized (and in fact, these two
operations are not allowed on pointer variables). Changing the value
of an address indiscriminately can cause problems. The resulting
address may be referring to a location used for program code. If you
start changing this memory location, you will be changing the
instructions that the program uses, and this will probably cause your
program to stop running.

Do not confuse the pointer operator with the multiplication opera­
tor. Because the asterisk is used in both instances, you will have to
determine whether it is being used for multiplication or indirection
by its context. As a style convention, if you put the pointer operator
right next to the variable, as in * px, but put spaces around mathe­
matical operators, as in x * y, your program will be easier to read
and you will be less likely to make mistakes.

To sum up, then, the pointer operator tells the compiler to use the
location contained by the pointer for placing or retrieving data; the
pointer operator does nothing else. Listing 6.1 contains simple
pointer expressions. Examine the program and write down what you
believe will be printed by the printf statements. Then check Figure 6.1
to see what actually is displayed. Since the values of the pointers
themselves will vary from compiler to compiler, we will simply
assume that some values will be shown, the exact contents of which
are unimportant and probably meaningless.

Notice that the program uses direct and indirect methods to change
the values of variables x, y, and z. If you correctly predicted the

DATA STRUCTURES

/**
list601 Pointer manipulation sampler

**/

iinclude •stdio.h"

main()
I
int x, *px,

y, *py,
z, *pz;

/* this grouping of variables */
/* is for readability and has */
/* no effect on the declaration */

px = &x; py = &y; pz = &z; /* address assignements

px = S; / initialization
*py = 11;
z = 19;

display(x, y, z); /*a display function

/* this next statement just show what the pointers actually

*/

*/

*/

contain based upon your compiler's implementation */

printf("The values of the pointers themselves are:\n");
printf("px = 'ld, py = 'ld, pz = 'ld\n", px, py, pz);

(*pz)++;

*px += 5;
*py = *px;
display(x, y, z);

PY = pz;
x = *py + y;

display(x, y, *pz);

scanf("%*s"l1

/* parentheses required due
/* to operator precedence

/* end main

/**
display display values of three integer variables

**/
display(i, j, kl tnt i, j, k;

printf("x = \d, y = \d, z = \d\n", i, j, k);
return;

/* end display

Listing 6.1

*/
*/

*/

*/

119

1 eo PROGRAMMING THE MACINTOSH IN c

x = S, y = 11, z = 19

The values of the pointers themselves are:
x = ??, y • ??, z = ??
x = 10, y = 10, z • 20
x = 30, y • 10, z = 20

Rgure S.1: Results from Listing 6.1

results of the program, then you understand the mechanism of
indirection. If not, you should continue to study the program, the
previous section, and the section on memory until you can easily
manipulate pointers and feel comfortable with indirection. To further
test your understanding, change or add assignment statements in the
pointer program and predict the new results.

A WARNING ABOUT POINTERS

Using pointers has both benefits and drawbacks. Before we demon­
strate the uses of pointers, you should note some of the drawbacks
that can cause problems while you are writing a program.

First, pointers can be difficult for the uninitiated to understand.
The pointer itself is a very simple concept: a pointer contains an
address of a memory location. Using a pointer can be tricky, how­
ever, because you need to keep track of two things: the fact that you
are using a pointer and what the pointer points to. This brings up the
next drawback in using pointers.

Indiscriminate use of pointers can lead to unreadable and possibly
dangerous code. Because pointers provide one level of distance
between you and the data (you need to get the address from the
pointer, and then get the data), you may forget what the pointer actu­
ally points to. Therefore, whenever you use pointers, you should
make sure that the pointer names are distinctive and descriptive, and
you should use comments to make clear the intent and use of the
pointer.

If you use pointers without care, moreover, you may wind up
pointing to some unknown address, as we described earlier in regard
to using multiplication and division on pointers. Take your time with
this topic, do the examples, and understand them before moving on.

DATA STRUCTURES 121

FUNCTIONS AND POINTERS

At this point, it may be useful to quickly review the role of the
parameters to a function. The parameters, or arguments, to a func­
tion are those values passed to the function at the time the function
is called. The parameters appear in the parentheses following the
function name. The parameters used when the function is called are
said to be the actual parameters because these are the actual values
used by the function. The parameters listed in the function definition
are said to be formal parameters. They are used within the function
body and are local to the function. When the function is called, the
actual parameter values are placed into the formal parameters and
the function is executed. This is an important point. Only the values
of the actual parameters are given to the function. Thus, the function
has no way of affecting the actual parameters themselves; it can only
work with the formal parameters which are local to the function.

This method of parameter transfer is termed call-by-value. The
other way to pass parameters to a function is called call-by-reference,
which uses the addresses of the parameters. We will see how this is
used in a moment. For the call-by-value method of parameter passing,
the value of the actual parameter is passed to the formal parameters
of the function, which reside in a physically different location in
memory. In the program shown in Listing 6.1, the statement

display(x, y, * pz);

passes the value of x, the value of y, and the value pointed to by pz to
the function display(). The call-by-value concept upholds the black
box principle by preventing changes made to the values of the vari­
ables from affecting the original contents of the variables. This allows
a programmer to use the parameters in statements and expressions
inside the function without having to worry about how these changes
will affect the rest of the program. A function, by design, will not
affect any external values used in the program unless it is explicitly
told to do so. From what we know about C so far, a function can
only change external values by referencing a global variable or
returning a value that is used by the calling routine.

Functions can only return a single value in the return() statement.
What do we do when multiple values need to be returned?

One example is a function that asks the program operator for the
date. Such a program will need to return three values: the day,
month, and year. Another example is when the values of two
variables must be exchanged, requiring the return of the new value

122 PROGRAMMING THE MACINTOSH IN C

for each variable. Normally, the way to exchange the values of two
variables is by using three variables, as follows:

temp = x;
x = y;
y = temp;

The variable temp holds the original value of x in the first line. The
second line puts the original value of y into x, which replaces the
original value of x. Finally, the original value of x held in temp is
placed into y. This exchanges the contents of variables x and y.

If a program required this procedure frequently, we might want to
call a function instead of rewriting the code every time. If we write
the function swap() shown in Figure 6.2 and call swap(x,y), however,
we would simply succeed in wasting computer time because the local
variables a and b would be exchanged, while the actual parameters, x
and y, remain unchanged.

Technically, we want to return two values: the new value for x and
the new value for y. Since call-by-value copies the values of the actual
parameters to the formal parameters and then removes the for­
mal parameters when the function returns, we cannot use this type
of function call. We can, however, achieve the exchange by giving the
function the addresses of the data we want exchanged. Figure 6.3
contains our new function. Now when we call swap(), we will pass
the addresses of the wuiables whose values we want to be swapped:

swap(&x, &y);

swap(a, b)

tnt a, b;

int temp;

temp == a;
a = b;
b = temp;
return();

Figure s.2: Ineffective Use of a swap() Function

DATA STRUCTURES 123

The function exchanges the contents of the memory locations instead
of just the values of temporary variables. This method of parameter
passing is called call-by-reference because the parameter passed refers
to the location of the data required. We will use this method quite
frequently when passing more complex data types because this is the
only way in which C will pass a complex data type.

What we have done with the function swap() is to explicitly create a
call-by-reference mechanism. We have not changed the way C calls the
function; we merely interpret the data received by the function in a
different manner. The data passed when our new version of swap() is
called is the values of the addresses of the variables to be exchanged.
Through the use of pointers, we indirectly exchange the values.

WORKING WITH ARRAYS

The implementation of arrays in C is very much like the implemen­
tation of pointers. Let's now examine the concept of arrays, some of
their uses, and the relationship between arrays and pointers.

WHAT IS AN ARRAY?

An array is a collection of items of the same data type. This book is
an example of an array of characters as well as, on a larger scale, an

swap(pa, pb)
int *pa, *pbi
{
int tempi

temp = *pa;
*pa = *pb1
*pb = tempi
return():

Figure B.3: Proper Use of the swap() Function

124 PROGRAMMING THE MACINTOSH IN C

array of pages. An array provides a means of referring to a single ele­
ment of a large set of similar items and processing the single element
without affecting any other items within the array.

The terminology used with arrays requires discussion. Most arrays
consist of a row of elements. A line on this page, for example, could
be considered an array of characters. The dimension of an array indi­
cates the number of directions in which these rows lie. A one­
dimensional, or linear, array is analogous to a straight line; a
two-dimensional, or rectangular, array is analogous to a region or
area. Three-dimensional arrays are analogous to volume, and
so on. Few programming applications require nonlinear arrays (see
Figure 6.4).

The subscript of an array designates a specific element within the
array. There are always as many subscripts as there are dimensions
in the array. For example, a three-dimensional array has three
subscripts.

USING ARRAYS

In C an array declaration states the type of the elements and the
number of elements to be allocated for the array. For example:

int a[5];

I-dimension

I I I I II 3-dimensions

2-dimensions
.z:

.L. VI
VI VI

VI
VI VI VI v
VI
v

Figure 6.4: Visual Conceptions of One-, Two-, and Three-Dimensional Arrays

DATA STRUCTURES 125

The number within the brackets ([)} indicates the total number of
elements in the array. The preceding declaration allocates a one­
dimensional array (only one subscript) with five elements numbered
from 0 through 4. Whenever an individual array element is used in a
program statement, the subscript of that element will appear within
brackets following the variable name. The five individual elements of
this array are referenced within the program code as a[O], a[1], a[2],
a[3], and a[4]. Thus, the number used in the declaration statement
indicates the total number of elements in the array, and the indi­
vidual elements are numbered from 0 through one less than the
number used in the declaration.

The array is our first example of a data structure because it pro­
vides us with a way to reference all or some of the items in the array
with the same programming statements. For example, assume you
have ten integers you want to print (see Figure 6.5). Without the
array, you would need to write a statement explicitly printing each of
the ten integers. With an array, on the other hand, you can use a for
loop and a single printf statement to list all ten integers.

The second algorithm is more efficient than the first for many
reasons. The first algorithm requires the declaration of ten individual
variables, whereas the second algorithm needs only the declaration of
the array i[10] and the variable j. With the array, if the number of
elements needs changing, you need only change the array declaration
and the loop itself to reflect the new value. In contrast, the first algo­
rithm would need new variables. The printf output format would also
need to be changed, and the new variables would have to be inserted

/* without an array*/
printf ("%d %d %d %d \d \d \d \d %d %d\n",

iO, il, i2, i3, i4, i5, i6, i7, i8, i9)1

/* with an appropriately-defined array */
for (j = l; j < 10; j++)

printf("%d •, i(j));
printf("\n");

Figure B.5: Two Methods of Printing Ten Integers

126 PROGRAMMING THE MACINTOSH IN C

at the end of the printf statement These seemingly insignificant differ­
ences in the work needed to make changes on this short example grow
tremendously as program size increases. Simply making a small
change, such as increasing the number of data items used in a p~
gram, will have widespread effects, as we have seen in the preceeding
example. By using the proper data structure-in this case an array­
you can minimize the effects of such changes. All in all, using the
proper data structure allows for faster program creation and alteration.

Listing 6.2 converts decimal numbers into binary numbers using
the algorithm introduced in Chapter 1. Because the algorithm pro­
duces the digits in reverse order, we will store each digit in an array

/**
list602 Convert decimal integers into binary numbers

**/

linclude "stdio.h"

main()
{
int b[32J, /* allow for 32 binary digits */

for

num, i;

/* convert numbers 0 to 15
(num = O; num <= 16; num++) {
printf("%d in binary=•, num)1
dectobin(num, &b(OJ)1 /*call conversion function

/* output digits in reverse
for (i = 311 i >= O; i--)

printf("id", b[i));
printf ("\n"); /* move to next line

/* end for (num)

/* end main

/**
dectobin convert decimal number into binary

d integer to convert
a array to store binary digits in. Digits are

stored in reverse order.
**/
dectobin (d, a) tnt d,a[J;

int count;

for (count O; count < 32; count++)

*I

*/
*I

*/
*/

*/

a[count] = O; /* initialize array to O */

count = O;
while (d > 0) {

a[count++) d % 2;
d /= 2;

return;

Listing s.e

/* loop through conversion */

/* digit =l if remainder
/* divide number by 2

/* end dectobin

*/
*I

*I

DATA STRUCTURES 127

until the entire binary number has been created, and then print the
array in reverse order.

AB you study this program, notice that we have again used the
principle of call-by-reference, passing the address of the first element
in array b to our function. We can pass an entire array by passing the
address of the first element because when the array is declared, a set
of contiguous memory locations is allocated. The first element in the
array occupies the first space of this segment of memory, the second
element occupies the second space, and so on. The term "space"
refers to a sufficient amount of memory for the data type of that
element. In Figure 6.6, for example, each memory location is repre­
sented by an x. Each element in the array occupies a set number of
memory locations, which is determined by the data type. Elements
of the same array will always be found in consecutive memory
locations.

When the address of the first element of array a is passed to
function dectobin() in Listing 6.2, the function can use this address
for access to the remainder of the array. The declaration of the
parameter as an array does not create a new array; it merely creates
a variable for the function to use when accessing the array. Since the
call to dectobin() is a call-by-reference, the original array will be
affected by all changes made to the array during the function's pro­
cessing. Notice that the dectobin()'s parameter declaration for array a
does not contain any information about the number of elements. This
information is dependent upon the original array declaration. In C,
using call-by-reference is the only way to pass an entire array to a
function.

One final comment about this program. The initialization section of
the function dectobln() clears the array (that is, all elements must be
set to 0). This must be done because we are using the same array
each time the function is accessed. On the first function call, each
element in the array contains an undefined value; therefore, we

Memory location: x x x x x x x x x x x x x ...
Array element: O· 1 2 3 ,.,

Figure as: How Memory Is Allocated for Arrays

128 PROGRAMMING THE MACINTOSH INC

assign each element the known value of 0. On the next call to
dectobin(), the array contains the values from the previous call. The
initialization statement clears these old values. In any case, whenever
you must be sure that a variable has a particular value, you should
use an initialization statement before using the variable.

ARRAYS AND POINTERS

Listing 6.2 demonstrates similarities between arrays and pointers.
In fact, the effect of using a reference to an array element is exactly
the same as using a pointer to indirectly reference a memory loca­
tion. Looking more closely at our figurative representation of an
array in memory (see Figure 6.7), let's let each x represent a single
byte of memory, and assume that the array is a sequence of the ficti­
tious byte variable, which is one byte in length. For the example, we
have the declaration

byte array[1 O], * ptr;

We can now make the assignment

ptr = &array[O];

which sets ptr to point to the first element of our array, or array[O]. If
we increment ptr, it then points to the second element of our array,
namely array[1]. This means that

*(ptr+1)

and

array[1]

point to exactly the same place. Going one step further, C allows you
to construct the expression

*(array+ 1)

which also points to exactly the same place as the two previous
expressions.

DATA STRUCTURES 129

Memory Location: I x I x I x I x I x I x I x I x I x I ...
Array element: O 1 2 3 4 5 6 7 8

Figure 6.7: Array of byte Variables

Thus, we can use an array name as a pointer whenever it is clearer
or more convenient. We can now change the call to function decto­
bin() in the Listing 6.2 to

dectobin(num, b);

Similarly, since the array name is an address, we need not use an
array in the function. A function parameter containing an address
can be declared within the function as a pointer or an array. The
parameter declarations

and

function(addr)
data-type *addr;

function(addr)
data-type addr[];

both require that an address be passed in the parameter, yet they
utilize the address in slightly different ways. Both constructions are
valid. The choice of which one to use depends upon how the data is
to be accessed.

What exactly is the difference between an array name and a
pointer? An array name is semantically defined as a constant, which
means that it cannot be assigned a value (an address). For example,
all of these constructs are invalid:

array = ptr
ptr = &array
array++

Pointers, on the other hand, can have values assigned to them.
Except for this difference, an array name can be used in the same
way a pointer can.

130 PROGRAMMING THE MACINTOSH IN C

ARRAY AND POINTER ARITHMETIC
If we can write *(array+ 1) to access the second element of an

array, array[1], then we can also write *(array+ 2) to access the third
element, array[2], and *(array+n) to access the nth element, array[n].
This is quite straightforward when we are dealing with an array of
data types that require only a single byte each. But what about an
array of integers or floating point numbers? The designers of C have
specified that this method of access will work with an array of any
data type.

One of the advantages of using C is its consistency in its operators
and expressions. The expression *(array+ n) will always access
element array[n], regardless of the declaration type of the array,
because the integer n in the *(array+n) expression (n must be an
integer) will be scaled to the proper size according to the data type of
the pointer. The expression array+ n takes n and multiplies it by the
size of the data type associated with the variable array. This new
value is then added to the starting address held by array to give the
location of the data being referenced. Likewise, the expression
*(p+n) performs exactly the same as p[n]. In either of these expres­
sions, p can be declared as an array or as a pointer, since they are
both equivalent and the compiler does not care which form you use.
You may also subtract an integer from a pointer and obtain similar
results, although this usage is rare.

It should now be apparent why a pointer must be declared to point
to a particular data type. The declaration indicates the amount of scal­
ing that needs to be done during pointer arithmetic. Other arithmetic
operations that may be performed on pointers are pointer subtraction
and pointer comparison. Pointer subtraction gives you the distance, in
number of elements, between two locations in memory. For example,
if we have an array n and p points to n[5] and q points to n[3], then
the expression p-q will yield the value 2. The pointers must be point­
ing to the same data type for the results to be meaningful; in most
cases, they will point to elements of the same array.

Pointer comparison allows you to compare relative pointer posi­
tions in memory using the relational or equality operators, which are
as follows: >, <, > = , < = , = = , and ! = . The use of these expres­
sions is limited to specialized instances-for example, if you wanted
to know whether the ranking of one element was greater than
another (that is, which element occurs first in the array). The most
frequent use of pointer comparison is in comparing a pointer to the
value 0. C guarantees that any pointer with a value of O does not
point to any data.

DATA STRUCTURES 131

ARRAY INITIALIZATION

Initializing a variable or data item in a declaration statement is a
common practice among C programmers. Using the declaration state­
ment as an initialization statement allows the compiler to produce
more efficient code. It also makes the program easier to read by saving
you the work of reading through individual initialization statements.

Listing 6.3 introduces a new method of initialization that is charac­
teristic of arrays. Notice that the array declaration resides outside of
main(). C only allows external and static arrays to be initialized in
the declaration statement. An array initializer will follow the array
declaration with an assignment symbol (=), an opening brace, ({),
and a value for each element. The elements are separated by com­
mas, with a closing brace (}) and a semicolon (;) to indicate the end
of the declaration statement, like this:

char array[10] = { 'A', 'B', 'C', 'D', 'E',
'F', 'G', 'H', 'I', 'J' };

You need not supply all of the values for the elements. However, the
assignment of the values will always start with the first element of
the array, array[O].

/**
list603 Pointer usage and constructions

**/

#include "stdio,h"

/* This array initialization puts each character constant

char

into an array element in order starting with 0 *I

array(lOJ = { 'A', 'B', 'C', 'D', 'E',
'F', 'G', 'H', 'I', 'J' };

main()
(
char *ptr;
int i;

ptr = array; /* same as ptr = &array[OJ •/

for (i = O; i < 10; i++) {
printf("Array(%d) = %c, •, i, array(i));
printf("*(ptr+\dl = %c, •, i, *(ptr+i));
printf("*(array+%d)=%c\n", i, *(array+i));

I /* end for •/
scanf ("%*s"):

/* end main */

Listing 6.3

132 PROGRAMMING THE MACINTOSH IN C

If an initialization statement does not state the number of elements
in the array, some, but not all, compilers will count the number of
initializers. This causes the compiler to determine the maximum
number of array elements. Consult you compiler's manual for the
exact description of how array initialization is handled.

STRINGS

C uses arrays to manipulate text. The term string simply refers to a
linear set (array) of characters. Just as a string of bits forms a byte, so
a string of characters forms text.

By convention, a string is an array of characters, the last of which
is always the \0 character, the termination character, signifying the
end of the string. Although you can create strings without the \0
character, most of the standard functions that handle strings expect
this character to signal the end of the string.

String constants are created by enclosing a set of characters within
quotation marks (" "). For example:

"This is a string constant."

Because a string is an array, the compiler will always equate the
string variable name to a pointer. Thus, if you have the declaration

char *heading;

you can designate this pointer to point to a string constant:

heading = "DATATECH - Quintessential Publications";

You can also access any single character within the array by adding
the appropriate integer, as illustrated previously. For example, to
retrieve the "Q" from the word "Quintessential," you can use head­
ing + 11 because the "Q" is the twelfth character in the string (recall
that arrays start with element number 0). This string actually con­
tains 39 characters when the program is compiled: the 38 characters
within the quotation marks plus the \0 termination character.

You can also declare and assign heading within the same state­
ment, like this:

char heading = "DATATECH - Quintessential Publications";

DATA STRUCTURES 133

Again, the \0 character is automatically supplied by the compiler.
By design, the C programming language does not contain any oper­

ators to process strings as a whole. In most development systems, a
set of such functions will be provided in the standard function
library.

MULTIDIMENSIONAL ARRAYS

Multidimensional arrays are declared and initialized in the same
manner as one-dimensional arrays, with the addition of the extra
subscripts:

int multi[2](5] = {

};

{ 1, 1, 1, 1, 1 },
{ 5, 4, 3, 2, 1 }

You may use more than two subscripts if your application requires it.
We will be using two-dimensional arrays for simplicity, but any
general remarks made about two-dimensional arrays may be
extended to arrays of higher dimensions. The maximum number of
subscripts you may declare for an array is limited only by memory
size and the compiler's characteristics.

The elements in the array are organized in row order so that the
first subscript indicates the number of rows and the second subscript
indicates the number of items in a row. Figure 6.8 shows the order of
the elements from the initialization example for array multi shown a
moment ago.

0 1 2 3 4

0 1 1 1 1 1

1 5 4 3 2 1

Figure B.B: Row Order of an Array

134 PROGRAMMING THE MACINTOSH IN C

Overall, multidimensional arrays are used less frequently than one­
dimensional arrays. Their main application is to represent tables of
information, such as price lists, insurance rates, tax rates, and so on.

ARRAYS OF POINTERS

Combinations of arrays and pointers can be used in many ways. To
illustrate this point, we will combine multidimensional arrays,
strings, and pointers in the following example:

char * day[7] = {
"Sunday",
"Monday'',
"Tuesday",
"Wednesday'',
"Thursday'',
"Friday'',
"Saturday"

};

Each array element, day[n], points to a string containing the name of
a day of the week. By definition, since each string itself is an array,
the day array can be considered a multidimensional array. To access
the third letter of each day, we write day[n][2].

Along the same lines, one might have declared the following:
'

char day[7][10] = {

};

"Sunday ",
"Monday ",
"Tuesday ",
"Wednesday ",
''Thursday ",
"Friday
"Saturday

/*equivalent to 'S', 'u', etc */

As you can see, this declaration requires the completion of all ten ele­
ments (including the \0 character) in each row. The ability to point to
arrays of differing sizes comes in quite handy when the array
sizes to be input to the program are not known in advance or can
change from execution to execution. For example, sorting algorithms,

DATA STRUCTURES 135

word processors, and data analysis programs utilize this data storage
and access method. As a programmer, you may want an array to con­
tain pointer information, storing addresses to other variables used in
the program. This is analogous to maintaining a "map" of addresses
to other variables for accessing purposes.

POINTERS TO FUNCTIONS

We already know how to declare a function to return a data type
other than an int. For a function to return a pointer requires the
same procedure. Within the calling function, we declare the function
to be called with the data type to be returned:

char *funptr();

Function funptr() is expected to return a pointer that points to a
character.

We can also declare a pointer to a function. Certain programming
situations require execution of particular functions, depending upon
specified criteria. An example of this is a comparison routine used by
a sorting function. If the sorting function is to sort a set of numbers,
a numeric comparison routine must be used. If it is sorting a set of
strings, a string comparison routine must be used.

Let's assume we have a program that will perform one of two tasks
depending on the input to the program. If the input matches criterion
A, function funa() will be perfonned; otherwise, function funb() will
be performed. Let us also assume that these two functions will be
called at various points throughout the program. For efficiency, we
would not want to continually repeat the test of the input data to see
which function we should execute. Instead, we will set a pointer to
the function to be used.

When we use pointers to functions, function processing is at least
one step removed from the evaluation of the criteria. In Figure 6.9,
the function main() evaluates the criteria and passes the appropriate
function pointer to process(), which, in turn, uses this information
during its execution to call the appropriate function.

The function main() declares funa() and funb() as type int. When
main() calls process(), it passes the address of the function which
process() is to use. This is very similar to the use of array names as
pointers. The function process() declares its parameter to be a

136 PROGRAMMING THE MACINTOSH IN C

/**
FUNPTR Example of pointer to functions

********************************I*******************************/

#include <stdio.h>

main()
I
int funa(), funb(), criterion, getcrit():

while ((criterion= getcrit()) I= EOF)
if (criterion == 1)

process(funaJ:
else

process(funb):
/* end while (er i ter ion) * /

/* end main ·*I

/**
process process functions example

********************************!*******************************/
process(funptr)
int (* funptr) ():
I
int result, parameter!, parameter2;

/* do processing *I

/* call special function */
result (*funptr) (parameterl, parameter2);

/* continue processing */
/* end process *I

/**
funa criterion 1 function

********************************!*******************************/
funa(parl, par2)
int parl, par2;

I !* body *I J
/**

funb criterion 2 function
********************************!*******************************/
funb (vl, v2)
int vl, v2;

I !* body *I

Figure s.s: Sample Program Demonstrating Pointers to Functions

DATA STRUCTURES 137

pointer to a function signified by the empty parentheses in the
statement

int (*funptr)();

The parentheses surrounding *funptr must be present in order to
associate the operators correctly. If they were not present, we would
have

int *funptr();

which declares funptr() as a function returning a pointer to an int. We
call the function using the same parenthetical method, where
(* funptr)(parameter1, parameter2) calls the function pointed to by
(*funptr). Of course, funa() and funb() must be able to accept the
same parameters; otherwise, they would not be interchangeable.

Applications using pointers to functions fall into the realm of more
advanced programs. We have introduced this concept to familiarize
you with its existence. The examples we would need to use to fully
demonstrate the usefulness of pointers to functions would be quite
lengthy and are beyond the scope of this book.

DATA STRUCTURES

At several earlier points in this book, we have discussed structured
programming, emphasizing the importance of outlining the algorithm
and dividing the algorithm into single processing tasks. This philos­
ophy continues to apply as we discuss the creation of data structures.

When we begin to code a task, we abstract that task into terms
which the computer can understand. This abstraction also applies to
the data that the program uses during processing. For example, a
check contains different types of data grouped together: the check
number, the check date, the amount, and the payee. Some of this data
can be divided further: for example, the date contains a month, a day,
and a year, and the payee is an array of characters.

We could declare all of these variables independently:

int check_no,
check_date_month, check_date_day, check_date_year;

double check_amount;
char check_payee[30];

138 PROGRAMMING THE MACINTOSH IN C

But this would be extremely awkward later on when we need to
process our check as a whole unit. This simple operation alone
would require the declaration of six more variables and six assign­
ment statements. Besides being tedious, all of this extra code would
make the flow of our program confusing to readers, decrease avail­
able storage space, and reduce the efficiency of program execution.

CREATING DATA STRUCTURES: STRUCT

Fortunately C allows us to define a new data type based upon our
program's requirements. The keyword for building a new data type is
struct, for "structure"; it defines a data type built from the existing data
types available Ont, char, pointers, and so on). We can easily define a
data type called date, for example, with the structure declaration:

struct date {
unsigned mon, day, yr;

};

Be sure to include the semicolon (;) following the closing brace since
this definition is a C statement and all C statements are terminated
with the semicolon.

There are a few terms associated with structures that you should
know about. First of all, the structure name itself-date in the preced­
ing example-is called a tag. This simply provides a convenient name
for the structure being defined. After you have defined the structure,
you can declare a variable as having the structured data type by
using the keyword struct and the structure tag followed by the vari­
able name(s). For example:

struct date birth_date;

The tag itself is optional. However, if the tag is not present, you will
have to declare the variables that use the structure in the same state­
ment as the structure definition. For example:

struct {
unsigned mon, day, yr;

} birth_date, another_date;

Here, birth_date and another_date are the only two variables using
the date structure. If any more variables need the date structure, the

DATA STRUCTURES 139

structure definition must be supplied again followed by the new vari­
able names because there is no way to reference this data structure.
Using the tag makes data declaration much easier.

Next, each of the variables declared inside the structure definition
(that is, mon, day, yr) is called a member of the structure. Members of
a structure are accessed using the member operator, the period (.).
This allows us to assign values to the individual members, just as we
assign values to individual elements within an array, as follows:

birth_date.mon = 3;
birth_date.day = 8;
birth_date.yr = 1984;

A variable may have the same name as the member of a structure
elsewhere in the program. For example, a variable named day could
be used by itself in normal processing, and another variable called
day could be used within the date structure, in which case they are
considered to be two different variables. Tag names and member
names, on the other hand, must be distinct from each other. You may
not have a tag name of date and a member of the structure with the
name of date.

Note that we can use previously defined structures to create other
structures. For example:

struct check {
unsigned number;
struct date written;
double amount;
char payee[30];

} paid1, paid2;

To access the member of a structure declared within a structure, we
simply string the member operators together:

paid1.written.mon = 3;
paid1.written.day = 8;
paid1.written.yr = 1984;

Assignment of members within structures operates in exactly the
same manner as assignment with simple variables. A member of a
structure can be assigned any value from any other variable that
matches its data type. For example,

paid2.written.day = paid1 .written.day;

140 PROGRAMMING THE MACINTOSH IN C

assigns the member of the date structure value in paid1 .written.day to
paid2.written.day. Unfortunately, however, C does not allow the trans­
fer of a structure as a whole unit. Thus

paid2 = paid1;

is an illegal operation. Note that some of the latest versions of C have
implemented this capability. The Mac C compiler, for instance, does
support structure assignment. Check your compiler's manual to see if
it supports this added feature of the C language. If not, then members
of structures must be assigned individually.

The important thing about structures is their ability to create
precise data types that structure the data as efficently as the program­
ming language structures the code.

POINTERS TO STRUCTURES

Structures simply expand the number of data types available to the
programmer: anything you can do with a predefined data type (such
as int, char, and so on) you can also do with a structure. C's consis­
tency allows a pointer to a structure to be constructed similarly to all
other pointers. For example:

struct check * chkptr1 , * chkptr2;

Now if we assign values to these pointers, we can make assignments
of structure members:

chkptr1 = &paid1;
chkptr2 = &paid2;

(* chkptr2).number = 8;

The parentheses are required in this statement because the member
operator has a higher precedence than the pointer operator. Without
the parentheses, the compiler would think that chkptr2 was a struc­
ture with a member called number. This is not the case, and you
would receive an error message during compilation.

Although this statement can be difficult to read, it is pedectly valid.
To facilitate the task of reading a program, however, a specialized
operator exists for just such occasions-the structure pointer operator,

DATA STRUCTURES 141

->, created with the hyphen and greater-than symbol:

chkptr2->number = 8;

This operator tells the reader that chkptr2 is a pointer to a structure
and that the member being accessed is number. Notice that no aster­
isk (*) is used. The structure pointer implies that its left expression
evaluates to a pointer, and the right expression is a member of the
structure data type associated with the pointer. If you try to access a
variable name that is not a member of the structure associated with
the pointer, the compiler will detect this situation and give you an
error message.

Before we present the program to demonstrate the use of struc­
tures, you should know about one final operator called the sizeof
operator. The sizeof operator returns the size of the data type listed
in the parentheses following it. For example,

sizeof (struct date);

returns the size of our date structure. The value returned is the num­
ber of storage units required to store the structure named. In C, the
size of one storage unit is equal to the size used by one char data
type. The statement

sizeof (char);

should always return the value 1 (that is, one storage unit). As you
can see from this example, the sizeof operator is not restricted to
having structures as its operand. Any C data type or structure that
you have defined may be operated on by sizeof.

STRUCTURES AND FUNCTIONS

Because a structure cannot be manipulated as a whole unit, it can­
not be used as a parameter for a function. Its location can be passed
to the function by means of a pointer, however, much as an entire
array is passed to a function through a pointer. Under these circum­
stances, the function will receive the pointer to the structure and use
the structure pointer operator to access the members. Thus, in this
program fragment the function declaration sets the variable parm to

142 PROGRAMMING THE MACINTOSH IN C

be a pointer to the structure check, defined earlier:

struct date {
unsigned mon, day, yr;

};

struct check {
unsigned number;
struct date written;
double amount;
char payee[30];

};

main()
{
struct check paid1 ;
... code for main() ...
funptr(&paid 1);
... more code for main() ...
}

funptr(parm)
struct check * parm;
{
... function body. ..
}

I* call to funptr *I

Remember that passing a pointer to a function implies a call-by­
reference method of parameter passing. In this case, any changes you
make to the structure using the pointer will cause changes in the
actual parameter. You should be careful when using this method of
parameter passing.

The Consulair Mac C Compiler contains a glimpse of things to
come. This compiler does support the C extension of passing struc­
tures by value. This is a very convenient mechanism, but it is also
very unportable. Passing structures by value is not supported by most
C compilers, although it is expected that this and other extensions to
the language will become standard in the near future.

Notice that in the example the structure definitions occur external
to any function block. This allows variables to be declared by using
just the structure name because the structure definition is global to
the source code file. If the structure were placed inside of a function
block, then that structure definition would only be available within
that function. If you wanted to use the structure in another function,

DATA STRUCTURES 143

you would have to redefine the structure in that other function, and
that can add up to a lot of typing.

DATA STRUCTURING TECHNIQUES:
A SAMPLE PROGRAM

At the beginning of this chapter we looked at the reasons for struc­
turing your data and mentioned that data structuring occurs at two
levels. We have already seen the first level, which was the creation of
new data types called structures. The second level of data structuring
has to do with the organization and relationship of individual data
objects so that, for example, you can quickly search a list of items for
the one you want or tabulate columns of information.

For our programming example, assume that you are writing an
accounting program. In this program you have a list of account num­
bers that you want to keep in ascending numerical order. One way to
keep the list in order is to have an array that holds the numbers.
When you add a new number, your program will start at the begin­
ning of the list and find the two numbers between which the new
number will be inserted. For example, if you have the list of numbers
1, 5, 6, 9, 13, 16, and 21, and you want to insert the number 7, your
program will start at array element 0 (which holds the number 1) and
check each successive array element until it reaches the number 9.
Now, in order to make space for the new number, all following num­
bers are moved up one position in the array, and the new number is
inserted.

Although this algorithm will work, it has two problems. The first
problem is that the program must move all numbers following the
inserted number. If the array contained several thousand numbers
and you wanted to add a new number at the beginning of the list,
this operation could take quite some time to complete. The second
problem has to do with allocating space for the array: how much
space should we allow for? If you know the maximum number of
accounts that you will have, then you can write the code to allocate
this amount of space. But what if the number of accounts may range
from 100 to 5000? It would be wasteful to allocate all 5000 array
elements if only a few hundred are going to be used. To solve this
second problem, you need to be able to allocate each array item as
you add a number.

144 PROGRAMMING THE MACINTOSH IN C

So far we have only briefly mentioned the ability to explicitly allo­
cate memory for direct use by the program. In most cases-for
example, entry to the program, entry to a block of statements, and
entry to a function-the variables you declare are provided for by the
compiler. In other cases, such as creating new variables (usually
structures) "on the fly," we need some method of requesting and
receiving unused blocks of memory for our newly created variables.

C does not specify an operator to perform this function, because the
allocation process depends heavily on the hardware in use; however,
the standard library supplied with your compiler should have a func­
tion called malloc() or calloc() or both. These functions allow you to
gain access to your computer's memory without interfering with the
program's data. The function malloc() is passed the size of the data
space requested and returns a pointer to the space if it is available;
otherwise, a O is returned. The function calloc() operates on a similar
principle: its parameters are the number of elements to be allocated
and the size of each element. It returns a pointer to enough space to
hold all of the elements requested. The whole technique of allocating
memory in this fashion is called dynamic memory allocation.

The difference between malloc() and calloc() is that calloc() will ini­
tialize all the elements in the memory segment to 0, whereas malloc()
may or may not, depending on how it is implemented. In keeping
with the black box principle, we do not need to worry about how the
memory allocation is done, so long as we are given the memory
requested. For the following example, we will use the malloc() func­
tion to allocate our memory as we need it.

To solve the first problem in our original program (the problem of
having to move all of the numbers after the number we wish to
insert), we will use a data structure called a linked list. A linked list
consists of individual structures, called links, that are all of the same
data type structure. This structure contains the data that we want to
store (in our case, the account number) and a pointer, called the link
pointer, to the next structure item in the list. The data structure for
each element in our list looks like this:

struct link {
int value;
struct link *next;

};

The member value will contain the number we enter, while the mem­
ber next points to the next structure in the list.

DATA STRUCTURES 145

This is called a self-referential data structure, by which we mean
that it makes references to itself. In most cases, the self-reference will
be a pointer to a structure of itself (it could not logically contain itself
exactly). With this data structure, we can start at the first link in the
list (which is just like starting at the first array element) and continue
through the list until we find the first number that is greater than the
number we want to add. Now we can make the previous link point
to the added link; the added link will point to the next link (the one
containing the next greater number). The technical term for this pro­
cedure is an insertion sort because we are, in effect, inserting the new
link between the next lower and next higher links.

In Figure 6.10, we already have a small list of numbers, and we
want to insert the number 15. By linearly searching from the begin­
ning of the list, we eventually find the first link greater than 15. We
must conclude that the number before is less than 15 (we will ignore
duplicate numbers for this program). Our main algorithm looks like
this:

Get an integer.
Create a link.
Insert link into list.

3
5
6
7
8

10
13

20
25

the number 15
fits here

Figure s.10: Example of an Insertion Sort

148 PROGRAMMING THE MACINTOSH INC

Figure 6.11 shows function main() for the insertion sort program in
Listing 6.4. (We show Listing 6.4 here for your reference. Don't be
alarmed by the length of the program. We will examine the individual
functions that comprise the structure of the Linear List program in
the following pages.) You will notice the uppercase words EOF and
NULL. These two words are called tokens and are defined by using
the compiler directive statement #define within the header file
stdio.h. The #define statement has the following format:

#define token value

!***
list604 Create an ordered linear list

***/

#include •stdio.h"

/**** Use only if your system cannot generate a standard EOF signal ***/
tundef EOF
ldefine EOF 4
/**/

struct link /* link in list */
int value:

};
struct link *next;

char *malloc (); /* use base size type •/

main()
[
int
struct

num:
link *i,

/* temporary variable •/
/* loop control variable •/

*linkptr,
*firstlink,
*make link() ,
*insert(),

firstlink = NULL;

/* pointer to current link •/
/* first link in list */
/* create a new link */
/* insert link into list */

/* clear list •/

/* get numbers for list •/
printf("Enter integers for list, EOF to stop: ");

/* for each number, create •/
/* a link. Check if link •/
/* was created. Then insert •/
/* link into list. •/

while (getint(&num) I= EOF) [/* cannot use 4 again •/
if ((linkptr =make link(num)) I= NULL)

firstlink = insert(linkptr, firstlink);

/* display list •/
printf("\nOrdered List:\n");
for (i = firstlink; i I= NULL; i = i->next)

printf("\d •, i->value);
printf("\n\nNext number: ");

/* end while(getint) •/
/* end main •I

Figure s.11: Program to Create an Ordered Linear List Through
Function main()

DATA STRUCTURES 147

/***
list604 Create an ordered linear list

***/

tinclude "stdio.h"

/**** Use only if your system cannot generate a standard EOF signal ***/
tundef EOF
tdefine EOF 4
/**/

struct link { /* link in list */
int value;
struct link *next;

J ;
char *malloc (); /* use base size type */

main()
{
int
struct

num;
link *i,
*linkptr,
*firstlink,
*make link() ,
*insert();

firstlink = NULL;

/* temporary variable
/* loop control variable
/* pointer to current link
/* first link in list
/* create a new link
/* insert link into list

/* clear list

*/
*/
*/
*I
*I
*/

*I

/* get numbers for list */
printf("Enter integers for list, EOF to stop: ");

/* for each number, create */
/* a link. Check if link */
/* was created. Then insert */
/* link into list. */

while (getint(&num) I= EOF) { /* cannot use 4 again */
if ((linkptr = make_ link (num)) I= NULL)

firstlink = insert(linkptr, firstlink);

/* display list
printf("\nOrdered List:\n");
for (i = firstlink; i I= NULL; i = i->next)

printf("%d •, i->value);
printf("\n\nNext number: ");

/* end while(getint)
/* end main

*/

*/
*/

/***
getint retrieve an integer from the console

pnum pointer to an integer
Returned values: the integer is returned through pnum.

The function returns the termination character.
Notes: the sign character must appear in the first position.

Any non-digit characters are ignored.
Termination must be with \n or EOF.

***/
getint (pnum)
tnt *pnum;

int c, sign l;

Listing 6.4

148 PROGRAMMING THE MACINTOSH INC

*pnum = 0;
c = getchar();

if <c == •+• 11 c ==
if (c == '-')

sign = -1;
putchar(c);
c = getchar ();

/* initialize values
/* get first character

*/
*/

'-') { /* check for sign character */

/* get next character */
/* end if •/

while (c I= '\n' && c I= EOF) I
if (c >= 'O' && c <= '9') /* check if numeric */

*pnum = (*pnum * 10) + (c - 'O');
putchar(c);

c = getchar();
/* end while (c) */

*pnum *= sign; /* adjust for sign */
return(c); /*return termination char */

} /* end getint */
/***

make link create and initial a link v value to initialize link with
Returned values: returns a pointer to the link if allocation

was successful. Otherwise NULL is returned.
***/
struct link *make link(v)
int v; -
I
struct link *temp; /* temporary pointer */

temp= (struct link*) malloc(sizeof(struct link));

if (temp == NULL) { /* check if allocatedOK */
printf(aMemory allocation errora);
return(NULL);

temp->value = v;
temp->next = NULL;
return(temp);

/* end if(temp) */

/* end make_link */

/***
insert insert a link into the list

lprt = pointer to link to insert
firstptr= pointer to first link in list

Returned values: updates links as required.
Returns pointer to new first link if changed.

***/
struct link *insert(lptr, firstptr)
struct link *lptr,

{
*firstptr;

struct link *loopptr,
*lastptr;

lastptr NULL;
loopptr = firstptr;

/* loop control variable
/* previous link checked

/* no previous links yet
/* start with first link

*I
*/

*I
*/

Listing 8.4 (continued)

DATA STRUCTURES 149

while (loopptr l= NULL) { /* continue until no more */
/* links in list */

/* In this section, when a current list value is found
that is greater than the value to be inserted, then
the insert link is placed before the current link.
Then, if no previous link existed, insert link becomes
the new first link, otherwise the previous link is
set to point to the insert link. */

if (loopptr->value > lptr->value)
lptr->next = loopptr;
if (lastptr == NULL)

return(lptr);
else {

lastptr->next = lptr;
return(firstptr);

/* end if-else
/* end if(loopptr)

*I
*/

/* ignore duplicate entries */
if (loopptr->value == lptr->value)

return(firstptr);

lastptr loopptr;
loopptr = loopptr->nexti

/* move to next link *I

/* end while(loopptr) */

/* If entire list is passed through, then insert link must
go at the end of the list. NULL is checked to see if
insert link is the first link entered. */

if (lastptr l= NULL) {
lastptr->next = lptr;
return(firstptr);

else
return(lptr);

/* end insert */

Listing 6.4 (continued)

At compilation time, the compiler will replace every token with its
associated value. Notice that no semicolon appears after value. (We
will discuss the #define directive in Chapter 8.) You may also have
noticed that the token EOF does not have an associated #define state­
ment in our listing, but the #define statement does exist in the file
stdio.h; you may examine this file to be sure of this. (If you do not
have this token defined in file stdio.h, look in your compiler manual
for its proper value and create a #define statement in your source
file. The EOF token is the standard name for the symbol representing

150 PROGRAMMING THE MACINTOSH IN C

the value returned as the end-of-file signal. All C systems have a
value for this token (either -1 or 0), and most systems will have the
EOF token already defined.)

The while loop in Figure 6.11 calls three functions. In the control
statement, the function getint() will get an integer from the console
and place its value in variable num. We use the call-by-reference
method in this case since there are two possible values that may exist
when the function returns: the value entered and the termination
character. Because characters are represented as integers, if we had
one returned value, we would not know whether it was an EOF char­
acter or an integer. The integer entered is placed directly in the
parameter variable used (through the call-by-reference technique), and
the termination character is the returned value of the function. The
other two functions in the while loop create a link in memory and
then insert it into the list.

The for loop shown in Figure 6.11 is more interesting. We initialize
i to point to the first link in our list. For each link, we print the value
contained in that link and move to the next link, until the next link
becomes the NULL pointer. Since i is a pointer, we use the structure
pointer operator to access the member of each link. This loop could
also have been controlled by a while statement, but the for loop
places all of the loop control information in one place, making the
logic of the program more readily apparent.

Our getint() function will be an improvement over our previous
getint() function and will include a new input function called get­
char(), which returns a character from the console. The new getint()
function shown in Figure 6.12 is more flexible than the original ver­
sion, but it is not quite a general-purpose function; the entry of a
number requires the first character to be a sign character (+ or -) or
a digit. This function also ignores any nondigit characters found in
the middle of the input and returns only when a newline (carriage
return) or EOF character has been entered. If the EOF character is
entered, it is returned, causing termination of our program, regard­
less of whether or not a number was entered. (As an exercise, you
may want to develop a general numeric input routine that overcomes
these limitations.)

In the figures for the Linear List program, the comments preceding
the function are more elaborate than before. This is necessary
because our sample programs are getting larger, making it crucial to
explain the purpose of the various portions in relation to the whole
program. We suggest you likewise begin more extensive commenting
as you write larger programs.

DATA STRUCTURES 151

As a rule for writing comments for functions, you should list the
function's purpose, its parameters, returned values, and any special
notes you deem necessary. We have presented one possible format for
commenting. You should select a commenting format that is easy to
read, very noticeable, and easy to write. When commenting a func­
tion, because the parameters of a function must be declared, you may
write a comment for each parameter in its declaration statement
instead of in the function comment heading.

Looking more closely at the memory allocation statement in Figure
6.13, we see some rather interesting constructs. We know that
malloc() will allocate the amount of memory specified by its param­
eter. Since we require enough memory to hold one link structure, we
need to know the amount of space used by the link structure. To get
this value, we use the sizeof operator on the link structure, and then
use the expression sizeof(struct link) as the parameter for malloc().

/***
getint retrieve an integer from the console

pnum = pointer to an integer
Returned values: the integer is returned through pnum.

The function returns the termination character.
Notes: the sign character must appear in the first position.

Any non-digit characters are ignored.
Termination must be with \n or EOF.

***/
getint (pnum)
int *pnum;
I
int c, sign = l;

*pnum = O;
c = getchar () 1

if (C == '+' I I c ==
if (c == '-')

sign = -1;
putchar(c)1
c = getchar () 1

/* initialize values
/* get first character

*/
*/

'-') { /* check for sign character */

/* get next character */
/* end if */

while (c I= '\n' && c I= EOF) l
if (c >= '0' && c <= '9') /* check if numeric */

*pnum = (*pnum * 10) + (c - '0')1
putchar(c)1

c = getchar () ;

*pnum *= sign;
return(c)1

/* end while (c) */

/* adjust for sign */
/* return termination char */
/* end getint */

Figure s.1 e: The New getint() Function from the Linear List Program

152 PROGRAMMING THE MACINTOSH IN C

But what about the (struct link *)preceding the malloc() portion of
the statement? The parentheses surrounding a data type indicate a
cast operator. The cast operator will convert the format of its operand
into the data type defined within the parentheses. We declared mal­
loc() to be a function returning a pointer to a character. In most
cases, the default declaration from the library is that malloc() returns
a pointer to the smallest data type, which can then be cast (expanded)
into a larger data type. If you do not use the cast operator, this pro­
gram may or may not work on your computer. To be on the safe side,
use the cast operator to ensure that your program will work on your
computer and any other computer you might need to use.

If you have the calloc() function instead of malloc(), change the
allocation statement to

temp = (struct link*) calloc(1, sizeof(struct link));

If you do not have either of these memory allocation functions, you
will have to skip this program example.

Figure 6.14 lists our program's last function, insert(), whose pur­
pose is to insert the newly created node into the list. In Figure 6.15,
we can see a graphic representation of the links in the list. Each new
link will have a link pointing at it (link A), and it will point to a link
following it (link B). In function insert(), the variable lastptr holds the

/***
make link create and initial a link v value to initialize link with
Returned values: returns a pointer to the link if allocation

was successful. Otherwise NULL is returned.
***/
struct link *make link(v)
int v; -
[
struct link *temp; /* temporary pointer */

temp= (struct link*) malloc(sizeof(struct link));

if (temp == NULL) { /* check if allocatedOK */
printf("Memory allocation error");
return(NULL);

/* end if (temp) */

temp->value = v;
temp->next = NULL;
return(temp);

/* end make_link

Figure 6.13: Function make_link from the Linear Link Program

*/

DATA STRUCTURES 153

previously accessed link, indicated by A; and the variable loopptr is
the link we are currently examining, indicated by B. As we move
through the list, we keep track of the previous and current links until
we find two links with values surrounding the link to be inserted. In

/***
insert insert a link into the list

lprt pointer to link to insert
firstptr= pointer to first link in list

Returned values: updates links as required.
Returns pointer to new first link if changed,

***/
struct link •insert(lptr, firstptr)
struct link •lptr,

•firstptri

struct link *loopptr, 1• loop control variable •/
•lastptri 1• previous link checked */

lastptr = NULL: /* no previous links yet */
loopptr = firstptri /* start with first link */

while (loopptr I= NULL) /* continue until no more */
/* links in list */

/* In this section, when a current list value is found
that is greater than the value to be inserted, then
the insert link is placed before the current link.
Then, if no previous link existed, insert link becomes
the new first link, otherwise the previous link is
set to point to the insert link. */

if (loopptr->value > lptr->value)
lptr->next = loopptri
if (lastptr == NULL)

return(lptr)i
else {

lastptr->next = lptri
return(firstptr)i

/* end if-else
/* end if(loopptr)

*I
*/

/* ignore duplicate entries */
if (loopptr->value == lptr->value)

return(firstptr)i

lastptr loopptri
loopptr = loopptr->nexti

/* move to next link

/* end while(loopptr)

/* If entire list is passed through, then insert link must
go at the end of the list. NULL is checked to see if

•/

*/

insert link is the first link entered. */
if (lastptr I= NULL) {

lastptr->next = lptri
return(firstptr)i

else
return(lptr)i

/* end insert */

Figure B.14: The Function insert() from the Linear List Program

154 PROGRAMMING THE MACINTOSH IN C

firstlink - 3- s- 6- 1- a- 10- 13--.. 20- 2s- NULL

A- 15-B

firstlink- 3- s- 6- 1- a- 10- 13 20- 2s- NULL

l-1s_j

Figure B.15: Inserting a New Link into the List

this case, the link containing 13 becomes link A and the link contain­
ing 20 becomes B. Before running the program, trace through the
function and determine what happens when (1) the first link is put
in; (2) a new lowest link is inserted; and (3) a new highest link is
inserted.

The sample program we have been studying incorporates most of
the tools and techniques introduced in this chapter. It also includes
an introduction into the realm of more complex data structures,
which is a subject by itself. At this point, we have completed our
survey of most of the specified utilities available within the C pro­
gramming language. The rest of this chapter deals with a few more
extensions to the flexibility of C structures.

Because so much information has been incorporated into Listing 6.4,
take some time to study it and make sure you understand the use of
structures in programming. One of the benefits of the C programming
language is that it allows the programmer to define new data types.

FIELDS AND UNIONS

We will now go from the macrocosm to the microcosm of data
structures. Listing 6.4 presented one of the many global data struc­
tures that programmers use to organize the data used by a program.
Because C has the ability to use pointers and create structures, these
global data structures can be implemented and utilized by a C pro­
grammer. But C also allows the programmer to determine how data

DATA STRUCTURES 155

is stored in memory. When using a structure, the programmer can
define the size of a member down to a single bit by using a field. The
programmer can also place different data types into the same vari­
able by using a variation on the structure called a union. Both of
these data organization concepts are very powerful, as you will see in
a moment.

FIELD STRUCTURES

The programmer can define an n-bit variable within a structure
called a field. To indicate that a member is a field, the member name
is followed by a colon and the number of bits within the field.

The most common use for a field is for switches or flags, especially
when controlling hardware components. Since the hardware of the
computer only works with the binary values of on and off, a field is
ideal when you need to access a piece of the hardware. Another use
for a flag is in determining what options are currently active. For
example, in the MacPaint program, the Style menu consists of sev­
eral options. When you select an option, a check appears next to the
option. We could write a structure for this purpose as follows:

struct {
unsigned plain : 1;
unsigned bold : 1;
unsigned italic : 1 ;
unsigned underline: 1 ;
unsigned outline : 1 ;
unsigned shadow : 1;

} attribute;

We can access the fields just as we would any other member of a
structure and perform operations on them as if they were of the int
data type. In this example, we can assume that when the field con­
tains a 1, the option is selected.

Fields are always stored in the space required by an int data type
and are always taken to be unsigned quantities. The use of the decla­
ration unsigned reminds us of this fact. All members of a structure
are stored sequentially in memory. The structure

struct {
char c;
unsigned f1 : 1;

156 PROGRAMMING THE MACINTOSH IN C

double x;
unsigned f 2 : 2;
unsigned f 3 : 2;
inti;

} sample;

will contain a char, an int, a double, an int, and another int. Although
fields allow access only to the specified set of bits, they require a full
int space to be stored (assume an int requires 16 bits). In this
example, f1 wastes fifteen bits, and f2 and f3 will be combined to use
only four bits of an int space. If you are using fields to save memory
space, you should place all fields sequentially within the structure to
save the maximum amount of storage.

A field will not straddle an int boundary. For example, in the
structure

struct {
unsigned f 1 : 9;
unsigned f 2 : 4;
unsigned f 3 : 6;

} sample;

f1 and f2 will be placed in the same int space and a second int will be
created to hold f3. The bits can be placed within the int itself in left­
to-right or right-to-left order, depending upon your compiler.

Use a field when you require a minimum of wasted space or when
you will be manipulating data or hardware at the bit level Remem­
ber: fields are always unsigned quantities and will always be stored
in an int space.

UNIONS

The final structured data storage type is called a union. A union is
a type of data structure allowing a variable to hold different data
types within the same data space. Of course, only one data type may
be stored at a time, but this method of storage allows a great deal of
flexibility in programming.

On the other hand, the programmer has an increased responsibility
to remember what data type was last stored in the union. If you
should mismatch the data type being stored and the type required for
the operation, your program will produce meaningless results.

DATA STRUCTURES 157

A union is constructed in the same manner as a structure. A union
has a tag and a list of possible data types it may contain. For
example:

union sample {
inti;
double x;

} ux;

This union can take on an int data type or a double data type by
assigning the associated member a value, as follows:

ux.i = 6;

or

ux.x = 8.345;

In the first case, the member i is assigned a value and the union con­
tains an integer value. In the second case, the member x is assigned a
value and the union contains a floating point value. The union will
hold only one of these values at any given time. The same set of
operations can be used on a union as can be used on a structure: that
is, referring to a member and taking its address.

Unions, like fields, are among the more esoteric concepts of the C
programming language. We have presented them here to let you
know that they exist, in case you should come across either of them
in someone's source code. As your programming experience
increases, you will discover applications for these tools.

THE TYPEDEF FACILITY

The typedef facility provides a convenient method for creating
pseudonyms for already existing data types. It reduces the amount of
typing the programmer needs to do and increases the readability of
the program.

To create an alternative name, use the typedef statement as in this
example:

typedef double SALARY;
SALARY check_amount;

158 PROGRAMMING THE MACINTOSH IN C

The first statement declares SALARY to be a synonym for the data
type double. Now, whenever SALARY appears, it declares the vari­
ables following it to be of type double.

Use of the typedef facility can be quite convenient and much easier
to read, especially when you have several long or complicated struc­
tures in use within your program. For example:

typedef struct emp {
int emp_no;
char last_name[20);
char first_name[10);
long ss_no;
SALARY payrate;
struct date birthdate;

} EMPREC, * EMPPTR;

This typedef statement declares EMPREC to be the data type name
for structure emp, and EMPPTR to be the data type name for a
pointer to the structure emp. The typedef statement also contains the
definition for the emp structure. Now, instead of writing

struct emp employee1, employee2, employee3;
struct amp •emp1, •emp2, •emp3;

we can use the new data type names, like this:

EMPREC employee1, employee2, employee3;
EMPPTR emp1, emp2, emp3;

If a pointer is declared as part of a typedef name, then when the new
data type name is later used to declare variables, the pointer refer­
ence is automatically distributed throughout the listed variables. In
the preceeding example, the variables emp1, emp2, and emp3 are
pointers to an amp structure. This latter format is much easier to
type and easier to read than the explicit declaration.

Essentially, a typedef statement is similar to a data declaration
statement. The differences are that the typedef statement starts with
the keyword typedef, and ends with the new data type names instead
of variable names. The use of the uppercase characters for the type­
def name is a standard formatting convention to emphasize the fact
that the word has been defined by the programmer.

DATA STRUCTURES 158

BIT MANIPULATION OPERATORS

We still have a few bits and pieces to mention before we complete
our coverage on the C language operators. To finish the C operators,
we return to the bit-the smallest informational unit in the computer.
The bit can communicate one of only two pieces of information.
Under most circumstances this will be a Boolean value (true or false).
To make it easier for the programmer to manipulate bits, C provides
a number of bitwise operators, a topic that we discussed briefly in
Chapter 3.

Floating point numbers are stored as a series of bits within the
computer's memory. Because of the variations in floating point repre­
sentations, however, using bitwise operations on a floating point
number provides- no useful information. Thus, bitwise operators only
work with integer operands. Each of C's logical operators have asso­
ciated bitwise operators.

The bitwise AND operator is a single ampersand, (&). All bitwise
operators act, as their name implies, bit-by-bit. This means that the
first bit of one operand will be ANDed with the first bit of the second
operand, the second bit with the second bit, and so on.

The bitwise inclusive-OR operator is the vertical bar, Cl), and the
exclusive-OR operator is the caret ("). These two ORs both work in
the same bitwise manner as the bitwise AND.

The programmer can also shift bits within an integer. The left-shift
operator

A<< B

shifts the bits in A to a new position B units to the left (see Figure
6.16).

The Left-Shift Operator:

5 << 10 takes 00000000,00000101
and shifts to 00010100,00000000

The Right-Shift Operator:

193 >> 5 takes 00000000,11000001
and shifts to 00000000,00000110

Figure 6.16: Example of Left-Shift and Right-Shift Operators

160 PROGRAMMING THE MACINTOSH IN C

The right shift operator, > >, performs the reverse operation of the
left-shift operator. If B is negative or larger than the number of bits
within the object A, the result is undefined. When shifting left, zeroes
are used to fill the empty bits at the right end. When shifting right,
the emptied bits will be zero-filled if A is an unsigned data type. In
other cases, filling may be done with the value of the sign bit (the
leftmost bit). As for the bits being shifted out of the other end of the
word, they are simply discarded.

Because bit operations work with much greater speed than full-byte
operations, we will rewrite our binary conversion routine using
bitwise operators in Listing 6.5.

The number of elements in the array must be equal to the number
of bits in an integer. The initialization routine has been removed
because as pos moves through the variable d, the element in array a

/**
list605 Convert decimal integers into binary numbers i2

**/

#include "stdio.h"

main()
{
int b[32], /* allow for 32 binary digits •/

num, i;

/* convert numbers O to 15 */
for (num = O; num <= 16; num++) {

printf("%d in binary=", num);
dectobin(num, b); /*call conversion function */

/* output digits in reverse */
for (i = 31; i >= O; i--)

printf("%d", b[i]);
printf("\n"); /* move to next line */

} /* end for (num) */
scanf ("%*s");

/* end main *I

/**
dectobin convert decimal number into binary

d integer to convert
a array to store binary digits in. Digits are

stored in reverse order.
**/
dectobin (d, a)
int d, a[];
I
int count = 0, pos = l;

while (pos I= 0)
a[count++J
pas <<= l;

return;

Listing 6.5

{
/* loop through conversion

((d & pos) && 1) ;
/* shift left 1 bit
/* end while(pos)

/• end dectobin

•/

*/
•/

•/

DATA STRUCTURES 161

will be forced to either 0 or 1. The loop will stop when pos has its
single bit shifted off the left end. At this point, pos will equal zero
because left-shifting guarantees zero fill, and the bit is discarded once
it is shifted out of the integer.

The last bitwise operator is the bitwise NOT, represented by the
tilde, (-),and sometimes referred to as the one's-complement operator.
This operator changes all ones to zeroes and zeroes to ones within an
integer, so that, for example, -11100011 equals 00011100.

This operator is particularly useful in creating masks. A mask is a
bit string used in bitwise operators to examine specific bits. The pos
in the function dectobin() of Listing 6.5 is a mask. In this case, the
mask contains a single bit. The mask is then ANDed with the num­
ber being converted. Because all other bit positions in the mask are 0,
the AND operator forces these bit positions to become o. If the
number has a bit set to 1 in the same position as the single bit set to
1 in the mask, then the resulting value is true (that is, nonzero). A
result of true sets the array entry to 1.

In general, bitwise operators will be found in hardware-related
processes or in special circumstances like the example program pre­
sented a moment ago.

SUMMING UP

Chapter 6 has covered the advanced and complex topic of data
structuring. Starting with pointers and addresses, we saw how to
access and manipulate data in memory. Pointers were used when
passing parameters to functions using call-by-reference instead of the
normal parameter passing method, call-by-value. We also saw that
pointers are an integral part of how arrays are stored and manipu­
lated. We saw, in fact, that we could access an array element through
either a reference using the array name and a subscript, or through
pointer arithmetic. From the array, we moved into the general subject
of data structuring in C.

Structures are quite a powerful tool in a programming language.
With a structure, you can group together data objects of differing
data types. This group can then be manipulated as a single unit,
which means that you do not need to worry about keeping track of
all the individual pieces. Now that most compilers are including the

162 PROGRAMMING THE MACINTOSH IN C

ability to assign structures as a whole, to pass structures as parame­
ters, and to return them from a function, using a structure has
become much easier.

Through the use of structures, we created a data structure called
the linked list. The linked list program encompassed many concepts
including self-referential structures, dynamic memory allocation, and
an application for pointers.

The final topics in our discussion of data structures were fields and
unions. Fields specified a set number of bits to be used for storage. A
field is generally used for keeping track of flags or switches. Unions
allow the programmer to store data of more than one type into the
same variable. A union is used when differing data types might be
used, depending upon the operations you are performing.

Finally, bit manipulation operators completed our discussion of the
C programming language in this chapter. These operators performed
logical operations on integers or shifted the bits within an integer
either to the left or the right.

As you write more and more programs, you will become more
familiar with structures and data structures in general. As you begin
to program, you will probably be using the array most often. It is a
very useful data structure. When you begin to write more complex
programs that handle large amounts of data, you may want to do fur­
ther research into the topic of data structures.

Chapter 7 continues our discussion of C by describing some of the
functions supplied in the standard input/output library. As you will
see, these functions make C a much easier programming language
to use.

THE

STANDARD

LIBRARY

THE STANDARD LIBRARY 165

The C programming language does not include any commands or
keywords for handling data input or output, or for the handling char­
acter strings. The designers of C, Brian Kernighan and Dennis
Ritchie, chose not to include these capabilities because, as we will
see in a moment, these routines would make the language hardware­
specific. Yet because most programming applications require a means
of communicating with the external environment, most implementa­
tions of the C programming language will include a set of predefined
routines, called the standard 110 library. The term library refers to a
file containing precompiled functions. When the linker is used to
create an executable program, your program object file is linked
together with the standard 1/0 library file so that your program will
have access to the standard 1/0 functions.

The library consists of a set of functions (like getchar(), putchar(),
and printf()) that provide input and output facilities. The reason that
this file is called the "standard" 1/0 library is that the names and
parameters of these functions, and their results, if any, will be the
same from compiler to compiler. In effect, the designers of C realized
that each person who writes a C compiler would probably come up
with a different set of 1/0 functions. To maintain consistency,
Kernighan and Ritchie produced a set of functions to provide for
some basic 1/0 applications. The two designers listed the function
name, its purpose, what its parameters are, and what values are
returned.

The development of the standard library is, by the way, an ideal
example of the black-box principle in action. The author of a com­
piler (a programmer) has the specification for a single element of the
program-the 1/0 function specified in the standard library. Now, the
programmer can implement the function in any manner that he or
she sees fit, as long as it performs the task specified.

The purpose of defining a standardized set of input/output
functions is to provide portability among various computers. We will
discuss the issue of portability when we discuss the UNIX interface
in a moment. Following the discussion of UNIX, we will look at the
standard library routines that deal with the console. We will also look
at some of the functions used in text processing. The chapter goes on
to present the functions used for manipulating input and output disk
files from within a program, giving several examples of how the file
facilities can be used. Finally, the chapter concludes with a brief com­
parison of the advantages of developing programs on the Mac or
under UNIX.

1 SS PROGRAMMING THE MACINTOSH IN C

C AND UNIX

UNIX is an operating system developed in the early 1970s by
researchers at Bell Laboratories. An operating system is a program
that controls the various actions that a computer must perform in
order to make all of the different components work together as a
single system. For example, on the Macintosh the Finder is the oper­
ating system.

You may be wondering why we are discussing UNIX in a book
relating to the Macintosh. There are two reasons for this. First of all,
some C compilers available for the Macintosh provide a program­
ming environment that is very similar to the UNIX environment (the
Aztec C68K compiler from Manx Software Systems is one example).
Secondly, many of the 1/0 features of C were written specifically
with UNIX in mind. There are many features of UNIX that we could
discuss, but we will limit our view to the 1/0 interface and the issue
of portability.

THE STANDARD INPUT AND OUTPUT

In UNIX, all 1/0 is handled as if the data is going to or coming
from a file. Thus, to the operating system, a disk file, the printer, the
data communications to other computers, and even the user's termi­
nal all appear as files. In fact, the terminal keyboard is called the
standard input and the terminal screen is called the standard output.
Whenever a program makes a request for input or output without
specifying a file, UNIX assumes that the request is for the standard
input or output "file."

A secondary feature of this file-oriented operating system is that the
user can redefine the standard input and output files. For example,
let's say that you are testing a program that requires a long list of
numbers as its input. Instead of entering these numbers in each time
you test the program, you can place the numbers into a file on the
disk. Then, when you run the program, you tell UNIX to get
the input data from that disk file instead of from the keyboard. You
can also apply this process to have a program send its output to a file
instead of to the terminal screen. The process of redefining the stan­
dard input and output files is called 110 redirection.

THE STANDARD LIBRARY 167

PORTABILITY

Our second reason for discussing UNIX is to get at the issue of por­
tability. This is where C comes in. While working on UNIX, Dennis
Ritchie developed a programming language for the operating system
called C. As we saw in Chapter 1, it is easier to work with a higher
level language than with an assembly language, which is what UNIX
was originally written in. Therefore, after a few enhancements to the
programming language, almost all of UNIX was rewritten in C.

C was written to be as hardware independent as possible, which
means that its operations do not require any special hardware to be
included in the computer. So if a C compiler exists for two different
machines, say Machine A and Machine B, then a program written in
C will compile and run exactly the same on both machines, regard­
less of how different the two machines may be. This is quite an ideal
situation, because if you write a program in C on one machine, you
only need to recompile the program for it to work on a second
machine. Unfortunately, total hardware independence in a program­
ming language is not always practical. A case in point is the standard
1/0 library functions.

Input and output is one of the most hardware-dependent activities
that a computer does. As we have already discussed, the way
Kernighan and Ritchie solved this problem was to supply an external
set of functions to handle these tasks. How does this relate to UNIX?
Because Ritchie was involved with both UNIX and C and because C
was designed under a UNIX system, many of the 1/0 routines in the
attended library developed by Kernighan and Ritchie work with
the standard input and output. We will use the standard input and
output as we explore some of the standard library functions later in
the chapter. Those of you who are programming the Macintosh with­
out a UNIX environment will not have access to the redirection of
the standard input and output used in some of the programming
examples given later in this chapter.

Overall, UNIX and C have a common history and together they
work extremely well. If you remove C from the UNIX environment,
however, you lose some of its hardware independence, and once you
start writing hardware-dependent programs, you lose portability.
Because the basic operations of C are not affected by the hardware,
the functionality of the language remains intact. Thus if you are not
concerned about having your program run on several different com­
puter systems, this loss of hardware independence should not be a
problem. On the other hand, if you do need to have your program

168 PROGRAMMING THE MACINTOSH IN C

running on several different computers and you also need hardware­
dependent code, you should place the hardware-dependent sections
into individual functions. This will make changing the program for a
new machine very quick and easy.

USING THE STANDARD 1/0 LIBRARY

C does not have built-in functions to handle strings or other tasks
that make a language hardware-dependent, even though most
programming situations require the same types of functions: string
comparison, math functions, memory allocation, and so on. To make
the programming process quicker and easier, a representative set of
string and other functions has been provided in C's standard 1/0
library.

The functions of the standard 1/0 library that we will be looking at
can be broken into five categories: console routines, string and char­
acter routines, math functions, memory allocation routines, and file
accessing routines. We will discuss each of these categories in turn.

When you write a C program that uses one of the standard 110
library routines, you need to have this statement at the start of your
program:

#include <stdio.h >

This line tells the compiler to include the file stdio.h into your
program source code. The stdio.h file contains a some #define state­
ments and external function declarations to tell the program what
data type the functions will return. Tokens such as EOF, and in some
cases, TRUE and FALSE, are defined within this file. Take a look at
this file to see what it contains.

CONSOLE ROUTINES

The first set of standard 1/0 library routines we will look at have to
do with the console. The console is the keyboard and display where
the user works.

We have already encountered the getchar() and putchar() functions.
As single-purpose functions, they provide a convenient starting point

THE STANDARD LIBRARY 169

for writing your own more elaborate console input and output func­
tions. For example, most C packages also have two other functions
called gets() and puts() that input and output strings. The function
gets() uses getchar() to get a character from the keyboard and place
it in the string. It may work like this:

gets(s)
char •s; I* pointer to string to fill *I
{
int c;
char *pos;

}

pos = s;
while ((c = getcharO) I= EOF) {

I* carriage return ends input *I
if (c = = 13) return(c);

I* backspace deletes last char *I
else if (c = = 8) *(-pos) = '\O';
else {

}
}
return(EOF);

pos+ + = c; / put char in string */
pos = '\O'; I* set new end of string */

This is just one possible implementation of gets(). More features can
be added-for example, you can add a special character to erase all
of the input entered so far and start over. The puts() function uses
putchar() in much the same manner.

THE PRINTF() FUNCTION

The printf() function is by far the most frequently used output func­
tion in the standard 1/0 library. This function formats your output
regardless of the data type or mix of data types. We have casually
introduced the use of the printf() function earlier through its appear­
ance in our programming examples. Now we will examine the full
range of capabilities this function offers.

Formatted printing, also called "pretty printing," provides easily
read and understood data output. Look at Figure 7 .1 and decide
which format would you rather read. Clearly, the table format pro­
vides a better presentation. In the unformatted example, the numbers

170 PROGRAMMING THE MACINTOSH IN C

have varying lengths (number of digits). The formatting function
gives the programmer a way to specify a constant size and format of
each variable to be output.

Formatting output, for the most part, involves the conversion of an
object of a particular data type into its formatted character represen­
tation. Take a look, for example, at the print() function's parameters:

printf(" control string'', output data list);

The control string, first of all, contains the output format of the
output data list. Two types of fields can be used in the control string:
literal characters and format fields. Literal characters will be printed
as they appear within the control string. The statement

printf("This is a literal string.");

will print

This is a literal string.

Format fields perform the conversion of the output data list into its
formatted character representation. There must be a one-to-one corre­
spondence between data items in the output data list and format

x = 1, square root of x = 1, square of x = 1
x = 2, square root of x = 1.414214, square of x = 4
x = 3, square root of x = 1.732051, square of x = 9
x = 4, square root of x = 2, square of x = 16
x = 5, square root of x = 2.236068, square of x = 25
x = 6, square root of x = 2.44949, square of x = 36
x = 7, square root of x = 2.645751, square of x = 49
x = 8, square root of x = 2.828427, square of x = 64
x = 9, square root of x = 3, square of x = 81
x = 10, square root of x = 3.162278, square of x = 100

x square root of x square of x

1 1. 000000 1
2 1. 414214 4 .
3 1. 732051 9
4 2.000000 16
5 2.236068 25
6 2.449490 36
7 2.645751 49
8 2.828427 64
9 3.000000 81

10 3.162278 100

Figure 7.1: Formatted and Unformatted Display

THE STANDARD LIBRARY 171

fields, and the format field must specify the data type of its matching
data item. For example, we have used the O/od format field when we
wanted to print an integer variable.

Each format field consists of the following:

%(-)(width)(.precision)(l)(conversion character)

The percent symbol(%) and the conversion character must be included
in a format field; all the other zones of the format field are optional.
The percent symbol indicates to the function that the following charac­
ters signify information for a conversion process as opposed to a literal
string. The conversion character indicates the data type of the data to
be output. Let's take a look at each of these fields.

The hyphen (-) produces left justification of the characters within
the field. By default, all fields will have the rightmost character of
their output placed in the rightmost position of the field (this is called
right justification). Using the hyphen will cause left justification
instead: the first character of the output will be placed in the leftmost
character position of the field.

The width zone specifies the minimum width of the field in num­
ber of characters. When the length of the data item is shorter than
the width value, the field will be filled with blank spaces on the right
or left, depending upon whether the field is to be left- or right­
justified, respectively. If the first character of the width zone is the
digit 0 (like 04), then zeroes (instead of blanks) are used to fill on
either the left or right. If the length of the data item exceeds the mini­
mum width, then all characters of the data item are output and no
further spacing (using blanks or zeroes) is provided. If no width is
specified, the minimum width will be 0, and there will be no mini­
mum width formatting of the field.

The precision zone, which requires a leading period (.), can have
either of two meanings, depending upon whether the output is a
string or a floating point number. For a string, the precision indicates
the maximum number of characters to be printed. If no precision is
given, all of the characters in. the string up to but not including the
\0 character, which signals the end of all strings, will be printed. If
the data item to be output is a float or double, the precision specifies
the maximum number of digits to print following the decimal point.
The default value for this case is 6 digits.

The character I indicates that the associated data object is of type
long. This is used for formatting long integers or double data types.

172 PROGRAMMING THE MACINTOSH IN C

The conversion character tells the printf() function what data type
to expect. The conversion characters are as follows:

c The data object is a character.

s The data object is a string. All characters of a string will be
printed until the function reaches the \0 character, or until the
precision has been filled.

d The data object is to be converted to decimal notation. This
applies to integer objects: int, long int, unsigned int, and short
int.

u The data object is of type unsigned and is printed in decimal
format.

e The data object is a float or double and is printed in the scien­
tific format [-]m.nnnnnnEf + -]xx as a decimal value, where
m.nnnnnn represents a number between O and 9.999999 and x
is an exponent of the power of 10. The number of n's is lim­
ited by the value of the precision zone (the default value is 6}.

f This code is similar to the conversion character "e," except
the output format is [-]mmm.nnnnnn as a decimal value,
where mmm.nnnnnn represents the value of the data object.
Again, the nuinber of n's is limited by the precision zone (the
default value is 6}. Note that the precision does not indicate
the total number of digits printed.

g This tells the printf() function to use the "d," "e," or "f' con­
version character format, whichever is shorter. This format
will print only significant digits; insignificant zeroes, like
zeroes following the decimal point, are not printed.

o The data object, an integer type, is converted to unsigned octal
notation. No leading zero is printed.

x The data object, an integer type, is converted to unsigned hex­
adecimal notation. No leading "Ox" is printed. (The "Ox" is
used to create a program constant in hexadecimal.)

It's important to remember that there must be format field for each
item in the output data list, and the format field type must match the
data object type. If either of these conditions is not met-for example,
if you try to print an integer with a O/of format field-unexpected
results will occur.

THE STANDARD LIBRARY 173

If the characters following the percent symbol (%) cannot be inter­
preted as a format field, they will be printed as a literal character. A
pair of percent symbols (%%), for example, will be printed as a
single percent symbol.

Listing 7 .1 utilizes some of the formatting possibilities we have
listed. After entering and running this program, make some changes
to test other formatting combinations, like printing integers in octal
and hexadecimal format. This program purposely crosses the use of
floa,ting point variables with the d conversion character to demon­
strate the results of such actions. You may try other invalid type
matching; however, we strongly advise you not to leave out either a
formatting field or a data object. If you do, your program may halt
the computer.

/***
list701 Formatted printing example

***/

#include "stdio.h"

char s(J = "abcdefghi";

main()
I
int
float
double
char

i 5432;
f = (float) 123. 321;
d = 987654.123456789;
c = 'C';

Usting 7.1

printf("Inte9er Test\n");
printf("Ud 1%dl l'dl ltsd,\n", i, f, d);
printf("%%-d 1%-d !'-di %-d,\n", i, f, d);
printf("%%8d %8d %8d %8d \n", i, f, d);
printf("U-Bd lts-Bd 1%-Bdl lts-Bdl\n" i, f, d);
printf("%%3.4d lts3.4d \%3.4d\ lts3.4d[\n", i, f, d);
printf("Uld IUdl IUd IUd \n", i, f, dJ;
printf("%%x ,,x,\n", i);
printf("%%o %0 \n", i);

printf("Press Return");
scanf(a%*s 0);

printf("\nFloatin9 Point Test\n");
printf("%%e Itel 1%el\n", f, d);
printf("%%20.9e lts20.9el 1%20.9el\n", f, d);
printf("%%020.9e \%020.9e 1%020.9e\\n", f, d);
printf("%%-20.9e %-20.9e %-20.9e \n", f, d);
printf("%%-020.9e l%-020.9e l%-020.9el\n", f, d);

printf("\n%%f ltsfl l%fl\n", f, d);
printf("%%20.9f l%20.9fl 1%20.9fl\n", f, d);
printf("%%020.9f 1%020.9f l%020.9f,\n", f, d);
printf("%%-20.9f %-20,9f %-20.9f \n", f, d);
printf("%%-020.9f l%-020.9f l%-020.9fl\n", f, d);

17 4 PROGRAMMING THE MACINTOSH IN C

printf("\n%%9 Jt9J Jt9J\n", f, d);
printf("%%20.99 !%20.99J 1%20.99J\n", f, d);
printf("%%020.99 1%020.99 1%020.991\n", f, d);
printf("%%-20.99 %-20.99 %-20.99 \n", f, d);
printf("%%-020.99 !%-020.99 J%-020.99J\n", f, d);

printf("Press Return");
scanf("%*s");

printf("\nCharacter Test\n");
printf("%%c JtcJ\n", c);
printf("%%20c J%20cJ\n", c)1
printf("%%-20c Jt-20cJ\n", c);
printf("%%20.20c 1%20.20cJ\n", c);
printf("%%-20.20 %-20.20cJ\n", c);
printf(0 %%020.20c J%020.20cl\n", c);

printf("Press Return");
scanf("%*s");

printf("\nStrin9 Test\n");
printf("%%s Jts!\n", s);
printf("%%20s J%20sJ\n", s);
printf("%%-20s J%-20sJ\n", s);
printf("\%20.Ss Jt20.Sl\n", s);
printf("%%-20.5s lt-20.Sl\n", s);
printf("%%020s l%020sl\n", s);
printf("%%.5s lt.Ssl\n", s);

/• end main

Listing 7.1 (continued)

•/

Depending upon the precision available for float and double data
types with your compiler, and the accuracy of number-to-character
conversion, you may get results that vary slightly from what you
expect when you run this program. Also notice the use of the zero
preceding the width value. The zero changes the character used for
filling the extra space (this filling process is also known as padding)
and applies to both numeric and character output.

THE SCANF() FUNCTION

The input counterpart to the printf() function is the scant() func­
tion. The scant() function reads data from the standard input (the
keyboard}, and places the data into program variables based upon
matching the input data with the fields in the control string. The con­
trol string may contain any number of format fields. For each format
field there must be an address to the appropriate data type. This is
the address in memory where the scant() function will store the data.

THE STANDARD LIBRARY 175

The format field for scanf() consists of

%(*)(width)(l)(conversion character)

As with printf(), the percent symbol (%) and the conversion character
must be present. The asterisk (*) indicates that the sequence of char­
acters matching this format field specification is to be ignored. In
other words, the character sequence will be read and no assignment
to a variable will be made. We have used this type of format field in
our programs already to stop the display at various points so that we
are able to read it. The width indicates the maximum number of
characters that scanf() is to read from the input sequence. The letter I
tells the function that the input will be of type long int or long float
(that is, double), depending upon the conversion character.

When the scanf() function reads the input, it processes the input
character by character. Assignment to the associated variable in the
data list stops when the number of characters specified by the width
is reached, or when the scanf() function finds a character unaccept­
able for the expected data type, such as a newline or a blank.

The conversion characters represent input types as follows:

d A decimal integer.

h A short integer.

o An octal integer (with or without the leading zero).

x A hexadecimal integer (with or without the leading "Ox").

f A floating point number. The conversion character "e" may be
used synonymously with the "f." The format of the input
should be the same as a floating point constant.

c A single character. This control character will read the very
next character in the input sequence.

s A string of characters. The string will be placed in the charac­
ter array being pointed to by the pointer in the data list. The
termination character \0 will automatically be placed at the
end of the string. It is the programmer's responsibility to
insure that the character array has been allocated in such a
way that it is large enough to hold all of the characters of the
input string.

The control string may contain any number of format fields, literal
characters, and blank spaces. The blank spaces are ignored in both

176 PROGRAMMING THE MACINTOSH IN C

the control string and the input stream (that is, the sequence of input
characters). The literal characters in the control string, however, must
be matched exactly in the input sequence.

Listing 7.2 reads the input required to calculate an employee's pay­
check. The input is expected to contain the employee's number,
name, total hours worked, hourly pay rate, and a department code.
The program does not perform any calculations; it simply demon­
strates the scanf() function.

Notice that each format field has an address corresponding to a
variable of the appropriate type. The array name does not need the
address operator (&) before it, since an array name is also an address.

Here are some sample inputs to try with Listing 7.2 and their asso­
ciated variable assignments. The three sample inputs all have the

/***
list702 Formatted input test

***/

tinclude "stdio.h"

main()
(
long
char
double
int

empno = 0;
empname(ll];
hours = 0.0, payrate = 0.0;
dept = O, c;

empname(OJ = '\O'; /* initialize for safety

Listing 7.2

for (; ;) (
c = scanf("%6ld%10s%lf%lf%2d",

&empno, empname, &hours, &payrate, &dept);

if (c == EOF)
break;

if (C == 0) (
scanf(R%*s");
continue;

}

/* no valid entries

/* end if(c)

printf("\nempno = %ld\n", empno);
printf("empname = %s\n", empname);
printf("hours = \f\n", hours);
printf("payrate = %f\n", payrate);
printf("dept = %d\n", dept);

/* end for
/* end main

*/

*I

*I

*I
*/

same variable assignments:

102032Smith 52.00 12.50 14

102032 Smith 52.00 12.50 14

102032Smith
52.00 12.50 14

All three provide the same output:

empno = 102032
empname = Smith
hours = 52
payrate = 12.5
dept = 14

THE STANDARD LIBRARY 177

In the third example, the input spans across two lines. From the
definition of the input field, we can see that the scanf() function
stops assigning data to a field when it reaches the number of charac­
ters specified by the width. It also stops when it finds either a
character that is invalid with respect to the data type or a white­
space character (that is, a newline, blank, or tab).

Technically, the newline character (also called linefeed and equiva­
lent to decimal ASCII value 10) is a whitespace character. Generally,
the newline character causes scanf() to continue to the next input
field just as if a blank space had been entered. Because the scanf()
function is part of the "standard" 1/0 library, however, it can vary
from one compiler to the next. For example, in some cases, the
newline character (which is usually produced simply by a press of
the Return key) will simply be ignored, causing the characters "52" to
be placed in the employee name field. In other implementations of
the scanf() function, such as the Consulair's, the newline termi­
nates the entry for the scanf() function so that the next line restarts
the assignment of data to variables with the first field of the scanf()
control string.

When the scanf() function is called in Listing 7.2, it remains in
control of the system until all of the input fields have been filled or
until it cannot match the input data to the input type expected. The
scanf() function returns the number of items that it was able to
match. It should return an EOF if an EOF character was entered.
Because the scanf() function deals with a stream of input, when it
stops reading the input stream the very next character on the input

178 PROGRAMMING THE MACINTOSH IN C

stream will be the first character used on the next call to scanf(). The
program in Listing 7 .2 checks first for an EOF that would signal the
end of the program. Then the program checks to see if what is on
the input stream is valid data. If not-that is, if scanf() could not
match any fields-then the variable c will contain 0 and the program
reads the input stream up to the next whitespace delimitation.

While this is not the ideal error-handling algorithm, because it
allows incomplete data to be accepted, it is quite safe for you to
experiment with as you practice using scanf(). Try various entries
and note the results. Remember: the input stream remains intact
from the point at which the scanf() function stops reading.

If you are using the Consulair system, the scanf() function works as
follows. The newline character terminates the input line, and scanf()
will fill as many fields as it can with the data up to the newline char­
acter. If there is extra data on the line, it is discarded. The value that
the Consulair scanf() function returns is the position of the last field
that it was able to fill. For example, the employee number is position
one, the name is position two, and the department is position five. If
a blank line is entered, a - 1 is returned that acts like the EOF.
(Notice that the alteration from the previous programs of defining
EOF to have the value 4 was not included in this program.)

By this time, you may be wondering why the Consulair Mac C
Compiler has so many variations from other systems? Actually, it
doesn't. Remember that C does not specify any input or output func­
tions for the language because of the variations in hardware and
operating environments. The implementations that Consulair has cho­
sen for their standard 1/0 library are most appropriate for the Macin­
tosh environment. This allows (and also forces) the programmer to
write more standardized and user-friendly Macintosh applications
instead of programmer utilities, which are quick little programs that
only the programmer knows how to use.

As a final sample input for scanf(), use the following:

6666Smithsonian 34.00 18.50 1594

The following output will be generated:

empno = 6666
empname = Smithsonia
hours = NAN(17)
payrate = 34.000000
dept = 18

THE STANDARD LIBRARY 179

The employee name field will be truncated since its length exceeds
the specified width. Thus, scanf() tries to assign the final "n" in
"Smithsonian" to the hours variable, which cannot be done because
"n" is not a number. The remainder of the line may still be processed
depending upon the implementation of the scanf() function you are
using. In most instances, scanf() returns without changing the values
of hours, payrate, or dept. For the Consulair system, the character
"n" is assigned to hours, which in turn causes a special value to be
assigned to the variable hours indicating an invalid entry. The scanf()
function continues to assign as many values as it can.

THE SPRINTF() AND SSCANF() FUNCTIONS

The printf() and scanf() functions have counterparts that can be
used to create or dissect a string. These functions are sprintf() and
sscanf(), and they are constructed as follows:

sprintf(output string, control string, data list);

sscanf(input string, control string, data list);

These functions perform exactly as the previous two functions do,
except that the location of the input or output will be the string speci­
fied by the first parameter. When using the sprintf() function, it is the
programmer's responsibility to insure that the size of the output
string is large enough to hold the output.

The sprintf() and sscanf() functions are handy when generating
printouts. For example, on an accounts payable check, the check por­
tion may come before the check stub. When your program finds an
item to be paid, it uses sprintf() to create a formatted string, which
will later by printed on the stub. After all items of detail have been
found, a total is calculated and the check is printed. Now, the pro­
gram prints on the check stub each of the preformatted strings it cre­
ated earlier. The sprintf() function would be used in a similar
situation in which you get a string and want to dissect it later.

CHARACTER AND STRING FUNCTIONS

Programming tasks demand the ability to handle character strings
as whole units (for example, when you want to use an employee's
name). String functions and certain character functions are not part

180 PROGRAMMING THE MACINTOSH IN C

of the C programming language because character codes and process­
ing methods vary with hardware. The Macintosh uses ASCII charac­
ters and contains a microprocessor capable of a wide variety of
string functions, which makes for extremely rapid execution. Here
are a few of the functions for string and character manipulations
found in a C's standard 110 library:

isalpha(c) Returns true (nonzero) if the character is between
(and including) "N' through "Z" or "a" through
"z"; otherwise returns false (O).

islower(c)

isupper(c)

tolower(c)

toupper(c)

Returns true if the character is lowercase; other­
wise returns false.

Returns true if the character is uppercase; other­
wise returns false.

Converts the character to lowercase if it is
between "N' and "Z."

Converts the character to uppercase if it is
between "a" and "z."

atoi(s) Converts the contents of a string s (actually a
pointer to a string) and returns the integer value
contained by the string; for example, atoi("123")
returns integer value 123.

atof(s) Converts the contents of the string s and returns
a floating-point value.

index(s, c) Returns the index (position) of the character c
within the string s.

strcmp(s1, s2) Compares string s1 to string s2 through the stan­
dard alphabetical comparison and returns the
following:

- 1 if s1 is less than s2.

0 if s1 is equal to s2.

1 if s2 is greater than s1.

All of these string and character functions can be written using the
operators available in the C programming language. While on larger
machines these functions are usually written in C, on micro­
computers these functions are usually written in assembly language
to maximize the capabilities of the microprocessor and make the

THE STANDARD LIBRARY 181

functions work faster. Either way they are written, the functions still
work in the same manner.

MATHEMATICAL FUNCTIONS

Another set of functions provided in a library are dedicated to
performing common mathematical operations. These functions may
be supplied in the standard 1/0 library or in a separate library of
mathematical functions. Most math functions return a double type
value. The declarations exist in a math header file which is like the
stdio.h file. The math header file is usually called math.h and is used
in the same manner as the stdio.h file.

The math functions include the trigonometric functions, like sine,
cosine, tangent, and the inverses to sine, cosine, and tangent; expo­
nent and logarithmic functions; and square roots and powers.

MEMORY ALLOCATION

AND SYSTEM INTERFACE FUNCTIONS

Two other function categories in the standard 1/0 library are mem­
ory management functions and operating system interface functions.
We have already seen the use of the functions malloc() and calloc() to
allocate memory. If your compiler has either of these functions, then
you probably have the inverse of these functions, which release or
"free" memory from use and which are called free() or cfree(). Mem­
ory is a limited resource and one must manage it wisely.

System interface functions allow you to access the operating sys­
tem and its unique internal capabilities. This category of functions is
extremely machine- and operating system-specific; these functions
will therefore vary greatly from compiler to compiler. If you decide to
use a system interface function, you will reduce the portability of
your program. To maintain portability, however, you can write your
own enclosing function to call the system function. For example:

interface(pararneters)
parameter declarations
{
set-up
call system function
return values
}

182 PROGRAMMING THE MACINTOSH IN C

If program speed is less important than portability, you may choose
to use this method of system interface. Writing such an interface()
function makes it possible to have a standardized function for your
program to call. Within interface(), you can embed the routines that
communicate with the specific operating system, and if you must
transport programs, only this section, instead of each occurrence of
the operating system function, will require modification. You can
even create your own operating system function library. In this way,
function interface() provides a black box to the operating system
function call.

Check your compiler manual for the functions available in your
library. Chapter 8 will explain the process of and reasons for creating
your own libraries and will expand upon the processing capabilities
of the compiler itself.

ACCESSING FILES
FROM WITHIN YOUR PROGRAM

The final category of standard 1/0 library routines consists of the
file accessing routines. Because the use of files from within a pro­
gram requires some preliminary explanation, we will postpone the
introduction of the file functions until after we have briefly explained
the overall need for data files and how they are used.

Earlier we discussed the use of files as a way of extending the com­
puter's primary storage unit (that is, main memory) onto a secondary
storage device (a disk drive). The foremost reason for using an exter­
nal storage device is so that your program can maintain a nonvolatile
set of the data it is using. It would be extremely time-consuming to
have to reenter several thousand employee names and their financial
information just to run the week's payroll. Instead, the data is stored
in an external device (usually a disk or tape drive) that the program
can access and update as needed.

Another reason for using an external storage device is that the
computer's memory has a limited amount of space. The size of
the computer's memory is usually small compared to the possible size
of an external storage device. Therefore, much more data can be
stored and manipulated by a program using an external storage
device as opposed to a program that just uses the computer's main
memory.

THE STANDARD LIBRARY 183

USING DISK FILES FOR INPUT AND OUTPUT

As we explained at the outset of this chapter, C views all input and
output facilities as "files" just as UNIX does. C also supports the
redirection of the standard input and output. This means that C
allows you to specify where you want data to come from and where
you want data to go. In other words, C only recognizes the standard
input or output stream as somewhere to receive or place data.
Whether the standard input or output comes from or goes to a file,
the keyboard, a video screen, or a printer makes no difference to the
functions using the input or output file.

For the purposes of this discussion, we will concentrate on disk
files as the standard input and output since they have the most attri­
butes. You can read from, write to, create, delete, and search disk
files. Other devices, like printers, can be thought of as a place to put
or get data, but they do not have all of the attributes that a disk file
has. A printer, for example, is a file that can only be written to
because it does not produce or store any data.

If you write a program that uses particular files, then when your
program is executed, it will only use the data that is located in the
files that have been specified.

A disk file can be thought of as a segment of memory with one
byte after another. Each byte in the file has an address relative to the
first byte, which is located at position 0. Thus, if a file contains 1,000
bytes, they will be numbered consecutively from 0 through 999.

TYPES OF FILE ACCESS

Files may be accessed in two ways: sequentially and randomly.
Sequential files act very much like a standard input or output stream,
where characters are processed one after another. Random-access files
allow the programmer to indicate where (that is, at which specific
byte) within the file to begin reading (input) or writing (output). In
this case, the programmer places a position pointer, which is inter­
nally maintained by the functions accessing the file, at a particular
place in the file. From here sequential reading or writing begins until
the indicated number of characters has been processed.

Reading and writing are always done sequentially inside the com­
puter, whether a sequential or random-access file is used. The
programmer can place the file pointer at any position in the file
(beginning, end, or somewhere in between), and processing begins

184 PROGRAMMING THE MACINTOSH IN C

from there. There is no difference in the storage properties of ran­
domly placed data and sequentially placed data.

FILE FUNCTIONS

The standard operating procedure for manipulating files is closely
linked to the operating system. For the most part, the interface to the
operating system is hidden by the black box principle incorporated
into the file access functions, but we still need to appease the operat­
ing system with some required protocol (in addition to common
sense practices, such as valid file names and not exceeding the maxi­
mum allowable size for a file).

FUNCTIONS FOR ACCESSING A FILE

To be accessed, a file must exist. If it does not exist, then it must be
created before it can be accessed. The function open() opens a file
and the function creat() will create one.

The creat(fllenarne) function makes a file specified by the string
filename contained within the parentheses. If a file with this name
already exists, it will be erased and a new file of the same name will
be made. Creat() returns a number called a file descriptor, which is
merely an int that uniquely identifies the file to the operating system
for subsequent file access. If the file descriptor returned is - 1, then
an error has occurred in creating the file. After file creation, the file
will be in either write or read/write mode (depending upon the com­
piler's implementation of the function).

The function open(fllenarne, accessmode) opens an already existing
file, and it too returns a file descriptor, or - 1 if an error occurred.
The accessmode specifies how the file will be accessed. In most cases,
a value of 0 indicates read-only; 1 indicates write-only; and 2 indi­
cates read/write access. For the most part, you will be using the read/
write mode to give your programs unrestricted access to the files in
question.

FUNCTIONS FOR CLOSING AND DELETING A FILE

When processing of a file has been completed, the file should be
closed. Closing a file involves two procedures. First, the file is flushed

THE STANDARD LIBRARY 185

from memory. Many operating systems will hold portions of a file in
memory (to increase performance efficiency), and closing the file sends
these memory portions to the disk. If the program does not officially
close the file, the portions of the file held in memory can be lost.

The second task performed by the close operation is to remove the
file reference from a table of files maintained by the operating system
in order to keep track of which files are open. The operating system
or your compiler may limit you to a maximum number of files that
may be open at any one time. Thus, when you have completed pro­
cessing on a file, it should be closed to insure that the data will be
saved in the file completely and to allow room to open another file.

To close a file, use close(filedescriptor), where Jiledescriptor is the
file descriptor number of the file to be closed. Remember that all files
should be closed prior the program's completion. It is considered a
poor programming practice, as well as dangerous, to leave files
unclosed when exiting the program.

The final function you can perform on files as a whole is to delete
a file from the disk. The function unlink(filename) deletes the file
named by the string filename. If the file named by the filename string
does not exist or is currently open, then unlink() will return a - 1
error.

FUNCTIONS FOR ACCESSING DATA WITHIN A FILE

Once a program has opened or created a file, it can access the data
within the file. There are two types of file access-read access and
write access-which are accomplished by the read() and write() func­
tions, respectively.

read(filedescriptor, buffer, numchar);
write(filedescriptor, buffer, numchar);

The first parameter of both the read() and the write() functions is
the file descriptor of a previously opened or created file. The second
parameter is a pointer to a buffer, which is a portion of memory that
has been allocated to hold the data that will be input or output (for
example, an array of characters). The size of the buffer is somewhat
arbitrary; however, it must be of a size greater than or equal to the
numchar (number of characters) parameter of the function being
called.

For the read() function, the numchar parameter specifies the maxi­
mum number of characters to be read. The read() function returns

186 PROGRAMMING THE MACINTOSH IN C

the number of characters actually read, or a -1 if an error occurred.
Under most circumstances, the value returned will be equal to num­
char until the EOF character is reached. At this point, read() will
return the number of characters read (which wili probably be less
than numchar), and on the next call read() will return 0, indicating
that the end of the file has been reached.

For the write() function, the numchar parameter limits the number
of characters written from the buffer to the file. The returned value is
the number of characters written, which should equal numchar. If the
returned value is -1 or some other value that does not equal num­
char, then an error has occurred. Your programs should check for
this condition and respond to it appropriately.

The read() and write() functions operate sequentially, so that after
each character is input or output, the file position pointer will be
incremented by 1, thereby facilitating sequential processing of the
file. For random access to a file, the functions lseek() and seek()
allow the programmer to move the file position pointer to a specified
location. The function call to position the pointer is lseek(filedescrip­
tor, offset, origin). The lseek() function moves the position pointer
within the file specified by fil.edescriptor. The position pointer is
moved by the number of characters specified by offset relative to ori­
gin. The offset must be of type long. The origin is an integer with a
value of 0, 1, or 2: 0 starts counting the offset from the beginning of
the file, 1 starts counting the offset from the current position, and 2
starts counting the offset from the end of the file. Moving the posi­
tion pointer past the beginning of the file will place the position
pointer at the beginning of the file, while moving past the end of the
file will have varying results based upon the implementation of the
lseek() function.

The seek() function is an older version of lseek(), in which offset is
of type int, which means that it cannot access as large a data space
as lseek() without performing some special techniques.

STREAM VS FILE 1/0

The term "file" has acquired a number of potentially confusing def­
initions. With respect to the C programming language, we will define
a file as "a set of data with an established ordering." For example, a
source code file consists of a set of characters organized into pro­
gram statements. The term "file" does not imply a specific type of
ordering; ordering is merely an attribute of how the data is stored in

THE STANDARD LIBRARY 187

the file. In other words, all files will have a sequential ordering of
data regardless of whether the order has any meaning or not. Thus, if
a file exists and is not altered, a program can access that file over
and over and expect the same sequence of data.

Given the notion of an ordered set of data, we can think of this
ordered set as either as a stream of data or a file. Both a stream and
a file have a beginning, an end, and zero or more data items in
between. The conceptual difference, however, is that the file presents
the set of data as a whole, and each data item has a position within
the file that can be accessed randomly. The stream, on the other
hand, should be thought of as presenting only one data item at a time
in the sequential order of the data set.

The access functions we have discussed so far give us the ability to
process a file in either a sequential or random-access manner. These
functions fall into the category of file IIO; they operate on a data col­
lection as a whole. The following functions perform stream IIO. For
the most part, stream 1/0 functions imitate the file 1/0 functions but
use sequential access only.

FUNCTIONS FOR OPENING AND CLOSING A STREAM

The primary difference between stream and file 1/0 in C is the
method of referencing the file. The file 1/0 functions refer to the file
to be accessed through a file descriptor, whereas stream 1/0 functions
use a pointer to a structure describing the file for the operating sys­
tem. We do not know (nor should we care about) what this structure
actually contains; we only need a pointer to perform the stream 1/0.

To declare a pointer, use the following statement:

FILE *fp;

The word FILE is a type declarator, like the words int and double,
and it appears in the same position. It is not, however, a data type
like other data types that are part of the C programming language.
The word FILE is defined using a typedef statement in the file
stdio.h, thereby allowing the user to define the proper structure for
the operating system and the hardware.

To open a file for stream access, use

FILE *fopen(), *fp;
fp = fopen(filename, accesstype);

188 PROGRAMMING THE MACINTOSH IN C

The fopen() function will open the file named by the string filename.
The accesstype is a string indicating how the stream will be accessed.
It will be either r for "read" access, w for "write" access, or a for
"append" access. Read access causes the position pointer to be
placed at the beginning of the stream and restricts access to reading
only. Write access discards the current contents of the file and treats
the file as if it had just been created. In fact, if the file named does
not exist, it will be created automatically. Append access allows the
user to add to the end of the file, which is very useful in most pro­
gramming applications. (For example, if your program is keeping a
list of expenses, it can simply append today's expenses onto a list of
total expenses entered so far.) The fopen() function returns a pointer
to a FILE structure, or NULL if an error has occurred.

To close a stream file, use the function fclose(filepointer) to insure
that the contents of the file will be saved properly.

FUNCTIONS FOR CHARACTER STREAM 1/0

Two functions perform character 110 in this mode:

getc(filepointer);
putc(c, filepointer);

The function getc() will retrieve one character from the file pointed
at by filepointer; it returns an integer, an EOF code at the end of the
file, or a read error. An integer is returned, not a character, because a
character may not be able to represent EOF if a character is imple­
mented as an unsigned value and EOF is set at -1. The putc()
function outputs character c (as a parameter) to file filepointer and
returns - 1 if an error has occurred.

FORMATIED STREAM 1/0

You may also use the stream output counterparts to the formatted
input and output functions printf() and scanf():

fprintf(filepointer, control string, data list);
fscanf(filepointer, control string, data list);

These two functions operate in exactly the same manner as the
printf() and scanf() functions, respectively, with the addition of the

THE STANDARD LIBRARY 189

filepointer parameter in the first position. Instead of using the stan­
dard input or output, these functions will input or output to the file
indicated by jilepointer.

FUNCTIONS FOR STRING STREAM 1/0

Finally, two functions expand getc() and putc() by making it pos­
sible to input or output whole strings in a stream:

fgets(stringpointer, buffersize, jilepointer);
fputs(stringpointer, jilepointer);

The fgets() function will read in a string from the file specified by
filepointer, up to and including the next newline (\n) character. The
resulting string, including the termination character (\0), is placed
where stringpointer indicates. The number of characters read is lim­
ited by the parameter buffersize, where the maximum number of
characters read will be at most buffersize- 1. The fgets() function
returns stringpointer on normal termination; otherwise, a NULL is
returned (for end-of-file or error).

The fputs() function places the string located at stringpointer into
the file specified by jilepointer. The string need not contain a newline
character, but it must have a termination character (\0). A -1 is
returned if an error occurs.

USING STANDARD 1/0 FILES

We mentioned the use of 1/0 redirection of the standard input and
output earlier. Now we will discuss its implementation within a C
program.

When a C program is executed, three files are automatically
opened: the standard input, the standard output, and the standard
error files. These files are assigned to the pointers stdin, stdout, and
stderr, respectively. These pointers are constants and cannot be reas­
signed.

Making a program's input and output independent of a specific
data file (like the keyboard or display) is accomplished by using the
stdin and stdout pointers. Whatever the user redirects as input will be
assigned to the stdin pointer, and all output will be assigned to the
stdout pointer. This redirection of input and output is only available

190 PROGRAMMING THE MACINTOSH IN C

if your operating environment will support it. If you do not have this
facility, you should still read through this section as it will culminate
in a general file copying program.

When you use the standard 1/0 functions, all input functions refer
to stdin, and all output functions refer to stdout. By using stream 110
functions, we can define the functions getchar() and putchar() in
terms of gate() and putc().

get char()
{

I* get a character from the standard input *I

return(getc(stdin));
}

putchar(c}
int c;

I* put a character to standard output *I

{
putc(c, stdout);

}

Listing 7.3 is a utility program (similar to the cp command in
UNIX) that uses the standard input and output files. The object of

/***
list703 Copyf ile Version 11:

Copy standard input to standard output
***/

#include "stdio.h"

/**** Use only if your system cannot generate a standard EOF signal ***/
iundef EOF
#define EOF 4
/**/

main()
[
int c;

while((c = getc(stdin)) I= EOF)
putc(c, stdout);

/* end main */

PROGRAMMING THE MACINTOSH IN c Chapter 7 Listings 11/10/85

Listing 7.4 (cont,):

while ((c = getc (inp)) I= EOF)
putc(c, outp);

/* end copyf ile */

Listing 7.3

THE STANDARD LIBRARY 191

this first program is to copy the standard input to the standard out­
put. If you do not have 1/0 redirection, you should be able to type
characters at the keyboard and see them echoed on the display
screen.

In this program, most of the housekeeping required for file manipu­
lation (that is, opening, reading, and closing) is done by the operating
system through 1/0 redirection when the program first starts. There­
fore, because we don't need functions to open, close, and read the
file, this program shrinks to a mere two lines of code. Unfortunately,
Listing 7.3 will only copy one file at a time, and your operating envi­
ronment must have the 1/0 redirection capability if you are to use the
program to actually copy files.

A more sophisticated program would allow us to concatenate
several files. We can write such a program so that it would ask for
the file to copy to (that is, for the destination) and then for each file
to be copied. Listing 7 .4 first asks for an output file; if the file name
is blank, the standard output is assumed. Then, the program contin­
ually asks for a file to be copied to the output file. If the file exists, it
is copied; otherwise, the program gives an error message and
requests another file name. Copying stops when a blank file name is
encountered. You can practice using this program by copying some
of the code files you created while reading this book into one file.
Then use the editor to check the contents of the new file.

The program in Listing 7 .4 is considered to be an interactive pro­
gram because it requires operator intervention periodically. It also
does not use 1/0 redirection. Generally, utilities should be able to get
all of their information from the command that starts the program
and require little attention from the operator. To make our utility self­
sufficient in this way, let's rewrite this latest version so that it works
like the commands found in the UNIX operating system. We will
want our utility program to resemble an operating system command
in being able to retrieve arguments (a synonym for parameters) from
the command line instead of through operator input. (The command
line of an operating system command consists of the command
name, followed by the arguments to be used by the command. For
example, when compiling a program, you enter in the compiler's
name, followed by the file to compile and any options you want the
compiler to perform.)

Listing 7.5 shows the revised version of our copy utility program.
Note that the stderr file should be used for outputting error messages.
This file is not affected by the I/O redirection of the standard output,
so all error messages will be output to the current error file. In
general, the video display is used for all error messages.

192 PROGRAMMING THE MACINTOSH IN C

/***
list704 Copyfile Version t2:

Copy multiple files to one file
***/

#include "stdio.h"
#define MAXNAME 64 /* set a length maximum */

main()
{
char
FILE

inname(MAXNAMEJ, outname(MAXNAME);
•outfile, •infile, *fopen();

/* get output file name */
printf("Enter file to copy to: ");
scanf("%64s", outname);
printf("\n"); /* move to next line */
if (outname (OJ != '\0') /* not a blank input *I

outfile fopen(outname, "w");
else

outfile = stdout;

printf("Enter first file name to copy: ");
while (scanf("%64s", inname) != EOF) {

printf ("\n");

/* open file •/
if ((infile = fopen(inname, "r")) NULL)

printf("*~*> Cannot open file %s\n", inname);
else {

copyfile(infile, outfile);
fclose (infile);

/* end if(infile) ••• else */

printf("Enter next file name to copy: ");

if (outfile != stdout)
fclose(outfile);

/* end while scanf */

/* do not close if stdout

/* end main

•/

*/

/***
copyfile copies stream files

inp pointer to input stream
outp pointer to output stream

Returned values: no values returned.
***/
copyfile(inp, outp)
FILE *inp *outp·
{ ' '
int c;

Listing 7.4

Listing 7.5 introduces another UNIX concept that is available
through C: command line arguments. The command line arguments
supply the specific data that the program will use.

COMMAND LINE ARGUMENTS

A command line argument can consist of any sequence of charac­
ters following the command name. The argument list is created by

THE STANDARD LIBRARY

/***
list705 Copyf ile Version i3:

Copy multiple files to one file
***/

iinclude "stdio.h"
idef ine MAXNAME 64 /* set a length maximum */

main(argc, argv)
int argc;
char *argv[];
{
FILE
int

*outfile, *infile, *fopen();
i;

argc--;
/* set argc to index of
/* last argument

*/
*/

if (argc < 1) { /* check for proper format */
printf("Format: prog705 infilel infile2 -Ooutfile\n\n");
exit(l);

/*end if (argc) */

/* check to see if last arg */
/* is output file */

if (argv[argc] [O] == •-• && argv[argc) [0] == 'O') {
/* open output file */

if ((outfile = fopen(argv[argc]+2, "w")) ==NULL) {
printf("***> Cannot open file: %s\n", argv[argc)+2);
exit(!);

I /* end if (outf ile) */
else { /* assume no output file */

outfile = stdout;
argc++; I* reset argc to include */

/* this last file *I
/* end if (argv) .•• else *I

if (argc == 1 && outfile != stdout) {
/* output file, no input */

cop¥file(stdin, outfile);
else \ /* copy each argument */

for (i = l; i < argc; i++) {
if ((infile = fopen(argv[i], "r")) == NULL) {

printf("***> Cannot open file: %s\n", argv[i]);
exit(l);

else {
copyfile(infile, outfile);
fclose(infile);

if (outfile != stdout)
fclose(outfile);

exit(O);

/*end if(infile) ••• else
/*end for(i)
/*end if(argc) ••• else
/* do not close if stdout

/* end main

*I
*/
*/
*/

*/

/***
copyfile copies stream files

inp pointer to input stream
outp pointer to output stream

Returned values: no values returned.
***/
copyfile(inp, outp)
FILE *inp, *outp;
{
int c;

while((c = getc(inp)) I= EDF)
putc(c, outp);

/* end copyf ile */

Listing 7.5

193

194 PROGRAMMING THE MACINTOSH IN C

placing blank spaces between sets of characters. For example:

COMMAND arg1 arg2 arg3 ...

Any number of arguments may appear on the command line as long
as the number of characters does not exceed the maximum command
line length specified by the operating system (usually 128 characters).

C provides a convenient mechanism for retrieving the command
line arguments. As you know, all C programs must have a function
called main(). Since main() is a function, it too can have parameters
passed to it. Here are the parameters to function main():

main(argc, argv)
int argc;
char •argv[];

The variable argc is an integer containing the number of arguments
on the command line. The variable argv is an array of pointers, each
containing the string of characters that make up the command line
argument. The arguments are kept in order, and the first argument,
* argv[O], contains the name of the command that initiated the pro­
gram (usually the name of the program).

C maintains strings as arrays of characters. Because the string of
characters composing the command line is an array, we can examine
any element within the command line by using the appropriate sub­
script. For example, many UNIX- and C-related programs (compilers,
utilities, and so on) use the command line arguments for program
control. Control arguments can be distinguished from file names
because the control arguments will be preceded by a hyphen. The
program can check the first character of the argument to see if it is
to be used for program control or not.

Here is an application of an array of pointers in which each ele­
ment points to an array of characters. We can access the first charac­
ter array by using •argv[O], the second character array with
•argv[1], and so on up to character array *argv[argc-1) because we
have argc elements in the array of pointers. We have many options in
accessing the first element of the first character array. The most
straightforward method is

(argv[O])[O]

This expression is usually written without the parentheses; however,
the parentheses explicitly indicate that this is not a two-dimensional
array. Because it is a pointer, the variable argv[O) contains an address.

THE STANDARD LIBRARY 195

This address is then used as the pointer to an array of characters.
Thus, the expression accesses the first element of the first argument
(the command name itself). The second element of this character
array is argv[0)[1]. The first element of the next character array is
argv[1][O]. All argument strings-that is, character arrays-are termi­
nated by the \0 termination character.

In rewriting our copy program, we have listed all the file names in
the command line. The output file name must be the last argument
on the command line and must be preceded by a -0 (uppercase let­
ter "O'') character pair to indicate output. In English, in effect, we
say "Copy these files to that file"; hence, we make the name of the
output file the last argument in the command line. If we write our
program to imitate this thought pattern, it will be easy to learn and
remember how the program works. If the - 0 flag is not found, the
standard output is to be used. If no input files are given, the standard
input is to be used.

Let's look more specifically at Listing 7.5 now. The program first
determines where to output the data. We decrement argc to equal the
index of the last argument instead of repeatedly writing argc - 1. The
program checks the last argument to see if it is specified as the out­
put file. If no - 0 is found, then the standard output is used. Other­
wise, the file named is created as the output file.

After determining what the output file is, the program checks to see
if the first argument was the output file. If so, then the first argument
is also the last argument, meaning that no input files were specified. In
this case the standard input is used. If input files were specified, the
program loops through each argument as an input file.

Those readers who are using a compiler that does not offer a UNIX
interface will not be able to use Listing 7.5 unless you have some
facility that allows you to access the C command line. Even if you
can't run the program, however, you should study it to familiarize
yourself with using the command line argument.

In Listing 7.5, we have introduced a new function called exit(),
which causes immediate termination of the program. The parameter
of the function is the return value of the program, as if the program
were one big function itself. UNIX uses this returned value, espe­
cially when batch processing several programs. By convention, a
value of 0 indicates normal termination, and any nonzero value indi­
cates that an error has occurred. The range of values would depend
upon the operating system and the compiler. You should generally
use the exit(O} statement as the final line of function main() to indi­
cate that the program has completed execution successfully.

186 PROGRAMMING THE MACINTOSH IN C

At this point we have covered most of the file facilities generally
provided with a C compiler and a few examples of how they can be
used. This survey of file manipulation in C should provide you with a
broad enough basis from which to create functional utilities and
applications for your computer system.

THE MACINTOSH ENVIRONMENT VS
THE UNIX ENVIRONMENT

The C programming language and the UNIX operating system are
closely linked. Most C implementations on UNIX-based computer
systems will have a set of functions through which the C program­
mer may determine and change system attributes. For example,
under UNIX, the C program may activate other programs for sub­
ordinate or parallel processing; determine the current terminal type
that the user is running; stop subordinate programs; determine the
name of the other users on the system (UNIX is a multiuser system);
and perform a number of other functions.

Unfortunately, after C is removed from the UNIX environment, the
access to this data becomes difficult, if not impossible. In the pre­
vious sections, we have seen that the command line arguments are
located by the pointers of array argv. More specifically, the first
pointer of this array, argv(O], points to a character array containing
the program's name. While access to the command line is possible
under UNIX, however, under CP/M-80, CP/M-86, PC-DOS, MS-DOS,
and several other operating systems, the first pointer of the array
points to an empty character string. These operating systems simply
do not retain the name of the program once the program has been
activated.

This example clearly shows the difficulties in making a program
independent of its execution environment. Because the Macintosh
does not use a command line, no Macintosh applications can have
access to any command line information.

The C programming language is now available on many different
computers using quite a variety of operating systems. If you are
working under the UNIX system or a similar environment, then you
will probably not find any greater difficulty or difference in working
with standard 1/0 routines than in working with the rest of the
language (the rest of the language is strictly defined and cannot be
altered if it is indeed a full implementation of C). On the other hand,

THE STANDARD LIBRARY 197

if you are reading this book, you undoubtedly plan to use a Macin­
tosh to develop your own C programs. You most likely want to
develop your programs to run under this environment for a variety of
reasons. One of the strongest reasons is to be able to use the full
capabilities of the Macintosh in creating a program that is extremely
easy to use.

In particular, the User Interface Toolbox in ROM contains routines
to manipulate windows, get information from the mouse and key­
board, create and display menus, access Macintosh files, access the
printer, and design complex graphic displays, to name just a few of
the routines that support Macintosh programmers in their efforts to
create applications that can be intuitively learned and that present a
consistent, Mac-like interface to the user.

Essentially, you are faced with a trade-off of features. If you use the
desktop as your development environment, your programs will look
like Macintosh applications from the very start. The compiler is more
likely to give you access to the Macintosh utilities. However, the stan­
dard 1/0 routines provided with your compiler will most likely vary
from the what we have discussed in this chapter and you won't have
access to the command line nor to 1/0 redirection. If you use a
UNIX environment on the Macintosh, on the other hand, you give up
the desktop but gain utilities, such as programs that automate the
program development process and 1/0 redirection, that are very use­
ful to a programmer during development. It is not an easy choice if
you have used both systems. There are advantages and disadvan­
tages. The decision about which environment you want to develop
under should be based on whether you want access to the Toolbox or
to 1/0 redirection and also on your overall style of programming.

A NOTE ABOUT USING TOOLBOX ROUTINES

This book will not detail any of the routines available within the
Toolbox. Because most Macintosh C compilers, including the Consul­
air, provide access to the Toolbox, we should caution you about one
central problem involved in using the Toolbox from C.

The problem is simply this: the ROM routines in the Toolbox were
written in Pascal, which means that you will have to do some trans­
lation from C to Pascal when you pass parameters. For the most part,
using a Toolbox function from C will be similar to a Pascal function
call. Most of the problems occur as a result of differences in data
types. Pascal has a Boolean data type that equates more or less to a

188 PROGRAMMING THE MACINTOSH IN C

short int in C. Also, Pascal uses the first byte of a string as a count
byte to hold the number of characters in the string.

If your compiler provides routines for accessing the Toolbox, it
most likely also includes a header file and library routines to handle
the conversion between C and Pascal. Read your compiler manual
carefully. If you don't know Pascal, you will need to get a Pascal
reference book as well.

If you do decide to delve into the depths of your Macintosh, we
wish you the best of success. The routines are relatively easy to use,
but require a fairly high degree of sophistication to be used properly.
Good luck!

COMPILING

YouR
PROGRAM

COMPILING YOUR PROGRAM 201

In Chapter 1 we briefly introduced the process of writing and com­
piling your program. Chapter 2 covered some of the advantages and
disadvantages of writing a program in a language that needs to be
compiled. In this chapter, we will explore in more detail some of the
advantages and benefits of a compiled language.

We will begin with a look at the steps needed to translate an idea
into a working program, explaining why the step is necessary and
how it is executed. Next, the C compiler's preprocessor and its fea­
tures will be explained. It is most likely that as you start to write your
own programs, you will come across errors that the compiler detects
in your programs. We will cover some of the errors encountered and
how you can go about locating and correcting these errors. We will
also explain how you can increase your productivity as a program­
mer by writing functions in separate files, compiling these files sepa­
rately, and then linking them together. The chapter concludes with a
description of one of the most powerful capabilities provided by a
compiled language-the use and creation of libraries.

COMPILING YOUR PROGRAM

By now you should be familiar with the process of creating an exe­
cutable program. Basically, the process consists of four steps. You
first design the program. Next, you use an editing program to create
a file that contains the appropriate programming statements to imple­
ment your design. This file is then given as input to the compiler,
which generates a file that is used by the linker. Finally, the linker
produces a file that can be executed by the computer. Because we
looked at the first two of these steps in Chapter 2, we will concen­
trate on the second two here, focusing particularly on what the
compiler actually does.

The purpose of the compiler is quite simple: it takes the file in
which you have entered program statements and generates a new
file. Your program file is called the source code because it is the
source of the compiler's input. The compiler's output file is called
the relocatable file; it contains an intermediate translation of your
program. (The term "relocatable file" comes from the fact that differ­
ent operating systems and environments have certain protocols about
where the program is to be located within the computer's memory as
well as certain initiation procedures when the program is executed.)

eoe PROGRAMMING THE MACINTOSH IN c

This is where the linker comes in. The linker takes the relocatable file
as its input and locates the program's parts so that the program
knows where it will reside in memory. The linker also inserts the
necessary initiation and termination procedures that are required by
the operating system.

Now you may be wondering why the compiler doesn't do all of this
in one step. Actually, it could, but this would prevent us from per­
forming separate compilation, which is an important technique used
in creating very large programs. Separate compilation is a process in
which a programmer can write a relatively small section of a large
program (like an operating system), and then compile and test this
section without having to write the entire program. When all of the
individual sections have been written and tested, the linker is used to
combine all the pieces into one program. For example, the UNIX
operating system consists of about 100,000 lines or so of source code,
of which a few hundred lines of code are written in assembly lan­
guage instead of C. It would take a compiler quite a long time to
compile all of that code. Plus, once the program has been compiled it
needs to be tested, and if a problem is found (which is almost guaran­
teed in a program of that size), then it needs to be fixed and the
entire program must be recompiled. To avoid the long delays
between each test of the program, the program is divided into sec­
tions that perform a specific task for the program. Now, when a
problem is found with the program, only the section that is affected
needs to be recompiled.

Another benefit of separate compilation relates to the fact that part
of UNIX is written in assembly language. These sections of the pro­
gram are assembled by the assembler program, which also generates
a relocatable file. The resulting relocatable file can then be linked
with the relocatable files from the C compiler. This can be done
because the compiler and the assembler generate an intermediate
form of their respective programs, and this intermediate form is
understood by the linker. In fact, you can write sections of a program
in any compiled programming language (for example, C, assembly,
Pascal, FORTRAN, Ada, and so on) as long as the compiler is able to
produce a relocatable file in the format that can be used by the linker.
Note that the compiler must be able to generate a format acceptable
to the linker; otherwise, this process will not work.

The other purpose of using the linker is being able to utilize library
files. But, before we discuss the advanced features of the linker, let's
look at some of the features available in a C compiler.

COMPILING YOUR PROGRAM 203

USING COMPILER DIRECTIVES
Compiler directives give explicit instructions to the compiler from

within your source file. These instructions have no effect after the
program has been compiled, but they can affect the program's compi­
lation. The compiler contains a preprocessor that translates various
commands before compilation begins. The C preprocessor is
designed to intercept any line beginning with the number symbol (#).

THE #DEFINE DIRECTIVE

We have already seen one use for the #define directive in the fol­
lowing form:

#define identifier constant-expression

The identifier, called a token, can be used throughout the rest of the
program wherever the constant-expression would have been used.
This symbolic replacement facilitates quick program alteration since
any required changes will affect only this line of code and not an
untold number of lines, which may be forgotten or missed when the
change needs to be made. For example, when we write programs
that use fixed arrays for storage, the size of the array will be limited
by the amount of memory the computer has available. If we use the
definition and declaration

#define MAXSIZE 999

char array[MAXSIZE + 1]

any number of lines may separate the definition and its use. We can
even use MAXSIZE in a loop control statement like

for (i = o; i < = MAXSIZE; i + +)

Now, wherever the number of elements in the array needs to be
changed, we can just change the number in the #define statement.
For a programmer interested in programs that are easy to maintain,
this can be quite convenient.

Also take note of the value used in the #define directive. C creates
arrays containing the number of elements specified in the declara­
tion, and the elements are numbered from 0 through one less than

204 PROGRAMMING THE MACINTOSH IN C

the size of the array. Defining MAXSIZE as the highest index in the
array and declaring the size of the array as MAXSIZE + 1 allows
MAXSIZE to be used as a limit value in loops instead of writing MAX­
SIZE - 1. (In a loop using MAXSIZE- 1 as its limit value, the com­
piler will generate the code for the subtraction, and this code will be
executed each time the loop is encountered. This is extra work for
your computer and will make your program slower.)

The #define statement can do more than just define symbolic con­
stants, however. It can be used to define segments of source code
called macros. A macro, or macro-instruction, is an identifier that
represents a series of one or more instructions. In short, a macro is
an abbreviation for source code. The macro definition can take either
of two forms. The first form is

#define identifier replacement-code

And the second form is

#define identifier(token list) replacement-code

The first form simply names a set of instructions. For example, in
many systems the function getchar() is defined as a macro in terms
of the function gate(), as follows:

#define getchar() getc(stdin)

When the compiler encounters the name getchar(), it substitutes the
name getchar() with its definition, so that

while((c = getchar()) I= EOF) {

literally becomes

while((c = getc(stdin)) I= EOF) {

The second form of the macro allows tokens to be used within the
macro code. The putchar() function can be defined like this:

#define putchar(c) putc(c, stdout)

Now the statement

putchar(x)

becomes

putc(x, stdout)

COMPILING YOUR PROGRAM 205

The tokens of a macro replacement list need not be declared like
variables because they are not variables, only placeholders to be filled
when the macro is used. For this reason, when the macro is used, the
number of arguments within the parentheses must equal the number
of tokens in the macro definition.

Long definitions may be continued on the next line by placing a
backslash (\) character at the end of the line to be continued. The
definition is considered complete when a new line character without
a backslash is encountered. A #define statement may reference a pre­
vious #define statement.

A #define statement remains in effect from the point of definition
until the end of the source file. A token may be undefined by using

#undef identifier

causing the preprocessor to forget the definition.
One last comment about macro definitions: the characters follow­

ing the identifier name of the macro will be substituted for the macro
name exactly as listed, and all replacement tokens will be substituted
before compilation. Therefore, do not use a semicolon (;) in the
macro, as in the cases of getchar() and putchar(), unless you wish to
designate the end of a source code line.

If you use an identifier within a set of macro instructions and the
identifier is not a replacement token, then the identifier is taken to be
a variable and must be declared prior to using the macro. For
example:

#define SWAP(P, Q) { temp = P;\
p = Q;\
Q = temp;}

The macro SWAP() defines a statement block for exchanging the
replacement tokens P and Q. The variables used to replace P and Q
and the variable temp must all be declared as the same type before
the macro SWAP() is used. This allows the same macro definition to
be used in many different situations. The following two function seg­
ments use the same SWAP() macro with different variable types.

f1()
{
int x, y, temp;

. . . statements which set x and y . . .
if (x > y) SWAP(x, y) I* note no {} or *I

EDS PROGRAMMING THE MACINTOSH IN C

}

f2()
{

. . . finish function . . .

double x, y, temp;

}

. . . statements which set x and y . . .
if (x > y) SWAP(x, y)
. . . finish function . . .

Remember that structured data may not be copied using the assign­
ment operator. Therefore, SWAP() will not work with structures.

While macros are most frequently used for constant definitions and
repetitive statements like SWAP(), there are no restrictions regarding
their use.

THE #INCLUDE DIRECTIVE

Frequently, the same source code can be used in many different
programs. A standard set of macros used for generalized functions
such as sorting arrays and input verification can be used this way. To
avoid rewriting this code for each new program, you can place the
macros in a file of their own, and then include them into the pro­
gram through the #include directive. You have already used this
directive with the stdio.h file.

The #include directive has two formats, First,

#include "filename"

And second:

#include <filename>

The first format, in which filename is enclosed in quotation marks (' 1.
causes the compiler to search for the file in the current directory first,
and then perform default searches in other directories if the file was
not found. The second format-enclosing filename between < and >­
causes the compiler to search only the directory containing standard
inclusion files. These two formats are used specifically with the UNIX
operating system, but they can be extended into some other operating
systems that use subdirectories. Otherwise, like the Mac's desktop,
these two formats will have the same effect: that is, both will cause the
compiler to search the current directory or disk.

COMPILING YOUR PROGRAM 207

The #include directive causes the compiler to search for the file
name listed and to replace the directive line with the entire contents
of that file. After the file has been completely included, the compiler
continues to the next line of the original source file. Files included in
the source program may contain other #include directives; however,
the compiler may place a limit upon the depth of this nesting (that is,
on the number of included files open simultaneously). Most compil­
ers produce an error if an attempt is made to include a file that does
not exist.

CONDITIONAL COMPILATION DIRECTIVES

The preprocessor also allows you to include or exclude certain pro­
gramming statements based upon a specified condition. These pre­
processor commands are called, naturally, conditional compiler
directives.

THE #IF AND #ENDIF DIRECTIVES

The directive statements

#if constant-expression
statement list

#endif

will compile the statements contained in the statement list between
the #if and #endif directives, if constant-expression evaluates to true
(nonzero). For example,

#define TRUE 1
#define FALSE 0

#define MAC TRUE
#define MSDOS FALSE
#define CPM FALSE
#define UNIX FALSE

#if MAC

#end if

#if MSDOS

208 PROGRAMMING THE MACINTOSH INC

#end if

#if CPM

#end if

#if UNIX

#end if

will compile the statements beginning with #if MAC because the iden­
tifier MAC has been defined as true. This type of set-up procedure
saves a tremendous amount of time by defining the operating system
through the use of macro identifiers, which can then be used to
implement functions for that operating system. Each #if statement
must be followed by its own #endif statement.

THE #IFDEF AND #IFNDEF DIRECTIVES

Two alternative forms of the #if directive are #if def and #ifndef.
The #ifdef directive

#ifdef identifier

evaluates to true and compiles the lines of code that follow if the
identifier has been defined to the preprocessor in a #define state­
ment. The #ifndef directive

#ifndef identifier

evaluates to true on the opposite condition-that is, if the identifier
has not yet been defined. Using these alternative forms, we can
rewrite the preceeding #if example as

#define MAC TRUE

#ifdef MAC

#end if

#ifdef MSDOS

#end if

#ifdef CPM

#end if

#ifdef UNIX

#end if

COMPILING YOUR PROGRAM 209

The outcome is the same as before because only the identifier MAC
has been defined within the file. Since the #ifdef and #ifndef are just
alternative forms of #if, they must also be followed by a matching
#endif statement.

THE #ELSE DIRECTIVE

The preprocessor has a conditional alternative construct, the #else
directive. It is used in the same manner as any other else construct
and has the same effects.

#if constant-expression
statement list 1

#else
statement list 2

#end if

The #else can be used with any of the conditional directives: #if,
#ifdef, or #ifndef. All of these constructs may be nested as long as
each #if is followed by a corresponding #endif statement.

MISCELLANEOUS DIRECTIVES

Your compiler may have some additional directives, the most com­
mon of which is the #asm directive. This indicates to the compiler
that the following lines consist of assembly language instructions and
should be treated as such (that is, either assembled or left for an
assembler program). While the directive to terminate assembly lan­
guage handling varies from compiler to compiler, usually it is called
#endasm.

Two other directives you should know about are #fortran and #line.
The #fortran directive has the same effect as the #asm directive,
except that it indicates that the following lines are treated as FOR­
TRAN statements. This will generally not be available on smaller
computer systems because of memory limitations.

210 PROGRAMMING THE MACINTOSH IN C

The #line directive is used by the programmer for determining the
cause and position of compilation errors and for counting the num­
ber of lines (terminated by a newline) the compiler reads in. Here's
how #line is used. When the compiler finds an error, it will usually
print the line number, the line, and a diagnostine) the compiler reads
in. When the compiler finds an error it will usually print the line
number, the line, and a diagnostic message about the error found.
The compiler may also print the name of the source code file used to
initiate the compilation procedure. When other files have been
included in the source code through the #include directive, however,
the information disclosed by the compiler about the location of the
error can become confusing.

For example, program SAMPLE starts with 10 source lines,
includes a file INC1 containing 20 source lines, and then continues
with 50 more source lines. The #include statement counts as line
number 11 within file SAMPLE, with the result that the remaining
lines begin at the number 12.

/* SAMPLE */
Source lines numbered 1 through 10
#include "INC1"
Source lines numbered 12 through 61

/* INC1 */
Include Jines numbered 1 through 20

If, for instance, an error occurs on line 4 within INC1, the compiler
would normally indicate an error on line 14 of program SAMPLE,
which is not very accurate. By changing file INC1 to begin with the
statement

#line 1 INC1

we make the compiler believe, when it encounters this directive, that
it is beginning at line 1 of file INC1 (which it is); in effect, the
compiler temporarily forgets that this is a file included into another
program. Now the error message will accurately locate the error as
being on line 4 of file INC1. When returning to the original file,
SAMPLE, we use the statement

#line 12 SAMPLE

to tell the compiler it has returned from the included file. Essentially,

COMPILING YOUR PROGRAM E11

this is the only use for the #line directive, since it does not affect the
compilation of the program.

Formally,

#line constant identifier

causes the preprocessor to change the current source code line num­
ber maintained by the compiler to the value of constant and to
change the name used by the compiler for the current source file
to identifier. None of these changes alter the compilation process in
any way; they merely change the values displayed within error mes­
sages. Some compilers will keep track of included file names and line
numbers automatically.

To a great extent, the preprocessor implementation in the compiler
determines the directives available on your particular computer
system. Read your compiler manual carefully to determine which
directives are available and how they work.

DEALING WITH COMPILER ERRORS

A compiler error occurs when the programmer has violated
command syntax in writing a line of source code. This section will
provide a compendium of errors derived from the authors' experi­
ence with programming and with compilers. This brief overview of
probable causes and solutions of compiler errors should cover most
of the situations you will encounter during the period in which you
are learning C.

First of all, it's important to note that the error message a compiler
produces communicates very little. Only large and complex com­
pilers can determine the error that has actually occurred. For the
most part, the error message you receive is merely a guideline for
determining what action should be taken to correct the situation. In
our experience, only 50 percent of all the varied error messages
received correctly identify the erroneous construction. Because of the
general unhelpfulness of compiler error messages, when tracing an
error you must first interpret the general category of the error mes­
sage, and then search out the indicated line and the surrounding
lines for the actual cause of the error.

By far the most common cause of compilation errors is improper
syntax. A single typographical error can cause numerous error mes­
sages to cross your console. For example, if you mistype a variable

212 PROGRAMMING THE MACINTOSH IN C

name in a declaration statement (using cuont instead of count, for
example), then for every place you used the correctly spelled variable
name, the compiler will remind you that it is undefined. The most
frequent typographical error is omission of a closing punctuation
mark: for example, a parenthesis, a quotation mark, a semicolon, and
so on. Both of these kinds of typographical errors are usually identi­
fied properly by the compiler.

On the other hand, you may get an error message that does not
match the context of the line, such as "missing operand," when you
know that all of the operands exist. The first plan of attack in this
situation is to look for syntactical errors in surrounding lines. Per­
haps you forgot to use a closing brace to finish the previous function.
Or maybe you forgot the opening apostrophe for a character
constant. These types of errors are very difficult for a compiler to
decipher. The best it can do is determine that an error exists and
make an educated guess about the error type and location.

Error messages also occur as a result of the programmer's forgetful­
ness. For instance, a programmer will write a section of code, use a
new variable, and forget to go back to declare the new variable. Usu­
ally, error messages that occur under these circumstances accurately
reflect their causes: for example, "undefined variable," "missing ... ,"
and "need " This category of errors also includes nonexistent
#include source files.

Moving into more context-dependent situations, there are errors for
illegal constructs or semantics that may inadvertently be caused by
syntactical errors. These errors include taking the address of constant
expressions (&44), declaring an auto type variable outside of a
function (only extern or static variable types may be declared in this
situation), and invalid assignment (assigning a char to an entire struc­
ture, for example). These sorts of errors are easily recognized when
you look at your source code.

The hardware can also cause compiler errors. On a full disk, for
example, the compiler will not be able to write the relocatable file; a
bad disk may make some source files unreadable; and bad RAM has
extremely varied and unpredictable effects. The first two causes are
relatively easy to determine. Most compilers will be able to indicate if
the disk is full or if it cannot read a file. Bad or damaged memory, on
the other hand, can cause various symptoms, and it may take some
time to diagnose whether or not your computer's memory is at fault,
although the problem should be consistent within various programs.

The compiler itself has limitations that cannot be exceeded. These
limitations, enumerated in your compiler manual, usually concern

COMPILING YOUR PROGRAM 213

the number of #include directives or #define directives that may be
nested. Exceeding the maximum source file size or using an overly
complex expression can also stretch some compilers beyond their
capabilities. Error messages given under these circumstances are also
generally accurate in indicating their cause.

The final category of compiler errors derives from how well the
compiler can handle source code errors. In other words, how easily
does the compiler get "confused" or tricked? Most compilers (even
those on large computer systems) can become confused after the first
six to ten errors, depending upon what the errors are. This "compiler
confusion" will result in many error messages being displayed
throughout the rest of the compilation process, whether or not an
actual error condition exists. For example, if you place one too many
closing braces within a block, the compiler will think that you have
ended the function and will give you an error for all of the state­
ments following the extraneous brace. If you get numerous errors on
a first compilation of a program, correcting the first few errors and
recompiling the program may significantly reduce the number of
error messages displayed the next time through.

With some experience at writing and compiling programs, you will
begin to categorize error messages. Frequently, an error will be obvi­
ous once it is pointed out to you by the compiler. In other instances,
you may need to do some code simplification to insure that your
code is correct and that the compiler has not reached its limit with
code that is too complex. Furthermore, large source files have a ten­
dency to be error-ridden on an initial compilation, which, of course,
is a good reason to use segmented coding.

Generating smaller source files makes compiling programs and cor­
recting errors much faster. You will not have to wait for a large
source code file to compile, only to have an error detected near the
end. A little practice and a good compiler manual will provide you
with enough tools for avoiding and correcting errors.

LINKING YOUR RELOCATABLE FILES

The linking process, as we mentioned earlier, converts the relocat­
able file into an executable file. We will now further discuss the topic
of linking files.

214 PROGRAMMING THE MACINTOSH IN C

In case you have not already noticed, functions such as printf(),
scanf(), open(), atoi() and so on, are neither defined nor declared in
the source code file (unless they are macros in the stdio.h file). When
you compile your program, the compiler takes note of all references
to functions that do not exist within the source file. The notes that
the compiler makes concerning these undefined functions are called
unresolved references.

When linking the relocatable file, the linker accesses a file called a
library, attempting to resolve these references. When resolving the
standard library functions listed above, for example, the linker looks
through a file called the standard library, which has been catalogued
and indexed with the names of the functions it contains. (In the Con­
sulair system, the library does not exist as a separate file; instead, it is
contained in the compiler.) Library files are really a form of relocat­
able files.

In some cases, you may wish to supply your own set of functions.
One way of providing your own functions is to write a #include file
to be included and recompiled each time you compile a program.
The disadvantage of this approach is that it lengthens the compilation
process and decreases a programmer's productivity. To avoid this
inefficiency, the linker allows you to compile this function file
separately and then link the two files together. This way you need to
compile the function file only once, and you can use it over and over
for each program you write.

How does the compiler know whether to expect a function (or
variable) reference to be external to the source file? Generally, all ref­
erences will be expected to be resolved within the same source file,
so C uses the extern storage class declarator to inform the compiler
not to look for the definition but instead to let the linker handle it.

To accommodate programming large systems, many programming
teams use the black box principle that we first described in Chap­
ter 4. This approach is applicable not only within a single source file,
but across an entire system of source files, which can then be linked
together into one or more programs. Applying the back box principle,
there will be functions used locally (that is, they are only used by
other functions within the file), analogous to the use of local variables
within a function. We hide these local functions from other source
files by declaring their storage class as static.

A data storage program that creates, deletes, edits, and retrieves data
from a data file is an excellent application for separate files and local
functions. Through our structured programming method, we divide the
program into two sections- one section deals with the user (to accept
commands, and receive and display data), and the other section

COMPILING YOUR PROGRAM 216

performs the data file mauipulation. The system as a whole needs to
be able to perform each of these functions, but one section of the pro­
gram does not need to know how the other section works.

The second source file must contain functions to create, retrieve,
store, and delete data from the file (an edit function is the combina­
tion of retrieving and storing functions). This file may also contain
other functions to support these four interface functions, but the first
source file need not know about any of the supporting functions.

We now have two source files. The first file references the func­
tions for creating, retrieving, storing, and deleting, which it declares
as extern and does not define. The second file contains the definition
of these four functions (without any storage class declared), and other
supporting functions (declared as static to hide them from the first
file). These two files, compiled separately, generate two relocatable
files to be linked into a single program.

Now we need to combine the two files into a single program using
the linker. The linking process for this example will contain both file
names on the command line. The linker will look through these files
in addition to the standard library to resolve all external references. If
all external references have one (and only one) associated definition,
the linker will create an executable file and we will now have a pro­
gram ready for use.

The segmentation methodology we have just used also makes pro­
gram changes easier. To change the user interface portion of the
program, you need only edit and recompile the first source file. After
any changes, though, the whole system needs relinking.

The linker takes all relocatable files and links the system into one
program file. When we use the extern declaration, the linker allows
functions and variables to be defined in one place within the source
files and utilized by any other source file. The linking process,
although quite short, enables the black box principle and program
segmentation methodology to be employed on large program systems.

CREATING YOUR OWN LIBRARIES

In the preceding section, we discussed linking multiple source files
together into one file. While the multiple source files are not libraries,
they are similar to an actual library.

216 PROGRAMMING THE MACINTOSH IN C

To create your own libraries, you must have a program known as a
librarian. At the least, the librarian will have the capability of creating
library files; however, it may also be able to remove or replace exist­
ing library modules.

What is a library module? A library file consists of a relocatable
file, called a module in librarian terminology, and created either by a
compiler or by another program such as an assembler. A library may
contain any number of modules, and each module may contain any
number of valid source code lines (within limits). To create a library
file, you give the librarian a list all of the modules to be included in
the library file, an operation that is similar to the process of linking
files into a program. Check your manual for the exact details of the
librarian process.

Libraries work like the #include directive to reduce the amount of
redundant programming. The advantage of using a library rather
than #include files is that the library file has already been compiled
and may be linked immediately; this reduces the amount of time
required for program development. The advantage of library files
over the multiple source file method is the modularity of the library
approach.

If the library file consists of more than one function, these func­
tions usually have a common purpose and are likely to be needed
with some degree of frequency. For example, one library may contain
functions to do screen formatting, another may have mathematical
functions, and still another may have file accessing functions. You
may have as many library files as needed. The libraries' contents will
depend upon your programming needs.

A library file, originating from one or more relocatable files, has
the names of the externally available functions (and variables, if any)
listed in some manner. You can use a library file just as you would
any other relocatable file during the linking process. If your linker
can use library files, it will search the library files named (more than
one library can be included during the linking process) for any unre­
solved references. The linker will search all of the listed files in a
specific order. Note that the search order depends upon the linker,
and it may affect the outcome of the resulting program.

The efficiency of the librarian and linking programs will determine
the efficiency of the resulting program. To examine this relationship,
we will look at an example. Suppose that a library contains three
functions a(), b(), and c(), but the program being linked only refer­
ences function b(). What happens to functions a() and c()?

A library can be broken into three levels: the library file as a whole,
a module file within the library file, and a particular function within

COMPILING YOUR PROGRAM E:!17

a module. In order to resolve external references, the linker will
search the library for the function name.

The least efficient linker would use the entire library regardless of
whether or not function a() or c() was used within the program. The
next step toward efficiency would have the linker use only the mod­
ule in which the function is defined. If each of our functions resided
in a separate module before being placed into the library, then they
could be used separately so that only function b() would be extracted
from the library.

Making our example more complex, if function b() referenced
function a(), then a very efficient linker would extract both functions
b() and a(). This level of efficiency provides the greatest advantage
over simply linking separate relocatable files together. If all three
functions were defined within the same module, then the entire mod­
ule would be used with the result that in all three functions would be
incuded in the format program. The most efficient linker would
extract just the functions referenced and used from a library, regard­
less of how the library was created.

Librarian programs provide a convenient method of efficiently stor­
ing segments of frequently required code, which in turn results in
decreased programming time. The use of the librarian is by no means
a prerequisite to programming. On the other hand, when you become
proficient at programming skills, you will find the librarian's role
beneficial. You should learn to use this helpful tool.

REFERENCE

Gu10E

REFERENCE GUIDE 219

This chapter provides rapid-access answers to questions that may
arise while you are first learning the C language. It deals exclusively
with syntax and semantics. It does not go into detail or discuss the
philosophy of using the constructs available, nor explore the inner­
workings of the language itself. For a deeper analysis of the elements
of C, you should, of course, read Chapters 3 through 7 of this book. If
you require greater depth and explanation in the process of using this
chapter, consult the table of contents or the index to determine which
section of this book will best answer your question.

DEFINITIONS

For the sake of concision and consistency, we will begin by defining
the set of terms we will use in this reference guide. Their actual coun­
terparts (for example, variable names, operators, and so on) rather than
the shorthand have to be used during programming, of course.

The following definitions represent only those words and phrases
directly associated with the C programming language. Additional pro­
gramming terminology can be found in the Glossary. In providing
these definitions, we assume you have a basic knowledge of program­
ming terms and philosophy.

1. Newline: A character indicating the end of a line of characters.
In UNIX, this character corresponds to a linefeed (ASCII
decimal value of 10), whereas MS-DOS and CP/M require a
carriage return and linefeed pair (ASCII values 13 and 10). For
the Macintosh, the newline character is usually a linefeed,
although it may vary from compiler to compiler. This require­
ment may vary with other compilers and operating systems.

2. Whitespace: Collectively refers to the newline, blank space, tab,
and comments.

3. Data type: Determines the size and format of the data to be
stored.

4. Storage class: Determines where in memory the data will be
stored and its range of scope.

5. Scope: The range of source lines in which an object is
accessible.

eeo PROGRAMMING THE MACINTOSH IN c

6. Object: A region of memory that can be manipulated.

7. Expression: Any combination of objects and operators that
evaluate to a single data object of the appropriate type.

8. Identifier: Any sequence of letters, numbers, and the under­
score character (_), beginning with a letter. The compiler
defines what constitutes uniqueness between identifiers. The C
programming language states that no more than the first eight
characters are significant; the Consulair compiler differentiates
between . . . ; upper- and lowercase characters may or may
not be distinguished. Check your compiler manual for exact
details regarding the construction of an identifier.

9. Token: Categorizes identifiers, keywords, constants, strings,
operators, and other separators.

STATEMENT CONSTRUCTION

The programming statement is the basic unit of operation in C. A
statement consists of either whitespace, a comment, a statement
block, or a series of one or more valid expressions terminated by a
semicolon.

WHITESPACE

Whitespace is ignored by the compiler except when it is used to
separate tokens. An input line will be parsed between whitespaces,
and each token is assumed to be the next longest string of characters
that could possibly form a token. In some cases, whitespace may be
necessary to separate adjacent identifiers, keywords, and constants.

COMMENTS

Comments, considered by the compiler to be whitespace, begin
with the first occurrence of the I* character pair, and end with the
first *I character pair. Comments may not be nested.

REFERENCE GUIDE 221

STATEMENT BLOCKS: {}

By surrounding statement blocks, braces ({}) delimit a basic struc­
tural element in C. A statement block begins with the left brace ({)
and ends with the right brace (}). Block statements may be nested.

To the surrounding source code, a statement block appears to be
a single statement, and a statement block may be used anywhere a
single statement can be used. C is not a completely block-structured
language, however, because it does not allow a function to be defined
within another function.

STATEMENT TERMINATION: THE SEMICOLON

All source code line statements must be terminated by a semicolon
(;). A source line may be extended across multiple lines (the newline
is treated as whitespace) and will be considered terminated upon the
first occurrence of a semicolon. (A newline may not appear within a
string constant or in the middle of a token.)

DATA DECLARATION

All data objects used in a C program must be defined before being
referenced in a source line. A data object has two related attributes: a
data type and a storage class.

DATA TYPES

C has three distinct data type classifications: character, integer, and
floating point. Character variables (type char) will be large enough to
contain any member of the character set in use (ASCII for most
implementations). A character variable stores the character's integer
equivalent based on the character set in use.

Integers come in three sizes-short, regular (int), and long-to
accommodate different usages within a program. The actual range of
values represented by each integer size depends upon the implemen­
tation. To use the full range of positive integer values based upon the

222 PROGRAMMING THE MACINTOSH IN C

size of the data type (2 "n - 1, where n is the number of bits used in
the representation), you may declare all three sizes as unsigned.

Floating point values may be represented in single- or double­
precision depending upon the implementation.

Here is a list of all the data types:

char

int

short int

long int

unsigned int

float

double

STORAGE CLASSES

A single character.

An integer value.

An integer value whose range depends
upon implementation. The word int is not
required.

An integer value whose range depends
upon implementation. The word int is not
required.

An unsigned integer value. May be com­
bined with a long or short data type, and
with char in some implementations.

A single-precision floating point value.

A double-precision floating point value.

Based upon scoping rules (see the section on scoping rules later in
this reference guide), the variable's storage class determines where
the data object is stored and how it is accessed. The default storage
class of all variables declared within a statement block or function is
auto. Although it is not necessary, you may want to include the auto
storage class as part of a data declaration statement. Storage is
allocated to an auto variable upon entry to the statement block or
function and is relinquished upon exit.

The static declaration causes storage to be allocated at the time of
compilation instead of at execution time. A static variable will retain
its value even after program flow leaves the statement block or func­
tion that defined it, although it will not be accessible outside that
block or function.

An extern declaration indicates that the declared variable has been
defined outside the enclosing block. A variable is implicitly declared as
being external by the location of its declaration statement A declara­
tion outside a function declares its variables to be extemally available.

REFERENCE GUIDE 223

Register, the final storage class provided by C, allows placement of
the variable's data directly into the extremely fast and efficient regis­
ters of the computer's central processing unit. The existence of the
register variable and how many you can use depends again on your
compiler.

Here is a summary of the four storage classes available in C:

auto

extern

static

register

DATA DECLARATION

The default storage class. These variables
are active only while their enclosing state­
ment block is active.

The variable has been declared in another
portion of the program.

The variable will become active when the
enclosing statement block is first activated.
The variable will remain after the block is
exited and will retain its last value. The
variable will not be accessible from out­
side of the statement block.

Specifies use of the internal storage regis­
ters of the central processing unit as the
storage location for the data.

A data declaration statement informs the compiler what data type
is to be associated with a particular token. The data type determines
the amount of storage space required and what operations are valid
for the specified token. All data objects must be declared and defined
prior to their use.

DECLARATION AND DEFINITION

While defining a data object causes space to be allocated for the
data, data declaration does not necessarily allocate storage space for
the data. The extern declaration does not allocate any storage space;
it defers this allocation to another point in the program. An extern
declaration must have a corresponding data definition.

The data declaration format is

storage-class data-type variable-list;

224 PROGRAMMING THE MACINTOSH INC

The storage-class and data-type may be any of the valid keywords we
have listed. The variable list consists of identifiers separated by
commas (,); all of the identifiers contained in the variable-list will
have the storage class indicated by storage-class and the data type
indicated by data-type. Storage-class may be omitted if it is to be auto.
If data-type is omitted, the named variables generate a compiler
warning message and are assumed to be of type int for the remainder
of the statement block.

EXTERNAL DECLARATIONS

A definition that allocates storage space occurring outside a func­
tion block makes that identifier external and is called a global
variable. All subsequent extern declarations naming the identifier will
refer to this declaration.

A global variable can be used in any function from the point of
definition to the end of the source file without an explicit declaration.
For example, if no declaration is made within the function, the vari­
able is assumed to have been defined within the same source file. An
explicit extern declaration within the function may also be used.
An external variable defined in another source file must be explicitly
declared extern.

INITIALIZATION

A declaration statement may contain an assignment operator to des­
ignate an initial value for the variable being declared. The variable
is followed by the assignment operator (=), which is followed by the
initial value for the variable. Certain restrictions apply to initialization
statements depending on the data type and storage class of the
variable.

Static and extern variables will always be initialized to o if no
explicit intialization value is given. auto and register variables, how­
ever, start with some undefined value. For example:

static int i;
auto inti;

I* initializes i = O *I
/* initializes i = ?? */

Pointers and variables may be initialized with any single expres­
sion, which may be enclosed within braces to give it the appearance
of a single expression. The expression must evaluate to a single value

REFERENCE GUIDE 225

of the proper data type after all normal type conversions have been
applied (see Appendix E). For example:

static int i = 10;
auto int i = 10;
auto int i = 5, j = 6;

I* initializes i = 1 O *I
I* initializes i = 10 */

I* multiple initialization *I

Other data types, collectively called aggregates, include structures
and arrays. These types use an initializer consisting of a list of values
separated by commas and enclosed within braces. When an aggre­
gate contains another aggregate as its member, the initialization
procedure is applied recursively to the member (see the following
two-dimensional array example). Providing more initializing values
than members causes a compilation error; providing too few initializ­
ing values will cause the uninitialized members to be filled with
zeroes.

Here are two examples of initialization:

int a[5] = { 6, 5, 4, 3, 2 };
int b[4][4] = {

};

{ 9, 8, 7 },
{ 6, 5 },
{ 4 },

The first example initializes all the elements of array a. The second
example initializes a two-dimensional array in which each element is
an array. We apply the recursive intialization procedure, where each
subset of braces initializes a single line in the two-dimensional array.
Graphically, the second array would look like Figure 9.1. Because
each line contained fewer initializers than space available, the
remaining elements of the array became zero. The fourth row of
the array also initialized to zero because no value set was provided.

0 1 2 3

0 9 B 7 0
1 6 5 0 0
2 4 0 0 0
3 0 0 0 0

Figure 9.1: Two-Dimensional Array Initialization

226 PROGRAMMING THE MACINTOSH INC

If an initializer list follows, a one-dimensional array does not
require a subscript to indicate the number of elements in its declara­
tion. For example:

char n[] = {'A', '8', 'C', '\O' };

This example initializes array n and declares its size to be four
elements. Character arrays may also be initialized by a string con­
stant. The termination character (\0) is automatically supplied. The
preceding declaration can be shortened to

char n[] = "ABC";

A variable declared as extern may not be initialized because the
extern storage class does not actually allocate any memory.

SCOPING RULES

The scope of a data object defines which portions of the program
have access to the object. Data objects declared within a block have a
scope over the entire block and all blocks initiated within it. This
data object cannot be accessed from outside the block. Data objects
declared externally to any block (that is, outside of a function) are
available as external data objects through all subsequently defined
blocks until the end of the source file.

In Figure 9.2, I defined in function fun4() is accessible only to state­
ments within function fun4(); and g, defined externally in the middle
of the source file, can be utilized by all of the functions following the

fun4 ()
{
int 11 /* local to this function */
}

int g1 /• global to all following functions */

fun5() I \
fun6()

/* end of file */

Figure 9.2: Example of Scoping Rules

REFERENCE GUIDE 227

declaration until the end of the file. An extern declaration will follow
the same scoping rules as other declarations, depending upon its
position within the file (internal or external to any function).

Statement blocks may appear within functions and data objects
may be declared within these blocks. If a data object identifier
declared with an auto or static storage class has the same name as a
data object existing in an enclosing block or as an external data
object, then the innermost declaration has precedence when that
data object name is referenced by a program statement. The outer
data objects still exist, but they can no longer be accessed by the cur­
rent statement block because of the scoping precedence. When the
block is exited and the inner data object is discarded, the previously
available data object of the same name becomes accessible again.

DATA TYPE OPERATORS

The C programming language contains several operators for use
with data types. These operators can obtain the amount of storage
space required by a specific data type, altering the data type of a
token, and defining new data types.

DATA TYPE SIZE OPERATOR: SIZEOF

As we have seen, C has seven predefined data types. Each data
type has an associated size and method of representation. The size of
a data type is specified in units, where each unit is the size of the
smallest data type, char. Most compilers for personal computers will
use a single byte to store a char, and the size of a data type will be
equivalent to its size in bytes. However, for the sake of portability to
other machines, do not assume this equality of byte and char size.

To determine the size required to store an expression or a particu­
lar data type, use the sizeof operator, which can be used in the
following formats:

sizeof expression
sizeof (data type)

The first form evaluates to the size in char units required by expres­
sion. The size is based upon the declaration of the objects used in the

228 PROGRAMMING THE MACINTOSH IN C

expression. The second form returns the size of the data type named
in the parentheses.

THE CAST OPERATOR: ()

In the example,

(data-type) expression

the cast operator forces the conversion of expression into the data
type given by data-type named within the parentheses.

THE TYPE DECLARATOR: TYPEDEF

The creation of a data structure or complex data type can some­
times make the source code very difficult to read and understand. To
alleviate this problem, C provides a keyword to bind the data struc­
ture or complex data type declaration to an identifier:

typedef declaration identifier;

The keyword typedef equates identifier to declaration so that in subse­
quent declarations the identifier may be used in lieu of the actual
(usually cumbersome) declaration. For example:

typedef char STRING, *LIST;
typedef struct { char last[20], first[10]; } NAME;

The following declarations can now be made.

STRING input[50]
LIST pc;
NAME emp;

The identifiers have been used in the typedef statement to replace the
conventional declaration statements. In this example, input is an
array of 50 characters, pc points to a char, and emp is a structure
containing the character arrays last and first.

The typedef statement creates a synonym for the declaration; it
does not allocate any storage. As a matter of style and convention,
the identifiers of the typedef statement use uppercase letters, but this
has no bearing on their function.

REFERENCE GUIDE 229

GENERAL OPERATORS

Operators are used in creating expressions in C. Expressions are
used to process the program's data. The operators presented in this
section fall into five categories: assignment, arithmetic, bitwise,
assignment combinations, and increment and decrement operators.

ASSIGNMENT OPERATOR: =
In the construct

data-object = expression;

the assignment operator causes the value of expression to be assigned
to data-object. The assignment should make sense with regard to data
types after the standard conversions are applied (see Appendix E).

ARITHMETIC OPERATORS: + - * I %

C contains four basic arithmetic operators, plus a modulo operator.

addition expr1 + expr2
subtraction expr1 - expr2
multiplication expr1 * expr2
division expr1 I expr2
modulo expr1 % expr2

In all cases, both expr1 and expr2 must be numeric. The modulo
operator evaluates the remainder of the division of expr1 by expr2.
The modulo operator cannot be used with float or double
expressions.

Integer values may be added to or subtracted from pointers. In this
case, the integer value will be scaled to the proper size for the type of
the pointer.

The use of the minus as a unary operator,

-expr1

results in the arithmetic negative of expr1.

230 PROGRAMMING THE MACINTOSH IN C

BITWISE OPERATORS: & : " > > < < -
Bitwise operators perform bit-by-bit manipulations on integer

operands.

AND
inclusive-OR
exclusive-OR
right-shift
left-shift
one's complement

expr1 & expr2
I expr1 1 expr2

expr1 " expr2
expr1 > > expr2
expr1 < < expr2
- expr1

All of the bitwise operators use integer operands.
The AND (&), inclusive OR (:), and exclusive OR (") perform their

associated bitwise operation on the two operands in a bit-by-bit man­
ner. A table illustrating different bit combinations is located in
Appendix F.

The shift operators shift the integral value of expr1 either left or
right by the number of bits specified by expr2. If expr2 is negative or
greater than the number of bits in the data type of expr1, undefined
results can occur.

The left-shift operator (< <) fills the vacated bit positions with
zeroes. The right-shift operator (> >) may fill arithmetically (by copy­
ing the leftmost bit) or with zeroes. If expr1 is declared unsigned,
then the right-shift operator will always fill with zeroes.

The one's-complement operator (-) performs a bit-by-bit comple­
menting of expr1: changing each occurrence of one to zero and zero
to one.

ASSIGNMENT COMBINATIONS

For concise source code, C allows any of the preceding binary
operators to be combined with the assignment statement in the
following form:

data-object op = expr

This equates to the longer version:

data-object = data-object op (expr)

Notice the parentheses surrounding expr which indicate that the

REFERENCE GUIDE 231

operand expr will be evaluated before the operator is applied. Thus,
in the statement

x += y * 6

the expression y * 6 will be evaluated first, then added to x. All stan­
dard data type conversions will be performed.

When + = or - = is used, the data-object may be a pointer, in
which case expr must be mi integer for the proper scaling to be per­
formed on expr.

THE INCREMENT AND DECREMENT OPERATORS:

++AND - -

Because incrementing and decrementing data objects by one unit is
a frequently used operation, C has an operator for each of these
operations:

increment
decrement

+ + data-object or data-object + +
- - data-object or data-object - -

These constructions are the same as writing

data-object = data-object + 1

for the increment operator, and

data-object = data-object - 1

for the decrement operator. The data-object may be any arithmetic
data type or a pointer. If data-object is a pointer, then the proper scal­
ing is applied.

The position (prefix or postfix) of the increment or decrement oper­
ator affects the value of the expression. The prefix operator causes
data-object to be incremented or decremented, and then this new
value is. used as the value of the expression. The postfix operator
causes the current value of data-object to be the value of the expres­
sion; then the value of data-object is incremented or decremented. In
all cases, the final value of the data-object will have been incremented
or decremented from the original value.

232 PROGRAMMING THE MACINTOSH IN C

LOGICAL STATEMENTS

Logical statements are based upon Boolean algebra. In Boolean
algebra, there exist only two possible values-either true or false. In
C, there are two types of expressions that result in either true or
false. The first kind of expression performs a logical operation such
as NOT, AND, OR, equal to, and not equal to. These expressions take
two Boolean values, perform the operation, and evaluate to true or
false based upon the truth tables given in Appendix F. The second
kind of expression evaluates to true or false based upon the relation­
ship of one numeric value to another (for example, through a
decision that one value is greater than another).

For purposes of convention, the value of a false expression is taken
to be zero and the value of a true expression is nonzero. Through
this convention, the programmer can test any data object of an
arithmetic type by using a logical test for true or false, a very fast
testing capability.

LOGICAL OPERATORS: ! = = ! = && :

The logical operators available in C perform a logical comparison
between the operands. A false expression evaluates to O and a true
expression evaluates to 1; both values are returned as int. All expres­
sions used by the logical operators are taken to be logical values­
true (nonzero) or false (zero).

logical NOT ! exprl
equality exprl = = expr2
inequality exprl I = expr2
logical AND exprl && expr2

I logical OR exprl 1 expr2

The logical NOT, a unary operator, returns the converse of expr1:
that is, if exprl is nonzero, then the logical NOT returns O; if it is
zero, then the logical NOT returns 1.

The equality and inequality operators are self-explanatory.
The logical AND and logical OR return true or false. Neither opera­

tor will evaluate farther than required in order to determine the truth
value of an expression. For example, if exprl in the logical AND is
false, expr2 will not be evaluated.

REFERENCE GUIDE :233

RELATIONAL OPERATORS:< > <= >=

The four relational operators in C yield a truth value of 1 or o
based upon the truth of the expression. The relational operators pro­
vide a method of testing the relationship between two arithmetic
operands.

less than
greater than
less than or equal to
greater than or equal to

expr1 < expr2
expr1 > expr2
expr1 < = expr2
expr1 > = expr2

The relative positions of pointers may also be compared. This infor­
mation is generally not very useful, because it is implementation­
dependent. Pointer comparison is meaningful only when the pointers
indicate objects in the same array.

CONTROLLING PROGRAM FLOW

All languages have some ability to control the execution of
programming statements depending on given values determined at
execution time. All statements in a C source code file will be exe­
cuted sequentially until a construct is encountered that evaluates an
expression to determine the course of action.

REPETITION

Almost all programming applications require some form of con­
trolled repetition, or looping. Loops fall into two general categories:
those based upon a variable condition and those based upon a pre­
defined number of iterations.

THE WHILE STATEMENT
From the first category, the while loop

while (expression) statement

continues to execute statement (which may be a statement block) as
long as expression remains true. The expression is tested prior to exe­
cuting the loop statement.

234 PROGRAMMING THE MACINTOSH IN C

THE FOR STATEMENT

The for loop comes from the second category. The loop

for (exprl; expr2; expr3) statement

begins by executing exprl and then testing expr2. While expr2
remains true, the loop repeats: statement is executed, and after each
execution of statement, expr3 is executed. This construction is func­
tionally equivalent to

}

exprl;
while (expr2) {
statement
expr3;

In the for construct, any of the expressions may be omitted (the
semicolons must remain as placeholders). If expr2 is omitted,
the loop will require an alternative method of termination. The for
loop will be used when the number of iterations is known at the start
of the loop. If we assume that max iterations are to be performed and
that the variable count is the loop control variable, then the for loop
will look like this:

for (count = 1; count < = max; count+ +) { statement }

THE DO-WHILE STATEMENT

The do-while construct provides a slightly different execution of the
while loop. The construct

do statement while (expression);

postpones the termination test until after the statement is executed,
guaranteeing statement execution at least once.

Any of these loop constructs may be nested within themselves or
within any other construct.

CONDITIONAL EXECUTION

All programming languages have some form of statement that
allows a set of statements to be performed or skipped based upon a

REFERENCE GUIDE 235

specified condition. Conditional execution in C is initiated either by
the if statement or the switch statement.

THE IF STATEMENT

The most conventional form of a conditional statement uses the if
construct:

if (expression) statementl
if (expression) statementl else statement2

The first construction evaluates expression, and if expression is true
(nonzero), then statementl is executed; otherwise, statementl is
ignored. In either of these circumstances, execution continues with
the statement following the if.

In the second construction, if expression evaluates to true, then
statementl is executed; otherwise, statement2 is executed. When
either statementl or statement2 has been completed, execution will
continue with the code following statement2. In any execution of the
if-else construct, only one of the two statements will be executed.

The if and if-else constructs may be nested. An else will always be
matched with the last if that is not associated with an else within the
same block. For example:

if (expr) {
if (expr) {
} else {

}
} else {
}

if (expr) {
}

I* 1 */
/* 2 */
/* 2 */
I* 3 */

/* 1 */

This example shows the matching of if to else based on the last­
unmatched if rules. The numbers in the comments indicate which if's
and else's form pairs.

THE CONDITIONAL OPERATOR: ?:

This second conditional construct is actually an operator and thus
returns a value. The ?: operator is applied as follows:

exprl ? expr2 : expr3

236 PROGRAMMING THE MACINTOSH IN C

This operator works like an if-else construct: that is, either expr2 or
expr3 is executed, depending upon the evaluation of expr1. If expr1
evaluates to true, then the result of the operator is expr2; otherwise,
the result is expr3. Only one of the expressions will be evaluated.

Arithmetic conversion will be applied to expr2 and expr3 to yield
the same data type. If either expression is a pointer, then the other
must be a pointer of the same type or the constant 0.

THE SWITCH-CASE-DEFAULT STATEMENT

The final conditional construct causes program flow to be trans­
ferred to one of several statements, depending on the value of an
expression. The switch statement

switch (expression) control-statement

evaluates expression; this evaluation must result in an int value.
Within the control-statement (which is usually a statement block), one
or more case statements may be present. As we will see shortly, it
would not make sense to have zero case statements.

In the case statement

case constant-expression:

the constant-expression must evaluate to int. The value of expression
in the switch statement will be compared to the value of the constant­
expression in all case statements within the control-statement (from
the switch construct). When the value of constant-expression equals
the value of expression, execution begins at the first statement follow­
ing the case statement. Execution continues through to the end of
control-statement or until a break statement is encountered (see the
next section).

The control-statement may contain at most one statement of
the form

default:

Should none of the values of the case statement match the value of
expression, execution continues with the default statement. If no state­
ments match the expression and no default statement is supplied, then
no statements within the control-statement will be executed.

Essentially, the case and default statements supply labels on an
expression/value match, so that program execution may jump there.
After control has been transferred to a case or default statemei:it, all
subsequent case statements will have no effect on the program flow.

REFERENCE GUIDE 237

Use of the break statement will cause the program flow to exit the
switch statement.

UNCONDITIONAL PROGRAM FLOW

The C programming language also allows program flow to be
altered unconditionally. The statements that perform an uncondi­
tional change in program flow are break, continue, and goto.

THE BREAK STATEMENT

The break statement

break;

causes immediate termination of the currently enclosing while, do­
while, for, or switch statement. Execution begins at the first statement
following the aborted statement.

THE CONTINUE STATEMENT

The continue statement

continue;

causes immediate termination of the current iteration of the enclos­
ing while, do-while, or for loop. The continue statement transfers
program control to the statement that performs the loop control.

THE GOTO-LABEL STATEMENT

A label is an identifier followed by a colon. The label possesses no
processing function; it merely marks a particular position or line in
the source file.

identifier: statement

The statement need not be on the same line as the identifier.
A statement labeled in this manner serves no purpose other than as

a target for a goto statement. The scope of the label is the current

238 PROGRAMMING THE MACINTOSH INC

function, excluding any subblocks that have redefined the identifier
(for the duration of that block). The goto statement

goto identifier;

causes unconditional transfer of program execution to the statement
labeled by the identifier. The identifier must label a statement within
the current function.

FUNCTIONS

C is a procedural language based on functions. Every program
must have a function called main(), where program execution begins.
Functions have the ability to accept parameters and return a single
value of one of the data types defined by C.

FUNCTION DEFINITION

A function definition is similar to a data declaration:

storage-class data-type function-name (parametel'-list)
parameter declarations;
{
local-variable-declarations;

function-statements
}

The storage-class of a function is limited to extern or static. If the
storage-class is omitted, then the function is assumed to be static. (An
extern declaration is discussed in the next section.) The data-type of
the function determines the data type of the value to be returned
by the function; this too may be omitted, and the default is int.

The function-name can be any valid identifier not yet declared. The
paramete.l'-list names the formal parameters of the function as identifi­
ers separated by commas. The formal parameters are declared in the
parameter declaration statements. Each formal parameter must have
an associated declaration. A function need not have any formal
parameters.

The function body, enclosed in a pair of braces, contains a declara­
tion statement for the local variables, if any, and a group of statements.

REFERENCE GUIDE :239

EXTERNAL FUNCTION DEFINITION

By design of the language, functions may not be defined within
other functions. When you are programming large systems, it is
sometimes necessary to divide functions among several different
source files. To allow another file to access a function, make an
extern definition of the function name. If the function is defined with
a static storage class, then it is available throughout the source file in
which it is defined, but not in any other source file. This follows, by
analysis, from the explanations of storage classes given earlier.

RETURNING VALUES FROM FUNCTIONS

Although the default data type returned by a function is int,
functions can be made to return any other C data type. Because of
automatic conversion of data types, it becomes pointless to declare a
function returning anything other than int, long, or double.

To change the data type returned by a function, two declarations
must be made. First, the function definition requires a data type. Sec­
ond, the calling routine must declare the function as returning the
new data type.

The statement

data-type function-name();

with the empty parentheses, declares that the function function-name
will return the data type specified. The calling routine must expect the
type of the returned value, otherwise, undefined values will result.

PARAMETER PASSING CONVENTIONS

C passes all function parameters by value. Using a data object as a
parameter to a function will not change its current value within the
calling routine. Pointers to data objects may be passed; this provides
call-by-reference. Actual parameters will undergo data type conver­
sions based upon the conventions outlined in Appendix E.

The only data types that may be passed are the data types defined
by C and pointers. A program may not pass an entire array or data
structure to a function. However, a pointer to any of these objects
may be passed as a parameter.

e40 PROGRAMMING THE MACINTOSH IN C

RECURSION

The C programming language supports recursive calls to functions.
Upon each invocation of the function, a new set of formal param­
eters and local variables is created, giving each function call a
separate and unique set of data (assuming the default call-by-value is
used). External and static variables will not change.

·POINTERS AND ADDRESSES

C provides access to the address of any data object in use except a
data object with a storage class of register. A special data object,
called a pointer, may be used to store an address and to access the
data contained therein.

THE INDIRECTION OPERATOR: *
By using the indirection operator (*), you can access the data

located at the address stored by the pointer. For example, if px con­
tains the address of a data object, then * px will refer to the data at
that address.

POINTER DECLARATION

Pointers must be associated with a specific data type. Using the
indirection operator, one declares a pointer as follows:

int *px, *PY. x, y;
char *pc, c;

Variables px and py may contain the addresses of int data types, and
pc may contain the address of a char data type. The variables x and y
are of type int and c is of type char.

A pointer must have a particular data type because the pointer can
be altered through integer addition, integer subtraction, incrementa­
tion, and decrementation. When the addition or subtraction is

REFERENCE GUIDE 241

executed, the integer is scaled by the size (in char units) of the data
type, and then added to or subtracted from the value contained by
the pointer. The increment and decrement operators work in a simi­
lar manner by shifting the pointer forward or backward one data
object. This ties in closely with arrays and dynamic storage alloca­
tion, discussed later in this reference guide.

THE ADDRESS OPERATOR: &

To determine the address of a data object, apply the address
operator (&):

px = &x;
PY = &y;
pc = &c;

The address operator may be applied to any data objects except those
declared with the storage class register.

POINTER RESTRICTIONS AND CONVENTIONS

To a great degree, common sense dictates how pointers are used.
The use of pointer comparison, for instance, has no general purpose
except when comparing elements within the same array.

There is one important convention concerning a pointer value of 0.
This pointer value guarantees that the pointer does not indicate any
data object. A pointer of this kind is commonly called a NULL or NIL
pointer.

ARRAYS
An array represents a set of related data objects of the same data

type.

ARRAY DECLARATION

An array declaration includes a data storage class, a data type, an
identifier, and the number of objects in the array. The number of

E4E PROGRAMMING THE MACINTOSH IN C

objects is specified by subscripts enclosed in square brackets. ([])

storage-class data-type identifier[subscript1][subscript2} ... ;
storage-class data-type identifier[];

The number of subscripts an array may have is limited only by
available memory. The second format of the array declaration
references an externally defined array that has already allocated
appropriate storage; hence, there is no need to specify the size of this
array again. In this case, the storage class would either be omitted or
listed as extern.

ARRAYS AND POINTERS

In C, arrays and pointers are very closely related. An array element
reference actually converts to a pointer reference during compilation.
Assuming the declaration

int a[10]

has been made, then the array element reference

a[i]

actually converts to

*(a + i)

The array name a, when used alone, has a data type of pointer to
int. Thus, in the addition expression, i is scaled to the size of an int
and then added to a. After the addition, the indirection operator is
applied to retrieve the data at the specified location.

In a multidimensional array such as int b[3)[4][5], the same conver­
sion procedure applies repetitively. To access element b[x][y][z], the
expression becomes

*(((b + x) + y) + z)

where (b + x) is the base address of a two-dimensional array of size
4 x 5; ((b + x) + y) is the base address of a one-dimensional array of
size 5; and (((b + x) + y) + z) is the address of an integer. This con­
version implies that the arrays are stored in row-major order, meaning
that each row is filled before moving to the next (see Figure 9.3).

REFERENCE GUIDE 243

000 001 002 003 004

010 011 012 013

020 021

Figure S.3: Row-Major Ordering of a Three-Dimensional Array

STRINGS

A string consists of an array of characters terminated by the \0
character. Strings are not considered a separate data type in C, and
therefore cannot be manipulated as whole units.

STRUCTURES

C allows the programmer to define complex data types called struc­
tures. A structure consists of any number of members, where each
member is an object of a predefined data type, a field, a union, or
another structure.

STRUCTURE DECLARATION

Structures must be declared because the definition of a structure
does not allocate any storage. After the structure has been created,
·identifiers can be associated with the structure type.

A structure declaration

struct structure-name {
member list

} identifiers to have this structure;

244 PROGRAMMING THE MACINTOSH INC

begins with the keyword struct, followed by an optional structure­
name, a statement block containing the member list, terminated with
any identifiers to have this structure as their data type. Either the
structure-name or the identifiers may be omitted, but not both. Once
the structure is declared, the structure-name can be used later to
define identifiers.

For example:

struct test { member list } ;

struct test t1, t2, •t3;

This example defines a structure called test. The identifiers t1, t2, and
t3 (a pointer to this structure) are declared to have the data type of this
structure. Notice the placement of struct test in the type declaration
position. Generally, the structure definition occurs at the external level
of the program, and structure identifiers are declared as needed.

A second format of the structure declaration

struct { member list } t1, t2, •t3;

does not associate any name with this structure. It defines the struc­
ture and declares the identifiers t1, t2, and t3 as having this structure
as their data type. If any other identifiers required this same struc­
ture, they would have to be declared here or the structure definition
would have to be repeated. From these two examples, one can see
that omitting both the structure-name and the identifiers to be
defined would cause no effect.

STRUCTURE MEMBER DECLARATION

The member list of a structure declaration

data-type identifier;

closely resembles the declaration of variables.

STANDARD MEMBER TYPES

The members of a structure will be stored sequentially in memory
in the order in which they are declared.

REFERENCE GUIDE 245

The structure

struct dates {
int yr, mon, day;

};

contains three integer types. The following structure references struc­
ture dates:

struct person {
long codenum;

};

char last_name(20], first_name[1 OJ;
long ssnum;
struct dates dob;

The names of the members of a structure may be the same as any
regularly defined identifier, but they must be distinct from other
structure names. With the following restrictions, the same member
names may be used in different structures. First, the type of the iden­
tifier must be the same in both structures. Second, the identifier must
have the same offset (position in memory relative to the start of the
structure) in both structures. Third, all previous members of
the structure must be the same. Although the compiler is defined
only to perform checks for the same type and offset and does not the
check for previous members, a structure meeting only two of these
criteria may not be portable. Most newer compilers simply ignore the
restrictions and just allow duplicate member names.

FIELDS

A field, a special member available within a structure, consists of a
specified number of bits. A field is defined as follows:

data-type identifier : constant-expression;

Although many compilers will accept various data types, the only
sensible data type, and the one used by the compiler regardless of the
data type specified, is unsigned int.

A field member will accommodate the number of bits specified by
constant-expression. A field may be as wide as a machine word but
must not span a word boundary. If there is no room left in the cur­
rent machine word to store the field, then the field will be placed at
the beginning of the next word boundary.

246 PROGRAMMING THE MACINTOSH INC

The identifier for a field may be omitted, causing the number of
bits specified to be 0 and inaccessible. If the identifier for a field is
omitted, the alignment of following fields will be forced to a required
position.

The address operator (&) may not be applied to a field member.

UNIONS

A union can store several different data types using the same iden­
tifier, but only one data type may be stored at any given time. The
union definition is the same as that of the structure.

union union-name {
member list

} identifiers to have this union;

In a union, the members of the member list can only be used inde­
pendently, not simultaneously. The size of the union will be the size
of the largest data object it will hold.

Here is an example of a union definition:

union utest {
int iu;
double du;
char cu;

} UX, UY, * uz;

The union utest can hold either an int, a double, or a char data type.
Just as in the structure definition, the identifiers following the defini­
tion have the data type created by the union (* uz is a pointer to a
union of this type). Like structure definitions, the union definition of
utest may be used subsequently to declare more identifiers.

STRUCTURE AND UNION OPERATORS

When you have declared a variable to be of a structured data type,
you will need to be able to access the individual members of that
structure. C provides two operators to access a structure member: the
direct member operator for use with the variable declared to be of
that structured type, and the indirect member operator for use with a
pointer to that structure type.

REFERENCE GUIDE 247

THE MEMBER OPERATOR: .

Currently, C does not support the ability to copy an entire structure
or union. Only members of structures and unions may be accessed
for assignment or for passing as parameters to functions.

Use the member operator(.) to reference a particular member of a
structure or union:

structure-name.member-name
union-name.member-name

The member of a structure or union may be used like any other
object of the associated data type.

THE INDIRECTION MEMBER OPERATOR:->

When using a pointer to a structure or union, you can access the
members of the structure or union through the indirection member
operator (->), constructed from a hyphen(-) and a greater-than sym­
bol(>):

pointer-> member-name

The pointer must indicate a structure or union, and the member-name
must be a member of that structure or union. This operator has the
same result as

(* pointer).member-name

Both the indirect (-) and direct (.) member operators may be com­
bined with each other and themselves. For example:

struct a {
int ai;
struct b *pb;

} sa, *spa;

struct b {
int bi;
struct a *pa;

} Sb, *Spb;

spa = &sa; I* initialize structure pointers *I
spb = &sb;
sa.pb = spb; I* set member pointers *I
sb.pa = spa;

248 PROGRAMMING THE MACINTOSH IN C

With this program fragment, references to sa.ai can be made with
any of the following references:

spa->ai
b.pa->ai
spb->pa->ai

Any combination of member operators may be used if their
construction maintains the use of pointers with the indirection mem­
ber operator and if all member names referenced actually exist. In
general, complex constructions should be avoided because they
obscure the meaning of the code and increase the chances of syntac­
tical errors.

TABLE OF

Asc11 VALUES

TABLE OF ASCII VALUES 251

ASCII Hexadeclmal Deel ma I Octal Binary

"@ 00 000 000 00000000
"A 01 001 001 00000001
"B 02 002 002 00000010
"C 03 003 003 00000011
"D 04 004 004 00000100
"E 05 005 005 00000101
"F 06 006 006 00000110
"G 07 007 007 00000111
"H 08 008 010 00001000
"I 09 009 011 00001001
"J OA 010 012 00001010
"K OB 011 013 00001011
"L oc 012 014 00001100
"M OD 013 015 00001101
"N OE 014 016 00001110
"O OF 015 017 00001111
"P 10 016 020 00010000
"Q 11 017 021 00010001
"R 12 018 022 00010010
"S 13 019 023 00010011
"T 14 020 024 00010100
"U 15 021 025 00010101
"V 16 022 026 00010110
"W 17 023 027 00010111
"X 18 024 030 00011000
"Y 19 025 031 00011001
"Z 1A 026 032 00011010
"[18 027 033 00011011
"\ 1C 028 034 00011100
"] 10 029 035 00011101
"" 1E 030 036 00011110
" 1F 031 037 00011111

20 032 040 00100000
21 033 041 00100001
22 034 042 00100010

23 035 043 00100011
$ 24 036 044 00100100
% 25 037 045 00100101
& 26 038 046 00100110

27 039 047 00100111
28 040 050 00101000
29 041 051 00101001

* 2A 042 052 00101010
+ 28 043 053 00101011

252 PROGRAMMING THE MACINTOSH IN C

ASCII Hexadecimal Deel ma I Octal Binary

2C 044 054 00101100
20 045 055 00101101
2E 046 056 00101110

I 2F 047 057 00101111
0 30 048 060 00110000
1 31 049 061 00110001
2 32 050 062 00110010
3 33 051 063 00110011
4 34 052 064 00110100
5 35 053 065 00110101
6 36 054 066 00110110
7 37 055 067 00110111
8 38 056 070 00111000
9 39 057 071 00111001

3A 058 072 00111010
38 059 073 00111011

< 3C 060 074 00111100
= 30 061 075 00111101
> 3E 062 076 00111110
? 3F 063 on 00111111

@ 40 064 100 01000000
A 41 065 101 01000001
B 42 066 102 01000010
c 43 067 103 01000011
0 44 068 104 01000100
E 45 069 105 01000101
F 46 070 106 01000110
G 47 071 107 01000111
H 48 072 110 01001000
I 49 073 111 01001001
J 4A 074 112 01001010
K 48 075 113 11001011
L 4C 076 114 01001100
M 40 077 115 01001101
N 4E 078 116 01001110
0 4F 079 117 01001111
p 50 080 120 01010000
Q 51 081 121 01010001
R 52 082 122 01010010
s 53 083 123 01010011
T 54 084 124 01010100
u 55 085 125 01010101
v 56 086 126 01010110
w 57 087 127 01010111

TABLE OF ASCII VALUES 253

ASCII Hexadecimal Decimal Octal Binary

x S8 088 130 01011000
y S9 089 131 01011001
z SA 090 132 01011010
[SB 091 133 01011011
\ SC 092 134 01011100
I SD 093 13S 01011101 ,..

SE 094 13S 01011110
SF 09S 137 01011111

so 09S 140 01100000
a S1 097 141 01100001
b S2 098 142 01100010
c S3 099 143 01100011
d S4 100 144 01100100
e SS 101 14S 01100101
f SS 102 14S 01100110
g S7 103 147 01100111
h S8 104 1SO 01101000

S9 10S 1S1 01101001
j SA 10S 1S2 01101010
k SB 107 1S3 01101011
I SC 108 1S4 01101100

m SD 109 1SS 01101101
n SE 110 1SS 01101110
0 SF 111 1S7 01101111
p 70 112 1SO 01110000
q 71 113 1S1 01110001

72 114 1S2 01110010
s 73 11S 1S3 01110011
t 74 116 1S4 01110100
u 7S 117 1SS 011101.01
v 76 118 1SS 01110110
w 77 119 167 01110111
x 78 120 170 01111000
y 79 121 171 01111001
z 7A 122 172 01111010
{ 78 123 173 01111011
I 7C 124 174 01111100 I

! 70 12S 17S 01111101
7E 12S 17S 01111110

DEL 7F 127 177 01111111

80 128 200 10000000
81 129 201 10000001
82 130 202 10000010

254 PROGRAMMING THE MACINTOSH IN C

ASCII Hexadecimal Decimal Octal Binary

83 131 203 10000011
84 132 204 10000100
85 133 205 10000101
86 134 206 10000110
S7 135 207 10000111
S8 136 210 10001000
S9 137 211 10001001
SA 13S 212 10001010
SB 139 213 10001011
SC 140 214 10001100
SD 141 215 10001101
SE 142 216 10001110
SF 143 217 10001111
90 144 220 10010000
91 145 221 10010001
92 146 222 10010010
93 147 223 10010011
94 14S 224 10010100
95 149 225 10010101
96 150 226 10010110
97 151 227 10010111
98 152 230 10011000
99 153 231 10011001
9A 154 232 10011010
98 155 233 10011011
9C 156 234 10011100
90 157 235 10011101
9E 15S 236 10011110
9F 159 237 10011111

AO 160 240 10100000
A1 161 241 10100001
A2 162 242 10100010
A3 163 243 10100011
A4 164 244 10100100
A5 165 245 10100101
A6 166 246 10100110
A7 167 247 10100111
AS 16S 250 10101000
A9 169 251 10101001
AA 170 252 10101010
AB 171 253 10101011
AC 172 254 10101100
AD 173 255 10101101
AE 174 256 10101110

TABLE OF ASCII VALUES 255

ASCII Hexadecimal Decimal Octal Binary

AF 175 257 10101111
BO 176 260 10110000
B1 177 261 10110001
B2 178 262 10110010
B3 179 263 10110011
B4 180 264 10110100
BS 181 265 10110101
B6 182 266 10110110
B7 183 267 10110111
B8 184 270 10111000
B9 185 271 10111001
BA 186 272 10111010
BB 187 273 10111011
BC 188 274 10111100
BO 189 275 10111101
BE 190 276 10111110
BF 191 277 10111111

co 192 300 11000000
C1 193 301 11000001
C2 194 302 11000010
C3 195 303 11000011
C4 196 304 11000100
cs 197 305 11000101
C6 198 306 11000110
C7 199 307 11000111
cs 200 310 11001000
C9 201 311 11001001
CA 202 312 11001010
CB 203 313 11001011
cc 204 314 11001100
CD 205 315 11001101
CE 206 316 11001110
CF 207 317 11001111
DO 208 320 11010000
01 209 321 11010001
02 210 322 11010010
03 211 323 11010011
04 212 324 11010100
05 213 325 11010101
06 214 326 11010110
07 215 327 11010111
08 216 330 11011000
09 217 331 11011001
DA 218 332 11011010

256 PROGRAMMING THE MACINTOSH INC

ASCII Hexadecimal Declmal Octal Binary

DB 219 333 11011011
DC 220 334 11011100
DD 221 335 11011101
DE 222 336 11011110
DF 223 337 11011111

EO 224 340 11100000
E1 225 341 11100001
E2 226 342 11100010
E3 227 343 11100011
E4 228 344 11100100
ES 229 345 11100101
E6 230 346 11100110
E7 231 347 11100111
ES 232 350 11101000
E9 233 351 11101001
EA 234 352 11101010
EB 235 353 11101011
EC 236 354 11101100
ED 237 355 11101101
EE 238 356 11101110
EF 239 357 11101111
FO 240 360 11110000
F1 241 361 11110001
F2 242 362 11110010
F3 243 363 11110011
F4 244 364 11110100
F5 245 365 11110101
F6 246 366 11110110
F7 247 367 11110111
FS 248 370 11111000
F9 249 371 11111001
FA 250 372 11111010
FB 251 373 11111011
FC 252 374 11111100
FD 253 375 11111101
FE 254 376 11111110
FF 255 377 11111111

KEYWORDS

KEYWORDS 259

All of the words in this list are keywords in the C programming
language. They have reserved definitions and may not be used for
any other purpose (for example, as identifiers).

asm entry return
auto extern short
break float sizeof
case for static
char fortran struct
continue goto switch
default if typedef
do int union
double long unsigned
else register while

The keyword entry does not have an assigned definition at this time,
but it is reserved for future use. The keywords fortran and asm are
available in some, but not all compilers. Your compiler may reserve
additional keywords. Check you compiler manual for details.

CHARACTER

EscAPE
SEQUENCES

CHARACTER ESCAPE SEQUENCES 261

C provides a special metacharacter, the backslash (\) to make possi­
ble the graphic representation of certain nongraphic characters so
that these characters can be used within a program.

Character name Output character Escape sequence

apostrophe \'
backslash \ \\
backspace BS \b
bit pattern see below \ddd
carriage return CR \r
form feed FF \f
horizontal tab HT \t
newline (line feed) LF \n
null character NUL \0
quotation mark " \"

All of these escape sequences may be used within character or
string constants. The quotation mark can be used alone in a charac­
ter constant (see Appendix E).

The bit pattern sequence enables the representation of any other
character not shown. The backslash is followed by a sequence of
up to three octal digits, where the value of the digits equals the char­
acter to be represented. Use the ASCII chart in Appendix A to deter­
mine the octal sequence for the character desired.

If the backslash is followed by a character not defined above, then
the backslash is ignored and the character is used by itself.

PRECEDENCE
OF

OPERATORS

PRECEDENCE OF OPERATORS 263

Operators are listed in order of decreasing precedence. All oper­
ators on the same line have an equal precedence level. Except where
noted, all operators associate left to right.

() [] -> .
! - + + - - (type) * & sizeof
*I%
+ -
<< >>
< <= > >=
- - !=
& ,..

&&
11
11

?:
= and other assignment operators

(right to left)

(right to left)
(right to left)

The commutative operators (* + & : ") may be rearranged by the
compiler for convenience or efficiency. The expression

x * y * z

may be evaluated as (x * y) * z or as x * (y * z), depending upon
the implementation. This may cause problems if x, y, or z is a func­
tion dependent upon the value of either of the other two identifiers.

CONVERSION

RULES AND

CONSTANT

FORMATS

CONVERSION RULES AND CONSTANT FORMATS 265

All variables in C have a specified data type. Because variables of
differing data types may be used within the same expression (where
it is sensible to do so}, there is a set of rules for converting all oper­
ands to one data type before any operations are performed and for
determining the data type of the result. Variables will also have con­
stant values assigned to them, and these constants should be in a
format that will match the data type of the variable. This appendix
lists the conversion rules and formats for constant values.

CONVERSION RULES

Conversion of operands within arithmetic expressions causes all
data objects to be represented by the same data type. The primary
effect of conversion is to change the data type with the smaller range
of values to the data type with the larger range of values.

In an arithmetic expression, the rules of conversion are

1. All char and short are converted to int.

2. All float are converted to double. This conversion implies all
floating point arithmetic is done in double precision.

3. After the initial conversion, both operands will be converted to
the same data type in this order of decreasing precedence:
double, long, unsigned, and int. In other words, if either oper­
and is double, the other is converted to double; otherwise, if
either operand is long, the other is converted to long, and so
on. Whichever data type is chosen as common, that is the type
of the result. This result will be converted to the type of the
left-hand operator during an assignment expression.

CONSTANT FORMATS

Each of C's basic data types has an associated constant format. The
proper format should be used to match the data type of the variable
being assigned the constant value or to match the data type of the
expression in which the constant is being used. If an improper data

266 PROGRAMMING THE MACINTOSH IN C

type is used and can be converted to the proper data type through
the conversion rules explained above, then this will be done; other­
wise the compiler will inform you that you have made an error (such
as trying to assign a string to an integer).

INTEGER CONSTANTS

An integer constant consists of any sequence of digits. The
sequence of digits can represent a numeric value in either decimal,
octal, or hexadecimal notation. A digit sequence beginning with the
digit zero (O) is taken to be octal. A digit sequence beginning with
the digit zero and the letter "X" (OX or Ox) is taken to be hexadecimal
and may contain the letters "a" through "f' or "N.' through "F". Any
other digit sequence is taken to be decimal notation.

If the digit sequence is followed by the letter "L," then the value is
taken to be of type long. Whether the "L" is present or not, if the
value of the constant exceeds the range of an int, the constant is
taken to be of type long.

Examples: 0542
3211232L
Ox33ac

FLOATING POINT

A floating point constant follows the standard computerized form
of exponential notation:

+I - integer . fraction E/e +I - exponent

Each +I - indicates an optional algebraic sign, and the "E/e" means
either upper- or lowercase may be used. A floating point constant
must have an integer part followed by a decimal point and fraction
or exponent portion (including the "E") or both. All floating point
values are taken to be double.

Examples: 3.2211
-0.222

4.333E20
43e-3

CONVERSION RULES AND CONSTANT FORMATS 267

CHARACTER CONSTANTS

A character constant has a character enclosed by apostrophes or
single quotes (').

Examples: 'a'

STRINGS

'Z'
'\n'
'\012'

A string constant is a sequence of characters enclosed by quotation
marks ("). The compiler automatically places the termination charac­
ter (\0) at the end of each string constant. All strings, even those
written identically, are treated as distinct constants.

Examples: "Hello"
"This \" is a quotation mark."

TRUTH

TABLES

TRUTH TABLES 269

The following truth tables indicate the values of the expressions on
the right, given the values of "P" and "Q" shown on the left.

tfF
p Q P AND Q

F T T T
T T F F

F T F
F F F

p Q P OR Q p Q P XOR Q

T T T T T F
T F T T F T
F T T F T T
F F F F F F

GLOSSARY

GLOSSARY 271

The following glossary not only defines terms and phrases used in
this book, but also contains terms relevant to the computing industry
in general. Many definitions contain terms and phrases defined else­
where in the glossary. In addition, note that while a definition
presented here may not be the only possible definition for that word,
it will be the one used throughout this text.

Abort
To stop processing.

Access
To get at. Data, both in memory and on disk files, may be accessed

through various software.

Actual parameter
The expressions used within parentheses in a function call to pro­

vide that function with processing values.

Address
The numerical digits that identify a location in memory.

Algorithm
A set of calculating procedures. An algorithm can be thought of as

a methodology or procedural exemplification of a situation.

Allocate
To set apart and designate for a purpose. In C we allocate memory

for arrays and strings.

Alphanumeric
Any alphabetic or numeric character that can be produced using the

standard keyboard. Alphanumerics do not include control characters.

ANSI
Acronym for American National Standards Institute. Used to indi­

cate standardized items of computer-related material.

APL
Acronym for A Programming Language. This high-level program­

ming language is used in specialized scientific applications where
extensive matrix calculations are required.

Append
To add onto. The "append mode" in C will begin file access at the

end of the file in order to allow immediate expansion.

Argument
A variable upon whose value a function depends. In functions, the

parameter is a synonym for the argument.

272 PROGRAMMING THE MACINTOSH INC

Arithmetic expression
A combination of numbers, variables, and mathematical operators

that forms an algebraic statement.

Array
A collection of data organized in matrix fashion, all of the same

data type. Arrays use subscripts to indicate how many dimensions
the array spans.

ASCII
The standard character set used on most microcomputers. ASCII

is the acronym for American Standard Code for Information
Interchange.

Assembler
A piece of software designed to translate assembly-language source

code into directly executable machine code.

Assembly language
A very low-level language that uses macros and simple commands to

perform single operations at the microprocessor level. Assembly lan­
guage is one step higher than machine language, since in assembly
language you are permitted to use commands, symbols, variables, and
labels rather than the numeric representation of those commands.

Assignment operator
The (=) operator that sets the variable to the left of the operator

equal to the expression to the right of the operator.

Assignment statement
A statement that equates what is to the left of an assignment opera­

tor to what is to the right of the assignment operator.

Auxiliary
An additional or supplemental item providing help or support

through interaction. To compose your C programs, an auxiliary com­
piler is needed to translate your C source code into machine language.

Back-up
A copy of a file or entire disk physically separated from the origi­

nal. Used only to restore or replace the original should it be damaged
or destroyed.

BASIC
A programming language (Beginner's All-Purpose Symbolic Instruc­

tion Code).

GLOSSARY 273

Batch file
A file containing commands performed automatically and sequen­

tially upon execution.

Binary
The base-2 numbering system, in which numbers are formed exclu­

sively from the digits O and 1.

Bit
A common contraction for binary digit. A bit is the smallest unit of

storage. Eight bits form a standard byte.

Bitwise
Performed bit-by-bit; using bits as they are encountered.

Bitwise operator
An operator that acts on an expression one bit at a time.

Black box
A process that produces output from given input by a process that

is "invisible" from outside the box.

Boolean
A system of logic that evaluates expressions as true or false. A

Boolean variable will contain either 1 for true or 0 for false. A Bool­
ean expression will evaluate to true or false, and all conditional
statements will evaluate to a Boolean result.

Boot
Usually a user-initiated process that causes the computer to load,

from a disk, an operating system. Some computers have the ability to
boot themselves when necessary.

Buffer
Something that serves to separate two items. Specifically, a tempo­

rary storage unit that holds information shared between two sources.
A buffer is usually used between a secondary storage unit and the
primary storage unit because of the difference in operating speed.

Byte
The basic unit of storage. A standard byte contains eight bits. A

single character requires one byte of storage both in memory and on
disk.

can
To begin processing at a designated label or to begin execution

through a specific function. The call is most often associated with

27 4 PROGRAMMING THE MACINTOSH IN C

functions where parameters are used to pass data to the function. A
return statement will be used to resume processing from where the
call was initiated.

Call-by-reference
To pass the address of data to a function. In contrast to call-by­

value, call-by-reference is designed to be able to return more than one
value. The input data can be modified to reflect output data.

Call-by-value
To pass an actual value (numeric or string) to a function. In con­

trast to call-by-reference, call-by-value functions can return only one
value.

Cast
A C operator that changes the size and representation from one

data type to another.

Character
Any alphanumeric, control character, punctuation, or special symbol

that requires one byte of storage space (both in memory and on disk).

Code
A group of meaningful symbols. In programming C, we use a com­

piler to translate source code into object (intermediate) code, and a
linker to combine object codes to form executable code.

Comment
A message intended to explain or illustrate the meaning of the pre­

ceding or following instructions. A nonexecutable programming
statement.

Compiler
A piece of software designed to translate source programs into

object or intermediate code, which is then taken by a linker to pro­
duce executable code.

Compiler directive
A C source statement that begins with the number symbol (#), indi­

cating a special command to the compiler.

Compiler error
A diagnostic message given by the compiler to the programmer

indicating problematic source code. C compiler errors point out the
nature of the error (syntax error, mixed-mode expression, and so on)
and the approximate source code line number where the error was
detected.

GLOSSARY 275

Computer
A machine that can accept, process, and output data.

Concatenate
To chain or add together. Several strings or files can be concate­

nated into one large entity.

Console
The default output device. When you boot your computer, the

operating system assigns the console to the video display. Your C
programs can direct output to this device, the printer, or to any other
device connected to your computer system.

Constant
A numeric or string quantity that does not change throughout pro­

gram execution.

Control character
Any character that causes special processing. The ASCII decimal

_value of a control character will occur between 0 and 31.

Control statement
A statement that directs execution to another portion of the pro­

gram. A function call is an example of a control statement in C.

CPIM
An acronym for Control Program for Microcomputers. C/PM is the

widely-accepted personal/small-business computer's operating system
developed by Digital Research. It is available in both 8-bit (CP/M-80)
and 16-bit (CP/M-86) versions.

CPU
The acronym for "central processing unit." This is the "brain" of

your computer that is responsible for all data manipulation.

Cursor
A symbol (usually single-character) on the video display terminal

indicating where the next keyboard character will appear if sent to
the terminal.

Data
A collection of characters, symbols, or control codes that represent

a logical item. The computer differentiates data in memory from pro­
gram code by its memory location.

Data base
A large collection of (usually related) data. A data base represents a

large matrix of data whose fields comprise records; several records
comprise the data base.

276 PROGRAMMING THE MACINTOSH IN C

Data file
Any named storage location on a disk or similar storage device

containing either program code or other data.

Data structure
An organizational methodology for representing collections of data.

The data may be of differing data types.

Data type
One of the classifications for designating data storage and

representation.

Debug
To rid a program of errors. The process one undertakes to ensure

program accuracy and completeness.

Declaration statement
A statement assigning a data type to a variable name.

Decrement
To decrease a numeric variable. By convention, a decrement is usu­

ally the subtraction of 1, but any value can be used. Opposite of
"increment."

Default
A value used when no specific value is given. The value, whether

string or numeric, automatically used if none is specified.

Delete
To remove. Files, memory, and other storage-oriented operations

can involve deletion.

Delimiter
A boundary between two elements. Used to separate fields within a

record.

Dimension
A property of arrays. A dimension is analogous to a direction in

space: one dimension is linear; two dimensions are planar; three
dimensions are cubic. When specifying an array, you must provide a
subscript for each dimension.

Directory
A listing or index providing characteristics of files on your disk

drive.

GLOSSARY 277

Disk
A floppy or hard storage medium with the ability to record pro­

grams or other data magnetically for repeated use. The storage capac­
ity of a disk is usually measured in kilobytes.

Disk drive
A device that rotates a floppy or hard disk to provide your com­

puter with access to the information on the disk.

Disk operating system
A piece of software that controls all input and output from the

computer to its user. See "operating system" for more information.

DOS
An acronym for "disk operating system."

Dynamic memory allocation
A technique used by compilers and interpreters to reserve space

for variables as they are encountered.

EBCDIC
An acronym for Extended Binary-Coded Decimal Interchange

Code. EBCDIC is an alternative to ASCII. Both are methods of
expressing characters or other data to a computer or any of its
peripherals.

Edit
To refine and cause to conform to standards to suit a purpose. In

this book you are asked to edit programming examples in order to
change their actions and to observe those changes.

Editor
A word processor, line editor, or other software that can create and

alter the contents of a disk file. You will require some sort of editor to
produce your C programs.

Element
One of the members of an array, designated by a unique combina­

tion of subscripts.

Error
A statement or expression that does not follow the syntax regula­

tions for that command. Your compiler will indicate where such
source code errors exist, but logical errors that produce undesired
results must be found through execution and debugging.

Execute
To run or begin a program.

278 PROGRAMMING THE MACINTOSH IN C

Executable code
Program code ready to be used by your computer. It must be

produced by compiling your source code into object code, and then
linking the object code with referenced library functions.

Exponent
The power of a number. Specifically, the power of ten multiplied by

the mantissa to yield a notation of the form: n.nnn E exp.

Expression
A group of characters (numbers and letters) that form a syntacti­

cally correct statement.

External function
A function defined outside of the current source file.

Factor
A divisor of a number that produces no remainder.

Field
A logically distinct unit containing zero or more characters that

may be grouped together to form a record. A name, account number,
address, or dollar amount can be a field.

File
A logically organized collection of data in which each record, field,

or element is related to the other by some criteria.

Floating point
The classification of numbers that may contain fractional

components.

Formal parameter
A placeholder in a function declaration used to receive data from a

function call.

Formatted printing
Also known as "pretty printing." Used to produce tables, reports,

and other printed documents within a predefined format.

FORTRAN
An acronym for Formula 1i'anslation, FORTRAN is a procedure­

oriented programming language designed for mathematical oper­
ations. Used extensively in the scientific community.

Fragment
An incomplete programming statement.

GLOSSARY 279

Function
A program entity containing statements logically grouped to pro­

cess one specific task. A function may be activated from any section
of the program.

Global variable
A variable accessible to all statements within an entire program.

Hardware
Your computer, disks, printers, cables, and their subcomponents.

All aspects of computers that are not software.

Hexadecimal
The base 16 numbering system using the digits 0 through 9 and the

letters A through F to represent the numbers 0 through 15.

High-level language
A language that allows programmers to use symbols, labels, vari­

ables, and other complex concepts to express algorithms in ways a
computer cannot directly understand; usually requires compilation.
APL, FORTRAN, and BASIC are considered high-level languages. C
is classified as a mid-level language.

Identifier
Any sequence of letters, digits, and the underscore. The first char­

acter must be a letter.

Include
To bring along. As a compiler directive, the #include statement

reads source code into the compilation at the desired point.

Increment
To increase a numeric variable. By convention, an increment is

usually the addition of 1, but any value can be used. Opposite of
''decrement.''

Indirection
Referencing by address; that is, using a variable's address instead

of the variable itself.

Initialize
To set the value of. Initialization can be to any value. One can also

initialize or "format" a disk.

Input
The information that comes to the computer from the outside. You

will usually provide input to the computer through the keyboard.

280 PROGRAMMING THE MACINTOSH IN C

Input/output
The process of communication between computer, operator, and

peripherals. Often abbreviated as "1/0."

Integer
A numeric value with no fractional components.

Interface
A shared boundary. Often refers to the piece of hardware used

between two pieces of equipment to facilitate communication
between them.

Intermediate file
The file produced by the compiler from your source code. Also

called "object files," these files must be linked with library files to
produce executable code.

IIO
The standard abbreviation for "input/output."

Iteration
The process of repeating. Within the C language, iteration is imple­

mented with for and while loops.

Kilobyte
One thousand bytes. Derived from the Greek prefix "kilo" meaning

"thousand." Abbreviated as "K."

Label
A location within a source program. Program flow can be trans­

ferred to this location with a goto statement.

Librarian
A piece of software designed to take object files containing func­

tions and concatenate them into "library files." The librarian adds,
deletes, and modifies modules within library files.

Library file
A disk file containing object code created from many functions or

procedures that can be linked to resolve references to external func­
tions within a program.

Line
Any set of printable alphanumeric characters terminated with the

carriage-return and linefeed characters.

Linefeed
Expressed numerically as ASCII code 10, it is used in conjunction

with the carriage-return (ASCII 13) to form an end-of-line.

GLOSSARY 281

Link
To bring together. Specifically, to produce a large file (executable)

from a series of smaller ones (object).

Link.er
A piece of software designed to combine object and library files

and produce executable code.

List device
The standard output device for receiving printed material; usually a

printer.

Literal data
Any data item that appears "as is" repeatedly, regardless of the

situation that uses it. A "constant" is an example of literal data.

Local variable
A variable accessible only within a defined block of programming

statements.

Logical expression
An expression yielding a value of true or false.

Logical operator
An operator used to compare the truth values of two expressions.

Low-level language
A programming environment providing only the most basic micro­

processor operations (addition, data movement, and so on).

Machine code
Commands directly executable by the CPU.

Machine language
A programming language with a very limited instruction set

designed to directly control every function of the CPU.

Macro
An identifier used as a synonym for a set of instructions or a con­

stant value.

Mantissa
The numeric portion of a floating point number or a number

expressed in scientific notation. All numbers expressed this way have
both a mantissa and an exponent.

Matrix
A collection of numbers or characters arranged in rows and

columns and having "dimensions." Also known as an "array."

EBE PROGRAMMING THE MACINTOSH IN C

Megabyte
One million bytes. Derived from the Greek prefix "mega," meaning

"million."

Memory
Storage space for data resident within the computer; measured in

kilobytes.

Microprocessor
As the "brain" of your computer, the microprocessor is responsible

for all calculations and hardware-controlling functions.

Mixed-mode expression
An expression involving at least two operands of differing data

types.

Modular
Capable of being easily joined to. In this book we stress structured

programming-that is, programming in complete functional units-as
a means of giving programs modularity.

Module
Like a function, a module represents a single-step process that can

be used by many other parts of a program.

Modulo
A mathematical function returning the remainder of an integer

division. In C, the modulo operator is the percent sign (O/o).

Multidimensional
Having more than one dimension (planar, cubic, and so on). Arrays

are often multidimensional.

Nesting
Putting loops inside loops, #include files inside #include files, and

other repetitive functions inside themselves. In contrast with "recur­
sion," a segment of code contained within a larger portion of code,
whereas recursion causes the same portion of code to be reexecuted.

Nondigit
Any character that is not between 48 and 57 decimal ASCII; any

character that is not a number.

Numeric
Any number; any character between 48 and 57 decimal ASCII.

Object file
The file produced by the compiler. Contains relocatable machine

code to be linked with library files to produce executable code.

GLOSSARY 283

Octal
The base-8 numbering system, in which numbers are expressed

with the digits 0 through 7.

Operand
A component of an expression that has a value.

Operating system
A piece of software that controls all functions of computer process­

ing and peripheral communication.

Operator
A symbol or word performing some function upon one or more

operands. Also used to identify the person using a computer.

Output
The information that goes from the computer to a peripheral. Out­

put is presented to you on your video display terminal.

Parameter
The value or values required by a function, enclosed within

parentheses.

Parse
To take apart. Programs must sometimes dissect strings or com­

mands into separate data elements.

Peripheral
Any device connected to a computer that provides input, accepts

output, or performs auxiliary functions (such as a storage device).

Pointer
A data type that holds the address of another variable.

Pointer operator
The * operator, indicating the use of the data at an address speci­

fied by a pointer variable.

Precedence
The order in which an expression will be evaluated.

Prompt
A character or group of characters used to notify the user that

input is required. In programming, questions to the user are consid­
ered prompts.

RAM
An acronym for random-access memory.

284 PROGRAMMING THE MACINTOSH IN C

Random-access file
A file whose organization permits access in a random fashion. Con­

trasted with "sequential file."

Random-access memory
Memory that can have its parts accessed in a random manner.

More commonly, it is the reusable and volatile storage space within
the computer.

Rational number
A number that is expressed as the quotient of two integers.

Read
To take as input. A program can read from the keyboard, a file, or

from memory.

Read-only memory
Memory that cannot be erased, written on, or changed. Inherent

capabilities of the computer and its start-up procedure are stored in
read-only memory to provide permanent storage.

Real number
A number that may contain a fractional part. In the computer, real

numbers can have values much larger than those of integers.

Record
A logical grouping of fields in a file. Records are composed of

fields; files are composed of records.

Recursion
The process in which a portion of code begins to reexecute itself.

The original executing version of code remains intact (but not opera­
tive), and the reexecuting code is initiated as a new entity.

Recursive function
A function that may call itself.

Register
A storage location within the CPU.

Relational operator
An operator performing some type of comparison between two

operands.

Relocatable
Used to identify a file that can be inputted by a linker to be trans­

lated into executable code. Also known as "object code."

GLOSSARY 285

Returned value
The result of a function's processing.

ROM
An acronym for read-only memory.

Run-time
Occurring during execution as opposed to during compilation.

Sequential file
A file whose organization permits access only in a sequential

manner, either from top to bottom, from bottom to top, or from any
midpoint to an endpoint. Contrasted with "random-access file."

Software
Your compiler, word processor, line editor, operating system, any C

programs, or other applications programs. That which controls
hardware.

Source code
The statements you use to express algorithms in C. Source code

must be compiled and linked to produce executable code.

Source file
A disk file containing programming statements in source code.

Statement
A line containing one or more expressions.

Stream organization
Arrangement in a sequential, one-directional manner.

String
Any continuous sequence of characters.

Subroutine
A procedure to which control can be transferred within a program.

A subroutine performs one function and returns program flow to the
instruction immediately following the call.

Subscript
One of the dimensions of an array. To specify an element of an

array, one uses subscripts to uniquely identify the placement of the
element within the array.

Syntax
The structure of a statement. The arrangement of commands in

their proper usage.

286 PROGRAMMING THE MACINTOSH INC

Text
Any unit of alphanumeric characters.

Token
The identifier used as the pseudonym in a macro definition.

Two's-complement
A method of representing a negative number in the computer's

memory.

Union
A data structure capable of holding different data types, but only

one piece of data may reside in the union at any one time.

UNIX
An operating system written in C and developed for program

development. Created by Bell Laboratories.

Utility
A piece of software designed for one specific purpose. A tool used

to supplement a more important process.

Variable
Any valid identifier that can change value.

Whitespace
Any characters ignored by the compiler when translating a source

file.

Word
The basic unit of addressable storage within the computer's RAM;

usually 8, 16, 32, or 64-bits in length.

Write
Opposite of read; to write is to send information to a storage

device.

BIBLIOGRAPHY

BIBLIOGRAPHY 289

Bourne, S. R., The UNIX System. Menlo Park, California: Addison­
Wesley, 1983.

Ghezzi, C. and Jazayeri, M., Programming Language Concepts. New
York: John Wiley & Sons, 1982.

Kernighan, B. and Ritchie, D., The C Programming Language. Engle­
wood Cliffs, New Jersey: Prentice-Hall, 1978.

Ralston, A., et al, Encyclopedia of Computer Science. First Edition,
San Francisco: Van Nostrand Reinhold, 1976.

Wirth, N., Algorithms + Data Structures = Programs. Englewood
Cliffs, New Jersey: Prentice-Hall, 1976.

280

INDEX
I, 54
!=, 54
#, 93, 203
#define, 95, 203
#Endif, 207
#Fortran, 209
#If, 207
#include, 93-94, 206-207, 216
#Line, 209-210
#undef, 95
%, 46, 171
&, 54, 116, 159, 241
&&, 54
(), 228
*. 44-45, 116, 175, 240
*I, 33
+, 44
+ +, 47, 231

+ =. 47
- • 44, 171, 247
- - • 47, 231
-=, 47
->. 247
., 247
I, 44-45

I*. 33
II, 34
I=, 47
;, 35, 221
<, 54

<=. 54
<>. 93
=, 46, 224
= =, 54

>. 54
>=. 54
?, 235
?:, 62
\, 43, 205, 261
\n, 42-43, 96
", 54, 159
{, 35, 221
I
I, 54, 159, 171
II
II, 54
}, 35, 221
- • 161

Abort, 271
Access, 271

to data, 185
to files, 182-184
to function, 239

Actual parameter, 87-88, 271
Address, 113, 115-116, 118, 120, 240,

271
Address operator (&), 113, 116, 241
Aggregates, 225
Algorithm, 75, 125, 137, 271
Allocate, 271
Alphanumeric, 271
Ampersand (&), 116, 159
AND, 52, 232
AND operator, 159, 161
ANSI, 271
APL, 271
Append, 188, 271
Argc, 194
Argument, 87, 96, 99, 121, 191, 271
Argv, 194
Arithmetic

conversion, 236
expression, 272
operation, 130
operator, 44, 229

Array, 113-114, 124-128, 133-134,
160, 203, 225, 241-242, 272

declaration, 241
initialization, 131
multidimensional, 133-134
name, 129

Array and pointer arithmetic, 130
ASCII (American Standard Code for

Information Interchange], 12, 95,
103, 105, 272, 250

Asm, 259
Assembler, 18, 24, 272
Assembly, 18
Assembly language, 2, 24-25, 28, 180,

272
Assignment,

expression, 97
operator, 46, 224, 229, 272
statement, 65, 95, 272

Asterisk, 116, 118, 175
Atof[), 180
Atoi(), 180
Auto, 85, 222-224
Automatic storage class, 85
Auxiliary, 272

Back-up, 272
Backslash (\), 43, 205, 261
Base 2, 3
Base 8, 6
Base 16, 6

BASIC, 272
Batch file, 273
Binary, 273

arithmetic, 6
conversion routine, 160
digit, 8, 53
numbering system, 3-4, 126
operator, 45

Bit, 8, 24, 28, 53, 103, 115, 159, 245,
273

emptied, 160
manipulation operator, 159
operations, 160
pattern sequence, 261
string, 161

Bitwise, 273
AND, 54
exclusive OR, 54
inclusive OR, 54
NOT, 161
operator, 54, 159, 161, 230, 273

Black box, 77, 81, 89, 100, 273
Block, 35, 55, 81, 82, 221, 226
Boolean, 52, 106, 159, 232, 273
Boot, 273
Braces, 60, 221, 238
Break, 69, 72, 236, 237
Buffer, 185, 273
Byte, 8, 28, 103, 115, 273

C language, 29, 219
Call, 99-100, 108, 273
Call-by-reference, 121, 123, 127, 150,

274
Call-by-value, 121-122, 274
Calloc(), 144
Case, 70, 236
Cast, 110-111, 274
Cast operator, 152, 228
Central processing unit, 1, 223
Cfree(), 181
Char, 48, 104, 106-107, 222
Character, 132, 274

array, 226
constant, 267
data type, 48
escape sequences, 260
functions, 179
representation, 12
string, 179
values, 48
variable, 221

Close(filedescriptor), 185

Closing a file, 184
Code, 274
Coding, 76
Combined form operators, 46
Combining two files into single

program, 215
Comma, 66-67
Command line, 191-192
Comment, 31, 39, 75, 151, 220, 274
Compile-time error, 19
Compiler, 18, 27, 31, 41-42, 48, 92,

109, 132, 201, 203, 207, 212, 219,
223, 259, 274

directive, 93, 203, 274
error, 211, 213, 274

Compiling a program, 201
Compound statement, 55
Computer, 275
Concatenate, 275
Conditional,

directives, 207
execution, 55-56, 234
expression, 56, 62
operator, 235
statement, 76-77

Console, 93, 275
1/0, 93
routines, 168

Constant, 34, 37, 49, 105, 275
character, 105
floating point, 105
formats, 285
integer, 105-106

Consulair Mac C Compiler, 142, 178
Continue, 88-69, 237
Control,

character, 275
statement, 55-56, 275
string, 170

Control-D (EOF character), 94-95
Conversion,

character, 171
rules, 265

Converting from binary to decimal, 4
Converting from decimal to binary, 5,

128
Counter, 98, 106
CP/M, 275
CPU, 1, 24, 115, 275
CPU register, 86
Great{), 184
Cursor, 275

Data, 275
access to, 185
base, 275

Data, (continued)
declaration, 79-80, 221, 223, 238
definition, 13, 28
file, 16, 215, 276
object, 114, 223, 226, 231
processing, 23, 37
record, 16
storage, 28, 214

Data structure, 77, 111, 125-126, 137,
154, 156, 182, 276

linked list, 144
self-referential, 145

Data structuring, 78, 104, 143, 161
Data type, 34, 49, 90, 103-106, 108,

115, 117, 157, 219, 221, 224,
228, 278

char, 222
character, 48, 221
conversion 104, 107
double, 222
expanding number, 140
float, 222
floating point, 48, 221
int, 222
integer, 48, 221
long int, 222
memory, 127
operators, 227
short int, 222
struct, 138
unsigned int, 222

Debug, 278
Decimal numbering system, 3-4, 126
Decimal-to-binary conversion, 6
Declaration, 84

instruction, 48
statement, 49, 97, 103, 117,

131, 278
Decrement, 278
Decrement operator, 47, 57, 231
Dectobin(), 127
Default, 70, 236, 276
Default storage class, 222
Delete, 278
Deleting a file, 184, 185
Delimiter, 276
Dimension, 276
Directives, 209, 211
Directory, 276
Disk, 15, 277

drive, 277
file, 183
operating system, 17, 277

Do-while, 63, 67, 96, 234
DOS, 17, 277
Double, 48, 104, 108, 222

INDEX 281

Dynamic memory allocation, 49, 113,
144, 162, 277

Dynamic storage allocation, 111

EBCDIC (Extended Binary Coded
Decimal Interchange Code), 12, 277

Echo, 94
Edit, 277
Editor, 277
Element, 277
Else-if, 80
Entry, 259
EOF, 93-98, 99, 149
Equal to, 54
Error, 19, 42, 201, 210, 277

compile-time, 19
handling, 20, 62
message, 19, 191, 211-212
run-time, 19
trapping, 20

Escape sequence, 43
Exception handling, 20
Exclusive-OR, 52-53
Exclusive-OR operator, 159
Executable code, 278
Executable file, 18
Execute, 277
Execution speed, 107
Exit{), 195
Exponent, 278
Exponential notation, 48
Expression, 37, 49, 95, 220, 224,

227-229, 232, 278
Extern, 85, 214-215, 222-224, 226
External,

declarations, 224
function, 239, 278
storage class, 85
storage device, 182
variable, 82-84

Factor, 278
Fgets(), 189
Fibonacci number, 97-99
Field, 16, 154-156, 162, 171, 245, 278
File, 14-15, 183, 187, 278

access to, 168, 182-184
closing, 184
deleting, 184-185
descriptor, 184
disk, 183
executable, 18
functions, 184
1/0, 186, 187
library, 216

292 PROGRAMMING THE MACINTOSH IN C

File, (continued)
nonvolatile, 15
organization, 16
random-access, 183
relocatable, 18, 201, 213-214
sequential, 183
source, 18, 27, 39, 82, 203, 215
source code, 31

Filedescriptor, 185
Filename, 185, 206
Flag, 9, 69, 155
Float, 104, 108, 222
Floating point, 106, 2 78

constant, 266
data type, 48
notation, 48
number, 10, 159
value, 222

Floppy disk, 15
Flow control, 37, 55
For, 63, 65, 68, 100, 150, 234
Forced flow interruption, 55
Formal parameter, 87, 278
Format of me, 16
Format fields, 170
Formatted printing, 169, 171, 278
Formatting possibilities, 173
FORTRAN, 209, 259, 278
Fprintf(), 188
Fputs{), 189
Fragment, 278
Free(), 181
Fscanf(), 188
Function, 24-25, 75, 79, 81-82, 100,

121, 123, 127, 135, 141, 238, 279
call (called), 78-79
parameter, 129
storage class, 238

Funptr(), 135

General operators, 229
Getc(), 188
Getchar(), 93, 95
Getint(), 150
Getnum(), 96
Gets(), 169
Global variable, 82, 84, 224, 279
Goto, 72, 81, 237
Greater than, 54

Hard disk, 15
Hardware, 212, 279
Hardware independence, 167
Heading, 132
Hexadecimal, 279

Hexadecimal numbering system, 3, 6
High-level language, 24, 279
Hyphen, 171

1/0, 280
1/0 redirection, 166, 191, 197
1/0 routines, 197
Identifier, 34, 79, 81, 116, 203, 220,

228, 279
If, 56, 68, 235
If-else, 58
Include, 279
Inclusive-OR, 52-53, 159
Increment, 47, 231, 279
Index, 98, 180
Indirection, 118, 240, 247, 279
Infinite loop, 66
Initialization, 97, 127-128, 224-225,

279
Input, 279
Input/Output, 37, 280
Insertion sort, 145
Int, 48, 103-106, 108, 222
Integer, 105-106, 125, 130, 159, 221,

260
constant, 266
data type, 46

Interactive, 191
Interface, 182, 197, 280
Intermediate file, 280
Interpreter, 27
Isalpha[), 180
Isdigit(), 96
Islower(), 180
Isupper(), 180
Iteration, 280

K, 8
KB,8
Keyword, 34
Keywords, 258
Kilobyte, 8, 280

Label, 72, 280
Language

level, 24
assembly, 24-25, 28
input/output facilities, 29
level, 25-26, 28
programming, 26

Left justification, 171
Left shift, 159
Less than, 54
Level, 24, 26, 28
Librarian, 216-217, 280

Library, 86, 92, 109, 202, 216-217, 280
Line, 280
Linefeed, 177, 219, 280
Link, 144-145, 153, 213, 215, 261
Link pointer, 144
Linked list, 113, 144, 162
Linker, 18, 41-42, 202, 215, 217, 281
Linking multiple source mes, 215
List device, 281
Listok, 69
Literal data, 281
Local variable, 80, 261
Logic, 32, 36, 52
Logical,

AND, 54, 58
expression, 54, 281
inclusive OR, 54
NOT, 54
operation, 232
operator, 52-53, 57-58, 232, 281
OR, 58
statements, 232

Long int, 103, 222
Loop, 55, 63, 67-69, 88, 106, 233
Low-level language, 24-25, 281
Lseek(), 186

Machine code, 27, 281
Machine language, 1, 24-25, 281
MacPaint, 155
Macro, 204-206, 281
Macro-instruction, 204
Main, 238
Main memory, 1, 15
Main(), 78-79, 81
Malloc(), 144, 151
Mantissa, 281
Masks, 161
Math.h, 181
Mathematical functions, 181
Matrix, 281
MB, 8
Megabyte, 8, 282
Member, 139

list, 244, 246
operator, 247

Memory, 2, 115, 159, 162, 282
allocation, 49, 181
location, 118, 120
management, 49, 161
organization, 13

M~tacharacter, 43, 261
Microprocessor, 282
Mixed-mode expression, 49, 52, 108,

282
Modular, 282

Modulo operator (%), 46, 282
Multidimensional, 282

arrays, 133-134
Multiple value, 121
Multiplication operator, 118
Multiway decision, 61

Negation operator, 52-53
Negative binary numbers, 10
Nesting, 35, 68, 282
Newline, 33, 44, 177, 219
No-match statement, 61
Nondigit, 282
Nonvolatile memory, 2
NOT, 52-53, 232
Not equal to, 54
NOT P. 53
Number system, 3
Numeric, 282

Object, 220, 282
Octal numbering system, 3, 6, 283
One's-complement operator, 161
Open(), 184
Opening and closing a stream, 187
Operand, 283
Operating system, 14, 16, 283

access, 181
Operator, 37, 44, 263

arithmetic, 229
assignment, 229
assignment combinations, 229
bitwise, 229
decrement, 229
increment, 229
indirection member, 247
member, 247

OR, 52, 232
Outline, 76
Output, 283
Output data list, 170
Output.job, 41
Output.link, 41, 88

Padding, 174
Parameter, 75, 86, 89, 108, 121, 283

passing conventions, 239
transfer, 121

Parentheses, 45, 57, 58
Parse, 283
Pascal, 197
Percent symbol(%), 171
Peripheral, 283
Peripheral devices, 29

Pointer, 104, 113-117, 120-121,
128-129, 135, 141, 162, 224, 239,
240, 242, 283

comparison, 130
conventions, 241
declaration, 240
operator (*), 114, 116, 118, 283
restrictions, 241
subtraction, 130

Pointers to function, 135, 137
Portability, 28-29, 92, 165-167, 181
Powers of 2, 5
Precedence, 45, 68, 283
Precedence of operators, 262
Precision zone, 171
Pretty printing, 169
Primary storage unit, 15
Printf, 43-44, 49, 51, 88, 125
Procedure, 25
Processing data, 23
Program documentation, 31
Program flow, 90, 233, 236-237
Programmer, 23-25
Programmer's axioms, 32
Programming, 30, 75, 120, 143

data, 229
language, 23, 26, 29, 154
numbering systems, 7
pitfalls, 30
structured, 30-31, 75, 100

Prompt, 283
Pseudonyms, 157
Punctuation characters, 35
Putc(), 188
Putchar(), 93, 95
Puts(), 169

Quotations, 93, 132

RAM (Random access memory), 1-2,
15, 283, 284

Random-access file, 15, 183, 284
Rational number, 10, 284
Read(), 186, 284
Read-only access, 184
Read-only memory, 284
Read-only memory (ROM), 1-2, 197,

285
Read/write access, 184
Reading data from a file, 185
Real number, 10, 284
Record, 284
Recursion, 75, 97, 101, 240, 284
Recursive call, 97, 99, 100
Recursive function, 284

INDEX 293

Register storage class, 85-86, 223, 284
Relational operator, 52, 57, 233, 284
Relocatable file, 18, 201, 213-214, 284
Repetition, 63, 233
Return(), 87, 90
Returned value, 285
Returning values from functions, 239
Right justification, 171
Right shift, 160
ROM (Read-only memory), 1, 2,

197, 285
Run-time, 19, 285

Scan(f), 177
Scanf{), 51, 174-175
Scope, 219, 226
Scoping, 75, 80, 97, 100, 222, 226
Secondary storage unit, 15
Seek(), 186
Segmentation methodology, 215
Self-referential data structure, 145,

162
Separate compilation, 202
Sequential file, 15, 183, 285
Short int, 103, 222
Sign bit, 9
Size of operator, 141
Software, 285
Source code, 18, 27, 31-32, 40, 50, 92,

206, 221, 285
Source file, 18, 27, 39, 82, 203, 213,

215, 285
Space, 127
Sprintf(), 179
Sqrt(), 104, 109
Sscanf(), 179
Standard,

error, 189
I/O functions, 190
I/O library, 91-92, 96, 101, 165,

181
input, 93, 166
member types, 244
output, 93, 166

Statement, 32, 36, 220, 285
block, 55, 57, 60, 221, 227, 244
termination, 221

Static, 85, 222-223
external variable, 84-85
storage class, 85
variable, 85

Stdin, 189-190
Stdio, 93
Stdio.h, 93, 109
Stdout, 189-190

294 PROGRAMMING THE MACINTOSH IN C

Storage class, 75, 84, 100, 219,
221-224, 238

auto, 223-224
automatic, 85
declarator, 214
extern, 223
external, 85
register, 85, 223
static, 85, 223

Strcmp(), 180
Stream of input, 177
Stream organization, 285
String, 132, 134, 171, 243, 267, 285
String functions, 179
Struct, 138
Structure, 140-141, 161, 243

aggregate data type, 113
declaration, 243-244
name, 244
pointer operator, 140

Structured data, 113-114, 143, 206
Structured programming, 30-32, 35,

75, 100, 114, 214
Subprogram, 25
Subroutine, 25, 285

Subscript, 124, 133, 242, 285
Swap(), 122-123
Switch, 70, 155, 236
Syntax, 32-33, 219, 285
System interface functions, 181

Tables, 134
Tag, 138
Temp, 122
Termination of function, 96
Test, 244
Text, 286
Token, 146, 204, 220, 286
Tolower(), 180
Toolbox, 17, 197
Toupper(), 180
Trapping errors, 20
Truth tables, 268
Two's complement, 10, 11, 286
Type conversion, 108
Type declarator, 228
Typedef, 157, 228
Typographical errors, 211-212

Union, 154-157, 162, 246, 286
UNIX, 94, 165-167, 195-196, 202, 286
Unresolved references, 214
Unsigned int, 103, 222
Utility, 190, 286

Variable, 14, 34, 37, 116, 224, 265, 286
definition of, 13

VDT, 29
Volatile memory, 2

While, 63-65, 150, 233
Whitespace, 33, 219-220, 286
Word, 8, 24, 286
Write, 286
Write(), 186
Write-only access, 184
Writing data to a file, 185

XOR, 52, 53

Zero-filled, 160

Selections from
The SYBEX Library

Computer Specific

Apple II-Macintosh
THE PRO-DOS HANDBOOK
by Timothy Rice/Karen Rice
225 pp., illustr., Ref. 0-230
All Pro-DOS users, from beginning to
advanced, will find this book packed with
vital information. The book covers the
basics, and then addresses itself to the
Apple II user who needs to interface with
Pro-DOS when programming in BASIC.
Learn how Pro-DOS uses memory, and
how it handles text files, binary files,
graphics, and sound. Includes a chapter
on machine language programming.

THE MACINTOSHTM TOOLBOX
by Huxham, Burnard,
and Takatsuka
300 pp., illustr., Ref. 0-249
This tutorial on the advanced features
of the Macintosh toolbox is an ideal
companion to The Macintosh BASIC
Handbook.

THE MACINTOSHTM BASIC
HANDBOOK
by Thomas Blackadar/Jonathan
Kamin
800 pp., illustr., Ref. 0-257
This desk-side reference book for the
Macintosh programmer covers the BASIC
statements and toolbox commands, orga­
nized like a dictionary.

PROGRAMMING THE
MACINTOSHTM IN ASSEMBLY
LANGUAGE
by Steve Wiiiiams
400 pp., illustr., Ref. 0-263
Information, examples, and guidelines for
programming the 68000 microprocessor

are given, including details of its entire
instruction set.

Technical

Assembly Language
PROGRAMMING THE 6502

\ by Rodnay Zaks
386 pp., 160 illustr., Ref. 0-135
Assembly language programming for the
6502, from basic concepts to advanced
data structures._

6502 APPLICATIONS
by Rodnay Zaks
278 pp., 200 illustr., Ref. 0-015
Real-life application techniques: the input/
output book for the 6502.

ADVANCED 6502
PROGRAMMING
by Rodnay Zaks
292 pp., 140 illustr., Ref. 0-089
Third in the 6502 series. Teaches more
advanced programming techniques,
using games as a framework for learning.

PROGRAMMING THE Z8000®
by Richard Mateoslan
298 pp., 124 illustr., Ref. 0-032
How to program the Z8000 16-bit micro­
processor. Includes a description of the
architecture and function of the zaooo
and its family of support chips.

PROGRAMMING THE
8086™/8088™
by James W. Coffron
300 pp., illustr., Ref. 0-120
This book explains how to program the
8086 and 8088 microprocessors in
assembly language. No prior program­
ming knowledge required.

PROGRAMMING THE 68000™
by Steve Wiiiiams
250 pp., illustr., Ref. 0-133
This book introduces you to micropro­
cessor operation, writing application
programs, and the basics of 1/0 program­
ming. Especially helpful for owners of the
Apple Macintosh or Lisa.

Hardware
FROM CHIPS TO SYSTEMS:
AN INTRODUCTION TO
MICROPROCESSORS
by Rodnay Zaks
552 pp., 400 illustr., Ref. 0-063
A simple and comprehensive introduction
to microprocessors from both a hardware
and software standpoint: what they are,
how they operate, how to assemble them
into a complete system.

MICROPROCESSOR
INTERFACING TECHNIQUES
by Rodnay Zaks and Austin Lesea
456 pp., 400 illustr., Ref. 0-029
Complete hardware and software inter­
facing techniques, including D to A con­
version, peripherals, bus standards and
troubleshooting.

THE RS-232 SOLUTION
by Joe Campbell
194 pp., illustr., Ref. 0-140
Finally, a book that will show you how to
correctly interface your computer to any
RS-232-C peripheral.

MASTERING SERIAL
COMMUNICATIONS
by Joe Campbell
250 pp., illustr., Ref. 0-180
This sequel to The RS-232 Solution
guides the reader to mastery of more
complex interfacing techniques.

Operating Systems
SYSTEMS PROGRAMMING IN C
by David Smith
275 pp., illustr., Ref. 0-266

This intermediate text is written for the per­
son who wants to get beyond the basics
of C and capture its great efficiencies in
space and time.

THE PROGRAMMER'S GUIDE
TO UNIX SYSTEM V
by Chuck Hlckev/Tlm Levin
300 pp., illustr., Re.f 0-268
This book is a guide to all steps involved
in setting up a typical programming task
in a UNIX systems environment.

REAL WORLD UNl)(TM
by John D. Halamka
209 pp., Ref. 0-093
This book is written for the beginning and
intermediate UNIX user in a practical,
straightforward manner, with specific
instructions given for many business
applications.

INTRODUCTION TO THE UCSD
p-SYSTEM™
by Charles W. Grant and Jon Butah
300 pp., 10 illustr., Ref. 0-061
A simple, clear introduction to the UCSD
Pascal Operating System for beginners
through experienced programmers.

Languages
Pascal
INTRODUCTION TO PASCAL
(lncludlng UCSD Pascal™)
by Rodnay Zaks
420 pp., 130 illustr., Ref. 0-066
A step-by-step introduction for anyone
who wants to learn the Pascal language.
Describes UCSD and Standard Pascals.
No technical background is assumed.

THE PASCAL HANDBOOK
by Jacques Tlberghlen
486 pp., 270 illustr., Ref. 0-053
A dictionary of the Pascal language,
defining every reserved word, operator,
procedure, and function found in all major
versions of Pascal.

APPLE® PASCAL GAMES
by Douglas Hergert and
Joseph T. Kelash
372 pp., 40 illustr., Ref. 0-074
A collection of the most popular computer
games in Pascal, challenging the reader
not only to play but to investigate how
games are implemented on the computer.

PASCAL PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miiier
374 pp., 120 illustr., Ref. 0-058
A comprehensive collection of frequently
used algorithms for scientific and techni­
cal applications, programmed in Pascal.
Includes programs for curve-fitting, inte­
grals, statistical techniques, and more.

DOING BUSINESS WITH
PASCAL
by Richard Hergert and
Douglas Hergert
371 pp., illustr., Ref. 0-091
Practical tips for using Pascal program­
ming in business. Covers design consid­
erations, language extensions, and
applications examples.

Other Languages
FORTRAN PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miiier
280 pp., 120 illustr., Ref. 0-082
This book from the "Programs for Scien­
tists and Engineers" series provides a
library of problem-solving programs while
developing the reader's proficiency in
FORTRAN.

UNDERSTANDING C
by Bruce H. Hunter
320 pp., Ref 0-123
Explains how to program in powerful
C language for a variety of applica­
tions. Some programming experience
assumed.

FIFTY PASCAL PROGRAMS
by Bruce H. Hunter
338 pp., illustr., Ref. 0-110
More than just a collection of useful pro­
grams! Structured programming tech­
niques are emphasized and concepts
such as data type creation and array
manipulation are clearly illustrated.

~CC>l\llPUTERB()()KS
are different.

Here is why . ..
At SYBEX, each book is designed with you in mind. Every manuscript is
carefully selected and supervised by our editors, who are themselves
computer experts. We publish the best authors, whose technical expertise
is matched by an ability to write clearly and to communicate effectively.
Programs are thoroughly tested for accuracy by our technical staff. Our
computerized production department goes to great lengths to make
sure that each book is well-designed.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.
SYBEX was among the first to integrate personal computers used by
authors and staff into the publishing process. SYBEX was the first to
publish books on the CP/M operating system, microprocessor interfacing
techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product
have made SYBEX a world leader in computer book publishing. Trans­
lated into fourteen languages, SYBEX books have helped millions of
people around the world to get the most from their computers. We hope
we have helped you, too.

For a complete catalog of our publications:
SYBEX, Inc; 2344 Sixth Street, Berkeley, California 94710
Tel: (415) 848-8233 Telex: 336311

DISK OFFER

Now that you are familiar with C's many virtues as a development
language for the Macintosh, you may want to make the process of
mastering C easier by taking advantage of our Macintosh disk offer.
A ready-to-go Macintosh disk containing all the full-length programs,
programming examples, and program segments used throughout this
book can be yours. By ordering our Macintosh C Programs disk, you
can save yourself the trouble of typing all those programs and pro­
gram samples into your Macintosh to see them run, and at the same
time make it easier to begin immediately altering the programs for
your own use. Our Macintosh C Programs disk is a great time saver!

To order your Macintosh C Programs disk, simply send your name,
address, and $14.95 (price indudes sales tax, if any, and all shipping
charges) to

DATATECH Publications
Software Products Division

Post Office Box 8702
La Jolla, California 92038

Please indicate that you want the Macintosh C Programs disk. The
disk will be shipped to you via First Class mail within five working
days of receipt of your order. Thank you!

Programming the
'\

Macintosh inC
Programming the Macintosh in C is a thorough introduction to the C program­
ming language, and to structured programming with Consulair C, the #1
Mac-leased C compiler. It is the complete handbook for anyone wishing to learn
or use any version of C on the Macintosh-from new Macintosh owners to pro­
fessional program developers.

Much more than a programming language guide, this book teaches a methodi­
cal, structured approach to program development-working from first outline to
completed application. Tutorials and exercises supplement the authors' careful
presentation of the elements of C.

• program operators

• flow control statements

• functions and recursion

• data representation and data types

• addressing, pointers, and aggregate types

• interfacing and the standard 1/0 library

• compiler directives

The book includes a concise review of programming basics, plus a background
discussion of the history, design philosophy, and unique advantages . of the C
language. Also included are an easy-reference guide to C, a glossary, and quick­
lookup appendices.

Macintosh applications developers will find this volume the perfect companion
to Using the Macintosh Toolbox, SYBEX's guide to the Mac's unique ROM-based
programming resources.

About the Authors: Bryan Cummings and Lawrence Pollack have been
involved in computer consulting for the past seven years. Bryan Cummings is a
senior programmer, systems analyst, and technical writer. Lawrence Pollack has
worked as a computer instructor, interface specialist, and technical writer, and
has designed a database management system. Both authors have published on C
language programming and the Macintosh Toolbox.

SYBEX books bring you skills-not just information. As computer experts, edu­
cators, and publishing professionals, we care-and it shows. You can trust the
SYBEX label of excellence. ·

ISBN 0-89588-328-7

