
Software
runs 01tbolh

Pow rPC and &8011
MaeiatlSh
Computers

INTOSH .

STARTER KIT

' - ·..::~ ·~Q ... --..... ._ -.--
~- - -~ - ; - ~ - ,.... -- "W

- -- -....-

Power Macintosh
Programming
Starter Kit

---~~------ - ---,,,,....,~============m -_.,,,,,.,...,.__....,,.

' I ,....:;~ I '-~· ' I

Power Macintosh
Programming

Starter Kit

Tom Thompson

~
Hayden
Books

Power Macintosh Programming Starter Kit

© 1994 Hayden Books, a division of Macmillan Computer Publishing.

All rights reserved. Printed in the United States of America. No part of this book may be
used or reproduced in any form or by any means, or stored in a database or retrieval system,
without prior written permission of the publisher except in the case of brief quotations
embodied in critical articles and reviews. Making copies of any part of this book for any
purpose other than your own personal use is a violation of United States copyright laws. For
information, address Hayden Books, 201West103rd Street, Indianapolis, Indiana 46290.

Library of Congress Catalog Number: 9475236
ISBN: 1-56830-091-3

This book is sold as is, without warranty of any kind, either express or implied. While every
precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information or instructions contained herein. It is further stated
that the publisher and author are not responsible for any damage to or loss of your data or
your equipment that results directly or indirectly from your use of this book.

96 95 94 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the year of the
book's printing; the rightmost single-digit number is the number of the book's printing. For
example, a printing code of 941 shows that the first printing of the book occurred in 1994.

Trademark Acknowledgments: All products mentioned in this book are either trademarks
of the companies referenced in this book, registered trademarks of the companies refer
enced in this book, or neither. We strongly advise that you investigate a particular product's
name thoroughly before you use the name as your own.

Apple, Power Macintosh, Mac, Macintosh, PowerBook, and Duo are registered trademarks
of Apple Computer, Inc.

Metrowerks is a registered trademark and Code Warrior is a trademark of Metrowerks, Inc.

To my wife, Brenda Jean,
and my children, John and Evelyn

The Hayden Books Team

Publisher: David Rogelberg

Managing Editor: Karen Whitehouse

Library Editor: Don Crabb

Development Editor: Brad Miser

Copy and Production Editor: Marj Hopper

Technical Reviewers: Richard Hooker,
IBM Microelectronics;
Alan Lillich,
Apple Computer, Inc.;
Mark Anderson, Metrowerks, Inc.

Cover Designer: Jean Bisesi

Interior Designer: Barbara Webster

Production Analysts: Dennis Clay Hager,
Mary Beth Wakefield

Production Team: Gary Adair, Brad Chinn,
Kim Cofer, Mark Enochs,
Stephanie Gregory, Jenny Kucera,
Beth Rago, Bobbi Satterfield,
Marc Sheeter, Kris Simmons,
Greg Simsic, Carol Stamile,
Robert Wolf

Indexers: Michael Hughes, C. A Small
Composed in: FC-Serifa, FC-Imago,

and MCPdigital

About the Author
Tom Thompson has a BSEE degree and bought his first 128K Macintosh in
early 1984. He is a Senior Tech Editor at Large for BYTE Magazine and has
been covering the Mac for over ten years. He is an Associate Apple Devel
oper, and has substantial programming experience including several
shareware utilities. He has also researched and written numerous articles
on programming and hardware technology.

Overview
1 The Power Macs and a Brief History 1

2 CodeWarrior: A Guided Tour 15

3 Beginning Programs 41

4 Using the Toolbox 61

5 The PowerPC Software Architecture 143

6 Putting It All Together 169

7 The Art of Debugging 261

A The PowerPC RISC Processor Family 297

B Porting to the Power Macintosh 303

c Program Listings 307

0 Where to Go for Help Information 385

Glossary 387

Index 393

License 423

Contents
1 The Power Macs and a Brief History 1

The Early Mac ... 2
Faster and Better .. 4
The Modern Mac .. 4
Apple and IBM, Who Could Have Imagined It? 7

Time for a Change (to Power Mac) .. 13

2 CodeWarrior: A Guided Tour 15

Code Warrior Requirements .. 17
The Toolbar .. 18
The Project .. 19
The Editor ... 27
The Compiler and Linker .. 33
Preferences .. 33
The Tour's Over .. 40

3 Beginning Programs 41

About the Toolbox ... 42
Munge It .. 42
Where's the Mac? ... 55
Processes Revealed ... 56
A Word of Caution ... 59

Just the Beginning .. 60

4 Using the Toolbox 61
Meet Some Managers .. 62

Initializing Managers .. 65
Run the Code ... 69

The Fork in the File .. 70
Making Resources ... 72

Making Menus .. 74
Making Dialog Boxes .. 80
Status Display .. 86
Adding Alerts .. 88
Saving Resource Data as Text .. 94

Some Words on Events .. 95

0 Power Macintosh Programming Starter Kit
•• 1

Code at Last ... 97
The First Function .. 100
Munger Code, Revisited ... 101
Input and Output Filenames .. 104
Basic Application Functions .. 108
Main Event Loops ... 111
The Initialization Function ... 117
Build Munger .. 119

High-Level Events .. 120
Make Munger Handle High-Level Events 121
New Alerts .. 134
Bundle Resource ... 135
Finishing Up .. 140

The Fork in the Road ... 141

5 The PowerPC Software Architecture 143

The 68K Application Run-Time Architecture 144
The PowerPC Application Run-Time Architecture 153
A Tale of Two Processors .. 167

6 Putting It All Together 169
SwitchBank: Initial Investigation
and Design .. 171

Building Resources with Rez ... 173
The SwitchBank Program .. 191
Making a Fat Binary .. 215
Handling a Code Fragment ... 220
Interlude: The Anatomy of a Trap ... 220
Writing a Fat Trap ... 225
Building a Fat Trap ... 253

7 The Art of Debugging 261

About Debuggers .. 262
Using the Code Warrior Debugger ... 265
A Low-Level Debugger .. 283
Debugging Techniques ... 286
A Bug Taxonomy ... 288
Debugging Miscellany .. 293

Contents 0· •••

A The PowerPC RISC Processor Family 297

PowerPC 601 .. 299
PowerPC 603 ... 300

B Porting to the Power Mac 303

C Program Listings 307

D

Chapter 3 .. 307
Chapter 4 ... 310
Chapter 6 .. 334

Where to Go for Help and Information 385

How to Address Your Request ... 386
AppleLlnk ... 386
CompuServe .. 386
GEnie .. 386
America Online ... 386
Delphi ... 386

After You Get the List .. 386

Glossary

Index

License

387

393

423

0 Power Macintosh Programming Starter Kit ·
••

Acknowledgements 0··· •••

Acknowledgements
A book is a lot like a programming project. It involves a lot of people working
in concert to achieve the final outcome-all on budget and on schedule. While
publishing doesn't normally involve writing code and using debuggers, in
some ways it is more work because you have to explain things in a way that
makes the most sense to the most people. People are pretty imprecise beings,
unlike computers. Of course, this is a programming book where you do have
to write code, use debuggers, as well as try to make things sensible. It can be
done, but not without the capable assistance of many good people whom I'd
like to thank.

To David Rogelberg, Karen Whitehouse, and Brad Miser at Hayden Books for
their faith that this book could be done, and for transforming my idea of a
Power Mac Toolkit book into a reality. Thanks to Marj Hopper for making my
prose sensible.

To Greg Galanos, Jean Belanger, Dan Podwall, John McEnemey, Berardino
Baratta, and the rest of the Metrowerks gang for providing timely support and
updates to their excellent Code Warrior software during the course of writing
this book.

To Jordan Mattson at Apple for his support and access to PowerPC material.

To Eric Shapiro of Rock Ridge Enterprises for his valuable code contributions
and suggestions. Eric taught me everything about 68K trap patching, and did
it again for PowerPC trap patching. A lot of his code appears in the FlipDepth
Extension shown in chapter 6, and he made many recommendations that
improved the SwitchBank application. Without his efforts and timely support,
chapter 6 would not have been possible.

To the technical reviewers, Richard Hooker of IBM, Alan Lillich of Apple,
Mark Anderson of Metrowerks, and Don Crabb, for setting me straight on the
facts of the Power PC chip and the Power Mac system software. Special
thanks to Randy Thelen for his insights into the Power Mac run-time architec
ture, which helped shape chapter 5.

Thanks to Steve Jasik for providing a copy of The Debugger, software that
will really make a difference in debugging PowerPC programs.

Last but not least, to my wife, Brenda, who gave me her support, even
through the many late nights I spent writing code and this book.

To Our Readers
Thank you on behalf of everyone at Hayden Books for choosing Power
Macintosh Programming Starter Kit to enable you to begin programming for
the Power Macintosh (even if you now only have a 68k Mac). We have
carefully crafted this book and software to maximize your learning and
hopefully, to provide long-term value for you.

What you think of this book is important to our ability to better serve you in
the future. If you have any comments, no matter how great or small, we'd
appreciate you taking the time to send us E-mail or a note by snail mail. Of
course, we'd love to hear your book ideas.

David Rogelberg
Publisher, Hayden Books and Adobe Press

You can reach Hayden Books at the following:

Hayden Books
201West103rd Street
Indianapolis, IN 46290
(800) 428-5331 voice
(800) 448-3804 fax

E-mail addresses:

America Online:
AppleLink:
CompuServe:
Internet:

HaydenBks
hayden.books
76350,3014
hayden@hayden.com

Dear friend,

Why did you buy Power Macintosh Programming Starter Kit?

Maybe you want to migrate existing Macintosh programs based on the
older 680x0 Macs. Maybe you're considering programming the Mac for the
first time now that Apple has made the jump to light speed with the
PowerPC-based Power Macintoshes. Or maybe you're simply curious about
doing your software development work on a Mac.

All of these are good reasons for buying this book, which was written by
my good friend Tom Thompson. Tom, who has been programming and
writing about the subject for more years than either of us cares to remem
ber, is a senior technical editor for Byte and an unabashed Macintosh fan.
Back in our salad days, Tom edited my Macintosh column ("Macinations")
for Byte, a task that I'm sure shortened his lite.

The point of this book is not to shove any single programming doctrine
down anyone's throat. The truth is, there are a number of good program
ming environments and systems that are available (or will become avail
able) that allow you to compile native mode Power Macintosh code on
680x0 Macs and on Power Macintoshes. Apple's own Macintosh Program
mers Workshop (MPW) with its Power Macintosh Software Development
Kit and other systems will do the job nicely for a number of folks.

Having said that, this book does take a stance-as any expertly written
programming book ought to-that using the new Code Warrior unified
programming environment from Metrowerks makes a lot of sense for both
migrating 680x0 Mac programs to the Power Macs and for creating new
Power Mac software.

In fact, I happen to agree wholeheartedly with that sentiment. While I
understand the power of MPW and its many tools and its flexible modular
structure, I also love Code Warrior's unified and lean approach-a love that
Tom shares. Code Warrior does a great job of taking the tedium out of the
edit-compile-link-crash cycle of program development. While Tom's book
will work well for folks who want to get an introduction to Power
Macintosh programming, but who will eventually work with MPW, it really
shines as a construction set for CodeWarriorites. That design is conscious
and is reflected in the limited version of Code Warrior included with the

book, along with running versions of the sample programs Tom has devel
oped for you.

I can't overrecommend this book. Frankly, I'm a little jealous that Tom
could write such a technically excellent book with such smoothness and
directness. Tom and I and the Hayden team of technical editors and pro
gramming experts have spent many extra hours ensuring that all the code
examples are tight and error-free and conform to Apple's programming
guidelines. As someone who has taught programming at the University of
Chicago for nearly fifteen years, I am proud to have this book as part of the
Don Crabb Library. Please feel free to let me know what you think, too.

Don Crabb
May1994

Introduction
This book is a road trip. In it, you'll find information on Power Macs, RISC
technology, and a C development environment by Metrowerks called
Metrowerks Code Warrior. You'll find an assortment of programming hints
and tips and insights into how the Mac works, and you'll discover what
new features-and pitfalls-await on the Power Mac. Most important, while
I'll supply plenty of programming examples, I'll also explain how the Power
Mac works. I firmly believe that if you understand how something works,
you're in a better position to use it (or in the case of a personal computer,
program it).

What You'll Need
My basic assumption is that you know how to use a Macintosh and have
some knowledge of the C programming language. If you're not familiar
with C, the best reference on this language is Kernighan and Ritchie's The
C Programming Language, Second Edition, published by Prentice Hall. You
should also have Apple's reference works on the Mac Toolbox, Inside
Macintosh. Of course, you'll have a demonstration version of Metrowerks
Code Warrior because it's on the CD-ROM accompanying this book If you
don't have a Power Mac (yet), that's OK. Much of the material in here works
with existing Macs as well, which is perhaps the real beauty of the Power
Mac design.

I have structured this book so it offers material useful to both novices and
experienced Mac programmers. The novice should begin at the beginning,
but more experienced programmers should feel free to browse about and
find a subject of interest. Consult the brief summaries at the beginning of
each chapter to determine if the material is of interest to you. The following
brief road map will help you decide your course.

~ Power Macintosh Programming Starter Kit
~··"'

The Road Map
Chapter 1 covers the Power Macs themselves, with a brief peek at the
processor-the Power PC 601-that gives these systems their great horse
power. It also discusses how these systems manage to run existing Mac
software, thereby preserving that pile of Mac software you've accumulated
over the years.

Chapter 2 provides a tour of Metrowerks Code Warrior, Metrowerks' high
speed integrated development environment. Here, you'll be shown the
environment's editor, compiler, linker, and project manager. When you
write a C program, you must pick the version of Code Warrior to create
either 680x0 processor (68K) code or Power PC (PPC) code. Code Warrior can
also generate a file with both PPC and 68K code types (called a fat binary).
This feature enables your program to run on any Mac. This process of
making a fat binary isn't automatic, but we'll show you how it's done in
chapter 6.

Once you're familiar with the Metrowerks Code Warrior environment,
chapter 3 helps you write your first real C program. It won't have a friendly
Mac interface, but it will perform a useful job. If you're new to the Mac,
bypassing the user interface details for the moment limits the number of
unknowns you have to deal with while you gain confidence with the
development tools.

In chapter 4, you'll tackle some of those user interface details dodged in
chapter 3. You'll add a friendly interface and discover the forked nature of
Mac files. If you don't know what a Mac file's data fork and resource fork
are, don't worry. This chapter will explain them to you. You'll also learn
about resources (which, not surprisingly, reside in resource forks) and how
to edit them for use in your program.

Chapter 5 is a rest stop on our journey. We will have reached a point where
we must lay aside our tools for the moment and gain some insights into the
Power Mac's new system architecture. I'll explain how Apple managed the
feat where one set of source code can support two different processors. I
go on to describe how the underpinnings of the Power Mac, as much as it
resembles the 68K Mac on the surface, are fundamentally a different
operating system. I'll explain what code fragments are, and what they

Introduction 0·
•••

mean to future application design. I also describe Apple's Mixed Mode
Manager, the part of the operating system that manages to keep two wildly
different sets of processor code-the 68K and the PFC-operating in har
mony. It will be of general interest to most readers, and required reading
for those writing special programs and extensions. Finally, I'll explain how
both 68K and PowerPC code can be embedded in a single application file
called a "fat binary," that's capable of running on either Mac. You'll use
some of these details later when we explore certain Power Mac-specific
features.

Chapter 6 is where you put into practice the information you learned in
chapter 5. Most of this material will be of interest to advanced program
mers. We'll write an application that controls the Mac's File Sharing soft
ware. This will require writing a function that works with the Mixed Mode
Manager to enable a switch between 68K and PowerPC code. I'll also show
how to make this application a fat binary, capable of running on both 68K
and Power Macs. Next, we'll write an Extension that changes a Power
Mac's screen depth. You'll see how to access code fragments. It also dem
onstrates how to patch the operating system, both for a 68K Mac and
Power Mac.

In chapter 7, it's time to focus on how to fix a program that misbehaves.
Information on the types of debuggers, and debugging tools can be found
here. A look at Code Warrior's high-level debugger is provided. Tips on
debugging, and defensive coding are discussed.

For those who want a better understanding of the processor, Appendix A
provides a look at the Power PC family.

Appendix B consolidates information on how to port an existing Mac
application's C code to the Power Mac. It will be of interest to advanced
programmers who just want to dive in and start retooling their programs
immediately.

Appendix C provides the complete source listings for the programs dis
cussed in this book.

Appendix D tells you how you can locate more Code Warrior and Power
Mac programming information.

0 Power Macintosh Programming Starter Kit
•••

The Limited Verison of Metrowerks
CodeWarrior on the CD
The version of Metrowerks Code Warrior that is on the CD that came with
this book is limited in that it can only work with the sample code also
provided on the CD. Other than that limitation, it's functionality is the same
as a full-fledged version of Metrowerks Code Warrior.

This text of the book was written using the full version of Metrowerks
Code Warrior. You'll have to use slightly different steps when using the
limited version on the CD. Since the limited version can only work with the
sample files provided on the CD, the commands Add File ... and New Project
are not available.

So, if you are following along using the limited version of Code Warrior
that's on the CD, when the text tells you to use the New Project or the Add
File ... command, you should instead open the related project file and keep it
open throughout the exercise. All the associated files will already be in the
project and so you won't need the Add File ... command. Then, you can
follow the same procedures as if you were using the full version of
Code Warrior. ·

We've provided all the code discussed in the book on the CD, so you don't
have to retype it, unless you find it valuable to do so.

You should also note that Metrowerks cannot provide technical support for
this limited version. However, there is a way you can get all the
Code Warrior information you could ever want and also meet other Code
Warriors. See Appendix D for details. Once you buy a full-up version for
your very own, then Metrowerks will be happy to provide full technical
support.

Additional Notes
There are probably better ways to write some of the functions presented
here and I welcome input from you. However, the purpose of my code is to
illustrate Power Mac features while being readable by an audience of C

Introduction 0· ••

programmers with a wide range of experience. I also bias my code towards
readability because, more often than not, six months later I usually have to
modify the code for use in other projects.

While I've tried to produce error-free code, and I actually use some of these
programs in my day-to-day work, it's possible that some of the code ex
amples have bugs. Please send me bug reports via E-mail or some other
means. If you have access to AppleLink, my E-mail address is
T.THOMPSON, while on the Internet it is tom_thompson@bix.com. If you
prefer a more conventional method, mail your comments and bug reports
to me in care of Hayden Books.

Please note these signposts along the road as we travel.

Backround Info
Question mark icons flag sections of the book where additional background
information can be found. For those unfamiliar with a topic. this extra information
promotes a better understanding of the material. Seasoned Mac programmers
can skip these sections.

Important
Exclamation point icons signal important topics. These sections provide informa
tion necessary to understand the material in each chapter. or illustrate an
essential point on the software or operating system. Even seasoned programmers
might want to examine these sections for Power Mac-specific details.

Hazard
Bomb icons signal potential hazards. These sections supply crucial information
required to keep your program from crashing and your Power Mac system
intact. Do not skip these parts of the book.

~ Power Macintosh Programming Starter Kit
~···

User input text appears in a bold monospace font, as in

Type MyFile and press Return.

Directives, routines, streams, and functions appear in a monospace font,
as in

Before we call Munge_File () , we fetch the stopwatch cursor icon using
GetCursor ().

Filenames appear in quotation marks, as in

For a complete source code listing, check the file "switchBank.c" on
the CD-ROM.

This symbol• has been used to represent program lines that have
wrapped.

Well, enough preliminaries. Let's hit the road ...

' I .. ~~I

I

The Power Macs
and a Brief History

In early 1994, Apple changed the face of the personal computer
industry-again. The company took a powerful processor
technology previously available only in expensive workstations
and offered it to small businesses and average users through
affordable desktop computers. Importantly, these low-cost
computers won't run those arcane workstation operating
systems. Instead, they offer an interface renowned for its ease
of use: the Macintosh operating system, or Mac OS. Put simply,
Apple has introduced a new line of high-performance Macin
tosh computers, the Power Macs.

Since these Power Macs borrow heavily
from the Macintosh design, a brief history of the
Mac itself is in order.

0 Power Macintosh Programming Starter Kit
••

The Early Mac
Just a decade ago, Apple introduced its newest personal computer during
the 1984 Super Bowl. This famous commercial, titled "1984" and directed by
Ridley Scott, depicted a bleak, gray, future dystopia where shaven-headed
drones shuffled toward the ultimate video conference. A runner-hammer
held high and wearing an Apple logo on her shirt- raced onto the scene,
hotly pursued by the faceless thought police. The hammer was hurled at
the conference screen, shattering it. The implication was that Apple's then
new Macintosh computer would save us from that same gloomy fate. The
verdict is still out on whether or not the Mac accomplished that goal, but no
one disputes its effect on how we deal with computers and information.
Desktop publishing, digital image editing, color printing, and other applica
tions were either invented on the Mac or driven by the demands of its
users.

The original Macintosh (now termed "classic Mac" in Apple's technical
literature) was a small beige box with a 7.83 MHz 68000 processor. It came
equipped with a built-in 9-inch black-and-white monitor, 128K of random
access memory (RAM), a single custom 3 %-inch Sony floppy drive, two
serial ports, and 64K of read-only memory (ROM). The classic Mac was a
"closed system" since it offered no slots or easy expansion capabilities.

The Mac ROMs provided a large array of support routines that imple
mented the graphic user interface (GUI) and system services such as
memory management and file IjO. These routines are known collectively
as the Mac Toolbox. Since it is easier to use the Toolbox services than write
code from scratch, the Mac has always encouraged a consistency in appli
cation design. Much of the Mac's "personality," or behavior, comes from
these Toolbox routines.

· Chapter 1 • The Power Macs and a Brief History 0
••

Important l
Because Toolbox routines are relied on heavily when writing a Mac application,:
expect to become familiar with them as you progress through this book. Keep
Inside Macintosh nearby; those manuals provide important details on Toolbox
routines. As you become comfortable with programming the Mac, you'll fre-
quently consult them when writing new applications and adding features to
existing applications.

Since well-behaved applications only access the system through the
Toolbox interface, Apple has retained the option of significantly revising
the hardware and software behind the interface without requiring modifi
cations to existing applications. For example, a new Mac might use a new
stereo sound chip, but your application would still use the same sound
generation routines and be able to play music or sound effects on it. The
Toolbox sound routines still present the same interface to the programmer,
but the code underneath this interface layer converts your program's
commands into a format the new hardware understands. This design
eliminated many compatibility problems as Apple enhanced both the
Toolbox routines and the hardware. Of course, not all compatibility prob
lems were avoided, but Apple was able to limit them by using the Toolbox
to define a "virtual machine."

Just as important, the Mac GUI helped enforce a consistency in the
application's user interface, making Mac applications easier to use than
those on other computers. Once you mastered one application, you knew
the basics of using other Mac applications as well. To be sure, there were
application-specific features you had to learn (text formatting in a word
processor, or how to use a pen tool in a drawing package), but users didn't
start over each time with the basics. They could always count on finding
file manipulation commands under an application's File menu, and locating
the editing commands in the Edit menu.

~

0 Power Macintosh Programming Starter Kit
••

Faster and Better
Over the years, Apple improved the original Mac and introduced new
models. First the company added more memory and a SCSI port. With the
Mac II, Apple used the faster 68020 processor and opened the computer's
closed design by adding NuBus slots. It introduced newer Macs with faster
processors and a larger array of features. These machines went by such
arcane names as the Mac Hex, IIci, Hsi, IIvi, and IIvx. Apple minimized the
confusion temporarily by giving certain product lines unique group names.
The Mac notebook computers were labeled PowerBooks, and the first
68040 processor-based Macs were dubbed Quadras. Numbers were tacked
onto the end of the names to help identify the characteristics of each
computer. Still, things got out of hand. A mid-range line of Macs, labeled
Centris, appeared and disappeared, being integrated into the Quadra
product line. Apple introduced a Performa line of Macs, which were identi
cal computers but repackaged for the home market. Mac system taxonomy
and nomenclature began to require a scorecard-a very large one at that.

The Modern Mac
This brings us nearly to the present. Apple was feeling competitive market
pressures to lower costs and improve performance. To reduce hardware
design costs, Apple standardized most of its computers on three basic
models.

• The first model uses a low, compact chassis with minimalist expan
sion capabilities to reduce costs. This design debuted with the Centris
610, followed later by the Quadra 610. It has a single Processor Direct
Slot (PDS) that's connected directly to the processor bus. By use of an
adapter, the PDS can accept one NuBus board.

• The second model is a desktop configuration that offers three NuBus
expansion slots and more capacity for internal peripherals. This
chassis was first introduced with the Mac IIvx and was subsequently
used in the Centris 650 and Ouadra 650 systems.

• The third model is a mini-tower chassis introduced with the Ouadra
800 and followed by the Quadra 840AV. Like the second model, this
tower system offers three NuBus slots. However, there's ample space
for three to four large SCSI hard drives internally, plus a beefy power
supply to support them.

Chapter 1 • The Power Macs and a Brief History 0
••

All three models have a bay for adding an optional CD-ROM, other remov
able media drive, or a high-capacity hard drive.

In the area of performance, Apple had been investigating the use of RISC
processors in future system designs. This research was evident in products
such as Apple's 8·24 GC display board, which uses an AMD 29000 RISC
processor to accelerate screen drawing. Also, the company demonstrated
System 7, which was written for the 680x0 processor (henceforth known as
the 68K processor}, running in an emulator on a Motorola 88000 RISC
processor.

Background Information
RISC is the acronym for Reduced Instruction Set Computing. This processor
design achieves its high processing speed by implementing many simple instruc
tions. These instructions are usually of a fixed length and execute very rapidly,
usually one instruction for every tick of the system clock. This speed is accom
plished by limiting what each instruction can do. For example, there is a handful
of instructions that load data from memory to a register, or store data from a
register to memory. All other instructions perform fast operations on the contents
of the processor's many registers.

Also, these instructions are carefully tailored to minimize overlap between the
operations of other instructions. This lets processor designers add execution
units-subsections of the processor dedicated to a specific function. such as an
integer math unit and a floating-point math unit-that can run in parallel and
boost performance by executing two or more instructions simultaneously. As you
might expect. simpler instructions require you to use more of them to implement
a specific task, so RISC programs are typically larger than Complex Instruction
Set Computing (CISC) programs.

We can contrast RISC processors with CISC processors like the Motorola 68K
and the Intel x86 family. CISC uses variable length instructions to achieve high
code density (that is, lots of instructions can be packed into a small amount of
memory). These instructions, as their name implies, can perform a sophisticated
set of operations and use a wide variety of addressing schemes. One instruction
might perform an operation on a location in memory, then step to the next
memory location. Another might retrieve a value from memory and then perform

0 Power Macintosh Programming Starter Kit
••

a math operation on it. While some of the simpler CISC instructions can be
completed in one clock tick, many cannot. There are several reasons for this.
First, because of the variable-sized instructions. the processor is forced to
decode the incoming bytes to determine an instruction's length. This takes a
clock cycle to perform the initial decode, and then the processor spends addi
tional clock cycles reading in the rest of the instruction. Second, a complex
instruction that modifies a memory location requires extra clock cycles to
perform the bus operations necessary for the memory access.

Finally, the very complexity of CISC instructions often requires the implementation
of a small internal processor-a processor within a processor, so to speak
dedicated to instruction decoding and processor control. This internal processor
uses programs called microcode that perform the decode operations. Again, this
additional layer of complexity requires extra clock cycles to shuffle instructions
through the decoder and operate the microcode that translates the instruction
bits into processor actions. Because of RISC's simple instructions, a sophisticated
decoder isn't required: You won't find microcode inside a RISC processor. The
RISC instruction decoder is implemented completely in hardware and runs at
hardware speeds. It takes only several clock cycles at most to translate a RISC
instruction into its corresponding actions. A RISC processor's performance is
better than a CISC processor's because it can execute more instructions for a
given set of clock cycles than the CISC processor.

If RISC technology is so much better than CISC, why is the latter so pervasive
on desktop computers? RISC came onto the computing scene much later than
CISC. RISC came out of research at IBM. Stanford, and Berkeley in the early
1980s, and wasn't commercialized until the middle of that decade. In contrast,
Apple Computer sold its first microcomputer. the Apple I, in 1976. By the time
RISC processor architecture appeared in the computing industry, CISC processor
architecture had been in use for practically a decade.

While CISC has a big advantage in terms of an existing software base, RISC's
performance edge should entice users to make the switch. RISC not only allows
personal computers to run today's tasks such as spreadsheets, image editing,
engineering simulations, and 3-D image rendering significantly faster, it also
provides sufficient horsepower to enable a host of new system services and
applications. Some of the new system services might include a robust,

.. ~~~~!=:.~ ... ~ ... ~~ .. ~~=~.~~:.~.~:?.~.~:~~~.~~~7 .. o
preemptive, multitasking operating system, integrated telephony and fax func
tions, voice and handwriting recognition. and speech synthesis. New applications
would be real-time data processing, effortless 3-0 image generation and manipu
lation, and all sorts of multimedia work.

Apple and IBM, Who Could Have Imagined It?
In 1991, Apple teamed up with Motorola and IBM to form an alliance to
define the next-generation processor for future desktop computers. Despite
the huge legacy of applications composed of CISC code on their respective
platforms (Intel x86 code on IBM PCs and Motorola 68K code on
Macintoshes}, they decided that only RISC offered the necessary perfor
mance. Cost was an important factor here too: What hindered the accep
tance of other RISC systems was the high cost of the RISC processor's
fabrication, which in turn resulted in expensive computers.

The alliance is designing and producing a family of RISC processors to be
introduced in stages. Each family member is targeted at a specific segment
of the computer market. The first family member, the Power PC 601, was
introduced in April 1993. It's targeted at the low-end desktop market, but
offers better performance than today's most advanced CISC processor,
Intel's Pentium. In October 1993, the alliance introduced the PowerPC 603,
a low-power sibling to the PowerPC 601. It is geared toward the note-
book market. In April 1994, the PowerPC 604 was announced. Its high
performance design with multiple execution units addresses the mid- to
high-range desktop market. Even faster PowerPC processors will be
introduced over time.

The Power PC 601 processor is a 32-bit implementation of the 64-bit
PowerPC architecture around which these chips are designed. It has a
high-speed 32-bit address bus and 64-bit data bus. Three independent
execution units-an integer unit, a floating-point unit, and a branch unit
work in parallel to process as many as three instructions at once. A flexible
32K on-chip cache helps minimize execution stalls by keeping frequently
used code and data in the cache rather than fetching it from slower main
memory. To learn more about the PowerPC family of processors, read
appendix A.

0 Power Macintosh Programming Starter Kit
•••

The PowerPC 601 (from now on, I'll just call it the 601) is the heart of Apple's
new line of RISC-based Macintoshes. These systems, mentioned earlier, are
called Power Macs to emphasize their performance. There are three sys
tems, and each targets a specific user (see table 1.1). Each system is built
around one of the three standard model designs discussed earlier. Each
Power Mac comes equipped with a base BM of 80 nanosecond RAM, a hard
drive, built-in Ethernet, and 16-bit stereo sound hardware. Also bundled
with these computers is AppleScript, a batch control language for automat
ing certain tasks, and OuickTime Extension for multimedia support. An
optional AV Technologies expansion board that provides video IjO and
digital video capture can be plugged into the PDS slot on these systems.
Bundled with the AV boards is the PlainTalk voice recognition software
and the text-to-speech engine.

Table 1.1 An Overview of the Power Macintoshes

Power Macintosh 6100160 7100166 8100180

Processor PowerPC 601 PowerPC 601 PowerPC 601

Speed 60MHz 66MHz BO MHz

Cache optional optional 256K standard

Performance ""25% faster Nearly 2x
than 6100/60 faster than 6100/60

Native apps 2 to 4x 68040 @ 33 MHz

Emulated apps fast 68030 to 68040

.. ~~.~~~;:. ~ ... ~ ... ~~:'. ;,~~;:. ~~!'.' .. ~~?. : .. ~:~;~ ~~5.'~.7.. 0
Power Macintosh

RAM

DRAM expansion

SIMM slots

Expansion Slots

Storage

Standard
HD configs

Floppy

CD-ROM

Video

DRAM video

VRA.Mvideo

VRAM expansion

Standard support

SCSI

Networking

Other built-ins

6100160 7100166 8100180

SM standard SM standard SM standard

72M 136M 264M

2 4 8

One7"NuBus 3 full-size NuBus 3 full-size NuBus

160Mto 250M 250Mto 500M 250Mto1G

1.4M with DMA 1.4M with DMA 1.4M with DMA

Optional Optional Optional

Standard Standard Standard

1Mstandard 2Mstandard

2M 4M

1 monitor 2 monitors 2 monitors

High-speed High-speed High-speed
asynch asynch asynch

Dual SCSI channels

Ethernet on-board with
DMA channel, AAUI connector

16-bit audio stereo in/ out with DMA

2 Serial ports-LocalTalk with GeoPort
compatible with DMA channel

Apple Desktop Bus (ADB for input devices)

0 Power Macintosh Programming Starter Kit
•••

The Power Mac 6100/60 takes aim at the low-end user by providing a RISC
based Mac at a low price. It uses the Centris 610/Quadra 610 chassis and
the 601 processor is clocked at 60 MHz. The Power Mac 7100/66 uses the
Centris 650/Quadra 650 chassis. With the 601 clocked at 66 MHz and three
NuBus expansion slots, this system should meet the mid-range computer
user's needs. The Power Mac 8100/80 stakes out high-end users, with its
processor clocked at 80 MHz for best performance. Its Quadra 800 /840AV
chassis contains ample room for several high-speed SCSI hard drives, and
memory can be expanded up to 264M, which should satisfy the needs of
the most demanding power user. Both the Power Mac 7100/66 and the
8100/80 provide a second monitor port, which you can use to expand the
screen work area or to run a different operating system on the second
monitor.

The number after the slash in each Power Mac's name denotes the speed
of its processor clock. This naming scheme enables faster versions of these
Power Macintosh systems to be shipped with the same name because only
the trailing digits change. This arrangement eliminates a lot of the confu
sion created by the previous method in which minor changes to existing
Macs begat whole new model names. It also explicitly states the processor
speed, which is handy when comparing systems.

As nice as these systems are, you might suspect that there's a catch,
especially regarding software compatibility. After all, didn't Apple and the
others sacrifice the existing software base on the altar of performance?
Apple tries to let you have your cake and eat it too by placing a 68LC040
emulator in the RO Ms of these systems. This emulator is a sort of "virtual"
68040 processor that can execute the 68K code in existing Mac applica
tions without modification, but this emulator doesn't support the 68040's
floating-point unit (FPU) and memory management unit (MMU) instruc
tions. (Only very eclectic utility applications would ever try programming a
processor's MMU, and such code won't work anyway with the Power
Mac's vastly different memory architecture.) The emulator is complete in
every other detail so it can run the bulk of the existing 68K-based Mac
applications and utilities. Lack of an FPU in the emulator may or may not
be a problem, depending upon how smart the application software is in
dealing with the machine environment. If the application simply expects
an FPU, it will crash. Some applications detect the absence of an FPU, and

" .. 9~.~~~~~. ~ ... ~ ... ~~~. !'.~~~. ~~:;, .~~~. ~ .. ~~~~t. ~~':1~7 .. 0
either refuse to run, or will do their own computations in software. This
slows down the application significantly, because such software computa
tions run in the emulator. Those applications that use Apple's math rou
tines will run somewhat faster, because portions of these routines were
rewritten as PowerPC code.

One reason the emulator works is because of the virtual machine defined
by the Mac Toolbox routines. Recall that Mac applications obtain system
services (such as reading a file and drawing to the screen) through the
Toolbox, and these Toolbox calls act as well-defined entry points into the
operating system. What Apple accomplished with the Power Macs was to
literally slide a RISC processor into the system and then use "native" (that
is, PowerPC) Toolbox code to handle the application's requests. For ex
ample, the Mac OS provides a set of screen drawing primitives known
collectively as QuickDraw. An application's drawing functions that use
QuickDraw on a 68K Mac continue to work on a Power Mac without
recompiling the application. That's because the Power Macintosh ROMs
present an identical QuickDraw interface to the application, even though
this QuickDraw is written in PowerPC code. Whatever application code
isn't using the Toolbox gets executed by the emulator.

This is a simplified explanation of the situation, of course. The Power Mac's
operating system has to know at any given moment whether it's emulating
a 68K processor or running native PowerPC code. This is a serious problem
because not only is the instruction set different, but the system environ
ment for each processor is different. There are all sorts of system variables,
arguments pushed on the stack, and other elements that have to be ac
counted for when execution switches from the emulated 68K processor
environment to the PowerPC processor environment and back. A Mixed
Mode Manager built into the ROMs along with the emulator manages this
context switch. It keeps track of what processor environment the applica
tion is currently in, switches the context to the different environment when
required, and makes any required adjustments between the two. Such
adjustments might pass a drawing request to the native Toolbox code,
while another adjustment might communicate the result of the request
back to the calling program. For the most part, Mac programmers won't
have to concern themselves with how the Mixed Mode Manager works,
but there are exceptions. I'll cover them when we get into Power Mac
specific features in chapters 5 and 6.

0 Power Macintosh Programming Starter Kit
••

For those of you still waiting to hear about a catch in this setup, here it is:
The emulator-not surprisingly-musters only the performance of a fast
68030 or slow 68040 processor. Performance varies, depending upon how
often the 68K application calls the Toolbox routines written in PowerPC
code. Since Apple estimates that Mac applications spend 60 to 80 percent
of their time in Toolbox code, it's possible that a 68K application runs faster
than emulated speeds because it spends most of its time actually running
native Toolbox code rather than running as emulated 68K code. The perfor
mance question is complicated by the fact that, for compatibility reasons
and time to market issues, Apple hasn't yet ported all several thousand of
the Toolbox calls to PowerPC code. 68K Toolbox routines that weren't
ported get handled by the emulator. In some cases a call to the Toolbox
might execute native code, resulting in a brief performance boost, while
another Toolbox call might continue through the 68K emulator, for a perfor
mance hit. It's also important to note that the overhead of the Mixed Mode
Manager handling numerous context switches can degrade performance.

So are these Power Macs faster or not? Yes, they're faster. The emulator
and Mixed Mode Manager provide compatibility for existing software.
They serve as a bridge that allows 68K applications to run until the real
solution arrives: these same applications written in native code. For such
native applications, the overhead of the emulator and Mixed Mode Man
ager practically disappears, with the exception of those Toolbox routines
still implemented as 68K code. Over time, applications will run even faster
as more of the Mac Toolbox is rewritten as Power PC code. You can expect
future releases of the Mac OS to replace more of the 68K portions of the
Mac OS with native code, yielding better performance. However, early
reports indicate that despite the mixture of 68K and Power PC Toolbox
code, Mac applications recompiled into native code run very fast on the
Power Macs. On the low-end Power Mac 6100/60, such native applications
run at Intel Pentium speeds. These same programs run nearly twice as fast
on the Power Mac 8100/80.

Time for a Change (to Power Mac)
To make the switch to native Power Macintosh applications, programmers
need development tools that can compile their existing application code
into PowerPC code. While there are many different development tools
available, the best possible situation would be tools that run on both 68K
Macs and Power Macs. Source code that you wrote and tested on a 68K
Mac could be copied to a Power Mac and easily recompiled, making the
initial application port to the PowerPC a snap. (Note: those applications that
are fine-tuned to the 68K run-time environment will require some adjust
ments or even a major redesign.) The result is a pair of applications, each of
which runs on 68K Mac or a Power Mac. With some additional work, you
could combine the code in these two applications to make a fat binary
application, one that could run on both types of Macs. Or, if the target
audience is just Power Mac users, you'd simply write your source code on
the Power Mac to begin with. Application testing and maintenance would
be further simplified if these tools also provided a source code level
debugger.

Such development tools exist. It's time for you to meet Metrowerks
Code Warrior.

CodeWarrior:
A Guided Tour

This chapter provides a brief overview of software develop
ment, and introduces the Code Warrior development tools.
Intermediate and expert users can browse this chapter for
specific features of the Code Warrior compiler.

One of the most aggravating aspects of programming is the
wretched edit-compile-link-crash cycle. You know how it goes:
write the program source code, compile the source code, link
any libraries to the resulting object code, run the linked
program ... and watch it crash. Next, you use the debugger to
determine what caused the crash. Finally, you
restart the computer and the cycle begins anew
as you start editing the source code again.
There's no escaping this development cycle for
the moment,
unless there's a
huge break
through in
software technol
ogy soon. (I'm not

0 Power Macintosh Programming Starter Kit
•••

holding my breath while I wait for that to happen.) The realistic solution is
to make the development environment faster. A faster turnaround time on
this cycle means the programmer, rather than waiting on a slow compiler
or linker to run its course, spends the recovered time writing more code.

The code writing situation has improved dramatically with the introduction
of integrated development environments (IDEs). An IDE combines all the
development tools-editor, compiler, and linker-within a single application.
With a keystroke or a menu choice, a built-in editor creates a new file
window where you can enter a program's source code. Another keystroke
runs the compiler on the source code, and yet another keystroke links the
code and libraries. If you're feeling really brave, you can even launch the
resulting application and test it. When you quit the application (assuming
you don't crash), you land back in the development environment. These
IDEs greatly accelerate the turnaround time in writing software, and such
development tools have been wildly successful in the personal computer
industry. The first IDE was Lightspeed C, pioneered by THINK Technolo
gies, and introduced in 1985. (This was before the company was acquired
by Symantec and the compiler was renamed THINK C. To minimize confu
sion, I'll call it THINK C from now on.) The PC has similar development
ID Es.

Metrowerks Code Warrior offers such an integrated environment. Metro
werks Code Warrior is a software tool kit that features several utilities and a
compiler that contains the IDE. If you've used an IDE before, especially
THINK C's, then you'll feel right at home in Code Warrior. For this book
we're using the C compiler, but the Code Warrior CD contains a Pascal
compiler as well. For fans of Object Oriented Programming (OOP),
Code Warrior's C++ compiler is part of the C compiler. The Metrowerks
Code Warrior toolkit comes in several configurations. A Bronze package
offers a 68K version of the compiler and produces 68K applications only.
The Silver package has a fat binary version of the compiler. It generates
PowerPC code. This compiler thus runs on either 68K Macs or Power Macs,
but makes only PowerPC programs. The Gold package supplies both the
68K and PowerPC compilers.

Chapter 2 • CodeWarrior: A Guided Tour 07
••

CodeWarrior Requirements
One big advantage to Code Warrior is its small memory and disk footprint.
On a 68K Mac, the compiler requires System 7, a 68020 processor, 1.5M of
RAM, and 7M of hard disk space, although Metrowerks recommends a
68030-based Mac and 5M of RAM for best performance. On a Power
Macintosh, the Code Warrior compiler requires 2M of RAM and 7M on hard
disk. The compiler application, which hosts the integrated environment,
weighs in at just under 1M. The usual army of header files, libraries, and the
source code debugger application comprise the rest of the space. There's
also an OOP application framework called Power Plant and a Pane editor
called PowerPlant Constructor. The latter lets you rapidly design parts of
an application's interface.

Now that you know what CodeWarrior is, find out what it does. Take the
CD out of the book and insert it into your Mac's CD-ROM drive. If you have
plenty of room to spare, you can drag the entire contents of the CD-ROM to
your hard drive. (If you're using a 68K Mac, you can follow along too. With a
few exceptions, Code Warrior looks and operates the same way on both
computers.) Try to preserve the organization of the folders when you make
the copy, because certain programs such as the Toolserver rely on this
arrangement. The book also directs you to certain files based on this setup.
If you don't have sufficient room, double-click on the Software Installer
alias icon. After the Installer application launches, click on the Continue
button to get past the trademark screen and read the notice for late-break
ing information. Click on the Continue button again and choose the soft
ware you wish to install on your hard drive. Click on the Install button and
pick a destination drive and folder in the window that appears. When the
Installer finishes, click on the Quit button. Open the Metrowerks Tools
folder for your type of Mac (68K or PowerPC), followed by the Metrowerks
C/C++ folder. Now double-click on the Metrowerks C/C++ application icon
to launch it and start touring the development environment.

Important I
This text was written using the full version of Metrowerks CodeWarrior. You'll tej
have to use slightly different steps when using the limited version on the CD; the
limited version can only work with the sample files provided on the CD so the
commands Add File ... and New Project are not available.

0 Power Macintosh Programming Starter Kit
•••

So, if you are following along using the limited version of CodeWarrior that's on
the CD, when the text tells you to use the New Project or the Add File ... com
mand, you should instead open the related project file and keep it open
throughout the exercise. All the associated files will already be in the project and
so you won't need the Add File ... command. Then, you can follow the same
procedures as if you were using the full version of CodeWarrior.

The Toolbar
After the compiler launches, the first thing you'll notice is the Toolbar, as
shown in figure 2.1. This Toolbar serves double-duty as a command center
and status indicator. The upper half of the bar has an array of buttons, each
with its own icon. These buttons represent frequently used commands;
clicking on a button with the mouse executes the corresponding command.
It's pretty obvious as to what some of the icons do. For example, the printer
icon represents the Print command, the scissors icon depicts the Cut
command, and the paste jar icon signifies the Paste command. But what on
earth does that cracked egg icon mean? It's easy to find out: just move the
pointer to the icon and text explaining the command it represents-Disas
semble, in this case-appears in the bottom half of the Toolbar. With this
built-in self-reference, it shouldn't take you long to learn what each button
does. If the text for the command appears italicized, it means that the
command is disabled. Using the Disassemble command shown here as an
example, the command isn't active because there's no file open; it has
nothing to work with.

s File Edit Search Project Tools Window

Figure 2.1 The Toolbar

The bottom half of the Toolbar is the status display. This is the area where
either the command name for a button appears, as described above, or the
current status of a development tool is indicated, such as searching, com
piling, and linking.

Chapter 2 • CodeWarrior: A Guided Tour 09
•••

Don't worry if clicking on buttons isn't your style. Code Warrior uses good
interface design and lets you work with it the way that suits you best.
Those who prefer to point-and-shoot menu items can find all the Toolbar
commands in the menus. If you'd rather keep your hands on the keyboard,
there are keyboard equivalents for these commands. As always, you find
these keyboard equivalents cross-referenced in the menus. If necessary,
the Tools menu even lets you hide the Toolbar. Just think of the Toolbar as
a container of frequently used commands that you have ready access to
onscreen.

What if you don't like the commands in the Toolbar or the arrangement of
the commands already there? No problem. You can customize the Toolbar
to suit your needs. To rearrange the buttons, press Control and click on the
desired button. A dashed outline appears around that button. Next, drag
this outline to the desired spot on the Toolbar and release the mouse
button. Your button appears in this new spot. The other buttons shuffle
about to accommodate the button's new position.

If you don't like a certain command on the Toolbar, you can delete it by
pressing Control-Command and clicking on the offending button. To add a
command, press Control-Command while selecting it from a menu. Up to
fifty-two buttons can be added to the Toolbar, although the limit actually
depends upon the size of your monitor. The Tools menu has several com
mands that deal with the Toolbar. The Hide Toolbar command hides the
Toolbar. The Anchor Toolbar command "anchors" (makes immovable) the
Toolbar at the screen's upper left corner. Or you can unanchor the Toolbar
so that you can drag it to a different location onscreen. The Reset Toolbar
command restores the factory-default buttons in the Toolbar.

The Project
Code Warrior manages software development through the use of a project.
This is a special file that consolidates all the source, header, and library files
used by your program. When you write a program in Code Warrior, you first
create a project file and name it. Once created, you can add source files and
libraries to the project file.

0 Power Macintosh Programming Starter Kit
•••

Metrowerks CodeWarrior uses the project information to control the devel
opment environment so that it provides version tracking for the source
files . Let's say you edit two out of many previously compiled source files in
the project, and now want to create a new version of your application. The
project knows to compile only the two altered files, while linking in the
object code for the rest of the files. If you change a header file, the environ
ment recompiles all of the source files which rely on that particular header
file. This version tracking keeps all of the project's object code up to date,
yet it does so efficiently by compiling only those files that require it.

With that in mind, give the Toolbar some company by creating a project.
Select New Project... from the File menu. A Standard File dialog box ap
pears. Type in a name, such as foobar, and press Return. A Project window
appears, as shown in figure 2.2

a File Edit Search Project Tools Window

lifl. al,xzl,XJI ol~. lill 1~1t@JllR1illi!ll1Ell.©lml1'1.!$1lL~l ~l.&I !f!.1
· ·· · ··· · · ·· ··············~··············· .. ·······················

0 fil~(s) OK OK II

Figure 2.2 The foobar Project window

Looks pretty dull, doesn't it? That's because the Project window serves as a
snapshot of a program's makeup. It normally displays a program's relevant
source code files and any libraries used to make the program. Along with
each source file and library filename is the size of the object code and data
created by these files and information about whether each file contains
segment and debug data. Because you've just created the project and
there's nothing in it, the Project window is empty.

.. ~:~P.t.~~ .~ ... ~ ... ~~~;.':'::'.??.';. ~. ~~!~:'.~.; ?.~~. 0
Liven up project foobar a bit. Go back to the File menu and select New. A
window opens. This window belongs to the built-in editor and is called the
Program window. To keep it simple, type in the C source to the well-known
"Hello world" program (see figure 2.3). Now select Save from the File menu
to save this window as a file named hello. c.

s File Edit Search Project Tools Window

#include <stdio.h >

void main(void)
{

pri nt f ("Hello world \ n") ;
} / * end main() */

I

[BIQI Line : 7

Figure 2.3 A Program window with source code

Now you'll add "hello.c" to the project. As you might ex pect, the
Project menu has all sorts of commands that deal with projects. The Add
Window and Add File ... commands add files to the project and the Remove
command takes them out of the project. The Compile command compiles
source code files and adds the resulting object code to the project, and the
Disassemble command disassembles object code files in the project. There
are also some version control commands to either remove all object files
(Remove Binaries) or make the object code of all modified source files
current by compiling them (Bring Up To Date). There's a Make command
that does a full-blown compile of all the source code files if required, and

0 .. :.~".'.~'.. ~~;!~~~:~ .. i:.~~;: .~!1!! ~~. ~1:1.~!''.. ~i~
links the resulting object code and library files to create a Mac application.
A Build Library command gives you the option of linking your code to
generate a library file if you are distributing your own utilities or develop
ment tools . Finally, the Run command performs a make operation on your
application and then launches it so that you can test it.

Back to adding "hello.c" to project foobar. Choose Add Window from the
Project menu. This places the open file in the Program window-in this
case, "hello.c"-into the project. Now take a look at the Project window (see
figure 2.4) .

Iii foobar
r;1e Code Data ll!I 'tf:

ID. ~
It

tzy
1 file(s) OK OK Ii

Figure 2.4 The Project window with "hello. c " added

The file "hello.c" appears in a slot (the dotted lines) in the Project window.
Since the file has yet to be compiled, the sizes of the object code and data
are zero. Now pick Compile from the same menu (or from the Toolbar). The
built-in C compiler compiles the file. The Toolbar's status window will
briefly flash a message telling you it's compiling "hello.c" and the object
and data numbers will change. Select Run from the Project menu. The
linker links the code again (Code Warrior takes no chances) and a Message
window appears (see figure 2.5).

The Message window shows errors and warnings detected by the compiler
and linker. It looks like we forgot a library, doesn't it? Go back to the Project
menu and add some libraries to the project. Use the Add File ... command,
which presents a Standard File dialog box that you use to maneuver into
the ANSI folder and then into the Libraries folder. Choose the library file
"ANSI C.PPC.Lib." (For a 68K Mac the path is the same, but choose

Chapter 2 • CodeWarrior: A Guided Tour 03 , •••••••••..•.•••.................•........................••••..••............••••.............................

"ANSI (2i) C.68.Lib.") Now the Project window shows two filenames. For a
68K Mac, you're done, but for a Power Mac you need to add several support
libraries. Two of these are located in the MacOS folder and then in the
Libraries folder. They are called "InterfaceLib," and "MathLib." In the C++
Runtime folder is a small bit of code called "MWCRuntime.Lib." Again, use
the Add File ... command to put these files into your project. The object code
for these files obviously hasn't been loaded into project foobar, because like
"hello.c" previously, the size of each file's code and data are zero. Select
Bring Up To Date from the Project menu and you'll see these numbers
change as the libraries load (see figure 2.6) .

S File Edit Search Project Tools Window

•include <stdio . h>

void main(void)
{
printf (""Hello world \ n "");
} / * end main O * /

•• Link Error : undefined : '_initialize' <descr iptor)

Line : 5

File
hello.c

Figure 2.5 The Message window displaying an error

Code
40 !

OK OK

0 Power Macintosh Programming Starter Kit
••

:Iii foobflr
File Code Data Ii:! "
ANSI C.PPC .Lib ! 82176 ! 14495 ! [) {}
hello .c 40 ! 2 1 ! [)
lnterfacelib 0 ! 0 i [)
MYCRuntime.Lib 3268 l 487 i [)
Mathl1b 0 0 !It

5 file(s) 83K 14K

Figure 2.6 The Project window with the source file compiled and libraries
added

Finally, you can choose Run from the Project menu and watch the program
run. To exit the program, select Quit from the application's File menu. You'll
see a dialog box asking if you want to save foobar.A.out (which is the
contents of the screen). Click on the Don't Save button to discard the data
and return to Code Warrior. You'll notice that the default name of the appli
cation file just created was "foobar.A." Later, in the preferences section of
Code Warrior, you'll learn how to change the application's name. This was
obviously a simple programming example, but it should give you a feel for
maneuvering about in the Code Warrior environment, setting up projects,
and creating a Mac application.

The Project window helps you manage the project's files in various ways.
Double-clicking on a file 's slot in the window makes the editor open that
particular file. If you click on the file's slot under the icon that looks like a
bug, a dot appears. This informs the compiler that you want the file com
piled with debugging information. Next to the debug icon is a small rect
angle with lines, called the segment icon. It indicates whether the file has
multiple segments. (You'll learn more about segments in a moment.) If you
click on the small boxed arrowhead (or triangle) icon for the hello.c slot and
hold down the mouse button, a small pop-up menu appears (see figure 2.7).

This pop-up menu shows what header files the compiler used while pro
cessing this file's source code. Picking a filename from this menu opens the
header file for your inspection. At the top of this menu, a single menu item
appears that states either "Has to be compiled" or Touch. The "Has to be
compiled" item is just informative: you haven't compiled the file yet, or

Chapter 2 • CodeWarrior: A Guided Tour 05
•••

you've just made a change to the file that requires it be compiled again. As
a Touch item, you can choose it to inform Code Warrior that you want the
file recompiled the next time the project is brought up-to-date, whether
you've changed the file or not. Note that once you've "touched" a file, you
can't unmark the file. For libraries, this pop-up menu will either state "Has
to be compiled" if the library isn't loaded, or Touch if it is loaded.

~ foobar
File Code Data 151-ANSI C.PPC.Ub ! 82 176 ! 14495 ! [I 0

lnterf.acel ib O!
HYCRuntime .Ub 3268 ! 48.l <stdio .h >
HathUb o ! <yvals .h>

L MacHeadersPPC

~
5 file(s) 83K 14K Ii

Figure 2.7 The porrup menu for "hello.c " shows the header files used

On 68K Macs, you can click on the file slot in the Project window and drag
it about. If you drag the slot beyond the dashed line of the bottom-most
filename, you create a new segment (see figure 2.8). This allows you to
visually arrange your source files into the code segments you want; the
linker will handle the details of building the code segments when it creates
the application. You can also use the #pragma segment directive to define
segments in your 68K source code. If you do this, in the Project window a
dot appears under the segment icon in the file 's slot, which indicates that
the source file has multiple segments.

§Iii Switch
File Code Data Iii.

I HacOS.Ub ! 30790 ! 0 ! [I ~ •.
~

~
2 file(s) 32K OK Qj

Figure 2.8 Segmenting a 68K Mac program by dragging a filename

0 Power Macintosh Programming Starter Kit
•••

Background Info
On 68K Macs. object code can be combined into chunks called segments.

Segments came about because early Macs required program code to be in

small pieces that could be brought into or removed from memory as required.

With 128K of RAM, the operating system had to shoehorn code into any spare

opening it could find in memory. These openings might appear at different

memory addresses as code was loaded and purged while the Mac application

ran. For this technique to work, program code can't use absolute addressing

schemes, but instead uses PC-relative addressing. PC-relative addresses are

calculated by using the current address in the Program Counter (PC), plus an

offset value. This enables the code to be position independent and loaded into

any part of memory. The size of these offsets for PC addressing was limited by

the classic Mac's 68000 processor to only 16 bits. (Actually, the processor used

a signed two's complement value. The sign of the value pointed to the next

address's direction. relative to the PC. A positive value pointed forward to higher

addresses, while a negative sign pointed backward to lower addresses. Because

it was a signed value. only 15 bits were actually used for the offset value.) This

limited code segments to 32K in size. Later Macs used the 68020 and succes

sive processors that had a 32-bit offset value, effectively removing the 32K size

limitation on segments. Nevertheless. for compatibility with 68000-based Macs.

and to operate efficiently within limited memory, most programmers still segment

68K Mac code. This isn't an issue for Power Macs, because pieces of 601 code,

called code fragments, can be any size. A Power Mac application is usually a

single code fragment, although it might obtain code or data from other code

fragments.

Figure 2.9 summarizes the Project window's functions.

" ... ~~: P.;~; .~ ... ~ ... ~~?~':".: '.'.;?;:. ~. ~~!?:'.~ ,; ?.~'. .. 0
Click here to have debug -

information added to object code

foobar

.-- A dot indicates the file
has multiple segments

File Code Dah Ii!! 1 t
•llP•••••Pl•EJ•iil~· ~C2>fil-- Click on triangle to get pop-

D bl - 1· k th ---11-J ANSI.lib ~ ! 59304 ! O! !II µ:., up menu of header files ou e c IC on e source lnte.-facelib ; o' o ! !II
file to open it with the editor Mathlib o i o [!II and to touch the source file

......... t.:'.'.'.'~.~~'.'~.i.".'! .:". , ~16 ' oJD.

'

5 file(s) 58K OK

Figure 2.9 How to use the Project wi.ndow to manage project information

The Editor
Since you'll spend most of your time entering and modifying source code in
the built-in editor, Metrowerks has added a number of features to make
your stay a pleasant one. Let's check out the editor by opening one of the
sample project files on the CD-ROM. Go to the FlipDepth folder and open
the file "Klepto.7t." After the Project window opens, double-click on a source
file slot Klepto.c to open the file with the editor. (Such filenames end with
a .c extension. You can't open a library or object file with the editor.) A
Program window appears, displaying the file's source code (see figure 2.10).

Two icons are in the bottom left comer of this Program window. The first
icon is a triangle, and looks similar to the one in the Project window. Sure
enough, if you click on it and hold down the mouse button, a pop-up menu
appears, containing the names of all the header files used by the file (see
figure 2.11).

You can scroll through the names and open the desired header file by
selecting a filename from the menu. The item at the very top of this Tri
angle menu is either Touch or "Has to be compiled." These items operate
the same way as in the Project window. The Triangle menu thus provides a
convenient way to access certain project management functions when a
Program window hides the Project window.

0 Power Macintosh Programming Starter Kit
··~···· ·

s File Edit Search Project Tools Window

L@l, • l.xzlX!I o I~' l!ll 1~1 1,@ IA£Jl!i!!l!$lll ©l@lbll1Jli!ll l1<.lil1 !f L& I 'il'l
. -... -................. .

I n i tGra f(&qd . thePor t) ;
lnitFonts<>;
FI ushEvents<everyEvent , 0);
In i tWindows<);
In i tMenus<);
TElni t o;
I n i tOia l ogs< NI L);

/ ,. Open the input file ,./

Klepto.c

Standar dGe t Fi le(NIL, ONE....FILE_TYPE , shlbType, & inputReply >;
i f (inpu t Reply .s fGood)

{
Getuol <NIL, &o ldVo l >; I* Save current volume ,. /
if ((fi leError = FSpOpenOF <&i nputReply . sfFi le , fsCurPerm , &inFi leRefNum)) != noErr)

{
SysBeep < 30) ;
return ;
} /* end if error ,./

/ ,. Open the output file */
StandardPutFi le ("\pSave code f r agment in:" , fi leName, &outputReply >;
if <outputReply . sfGood)

{
SetVol <NIL , outputReply . sfFi le. vRefNum >;
f i I eError = FSpCreate <&outputRepl y . sfFi le ,
s witch(f i I eError)

{
case noErr :
break;
case dupFNErr : /*Fi le already e x ists , wipe it out*/

i f ((fi leError = FSpDelete<&outputReply . sfFi le)) == noErr)

Figure 2.10 The Program window

The Braces icon next to the Triangle icon is another pop-up menu, called
the Function menu. When you click on the Braces icon and hold down the
mouse button, a pop-up menu appears and displays all of the C functions
the file uses (see figure 2.12). If you Option-click on this icon, the function
names appear in aiphabetical order. A checkmark by the function's name
indicates that this function has the editor's insertion point located in it. If
you pick a function name from this menu, the editor takes you to that
function, with the first line of its source code appearing at the top of the
Program window. This is very handy when you're tracking down a Toolbox
routine and happen to know the name of the function that uses it. Note that
the editor's insertion point doesn't move when you jump around the file this
way. To avoid editing mishaps, be sure to click on a source line when you
land in the desired function.

s File Edit Search Project Tools Window

Klepto.c
lni tGraf<&qd. thePorU;
lni tFonts (>;
Fl":lsh~vents < everyEvenl , O>;

Touch

<Conditiona 1Macros .h >
<Controls .h>
<Dia logs .h >
<Errors .h>
<Events .h>
<Files.h>
<F ixMalh .h >
<Fonts .h>
< lntlResources .h >

le */
IL , ONE...FILE_TYPE, shlbType, & inputReply l;
Good)

&o I dVo I >; / * Save current vo tume */
r = FSpOpenOF (& inputReply . sfFi le, fsCurPerm , & inFi leRefNum)) != noErr)

0) ;

if error */

i le */
i le (" \ pSave code fragment in : ", fi leName , &outputReply >;
ly . sfGood)

!l!!!i

<Memory .h>
<Menus .h>
<MixedMode .h>
<OSUtils .h>
<QuickDr aw .h >
<Ouickdr awT ext .h >
<Resources .h>
<Scripl.h >
<Segl oad .h >
<SlandardFile .h>
<TexlEdil.h >

IL , outputRepty . sfFi le . vRefNum >; / * Make the destination volume current */ :::;::

<T exlUtils .h >
<ToolUtils .h>

= FSpCreate<&outputReply . sfFi le, fi l eCreator , fi leType, smSystemScripU; '".'.i'.:
i I eError) /* Process resu I t from F i I e Manager *I

noErr :

dupFNErr: / * Fi le already ex ists , wipe it out */
if ((fi leError = FSpOelete <&outputRep l y . sfFi le)) == noErr)

Figure 2.11 The Triangle pop-up menu presents a list of header files used by

the file

The editor also has a comprehensive set of search functions that let you
locate something by name. For example, if you know only the routine
name, pick Find ... from the Search menu. A Find window appears, where
you can type in the routine name (see figure 2.13). You can search multiple
files, such as the header files or the source files in your project. You can
perform a search on a name and replace it with another name, an action
called search and replace. It's valuable when you want to replace all
occurrences of, say, the Toolbox routine NewWindow() with NewCWindow() in
your program.

0 .. :.~':'.~'.. ~~;:~!~~~. ;,;~~:: .~~:~~. ~.'~.~;;, ~i~ ... "'
s File Edit Search Project Tools Window

lni tGraf< &qd . thePorU;
lni tFonts< >;
FlushEvents<everyEvent , O>;
I ni tJ.Ji ndows<);
lni tMenus (>;
TElnitO;
I ni tDi a I ogs<N IU;

I* Open the input file */

Klepto.c

StandardGetF i I e<NI l , ONE...F I LE_ TYPE , sh I bType , & i nputRep ly >;
if (inputReply . sfGood~

{
GetUol <NIL , &ol dUol l; /* Save current volume */
if ((f i leError = FSpOpenDF C& inputReply . sfFi le, fsCurPerm, & inFi leRefNum)) != noErr)

(
SysBeep (30) ;
return ;
} /* end if error */

l!ll!I

I* Open the output file */ mm
StandardPutFi le ("\pSave code fragment in : ", fi leName, &outputReply); :··:·=

if (~~::~~::~~~ :~::::~eply sfFi le .vRefNum); /* Make the destination vo lume current* / Jij!
1
1

fi leError = FSpCreate <&outpulReply .sfFi le, fi JeCrealor, fi leType, smSystemScr ipt> ;
sw i tch (f i I eError) /* Process resu I t f rom Fi I e Manager *I

Figure 2.12

Figure 2.13

(
case noErr:
break;
case dupFNErr : /* F i I e a I ready

if ((f i leError = FSpDelete<&outputReply.sfFi le))
wipe it out *I

The Function pop-up menu lists all of the file's functions

find

find:' NewWindow(I I [8J Ignore Case
. . D Entire Word

Replace:f~------------~ D Wrap Around L D RegeHp
r@Multi File Search------------~

D stop At EOF (Project Sources J
Replace All

(Others... J [Hepl<H !~ J

I ~
0 (Project Headers)

~----~o-~(Cl(rnr J Ur,[;;;;;;;;;;;;;;F;;;;in;;;;d ;;;;;;;;;;;;~])

The Find window

Chapter 2 • CodeWarrior: A Guided Tour 01 ...

Further along the bottom of the Program window, past the Triangle and
Function pop-up menus, is an area that indicates the editor insertion point's
location by displaying the appropriate source code line number. If you click
on this area, the Go To Line Number dialog box appears (see figure 2.14).
When you enter a new line number here and click on the OK button, the
editor insertion point and the Program window display are moved to the
desired line. This go to capability is helpful when the Message window
gives you an error message with a line number. A useful shortcut that
jumps you to the problem source line is to double-click on the error mes
sage in the Message window.

Go To Line Number: l._3_28 _ ___.

[cancel]~

Figure 2.14 The Go To LJne Number dialog box

Keyboard mavens can maneuver through the source code using the arrow
keys. Move the editor insertion point one character left or right using the
Left and Right Arrow keys and one line up or down using the Up and Down
Arrow keys. Using the Option key with the Left and Right Arrow keys
moves the insertion point left or right by a word. If you use the Command
key with these arrow keys, the insertion point is placed at the start or end
of a line. When you use the Option key with the Up and Down Arrow keys,
you move the insertion point up or down one "page," or screen, of text. The
Command key, when used with these keys, moves the insertion point to the
beginning or end of the file.

If you have a color monitor, you can set the colors of the C language key
words (the default is blue) and of the comments (the default is red) in the
source code. Coloring the key words helps you quickly spot a particular key
word as you scroll through the code. Coloring the comments helps you
identify chunks of source code peppered among lengthy comments in the
file. (You are going to comment your code a lot, right?) It also helps you
spot those early morning coding gaffes where you accidentally forget to
close a comment and thus inadvertently comment out dozens of lines of
source code.

0 Power Macintosh Programming Starter Kit
•••

The editor automatically scans your code as you enter it, watching to see if
you balance your bracket characters. Bracket characters consist of the
parentheses (), the square brackets [], and the braces {}. If you add a
surplus right bracket character, the editor triggers an alert sound. You
should note that this scan function operates only after the source code is
saved to a file and that surplus left brackets are not detected. If you don't
like the editor beeping at you, this feature can be disabled with the Prefer
ences ... command. Finally, if you need to know where the file you're editing
is located on the Mac's hard drive, press the Command key and click on the
Program window's title bar. A pop-up menu shows the complete pathname
of the open file.

Figure 2.15 summarizes the features of the Program window.

Command-dick here to display this file's pathname

l
19 Switch1 .c

MoreMas lers <) ;
MoreMas ters () ;
MoreMas ters () ;
MoreMas le r s<) ;

I n i lGrof<&qd . lhePor l >;
l ni lFonls< >;
FI ushEvenls<everyEvenl , 0 >;
I n i lW i ndows< >;
lni tMenus < >;
TElni lO;
lni lDiologs;
lni tCursor < >;

initStotus == TRUE ; /* Assume success ful setup (for now)*/
for (i = APPLE..MENU ; i < = LAST ..MENU; i ++)

{
myMenus I i J = GelMenu< i >;
if <myMenus li J ==NI U

re turn FALSE;
} ; / *end for*/

AddAesMenu (myMenus I APPLE..MENU J , • DAVA .) ; /* gel DA *I

for (i = APPLE..MENU; i <= LAST ..MENU; i ++)
I nser tMenu < myMenus I i J , 0 >;

DrawMenuBar () ;

if(! lnit...RE....Evenls()) /* Set up our high- leve l event handlers */
re turn FALSE;

Gel..lleplh< >;

return ini tS tatus;

/ * Get machine 's video info ,
/* Peri scope menu *I

Cli~k here to jump to a new line
The Function menu displays the functions in the file

l oad var iables, and se tup */

The Triangle menu displays the header files used by this file

Figure 2.15 Features of the Program window

<i-

i
!!!!I

Ill

Chapter 2 • CodeWarrior: A Guided Tour 03
••

The Compiler and Linker
The built-in C compiler is unobtrusive. It doesn't have windows like the
built-in editor, yet at the click of a button or keystroke, you summon it to
compile your source code. On large projects, you'll see status messages in
the Toolbar that indicate it's busily processing header and source code
files. If your code passes muster, values change in the Project window. If
not, the compiler opens the Message window and drops error and warning
messages into it. Ditto for the linker: It quietly does its job and either an
application file pops into existence or warnings appear in the Message
window. This isn't to say these two tools in the IDE aren't important.
They're absolutely crucial to generating the end result, the finished Mac
application. Because the project file keeps track of all the relevant informa
tion-source files, header files, libraries, and whether these files are cur
rent-all the compiler and linker really have to do is the follow-up work of
translating source code into object code and linking the object code into an
application file.

Nevertheless, there are situations when you want to exercise control over
what the compiler and linker do. For example, you might want to generate
code for a shared library instead of an application, or have the linker add
debug symbols into the resulting application. But if the compiler and linker
have such low profiles, how do you get at them to change their behavior?
You do this through the Preferences settings. Since these Preferences also
touch on the operation of other parts of the IDE we'll briefly review all the
preference settings.

Preferences
Start by selecting the Preferences ... command from the Edit menu. The
Preferences dialog box appears (see figure 2.16). In the left side of the
window is a scrolling list of icons. Each icon represents a certain portion, or
group, of the environment. Select the group whose settings you want to
change by scrolling through this icon list with the mouse and clicking on
the group's icon. Each group has a unique panel in the Preferences window
that controls a number of adjustable settings. Figure 2.16 shows the panel
for the Font group.

0 Power Macintosh Programming Starter Kit
•••

Rpply to open project.

·~
~ Font & Size Info:

I
Font: I Monaco ... 1
Size: I 9 ... 1 a I program therefore I am.

Editor

-Language

~~' Tab Size: Jml II ir~~ 181 nuto Indent

* Processor -&

[Factory Settings) [Reuert Panel) [Cancel) ([OK l)

Figure 2.16 The Preferences window, showing the Font group panel
settings

At the window's bottom are four buttons: Factory Settings, Revert Panel,
Cancel, and OK. They operate as follows:

• The Factory Settings button takes all the settings of the chosen group
and restores them to the default values suggested by Metrowerks.
You'd use this button if you suspected that one of the group settings
you changed might be causing a problem.

• The Revert Panel button undoes any changes you made to a group's
panel. Unlike the Factory Settings button, Revert lets you preserve the
current group settings. For example, say you've already got your
custom Linker group preferences set up properly. You happen to be
examining the Linker group panel and accidentally click on a
checkbox. Revert discards the last change, without wiping out the rest
of the settings.

• The Cancel button closes the Preferences window without saving any
changes you made to a group's settings.

• The OK button saves the changes you made to the group settings and
closes the Preferences window. You can make changes to one group
and scroll to another group panel to make changes before clicking on
the OK button. For certain groups, you get an alert window warning
you that to use these new settings, you have to recompile or relink the

Chapter 2 • CodeWarrior: A Guided Tour 05
•••

project's files. The Factory Settings and Revert buttons dim or undim
depending upon whether the current group preferences match that
button's settings.

Let's complete our tour by examining each group's preference settings. In
figure 2.16, the Preferences window displays the Font group's current
settings. This adjusts the font used in the Program window. One pop-up
menu selects the font while the other pop-up menu selects the size.

The Editor preferences, as its name implies, adjusts the built-in editor (see
figure 2.17). Change the color of comments or keywords by clicking on their
respective color bar in the panel. This action opens the Color Picker win
dow, where you select another color. The Dynamic Scroll checkbox deter
mines how text scrolls when you move the scroller (or thumb) on a Pro
gram window. Save All before "Run" determines whether all modified
source files are automatically saved before Code Warrior builds and
launches your application. It's a good idea to check this setting since the
application might cause a crash severe enough to force you to restart the
Mac-you'd like to have the last file changes saved to disk in this situation.
The Remember settings tell the editor how to precisely reproduce the
Program window when you open a file. The Projector Aware setting is for
use with Apple's Projector, a version control application.

Apply to open project.

Color Info:------------.
[8J Color SyntaH

Comments:_
Key Words:

[8J Dynamic Scroll [8J Saue All before "R un "
Remember:---------~

[8J Font Preferences
[8J Window Position And Size
[8J Selection Position

II :i:i1i 1:8:1 Balance While Typing
Flashing Delay: IDI

[8J Projector
Aware 14\ Processor ~

[Factory Settings J [Reuert Panel J [Cancel J n OK n

Figure 2.17 The Editor preferences group

0 Power Macintosh Programming Starter Kit
•••

The Language preferences group determines how the compiler handles
your source code (see figure 2.18). The Source Model pop-up menu lets you
select Custom, ANSI C, ANSI C++, Apple C, or Apple C++ (the latter two
settings allow for language extensions added by Apple to support the Mac
Toolbox). The appropriate Language Info options are checked automati
cally when you make a choice from this pop-up menu. The Custom setting
is selected when you pick Language Info settings that don't provide com
patibility with the ANSI standard. The Prefix File option lets you select or
deselect a file that contains a precompiled set of header files. The default is
MacHeadersPPC (or MacHeaders68K), which is a Metrowerks-supplied file
with a subset of precompiled System 7 header files .

Apply to Metrowerks defaults.

D
Font ~ilJ~

D \!i!~

i i
Warnings ~

Source Model: I Apple C ...,. I
Language Info:-------~

O Rctiuate CH Compiler
O RAM conformance
0 ANSI CIC++ Key Words Only
[8J Require Function Prototypes
O EHpand Trigraph Sequences
0 Enums Always Int
O Enable MPW Pointer Type Rules

PrefiH Filel . · . • ·

[Factory Settings J [Reuert Panel] [Cancel J ([OK]J

Figure 2.18 The Language preferences group

The Warnings Info group lets you set how strict or lax the compiler is with
the language (see figure 2.19). Depending upon the settings you make, the
compiler can ignore the vagrancies of code written at 2 AM, or notify you of
"dead code" (that is, code that's not used by the function). I prefer to check
the Extended Error Checking item, as it provides a modest amount of
sanity checks on my program code.

Chapter 2 • CodeWarrior: A Guided Tour 07
••

Hpply to Metrowerks defaults.

Warnings Info:-----------.

(Factory Settings J

D Illegal Pragmas
D Empty Declarations
D Possible Errors
D Unused Uariables
D Unused Hrguments
D EHtras Commas

181 EHtended Error Checking

(Heuert Panel J [Cancel J ([OK JJ

Figure 2.19 The Warnings preferences group

The Processor preferences group is shown in figure 2.20. The Power
Macintosh settings are displayed. The Struct Alignment pop-up menu lets
you pick 68K, 68K 4-byte, or PowerPC memory alignment for the data struc
tures used in your program. Use the first two settings if you plan to make an
application to run on both Power Macs and 68K Macs. Make String Literals
ReadOnly determines whether character strings are stored in the program
code (which are marked read-only in code fragments). The Generate Profiler
Calls has the compiler generate code that supports code tracing for the
purpose of measuring a program's performance. The other options adjust
optimization settings. The Optimize pop-up menu tells the compiler to
optimize for size or speed. On a 68K Mac, you'll have a different Preferences
panel where you can set optimizations and designate what type of proces
sor code is generated (68000, 68020, and 68881 floating-point instructions).

The Linker preferences group determines how Power Mac code is linked
(see figure 2.21). The Link Options settings determine whether symbol table
and address map files are created (which are useful for debugging), supress
warning messages (necessary for certain types of code), and whether the
linker operates out of memory. The Entry Points settings are for the code
fragment's initialization function, its main() function, and a completion
function. You'll typically leave these settings alone. The 68K Mac linker
group panel lets you add debug information to the executable code, gener
ate symbol table files, and indicate whether or not you want to create multi
segmented code.

0 Power Macintosh Programming Starter Kit
•••

Hpply to Metrowerks defaults.

Struct Hlignment: 68K ..-1
D Make String Literals HeadOnly

D Generate Profiler Calls

Optimizations:--------~

D Instruction Scheduling

D Global Optimization

IZ! Peephole Optimization

Optimize for: Speed ..-1

(Factory Settings J [Re11ert Panel) (Cancel) ([OK J)

Figure 2.20 The Processor preferences for a Power Mac

The PEF (Preferred Executable Format) preferences group panel (see figure
2.22) determines whether or not the code fragment that makes up your
application exports symbols and shares code or data. The def a ult settings
in the pop-up menus are for a typical Mac application, and like the PEF
group, just leave them alone for now. The 68K Mac version of Code Warrior
doesn't have a PEF group at this time.

Hpply to Metrowerks defaults.

Link Options:---------~
IZI Generate SYM File

IZI Use Full Path Names

D Generate Link Map

D Suppress Warning Messages

IZI Faster Linking (uses more memory)

Entry Points:---------~
Initialization: I-initialize

Main: I

Termination: I-terminate

[Factory Settings) (Re11ert Panel J [Cancel J ([OK JJ

Figure 2.21 The Linker group preferences for a Power Mac

" .. ::~~f.1.~'. .~ ... ~ ... ::~~!'.':':~'.'.;?;;. ~. ~~!~!'.~.; ?.~'.. 0
Apply to Metrowerks defaults.

None II mm [Hport Symbols:

Processor ;;;;:; Uersion Info:-----------,
.,,,:: Old Definition: I • II j!:',! Old lmplementation::o=llo=====~
;!'''' Current Uersion: O

·~ ll!i:I D Order Code Section by #pragma segment

~ ::mi D Share Data Section
11.:!:J mii' D [Hpand Uninitialized Data
Project ~

[Factory Settings J [Aeuert Panel J [Cancel J ([OK D

Figure 2.22 The PEF group preferences for a Power Mac

The Project preferences group panel (see figure 2.23) is where you'll spend
most of your time. Here's where you set the type of code you generate
(Application, Shared Library, Code Resource, or Library) in the Project Type
pop-up menu. This is also where you set the creator and type of the result
ing file produced by the project and choose its name. Finally, you indicate
the amount of memory the application requires and its SIZE flags using the
SIZE Flags pop-up menu. The operating system uses the SIZE flags to
determine what sorts of events the application responds to and whether it
can operate in the background. Some special-purpose applications, such as
File Sharing, can only operate in the background and there's a special flag
for that here as well.

Finally, the Access Paths group settings, as shown in figure 2.24, let you
select additional folders for the compiler and linker to search. They nor
mally only search the Metrowerks folder and your project folder for any
header, source, and library files. Access Paths lets you redirect the search
path of these tools to other folders when looking for project files. This is
handy in situations where certain project files might be located on a server
for version control. To do this, click on the Add button and use the Standard
File dialog box to navigate and select other folders . The Change button lets
you alter existing search paths and the Remove button deletes folders from
the search path.

0 Power Macintosh Programming Starter Kit
••

Apply to Metrowerks defaults.

Project Type: Application .,.. I
I" t· I f Rpp 1ca ion no:

File Name I CoolRpp
It

'SIZE' Flags~
Creator I????

Type lnPPL

Preferred Heap Size (k) 1384

Minimum Heap Size (k) 1384

Stack Size (k) 164

[Factory Settings) (Reuert Panel) (Cancel) ((OK)J

Figure 2.23 The Project preferences group for a Power Mac

Rpply to open project.

D

I
Rdditional Recess Paths:

1¢1 I]
Linke-r

D
PEF

D ,.

':«: (Add) (Change) (Remoue) Project ._,.i
D Treat #include < •.• > as #include " ... ".

(Factory Settings) (Reuert Panel) (Cancel) ((OK l)

Figure 2.24 The Access Paths group preferences

The Tour's Over
In this chapter we've looked at some of the features of CodeWarrior's IDE.
We've even run the "Hello world" program, to see how you build a project,
and ultimately an application, in Code Warrior. This tour has not covered all
of the features Metrowerks Code Warrior has, but it has touched on the
significant ones. We'll use this knowledge to build a practical C application
on the Power Macintosh-starting in the next chapter.

Beginning Programs

This chapter is for the novice programmer. It shows you how to
use the ANSI C Standard Libraries supported by the
Metrowerks C compiler to do simple tasks on the Mac. The
interface for these programs won't be pretty, given that the
ANSI Libraries stem from UNIX's character-based heritage. The
goal here is not appearance, however, but function. These
libraries provide a safety net that you can rely on as you explore
the Mac's Toolbox and operating system.

As an aspiring Mac programmer, you've no doubt heard this
often-quoted maxim about the Mac: "Easy to use, hard to
program." Why is this? If you've already leafed through the half
dozen or so volumes of Inside Macintosh, you may even know
the answer to that question.

Out of this wealth of information, where do you
start? Put another way, how do you determine
which Toolbox calls to use when starting an
application and
which ones to call
in order to access
services provided
by the operating
system?

0 Power Macintosh Programming Starter Kit
•••

About the Toolbox
The Mac Toolbox and operating system provide over four thousand rou
tines at your disposal, of which about several hundred are commonly used.
The Mac is a complex gestalt of these routines and data structures that you
must understand fairly well in order to write a program. How do you know
which routines to use? After all, you must understand how to initialize the
application's environment so that these routines function, how to plug the
application into the operating system so that it coexists and cooperates
with fellow applications, and last, but not least, how an event-driven inter
face works. This seems like a rather dismal attitude to take for a book on
Mac programming, but I'd rather you appreciate that there's a lot to learn
just to get started in Mac programming, than get frustrated and give up
entirely.

Background Info
So that we won't get confused later when I start talking about calling functions.

we'll make a distinction between those functions our program uses, versus those

belonging to the Mac Toolbox/OS. Following Inside Macintosh conventions. I'll

use the term routine to indicate Toolbox functions.

Having said that, now I can say it's not impossible to learn how to program
the Mac. The trick is to limit the unknowns you're dealing with so you can
break the job into smaller, manageable portions. Fortunately, Metrowerks
Code Warrior itself provides a way to limit the problems you face, as you'll
see in a moment. Another way to deal with some of the unknowns is to
have plenty of source code examples handy. This way you can learn how
particular routines operate and when to use them. I'll help you here by
supplying some working code examples.

Munge It
I firmly believe in learning by doing, so let's start by solving a problem. One
of my jobs as a technical editor is to take manuscripts and edit them. I
clarify certain points in the manuscript, reorganize the flow of thought,

Chapter 3 • Beginning Programs 03
111

request missing material, and perform other editorial tasks. I receive these
manuscripts as ASCII text files sent via electronic mail (E-mail) on the
Internet or other online services. Ideally, I get a manuscript file and simply
start editing it in a word processor. In reality, sometimes there are prob
lems.

Most word processors, both Mac and PC, use a carriage-return (CR) charac
ter to end a paragraph of text. This allows the word processor to neatly
"wrap" or fit the text on the screen as you add or eliminate words inside the
paragraph. However, some word processors save the text with CRs at the
end of each line. The text looks fine-until you have to change the manu
script using a different word processor. Because of the extra CRs, the word
processor can't wrap the words, and you wind up with a mass of jumbled
text. The author probably meant well, but the editor now has to laboriously
prune those spare CRs from the text, line by line. This type of file is a head
ache for me to edit.

After hacking away at one long manuscript for over an hour, I decided that
this chore was a great job for the Mac to handle. I'd write a Mac program to
munge, or hack out, those extra CRs for me. Basically, the program would
read an input file, filter out most of the CRs, and write the rest of the data to
an output file. Thinking more along the lines of how the computer has to do
it, the program reads a byte-or character, actually-from the input file,
examines the byte, and if it passes muster (it's not a CR), writes the byte to
an output file. If the byte is a CR, it's tossed into the bit bucket instead. If
the program detects the end of a paragraph (a double CR, or a blank line),
then the end of paragraph (the double CR) is written to the output file. This
makes the resulting output ASCII text organized the way a word processor
expects it. Stated this way, the problem seems easy enough.

Now here's where Code Warrior helps. Metrowerks Code Warrior supports
the ANSI C Standard Library, which is based on the UNIX C function
libraries. These libraries supply functions that handle file I/O and provide
an interactive console where you enter commands and get screen output.
Since these functions were originally implemented on old UNIX systems,
they typically deal with character-based I/O. This doesn't make for a nice
Mac interface, but it lets you concentrate on the problem without having to
learn lots of Toolbox routines all at once.

0 Power Macintosh Programming Starter Kit
••

(Important
.....-: CodeWarrior's console 1/0 provides support for the C Standard Library's stdin,
~

stdout, and stderr streams. It opens a virtual console window where all these
streams are directed. The console window is set up and managed by
CodeWarrior's SIOUX (Simple Input/Output User eXchange) library, which is
automatically linked to an application when you add the ANSI C library (ANSI.lib)
to the project.

Getting Started
Let's get started by launching the Code Warrior C compiler. The easiest way
to do this is go inside Code Warrior folder, open the Code Examples f folder,
followed by the Munger f folder, and double-click on the file "munger.c."
Code Warrior launches, and you should see the following code:

#include <stdio.h>

#define CR 0x0D

#define LF 0x0A

FILE *istream, *ostream;

void main (void)

short crflag;
long icount, ocount;
char ifile[64), ofile[64);
int nextbyte;

printf ("Enter input file: ");
gets (ifile);
if ((istream = fopen(ifile, "rb")) ==NULL)

printf ("\nError opening input\n");

return;
} /* end if *I

/* Path names must be 64 chars or less */

/* Open the file OK? */

/* NO, say so */

/* Bail out *I

" .. ~~~P.~~.; ... ~ .. ~~~~~~~~!: .~~~~.':'.'!:':. 0
printf ("Enter output file: ');
gets (ofile);
if ((ostream = fopen (ofile, "wb"))

{

fclose (istream);

NULL)

printf ("\nError opening output\n');
return;
} /* end if •/

icount 0L;
ocount 0L;
crflag 0;

t• Set counters •/

t• Read char.s until end of file •/
while ((nextbyte = fgetc (istream)) I= EOF)

{

icount++;
switch (nextbyte)

case CR:
if (crflag >= 1)

{

fputc(nextbyte, ostream);
fputc(nextbyte, ostream);
crf1ag = 0;
ocount++;
} /* end if *I

else
crf1ag++;

break; /* end case CR •/
case LF:
break; /* end case LF */

default:
fputc (nextbyte, ostream);
ocount++;
crflag = 0;

} /* end switch */
/* end while */

fclose (istream);
fclose (ostream);
printf ('Bytes read: %ld\n", icount);
printf ("Bytes written: %ld\n", ocount);
} /* end main () */

/* Can we write an output file? •/

t• NO. First close input file •/ ,. then warn, and bail out •/

/* Bump input char counter */

/* What char was read? */

/* Two in a row, end of paragraph */

/* Write two CRs to the output */

/* Reset the flag */

/* Bump the flag, and toss the CR */

/*Toss LF, but don't touch crflag */

/* All other char.s get written */

/* Clear the flag */

/* Clean up */

0 Power Macintosh Programming Starter Kit
••

Let's take a closer look at this code.

The Code Tour

The munger program first prompts for an input file name, using the printf()
function to put a message in a console window made by the C Standard
Library. It uses gets() to read the keyboard when you type in a filename and
press Return. Your input is placed in the array ifile. Note that ifile and ofile
are sixty-four characters long. If you're opening files with either long
names, or the file is in a folder with a long name, you need to increase these
array sizes so that the pathname fits.

Background Info
A pathname is the complete description of the directory path used to locate a

file. For example. if the Mac's hard drive is named Tachyon, and a file "Read

Me" is in the folder New Info f, the pathname for the file is Tachyon:New Info

f:Read Me. This convention is similar to DOS/Windows pathnames, but instead

of a backslash (\), the Mac OS uses colons as separator between the drive,

folder, and filenames. This is also why you can't use a colon in a filename.

Next, the program uses fopen () to open the file:

if ((istream = fopen(ifile, "rb")) ==NULL)
{

printf ("\nError opening input\n");
return;
} /* end if *I

/* Open the file OK? */

/* NO, say so */

/* Bail out */

Note that we check to see if this open operation fails. If it does fail, the
program halts. With the minimalist input provided by the C Standard
Library, it's quite possible for you to mistype the filename, which creates an
error condition when fopen () fails to open the file. The program then uses
similar code to set up the output file and checks for trouble as it does so.
This is a good time to emphasize that no matter how simple or complex
your program is, always, ALWAYS, ALWAYS, check for errors. You can
eliminate a lot of crashes, trashed hard disks, and needless debugging by
having your program determine if the routines it calls complete success
fully.

.••• ~~~,I;~~.~ ••• '!! •.. ~~~~~~~!!.~~.':'.'!'.~.~
The heart of the program is the while loop, which reads a stream of bytes
from the input file and processes them. The switch statement inside the
loop determines the fate of the byte under scrutiny. Any character other
than a CR or linefeed (LF) falls through to the default case, which writes the
character to the output file. Since I get lots of files from PCs, and DOS ASCII
text files use a LF-CR combination to end each line, the program also filters
out any LF characters it happens to find in the character stream. The
program handles this filtering operation with the LF case statement, which
simply does nothing, and as a consequence the LF never gets written to the
output file.

Now to those CRs, which are handled by the case statement:

case CR:
if (crflag >= 1)

{

else

fputc(nextbyte, ostream);
fputc(nextbyte, ostream);
crflag = 0;
ocount++;
} /* end if */

crflag++;
break; /* end case CR */

/* Two in a row, end of paragraph */

/* Write two CRs to the output */

/* Reset the flag */

/* Bump the flag, and toss the CR */

The program logic works on the assumption that most folks separate
paragraphs with a blank line. This means that the last line of the paragraph
ends with a CR, which is followed immediately by a blank line composed of
a second CR So when the program encounters the first CR character, it
gets tossed into the bit bucket and the flag crflag is incremented. If a
character other than CR is read next, the program clears crflag. This
handles situations where the CR just terminates a line of text. Notice the
exception here: ALF character doesn't reset crflag, since it occurs jointly
with the CR in DOS files. When a second CR in a row occurs because of a
blank line, the if statement detects that crf lag is set. The code now writes
two CRs to the output file to ensure the line break between paragraphs. Of
course, we clear crflag to begin the search for the next paragraph ending.

Finally, the program .closes both files and writes a summary to the console
window of the bytes read and written, as tallied by the counters icount and
ocount. Since the program's function is to throw away bytes, fewer bytes

0 Power Macintosh Programming Starter Kit
111

should have been written than read. It's not necessary to do this, but the
summary serves as a sanity check on the program's operation, which is
reassuring to me. It's possible to defeat the paragraph detection logic by
submitting an ASCII text file with no blank lines between each paragraph,
but I can add thirty to seventy blank lines to a manuscript within minutes,
while manually stripping CRs from over several hundred lines takes up to
an hour.

Important
This text was written using the full version of Metrowerks CodeWarrior. You'll
have to use slightly different steps when using the limited version on the CD: the
limited version can only work with the sample files provided on the CD so the
commands Add File ... and New Project are not available.

So, if you are following along using the limited version of CodeWarrior that's on
the CD, when the text tells you to use the New Project or the Add File ... com
mand. you should instead open the related project file and keep it open
throughout the exercise. All the associated files will already be in the project so
you won't need the Add File ... command. Then, you can follow the same proce
dures as if you were using the full version of CodeWarrior.

Making Munger
Let's make this file munging program. We've opened the file "munger.c," so
the next step is to make a project for it. From the File menu, select New
Project ... , type Munge. 7t (you get the 1t character by typing Option-P) for the
project name into the Standard File dialog box that appears, and press
Return. There's an informal convention where you denote a project file by
attaching either a .7t or .prj extension to the name. This naming convention
isn't required, but if you're working with other programmers or plan to
share code with other users, it helps identify the project file for them. Now
choose Add File ... from the Project menu. In the Standard File dialog box
that appears, locate the file "munger.c" and click on the Add button (see
figure 3.1).

""." ". """ "." ". ". "" ".". ". """" "." ""."."." " .. ~~:'P.'.':'..;,,. ~" ~?~!~~~~!! .~'.~~;:'.~.~. 0
la Mun9er t ""I

~ =Tachyon

[Eject l
[Desktop l
([Add J)

~ [Add all l
Select files to add ... Remoue

["l'hMll

~
[Remoue all)

Done

Cancel

Figure 3.1 Adding "munger.c" to a project

The Add button dims, and next you click on the Done button. The source
file "munger.c" is added to project Munger.7t. Since we're adding files to the
project, let's finish up by adding the library files. Again, using Add File ... ,
select the files "InterfaceLib," and "MathLib," from the path
CodeWarrior:MW C/ C++ PPC f:MacOS f:Libraries f, "MWCRuntime.Lib"
from the path CodeWarrior:MW C/ C++ PPC f:C++ Runtime f, and "ANSI
C.PPC.Lib" from the path CodeWarrior:MW C/ C++ PPC f:ANSI f:Libraries f.
Once you've collected all these files, click on the Done button and these
files appear in the Project window (see figure 3.2).

File Code Data ml =tfi
lnterfaceUb 0 ! 0 ! (El {}
MathUb o! o! (El t-=-1

.. m:m l!EI
MYCRuntime .Ub 0 ! 0 ! (El

........... ~r.t.!i.! .. l::.:."'.1"..C.: .:~~~... ~!...... oJD.

5 file(s) OK OK

Figure 3.2 Adding the library files to project Munger. n

0 Power Macintosh Programming Starter Kit
•••

We're not done yet. Select Preferences ... from the Edit menu. Scroll to and
click on the Language group icon. In the panel that appears, click on the
checkbox for Require Function Prototypes (see figure 3.3). This setting
demands that you declare each function, specifying the function's number
and type of input arguments and the type of the result (if any). This can
catch potential problems that can occur when you call the function with a
set of arguments different from what it expects. This might happen be
cause you're modifying the function, or inadvertently passed the function
an argument of the wrong type, as when you call a Toolbox routine. In
either case, checking Require Function Prototypes nails this error at com
pile time. Otherwise, when the program runs, such improper function calls
might cause a crash. I also delete the MacHeadersPPC precompiled header
filename from the Prefix File Item. This is because my work often involves
parts of the Mac OS that aren't normally in the precompiled header file.

Rpply to open project .

• -'vtarnin9s

II
Processor

n
Linker

Source Model: J Rpple C T I
Language Info:-------~

D Rctiuate C++ Compiler
D RRM conformance
0 RNSI CIC++ Key Words Only
181 Require Function Prototype\
D EHpand Trigraph Sequences
D Enums Rlways Int
D Enable MPW Pointer Type Rules

OK JI

Figure 3.3 Setting the Language preferences for project Munger. n

Next, go the the Warnings group and click on Extended Error Checking.
Like Require Function Prototypes, we actually don't need this setting for
this project, but since both enforce good programming practices, you ought
to get into the habit of setting them now. Extended Error Checking uses
stricter rules when compiling the C code, flagging code goofs such as
unused variables.

Chapter 3 • Beginning Programs 01
111

Now scroll to the Linker group icon and click on it. In this group's panel, go
to the Entry Points section. We're just going to check the default functions
that get called when our program initializes, starts, and exits. These func
tions, which are part of the Power Mac run-time architecture, get called
when a native program launches and quits. For the Initialization item in this
panel, you should see the _initialize function name. The Main item has a
function name of _start. This function is responsible for calling our
program's main () function. The Termination item (see figure 3.4) has the
function name_ terminate. For typical C programs, _initialize and
_terminate do nothing. For C++ programs, _initialize sets up any static
C++ program's objects, while_ terminate destroys these static C++ objects.

Finally, go to the Project panel and type Munger for the application name
into the File Name text box (see figure 3.5) and click on the OK button. Click
on the Toolbar's Make button or select Make from the Project menu, and let
CodeWarrior go to work on the project. If there are no problems, processing
statements from the compiler and linker briefly appear in the Toolbar's
status area. An application named Munger is created.

Apply to open project.

Link Options:--------~
181 Generate SYM File

181 Use Full Path Names

D Generate Link Map

D Suppress Warning Messages

181 Faster Linking (uses more memory)

Entry Points:--------~
Initialization: I-initialize

M11in:I

Termination: ;:::1-=t=e=rm=i=n=at=e=

(Factory Settings J (Reuert Panel J (Cancel J ([OK JJ

Figure 3.4 Setting the Tennination entiy point for the project

0 Power Macintosh Programming Starter Kit
•••

Apply to open project.

• :illli

Access Paths i

Project Type: Application ,., I
Application Info:-------~

File Name l._m_u_n-"-ge_r-"I'--------'I

Creator I????

Type I APPL

Preferred Heap Size (k) 1384
===I

Minimum Heap Size (k) j 384

Stack Size (k) F=l 6=4==i

'S 1 ZE' Flags~

[Factory Settings] [Reuert Panel] (Cancel] ([OK]J

Figure 3.5 Setting the name of the application file that the project makes

Running Munger

Suppose that on a Mac hard drive named Tachyon, in the CodeWarrior
tools folder called Code Warrior f, that there's a folder named Code Ex
amples f, followed by a folder named Munger f. Inside it is a text file called
"PowerPC.txt." Suppose "PowerPC.txt" is loaded with surplus CRs. First,
open the file in Mac Write Pro and examine the file with the Show Invisibles
set in the View menu. Show Invisibles displays all the characters in the
file-including invisible control characters such as CR-instead of just text
characters. In figure 3.6, you can see that each line ends with a small bent
arrow symbol; they represent CRs. If you don't have Mac Write Pro, don't
worry: other word processors can also display such "invisible" characters.
Check the documentation for your word processor for details how to do
this.

... s~;r.~;'.. ; ... ~ ... ~;~:~~:~~.~~~~;~~.~. 0
s File Edit Font Size Format Frame Uiew

Pag• 1

IBM·andMotorola·announce ·first silicon·on·PowerPC·603.J I
,J
At theMicroprocessor·Forumtoday ·IBm·and Motorola ·jointly .,J
an no u need ·the ·first·fabricatio n ·Of the ·Second· PowerP C ·RI S C +l
microprocessor, ·the· 6 O 3. Th is ·was ·achieved-less ·than· 1 2 .,J
months·after·announcing·initial·silicon·onthe·PowerPC·601.·+l
The·PPC·603provides·highperformancewhileconsuming·little ·+l
power, making ·itideal·for·notebook ·computer·des ig ns . ..i
+l
The·PPC· 6 0 3·uses·3.3.Y, ·0.5 micron, 4- leve I metal, ·static ·+l
CMOS ·technology-to pack· 1 .6mill ion transistors·onto·a·die·+l
that's·7.4mm·by·11 .5mm.-By·contrast,.the·PPC·601 ·uses·3.6·+l
V, ·0.6micron·static·CMOS-to·place·2.Bm il lion·transistors·on·a·.J
die·120·mm·square. ·Likethe· PPC·601 ,.the·PPC·603·.J
implements·a ·32-bit-version·oft he ·64-bitPowerPC ·+l
architecture, with ·a· 3 2-b it address ·bus ·and a · 3 2-·or· 64-b itdata .,J
bus.· It· uses t he ·Same ·S upersca lar ·design w ith· 3 ·instruction ·+l
dispatch.·However,the·PPC·603·does·ditfer·fromthe·PP C·601 ·+l
in ·Severa I areas.· First, ·the· PP C · 6 O 3 ·uses ·a· Harvard ·architecture: .,J
it· has ·tw'o ·separate· 8 ·KB ·caches, ·One ·for· instructions, a nd ·One ·+l
for·data. ·Each ·cache· has· its ·own MM U. ·Both ·Cac hes are ·tw'o-+l

Figure 3.6 A sample text file, with CRs at the end of every line

It's time to set "munger" to work on this file and see what happens. Launch
"munger" from Metrowerks Code Warrior by clicking on the Run button in
the Toolbar. A console window called munger.out appears. Type in the
pathname to the sample text file we examined earlier as follows:
Tachyon:CodeWarrior /:Code Examples /:Munger f:PowerPC.txt. Of course,
if your hard drive name and Code Warrior tools folder are named differently,
you'll type in the appropriate names into the pathname. If you goof on the
filename, "munger" complains and the program stops. If the filename is OK,
"munger" asks for an output filename. Type in a filename that uses the
same file path, such as Tachyon: CodeWarrior f: Code Examples f: Munger
f: PowerPC. out. Press Return and "munger" processes the file. You'll get a

0 Power Macintosh Programming Starter Kit
111

summary of the operation, as shown in figure 3.7. The munger.out console
window remains present, and you have to pick Quit from the File menu to
leave "munger." When you do so, a dialog box appears that asks if you
want to save munger.out's contents. Click on the Save button if the console
window's output is important to you. Otherwise, click on Don't Save to
discard the console window's output. This feature enables you to capture
the output of a job as required. For lengthy pathnames, as in our example,
the SIOUX console window lets you copy and paste characters. You only
have to type the pathname in once for the input file prompt, select this text
with the mouse, copy, and then paste the bulk of the pathname into the
prompt for the output file pathname. Now all you have to type is the output
filename.

Mu'!.9._er.out
Enter input f i I e : Tachyon: CodeWarr i or : Code Examp I es f: Munger f : PowerPC . txt ~
Enter output f i I e : Tachyon : CodeWarr i or : Code Examp I es f : Munger f : PowerPC . out
Bytes read : 555 7
Bytes wr i tten : 5455

I

Figure 3.7 The console window of program "munger" after it processes a file

Now if you open the resulting file "PowerPC.out" with your favorite word
processor, you'll see that "munger" did handle the surplus CRs (see figure
3.8).

Chapter 3 • Beginning Programs 05
I Ill I II I II I Ill I 111 Ill Ill I 11I111I11I11I1111111111I1111111111111I1111111IIII11IIII111I11I11I1111111111I11I111111 I

s File Edit Font Size Style Format Frame Uiew

PowerPC.out (Conuerted)

Page 1

_13 _14 JS _16 J7 I

IBM·a ndMotorola announce ·firstsi licon·o n · PowerPC·60 3+1 ~
+I
At·theM icroprocessor·Forum today ·IBm·a nd Motorola ·jointly a nnou nced-the·first·
fabrication·Of·the ·second·PowerPC· RIS Cm icroprocessor,·the · 60 3. ·This·waS·ach ieved ·
less·than·12monthsafter·announcing·initial·silicon·onthe·PowerPC·601. The·PPC·
60 3provides· h igh·performance while ·consuming ·little power, mak ing·itideal·for·
notebook·computer·designs.+f
+I

_is I~
l~I

lllili

The·PPC·603 ·uses· 3.3.Y, · O.Smicron, -4 ·level·metal, ·static CMOS-technology-to-pack·
1.6million·transistors·onto·a·die ·that's· 7.4mm·by ·11 .Smm. ·By contrast,.the PPC·6 01 ·
uses·3.6V,·0.6micron·static·CMOS ·to·place ·2.8million·transistors ona ·die· 120mm·
square. ·Like ·the· PPC·601 , ·the· PPC ·603 ·implements·a · 32-bit·versio n ofthe·64-bit·
PowerPC·architecture, with·a · 3 2-bit·address·bUs·and·a ·32-·or·64-bit·data ·bus.· It uses·
the·same·superscalar·design with·3 ·instruction·dispatch. ·However, ·the· PPC · 60 3 ·does·
differ from-the·PPC ·601 ·in·several·areas. ·First, the·PPC·603 ·uses·a ·Harvard·
architecture:· it has ·two ·Separate· 8 ·KB ·Caches, ·One ·for· instructions, and ·One ·for·data. ·
Each·cache·has·its·ownMMU. ·Both ·caches·are·two-way ·set-associative·and· use·an·
LRU·algorithm .·Next,-the·PPC·603·has·S·independentexecution·units.·lthasthe·same· l'!iil
branch pred iction·unit(BPU), ·integer·unit(IU), and·floating-point u nit(FPU), ·thatcan · ::ii!!
dispatch-three· instructio ns·simu ltaneously, the·same·as ·the · PPC· 6O1 . ·However, the· J1
P PC·603·features a ·new· load/store· u n it{LS U), ·and ·system·register·unit{S RU) thatare · ,,.,,

Ch. . '""""'" . T•_sj_ ,..,.

Figure 3.8 The munged output file

Where's the Mac?
OK, so we got some C code to run on the Mac, but where is that easy-to-use
Mac interface? The point is that we got code running quickly without getting
mired in too many details. We let the C Standard Library handle the job of
initialization. It also provided I/ O through a Mac window masquer-acting as a
console window. The important thing to carry away from this exercise is that
you can use the C Standard Library to act as a scaffolding while you test
various algorithms and Toolbox calls. The programs you make this way aren't
meant to be friendly, just useful enough to test code. We will start adding our
own Mac interface to our "munge" program in the next chapter.

0 Power Macintosh Programming Starter Kit
•••

Here's another example where the C Standard Library pitches in while we
investigate some Toolbox routines. Under System 7, active applications are
called processes. Certain system services such as File Sharing, PlainTalk
voice recognition, and the Express Modem are actually processes them
selves. These system services don't show up on the application menu, but
they do operate quietly in the background. As the Mac migrates to a pre
emptive multitasking OS, processes will become even more important to
the overall operating system design. With that in mind, let's take a closer
look at processes.

Processes Revealed
The Mac OS allocates each process a partition in memory where it runs and
assigns it a unique ID number. This ID number is called the process serial
number (PSN) and it is used by the operating system to reference the
process and control it. Inside Macintosh: Processes documents a group of
Toolbox routines, known collectively as the Process Manager, that manage
these processes and supply information on them. To find out more about
processes, let's examine another quick program. Go the the Code Examples
f folder, and open the Process f folder. Double-click on the "process.c" file.

#include <processes.h>
#include <stdio.h>

void main (void)

register int
ProcessinfoRec
ProcessSerialNumber
FSSpec
unsigned char
unsigned char

i;

thisProcess;
process;
thisFileSpec;
typeBuffer[5] = {0};
signatureBuffer[5] = {0};

thisProcess.processAppSpec = &thisFileSpec; /* Aim pointer at our storage */
thisProcess.processinfoLength = sizeof(ProcessinfoRec); /*Store record size*/
thisProcess.processName = (unsigned char*) NewPtr(32); /*Allocate room for the name*/
process.highLongOfPSN = kNoProcess;
process.lowLongOfPSN = kNoProcess;

while (GetNextProcess(&process) == noErr)

/* Clear out process serial number */

/* Loop until all processes found */

•• ~~~~~;~.~ ••• ~ ••• ~;~~~~!~~.~~?~.':'.':'.' •• ~
*/

if (GetProcessinformation(&process, &thisProcess) == noErr) /* Obtain detailed info

for (i = 0; i <= 3; i++) /* Copy type & sig info into string buffers */

typeBuffer[i] = ((char*) &thisProcess.processType)[i];
signatureBuffer[i] = ((char*) &thisProcess.processSignature)[i];
} /*end for */

printf ("Process SN: %ld, %ld, Type: %s, Signature: %s, Name: "
thisProcess.processNumber.highLongOfPSN,
thisProcess.processNumber.lowLongOfPSN,
typeBuffer,
signatureBuffer);

printf (' %s \n", P2CStr(thisProcess.processName)); /*Now print the name*/
} /* end if */

/* end while */
} /*end main() */

This program uses the Process Manager to obtain information about all of
the processes running on the system. Notice that we include one more
header file, <processes. h>, to the source. This header file defines the Pro
cess Manager routines and a data structure called ProcessinfoRec that acts
as a container for all of the process's relevant information. The lines:

thisProcess.processAppSpec = &thisFileSpec; /* Aim pointer at our storage */
thisProcess.processinfoLength = sizeof(ProcessinfoRec); /*Store record size */

thisProcess.processName = (unsigned char*) NewPtr(32); /*Allocate room for the name */
process.highLongOfPSN = kNoProcess; /* Clear out process serial number */
process.lowLongOfPSN = kNoProcess;

are used to set up our local copy of ProcessinfoRec, called thisProcess. Then
we direct pointers in thisProcess to the appropriate storage locations. For
example, processAppSpec, which contains the location of the file that created
the process, is aimed at thisFileSpec. And processName, which holds the
process's name, is directed to a chunk of memory allocated by NewPtr (),a
Toolbox memory allocation routine. Last, we clean out the PSN variables by
assigning kNoProcess, which equals zero, to it.

Now we use a while loop that calls the Process Manager routine
GetNextProcess () repeatedly. GetNextProcess (),when called with a PSN of 0,
starts at the beginning of an internal list of PSNs maintained by the Process
Manager and returns the first PSN on the list. By passing each returned PSN

0 Power Macintosh Programming Starter Kit
•••

back to GetNextProcess () on subsequent tours of the loop, we walk this list
and use another routine, GetProcessinformation (),to grab information on
every process in the system. When GetNextProcess () finally reaches the
end of the PSN list, it returns an error value and the loop completes.

While the loop cycles, GetProcessinformation () extracts in-depth informa
tion on the current process and stuffs it into thisProcess. As usual, notice
that we check for errors. If GetProcessinformation () reports no errors after
it completes, we dump some of the information it gathered to the console
window.

Gathering Processes

It's time to compile the "process.c" program and see what it gathers. There
are seven steps, and they are nearly identical to the first program,
"munger."

1. Save the code (if you typed it in) into a file called "process.c."

2. Create a new project called process.1t, and add "process.c" to the
project. Then round up the usual suspects, "InterfaceLib," "MathLib,"
"MWCRuntime.Lib", "and "ANSI C.PPC.Lib" and add them as well. The
Project window should resemble figure 3.9.

lnterfaceL ib
Hathlib !
HYCRuntime.Lib !
pr·· .. · ::::• = 0 0

5 file(s) OK OK

Figure 3.9 The Project window for the process program

3. Set the Language and Warning preferences the same way you did for
the Munger.1t project.

Chapter 3 • Beginning Programs 09
••

4. In the Linker pref er enc es panel, check the entry point settings. As
mentioned previously, the defaults for this program are fine, but you
should get into the habit of visiting this panel when we start writing
more capable Mac applications.

5. Name the output file Process in the Project preferences panel.

6. With all the preferences set, make the program.

7. Finally, pick Run from the Project window. The console window
appears and displays information on each process's PSN, type, signa
ture, and name (see figure 3.10). Note the presence of our own pro
gram, "Process," as well as the Code Warrior compiler, the Finder, the
File Sharing Extension, and other applications.

Process.out
Process SN: 0, 8192, Type FNDR, S gnalul"e MACS, Name Findel"
Pl"ocess SN: 0, 8193, Type INIT, S gnalul"e hhgg, Name Fi le Shal"ing Extension
Pl"ocess SN: 0, 8195, Type APPL, S gnalul"e MPCC, Name MW C/C++ PPC v1.0a4p1
Pl"ocess SN : 0, 8197, Type APPL, S gna lul"e MWPR, Name MacWI" i le Pl"o
Pl"ocess SN: 0, 8199, Type APPL, S gnalul"e zTRM, Name ZTel"m 0.9
Pl"ocess SN: 0, 8200, Type APPL, S gna lul"e ???? , Name Pl"ocess

I

Figure 3.10 The process program displaying all processes on the system

A Word of Caution
As you can see, with the assistance of the I/O functions provided by the C
Standard Library, you easily can delve into the Mac's inner workings. Even
with all the Mac code I've written over the years, I still frequently use the C
Standard Library I/ 0 functions to quickly test code that uses unfamiliar
Toolbox routines.

0 Power Macintosh Programming Starter Kit
•••

Hazard
Since the C Library does its own application initialization, you need to exercise
caution when mixing this library with certain Toolbox routines. For example, the
printf () function has the C Library create a Mac window that mimics a
console window. If your program happens to use a Window Toolbox routine, this
creates a situation where your code butts heads with the window data struc
tures created by the C Library, and causes a crash.

To avoid this pitfall, never match the 1/0 functions you use with the Mac Toolbox
with those of the C Library in the program. If you use QuickDraw or Window
Toolbox routines in your code, don't use the C Library functions that require a
console window. Or, if your program uses the C Library's file 110 functions, don't
use Mac Toolbox's file 1/0 routines. Also be aware that not all of the C Library
functions are implemented. Check the CodeWarrior's C Library Reference manual
for any discrepancies.

Just the Beginning ...
In this chapter we've seen how to build a practical application, leveraging
off the I/O functions in the C Standard I/O Library. We outlined seven
steps required to build and run the application in Metrowerks Code Warrior.
We also examined how to use the C Library to help us experiment with
various Toolbox routines in isolation. Now we can apply this knowledge to
learn how the Mac works, which ultimately assists us in writing Mac
applications. Try some experiments of your own, and then proceed to the
next chapter where you'll write a full-blown Mac application.

I .. ~1 I '-~· 'I

1 !t1

~ ...

Using the Toolbox

At this point you should be comfortable with the Metrowerks
Code Warrior integrated development environment and how to
create and manage a project. In a jam, you can rely on
Code Warrior's C Standard Library to help you learn how to use
new and unf arniliar Mac Toolbox and OS routines. Does this
mean you're ready to write a full-fledged Macintosh applica
tion? Not quite. For novice Macintosh programmers, there are a
number of basic concepts to learn. These include program
initialization, resources, event handling, and the structure of
files. These concepts cover a lot of ground, but I'll keep the
information doses manageable by introducing them in stages,
along with programs that demonstrate these aspects of the
Mac OS. Readers with intermediate Mac expertise
may wish to jump to the back of the chapter and
study the code on Apple Events. The rest of us will
catch up with you later.

In chapter 3, I
mentioned a
Process Manager.
As we learned, it
is a collection of
routines that deals
with processes,

0 Power Macintosh Programming Starter Kit
•••

which are running applications. It should come as no surprise that many of
the Toolbox routines are organized into groups of related functions, or
Managers. There's the Event Manager, which deals with low-level events
such as mouse clicks and keystrokes. A Memory Manager has routines that
allocate memory, release memory, and adjust the size of the stack. A
Window Manager provides routines necessary for the care and feeding of
windows, while a Font Manager deals with the various fonts you see on the
screen or use to print. The list goes on and on. One of the few exceptions to
this naming scheme is OuickDraw-the routines that handle drawing on the
screen or onto a page iinage bound for the printer. These various Managers
serve as libraries of routines available for your use.

I Important
.....-: For 68K Macs, a routine's entry point is handled by a 680x0 processor excep-
~

tion. With the Power Macs. the various routines now actually exist in code
libraries.

What's nice about this scheme is that it helps organize all of those thou
sands of Toolbox routines. For example, if you need a function that reads a
file, look at the File Manager routines. As a novice, you should spend some
time just browsing through Inside Macintosh. The new editions organize
the technical content by category, such as files, memory, text, and so forth,
rather than by volume number as they did in the past. This arrangement
helps you locate the various Managers by function. Along with the usual
reference information, the new editions of Inside Macintosh also include
some tutorial material. You might not understand all of the information
presented there (for now), but it will give you a good idea of what Manag
ers exist, and what they do. When necessary, I'll make reference to the
appropriate Inside Macintosh edition.

Meet Some Managers
To get you used to the idea of Managers, let's start by rewriting that "Hello
world" program that we wrote in chapter 2. This will also demonstrate how
to initialize a Mac application. Start by opening the Code Examples f folder.

.. ~~~~;~~.~ ... ~ ... ~~~~~.~~~.~~~!~~.~.~
Now open the MacHello f folder and double-click on "hello1.c." Now let's
take a close look at the code:

#include <Types.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <Windows.h>
#include <Memory.h>
#include <Events.h>
#include <OSUtils.h>

#define NIL 0L
#define IN_FRONT (-1)
#define IS_VISIBLE TRUE
#define NO_CLOSE_BOX FALSE

Already you'll notice that there are a lot more header files involved than
just using the Standard C Library's <stdio. h>. That's because the Standard
C Library includes every I/O function possible plus the kitchen sink. In
contrast, each Toolbox Manager has a separate header file. This keeps
both your workload and the compiler's at a manageable level. It means that
you have to be more aware of what routines you plan to use (yet another
reason to browse through Inside Macintosh).

Background Info
Like Symantec's THINK C, the Metrowerks CodeWarrior compiler uses a special

header file called "MacHeaders68K" or "MacHeadersPPC," depending upon the

type of code you're generating (68K or PowerPC, respectively). These files

incorporate the most frequently used header files, such as "QuickDraw.h,"

"Fonts.h,'' "Windows.h," "Files.h," and others. The "MacHeaders68K" and

"MacHeadersPPC" files are precompiled, which helps boost the compiler's

processing speed when it searches for routine definitions. It also means that if

you stick with the most frequently used Manager routines, you needn't worry at

all about typing in include statements. However, not all of the header files are

incorporated into MacHeaders. If you're using some of the more sophisticated

Toolbox routines to, say, play sounds or do special printing, you'll need to

include those files. Or you can edit and recompile the appropriate

"MacHeaders.c" source code file supplied with the CodeWarrior compiler.

0 Power Macintosh Programming Starter Kit
•••

Personally, I prefer to enter all of the header files anyway. You keep better track
of what Managers you're using, which helps with your program design. It doesn't
hurt having the header files declared in your program, because even if you use
the "MacHeaders" file, the Metrowerks CodeWarrior compiler is smart enough
to sort things out and prevent redundant declaration errors from cropping up.

The definitions NIL, IN_FRONT, IS_VISIBLE, and NO_CLOSE_BOX are for use later
in the program. As you'll see, they'll make a Window Manager routine that
we use a lot easier to understand. Now enter:

void main(void)
{

WindowPtr thisWindow;
Rect windowRect;

/* Lunge after all the memory we can get */

MaxApplZone();
MoreMasters();
MoreMasters();

/* Initialize the various Managers */

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows ();
InitCursor();

Now we're getting somewhere. The variable WindowPt r holds a pointer to a
data structure that the Window Manager creates for us. The data helps
manage the window that will display the phrase "Hello world." Re ct is a
data structure that describes a rectangle object to OuickDraw. If you use
the Metrowerks editor to examine the "Types.h" file, you'll find Rect, which
looks like this:

struct Rect {
short top;
short left;
short bottom;
short right;

};

typedef struct Rect Rect;

... ~~~.P,;~~.~ ... ~ ... ~~~~~.~:'.~~~~~~.~
Top and left correspond to the x and y coordinates of a point that
OuickDraw uses in its drawing space. The bottom and right variables
define a second point's coordinates. OuickDraw uses these two points to
draw the rectangle. How does it make a rectangle made up of four points
(or eight x and y coordinates) with just two points? OuickDraw relies on the
fact that a rectangle can be drawn with this amount of data. First,
OuickDraw draws a line from point (top, left) to point (top, right) to
draw the top of the rectangle. Next, OuickDraw draws a line from point
(top, right) to point (bottom, right), which draws the right side of the
rectangle. Then OuickDraw follows with a line from point (bottom, right)
to point (bottom, left) to draw the bottom of the rectangle. The line drawn
from point (bottom, left) to point (top, left) closes the rectangle.

MaxApplZone () is a Memory Manager routine that ensures the application
has sufficient memory. It does this by expanding the application's heap
(also called a zone) as much as possible within the memory partition built
for it by the Process Manager. This is followed by calls to MoreMasters (), a
routine that allocates what are called master pointer blocks. These blocks
contain pointers that help implement the handles that are frequently used
to access Toolbox data structures. If you run out of master pointers, the
Memory Manager will create more for you automatically. However, since
the master blocks can't move about in memory, you run the risk of frag
menting the application's heap as memory becomes littered with these
immovable memory blocks. The application will also run more slowly as it
struggles to organize the fragmented memory. If you provide sufficient
master blocks now, it eliminates potential memory and performance
problems in the future. Obviously, it's better to call MoreMasters () too much
at initialization time, rather than too little.

Initializing Managers
Now we initialize the various Managers that we plan to use:

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows ();

Ini tGraf () initializes OuickDraw. QuickDraw in turn sets up some global
variables it uses to manage the application's graphic environment. The

0 Power Macintosh Programming Starter Kit
•••

storage for these variables is set up by the development system, which
QuickDraw accesses via the global pointer thePort that you provide. Next,
the Font Manager is initialized, so that text can be displayed within the
window. Flush Events () clears the event queues of any stray events when
the application launched. Ini tWindows (),of course, readies the Window
Manager.

Now it's time to get into the actual mechanics of displaying the phrase
"Hello world." Add to the program:

/* Set up the window */
windowRect.top = windowRect.left = 40;
windowRect.bottom = 200;
windowRect.right = 300;
if ((thisWindow = NeWWindow(NIL, &windowRect,

"\pHello world", IS_VISIBLE, documentProc,
(WindowPtr) IN_FRONT, NO_CLOSE_BOX, NIL)) !=NIL)

{

SetPort(thisWindow); /*Make window the current port*/

MoveTo (20, 20);
Drawstring ("\pHello world");

lnitCursor();

while (!Button()) /*Wait until mouse button clicked*/

DisposeWindow(thisWindow); /*Clean up*/

} /* end if *I

else

SysBeep(30);

} I* end main() *I

The first two lines of code plug coordinate data into the rectangle
windowRect that are used to make the window. If you're puzzled over the
point data's positive values, that's because in QuickDraw's coordinate
system, the upper left corner of the screen is the origin, and larger positive
numbers move a point toward the right and downwards. The values in
windowRect have QuickDraw create a window located forty pixels down
and forty pixels to the right of the screen's origin. The window's upper left
corner starts at this position, and the window is two hundred pixels tall and
three hundred pixels wide.

... ~~~;:;~~.~ ... ~ ... ~!~~~.!1:~.~~?!~?::.~
The NewWindow() routine actually makes the window. The #defines we
created at the top of the program are put to use here. From them we can
surmise that the new window is visible on the screen, is supposed to
appear in front of all other windows, has no close box (the small square in
the window's upper left comer that, when clicked on, removes the win
dow), and its title will be Hello World. NewWindow() 's first argument allows
you to place a pointer to a data buffer for the window's use. If this argu
ment is NIL, as it is in our example, the Window Manager allocates the
window's data storage on the heap, which is fine for simple operations.
However, if you display lots of text or large color images in the window,
you can severely fragment the heap. For these jobs, it's best to pass the
address of a memory block to NewWindow(). Consult Inside Macintosh:
Macintosh Toolbox Essentials and Inside Macintosh: Memory for more
information on these issues.

Notice that we do some error checking here. If NewWindow() successfully
creates the window, it will return a pointer to the window's data structure.
If NewWindow() has a problem making the window (possibly there's not
enough memory), the routine returns a value of NIL. The if statement
determines if we received a valid pointer from the Window Manager. If not,
the application beeps and exits. Admittedly, a beep doesn't off er much
diagnostic aid to the user, but it's preferable to signal a problem this way
and quit cleanly, rather than have the Mac crash.

If we have a valid window pointer, the program next sets the window to
be the current drawing port by using Set Port (). QuickDraw always draws
to the screen through a graphics port or grafport, which is another data
structure that describes to QuickDraw an area to draw on the screen, the
size and shape of this area, its coordinate system (which can be different
from the screen's), what type of text to use, and other information. The
Window Manager creates a grafport for every window it makes, and your
application can create and manage many windows-and thus grafports-at
once. Through the Set Port () routine, we inform QuickDraw what grafport
to draw in, which in this case is our shiny new window. The following
Move To routine nudges the current drawing point within the window down
and right twenty pixels. These values use the window's own coordinate
system, whose origin is located at the window's upper left comer. Finally,
we use the Drawstring () routine to write the phrase "Hello world" in the
window.

0 Power Macintosh Programming Starter Kit
•••

When the Process Manager starts the application, it changes the mouse
pointer, or cursor, to a stopwatch to indicate the Mac is busy. Now that our
initialization code has completed and the program displays the greeting,
we call InitCursor(), which changes the cursor back to an arrow. This
indicates that our application is ready to deal with the user.

If we simply let the program proceed, the window would appear briefly
and be gone. To let the window linger so that we can admire our handi
work, we insert a while loop. This loop cycles until the routine Button ()

returns TRUE, which occurs when you press the mouse button. Once the
loop completes, we clean up after ourselves by calling DisposeWindow(),

which removes the window and purges the data structure made by
NewWindow () . The final shape of the program looks like so:

#include <Types.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <Windows.h>
#include <Memory.h>
#include <Events.h>
#include <OSUtils.h>

#define NIL 0L
#define IN_FRONT (·1)
#define IS_VISIBLE TRUE
#define NO_CLOSE_BOX FALSE

void main(void)
{

WindowPtr thisWindow;
Rect windowRect;

/* Lunge after all the memory we can get */

MaxApplZone () ;
MoreMasters();
MoreMasters();

/* Initialize the various Managers */

InitGraf(&qd.thePort);
InitFonts();

... ~~!:!~~.~ ... ~ ... ~~~~~.!?~.~~~~~~.~.~
FlushEvents(everyEvent, 0);
InitWindows();

/* Set up the window */
windowRect.top = windowRect.left = 40;
windowRect.bottom = 200;
windowRect.right = 300;
if ((thisWindow = NeWWindow(NIL, &windowRect,

"\pHello world", IS_VISIBLE, documentProc,
(WindowPtr) IN_FRONT, NO_CLOSE_BOX, NIL)) I= NIL)
{

SetPort(thisWindow); /*Make window current drawing port*/
MoveTo (20, 20);
DrawString("\pHello world");
Ini tCursor () ;

while (!Button()) /* Wait until mouse button clicked */

DisposeWindow(thisWindow);
} /* end if */

else
SysBeep(30);

/* end main() */

Run the Code
Let's compile and run this code. Using the seven-step procedure outlined in
chapter 3, we first save the code (if we typed it) into a file called Hello1 . c.
Next, create a project called Hello.7t. Add "Hello1.c," "InterfaceLib," and
"MWCRuntime.Lib" to it. (Remember that you don't need to do this with the
limited version. The project is already made.)

Set the preferences in this project for the Language, and Project groups. For
the Language preferences panel, ensure that the Require Function Proto
types item is checkboxed, and in the Warnings panel that the Extended
Error Checking item is checkboxed. For the Project preferences panel,
name the output file Hello. Now make the project and run it. You'll get a
window that resembles that shown in figure 4.1.

0 Power Macintosh Programming Starter Kit
•••

Hello world

Hello w orld

Figure 4.1 The result of the "Hello world " program

Click on the mouse button to quit the application. The font used in the
window was the default application font Geneva. One of Mac OS's finer
features is that it has a smart set of defaults, which simplifies program
ming.

It took fifty lines of code to implement the "Hello world" program. Our
resulting application doesn't do much-but then neither did the UNIX-style
version of the program that we wrote in chapter 2. It does illustrate that the
Mac OS is a complex environment that requires attention to a lot of details
before you can write code.

This very simple application required that we have a grasp of the Memory
Manager, the Window Manager, and OuickDraw. I've only provided super
ficial descriptions of some of the Toolbox routines used in the setup code.
For additional information, consult Inside Macintosh: Macintosh Toolbox
Essentials, Inside Macintosh: Memory, and Inside Macintosh: Imaging.

"Hellolc" demonstrates the general initialization setup for a Mac applica
tion. Later programs will require the setup of more Managers, but these will
be just additions to the code you've written here. Like the understanding of
the Mac itself, Mac programming is just a matter of continually adding
components to a basic structure.

The Fork in the File
Now that we've covered program initialization, let's delve into a Mac file's
structure. A Macintosh file is composed of two sections, a data fork and a
resource fork. Physically, there's nothing different about these forks; each is

... ~~~f,;~~ .~ ... ~ ... ~~~~~.~~:.~~~~~~~. 0
simply a stream of bytes located somewhere on the hard disk However,
the Mac OS treats each file fork differently. The data fork typically contains
data created by an application, such as text from a word processor, num
bers from a sp+eadsheet, or PostScript commands from a drawing applica
tion.

The resource fork is a container for objects called-you guessed it-re
sources. Resources contain data that's organized into predefined formats.
This data typically describes graphic elements such as icons, windows,
and color tables. Resources also contain non-graphic yet essential elements
such as drivers or program code. A resource type defines the resource to
the Mac OS, so that it can properly interpret the data packaged within the
resource. A resource type is a four-character code, such as 'CODE', 'MENU',
'WIND', 'cicn', 'cdev', and so on. As examples of how the resource type
indicates what's inside a resource, consider that CODE resources contain
processor code, MENU resources contain the items that appear on a menu,
and cicn resources hold data that displays a color icon. In summary, the
resource fork of a 68K application contains such elements as program code,
menu lists, windows, and icons. The structure of a Power Mac application
is somewhat different: It still keeps the graphical elements in its resource
fork, but the program code is stored as a single block inside the file's data
fork More on this later. For more details on a file's data and resource forks,
consult Inside Macintosh: Files, and for more on resources, check Inside
Macintosh: Macintosh Toolbox Essentials.

Besides the two forks, each file also has a type and creator. Like resource
types, file type information is a four-character code that describes a file's
contents to the application that opens it. For example, a file type of 'TEXT'
indicates that the file contains ASCII text, 'TIFF' indicates the file has
Tagged Image File Format bit-mapped data (typically a scanned image),
and 'APPL' means the file contains program code and is thus an applica
tion. The creator information is a four-character code signature that's
unique to the application that created the file. Each file's type and creator
information is maintained in a desktop database file by the Mac OS. Where
does the desktop database get the type and creator information from?
From resources in your program, of course. The Finder, the shell applica
tion that displays and manages the so-called virtual desktop on your Mac's
screen, uses the database file to display each file's icon at the appropriate
screen location.

0 -
Power Macintosh Programming Starter Kit

•••

To see how all this fits together, consider what happens when you double
click on an document icon (say, a CodeWarrior project file). The Finder
detects this action, and obtains the file's creator information from the
desktop database. Next, it searches for a file of type 'APPL' (an application)
with the same creator signature. If the Finder finds this application file {the
Code Warrior compiler), it has the Process Manager launch that application.
If the Finder can't locate the application file, you get a warning onscreen
that states: "The document 'Foobar' could not be opened, because the
application program that created it could not be found."

Obviously, the Metrowerks Code Warrior compiler manages the CODE
resources in the application that we make. However, to build a complete
Mac application with menus, windows, its own custom icon, and signature
information, it's probably dawning on you that you're going to have be
come familiar with resources in greater detail. This assessment is correct,
so let us begin.

Making Resources
As usual, the best way to learn about resources is to do something with
them. A great place to start would be to put a friendly interface on that
user-hostile file munger program we wrote in chapter 3. First, consider
what we want the munger program's interface to do. It should basically
behave as before and let you pick a file to open, ask you to name an output
file, and then process the chosen file. When munger finishes the job, you
want a status report. Once you've finished processing one or more files, you
quit munger. With some thought, we conclude that all the munger applica
tion really needs is an Apple menu, a File menu, and an Edit menu. The
Apple menu is just a placeholder for an application's About Box, the win
dow where the program's description hangs out. The File menu needs an
Open command to open the desired files and a Quit command to exit the
program. The Edit menu won't be of much use to our application; it's there
to assist passing events to other applications under System 7's cooperative
multitasking environment. We also need to design dialog boxes, which are
the windows that display processing statistics and warn of problems.

... ~~~.P,;~~.~ ... ~ ... ~~~~~.~~~.~~?~~?~.~
Finally, we want to display a cool About Box dialog box that describes
munger when the About command is chosen from the Apple menu.

Locate ResEdit, the resource editor, in the Apple Tools folder on the
Code Warrior CD-ROM and copy it to your hard disk, if you haven't done so
already. As its name implies, ResEdit is a resource editor. It lets you create
resources, modify them, and save them to a file's resource fork, much like a
text editor does with text data in a file's data fork. Launch ResEdit. Click on
the splash screen to dismiss it. Click on the New button. When the Stan
dard File dialog box appears, type in munger. 7t. rsrc.

Hazard
It's very important that you type the filename exactly as it appears. That's
because when you test drive an application in the CodeWarrior IDE, it does
some important housekeeping for you. CodeWarrior searches for resources
(except for the CODE resources that it made) in a file whose name begins with
the project name and ends with the string ".rsrc." For example. for project
munger.n. we'll keep our resources in a file called "munger.n.rsrc." This setup
allows you to rapidly modify graphical resources without having to attach the
them to the program's resource fork every time you want to test changes to the
interface.

A window called munger.n.rsrc appears. This window serves as a view of
the file's resource fork. It's empty because there are no resources in it-yet.
Thinking back to our interface design meeting a little while ago, we de
cided that munger needed several menus. Go to the Resource menu and
choose the Create New Resource command, as shown in figure 4.2.

0 Power Macintosh Programming Sta1-ter Kit
•••

Figure 4.2 Preparing to make a new resource in ResEclit

Making Menus
A dialog box appears, asking for a resource type. You can either scroll
through the list of defined resource types or type in one if you know it. Type
in MENU (as shown in figure 4.3) and press Return.

Select New Type

actb -0-
IMENUI a cur i ALRT

APPL mm
((l) BNDL lWil DK

'""!'

cctb I cicn <? [Cancel l

Figure 4.3 Making a MENU resource

... ~:~P.;~~ .~ .. !.' ... ~;~~~. ~::. ~ ~~~~~~. 0
Two new windows appear (see figure 4.4). The frontmost belongs to the
menu resource editor, used to create and modify MENU resources. Say, this
looks promising. But what's that MENU ID= 128 in the window title? To
distinguish among resources of the same type (MENU, in this case), each
resource has its own ID number. To uniquely identify and use a single
resource, you specify its type and this ID number. The resource ID number
is a 16-bit signed value. ID numbers from -32768 through 127 are reserved
for use by the Mac OS, while you're free to use ID numbers from 128 to
32767. What ResEdit's menu resource editor did when it created the re
source was conveniently pick the first available ID number.

munger.11.rsrc

Title: @I Title

0 s (Apple menu)

Figure 4.4 The MENU resource editor

Since the first menu is the Apple menu, click on the Apple menu radio
button in this window. The word Title changes to the Apple symbol, as
shown in figure 4.5. Note also that the outlined menu formerly named Title
in the menu bar changed to the Apple symbol as well. This menu is a clone
of the menu you're constructing and it's used for examining a menu's
arrangement and appearance.

0 .. ~~':'.~'. .r:1:;::'.~~~ . .".'.~~::~~~~~. ~.'~.~;;, ~i~
s File Edit Resource

munger.TI'

MENUs from munger.n

MENU ID = 128 from mun

Title: 0
~~~~~~~~~~~ 

@ s (Apple menu) 
~ 

Figure 4.5 Making the Apple menu 

Now, press Return. You'll get a highlighted (darkened) area under the 
Apple symbol. This is where you begin to add menu items. For the Apple 
menu, type About Munger . .. (see figure 4.6) and press Return. This is the 
program's About Box menu item. 

ii MENU ID 128 from mun_g_er. n 

[!l Selected Item: [gJ Enabled 
About Mun_g_er ... i} 

Te Ht: @ I About Munger .. ~ I 
0 ··········· (separator line) 

Color 

D has Submenu TeHt: I I 
Cmd-Key: D I I 

to Mark: I None ..-111 

Figure 4.6 Making the About Box menu item for the Apple menu 

For the Apple menu, the next menu item is simply a separator or divider 
line, used to indicate where the application's menu ends and the rest of the 
Apple menu begins. To add a separator line, click on the separator line 
radio button, as shown in figure 4.7. 



" ........................................ " .... " .... " ... " "" " .. "~~:r.;i;~ .~ ... ~ ... ~~~~~. ~~:. ~ ~~~~~~. 0 
MENU ID = 128 from munJl.er. "JT 

Selected Item: D Enabled 
About Munger ... 

TeHt: 0 [.____ ______ ---'] 

' ......... (separator line) 

Color 

D has Submenu TeHt: I I 
!:tM·KPq: r··········-i 

izy Mnrlc i None ·········;·-ir···········] 
~~~~~~~~~~ 

Figure 4.7 Adding a separator line to the Apple menu

Now click on the window's close box and you'll see MENU resource 128
(see figure 4.8).

MENUs from mung_er. "JT

About Munger ... J

Figure 4.8 MENU ID 128, as it will appear in the application

We still have two more menus to go. Once again select Create New Re
source from the Resource menu, or type Command-K. A new MENU ID =

129 window appears. Enter File for the menu's title, press Return, and type
Open . .. for the first menu item. Before you press Return, click on the box to
the right of the item labeled Cmd-Key in the Editor window, or press Tab to
select it. Type o in this box (see figure 4.9). The 0 character is the keyboard
equivalent for the Open menu selection. That is, typing Command-0 ini
tiates an Open action, as if it were selected from the menu. Because key
board equivalents rely on the Command key, they are also called Com
mand-Key equivalents. This also explains the name of this Cmd-Key item in
the Editor window.

0 Power Macintosh Programming Starter Kit
••

MENU ID 129 from mu'!!l_er. 11

Selected Item: 181 Enabled
@:en ... 3€0 0

Te Ht: @ ._I o_p_en_._ .. _ _____ __,

0 (separator line)

Color

D has Submenu TeHt: I I
Cmd-Key: ~I I

tzy Mark: I None JI I
'-----------~

Figure 4.9 Entering the keyboard equivalent for the Open menu item

Press Return and then add a separator line by clicking on the separator
radio button. Press Return again and type Quit. Then, type a Qin the Cmd
Key item box. That completes the File menu. You can then pull down the
test menu to examine it (see figure 4.10). Click on the window's close box
and save the file .

Now to add the last menu, the Edit menu. Type Command-K to create a
new menu resource. The window MENU ID = 130 appears. Type Edit for
the menu title, press Return, type Undo, press Tab, type z, and press Return,
which makes the Undo item in the menu. It has the keyboard equivalent of
Command-Z. Add a separator line and press Return, type Cut, press Tab,
type x, then press Return to add the Cut item to the Edit menu. Add the
Copy item by typing Copy, Tab, C, and pressing Return, then type in Paste,

Tab, and v to create the Paste item. Click on the window's close box, and
you should see all three menus, ready to go, as shown in figure 4.11. Save
the file , and close the window by clicking on the close box, or typing
Command-W.

... s:~P.:~~ .~ ... ~ ... ~~~~~. ~:;. ~ ~?~??~ ·0
a File Edit Resource

" .
" 000 11110
0 1000000

Tettt: ® I Quit
~~~~~~~~~~~~ 

0 ··········· (separator line) 

D has Submenu 

Figure 4.10 Testing the completed File menu in ResEdit 

Undo 3€2 

Quit 3€0 Cut 3€H 
Copy 3€C 
Paste 3€U 

~ 

Figure 4.11 The complete MENU IDs for the munger application 

Iii 
{} 

{7 

lilii 



0 .. :.~':'.~'..r:'!:;!~!~:~. !:'.~?::~~~~?.:'.';.~;;, ~i~ ............................................................. " ' 

Making Dialog Boxes 
Now, let's make the dialog boxes for munger. Choose Create New Re
source again, and this time type DLOG and press Return. A dialog editor 
window opens, with the title DLOG ID = 128 (see figure 4.12). 

Figure 4.12 The dialog editor window 

@Default 
O Custom 

D ITL ID: 1~1_28_~ 

~Initially uisible 

~Close boH 

About Boxes are typically dialog windows, because this type of window 
requires little program code to support it. By default, the editor has selected 
a standard document window, complete with a drag region, a close box, 
and a grow icon (the small box at the window's bottom right comer) . In 
short, a window with all the bells and whistles. Go over to the sixth win
dow icon from the left and click on it, as shown in figure 4.13. Notice that 
the window's appearance has changed. This is the alternate dialog win
dow, which is just a variation of the dialog window. This window type has 
no drag bar, no close box , and no grow icon. It's pretty simple as windows 
go, which is what we want. 



' ...................................................................... ~~~?.:~'. .~ ... ~ ... ~;i.~~. ~~~.~ ~~~~?~ .0 

Top: lln I Height: ~ 

Left: ~ Width: ~ 

Color: @Default 
O Custom 

0 Ill ID: ~11_2_8 -~ 

[8J Initially uisible 

[8J Close boH 

Figure 4.13 Picking the altemate dialog window 

Click on this window's upper left comer and drag it near the top of the 
screen. Next, click on the dark square at bottom right of the window, and 
drag it. The window's size will change depending upon how you drag this 
square. Size the window according to what suits you, and release the 
mouse button (see figure 4.14). 

§:Iii OLOG ID = 128 from mun 

Top: ID I Height: ~ 

Left: EJ Width: ~ 

Figure 4.14 Resizing the dialog window 

DD 
Color: @ Default 

O Custom 

om ID: I 120 
~-~ 

[8J Initially uisible 

[8J Close boH 



0 Power Macintosh Programming Starter Kit 
, ...••.•..•..............................................•.................................................•••. , 

Editing Dialog Boxes 

Now, double-click on this window. A pair of windows appears (see figure 
4.15). This is the dialog item, or DITL, resource editor. While the menu editor 
lets you add and delete items from a MENU resource, the situation is more 
complicated with dialog windows. The dialog editor manages DLOG 
resources, which determine a dialog window's type and size. However, 
objects that appear in the window, such as buttons, icons, and text, belong 
to another resource, of type 'DITL'. DITL resources contain lists of dialog 
items, just as MENU resources contain lists of menu items. Naturally, 
changing DITL resources requires a separate editor, which is why that 
dialog item editor just appeared. 

DLOG ID = 128 from munger.n .rs re 
§Iii§ D I TL ID = I 2 B ·············· m;;mm;;m;;m;""" 

(9 Button 
······-····································· 
~ Check Box 

@ Radio Button 

!;) Control 

Top: ~ Height: ~ 

left: ~ Width: ~ 

[][] 
Color: @ Default 

O Custom 

DITL ID: ~11_2_8 _~ 

~Initially uisible 

~Close boH 

Figure 4.15 The DITL editor, for modifying dialog items 

Although the DLOG and DITL editors operate so seamlessly that they 
appear to function as a single editor, it's very important that you remember 
that you're working with two different resources here. Notice that the DITL 
ID number is 128. It's not required that a dialog's items (DITL resources) 
have the same ID number as the dialog window (DLOG) that they appear 
in, but it does keep tracking the relationships between the two resources 
simple. If you need to use a different DITL ID number, you can change the 
linkage by typing a different ID number in the DITL ID item on the DLOG 
Editor window in the background. 



'"""" .............................................................. ~~~r.;~~ .~ ... ~ ... ~~~~~.~~~. ~~?!~~.~.0 
Go to the floating window with the dialog items on it (the window at the 
right), and drag the static text object to the dialog window, as shown in 
figure 4.16. Static text can't be changed by the user during the life of the 
dialog window, so it's useful for handling the titles of buttons and controls. 

Top: EJ Height: ~ 

Left: EJ Width: §=:J 

[811 nitially uisible 

1:81 Close boH 

Figure 4.16 Adding a static text item to the About Box 

[][] 

Release the mouse button when you've positioned the text object where 
you want it. In this example, let's drop it near the top of the window. Now 
double-click on this object, and a window titled Edit DITL item #1 appears. 
Replace the highlighted text by typing Munger 1 . 0, pressing Return, typing 
Written in, pressing Return, and typing Metrowerks C (see figure 4.17). This 
is our About Box information. 

Edit DITL item #1 from mun er.rr.rsrc 

Te Ht: 

Static TeHt .,.. I 

D Enabled 

Munger 1.0 
Written in 

Metrowerks C 
~ 

Top: le I 
Left: ._I 2_6 _ __, 

Figure 4.17 Changing the text of DITL item# 1 

Bottom: .___I s_4 _ _, 

Right: i 122 



0 .. !'.~-:;~; .1:1: :!?~~~~. ;,;~~:~!';!';!?~. :.~.~;;, ~i~ .............................................................. " 
Click on this window's close box, and resize the static text box by clicking 
and dragging with the mouse (see figure 4.18). You'll have to tinker with the 
box and text somewhat until you get it to look neat. Use ResEdit's Align
ment menu to center this text box in the window. 

§Im§ Dill ID= 128 -

~-Muiiiier· ·cir·· ·· · · 

! Written in 

[~.l.l-~f.9W.l.!X~~J.~ i 
············································· · ····· ~ 

Figure 4.18 Modifying the size of the dialog item 

Adding Buttons 

Now, go back to the dialog items window, and drag a button item to the 
dialog window, and position it under the text, as shown in figure 4.19. 

r--:::='E""=:======D=L=O=:G=l=D = 128 from mu_n=g_er_._n _.r_s_rc _______ -; 
§Iii§ om ID= 120 1:-11:-1 

Munger 1.0 LJ LJ 
Written in 

"1etrowerks C 

Top: ~ Height: ~ 

Left: ~ Width: ~ 

[81 Initially uisible 

[81 Close boH 

Figure 4.19 Adding a button to the dialog window 



........................................................................ s~~r.;~~ .~ ... ~ ... ~~~~~. ~~~. ~ ~?~~?~. 0 
Release the mouse button and a button item appears. Double-click on it to 
open an Editor window so that you can change the button's text. Type OK 

(see figure 4.20). Close the window and use the Alignment menu to center 
the button. 

Iii Edit DITL item #2 from mun er.n.rsrc 

TeHt: 1·\ Button •I 

181 Enabled Top: 167 
Left: 142 

Figure 4.20 Changing the button's title 

Numbering Dialog Items 

Bottom: ~18_7_~ 

Right: I 100 

There's one more crucial step we have to do here: renumber the dialog 
items. The reason is that certain dialog Toolbox routines that manage the 
dialog items look for Return keystrokes. They pass this action onto the first 
item in the dialog list, just as if you had clicked on that item. What we want 
to happen is that when the user presses Return, it activates the OK button, 
which then dismisses the About Box window. 

Go to ResEdit's DITL menu, and select Renumber Items .... A new window 
appears, with instructions on how to renumber the items. Hold down the 
Shift key, then click first on the OK button, and then the About Box informa
tion (see figure 4.21). Click on the renumber button, and you're done. You 
could have avoided renumbering these items by putting the OK button in 
the window first, then adding the About Box static text. Occasionally you 
have to renumber items after the fact, so it's worth pointing out this feature 
in ResEdit now. 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 

- "' Dill ID = 128 

rY.:fo·r-;iie·r·i·B.D 
! Written in ! 
iM!!.trnw.~r.~~ ~! 

c:::~~ 

® Button 

C8:J Check Box 

® Radio Button 

!;] Control 

Use shift-click to select the items in the 
order you want them to be renumbered. re 

( Cancel ] (Renumber] 
Item 

Figure 4.21 Changing the dialog item numbers 

Close the DITL editor by clicking on the close box, which lands you back in 
the DLOG editor. If you want to preview how the About Box looks, pick 
Preview at Full Size from the DLOG menu. Close the DLOG window and 
save the file. 

Status Display 
We also decided that we wanted a status display when munger finishes 
processing a file. Let's start by typing Command-K to create a new DITL 
resource. As the title to the DITL Editor window indicates, this resource has 
an ID of 129. Click on the eighth window from the left to select the dialog 
window type. The window changes from a document window type to a 
dialog window, as shown in figure 4.22. 

Double-click on the window to bring up the DITL resource editor. Go to the 
floating dialog item window and drag a static text item to the new window. 
Adjust the item's width by dragging with the mouse until the item spans 
most of the window. Now Copy and Paste this item. Nothing appears to 
have happened, but if you click and drag on the static text item, you'll see 
an identical item beneath it. Copy and Paste again to clone the item one 
more time, then arrange the three items above one another in the dialog 
window. This gives you three static text items of the same size. Use 
the Alignment menu to center the items in this window, as shown in 
figure 4.23. 



'" .................................................................... ~~~r.;~~.~ ... ~ ... ~;~~~. :~~.~ ~~~~~~ .0 

Top: ~ Height: ~ 

left: ~ Width: ~ 

[][] 
Color: @ Default 

O Custom 

Dill ID: 1~1_2_9_~ 

~Initially uisible 

~Close boH 

Figure 4.22 Changing the window type to a dialog window 

!~:~~!:(~: !~~!: ::: : : :: : :::: : : :: 

co Align Top Edges 

99. Align Bottom Edges 
~ Align Uertical Centers 
ee Align Horizontal Centers 

!~!~~~~: !~~!::: :: : :::::::: :: : _____ ] 
!~:~~!):~:!~~!:::::: ::::::: : : : ::::::! 

Height:~ 

left: ~ Width: ~ 

T: Static Text 

:ID.LE.~:;:;:!.~;< · 
& Icon 

la Picture 

~Initially uisible 

~Close boH 

Figure 4.23 Centering the three cloned dialog items 



0 Power Macintosh Programming Starter Kit 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

Click on the top static text item to select it and edit its contents by double
clicking on it. Type File: "0. The caret and number operate as a special 
placeholder where the dialog Toolbox call will substitute a text string, in 
this case a filename. We'll see how this works a little later. Go to the second 
item, open the item, and type Bytes read: ,.. 1. Open the last item and type 
Bytes written: ,..2. Resize the window and align the items again. The 
dialog window should appear similar to the one in figure 4.24. This com
pletes the status window. 

=Iii~ D ITL ID = 129 from mun 

[~~~~~::~~::::::::::::::::::::::::::::: 

:~~!~~:f.~:~:~:=::~:!::::::::::::::::i 

Figure 4.24 The completed status dialog 

Adding Alerts 
Now for one last window. In an ideal world, our code is bug-free and a user 
will never try to add one more munged file to a jam-packed hard disk. Since 
such a world doesn't exist, we need to report errors when they occur, 
whether it's problem with the code or a user mistake. For this window, 
we'll use an alert resource of type 'ALRT'. 

What is an alert? It's a special dialog window that beeps the Mac and 
requires that you click on a button to dismiss the alert. This way, the alert 
grabs the user's attention and ensures that he responds to the error mes
sage. There are several types of alerts-note, caution, and stop-and each 
has a distinctive icon to indicate the severity of the problem. Note alerts 
provide information, usually to off er the user a choice. Caution alerts warn 
the user of a situation that could result in data loss if not dealt with care
fully. For example, caution alerts warn of insufficient disk space to save a 
certain file, or that memory is running low and the user should save his 
work, or that proceeding with an operation will delete a file. Stop alerts flag 
a problem so serious that the application can't complete the operation. An 



....................................................................... ~~~f,;~~ .~ ... ~ ... ~;~~~. !~!'.~~?~~?.' .. 0 
example of a stop alert is when the program detects an error while writing 
a file to disk. 

For the munger program, we can anticipate that disk I/O is where most 
problems will occur. Since most disk I/ O problems-such as running out of 
disk space-are difficult to recover from without lots of intervention on the 
user's part, munger will just quit the operation and post a stop alert. 

Let's make a stop alert for munger. Get out of ResEdit's DLOG editor by 
closing the Editor window. Type Command-K to make a new resource, and 
type ALRT in the Select New Type dialog. The alert resource Editor window 
appears, with a default of ALRT resource ID 128. Notice that the alert 
window already has dialog items in it (see figure 4.25). Remember that the 
objects displayed in the dialog box actually belonged to a different re
source? What's happening is that the alert editor is, by default, using DITL 
resource ID 128, whose items already belong to the About Box dialog. 

s File Edit Resource 

Figure 4.25 The alert resource editor 

Color: @ Default 
0 Custom 

Dill ID:\~ 1_2_8_~ 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

You have two options here. You can change the ID number that links the 
DITL resource to the ALRT resource, or change the ALRT resource ID. I 
keep the organization of these linked resource ID numbers simple by using 
an ascending list of ID numbers that's divvied up among the DLOG and 
ALRT resources. That is, an ALRT resource might get an ID of 128, a dialog 
a resource ID of 129, another ALRT gets ID 130, and so on. So, let's change 
the ALRT resource ID. Start by selecting Get Resource Info from the Re
source menu, or typing Command-I. An Info box appears (see figure 4.26). 
Type 130 to change the ALRT ID, and then close the window. 

- Info for RLRT 130 from mun er:rr.rsrc 

Type: HLRT Size: 12 

ID: ~~-30-----. 

Name: c==·~~~~~~~~~~---. 

Owner type 

owner ID: DRUR 
f------1 WDEF 

Sub ID: MDEF <IJl 

Attributes: 
D System Heap D Locked D Preload 
D Purgeable D Protected D Compressed 

Figure 4.26 Changing the ID of the alert resource 

You'll notice that the dialog items haven't changed yet. Go to the DITL ID 
item in the alert Editor window and type 130. Now you have a blank win
dow, as appears in figure 4.27. 

Double-click on the window to summon the DITL editor. Drag a static text 
item to the window, and edit it to say I IO error, ID = "0, as shown in 
figure 4.28. 

Now drag a button item to the window and edit it to say OK. Align the two 
items and resize the window to fit. Be sure to leave room at the window's 
top left comer so that the Dialog Manager can drop a 32- by 32-pixel stop 
alert icon into the window when it's drawn. Renumber the dialog items so 
that the OK button is item number 1. Again, we do this because the Dialog 
Manager passes Return key events to the window's first dialog item, and 
we want that to be the OK button. Also, for alerts, the Dialog Manager 
draws a bold outline around DITL item 1, on the assumption that it's the 



""' .................................................................. ~~??.::'..! ... ~ ... ~:~~~.!~;.~~?~~?~ .0 
default button (an OK button in this instance). The alert window should 
appear as shown in figure 4.29. 

Top: ~ Height: ~ 

Left: ~ Width: ~ 

er.n.rsrc 

Color: ® Default 
0 Custom 

_DITLID:. 

Figure 4.27 Changing the ID of the alert 's DITL resource 

RLRT ID = 130 from munger.-rr.rsrc 

8 Button''""'""" ®Default 
... 0 Custom 181 Check Box 

@ Radio Button 
····§··· Control 

T: Static Text 

.i ... ~i.i :t ·!.~~< 
& Icon 
L""j;i~i~~~ ... 

· iillf u~~~ .. ;;~~ -

Figure 4.28 Adding the alert 's static text message 

1/0 error, ID= Ao OK 

Figure 4.29 The completed alert dialog 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

( Important 
.......: As discussed earlier, the default button-the item that the program assumes the 
~ 

user will pick most of the time-is always DITL item 1. For alert boxes with more 

than one button, DITL item 2 should always be the Cancel button. 

There are two last details to take care of. First, we want the alert window to 
appear centered on the screen. This turns out to be a simple job. Close the 
DITL Editor window to get back into the alert editor and pick the Auto 
Position ... from the ALRT menu. A dialog window appears that allows you 
to set the window's characteristics so that System 7 will automatically 
center the window for you (see figure 4.30). Go to the active pop-up menu 
(the one on the left), and select the alert position. (Alert windows are re
quired to appear on certain areas of the screen.) The right pop-up menu 
becomes active, but since the Main Screen default setting is fine for now, 
just click on the OK button to make the changes. Save the file. If you want, 
you can also enable the auto-centering settings of the other dialog boxes. 
Before you do, consult Inside Macintosh: Macintosh Toolbox Essentials for 
important guidelines on these settings. 

./None 

Automatically Position the Window 
(Works only with System 7.0 or later.) 

Center 

[( OK Jl 

Figure 4.30 Setting the alert window's screen position 

Background Info 
In pre-System 7 days, dialog boxes would appear on-screen where they were 

drawn in the resource editor. Since monitors of any size and shape could be 

attached to the Mac. the default location of these windows weren't always in the 

best position for visibility, especially on a large monitor. You could always write 



•..•..•..•..•...•..•..•.••...•.....•..•...•..•..•..•...•..•..•..•...•.. ~~~.P.\~;.~ .•. ~ •.. ~~~~~.!~~.~~?~~?~.~ 
code to determine the Mac's screen size and then position the dialog window 
appropriately before showing it. This code could get extremely complicated if the 
system had multiple monitors in use. While such code isn't impossible to write, it 
was an imposition on the programmer's resources, which were better spent 
writing the application. not managing the interface. As you saw with the alert 
editor, System 7 now handles this job. This is one of the many improvements in 
System 7 that both relieves the programmer of an interface detail, and makes 
applications more visually consistent to the user. 

The other detail is that the dialog item lists aren't cleared from memory 
automatically when the alert or dialog box is closed. To help the Memory 
Manager reclaim the memory used by these item lists, we mark the DITL 
resources as purgeable. To do this, first close the alert resource editor 
window and then the ALRT resource window. The resource fork of 
"munger.n.rsrc" should contain four resources, as shown in figure 4.31. 

ALRT DITL DLOG 

MENU 

Figure 4.31 The resources the munger application uses 

Next, double-click on the DITL icon to get a view of the DITL resources, 
from 128 to 130. Hold down on the Shift key and click on each DITL re
source to select it. Choose Get Resource Info from the Resource menu and 
three Info windows should appear, as shown in figure 4.32. Click on the 
Purgeable checkbox for each DITL resource to select Purgeable. Close the 
windows. Save the file and quit ResEdit. 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

s File Edit Resource 

Dills from munger:n·.rsrc 

JQ. Info for Dill 128 from munger.n.rsrc 

lYP11----1"":===:=~~~==~===~==~~~~~=:!!!!!!!!~ 

ID: 

Na ID: 

Na 

Owner type 

Owner ID: DRUR 1.? 
1--------< UJDEF 

Sub ID: MOH 

Attributes: 
D System Heap 
~Purgeable 

D Locked 
D Protected 

D Preload 
D Compressed 

Figure 4.32 Setting the DITL resources as purgeable 

Saving Resource Data as Text 
This excursion with ResEdit covered a lot on resources. You might be 
wondering if there is a way to save the information they represent in a text 
format. This would allow a resource 's contents to be distributed on paper, 
or as 7-bit ASCII over the Internet. For huge programs with dozens of 
menus, windows, dialogs, and alerts, it's easier to search for an item to 
modify using a text editor rather than poking around in a resource fork with 
ResEdit. And yes, you can save the information in a text format. Along with 
ResEdit, Code Warrior supplies two Macintosh Programmer's Workshop 
(MPW) tools, called DeRez and Rez. The DeRez tool takes an existing .rsrc 
file and translates its resources into text descriptions. The text description 
uses a C-style programming language that accurately describes a 



....................................................................... ~~~P.;~~.~ ... ~ ... ~~~~~.~~.~~?!~?:'...0 
resource's data. The Rez tool takes these text files and converts them back 
into binary resources. You can access these tools from the Metrowerks 
Code Warrior IDE by selecting Start Toolserver from the Tools menu. 

Some Words on Events 
Now that we've got the new and improved munger interface constructed, 
we're almost ready to start writing code. First, a brief description of how a 
Mac application operates is in order. As you work with the Mac, you gener
ate events. There are two types of events: low-level and high-level. Low
level events are actions such as keystrokes, mouse clicks, and the insertion 
of the occasional floppy disk. The Mac OS uses the Event Manager to 
detect these actions and place them in an event queue for the application. 
High-level events are used to establish communications among applica
tions. Such communications might request data from another application, 
or command an application to print a file. We'll deal with high-level events 
later in this chapter. 

Your application takes these events from the queue and responds to each 
type as required. It does this using what's called an event loop. In the event 
loop, the application circles endlessly, obtaining events from the OS by 
calling the routine Wai tNextEvent (). If an event is forthcoming from 
Wai tNext Event ( ) , the event loop next calls the appropriate function to 
handle the event. For example, if your application receives a keystroke 
(actually a key down event to the Mac), the action is passed to a function 
that might drop the character into a document window. Note that if certain 
windows are active (such as a Desk Accessory) or certain key combina
tions are pressed, different sets of handler code might be called to process 
the event. Continuing with our key down example, if you hold down the 
Command key while typing a character, the application instead calls 
functions that ultimately have a Menu Manager routine field the event. 
(Recall that a Command-key combination can be the keyboard equivalent 
for a menu choice.) A Mac application, in some instances, can be pro
grammed to ignore certain events. 

The basic structure of a Mac application is shown in figure 4.33. A Mac 
application goes through its initialization phase and then runs in an event 
loop. As events trickle in, the event loop code checks to see what type of 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

event occurred, and calls the corresponding function to handle the event. It 
keeps doing this until the user signals the application to quit. At this point 
the application exits the event loop and performs any required clean up 
operations, such as saving files or discarding memory buffers. 

START 

END 

Figure 4.33 Structure of a Mac application 

An important distinction to make here is that events might occur in any 
order, and your program must be structured to deal with slich disordered 
input. It shouldn't force the user through a gauntlet of dialog boxes that 
prompt for information. Also, because users aren't likely to explore every 
menu choice or dialog box setting, applications should provide reasonable 
defaults that help them get started. As an example of this, a word proces
sor should default to a specific font (such as Times) and point size (say 12 
for example) when displaying text. Along these same lines, any setting that 



....................................................................... ~~:~;~~.~ ... ~ ... ~~~~~.~:.~~~~?~.~.~ 
the user might change frequently (such as the baud rate in a terminal 
emulator application) should be easy to find and change. If you're not 
familiar with this sort of user interface design, be sure to check out Apple's 
Human Interface Guidelines. 

Code at Last 
With the interface in place and a firm understanding of events, we can 
rewrite the munger program. Fire up Code Warrior's compiler and create a 
new project. For a project name, type munger .1t. (Remember that the project 
name must correspond to the resource filename "munger.n.rsrc" we made 
with ResEdit.) Now pick Add File ... from Code Warrior's Project menu, and 
along the path CodeWarrior:Example Code f:MacMunger, open the file 
"Macmunger.c." Inside the Project window, double-click on the 
"Macmunger.c" file to open it with the built-in editor. In the Editor window, 
examine the following code: 

#include <Types.h> 

#include <QuickDraw.h> 

#include <Windows.h> 

#include <Fonts.h> 

#include <Controls.h> 

#include <Dialogs.h> 
#include <Menus.h> 

#include <Devices.h> 

#include <Memory.h> 

#include <Events.h> 

#include <Desk.h> 

#include <OSEvents.h> 
#include <OSUtils.h> 

#include <ToolUtils.h> 

#include <TextUtils.h> 
#include <StandardFile.h> 

#include <Errors.h> 
#include <Resources.h> 

#include <Diskinit.h> 

/* Resource ID numbers */ 

#define LAST_MENU 3 

#define APPLE_MENU 128 

#define FILE_MENU 129 

#define EDIT_MENU 130 

#define RESOURCE_ID 127 

/* Number of menus */ 

/* Menu ID for Apple menu */ 

/* Menu ID for File menu */ 

/* Menu ID for Edit menu */ 

/* Starting index into the menu array */ 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#define ABOUT_BOX /* About box menu item# in Apple menu */ 

#define OPEN_FILE /* Open item # in File menu */ 
/*-----------------------*/ /*Separator line is item# 2 */ 
#define I_QUIT 

#define ABOUT_BOX_ID 
#define STATUS_BOX_ID 

3 /* Quit item # in File menu */ 

128 /* Resource IDs for our windows & dialogs */ 
129 

#define ERROR_BOX_ID 130 

/* Various constants */ 
#define NIL 
#define FALSE 
#define TRUE 

#define INIT_X 
#define INIT_Y 

0L 
false 
true 

112 /* Coords for disk init dialog box */ 
80 

#define APPEND_MENU 0 
#define CHAR_CODE_MASK 255 
#define IN_FRONT -1 
#define NO_CURSOR 0L 
#define ONE_FILE_TYPE 
#define LONG_NAP 60L 

#define CR 0x0D 
#define LF 0x0A 

As you can see, we intend to use a lot more Managers this time, and conse
quently have a lot more header files to include. 

Next, we define the resource ID numbers of our menus and dialog boxes. 
These values come straight from our work in ResEdit. Look carefully at the 
menu item numbers in this section. These are values that the Menu Man
ager returns to the program when the user makes a menu choice. Notice 
that the menu item numbers start at 1, and that each separator line also 
counts as a menu item. If you add or remove items from a menu resource, 
the item numbers returned by the Menu Manager will change. You'll have 
to edit the definitions here to match the new menu resource. To help keep 
this arrangement straight, notice how the #def in es for the File menu are 



•••••••••••••••••••••••••••••••••••••••••.••••••••••••.•••••••••••••••• ~~~.P,\';~.~ ••• ~ ••• ~~~~~.~:.~~?!~?:'...~ 
written so that they resemble the File menu layout. The rest of the section 
defines constants that we'll use elsewhere in the program, including 
Return and Line Feed. 

Here are some function prototypes: 

/* Function prototypes */ 
Boolean Do_Command (long mResult); 
Boolean Init_Mac(void); 
void Main_Event_Loop(void); 
void Report_Error(OSErr errorCode); 

/* Application-specific functions */ 
void Ask_File(void); 
void Munge_File(short input, short output, unsigned char *fileName); 

/* Globals */ 
MenuHandle gmyMenus[LAST_MENU+1]; 
EventRecord gmyEvent; 
WindowPtr geventWindow; 
Boolean guserDone; 
Curs Handle gtheCursor; 
short gwindowCode; 
WindowPtr gwhichWindow; 

/* Handle to our menus */ 
/* Holds event returned by OS */ 
/* Our private window */ 
/* Indicates user wants to quit */ 
/* Current pointer icon */ 

/* The window that got an event */ 

OSType 
OSType 

gfileCreator = {'MUNG'}; /* Output file's creator •I 

gfileType = {'TEXT'}; /* Output file's type • / 

You'll recognize some basic functions here, such as Ini t_Mac (), 

Do_Command (),and Main_Event_Loop (),whose purpose is obvious. Also, we 
have a function that asks for a file, and-of course-a function to munge the 
file's contents. We also declare some globals here. The global gmyMenus[] is 
an array of handles that will point to menu records. Menu records are data 
structures that the Menu Manager builds to manage menus, somewhat like 
the data structures the Window Manager uses for windows. The gmyEvent 

global contains an event record, which is a data structure that describes 
the type of event passed to the application. The globals gf ileType and 
gf ileCreator contain the type and creator information for munger's output 
file. 



I"::::\. Power Macintosh Programming Starter Kit 
~··············································································································· 

Background Info 
Everyone has his or her own style for writing code. I'll explain my style here, not 

because it's superior, but so that you'll quickly understand what the code is 

doing. To prevent confusion between the Mac Toolbox routine names and the 

program's function names, I use underscores in the program function names. So. 

StandardGetFile () is a Toolbox routine, while Ask_File () is a function that I 

wrote. Variable names begin with a lowercase letter. such as f ileName, unless 

it's a global variable. Global variable names begin with a lowercase g, such as 

gmyEvent. Program constants are all upper case, such as LAST_MENU, unless it's 

a well-publicized constant defined by Apple, such as everyEvent or 

watchCursor. Lately, Apple has been preceding their constants with a lower

case k, such as kCoreEventClass, which helps identify them. Feel free to use a 

style that works for you. Just be consistent, and always comment your code. 

The First Function 
Now it's time to look closely at the first function in "Macmunger.c": 

void Report_Error(OSErr errorCode) 

unsigned char errNumString[BJ; 

NumToString((long) errorCode, errNumString); 
ParamText(errNumString, NIL, NIL, NIL); 
StopAlert(ERROR_BOX_ID, NIL); 

} /* end Report_Error() */ 

This is our minimalist error reporting function. When a Toolbox routine 
returns an error code, we pass it to Report_ Error ().Inside Report_ Error (), 

we use the Toolbox routine NumToString () to convert the error code to a 
displayable text string. The resulting Pascal string is then passed to 
ParamText (),whose job is to insert up to four strings inside a window. Since 
we have only one string to display, ParamText () 's other three arguments 
are NIL. How does ParamText () know where to place each text string? 
Recall that when we made the alert resource's DITL item for munger, we 
typed in "I/O error, ID= "0." The "0 is the placeholder for this string. 
ParamText () substitutes the placeholder text with the string in 



....................................................................... ~~~~~.~ ... ~ ... ~~.'!!/.~~.~~?!~?:'...~ 
errNumString, staying within the rectangle defined by DITL item. After 
ParamText () does the insertion, we call StopAlert () to create the stop alert 
window. An example of how the alert box appears is shown in figure 4.34. 

e 
1/0 error, ID= -47 ( OK D 

Figure 4.34 The Report_Error() alert box 

A£3 error functions go, this is adequate for our work. If you get the stop alert, 
you can open the "errors.h" file from within the Metrowerks CodeWarrior 
compiler and search for the error code to get an idea as to what went 
wrong. If you plan to unleash this program upon unsuspecting users, be 
nice to them and write an error reporting function that provides an expla
nation of the problem and suggests remedies. Don't dump a cryptic error ID 
number on the screen when trouble strikes. 

Munger Code, Revisited 
Let's examine the file munging code next: 

void Munge_File(short input, short output, unsigned char *fileName) 
{ 

long amount; 
unsigned char buffer; 
short crflag; 
long icount, ocount; 
unsigned char inNumString[12], outNumString[12J; 
DialogPtr statusDialog; 

amount = 1L; 
crflag = 0; 
icount = 0; 
ocount = 0; 
while (FSRead(input, &amount, &buffer) == noErr) 

{ 

icount++; 
switch (buffer) 

{ 

/* Bump input char counter */ 
/* What char was read? */ 



~ Power Macintosh Programming Starter Kit 
~··············································································································· 

case CR: 

if (crflag >= 1) 

{ 

/* Two in a row, end of paragraph */ 

FSWrite(output, &amount, &buffer); /*Write two CRs */ 
FSWrite(output, &amount, &buffer); 

crflag = 0; 
ocount++; 

} I* end if *I 

else 

crflag++; 

break; /* end case CR */ 
case LF: 
break; /* end case LF */ 

default: 
FSWrite(output, &amount, &buffer); 
ocount++; 
crflag = 0; 

/* end switch */ 

} /* end while */ 

/* Display processing statistics */ 

/* Reset the flag */ 

/* Bump the flag, and toss the CR */ 

/* Toss LF, but don't touch crflag *I 

/* Clear the flag */ 

if ((statusDialog = GetNewDialog(STATUS_BOX_ID, NIL, 
(WindowPtr) IN_FRONT)) I= NIL) 

NumToString(icount, inNumString); 
NumToString(ocount, outNumString); 

/* Convert bytes read to string */ 

ParamText (fileName, inNumString, outNumString, NIL); 

DrawDialog(statusDialog); 

Delay (120L, NIL); 
DisposDialog(statusDialog); 

} /* end if I= NIL */ 

else 
SysBeep(30); 

} /* end Munge_file() */ 

Munge_File () accepts several arguments: an input file reference number, 
an output file reference number, and a pointer to a string containing the 
input filename. Since computers pref er to handle things as numbers, the 
File Manager provides reference numbers for files that you open for read
ing or writing. These reference numbers remain valid as long as the files 
are open and you pass them to File Manager routines that perform the 
actual IjO. As you probably suspect, the function Ask_File () obtains these 
file reference numbers and then calls Munge_File (). 



Chapter 4 • Using the Toolbox 003 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

We use a while loop to read bytes with FSRead ( ) , and then write bytes 
using FSWr i te ( ) , two other File Manager routines. If you compare this loop 
to the original munger.c code in chapter 3, you'll see that the two are very 
similar, with FSRead () replacing getc () and FSWri te () replacing fputc (). 

Once the loop completes, we briefly display the processing statistics in a 
dialog box. To display these numbers, we fetch the STATUS_BOX_ID dialog 
resource using the routine GetNewDialog ( ) . Like creating a window, we 
check to see if GetNewDialog () was successful at this. If it was, we convert 
the values in icount and ocount to strings. We pass these strings, plus the 
input filename, to ParamText () for inclusion in the dialog box. These strings 
will be substituted for the placeholders in the status box's DITL items, the 
same way it occurs in Report_ Error () 's alert box. With the dialog box's 
contents set up, we call DrawDialog () to display the window. Next, we use 
Delay ( ) to wait for two seconds. (Delay ( ) waits for intervals of time called 
ticks, which are sixtieths of a second; 120 ticks is therefore two seconds.) 
Finally, we remove the dialog box and we're done. 

Background Info 
Seasoned Mac programmers will notice that we test for a failure by examining 
the pointer returned by GetNewDialog () to see if it is NIL This type of check 
didn't work with earlier versions of the Mac OS. That's because these versions 
of GetNewDialog ( ) would return a trash value if it failed. The workaround was 
to use a Resource Manager routine to see if the dialog resource existed before 
calling GetNewDialog (). like so: 

if (GetResource('DLOG', ABOUT_BOX_ID) I= NIL) 
{ 

theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, 
(WindowPtr) IN_FRONT); 

ModalDialog(NIL, &itemHit); 
DisposDialog(theDialog); 
} /* end if I= NIL */ 

else 
SysBeep(30); 

Thanks to improvements to the Dialog Manager in System 7, we can use one 
consistent algorithm to test the results of Window and Dialog Manager routines. 



~ Power Macintosh Programming Starter Kit 
~··············································································································· 

There are a couple of things to note here. First, we don't do much error 
checking on the file IjO. This is so that you can examine the code easily. 
Don't worry about this; we'll add this error-checking when we add high
level events to munger later. The other thing is that this code isn't very 
efficient, reading and writing only one byte at a time. FSWri te () automati
cally buffers some of the data during output, which improves performance 
somewhat. However, for faster I/O you'd set amount to a large value so that 
FSRead () would read lots of data into a big buffer, process that buffer's 
contents, and then have FSWri te () write out large sections of the buffer. 
However, for my needs, the performance was adequate so that it wasn't 
worth the extra effort to improve the application's speed. 

Input and Output Filenames 
The next function to write is one that queries the user for input and output 
filenames, opens them, and supplies Munge_File () with the file reference 
numbers. This function is Ask_File (),whose code follows. 

void Ask_File(void) 
{ 

unsigned char 
short 
OSErr 

fileName[14] = {"\pMunge.out"}; 
inFileRefNum, outFileRefNum; 
fileError; 
oldVol; short 

SFTypeList textType = {'TEXT'}; 

StandardFileReply inputReply, outputReply; 

/* Open the input file */ 

StandardGetFile(NIL, ONE_FILE_TYPE, textType, &inputReply); 
if (inputReply.sfGood) 

{ 

GetVol (NIL, &oldVol); /*Save current volume*/ 
if ((fileError = FSpOpenDF (&inputReply.sfFile, fsCurPerm, 

{ 

Report_Error(fileError); 
return; 
} /* end if error */ 

&inFileRefNum)) != noErr) 



""" """."""." """""." """""." """""."." ...... ~~~P.;~~. ! ".~" ~:~~~. ~:. ~ ~?!~?::. 0 
/* Open the output file */ 

StandardPutFile ( "\pSave text in:", fileName, &outputReply); 
if (outputReply.sfGood) 

{ 

SetVol(NIL, outputReply.sfFile.vRefNum); 
fileError = FSpCreate(&outputReply.sfFile, gfileCreator, gfileType, 

smSystemScript); 
switch(fileError) /* Process result from File Manager */ 

case noErr: 
break; 
case dupFNErr: 

if ( (fileError 
{ 

/* File already exists, wipe it out */ 
FSpDelete(&outputReply.sfFile)) == noErr) 

if ( (fileError FSpCreate(&outputReply.sfFile, 
gfileCreator, gfileType, 
smSystemScript)) != noErr) 

Report_Error(fileError); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol)j 
return; 

/* end I= noErr */ 
} /* end if 

else 

noErr */ 

Report_Error(fileError); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 
} /* end else */ 

break; /* end case dupFNErr */ 
default: /* Unknown error, try to abort cleanly */ 

Report_Error(fileError); 
FSClose (inFileRefNum); /*Close the input file*/ 
SetVol(NIL, oldVol); /* Restore original volume *I 

return; 
/* end switch */ 

/* Open data fork */ 
if (I(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum))) 

{ 

gtheCursor GetCursor(watchCursor); /* Change the cursor */ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

SetCursor(&**gtheCursor); 
Munge_File (inFileRefNum, outFileRefNum, (unsigned char *) 

inputReply.sfFile.name); 
FSClose (outFileRefNum); 
SetCursor(&qd.arrow); /* Restore the cursor */ 

} /* end if lfileError */ 

FlushVol (NIL, outputReply.sfFile.vRefNum); 
} /* end if outputReply.sfGood */ 

FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
} /* end if inputReply.sfGood */ 

} /* end Ask_File() */ 

This code looks pretty scary, but it's not. We do a lot of error checking in 
this function, because this is where the goofs that wipe out entire files can 
happen. First, Ask_File () uses the Toolbox routine StandardGetFile () to 
query the user for an input filename. The arguments ONE_FILE_TYPE and 
textType presented to StandardGetFile () have this routine filter out all file 
types but one, the 'TEXT' type. This averts potential fireworks by eliminat
ing the possibility of accidentally opening a file loaded with binary data. 
When the routine returns, the file information is packaged in a 
StandardFileReply data structure. A part of this structure, the Boolean 
sfGood, indicates whether the contents of StandardFileReply are valid-that 
is, whether the user actually picked a file. We stop processing if sfGood is 
FALSE, because this occurs only when the user clicks on Cancel, which 
means they decided against munging a file. 

If sfGood is TRUE, the program proceeds to open the file. First, we save the 
current default volume number using GetVol (). We do this because we will 
make the volume where the output is directed the current default volume 
temporarily. This way the actions of all File Manager routines apply to this 
specific volume, which might be another hard drive on the system or a 
shared Mac on the network. Then we use FSpOpenDF () to open the file's 
data fork. If there are no problems, FSpOpenDF ( ) supplies a file reference 
number to be used with subsequent File Manager calls. Next, the program 
prompts the user for an output filename, using StandardPutFile (). The 
variable fileName provides a default name of "Munge.out" that 
StandardPutFile () offers when it displays the Standard File dialog. Again, 
we check sfGood to ensure that the user typed a filename (or used the 
default name) and clicked OK. If that's the case, then we set the output 
file's volume as the default volume. 



, ...................................................................... ~~~P.;~~ .! ... ~ ... ~~:~~.~:.~~~~.~.0 
While the tests for opening a file for input are simple, opening a file for 
output is anything but. For example, it's possible that the filename the user 
typed matches the name of a file that already exists in the folder. Fortu
nately, StandardPutFile () does this check for us and even tosses a dialog 
box on the screen, as shown in figure 4.35, that warns of the conflict. 
However, if the user clicks on Replace, it's up to us to delete the existing 
file. We use a switch statement to deal with this situation and other errors. 

I= Neutrino ,.. I =Neutrino 

CJ System Folder 1~ l ject ) 
CJ THIN 
CJ UTH ~ Replace eHisting sktop ) 
CJ utili~ "Munqe.out" ? 

w tJ J CJ wnu 
([ Cancel IJ [ Replace J CJ ZTer 

Saue t., u--nr. nee I J 
jMunge.out ([ SoueJ 

Figure 4.35 The name conflict dialog box 

First we attempt to create the file using FSpCreate ( ) . If a duplicate filename 
error (-48) occurs, we delete the file with FSpDelete (),then try FSpCreate () 
again. If there are problems with these actions, or the first call to 
FSpCreate () happens to return an unexpected error code, we simply stop 
the operation. This is accomplished by calling Report_Error (),closing the 
input file (which we had opened), restoring the default volume number, 
and exiting Ask_File (). This might seem like a drastic response, but when 
there's a disk full of files at risk, it's better to play it safe. 

Assuming everything has worked flawlessly so far, FSpCreate () makes an 
output file of the requested creator and type, and the data fork is opened 
using FSpOpenDF ( ) . If there are no errors, FSpOpenDF ( ) returns a file refer
ence number for the output file. Now we have all the information required 
by Munge_File (),since we can obtain the input filename string from 
sf File. name, which is part of StandardFileReply. 

Before we call Munge_File(), we fetch the stopwatch cursor icon using 
GetCursor ().The program places it onscreen by calling SetCursor (),to 
indicate that it is busy processing a file. Then, the program calls 



~ Power Macintosh Programming Starter Kit 
~··············································································································' 

Munge_File ().When the function returns, the program sets the cursor back 
to an arrow. Now all that's left is the clean up. The output and input files 
are closed, and FlushVol ( ) is called to update the volume information for 
the new file. Finally, the original default volume number is restored. 

Background Info 
Old timers will recognize that System Ts StandardGetFile () and 
StandardPutFile () are similar to the old Standard File Manager calls, 
SFGetFile () and SFPutFile (). The differences between the two sets of 
routines are minor, except for the type of reference number returned. These old 
routines are still supported. 

Basic Application Functions 
Now it's time to look at some of the basic application functions that imple
ment the user interface. Let's start with the code that handles menu com
mands: 

Boolean Do_Command (long mResult) 

unsigned char accName[255J; 
short itemHit; 
Boolean quitApp; 
short refNum; 
DialogPtr theDialog; 
short theitem, theMenu; 
GrafPtr savePort; /* place to stow current GrafPort when */ 

/* Desk Accessory (DA) is activated */ 

quitApp = FALSE; /* Assume Quit not chosen */ 
theMenu = HiWord(mResult); /*Extract the menu selected*/ 
theltem = LoWord(mResult); /*Get the item on the menu */ 

switch (theMenu) 
{ 

case APPLE_MENU: 
if (theltem == ABOUT_BOX) 

{ 

/* Describe ourself */ 



...................................................................... ~?~.P.~~~.~ ... ~ ... ~~~~~.!?~.~~?!~?: .. ~ 
if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, 

ModalDialog(NIL, &itemHit); 
DisposDialog(theDialog); 
} /* end if != NIL */ 

else 
SysBeep ( 30) ; 

(WindowPtr) IN_FRONT)) I= NIL) 

/* end if theitem == ABOUT_BOX */ 
else /* It's a DA*/ 

GetPort(&savePort); /* Save port (if DA doesn't) */ 
GetMenuitemText(gmyMenus[(APPLE_MENU - MENU_RESOURCE)], 

theitem, accName); 
refNum = OpenDeskAcc(accName); 
SetPort(savePort); 

break; /* end APPLE_MENU case */ 

case FILE_MENU: 
switch(theitem) 

{ 

case OPEN_FILE: 
Ask_File(); 
break; 

case !_QUIT: 
quitApp = TRUE; 

break; 
} /* end switch */ 

break; /* end FILE_MENU case */ 

/* Start it * / 

/* Done, restore the port */ 

/* Obtain file info & process */ 

/* User wants to stop */ 

case EDIT_MENU: /* Pass events to OS */ 
SystemEdit(theitem - 1); 

break; 
default: 

break; 
} /* end switch */ 

HiliteMenu(0); /* Switch off highlighting on the menu just used */ 

return quitApp; 
} /* end Do_Command() */ 

The Do_Command () basically takes a menu choice passed to it by the main 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

event loop, and uses switch statements to route program execution to the 
appropriate handler code. This is accomplished by reducing the menu 
choice value in mResul t into components using the HiWord () and LoWord () 
Toolbox routines. These components consist of the menu chosen, which is 
stored in theMenu, and the item on that menu, which is stored in the Item. 
For example, if someone using munger selected Quit from its File menu, 
theMenu would be 129 and the Item would be 3. 

The first switch statement uses theMenu's value to branch to a code section 
corresponding to that particular menu. Here a second switch statement 
uses the Item's value to pick the function responsible for that specific menu 
item. Depending upon the number and structure of an application's menus, 
these switch statements can be sparse or complex. 

For the Apple menu, if the About Box item is selected, then munger dis
plays the dialog box we constructed in ResEdit. As usual, we check to see if 
GetNewDialog () encountered difficulties making the window. If not, 
ModalDialog () fields all events, keeping the About Box on the screen until 
the OK button is clicked or Return is pressed. If another item is picked on 
the Apple menu, its name is extracted using GetMenu ItemText (). This name 
is passed to OpenDeskAcc (),which opens the Desk Accessory, application, 
document, or alias file in the Apple Menu Items folder. Note that we do 
some grafport housekeeping, just in case. 

Background Info 
In pre-System 7 versions of the Mac OS. the only items in the Apple menu were 
small utility programs called Desk Accessories that were embedded in the 
System file. They were actually a special type of driver, so that they could run 
concurrently with the application in the original single-tasking environment. With 
the advent of cooperative multitasking under MultiFinder in System 6.0.x, the 
Mac OS treated Desk Accessories as miniature applications, or "applets," 
although the code and location of Desk Accessories didn't change. System 7 
altered this arrangement further by creating an Apple Menu Items folder where 
the Desk Accessories appear as separate files. Not only that. but applications. 
documents. and the aliases to remote volumes can be placed in this folder, and 
can be picked from the Apple menu. OpenDeskAcc () 's role, which was formerly 
limited to starting drivers in the System file, has thus expanded to deal with a 
variety of objects located in a special folder. 



....................................................................... ~~:r.;~~.! ... ~ ... ~~~~~.~:.~~?!~?;'...0 
Munger's File menu is pretty simple. If the Open item was picked, we just 
call Ask_File (), and let it handle the job. If Quit was chosen, we set the 
variable qui tApp to TRUE, to signal the main event loop that it's time to stop. 
The Edit menu is even simpler. As mentioned earlier, it's mostly a place
holder used to trickle certain events to other applications. The program 
calls SystemEdi t (),which checks to see if the Edit menu selection (such as 
a Paste command) should be passed to a Desk Accessory or handled by the 
program itself. This is a holdover from the single-tasking days when only 
one application could run at a time, yet could support one or more Desk 
Accessories running symbiotically within it. 

Just before Do_Command () exits, it performs some screen maintenance. 
When you make a menu selection, the Menu Manager highlights the 
menu's title. This serves as a visual cue that the application is doing some
thing, especially if the chosen operation happens to be a lengthy one. 
(Ideally, the programmer also changes the cursor to a stopwatch, or some 
other busy indicator.) Once the operation completes, we call Hili teMenu ( 0) 

to restore the menu title's appearance. Finally, Do_Command () returns the 
value of qui tApp to the main event loop. 

Main Event Loops 
Speaking of main event loops, it's time to check it out: 

void Main_Event_Loop(void) 
{ 

Point where; 

FlushEvents(everyEvent, 0); 
guserDone = FALSE; 

do 
{ 

/* Clear out left over events */ 

if (WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR)) 

{ 

switch(gmyEvent.what) 

/*We have an event ... */ 
/* Field each type of event */ 

case mouseDown: /* In what window, and where?? */ 
gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow); 

switch(gwindowCode) 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

case inSysWindow: /* It's a Desk Accessory (DA) */ 

SystemClick(&gmyEvent, gwhichWindow); 
break; 
case inDrag: 
break; 
case inGrow: 
break; 
case inContent: 
break; 

/* Drag the window */ 

/* Change the windoW's size */ 

/* Bring window to front if it's not */ 

case inMenuBar: /* In a menu, handle the command */ 

guserDone = Do_Command(MenuSelect(gmyEvent.where)); 
break; 
} /* end switch gwindowCode */ 

break; /* end mouseDown */ 

case keyDown: 
case autoKey: /* Command key hit, pass to MenuKey */ 

if((gmyEvent.modifiers & cmdKey) I= 0) 
guserDone = Do_Command(MenuKey((char) (gmyEvent.message 

& CHAR_CODE_MASK))); 
break; /* end key events */ 

case updateEvt: 
gwhichWindow 

break; 

/* Update the window */ 

(WindowPtr) gmyEvent.message; 

case diskEvt: /* Handle disk insertion event */ 

if (HiWord(gmyEvent.message) I= noErr) 

DILoad(); 
where.h INIT_X; 
where.v = INIT_Y; 
DIBadMount(where, gmyEvent.message); 
DIUnload ( ) ; 
} /* end if != noErr */ 

break; /* end disk event */ 

case activateEvt: /* Activate event */ 

gwhichWindow = (WindowPtr) gmyEvent.message; 
break; 
default: 
break; 
} /* end switch gmyEvent.what */ 

/* end if on next event */ 

/* end do */ 

while (guserDone ==FALSE); 
/* end Main_Event_Loop() */ 

/* Loop until told to stop */ 



,, ..................................................................... ~~~P.\~~.~ ... ~ ... ~~~~~.!~~.~~?!~?: .. 0 
Main_Event_Loop () is the heart of the application. The program tours the 
loop in this function for the life of the application, retrieving events from the 
operating system queue and responding to them. The loop stops only when 
the user selects Quit from the File menu. 

This function starts by clearing out any leftover events using 
Flush Events (), and then sets guserDone to FALSE so that the do loop cycles 
permanently. Inside the do loop, the program calls Wai tNextEvent () periodi
cally, looking for events to handle. The first argument to this Toolbox 
routine is the event mask, which determines the types of events you want 
returned to the application. The munger program allows all of them. This 
mask can be modified in eclectic applications to filter out certain events. 
The second argument is a pointer to an event record, the data structure 
containing information on the type of event received, the pointer's screen 
location (necessary if the event was a mouse down), and any modifier 
information. Modifiers are the Command, Option, Shift, and Control keys. 
When these keys are pressed, typically during a key down or mouse down 
event, they modify the meaning of the event, hence their name. You're 
already familiar with one modifier key: pressing Command and another key 
transforms a key down event into a menu selection. 

The LONG_NAP constant informs Wai tNextEvent () that munger should sleep 
for one second intervals, thereby yielding processor time to other applica
tions. Like Delay (),this value is in tick intervals. This might seem like a lot 
of time to off er to the rest of the system, but munger isn't doing a time
critical background task such as a ZMODEM download, or copying a file 
across a network. Since munger does no background processing, the if 

statement around Wai tNextEvent () locks out any null events. In this case, 
LONG_NAP simply serves as a placeholder in the routine. The constant 
NO_CURSOR tells the Mac OS that no special pointer handling is required. 

Important ( 
It's very important that your application periodically surrender the processor to .......: 

~ 

other applications. (That is, LONG_NAP should never equal 0.) System 7 currently 

uses cooperative multitasking, where applications agree to share processing time 

amongst themselves. If your application fails to share time with other applica-

tions. background processing ceases because those applications can't get 

processor time to run. 



0 Power Macintosh Programming Starter Kit ....................•••........•.....•.....................•••................................................ , 

The context switch to another application is handled through the 
Wai tNextEvent () routine. so it must be called periodically to ensure that these 
switches occur. This isn't a problem when program execution is in the main 
event loop. However, functions called by the main event loop in response to a 
user command might keep program execution out of the loop long enough so 
that these application switches fail to happen regularly. For example, if 
Munge_File () performs disk 1/0 to a floppy-a slow peripheral device-other 
background applications get starved for processor time until the slow file 1/0 
completes, and execution returns to munger's main event loop. The solution is to 
have the function periodically call Wai tNextEvent () itself as it runs. Coopera
tive multitasking dictates that this type of program design must be used, since 
it's up to the application to relinquish control to other applications frequently. 
Hopefully, these sorts of issues will disappear when the microkernel-based Mac 
OS arrives. 

Historically, applications used the original event dispatching routine 
GetNextEvent (), and it's still supported for compatibility. However, it's prefer
able to use Wai tNextEvent ( ) , since this routine is better suited for System 7's 
multitasking environment. For example, Wai tNextEvent () provides the sleep 
argument, while GetNextEvent () doesn't. 

The event loop code has an arrangement similar to Do_ Command ( ) , where 
switch statements zero in on the function that deals with a specific event. 
The first switch statement uses the information in gmyEvent . what to jump to 
the code section for that event type. 

Background Info 
The types of event types defined by the Mac OS are: mouse down, mouse up, 
key down, key up, auto key, update, disk insertion, activate, high-level, null 
events, and OS events. Most of these events are self-explanatory, but a brief 
description of the others is in order. The auto key event occurs when a key is 
held down long enough to begin repeating the character. The disk insertion 
event indicates a floppy or other removable media has been placed in a drive. 
The update event signals an application to redraw the contents of a specific 
window. Update events occur when other windows cover the application's 



....................................................................... ~~~.P,;~~.~ ... ~ ... ~;~~~.~~:.~~?~~?~.~ 
window(s) temporarily, perhaps because of an application context switch or 
because of a dialog box. The activate event informs the application that a certain 
window has been clicked on with the mouse, and if it isn't the current active 
window, it must be made so. Null events indicate that the user has done noth
ing; there are no other events to report. The application can either discard this 
type of event. or perform some background processing, such as blinking an 
I-beam cursor in a window with text. OS events are used for window mainte
nance and Clipboard data conversion when your application switches into the 
background or foreground. Since munger has no windows. and doesn't use the 
Clipboard. we ignore this event type. 

Depending upon the event type, yet another switch statement might be 
used to further refine what code should respond to the event. For example, 
the mouse down event section uses a second switch statement to deter
mine if the mouse was clicked on a window, the desktop, a Desk Acces
sory, or in the menu bar. Conversely, dealing with disk insertion events is a 
straightforward procedure, and so its section just has the code that handles 
the event. 

Let's look closely at how events are dealt with. For a mouse down event, 
the code has FindWindow() evaluate where the mouse click occured. We 
provide FindWindow() with this point from gmyEvent .where, which is part of 
the event record that contains the mouse position. FindWindow() returns a 
code that describes the part of the window clicked on, such as the title bar 
section of a window, the content region (where the application-specific 
information appears in the window), its size box (the box at a window's 
lower right, used to resize the window), or elsewhere. Elsewhere can be the 
onscreen desktop or the menu bar. If the code corresponds to a window 
element, FindWindow() 's second argument returns a pointer to that win
dow. We use FindWindow() 's results in a switch statement to hop to the 
appropriate handler code. Since munger doesn't use a window, most of the 
handlers in this switch statement are stubs. 

If the mouse click occurred in a system window (a Desk Accessory), we call 
SystemClick () to forward the event to it. This is one of those vestigial 
routines used for compatibility with older software. If the click happened in 
the menu bar, we hand the event off to Do_ Command ( ) for processing. 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 

Key down and auto key events are treated the same way. Again, since 
munger doesn't use a document window, processing keystrokes is fairly 
simple. We peek at the modifier field (gmyEvent .modifiers) for each key 
event record. If the Command key wasn't pressed, then we toss the event 
in the bit bucket. If it was, the key event might be a menu's keyboard 
equivalent. First, we extract the character out of the message field of the 
event record. We use CHAR_CODE_MASK to do this, because this field is an 
amalgam of the key's character code, a virtual key code (a special code 
used to identify a physical key on the keyboard), and the address of the 
keyboard on the Apple Desktop Bus (ADB). We pass the character to 
Menu Key (), which maps it to the menu and menu item with the correspond
ing keyboard equivalent. Menu Key () returns a match in a format that we can 
simply pass along to Do_ Command ( ) to complete. 

Like the mouse down window handlers, since the activate and update 
events pertain only to windows, we only put code stubs in the event loop 
for them. If your application uses windows, you'll have to flesh out this 
code. 

The disk insertion event actually turns out to be a critical one for munger. 
Suppose someone decides to save the munged output to a blank floppy? 
When such a disk insertion event occurs, munger's handler code springs 
into action. 

It checks the event's message field for an error code the Mac OS might 
return when it attempts to mount the volume (floppy). If a formatted floppy 
was inserted, the Mac OS mounts it so that a floppy disk icon appears on 
the desktop, and no error is reported. If there was a mount error, we re
trieve the event and call DI Load () to load the Disk Initialization Manager. 
We pass the event's message field to DIBadMount (), a routine used to initial
ize (or format) volumes. Message supplies DIBadMount () with the error code 
and the drive number. DIBadMount () places a dialog box on the screen, 
asking the user to initialize or eject the floppy. The user presumably initial
izes the floppy and DIBadMount () exits. DIUnload () then removes the Disk 
Initialization Manager from memory and the user has a fresh floppy on 
which to save munged files. 

If munger didn't field this event, when the user poked a blank floppy into 
the drive, nothing would happen. The disk insertion event would remain 



...................................................................... ~~.r.~;.~ ... ~ ... ~~~~~.!?~.~~?!~?~ .. ~ 
queued until the user switched to another application (probably a database 
to look up my Internet address and rightfully complain). This application 
would handle the event, and the disk initialization dialog would appear 
unexpectedly, further confusing the unhappy user. Although munger uses 
DIBadMount ()to initialize a floppy disk, this routine can also initialize hard 
disks. See Inside Macintosh: Files for more information. 

As the event loop completes its course, the variable guserDone is checked. If 
Do_Command () returns TRUE in response to a Quit command, this changes the 
state of guserDone. In this case the event loop quits, as does the application. 

The Initialization Function 
Now all that's left to do is examine munger's initialization function: 

Boolean Init_Mac(void) 
{ 

short i; 

/* Lunge after all the memory we can get */ 
MaxApplZone () ; 

/* Make sure we've got some master pointers */ 

MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 

/* Initialize managers */ 
InitGraf(&qd.thePort); 
InitFonts(); 
FlushEvents(everyEvent, 0); 
InitWindows(); 
InitMenus (); 
TEI nit(); 
InitDialogs(NIL); 

/* Loop to setup menus */ 
for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++) 

gmyMenus[(i . RESOURCE_ID)] = GetMenu(i); /*Get menu resource*/ 
if (gmyMenus[(i - RESOURCE_ID)] ==NIL) /*Didn't get resource?*/ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

return FALSE; 
}; /* end for */ 

/* Build Apple menu */ 

/* No, bail out */ 

AppendResMenu(gmyMenus[(APPLE_MENU - RESOURCE_ID)], 'DRVR'); 

/* Add the menus */ 
for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++) 

InsertMenu(gmyMenus[(i - RESOURCE_ID)], APPEND_MENU); 

DrawMenuBar(); 
InitCursor(); 
return TRUE; 

} /* end Init_Mac() */ 

/* Tell user app is ready */ 

If you think this function looks similar to the "Hello world" example at the 
start of this chapter, you are correct. Notice that we've added code to 
initialize the Menu Manager, Dialog Manager, and TextEdit, a Manager 
that deals with simple text entry and editing. TextEdit is required to handle 
characters typed into the Standard File dialog box when StandardPutFile () 

asks for a filename. 

We also have to set up the menus. First, we use a for loop to load the menu 
resources, using GetMenu ().This routine returns a handle to menu record, 
which we immediately stow in our gmyMenus array. We do some math to 
convert the menu resource ID into an array index. Since the initialization 
code runs only once, we can afford to do some extra calculations here. We 
also perform a fail-safe check to see that GetMenu ( ) successfully locates the 
menu resources and returns valid handles to menu records. If there is a 
problem, GetMenu () returns NIL. In this case we simply abort the initializa
tion process and have the function return FALSE. 

Next, we use AppendResMenu () to construct the Apple menu. The 
AppendResMenu () routine searches any resource files open to the application 
for the requested resource type. It then adds the names of these resources 
to the specified menu. We specify the DRVR resource to collect the Apple 
menu items. Like the operation of OpenDeskAcc () routine, this resource type 
selection is a remnant of the pre-System 7 days when Desk Accessories 
were driver resources in the System file. However, AppendResMenu () now 
fetches the names of all the files in the Apple Menu Items folder, as well as 
the Desk Accessories. 



...................................................................... ~~~.P,;~~.~ ... ~ .. ~;~~~.:~:.~~~~~~~.~ 
With the Apple menu built, we use another for loop to add munger's own 
menus using InsertMenu ().Finally, we display the new menus using 
DrawMenuBar(), followed by InitCursor(), which sets the mouse pointer to 
an arrow to show the munger is ready. 

The last thing left to do is type in main ( ) , and here it is: 

void main(void) 

if (Init_Mac()) 
Main_Event_Loop(); 

else 
SysBeep(30); 

} /* end main */ 

When the application launches, it calls the initialization function. If the 
function reports no problem (by returning TRUE), then execution proceeds to 
the main event loop. This is where munger runs until the user asks it to 
quit. 

Build Munger 
Now it's time to build munger. Add "Macmunger.c," "InterfaceLib," and 
"MWCRuntime.Lib" to the project. Go to the Project preferences panel and 
type in munger for the application filename. Build the application and an 
application file, sporting the generic application icon and the name munger, 

should appear in the folder. Launch munger, and try it out. 

Important I 
If munger beeps and quits immediately, there's a problem with its menu re- ~ 

~ 
sources. First. check to see that the .rsrc file~ame matches the project filename. 

(That is, the project munger.n should have a resource file named 

"munger.n.rsrc.") Next. open the .rsrc file with ResEdit and make sure the ID 

numbers of the MENU resources match those defined in munger's source code. 

If not, correct the problem by changing the ID numbers in ResEdit, or editing 

"Macmunger.c." Note that Macmunger.c's initialization code relies on the MENU 

ID numbers to be in ascending order. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

Choose Open ... from the File menu, and search for a file to munge. You'll 
see that the only files that appear in the Standard File dialog are folders or 
text files. Select a text file, such as the example file in CodeWarrior:Code 
Examples /:Munger f:PowerPC.txt and let munger have at it. When 
munger is done, you'll get the status dialog box (see figure 4.36) that re
ports on the results of the filtering operation. 

File: PowerPC. tHt 

Bytes read: 556 7 

Bytes written: 5466 

Figure 4.36 Munger's status report dialog box 

High-Level Events 
We've seen how an application's event loop retrieves and responds to low
level events posted by the operating system. Under System 7, a second 
event mechanism enables applications to communicate with one another. 
Called high-level events, these events can be used as messages to request 
data from or provide data to other applications. High-level events that 
follow the Apple Event Interprocess Messaging Protocol (AEIMP) are 
called Apple events. The message format is defined by suites of published 
commands. For the sake of simplicity, we will consider Apple events and 
high-level events one and the same. For more information on Apple events, 
consult Inside Macintosh: Interapplication Communication. 

Why should you care about Apple events? Because if your application 
responds to them, it can be controlled by an AV Power Mac's voice recogni
tion software, or the AppleScript programming language, both which 
communicate through Apple events. At the very least, an application 
should respond to the four required Apple events, which are: Open Applica
tion, Open Documents, Print Documents, and Quit Application. Although 
this quartet of required events seem rather limited, a creative script can do 
a lot with them. 



•...•..•..•..•....•..•..•..•...•.•..•...•...•..•..•..•...•..•.......... ~~:.P.:i;;,~ .•. ~ •.• ~:~~~.~~.~~?!~?:'...~ 
For example, you can write a program in AppleScript that searches a folder 
for the E-mail you just downloaded, launches a word processor application, 
instructs it to print your E-mail files (Print Documents event), and then stops 
the word processor (Quit Application event). The Finder, where possible, 
uses the required events to open documents and handle print requests. Of 
course, the applications have to be "savvy" (or understand) Apple events 
for the Finder to do this. A special resource in the application tells the 
Finder whether it's Apple event savvy or not. If not, the Finder uses older, 
pre-System 7 methods to start the application and handle the request. 

One compelling reason to add high-level event support to munger is that it 
allows us to use System 7's neat "drag and drop" mechanism. That is, 
someone selects a text file icon with the mouse, drags it across the desk
top, and drops it onto the munger icon. Munger launches, and through 
high-level event communications, opens the desired file and processes it. 
Let's add this capability to munger, since we only need one of the four 
required Apple events to implement it. While we're at it, we'll give munger 
a distinctive icon, and beef up the error checking in the Munge_File () 

function, as promised earlier. 

Make Munger Handle High-Level Events 
There are four key sections in munger that we have to change so that it 
handles high-level events. First, we've got to make our event loop code 
aware of this new type of event. Second, we need a mechanism that deliv
ers these high-level events to the appropriate handler functions. Third, we 
need the handler code itself. Last but not least, we have to make the operat
ing system aware that our application can deal with high-level events. 

Begin by making a copy of "Macmunger.c." Select the "Macmunger.c" file 
and pick Duplicate from the Finder's File menu, or type Command-D. 
Rename the file copy "SonOMunger.c" and add it to the munger.n project, 
while removing the original "Macmunger.c" from the project. Open 
"SonOMunger.c" with the editor to add a few more header files to the 
program. Beneath the other header files, type: 

#include <AppleTalk.h> 
#include <AppleEvents.h> 
#include <EPPC.h> 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#include <PPCToolBox.h> 
#include <Processes.h> 

struct AEinstalls 

AEEventClass theClass; 
AEEventID theEvent; 
AEEventHandlerProcPtr theProc; 

}; 

typedef ·struct AEinstalls AEinstalls; 

#define LAST_HANDLER 3 /* Number of Apple Event handlers - 1 */ 

Most of these header files define Apple event data structures and routines. 
"AppleTalk.h" is required because high-level events can be sent across the 
network to other computers. To communicate to other applications, Apple 
events also use certain Process Manager routines and so that header file 
appears. The structure AEinstalls organizes certain Apple event data 
structures and the addresses of handler functions for installation in a 
dispatch table. LAST _HANDLER indicates how many of these handlers must 
be installed in the dispatch table. There a few more function prototypes to 
define, too: 

/* High-level Apple Event functions */ 
Boolean Init_AE_Events(void); /* Install the handlers */ 

/* Post high-level event to the dispatch table */ 
void Do_High_Level(EventRecord *AERecord); 

/* The four required handlers */ 
pascal OSErr Core_AE_Open_Handler(AppleEvent •messagein, 

AppleEvent •reply, long refin); 
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent •messagein, 

AppleEvent •reply, long refin); 
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, 

AppleEvent •reply, long refin); 
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein, 

AppleEvent •reply, long refin); 

/* Note change! */ 
OSErr Munge_File(short input, short output, unsigned char *fileName); 



...................................................................... ~~~~;~~.~ ... ~ ... ~;~~~.~:.~~~~~.~.~ 
There's the usual initialization function to install the handlers, a function to 
route the high-level events to the handlers, and the four handlers them
selves. As part of its improved I/O checks, Munge_File () returns an error 
value now. 

Modifying the Event Loop Code 

Now let's start with the first item on the list, which is modifying the event 
loop code. Go to Main_Event_Loop (), and in the first switch statement (the 
one that deals with the event type), add: 

case activateEvt: /* Activate event */ 
gwhichWindow = (WindowPtr) gmyEvent.message; 

break; 
case kHighLevelEvent: /* Handle Apple Event */ 

Do_High_Level(&gmyEvent); 

break; 
default: 
break; 
} /* end switch gmyEvent.what */ 

I've included a few of the surrounding source code statements so that you 
can recognize where to place the code. From this code you can see that 
high-level events are just another event passed to the application via the 
Event Manager. The operation of this new code is simple: When 
Wai tNextEvent () retrieves a high-level event for us, we just call 
Do_High_Level() to handle it. 

Delivering High-Level Events 

Let's write Do_High_Level () next, since it's a portion of item two, the deliv
ery mechanism. Type: 

void Do_High_Level(EventRecord *AERecord) 

AEProcessAppleEvent(AERecord); 
/* end Do_High_Level() */ 



0 Power Macintosh Programming Starter Kit 
~··············································································································' 

Was that tough, or what? The event record gets forwarded directly to 
AEProcessAppleEvent (). This routine uses information in the event record to 
determine what handler routine to call in the dispatch table. The 
application's dispatch table is searched first, followed by the system's 
dispatch table. A match is based on the event's class and event ID. If there 
is a match, AEProcessAppleEvent ( ) calls the handler associated with that 
dispatch table entry. This brings up the question of what builds the dis
patch table. For the answer, type: 

Boolean Init_AE_Events(void) 
{ 

OSErr err; 
short i; 
static AEinstalls HandlersToinstall[) = /*The 4 required Apple Events */ 

{ 

}; 

{kCoreEventClass, kAEOpenApplication, Core_AE_Open_Handler}, 
{kCoreEventClass, kAEOpenDocuments, Core_AE_OpenDoc_Handler}, 
{kCoreEventClass, kAEQuitApplication, Core_AE_Quit_Handler}, 
{kCoreEventClass, kAEPrintDocuments, Core_AE_Print_Handler} 

for (i = 0; i < LAST_HANDLER; i++) 
{ 

err= AEinstallEventHandler(HandlersToinstall[i].theClass, 
HandlersToinstall[i].theEvent, 

NewAEEventHandlerProc(HandlersToinstall[i].theProc), 
0, FALSE); 

if (err) /* If there was a problem, bail out */ 
return FALSE; 

} /* end for */ 

return TRUE; 
} /* end Init_AE_Events() */ 

It's the responsibility of Init_AE_Events () to construct the table. The ob
jects in the array HandlersToinstall[] correspond to the dispatch table 
elements of an event class, an event ID, and a pointer to a handler function. 
A simple for loop calls AEinstallEventHandler (), a routine that plugs these 
items into the table. If the routine reports an error, we pass a failure indica
tor (FALSE) back to I nit_ Mac () to halt the application. 



....................................................................... ~~~P.;~~.! ... ~ ... ~~~~~ .~!'.~~2~~2.~.e 
Hazard 
Don't overlook the NewAEEventHandlerProc () routine that's buried innocu

ously as an argument in the call to AEinstal!EventHandler () ! This routine is 

critical for the proper setup of the handler functions. Since the Power Mac's 

system software is a mixture of 680x0 and PowerPC code. it gets tricky for the 

operating system to know what type of code it will be running next when the 

thread of execution hops to another function. To combat this problem, Apple 

devised Universal Procedure Pointers, or UPPs. The UPPs describe to the Mixed 

Mode Manager what type of processor code (PowerPC or 680x0) the function 

uses, the number of arguments the function uses, and the programming lan

guage used to implement the function. The programming language distinction is 

necessary since C programs pass their arguments to a function in an order 

that's different from Pascal. 

The C header files incorporate this UPP information for every Toolbox routine, so 

that the programmer is normally unaware which routines are PowerPC code, and 

which are 680x0 code. For certain functions that you write. it's up to you to 

explain their nature to the Mixed Mode Manager by providing UPPs for them. 

Functions that fall in this category are external functions (such as plug-in 

modules that might be a mixture of 68K or PowerPC code). or internal functions 

called by the operating system (such as our high-level handler routines). If you 

fail to provide a UPP for these functions, the Mac OS can get terribly confused 

when it jumps to them. This is because the operating system doesn't know what 

processor code the function is written in, nor can it determine the size of the 

arguments used. If the Mac OS guesses wrong, the result is a spectacular crash. 

The rule of thumb is: If a mode switch is involved, you need a UPP. Native 

PowerPC plug-in modules that add capabilities to a PowerPC application don't 

require UPPs because there is no mode switch involved. 

If you're worried about getting bogged down in the details of writing a UPP. 

relax. The header files supply routines that do this work for you, especially when 

it's known that the operating system will be calling back into your application. 

NewAEEventHandlerProc () is such routine; it constructs a UPP for those high

level event handlers whose addresses you supply. Don't forget to use this 

routine when setting up your handlers! 



~ Power Macintosh Programming Starter Kit 
~··············································································································· 

We call Init_AE_Events () as the SonOMunger initializes, so that it is pre
pared to respond to Apple Events immediately once it is running. Go to the 
Init_Mac () function and type: 

DrawMenuBar(); 

if (!Init_AE_Events()) 
return FALSE; 

InitCursor(); 

/* Set up our high-level event handlers */ 

/* Tell user app is ready */ 

Again, I have included a few neighboring lines of code so that you get the 
idea of where to locate the function call. This completes item two. 

Writing the Handlers 

Item three on our list is writing the handlers themselves. Enter the follow
ing code: 

/* High-level open application event. */ 

pascal OSErr Core_AE_Open_Handler(AppleEvent •messagein, 
AppleEvent *reply, long ref!n) 

return noErr; 
/* end Core_AE_Open_Handler() */ 

/* High-level print event */ 
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, 

AppleEvent *reply, long ref!n) 

return errAEEventNotHandled; /* No printing done here, so */ 
/* no print handler. */ 

} /* end Core_AE_Print_Handler() */ 

/* High-level quit event */ 
pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein, 

AppleEvent *reply, long refin) 

guserDone = TRUE; /* Tell main event loop we want to stop */ 
return noErr; 

/* Core_AE_Quit_Handler() */ 



....................................................................... !::'~~:':~.~ ... ~ ... ~~~~~.~~.~~?!~:'...~ 
The three handlers you see here are fairly simple. Notice that arguments 
passed to them are simply ignored. The Open Application Apple Event 
notifies the application to perform any start-up tasks required of it. For 
example, the application might create an untitled document window, or 
establish a connection to a database. Since SonOMunger's design of 
pipelining of data between two files is very focused, it doesn't need any 
start up tasks. Therefore, when munger receives an Open Application 
event, the function Core_AE_Open_Handler() reports a "no error" message 
back to the caller while doing nothing. Since SonOMunger doesn't do any 
printing, Core_AE_Print_Handler () responds with an error message that 
indicates SonOMunger can't field the Print Documents event. Upon the 
receipt of a Quit Application event, Core_AE_Qui t_Handler () simply sets 
guserDone so that SonOMunger halts on the next tour of the event loop, and 
returns a "no error" message. 

SonOMunger uses the Open Document Apple event to implement the drag 
and drop feature. When you drop a text file icon onto the SonOMunger 
icon, the Finder sends it an Open Document event that also contains the 
dropped filename. Drag and drop applications are generally expected to 
complete the job without further input from the user. That is, you drop a file 
on SonOMunger, and you expect a processed output file to appear. With 
that in mind, let's write the Core_AE_OpenDoc_Handler() function. Type: 

/* High-level open document event */ 
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent *reply, long 
ref In) 
{ 

short 
AEDesc 
OSErr 
AEKeyword 
DescType 
Size 

i, j j 

fileDesc; 
highLevelErr; 
ignoredKeyWord; 
ignoredType; 
ignoredSize; 

long numberOFiles; 
unsigned char outFileName[64]; 
FSSpec inFSS, outFSS; 
short inFileRefNum, outFileRefNum; 
OSErr finErr, fOutErr, mungeResult; 



~ Power Macintosh Programming Starter Kit 
~··············································································································· 

gtheCursor = GetCursor(watchCursor); 
SetCursor(&**gtheCursor); 

I* Indicate we're busy * / 

mungeResult = 0; /* Clear so FOR loop operates */ 
/* Get parameter info (a list of filenames) out of Apple Event•/ 

if (l(highLevelErr = AEGetParamDesc(messagein, keyDirectObject, 
typeAEList, &fileDesc))) 

{ 

if ((highLevelErr = AECountitems(&fileDesc, &numberOFiles)) 
/* Count files •/ 

noErr) 

for (i 1; ((i <= numberOFiles) && (lhighLevelErr) && 
(lmungeResult)); ++i) 

if (l(highLevelErr = AEGetNthPtr(&fileDesc, i, typeFSS, 
&ignoredKeyWord, &ignoredType, 
(char *)&inFSS, sizeof(inFSS), 
&ignoredSize))) /*Get name •/ 

{ 

for (j = 1; (j <= inFSS.name[0]); j++) /* Copy filename */ 
{ 

outFileName[j] = inFSS.name[jJ; 
} /* end for */ 

outFileName [ j] = '.'; 

outFileName [ j + 1 ] 'o'; 
outFileName[j + 2) = 'u'; 
outFileName [ j + 3 J = 't'; 
outFileName[0] = (j + 3); 
if (l(finErr = FSpOpenDF(&inFSS, 

{ 

I* Tack '.out' on end * / 

/* Update string's length * / 
fsCurPerm, &inFileRefNum))) 

if ((fOutErr FSMakeFSSpec(DEFAULT_VOL, NIL, 

outFileName, &outFSS)) == fnfErr) 
{ 

if (l(fOutErr FSpCreate(&outFSS, gfileCreator, 
gfileType, smSystemScript))) 

if (l(fOutErr FSpOpenDF(&outFSS, fsCurPerm, 
&outFileRefNum))) 

mungeResult Munge_File(inFileRefNum, 

outFileRefNum, 
inFSS.name); 

FlushVol(NIL, outFileRefNum); 



Chapter 4 • Using the Toolbox 09 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

FSClose(outFileRefNum); 
} /* end if !fOutErr */ 

else 
Report_Err_Message("\pError opening output file"); 

} /* end if !fOutErr */ 

else 

Report_Err_Message("\pError creating output file"); 
} /* end else */ 

} /* end if == fnfErr */ 

else 
{ 

if (fOutErr == noErr) /* No error means a file */ 

/* already has that name */ 

Report_Err_Message{"\pCan't write, file already 
exists"); 

} /* end else */ 

FSClose(inFileRefNum); 
} /* end if lflnErr */ 

else 
Report_Err_Message{"\pError opening input file"); 

} /* end if lhighlevelErr */ 

} /* end for */ 

} /* end if == noErr */ 

AEDisposeDesc(&fileDesc); 

} /* end if lhighLevelErr */ 

/* Dispose of the copy made */ 

/* by AEGetParamDesc() */ 

SetCursor(&qd.arrow); 
guserDone = TRUE; 

/* Restore the cursor */ 

/* We're done, stop the application */ 

return (highLevelEvent); 
} /* end Core_AE_OpenDoc_Handler() */ 

The Open Document event definitely triggers some activity here. Starting 
at the top, Core_AE_OpenDoc_Handler() first slaps a stopwatch on the 
pointer to show that the application is busy. Next, the Apple event gets 
passed to AEGetParamDesc (), a routine whose arguments tell it to retrieve 
the data parameters from the Apple event record. These parameters are to 
be coerced (or massaged) into an data array termed a descriptor list, as 
specified by the typeAEList argument. This list is placed in a buffer created 
by AEGetParamDesc ( ) and pointed to by f ileDesc. 



~ Power Macintosh Programming Starter Kit 

~··············································································································· 

Now AECou nt It ems ( ) determines how many objects make up the descriptor 
list, which is the number of files dragged and dropped on SonOMunger. We 
use the value returned by this routine to set up a for loop that extracts 
each filename out of the descriptor list. 

Two things to note here are: First, if an error occurs while extracting 
filenames out of the descriptor list using AEGet Nth Pt r ( ) , the loop termi
nates. Second, if there's an error during file processing, mungeResul t goes 
non-zero, and the loop terminates. We do have to initially zero mungeResul t 

so that the loop doesn't quit prematurely. 

The AEGetNthPtr() routine actually obtains the filenames from the descrip
tor list. The routine's arguments instruct it to retrieve the descriptor list 
items as file system specification records (typeFSS), a format that's used by 
most System 7 File Manager routines. Any Apple event keyword and 
descriptor type information associated with the item is ignored 
(ignoredKeyWord and ignoredType). The largest data item returned from the 
descriptor list must be no larger than a file system specification record 
(sizeof ( inFSS) ), and the size of the data returned is ignored. 

Once an input filename is obtained from the list, we tack an '.out' extension 
on it, creating our output filename. This eliminates the dilemma of what to 
name the output file without querying the user. Note that we should add a 
safety check here, to see that the filename is no larger than twenty-seven 
characters. The reason is that Mac OS typically limits filenames to thirty
one characters in length. I should (but don't) perform a sanity check to 
ensure that the user hasn't passed a filename to SonOMunger that will be 
longer than this 31-character limit when we append the '.out' extension of 
the file. 

To review, munger got the input filename from an Open Document Apple 
event that was the result of the user's drag and drop, and the output 
filename is derived from the input name. We use the FSMakeFSSpec () rou
tine to make a file system specification record out of the derived output 
filename. The program then does the usual safety checks to ensure that the 
input and output files can be opened and written to properly, and gathers 
the file reference numbers. Finally, Munge_File () gets called. 

If things proceed smoothly in Munge_File (),then the input and output files 
are closed, and the loop cycles to the next file. If for some reason 



....................................................................... ~~~P.;~~.~ ... ~ ... ~~~~~.~:.~~?!~?.~.e 
Munge_File () encounters trouble, the error value it returns stops the loop so 
that the user can fix the problem. Note that we're trying to help the user do 
just that by improving the error reporting. The function 
Report_Err _Message () accepts a Pascal string that gets displayed in an 
alert window. Finally, we call AEDisposeDesc () to release the memory 
allocated by AEGetParamDesc () when it made a copy of the descriptor list for 
our use. 

The code for Report_Err _Message () is: 

void Report_Err_Message(unsigned char *errMess) 
{ 

ParamText(errMess, NIL, NIL, NIL); 
CautionAlert(ERROR_MESS_ID, NIL); 

/* end Report_Err_Message() */ 

This is a simple routine; it just takes a pointer to a Pascal string and passes 
this to ParamText (). CautionAlert ()then places the message onscreen. The 
value here is in the descriptive messages that you can provide. This is 
because we know where the problem occurs in the handler code, so we've 
got a good idea as to what caused the error. 

Last but not least, here's the improved Munge_File() function: 

OSErr Munge_File(short input, short output, unsigned char *fileName) 

long amount; 
unsigned char buffer; 
short crflag; 
long icount, ocount; 
OSErr finOutErr; 
unsigned char inNumString[12], outNumString[12]; 
DialogPtr statusDialog; 

amount = 1L; 
crflag = 0; 
icount = 0; 
ocount = 0; 
while (FSRead(input, &amount, &buffer) == noErr) 

{ 

icount++; 
switch (buffer) 

/* Bump input char counter */ 
/* What char was read? */ 



~ Power Macintosh Programming Starter Kit 
~··············································································································· 

case CR: 
if (crflag >= 1) 

{ 

/* Two in a row, end of paragraph */ 

if (l(finOutErr = FSWrite(output, &amount, &buffer))) 
{ 

if ((finOutErr = FSWrite(output, &amount, &buffer)) I= noErr) 

Report_Error(finOutErr); 
return finOutErr; 
} /* end if != */ 

/* end if I *I 

else 

Report_Error(finOutErr); 
return finOutErr; 
} /* end else */ 

crflag = 0; 
ocount++; 
} /* end if */ 

else 
crflag++; 

break; /* end case CR */ 
case LF: 
break; /* end case LF */ 

/* Reset the flag */ 

/* Bump the flag, and toss the CR */ 

I* Toss LF, but don't touch crflag *I 

default: /*Write a character out */ 
if ((finOutErr = FSWrite(output, &amount, &buffer)) I= noErr) 

{ 

Report_Error(finOutErr); 
return finOutErr; 
} /* end if */ 

ocount++; 
crflag = 0; 

break; 
} /* end switch */ 

/* end while */ 

/* Display processing statistics */ 

/* Clear the flag */ 

if ((statusDialog GetNewDialog(STATUS_BOX_ID, NIL, 
(WindowPtr) IN_FRONT)) !=NIL) 

NumToString(icount, inNumString); /*Convert bytes read to string*/ 
NumToString(ocount, outNumString); 
ParamText (fileName, inNumString, outNumString, NIL); 



....................................................................... ~~~~;~~.~ ... ~ ... ~~~~~.?.:~.~~!~?~.~ 
DrawDialog(statusDialog); 
Delay (120L, NIL); 
DisposDialog(statusDialog); 
} /* end if I= NIL */ 

else 
SysBeep(30); 

return finOutErr; 
/* end Munge_file() */ 

This function is nearly identical to the original Munge_File, except that the 
I/O routines are checked for errors. If a problem is detected, we simply call 
the original Report_Error () function, because it's hard to predict the types 
of problems that can occur at this level. We also pass back the error code to 
the caller so that action can be taken, as you saw in the Open Document 
handler code. This completes "SonOMunger.c." If you're confused about 
where the new functions went, examine "SonOMunger.c" on the CD-ROM. 
(The pathname is CodeWarrior:Code Examples f:SonOMunger f.) Or, check 
the complete source listing in appendix C. 

However, we're still not finished. All that remains is to add some resources 
to SonOMunger that provide an alert box for the new error message func
tion, and to inform the operating system that the new and improved 
SonOMunger is Apple Event-aware. Making SonOMunger appear high
level event savvy to the Mac OS will complete point number four, for those 
of you keeping score. 

Making SonOMunger High-Level Event Savvy 
In the Code Warrior compiler, select Preferences from the Edit menu, and 
go to the Project panel. Type in MUNG for the Creator item. This assigns the 
application's Creator type, which must match the signature resource you'll 
make with ResEdit's bundle editor in a moment. Next, click on the 
checkmark icon next to the Size Flags item to activate the pop-up menu. 
Pick the isHighLevelEventAware item, and confirm that it is checked (see 
figure 4.37). Recall that earlier I mentioned that the Macintosh OS used a 
resource to determine if an application is high-level event savvy or not. The 
resource used for this determination is the SIZE resource, and we're setting 



w File Edit Search Project Tools Window 

Project Type: Rppllcotion 

Rpplicotion Info:--------~ 

SonOMunger File Nome !~---------~, 

'SIZE' Flogs occeptSuspendResumeEuents 
.,; conBockground 

Pre doesRctiuoteOnFGSwitch 

Mi 
onlyBockground 
getFrontClicks 
occeptRppDiedEuents 

~-----1.,; is32BitCompotlble 

locolRndRemoteHLEuents 

Figure 4.37 Setting a high-level savvy flag in the application's SIZE resource 

the appropriate flag bit in it to indicate that SonOMunger can handle high
level events. If you fail to do this, the Mac OS assumes that SonOMunger 
can't handle high-level events and so none are ever sent to SonOMunger. 

New Alerts 
Now let's add the new resources SonOMunger requires. Start by double
clicking on the "munger.n.rsrc" file, which launches ResEdit. The window 
that displays the resource fork's contents appears. We 'll make the alert box 
for the Report_ Err _Message () function first. 



....................................................................... ~~~P.\~~.~ ... ~ ... ~~~~~.~~:.l~~!~~: .. 0 
Double-click on the ALRT resource icon. After the ALRT resource window 
opens, select Create New Resource from the Resource menu or type Com
mand-K. When the alert editor window appears, change the DITL ID num
ber to 131. Next, pick Get Resource Info from the Resource menu or type 
Command-I. When the Info box opens, change the ID number to 131. Click 
on this window's close box, and you have an alert resource with an ID 
number of 131, ready to edit. 

Double-click on the window to bring up the dialog item (DITL) editor. 
Resize the window, add an OK button, and follow that with a static text box 
in the window's lower left. (Remember that the OK button needs to be DITL 
item 1, and that we need to allow space for the alert icon, which appears in 
the upper left window comer.) Simply type A0 for the static text item in this 
box. You should have an alert window that resembles the one in figure 
4.38. Close all of the Editor windows, leaving only the one showing the 
view of the resource fork. 

:;:tr························-····: 
1 l ( OK 
: ................................. . 

Figure 4.38 The Report_Err_Message() alert box 

Bundle Resource 
To implement the drag and drop filtering, we must provide SonOMunger 
with a BNDL, or bundle resource. This resource gets its name because it 
describes the linkages among a so-called "bundle" of resources that are 
used to supply certain application characteristics to the Finder, and to 
display the application's icon on the desktop. Let's begin by building some 
of these bundled resources, beginning with an application icon for 
SonOMunger, and an icon for its output files. 



0 Power Macintosh Programming Starter Kit 
I I I I II I II I II I 111 I I I I I I I I I I I II I 1111111111111I111I11111111111111III1111 I II I II I II 1111I111111I111111IIII1111111I111 

In ResEdit, create a new resource. Select 'ICN#' for the resource type. The 
ICON resource -contains a single black-and-white icon bitmap, while the 
ICN# resource contains a list of information on black-and-white and color 
icons. The ICN# Editor window opens, with a default resource ID of 128. 
Click on the ICN # item and draw a black and white icon design using the 
editor's drawing tools (see figure 4.39). 

a File Edit Resource 

• •••••••• • ••••• • • • •• • • • • • • • • • • • • •••••• • • • • •• • • • •••••• • • • • • •• • • • • • • •• • • • • • • • • • •••• ••••••••• • • • • ••• •• • • • •• • • ••• •• •• • •• • • ••••••••• • •• • • • • ••• • • • • ••• • • • • •• • • • • •••••••• • ••••••••• • 

Figure 4.39 Drawing the ICN# resource 

icl8 

icl4 

If you look at the icons at the far right, you'll get an idea of how they'll 
appear on the desktop. They look OK, except for that square outline 
surroundng it. So the next thing to do is create the icon mask, which is a 
black silhouette of the icon. The Finder uses the mask data to punch the 
icon's outline, cookie-cutter fashion, into the desktop background pattern. 
The Finder then draws the icon into this opening, fitting the icon's image 
seamlessly onto the screen. Making the mask is easy: Go to the ICN# item 



...................................................................... ~~~r.;~~ .~ ... ~ ... ~;~~ .~~:. ~~~~~~~. 0 
at the Editor window's upper right and drag the black-and-white icon down 
to the mask item window (see figure 4.40). A silhouette of the icon appears. 
The appearance of the test display icons should improve dramatically. 

"-.. 

11111111 0 

• o 
• o 
I I 

Icon Famil ID= 128 from mun er.11.rsrc 

• •••••••• • ••••• • • • •• • • • • • • • • • • • • •••••• • • • • •• • • • •••••• • • • • • •• • • • • • • •• • • • • • • • • • •••• ••••••••• • • • • ••• •• • • • •• • • • •• •• •• • •• • • ••••••••• • •• • • • •••• • • • • ••• • • • • •• • • • • •••••••• • ••••••••• • 

ic18 

Figure 4.40 Making the application icon's mask 

Next, drag the ICN# to the icl8 item window and click to select it. Now you 
can add color to the icon, making an icl8 8-bit color icon resource (see 
figure 4.41). Similar to how the dialog editor and dialog item editor work in 
tandem to produce interrelated resources, the ICN# editor lets you create 
several types of icon resources. When you're done with the icl8 resource, 
you can make the icl4 (the four-bit color icon) resource, although it's not 
necessary. Close the ICN# Editor window and save the file . 

Select Create New Resource again and the ICN# editor reappears, this time 
with an ID of 129. Draw a document icon, similar to the one shown in figure 
4.42. When you're done, close the ICN# Editor window and save the file. 
The ICN# Resource window shows the icons, along with their ID numbers. 
Close this window and you'll see the various resources associated with the 
icon list resource. 



0 Power Macintosh Programming Starter Kit 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Icon Famil ID=· 128 from mun er.n.rsrc 

"-... [!l~ • D 

• D 

~00 • 0 

I~??~~~;:~_· I ics4 
ic14 

~ ~~ 
Mask 

Figure 4.41 Editing an icl8 resource for the application icon 

Icon Famil ID = 129 from mun 

[QJ~ 
ICN# 

~~ 
[QJ [ID 

ics4 
ic14 

00~ 
Mask 

Figure 4.42 Editing an iclB resource for the document icon 

Select Create New Resource again and this time type in BNDL in the re
source type selection window. The BNDL resource window opens, fol
lowed by the bundle Editor window. Go to the BNDL menu and choose 
Extended View. Type in MUNG for the signature, to match what you entered 
in the Project preferences panel in Code Warrior. Now go to the Resource 
menu and pick Create New File Type. You'll get a new, highlighted entry in 
the bundle Editor window, as shown in figure 4.43. 



........................................................................ ~~~?,;~~ .~ ... ~ ... ~;:;~. !~;.~~?~~?.' .. e 
BNOL ID= 128 from mun er.'JJ.rsrc 

Signature: I MUNG I 
ID: ~ (should be 0) 

©String: 
'--~~~~~~~~~~~-----' 

Figure 4.43 Entering a new file type in the BNDL Editor window 

Move the pointer to the Type item, and notice how it changes to an I-beam 
symbol, for text entry. Type in APPL to replace the four question marks. 
Next, go over to the icon section and double-click on it. You'll get a dialog 
box asking you for the icon to use (see figure 4.44). Click on icon resource 
128 and click OK The empty boxes in this section of the Editor window are 
filled with icons. Select Create New File Type again and type in TEXT for the 
Type item. 

Choose an icon for the type APPL: 

II D 
128 ~ 129 

Edit ] [ Cancel ) ([ OK ] 

Figure 4.44 Picking the icon for the application file type 

Pick icon ID 129 for the TEXT file type icons. The BNDL Editor window 
should appear as shown in figure 4.45. 



~ Power Macintosh Programming Starter Kit 
~····································································································· · ········· 

=Iii BNDL ID = 128 from mun er. n .rsrc 

Signature: I MUNG I 
ID:~ (should be 0) 

©String :.______ ___________ _, 
........................... ····························- ............................ ................................... 

FREF Finder Icons 

local ires ID !Type local ires ID ICN• ic14 ic 18 ics • ics4 icsS 

0 128 RPPL 0 128 ~ il'l II • -0-

129 TEHT 129 D Cl ~ Cl 

Figure 4.45 The BNDL resource for SonOMunger, with icons for two file 
types 

Close this Editor window. You'll notice that beside the new BNDL resource 
is a resource type of 'MUNG'. This is the application's signature resource, 
made when you typed in those four characters in the signature item of the 
bundle editor. There's also a FREF, or file reference resource. This resource 
is used by the Finder to determine what file types (if any) your application 
recognizes. When you drag and drop a document on SonOMunger, the 
Finder compares the document's file type to the file types in SonOMunger's 
FREF resource. If there's a match (say, a Claris Works text file was dropped 
onto SonOMunger), the Finder launches SonOMunger and sends it an Open 
Documents Apple Event with the filename. Save the file and quit ResEdit. 

At long last, go ahead and make the application. 

Finishing Up 
The SonOMunger application might still be showing the generic applica
tion icon after it is created. To ensure that the Finder brings the desktop 
database up to date on SonOMunger's capabilities, you have to force the 
database to be rebuilt. Do this by restarting the Power Mac and holding 
down the Command and Option keys as the computer boots. Just before 
the desktop appears, you should get a dialog box asking if you want to 



...................................................................... ~~~P.';';'..~ ... ~ ... ~~~~~.~~~.~~~!~~: .. 0 
rebuild the desktop file. Click on OK. If all went well, SonOMunger's icon 
should resemble the one we drew in ResEdit. Now drag a text file docu
ment onto SonOMunger. It will start automatically and grind away quietly 
for a few seconds. The status report dialog box appears briefly and then 
SonOMunger quits. You're not limited to working with one file at a time, 
either. You can drag several or more files to SonOMunger for processing. 

This is why we don't use a modal dialog or alert for the status report, 
because SonOMunger would stop until you clicked on the OK button for 
every report displayed. Note SonOMunger lets the user have it both ways 
for choosing files. The person f arniliar with the Standard File dialogs can 
use those to select files, while another person might like the drag and drop 
approach. As you design Mac applications, always remember, give the user 
as many ways as possible to operate it. 

The Fork in the Road 
In this chapter we learned about the forked nature of Mac files. We also 
learned about resources, the building blocks of Mac applications, and how 
to edit them in ResEdit. We've learned about both low- and high-level 
events and how to write a Mac application to respond to them. So far, the 
Power Macintosh looks pretty much like a 68K Mac, even when program
ming it. However, although things look the same, the run-time architecture 
of the Power Mac is fundamentally different. We'll find out about that in the 
next chapter. 



The PowerPC 
Software 
Architecture 

The material in this chapter will be of interest to all Macintosh 
programmers, no matter what their level of expertise. It ex
plains how fundamentally different Power Macs are under the 
hood, even though they look and behave like 68K Macs. 

Our road trip has covered quite a bit of ground. We've become 
acquainted with Code Warrior's array of development tools and 
learned about the structure of Mac files and applications. We've 
made an application that provides a friendly 
interface and performs useful file IjO. Importantly, 
this code compiles and runs whether we use the 
68K Code Warrior compiler or the Power PC (PPC) 
Code Warrior 
compiler. While 
this appears to 
trivialize the 
differences be
tween a Mac and 
Power Mac, make 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

no mistake: The computers use very different processors. Given that fact, 
the ability to use the same code to make processor-specific versions of an 
application is actually a tremendous technical achievement. Apple has put 
a lot of effort into making the switch to the Power Macintosh as painless as 
possible. This effort will pay off for users and developers in the following 
ways: Users' current 68K application software is still usable and runs with 
decent performance. Developers can rapidly port code to the Power Mac 
without a major effort to produce a native application. An added plus for 
both users and developers is a significantly faster application. This 
improved performance, combined with the low investment in cost and 
resources to support two different computers, is a win-win situation. It 
means that you should see lots of native applications appear early on. 

While providing compatibility with the past, Apple also engineered the 
future into the Power Macs. Behind the consistent application interface, the 
run-time application architecture of the Power Mac has fundamentally 
changed. It eliminates some of the limitations inherent in the existing 
operating system design; limitations that arose out of hardware constraints 
imposed by the 68K processor. 

This chapter will serve as a rest stop on our journey. While we're recuperat
ing, I'll describe the new run-time architecture in some detail. To under
stand the new, however, we must first understand the old. Let's begin with 
a description of the existing 68K application architecture. After all, we can 
anticipate that this type of application will be around for a while longer, 
thanks to the Power Mac's 68LC040 emulator, and the millions of 68K
based Macs in the industry. Finally, remember that everything you learned 
about the Mac application's program structure still applies: The code will 
load resources, have an event loop, and call handlers no matter what 
processor you write for. 

The 68K Application Run-Time 
Architecture 
As we discovered in the last chapter, Macintosh files are composed of a 
data and resource fork. For a 68K application, the program's code resides in 
the file's resource fork, as resources of type 'CODE'. Accompanying these 
CODE resources are other resources, such as DLOG, ALRT, WIND, and 



................................................... ~~;.i;;<;~. ~ ... ~ ... :.~;. ;~':'.~'.~? .. ~~~';";,'; .. ~:;.~~;;;~;; .. 0 
MENU, which supply graphical information (such as icons) or data lists 
(dialog or menu items) that define the application's user interface. A SIZE 
resource provides operating system information, such as the amount of 
memory the application needs, whether or not it can run in the back
ground, and if the application is high-level event aware. The data fork of the 
application is usually empty (see figure 5.1). 

Resource fork Data fork 

Jump table - CODEO 

CODE1 

CODE2 

CODEx 

DLOG 

WIND 

MENU 

SIZE 

Figure 5.1 The structure of a 68K application file 

The application's code section is composed of individual CODE resources, 
or code segments. Code segments can be a maximum of 32K in size. This 
value came about due to a limit imposed by the 68000 processor used in 
the original Mac. In order to shoehorn code into the confines of that first 
system's 128K of RAM, the engineers designed the program code to be 
position-independent. That is, the code uses no absolute addresses. Due to 
the shifting memory demands of a running application, code segments 
could be unloaded and subsequently reloaded into memory in different 
physical addresses at different times, which is possible only if the code is 
position-independent. This allowed those early Mac applications to run 
within the cramped memory space by purging unused code segments and 
then loading only those segments that had to execute at the moment. 
Naturally, in the scheme of the Mac OS design, a Segment Manager deals 
with these code segments. 



~ Power Macintosh Programming Starter Kit 

~·············································································································· 

The code references (such as a branch to a different part of the program) of 
such position-independent code are based on the program counter's cur
rent address, plus an offset. This scheme is commonly known as PC-relative 
addressing, the term corning from the abbreviated name of the program 
counter (PC). The 68000 processor implements PC-relative addressing with 
a 16-bit signed value, which allows an address range of plus or minus 32K. 
The offset's sign indicates if the reference is before or after the current PC 
address. The tradeoff was that while this scheme made the best use of 
tight memory, it also constrained the code segment's size. To guarantee 
that any function within the segment was accesssible to another function, 
a segment could be no larger than the largest offset possible, or 32K. Re
member that this limit only applies to individual CODE resources. The 
application's actual code section can be rather large, packed with tens or 
hundreds of 32K CODE resouces, each with its own unique ID number. 

Background Info 
Later generations of the 680x0 processor expanded the PC-relative offset to a 

signed 32-bit value. However, while the hardware changed, the software-the 

68K application architecture-still uses only 16-bit signed offsets, for reasons of 

compatibility. Thus, most developer tools don't take advantage of this hardware 

feature. 

This brings up a question. Given the 32K PC-relative addressing limit, how 
does one function call another, especially if the target function is positioned 
in physical memory beyond this addressing limit? Or, what if that particular 
CODE resource isn't in memory at all? This problem is dealt with by using a 
data structure called a jump table. By way of explanation, let's start by 
reviewing how an application launches. 

When you double-click on an application icon, the Finder obtains the 
filename, which it then passes to the Process Manager. The Process Man
ager examines the application's SIZE resource to determine the size of the 
memory partition-a contiguous section of physical memory-it must build 
for the application. 



The memory partition subsequently gets divided into three sections. They 
are referred to as heap, stack, and A5 world (see figure 5.2). The heap 
contains a data pool that the program draws from as necessary to load 
more resources, or to process data. This could be more code segments, any 
needed graphical resources (such as a window or a menu), data structures 
used by the Toolbox routines, and the program's data. The heap starts at 
the lowest memory addresses in the partition and expands upwards. The 
stack holds temporary variables and starts near the highest addresses in 
the memory partition. It grows downward, toward the heap. Ideally, the top 
of the heap and top of the stack never collide. Practically, if an application 
crashes with a bomb ID of 28, it means the two have met, with disastrous 
results. The A5 world holds the application's global variables, OuickDraw 
global variables, and the jump table. The name A5 world comes from the 
fact that all of these objects are accessed as offsets from an address stored 
in the 68K processor's A5 register. This A5 world is a fixed size and is 
situated just above the base of the stack. Once these three sections of the 
application are set up, the Process Manager transfers control to the 
application's main () function. 

Application 
partition 

AS world 

Stack 

Heap 

' ' 
' ' ' 
" 

' \ AS 

' ' ' ' 

----

--,. 

' ' ' ' ' ' ' 

Detail of 
AS world 

Jump table 

application parameters 

pointer to QuickDraw globals 

Application 
global variables 

QuickDraw 
global variables 

Figure 5.2 The structure of a 68K application in memozy 

1---i 

Lt_ .... 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

An application's code segment 0 (that is, a CODE resource of ID 0) contains 
information that the Process Manager uses to set up the A5 world, such as 
the size of the application's globals and the jump table's initial contents. 
This segment is built by the development software's linker. When the linker 
stitches all of the program's object code into an application, it keeps track 
of external function references, that is, calls made to functions outside of a 
code segment. The linker sorts these references by segment number and 
then writes this data into the CODE 0 resource. The linker also sizes the 
global variables used by the application and writes this value into this 
segment. The Process Manager loads segment 0 into the heap just long 
enough to establish the A5 world and discards it. It uses a Segment Man
ager routine, LoadSeg ( ) , to do this. 

The final application code produced by the linker has two types of function 
calls. A function call within a code segment becomes a subroutine jump 
instruction that uses a PC-relative offset. A call to a function outside of the 
segment becomes a subroutine jump to a jump table entry. Since the jump 
table is referenced through register A5, this is a subroutine jump instruc
tion that uses the address stored in register A5, plus an offset to a jump 
table entry. Since application globals must be accessible to every function 
within the program, they too must be situated in the A5 world. The applica
tion and OuickDraw globals thus are referenced as offsets from register A5. 
As you can surmise, tampering with A5's contents is not a good idea, as the 
application relies on it to both operate and locate global variables. 

Now let's see how the jump table completes the connection to the external 
function. The jump table is made up of an array of 8-byte entries, as shown 
in figure 5.3, where each entry represents a function reference. These 
entries can have one of two formats. The first format is used when a par
ticular function's segment is already loaded into memory. The correspond
ing jump table entry contains a segment number (2 bytes) and a jump 
instruction (2 bytes) with a 32-bit absolute address (4 bytes). Therefore, 
when an external function gets called, the A5-relative subroutine jump 
hops to a corresponding entry in the jump table, which in turn becomes a 
jump instruction to the actual function. 



"""" ", ", "" "" ", """, ",",", .. , ", .... ~~; r,;;~, ~, "~ .. , ~~;, ~~'::;'!,~, ~~~;,'~ .~;;,h,~;;J~.'!' .. 0 
Format of a jump table entry when code segment is loaded In memory 

T T T T I 
segment number JMP function address 

1 1 1 l l 

Format of a jump table entry when code segment Isn't in memory 

I I I I I 
offset to function MOVE.W segment number, -(SP) LoadSeg() 

l l l l 1 

Figure 5.3 The two formats of a jump table entry 

If the segment isn't in memory, then the jump table entry uses the second 
format. The entry contains the target function's offset into the missing 
segment (2 bytes), followed by an instruction that pushes the segment 
number onto the stack (2 bytes), and finally a call to the LoadSeg () routine 
(2 bytes). Now the subroutine jump into the jump table executes the push 
instruction, and then calls LoadSeg ( ) . LoadSeg ( ) finds the target segment 
number on the stack, loads the CODE resource with that ID into memory, 
and locks it there. Next, it takes the offset value in the jump table entry, and 
adds it to the segment's current address in memory to obtain an absolute 
address for the function's entry point. Remember that the segment might 
get loaded into different sections of memory, so this absolute address 
changes each time the segment is loaded. LoadSeg ( ) then converts the 
jump table entry into the first format so that it now holds the segment 
number and a jump instruction. It also updates the jump table entries for 
every function contained in this segment. LoadSeg ( ) finally executes the 
jump instruction it built in the jump table entry, transferring control to the 
target function. If a segment happens to get purged from memory (via 
another Segment Manager routine called UnloadSeg ()) , the appropriate 
jump table entries are revised to the second format to reflect this fact. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

As you can see, these operations are transparent to the programmer. The 
jump table mechanism quietly ensures that when a function is called, if its 
code segment isn't in memory, then it gets loaded automatically. Releasing 
memory isn't as automatic: the programmer has to call UnloadSeg ( ) to 
indicate to the Mac OS which segments aren't in use. 

This carefully choreographed sequence of events enabled graphics
intensive Macintosh applications to run in small amounts of memory. 
MultiFinder, Apple's first implementation of cooperative multitasking, was 
possible because each application's position-independent code and jump 
table allowed them to be loaded and executed anywhere in memory. 

However, there's still a problem: How does an application access Toolbox 
routines? Most of these routines are in the ROMs, which are located in the 
Mac's memory space, well over a PC-relative jump away. We didn't see 
anything in the application's jump table to deal with Toolbox routines. 

For the answer, we again turn to the 68K processor. Normally a processor 
trundles along, fetching program instructions and executing them. Occa
sionally, the processor might detect a trap or exception condition. This is an 
abnormal state that might be caused by the instruction itself (such as a 
divide by 0, an invalid instruction, or a code reference to an odd address), a 
bus error (a memory SIMM or other hardware component failed to respond 
to a bus access), or a peripheral device requesting service through an 
interrupt. The processor responds to an exception by first pushing the 
address of the next program instruction onto the stack, followed by some 
information-called an exception frame-that's a snapshot of the 
processor's internal state. The processor then fetches an address from a 
preprogrammed location in memory whose location is determined by the 
type of exception that occurred. The processor jumps to this address, 
which is the entry point to a function that handles the exception. The 
handler code remedies the problem (if possible), or services the device 
request. When the handler code completes, the processor retrieves the 
exception frame from the stack, thus restoring its internal state. Finally, the 
saved program address is popped from the stack into the PC, which places 
the processor at the next instruction in the program, no worse for wear. 



.................................................... s~~P.;~;.~ ... ~ .. :.~;.~::~~;~.~~~.r.~ .~::~:~~~:: .. 0 
Motorola defined two special unimplemented instructions for the purpose 
of extending the capabilities of the 68K processor. When the processor 
traps on one of these instructions, it executes handler code that emulates 
new instructions. One of these unimplemented instructions is called the A 
trap word, so called because it's 16 bits in length and the first four bits in 
the word are the bit pattern for the hexadecimal A 

Important I 
In most of the Apple literature, a word is 16 bits in length. This follows a con- ~ 

vention where the size of 68K processor's instructions were this length. The 

current PowerPC processor literature from IBM and Motorola define a word as 

being 32 bits long. Needless to say, this can cause some confusion. For this 

discussion, we'll stick with the 16-bit word length and keep the use of the term 

word to a minimum. 

Apple used the A trap as an entry point into its Toolbox routines. In its 
header files, each routine is assigned a word that starts with hexadecimal 
A, followed by bits that indicate the routine type, some flag bits, and an 8-
or 9-bit value. For example, if we peek at the "Dialogs.h" header file, and 
search for the StopAlert () routine, we find the macro: 

extern pascal short StopAlert(short alertID, ModalFilterUPP modalFilter) 

ONEWORDINLINE(0xA986); 

The macro ONEWORDINLINE reduces the declaration to: 

extern pascal short StopAlert(short alertID, ModalFilterUPP modalFilter)\ 

= {0xA986}; 

Here we see that the two arguments, alert ID and modal Filter, will be 
pushed onto the stack, using the Pascal language calling convention. This 
is followed by the trap word for the StopAlert routine, 0xA986. Every 
Toolbox routine uses similar macros that place arguments on the stack or 
in certain registers, and then hands the job off to the exception handler. If 
you disassemble your program code using the Disassemble command in 
Code Warrior's Project menu, you'll notice the program's 68K machine code 
is peppered with these A trap words. 

~ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

Background Info 
The last two bytes of jump table entries for code segments not loaded in 
memory (the second format) are a call to the LoadSeg ( ) routine. These bytes 
contain the trap word OxA9FO, which is the LoadSeg () trap. 

Let's put this all together. A Mac is running an application with the 68K 
processor dutifully fetching and executing instructions. Suppose the pro
gram now calls a Toolbox routine. When the processor hits the A trap word 
that represents this routine, it causes an exception. The processor fetches 
the address for the location of an A trap exception handler written by 
Apple and executes it. This handler-appropriately called the Trap Dis
patcher-examines the trap word and uses the type bit to select one of two 
dispatch tables. One table is for the low-level routines, the other is for 
operating system routines. The Trap Dispatcher then uses the trap word's 
lower 8 or 9 bits to calculate an offset into the particular dispatch table. The 
entry at this offset in the dispatch table contains the address of the Toolbox 
routine. Typically this is an address in ROM, but some routines can be 
found in RAM. The processor hops to this address and executes the 
Toolbox routine. When the routine completes, the processor returns from 
the exception, back to the next instruction in the application. Where do the 
addresses in the dispatch table come from? They're stored in the Mac
intosh's ROM and are loaded into the dispatch table when the Mac starts. 

Using the exception mechanism as an access point into the Toolbox seems 
a tad complicated, but the design has some important advantages. First, it 
allows a code segment anywhere in memory to readily access the Toolbox 
routines. Second, this mechanism provides flexibility to fix bugs or add 
new services. For example, assume that it's discovered that the Toolbox 
routine ReallySuperbService (),located in ROM, has a bug. We know that 
you can't easily change ROM-but you can change the offending routine's 
address in the dispatch table. Built into the Mac's boot process is a proce
dure for installing patch code. After the dispatch table is built, but before 
initialization completes, the System file (early Macs) and System Enabler 
files (current Macs) are searched for patch code resources. These resources 
are loaded in memory, locked, and executed. This code modifies the 



address for ReallySuperbService () in the dispatch table so that it points to 
the improved version of the routine located in RAM, rather than the one in 
ROM. 

Apple uses the same method to add enhancements or new services to the 
Mac OS. The code implementing new features is loaded and locked in 
memory. Empty entries in the dispatch table are directed toward routines 
in the feature code. Apple is thus able to fix bugs or add features to the 
operating system of existing Macs with just a new release of the system 
software. 

Third party vendors can also supply enhancements through the use of 
Extension files and Control Panel files. These files have !NIT resources that 
contain the enhancement code, plus code to patch the dispatch table. At 
boot time, the operating system first installs any patch code; then it 
searches the Extensions folder and Control Panels folder for files, installs 
their INIT code, and modifies the dispatch table. Apple's own CD-ROM 
driver, QuickTime software, and File Sharing software are installed this 
way. 

The PowerPC Application Run-Time 
Architecture 
On the surface, a PowerPC Mac application seems identical to its 68K 
counterpart. As mentioned earlier, the code you wrote in chapter 4 com
piles and runs on a Mac with either processor. However, the run-time 
architecture behind the API is fundamentally different. 

We can see a difference immediately when we examine the structure of a 
PowerPC Mac application. Looking at figure 5.4, you see that application's 
resource fork still has the graphical resources and the SIZE resource. 
However, the program code is located in the file's data fork, as a block of 
PowerPC code known as a code fragment. This code fragment isn't seg
mented, nor is there a size limit. Thus, all of a PowerPC application's code is 
stored in a single code fragment. An application with 3M of PowerPC code 
has a code fragment 3M in size in the data fork, plus whatever resources 
are required in the resource fork to implement the user interface. After 



viewing the gymnastics required to support 32K segments in a 68K Mac 
application, the Power PC application design appears starkly simple. 

Resource fork 

DLOG 

WIND 

MENU 

SIZE 

cfrg 

Data fork 

PowerPC 
code fragment 

Figure 5.4 The structure of a PowerPC application file 

Background Info 

Im 

Lest you think the original Mac design team came up with an unnecessarily 

complex design. remember that they were working in an era when 256K to 

512K of RAM was considered adequate. and that the 68000 processor could 

only address a maximum of 4M. The simplicity of the PowerPC software architec

ture stems from the capabilities of today's hardware. The basic Power Macintosh 

configuration has SM of RAM and supports virtual memory. The PowerPC 60 1 

processor in these first Power Macs can address 32 bits of physical memory 

(4G) and 52 bits of virtual memory (4T). 

Finally, the Power Mac's System Software engineers had the advantage of a 

decade's worth of improvements in operating system technology. 



Chapter 5 • The PowerPC Software Architecture ¢ 
·············································································································~ 

Launching a PowerPC Mac application is similar to that of a 68K Mac 
application, up to a certain point. When you double-click on the application 
icon, the Finder gets the filename and passes it to the Process Manager as 
before. However, now the Process Manager calls a Code Fragment Man
ager, whose job is to load code fragments into memory, lock them there, 
and prepare them for execution. After the code fragment is readied, the 
Process Manager transfers control to it. The Code Fragment Manager can 
be considered the PowerPC counterpart to the Segment Manager. 

The Power Mac application's memory structure is similar to a 68K applica
tion. There's still a heap and a stack, but there's little need for an A5 world. 
However, for those Toolbox routines that still exist as 68K code and need to 
access OuickDraw's globals, the Process Manager constructs a pointer to 
these globals in the application's heap, and your program allocates storage 
for these globals here as well. The heap also contains any executing code 
fragments (when virtual memory is off), the application's globals, the 
globals of any library code fragment the program uses, and any library 
code fragments not located in ROM (see figure 5.5). 

Since a Power Mac has both 68K-based and PowerPC-based Mac applica
tions on it, how does the Process Manager know which Manager to use 
when you launch an application? Each PowerPC application gives the 
Process Manager a hint: They have a resource of type 'cfrg' in the file's 
resource fork. This resource tells the Process Manager that this application 
contains Power PC code, so it uses the Code Fragment Manager to load the 
application. If the cfrg resource is absent, the Process Manager assumes 
the application is a 68K binary and calls the Segment Manager instead. The 
cfrg resource is placed in the file by the development software. 

What about the Toolbox routines in ROM? They too, are code fragments. 
After the Code Fragment Manager loads the application's code fragment 
into memory, it goes about resolving any external references, which are 
usually the Toolbox calls. The Code Fragment Manager loads any addi
tional code fragments into memory (recall that not all Toolbox or operating 
system routines are in ROM), and then it replaces each external routine 
reference with its actual address. 



/"::':\. Power Macintosh Programming Starter Kit 
~·············································································································· 

Heap 

Application 
partition 

Stack 

Application's 
global variables 

Figure 5.5 The structure of a PowerPC application in memozy 

To see how this is done, let's examine code fragments in more detail. Code 
fragments come in two executable formats, XCOFF and PEF. XCOFF is the 
acronym for IBM's Extended Common Object File Format, while PEF 
stands for Apple's Preferred Executable Format. As its name implies, the 
preferred format for code fragments for the Power Macintosh is the PEF 
format. XCOFF is partially supported because the original IBM develop
ment tools used this format. 

I Important 
~ The Code Fragment Manager uses a set of routines known as the Code Frag

ment Loader to load code fragments from a file into memory. The Code Frag

ment Loader's function is analogous to LoadSeg () 's. The Code Fragment 

Loader is responsible for recognizing and loading either XCOFF or PEF files. If 



" .................................................. ~~~f.~~~. ~ ... ~ ... ~~;. !':!':':~~~. ~~~.'.~ .~::~i~;;!~.'!' .. 0 
new file formats are introduced later. the loader will be updated to handle them. 
You, the programmer. needn't concern yourself with file formats. Just let the 
Code Fragment Manager handle the job of loading your code fragments. 

A PEF consists of a container of code, data, and loader information block. A 
container is a chunk of contiguous storage, typically a file, although it can 
be any object that the Mac OS accesses, such as the libraries that house the 
Toolbox routines in the Power Mac's ROMs. The code and data make up 
the code fragment itself, and the loader information block enables the Code 
Fragment Manager to prepare the fragment for execution. The loader 
information describes the fragment's initialization, start, and termination 
functions, its imported functions and data, its exported functions and data, 
and its version number. 

The import/ export information is crucial to the operation of the Power PC 
run-time architecture. It's how the connections between an application and 
the Toolbox routines are established. Code fragments can export certain 
entry points or import the entry points of data objects or functions in other 
code fragments. For example, the Mac Toolbox is a shared library in the 
Power Mac's ROMs. This type of code fragment exports the entry points of 
its global data and routines. A Mac application, on the other hand, requires 
Toolbox routines to operate and so it imports the required entry points from 
the shared library in the ROMs. The development software's linker is 
responsible for matching up the import names in the application to export 
names in a shared library. The linker places the exporting library's name 
and any import names into the code fragment's loader information block. 
It's important to note that this information is stored as actual name strings. 
These names get resolved to addresses by the Code Fragment Manager at 
run time. 

Background Info 
It's easy to see what libraries and routine names a code fragment requires. To 
do this, make a copy of the SonOMunger application. Now launch ResEdit. In 
ResEdit's File menu, select Get File/Folder Info and open the copy of 
SonOMunger. In the Info box that appears, change the Type item from APPL to 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

TEXT. close the window. and save the file when ResEdit asks you to. Quit 
ResEdit. Now, open this file with any word processor. You'll see some gobbledy
gook-that's binary machine code. but there's also a block of text that you can 
easily read. This block begins with the library name "lnterfacelib," followed by 
the name of every Toolbox routine used by the application. 

When Code Fragment Manager loads the application's code fragment, it 
first allocates memory for the global variables and static data in the heap 
space of the partition built by the Process Manager. The Code Fragment 
Manager then performs any load time relocations for the import symbol 
information and places this information in critical data structure called the 
table of contents, or TOC. The TOC was built by the development tool's 
compiler and linker, and it contains the fragment's import symbols (that is, 
the names of the externally referenced data or functions). The Code Frag
ment Manager resolves these import symbols and plugs addresses in the 
appropriate slots in the TOC. The TOC contains lists of three type of point
ers. These pointers reference the code fragment's own functions, its own 
data, and the import names it uses. These import name references are the 
global data variables or the entry points of functions in other code frag
ments. 

To set up the addresses in the application fragment's TOC, the Code Frag
ment Manager uses the library names in the loader information block to 
locate the required shared libraries. It loads these libraries into memory if 
required, and loads any other libraries that these libraries depend on. The 
Code Fragment Manager also runs each library's initialization function 
code, if present. The shared libraries build any data structures they use 
within the application's heap, and some of the TOC pointers are arranged 
to point at this data. The Code Fragment Manager then searches for the 
application code fragment's import names and replaces them with the 
corresponding export addresses in the shared library, in a process called 
binding. This binding operation sets up the remaining TOC pointers (see 
figure 5.6). Once the TOC is initialized, the code fragment's preparation is 
complete and it is ready to execute. 



Note that some of these TOC pointers address objects called transition 

vectors. A transition vector is a data structure used by one code fragment to 
access an import function in another code fragment. The structure consists 
of one pointer to the target fragment's TOC, and a second pointer to a 
function within the target code fragment. Therefore, a shared library 
doesn't actually export the addresses of its routines. It instead exports 
transition vectors, whose job is to point to the routines. The transition 
vectors are built by the development software. 

Library's glob I 
variable 

I Reference to 
application 
global 

I Reference to 
an imported 
global 

I Reference to 
an imported 
function 

Data 

Application's Application's 
TOC globals and statics 

Shared Shared 
library's library's 

Applic on's 
glo a 

vari le 

Data 

Tran tion 
vecor 

TOC globals and statics 

Code 

Appllcatioh's 
code fragment 

Shared library's 
function 

Shared library's 
code fragment 

Figure 5.6 The run-time binding of the application code fragment to its 

libraries 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Since the TOC is the linchpin of the code fragment's operation, one of the 
PowerPC processor's general-purpose registers (GPR2) points to the start of 
the TOC at all times and is called the TOC Register (RTOC). The RTOC 
serves a function similar to register A5. However, only 68K applications 
could have an A5 world, while any Power PC code fragment (a plug-in 
module, extension code, or a driver) can have a TOC. 

The dynamic linking strategy used by the Code Fragment Manager mini
mizes the copies of shared libraries in memory, especially in a multitasking 
environment. As you've just seen, each application that uses a library has 
its own instance of the library's data built for it, unless the library imple
ments a special shared memory strategy. Because the library's code is 
separate from its data, each application can thus execute the same library 
code while using its private copy of the data. The shared libraries remain in 
memory as long as any application uses them. If the library isn't being 
used, its termination code (if any) is executed, and it's unloaded from 
memory. 

Background Info 
Since each application can have its own data copy while using a shared library 
routine, this capability is said to be reentrant (that is, usable by multiple pro
cesses simultaneously, without conflicts). Thus. the Power Macintosh's Toolbox 
routines are a major step toward the day when Apple releases a microkernal
based operating system that uses preemptive multitasking. 

Whereas a 68K application's global variables are intimately tied to its A5 
world, a PowerPC code fragment's global variables are readily accessible 
to other code fragments through its TOC. This makes it easier to access and 
share global data than was possible with the 68K run-time architecture. 
Previously, periodic tasks, extension code, or plug-in modules had to use 
assembly language code to gain access to the global variables inside an 
application or the operating system. With the PowerPC run-time architec
ture, no special programming is necessary to obtain access to information 
within another code fragment. 



".""" .. """"."." .... """.""" .. " " .. " ~~~P.;~~ .~" .~ ... ~;. ~~'.':?. ~!\':':' :::.~:~~~!;~~ .. 0 
We've covered how data can be accessed by different code fragments. To 
complete our understanding of the run-time architecture, let's consider 
how one code fragment function calls a function in another code fragment. 
Suppose a code fragment, our Power Mac application, makes a Toolbox 
call. The imported function address is fetched from the appropriate transi
tion vector and execution hops to the Toolbox code fragment. However, an 
executing code fragment assumes that the RTOC points to its own TOC, 
which contains its globals, and addresses of any import functions in an
other code fragment. How is the RTOC set to this new code fragment's 
TOC? 

The run-time architecture assigns this job to the caller. In other words, 
before execution passes another code fragment, the program must set the 
RTOC to point to the target code fragment's TOC. This information is stored 
in the transition vector. 

Getting back to our example, the following three events occur when our 
application makes a Toolbox call. First, glue code in the application uses 
the transition vector to set the RTOC to the TOC of the Toolbox's shared 
library. The glue code then uses the other half of the transition vector to 
jump to the Toolbox routine. Finally, when the routine completes, execu
tion returns to the application code fragment, and the RTOC is restored to 
the application's TOC. 

Background Info 
Following the RISC principle of a simple instruction set. the PowerPC processor 

has no subroutine call instruction. Subroutine "calls" are implemented as 

branches, surrounded by additional instructions to set up registers for function 

arguments, and to preserve critical registers. As an example of this, let's look at 

the machine code for calling a Toolbox trap, WaitNextEvent (). In 68K machine 

code this is: 

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR) 

MOVE.W #$FFFF, -(A7) /*Load the everyEvent mask onto stack*/ 
PEA $FFA8(A5) /* Push address of global gmyEvent onto stack */ 
PEA $00C3 /* Lush LONG_NAP (decimal 60) */ 



/'::':\ Power Macintosh Programming Starter Kit 

~··············································································································· 
CLR.L -(A7) 

WaitNextEvent 

/* Push NO_CURSOR */ 

/*Trap word A860, go directly to the */ 
/* Trap Dispatcher */ 

Notice that the arguments are pushed on the stack (register A7), and that a 

trap word takes the processor to the exception handler, the Trap Dispatcher. 

For the PowerPC, this same function call becomes: 

addi r31, RTOC, 648 /*Put address of global gmyEvent into r31 */ 

/* Other program code */ 

li r3, · 1 /* Load the everyEvent mask */ 

mr r4, r31 /* Get the address of gmyEvent */ 

li r5, 60 /* Load LONG_NAP */ 

li r6, 0 /* Load NO_CURSOR */ 

bl .WaitNextEvent /*Branch to WaitNextEvent(), save return 
address in link register */ 

lwz RTOC, 20(SP) /* Fix up RTOC to point back to app's TOG*/ 

Here the arguments get placed into registers and then a branch is taken into 

the glue code responsible for managing the jump to the Toolbox shared library. 

This branch instruction also saves the program's next instruction address into the 

60 l's link register, providing a way home when Wai tNextEvent () returns. The 

glue code. meanwhile, loads the pointer to Wai tNextEvent () 's transition vector 

from your application's TOC. As discussed previously, this glue code uses the 

transition vector information to adjust RTOC to the TOC of the Toolbox's shared 

library and then the jump to the shared library is made. When the routine 

returns. the RTOC is set back to our code fragment. Where does this glue code 

that accomplishes this magic come from? It's in Interface.Lib. 

Unfortunately, this elegant scheme is complicated by the fact that not all of 
the Toolbox code in the Power Macs is PowerPC code. Rewriting the Mac 
Toolbox, which consists of nearly 2M of tight CISC processor code (based 
on the size of the Quadra 840AV's ROMs) into RISC code was a formidable 
process at best. Not only was the job a large one, but replacing time-proven 
routines with new ones opens the door to introducing bugs. To achieve 
high compatibility with 68K applications and still get the Power Macs into 
the hands of users as soon as possible, Apple elected to rewrite only a 



..................................................... ~~~,P.;~~.~ ... ~ ... ~;.!'~":'::~~.~?~.'.~ .~::~i~:J!':: .. e 
portion of the Toolbox. The remaining routines were left as 68K code and 
the 68LC040 emulator executes them. 

Again, if we use our example of an application calling a Toolbox routine, 
the real question becomes: Is the Toolbox routine about to be called imple
mented as 68K code or Power PC code? Put another way, before the proces
sor hops to that routine, how does it determine whether it should simply 
start fetching PowerPC instructions or call the 68LC040 emulator instead? 

The solution is the Mixed Mode Manager. This is a set of routines that 
enables a PowerPC function to call a 68K function or a 68K function to call a 
Power PC function. Basically, the Mixed Mode Manager operates as a stack 
transformation engine. Its job is to massage the stack so that the function 
parameters get passed to the target routine in the proper order. The prob
lem is complicated by the fact that the calling conventions used by a 68K 
environment vary depending upon the programming language used (C, 
Pascal, and assembler each use a different method}, while the PowerPC 
uses a single, register-based mechanism for all programming languages. 

Apple solved this thorny problem by designing a Universal Procedure 
Pointer (UPP) for all exported functions. A 68K procedure pointer is 
normally the address of a function's entry point. A UPP has either the usual 
68K procedure pointer (the routine's address) or the address of a routine 
descriptor. A routine descriptor is a data structure that contains information 
enabling the Mixed Mode Manager to make the context switch from one 
instruction set architecture (ISA) to another. The routine descriptor con
tains the address of the target routine, the number and size of the param
eters passed to the routine, the language calling convention used, and 
what ISA the routine is implemented in. If the UPP references a Power PC 
routine, the routine address inside of the routine descriptor actually points 
to a transition vector. If you want to study the routine descriptor's structure 
in more detail, examine the "MixedMode.h" file with the Code Warrior 
editor. 

When a 68K application calls a Toolbox routine, the following sequence of 
events occurs. First, execution passes through the UPP for the Toolbox call. 
This in tum goes to either the routine directly (if it's a 68K application 
calling a 68K routine) or to a routine descriptor. The head of the routine 
descriptor has a 68K trap word (that's right, a trap word) that invokes the 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Mixed Mode Manager. The Mixed Mode Manager uses the routine descrip
tor information to build a switch frame on the stack. This switch frame 
contains the information necessary to transfer the passed arguments in the 
proper order to the target routine, plus the state of various registers in both 
the 68K and Power PC environments (see figure 5.7). The routine descriptor 
then points to the routine's transition vector, which in turn points to the 
TOC and entry point of the routine in the Toolbox shared library. The Mixed 
Mode Manager uses the transition vector to adjust the RTOC and pass 
control to the Toolbox code (see figure 5.8). 

Figure 5.7 The PowerPC stack during a call from 68K application to a 
PowerPC routine 



""" "."""""."." " .. """.".""".".". ~~~P.;~~. ~". ~ ... ~~;. ~~i:?. ~~~.':: .~:~.~;:;~:: .. 0 
68K application 

68K Dispatch 
Table 

Routine 
descriptor 

Transition 
vector 

Toolbox 
shared library 

Shared library's 
TOC 

Shared 
Library's 

data 

Figure 5.8 How a 68K application accesses a PowerPC Toolbox routine 

Important I 
Apple rewrote the most heavily used Toolbox calls in PowerPC code so that 68K ~ 

~ 
applications could benefit from the native performance of the PowerPC proces-
sor. The Toolbox calls ported for the first Power Macs include portions of 
QuickDraw, the Font Manager, TrueType, QuickTime, the Resource Manager, the 
Memory Manager, fixed-point math, SANE. and the Script Manager (for foreign 
language support). This will change as Apple releases new versions of the Mac 
OS. The Code Fragment Manager can use a code fragment's version information 
to allow updates to the Toolbox shared library located in ROM. Just as impor-
tant, because some of the Macintosh OS is still 68K, the Trap Dispatcher and 
dispatch table is supported. This allows existing Extensions and Control Panels to 
patch the operating system as before. 

Please note that the revised SANE is available only to support 68K applications. 
Native PowerPC applications should use the new industry standard C math 
libraries to access to PowerPC's floating-point hardware. See appendix B for 
more information. 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

The header files for the Toolbox calls contain UPPs for those routines 
written in PowerPC code. Thus, calls to these native routines bring in the 
Mixed Mode Manager to handle a context switch, when necessary. Be
cause a UPP points either to a 68K routine address or to a transition vector, 
the same header files can be used by development tools on either 68K- or 
PowerPC-based Macs. Normally, you won't be aware of the sleight of hand 
going on here, except in certain situations. 

Hazard 
If you're writing custom handlers that the operating system calls back to within 
your application, you need to write your own UPP so that the Mixed Mode 
Manager can manage a context switch when that handler is called. The UPP is 
required because the operating system has no idea of what type of ISA your 
handler is written in or the arguments it uses. Examples of such handlers are: 
custom controls for windows or dialogs that use a control definition function. 
event filters for dialogs or alerts, high-level event handlers, and plug-in modules. 
Anything in your program that uses a procedure pointer (ProcPtr) requires a 
UPP. Otherwise, the Power Mac crashes and burns. 

Fortunately, Apple provides special functions in the header files for those rou
tines likely to need a UPP. These functions take the procedure pointer you pass 
to it and tack a routine descriptor on your custom function. For example, in 
chapter 4 we saw that NewAEEventHandlerProc () helped install our high-level 
Apple Event functions. For a custom event filter for alerts and dialogs, there's 
NewModalFil terProc (), and so on. These functions help immensely in hiding 
the gory details of building a UPP from scratch. 

Of course, making these context switches has a price. The Mixed Mode 
Manager has an overhead of fifty to one hundred 68K instructions when 
handling a context switch between the 68K and PowerPC environment. For 
certain heavily-called small Toolbox routines, this context switch overhead 
becomes considerable, and can impact performance. For these routines, 
Apple actually implemented them as "fat traps." That is, these routines 
were written in both ISAs (68K and PowerPC code). This way, no matter 



..................................................... s~~P.:~~. ~ ... ~ ... ~;. ~-:-.~~i:?. ~?~':':'.r.~ .~::~i~;::~.r: .. 0 
what ISA calls the routine, it can be used without requiring a context 
switch. As more of the Mac Toolbox is replaced by native Power PC code, 
these Mixed Mode Manager context switches will become more infrequent 
and the applications will run faster. 

A Tale of Two Processors 
In this chapter we learned about the Mac's application architecture for 
both 68K-based and PowerPC-based Macs. While these architectures are 
quite different, the Power Macintosh's OS manages to support both. The 
PowerPC's run-time architecture provides a simplified structure that can 
run faster, as more applications and more of the Mac Toolbox gets written 
as PowerPC code. It also has separated the data such that the operating 
system can become a full-blown preemptive multitasking OS in the future. 
At the same time, the Power Mac OS can support existing 68K code and 
traps. This capability is provided by the use of special declarations in the 
Toolbox header files, and in your code for custom functions. We'll see how 
this is done in the next chapter, "Putting It All Together." 



Putting It All 
Together 

This chapter is aimed at intermediate and advanced program
mers. Here's where we apply the knowledge gained in chapter 
5 to utilize parts of the Power Macintosh run-time architecture. 
The task might require rolling your own UPP for a custom 
function or calling the Code Fragment Manager itself. 

In the last chapter, we saw that the Power Mac is quite differ
ent under the hood, from its PowerPC processor to the run-time 
architecture used by its native applications. However, by use of 
unique data structures such as routine descriptors and UPPs, 
plus special-purpose functions in the Toolbox 
header files, many of these differences are hidden 
from you. 

Almost. 

In this chapter 
we're going to 
explore situations 
that don't quite fall 
into a category 
that the header 
files can conve
niently handle. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

You'll stray into this gray area while writing something exotic. Such exotic 
fare includes plug-in modules that expand the capabilities of an applica
tion, and extensions that enhance the operating system by adding patch 
code. Since the Power Mac's run-time architecture makes writing these 
types of objects easier, it's well worth knowing how to do this. These types 
of jobs require that you have a firm grasp of the fundamentals that you 
learned in the last chapter. We'll see how this is accomplished with actual 
working code. 

Let's take an example of writing a custom function first. We'll use a real 
case example here, where I wrote a custom.function that supplied a crucial 
feature in a utility program called SwitchBank. I wrote SwitchBank out of 
my frustration in dealing with "captive" CD-ROMs. A captive CD-ROM is 
where the Mac's File Sharing software mistakenly assumes that you're 
sharing it with other networked users. When you try to eject the CD-ROM, 
you get the message "The disk 'Your Favorite CD' could not be put away, 
because it's being shared," and the disc stays put. This is because the Mac 
OS tries to protect the networked users' access to the CD-ROM by refusing 
to eject it. 

There are two ways File Sharing comes to this erroneous conclusion. First, 
in your eagerness to try out that new CD-ROM game, you insert the disc 
into the drive before the Macintosh completes booting. Or, the Mac crashes 
with the disc already in the drive. In either case, a feature of the Mac OS is 
that when it boots with File Sharing active and detects a CD-ROM in the 
drive, it assumes that you want to share its contents. Thus the Mac OS 
mounts the disc as a shared volume. This enables a Macintosh file server to 
resume sharing a CD-ROM such as the Oxford Dictionary after a power 
glitch. However, for you, the solution is to go to the Control Panels folder, 
open the File Sharing Setup Control Panel, and tum File Sharing off. Now 
you can eject the disc. 

Later in the day, you're at the other end of the building. While talking with a 
coworker, you realize there's a file on your Mac you need to give her. 
Because of File Sharing, it's easy to use her Mac to log onto your Mac, and 
copy the file to her system, right? Wrong. To your dismay, you discover that 
you left File Sharing turned off, and so you have to walk back to your office 
anyway. Since I look at lots of beta software, this scenario happens more 
often that I care to admit. I finally decided to do something about it. 



"•"" "•" •" '"" •" "•""" •" •" • .. • •" •" .. " "" """" "• ~~~,P.;~; .~" .~ .. • :.'!':!~~.!'..~!I_!~~;;~~;• 0 
Important l 
This text was written using the full version of Metrowerks CodeWarrior. You'll ~ 

have to use slightly different steps when using the limited version on the CD; the 

limited version can only work with the sample files provided on the CD so the 

commands Add File ... and New Project are not available. 

So, if you are following along using the limited version of CodeWarrior that's on 

the CD, when the text tells you to use the New Project or the Add File ... com

mand, you should instead open the related project file and keep it open 

throughout the exercise. All the associated files will already be in the project so 

you won't need the Add File ... command. Then, you can follow the same proce

dures as if you were using the full version of CodeWarrior. 

SwitchBank: Initial Investigation 
and Design 
Ideally, I wanted something that would switch off File Sharing long enough to 
eject the CD-ROM, and restart it. To control File Sharing, though, I first had to 
know something about it. Simply put, it's an Extension file that, when installed, 
makes each Mac look like a file server. This leads us to a question: What 
exactly does the File Sharing Extension do? The answer to that question is an 
interesting one. Even better, the answer was already available. 

Remember the small program "process.c" from chapter 3 that listed all of 
the running processes on the system? One of the processes it lists is called 
the File Sharing Extension. This implies that an application actually imple
ments File Sharing, since processes are running applications. To confirm 
this, I made a copy of the File Sharing Extension file, and opened it with 
ResEdit. There was the usual INIT resource, but sure enough, tucked in 
with the ICN#, BNDL, and other resources was a CODE resource. Opening 
the CODE resource, I saw a CODE resource 0. Could that be a jump table? 
When I examined that resource closely, I saw an array of numbers, where 
the value OxA9FO appeared frequently (see figure 6.1). Since this value is 
the LoadSeg ( ) trap, this confirmed that this was indeed a jump table. The 

~ 



~ Power Macintosh Programming Starter Kit 

~······················································································· ························ 

presence of a jump table in the Extension file meant that there was actually 
an application embedded in it. This was good news indeed, because we 
can easily control applications with high-level Apple Events . 

• File Edit Resource Window Find 

File Sharing EHtension 

t.&l o)"OUl,111 
0 10 111 0 1 
00 10 100 1 ~ ..1\1.. I 

CODEs from File Sharing EHtension 

a !Q. elm§ CODE ID = 0 from File Shari'!.!I. EHtension ~~ 
000000 pooo 0898 0000 003c DDDo DDD < it-

;~ 000008 0000 0878 0000 0020 DDDx DDD I 1~ 
000010 OC96 3F3C 000 1 A9FO Dn?< DDS>D .. 000018 0000 3F3C 000 1 A9FO DD?< DDS>D 
000020 OOOE 3F3C 000 1 A9FO DD? < DDS>D :am 
000028 0032 3F3C 000 1 A9FO D2?< DDS> D ~;m\ 
000030 0056 3F3C 000 1 A9FO DV?< DDS>D 

:11111 

000038 009A 3F3C 000 1 A9FO Do?< DDS> D 

~ 000040 0004 3F3C 000 1 A9FO D' ?< DDS>D 
000048 O 13A 3F3C 000 1 A9FO D:?< DDS>D 
000050 0 170 3F3C 000 1 A9FO Dp?< DDS>D 
000058 0 18C 3F3C 000 1 A9FO Dll?<DDS> D ~ 
000060 020E 3F3C 000 1 A9FO DD?< DDS> D i 

[ 000068 025A 3F3C 000 1 A9FO DZ?< DDS> D Ii 
10 144 ...,,.DESCode 

11 968 " BTMgr" 

,____ 12 11494 "PDSCode" 

13 646 "StertServi ce" 

14 1158 " ServerControl" 

15 576 "ll:A51nit " 

16 530 " PASLIB" 
1--

Figure 6.1 The CODE 0 jump table in the File Shanng Extension file 

Background Info 
Why isn't File Sharing written in native code? Remember. not all of the 

Macintosh Toolbox, which by our loose definition includes operating system 

software. got ported to PowerPC RISC code. This happens to include some of 

Apple's own Extensions, including portions of QuickTime, the Apple CD-ROM 

driver, and others. This will change over time as Apple completes the porting 

process. 

On a related matter. the Express Modem and voice recognition software also 

use processes to implement their services. If you 're curious. turn on these 

services and use the process program again to see what appears in memory. 



.................................................................. ~?~P.1;~~.~ ... ~ ... ~.~~~~.!:.~!1.:.~:~~;.r .. 0 
SwitchBank's design is simple. It orders the File Sharing process to stop 
and ejects the CD-ROM. Once that's done, the program restarts the File 
Sharing application. Like the program, the user interface should be simple 
as well. The drag and drop feature we implemented in SonOMunger can be 
used here. We let the user drag the CD-ROM icon to the SwitchBank icon to 
eject it. To encourage the program's use so that folks will readily drag the 
CD-ROM onto SwitchBank's icon, it should eject any volume dropped on it. 

Building Resources with Rez 
We'll use the same approach in building SwitchBank that we applied to 
Munger and SonOMunger. That is, we'll start by creating the interface 
resources first. However, we'll use a program called Rez to generate the 
resources this time around. 

Rez is an MPW tool that accepts text statements which use a C-style syntax 
to describe a resource. It generates the appropriate resources from these 
descriptions. While this method of resource building doesn't have the point
and-click flexibility of drawing your dialogs, alerts, and windows that 
ResEdit offers, it does have its advantages. For example, with an appropri
ately written Rez source file, you could modify the resource ID numbers of 
all your dialog boxes and dialog items by editing a few definition state
ments and "recompiling" the file. That's a job that would require lots of 
pointing and clicking to fix in ResEdit. Also, large applications require 
sophisticated user interfaces, which in turn means complex resources. 
These sets of resources are easier to maintain as a Rez source file. Typi
cally, you'll write most of your resources with Rez statements, and draw 
your icons in ResEdit. You then use the DeRez tool, which is a resource 
disassembler, to reduce the binary icon resources into text Rez statements. 

To begin, launch the Code Warrior IDE and open a new editor window. 
Type: 

#include "SysTypes.r" 

#include "Types.r" 

#define Allltems 0b1111111111111111111111111111111 /* 31 flags */ 

#define Noltems 0b0000000000000000000000000000000 

#define Menultem1 0b0000000000000000000000000000001 

#define Menultem2 0b0000000000000000000000000000010 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#define Menuitem3 

#define Menuitem4 

#define MENU_BAR_ID 

#define APPLE_MENU 

#define FILE_MENU 

#define EDIT_MENU 

0b0000000000000000000000000000100 

0b0000000000000000000000000001000 

128 /* Menu bar resource for our menus 

128 /* Menu ID for Apple menu */ 

129 /* Menu ID for File menu */ 

130 /* Menu ID for Edit menu */ 

*/ 

#define SWITCH_MENU 131 /* Menu ID for File Share control */ 

#define ABOUT_BOX_ID 128 

#define ERROR_BOX_ID 130 

#define ERROR_MESS_ID 131 

#define APPL_FREF 128 

#define DISK_FREF 129 

#define SWITCH_ICON 128 

/* Resource IDs for our windows & dialogs */ 

/* Resource IDs for file refs & icons */ 

Notice the header files "SysTypes.r" and "Types.r." They supply declara
tions and structures that define the resource statements written here. 
Observe also that our definitions for the menu and dialog resource IDs are 
similar to those we used in SonOMunger. That shouldn't come as a sur
prise, since those definitions tell the program what resource, by its type 
and ID number, to use. We're using those exact same numbers here to 
generate the corresponding resources. In fact, some programmers take the 
definitions in this section and move them into a separate header file that 
both the program code and Rez source draw on for resource information. 
The other reason the definitions appear the same is that we're going to 
reuse a lot of SonOMunger's code. 

Now it's time to write some resource descriptions. Type: 

/* Version info for the Finder's Get Info box 
resource 'vers' (1, purgeable) 
{ 

} j 

0x01, 

0x10, 

beta, 

0x00, 

verus, 
11 1 . 16 11 , 

"1.1 B, by Tom Thompson" 



.................................................................. ~~~P,;~;.~ ... ~ ... ~!~~.!\.~~.!.~~~!!1.e:..0 
/* Menu resources */ 

resource 'MBAR' (MENU_BAR_ID, preload) 

{ 

{ APPLE_MENU, FILE_MENU, EDIT_MENU, SWITCH_MENU }; 

}; 

resource 'MENU' (APPLE_MENU, preload) 

{ 

} ; 

APPLE_MENU, textMenuProc, 

Allitems & -Menu!tem2, /* Disable separator line, enable About Box */ 

enabled, apple, 

{ 

"About Swi tchBank 1. 1-" , noicon, nokey, nomark, plain; 

noicon, nokey, nomark, plain 

} 

resource 'MENU' (FILE_MENU, preload) 

{ 

}; 

FILE_MENU, textMenuProc, 

Allitems, 

enabled, "File", 

{ 

noicon, "Q", nomark, plain 

} 

resource 'MENU' (EDIT_MENU, preload) 

} j 

EDIT_MENU, textMenuProc, 

Allitems & -Menuitem2, 

enabled, "Edit" , 

/* Disable separator line */ 

{ 

"Undo", noicon, 11z11, nomark, plain; 

" " noicon, nokey, nomark, plain; 

11 Cut 11
' noicon, 11x11, nomark, plain; 

"Copy", noicon, 11cn, nomark, plain; 
11 Paste 11 , noicon, 11v11, nomark, plain 

} 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

resource 'MENU' (SWITCH_MENU, preload) 

}; 

SWITCH_MENU, textMenuProc, 
Allitems, 
enabled, "Controls", 

"Toggle File Sharing", noicon, "T", nomark, plain 

To get the B symbol in the 'vers' resource, type Option-S. 

The previous statements describe our menu resources. They define a 
resource type ('MENU' and 'MBAR'), its ID number, and certain attributes. 
They also describe the menu's title, and its item list. The item list contains 
the text of each menu item, and a description of how it appears in the 
menu. For instance, the Controls menu has a single item called Toggle File 
Sharing that's displayed with no accompanying icon, no checkrnark, and in 
plain text. It has a Command key equivalent which is the character "T." The 
'vers' resource provides the version number information that appears in a 
file's Info box. 

/* Our error messages */ 

resource 'STR#'(128, purgeable) 

/* [1] */ "A problem occurred stopping File Sharing."; 
/* [2] */ "A problem occurred starting File Sharing."; 
/* [3] */ "A problem occurred while ejecting the volume."; 
/* [4] */ "You can't eject the startup volume."; 
/* [5] ., "Couldn't find the startup volume."; 
/* [6] */ "Couldn't get valid system information."; 
/* [7] */ "Couldn't locate the File Sharing Extension file."; 
/* [8] */ "A problem occurred while loading the Apple Event 

handlers."; 
/* [9] */ "Sorry, SwitchBank requires System 7 or later to run."; 

} ; 

These are our error messages stored as Pascal strings in a STR# resource. 
We place them here, rather than hard-coding them as we did in 
SonOMunger, for a good reason. AB a list in a resource, these strings can be 
easily modified with ResEdit without having to recompile the program 



.................................................................. ~~~P.;~;.~ ... ~ ... ~.~~~~~.~;;;!1,J~~;;~~;.e 
code. This opens the possibility of your program being translated into 
foreign languages. You can have someone use ResEdit to edit the menu 
lists, dialog boxes, and error messages so that they appear in another 
language (say, French) without changing the executable code. 

/* This ALRT and DITL are used as an About Box */ 

resource 'DLOG' (ABOUT_BOX_ID, purgeable) 

} ; 

{31, 6, 224, 265}, 
altDBoxProc, 

visible, 
noGoAway, 

0x0, 
ABOUT_BOX_ID, 

/* No refCon */ 

/* No window title */ 

resource 'DITL' (ABOUT_BOX_ID, purgeable) 

{ 

}; 

/* Item 1 */ 

{154, B0, 175, 180}, 

Button { enabled, "OK" } , 

/* Item 2 */ 

{4, 68, 38, 193}, 
StaticText {disabled, "SwitchBank 1.1\nby Tom Thompson" }, 

/* Item 3 */ 

{86, 11, 102, 250}, 
StaticText { disabled, " Copyright © 1994 Tom Thompson. " } , 

/* Item 4 */ 

{ 44' 114' 76, 146}' 
Icon { disabled, SWITCH_ICON }, 

/* Item 5 */ 

{107, 43, 133, 217}, 
StaticText { disabled, "Written in Metrowerks C " } 

/* The ALRT and DITL for the basic error screen */ 

resource 'ALRT' (ERROR_BOX_ID, purgeable) 

{ 

{ 40' 40' 127' 273} , 

ERROR_BOX_ID, 

{ 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

} ; 

OK, visible, silent, 

OK, visible, silent, 

OK, visible, silent, 

OK, visible, silent 

resource 'DITL' (ERROR_BOX_ID, purgeable) 

} 

} ; 

{ 52, 162, 72, 220 }, 

Button { enabled, "OK" }, 

{ 54' 1 7 ' 70' 151 } ' 

StaticText { disabled, "I/0 error, ID 

/* Alert and DITL for error message screen */ 

resource 'ALRT' (ERROR_MESS_ID, purgeable) 

{ 

} ; 

{ 40, 40, 147, 280 }, 

ERROR_MESS_ID, 

OK, visible, silent, 

OK, visible, silent, 

OK, visible, silent, 

OK, visible, silent 

} 

resource 'DITL' (ERROR_MESS_ID, purgeable) 

'0" } 

73, 168, 93, 226 }, 

53, 14, 97, 157 }, 

Button { enabled, "OK" } , 

StaticText { disabled, "A0" 

} j 

/* File reference resources */ 

resource 'FREF' (DISK_FREF) 



.................................................................. ~~!!~~;.~ ... ~ ... ~!~~.!~.~~1.;,~~~:!1.e:..0 

}; 

'disk', 

1' 

resource 'FREF' (APPL_FREF) 

{ 

} ; 

'APPL', 

0, 

/* Bundle resource */ 

resource 'BNDL' (128) 

{ 

'SWCH', 0, 

'ICN#', { 0, SWITCH_ICON }, /* Only 1 icon */ 

'FREF'' { 0, APPL_FREF, 1, DISK_FREF} /*Two types of files*/ 

} 

}j 

/* Signature resource · all 'STR ' resources must be declared before this! */ 

type 'SWCH' as 'STR '; 

resource 'SWCH' (0) { 

"SwitchBank 1.1B" 

} ; 

These statements describe our alerts, dialog boxes, and their dialog item 
lists. There's also the bundle resource, BNDL, and its satellite definitions in 
the FREF resources that describe the application's file type, and a disk 
type. This latter type allows file type filtering similar to what's used for 
SonOMunger. That is, you can only drag and drop icons representing TEXT 
file types onto the SonOMunger's icon, and for SwitchBank you can only 
drag and drop an icon representing a disk (or volume) onto its icon. This 
filtering action performed by System 7 is very convenient. An application 
won't see a high-level Open Document Apple Event unless the Mac OS 
deems that the dropped file type matches what the application can handle. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

/* Our icon data */ 

data 'ICON' (SWITCH_ICON) 

{ 

}; 

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA' 

$"5008 108A 4108 1082 4108 1082 4108 1082' 

$"4188 1082 4110 0882 4110 0882 4110 0882' 

$'471C 38E2 4514 28A2 4514 28A2 4514 28A2" 

$'471C 38E2 4110 0882 411F F882 4110 0882' 

$"4110 0882 4110 0882 41FF FF82 4004 2002" 

$"4004 2002 4004 2002 4004 2002 5C04 203A" 

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE' 

data 'ICN#' (SWITCH_ICON) 

{ 

}; 

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA" 

$"5008 108A 4108 1082 4108 1082 4108 1082" 

$'4188 1082 4110 0882 4110 0882 4110 0882" 

$"471C 38E2 4514 28A2 4514 28A2 4514 28A2' 

$'471C 38E2 4110 0882 411F F882 4110 0882' 

$"4110 0882 4110 0882 41FF FF82 4004 2002" 

$"4004 2002 4004 2002 4004 2002 5C04 203A' 

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE' 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE' 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$'7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE' 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

/* Switch8ank's color icon in icl8 format */ 

data 'icl8' (SWITCH_ICON) 

$'00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF' 

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00" 

$'00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A' 

$"2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00' 

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2A2A 2A2A' 



.................................................................. ~~~f,;~;.~ ... ~ ... ~.~~:~~.!:.~!.:.~~::~.~;.0 
$"2A2A 2A2A 2A2A 2A2A 2A2A FFFF FF2A FF00" 

$'00FF 2AFF 2AFF 2AFF FFFF FFFF FF2A 2A2A" 

$"2A2A 2AFF FFFF FFFF FF2A FF2A FF2A FF00" 

$"00FF 2AFF FFFF 2AFF F52A F52A FF2A 2A2A" 

$"2A2A 2AFF F52A F52A FF2A FFFF FF2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A2A 2A2A FF2A 2A2A" 

$"2A2A 2AFF 2A2A 2A2A FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 5454 5454 FF2A 2A2A" 

$"2A2A 2AFF 5454 5454 FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 7F7F 7F7F FF2A 2A2A" 

$"2A2A 2AFF 7F7F 7F7F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF FF7F FFFF FF2A 2A2A" 

$"2A2A 2AFF FFFF 7FFF FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 7F7F 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF7F 7F7F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 5454 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF54 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A" 

$'2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00" 

$"00FF 2A2A 2AFF F5FF 2A54 7FFF F5FF 2A2A" 

$"2A2A FFF5 FF2A 547F FFF5 FF2A 2A2A FF00" 

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A" 

$'2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00" 

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A" 

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00" 

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A" 

$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF FFFF FFFF" 

$"FFFF FFFF FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF F52A F52A" 

$"F52A F52A FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 5454 5454" 

$"5454 5454 FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 7F7F 7F7F" 

$"7F7F 7F7F FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF FFFF FFFF FFFF FFFF" 

$"FFFF FFFF FFFF FFFF FF2A 2A2A 2A2A FF00" 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

}; 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5" 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A" 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00' 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5' 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A" 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF 54F5" 

$"2A7F FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00" 

$"00FF 2AFF 2AFF 2A2A 2A2A 2A2A 2AFF 542A" 

$"2A7F FF2A 2A2A 2A2A 2A2A FF2A FF2A FF00" 

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF FFFF" 

$"FFFF FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A" 

$"2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00" 

/* SwitchBank's color icon, in cicn format */ 

data 'cicn' (SWITCH_ICON) 

$"0000 0000 8010 0000 0000 0020 0020 0000" 

$"0000 0000 0000 0048 0000 0048 0000 0000" 

$"0004 0001 0004 0000 0000 0000 0000 0000" 

$"0000 0000 0000 0004 0000 0000 0020 0020" 

$"0000 0000 0004 0000 0000 0020 0020 0000" 

$"0000 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF' 

$"FFFE 7FFF FFFE 4000 0002 5C00 003A 55F8" 

$"1FAA 5008 10BA 4108 1082 4108 1082 4108" 

$"1082 4188 1082 4110 0882 4110 0882 4110" 

$"0882 471C 38E2 4514 28A2 4514 28A2 4514" 

$"28A2 471C 38E2 4110 0882 411F F882 4110" 

$'0882 4110 0882 4110 0882 41FF FF82 4004" 



.................................................................. ~~?.;~;.~ ... ~ ... ~!~~.~::1!.Y.~~~~.':':.e 
$'2002 4004 2002 4004 2002 4004 2002 5C04" 

$"203A 5404 202A 5C07 E03A 4000 0002 7FFF" 

$"FFFE 0000 0000 0000 0005 0000 FFFF FFFF" 

$'FFFF 0001 CCCC CCCC FFFF 0002 9999 9999" 

$"FFFF 0003 6666 6666 CCCC 0004 EEEE EEEE" 

$"EEEE 000F 0000 0000 0000 0FFF FFFF FFFF" 

$'FFFF FFFF FFFF FFFF FFF0 0F11 1111 1111" 

$"1111 1111 1111 1111 11F0 0F1F FF11 1111" 

$"1111 1111 1111 11FF F1F0 0F1F 1F1F FFFF" 

$'F111 111F FFFF F1F1 F1F0 0F1F FF1F 4141" 

$"F111 111F 4141 F1FF F1F0 0F11 111F 1111" 

$"F111 111 F 1111 F111 11 F0 0F11 111F 2222" 

$ "F111 111 F 2222 F111 11 F0 0F11 111F 3333" 

$ "F111 111 F 3333 F111 11F0 0F11 111F F3FF" 

$"F111 111 F FF3F F111 11 F0 0F11 111 F 333F" 

$" 1111 1111 F333 F111 11F0 0F11 111F 223F" 

$"1111 1111 F223 F111 11 F0 0F11 111 F 123F" 

$"1111 1111 F123 F111 11 F0 0F11 1FFF 123F" 

$"FF11 11FF F123 FFF1 11F0 0F11 1F4F 123F" 

$"4F11 11 F4 F123 F4F1 11 F0 0F11 1F2F 123F" 

$"2F11 11F2 F123 F2F1 11F0 0F11 1F2F 123F" 

$'2F11 11F2 F123 F2F1 11 F0 0F11 1FFF 123F" 

$"FF11 11FF F123 FFF1 11 F0 0F11 111F 123F" 

$"1111 1111 F123 F111 11 F0 0F11 111F 123F" 

$"FFFF FFFF F123 F111 11 F0 0F11 111F 123F" 

$"4141 4141 F123 F111 11 F0 0F11 111 F 123F' 

$"2222 2222 F123 F111 11 F0 0F11 111F 123F" 

$"3333 3333 F123 F111 11F0 0F11 111F FFFF" 

$"FFFF FFFF FFFF F111 11F0 0F11 1111 1111" 

$"1F24 13F1 1111 1111 11F0 0F11 1111 1111" 

$"1F21 13F1 1111 1111 11F0 0F11 1111 1111" 

$"1F24 13F1 1111 1111 11 F0 0F11 1111 1111" 

$"1F21 13F1 1111 1111 11 F0 0F1 F FF11 1111" 

$"1F24 13F1 1111 11FF F1F0 0F1F 1 F11 1111 " 

$" 1 F21 13F1 1111 11 F1 F1F0 0F1F FF11 1111" 

$'1FFF FFF1 1111 11FF F1F0 0F11 1111 1111" 

$" 1111 1111 1111 1111 11F0 0FFF FFFF FFFF" 

$"FFFF FFFF FFFF FFFF FFF0" 

} ; 

/* The system's color caution alert icon */ 

data 'cicn' (2) 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

{ 

$"0000 0000 8010 0000 0000 0020 0020 0000" 

$"0000 0000 0000 0048 0000 0048 0000 0000" 

$"0004 0001 0004 0000 0000 0000 0000 0000" 

$"0000 0000 0000 0004 0000 0000 0020 0020" 

$"0000 0000 0004 0000 0000 0020 0020 0000" 

$"0000 0001 8000 0003 C000 0007 E000 0007" 

$"E000 000F F000 000F F000 001F F800 001F' 

$"F800 003F FC00 003F FC00 007F FE00 007F' 

$"FE00 00FF FF00 00FF FF00 01FF FF80 01FF" 

$"FF80 03FF FFC0 03FF FFC0 07FF FFE0 07FF" 

$"FFE0 0FFF FFF0 0FFF FFF0 1FFF FFF8 1FFF" 

$"FFF8 3FFF FFFC 3FFF FFFC 7FFF FFFE 7FFF" 

$"FFFE FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFFF 0001 8000 0003 C000 0003 C000 0006" 

$"6000 0006 6000 000C 3000 000C 3000 0018" 

$"1800 0019 9800 0033 CC00 0033 CC00 0063" 

$"C600 0063 C600 00C3 C300 00C3 C300 0183" 

$"C180 0183 C180 0303 C0C0 0303 C0C0 0603" 

$"C060 0601 8060 0C01 8030 0C00 0030 1800" 

$"0018 1801 8018 3003 C00C 3003 C00C 6001" 

$"8006 6000 0006 C000 0003 FFFF FFFF 7FFF" 

$"FFFE 0000 0000 0000 0006 0000 FFFF FFFF" 

$"FFFF 0001 FFFF CCCC 3333 0002 CCCC 9999" 

$"0000 0003 9999 6666 0000 0004 3333 3333" 

$"3333 0005 BBBB BBBB BBBB 000F 0000 0000" 

$"0000 0000 0000 0000 000F F000 0000 0000" 

$"0000 0000 0000 0000 004F F400 0000 0000" 

$"0000 0000 0000 0000 05FF FF50 0000 0000" 

$"0000 0000 0000 0000 04F3 3F40 0000 0000" 

$"0000 0000 0000 0000 5FF1 1FF5 0000 0000" 

$"0000 0000 0000 0000 4F31 13F4 0000 0000" 

$"0000 0000 0000 0005 FF11 11FF 5000 0000" 

$"0000 0000 0000 0004 F311 113F 4000 0000" 

$"0000 0000 0000 005F F12F F21F F500 0000" 

$"0000 0000 0000 004F 314F F413 F400 0000" 

$"0000 0000 0000 05FF 11 FF FF11 FF50 0000" 

$"0000 0000 0000 04F3 11FF FF11 3F40 0000" 

$"0000 0000 0000 5FF1 11 FF FF11 1FF5 0000" 

$"0000 0000 0000 4F31 11FF FF11 13F4 0000" 

$"0000 0000 0005 FF11 11FF FF11 11FF 5000" 



................................................................... s~~P.;~;.~ ... ~ ... ~:~~.!:.~:'.:.~~~:!'.e:..0 
$"0000 0000 0004 F311 11 FF FF11 113F 4000" 

$"0000 0000 005F F111 11 FF FF11 111F F500" 

$"0000 0000 004F 3111 11 FF FF11 1113 F400" 

$"0000 0000 05FF 1111 11 FF FF11 1111 FF50" 

$"0000 0000 04F3 1111 114F F411 1111 3F40" 

$"0000 0000 5FF1 1111 112F F211 1111 1FF5" 

$"0000 0000 4F31 1111 111 F F111 1111 13F4" 

$"0000 0005 FF11 1111 1112 2111 1111 11FF" 

$"5000 0004 F311 1111 1111 1111 1111 113F" 

$"4000 005F F111 1111 112F F211 1111 111 F" 

$"F500 004F 3111 1111 11FF FF11 1111 1113" 

$"F400 05FF 1111 1111 11 FF FF11 1111 1111" 

$"FF50 04F3 1111 1111 112F F211 1111 1111" 

$"3F40 5FF1 1111 1111 1111 1111 1111 1111 " 

$" 1 FF5 FF31 1111 1111 1111 1111 1111 1111" 

$"13FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFFF 5FFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFF5" 

}j 

Well, you probably won't type all of the hexadecimal codes here that define 
the color data of SwitchBank's icons, but you get the idea. The ICON re
source defines a black-and-white icon, 32 pixels to a side. ICON is the great
granddaddy of the icon formats, starting on the original Mac in 1984. The 
cicn resource is a color icon format first introduced on the Mac II in 1987. It 
defines both a black-and-white icon, and an 8-bit color icon. It's not com
monly used these days, because its complex format impairs fast data 
access. We supply it here because the Dialog Manager has a special fea
ture that it uses when a dialog item is an icon. If the icon's cicn resource is 
available, the Dialog Manager substitutes the color icon for the dialog box's 
item icon, instead of using the black-and-white one. No special program
ming is required for this to occur. Our About Box uses an icon and it ap
pears in color when we provide this cicn resource. This is also why we 
supply the cicn for the system's caution alert icon: When an alert appears, 
the icon appears in color on a color Mac. 

The more prevalent color icon format is the icl8 format, which represents a 
large (32 pixels per side) 8-bit color icon. There's also a small (16 pixels per 
side) 8-bit color icon format called ics8, that's used to display file icons in 
the Apple menu and the Application menu. These formats define color data 
only, so access to the icon data is fast. If you've used ResEdit to spelunk 



0 Power Macintosh Programming Starter Kit 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

around in other application resources, you can see that the Macintosh OS 
uses the icl8 and ics8 format to display file icons. For simplicity, I've omit
ted the ics8 icon data. 

Save this editor window as the file "SwitchBank.r," or copy the file from the 
CD-ROM from CodeWarrior:Code Examples:SwitchBank f: folder. Like the 
convention of ending project file names with a.nor .prj extension, Rez 
source files typically end with a .r extension. Now it's time to compile the 
Rez source code into resources. 

To do that, we'll need the Rez tool, which in turn requires the use of the 
ToolServer application. A brief explanation is in order here. Apple's MPW 
software uses an application called the MPW Shell, which serves as an IDE 
for Apple's development tools. Where MPW differs from Metrowerks 
Code Warrior is that many of its development operations-such as compil
ing, linking, and building resources-are controlled by command lines 
typed into a Worksheet window managed by the MPW Shell. An MPW tool 
(such as Rez) is an application that has specialized or little interface code, 
and thus relies upon the environment set up by the MPW Shell to function. 
ToolServer is an application that mimics this environment adequately so 
that these tools can operate outside of the MPW Shell. This makes them 
available to third-party vendors, which in turn lets Code Warrior program
mers tap into the large suite of MPW tools written over the years. 

The first step in generating our resource, then, is to start the ToolServer. Go 
to the Tools menu in Code Warrior's IDE and select Start ToolServer. A 
ToolServer Worksheet window appears, as does a new menu labeled 
ToolServer in the menu bar (see figure 6.2). 

The status pane within the Worksheet's bottom scroll bar shows what tool 
or script is active. If you're familiar with the MPW enviroment, you can type 
in the name of a tool and any arguments, then press Enter to start it. (Note: 
you must press the Enter key on the Extended keyboard, or Command
Return on the Standard keyboard. Pressing the Return key won't have any 
effect.) While we won't be working with ToolServer this way, we will rely 
on the output that appears in the Worksheet window to tell us if 
something's gone wrong. From the ToolServer menu, select ToolServer 
Tools and a hierarchial menu appears, as shown in figure 6.3. 



.................................................................. ~~: P.;~'. .~ ... ~ ... :.~~!~?. !~ .~:1.:. ~~~:~.~;. 0 
s File Edit Search Project Tools Window ToolSeruer 

Figure 6.2 The ToolServer Worksheet window; the status pane in the lower 
left scroll bar shows the active tool. 

Choose Rez from this menu. The Rez options window appears, as shown in 
figure 6.4. 

Notice that the Type item is highlighted in this dialog box. This and the 
next item, Creator, are used to specify the type and creator of the file that 
Rez generates. Type rsrc in the Type item, press Tab to select the Creator 
item, and type RSED. RSED is ResEdit's creator signature, so once the output 
file is made, we can double-click on it to launch ResEdit and examine it 
immediately. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

a File Edit Search Project Tools Window 

liiil • l.XZl:Xll Cl I,~, l!ll l?illlll @li!!Ulli!I~] <D lllm 

Lookup Symbol 
Insert Template 

ToolSer uer Tools ~ 

DumpCode .. . 
DumpFile .. . 
DumpDbj .. . 
DumpPEF .. . 
DumpSYM .. . 
DumpHCOFF ... 

Figure 6.3 Some MPW tools available from the ToolServer 

Rez Options-----------------------~ 
·Resource Output File ... 

Type 1waa11 
Creator ???? 

lRez.out 

@ Rewrite resource file 
D Make resource file read-only 

, ... Resource Alignment .. 
! @Byte O Word 0 Longword 

.................................• 
O Merge resources into resource file 

D OK 1o rnp!<1( !~ tHoh~c1(l<! rn~oun~s 
··································································-·····························"'······"""''""""'"""""'' 

D Progress information 
D Redeclared types ok 
D Modification date 

Files & Paths ... ~ 

Preprocessor .. . 

Languages ... 

Command Line-- ---------------- ------, 
'Neutrino :Melrowerks Code'w'arrior DR1 f :MW CIC++ 68K 1 .Oa2 f :ToolServer Tools :Rez' 

Help [ Cancel l Rez is a tool used to compfle resources . 

~ J Rez 
3.3 

Figure 6.4 The Rez Options window, where the output file 's name, type, 
and creator is set 



"""" •" •" •"" •" •" """"" """ "" """ •""" •" •" •" ~~?f.\~'. .~" .~ .. • ~.~~!~~.!'..~!I_!.~~::~.~'.• 0 
Now go to the pop-up menu labeled with the default file name of Rez.out, 
and select Write Output to a New File from this menu. A Standard File 
dialog box appears. First ensure that you're in the SwitchBank f folder. 
Type in the name Swi tchBank. 7t. rsrc and press Return. Now that you've 
selected the output file's name, type, and creator, let's specify the input. 
Start by clicking on the Files & Paths button. Rez places another window 
titled Files & Paths ... on the screen (see figure 6.5). We next guide Rez to the 
directory that contains the header files "SysTypes.r" and "Types.r." To do 
this, we click on the #Include Paths ... button. 

~F-ile_s_&_P_at_h_s_ ••. _-~~:~;·=····= ..... = ..... = ..... = .... = ..... = ..... = ..... = .... = ..... = ..... = .... = ..... = ... @= ..... =.;~=;;=·t;=; .. ·=;;;=·~·t=·;;=;;·=t .. =;;;=·;;=; ... =i;;=;;=i;;=·;i=~~.j 

( Description files ... J !o Rlias resolution: O output lilf~ onl!.J ; 

# Include Paths .. . ~ ,. .. Redirection ....................... ~ ... l.'.'.'.:·l·l·l·('..('..(.l ... 1.·i·l·('..~ .. :~~:':~:~:'.l:::::::::::::::::J 
Include Paths... J l .......... .J'. .. :::.:................................... rE_rr_o_r ___ -.. 

Command line------------------~ 
'Neutrino :Metrowerks Codell'arrior DRl f :Mii' CIC++ 68K 1 .Oa2 f :ToolServer Tools :Rez• -o 
Neutrino :SwitchBank.11.rsrc -t rsrc -c RSEq 

Help---------------~ ( Cancel 
Use th'is screen to specify location of source fHes 1 #include files 1 include e.· ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~ 

.... ·_t._t•m_•_·t-f1-·1._s ,_•l_i•_• r_•_•o_lut-io_n,_••_d_r•-di_r•_•t_"'_" •_pt-io_•·_· ____ _, n Continue D 

Figure 6.5 The Files & Paths window, where the input file and search paths 
are selected 

Locate the folder Rlncludes in the CodeWarrior:Apple Tools:MPW: 
Interfaces path. (The Apple Tools folder and its contents are on the CD
ROM, and are on your Mac's hard drive, depending upon the type of soft
ware installation you did). When you get there, click on the Add Current 
Directory button, and this name gets appended into a list at the bottom of 
the window (see figure 6.6). 



~ Power Macintosh Programming Starter Kit 
~··············································································································· 

[ Rdd Current Directory:~ 
la Interfaces ... I 

D Clncludes 
D Plnterfaces 

' Wll1!J I • 

=Neutrino 

Desktop 

Done 

izy Cancel 
~~~~~~~~~~~ 

#Include Search Paths:
Open

fldd

Re moue

rlilH·Bi'•i1"""'n11
Figure 6.6 Adding an include file directory to the file search path

Click on the Done and Continue buttons and you'll end up back on the first
screen. Take a brief glance to see that everything is set properly, then click
on the Rez button. You should hear some hard disk activity, and the status
pane indicates that Rez is active. No news in the Worksheet window is
good news: it means the resource compilation ran successfully. Once the
cursor changes from the rotating "beach ball" busy indicator back to an
arrow, click on the WorkSheet window. You wind up back in CodeWarrior,
but the ToolServer window remains open in case you want to run other
MPW tools. If you're finished with Rez, go to the Tools menu in Metrowerks
Code Warrior and pick Stop ToolServer. The Worksheet window disappears
when the ToolServer application quits. You do this because ToolServer
uses up to 1.5M of RAM, which you'll want to put to use elsewhere.

Background Info
If the ToolServer complains of missing files or scripts, or the MPW tools don't
appear in the hierarchial menu. the ToolServer software installation may have
been done improperly. ToolServer requires that certain files be inside of specific
directories to operate properly. Check the CodeWarrior documentation file, "How
to add Tools," to determine if this is the problem.

"" •""""""""" •" •""" '" '""" '" '" •""""" •" •" • ~~~P,;~'. .~" .~ .. • ~.~1;1!~~. !; .~!I,!~:!~~'.• 0
A file named "SwitchBank.n.rsrc" should be present in the SwitchBank f
folder. Double-click on it to launch ResEdit, and examine the resources. If
everything appears in order, then it's time to start writing code.

The SwitchBank Program
Let's start with our definitions first:

#include <Types.h>

#include <ConditionalMacros.h>

#include <QuickDraw.h>

#include <Windows. h>

#include <Fonts.h>

#include <Controls.h>

#include <Dialogs.h>

#include <Menus.h>

#include <Devices.h>

#include <Memory.h>

#include <Files.h>

#include <Events.h>

#include <Desk.h>

#include <OSEvents.h>

#include <ToolUtils. h>

#include <Diskinit.h>

#include <Folders.h>

#include <AppleTalk.h>

#include <AppleEvents.h>

#include <EPPC.h>

#include <PPCToolBox.h>

#include <Processes.h>

/* Definitions */

#define LAST_MENU

#define LAST_HANDLER

#define MENU_BAR_ID

#define APPLE_MENU

4 /* Number of menus */

3 /* Number of Apple Event handlers - 1 */

128 /* ID for MBAR resource */

128 /* Menu ID for Apple menu */

~ Power Macintosh Programming Starter Kit
~···

#define FILE_MENU

#define EDIT_MENU

#define SWITCH_MENU

#define RESOURCE_ID

#define ABOUT_BOX

#define I_QUIT

/* Various constants */

#define NIL

#define FALSE

#define TRUE

129 /* Menu ID for File menu */

130 /* Menu ID for Edit menu */

131 /* Menu ID for File Share control */

127 /* Starting index into the menu array */

/* About box menu item #in Apple menu */

/* Quit item# in File menu */

0L

false

true

/* Coords for disk init dialog box */

#define INIT_X

#define INIT_Y

#define APPEND_MENU

#define CHAR_CODE_MASK

#define DEFAULT_VOL

#define IN_FRONT

#define MAX_TRIES

#define NO_CURSOR

#define LONG_NAP

#define SYSTEM_7

#define FILE_SHARING_CREATOR

#define FILE_SHARING_TYPE

112

80

0

255

0

(-1)

6

0L

60L

0x0700

'hhgg'

'INIT'

I* Resource IDs for our windows & dialogs */

#define ABOUT_BOX_ID 128

#define ERROR_BOX_ID

#define ERROR_MESS_ID

130

131

/* Resource ID for the message strings */

#define LOG_ID_STR

#define PROBLEM_STOPPING_FS

#define PROBLEM_STARTING_FS

128

/* ID numbers of the messages */

2

... ~~;P.~~;.~ ... ~ ... !'!!1!!~~. ~~ .~1.;, ~~~!.'.~;. 0
#define PROBLEM_ON_EJECT 3

#define DONT_EJECT_STARTUP_VOL 4

#define CANT_FIND_STARTUP_VOL 5

#define TROUBLE_WITH_SYS_INFO 6

#define CANT_LOCATE_FILE 7

#define PROBLEM_WITH_AE_HANDLER 8

#define SYSTEM_7_REQUIRED 9

/* Bit 9 in vMAttrib field = volume is shared */

#define PERSONAL_ACCESS_MASK

#define SEND_MESSAGE

0x00000200L

#define SHUT_DOWN

13 /* Send a message to file server */

2 /* csCode to shut down server */

These declarations are from "SonOMunger.c" because, as stated earlier,
we're reusing a lot of that code. Most Mac programmers keep handy a
working "code skeleton" that implements basic application components,
such as Toolbox initialization, the event loop, simple menu functions, and
high-level event handlers. Writing a new program thus becomes a matter a
fleshing out the details with application-specific custom functions. This
also simplifies debugging, since you're building on a proven code founda
tion. Now we declare the functions we plan to use:

/* Function prototypes */

Boolean Check_System(void);

Boolean Do_Command (long mResult);

Boolean Init_Mac(void);

void Main_Event_Loop(void);

void Report_Error(OSErr errorCode);

void Report_Err_Message(long messageID);

Boolean Init_AE_Events(void);

/* Standard application functions */

/* High level Apple Events */

void Do_High_Level(EventRecord *AERecord);

pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein, AppleEvent *reply,

long refln);

pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein,

AppleEvent *reply, long refln);

pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, AppleEvent *reply,

long ref!n);

pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein, AppleEvent *reply,

~ Power Macintosh Programming Starter Kit
~···

long ref! n) ;

/* Functions to handle details of file sharing */

Boolean File_Share_On(short vRefNum);

Boolean Find_File_Sharing(void);

Boolean Get_FS_Info(void);

void Stop_File_Sharing(void);

void Start_File_Sharing(void);

void Toggle_File_Sharing(void);

As you can see, our frmctions are broken out into the "generic" ones
we always reuse, plus the application-specific ones. Now for some data
structures:

/* Assorted structures for server trap */

typedef long *LonglntPtr;

#if defined(powerc) II defined <~powerc)

#pragma options align=mac68k

#endif

struct DisconnectParam

{

QElemPtr qLink;

short qType;

short ioTrap;

Ptr ioCmdAddr;

ProcPtr ioCompletion;

OSErr ioResult;

LongintPtr scDiscArrayPtr;

short scArrayCount;

short reserved;

short scCode;

short scNumMinutes;

short scFlags;

StringPtr scMessagePtr;

};

"""""."."" .. """."""."".""".""" " ... ""."". ~~~P.;~; .~" .~ ... ~.~';!~~. ~; :,~1.;, ~~~;!'.~;. 0
#if defined(powerc) II defined(~powerc)

#pragma options align=reset

#endif

typedef struct DisconnectParam DisconnectParam;

typedef union SCParamBlockRec SCParamBlockRec;

typedef SCParamBlockRec *SCParamBlockPtr;

/* Structure for installing handlers into AE event dispatch table */

struct AEinstalls

AEEventClass theClass;

AEEventID theEvent;

AEEventHandlerProcPtr theProc;

};

typedef struct AEinstalls AEinstalls;

/* Globals standard */

WindowPtr geventWindow; /* our private window */

EventRecord gmyEvent;

CursHandle gtheCursor; /* Current pointer icon */

Boolean guserDone;

WindowPtr gwhichWindow;

short gwindowCode;

/* Application-specific globals */

short gdragNDropFlag;

ProcessinfoRec gprocess;

ProcessSerialNumber gprocessSN;

long gSysDirID;

short gsysVRefNum;

FSSpec gthisFileSpec;

FSSpecPtr gthisFileSpecPtr;

0 Power Macintosh Programming Starter Kit
•••

We define our usual gaggle of globals here. The high-level event structure
for the dispatch table is recycled from "SonOMunger." The other data
structures are used to set up a function that controls the file server soft
ware that's at the core of File Sharing. This code illustrates an important
point. Note the use of the #pragma options align=mac68k statement. The
68K processor readily accesses data of any size (byte, word, or long word)
at even memory addresses, while it can only access bytes at any memory
address. Put another way, the 68K requires that most data be aligned on
word (16-bit) boundaries. A 68K compiler typically adds padding bytes at
certain points in a program's data structures to ensure that they are word
aligned. The PowerPC processor, on the other hand, favors memory ac
cesses that conform to the data's size. In other words, it can readily access
bytes at any address, words (16 bits) at every even address, and longs (32
bits) at every address divisible by four. Note the use of the verb favors here:
The PowerPC can actually access data of any size at any address. How
ever, aligned memory accesses require fewer bus cycles than unaligned
ones, so for better performance PowerPC compilers insert padding bytes
into data structures to achieve the preferred data alignment.

However, a data structure that's optimally aligned for the PowerPC proces
sor might not be word-aligned and thus not usable by a 68K processor. On a
Power Macintosh, you might wonder why you'd care about data alignment
anyway. Recall that much of Power Mac's Toolbox routines are still imple
mented as 68K code, and the 68LC040 emulator expects the data to be
word aligned. Also, there are still plenty of 68K-based Macs out there that
your software should support. For example, suppose your program creates
files with internal data structures that you expect a 68K Mac to read.
Likewise, a networked Power Mac might transfer data through the net
work to 68K Macs for use. In both cases, proper data alignment is crucial.

To avoid this problem, the #pragma options align=mac68k statement tells
the compiler to word-align the program's data structures. Performance may
suffer on a PowerPC, but this data arrangement ensures that the 68K
processor accesses will operate, especially for emulated Toolbox code. The
align=reset directive immediately after Disconnect Pa ram structure tells the
compiler to resume arranging data in the PowerPC's preferred data align
ment scheme. This is done to minimize the impact of misaligned data

... ~~~P.1.':'. .~ ... ~ ... ;,'!1;!~~. ~ .~1.;, ~~~:!'.":.. 0
accesses on the PowerPC processor. Like the UPPs, the header files handle
most of these alignment issues for you. However, for the custom function
here-or any data structure you expect to pass the Macintosh OS or 68K
Mac-you have to take care of the alignment problem yourself.

Now it's time to write our custom function:

/* Glue to call the ServerOispatch trap */

#if USES68KINLINES

#pragma parameter _00 mySyncServerOispatch(_A0)

#endif

pascal OSErr mySyncServerOispatch(SCParam8lockPtr PBPtr)

FOURWOROINLINE(0x7000, 0xA094, 0x3028, 0x0010);

/* = {

/* 0x7000, /* MOVEQ #$00, 00 Input must be 0

/* 0xA094, /* _ServerOispatch Hop to the trap

/* 0x3028,

/* 0x0010 /* MOVE.W ioResult(A0),00 Move result to 00 because

/* File Sharing doesn't.

#ifdef powerc

*/

*/

*/

*/

*/

*/

/* Call the 68K code from the PowerPC through the Mixed Mode Manager */

static pascal OSErr mySyncServerOispatch(SCParamBlockPtr PBPtr)

{

ProclnfoType myProcinfo;

OSErr result;

/*Need an RTS at the end to return ... */

static short code[] = {0x7000, 0xA094, 0x3028, 0x0010, 0x4E75};

/* Build the procinfo (note use of register based calls) */

myProcinfo = kRegisterBased

I RESULT_SIZE(SIZE_COOE(sizeof(OSErr)))

I REGISTER_RESULT_LOCATION(kRegister00)

I REGISTER_ROUTINE_PARAMETER(1,kRegisterA0,

SIZE_COOE(sizeof(SCParamBlockPtr)));

~ Power Macintosh Programming Starter Kit
~···

result= CallUniversalProc((UniversalProcPtr) code, myProclnfo, (PBPtr));

return result;

} /* end mySyncServerDispatch() */

#end if

SyncServerDispatch () is a Toolbox routine that controls the file server
software that implements AppleShare and File Sharing. Unfortunately, this
routine escaped being defined in Apple's PowerPC libraries. Since I hap
pened to know the trap word and glue code for SyncServerDispatch (),it
seemed that I could define the routine myself. I wrote a function called
mySyncServerDispatch () that uses the 68K assembly language code to
implement the missing routine call. The conditional flags USES68KINLINES
and powerc have Code Warrior use either the original in-line 68K machine
code when making the 68K version of the application, or use the Power PC
function when making the PowerPC application. By placing the 68K func
tion definition before the PowerPC's, the 68K function serves double-duty
as the PowerPC's function prototype. All the PowerPC function does is
create the appropriate routine descriptor for mySyncServerDispatch ()
before calling the same 68K machine code. Let's see how this is done.

In the PowerPC version, we declare mySyncServerDispatch () as static to
give its name file scope instead of global scope. We use the same in-line
machine code as in the 68K version of the function, but with an important
twist. On a 68K processor, the routine's code executes in-line, with execu
tion resuming at the next instruction when the processor returns from the
A trap exception. However, for the Power PC version, we call this in-line
code as a function. In order to return properly to the calling function, we
add a 68K RTS instruction (0x4E75) to the code. We have to call the routine
this way so that the Mixed Mode Manager can step in and handle the
instruction set context switch.

Next, we construct the data structure myProclnfo which contains a descrip
tion of mySyncServerDispatch () 's arguments. This routine is register based:
That is, the argument and result get passed in 68K processor registers.
MySyncServerDispatch () expects a pointer to a parameter block that con
tains a server control command in register AO, and the result of the opera
tion is returned in register DO. Once myProclnfo is set up to describe this
arrangement, we call CallUniversalProc (),and pass it the address of the
routine call (the first element of the array code), myProclnfo, and the param
eter block with the server command. When calling a 68K routine, as in this

""'" .. ~~~P.';.'..~ ... ~ ... ~~!~~.~;.~1.;,~~~:!1.~'..0
example, you can see that the 68K code pointer is a UPP. Therefore, it's
unnecessary to create a routine descriptor for a 68K routine. This is why
CallUniversalProc () takes the routine descriptor information as a separate
argument. Generating code on the fly in the code array this way isn't the
best implementation of the routine call, but it works adequately for this
particular program.

We've made a change to our error reporting function:

void Report_Err_Message(long messageID)

{

unsigned char errorString[256J;

GetlndString((unsigned char*) errorString, LOG_ID_STR, messageID);

if (errorString[0] == 0) /* Is there a string present? */

{

SysBeep(30);

return;

/* No, give up */

} /* end if *I

ParamText(errorString, NIL, NIL, NIL);

CautionAlert(ERROR_MESS_ID, NIL);

} /* end Report_Err_Message() */

Instead of accepting a pointer to a Pascal string, Report_ Err _Message () now
processes a message ID number. This message ID number corresponds to
the ID number of a STR# resource that contains the relevant error message.
This function uses GetlndString () to retrieve a string and passes it to the
routines ParamText () and CautionAlert () for display. We do one safety
check here. The Pascal string f<?rmat has a length byte at the start of the
string, and it is followed by the string data. The length byte says how many
characters are in the string. If this value is zero, something's gone awry,
and we bail out.

Our basic error function, Report_ Error (),hasn't changed.

Here's the first of our application-specific functions:

Boolean Get_FS_Info(void)

{

gthisFileSpecPtr = >hisFileSpec;

~ Power Macintosh Programming Starter Kit
~··'

gprocessSN.highLongOfPSN = kNoProcess;
gprocessSN.lowLongOfPSN = kNoProcess;

gprocess.processlnfoLength = sizeof(ProcesslnfoRec); /*Store record size*/

gprocess.processName = (unsigned char*) NewPtr(32); /*Allocate room for

the name */

gprocess.processAppSpec = gthisFileSpecPtr;

/* Loop until all processes found */

while (GetNextProcess(&gprocessSN) == noErr)

/* Direct towards our

storage */

if (GetProcesslnformation(&gprocessSN, &gprocess) == noErr)

/* Is this process the File Sharing Extension? */

if (gprocess.processType == FILE_SHARING_TYPE &&

gprocess.processSignature == FILE_SHARING_CREATOR)
return TRUE;

} /* end if */

} /* end while */

return FALSE;

}/* end Get_FS_Info() */

Get_FS_Info () searches the Mac OS process list, looking for a process whose
file signature is the File Sharing Extension. You'll notice that we swiped most
of this code from "process.c." This function assumes File Sharing is active,
which means its process is present. If we discover such a process,
Get_FS_Info () returns TRUE. The file name connected to this process is saved
in the global gprocess. processAppSpec. If the process list is walked without
finding a match, it returns FALSE.

Boolean File_Share_On(short volRefNum)

HParamBlockRec ioHPB, volHPB;

GetVolParmslnfoBuffer vollnfoBuffer;

.. ~~~P.',';~.~ ... ~ ... ~t;!~~. !~ .~!1.:. ~~~~.~~. 0
/* Get volume reference number */

volHPB.volumeParam.ioCompletion = NIL; /* No completion routine */

volHPB.volumeParam.ioNamePtr = NIL; /* No volume name */

volHPB.volumeParam.ioVRefNum = volRefNum;

volHPB.volumeParam.ioVolindex = 0;

if (IPBHGetVInfo(&volHPB, FALSE))

/* Get volume's characteristics */

ioHPB.ioParam.ioCompletion = NIL;

ioHPB.ioParam.ioNamePtr = NIL;

/* 0 = Use only volRefNum to

obtain the info */

ioHPB.ioParam.ioVRefNum = volHPB.volumeParam.ioVRefNum;

ioHPB.ioParam.ioBuffer = (char *) &volinfoBuffer;

ioHPB.ioParam.ioReqCount = sizeof(volinfoBuffer);

if (!PBHGetVolParms(&ioHPB, FALSE))

{

if (volinfoBuffer.vMAttrib & PERSONAL_ACCESS_MASK)

{ /* The disk is shared */

if (Get_FS_Info())

return TRUE;

} I* end if *I

/* Look for File Sharing Ext */

/* Got the file info we need */

} /* end if IPBHGetVolParms */

/* end if IPBHGetVInfo */

return FALSE;

/* end File_Share_On() */

This is part of the program's design to encourage users to drop all of their
volume icons onto the SwitchBank application. File_Share_On () is used to
determine if the volume dropped onto SwitchBank is shared or not. If
File_Share_On() reports that the volume isn't shared, SwitchBank will eject
it without interrupting File Sharing. The idea is to avoid excessive stopping
and starting of the File Sharing process, which can fragment memory.

The routine PBHGetVI nfo () takes the volume specification supplied to it via
volRefNum and converts it to a volume reference number. This value, which
is returned in volHPB. volumeParam. ioVRefNum, is used in the routine
PBHGetVolParms () to obtain information about the target volume. If bit 9 in
the vMAttrib field is set, the volume is being shared. We confirm this by
calling Get_FS_Info (),which checks for the File Sharing Extension process.
This also primes our global gprocess. processAppSpec with the file informa
tion associated with the process.

I'::::\. Power Macintosh Programming Starter Kit
~··

With these functions, we've obtained enough information about the File
Sharing process to switch it off or on. Starting with shutting it off, we have:

/* Send a shut down immediately message to the File Sharing Server */

void Stop_File_Sharing(void)

DisconnectParam serverBlock;
SCParamBlockPtr serverBlockPtr;

/* Point to our message block */

serverBlockPtr = (SCParamBlockPtr) &serverBlock;
serverBlock.scCode = SHUT_DOWN; /* Server command to shut down */

serverBlock.scNumMinutes = 0; /* Do it immediately */

serverBlock.scFlags = SEND_MESSAGE;
serverBlock.scMessagePtr = NIL;

if (mySyncServerDispatch(serverBlockPtr) == noErr)
{

else

/* Let the OS get at the event */

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);
WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR);
} /* end if */

Report_Err_Message(PROBLEM_STOPPING_FS);

} /* end Stop_File_Sharing() */

The function Stop_File_Sharing () does exactly what it describes. It accom
plishes this by first loading the appropriate values into a parameter block
that forms a server shutdown command with no time delay interval. Then it
calls our custom function mySyncServerDispatch ()with this parameter
block. This issues the server shutdown command to the Mac OS.

What Stop_File_Sharing () executes next might not seem obvious, but it's
part of the reality of cooperative multitasking. If SwitchBank plowed inexo
rably onwards, the shutdown command wouldn't take effect. That's be
cause SwitchBank must surrender processor time so that the shutdown
command percolates through the operating system, and for the File Shar
ing Extension process to respond to this command. Therefore, we call
Wai tNextEvent () to give processor time to the operating system and other

.. ~~~P.;~; .~ ... ~ ... ~.'!'.'!~~ .!; ;;i; ,;.~~:;~~; .e
processes. If for some reason mySyncServerDispatch () reports an error, we
display an error message that explains the problem.

/* Launch the file that has the File Sharing application in it. *I

/* The file name used for the launch was obtained from the process
/* when it's memory, or by searching the startup disk */
void Start_File_Sharing(void)

OSErr
LaunchPBPtr

launchErr;
thisAppPBPtr;

LaunchParamBlockRec thisAppParams;

gthisFileSpecPtr = >hisFileSpec;
thisAppPBPtr = &thisAppParams;
thisAppParams.launchBlockIO = extendedBlock; /* Use new format */
thisAppParams.launchEPBLength = extendedBlockLen;
thisAppParams.launchFileFlags = 0; /* Don't care about flags */
thisAppParams.launchControlFlags = (launchNoFileFlags +

launchContinue + launchDontSwitch);
/*Give it file name grabbed by Get_FS_Info() before File Sharing */
I* Sharing was stopped */

thisAppParams.launchAppSpec = gthisFileSpecPtr;
thisAppParams.launchAppParameters = NIL; /* Send just Open event */
if ((launchErr = LaunchApplication(thisAppPBPtr)) == noErr)

WaitNextEvent(everyEvent, &gmyEvent, SHORT_NAP, NO_CURSOR);
else

Report_Err_Message(PROBLEM_STARTING_FS);

/*end Start_File_Sharing() */

Start_File_Sharing () undoes the work of Stop_File_Sharing ().First, it
takes the filename that it obtained from Get_FS_Info () or
Find_File_Sharing (),(described later) and puts it in a parameter block. We
also set control flags in this parameter block that specify our application
should continue running after the target application launches, and for the
target application (File Sharing Extension) not to switch to the foreground.
Start_File_Sharing () then calls the LaunchApplication () routine to start
the application embedded in the File Sharing Extension file. Again, we
have to call Wai tNextEvent () so the operating system gets an opportunity
to handle the command.

0. Power Macintosh Programming Starter Kit
~··

I Important
~ The initial version of SwitchBank sent a high-level Quit Application Apple Event to
~

the File Sharing Extension process. However, I was informed by a seasoned Mac
programmer that the politically correct way to stop this process was through file
server commands. since File Sharing operates as a file server. Although I've had no
problems stopping File Sharing through the Quit Application Apple Event. I don't
ignore expert advice. For those who are interested in how this is done, here's the
original Stop_File_Sharing () function. The code illustrates how to package a
Quit Application Apple Event and send it to another application.

OSErr Stop_File_Sharing(void)

{

OSErr err;

AppleEvent thisEvent;

AEDesc thisAddress;

if (File_Share_On()) /*Turn it off */

err = AECreateDesc(typeProcessSerialNumber, &gprocessSN,

sizeof(processSN), &thisAddress);

if (!err)

err = AECreateAppleEvent(kCoreEventClass, kAEQuitApplication,

&thisAddress, kAutoGenerateReturnID,

kAnyTransactionID, &thisEvent);

if (!err)

err = AESend(&thisEvent, nil, kAENoReply + kAEAlwaysinteract +

kAECanSwitchLayer, kAENormalPriority,

kAEDefaultTimeout, nil, nil);

if (terr)

AEDisposeDesc(&thisAddress);

AEDisposeDesc(&thisEvent);

} I* end if * /

/* Let the OS handle the event */

WaitNextEvent(everyEvent, &myEvent, LONG_NAP, NO_CURSOR);

} /* end if fileShareon */

return err;

} /*end Stop_File_Sharing() */

.. ~~~P.~~~.~ ... ~ ... ~':!~~.!:.~!1.;,~~~:!'.~~.0
The SwitchBank Controls menu lets you switch File Sharing off or on with
just a keystroke. However, there's a problem here: What if the user started
his Macintosh with File Sharing off, and wants to turn it on? In this situa
tion, there's no File Sharing process running in memory that Get_FS_Info ()
can retrieve a filename from for LaunchApplication () to use. To close the
door on this potential pitfall, I wrote the Find_File_Sharing () function:

Boolean Find_File_Sharing(void)

{

searchPB; HParamBlockRec
Finfo

CinfoPBRec
Point

fileSharingExtinfo, fileSharingMaskinfo;
searchSpec1, searchSpec2;

nilPoint = {0, 0};

/* Set up creator and type for File Sharing Extension */

fileSharingExtinfo.fdType = FILE_SHARING_TYPE;

fileSharingExtinfo.fdCreator = FILE_SHARING_CREATOR;
fileSharingExtinfo.fdFlags = 0;

fileSharingExtinfo.fdLocation = nilPoint;
fileSharingExtinfo.fdFldr = 0;

/* Set up masks */

fileSharingMaskinfo.fdType = (OSType) 0xffffffff;
fileSharingMaskinfo.fdCreator = (OSType) 0xffffffff;

fileSharingMaskinfo.fdFlags = 0;
fileSharingMaskinfo.fdLocation = nilPoint;
fileSharingMaskinfo.fdFldr = 0;

/* 1st spec block */

/* Search by file type, not name */

searchSpec1.hFileinfo.ioNamePtr =NIL;
/* Type & creator to look for */

searchSpec1 .hFileinfo.ioFlFndrinfo = fileSharingExtinfo;

/* 2nd spec block */

searchSpec2.hFileinfo.ioNamePtr = NIL;
searchSpec2.hFileinfo.ioF1Fndrinfo = fileSharingMaskinfo; /* Mask */

/* Set up search call */

searchPB.csParam.ioCompletion = NIL;

searchPB.csParam.ioNamePtr = NIL;

/* Search on startup volume */

searchPB.csParam.ioVRefNum = gsysVRefNum;

/* No volume name */

e .. ~.~'. .~~~!~!';~~. :'.'.~~~!:'!:'!~~. ~':'.~:;. ~;; .. .
searchPB.csParam.ioMatchPtr = >hisFileSpec; /* Result goes here •/
searchPB.csParam.ioReqMatchCount = 1; /*Look for 1 file*/

/* Search based on file characteristics */
searchPB.csParam.ioSearchBits = fsSBFlFndrlnfo;
searchPB.csParam.ioSearchlnfo1 = &searchSpec1;
searchPB.csParam.ioSearchlnfo2 = &searchSpec2;
searchPB.csParam.ioSearchTime = 0;

/* Start at the beginning */

searchPB.csParam.ioCatPosition.initialize = 0;

/* Don't time out */

searchPB.csParam.ioOptBuffer = NIL; /* No search cache required */

searchPB.csParam.ioOptBufSize = 0;

if (PBCatSearchSync((CSParamPtr) &searchPB) == noErr)
return TRUE;

else

Report_Err_Message(CANT_LOCATE_FILE);
return FALSE;
} /* end else */

} /* end Find_File_Sharing() */

In this function, we search for the File Sharing Extension on the startup
volume, or boot disk. We begin by setting up the file's signature informa
tion (its creator and type) in a fileSharingExtinfo structure. This signature
information is what we'll give the routine PBCatSearchSync () so it can
locate the file. The PBCatSearchSync () routine performs high-speed
searches on a volume's catalog file for specific file or directory information,
and is ideal for the job. For more information, consult Inside Macintosh:
Files. PBCatSearchSync () requires two specification blocks. The first con
tains search information and a start range, the second contains any masks
to filter out information and a stop range. Our mask information, in the
fileSharingMaskinfo structure, passes only the file's creator and type.
Next, we assemble the parameter block that furnishes PBCatSearchSync ()
with the information needed to conduct the search. We supply it a pointer
to our file specification global, gthisFileSpec, for the result to land in. We
also provide the volume reference number of the startup volume, so that
the search is conducted on the volume that has the System Folder. This is
done because the File Sharing Extension resides in the Extensions folder,
which in tum lies in the System Folder. If PBCatSearchSync () returns with a
match, the global gthisFileSpec contains the filename, which is ready for
use in Start_File_Sharing ().

"'" •" "•" •"" •" •" •""" "•" •" •""""" •""" •" •" "• ~?~f.',~'. .~" .~ .. • ~.'!':!~~.!;;;!I}.~~~.~'. .0
Background Info
You might be wondering why Get_FS_Info () and Find_File_Sharing ()

both use the File Sharing Extension's signature information when they search,
rather than just simply plugging in the name "File Sharing Extension." If you used
a filename instead, it hampers the program's ability to operate in Macs overseas.
That's because the File Sharing Extension's name varies in different languages,
while its signature data never changes.

The next function implements the File Sharing toggle function used in
SwitchBank's Controls menu. It's pretty simple, and it just calls the other
functions discussed previously.

void Toggle_File_Sharing(void)

{

if (Get_FS_Info()) /* File Sharing already on (&in memory)? */

Stop_File_Sharing(); /*Yes, turn it off*/

else /* No, look for the file */

if (Find_File_Sharing()) /* Find the File Sharing
Extension file */

Start_File_Sharing(); /* Launch it */

} /* end else */

/* end Toggle_File_Sharing() */

Some of the functions in SwitchBank, such as the one that installs the core
Apple Event handlers, haven't changed and won't be covered here. For a
complete source code listing, check the file "SwitchBank.c" on the CD-ROM,
or appendix C. However, what has changed is the new Open Document
handler, as shown below:

t• High-level open document event */

pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein,
AppleEvent *reply, long refln)

long
register short
Boolean
AEDesc
OSErr
long

dummyResult;
i, j;

fileShareWasOn;

t• Dummy variable for delay() */

volDesc; /* container for sent volume names */
volErr, highLevelErr;
numberOVolumes; /* Number of volumes dropped onto us •/

~ Power Macintosh Programming Starter Kit
~··

AEKeyword
DescType
Size
FSSpec

ignoredKeyWord;
ignoredType;
ignoredSize;
volFSS;

/* Bit buckets for high-level event info */

/* Container for volume names as FSSPecs */

gtheCursor = GetCursor(watchCursor);
SetCursor(&**gtheCursor);
fileShareWasOn = FALSE;

/* Change cursor */

if (l(highLevelErr AEGetParamDesc(messagein, keyDirectObject,
typeAEList, &volDesc)))

if ((highLevelErr AECountltems(&volDesc, &numberOVolumes))
noErr) /* How many? */

for (i 1; ((i <= numberOVolumes) &&
(lhighlevelErr)); ++i) /*Process each vol*/

if (!(highlevelErr = AEGetNthPtr(&volDesc, i,

{

typeFSS,
&ignoredKeyWord,
&ignoredType,
(char *)&volFSS,
sizeof(volFSS),
&ignoredSize)))

if (volFSS.vRefNum != gsysVRefNum)
/* Chosen volume the boot drive? */

{

if (File_Share_On(volFSS.vRefNum))
/* This volume being shared? */

{

Stop_File_Sharing();
fileShareWasOn = TRUE;
} /* end if */

= 0; /* set retry count */
while (((volErr = Eject(volFSS.name,

volFSS.vRefNum)) I= noErr) &&
(j < MAX_ TRIES))

... ~~~P.;~~ .~ ... ~ ... ~1.1!~~. ~; .~~1.;, ~~~:!'~~. 0
WaitNextEvent(everyEvent,

&gmyEvent, SHORT_NAP, NO_CURSOR);

Delay(10L, &dummyResult);
j++;

} /* end while */

if (volErr == noErr)
UnmountVol(volFSS.name,

volFSS.vRefNum);
else

Report_Err_Message(PROBLEM_ON_EJECT);
} /* end if I= gsysVRefNum */

else
Report_Err_Message(DONT_EJECT_STARTUP_VOL);

} /* end if lhighlevelErr */

} /* end for */

t• end if • /

/* Release memory copy of the AE parameter */

highlevelErr = AEDisposeDesc(&volDesc);
} /* end if lhighLevelErr */

if (fileShareWasOn)
Start_File_Sharing();

if (gdragNDropFlag >= 0)
guserDone = TRUE;

SetCursor(&qd.arrow);
return highlevelErr;

} /* end Core_AE_OpenDoc_Handler() */

/* Did user drag & drop onto us? */

t• Yes, stop the application */

/* Restore the cursor */

/* Kick back any high-level
problems to calling app */

This function, like in "SonOMunger," gets called when objects get dropped
on the application's icon. The handler uses the routine AEGetParamDesc () to
fetch the message parameter out of the Open Document event sent to it
and coerces the data into a descriptor list. The AECountltems () routine
extracts the number of items in the list, and this value sets the duration of a
for loop. The for loop uses the routine AEGetNthPtr () to obtain each vol
ume name from the descriptor list, converting it into a file system specifica
tion as it does so. As in "SonOMunger," if AEGetNthPtr() reports an error, the
loop stops. The target volume is now subjected to a battery of tests. First, its
reference number is checked against the startup volume's reference num
ber. If the two match, the user is attempting to eject the drive with the

~ Power Macintosh Programming Starter Kit
~···

system software on it, which is a very bad idea. SwitchBank thus inter
venes and warns the user of this. We could ignore this problem and allow
the operation to fail when, because of the system software, the Toolbox
Eject () routine detects the volume is busy. However, we can supply the
user with a more informative error message and save some wasted proces
sor cycles if we do this check now.

Next we look to see if the volume is being shared. If so, we call
Stop_File_Sharing ()to tum off File Sharing and set the flag
fileShareWason to remind us that we did so. At last we call Eject () to eject
the volume. The nice thing about this Toolbox routine is that it handles any
type of volume: CD-ROM, floppy, and networked hard drives. If the Mac is
extremely busy, Eject () might report an error because File Sharing hasn't
had a chance to stop yet. So we wait a tenth of a second, call
WaitNextEvent (),and retry the operation. The value of MAX_ TRIES for this
loop was determined empirically-a way of saying that I used SwitchBank
on a Power Mac running under a heavy load and experimented until I
found a value that worked best. If the eject fails, we warn the user.

When all of the work is done, we clean up by first disposing of the copy of
the descriptor list made by AEGetParamDesc (). Then we check
fileShareWasOn to see if File Sharing needs to be restarted, and call
Start_File_Sharing () as required. Finally, we check a flag called
gdragNDropFlag to determine if the application is already running, or was
launched because of a drag and drop action. If the latter, then we flip the
state of guserDone to make SwitchBank quit. If any of the high-level Apple
Event routines have reported an error, we pass this value back to the
calling application.

A new function in our stable of skeleton routines is Check_System ().As its
name implies, it's used to check for specific features the application might
need to operate properly:

Boolean Check_System(void)

SysEnvRec machineinfo;
short sysVersion;

short versionRequested;

sysVersion = SYSTEM_7;
versionRequested = 1;

/* Record with machine-specific data */
/* System version # */

/*Version of SysEnvirons() to use*/

/* MUST set this to get valid results */

" ... ~~~ P,;~; .~ ... ~ ... ~'.1!~~. ~; .~~1. :.~~:~~~;. 0
if (SysEnvirons(versionRequested, &machineinfo) == noErr)

sysVersion = machineinfo.systemVersion;
else

{

Report_Err_Message(TROUBLE_WITH_SYS_INFO);
return FALSE;
} /* end else */

if (sysVersion < SYSTEM_?) /* Running System 7.0? */

Report_Err_Message (SYSTEM_?_REQUIRED);
return FALSE; /* No. Sorry, can't run

without it * /

} /* end if * /

return TRUE;
} /* end Check_System() */

The preferred method for investigating certain system features is to use
the Gestalt Manager. However, the Gestalt Manager is available only
under System 6.0.5 or later, which can be a problem if someone happens to
launch SwitchBank on a Mac running an earlier version of the Macintosh
OS. Because SwitchBank relies so heavily on certain System 7 features
such as Apple Events, File Sharing, and the catalog search performed by
Find_File_Sharing (),we must check the operating system version num
ber. The solution is to call an older routine, SysEnv irons ().We use it to
return the operating system version number, which we compare to see if
it's System 7 or later. If not, Check_System () returns FALSE so that
SwitchBank aborts the initialization phase. Once we've determined that
System 7 is running, then we can use Gestalt Manager calls to look for
specific features. Examples of how to use the Gestalt Manager to deter
mine system-specific features abound in every volume of the new editions
of Inside Macintosh, and volume VI of the old editions of Inside Macintosh.
In our case, the check for the presence of System 7 is sufficient.

In Do_Command () we add an entry for SwitchBank's Controls menu, like so:
case EDIT_MENU:

SystemEdit(theitem - 1);
break;

~ Power Macintosh Programming Starter Kit
~···

case SWITCH_MENU:
Toggle_File_Sharing();

break;

default:
break;

There are also some minor changes to Main_Event_Loop(). At the start of
the function, we set gdragNDropFlag = 1. At the end of the do loop, we add:

/* end switch gmyEvent.what */

} /* end if on next event */

else /* Null event */

/* Do idle or background stuff here */

/* Flag to determine whether app was launched by user or Open Apple Event */

if (gdragNDropFlag >= 0)
gdragNDropFlag--;

} /* end do */

while (guserDone == FALSE)

/* Loop until told to stop */

/* end Main_Event_Loop() */

Here's where the flag gdragNDropFlag gets set. For a drag and drop opera
tion, execution passes through the event loop twice (once for the Open
Application Apple Event, and once for the Open Document Apple Event).
The event loop decrements gdragNDropFlag until it goes negative, which
occurs if the loop is traversed three times or more. At this point we can
safely assume the application was launched by the user, and so
gdragNDropFlag prevents Core_AE_OpenDoc_Handler () from stopping the
application if a volume is dragged onto SwitchBank.

The initialization routine has changed:

Boolean Init_Mac(void)

Handle theMenuBar;

/* Lunge after all the memory we can get */

MaxApplZone () ;

.. ~~~P.;~;.~ ... ~ ... ~.~~~~.!'..~!l}.~~;;~.~;.e
/* Make sure we've got some master pointers */

MoreMasters ();
MoreMasters();
MoreMasters();
MoreMasters ();
MoreMasters();
MoreMasters();
MoreMasters();
MoreMasters ();

/* Initialize managers */
InitGraf(&qd.thePort);
InitFonts(};
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEI nit();
InitDialogs(NIL);

/* Got our menu resources OK? */
if ((theMenuBar = GetNewMBar(MENU_BAR_ID)) NIL)

return FALSE;

SetMenuBar(theMenuBar);
DisposHandle(theMenuBar);

/* Add our menus to menu list */

AppendResMenu(GetMenuHandle(APPLE_MENU), 'DRVR'); /*Make Apple menu*/
DrawMenuBar();

/* Look for specific features or set up handlers this app needs */
if (!Check_System()) /*Need System 7 */

return FALSE;

if (llnit_AE_Events())
return FALSE;

/* Set up high-level event handlers */

if (FindFolder(kOnSystemDisk, kSystemFolderType,
kDontCreateFolder, &gsysVRefNum, &gSysDirID) I= noErr)

Report_Err_Message (CANT_FIND_STARTUP_VOL)j
return FALSE;
} /* end if */

0 Power Macintosh Programming Starter Kit
••

InitCursor ();
return TRUE;

/* end Init_Mac() */

/* Tell user app is ready */

This time we build our menus by using GetNewMBar () and the MBAR re
source we made in "SwitchBank.r." This eliminates the array of
MenuHandles and a for loop we used in "SonOMunger." However, if you
want to add hierarchial menus in your application, you'll still have to use
the InsertMenu ()routine to set them up. We call Check_System() to see if
the Mac is running System 7, followed by Ini t_AE_Events () to install our
high-level event handlers. Finally, we call FindFolder (),a routine that
obtains information on system directories such as the Preferences folder. If
we pass this routine the constants kOnSystemDisk and kSystemFolderType,

we get the startup volume reference number. From the earlier function
descriptions, you'll recall that we needed this information for some error
checking and the catalog search. The main () function hasn't changed at all.
To examine the complete source code of the program, open the
"SwitchBank.c" file in the SwitchBank f folder, or check appendix C.

Creating the SwitchBank application uses the standard make operation we
performed on "SonOMunger." Compile the "SwitchBank.c" file, and correct
any errors. Add the libraries "MCWRuntime.Lib" and "InterfaceLib" to the
project. Then, go to Edit menu and select Preferences. Pick the Project
panel and change the application's name to SwitchBank, the creator to
SWCH, and the memory size to 384K (see figure 6.7). Click on the SIZE flags
pop-up menu here and uncheck the items acceptSuspendResumeEvents,
and doesActivateOnFGSwitch. Confirm that the flag
isHighLevelEventAware is checked on this menu. Now, make the applica
tion, and remember to rebuild the desktop database. The result should be
an application with a knife-switch icon. You can launch the application, and
from the Controls menu toggle File Sharing on or off. If you leave the appli
cation on the Desktop, you can drag and drop any volume icon onto
SwitchBank. SwitchBank automatically launches, stops File Sharing if
required, ejects the volume, restarts File Sharing, and quits.

.. ~?~P.;~; .~ ... ~ ... ~.'!'.'!~~. !; ~1,;.~~~;~.~;. 0
Rpply to open project.

pp 1u1 ion n o: D
linker

Project Type: I Rpplication

R r t· I f

File Name I SwitchBank

Creator swc~r
'SIZE' Flags !!:I

Type RPPL

Preferred Heap Size (k) 384

ID
PEF

• Minimum Heap Size (k) 384

Stack Size (k) 64 Ii
Access Paths ~

(Factory Settings J (Reuert Panel J (Cancel) [(OK JJ

Figure 6.7 Adjusting the project settings for the SwitchBank application

The end result is a small utility application that makes my life easier. It also
taught me a lot about the Power Mac.

Making a Fat Binary
You know I think that you should support 68K-based Macs, if only for the
simple reason there are millions of them out there. For the next several
years or so, count on them to outnumber the Power Macs. It makes sense
to support this large existing hardware base with your software. However,
you might be wondering how you're going to maintain and manage two
copies of your application, one for each type of Mac. The first issue, mainte
nance, is simple. If you write the C code carefully, one set of source files
can be used to generate both 68K and Power PC machine code (or binaries).
In fact, all of the programs presented in this book can be compiled on either
version of Code Warrior (both 68K and PowerPC) without modification.

The second issue appears to be more serious. How do you ensure that a
68K Mac owner gets a 68K version of your application and not the Power PC
version? The answer is that Apple's PowerPC application design enables
you to create one copy of an application that runs on both a 68K Mac and a
Power Mac. As you'll recall in chapter 5, a PowerPC application's code
resides in a file's data fork, while a 68K application's code is composed of
CODE resources in the file's resource fork. Both applications use a common
set of resources such as MENU, WIND, DLOG, and others to implement the

e .. !'.~".'.~'. .~:'.'!?'.~:~. !:'.~~::!':!':~?~. ~~.':'.';. ~;;
user interface. Because each program's code is in a different file fork, yet
they draw on the same graphical resources, it's possible to combine the
contents of the two forks to make what's known as a "fat binary, " as shown
in figure 6.8. Now each version of the Macintosh OS sees what it expects:
the 68K Mac OS finds CODE resources in the application's resource fork,
and the PowerPC Mac OS finds PowerPC code in the application's data
fork. (Note: the Process Manager won't look for code fragments in an
application unless a cfrg resource is present.) Due to smart planning on
Apple's part, the issue of managing two different versions of the same
application goes away, because one version will suffice. There are excep
tions where it makes better sense to support two copies of the application.
One case might be where the application is a large file, say, several mega
bytes. Making this application into a fat binary can double the file's size,
resulting in a box of floppies and a lengthy installation for the user. In this
situation, separate application binaries would keep the installation job to a
manageable size and reduce the application's footprint on the system.

Jump table

Resource fork Data fork
-~;'Y....-:Z..'!i:;'fifAt7E'"fa".._,. ~3

CODEO ~
:;:; CODE 1

:1
CODE2

CODEx

DLOG ~
~<J

WIND

MENU

cfrg R

;~.m '.>.0

PowerPC
code fragment

Figure 6.8 The file structure for a fat binmy application

.. ~~~r.;~;.~ ... ~ .. ~.~~!~~.~~.~1.;,~~~;!1.~;.0
Making a fat binary with the Metrowerks Code Warrior isn't difficult, and
has two stages. By way of example, let's make "SwitchBank" into a fat
binary. The first stage involves making the 68K version of the program. To
begin, use Rez to compile "SwitchBank.r." Name this resource
"SwitchBank.n.68K.rsrc." Next, make a project file with the 68K version of
Code Warrior and name it "SwitchBank.n.68K." Choose Add File ... from the
Project menu and pick "MacOS.lib" and "SwitchBank.c" to incorporate them
into the project. Next, select Preferences from the Edit menu and go to the
Project panel. Set the output file's type to 'rsrc' instead of 'APPL', and its
creator to RSED. Name this output file "SwitchBank.n.PPC.rsrc." Now make
the project "SwitchBank.n.68K," which generates the file
"SwitchBank.n.PPC.rsrc." This results in a resource file composed of graphi
cal resources (obtained from "SwitchBank.n.68K.rsrc"), and 68K CODE
resources, as made by Code Warrior. We've actually made a 68K application
here, but it masquerades as resource file because of the file type we chose.
This completes the first stage.

The second stage uses the results of the first stage, plus the output from
compiling the same source code with the Code Warrior PowerPC compiler.
Start by creating a project in the PowerPC version of Metrowerks
CodeWarrior, named "SwitchBank.n.PPC." Add the "SwitchBank.c" file,
"MWCRuntirne.Lib," and "InterfaceLib" to the project file. Go to Preferences
item in the Edit menu and select the Project panel. Set the project type to
application and name the output file "SwitchBank." Set the output file's
type to 'APPL' and its creator to 'SWCH'. Go to the SIZE flags pop-up menu
and check the following flag bits: canBackground, is32BitCompatible, and
isHighLevelEventAware. Now make the PowerPC project, producing a
native code application. This completes the second stage, and the end
result is a fat binary application file called "SwitchBank." The one file runs
on both 68K Macs and Power Macs.

As you probably suspect, by naming the 68K output file
"SwitchBank.n.PPC.rsrc" in the first stage, we fool the PowerPC version of
Code Warrior into automatically copying all of the resources-including the
68K CODE resources-from this resource file into the Power PC application
at the completion of the second stage. You can confirm this by examining

~ Power Macintosh Programming Starter Kit
~··

the file in ResEdit and seeing both cfrg and CODE resources. Although you
could copy these resources using either ResEdit or Rez, the technique just
described does the job using the two compilation stages you have to do
anyway to make the 68K and PowerPC binaries.

There's one other thing we can do to "SwitchBank" so that it conserves
memory on a Power Mac. CODE resources have an attribute bit set called
Preload that makes the Resource Manager load them into memory auto
matically, whether they're used or not. We can fix this waste of memory
with ResEdit. Launch ResEdit, and open the SwitchBank application. Open
the CODE resource, and select all CODE segments but CODE 0. (For
"SwitchBank," there's only CODE segment 1.) Choose Get Resource Info
from the Resource menu, or type Command-I. A Get Info box appears.
Under the Attributes section, uncheck the Preload checkbox (see figure
6.9). Save the file and quit ResEdit.

s File Edit Resource Window

SwitchBank

:!~! :!:: OI HO~ ~,11110\
CODES from SwitchBank ~:···

.!Q. "la Info for CODE 1 from SwitchBank

Type: CODE Size: 3820

owner type

owner ID:
1------l

Sub ID:

Attributes:
D System Heap ~Locked
D Purgeable ~Protected

QPreload
[j Compressed

Figure 6.9 Changing the Preload attribute on a CODE resource

,. ... ~~:P.:~'..~ ... ~ ... ~1;!~~.~;.~~1.::.~~~~~'..0
Important I
The CodeWarrior application supports a number of high-level Apple Events, ~

~
including the four core Apple Events. The Metrowerks CodeWarrior User's Guide
describes the suite of Apple Events events that CodeWarrior provides. These
events let you create projects, adjust some of the preference settings of both
project and output files, add or remove files from a project. compile files, and
specify an output file. This capability enables you to automate portions of the
development cycle, which is valuable for large or complex projects. Here's a
sample AppleScript that generates a fat binary:

(' 1st stage - Make 68K version of application ')

tell application "MW CIC++ 68K"

activate

open file "YourHardDisk:CodeWarrior:Code Examples /:SwitchBank /:SwitchBank.it.68K"

('Project file should already have settings such as output file name and its creator and type set*)

Remove Binaries

make project "SwitchBank.it.68K"

close project "SwitchBank.it.68K"

quit

end tell

('2nd stage - Make PPG version, using resources from 68K output file *)

tell application "MW C/C++ PPC"

activate

open file "YourHardDisk:CodeWarrior:Code Examples f:SwitchBank /:SwitchBank.it.PPC"

(*Project file should already have settings such as output file name and its creator and type set*)

Remove Binaries

make project "SwitchBank.1t.PPC"

close project "SwitchBank.it.PPC"

quit

end tell

This is just a basic script, with the pathnames to the compilers and projects
hard-wired in. You'll have to edit these pathnames for this script to work on
your system.

~ Power Macintosh Programming Starter Kit
~··

Handling a Code Fragment
Thus far we've seen how to supply the Mixed Mode Manager the informa
tion it needs to handle an instruction set switch when your custom function
is called. Now it's time to go for an excursion into the Power Mac's base
ment, to get a glimpse of a code fragment close up. This brings us to the
next utility, FlipDepth. Like SwitchBank, FlipDepth was a utility Extension
that I wrote to make my life easier. My work and interests are often at odds
on a Mac's screen. The reason is that I make my living writing, with an
occasional bit of code writing thrown in. In these situations, I need the
utmost in scrolling speed when I examine a lengthy chunk of text or code
listing. The easiest fix, which costs you nothing, is to set the Mac's screen
to black-and-white mode. This makes text scrolling very fast, because at
this 1-bit pixel depth the Macintosh doesn't have as much data to pump to
the screen at it does with color data. A color screen requires more bits per
pixel, which means more data must be moved, and thus results in a slower
scrolling process.

This wouldn't be an issue except that what I usually write about is heavy
duty graphics applications-the stuff that uses buckets of 24-bit pixels. So I
was constantly clicking at the Monitors Control Panel, switching the Mac's
screen depth from black-and-white to 24-bit color mode and back, depend
ing upon what I was doing. If I could reduce the means of changing the
screen depth to just a keystroke or two, it would make the job just a little
easier. The real challenge is how to do this, of course.

Interlude: The Anatomy of a Trap
In chapter 5 we learned that the 68K Mac's Toolbox routines are accessed
via a dispatch table. Because much of the Power Mac's Toolbox is still 68K
code, this remains true, although portions of the underlying mechanism
that accomplishes this has changed.

... ~~~P.;~;.~ ... ~ ... ~.~~!~~.~~.~~1.:.~~:;~.~'..0
Background Info

The Power Mac's 68LC040 emulator is made up of two components: a dispatch
table (not to be confused with the 68K Mac's dispatch table), and a PowerPC
code block. This dispatch table has an array of 64K pairs of PowerPC instruc
tions. The entries in the dispatch table correspond to 68K instructions. The main
loop of the emulator fetches a 68K instruction word and uses it as a 16-bit
unsigned index into the dispatch table. For simple 68K instructions. the first
PowerPC instruction handles the operation and the second instruction jumps
back to the emulator loop. For complex 68K instructions, the first PowerPC
instruction starts the emulation process and the second instruction is a PC
relative branch into the code block. At this entry point are the PowerPC instruc
tions that implement the 68K instruction. The emulator dispatch table also has
entries for some of the A trap words, which point to native Toolbox routines. All
68K A traps get routed through the standard 68K Mac dispatch table. which
exists on the Power Mac for compatibility. Execution either proceeds into the
68K emulator, or jumps to the emulator's dispatch table. and then to PowerPC
code. By using the 68K dispatch table, existing Extensions and Control Panels
that modify the trap tables still function.

The Mac Toolbox itself provides the means for us to reroute a Toolbox
routine call to custom functions. Two routines, NGetTrapAddress () and
NSetTrapAddress (),provide a high-level interface that lets us change a 68K
dispatch table entry, no matter how the run-time architecture establishes
the connection between the trap word and Toolbox routine's code.
NGetTrapAddress () accepts a Toolbox trap word and Toolbox type (more on
this later), and obtains from the trap dispatch table an address that's an
entry point of the requested routine. NSetTrapAddress () accepts an address
to your custom function, the Toolbox trap word and its type. It changes the
dispatch table entry for this trap to point to your function. A bit of nomen
clature here: these custom functions you write to modify a trap's behavior
are called patch code because the term "patch" refers to fixing a hole in a
wall by adding a little material, or fixing a software bug by adding a little
code. Apple's system patches that fix bugs or add enhancements modify
the dispatch table the same way to install additional code. If each patch
does its job correctly, a Toolbox call can be reliably daisy-chained through
several or more Extensions as well as the Toolbox routine itself.

~ Power Macintosh Programming Starter Kit
~···

Now when an application calls the modified Toolbox routine, your function
gets called instead. Your function will handle the call one of two ways. The
pseudo code for the first method looks like this:

My_Trap_Enhancement()

Do_My_Stuff()j
Original_Trap_Routine();

/* end */

This is called a head patch, because the function does its job first, then calls
the Toolbox routine itself. Bear in mind that the pseudo code implies that
the trap routine returns control to this function, when in reality it doesn't.
Typically, Do_My_Stuff () performs its task, then jumps to
Original_Trap_Routine (),never to return. You'll see an example of this
shortly.

The second method uses this pseudo code:

My_Trap_Enhancement()
{

result= Original_Trap_Routine();
if (result == WHAT_WE_WANT)

Do_My_Stuff();

} I* end *I

This is called a tail patch, because we call the Toolbox routine first, then
perhaps act on a result returned by the routine. For example, we might call
MenuSelect (), and examine what it returns to act on a specific menu selec
tion. Or, you might ignore what Original_ Trap_Routine () does and instead
perform a task based on the frequency that Original_Trap_Routine () gets
called. We'll see an example of this shortly. Unlike the head patch, control
does return to our function when the routine completes. On the 68K Mac,
tail patches are considered evil because the return to your patch code can
interfere with some of Apple's code patches that work by examining the
return address on the stack For the Power Mac, the issue of how the patch
is applied to a trap is moot, because its architecture is fundamentally
different.

There are just a few more details we need to be aware of before we write a
line of code. The Macintosh OS divides its memory into two sections: a

" ... ~~~P.~~~ .~ ... ~ ... ~1;!~?. ~ .~1.;, ~~~:!'.~~. 0
system partition (or system zone), and an application partition (or applica
tion zone). Naturally, the Mac OS uses the system partition for its own use.
The system partition contains the operating system's global variables
(known as low-memory globals because they occupy some of the lowest
physical addresses in RAM), and the system heap. The system heap is
where drivers, patch code, and other resources hang out. Resources loaded
here are typically shared by all applications. The application partition is
where the Process Manager loads and launches applications. This section
of memory is in constant flux as applications load and unload.

Our patch code has an important requirement: it can't move in memory. If it
moves, even by accident, the pointer in the dispatch table (or another
Extension) winds up pointing at random data in memory. Thus a call to the
patched Toolbox routine becomes a jump to nowhere, and the Mac
crashes. We can lock our code in memory to prevent this, but we need to
avoid creating an immoveable memory block that fragments the applica
tion partition. Thus, the system heap is an ideal place for our code.

Finally, there's the issue of accessing the global variables our patch code
uses. At the very least, we need one global variable that stores the address
we got from NGetTrapAddress (), so that we can call the original routine. For
the 68K Mac run-time architecture, this is a tricky matter. As you recall from
last chapter, register A5 points to an application's globals and jump table.
When an application calls the patched Toolbox routine and our patch code
executes, we have an immediate conflict of interest. Since our code is
located somewhere else in memory, register A5 doesn't point to our
globals. If we mess with A5 to correct this, there's the very real danger that
we can mangle the application's A5 world. The application then loses track
of its global variables and function references, which means certain death.

Important (
Some more nomenclature: patch code belongs to a group of objects known as ...-..:

~

stand-alone code. Stand-alone code resources encapsulate pure machine code.

These resources are loaded into memory and executed directly. This differs from

an application, where the Process Manager first builds an A5 world for the

application from its CODE 0 resource, then jumps to its main () in another

0.. Power Macintosh Programming Starter Kit
~···

CODE resource. Because stand-alone code is executed without the benefit of
any set up by the Process Manager. the value in A5 is meaningless. Also. stand
alone code has to be practically self-contained. because it can't rely on other
resources being available, other than those in the operating system.

Typical resources that include stand-alone code are drivers (DRVRs). custom
window handlers (WDEFs). custom menu handlers (MDEFs). Control Panel code
(cdev). and Extension code (INID. Remember that last type, because we'll be
returning to it shortly.

Fortunately, there's an easy fix, that was first pioneered by Symantec's
THINK C, and is used by Metrowerks Code Warrior. When you create a
stand-alone code resource with Code Warrior, it assumes that such code
might be running concurrently inside of an application. The code it gener
ates has all the references to global variables and to functions made with
respect to register A4, rather than A5. When our code is called, all we need
to do is call some glue code provided in a header file that sets up A4 to
point to our code (and thereby our globals) for us.

The Power Mac's new run-time architecture simplifies how you handle
globals. Since each code fragment has a separate data space, and a TOC
that points to objects within it, ready access to global data is built in. To
locate a certain global, we first find the code fragment we want by asking
for it by name, and then asking for the global itself by name. You'll appreci
ate this more when we look at the actual code in a moment.

There is one problem to avoid when you patch a trap on a Power Mac. You
want to avoid creating a performance hit when you patch a trap. Let's see
why. Certain Toolbox routines in the Macintosh OS get called often by
other Toolbox routines. (For example, NewWindow() calls OuickDraw rou
tines to create a window on the screen.) Because the Power Mac's Toolbox
is an amalgam of 68K and PowerPC code, these routines might get called
by a 68K Toolbox routine one time, and then by a PowerPC Toolbox routine
the next. A problem arises if this heavily-called routine was only written in
Power PC code. The overhead of the Mixed Mode Manager performing the
instruction set context switch for 68K routines calling this particular routine
becomes considerable for small Toolbox routines, enough to seriously

.. ~~P.'.';;.~ ... ~ ... ~~~.!\::1!.:r.~~~~ .. :..0
degrade performance. Apple's solution was to implement these critical
routines as "fat traps." That is, the routine is written in both 68K and
Power PC code. Regardless of what routine calls the fat trap, no context
switch is required, and so the performance hit is minimized. The point here
is that on the Power Mac, for certain routines we have to write a fat trap.
This is very convenient, because it allows us to compare how to do a patch
for both system architectures. However, be aware that not all traps have to
be fat. For example, a heavily called routine that does a lot of processing
would probably be better off patched only with Power PC code, where the
performance boost of native execution readily compensates for the over
head of the Mixed Mode Manager switch. A rough rule of thumb is that the
overhead of the Mixed Mode Manager context switch takes approximately
fifty 68K instruction equivalents or five hundred PowerPC instruction
equivalents. If your patch function is roughly larger than fifty 68K instruc
tions, then it's a candidate for being written as native code.

Writing a Fat Trap
With all of this information in hand, let's go write FlipDepth. Start a new
project in the PowerPC version of Code Warrior. Use the editor to start a
new file. Type in the following:

#ifndef ~TYPES~
#include <Types.h>

#endif

#ifndef ~MEMORY~
#include <Memory.h>

#endif

#ifndef ~GESTALTEQU~
#include <gestaltequ.h>

#endif

#ifndef ~FILES~
#include <Files.h>

#endif

~ Power Macintosh Programming Starter Kit
~··

#ifndef ~QUICKDRAW~

#include <QuickDraw.h>

#end if

#ifndef ~RESOURCES~
#include <Resources.h>

#endif

#ifndef ~ERRORS~

#include <Errors.h>

#endif

#ifndef ~FRAGLOAD~
#include <Fragload.h>

#endif

#ifndef ~TEXTUTILS~
#include <TextUtils.h>

#endif

#ifndef ~RESOURCES~
#include <Resources.h>

#end if

#ifndef ~MEMORY~
#include <Memory.h>

#endif

#ifdef ~MWERKS~
#ifndef powerc

#include <A4Stuff.h>

#endif
#endif

Save this in the file "INIT .h." These are the basic header files we need to
make an Extension (INIT) stand-alone code resource. "INIT.h" serves as a
template for all Extension code that we write. Now type:

/*

Portions © 1994 Rock Ridge Enterprises. All Rights Reserved.

*/

/*

................... "" .. ". ~~;P,;~'. .~ ... ~ ... ~.~~.~~. ~; .~~l,!.~~;~~r .. 0
*/

This tells MixedMode.h that we want _real_ versions of
the various RoutineDescriptor functions and not dummy

stubs.

#define USESROUTINEDESCRIPTORS 1

/*

*/

This #define is for testing only. Without it, only the

68K version of our patch is called.

#undef DO_PPC_CODE_ONLY

#include 'Init.h'

#ifndef powerc
#include <SetUpA4.h>

#end if

/* Headers required by our custom functions */
#include <SysEqu.h>
#include <Events.h>
#include <Windows.h>

#include <Palettes.h>

/*

Some low memory globals. We'd rather not use these, but they're
necessary because we'll be operating in a trap that doesn't move memory.

*/

#define lowMemKeyStroke (*(KeyMap *) KeyMapLM)[0]
#define lowMemKeyModifiers (*(KeyMap *) KeyMapLM)[1]

/* Some constants that define the bits we'll see in KeyMap */

#define SHIFT_KEY 1L
#define CAPS_LOCK 2L
#define OPTION_KEY 4L
#define CONTROL_KEY BL
#define COMMAND_KEY 0x8000L

#define KEY_COMBO SHIFT_KEY + COMMAND_KEY

#define T_KEYCODE 0x0200L
#define BLACK_WHITE 128 /* First video mode ID in sResource list */

~ Power Macintosh Programming Starter Kit
~··

#define FALSE false
#define TRUE true
#define NIL 0L

#define kOldSystemErr 10000
#define kMinSystemVersion (0x0605)

Here's our usual complement of header files, plus definitions for the ad
dress of a low memory global and some constants. The header files you see
here define information required by our job-specific code that controls the
screen depth. One important thing to note is that we set
USESROUTINEDESCRIPTORS to 1 (true) immediately before we include any
header files. (Actually, we need this to happen before the "MixedMode.h"
header file is used.) If we don't, the routine NewFatRoutineDescriptor () is
undefined for 68K generated code. We need this routine to build fat traps,
so we have to set USESROUTINEDESCRIPTORS to signal any 68K compiler that
we're serious about supporting two instruction sets. Also notice that for a
68K compilation (#ifndef powerc), the "SetUpA4.h" header file is used.
Because we're using out of the ordinary settings here, you may want to
avoid use of the precompiled header files (MacHeaders68K or
MacHeadersPPC) until you precompile MacHeaders68K.c or
MacHeadersPPC.c with the appropriate options set. Onward, we type:

/*===========================*/
#define kPPCRezType
#define kPPCRezIO

'PPC '

300

/*==========================
The 68k code goes in a normal INIT resource.
Be sure this is set to "system heap/locked".

===========================*/
#define klnitRezType
#define klnitRezIO

'INIT'
300

/*==========================
This is the name of the ppc fragment - for debugging only.

===========================*/
#define klnitName "\pEricslnit"

/*==========================
to save some screen space, we'll use "UPP' instead of "UniversalProcPtr"

===========================*/
typedef UniversalProcPtr UPP;

... ~~;r.:~;.~ ... ~ ... ~~~.!:.~!1.;,~~~!!'~;.0
Here are some more definitions, but now we're describing the characteris
tics of our generated code. Notice that we're declaring a resource type and
ID number for a PowerPC code fragment here. What gives, when code
fragments don't live in a file's resource fork? There are ways to access a
code fragment in from a file's data fork, but occasionally it's easier to load it
from a resource. Therefore, we must make the PowerPC code resemble a
stand-alone code resource, so that the Mac OS treats it like one. This means
that we must copy the Power PC code fragment from a file's data fork into
the resource fork, and then assign it a resource type and ID number. The
resource type doesn't have to be '!NIT', because we'll use a 68K !NIT
resource to actually install the PowerPC resource. Instead, we'll make the
resource type 'PPC' so we can recognize it as PowerPC code. Now it's time
to define our function prototypes:

/*==========================
PostEvent Information

=========================== */

en um
{

};

kPostEventinfo = kRegisterBased
RESULT_SIZE(SIZE_CODE(sizeof(OSErr)))
REGISTER_RESULT_LOCATION(kRegisterD0)
REGISTER_ROUTINE_PARAMETER(1, kRegisterA0, SIZE_CODE(sizeof(short)))
REGISTER_ROUTINE_PARAMETER(2, kRegisterD0, SIZE_CODE(sizeof(long)))

typedef pascal OSErr (*PostEventFuncPtr) (short eventNum, long eventMsg);
#define kPostEventFuncName "\pMyPostEventPPC"

/* Note separate functions */

short MyPostEvent68k(short eventNum, long eventMsg);
OSErr MyPostEventPPC(short eventNum, long eventMsg);

/*==========================
GetMouse Information

=========================== */
enum
{

kGetMouseinfo = kPascalStackBased
I STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Point)))

};

~ Power Macintosh Programming Starter Kit
~··'

typedef pascal void (*GetMouseFuncPtr) (Point •mouseLoc);

#define kGetMouseFuncName "\pMyGetMouse"
void MyGetMouse (Point •mouseLoc); /*Only one function required*/

/* Functions that change screen depth. Works one both platforms. */
void Change_Depth(long newDepth);

long Fetch_Depth(void);

Let's backtrack here a moment to explain why we're patching these two
routines, Post Event () and GetMouse ().I wanted to patch a trap that
handled events, so that I could monitor the event stream for keystrokes.
This way I could watch for the magic key combination that tells me the
user wants to change the screen depth. Post Event () is a Toolbox routine
used by the Event Manager to place events in the event queue. It has two
advantages: First, since it's actually responsible for creating the event
stream, it's the perfect routine to monitor for keyboard events. Second,
Post Event () gets called frequently, so we can respond quickly to the user.

However, Post Event () does have a down side. It's what's known as an
Operating System routine (or trap). Operating System routines typically
perform low-level functions such as file I/O, network IjO, and memory
management. In the Mac's early days, such routines were register-based.
That is, the calling function passes information to the Operating System
routine by placing the values in certain processor registers. This "calling"
arrangement means that we're going to have to write assembly language
to examine any values passed into or returned from this type of routine.
The other problem is that Post Event ()doesn't move memory. Put another
way, the routine's memory demands are fixed, so it's not going to force the
Memory Manager to purge memory, or relocate data items whenever it's
called. Lots of Toolbox routines and applications count on PostEvent () and
certain other low-level OS routines being well-behaved about memory this
way. Whatever our patch does, it has to be very simple lest we unexpect
edly jar the location of objects in memory and cause a system crash. The
safest thing to do is have the patched Post Event () routine detect the right
combination of key presses, and set a global flag. We'll use this flag to
signal another patched routine to actually change the screen depth.

The function that handles the depth change should be a Toolbox routine
that doesn't have such strict memory requirements. That's because every
application will be redrawing its chunk of the screen after the depth

" ... ~~~r,;~; .~ ... ~ ... ~.~'.'!~?. ~; .~~1. :.~~::~~;. 0
change, and this sort of thing definitely effects memory usage. Also, like
Post Event (),this routine should be called frequently for a fast response
time. The routine GetMouse () fits these requirements.

GetMouse () is a stack-based Toolbox trap. That is, arguments are passed to
this type of routine by pushing them on the stack The result is typically
returned on the stack, but there are exceptions. Ironically, GetMouse () is
one of these exceptions, because it returns a result via a pointer you passed
to the routine.

Important r
Until now, I've used the term Toolbox loosely to mean any and all routines that •

implement services defined by the Mac API. For the moment, we'll have to make

the distinction between Toolbox and OS traps. This is important because the

68K Trap Dispatcher maintains two different dispatch tables: one for Toolbox

traps and one for OS traps.

Keep in mind the discussion of these routine's memory behavior is based on the

Mac's 68K architecture. However, since much of the Toolbox is emulated 68K

code, we can assume similar behavior on a Power Mac for the moment. This will

change over time as more of the Toolbox is rewritten as native code. Also, if we

want the Extension to operate on the installed base of 68K-based Macs, we

need to follow the guidelines described above.

Background Info
Historically, the OS traps were designed to be register-based because it was

expected that these low-level routines would only be accessed by system

programmers writing in assembly language. Toolbox traps, on the other hand,

were made stack-based to make them easy to access. This was because

application programmers would use these high-level routines in their applications.

Nowadays, the distinction between the two trap types has blurred, since most

compilers provide high-level access to OS traps using glue code. The definitions

blur even further with the Power Macs, because all the routines pass their

arguments through the PowerPC processor's registers.

~ Power Macintosh Programming Starter Kit
~··

Back to our code. Here's where the routine descriptors are built that de
scribe the makeup of the traps we patch to the Mixed Mode Manager.
Remember that our patch code will ultimately call the original trap, so we
have to hand a routine descriptor to the Mixed Mode Manager so it can
field an instruction set switch when one is required. We declare (no sur
prise) PostEvent () as a register-based routine and GetMouse () as a stack
based routine. We also define function prototypes for the routines and our
patch code here. Observe that our PostEvent () patch code has both a
PowerPC function and a 68K function. That's because for the 68K version,
we have to do some processing in assembly language to retrieve
Post Event () 's arguments from the 68K processor registers. As you'll see,
such gymnastics are unnecessary for the PowerPC version of the patch,
thus, the two different versions of the same patch. We also declare our
screen control functions, Get_Depth () and Change_Depth () , here. We don't
need to set up routine descriptors for these functions because they are
called locally inside the patch code. Finally, we declare two function name
strings, kPostEventFuncName and kGetMouseFuncName. The Code Fragment
Manager uses these strings to locate our patch functions.

/*==========================
This structure is shared between the PowerPC
version of the code and the 68K version.

Both the PowerPC code and the 68k code have a single
global variable, "gGlobalsPtr". They point to the
same area of memory.

===========================*/

#ifdef powerc
#pragma options align=mac68k

#endif

/*

*/

Note: do not move these fields around!
The assembly code in PostEvent68kStub()
depends on their locations. It must be
compiled with the 68K packing conventions

.. ~~~P,t;,~.~ ... ~ ... ~.~~?.!:.-;1!.:r.~~~.'!'..e
typedef struct
{

UPP
UPP
SysEnvRec
Boolean
GDHandle
short
long

gOrigPostEvent;
gOrigGetMouse;
gSysteminfo;
gRequestFlag;
gOurGDevice;
gDevRefNum;
gOldScreenDepth;

} MylnitGlobals;

#ifdef powerc
#pragma options align=reset

#endif

/*==========================
Global Variables

/* Address of original PostEvent trap */
/* Address of original GetMouse trap */
/* Holds info on system config */
/* Flag that signals screen depth change */
/* The GDevice of the screen */
/* Driver number for video board's slot */
/* Mode number for color screen setting */

-- Each side of the code maintains its own pointer to the
same block of memory.

·- We reference the globals ptr by name, so these two must be
changed together.

===========================*/
MylnitGlobals *gGlobalsPtr;
#define kGlobalsSymName '\pgGlobalsPtr'

Here's our globals block, called Mylni tGlobals. Note that we use the
#pragma options align=mac68k to force word-alignment on the data struc
tures so My I ni tGlobals can be used on a 68K processor (or the 68LC040
emulator). The globals hold the original trap routine addresses (as UPPs, of
course) and other sundry variables such as the reference number to the
device driver that controls the Mac's screen (gDevRefNum), and the logical
device that manages it (gOurGDevice). Like our patch code, we also define a
name string for the pointer to our globals. We'll pass this name to the Code
Fragment Manager when we want to locate the globals block.

/*==========================
An original trap is called differently from PowerPC
code than from 6BK code because CallOSTrapUniversalProc() isn't
implemented for 6BK code.

===========================*/

~ Power Macintosh Programming Starter Kit
~··

#ifdef powerc
#define CallPostEvent(eventNum, eventMsg)\
CallOSTrapUniversalProc(gGlobalsPtr->gOrigPostEvent, kPostEventinfo,\

eventNum, eventMsg)
#define CallGetMouse(mouseLoc)\
CallUniversalProc(gGlobalsPtr->gOrigGetMouse, kGetMouseinfo, mouseLoc)

#else
#define CallGetMouse(mouseLoc)\
(*(GetMouseFuncPtr)gGlobalsPtr->gOrigGetMouse)(mouseLoc);

#endif

/* Custom function to place our patch code in the system heap */
Handle Get1ResourceSys(OSType rezType, short rezID);

These macros in the code above define a common way to call the original
routines, whether from 68K code or PowerPC code. On the PowerPC side of
the fence, we make the routine calls using either
CallOSTrapUniversalProc () for an OS trap, or CallUniversalProc () for a
Toolbox trap. The only difference between the two routines is that
CallOSTrapUniversalProc() preserves some additional 68K registers for
register-based traps. For the 68K side, we just pass a pointer to a function.
Both techniques rely on addresses stored in the globals block. For the 68K
code, we don't declare a macro for Post Event (). That's because we'll use a
separate function to extract the values out of this register-based routine.

Since we'll place our patch code in the system heap, we declare a custom
function Get1 ResourceSys () for this purpose.

@@@@@@@@@@@@@@@ 68000 Exclusive Code @@@@@@@@@@@@@@@ .,
#if ndef powerc

!*==========================
Prototypes for 68k code

===========================*!
OSErr DoinitForOldMacs(void);
OSErr DoinitForPPCMacs(void);
OSErr CreateFatDescriptorSys(void •mac68Code, void •ppcCode,

ProcinfoType procinfo, UPP •result);
OSErr PatchTrapsForPPCMac(ConnectionID connID);

void PostEvent68kStub(void);
pascal void GetMouse68kStub (Point •mouseLoc);

.. ~~~P.;~; .~ ... ~ ... ~.'!'!!~~. ~; .-:i!.: ~~:;~~;. 0
We now define some processor-specific functions here. We'll use a 68K
INIT resource to set up and install our patch code, no matter what proces
sor is in the Mac.

/*==========================
This is *always* the INIT's entry point. This is
the only routine called by system software at startup.

This requires that the INIT resource be set to
System Heap/Locked.

===========================*/
void main(void)

long oldA4;
Handle
OSErr
long

initH nil;

err = noErr;
ginfo;

/* Handle to our own INIT resource */

/******************************

Global variable support
Place proper value for A4 into hole in INIT resource.

******************************/

oldA4 = SetCurrentA4();
RememberA4();

/* Get the proper value of A4 into A4 */
/* save into self-modifying code */

/*******************************

Allocate our global variables
*******************************/

gGlobalsPtr = (MylnitGlobals*) NewPtrSysClear(sizeof(MylnitGlobals));

if (lgGlobalsPtr)
{

err = memFullErr;
goto DONE;

/*******************************

Get some basic system information
*********jj********************/

err= SysEnvirons(1, &gGlobalsPtr->gSystemlnfo);
if (err)

goto DONE;

~ Power Macintosh Programming Starter Kit
~···

/*******************************

Check the system version
*******************************/

if (gGlobalsPtr->gSysteminfo.systemVersion < kMinSystemVersion)

{

err = kOldSystemErr;
goto DONE;

Here's the start of the code that gets loaded and executed at boot time by
the Macintosh OS. We first call the Metrowerks functions SetCurrentA4()

and RememberA4 (),which preserves register A4, then adjusts it to point at
our code and thus our globals. Next, we allocate a block of zeroed memory
in the system heap, using NewPtrSysClear ().If we succeed at obtaining the
memory, we then call SysEnvirons () to determine what operating system
we're running under. If it's less than System 6.0.5, we bail out, as we need
the Gestalt Manager to tell us whether we're running on a Power
Macintosh or not.

/*******************************

Get a handle to our own INIT resource
*******************************/

initH = Get1Resource(kinitRezType, kinitRezID);
if (linitH)

{

err = resNotFound;
goto DONE;

/*******************************

See if we're running on a PowerPC
*******************************/

err= Gestalt(gestaltSysArchitecture, &ginfo);

/*******************************

Patch all the traps and get everything ready.
*******************************/

if (err II (ginfo == gestalt68k)
err= DoinitForOldMacs();

else
err DoinitForPPCMacs();

.. ~~~P.;~; .~ ... ~ ... ~.'!1:!~?. !~ .~1.;, ~~~:~.~;. 0
DONE:
if (err

/* Display "bad load" icon here */

if (gGlobalsPtr)
DisposPtr((Ptr)gGlobalsPtr);

}

else

/* Display "good load" icon here •/

gGlobalsPtr->gOldScreenDepth = Fetch_Depth{);

/* Make sure the init stays in memory when the INIT file closes*/
DetachResource(initH);
} /* end else •/

RestoreA4(oldA4);
/* end main() */

/* Restore previous value of A4 */

Now we fetch our !NIT resource. It contains the code you see here,
functions that patch the dispatch table, and our patch code. We load the
resource into memory using Get1 Resource ().Next, we use the Gestalt
Manager to determine if we're running on a Power Mac. If not, we call the
function Dolni tForOldMacs () to perform the 68K patches. Otherwise, we
call Dolni tForPPCMacs () to do the PowerPC patches. If the patching opera
tion fails, we clean up by releasing the memory allocated for our globals. If
the patching process succeeds, we obtain the system's current screen
depth for use by our screen control functions later. To ensure that the
Resource Manager doesn't purge our !NIT code from memory, we call
DetachResou rce (). This routine severs the logical link between this resource
and the Resource Manager, so that the resource remains in memory when
the Resource Manager closes the file. Finally, we restore register A4 and
exit.

~ Power Macintosh Programming Starter Kit
~··

Background Info
Extensions typically display an icon at the bottom of the Mac's screen as they
load. The type of icon displayed indicates whether the Extension was able to
install its patches or not. You can see stubs in the previous setup code where
you would plug in such display functions.

/*==========================
DoinitForOldMacs

Initialization code for non-PowerPC Macs.

===========================*/
OSErr DoinitForOldMacs(void
{

/* patch the trap */

gGlobalsPtr->gOrigPostEvent = NGetTrapAddress(_PostEvent, OSTrap);
NSetTrapAddress((UPP)PostEvent68kStub, _PostEvent, OSTrap);
gGlobalsPtr->gOrigGetMouse = NGetTrapAddress(_GetMouse, ToolTrap);
NSetTrapAddress((UPP)GetMouse68kStub, _GetMouse, ToolTrap);

return noErr;

} /* end DoinitForOldMacs() */

Here's the mechanism where we modify the 68K Mac's dispatch table to
point to our patch code. We first obtain the original address from the dis
patch table using NGetTrapAddress (),and save it in our globals block. Next,
we use NSetTrapAddress () to replace the address with a UPP (actually, a
68K procedure pointer) to our patch code. Notice that we specify the type
of trap we're patching here (OSTrap or Tool Trap), so that the correct dis
patch table gets modified. Now let's see how it's done for a Power Mac:

/*==========================
DoinitForPPCMacs

Initialization code for powerpc Macs.
===========================*/
OSErr DoinitForPPCMacs(void

OSErr
Handle
SymClass

err = noErr;
ppcCodeH = nil;
theSymClass;

.. ~~~P.~~; .~ ... ~ ... ~t;!~~. ~ .~~1.;, ~~~;!'.~;. 0
Ptr theSymAddr;
ConnectionID connID = kNoConnectionID;
Str255 errName;
Ptr mainAddr;

/*******************************

Load the powerpc version of the code into
memory. Since some of our trap patches may be
called at interrupt time, don't use disk-based
versions of the code.

*******************************/

ppcCodeH = Get1ResourceSys(kPPCRezType, kPPCRezID);
if (lppcCodeH)

return resNotFound;
HLock(ppcCodeH);

/*******************************

Open a connection with the code fragment we just loaded
*******************************/

err= GetMemFragment(*ppcCodeH, GetHandleSize(ppcCodeH), kinitName,
kloadNewCopy, &connID, &mainAddr, errName);

if (err)

connID = kNoConnectionID;
goto DONE;

Since the container for our Code Fragment is a resource, we must first load
it into memory with the Resource Manager. We do this using our custom
function Get 1 Resou rceSys () , which loads the fragment into the system
heap and returns a handle, ppcCodeH, to it. Get1 ResourceSys (),described
later, adjusts memory accesses to the system partition and then calls the
Resource Manager to load the resource into that partition. We lock this
code in place using HLock (). Since our Post Event () patch code might get
called during an interrupt, it requires that the patch remain in memory at all
times, which is why we load the fragment into the system heap and lock it
in place. Now we pass the code fragment's handle to GetMemFragment (),

which prepares the fragment for execution. We use GetMemFragment () over
other Code Fragment Manager routines because it operates on fragments
in memory. The constant kLoadNewCopy has GetMemFragment () make a new
copy of any of the fragment's writable data (like our globals), and conn ID

returns an ID value that specifies a connection to this fragment. We could
also use the constant kloadlib. The connection ID is analogous to the file

~ Power Macintosh Programming Starter Kit
~··

reference number that the File Manager routines use for file IjO. You
supply this connection ID to other Code Fragment routines to obtain infor
mation on fragments, or the addresses of functions or global data within
fragments. Now it's time to find those globals:

/*******************************

find the global variable ptr that the powerpc
code uses.

*******************************/

err= FindSymbol(connID, kGlobalsSymName, &theSymAddr, &theSymClass);
if (err)

goto DONE;

/*******************************

Modify the powerpc global variable pointer to point
to the area of memory we've already allocated.

*******************************/

*(MyinitGlobals **)theSymAddr = gGlobalsPtr;
err= PatchTrapsForPPCMac(connID);

/*******************************

Cleanup
*******************************/

DONE:
if err

/*Close the code frag mgr connection if we got an error ... */
if (connID I= kNoConnectionID

CloseConnection(&connID);

/* ... and release the memory we allocated */
if (ppcCodeH)

ReleaseResource(ppcCodeH);
/* end if */

else

/* No error -> keep the ppc code around when file closes */
DetachResource(ppcCodeH);
} /* end else */

return err;
/* end DolnitForPPCMacs() */

,, ... S?~P.'.':'..~ ... ~ ... ~!~~. !;,-;i;,;.~~~~."!..0
We use the Code Fragment Manager routine FindSymbol () to locate the
PowerPC version our globals pointer, gGlobalsPtr. We pass it the connec
tion ID obtained with GetMemFragment () , and the export name of our globals
pointer in the string kGlobalsSymName. FindSymbol () returns the address of
the pointer in theSymAddr. We then direct this pointer toward our globals
block. Now that we can locate our globals, we call PatchTrapsForPPCMac ()

to patch the dispatch table. If all goes well, we call DetachResource() on the
PowerPC resource to make the Resource Manager "forget" about the
fragment and leave it in memory. If there is an error, we close the connec
tion to the code fragment using CloseConnection (), and follow that with a
call to ReleaseResource () to dispose of the code fragment.

Let's see how we patch traps on the PowerPC run-time architecture:

/*==========================
PatchTrapsForPPCMac

===========================*/
OSErr PatchTrapsForPPCMac(ConnectionID connID)

Ptr symAddr;
SymClass symType;
OSErr err = noErr;
UniversalProcPtr upp = nil;

,.
Fat Patch _PostEvent

*/
err= FindSymbol(connID, kPostEventFuncName, &symAddr, &symType);
if (err)

return err;

err = CreateFatDescriptorSys(PostEvent68kStub, symAddr,
kPostEventlnfo, &upp);

if (err)
return memFullErr;

gGlobalsPtr->gOrigPostEvent = NGetTrapAddress(_PostEvent, OSTrap);
NSetTrapAddress(upp, _PostEvent, OSTrap);

I:'::\. Power Macintosh Programming Starter Kit
~··

/*
Fat Patch _GetMouse

*/
err= FindSymbol(connID, kGetMouseFuncName, &symAddr, &symType);
if (err)

return err;

err = CreateFatDescriptorSys(GetMouse6BkStub, symAddr,
kGetMouseinfo, &upp);

if (err)
return memFullErr;

gGlobalsPtr->gOrigGetMouse = NGetTrapAddress(_GetMouse, ToolTrap);
NSetTrapAddress(upp, _GetMouse, ToolTrap);

return noErr;
} /* end PatchTrapsForPPCMac() */

FindSymbol () greatly simplifies matters here. We provide this routine with
the name of our patch code functions, and it returns the entry points to
them in the code fragment. Since the course of execution could be hopping
from one instruction set to another, we next build a routine descriptor for
these functions. CreateFatDescriptorSys () is a custom function that places
the descriptor information in the system heap. We'll examine its code
shortly. We call this function with the address of our 68K patch code, the
address of our PowerPC patch code, and the routine descriptor information
provided at the start of the file. CreateFatDescriptorSys () returns a UPP
that points to both the 68K patches and PowerPC patches. At this point,
patching the Power Mac's dispatch table is nearly identical to how it's
managed with the 68K dispatch table. The original trap address is copied
from the dispatch table using NGetTrapAddress(), and it's replaced with the
UPP to our patch code by calling NSetTrapAddress ().We could make this
section of code more robust by performing the memory allocations (via
CreateFatDescriptorSys ())and symbol locations in main ().This way, if
there's a problem applying either of the patches, we have a chance to back
out gracefully.

.. ~~~r.;~;.~ ... ~ ... ~!~~.~.~l.!,~~~;~;:..e
/*==========================

CreateFatDescriptorSys

Creates a fat routine descriptor in the system heap.
===========================*/
OSErr CreateFatDescriptorSys(void *mac68Code, void *ppcCode, ProcinfoType procinfo, UPP
*result)
{

THz oldZone;
OSErr err = noErr;

*/

oldZone = GetZone(); /*Save current zone*/
SetZone(Systemzone()); /*Get us in the system heap*/

#ifndef DO_PPC_CODE_ONLY

*result= NewFatRoutineDescriptor(mac68Code, ppcCode, procinfo);
#else
*result= NewRoutineDescriptor(ppcCode, procinfo, kPowerPCISA); /*debugging only

#endif

SetZone(oldZone);

return (*result ? noErr : memFullErr);
/*end CreateFatDescriptorSys() */

Here's that custom function that generates routine descriptors in the
system heap. We begin by saving the current zone (or memory partition).
This is done by first calling Getzone () to obtain a pointer to this zone, and
saving it in oldZone. Then we change the zone that we'll operate in to the
system zone. To do this, we call Systemzone () to get a pointer to this zone,
and make it the active zone by passing the pointer to Setzone (). Now when
we generate a new data structure, such as our fat descriptor, the memory
gets drawn from the system heap. Then we call
NewFatRoutineDescriptor (),which makes the UPP containing a fat descrip
tor. Once that's done, we restore the current zone by passing oldZone to
SetZone () , and exit.

/*==========================
PostEvent68kStub

===========================*/

0, Power Macintosh Programming Starter Kit
~··

asm void PostEvent68kStub(void)
{

II Reserve space on stack for "real" PostEvent address
sub.l #4, SP

II Save registers (not A0 & 00, though)
movem.l A1-A5101-07, -(SP)

II Push A0 & 00 on stack for call to MyPostEvent68k below
II We must do this before SetUpA4 since it modifies registers

move.l 00, -(SP) II push event message
move.w A0, -(SP) II push event code

jsr SetUpA4 II give us global access

II Put address of "real' postevent in place reserved on stack
II Note that it is the first field in the gGlobals structure

move.l gGlobalsPtr, A0
move.l (A0), 54(SP)

II Call MyPostEvent68k
II Parameters are on the stack already
II 00.w returns with the new event code

jsr MyPostEvent68k

move.w
add.l
move.l

00, A0
#2, SP
(SP)+, 00

II restore registers

II A0.w =event code
II Clear old event code from stack
II Restore event message from stack

movem.l (SP)+, A1-A5101-07

II Jump directly to original PostEvent code
II The address was placed on the stack in the above code

rts
} I* end PostEvent68kStub() *I

pascal void GetMouse68kStub(Point *mouseloc)
{

long oldA4;

"•" •" "•""" •" •" •" •"""" •" •""" """ "•""" """ ~?~f.;~~ .~" .~ .. ' ;~1;!~~. !; .~!I,!,~~:':!'~~' 0
oldA4 = SetUpA4()j

MyGetMouse (mouseloc);
RestoreA4(oldA4);

/* end GetMouse68kStub() */

#end if /* 68K code */

These are the 68K code stubs for our patch code. These stubs minimally fix
up register A4 to point to our globals before calling our patch code, and
restore A4 when they exit. As you'll see in a moment, for OS traps the stub
has a lot more work to do. PostEvent68kStub () is the entry point for the 68K
Post Event ()patch code and is a head patch. We use Code Warrior's built-in
assembler to write 68K machine code that fetches the contents of register
AO, which contains the event code (or type), and the contents of register
DO, which holds the event's message. It's a nasty business, since we have
to keep careful track of where things are on the stack. There are two things
to be aware of with the Code Warrior's built-in assembler. First, you can't
place assembly language instructions directly in-line with C code, as you
can with Symantec's THINK compiler. The assembly language code must
be wrapped inside a function. This function is declared asm, as you can see
in the code. Second, to comment assembly-language statements you use
C++ style comments, where each comment is lead with a double-slash (/ /).

When PostEvent68kStub() gets called, we first save room on the stack
where we'll stow the address of the original Post Event () trap. Then we
save most of the processor registers. Next, we retrieve Post Event () 's
arguments out of register AO and DO and push them onto the stack, for use
in our patch function MyPostEvent68K (). Now we call SetUpA4 () to fix up
register A4 so we can get at our globals. This lets us obtain the pointer to
our globals block, gGlobalsPtr. Once that's done, we fetch the address of
the original Post Event () from gOrigPostEvent and drop it on the stack.
Since gOrigPostEvent starts the globals block, we don't need an offset from
the pointer to access it. We stuff this address into the location on the stack
where we allocated room for it. Because of all of the items we've pushed
onto the stack so far, this location is 54 bytes from the current stack top.

With all the preliminary setup done, we at last call MyPostEvent68k (),the
patch code which processes the event. When it returns, we place the event
code it returns back into AO. We then toss the original event code into the

0. Power Macintosh Programming Starter Kit
~··

bit bucket (since MyPostEvent68k () might have changed it), move the
original event message back into DO, and restore the registers. At the end
of all this work, the address of the original PostEvent () has moved to the
top of the stack, and so that routine gets called when our function exits.

Since GetMouse () is a stack-based routine, we only have to set up access to
our globals using SetUpA4() before calling the real patch code in
MyGetMouse ().We restore A4 as the function exits.

/*

*/

@@@@@@@@@@@@@@@ Shared Code @@@@@@@@@@@@@@@

This code gets compiled into both 68k and powerpc object code.
The 68k code gets called from 68k patches & code.
The powerpc code gets called from powerpc patches & code.

If these routines were very large, or called infrequently, we could
just have a single version that is called by the "other" object code,
but it's not worth the hassle & context switch.

Handle Get1ResourceSys(OSType rezType, short rezID
{

THz
Handle

oldZone;
h;

oldZone = Getzone();
Setzone(Systemzone());
h = Get1Resource(rezType, rezID);
Setzone(oldZone);
return h;

/* Our custom GetMouse function. We do our screen stuff here because
_GetMouse is allowed to move memory, and is called frequently.

*/

void MyGetMouse(Point *pt)
{

long currentDepth;

.. ~~~P.'.':; .~ ... ~ ... ~.'!':!~~. ~ .~1.;, ~~~;!'.~;. 0
if (gGlobalsPtr->gRequestFlag)

{

gGlobalsPtr->gRequestFlag = FALSE;
currentDepth = Fetch_Depth();
if ((currentDepth == BLACK_WHITE) &&

/* Event is for us ? */

/* Clear flag */

(currentDepth I= gGlobalsPtr->gOldScreenDepth))
Change_Depth(gGlobalsPtr->gOldScreenDepth);

else
Change_Depth(BLACK_WHITE);

} /* end if *I

CallGetMouse(pt);

} /*end ourGetMouse() */

/* Hop to original GetMouse() */

Most of the functions here, with the exception of the PostEvent () patch
code, get compiled for both processors. The resulting machine code goes
into separate resources ('INIT' for 68K code and 'PPC' for PowerPC code) to
build the fat trap, with a fat descriptor pointing to the function entry points
in each resource.

The function Get1 ResourceSys () loads the specified resource into the
system heap.

MyGetMouse () is the patch code for the GetMouse () routine. When it's called,
it checks to see if gRequestFlag has been set. If so, it knows that the user
requests a screen depth change. The function first clears this flag so that it
won't respond again the next time the routine gets called. MyGetMouse ()

next has Fetch_Depth () determine the current screen depth. This is
checked against the constant BLACK_WHITE and the screen depth saved
when the Extension loaded. If the screen depth isn't black-and-white, then
it calls Change_Depth () to set the screen that way. If the screen is black-and
white, Change_Depth () gets called to switch the screen depth back to the
original mode. The reason for the complicated if statement is to head off
potential trouble if you start the Mac with the screen in black-and-white
mode. In this case, FlipDepth has no idea what other screen depths the
display supports, so the code locks the screen into this mode. If we didn't,
Change_Depth() would be called with a garbage value, which might result
in an interesting, if unusable, display. Once we've changed the screen
depth, we call the original GetMouse () to finish the call.

~ Power Macintosh Programming Starter Kit
~··

short MyPostEvent68k(short eventNum, long eventMsg)

{

short newEventCode = eventNum;

if ((eventNum == keyDown) II (eventNum == autoKey)
{

if ((lowMemKeyModifiers == KEY_COMBO) &&
(lowMemKeyStroke == T_KEYCODE))
{

newEventCode = nullEvent; /* Suppress the event */

gGlobalsPtr->gRequestFlag = TRUE;
/* end if KEY_COMBO && T_KEYCODE */

} /* end if *I

return newEventCode;
/* end MyPostEvent68k() */

#ifdef powerc
OSErr MyPostEventPPC(short eventNum, long eventMsg)

OSErr result;

if ((eventNum == keyDown) II (eventNum == autoKey)

if ((lowMemKeyModifiers == KEY_COMBO) &&
(lowMemKeyStroke == T_KEYCODE)
{

eventNum = nullEvent; /* Suppress the event */

gGlobalsPtr->gRequestFlag = TRUE;
/* end if KEY_COMBO && T_KEYCODE */

/* end if */

result= CallPostEvent(eventNum, eventMsg);
return result;

} /* end MyPostEventPPC() */

#endif

These functions are the 68K and PowerPC versions of the Post Event ()

patch. Basically, they watch the event code (or its type) passed to the
routine. Since we're looking for a special key-combination, the code ignores
all events but key down and auto key events. If a keyboard event occurs,

.. ~~P.:';;.~ ... ~ ... ~!~?.~.~1.;,~~~.~;.0
we examine a low memory global, KeyMapLM, to determine what keys were
pressed. We'd rather not use a low memory global because it introduces an
absolute address in our code, but other routines that could do the job also
happen to move memory.

Hazard
Apple will eventually phase out certain low memory globals, because they
hamper moving the Mac OS to a preemptive multitasking operating system.
Therefore, the use of low memory globals is strongly discouraged. However, for
the FlipDepth example we had two choices. First, perform a safe head-patch on
Post Event () and use a low-memory global (that will probably be supported for
awhile longer on the Power Mac) to obtain the modifier keys. In short. FlipDepth
as implemented here works reliably on both architectures now and for the
immediate future. Or. we avoid using the low-memory global by performing a tail
patch on a Toolbox call such as GetOSEvent () , to capture both the event and
the modifier keys. This might buy us trouble immediately if our tail patch inter
feres with Apple's patch software. When you're dealing with the Mac OS at this
level, sometimes there are no easy choices.

If Command-Shift-Twas pressed, it's a request to change the screen depth.
We respond by first discarding the event by zeroing the event code. If we
didn't do this, the keyboard event gets forwarded to the application, which
might respond in undesirable ways. Then, we set the global gRequestFlag
and exit.

Before we could call the 68K version of this function, we had to do some
scary assembly code to position the arguments onto the stack where we
could use them. This isn't the case for the PowerPC version. Even though
PostEvent () is register-based, when MyPostEventPPC () gets called, these
values appear in the function's arguments, as if the routine were stack
based. This simplifies use of the OS trap routines immensely, thanks to the
Mixed Mode Manager. As a final note, when MyPostEvent68k () exits, it has
to traverse more assembly code to clean up the stack, restore register A4,
and jump to the original Post Event (). The PowerPC version calls the
CallPostEvent () macro and exits.

~ Power Macintosh Programming Starter Kit
~··

But I digress. Onward to the screen depth control software:

/* Get the current screen depth. Also get the GDevice of main screen and its
device number (to use the driver) */

long Fetch_Depth(void)
{

long screenDepth; /* Current bit depth of our screen */

GDHandle thisGDevice;

/* Get start of GDevice list */
thisGDevice = GetMainDevice()i
gGlobalsPtr->gOurGDevice = thisGDevice;

/* Get GDevice of main screen */

screenDepth = (**thisGDevice).gdMode; /*Get pixel's size*/
gGlobalsPtr->gDevRefNum = (**thisGDevice).gdRefNum; /*Driver#*/
return screenDepth;

} /* end Fetch_Depth() */

Fetch_Depth () 's job is to find the Mac's main active screen. It uses a call to
the routine GetMainDevice (),which fetches the GDevice for the main
screen. A GDevice is a data structure used to maintain a screen. It stores
such information as the screen's size, the device driver controlling the
display hardware, its current color palette, and what pixel depth the screen
is at. Next, we obtain the driver reference number and current screen mode
from this GDevice, and place this data in the globals gdRefNum and gdMode .

The mode value is the ID number of a special resource used to handle the
screen.

void Change_Depth(long newDepth)
{

GrafPtr oldPort;
Rect ourGDRect;
RgnHandle thisScreenBoundary;
GrafPtr theBigPicture;
WindowPtr theFrontWindow;

HideCursor()i /*Hide pointer since its depth will change*/
InitGDevice(gGlobalsPtr->gDevRefNum, newDepth, gGlobalsPtr->gOurGDevice);

/* At last we change the screen depth! */
theFrontWindow = FrontWindow()i
ActivatePalette(theFrontWindow);
AllocCursor()i
ShowCursor()i

/* Use active window's color palette */
/* Draw cursor at new screen depth */
/* Put it back on-screen */

.. ~~f.~~.~ ... ~ ... ~~~.!~.~!1,;,~~.~~.0
/* The desktop's still a mess: redraw it */

thisScreenBoundary = NewRgn(); /*Get a region to hold this screen */
if (IMemError()) /* Trouble? * /

{ /*No */
ourGDRect = (**gGlobalsPtr->gOurGDevice).gdRect;
RectRgn(thisScreenBoundary, &ourGDRect); /*Get gDevice boundary*/
GetPort(&oldPort); /*Save current port*/
GetWMgrPort(&theBigPicture); /*Get Desktop's port */
SetPort(theBigPicture);
DrawMenuBar();

/* Make it the current port */

PaintOne(NIL, thisScreenBoundary); /* Paint the background */
/* Now the other windows */

PaintBehind(*(WindowPeek *) Windowlist, thisScreenBoundary);
SetPort(oldPort);
DisposeRgn(thisScreenBoundary);
} /* end if IMemError() */

else
SysBeep(30); /* Couldn't make the region, complain */

} /* end Change_Depth() */

Last but not least, here's the function that does the actual screen change.
The second line of code, where InitGDevice () is called, does the actual
depth change. We pass this routine the device reference number so that it
can communicate with the driver controlling the screen's display hard
ware, the new screen mode value, and the GDevice that manages the
screen. Fetch_Depth () conveniently obtained the display's driver reference
number and its associated GDevice that we now use in the Ini tGDevice ()
call. The rest of the code in this function basically cleans up the screen after
the depth change.

Let's talk about those screen modes a bit more. The screen mode number
derives from the ID numbers of special resources (called sResources,
because they're Slot Manager resources) in a display board's firmware, or
in firmware that manages the Mac's built-in video circuits. Each different
pixel depth that the display supports has its own sResource ID number.
These sResources contain information that describes the screen's charac
teristics to both the operating system and the device driver for a particular
screen depth (say, 8 bits per pixel).

~ Power Macintosh Programming Starter Kit
~··'

What's key here is that these sResources are handled a lot like actual
resources, where the first available ID number begins at 128. The
Macintosh AP! dictates that the first screen mode is always black-and
white, and thus its mode sResource value must always be 128. If we call
Ini tGDevice () with a mode value of 128, the screen turns black-and-white.
How do we handle other screen depths? We punt on that issue, because
there's no guarantee as to what pixel depth the next sResource (ID= 129)
supports. A display board might support 1-, 2-, 4-, and 8-bit color, and so its
sResource IDs would be 128, 129, 130, and 131, respectively. Another board
might support 1-, 8-, 16-, and 32-bit screen modes, and its sResources would
also be 128, 129, 130, 131. What FlipDepth does is grab the current screen
mode (and thus its sResource ID number) when the Extension loads and
saves it in the globals block. We simply pass this value-whatever screen
depth it represents-to In i tGDev ice () whenever the user wants to leave
black-and-white mode. While this all sounds complicated, the code shows
that it's fairly simple. The big payoff is that this mechanism is hardware
independent: this identical code works on Mac !Is, PowerBooks, Quadras,
and Power Macs.

Important
Why don't I use the high-level routines HasDepth() and SetDepth(), which
obtains a screen mode and sets a screen's mode, respectively? I wrote this code
long before these routines appeared on the scene. Also, the initial release of
these routines was slightly buggy. However, to make the code more bulletproof, I
would probably call HasDepth() to double-check that a black-and-white screen
exists on the system in the initialization section of FlipDepth. However. as a fast
hack for a screen utility. this code has served me well for many years.

The rest of this function handles repainting the screen after the depth
changes. We start by hiding the cursor, and do the depth change. Next, we
fix up the color palette so that it uses the color palette of the foreground
application (which owns the front window) with a call to
ActivatePalette ().Then we fix the cursor's pixel depth.

" ... ~~~ P.'.':~ .~ ... ~ ... ~'.'!~?. ~; .~1.;, ~~~:!'.~~. 0
Redrawing the screen itself requires that we obtain a region that we'll use
to map the desktop onto so that we can redraw the background pattern.
We use NewRegion ()to make this region structure. We plug into this region
the boundaries defined by the screen's GDevice, using RectRgn (). The
current drawing port is saved, and we use GetWMgrPort () to fetch the port
that handles the entire desktop. We make this the current drawing port
and call DrawMenuBar () to reconstruct the menus. PaintOne () is a Window
Manager routine that, when called with a value of NIL for the window
argument, knows that the "window" is the desktop and paints it with the
background pattern. Paint Behind ()then redraws all the windows in the
region. At this point, the Mac's screen is rebuilt, so we clean up by restoring
the port and releasing the memory used to make the region.

Building a Fat Trap
At last, we're ready to use this code to build our fat trap. Let's start by
saving the code into a file called "FlipDepth.c." Create a new project called
"FlipDepth.n.PPC," and add "FlipDepth.c" to it, followed by "InterfaceLib"
from the MacOS folder. Before we compile the code, we have to change the
project's preferences so that we can generate a shared library. We make a
shared library because the result must be stand-alone code. If we don't, the
linker will add some run-time code that prepares the code fragment for
execution as an application when it loads.

Select Preferences from Metrowerks Code Warrior's Edit menu, and go to
the Linker panel. In the Entry Points section of the panel, clear all three text
boxes of the Initialization, Main, and Termination default entry point
names. Next, in the PEF panel, go to the Export Symbols pop-up menu item
and select All Globals. Next, choose Context for both the Shared Code and
Shared Data pop-up menu items. Now, go the Project panel. Click on the
Project Type pop-up menu and choose Shared Library. The window's
contents will change, displaying items that modify the shared library's
characteristics. Type in the name INIT #1 • lib for the library's name and
leave the file's type and creator alone, other than to confirm that the file
type is shlb. Save all of these settings by clicking on the OK button. Click on
the Make button in the Toolbar, or select Make from the Project menu to
compile the code and create the library. Don't select Build Library from the

~ Power Macintosh Programming Starter Kit
~··

Project menu: It's for generating libraries that are to be linked to other
Metrowerks projects. If all has gone well, you should have a file "INIT
#1.lib" in your Code Warrior folder. If a file doesn't appear, recheck the
settings in the PEF panel.

Unfortunately, there's a problem here. To progress further, we need to
move the PowerPC code out of the file's data fork and into the resource
fork, so it looks like a resource. Mathemcesthetic's Inc.'s Resourcer is a
resource editor similar to ResEdit that lets you cut and paste between file
forks. However, with Code Warrior in hand, we can manage this ourselves.
Start a new project and type:

#include <Types.h>
#include <QuickDraw.h>
#include <Windows.h>
#include <Fonts.h>
#include <Memory.h>
#include <ToolUtils.h>

#include <StandardFile.h>
#include <Errors.h>
#include <Resources.h>

/* Various constants */
#define NIL 0L
#define FALSE false
#define TRUE true
#define DEFAULT_VOL 0
#define ONE_FILE_TYPE 1

#define POWER_PC_FRAG 'PPC '
#define FRAG_ID 300

void Move_Fork(short input);
void main(void);

void Move_Fork(short input)

OSErr
long
Handle

flnputErr;
codeFragSize;
fragBuff;

/* Resource type */
/* Resource ID */

flnputErr = GetEOF(input, &codeFragSize); /*Get file length*/
if ((fragBuff = NewHandle(codeFragSize)) !=NIL) /* Enough memory? */

.. ~~~P.:~'. .~ ... ~ ... ~1;!~~. ~; .~~'.;, ~~~:!'.~'.. 0
/* Read in fragment */

if (l(finputErr = FSRead(input, &codeFragSize, *fragBuff)))
/* Treat as a resource */

AddResource(fragBuff, POWER_PC_FRAG, FRAG_ID, NIL);
if (!ResError()) /*No trouble?*/

{

WriteResource(fragBuff);
if (ResError())

SysBeep(30);
} /* end if !ResError */

} /* !finputErr */
} /* end if I= NIL */

ReleaseResource(fragBuff);
} /* end Move_Fork() */

/* Write frag to resource fork */

/* Free the memory */

The function Move_Fork () performs the operations necessary to copy the
PowerPC code from the data fork to the resource fork. Let's see how this is
done. We first use the GetEOF () routine to obtain the size of the file's data
fork. This size value gets passed to NewHandle () to create a buffer large
enough to hold the code fragment. The code then gets read into this buffer
with FSRead ().With the code fragment in memory, we use AddResource () to
create a resource entry for the data in the resource fork of a file we've
opened. We use Wri teResource () to write the PowerPC code into the file's
resource fork. Finally, we call ReleaseResource() to discard the memory
used by f ragBuff, since this buffer is now considered a resource by the
Mac OS. To change the resource's type and ID number, you can edit the
definitions for POWER_PC_FRAG, and FRAG_ID.

Now let's add main () where we open and close the files:

void main(void)
{

unsigned char
OSType
OSType
OSErr
short
StandardFileReply
short
SFTypeList
CursHandle

fileName[14] = {"\pKlepto.it.rsrc"};
fileCreator = {'RSED'}; /*Output file's creator*/
fileType = {'rsrc'}; /*Output file's type */

fileError;
inFileRefNum, outFileRefNum;
inputReply, outputReply;
oldVol;
shlbType = {'shlb'};
theCursor;

/* File type for shared library */
/* Current pointer icon */

~ Power Macintosh Programming Starter Kit
~··

/* Lunge after all the memory we can get */

MaxApplZone()i

/* Make sure we've got some master pointers */

MoreMasters()i
MoreMasters()i
MoreMasters()i
MoreMasters()i

/* Initialize managers */

InitGraf(&qd.thePort);
InitFonts () ;
FlushEvents(everyEvent, 0);
InitWindows () ;
InitMenus();
TEI nit() i
InitDialogs(NIL);

/* Open the input file */

StandardGetFile(NIL, ONE_FILE_TYPE, shlbType, &inputReply);
if (inputReply.sfGood)

{

GetVol (NIL, &oldVol);
if ((fileError = FSpOpenDF

{

SysBeep(30);
return;

} /* end if error */

/* Open the output file */

/* Save current volume */

(&inputReply.sfFile, fsCurPerm,
&inFileRefNum)) I= noErr)

StandardPutFile ("\pSave code fragment in:", f ileName, &outputReply);
if (outputReply.sfGood)

{

SetVol(NIL, outputReply.sfFile.vRefNum);
fileError = FSpCreate(&outputReply.sfFile, fileCreator,

fileType, smSystemScript);
switch(fileError)

case noErr:
break;
case dupFNErr: /* File already exists */

.. ~~~P.1.~;.~ ... ~ ... ~.~~~~.!~~!.:r.~~~~;.e
if ((fileError = FSpDelete(&outputReply.sfFile)) == noErr)

{

if ((fileError FSpCreate(&outputReply.sfFile,
fileCreator,
fileType,
smSystemScript)) I= noErr)

{

SysBeep(30);
FSClose(inFileRefNum);
SetVol(NIL, oldVol);
return;
} /* end if I= noErr */

} /* end == noErr */
else

{

SysBeep(30);
FSClose (inFileRefNum);
SetVol(NIL, oldVol)j
return;
} /* end else */

break;
default:

/* end case dupFNErr */

SysBeep(30);
FSClose(inFileRefNum);
SetVol(NIL, oldVol);
return;

/* Close the input file */
/* Restore original volume */

} /* end switch */

/* Open file's data fork. We do this only to get a file ref number */
if (l(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum)))

{

/* MUST create resource map in resource fork or no resource writing occurs */
FSpCreateResFile (&outputReply.sfFile, fileCreator,

fileType, smSystemScript);
if (IResError())

{ /* Open resource fork */
FSpOpenResFile (&outputReply.sfFile, fsCurPerm);

if (IResError())
{

theCursor = GetCursor(watchCursor);
SetCursor(&**theCursor);
Move_Fork(inFileRefNum);

/* Change cursor */

0 Power Macintosh Programming Starter Kit
~··

FSClose(outFileRefNum);
SetCursor(&qd.arrow);
} /* end if !ResError */

/* end if !ResError */

FlushVol (NIL, outputReply.sfFile.vRefNum);
} /* end if !FSpOpenDF */

/* end if outputReply.sfGood */

FSClose (inFileRefNum);

/* Restore cursor */

SetVol(NIL, oldVol); /* Restore current volume */
} /* end if inputReply.sfGood */

/* end main() */

You'll notice there's no event loop in this program. That's OK, because the
Standard File Dialog boxes have enough built-in smarts to manage most of
the events required to make a file selection, and Move_Fork() manages all of
the file 1/0. That's all we need for this quick and dirty little program. Once
you get past the initialization code, you can see most of the code came from
the Ask_File () function in SonOMunger. I did remove all the error report
ing calls, replacing them with SysBeep(30) to simplify things.

The code for picking and opening the input file remains the same as
SonOMunger's, except that StandardGetFile () filters out all files but types
of 'shlb'. The code for opening the output file is the same, up to a point. We
first open the output file using FSpOpenDF () , only so that we can get a file
reference number in order to close the file when we're done. Next, we call
FSpCreateResFile () to create a resource reference map in the file's re
source fork If we fail to perform this step, no resource writing can be done
to the file. The final step before calling Move_Fork () is to open the resource
fork using FSpOpenResFile (). Note that the resource file routines report
errors back through the ResError () function. These routines also don't use
a file reference number. That's because once a link is established between
the file and the Resource Manager, it persists through all subsequent
resource routines until the file is closed.

Since this code steals Power PC code from a file's data fork, name this
program's file "Klepto.c." Create a new project called "Klepto.n," and set its
preferences as an application, using the factory defaults, other than to

.. ~~~[!;~;.~ ... ~ ... ~.~!~~.~~ .~~.:.~~;;~.~;.e
name the output file "Klepto." Compile and make the application. That's
right: you didn't build any resources with Rez in order to make "Klepto."
Since "Klepto" doesn't use any special resources, and the resources for
Standard File Dialog boxes come from the System file, the program code
runs as it is.

Double-click on Klepto to launch it, and a Standard File Dialog box appears.
The only file that should appear in the dialog is our shared library file, "Init
#.lib." Click on the Open button or press Return to choose the file. Immedi
ately, a second Standard File Dialog box appears. Type in the name
FlipDepth .1t. rsrc, and press Return. Klepto should quit shortly, leaving you
a resource file with the given name. If you double-click on this file, ResEdit
launches, and you can examine the PPC resource to see the PowerPC code
within it.

We named the output file "FlipDepth.n.rsrc" to pull the same trick that we
did with SwitchBank project files to create a fat binary application. When
we make the 68K version of our Extension, Code Warrior will copy this file's
resources-and thus the PowerPC code in it-to the Extension file.

Let's finish the job. Launch the 68K version of Metrowerks Code Warrior,
and create a project called "FlipDepth.n." Add the files "FlipDepth.c" and
"MacOS.lib" to the project. Select Preferences from the Edit menu, and
choose the Processor panel. Click on the Code Model pop-up menu and
select Small. In the Linker panel, go to the Linker Into section and check the
item Link Single Segment. Finally, pick the Project panel. For the Project
Type, click on the pop-up menu and choose Code Resource. The panel's
contents will change. In the Code Resource section, type FlipDepth for the
file's name. For the ResType item, type in INIT, and for the ResID item type
in 300. This sets up the resource's type and ID number. The last thing to do
is set the output file's type and creator. Go to the Creator item and type
????,and for the Type item enter INIT. Finally, go to the Resource flags and
click on the pop-up menu. Check the System Heap and Locked items.
These settings ensure that the Resource Manager loads the 68K code
resource into the system heap, and locks it in place. Click on the OK button
to save the new settings.

0,. Power Macintosh Programming Starter Kit
~··

Now make the project. "FlipDepth.c" should compile, and a "FlipDepth" file
should appear, sporting the generic puzzle piece Extension icon. If the
linker should report problems, double-check the Linker panel and Project
panel settings. Drag "FlipDepth" to the System Folder, and the Finder
should request to place the file in the Extensions folder. Make sure that the
Mac is currently set in a mode other than black-and-white, and reboot.
When the desktop appears, try typing Command-Shift-T. The Mac's screen
should toggle to the black-and-white mode and back to the color mode.

Summary
In this chapter, we've seen how to apply the knowledge we've gained
about the PowerPC run-time architecture to solve specific programming
problems, especially to guarantee an orderly switch from one instruction
set to another when calling your custom function. As we've walked
through the code of these two programs, you can see that doing this isn't
difficult. Furthermore, it should be obvious that access to the global data of
any program and OS Toolbox routines is far simpler than it is with the 68K
architecture. This goes a long way toward helping developers write more
Power Macintosh software.

Now that we have develped our programs, let's get to the "other" stuff:
debugging.

The Art of
Debugging

The material in this chapter will be of no interest to those
programmers who write perfect programs, every time.

Seriously though, it is inevitable that program code has bugs.
Programming is where you give the computer precise direc
tions in what amounts to a second language for you. Despite
C's elegant terseness of syntax (or because of it), there's the
inevitable conversational misstep that causes the Mac to freeze
up like a social misfit at a debutante's ball. In this chapter we'll
look at the high-level debugging tools Code Warrior provides in
the form of MW Debug, a low-level debugger called
The Debugger, and finish with some common
sense debugging techniques. Bear in mind that
the Power PC versions of these tools are changing
rapidly, and some features and capabilities may
differ from what
you see here.

0,. Power Macintosh Programming Starter Kit
~··

Important
This text was written using the full version of Metrowerks CodeWarrior. You'll
have to use slightly different steps when using the limited version on the CD; the
limited version can only work with the sample files provided on the CD so the
commands Add File ... and New Project are not available.

So, if you are following along using the limited version of CodeWarrior that's on
the CD, when the text tells you to use the New Project or the Add File ... com
mand, you should instead open the related project file and keep it open
throughout the exercise. All the associated files will already be in the project and
so you won't need the Add File ... command. Then. you can follow the same
procedures as if you were using the full version of CodeWarrior.

About Debuggers
You've just completed writing that next killer application that users will
flock to, with their wallets open. The code passes muster with Metrowerks
Code Warrior's C compiler, and after a few minor revisions the linker ap
proves too. But when you launch the application, either from within
Code Warrior or by double-clicking on the resulting file, you get the infa
mous "bomb box," complete with a sizzling bomb icon. This dialog box is
produced by the System Error Handler, which the operating system calls
when it detects a fatal error or exception. This assumes that the cause of
the error hasn't seriously trashed the operating system in the process. You
might be spared the pyrotechnics, and the Mac instead simply seizes up
with no warning ~t all. Despite this, consider yourself lucky that such a bug
manifests itself so rapidly. It's those slowly ticking logic bombs lurking
within the program code that go off minutes or hours later which can drive
seasoned programmers to drink-and I don't mean Jolt cola, either.

No matter what type of program bug it is, or how long it takes the bug to
bite, programmers rely on their wits, intuition, and debuggers to rid their
code of these pests. A debugger is a highly-specialized program designed
to help you track down program bugs, hence the name. The debugger
program installs its own exception handlers or uses advanced system

.. ~ ~~~P.:~'..: ... ~ ... :::~.:':':.?!.?.~~~~?~~~ .. e
routines so that when an exception occurs, it can seize control and halt the
program. You then use the debugger to investigate the exception's cause
by examining the program's variables and data structures. If necessary,
you can have the debugger take charge at designated points in the pro
gram, and single-step through the program's instructions, tracing the path
of execution up to the crash. These debugger features enable you to recon
struct the crash scene. This usually gives you a good idea of where the bug
is and how to fix it.

Background Info
It's nomenclature time again. Debuggers generally fall into two categories:
hardware and software. A hardware debugger uses dedicated hardware to
perform the debugging process. and a software debugger is a special computer
program.

A typical hardware debugger is an In Circuit Emulator, or ICE for short. As its
name implies, an ICE is a dedicated set of hardware that connects in-line with
the test computer's processor, or replaces the processor entirely with custom
circuitry. Special software lets you halt a program's execution based on hard
ware accesses, such as read/write operations to a memory location or an 1/0
port. Such fine control is possible because the ICE hardware eavesdrops on the
bus signals and detects when a bus access touches the memory locations you
request. An ICE is not usually necessary for development at the application level.
It's used by the hardware and firmware designers as they build the prototype
computer system and its ROM code. Since we're debugging programs here, not
building a computer, this is the last mention of hardware debuggers.

Software debuggers ar~ used to debug applications or software components
such as plug-in modules or stand-alone code resources. These software
debuggers may be further subdivided into two categories: low-level and high
level. A low-level debugger operates by using as few of the operating system
resources as it can. Because of this, these debuggers are very robust. They
continue to function even though a buggy application may have done heavy
damage to the operating system. On the other hand, such debuggers typically
have a minimalist interface and display. You can examine the program, but
usually only as machine code instructions, and you need to know memory
addresses of a program variable to view its contents.

0 Power Macintosh Programming Starter Kit
••

High-level debuggers rely heavily on the operating system to provide services

such as windows and menus. In turn, they provide an easier to use interface and

a sophisticated display. They can show a test program's code as either source

or assembly language statements. Variables can be monitored simply by knowing

the variable's name, not its memory location. Their values can be displayed in a

variety of formats. On the other hand, since these capabilities depend on the

operating system's health, substantial damage to it by a program error causes

high-level debuggers to go down in flames along with the buggy program.

Another limitation is that you can't debug certain types of code: Extensions.

MDEF (menu definition handlers), completion functions, or interrupt tasks. That's

because some of these code types function on the fringes of the operating

system (such as an Extension or interrupt task), and others pose reentrancy

problems (you can't debug a new menu handler when the debugger itself uses

menus).

Despite these limitations, a high-level debugger is a good way to confirm a

program works as it should. Also, it's very good at quickly locating the vicinity of

the problem code, which helps reduce the time it takes to zero in and fix the

problem. Also, a low-level debugger requires that you learn a lot of details about

the processor. the operating system, and the compiler's output before you can

make sense of what's going on. In short, a low-level debugger has a steep

learning curve, while high-level debuggers only require that you know the

programming language.

Both types of debuggers let you step through the statements one line at a time,

or set control points called breakpoints. A breakpoint marks the program

statement where the program halts execution (or breaks), and the debugger

program resumes control. Breakpoints thus allow you to run a program up to a

suspect location. You can examine critical program variables and begin single

stepping from the breakpoint location to gather additional information.

So far. we've been talking about debuggers that run on the one target machine.

There is another category of debugger here: a two-machine debugger. A two

machine debugger uses a small code "nub" on the target machine. while the

debugger itself runs on a different machine (called the host). The host machine

communicates to the nub on the target via a wire. typically a serial cable. The

big advantage to a two-machine debugger is that the host can support a high

level front end, while the low-level nub can usually survive the target machine's

.. ~~~P,;~~.: ... ~ ... :.~~.~~.?!.~~~.~~?~~? .. e
operating system being destroyed. A two-machine debugger can also provide
source-level debugging for virtually any code in the target system. The big
disadvantage is that this type of debugger is that it requires two machines.
Apple's initial PowerPC debugger, Macintosh Debugger for PowerPC, is a two
machine debugger.

Metrowerks Code Warrior's debugging application, called MW Debug, is a
high-level debugger. You can single-step through the source code, and set
breakpoints. MW Debug also displays the contents of variables, and lets
you change their value. This way, as you step through the program, you
observe what the code is actually doing and what values it's working with.
By changing the values of function results, you can force the program
through an error handler to check the application's robustness. MW Debug
also allows you to examine a program as assembly language instructions.

Currently MW Debug can debug applications or shared libraries. If, how
ever, you're writing stand-alone code resources or accelerated code re
sources, then you'll have to use a low-level debugger.

Using the CodeWarrior Debugger
In order for MW Debug to display variables and trace through the source
code, it requires specific information about your program. You supply this
vital data by preparing the program for debugging in Metrowerks
Code Warrior. This preparation involves only a few changes to the project's
preferences settings, and simply recompiling the program to make a new
version. Along with the new executable application file, Code Warrior also
generates a symbols file. This symbols file contains the names of the
variables and functions used in your program, plus their location in both
the source code file and in the application file. MW Debug uses this symbol
file information to manage the debugging session.

The symbols file Code Warrior makes has the same name as the appli
cation's name, plus an extension of .SYM for the 68K code, and .xSYM for
the PowerPC code. For example, let's assume we compile the source file in
project "Klepto.n" for debugging, and name the application Klepto. The
resulting symbols file is "Klepto.SYM" for the 68K version of Code Warrior,
and "Klepto.xSYM" for the PowerPC version of Metrowerks Code Warrior.

~ Power Macintosh Programming Starter Kit
~········· · ··

Let's take the "SwitchBank" program and run through parts of it with "NJW
Debug. First, launch Code Warrior by double-clicking on the
"SwitchBank.n.PPC" project file. Go to the Project window, and in
"SwitchBank.c" file slot, click on the area beneath the bug icon. A small dot
appears (see figure 7.1). This dot is the Generate SYM Info marker. When
ever the linker generates an output file, it creates the required symbolic
debug information for the marked file . You can choose one or more files for
debugging.

~ SwitchBank. 'JI' .PPC
File Code Data Ii!!.
lnt•rfac•Ub

!
o: Oi (!] tfr MWCRuntim• .Lib 326Bl 487 ! (!]

ID.
II\

to
3 file(s) 6K OK •

Figure 7.1 Marking a file for debug output

Now that we've marked the source file, we need the Code Warrior linker to
actually generate the debug information. Select Preferences from the Edit
menu, and select the Linker Panel. Under the Link Options section, click on
the Generate SYM File item to check it. Also check the Use Full Path Names
item (see figure 7.2). The Full Path Names has the linker generate a com-
plete path specification for a file , such as Tachyon:CodeWarrior:CodeExamples f:
SwitchBank f:SwitchBank.c. While checking this item isn't necessary, it
helps MW Debug locate the files it needs, especially if they're located
somewhere other than the Code Warrior folder or project folder. Users
working with the 68K version of Metrowerks Code Warrior also have to
check the Generate A6 Stack Frames item.

Remaking the application is the last step in the preparation sequence.
Choose Make from the Project menu or type Command-M. Code Warrior
first recompiles the source, and then the linker produces the application file
and the symbols file . Quit CodeWarrior.

.. s~~P.;~~.; ... ~ .. .!.~~ .~~.~!.?.~~.~~?~:? .. e
Apply to open project.

I
ID

PEF

D
Project

Link Options:--------~
181 Generate SYM File

181 Use Full Path Names

D Generate Link Map Jrt

D Suppress Warning Messages

181 Faster Linking (uses more memory)

Entry Points:--------~
Initialization: I-initialize

=====
Main: I

Termination: I-terminate

(Factory Settings) [Reuert Panel J (Cancel) ((OK]J

Figure 7.2 Setting the linker to produce symbols for the debugger

Important
Before you start the CodeWarrior source debugger, check that you have in
stalled the auxiliary files it requires to operate. For a Power Mac. the file
"PPCTraceEnabler" should be in the Extensions folder, and the application file
"DebugServices for PowerPC" should be in the Startup Items folder. For 68K
Macs. the file "DebuggerlNIT" should be in the Extensions folder. If these files
aren't present, look for them in the Debugger f folder on the CodeWarrior CD,
inside the folder appropriate for your compiler. For example, if you own the
PowerPC version of Metrowerks CodeWarrior. you would go to the CodeWarrior:
MWC/C++ PPC:Debugger f: Put these in PPC System Folder! Copy the files to
the pertinent System Folders and reboot the Mac.

To launch Code Warrior's high-level debugger, double-click on the
MWDebug application, or drag the project's .xSYM file icon onto the MW
Debug icon. MW Debug launches, and after a brief interval, two windows
appear (see figure 7.3) The frontmost window, titled SwitchBank, is the
Program Window. It displays the source code file that has the active func
tion (in this case, main ()). The other window, titled SwitchBank.xSYM, is
the File window. It's used to select other source files in the project, so that

e .. ~.~".':~~ .~~;:?~~;~. ;,~~~::~~~?~. ~.';.~;:.~;~
you can examine them and set up breakpoints. The floating Toolbar pro
vides ready access to often-used items in the Control menu. If you're more
comfortable using the keyboard to step through a debugger, you can get
rid of the Toolbar by clicking on its Close box.

IS File Edit Control Data Window

Clo/Jal Varia/Jles
* Lin ker-Generated *
MWCRuntime.Lib
S'w'itchBenk .c

f/fJ local l"Briables

re turn FALSE;
} /* end if *I

In i tCursor();
re turn TRUE ;

I* end In i t.J1ac 0 *I

vo id mai n (voi d)
{

i f (ln i lJ1a c: <))
Mai n....Event...Loop(>;

e l se
SysBeep(30);

I* end moin * /

Figure 7.3 MW Debug displaying the Program and File windows

Let's take a closer look at the Program Window (see figure 7.4). It's com
posed of three panes, or sections. The bottom section is the Source Pane. It
shows the source code of the active function. It's where you step through
your program, one line at a time. Tick marks on the pane's left indicate
executable statements. The small arrow adjacent these marks points to the
currently executing statement.

.. S~~f.~~~L .. ~ ... J.~~. ~~. ?!.?.~~.~~?~:? .. $
Indicates executable statement

Call Chain Pone

c File Edit Control Data Window

_Iii SwitchBank

OxCA554
Ox4B25C
__start
main
Mai n_EvenLLoop
oo_command
Toggle_File...Shari ng

0 extentFDir lD
I> fileShari ngExtl nfo
t> fileShari ngMaskl nfo
t> nil Point
I> searchPB
t> searchSpec 1
I> searchSpec2

Locals Pone

[30 10
!oxoOSOE2A8
[Ox0050E298
joxOOSOE1 BC
joxOOSOE2B8
joxOOSOE22C
j OxOOSOE 1 CO ·gs·y·s,rReniu·m ································ ,.~T················ ·· ········

t> gthisFileSpec j Ox004AE708

-! searchPB .csParam . oVRefNum - gsysVRefNum;
searchPB . csParam. oMatchPtr = &glh i sF i I eSpec ;
seorchPB . csParam . oReqMa tchCoun t = 1 ;

/* Search on startup vo lume */
/* Search resu I t goes here *I
I* Looking for 1 file */

searchPB. csParam. oSearchB its = fsSBF I Fndr Info;
searchPB . csPe1ram . oSearch I n f o 1 = &searchSpec 1 ;
searchPB. csPoram . oSearch I nfo2 = &searchSpec2;
searchPB. csParam . oSearchT i me = O;

I* Search based on f i I e cr1arac ter is ti cs * /

_: searchPB . csParam . oCatPosi t ion . initial i ze = O;
searchPB . csParam . oOp lBu ff er = N I L ;
searchPB . csParam . oOplBufSize = O;

/*Don ' t lime out*/
/* Start al the begining */
I* No search cache required *I

if <PBCatSearchSync «CSParamPtr) &searchPB) == noErr)
re turn TRUE ;

else

~eporLErr.J1essage<CANLLOCATEJ I LE> ; ~
return FALSE;
) I* end else */

I* end Find-Fi le...SharingO */

vo id Toggle....Fi le-5haring(voi d)

< Line: 41 o Source

Pop-up menu determines how program code is displayed

Current line number in source file

Function pop-up menu for accessing other functions

Currently executing statement

Figure 7.4 Details of the Program Window

Source Pane

At the Source Pane's bottom left is an indicator and controls. The small
braces or Function icon operates like its counterpart in the Code Warrior
editor window. When you click on it, a pop-up menu appears that displays
all of the functions in this file. The checkmark in this menu flags the active
function. If you select another function, the Source Pane displays the
source code of that function, starting at its entry point. Next to the Function
icon is an indicator that shows, for this file, the source line number of the
currently executing statement. Finally, there's a pop-up menu that lets you
change the Source Pane's display from C source code to the corresponding

assembly language statements generated by the compiler (see figure 7.5).

You can single-step through 68K or PowerPC assembly language code and
set breakpoints if you choose to do so.

s File Edit Control Data Window

§IO SwitchBank

OxCA554
Ox4B25C
__start
main
Mai n_Eve nLLoop
Do....Command
Toggle_file--5hari ng

- · 004AA09C: stw
- 004AAOAO : addi -· 004AAOA4 : stw
- 004AAOA8: Ii
- . 004AAOAC : stw
- 004AAOBO: Ii
- . 004AAOB4 : stw
- 004AAOB8: Ii
- . 004AAOBC: stw

004AAOCO : Ii
004AAOC4: stw

•!• 004AAOC8: addi
- · 004AAOCC: bl
- 004AAOOO : lwz
- . 004AA004 : ex tsh .
- 004AA008 : bne

004AAODC : Ii
- 004AAOEO : be
- · 004AAOE4: Ii

004AAOE8: bl
-i 004AAOEC : Ii

004AAOFO: lwz

-0 extentFDirlD !30 10
I> fileShari ngExtl nfo i Ox0050E2A8
I> fileShari ngMaskl nfo ! Ox0050E298
I> nil Point i ox0050E1 BC
I> searchPB 1Dx0050E2B8
I> searchSpec 1 i Ox0050E22C
I> sea r chSpec2 ' Ox0050E 1 CO iis!isiiRefi-iuili ······································ ···································· : :f" ·· ·· · ···
I> gthisfil eSpec !ox004A E708

r5, 352<SP)
rf>, SP, 64
r6 ,355 <SP)
r7 , 0
r7, 360 (SP)
r8,0
r8,364<SP)
r9,0
r 9 , 380<SP)
r 10,0
r 10,384<SP>
r3, SP, 312
*+5815 $004AB784
ATOC, 20<SP)
r3,r3
*+12 $004AAOE4
r 3, 1
ALWAYS, crO_l_ T, *+ 15 $004AAOFO
r3, 7
*-1272 $004A9BFO
r 3, 0
rO, 455<SP)

1Q1 Assembler

Figure 7.5 Viewing the program's code as PowerPC assembly language

i'li11

The pane in the Program Window's upper left is termed the Call Chain
Pane. It displays the list of functions called prior to the function shown in
the Source Pane. In figure 7.5, the highlighted name, Find_ File_Sharing, is
the active function. From the list, we can see the main () called
Main_Event_Loop (), Do_Command (),and Toggle_File_Sharing () before
calling Find_File_Sharing () . The Source Pane's output is tied to the high
lighted choice in the Call Chain Pane. Clicking on another function name in
the Call Chain Pane highlights that name and immediately takes you to that
function in the Source Pane. The Source Pane displays this function's
source code at the point where it called the next function in the chain.

.. ~~~P.;~~.; ... ~ .. .!.~~.~~.~!.?.~~.~~~~~? .. 0
The pane in the upper right portion of the Program Window is the Locals
Pane. It lists the function's local variables, plus any static or global vari
ables referenced by the function. A dashed line separates the function's
local variables (at the top of the pane) from the global variables (at the
pane's bottom). When the flow of execution moves to a different function,
the Locals Pane's contents are updated accordingly. Like the Source Pane,
the Locals Pane always displays the variables of the function highlighted in
the Call Chain Pane.

The small triangles to the variable name's left indicate that it is a structure.
When you click on the triangle, the variable expands to show all of the
structure's elements. Clicking on the triangle again hides the structure's
elements. When you hold down the Option key when expanding a handle
to a structure, the multiple dereferences are processed so that the display
shows the structure's data elements. If the size of the Locals Pane is too
confining, especially for large data structures, just double-click on the
variable name. A new, independent window appears, displaying the entire
structure. You can create as many independent windows as you want (see
figure 7.6).

The current value of each variable appears to its right. If the displayed
format of the variable's data is unsuitable, you can change it. First, click on
the value to highlight it. Then, go to MW Debug's Data menu and choose
another data type, say, character. The value is shown in the new format. If
you intend to single-step through PowerPC assembly language instruc
tions, the Locals Pane still displays the variable's contents as you continue
through the program.

You can edit the contents of certain variables by double-clicking on the
value. The data becomes framed, which indicates that you can enter a new
value. The types of data you can enter are decimal, hexadecimal, floating
point, characters, and strings. Character data must be enclosed in quotes,
and Pascal strings must include the "\p" escape sequence. The values of
pointers to data structures can't be edited.

~ Power Macintosh Programming Starter Kit
~··

a File Edit Control Data Window

fileSharingEHt Info
v fil eShari ngExtlnfo ' Ox004FBB74

fdType ! 'I NIT'

fdCreator lll!lttrtm•••I I> fileShari ngExt l nfo v cs Pa ram
fdfl ags ' 0 I> fileSharingMaskln I> qLink

I> fdLocation ! Ox004FBB7 E I> nilPoint qType
fdFldr !o I> sea rchPB ioTrap

I> searchSpec 1 I> ioCmdAddr
lr~Trnl""I:1imn'm'ml"'------,-"t'ln' I> searchSpec2 I> ioCompletion

·iisiJs\i'R'et''N'uin i0Resu1t
I> gthisFileSpec I> i oNamePtr

sec:irchPB .csParom. ioReqMatchCount = l j
searchPB.csParam. ioSearchBi ls = fsSBF I Fndrlnfo
searchPB. csParam. i oSearch I nfo1 = &searchSpec 1,
searchPB . csParam. i oSearch I nfo2 = &searchSpec2 ;
searchPB.csParam . i oSearchTime = D;
searchPB.csParom. ioCalPosi lion. ini lial ize = O;
searchPB . csParam. ioOplBuffer = NIL;
searchPB . csParam. ioOptBufSize = O;

if <PBCatSearchSync«CSParamPtr) &searchPB) ==
return TRUE ;

else
{

I>

I>
I>

I>
I>

ioVRefN um
ioMatchPtr
ioReqMatchCount
ioActMatchCount
ioSearchBi ts
ioSearchl nfo 1
ioSearch l nfo2
ioSearchTi me
i oCat Position
ioOptBuffer
ioOptBufSize

:oxoooooooo :s
J536
!ox4083C4D4
l OxOOOOOOOO
io
i OxOOOOOOOO
! - 1
i Ox0049BBB8
! 1
j1
is
l Ox004FBAF8
l Ox004FBA8C
jo
i Ox 004FBBB8
l OxOOOOOOOO
jo

Report....Err .J'lessage<CANT ...LOCATE...F I LE); f;'i§~!fi~~~~~~t~h~is~F~il~e~S~~eEc::ii~~~~~
re turn FALSE; l=
} /* end e l se */

I* end Find...Fi le--5haring () */

_ ' {o id Togg I e...F i le--5har i ng <vo id)

Source ...

v gthisfil... j Ox0049BBB8
vRef ... 1- 1
parlD 13010
name ! "\p f ile Sharing Extension"

Figure 7.6 Displaying data structures in their own windows

The File Window operates basically like the Program Window. However,
while the Program Window is focused on the active function in a file, the
File Window is oriented toward dealing with the program's files as a whole.
The bottom area is the Source Pane, and it displays the contents of the
selected file . The upper left pane is the File Pane, which displays the names
of the files used to produce the application. The upper right pane is the
Globals Pane, and displays the global and static variables that are shared
across all of the files (see figure 7.7). Notice that for array AEi nstalls [],you
get a special window where you can alter the array's size and bind it to an
address, a variable, or a register.

... ~~~?.;~'. L .. ~ .. .:.~:.~~.?!.~:~.~~~;~~ .. 0
s File Edit Control Data Window

~Iii~ HandlersTolnstall$44 ~Jei
v AEi nstalls[4] @> Ox0049BB20

I HandlersT o Ins ta 11$44

Bind to: 0 Address @ Variable 0 Regist•r

Array size : 14
Struct Member:

I ~
Show a 11 members "' I

!»- [0] !Ox0049BB20 {)
I> [1] i Ox0049BB2C

SwitchBank

err

Hor,,jl e r s To I nsta 11 I 44

iO
!3
·axiio49Eis2a·

HandlersTo I nstall$44(0)
w[O] ! Ox0049BB20

theCl ass i 'aevl'
theEvent did·

I> theProc i Ox0049BADC
I> II[211·······! Ox0049BB38 {7
!»- Ox0049BB44 Qil-------...:=============::::i'~·

{ /* lnstal I each handler in application d HandlersTolnstall$44(1 I

_!
err = AElnstal IEventHandler<HandlersTolnstal I [i I V [1 J !Ox0049BB2C

NewAEEventHand I erPro theCl ass ! 'aevt'
if <err>

{
/* I f there was a problem, bai I theEvent lh!IFFl•••I

I> theProc !Ox0049BAE4 AeporLErrJlessage <PROBLEMJ.11 TH..REJiANDLER)
re turn FALSE;
}/*end if */

I* end for */

return TRUE ;
I* end In i t..RE....Even ts 0 *I

HandlersTo I nstall$44[2)
v [2]

theClass
the Event
theProc

! Ox00498838
i'aevt' • I* High-level open application event. */ I> !Ox0049BAEC

-
I ~ascal OSErr Core....AE_QpenJicmdler<AppleEvent *message in)"-==============±~

re turn noErr; r
} /* end Core..RE_()pen..liandl er< > *I HandlersTolnstall$4413]

I* High-l evel
w [3]

theClass
theEvent

I> theProc

i Ox0049BB44
i'aevt ' ne
i Ox0049BAF 4

Figure 7.7 The File Window, with a display of the application's high-level

event dispatch table

Now it's time to control the program. You do this using commands from the
Control menu. The Run, Stop, and Kill commands provide gross program
control. The Run command simply starts the program from main (), or the
location where the program was halted. The Stop command suspends
program execution. If you issue another Run command, the program
resumes execution from this point. The Kill command terminates the
program under test. If you issue a Run command after a Kill command, the
program's execution starts over in main ().

The Step Over, Step Into, and Step Out commands apply fine control over
the test program. The Step Over command executes program code, a line
at a time. You'll use the Step Over command frequently to single-step

0,, Power Macintosh Programming Starter Kit
~··'

through a program, observing the results of Toolbox calls and tracking the
direction of C control statements. If the current line of code is a function or
Toolbox trap, 1/fW Debug calls the function or trap, returns, and advances
to the next source line. In this sense, the debugger appears to "step over"
function calls, even though their code actually executes. The Step Into
command, when.invoked, carries you inside the function called by the
current source line. This allows you to examine what values get passed to
the target function, and examine the operation of that function's code.
Note: You can Step Into the code of libraries or other files that don't supply
a symbols file, but you can only view the trace as assembly language in the
Source Pane. The Step Out command executes the remaining code in the
current function and halts the program once it returns to the calling func
tion.

The VCR-style button icons on the Toolbar correspond to the gross and fine
program control commands on the Control menu. The three icons that
make up the Toolbar's left correspond to the Run, Stop, and Kill commands,
while the trio of icons on the right represent Step Over, Step In, and Step
Out.

To mark or place a breakpoint in a program, use the Function icon to jump
to a suspect function. Next, scroll through the source code to the question
able statement. Place the pointer on the statement's tick mark (it's located
on the left side of the Source Pane) and click on it. A circle appears, replac
ing the tick mark. The circle indicates that a breakpoint is set for this
statement (see figure 7.8). You can set as many breakpoints as you like. To
remove a breakpoint, click on the circle again. To remove all of the
breakpoints at once, choose Clear All Breakpoints from the Control menu.
There isn't a way to obtain the locations of all the breakpoints at once.

"" ... ~~~f,;;: ,; ... ~ ... :.~;. ~~. ~!.~;~.~~?:?? ... 0
a File Edit Control Data Window

rel SwitchBank

Oxl 1 BDC4
Ox4CA2C
__star t

LaunchParamB I ockRec t h i sAppParams;

gthisfi l eSpecPtr = &g t hi sFi leSpec;
th i sAppPBPtr = &th i sAppParams;

/IQ !«:el 1·'9n8b!es

thisAppPar ams . launchBlock lD = ex t endedBlock;
thisAppParams . launchEPBLength :::: ex t e ndedBl ocklen ;
th i sAppParams. I aunchF i I eF I ags = 0 ;
t h i sAppParams . I aunchContro IF I ags = (I aunchNoF i I eF I ags +
t h i sAppParams . I aunchAppSpec :: gth i sF i I eSpecPtr;

thisAppParams . launchAppParameters = NIL ;

I* Use the new format *I

!* Don't care abolJt file flogs *I
I aunchCont i nue + I aunc hDontSw i lch);
I* Gi ve it file name grabbed * /
I* by GeLFS_lnfoO before Fi le */
/* Shoring was stopped *I
/* Send j us t Open event * I

i f ((l aunchErr = LaunchAppl icali on(thisAppPBPtr)) == noErr)
Wai t Nex tEvent<everyEven t , &gmyEvent , SHORT JiAP, NO....CURSOR);

el se
Repor t...Err J1essage < PROBLEM....START I NG...FS) ;

I* end Start...Fi le....Sharing<) * I

!* Look for the Fi le Sharing Ex tension fi l e . User might not have started F i le Sharing 1del, */ ~
~

Figure 7.8 Setting a breakpoint

Important I
MW Debug uses the files "DebugServices for PowerPC" application and ~

"PPCTraceEnabler" Extension to access the Power Mac's debugging facilities.

DebugServices for PowerPC is a background-only application written by Apple

that provides a low-level debugging API to set/reset breakpoints. kill processes,

and perform memory reads and writes. MW Debug uses low-level message

blocks (via the PPCToolbox) to communicate with this application. DebugServices

controls the test application, and returns information about its behavior back to

MW Debug.

PPCTraceEnabler is a native Extension written by Apple. It gives DebugServices

access to the single-step trace bit in the 601 processor's Machine State Regis-

~

~ Power Macintosh Programming Starter Kit
~··

ter (MSR). The MSR is a supervisor-level register. and is not normally accessible

by user-level application code. The PPCTraceEnabler Extension sets up this

access. On 68K Macs. the DebuggerlNIT, also written by Apple, patches the

appropriate entries in the dispatch table to provide low-level debugging services

to MW Debug.

For your application to be controlled properly by MW Debug, it must have the

canBackGround bit set in the SIZE resource, and the program must make

frequent calls to Wai tNextEvent (). For more information on the SIZE resource,

see chapters 4 and 6.

MW Debug remembers the size and location of the Program and File Windows,

and the locations of all the breakpoints. This information is stored in a file with

an extension of .xdbg. Continuing with our earlier example, if we debug the

application Klepto and set some breakpoints, MW Debug produces a file named

"Klepto.xdbg." If you want to quit MW Debug, and resume the job later with all

the breakpoints in place, don't delete the .xdbg file.

Since we've got SwitchBank up and running under MW Debug, let's do a
short tour. In the Program Window, click on the Function icon and select
In it_ Mac() from the pop-up menu. Scroll through Ini t_Mac () 's code and
set a breakpoint on the statement containing the Apple Event initialization
function, Init_AE_Events(), as shown in figure 7.9. Now pick Run from the
Control menu, or type Command-R. After a short delay, SwitchBank should
halt in Ini t_Mac (),at the call to Ini t_AE_Events ().Note: If you hold down
the Option key when you set a breakpoint marker, the program automati
cally executes to that breakpoint, unless it encounters another breakpoint.

... s~~P.;:~.: ... ~ .. .:.~: .~~.~!.?.:~.~~?::? .. 0
s File Edit Control Data Window

SwitchBank

Ox l 1 BDC4
Ox4CA2C
__start

M local 1·'8riables

-i

lni lDialogs<N IL >;

if ((theMenuBor = GetNewMBor(MENU...BAR_IO)) == NIU /* Got our menu resources OK? *I
re turn FALSE;

SetNenuBar(theHenuBar) ; /* Add o•Jr menus t.o menu I isl */
0 i sposHand I e < theMenuBar);
AppendResMenu<GetMenuHandle (APPLLJ1ENU), 'ORUR'); /*Bui Id Apple menu "'I
OrawMenuBar <) ;

/* Look for specif ic: features: or set. up handlers this opp needs*/
i f (!Check....System()) I"' Need System 7 */

re turn FALSE;

i f (! In i t.JlE...Events<))
re turn FALSE ;

I* Set up our high-level event handlers

if <Fi ndFo lder<kOnSystemO i sk, k SystemFolderType 1 kDontCreateFolder ,
&gsysURe fNum , &gSysO i r I 0) ! = noErr)

IQ) Line: 784 So urce

Figure 7.9 Setting a breakpoint for the Apple Event initialization function

If we wanted to step over this function, we'd simply pick Step Over in the
Control menu or type Command-S. (After single-stepping through lots of
code, you'll soon appreciate this command's keyboard equivalent.) How
ever, let's examine what this function does. Type Command-T to step into
Ini t_AE_Event s () . The Source Pane now displays this function's entry point
(figure 7.10).

s File Edit Control Data Window

SwitchBank

!-30532 Ox 11BDC4
Ox4CA 2C
--Start
main
JniLMac

err
i

~ fiii·ii·Ci1e·r·s'foiiisiiiff:fo<i"
........................... !-28468

: oxoo43866c

I mt_iiE_E,.i::nt ..

i f (Find...Fi l e...Sharing())
Start....Fi le-Sharing(>;

) I* end else *I

- · /* end Toggle...Fi le_SharingO */

/* Find the Fi le Shoring Extension file */
I* Launch it */

/* Bui I d high-level event dispatch table and add our handlers to it. Must use static */
/* declaration so that the dispatch table doesn't move in memory . */

: Boolean lni t.....AE....Even ts<voi d)
-!• {

: OSErr err ; ~
short i ;
static AEinstal ls HandlersTo lnstal IC J =

{
I* The 4 required Apple Events */

};

!

{kCoreEventClass, kAEOpenAppl ication, Core....AE...OpenJlandler),
{kCoreEven tC I ass, kAEOpenDocumen ts, Core....AE...OpenDocJland I er) ,
{kCoreEven tC I ass , kAEQu i tApp I i ca ti on, Core....AL.Qu i tJland I er),
{kCoreEven tC I ass 1 kAEPr i ntDocuments 1 Core...REYr int-Hand I er }

1

!ill Line: 438 Source

Figure 7.10 Inside the Apple Event initialization function

Type Command-S several times and watch the variable i get initialized by
the for loop. Single-step and observe the result passed back by
AEinstallEventHandler (),and how the if statement within the loop checks
for an error result. Step through the loop once or twice, and when the
execution pointer arrives back at the if statement again, go to the Locals
Pane and type a negative number in er r's value area to simulate an error
(see figure 7.11).

When you single step this time, the flow of execution calls
Report_Err _Message () instead, and Ini t_AE_Events () returns immediately
with a value of FALSE. If you continue to single-step, you'll see I ni t_Mac ()
also return immediately with a FALSE value, and then main () calls
SysBeep () , and exits. This is admittedly a simple example, but it shows
what you can do with 'Nf.W Debug.

.. s~~P.:~~.; ... ~ ... :.~;.~~.~;. ~;~.~~~~~~ .. 0
s File Edit Control Data Window

§Im SwitchBank

Ox 11 BDC4
Ox4CA2C
__start
main
lniLMac

err
; ;z

1> Hiiniiie·r:;;toiii8iiiff$64 ········ · ··· ·················· .. !oxao·43assc

OSErr err;

- !

short i ;
static AEinstal Is Hand l ersTolnstal I [J /* The 4 required Apple Events */

{

};

{kCoreEventC I ass , kAEOpenApp I i cation, Core....AE..Open...Hand I er) ,
{kCoreEventC I ass, kAEOpenDocuments, Core....AE..OpenDoc...Hand I er),
{kCoreEventClass, kAEQui tAppl i cat ion, Core....AE_Qui t...Handler),
{kCoreEventC I ass, kAEPr i ntDocuments , Core....FIE...Pr i nt.Jiand I er} ,

for Ci = O; i < LAST...HANDLER; i++)
{ /* lnstal I each handler i n application dispatch table, with a routine descriptor
err ;: AElns tal IEventHandler(HandlersTotnstal I [i 1. theClass, Handl ersTo lnstal I (i l . theEven t ,

NewAEEventHandlerProcCHandlersTolnstal I [i l. theProc), 0, FALSE)
if <err> /* If there was a problem, bai I out */

{
Report...ErrJlessage CPROBLEM...J.l I TH....AE...HRNDLER);
re turn FALSE;
}/*endif*/

/* end for */

!ill Line: 453 Source

Figure 7.11 Changing the value of err

Let's look at another section of SwitchBank. If you had let SwitchBank
terminate from the last example, the Source Pane in MW Debug's Program
Window states that SwitchBank is not running. Go to the Control menu and
choose Clear All Breakpoints. Type Command-R to run SwitchBank again.
After a brief delay, the Program Window's panes should fill with source
code. The Source Pane should be positioned in main () , ready to go. Click on
the Function icon and pick Core_AE_OpenDoc_Handler () .You'll wind up at
the entry point to this function, as shown in figure 7.12. Now set a
breakpoint at the first executable statement in the function.

e .. :.~-:-:~;. ~~;!~~~;~. ;,;~~;~!';!':!~~. :.'~.~;;. ~~
.S File Edit Control Data Window

l)j SwitchBank

Ox l 1 BDC4
Ox4CA2C
__start

re turn TRUE ;
I* end l ni LflE.-EventsO */

/IQ local n1ria/Jles

I* High-level open opp I ication event. */
pascal OSErr Core....AE_j)penJ-landler<AppleEvent *messagein, AppleEvent *rep ly, l ong refln)
{

re turn < noErr) ;
} /* end CoreJIE....OpenJland I er () *I

I* H i gh- I eve I open document event *I
pasca I OSErr Core....AL.OpenOocJ-lond I er (App I eEven t * message in ,

·~ ~ong
AppleEvent *reply, long refln)

reg i s ler
Boolean
AEDesc
OSErr
long
AEKeyword
DescType
Size

!ill Line: 769

dummyResu I t ;
i, j;
f i I eShoreWasOn;
vo I Oesc;
vo I Err , h ighleve I Err;
numberOVo I um es;
i gnoredKeyWord;
i gnoredType;
i gnoredS i ze ;

L Source

I* Dummy var iable for delay() */

/* Container for sent volume names */

/iJ:(Number of vo I um es dropped on lo us * /
I* Bit buckets for high-level event i nfo we don't need */

Figure 7.12 Adding a breakpoint to the high-level Open Document function

Once that's done, type Cornrnand-R to run SwitchBank. The panes in the
Program Window should clear, and the Source Pane contains a message
stating that SwitchBank is executing. So far, so good. Now we need to
create a high-level Open Document Apple Event. Go to the edge of Program
Window, hold down the Option key, and click on the desktop pattern. }..J[W

Debug's two windows should disappear, leaving a clear view of the
Macintosh desktop. If you pull down the Application menu, you can see
that }..J[W Debug and SwitchBank are running, but not visible. The
SwitchBank icon doesn't appear to be active (it doesn't display the "hollow"
icon that active applications use), but that's because }..J[W Debug had the
Process Manager launch SwitchBank behind the Finder's back. Not know
ing this, the Finder hasn't updated SwitchBank's Desktop icon to reflect

.. ~~~f,;~~.:: ... ~ ... !.~~ .~~.~!.~~~.~~?~:? .. 0
this fact. Click on the startup volume's icon, drag it to the SwitchBank
folder, and drop it onto SwitchBank. MW Debug should reappear, with
SwitchBank's execution suspended inside the Core_AE_OpenDoc_Handler()

function. You can single-step through this function, and observe how
information is obtained from the Apple Event message. You'll also see
SwitchBank's safety logic balk at ejecting a drive with the active system
software on it. When you're done experimenting with SwitchBank, quit
MW Debug, which also terminates SwitchBank.

Debugging a shared library file requires that you open it in MW Debug first,
followed by the application that's linked to the library. An example should
help illustrate the procedure. Suppose that you're working on a set of
handy utility functions in a shared library named "CoolLib." First, mark the
source file for debugging in the Project window, and set the linker prefer
ences so that an .xSYM file is produced. Make the shared library, which
results in the files "CoolLib" and "CoolLib.xSYM." You also have to prepare
the test application that gets linked to your library. Mark the file for debug
ging in the Project Window and use the same linker settings as you did for
"CoolLib." Make the test application. Let's call the output of this project
"TestApp" and "TestApp.xSYM." Now you have all the components you
need to debug the shared library.

To start the debugging session, first drag "CoolLib.xSYM" to MW Debug.
MW Debug launches, and a File Window for the library file appears. Option
click on the desktop to hide the MW Debug window, and drag
"TestApp.xSYM" onto the hollow MW Debug icon. TestApp should launch,
and you have three windows on-screen: the File Window for
"CoolLib.xSYM," the File Window for "TestApp.xSYM," and the Program
Window for TestApp (see figure 7.13). Next, you set breakpoints in the
shared library code using the CoolLib.xSYM window. To reach the
breakpoint so that you can begin code tracing, start TestApp in the Pro
gram Window by selecting Run from the Control menu.

MW Debug also offers some surprisingly low-level debugger features. If
you select the Show Registers item under the Windows menu, a window
displaying the processor registers for either the 68K or PowerPC processor

appears. Better still, by double-clicking on a register value, the value is
framed so that you can modify the register's contents (see figure 7.14).
Since you're messing with the state of the processor itself, use this capabil
ity with extreme caution. Another menu item, Show FPU Registers, lets you
examine the floating-point registers of the 68040 or Power PC. Finally, a
Show Collection item creates a Collection window that acts as a
container for any program variables you examine constantly. To use
it, open a collection window with this menu command. Click on the desired
variables and choose Copy to Collection from the data menu. Then position
the Collection window where you can keep an eye on it and the variables
you're monitoring.

s File Edit Control Data Window

Coollib.HSYM

Clobal Variables
Linker-Generated

***************************•*
ppcCodeH = Gel 1ResourceSys< k
i f < ! ppcCodeH)

return resNotFound;
HLock < ppcCodeH) ;

/***************:.+c************·
open a connection IJJ i th th

*****************************·
err = GetMemFragment<

if < err)
{
conn I 0 = kNoConnec t i on I 0 ;
goto DONE;
}

Clobal Variables ~ HandlersTol nstall $

TestRpp

110 local 1·'8ria/Jles

if (! <highLevel Err = AEGetParamDesc(messagein, +
{
i f ((h i ghLeve I Err = AECoun ti terns (& f i I eOesc,

{
for < i = 1; ((i <= numberOFi les) && < !h

{
hi ghLeve I Err = AEGetNthPtr<&f i I eO

((i ==

Figure 7.13 Debugging a shared library

... ~~~r.;~~ .; ... ~ ... :.~; .~~.?!.?.':~.~~?~:? .. e
a File Edit Control Data Window

SmitchBank

OxD6C74
Ox4825C
........start

!> fileS hari ngExt lnfo !Qx00402874
!> fileShari ngMas kl nfo ! Ox00402864
I> nil Point ! Ox00402788

_:

_I

search PB ! Ox00402884

~~~~~~~~~~ii:JR~ei!i~st~e~r~s]\i~~~!ii~~~~~~liii~- D4027F8 
SYitC h Ban t q.~q.?.?..~.C. .... 

sea 
sea 
sea 
sea 
sea 

Ox0039EDAO RS 

Ox00402750 R9 
RTocU•••••EUOFi!@'"'I R 10 

Ox004027FB ~R 11 
Ox0040278C R 12 
Ox OOOOOOOO R 13 
OxOOOOOOOO R 14 
Ox OOOOOOOO R 15 

LR 

Ox OOOOOOOO 

Ox FFFFFFFF 

Ox 003A28A8 

Ox 00000001 

Ox 00000008 

Ox OOOOOOOO 

OxOOOOOOOO 

Ox OOOOOOOO 

Ox 0039EDAO 

R16 Ox OOOOOOOO R24 Ox0000360F 

R17 Ox OOOOOOOO R25 OxOOOD6C74 

RIB OxOOOOOOOO R26 Ox0083000 1 

R19 OxOOOOOOOO R27 Ox00830001 

R20 Ox OOOOOOOO R28 Ox00000083 

R21 Ox OOOOOOOO R29 Ox 003A2940 

R22 Ox OOOOOOOO R30 Ox OOOOOOOO 

R23 OxOOOOOOOO R31 Ox00830001 

CTR Ox 0004080C 
sea 
sear~c~~.c~s~ar~a~m~.~1o"""'a""'o~s~1 ~1~o~n-. ~,n~1~1a,,.,.1 z~e...,,.=..,,.,--,,,..~~"m""n~IO::I!,.,,,,.,.,,,,,..,..,.... 
searchPB . csParam . i oOp tBu ff er = N I L ; 
searc:hPB. csParam . i oOptBufS i ze = 0; 

i f (PB Ca tSearchSync (( CSParamP tr ) &searchPB ) == no Err ) 
re turn TRUE; 

else 
{ 
Repor t...Err-11essage <CANT ....l..OCATE...F I LE) ; 
re turn FALSE; 
} /* end else */ 

/* end F ind...Fi l e..Sharing() *I 

03A28A8 

cteristics */ 

Figure 7.14 Changing the TOG register on the PowerPC processor in MW 
Debug 

A Low-Level Debugger 
For Power Mac program debugging, there are two low-level debuggers 
available. The first is Apple's own Macsbug, version 6.5. It's actually a 68K 
program that runs in the Power Mac emulator. It's still oriented around 68K 
processor debugging, since the debugger shows the 68K processor regis
ters and stack. The capabilities of Macsbug can be expanded through the 
use of special resources called dcmds. Certain of these dcmds are used to 
disassemble Power PC code, and display the Power PC processor registers. 
Since Apple hasn't published any of these dcmds yet, we'll have to pass on 
Macsbug for now. 



0, Power Macintosh Programming Starter Kit 
~··············································································································' 

However, there's another low-level debugger available that gives you 
access to the 601 registers, displays native instructions, and lets you debug 
a native program. It's appropriately named The Debugger and is written by 
Steve Jasik of Jasik Designs. Because it's a low-level debugger, The 
Debugger can be used to debug stand-alone code such as Extensions. For a 
low-level debugger, it sports some sophisticated high-level debugger 
features, including windows and menus. 

Background Info 
How does The Debugger provide a high-level system interface? The Debugger 
copies the required system resources into a private area owned by it. This 
enables The Debugger to provide high-level debugger services, yet still continue 
to function when the operating system gets mangled by a program bug. 

For a 68K program, The Debugger automatically reads the .SYM files that 
Code Warrior made for the application and provides a source code display 
(see figure 7.15). The Sigma symbols <D to the left of the source code indi
cate executable statements. If you highlight a statement and type Com
mand-B, a small bullet symbol appears that indicates a breakpoint has been 
set. You can mark either C source statements or 68K instructions with 
breakpoints. By holding down the Command key and clicking on the 
source window, you can toggle the view between C source code, and C 
source interspersed with 68K machine code instructions. You can single
step through the program as either 68K assembly or C source code, view
ing the processor registers, and the stack. The one feature lacking is a 
ready view of variable names and their values. 

On the Power Mac, you can view source code and PowerPC machine code 
instructions. You can view the 601 processor registers and set breakpoints. 
A "training wheels" feature attaches comments beside each instruction to 
assist you in learning the PowerPC machine code (see figure 7.16). 



.................................................................. s~~P.;~'..~ ... ~ ... :.~:.~~.?!.?.:~.~~?~:? .. 0 
3SwitchBank.Find_File_Sharing 

I fi leSharingMasklnfo . fdF l dr = 0; 

I* 1st spec block */ 
I searchSpec1 . hFi lelnfo . i oNamePtr = NIL; /* Search by file type , not name */ 
I searchSpec1 . hFi lelnfo . i oFlFndrinfo = fi leSharingEx tlnfo ; /* Type & creator to look for 
I searchSpec1 . hFi lelnfo . ioFlAttrib = 0x00; /* Match only files, not folders */ 

I* 2nd spec block */ 6 
I• searchSpec2 . hFi lelnfo . ioNamePtr = NIL; 
I searc:hSpec:2 . hFi lelnfo . i oFlFndrinfo = fi l eSharingMasklnfo; /* Mask */ 6 
I searchSpec:1 . hFi lelnfo. ioFlAttr ib = 0x01; /* Match only f iles , not folders */ 

6 I--
I* Set up search call */ ~ 

I searchP8 .csParam. ioCompletion = NIL; ~j~~~j~iij~-~R~e~g~i~s~t~e~rs~-Jiiiiiiiii~g 
I searchPB .csParam. ioNamePlr = NIL ; /*F 
I searchP8 .csParam . ioVRefNum = gsysVRefNum; PC =00473DA8 SR- ttSm.ooo ... XnZvc I(> 
I searchP8 .csParam . ioMatchPtr = &gthisF i leSp curPort: gp@3 1840 "WMgrPort" f!:!.-
I searchP8 . csParam . ioReqMatchCount = 1; • Ai <Ai ) Di Aux..Reg@706106 
I searchP8 . csParam. i oSearch8 i ts = fsS8Fl Fndr 0 4D6840 0 0000 0008 
I searchP8 .csParam. ioSearchlnfo1 = &searchSp 1 4D6870 0 6578 746E 'ex tn' 
I searchP8 .csParam . ioSear chinfo2 = &searchSp 2 47C53C 47C538 0000 0000 
I searchPB . csParam. i oSearc:h Ti me = 0; 3 0 0 0000 0001 
I searchP8 . csParam. ioCatPosi lion . initialize 4

5 4
D

706
°
0 4

D
6
F

7
°
6 

°
0
°
0
°
0
°
0 

°
0
°
0
°
8
°
3 

. .. · ~. 
I searchPB .c:sParam. ioOptBuffer = NIL; t:. 

I searchP8 .csParam. ioOpt8ufSize = 0; 6 4D6C82 4D6CBA 0083 0001 .E. 
7 4D6838 8C2 0000 0030 ... 0' 

I Debugger( ) ; 

* -Stack State-
return TRUE ; --at AODR--Name-------------------Cal 1 s--------------- Frame-Addr--S i ze 

e 1 se =00473DA8 Fi nd....F i l e...Shar i ng+0E6 bytes in use = $2E0 
~ t....E J1 <C =00473DF0 Toggl e....F i l e...Shar i ng Fi nd....F i l e...Shar i ng 4D6CB2 17E 
epor rr essage =004741C8 Do....Command Toggl e....F i l e...Shar i ng 4D6CBA 4 

return FALSE; =004742C6 Mai n-Event...Loop Do....Command 4D6DDC 11E 
} /* end else */ =00474416 main Main-Event...Loop 4D6DEC 8 

I } /* end Find....Fi le...Shari =00473368 _startup main 4D6DF4 4 

Figure 7.15 The Debugger displaying a 68K program as source code; the 
bullet symbols mark breakpoints 

On either a 68K Macintosh or a Power Mac, you can activate a continuous 
step mode in The Debugger, and watch it run through the program. The 
stack and register displays are automatically updated. Pressing Command
period stops the continuous trace. 

Because The Debugger can use Metrowerks Code Warrior symbol files, this 
makes it a valuable companion to lv1V'J Debug. However, because both MW 
Debug and The Debugger use PPCTraceEnabler, you can't use MW Debug 
while The Debugger is present. However, you can use the two programs in 



concert to track down a bug. The Debugger typically displays a dialog box 
at boot time that asks whether or not to install the program. For a first-time 
debug run on your program, say no to the installation and use NfVV Debug 
to find the problem area. Reboot the Mac, and this time let The Debugger 
install. Don't use NfVV Debug this time: instead, launch the program and 
type Option-\ to bring up The Debugger. Now set your breakpoints or 
single-step through the program. 

-asm-

472900: 3861 0138 la r3,$138<SP) Load Address 
472904 : > $473F04 bl $+$1600 Branch / set LR 
472908 : 8041 0014 lwz RTOC , 20<SP) Load Word and Zero 
47290C: 7C63 0735 extsh. r3,r3 Ex tend Sign Ha I fword 
472910: > $4729 lC be IF ...l'IOT, crO....EQ, $+$C Branch Cond i t i ona I 
472914 : 3860 0001 Ii r3, 1 Load lmmed 
472918 : ) $472928 jp $+$10 Branch 
47291C : 3860 0007 Ii r3, 7 Load lmmed 

~ 472920 : ) $472420 b l $-$500 Branch , set LR 
472924: 3860 0000 Ii r3,0 Load lmmed 
472928: 800 1 01C8 lwz r0 ,$ 1C8<SP) Load Word and Zero 
47292C : 382 1 OlCO la SP,$1CO<SP) Load Address 
472930 : 7C08 03A6 mtspr LR,rO Move To S eciol Pur ose Re 
472934: 4E80 0020 blr - Registers-
472938: 7C08 02A6 mfspr rO,LR 
47293C : 9001 0008 stw r0,8(SP ) C =004728FC crO crl cr2 cr3 cr4 cr5 cr6 cr7 
472940 : 9421 FFCO stwu SP, -64 <S LR 004728FC npZs xEvo npzs npzs npzs npzs npZs npZs 

472944 : > $4724FO bl $- $454 CTR 40A 1E938 XER : soc Cmp:OO Cnt:OO MSR: 0000 
472948 : 5463 063F c lr I w i . r3, r3 , 24 curPorl: gp@31840 '"WMgrPort'" 

47294C: ) $472958 be IF, crO....EQ, $+ rO 40A1E938 r8 0 r16 0 r24 0 
472950 : ) $472674 bl $- $20C SP 4069CO r9 0 r17 0 r25 CA884 

472954: ) $472968 jp $+$ 14 TOC 18704 r10 0 r18 0 r26 830001 

472958 : > $4727AC bl $- $ 1RC r3 0 r 11 FFFFFFFF r19 0 r27 830001 

47295C : 5463 063F r4 8 r 12 4728FC r20 0 r28 83 

472960 : ) $472968 be r5 406A6C r13 0 r21 0 r29 476FF4 

472964: ) $472708 bl r6 406AOO r14 0 r22 0 r30 0 
472968 : 800 1 0048 r7 0 r15 0 r23 0 r31 830001 Q:] 
47296C: 3821 0040 
472970 : 7C08 03A6 *-Stack State-
472974: 4E80 0020 --at AOOR--Name-------------------Ca I Is--------------- Frame-Rddr-- S i ze 
472978: 7C08 02A6 =004728FC bytes in use = $506 
47297C: 8F81 FFFO 
472980: 9001 0008 

=004728F8 c@004728F8 c@00473F8C 4069CO 45F8 

472984: 9421 FF80 
=00472958 c@00472958 c@004727AC 406880 1CO 
=00472E20 c@00472E20 c@00472938 406BCO 40 

472988: 3BC2 02CC =00472F2C c@00472F2C c@00472CFC 406020 160 
47298C : 3BEO 0000 =004731A8 c@004731A8 c@00472E48 406080 60 
472990 : > $472A08 =00473A28 c@00473A28 c@00473190 4060CO 40 
472994 : 7FE4 0734 =00048258 r0A_4041 406EOO 40 

Figure 7.16 The Debugger displaying a 601 program as machine code 

Debugging Techniques 
To the uninitiated, the debugging process might seem arcane, but essen
tially what it amounts to is gathering information or clues. You observe the 
program's behavior carefully up to the moment it crashes, taking note of 
what events trigger the crash. The debugging tools mentioned here serve 



.................................................................. ~~~P,\~;.; ... ~ ... !.~~.~~.?!.~~~~~~~~~ .. e 
an important purpose-they help you prod the remains for additional 
information, or let you take the program for a tightly controlled stroll over 
the brink. 

This information allows you to determine two things, where the program 
crashed, and why that particular statement caused the crash. It might 
seem that all you really need to know is where the program crashed, but 
sometimes that's not the complete picture. After all, a for loop that reads 
control values out of an array is going to work flawlessy-up until a logic 
error has the loop read past the end of the array. 

There's no exact formula or procedure that you can follow to track down 
and fix program bugs. Debugging techniques vary on case-by-case situa
tion since each program is unique. The best technique to minimize pro
gram bugs is to code defensively, especially in the user interface code. 
Remember that the user might perform actions in any sequence. Also, 
initialize the program with a set of reasonable defaults, since the user 
might not explore that portion of program where the values of key vari
ables get set. From my own experience writing shareware, it's definitely 
worth having outside testers try out the program in the early phases. Their 
efforts invariably point out holes in the interface code. Keep an open mind 
to the testers' critiques of the program. They often make worthwhile sug
gestions that can streamline the interface, which in turn results in simpler 
and more solid interface code. 

I mentioned this rule earlier in the book when we wrote our first program, 
but it's worth repeating: Always check for errors. Many Toolbox routines 
return a value that indicates whether or not the request completed success
fully. In case of a failure, the value returned often indicates what condition 
caused the error, such as the program ran out of memory, or the disk is full. 
Note that the status of calls to the Resource Manager are returned by the 
function ResError(), and that you can obtain the status of some QuickDraw 
calls using QDError (). One of the first functions I add to a new program is 
Report_Error (), so that it can trap any major errors I make when calling 
unfamiliar Toolbox routines. 

I realize it's difficult trying to code for all the possibilities. For example, the 
apparently simple act of saving a file to disk involves an army of safety 
checks. You have to see if a file of the same name exists, ask to overwrite 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

the existing file or not, see if there's enough room on the volume to save the 
data, and then constantly monitor the file I/O routines during the save 
operation. Use "!::/J.W Debug to modify the results of Toolbox calls so that 
your error handling code gets thoroughly tested. The benefits from such an 
effort are a reliable program and robust code that can be reused in future 
projects. 

Of course, if you're doing a quick and dirty in-house program hack, such as 
the Klepto application, then you needn't be as exhaustive monitoring the 
results of the Toolbox routines. Nevertheless, you'll notice that even Klepto 
performs some safety checks. A lot of Klepto's file setup code came out of 
the SonOMunger program, and I just replaced the Munge_File () function 
with Move_Fork ().This let me knock out a solid and reliable utility program 
in a short time. However, if you're writing code that you expect other folks 
to use, do them a favor and do all the safety checking. They might not like 
getting warning or error messages, but users have no patience at all with a 
program that bombs. 

A Bug Taxonomy 
There are countless categories and types of bugs. Here I would like to 
discuss three particular bugs that can be divided into several broad catego
ries. First there are the logic bugs, which are flaws in the algorithms and 
plague programmers no matter what platform they're working on. Second 
is where the Toolbox is called improperly, which either crashes the Mac 
quickly, or creates hidden damage to the operating system so that trouble 
rears its ugly head hundreds of instructions later. Finally, there are those 
bugs that manifest themselves because of side effects that occur in the 
Mac run-time environment. I will provide some general guidelines for each. 

Logic bugs can sometimes be found without resorting to debuggers. A 
"code walkthrough," where you explain the operation of the program to a 
coworker or friend often uncovers gaps or flaws in a program's logic. Also, 
sit down with a program listing and some paper, and step through the 
listing line by line, jotting down the values of variables as you manually 
evaluate each statement. This process, though tedious, can spot some 
problems. It's also valuable in making you really look at the code, rather 
than skimming through it with a program editor. 



.................................................................. ~~~P.\'!~?. ... ~ ... :!!~.~.?-1.?.~~~~~~~~ .. a 
During the program's development phase, add code that does limit checks 
on arrays and other program resources. The overhead of this type of code 
slows the program, but it will pay for itself when it snares a bug or two 
while the program is taking form. Limit checks also help in those situations 
where you're trying to integrate portions of the application that were 
written by different programmers. Bracket the limit check code with condi
tional compilation statements so that it can be quickly eliminated during 
the final build of the shipping application. 

Finally, use Code Warrior's compiler to help eliminate logic bugs caused by 
typos, such as the if statement that uses a single equals sign for the 
comparision. Check the Extended Error Checking item in the Language 
preferences panel so that the compiler looks for this type of error and other 
syntax problems. Don't hesistate to use NfW Debug to step through the 
code and see what's going on. If you've already done a code walkthrough 
and have some values you can reference, then NfW Debug's Locals Pane 
can uncover a problem quickly. 

The next category of bug occurs when you call the Macintosh Toolbox 
routines improperly. If you're lucky (and usually are}, such mistakes take 
out the Mac fast. You might think that making this sort of goof would be 
difficult, given the copious documentation on the Toolbox routines. How
ever, such errors do have a way of sneaking up on you. 

One type of improper Toolbox usage is calling a routine with arguments 
that are the wrong size (say, passing a long where a short was expected). 
For performance reasons, the Toolbox routines don't perform any argu
ment checks. On the 68K Mac, where the arguments are usually passed on 
the stack, pushing the wrong-sized argument mangles the stack. The Mac 
dies when the routine attempts to return and first pops a proper-sized 
argument value off the stack, which skews the return address. 68K Macs 
seize up solid on this type of mistake. 

Part of this problem stems from the ambiguity in the size of an integer 
variable. Depending upon the development tools you use and their 
settings, an int could be 16 or 32 bits in size. My recommendation: 
Remove int from your C vocabulary. Declare variables as short or long 
instead. Most debuggers, such as The Debugger provide a built-in function 
called Discipline, which performs on-the-fly size checking on any routine 
your application calls. 



~ Power Macintosh Programming Starter Kit 

~·············································································································· 

This type of problem shouldn't occur as often on the Power Macintosh for a 
number of reasons. As you saw in chapter 5, Toolbox arguments get 
stuffed into PowerPC registers rather than pushed on the stack, so a wrong
sized argument isn't as lethal as it would be on the 68K architecture, al
though it's possible to hose the 68LC040 emulator this way. Finally, the 
ANSI C requirement for Power Mac software reduces this problem because 
of function prototypes. The header files for all of the Toolbox routines 
contain function prototypes, and so an argument mismatch in your code is 
quickly recognized and flagged by the compiler. If you haven't yet checked 
the Require Function Prototypes item in the Language preferences panel, 
do yourself a favor and set it now. 

Another type of Toolbox usage error is where you simply don't supply all 
the information the routine requires. Guess what happens when that 
routine uses random data as a source of information? This sort of mistake 
crops up on those Toolbox routines that use selectors or parameter blocks 
to pass information. 

Background Info 
Routines that have selectors operate as follows: they use a single trap word 

that acts as the entry point into a package of related system services. The 

selector is a value passed to the routine that specifies the desired service in 

the package to use. Toolbox routines that fall into this group belong to the 

Standard File, Alias, Sound, List, Process, Apple Events, Slot, and File Manager. 

Sometimes it appears that a routine doesn't use a parameter block or selector. 

such as in the case of the Apple Event and File 1/0 routines we used in the 

chapters 4 and 6. However, if you dissect the header files. and pay close 

attention to what the in-line 68K assembly macros do, you'll see that these 

routines actually use selectors. 

When you use such calls, pay close attention to what arguments the rou
tine requires. I once spent an afternoon trying to figure out why the Slot 
Manager call SNextTypeSRsrc () in my program was reading video 
sResources from a second display board in a Mac II, rather than the one I 



................................................................... s~~r.;~~.; ... ~ .. ,;.~;.~~.?!. ~;~.~~~~?~ .. 0 
wanted. (sResources are special code objects used in expansion board 
firmware, and are accessed like regular resources, using a name and ID 
number.) I eventually discovered that I wasn't supplying a value for an 
argument handling the sResource's ID, called spID. So SNextTypeSRsrc () 
looked for the next video resource, indexing off the large nonsense value 
left in spID. With relentless logic, SNextTypeSRsrc () dutifully went to the 
next slot with a video board in the Mac and found the next sResource for 
me. Adding a statement to zero spID fixed the bug. 

Another gotcha lurks in the optional completion functions some Toolbox 
routines expect. Even if you don't use use an I/O completion function with 
the call to PBCatSearchSync () or similar Toolbox routines, place a value of 
NIL in the parameter block to make the fact perfectly clear to the 
Macintosh OS. Finally, some routines pass results back to you via a pointer 
to a buffer you provide. Not to single out PBCatSearchSync () here, but you'll 
recall this routine places the search results in a buff er we allocated for it. Be 
sure to set up this buffer, or else the routine will hammer at some random 
memory location with the data you requested. 

The last type of bug is what I loosely term "side-effect" bugs. These occur 
because of side effects induced by certain Toolbox calls or the Mac OS. 
These bugs are hard to find, because there's nothing obviously wrong with 
the code. Also, the bug may only bite based upon the application's memory 
usage and the state of the operating system at certain times. One bug of 
this type is the memory leak. Certain Toolbox routines create copies of 
buffers that you're then expected to dispose of. If you don't, eventually the 
application's memory dries up. As an example of this, look again at the use 
of the AEGetParamDesc () or GetNewDialog (). Both allocate buffers that you 
must delete when you're finished using them. You might lump this sort of 
problem under the improper use of the Toolbox, but I make the distinction 
because you're not actually calling the routines improperly. The program 
won't crash, but it will eventually run out of memory. This can mislead you 
as to the real root of the problem. Again, this sort of bug can be avoided by 
a thorough understanding of what each Toolbox call does. 

The other side effect issue is where a Toolbox call or the allocation of a 
buffer cause the Memory Manager to shuffle things around in memory. For 



I'::::\.. Power Macintosh Programming Starter Kit 
~·············································································································· 

example, if you're accessing a PICT resource (usually to display an image), 
trouble can occur if the image data gets moved. Here's code that shows 
how to update a PICT image in a window: 

/* Globals */ 

WindowPtr 
PicHandle 

/Locals */ 
Re ct 
GrafPtr 
WindowPtr 

gBannerWindow; 
gThePict; 

thisFrame; 
oldPort; 

whichWindow; 

main event loop code ... 

case updateEvt: /* Update the window */ 
whichWindow = (WindowPtr) myEvent.message; 
if (whichWindow == gBannerWindow) /* It's the banner window*/ 

{ 

BeginUpdate(whichWindow); /*Start the update*/ 

GetPort(&oldPort); 
SetPort(whichWindow); 
if (gThePict != NIL) /* Do we have the image? •/ 

thisFrame = (*gThePict)->picFrame; /*Get PICT'S frame rect •/ 
DrawPicture(gThePict, &thisFrame); /*Display image*/ 

/* end if */ 

else 

SysBeep(30); 
} /* end else */ 

SetPort(oldPort); 
EndUpdate(whichWindow); 
} /* end if == gBannerWindow */ 

break; 

/* Restore port */ 
/* Update completed */ 

This code works fine as long as the PICT resource gThePict stays put. 
However, if the image data gets relocated-perhaps because of a Toolbox 
call-the statement that uses a pointer to obtain the display rectangle out of 



.................................................................. ~~~P.;~~.; ... ~ .. .:.~~.~~.:i!.~~~.~~?~:? .. 0 
gThePict is liable to pass junk masquerading as a Rect to DrawPicture ().We 
either have to use a handle to extract the rectangle information out of 
gThePict, or lock it in memory, like so: 

/* Banner intialization code */ 
Re ct 
Handle 

theFrame; 
thelogo; 

(hasColor) ? (thelogo = GetNamedResource('PICT', "\pColor Banner")) 
: (thelogo = GetNamedResource('PICT', "\pB&W Banner")); 

if (ResError() == noErr) 

gThePict = (PicHandle) thelogo; 
Hlock((Handle) gThePict); 
theFrame = (*gThePict)·>picFrame; 
SizeWindow(gBannerWindow, theFrame.right, theFrame.bottom, TRUE); 
} /* end if == noErr */ 

For 68K Macs, there are lists in Inside Macintosh of those Toolbox routines 
that move memory, and thus trigger these memory relocation problems 
described here. There are other less obvious interactions that Toolbox calls 
or the Mac OS can do to objects in memory. A good reference work on this 
subject for the 68K Macs is Scott Knaster's How to Write Macintosh Software. 

It's still too early to see what new interactions and side effects the new 
Macintosh run-time architecture will bring to the party. However, I can 
off er one bit of advice here: If the Power Mac seizes up solid, you've got a 
function that you failed to provide a UPP for, or, you've mangled the routine 
descriptor that the UPP uses. 

Debugging Miscellany 
To close this chapter, I'll mention some facts that don't seem to fit any
where else. 

When testing fat trap code, you have to ensure that both sections of the 
trap get called. This is because the Mixed Mode Manager attempts to avoid 
an instruction set context switch whenever possible. In the case of 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

FlipDepth, the Power Mac's Event Manager is still emulated 68K code. 
Therefore, the Mixed Mode Manager always calls the 68K side of the fat 
trap. To test the PowerPC patches in FlipDepth, I had to compile a 
PowerPC-only version of the patches to guarantee that the native version of 
the patch gets called. For "FlipDepth.c," in the declarations area at the start 
of the file, locate the flag DO_PPC_CODE_ONLY. (There's a statement that 
undefines it located here.) Edit the statement to define DO_PPC_CODE_ONLY, 

and recompile the project with the PowerPC version of Code Warrior. This 
ensures that only a PowerPC version of the routine descriptor is generated, 
and not a fat routine descriptor. As a example of this technique, here's the 
specific code from FlipDepth: 

/*========================== 
CreateFatDescriptorSys 

Creates a fat routine descriptor in the system heap. 
===========================*/ 
OSErr CreateFatDescriptorSys( void *mac68Code, void *ppcCode, ProcinfoType procinfo, UPP *result ) 

THz oldZone; 
OSErr err = noErr; 

oldZone = Getzone(); 
Setzone( Systemzone() ); 

#ifndef DO_PPC_CODE_ONLY 

/* save current zone */ 
/* Get us in the system heap */ 

*result= NewFatRoutineDescriptor( mac68Code, ppcCode, procinfo ); 
#else 
*result= NewRoutineDescriptor( ppcCode, procinfo, kPowerPCISA ); /*debugging only*/ 
#end if 

Setzone( oldZone ); 

return ( *result? noErr : memFullErr ); 
} /* end CreateFatDescriptorSys() */ 

It's possible to test the 68K portion of a fat binary application on a Power 
Mac. To do this, open the application with ResEdit and then open the cfrg 
resource. There will only be one, of ID 0. Select Get Resource Info from the 



.................................................................. ~~~P.:~; .: ... ~ ... :.~~. ;;i:t, ?!. ?.~~~~~~~~ .. 0 
Resource menu, or type Command-I. When the Info box appears, change 
the ID number to something other than zero. Without a cfrg resource of ID 
0, the operating system is fooled into thinking the application is a 68K 
application, and so it loads and executes the 68K CODE resources. To test 
the Power PC side of the program, change the cfrg resource ID back to 0. Of 
course, you'll want to test the application on some real 68K Macs to elimi
nate timing and emulator side effects. Testing on a 68K Mac can help flush 
out some improper Toolbox usage bugs as well. 

Occasionally you'll want a debugger to break into the execution of an 
application at certain points. To do this, there are specialized statements 
that you can add to the program code to cause an exception and invoke a 
high-level or low-level debugger. These statements are: 

Debugger(); 
DebugStr("\perror msg"); 

Debugger68K(); 
DebugStr68K("\perror msg"); 

Sysareak () ; 
SysBreakStr("\perror msg"); 

/* Trigger the debugger */ 

/* Trigger debugger, display error message */ 

/* Trigger 68K debugger */ 

/* Trigger 68K debugger, show error message •/ 

/* Break into high·level debugger */ 

/* Break into debugger with message */ 

The Debugger () statement typically invokes a low-level debugger on both 
Power Macs and 68K Macs. Debugst r ( ) accomplishes the same end, but 
also presents a message string when the debugger kicks in. The message 
can inform you which DebugSt r ( ) statement out of several was executed. 
Debugger68k() and DebugStr68K() operate similarly, but invoke a 68K 
debugger such as Macsbug, even if a native PowerPC debugger is present. 
SysBreak () and SysBreakSt r () act as breakpoints that transfer execution 
from the test program to a high-level debugger. However, be aware that 
the implementation of these statements varies. On a 68K Mac, SysBreak () 

and SysBreakStr () switch control back to MW Debug if it is running. On a 
Power Mac, the Debugger() statements swap execution from the program 
to MW Debug. This behavior is consistent with Apple's own source 
debugger tool, SourceBug. If MW Debug isn't running, then a native 
debugger such as The Debugger takes control. 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

Get to know AppleScript. It can help you set up test events for debugging 
high-level event handlers. It's also useful for writing scripts to automate 
parts of the development cycle. 

Finally, there are a couple of shareware/freeware utilities that can expe
dite the debugging process. MacErrors, by Marty Wachter and Phil 
Kearney, is a small application that translates those cryptic error codes into 
an readable explanation. If a File Manager routine reports a-43, you type 
this value into MacErrors and press Return. MacErrors explains that the 
error number means "file not found; folder not found." This message should 
pinpoint the trouble to that part of your file I/O code that handles a FSSpec 
or related data structure. 

Sometimes, you just want to break into the debugger immediately as the 
program runs. Paul Mercer's Programmer's Key is an Extension that, when 
you press the Command key and Power key simultaneously, it generates 
an exception that drops you into the debugger. 

Enough Debugging 
In this chapter, you've received an overview of the types of debuggers. 
We've looked at two PowerPC debuggers for testing your native applica
tions and we've talked about the various types of bugs. So be careful as you 
are writing your code and you'll eliminate much of the debugging task 
Proper use of the available debugging tools will minimize the job of finding 
and eliminating those pesky bugs that do sneak in. 

Finally, our journey is at an end. I've provided a few tips that should help 
you get started in Power Macintosh programming. Currently, the Power 
Mac has only been on the market for several months and technical informa
tion on them is sparse. As the number of Power Macs grows, so will the 
body of information on programming and debugging techniques. Until 
then, I hope this book provides valuable programming information in these 
initial days of the Power Mac. 



? If 
~ ... -

The PowerPC 
RISC Processor 
Family 

Power Macintoshes are based on the PowerPC 601, the first 
member in a new line of RISC microprocessors jointly devel
oped by Apple, IBM, and Motorola. The PowerPC processor 
family is designed to be a low-cost processor architecture that 
supports a wide range of applications from embedded applica
tions (such as in automobiles) to hand-held Personal Digital 
Assistants (PDAs), to desktop computers. It accomplishes this 
by providing high performance processing, while 
portions of the processor's design are tailored for 
the target application. For example, a PowerPC 
fabricated for a desktop computer might have a 
large cache, while 
a PDA version 
might reduce the 
cache size and 
eliminate multipro
cessing features to 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

minimize power consumption. Currently, there are two members in the 
PowerPC family, with two more in the design stage. The previously men
tioned PowerPC 601 targets mid-range desktop computers, such as Apple's 
Power Macs and IBM's forthcoming Power Personal desktop systems. The 
Power PC 603 is a low-power implementation of the Power PC processor 
that's optimized for use in notebook and sub-notebook computers and low
end desktop systems. 

Several aspects of the Power PC design allow it to achieve the diametrically 
opposed goals of high performance and low cost. First, the RISC design 
itself facilitates high instruction throughput. By using basic, fixed-length 
instructions, RISC processors have a simple hardware instruction decoder 
that can dispatch instructions in one clock cycle. This differs from the 
Complex Instruction Set Computing (CISC) processor, whose decoder is 
more complex and requires several clock cycles to read in variable-length 
instructions and dispatch them. By dispatch, we mean that the decoder 
passes the translated instruction on to the appropriate sections of the 
processor for execution. These sections, which are organized around the 
instruction's purpose (such as integer math, floating-point math, and 
program branches), are called execution units. Note that while it takes only 
one clock cycle to dispatch an instruction, it might take one or more clock 
cycles for the instruction to actually execute. 

The RISC design also uses pipelining to improve instruction throughput. A 
pipeline is where the instruction's execution is broken into several stages 
inside the execution unit. To illustrate this, suppose the decoder.dispatches 
the translated instruction to the pipeline in, say, a floating-point execution 
unit. Each stage in the floating-point unit's pipeline handles a portion of the 
instruction's execution. For example, the first stage of the floating-point 
pipeline might obtain the first number from a register, the second stage 
would obtain the second number from another register, the third stage 
would perform the calculation, and the fourth stage would write the result 
into a register. Pipelines improve throughput by processing several instruc
tions at once, where each instruction is at a different stage of execution in a 
different section of the pipeline. As long as the various pipelines are kept 
filled, instruction processing occurs at a constant rate. Under ideal condi
tions when the processor's on-chip cache keeps the pipelines full, one 
instruction completes execution for every tick of the processor clock. 



The PowerPC processor architecture levers off the pipeline concept by 
using multiple execution units. Furthermore, the instruction set was care
fully designed so that most instructions don't overlap, or depend, on other 
instructions. This way a floating-point unit can work concurrently on its 
floating-point instructions as an integer unit works on its set of instructions. 

To reduce design costs, the PowerPC architecture was based on IBM's 
POWER (Performance Optimization With Enhanced RISC) 64-bit architec
ture. This decision gave the Power PC designers a ready-made instruction 
set and RISC processor core for the chip. Where the PowerPC architecture 
differs from POWER's is its support for multiple processors and single
precision (32-bit) floating-point instructions. (POWER's 64-bit floating-point 
instructions are also supported.) The PowerPC 601 implements most 
POWER instructions (certain complex or nonscalable POWER instructions 
were deleted), and thus a host of IBM software development tools were 
immediately available to write PowerPC software. 

Another cost reduction was that the initial Power PC processor bus is based 
on the bus of the Motorola's 88110 RISC processor. This bus has high 
throughput and also supports multiprocessing. This decision provided 
another ready-made portion of the Power PC design. 

Expect future versions of the Power PC processor to be faster. They'll do 
this using new aggressive process methodologies, higher clock rates, larger 
pipelines, and more execution units. They will also use a different bus and 
possibly support fewer of the POWER instructions. For now, let's look at the 
current members of the Power PC family. 

PowerPC 601 
The Power PC 601 packs 2.8 million transistors onto a die that's 132 mmz. It's 
fabricated using a 3.6 volt, 0.65-micron four-metal layer CMOS process in 
IBM's microprocessor foundry in Burlington, Vermont. Early versions of the 
601 operate at clock speeds from 50 MHz to 80 MHz. At 66 MHz, the 601 
dissipates 9 watts of power, peak. A new 100 MHz version of the 601 uses a 
0.5-micron process that reduces the die to 74 mm2 and lowers power 
consumption to 4 watts. 



0., Power Macintosh Programming Starter Kit 
~·············································································································· 

The 601 is a 32-bit implementation of the 64-bit Power PC architecture. It has 
a 32-bit address bus that can access 40 of physical memory. A built-in 
Memory Management Unit (MMU) supports 52-bit virtual addresses. The 
601 supports 64-bit data and has a 64-bit data bus. It has a massive 32K on
chip unified cache. The term unified means that both data and code oc
cupy the cache. Additional buffers and arbitration logic are required to 
keep both data and code moving in and out of the cache. Three indepen
dent execution units (integer, floating-point, and branch unit) allow up to 
three different types of instructions to execute at once on the 601. 

The 601 can be viewed as a bridge chip for moving from the POWER archi
tecture to the PowerPC architecture. For IBM, POWER workstation applica
tions can be migrated quickly to PowerPC systems, although future 
PowerPC desktop systems will support other operating systems such as 
OS/2. It is also a bridge for Apple's shift from CISC to RISC computing. It 
supplies formidable processing power, enough to operate the 68LC040 
emulator that makes much of the Power Mac's system software possible. 

PowerPC 603 
The PowerPC 603 is the 601's low-power sibling. It uses a 3.3 volt, 0.5-
rnicron four-metal-layer static CMOS technology to place 1.6 million transis
tors on a die 85.1 mm2. At 3.3 volts and 80 MHz, the 603 dissipates 3 watts, 
peak. The 603 is manufactured at IBM's Burlington facililty and Motorola's 
MOS-11 plant. 

Like the 601, the 603 is a 32-bit version of the Power PC architecture, with a 
32-bit address bus and 64-bit data bus. The 603 also uses the same 
pipelined architecture and thus is able to dispatch three instructions at a 
time. 

The 603 differs from the 601 in several ways. First, it uses a Harvard archi
tecture, where data and code are treated separately. It has two indepen
dent BK caches-one for code and one for data-each with its own MMU. 
The smaller cache size is offset by the reduced complexity of the circuitry 
required to manage the caches. The arbitration logic needed to manage the 
601's unified cache is gone, and the temporary buffers are smaller. The net 
result is that the 603 musters nearly the same performance as the 601 while 



................................................. ~~:.~?~~.~ ... ~ ... ~: .. ~;:~.~~~.~:?!'.~?:.:~.'!'~~ .. 0 
using fewer transistors. Also, because the 603 is expected to be used in 
small, portable systems, the multiprocessor support has been stripped from 
the design. 

Next, the 603 has five, rather than three execution units. It's important to 
note that these two extra units provide support functions to manage the 
energy saving features and data transfer rather than execute instructions. 
It still has the same integer, floating-point, and branch units. The first new 
execution unit is a load/store execution unit that manages data transfers 
between the data cache and various registers. It executes the load and 
store instructions, thus freeing the integer unit of the burden of computing 
effective addresses. The other execution unit is a system register unit that 
handles the power-saving functions in the 603. 

The 603 uses static logic, so the contents of registers and the caches are 
preserved even when the clock to the processor is stopped to conserve 
power. The 603 provides three different power-saving modes that imple
ment different levels of energy consumption. These modes are under 
software control. Dynamic power management logic switches off idle 
subsystems or execution units. The power management logic watches the 
instruction stream and powers up an idle unit-say, the branch unit-on an 
incoming branch instruction. 

Finally, the 603 has a phased lock loop (PLL) clock multiplier circuit. This 
enables the 603 to operate reliably even though the system clock might be 
slowed to reduce a notebook computer's overall power consumption. Also, 
it acts as a multiplier so that the processor can operate at 66 MHz inter
nally, while the rest of the system runs at 33 MHz. 

The 603's low power consumption, combined with its near 601 perfor
mance, makes it suitable for notebook and PDA designs. Because it is code 
compatible with the 601, applications written for Power Macs or Power 
Personal systems should run on these low-power systems with little or no 
modifications. 



1 If 
I _. ,. 

~ ... 

Porting to the 
Power Mac 

In this book, we've looked at how to write a Macintosh applica
tion so that the C code compiles and runs on both 68K-based 
Macs and Power Macs. This is fine if you're starting a program 
from scratch. Of course, the luxury of writing programs this 
way doesn't exist for those vendors with software already on 
the market. For these folks, the real issue becomes: How hard is 
it to port existing Mac code to a Power Macintosh? 

Overall, porting working Mac C code isn't difficult. There will be 
some problem areas for certain types of applications. This 
appendix covers those details. 

The program's code should be ANSI C compliant. 
This is because the PowerPC compilers originated 
from ANSI C compilers. However, the ANSI C 
function 
prototyping is an 
asset here, be
cause it can flag 
problems with 
improperly written 
calls to functions or 
Toolbox routines. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

Some portions of the program might rely on certain compiler dependencies 
to operate. Obviously such program elements should be removed. One 
such dependency is the size of the int variable, which can be 16 or 32 bits, 
depending upon a compiler's settings. Eliminate int variables from your 
source code and explicitly declare them as short or long. If you've ported 
the code from another platform, most of these dependencies have probably 
been eliminated. The name powerc is defined for use in conditional compila
tion. 

The application code must be well-behaved. That is, it only accesses the 
hardware through the Toolbox, not by hammering at certain addresses. 
Also, it must be 32-bit clean. The various hardware configurations that 
make up the Mac line should have discouraged the former, and retooling 
an application to work with System 7 should have taken care of the latter. 

The use of low memory globals is strongly discouraged. To this end, the 
"SysEqu.h" header file has been eliminated. In its place you should use the 
header file "LowMem.h." While direct accesses to these areas of memory 
are still supported for the moment, you should start using the "accessor 
functions" in "LowMem.h" to obtain these values. For example, instead of 
obtaining the value of A5 from the global CurrentA5 (address Ox904), use 
the function LMGetcu rrentA5 ( ) and let the Power Mac OS return a value 
for you. 

Forget about using segments. They're not necessary for the PowerPC run
time environment. The #pragma segment directive is ignored by most 
PowerPC compilers. 

If you use callback or completion routines, such as those used in the high
level event handlers, custom window controls, or an event filter function in 
a dialog box, you'll need to build a UPP for the function. This enables the 
Mixed Mode Manager to deal appropriately with your code when it's called 
by the Macintosh OS. Basically, if the function is accessed using a ProcPtr, 
it better have UPP set up for it. Fortunately, the Power PC header files 
provide macros that handle most of these details for you. Search for func
tions prefaced with "New" or "Call" in the header files that you use with the 
program. If you're writing a custom Power PC plug-in module to enhance a 
68K application (as Adobe did with Photoshop 2.5), you'll have to write the 



............................................................ ~~P.~~~~~.~ ... ~ ... ~!!~~~.~?.~~ .. ~::;:.~~!' .. ~ 
UPPs yourself. See chapter 6 for details. If you're writing a Power PC plug-in 
module for a PowerPC application, then you can use PowerPC procedure 
pointers and avoid the overhead of a mode switch or using UPPs. 

If you're passing data structures to the Toolbox, remember that it's mostly 
emulated 68K code and so you have to word-align the data for it. Use the 
compiler declaration #pragma options align=mac68k to achieve this. Don't 
forget to use #pragma options align= reset after such structures to provide 
optimal Power PC data alignment. If the program and its data is expected to 
run on 68K Macs as well as Power Macs, you'll need to enforce word
alignment throughout the program. This is also true if you expect to ex
change files with 68K Macs. 

If your program makes heavy use of floating-point math you'll have to make 
some modifications. The extended 80- or 96-bit values, and the 64-bit comp 
used by SANE are not supported in the PowerPC hardware. For compatibil
ity, the PowerPC SANE implementation supports these data types in 
emulation. To obtain fastest processing, you'll want to rewrite the code to 
support the processor's native 32- or 64-bit values. These data types are 
declared float or double, respectively. A 128-bit long double type is sup
ported, but only in software, not in the hardware. Discontinue use of the 
"sane.h" and "math.h" header files. Instead, use the functions provided in 
the header file "fp.h," which provides data conversions and transcendental 
math functions. These functions follow the Floating-Point C Extensions 
(FPCE) specification, which defines support for IEEE 754/854 floating-point 
math. As a developing standard, this should enable the program to be 
ported to other platforms. The "fpenv.h" header file provides functions used 
to set the floating-point environment. Note: Metrowerks predefines the 
name _ieeedoubles_. If it is defined (set to 1), the Code Warrior compiler 
generates PowerPC 32- and 64-bit values for float and double. If this name 
is not defined, the compiler generates 80- and 96-bit values that SANE 
routines use. This allows the same code to be supported on 68K Macs and 
Power Macs, but you might have to rework the code anyway to compen
sate for the loss in precision. 

Be aware that if you've fine tuned the application's processing around the 
68K environment, you might need to do some readjustments for the 



~ Power Macintosh Programming Starter Kit 

~·············································································································· 

PowerPC. The Power Macs use a new Memory Manager that's been opti
mized for a RISC processor; it might have an impact on a program that's 
adapted for the old Memory Manager. Likewise, calling some Toolbox 
routines can create an ISA context switch. Be careful of making Toolbox 
calls in tight loops. If the loop isn't running as fast as expected, a mode 
switch is probably occurring. 

The pascal keyword is ignored by PowerPC compilers. This keyword was 
used to reorder how a C function's arguments get passed to the target 
function. It's primarily used when calling Toolbox functions whose inter
face was based on the Pascal programming language. This isn't a big issue, 
since C calling conventions are the norm for the Power Mac software, and 
the Mixed Mode Manager sorts the rest out for you. However, be aware 
that Pascal automatically passes arguments larger than 4 bytes by refer
ence, and you'll have to declare such arguments as pointers in C. 

Avoid patching traps if you can help it. The Power Macintosh's new run
time architecture allows the ready enhancement of applications and other 
code fragments without resorting to trap patches. If you must patch, take 
into consideration what the code is doing, versus the overhead of the Mode 
switch. Write a fat patch if necessary. 



.-

1 tf 
~:..' 

Program Listings 

Chapter 3 
munger.c 

#include <stdio.h> 

#define CR 0x0D 

#define LF 0x0A 

FILE *istream, *ostream; 

void main(void) 

short crflag; 

long i count, ocount ; 

char ifile[64], ofile [64]; 

.,.names must be 64 chars or less */ 

i nt nextbyte; 

I* Path 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

printf ("Enter input file: "); 
gets (ifile); 
if ((istream = fopen(ifile, "rb")) ==NULL) 

{ 

printf ('\nError opening input\n'); 
return; 
} /* end if *I 

printf ('Enter output file: '); 
gets(ofile); 
if ((ostream fopen(ofile, 'wb')) 

fclose (istream); 

NULL) 

printf ('\nError opening output\n'); 

return; 
/* end if */ 

icount 0L; 
ocount 
crflag 

0L; 
0; 

while((nextbyte = fgetc(istream)) != EOF) 

icount++; 
switch (nextbyte) 

{ 

case CR: 

/* Open the file OK? */ 

/* NO, say so */ 
/* Bail out */ 

/* Can we write an output file */ 

/* NO. First close input file */ 
/* then warn, and bail out */ 

/* Set counters */ 

/* Read char.s until end of file */ 

/* Bump input char counter */ 
/* What char was read? */ 

if (crflag >= 1) /*Two in a row, end of paragraph*/ 

fputc(nextbyte, ostream); /*Write two CRs to the output*/ 
fputc(nextbyte, ostream); 
crflag = 0; /* Reset the flag */ 
ocount++; 
} I* end if *I 

else 
crflag++; 

break; 
case LF: 
break; 
default: 

/* Bump the flag, and toss the CR */ 

/* Toss LF, but don't touch crflag */ 

fputc(nextbyte, ostream); /*All other char.s get written*/ 
ocount++; 
crflag = 0; 

} /* end switch */ 
} /* end while */ 

/* Clear the flag */ 



Appendix C • Program Listings 0 
, ........•.......•......................•...................................................................... ~ 

fclose (istream); 
fclose (ostream); 
printf ("Bytes read: 

/* Clean up */ 

%ld\n", icount); 
printf("Bytes written: %ld\n", ocount); 
} /* end main() */ 

process.c 
#include <processes.h> 
#include <memory.h> 
#include <strings.h> 
#include <stdio.h> 

void main (void) 
{ 

register int 
ProcesslnfoRec 
ProcessSerialNumber 
FSSpec 
unsigned char 
unsigned char 

i; 

thisProcess; 
process; 
thisFileSpec; 
typeBuffer[5) = {0}; 
signatureBuffer[5) = {0}; 

thisProcess.processAppSpec = &thisFileSpec; 
thisProcess.processlnfolength = sizeof(ProcesslnfoRec); 
thisProcess.processName = (unsigned char*) NewPtr(32); 
process.highLongOfPSN = kNoProcess; 
process.lowLongOfPSN = kNoProcess; 

while (GetNextProcess(&process) == noErr) 

if (GetProcesslnformation(&process, &thisProcess) 
{ 

/* Aim pointer at our storage */ 
/* Store record size */ 
/* Allocate room for the name */ 
/* Clear process serial number */ 

/* Loop until all processes found */ 

noErr) /* Obtain detailed info */ 

for (i = 0; i <= 3; i++) /* Copy type & sig info into string buffers */ 

typeBuffer[i) = ((char*) &thisProcess.processType)[i]; 
signatureBuffer[i] = ((char*) &thisProcess.processSignature)[i); 
} /* end for */ 

printf ("Process SN: %ld, %ld, Type: %s, Signature: %s, Name: " 
thisProcess.processNumber.highLongOfPSN, 
thisProcess.processNumber.lowLongOfPSN, 
typeBuffer, 
signatureBuffer); 

printf (" %s \n', P2CStr(thisProcess.processName)); 
} /* end if *I 

/* Print the name */ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

} /* end while */ 

} /* end main() */ 

Chapter 4 
hello1.c 

#include <Types.h> 
#include <QuickDraw.h> 
#include <Fonts.h> 
#include <Windows.h> 
#include <Memory.h> 
#include <Events.h> 
#include <OSUtils.h> 

#define TRUE 
#define FALSE 

#define NIL 
#define IN_FRONT 
#define IS_VISIBLE 

true 
false 

0L 
( -1 ) 

TRUE 
#define NO_CLOSE_BOX FALSE 

void main(void) 

WindowPtr thisWindow; 
Rect windowRect; 

/* Lunge after all the memory we can get */ 

MaxApplZone () ; 
MoreMasters(); 
MoreMasters(); 

/* Initialize the various Managers */ 

InitGraf(&qd.thePort); 
InitFonts(); 
FlushEvents(everyEvent, 0); 
InitWindows(); 

/* Set up the window */ 

windowRect.top = windowRect.left 40; 
windowRect.bottom = 200; 
windowRect.right = 300; 



· Appendix C • Program Listings 011 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

if ((thisWindow = NeWWindow(NIL, &windowRect, 
"\pHello world", IS_VISIBLE, documentProc, 
(WindowPtr) IN_FRONT, NO_CLOSE_BOX, NIL)) !=NIL) 
{ 

SetPort(thisWindow); /*Make window current drawing port*/ 
MoveTo (20, 20); 
OrawString("\pHello world"); 
InitCursor(); 

while (!Button()) /* Wait until mouse button clicked */ 

DisposeWindow(thisWindow); 
} I* end if *I 

else 
SysBeep(30); 

} /* end main() */ 

macmunger.c 
#include <Types.h> 
#include <QuickDraw.h> 
#include <Windows.h> 
#include <Fonts.h> 
#include <Controls.h> 
#include <Dialogs.h> 
#include <Menus.h> 
#include <Devices.h> 
#include <Memory.h> 
#include <Events.h> 
#include <Desk.h> 
#include <OSEvents.h> 
#include <OSUtils. h> 
#include <ToolUtils.h> 
#include <TextUtils.h> 
#include <StandardFile.h> 
#include <Errors.h> 
#include <Resources.h> 
#include <Diskinit.h> 

/* Resource ID numbers */ 

#define LAST_MENU 3 /* Number of menus */ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

#define APPLE_MENU 128 /* Menu ID for Apple menu */ 
#define FILE_MENU 129 /* Menu ID for File menu */ 

#define EDIT_MENU 130 /* Menu ID for Edit menu */ 

#define RESOURCE_ID 127 /* Starting index into the menu array */ 

#define ABOUT_BOX /* About box menu item # in Apple menu */ 

#define OPEN_FILE /* Open item # in File menu */ 

/*------------------··---*/ ,. Separator line is item # 2 */ 
#define !_QUIT 3 /* Quit item # in File menu */ 

#define ABOUT_BOX_ID 128 /* Resource IDs for our windows & dialogs */ 
#define STATUS_BOX_ID 129 
#define ERROR_BOX_ID 130 

/* Various constants */ 
#define NIL 0L 
#define FALSE false 
#define TRUE true 

#define INIT_X 112 
#define INIT_Y 80 

#define APPEND_MENU 0 
#define CHAR_CODE_MASK 255 
#define IN_FRONT -1 
#define NO_CURSOR 0L 
#define ONE_FILE_TYPE 1 
#define LONG_NAP 60L 

#define CR 0x0D 
#define LF 0x0A 

!* Function prototypes */ 

/* Coords for disk init dialog box */ 

Boolean Do_Command (long mResult); 
Boolean Init_Mac(void); 
void Main_Event_Loop(void); 
void Report_Error(OSErr errorCode); 

/* Application-specific functions */ 
void Ask_File(void); 
void Munge_File(short input, short output, unsigned char *fileName); 



Appendix C • Program Listings 013 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

/* Globals */ 
Menu Handle gmyMenus[LAST_MENU+1]; /* Handle to our menus */ 
EventRecord gmyEvent; /* Holds event returned by OS */ 
WindowPtr geventWindow; /* Our private window */ 
Boolean guserDone; /* Indicates user wants to quit *I 
CursHandle gtheCursor; /* Current pointer icon */ 

short gwindowCode; 
WindowPtr gwhichWindow; /* The window that got an event 

OSType 
OSType 

gfileCreator = {'MUNG'}; /* Output file's creator*/ 
gfileType = {'TEXT'}; I* Output file's type *I 

void Report_Error(OSErr errorCode) 

unsigned char errNumString[B]; 

NumToString((long) errorCode, errNumString); 
ParamText(errNumString, NIL, NIL, NIL); 
StopAlert(ERROR_BOX_ID, NIL); 

/* end Report_Error() */ 

void Munge_File(short input, short output, unsigned char *fileName) 
{ 

long 
unsigned 
short 
long 

char 
amount; 
buffer; 
crflag; 
icount, ocount; 

unsigned 
DialogPtr 

char inNumString[12], outNumString[12]; 
statusDialog; 

amount 1L; 
crflag 0; 
icount 0; 
ocount 0; 
while (FSRead(input, &amount, &buffer) == noErr) 

{ 

icount++; 
switch (buffer) 

{ 

case CR: 

/* Bump input char counter */ 
/*What char was read? */ 

*/ 

if (crflag >= 1) /* Two in a row, end of paragraph */ 

FSWrite(output, &amount, &buffer); /*Write two CRs */ 
FSWrite(output, &amount, &buffer); 



0 Power Macintosh Programming Starter Kit 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

crflag = 0; 
ocount++; 
} I• end if •I 

else 
crflag++; 

break; /* end case CR •/ 
case LF: 

break; /* end case LF */ 

default: 
FSWrite(output, &amount, &buffer); 
ocount++; 
crflag = 0; 

/* end switch */ 

/* end while */ 

/* Display processing statistics •/ 

/* Reset the flag */ 

/* Bump the flag, and toss the CR •/ 

/* Toss LF, but don't touch crflag */ 

/* Clear the flag */ 

if ((statusDialog GetNewDialog(STATUS_BOX_ID, NIL, 

(WindowPtr) IN_FRONT)) !=NIL) 

NumToString(icount, inNumString); 
NumToString(ocount, outNumString); 

/* Convert bytes read to string */ 

ParamText (fileName, inNumString, outNumString, NIL); 
DrawDialog(statusDialog); 
Delay (120L, NIL); 

DisposDialog(statusDialog); 
} ,. end if != NIL ., 

else 
Sys Beep ( 30) ; 

} /* end Munge_file() */ 

void Ask_File(void) 

unsigned char 
short 
OSErr 
short 
SFTypeList 

fileName[14] = {"\pMunge.out"}; 
inFileRefNum, outFileRefNum; 

fileError; 
oldVol; 
textType = {'TEXT'}; 

StandardFileReply inputReply, outputReply; 

/* Open the input file */ 

StandardGetFile(NIL, ONE_FILE_TYPE, textType, &inputReply); 



Appendix C • Program Listings 015 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

if (inputReply.sfGood) 
{ 

GetVol (NIL, &oldVol); /* Save current volume */ 

if ((fileError = FSpOpenDF (&inputReply.sfFile, fsCurPerm, 
&inFileRefNum)) != noErr) 

{ 

Report_Error(fileError); 
return; 
} /* end if error */ 

/* Open the output file */ 

StandardPutFile ("\pSave text in:", fileName, &outputReply); 
if (outputReply.sfGood) 

{ 

SetVol(NIL, outputReply.sfFile.vRefNum); 
fileError = FSpCreate(&outputReply.sfFile, gfileCreator, gfileType, 

smSystemScript); 
switch(fileError) /* Process result from File Manager */ 

case noErr: 
break; 
case dupFNErr: 

if ( (fileError 
{ 

/* File already exists, wipe it out */ 

FSpDelete(&outputReply.sfFile)) == noErr) 

if ((fileError = FSpCreate(&outputReply.sfFile, 

{ 

Report_Error(fileError); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 
} /* end != noErr */ 

/* end if noErr */ 

else 

break; 

{ 

Report_Error(fileError); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 
} /* end else */ 

/* end case dupFNErr */ 

gfileCreator, gfileType, 
smSystemScript)) != noErr) 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

default: /* Unknown error, try to abort cleanly */ 
Report_Error(fileError); 
FSClose (inFileRefNum); /*Close the input file*/ 
SetVol(NIL, oldVol); /* Restore original volume *I 

return; 
/* end switch */ 

/* Open data fork */ 
if (l(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum))) 

{ 

gtheCursor = GetCursor(watchCursor); 
SetCursor(&**gtheCursor); 

/* Change the cursor */ 

Munge_File (inFileRefNum, outFileRefNum, (unsigned char *) 
inputReply.sfFile.name); 

FSClose (outFileRefNum); 
SetCursor(&qd.arrow); 
} /* end if lfileError */ 

/* Restore the cursor */ 

FlushVol (NIL, outputReply.sfFile.vRefNum); 
} /* end if outputReply.sfGood */ 

FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
} /* end if inputReply.sfGood */ 

} /* end Ask_File() */ 

Boolean Do_Command (long mResult) 
{ 

unsigned char 
short 
Boolean 
short 
DialogPtr 
short 
GrafPtr 

accName[255J; 
itemHit; 
quitApp; 
refNum; 
theDialog; 
theltem, theMenu; 
savePort; /* place to stow current GrafPort when */ 

/* Desk Accessory (DA) is activated */ 

quitApp FALSE; /*Assume Quit not chosen */ 
theMenu HiWord(mResult); /*Extract the menu selected*/ 
theltem LoWord(mResult); /*Get the item on the menu */ 

switch (theMenu) 

case APPLE_MENU: 



...................................................................... ~~P.~~~i~.~ ... ~ ... ~.~~~~.~~i:t!~?.~.0 
if (theltem == ABOUT_BOX) 

{ 

/* Describe ourself */ 

if ((theDialog GetNewDialog(ABOUT_BOX_ID, NIL, 

ModalDialog(NIL, &itemHit); 
DisposDialog(theDialog); 
} /* end if I= NIL */ 

else 
SysBeep(30); 

(WindowPtr) IN_FRONT)) I= NIL) 

/* end if theltem == ABOUT_BOX */ 
else /* It's a DA */ 

GetPort(&savePort); /*Save port (if DA doesn't) */ 
GetMenuitemText(gmyMenus[(APPLE_MENU - MENU_RESOURCE)), 

theltem, accName); 
refNum = OpenDeskAcc(accName); 
SetPort(savePort); 
} 

break; /* end APPLE_MENU case */ 

case FILE_MENU: 
switch(theltem) 

case OPEN_FILE: 
Ask_File ( ) ; 
break; 

case !_QUIT: 
quitApp = TRUE; 

break; 
} /* end switch */ 

break; /* end FILE_MENU case */ 

case EDIT_MENU: 
SystemEdit(theitem - 1); 

break; 
default: 

break; 
} /* end switch */ 

/* Start it *I 

/* Done, restore the port */ 

/* Obtain file info & process */ 

/* User wants to stop */ 

/* Pass events to OS */ 

Hili teMenu ( 0) ; /* Switch off highlighting on the menu just used */ 
return quitApp; 

} /* end Do_Command() */ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

void Main_Event_Loop(void) 
{ 

Point where; 

FlushEvents(everyEvent, 0); 
guserDone = FALSE; 

/* Clear out left over events */ 

do 

if (WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR)) 
/*We have an event ... */ 

switch(gmyEvent.what) /* Field each type of event */ 

case mouseDown: /* In what window, and where?? */ 
gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow); 

switch(gwindowCode) 

case inSysWindow: /* It's a Desk Accessory (DA) */ 
SystemClick(&gmyEvent, gwhichWindow); 

break; 
case inDrag: 
break; 
case inGrow: 
break; 
case inContent: 
break; 

/* Drag the window */ 

/* Change the window's size */ 

/*Bring window to front if it's not */ 

case inMenuBar: /* In a menu, handle the command */ 
guserDone = Do_Command(MenuSelect(gmyEvent.where)); 

break; 
} /* end switch gwindowCode */ 

break; /* end mouseDown */ 
case keyDown: 
case autoKey: /* Command key hit, pass to MenuKey */ 

if((gmyEvent.modifiers & cmdKey) I= 0) 
guserDone = Do_Command(MenuKey((char) (gmyEvent.message 

& CHAR_CODE_MASK))); 
break; /* end key events */ 

case updateEvt: /* Update the window */ 
gwhichWindow (WindowPtr) gmyEvent.message; 

break; 
case diskEvt: /* Handle disk insertion event */ 

if (HiWord(gmyEvent.message) I= noErr) 



...................................................................... ~~P.~~~~.s ... ~ ... ~;?.~~:!.~.~~R' .. e 
DILoad(); 
where.h INIT_X; 
where.v = INIT_Y; 
DIBadMount(where, gmyEvent.message); 
DIUnload () ; 
} /* end if I= noErr */ 

break; /* end disk event */ 

case activateEvt: /* Activate event */ 
gwhichWindow = (WindowPtr) gmyEvent.message; 

break; 
default: 
break; 
} /* end switch gmyEvent.what */ 

} /* end if on next event */ 
/* end do */ 

while (guserDone ==FALSE); 
} /*end Main_Event_Loop() */ 

Boolean Init_Mac(void) 
{ 

short i; 

/* Loop until told to stop */ 

/* Lunge after all the memory we can get */ 

MaxApplZone(); 

/* Make sure we've got some master pointers */ 

MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 

/* Initialize managers */ 
InitGraf{&qd.thePort); 
InitFonts(); 
FlushEvents(everyEvent, 0); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs(NIL); 

/* Loop to setup menus */ 
for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++) 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

gmyMenus[(i - RESOURCE_ID)J = GetMenu(i); /*Get menu resource*/ 
if (gmyMenus[(i - RESOURCE_ID)J ==NIL) /*Didn't get resource?*/ 

return FALSE; 
}; /* end for */ 

/* Build Apple menu */ 

/* No, bail out */ 

AppendResMenu(gmyMenus[(APPLE_MENU - RESOURCE_ID)], 'DRVR'); 

/* Add the menus */ 
for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++) 

InsertMenu(gmyMenus[(i - RESOURCE_ID)], APPEND_MENU); 

DrawMenuBar(); 
InitCursor(); 
return TRUE; 

} /* end Init_Mac() */ 

void main(void) 
{ 

if (Init_Mac()) 
Main_Event_Loop(); 

else 
SysBeep(30); 

} /* end main */ 

SonOMunger.c 
#include <Types.h> 
#include <QuickDraw.h> 
#include <Windows.h> 
#include <Fonts.h> 
#include <Controls.h> 
#include <Dialogs.h> 
#include <Menus.h> 
#include <Devices.h> 
#include <Memory.h> 
#include <Events.h> 
#include <Desk.h> 
#include <OSEvents.h> 
#include <OSUtils.h> 
#include <ToolUtils.h> 
#include <TextUtils.h> 
#include <StandardFile.h> 

/* Tell user app is ready */ 



Appendix C • Program Listings 021 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#include <Errors.h> 
#include <Resources.h> 
#include <Disklnit.h> 

#include <AppleTalk.h> 
#include <AppleEvents.h> 
#include <EPPC.h> 
#include <PPCToolBox.h> 
#include <Processes.h> 

struct AEinstalls 
{ 

AEEventClass theClass; 
AEEventID theEvent; 
AEEventHandlerProcPtr theProc; 

}; 

typedef struct AEinstalls AEinstalls; 

#define LAST_HANDLER 3 /* Number of Apple Event handlers - 1 
#define LAST_MENU 3 /* Number of menus */ 

#define APPLE_MENU 128 /* Menu ID for Apple menu */ 
#define FILE_MENU 129 /* Menu ID for File menu */ 

#define EDIT_MENU 130 /* Menu ID for Edit menu */ 
#define RESOURCE_ID 127 /* Starting index into the menu array 

*/ 

*/ 

#define ABOUT_BOX /* About box menu item # in Apple menu */ 

#define OPEN_FILE /* Open item # in File menu */ 
/* ........................ ·*I /* Separator line is item # 2 */ 
#define I_QUIT 3 /* Quit item # in File menu */ 

#define ABOUT_BOX_ID 128 /* Resource IDs for our windows & dialogs */ 
#define STATUS_BOX_ID 129 
#define ERROR_BOX_ID 130 
#define ERROR_MESS_ID 131 

/* Various constants */ 
#define NIL 0L 
#define FALSE false 
#define TRUE true 

#define INIT_X 112 /* Coords for disk init dialog box */ 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

#define INIT_Y 80 

#define APPEND_MENU 0 
#define CHAR_CODE_MASK 255 

#define DEFAULT_VOL 0 
#define IN_FRONT -1 
#define NO_CURSOR 0L 
#define ONE_FILE_TYPE 
#define SHORT_NAP 60L 

#define CR 0x0D 
#define LF 0x0A 

/* Function prototypes */ 
Boolean Do_Command (long mResult); 
Boolean Init_Mac(void); 
void Main_Event_Loop(void); 
void Report_Error(OSErr errorCode); 
void Report_Err_Message(unsigned char *errMess); 

/* High-level Apple Event functions */ 
Boolean Init_AE_Events(void); /* Install the handlers */ 
void Do_High_Level(EventRecord *AERecord); /*Post high-level event to the dispatch table*/ 
pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein, AppleEvent *reply, long refin); 
/* Handlers */ 
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent *reply, long refin); 
pascal OSErr Core_AE_Print_Handler(AppleEvent •messagein, AppleEvent •reply, long refin); 
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein, AppleEvent *reply, long refin); 

t• Application-specific functions */ 
void Ask_File(void); 
OSErr Munge_File(short input, short output, unsigned char *fileName); 

/* Globals */ 
MenuHandle gmyMenus[LAST_MENU+1]; /* Handle to our menus */ 
Event Record gmyEvent; ,. Holds the event returned by the OS */ 
WindowPtr geventWindow; /* Our private window */ 
Boolean guserDone; ,. Indicates user wants to quit (== TRUE) 
CursHandle gtheCursor; /* Current pointer icon ., 
short gwindowCode; 
WindowPtr gwhichWindow; /* The window that got an event */ 

., 



Appendix C • Program Listings 0. 
·············································································································~ 

OSType 
OSType 

gfileCreator = {'MUNG'}; /* File type and creator for our output file */ 
gfileType = {'TEXT'}; 

void Report_Err_Message(unsigned char *errMess) 

ParamText(errMess, NIL, NIL, NIL); 
CautionAlert(ERROR_MESS_ID, NIL); 

} /* end Report_Err_Message() */ 

/* Function to report error conditions. Error ID only. */ 
void Report_Error(OSErr errorCode) 
{ 

unsigned char errNumString[BJ; 

NumToString((long) errorCode, errNumString); 
ParamText(errNumString, NIL, NIL, NIL); 
StopAlert(ERROR_BOX_ID, NIL); 

} /* end Report_Error() */ 

/* Function to read and write a file. Passed in are the input and output file's volume */ 
/* reference numbers, and the name string of the input file */ 
OSErr Munge_File(short input, short output, unsigned char *fileName) , 
{ 

long 
unsigned char 
short 
long 
OSErr 
long 
unsigned char 
DialogPtr 

amount 1 L; 
crflag 0; 
icount 0; 
ocount 0; 

amount; 
buffer; 
crflag; 
dummyResult; 
finOutErr; 
icount, ocount; 
inNumString[12], outNumString[12]; 
statusDialog; 

while (FSRead(input, &amount, &buffer) == noErr) 
{ 

icount++; 
switch (buffer) 

{ 

case CR: 

/* Bump input char counter */ 
/*What char was read? */ 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

if (crflag >= 1) 
{ 

/* Two in a row, end of paragraph */ 

if (l(finOutErr = FSWrite(output, &amount, &buffer))) 
{ 

if ((finOutErr = FSWrite(output, &amount, &buffer)) I= noErr) 
{ 

Report_Error(finOutErr); 
return finOutErr; 

/* end if I= */ 

/* end if I *I 

else 
{ 

Report_Error(finOutErr); 
return finOutErr; 
} /* end else */ 

crflag = 0; 
ocount++; 
} I* end if *I 

else 
crflag++; 

break; /* end case CR */ 
case LF: 
break; /* end case LF */ 

/* Reset the flag */ 

/* Bump the flag, and toss the CR */ 

/* Toss LF, but don't touch crflag */ 

default: /* Write a character out */ 

if ((finOutErr = FSWrite(output, &amount, &buffer)) I= noErr) 

Report_Error(finOutErr); 
return finOutErr; 
} /* end if */ 

ocount++; 

crflag = 0; 
break; 

} /* end switch */ 

} /* end while */ 

/* Display processing statistics */ 

/* Clear the flag */ 

if ((statusDialog = GetNewDialog(STATUS_BOX_ID, NIL, (WindowPtr) IN_FRONT)) I= NIL) 
{ 

NumToString(icount, inNumString); /*Convert bytes read to string */ 
NumToString(ocount, outNumString); 
ParamText (fileName, inNumString, outNumString, NIL); 
DrawDialog(statusDialog); 
Delay (120L, &dummyResult); 



" ........ "." ... ""." .. "." ... : .... "" ... " .... " ............... ~~!!':~~;~.~ ... ~ ... ~:?.~":!::!. ~.'!1!~~.· .. 0 
DisposDialog{statusDialog); 
} /* end if I= NIL */ 

else 
SysBeep{30); 

return finOutErr; 
/* end Munge_file{) */ 

/* Obtain info on file to munge and output file */ 
void Ask_File{void) 

unsigned char 
short 

fileName[14] = {"\pMunge.out"}; 
inFileRefNum, outFileRefNum; 
fileError; OSErr 

short 
SFTypeList 

oldVol; 
textType ={'TEXT'}; 

StandardFileReply inputReply, outputReply; 

/* Open the input file */ 
StandardGetFile{NIL, ONE_FILE_TYPE, textType, &inputReply); 
if {inputReply.sfGood) 

{ 

GetVol {NIL, &oldVol); /*Save current volume*/ 
if {{fileError = FSpOpenDF {&inputReply.sfFile, fsCurPerm, &inFileRefNum)) I= noErr) 

{ 

Report_Error{fileError); 
return; 
} /* end if error */ 

/* Open the output file */ 
StandardPutFile {"\pSave text in:", fileName, &outputReply); 
if {outputReply.sfGood) 

{ 

SetVol{NIL, outputReply.sfFile.vRefNum); /*Make the destination volume current*/ 
fileError = FSpCreate{&outputReply.sfFile, gfileCreator, gfileType, 

smSystemscript); 
switch{fileError) /* Process result from File Manager */ 

case noErr: 
break; 
case dupFNErr: /* File already exists, wipe it out */ 

if {{fileError FSpDelete{&outputReply.sfFile)) == noErr) 



I'::':\. Power Macintosh Programming Starter Kit 
~·············································································································· 

if ((fileError FSpCreate(&outputReply.sfFile, gfileCreator, 
gfileType, smSystemScript)) I= noErr) 

Report_Error(fileError); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 
} /* end if I= noErr */ 

} /* end == noErr */ 
else 

Report_Error(fileError); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 
} /* end else */ 

/* end case dupFNErr */ break; 
default: /* Unknown error, try to abort cleanly */ 

Report_Error(fileError); 
FSClose (inFileRefNum); /*Close the input file*/ 
SetVol(NIL, oldVol); 
return; 

/* Restore original volume */ 

/* end switch */ 

/* Open data fork */ 
if {l(FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum))) 

{ 

gtheCursor = GetCursor(watchCursor); 
SetCursor(&**gtheCursor); 

/* Change the cursor */ 

Munge_File (inFileRefNum, outFileRefNum, (unsigned char*) inputReply.sfFile.name); 
FSClose (outFileRefNum); 
SetCursor(&qd.arrow); /* Restore the cursor */ 
} /* end if lfileError */ 

FlushVol (NIL, outputReply.sfFile.vRefNum); 
} /* end if outputReply.sfGood */ 

FSClose (inFileRefNum); 
SetVol(NIL, oldVol); /* Restore current volume */ 
} /* end if inputReply.sfGood */ 

} /* end Ask_File() */ 

Boolean Init_AE_Events(void) 



Appendix C • Program Listings 027 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

OSErr err; 
short i; 
static AEinstalls HandlersToinstall[] = /*The 4 required Apple Events */ 

{ 

}; 

{kCoreEventClass, kAEOpenApplication, Core_AE_Open_Handler}, 
{kCoreEventClass, kAEOpenDocuments, Core_AE_OpenDoc_Handler}, 
{kCoreEventClass, kAEQuitApplication, Core_AE_Quit_Handler}, 
{kCoreEventClass, kAEPrintDocuments, Core_AE_Print_Handler} 

for (i = 0; i < LAST_HANDLER; i++) 
{ 

err= AEinstallEventHandler(HandlersToinstall[i].theClass, 
HandlersToinstall[i].theEvent, 

NewAEEventHandlerProc(HandlersToinstall[i].theProc), 
0, FALSE); 

if (err) /* If there was a problem, bail out */ 
return FALSE; 

} /* end for */ 

return TRUE; 
} /*end Init_AE_Events() */ 

/* High-level open application event. */ 
pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein, AppleEvent *reply, long refln) 

return noErr; 
} /*end Core_AE_Open_Handler() */ 

/* High-level open document event */ 
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent *reply, long refln) 
{ 

short 
AEDesc 
OSErr 
AEKeyword 
DescType 
Size 
long 
unsigned 
FSSpec 
short 
OSErr 

char 

i, j; 

fileDesc; 
highLevelErr; 
ignoredKeyWord; 
ignoredType; 
ignoredSize; 
numberOFiles; 
outFileName[64J; 
inFSS, outFSS; 
inFileRefNum, outFileRefNum; 
flnErr, fOutErr, mungeResult; 



l'::::tt_ Power Macintosh Programming Starter Kit 
~·············································································································· 

gtheCursor = GetCursor(watchCursor); 
SetCursor(&**gtheCursor); 

/* Change the cursor to indicate we're busy*/ 

mungeResult = 0; /* Clear result so for loop will operate */ 
/* Get parameter info (a list of file names) out of Apple Event*/ 

if (l(highLevelErr = AEGetParamDesc(messagein, keyDirectObject, typeAEList, &fileDesc))) 
{ 

if ((highLevelErr = AECountitems(&fileDesc, &numberOFiles)) == noErr) /*Count files*/ 
{ 

for (i = 1; ((i <= numberOFiles) && (lhighLevelErr) && (lmungeResult)); ++i) 
{ 

if (l(highLevelErr = AEGetNthPtr(&fileDesc, i, typeFSS, 
&ignoredKeyWord, &ignoredType, 
(char *)&inFSS, sizeof(inFSS), 
&ignoredSize))) /*Get each name */ 

/* Copy input file name to file output name */ 
for (j = 1; (j <= inFSS.name[0]); j++) 

{ 

outFileName[j] = inFSS.name[j]; 
} /* end for */ 

outFileName[jJ = '. '; /* Tack on a '.out' extension */ 
outFileName[j + 1] 'o'; 
outFileName[j + 2] = 'u'; 
outFileName[j + 3] = 't'; 
outFileName[0] = (j + 3); /*Update the string's length*/ 
if (l(finErr = FSpOpenDF(&inFSS, fsCurPerm, &inFileRefNum))) 

{ 

if ((fOutErr = FSMakeFSSpec(DEFAULT_VOL, NIL, outFileName, &outFSS)) 

if (l(fOutErr FSpCreate(&outFSS, gfileCreator, 
gfileType, smSystemScript))) 

{ 

if (l(fOutErr FSpOpenDF(&outFSS, fsCurPerm, &outFileRefNum))) 
{ 

mungeResult Munge_File(inFileRefNum, outFileRefNum, 
inFSS.name); /*Process the data*/ 

FlushVol(NIL, outFileRefNum); 
FSClose(outFileRefNum); 
} /* end if lfOutErr */ 

else 

else 

Report_Err_Message("\pError opening output file"); 
/* end if lfOutErr */ 

fnfErr) 



Appendix C • Program Listings ~ 
··············································································································~ 

{ 

Report_Err_Message("\pError creating output file"); 
} /* end else */ 

/* end if == fnfErr */ 
else 

/* No error means a file already has that name */ 
if (fOutErr == noErr) 

Report_Err_Message("\pCan't write, file already exists"); 
} /* end else */ 

FSClose(inFileRefNum); 
} /* end if lfinErr */ 

else 
Report_Err_Message("\pError opening input file"); 

} /* end if lhighlevelErr */ 
} /* end for */ 

/* end if == noErr */ 
highLevelErr = AEDisposeDesc(&fileDesc); /*Dispose of the copy made by AEGetParamDesc() */ 
} /* end if lhighLevelErr */ 

SetCursor(&qd.arrow); 
guserDone = TRUE; 
return highLevelErr; 

/* Restore the cursor */ 
/* We're done, stop the application */ 

} /* end Core_AE_OpenDoc_Handler() */ 

/* High-level print event */ 
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, AppleEvent *reply, long refin) 
{ 

return errAEEventNotHandled; /* No printing done here, so no print handler */ 
/* end Core_AE_Print_Handler() */ 

/* High-level quit event */ 
pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein, AppleEvent *reply, long refin) 
{ 

guserDone = TRUE; 
return noErr; 

} /* Core_AE_Quit_Handler() */ 

/* Tell main event loop we want to stop */ 

void Do_High_Level(EventRecord *AERecord) 
{ 

AEProcessAppleEvent(AERecord); 
} /* end Do_High_Level() */ 

/* Handle a command thru menu activation. Don't forget to unhighlight the 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

selection to indicate the application is done. (Menu is highlighted 

automatically by MenuSelect.) */ 

Boolean Do_Command (long mResult) 

unsigned char accName[255]; 
short itemHit; 
Boolean quitApp; 

short refNum; 
DialogPtr theDialog; 
short theitem, theMenu; 
GrafPtr savePort; /* place to stow current GrafPort when we activate a 

Desk Accessory (DA) */ 

quitApp FALSE; /*Assume Quit not activated */ 
theMenu HiWord(mResult); /*Extract the menu selected*/ 
theitem LoWord(mResult); /*Get the item on the menu */ 

switch (theMenu) 
{ 

case APPLE_MENU: 

if (theitem == ABOUT_BOX) 
{ 

/* "About ... " selected, describe ourself */ 

if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, (WindowPtr) IN_FRONT)) I= NIL) 

ModalDialog(NIL, &itemHit); 
DisposDialog(theDialog); 
} /* end if I= NIL */ 

else 

SysBeep(30); 
/* end if theitem == ABOUT_BOX */ 

else /* It's a DA*/ 

GetPort(&savePort); /*Save port (in case the DA doesn't) */ 
GetMenuitemText(gmyMenus[(APPLE_MENU - RESOURCE_ID)], theitem, accName); 
refNum = OpenDeskAcc(accName); 
SetPort(savePort); 

break; /* end APPLE_MENU case */ 

case FILE_MENU: 
switch(theitem) 

/* Start it *I 

/* Done, restore the port */ 



..................................................................... ~~P.~~~~.~ ... ~ ... ~:?.~'.'!~.~.~~~.~.~ 
case OPEN_FILE: 

Ask_File(); 

break; 
case I_QUIT: 

quitApp = TRUE; 

break; 
} /* end switch */ 

break; /* end FILE_MENU case */ 

case EDIT_MENU: 
SystemEdit(theitem - 1); 

break; 
default: 

break; 
/* end switch */ 

HiliteMenu(0); /* Switch off highlighting on the menu just used */ 
return quitApp; 

/* end Do_Command() */ 

/* The main chunk of code that processes events as they occur. Execution remains in */ 
/* this loop until Do_Command returns TRUE, indicating the user wants to quit. In */ 

/* most cases, an event should call a subroutine to handle the event, but in this */ 
/* example the actions are so simple most code can be placed in-line. */ 

void Main_Event_Loop(void) 

{ 
Point where; 

FlushEvents(everyEvent, 0); 
guserDone = FALSE; 

/* Clear out left over events */ 

do 

if (WaitNextEvent(everyEvent, &gmyEvent, SHORT_NAP, NO_CURSOR)) 
/*We have an event ... */ 

switch(gmyEvent.what) 

{ 

/* Field each type of event */ 

case mouseDown: /* In what window, and where?? */ 
gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow); 

switch(gwindowCode) 

case inSysWindow: /* It's a Desk Accessory (DA) */ 
SystemClick(&gmyEvent, gwhichWindow); 



I':::\. Power Macintosh Programming Starter Kit 
~············································································································· 

break; 
case inDrag: 
break; 
case inGrow: 
break; 
case inContent: 
break; 

/* Drag the window */ 

/* Grow the window, if size has changed */ 

/* Bring window to front, and that's all */ 

case inMenuBar: /* In a menu, handle the command */ 

guserDone = Do_Command(MenuSelect(gmyEvent.where)); 
break; 
} /* end switch gwindowCode */ 

break; /* end mouseDown */ 

case keyDown: 
case autoKey: /* Command key pressed, pass to MenuKey */ 

if((gmyEvent.modifiers & cmdKey) I= 0) 

guserDone = Do_Command(MenuKey((char) (gmyEvent.message 
& CHAR_CODE_MASK))); 

break; /* end key events */ 

case updateEvt: /* Update the window */ 

gwhichWindow = (WindowPtr) gmyEvent.message; 
break; 

case diskEvt: /* Handle disk insertion event */ 

if (HiWord(gmyEvent.message) I= noErr) 

DILoad(); 
where.h INIT_X; 
where.v = INIT_Y; 
DIBadMount(where, gmyEvent.message); 
DIUnload () ; 
} /* end if != noErr */ 

break; /* end disk event */ 

case activateEvt: /* Activate event */ 

gwhichWindow = (WindowPtr) gmyEvent.message; 
break; 
case kHighLevelEvent: /* Handle Apple Event */ 

Do_High_Level(&gmyEvent); 
break; 
default: 
break; 
} /* end switch gmyEvent.what */ 

} /* end if on next event */ 

} /* end do */ 



Appendix C • Program Listings 0. 
·············································································································~ 

while (guserDone ==FALSE); 
/*end Main_Event_Loop() */ 

Boolean Init_Mac(void) 

short i; 

/* Lunge after all the memory we can get */ 
MaxApplZone(); 

/* Make sure we've got some master pointers */ 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 

/* Initialize managers */ 
InitGraf(&qd.thePort); 
InitFonts () ; 
FlushEvents(everyEvent, 0); 
InitWindows(); 
Ini tMenus (); 
TEinit(); 
InitDialogs(NIL)j 

/* Loop until told to stop */ 

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++) /*Loop to setup menus*/ 
{ 

gmyMenus[(i - RESOURCE_ID)J = GetMenu(i); /*Get menu resource*/ 
if (gmyMenus[(i - RESOURCE_ID)J ==NIL) /*Didn't get resource?*/ 

return FALSE; 
}; /* end for */ 

/* No, sure didn't, bail out */ 

AppendResMenu(gmyMenus[(APPLE_MENU RESOURCE_ID)], 'DRVR')j /*Build Apple menu*/ 

for (i = APPLE_MENU; i < (APPLE_MENU + LAST_MENU); i++) 
InsertMenu(gmyMenus[(i - RESOURCE_ID)), APPEND_MENU); 

orawMenuBar(); 

/* Add the menus */ 



0.. Power Macintosh Programming Starter Kit 
~·············································································································· 

if (IInit_AE_Events()) 

return FALSE; 
/* Set up our high-level event handlers */ 

InitCursor(); 
return TRUE; 

/* Tell user app is ready */ 

/* end Init_Mac() */ 

void main(void) 
{ 

if (Init_Mac()) 
Main_Event_Loop(); 

else 
SysBeep(30); 

} /* end main */ 

Chapter 6 
SwitchBank.c 

/* SwitchBank - Apple Event application that can eject "captive */ 

*/ 

*/ 

*/ 

/* 
/* 

I* 

volumes". (The volume, usually a CD, can't be 
ejected because File Sharing (FS) is on.) 

/* Creation date: 
/* Added server call to halt FS, instead of using a 
/* Quit Apple Event (I'm told this is the safer 

I* way to do this.) 
/* Changed code to look at volume to see if it's shared, 
/* rather than just snoop for the File Sharing 
/* 

/* 
/* 

/* 

Extension. This way we can eject other volumes 
without restarting FS frequently, thereby 
fragmenting the heap. This also lets us eject 
a volume as FS starts up, without interfering 

/* with that operation. 
/* Changed code to use FindFolder() to locate startup 
/* 

/* 

/* 

volume. Also moved error messages into strings. 
Fixed a bug where the program wasn't releasing 
the memory used by AEGetParamDesc()-

#include <Types.h> 
#include <QuickDraw.h> 
#include <Windows-h> 
#include <Fonts.h> 

23-Jan-94 */ 

*/ 

*/ 

26-Jan-94 *I 

*/ 

*/ 
*/ 

*/ 

*/ 
30-Jan-94 */ 

*/ 

24-Feb-94 */ 

*/ 

*/ 

*/ 



Appendix C • Program Listings 035 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#include <Controls.h> 
#include <Dialogs.h> 
#include <Menus.h> 
#include <Devices.h> 
#include <Memory.h> 
#include <Files.h> 
#include <Events.h> 
#include <Desk.h> 
#include <OSEvents.h> 
#include <ToolUtils.h> 
#include <Diskinit.h> 
#include <Folders.h> 

#include <AppleTalk.h> 
#include <AppleEvents.h> 
#include <EPPC.h> 
#include <PPCToolBox.h> 
#include <Processes.h> 

/* Definitions */ 
#define LAST_MENU 
#define LAST_HANDLER 

#define MENU_BAR_ID 
#define APPLE_MENU 
#define FILE_MENU 
#define EDIT_MENU 
#define SWITCH_MENU 
#define RESOURCE_ID 

#define ABOUT_BOX 

#define I_QUIT 

/* various constants */ 

#define NIL 
#define FALSE 
#define TRUE 

#define INIT_X 
#define INIT_Y 

#define APPEND_MENU 

4 

3 

128 

128 

129 

130 

131 

127 

0L 

false 
true 

112 

80 

0 

/* Number of menus */ 

/* Number of Apple Event handlers - 1 */ 

/* ID for MBAR resource */ 

/* Menu ID for Apple menu */ 

/* Menu ID for File menu */ 

/* Menu ID for Edit menu */ 

/* Menu ID for File Share control */ 

/* Starting index into the menu array */ 

/* About box menu item# in Apple menu */ 

/* Quit item# in File menu */ 

I* Coords for disk init dialog box */ 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

#define CHAR_CODE_MASK 255 
#define DEFAULT_VOL 0 
#define IN_FRONT ( -1) 
#define MAX_ TRIES 6 
#define NO_CURSOR 0L 
#define LONG_NAP 60L 
#define SYSTEM_7 0x0700 
#define FILE_SHARING_CREATOR 'hhgg' 
#define FILE_SHARING_TYPE '!NIT' 

#define ABOUT_BOX_ID 128 
#define ERROR_BOX_ID 130 
#define ERROR_MESS_ID 131 

#define LOG_ID_STR 128 
#define PROBLEM_STOPPING_FS 
#define PROBLEM_STARTING_FS 2 
#define PROBLEM_ ON_ EJECT 3 
#define DONT_EJECT_STARTUP_VOL 4 

#define CANT_FIND_STARTUP_VOL 5 

#define TROUBLE_WITH_SYS_INFO 6 
#define CANT_LOCATE_FILE 7 
#define PROBLEM_WITH_AE_HANDLER 8 
#define SYSTEM_7_REQUIRED 9 

#define PERSONAL_ACCESS_MASK 
#define SEND_MESSAGE 
#define SHUT_DOWN 

/* Function prototypes */ 

0x00000200L 
13 

2 

Boolean Check_System(void); 
Boolean Do_command (long mResult); 
void Main_Event_Loop(void); 
Boolean Init_Mac(void); 
void Report_Error(OSErr errorCode); 
void Report_Err_Message(long messageID); 

Boolean Init_AE_Events(void); 
void Do_High_Level(EventRecord *AERecord); 

/* Resource IDs for our windows & dialogs */ 

/* Resource ID for the message strings */ 
/* ID numbers of the messages */ 

/* Bit 9 in vMAttrib field = volume is shared */ 
/* Send a message to the file server */ 
/* csCode to shut down the server */ 

/* Standard application functions */ 

/* High level Apple Events */ 

pascal OSErr Core_AE_Open_Handler(AppleEvent •messagein, AppleEvent *reply, long refin); 
/* Handlers */ 
pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent *reply, long refin); 
pascal OSErr Core_AE_Print_Handler(AppleEvent •messagein, AppleEvent *reply, long refin); 



Appendix C • Program Listings 037 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

pascal OSErr Core_AE_Quit_Handler(AppleEvent *messagein, AppleEvent •reply, long refln); 

Boolean File_Share_On(short vRefNum); 
void Stop_File_Sharing(void); 
void Start_File_Sharing(void); 
void Toggle_File_Sharing(void); 
Boolean Get_FS_Info(void); 
Boolean Find_File_Sharing(void); 

/* Assorted structures for server trap */ 
typedef long *LongintPtr; 

#if defined(powerc) II defined (~powerc) 
#pragma options align=mac68k 
#endif 

struct DisconnectParam 
{ 

QElemPtr qlink; 
short qType; 
short ioTrap; 
Ptr ioCmdAddr; 
ProcPtr ioCompletion; 
OSErr ioResult; 
LongintPtr scDiscArrayPtr; 
short scArrayCount; 
short reserved; 
short scCode; 
short scNumMinutes; 
short scFlags; 
StringPtr scMessagePtr; 
}; 

#if defined(powerc) II defined(~powerc) 

#pragma options align=reset 
#endif 

typedef struct DisconnectParam DisconnectParam; 
typedef union SCParamBlockRec SCParamBlockRec; 
typedef SCParamBlockRec *SCParamBlockPtr; 

/* Functions to handle details of file sharing */ 

/* Structure for installing handlers into AE event dispatch table */ 

struct AEinstalls 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

AEEventClass theClass; 
AEEventIO theEvent; 
AEEventHandlerProcPtr theProc; 

} ; 

typedef struct AEinstalls AEinstalls; 

t• Globals - standard */ 

WindowPtr 
EventRecord 
CursHandle 

Boolean 
WindowPtr 
short 

geventWindow; 
gmyEvent; 
gtheCursor; 

guseroone; 
gwhichWindow; 

gwindowCode; 

/* our private window */ 

/* Current pointer icon */ 

/* Application-specific globals */ 

short gdragNOropFlag; 
ProcessinfoRec gprocess; 

ProcessSerialNumber gprocessSN; 
long gSysOirID; 
short gsysVRefNum; 
FSSpec gthisFileSpec; 
FSSpecPtr gthisFileSpecPtr; 

/* Glue to call the ServerOispatch trap •/ 
#if USES68KINLINES 

#pragma parameter ~00 mySyncServerOispatch(~A0) 
#endif 

pascal OSErr mySyncServerOispatch(SCParamBlockPtr PBPtr) 
FOURWOROINLINE(0x7000, 0xA094, 0x3028, 0x0010); 

,. = { ,. 0x7000, ,. MOVEQ #$00,00 II ,. 0xA094, ,. _ServerOispatch II ,. 0x3028,0x0010 ,. MOVE.W ioResult(A0),00 II 

Input must be 0 
Hop to the trap 
Move result to 00 because ,. } ; II File Sharing doesn't. 

#ifdef powerc 

t• Call the 68K code from the PowerPC through the Mixed Mode Manager */ 

static pascal OSErr mySyncServerDispatch(SCParamBlockPtr PBPtr) 

ProcinfoType myProcinfo; 
OSErr result; 

., ., ., ., ., 



Appendix C • Program Listings 039 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

/*Need an RTS at the end to return ... */ 

static short code[) = {0x7000, 0xA094, 0x3028, 0x0010, 0x4E75}; 

/* Build the procinfo (note use of register based calls) */ 

myProcinfo = kRegisterBased 
RESULT_SIZE(SIZE_CODE(sizeof(OSErr))) 
REGISTER_RESULT_LDCATION(kRegisterD0) 
REGISTER_ROUTINE_PARAMETER(1,kRegisterA0, 

SIZE_CODE(sizeof(SCParamBlockPtr))); 

result CallUniversalProc((UniversalProcPtr) code, myProcinfo, (PBPtr)); 

return result; 
/* mySyncServerDispatch() */ 

#endif 

void Report_Err_Message(long messageID) 

unsigned char errorString[256J; 

GetindString((unsigned char*) errorString, LOG_ID_STR, messageID); 

if (errorString[0) 0) /* Is there a string present? */ 

SysBeep(30); 

return; 

/* No, give up */ 

} /* end if *I 

ParamText(errorString, NIL, NIL, NIL); 
CautionAlert(ERROR_MESS_ID, NIL); 

/*end Report_Err_Message() */ 

void Report_Error(OSErr errorCode) 

unsigned char errNumString[SJ; 

NumToString((long) errorCode, errNumString); 
ParamText(errNumString, NIL, NIL, NIL); 
StopAlert(ERROR_BOX_ID, NIL); 

/* end Report_Error() */ 

/* Look for File Sharing Extension process in memory. Do search by signature */ 
/* creator & type rather than by file name, so that code works overseas. */ 

Boolean Get_FS_Info(void) 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

gthisFileSpecPtr = &gthisFileSpec; 
gprocessSN.highLongOfPSN = kNoProcess; 
gprocessSN.lowLongOfPSN = kNoProcess; 

gprocess.processinfoLength = sizeof(ProcessinfoRec); /*Store size of record*/ 
gprocess.processName = (unsigned char*) NewPtr(32); /*Allocate room for the name*/ 
gprocess.processAppSpec = gthisFileSpecPtr; /* Direct towards our storage */ 

while (GetNextProcess(&gprocessSN) == noErr) /* Loop until all processes found */ 

if (GetProcessinformation(&gprocessSN, &gprocess) == noErr) /* Obtain detailed info */ 
{ 

if (gprocess.processType == FILE_SHARING_TYPE && 
gprocess.processSignature == FILE_SHARING_CREATOR) 
return TRUE; 

} /* end if */ 
/* end while */ 

return FALSE; 
}/* end Get_FS_Info() */ 

/* Is the process File */ 
/* Sharing Extension? */ 

/* Determine if the volume in question is being shared. If it is, save the File */ 
/* Sharing process info so that we can restart it later. */ 
Boolean File_Share_On(short volRefNum) 
{ 

HParamBlockRec 
GetVolParmsinfoBuffer 

ioHPB, volHPB; 
volinfoBuffer; 

/* Get volume reference number */ 
volHPB.volumeParam.ioCompletion = NIL; /* No completion routine */ 
volHPB.volumeParam.ioNamePtr NIL; /* No volume name */ 
volHPB.volumeParam.ioVRefNum volRefNum; 
volHPB.volumeParam.ioVolindex = 0; 
if (IPBHGetVInfo(&volHPB, FALSE)) 

{ 

/* Get volume's characteristics */ 
ioHPB.ioParam.ioCompletion =NIL; 
ioHPB.ioParam.ioNamePtr = NIL; 

/* 0 Use only volRefNum to obtain the info */ 

ioHPB.ioParam.ioVRefNum = volHPB.volumeParam.ioVRefNum; /* from PBHGetVInfo() */ 
ioHPB.ioParam.ioBuffer = (char *) &volinfoBuffer; 
ioHPB.ioParam.ioReqCount = sizeof(volinfoBuffer); 
if (IPBHGetVolParms(&ioHPB, FALSE)) 

{ 



Appendix C • Program Listings 01 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

if (volinfoBuffer.vMAttrib & PERSONAL_ACCESS_MASK) I* The disk is shared */ 

{ 

if (Get_FS_Info()) 
return TRUE; 

} /* end if */ 

} /* end if IPBHGetVolParms 
/* end if IPBHGetVInfo */ 

return FALSE; 
} /* end File_Share_On() */ 

/* Look for the File Sharing 
/* Got the file info we need 

*/ 

/* Send a shut down immediately message to the File Sharing Server */ 

void Stop_File_Sharing(void) 
{ 

DisconnectParam serverBlock; 
SCParamBlockPtr serverBlockPtr; 

Extension */ 

to restart sharing 

serverBlockPtr = (SCParamBlockPtr) &serverBlock; 
serverBlock.scCode = SHUT_DOWN; 
serverBlock.scNumMinutes = 0; 
serverBlock.scFlags = SEND_MESSAGE; 
serverBlock.scMessagePtr = NIL; 

/* Point to our message block */ 

/* Server command to shut down */ 

/* Do it immediately */ 

if (mySyncServerDispatch(serverBlockPtr) == noErr) 
/* Let the OS get at the event */ 

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR); 
WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR); 
} /* end if */ 

else 
Report_Err_Message(PROBLEM_STOPPING_FS); 

} /* end Stop_File_Sharing() */ 

*/ 

/* Launch the file that has the File Sharing application in it. The file name used for the */ 

/* launch was obtained from the process when it's memory, or by searching the start up disk */ 

void Start_File_Sharing(void) 
{ 

OSErr launchErr; 
LaunchPBPtr thisAppPBPtr; 
LaunchParamBlockRec thisAppParams; 

gthisFileSpecPtr &gthisFileSpec; 
thisAppPBPtr = &thisAppParams; 
thisAppParams.launchBlockID = extendedBlock; /* Use the new format */ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

thisAppParams.launchEPBLength = extendedBlockLen; 
thisAppParams.launchFileFlags = 0; /* Don't care about file flags */ 

thisAppParams.launchControlFlags = (launchNoFileFlags + launchContinue + launchDontSwitch); 
thisAppParams.launchAppSpec = gthisFileSpecPtr; /* Give it file name grabbed */ 

/* by Get_FS_Info() before File*/ 
/* Sharing was stopped */ 

thisAppParams.launchAppParameters = NIL; /* Send just Open event */ 

if ((launchErr = LaunchApplication(thisAppPBPtr)) == noErr) 
WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR); 

else 
Report_Err_Message(PROBLEM_STARTING_FS); 

} /* end Start_File_Sharing() */ 

/* Look for the File Sharing Extension file. User might not have started File Sharing yet, */ 
/* so we can't grab the name from a process that isn't there. So, we search the boot */ 

!* disk. *I 
Boolean Find_File_Sharing(void) 
{ 

HParamBlockRec 
Flnfo 
CinfoPBRec 
Point 

searchPB; 
fileSharingExtlnfo, fileSharingMasklnfo; 
searchSpec1, searchSpec2; 
nilPoint = {0, 0}; 

!* Set up creator and type for File Sharing Extension */ 
fileSharingExtlnfo.fdType = FILE_SHARING_TYPE; 
fileSharingExtinfo.fdCreator = FILE_SHARING_CREATOR; 
fileSharingExtinfo.fdFlags = 0; 
fileSharingExtlnfo.fdLocation = nilPoint; 
fileSharingExtinfo.fdFldr = 0; 

/* Set up masks */ 
fileSharingMasklnfo.fdType = (OSType) 0xffffffff; 
fileSharingMasklnfo.fdCreator = (OSType) 0xffffffff; 
fileSharingMasklnfo.fdFlags = 0; 
fileSharingMasklnfo.fdLocation = nilPoint; 
fileSharingMaskinfo.fdFldr = 0; 

/* 1st spec block */ 
searchSpec1.hFileinfo.ioNamePtr =NIL; 

*/ 
/* Search by file type, not name 

searchSpec1.hFileinfo.ioF1Fndrinfo = fileSharingExtinfo; /*Type & creator to look for*/ 



Appendix C • Program Listings 0. 
·································~············································································~ 

/* 2nd spec block */ 
searchSpec2.hFileinfo.ioNamePtr = NIL; 
searchSpec2.hFileinfo.ioF1Fndrinfo = fileSharingMaskinfo; /* Mask */ 

/* Set up search call */ 
searchPB.csParam.ioCompletion = NIL; 
searchPB.csParam.ioNamePtr NIL; /* No volume name */ 
searchPB.csParam.ioVRefNum = gsysVRefNum; /* Search on startup volume */ 
searchPB.csParam.ioMatchPtr = &gthisFileSpec; /* Search result goes here */ 
searchPB.csParam.ioReqMatchCount = 1; /*Looking for 1 file*/ 
searchPB.csParam.ioSearchBits = fsSBFlFndrinfo; /* Search based on file characteristics */ 
searchPB.csParam.ioSearchinfo1 = &searchSpec1; 
searchPB.csParam.ioSearchinfo2 = &searchSpec2; 
searchPB.csParam.ioSearchTime = 0; /* Don't time out */ 
searchPB.csParam.ioCatPosition.initialize 0; /* Start at the beginning */ 
searchPB.csParam.ioOptBuffer = NIL; /* No search cache required */ 
searchPB.csParam.ioOptBufSize = 0; 

if (PBCatSearchSync((CSParamPtr) &searchPB) 
return TRUE; 

else 

Report_Err_Message(CANT_LOCATE_FILE); 
return FALSE; 
} /* end else */ 

} /* end Find_File_Sharing() */ 

void Toggle_File_Sharing(void) 

if (Get_FS_Info()) 
Stop_File_Sharing(); 

else 

/* 
/* 

/* 

noErr) 

File Sharing already on (and in 
Yes, turn it off */ 
No, look for the file */ 

memory)? */ 

if (Find_File_Sharing()) 
Start_File_Sharing(); 

/* end else */ 

/* Find the File Sharing Extension file */ 
/* Launch it */ 

} /* end Toggle_File_Sharing() */ 

/* Build high-level event dispatch table and add our handlers to it. Must use static */ 
/* declaration so that the dispatch table has file scope. */ 



0., Power Macintosh Programming Starter Kit 
~·············································································································· 

Boolean Init_AE_Events(void) 
{ 

OSErr err; 
short i; 
static AEinstalls HandlersToinstall[) = 

{ 

/* The 4 required Apple Events */ 

}; 

{kCoreEventClass, kAEOpenApplication, Core_AE_Open_Handler}, 
{kCoreEventClass, kAEOpenDocuments, Core_AE_OpenDoc_Handler}, 
{kCoreEventClass, kAEQuitApplication, Core_AE_Quit_Handler}, 
{kCoreEventClass, kAEPrintDocuments, Core_AE_Print_Handler}, 

for (i = 0; i < LAST_HANDLER; i++) 
{ /* Install each handler in application dispatch table, with a routine descriptor */ 

err= AEinstallEventHandler(HandlersToinstall[i).theClass, 
HandlersToinstall(iJ.theEvent, 
NewAEEventHandlerProc(HandlersToinstall[iJ.theProc), 
0, FALSE); 

if (err) 
{ 

/* If there was a problem, bail out */ 

Report_Err_Message (PROBLEM_WITH_AE_HANDLER); 
return FALSE; 
} /* end if */ 

} /* end for */ 

return TRUE; 
} /* end Init_AE_Events() */ 

/* High-level open application event. */ 
pascal OSErr Core_AE_Open_Handler(AppleEvent *messagein, AppleEvent *reply, long refin) 
{ 

return noErr; 
/* end Core_AE_Open_Handler() */ 

/* High-level open document event */ 

pascal OSErr Core_AE_OpenDoc_Handler(AppleEvent *messagein, AppleEvent *reply, long refin) 
{ 

long dummyResult; /* Dummy variable for delay() */ 

register short i, j; 

Boolean fileShareWason; 
AEDesc volDesc; /* Container for sent volume names */ 
OSErr volErr, highLevelErr; 
long numberOVolumes; /* Number of volumes dropped onto us */ 



Appendix C • Program Listings 045 
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

AEKeyword 
DescType 
Size 
FSSpec 

ignoredKeyWord; 
ignoredType; 
ignoredSize; 
volFSS; 

/* Bit buckets for high-level event info we don't need */ 

/* Container for volume names as FSSPecs */ 

gtheCursor = GetCursor(watchCursor); 
SetCursor(&**gtheCursor); 
fileSharewason = FALSE; 

/*Change the cursor to indicate we're busy */ 

/* Assume File Sharing on */ 

if (l(highLevelErr = AEGetParamDesc(messagein, keyDirectObject, typeAEList, &volDesc))) 

if ((highLevelErr = AECountitems(&volDesc, &numberOVolumes)) == noErr) /*How many? */ 
{ 

for (i = 1; ((i <= numberOVolumes) && (lhighLevelErr)); ++i) 
{ 

/* Process each */ 

if (l(highLevelErr = AEGetNthPtr(&volDesc, i, typeFSS, &ignoredKeyWord, 

{ 

&ignoredType, (char *)&volFSS, 
sizeof(volFSS), &ignoredSize))) 

if (volFSS.vRefNum != gsysVRefNum) /* Chosen volume the boot drive? */ 

if (File_Share_On(volFSS.vRefNum)) 
{ 

Stop_File_Sharing(); 
fileShareWason = TRUE; 
} /* end if *I 

/* This volume being shared? */ 

/* Yes, turn it off, set flag */ 

= 0; 

while 

/* Set retry count */ 
(((volErr = Eject(volFSS.name, volFSS.vRefNum)) I= noErr) && 
(j < MAX_TRIES)) 

WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR); 
Delay(10L, &dummyResult); 
j++; 
} /* end while */ 

if (volErr == noErr) /* Volume ejected OK? */ 
UnmountVol(volFSS.name, volFSS.vRefNum); 

else 
Report_Err_Message(PROBLEM_ON_EJECT); 

} /* end if != gsysVRefNum */ 
else 

Report_Err_Message(DONT_EJECT_STARTUP_VOL); 

} /* end if !highLevelErr */ 

/* end for */ 



0 Power Macintosh Programming Starter Kit 
~·····~········································································································ 

} /* end if */ 
highLevelErr = AEDisposeDesc(&volDesc); /*Release memory copy of the AE parameter 

*/ 

., 

} /* end if !highLevelErr */ 

if (fileSharewasOn) 
Start_File_Sharing(); 

if (gdragNDropFlag >= 0) 
guserDone = TRUE; 

SetCursor(&qd.arrow); 
return highLevelErr; 

/* Did user drag & drop onto us? */ 
/* Yes, stop the application */ 

/* Restore the cursor */ 
/* Kick back any high-level problems to calling app 

} /* end Core_AE_OpenDoc_Handler() */ 

/* High-level print event */ 
pascal OSErr Core_AE_Print_Handler(AppleEvent *messagein, AppleEvent •reply, long refln) 
{ 

return errAEEventNotHandled; /* No printing done here, so no print handler */ 
} /* end Core_AE_Print_Handler() */ 

/* High-level quit event */ 
pascal OSErr Core_AE_Quit_Handler(AppleEvent •messagein, AppleEvent •reply, long refln) 
{ 

guserDone = TRUE; 
return noErr; 

} /* Core_AE_Quit_Handler() */ 

/* Tell main event loop we want to stop */ 

void Do_High_Level(EventRecord *AERecord) 
{ 

AEProcessAppleEvent(AERecord); 
} /* end Do_High_Level() */ 

/* Do our checks for system-specific characteristics here. You can use 
the Gestalt Manager for this, but it requires System 7. Here, we're 
using the old SysEnvirons() routine to see if we have System 7. For 
SwitchBank, System 7 alone should have everything we need. */ 

Boolean Check_System(void) 
{ 

SysEnvRec machinelnfo; 
short sysVersion; 

/* Record with machine-specific data */ 
/* System version # */ 



Appendix C • Program Listings ¢ 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111~ 

short versionRequested; /*Version of SysEnvirons() to use */ 

sysVersion = SYSTEM_7; 
versionRequested = 2; /* MUST set this value if you want valid results */ 

if (SysEnvirons(versionRequested, &machinelnfo) == noErr) 
sysVersion = machinelnfo.systemversion; 

else 
{ 

Report_Err_Message(TROUBLE_WITH_SYS_INFO); 
return FALSE; 
} /* end else */ 

if (sysVersion < SYSTEM_7) /* Running System 7.0? */ 

Report_Err_Message (SYSTEM_7_REQUIRED); 
return FALSE; 
} /* end if */ 

/* No. Sorry, can't run without it */ 

return TRUE; 
} /* end Check_System() */ 

/* Handle a command thru menu activation. Don't forget to unhighlight the 
selection to indicate the application is done. (Menu is highlighted 
automatically by MenuSelect.) */ 

Boolean Do_Command (long mResult) 
{ 

unsigned char accName[255J; 
short itemHit; 
Boolean quitApp; 
short refNum; 
DialogPtr theDialog; 
short theltem, theMenu; 
GrafPtr savePort; /* place to stow current GrafPort when we 

._.activate a Desk Accessory (DA) */ 

quitApp FALSE; /* Assume Quit not activated */ 

theMenu HiWord(mResult); /* Extract the menu selected */ 

the Item LoWord(mResult); /* Get the item on the menu */ 

switch (theMenu) 
{ 



0 Power Macintosh Programming Starter Kit 
~·············································································································"' 

case APPLE_MENU: 

if (theltem == ABOUT_BOX) /* "About ... " selected, describe ourself*/ 
{ 

if ((theDialog = GetNewDialog(ABOUT_BOX_ID, NIL, (WindowPtr) IN_FRONT)) I= NIL) 
{ 

ModalDialog(NIL, &itemHit); 

DisposDialog(theDialog); 
} /* end if != NIL */ 

else 

SysBeep(30); 
} /* end if theltem 

else 
ABOUT_BOX *I 

/* It's a DA*/ 
{ 

GetPort(&savePort); /*Save port (in case the DA doesn't) */ 
GetMenultemText(GetMenuHandle(APPLE_MENU), theltem, accName); 
refNum = OpenDeskAcc(accName); 
SetPort(savePort); 
} 

break; /* end APPLE_MENU case */ 

case FILE_MENU: 
switch (theltem) 

{ 

case I_QUIT: 

quitApp = TRUE; 
break; 
} /* end switch */ 

break; /* end FILE_MENU case */ 

case EDIT_MENU: 
SystemEdit(theltem . 1); 

break; 

case SWITCH_MENU: 
Toggle_File_Sharing(); 

break; 

default: 
break; 
} /* end switch */ 

/* Start it */ 

/* Done, restore the port */ 

Hili teMenu ( 0) ; 
return quitApp; 

/* Switch off highlighting on the menu just used */ 



Appendix C • Program Listings ¢ 
··············································································································~ 

} /*end Do_Command() */ 

/* The main chunk of code that processes events as they occur. Execution remains in */ 
/* this loop until Do_Command returns TRUE, indicating the user wants to quit. In */ 
/* most cases, an event should call a subroutine to handle the event, but in this */ 
/* example the actions are so simple most code can be placed in-line. */ 
void Main_Event_Loop(void) 

Point where; 

gdragNDropFlag = 1; 
FlushEvents(everyEvent, 0); 

guserDone = FALSE; 
/* Clear out left over events */ 

do 
{ 

if (WaitNextEvent(everyEvent, &gmyEvent, LONG_NAP, NO_CURSOR)) 
{ 

switch(gmyEvent.what) 
/*We have an event ... */ 

/* Field each type of event */ 

case mouseDown: /* In what window, and where?? */ 
gwindowCode = FindWindow(gmyEvent.where, &gwhichWindow); 
switch(gwindowCode) 

case inSysWindow: /* It's a Desk Accessory (DA) */ 
SystemClick(&gmyEvent, gwhichWindow); 

break; 
case inDrag: 
break; 
case inGrow: 
break; 
case inContent: 
break; 

/* Drag the window */ 

/* Grow the window, if size has changed */ 

/* Bring window to front if not, and that's all */ 

case inMenuBar: /* In a menu, handle the command */ 
guserDone = Do_Command(MenuSelect(gmyEvent.where)); 

break; 
} /* end switch gwindowCode */ 

break; /* end mouseDown */ 

case keyDown: 
case autoKey: /* Command key pressed, pass to MenuKey */ 

if((gmyEvent.modifiers & cmdKey) I= 0) 
guserDone = Do_Command(MenuKey((char) (gmyEvent.message 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

else 

& CHAR_CODE_MASK))); 
break; /* end key events */ 

case updateEvt: /* Update the window */ 
gwhichWindow (WindowPtr) gmyEvent.message; 

break; 
case diskEvt: /* Handle disk insertion event */ 

if (HiWord(gmyEvent.message) I= noErr) 

DILoad() j 

where.h INIT_X; 
where.v = INIT_Y; 
DIBadMount(where, gmyEvent.message); 
DIUnload ( ) ; 
} /* end if I= noErr */ 

break; /* end disk event */ 
case activateEvt: /*Activate event */ 

gwhichWindow = (WindowPtr) gmyEvent.message; 
break; 
case kHighLevelEvent: 

Do_High_Level(&gmyEvent); 
break; 
default: 
break; 

/* Handle Apple Event */ 

} /* end switch gmyEvent.what */ 
/* end if on next event */ 

/* Null event */ 
/* Do idle or background stuff here */ 

/* Use this flag to tell Core_AE_OpenDoc_Handler() whether to shut down app when done */ 
/* (user dragged file onto app) or not (user left app running). We bump this flag*/ 
/* down twice, after which point we stop, because more than 2 events indicates the */ 
/* app is running */ 

if (gdragNDropFlag >= 0) 
gdragNDropFlag--; 

} /* end do */ 

while (guserDone == FALSE) 

} /* end Main_Event_Loop() */ 

Boolean Init_Mac(void) 

/* Loop until told to stop */ 



Appendix C • Program Listings 051 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Handle theMenuBar; 

/* Lunge after all the memory we can get */ 

MaxApplZone () ; 

/* Make sure we've got some master pointers */ 

MoreMasters(); 
MoreMasters (); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters () ; 
MoreMasters(); 

/* Initialize managers */ 

InitGraf(&qd.thePort); 
InitFonts(); 
FlushEvents(everyEvent, 0); 
InitWindows () ; 
InitMenus(); 
TEinit(); 
InitDialogs(NIL)j 

if ((theMenuBar = GetNewMBar(MENU_BAR_ID)) 
return FALSE; 

SetMenuBar(theMenuBar); 

NIL) 

DisposHandle(theMenuBar); 
AppendResMenu(GetMenuHandle(APPLE_MENU), 'DRVR'); 
DrawMenuBar(); 

/* Got our menu resources OK? *I 

/* Add our menus to menu list */ 

I* Build Apple menu */ 

/* Look for specific features or set up handlers this app needs */ 

if (!Check_System()) /* Need System 7 *I 

return FALSE; 

if (!Init_AE_Events()) 
return FALSE; 

/* Set up our high-level event handlers */ 

if (FindFolder(kOnSystemDisk, kSystemFolderType, kDontCreateFolder, 
&gsysVRefNum, &gSysDirID) I= noErr) 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

{ 

Report_Err_Message (CANT_FIND_STARTUP_VOL)j 
return FALSE; 
} /* end if */ 

Ini tCursor (); 
return TRUE; 

/* Tell user app is ready */ 

/* end Init_Mac() */ 

void main(void) 

if (Init_Mac()) 
Main_Event_Loop(); 

else 
SysBeep(30); 

} /* end main */ 

SwitcbBank.r 

#include "SysTypes.r" 
#include 'Types.r" 

#define Allitems 0b1111111111111111111111111111111 
#define Noitems 0b0000000000000000000000000000000 
#define Menuitem1 0b0000000000000000000000000000001 
#define Menuitem2 0b0000000000000000000000000000010 
#define Menuitem3 0b0000000000000000000000000000100 
#define Menuitem4 0b0000000000000000000000000001000 

/* 31 flags */ 

#define MENU_BAR_ID 126 /* Menu bar resource for our menus 
#define APPLE_MENU 128 /* Menu ID for Apple menu */ 

#define FILE_MENU 129 /* Menu ID for File menu */ 

#define EDIT_MENU 130 /* Menu ID for Edit menu */ 

#define SWITCH_MENU 131 /* Menu ID for File Share control 

*/ 

*/ 

#define ABOUT_BOX_ID 128 /* Resource IDs for our windows & dialogs 
#define ERROR_BOX_ID 130 
#define ERROR_MESS_ID 131 

#define APPL_FREF 
#define DISK_FREF 

128 
129 

/* Resource IDs for file refs & icons */ 

*/ 



Appendix C • Program Listings 053 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#define SWITCH_ICON 128 

/* version info for the Finder's Get Info box 
resource 'vers' (1, purgeable) 
{ 

} ; 

0X01, 

0X10, 

beta, 
0x00, 

verus, 
"1.18", 
"1.18, by Tom Thompson" 

/* Menu resources */ 

resource 'MBAR' (MENU_BAR_ID, preload) 
{ 

{ APPLE_MENU, FILE_MENU, EDIT_MENU, SWITCH_MENU }; 
} ; 

resource 'MENU' (APPLE_MENU, preload) 

} ; 

APPLE_MENU, textMenuProc, 
Allltems & -Menuitem2, /* Disable separator line, enable About Box and DAs */ 

enabled, apple, 

"About SwitchBank 1.1-", noicon, nokey, nomark, plain; 
noicon, nokey, nomark, plain 

resource 'MENU' (FILE_MENU, preload) 

}; 

FILE_MENU, textMenuProc, 
Allltems, 
enabled, "File", 
{ 

"Quit 11 , 

} 

noicon, "Q", nomark, plain 

resource 'MENU' (EDIT_MENU, preload) 



~ Power Macintosh Programming Starter Kit 
~·············································································································' 

EDIT_MENU, textMenuProc, 
Allitems & -Menuitem2, 
enabled, "Edit", 

11 Undo 11 , 

/* Disable separator line */ 

noicon, 11zn, nomark, plain; 
noicon, nokey, nomark, plain; 

} 

} j 

neut II' 

II Copy II, 

11 Paste 11 , 

noicon, 
noicon, 
noicon, 

11x11, nomark, plain; 
"en, nomark, plain; 
11v11, nomark, plain 

resource 'MENU' (SWITCH_MENU, preload) 

SWITCH_MENU, textMenuProc, 
Allitems, 
enabled, "Controls", 
{ 

'Toggle File Sharing", noicon, "T", nomark, plain 

} j 

/* Our error messages */ 

resource 'STR#'(128, purgeable) 

/* [ 1 ] */ "A problem occurred 
/* [2] */ "A problem occurred 

stopping File Sharing."; 
starting File Sharing. " ; 

/* [3] */ "A problem occurred while ejecting the volume. "· ' 
/* [4] */ "You can't eject the startup volume."; 
/* [5] */ "Couldn't find the startup volume."; 
/* [6] */ "Couldn't get valid system information."; 
/* [7] */ "Couldn't locate the File Sharing Extension file."; 
/* [8] */ "A problem occurred while loading the Apple Event handlers."; 
/* [9] */ "Sorry, SwitchBank requires System 7 or later to run."; 
} 

} j 

/* This ALRT and DITL are used as an About Box */ 

resource 'DLOG' (ABOUT_BOX_ID, purgeable) 
{ 

{31, 6, 224, 265}, 
altDBoxProc, 



Appendix C • Program Listings ¢ 
··············································································································~ 

} ; 

visible, 

noGoAway, 

0x0, 
ABOUT_BOX_ID, 

/* No refCon */ 

/* No window title */ 

resource 'DITL' (ABOUT_BOX_ID, purgeable) 

{ 

/* Item 1 */ 

{154, 80, 175, 180}, 

/* Item 2 */ 

Button { enabled, "OK" }, 

{ 4' 68' 38' 193} ' 
/* Item 3 */ 

StaticText disabled, " SwitchBank 1 .1\nby Tom Thompson" }, 

{86, 11, 102, 250}' 

/* Item 4 */ 

StaticText { disabled, " Copyright © 1994 Tom Thompson." } , 

{44, 114, 76, 146}' 

/* Item 5 */ 

Icon { disabled, 128 }, 

{107, 43, 133, 217}, StaticText { disabled, "Written in Metrowerks C " } 

} ; 

/* The ALRT and DITL for the basic error screen */ 

resource 'ALRT' (ERROR_BOX_ID, purgeable) 

}; 

{40, 40, 127, 273}, 
ERROR_BOX_ID, 

OK, visible, silent, 

OK, visible, silent, 
OK, visible, silent, 
OK, visible, silent 

} 

resource 'DITL' (ERROR_BOX_ID, purgeable) 

52, 162, 72, 220 }, 

54, 17, 70, 151 }, 

Button { enabled, "OK" }, 
StaticText { disabled, "I /0 error, ID '0" } 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

}; 

/* Alert and DITL for error message screen */ 

resource 'ALRT' (ERROR_MESS_ID, purgeable) 

{ 40, 40, 147, 280 }, 
ERROR_MESS_ID, 
{ 

OK, visible, silent, 
OK, visible, silent, 
OK, visible, silent, 
OK, visible, silent 

} 

} ; 

resource 'DITL' (ERROR_MESS_ID, purgeable) 
{ 

{ 

} 

}; 

73, 168, 93, 226 }, 
53, 14, 97, 157 }, 

/* File reference resources */ 

resource 'FREF' (DISK_FREF) 
{ 

} j 

'disk', 
1, 

resource 'FREF' (APPL_FREF) 
{ 

} j 

'APPL', 
0, 

/* Bundle resource */ 

resource 'BNDL' (128) 

Button { enabled, "OK" } , 
StaticText { disabled, '"0" 



Appendix C • Program Listings 057 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

'SWCH', 0, 

'ICN#', 0, SWITCH_ICON }, /* Only 1 icon */ 

'FREF', 0, APPL_FREF, 1, OISK_FREF} /* Two types of files */ 

} j 

/* Signature resource - all 'STR ' resources must be declared before this! */ 

type 'SWCH' as 'STR 'j 

resource 'SWCH' (0) 
"Switch8ank 1.1B" 

} j 

/* Our icon data */ 

data 'ICON' (SWITCH_ICON) 
{ 

} j 

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA" 

$"5008 108A 4108 1082 4108 1082 4108 1082" 

$"4188 1082 4110 0882 4110 0882 4110 0882" 

$"471C 38E2 4514 28A2 4514 28A2 4514 28A2" 

$"471C 38E2 4110 0882 411F F882 4110 0882" 

$'4110 0882 4110 0882 41FF FF82 4004 2002" 

$"4004 2002 4004 2002 4004 2002 5C04 203A" 

$"5404 202A 5C07 E03A 4000 0002 7FFF FFFE" 

data 'ICN#' (SWITCH_ICON) 

$"7FFF FFFE 4000 0002 5C00 003A 55F8 1FAA" 

$"5008 108A 4108 1082 4108 1082 4108 1082" 

$"4188 1082 4110 0882 4110 0882 4110 0882" 

$"471C 38E2 4514 28A2 4514 28A2 4514 28A2" 

$"471C 38E2 4110 0882 411F F882 4110 0882' 

$"4110 0882 4110 0882 41FF FF82 4004 2002" 

$"4004 2002 4004 2002 4004 2002 5C04 203A' 

$'5404 202A 5C07 E03A 4000 0002 7FFF FFFE' 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$'7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

} j 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

$"7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE" 

/* SwitchBank's color icon in icl8 format */ 

data 'icl8' (SWITCH_ICON) 
{ 

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A" 

$"2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2A2A 2A2A" 

$"2A2A 2A2A 2A2A 2A2A 2A2A FFFF FF2A FF00" 

$"00FF 2AFF 2AFF 2AFF FFFF FFFF FF2A 2A2A" 

$"2A2A 2AFF FFFF FFFF FF2A FF2A FF2A FF00" 

$"00FF 2AFF FFFF 2AFF F52A F52A FF2A 2A2A" 

$"2A2A 2AFF F52A F52A FF2A FFFF FF2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A2A 2A2A FF2A 2A2A" 

$"2A2A 2AFF 2A2A 2A2A FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 5454 5454 FF2A 2A2A" 

$"2A2A 2AFF 5454 5454 FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 7F7F 7F7F FF2A 2A2A" 

$"2A2A 2AFF 7F7F 7F7F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF FF7F FFFF FF2A 2A2A" 

$"2A2A 2AFF FFFF 7FFF FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 7F7F 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF7F 7F7F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 5454 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF54 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00" 
$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A" 

$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00" 

$"00FF 2A2A 2AFF F5FF 2A54 7FFF F5FF 2A2A" 
$"2A2A FFF5 FF2A 547F FFF5 FF2A 2A2A FF00' 

$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A" 

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00" 
$"00FF 2A2A 2AFF 54FF 2A54 7FFF 54FF 2A2A" 

$"2A2A FF54 FF2A 547F FF54 FF2A 2A2A FF00' 

$"00FF 2A2A 2AFF FFFF 2A54 7FFF FFFF 2A2A" 



Appendix C • Program Listings 059 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

}j 

$"2A2A FFFF FF2A 547F FFFF FF2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 2A2A 2A2A" 

$"2A2A 2A2A FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF FFFF FFFF" 

$"FFFF FFFF FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF F52A F52A" 

$"F52A F52A FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 5454 5454" 

$"5454 5454 FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF 2A54 7FFF 7F7F 7F7F" 

$"7F7F 7F7F FF2A 547F FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2AFF FFFF FFFF FFFF FFFF" 

$"FFFF FFFF FFFF FFFF FF2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5" 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A' 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 54F5' 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00' 

$"00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2AFF 542A' 

$"2A7F FF2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$'00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF 54F5" 

$"2A7F FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00" 

$"00FF 2AFF 2AFF 2A2A 2A2A 2A2A 2AFF 542A" 

$"2A7F FF2A 2A2A 2A2A 2A2A FF2A FF2A FF00" 

$"00FF 2AFF FFFF 2A2A 2A2A 2A2A 2AFF FFFF" 

$"FFFF FF2A 2A2A 2A2A 2A2A FFFF FF2A FF00" 

$'00FF 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A" 

$'2A2A 2A2A 2A2A 2A2A 2A2A 2A2A 2A2A FF00" 

$"00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$'FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF00' 

/* SWitchBank's color icon, in cicn format */ 

data 'cicn' (SWITCH_ICON) 
{ 

$"0000 0000 8010 0000 0000 0020 0020 0000" 
$"0000 0000 0000 0048 0000 0048 0000 0000" 

$"0004 0001 0004 0000 0000 0000 0000 0000" 

$"0000 0000 0000 0004 0000 0000 0020 0020" 
$"0000 0000 0004 0000 0000 0020 0020 0000" 

$"0000 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 7FFF FFFE 7FFF FFFE 7FFF" 

$"FFFE 7FFF FFFE 4000 0002 5C00 003A 55F8" 

$"1FAA 5008 108A 4108 1082 4108 1082 4108" 

$"1082 4188 1082 4110 0882 4110 0882 4110" 

$"0882 471C 38E2 4514 28A2 4514 28A2 4514" 

$"28A2 471C 38E2 4110 0882 411F F882 4110" 

$"0882 4110 0882 4110 0882 41FF FF82 4004" 

$"2002 4004 2002 4004 2002 4004 2002 5C04" 

$"203A 5404 202A 5C07 E03A 4000 0002 7FFF" 

$"FFFE 0000 0000 0000 0005 0000 FFFF FFFF" 

$"FFFF 0001 CCCC CCCC FFFF 0002 9999 9999" 

$"FFFF 0003 6666 6666 CCCC 0004 EEEE EEEE" 

$"EEEE 000F 0000 0000 0000 0FFF FFFF FFFF" 

$"FFFF FFFF FFFF FFFF FFF0 0F11 1111 1111" 

$"1111 1111 1111 1111 11F0 0F1F FF11 1111" 

$"1111 1111 1111 11FF F1F0 0F1F 1F1F FFFF" 

$"F111 111F FFFF F1F1 F1F0 0F1F FF1F 4141" 

$"F111 111F 4141 F1FF F1F0 0F11 111F 1111" 

$"F111 111F 1111 F111 11F0 0F11 111F 2222" 

$"F111 111F 2222 F111 11 F0 0F11 111F 3333" 

$"F111 111F 3333 F111 11 F0 0F11 111F F3FF" 

$"F111 111F FF3F F111 11 F0 0F11 111F 333F" 

$" 1111 1111 F333 F111 11 F0 0F11 111F 223F" 

$" 1111 1111 F223 F111 11 F0 0F11 111 F 123F" 

$" 1111 1111 F123 F111 11 F0 0F11 1FFF 123F" 

$"FF11 11FF F123 FFF1 11 F0 0F11 1F4F 123F" 

$"4F11 11 F4 F123 F4F1 11 F0 0F11 1F2F 123F" 

$"2F11 11F2 F123 F2F1 11 F0 0F11 1F2F 123F" 

$"2F11 11F2 F123 F2F1 11 F0 0F11 1FFF 123F" 

$"FF11 11FF F123 FFF1 11 F0 0F11 111 F 123F" 

$" 1111 1111 F123 F111 11 F0 0F11 111F 123F" 

$"FFFF FFFF F123 F111 11 F0 0F11 111 F 123F" 

$"4141 4141 F123 F111 11F0 0F11 111F 123F" 

$"2222 2222 F123 F111 11F0 0F11 111F 123F" 

$"3333 3333 F123 F111 11 F0 0F11 111 F FFFF" 



Appendix C • Program Listings 061 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

$'FFFF FFFF FFFF F111 11F0 0F11 1111 1111 • 
$'1F24 13F1 1111 1111 11F0 0F11 1111 1111" 

$"1F21 13F1 1111 1111 11 F0 0F11 1111 1111" 
$"1F24 13F1 1111 1111 11 F0 0F11 1111 1111. 

$"1F21 13F1 1111 1111 11F0 0F1F FF11 1111 • 

$"1F24 13F1 1111 11FF F1F0 0F1F 1F11 1111. 

$"1F21 13F1 1111 11F1 F1F0 0F1F FF11 1111. 

$"1FFF FFF1 1111 11FF F1F0 0F11 1111 1111. 

$"1111 1111 1111 1111 11F0 0FFF FFFF FFFF' 

$"FFFF FFFF FFFF FFFF FFF0' 

}j 

/* The system's color caution alert icon */ 

data 'cicn' (2) 
{ 

$'0000 0000 8010 0000 0000 0020 0020 0000' 

$"0000 0000 0000 0048 0000 0048 0000 0000' 

$"0004 0001 0004 0000 0000 0000 0000 0000" 

$'0000 0000 0000 0004 0000 0000 0020 0020' 

$'0000 0000 0004 0000 0000 0020 0020 0000' 

$'0000 0001 8000 0003 C000 0007 E000 0007' 

$"E000 000F F000 000F F000 001F F800 001F' 

$"F800 003F FC00 003F FC00 007F FE00 007F' 

$'FE00 00FF FF00 00FF FF00 01FF FF80 01FF' 

$"FF80 03FF FFC0 03FF FFC0 07FF FFE0 07FF" 

$'FFE0 0FFF FFF0 0FFF FFF0 1FFF FFF8 1FFF' 

$"FFF8 3FFF FFFC 3FFF FFFC 7FFF FFFE 7FFF" 

$°FFFE FFFF FFFF FFFF FFFF FFFF FFFF FFFF' 

$"FFFF 0001 8000 0003 C000 0003 C000 0006" 

$'6000 0006 6000 000C 3000 000C 3000 0018" 

$"1800 0019 9800 0033 CC00 0033 CC00 0063" 

$'C600 0063 C600 00C3 C300 00C3 C300 0183" 

$'C180 0183 C180 0303 C0C0 0303 C0C0 0603" 

$'C060 0601 8060 0C01 8030 0C00 0030 1800" 

$'0018 1801 8018 3003 C00C 3003 C00C 6001" 

$"8006 6000 0006 C000 0003 FFFF FFFF 7FFF' 

$"FFFE 0000 0000 0000 0006 0000 FFFF FFFF' 

$"FFFF 0001 FFFF CCCC 3333 0002 CCCC 9999' 

$"0000 0003 9999 6666 0000 0004 3333 3333' 

$"3333 0005 BBBB BBBB BBBB 000F 0000 0000' 

$"0000 0000 0000 0000 000F F000 0000 0000' 



I'::::\,,. Power Macintosh Programming Starter Kit 
~·············································································································· 

}; 

$"0000 0000 0000 0000 004F F400 0000 0000' 

$"0000 0000 0000 0000 05FF FF50 0000 0000' 

$"0000 0000 0000 0000 04F3 3F40 0000 0000' 

$"0000 0000 0000 0000 5FF1 1FF5 0000 0000' 

$"0000 0000 0000 0000 4F31 13F4 0000 0000' 

$"0000 0000 0000 0005 FF11 11FF 5000 0000' 

$"0000 0000 0000 0004 F311 113F 4000 0000' 

$"0000 0000 0000 005F F12F F21F F500 0000" 

$'0000 0000 0000 004F 314F F413 F400 0000" 

$'0000 0000 0000 05FF 11FF FF11 FF50 0000' 

$'0000 0000 0000 04F3 11FF FF11 3F40 0000" 

$'0000 0000 0000 5FF1 11FF FF11 1FF5 0000' 

$"0000 0000 0000 4F31 11FF FF11 13F4 0000' 

$"0000 0000 0005 FF11 11FF FF11 11FF 5000' 

$"0000 0000 0004 F311 11FF FF11 113F 4000' 

$"0000 0000 005F F111 11FF FF11 111F F500' 

$'0000 0000 004F 3111 11FF FF11 1113 F400" 

$"0000 0000 05FF 1111 11FF FF11 1111 FF50" 

$'0000 0000 04F3 1111 114F F411 1111 3F40" 

$" 0000 0000 5FF1 1111 112F F211 1111 1 FF5" 

$'0000 0000 4F31 1111 111F F111 1111 13F4" 

$'0000 0005 FF11 1111 1112 2111 1111 11FF" 

$'5000 0004 F311 1111 1111 1111 1111 113F" 

$"4000 005F F111 1111 112F F211 1111 111F" 

$"F500 004F 3111 1111 11FF FF11 1111 1113" 

$" F400 05FF 1111 1111 11 FF FF11 1111 1111 " 

$" FF50 04F3 1111 1111 112F F211 1111 1111 " 

$ "3F40 5FF1 1111 1111 1111 1111 1111 1111 " 

$" 1 FF5 FF31 1111 1111 1111 1111 1111 1111 " 

$"13FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFFF 5FFF FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFF5" 

lnit.b 

#ifndef ~TYPES~ 
#include <Types.h> 

#endif 

#ifndef ~MEMORY~ 



Appendix C • Program Listings 063 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

#include <Memory.h> 

#end if 

#ifndef ~GESTALTEQU~ 
#include <gestaltequ.h> 

#end if 

#ifndef ~FILES~ 
#include <Files.h> 

#end if 

#ifndef ~QUICKDRAW~ 
#include <QuickDraw.h> 

#end if 

#ifndef ~RESOURCES~ 
#include <Resources.h> 

#endif 

#ifndef ~ERRORS~ 
#include <Errors.h> 

#end if 

#ifndef ~FRAGLOAD~ 
#include <FragLoad.h> 

#end if 

#ifndef ~TEXTUTILS~ 
#include <TextUtils.h> 

#endif 

#ifndef ~RESOURCES~ 
#include <Resources.h> 

#endif 

#ifndef ~MEMORY~ 
#include <Memory.h> 

#end if 

#ifdef ~MWERKS~ 
#ifndef powerc 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

#include <A4Stuff.h> 
#endif 

#endif 

FlipDepth.c 
/* 

Portions © 1994 Rock Ridge Enterprises. All Rights Reserved. 

*/ 

/* 

This tells MixedMode.h that we want real_ versions of 
the various RoutineDescriptor functions and not dummy 
stubs. 

*/ 

#define USESROUTINEDESCRIPTORS 1 

/* 
This #define is for testing only. Without it, only the 
68k version of our patch is called. 

*/ 

#undef DO_PPC_CODE_ONLY 

#include 'Init.h' 

#ifndef powerc 
#include <SetUpA4.h> 

#endif 

/* For testing PowerPC version of patch */ 

/* Headers required by our custom functions */ 

#include <SysEqu.h> 
#include <Events.h> 
#include <Windows.h> 
#include <Palettes.h> 

#define FALSE 
#define TRUE 
#define NIL 

/* 

false 
true 
0L 

Some low memory globals. We'd rather not use these, but they're 
necessary because we'll be operating in a trap that doesn't move memory. 

*/ 



Appendix C • Program Listings 0. 
, .............................................................................................................. ~ 

#define lowMemKeyStroke 
#define lowMemKeyModifiers 

(*(KeyMap *) KeyMapLM)[0] 
(*(KeyMap *) KeyMapLM)[1] 

/* Some constants that define the bits we'll see in KeyMap */ 
#define SHIFT_KEY 1L 
#define CAPS_LOCK 2L 
#define OPTION_KEY 4L 
#define CONTROL_KEY BL 
#define COMMAND_KEY 0x8000L 

#define KEY_COMBO SHIFT_KEY + COMMAND_KEY 
#define T_KEYCODE 0x0200L 
#define BLACK_WHITE 128 

#define kOldSystemErr 10000 

!*========================== 
We take the PowerPC code from the data fork 
and put it into a resource using a utility 
like Resorcer. 

===========================*! 
#define kPPCRezType 'PPC ' 
#define kPPCRezID 300 

/*========================== 
The 68k code goes in a normal INIT resource. 
Be sure this is set to "system heap/locked". 

===========================*/ 
#define klnitRezType 
#define kinitRezID 

'INIT' 
300 

#define kMinSystemVersion (0x0605) 

/*========================== 

/* First video mode ID 

This is the name of the ppc fragment - for debugging only. 

===========================*/ 
#define kinitName "\pEricsinit" 

/*========================== 

in sResource list */ 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

to save some screen space, we'll use "UPP' instead of "UniversalProcPtr" 

===========================*/ 
typedef UniversalProcPtr UPP; 

/*========================== 
PostEvent Information 

=========================== */ 
enum 

}; 

kPostEventinfo = kRegisterBased 
RESULT_SIZE(SIZE_CODE(sizeof(OSErr))) 
REGISTER_RESULT_LOCATION(kRegisterD0) 
REGISTER_ROUTINE_PARAMETER(1,kRegisterA0,SIZE_CODE(sizeof(short))) 
REGISTER_ROUTINE_PARAMETER(2,kRegisterD0,SIZE_CODE(sizeof(long))) 

typedef pascal OSErr ( *PostEventFuncPtr) (short eventNum, long eventMsg ); 
#define kPostEventFuncName "\pMyPostEventPPC" 

/* Note separate functions */ 
short MyPostEvent68k( short eventNum, long eventMsg ); 
OSErr MyPostEventPPC( short eventNum, long eventMsg ); 

/*========================== 
GetMouse Information 

=========================== */ 
en um 

kGetMouseinfo = kPascalStackBased 
I STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Point))) 

}; 

typedef pascal void ( *GetMouseFuncPtr ) ( Point *mouseloc ); 
#define kGetMouseFuncName "\pMyGetMouse" 
void MyGetMouse ( Point *mouseloc ) ; I* Only one function required * / 

/* Functions that change screen depth. Works one both platforms. */ 
void Change_Depth(long newDepth); 
long Fetch_Depth(void); 

/*========================== 
This structure is shared between the power pc 



...................................................................... ~~P.~~~~~.~ ... ~ ... ~?.~;'!~.~~~~~?.~.0 
version of the code and the 68k version. 

Both the PowerPC code and the 68k code have a single 
global variable, "gGlobalsPtr". They point to the 
same area of memory. 

===========================*/ 

#ifdef powerc 
#pragma options align=mac68k 

#end if 

/* 

Note: do not move these fields around! 
The assembly code in PostEvent68kStub() 
depends on their locations. It must be 
compiled with the 68K packing conventions 

*/ 

typedef struct 
{ 

UPP 
UPP 
SysEnvRec 
Boolean 
GDHandle 
short 
long 

gOrigPostEvent; 
gOrigGetMouse; 
gSystemlnfo; 
gRequestFlag; 
gOurGDevice; 
gDevRefNum; 
gOldScreenDepth; 

} MylnitGlobals; 

#ifdef powerc 
#pragma options align=reset 

#endif 

/*========================== 
Global Variables 

/* Address of original PostEvent trap */ 
/* Address of original GetMouse trap */ 

/* Flag that signals screen depth change */ 
/* The GDevice of the screen we're working with */ 
/* Driver ref number for video board's slot */ 

-- each side of the code maintains its own pointer to the 
same block of memory. 

-- we reference the globals ptr by name, so these two must be 
changed together. 

===========================*/ 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

MyinitGlobals *gGlobalsPtr; 
"\pgGlobalsPtr" #define kGlobalsSymName 

/*========================== 
An original trap is called differently from PowerPC 
code than from 68k code because CallOSTrapUniversalProc() isn't 
implemented for 68k code. 

===========================*/ 
#ifdef powerc 

#define CallPostEvent(eventNum, eventMsg) 
CallOSTrapUniversalProc( gGlobalsPtr->gOrigPostEvent, kPostEventinfo, 
eventNum, eventMsg ) 
#define CallGetMouse(mouseLoc) 
CallUniversalProc( gGlobalsPtr->gOrigGetMouse, kGetMouseinfo, mouseloc ) 

#else 
#define CallGetMouse(mouseLoc) (*(GetMouseFuncPtr)gGlobalsPtr->gOrigGetMouse) (mouseLoc); 

#endif 

/* Custom function to place our patch code in the system heap */ 
Handle Get1ResourceSys( OSType rezType, short rezID ); 

/* 

@@@@@@@@@@@@@@@ 68000 Exclusive Code @@@@@@@@@@@@@@@ 

*/ 
#ifndef powerc 

/*========================== 
Prototypes for 68k code 

===========================*/ 
OSErr 
OSErr 
OSErr 

OSErr 

void 

DoinitForOldMacs( void ); 
DoinitForPPCMacs( void ); 
CreateFatDescriptorSys( void •mac68Code, void •ppcCode, 

ProcinfoType procinfo, UPP •result ); 
PatchTrapsForPPCMac( ConnectionID connID ); 

PostEvent68kStub( void ); 
pascal void GetMouse68kStub ( Point *mouseloc ); 

/*========================== 
This is *always• the INIT's entry point. This is 



Appendix C • Program Listings ¢ 
··············································································································~ 

the only routine called by system software at startup. 

This requires that the INIT resource be set to 
System Heap/Locked. 

===========================*/ 
void main( void ) 

long 
Handle 
OSErr 
long 

oldA4; 
initH nil; 
err = noErr; 
ginfo; 

/* Handle to our own INIT resource */ 

/****************************** 

global variable support 
Place proper value for A4 into hole in INIT resource. 

******************************/ 

oldA4 = SetCurrentA4(); 
RememberA4(); 

/* Get the proper value of A4 into A4 */ 
/* save into self-modifying code */ 

/******************************* 

Allocate our global variables 
*******************************/ 

gGlobalsPtr = (MyinitGlobals*) NewPtrSysClear( sizeof(MyinitGlobals) ); 
if ( lgGlobalsPtr ) 

err = memFullErr; 
goto DONE; 
} 

/******************************* 

Get some basic system information 
*******************************/ 

err= SysEnvirons( 1, &gGlobalsPtr->gSysteminfo ); 
if ( err ) 

goto DONE; 

/******************************* 

Check the system version 
*******************************/ 

if gGlobalsPtr->gSysteminfo.systemVersion < kMinSystemVersion ) 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

err = kOldSystemErr; 

goto DONE; 

/******************************* 

Get a handle to our own INIT resource 
*******************************/ 

initH = Get1Resource( kinitRezType, kinitRezID ); 

if I initH ) 

err = resNotFound; 

goto DONE; 

/******************************* 

See if we're running on a PowerPC 

*******************************/ 

err= Gestalt( gestaltSysArchitecture, &ginfo ); 

/******************************* 

Patch all the traps and get everything ready. 
*******************************/ 

if ( err II (ginfo == gestalt68k) 

err DoinitForOldMacs(); 
else 

err DoinitForPPCMacs(); 

DONE: 

if err 

/* Display 'bad load' icon here */ 

if ( gGlobalsPtr ) 

DisposPtr( (Ptr)gGlobalsPtr ); 
} 

else 
{ 

/* Display 'good load' icon here */ 

gGlobalsPtr->gOldScreenDepth Fetch_Depth(); /* Get screen depth for later */ 



Appendix C • Program Listings 071 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

/* Make sure the init stays in memory when the INIT file closes */ 
DetachResource( initH ); 
} /* end else */ 

RestoreA4( oldA4 ); 
/*end main() */ 

/*========================== 
DoinitForOldMacs 

Initialization code for non-PowerPC Macs. 

===========================*/ 
OSErr DoinitForOldMacs( void ) 
{ 

/* patch the trap */ 

/* restore previous value of A4 */ 

gGlobalsPtr->gOrigPostEvent = NGetTrapAddress( _PostEvent, OSTrap ); 

NSetTrapAddress( (UPP)PostEvent68kStub, _PostEvent, OSTrap ); 

gGlobalsPtr->gOrigGetMouse = NGetTrapAddress( _GetMouse, ToolTrap ); 
NSetTrapAddress( (UPP)GetMouse68kStub, _GetMouse, ToolTrap ); 

return noErr; 
/* end DoinitForOldMacs() */ 

/*========================== 
DoinitForPPCMacs 

Initialization code for powerpc Macs. 

===========================*/ 
OSErr DoinitForPPCMacs( void ) 

OSErr 
Handle 
SymClass 
Ptr 
Connection ID 
Str255 

Ptr 

err = noErr; 
ppcCodeH = nil; 
theSymClass; 
theSymAddr; 
connID = kNoConnectionID; 

errName; 
mainAddr; 

/******************************* 

load the powerpc version of the code into 
memory_ since some of our trap patches may be 
called at interrupt time, don't use disk-based 
versions of the code. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

*******************************/ 

ppcCodeH = Get1ResourceSys( kPPCRezType, kPPCRezID ); 
if ( lppcCodeH ) 

return resNotFound; 
HLock( ppcCodeH ); 

/******************************* 

open a connection with the code fragment we just loaded 
*******************************/ 

err= GetMemFragment( *ppcCodeH, GetHandleSize(ppcCodeH), klnitName, 
kLoadNewCopy, &connID, &mainAddr, errName ); 

if err ) 

connID = kNoConnectionID; 
goto DONE; 

/******************************* 

find the global variable ptr that the powerpc 
code uses. 

*******************************/ 

err= FindSymbol( connID, kGlobalsSymName, &theSymAddr, &theSymClass ); 
if ( err ) 

goto DONE; 

/******************************* 

Modify the powerpc global variable pointer to point 
to the area of memory we've already allocated. 

*******************************/ 

*(MylnitGlobals **)theSymAddr = gGlobalsPtr; 
err= PatchTrapsForPPCMac( connID ); 

/******************************* 

Cleanup 
*******************************/ 

DONE: 
if err 

/*Close the code frag mgr connection if we got an error ... */ 
if ( connID I= kNoConnectionID 

Closeconnection( &connID ); 



Appendix C • Program Listings ¢ 
··············································································································~ 

/* ... and release the memory we allocated*/ 
if ( ppcCodeH ) 

ReleaseResource( ppcCodeH ); 
} /* end if */ 

else 

/* No error -> keep the ppc code around when file closes */ 
DetachResource( ppcCodeH ); 
} /* end else */ 

return err; 
} /* end DoinitForPPCMacs() */ 

/*========================== 
PatchTrapsForPPCMac 

===========================*/ 
OSErr PatchTrapsForPPCMac( ConnectionID connID ) 
{ 

Ptr symAddr; 
SymClass symType; 
OSErr err noErr; 
UniversalProcPtr upp = nil; 

/* 

Fat Patch _PostEvent 
*/ 

err FindSymbol( connID, kPostEventFuncName, &symAddr, &symType ); 

if ( err ) 
return err; 

err= CreateFatDescriptorSys( PostEvent68kStub, symAddr, kPostEventinfo, &upp ); 
if ( err ) 

return memFullErr; 

gGlobalsPtr->gOrigPostEvent = NGetTrapAddress( _PostEvent, OSTrap ); 
NSetTrapAddress( upp, _PostEvent, OSTrap ); 

/* 
Fat Patch _GetMouse 

*/ 

err FindSymbol( connID, kGetMouseFuncName, &symAddr, &symType ); 
if ( err ) 

return err; 



0, Power Macintosh Programming Starter Kit 
~·············································································································· 

err= CreateFatDescriptorSys( GetMouse68kStub, symAddr, kGetMouseinfo, &upp ); 
if ( err ) 

return memFullErr; 

gGlobalsPtr->gOrigGetMouse = NGetTrapAddress( _GetMouse, ToolTrap ); 
NSetTrapAddress( upp, _GetMouse, ToolTrap ); 

return noErr; 
} /* end PatchTrapsForPPCMac() */ 

/*========================== 
CreateFatDescriptorSys 

Creates a fat routine descriptor in the system heap. 
===========================*/ 
OSErr CreateFatDescriptorSys( void *mac68Code, void *ppcCode, ProclnfoType proclnfo, UPP 
*result ) 

*/ 

THz oldZone; 
OSErr err = noErr; 

oldZone = GetZone(); 
Setzone( Systemzone() ); 

#ifndef DO_PPC_CODE_ONLY 

/* Save current zone */ 
/* Get us in the system heap */ 

*result NewFatRoutineDescriptor( mac68Code, ppcCode, proclnfo ); 
#else 
•result NewRoutineDescriptor( ppcCode, proclnfo, kPowerPCISA ); /*debugging only 

#end if 

Setzone( oldZone ); 

return( *result? noErr : memFullErr ); 
/* end CreateFatDescriptorSys() */ 

/*========================== 
PostEvent68kStub 

This is the 68k version of PostEvent. Because it's a 
register-based trap, we have to use assembly code 



Appendix C • Program Listings 075 
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

to see what was passed to it. Because the routine 
can't move memory (it might get called during an 
interrupt), we also have to call a custom 68K 
function that doesn't disturb the machine environment. 

===========================*I 

asm void PostEvent68kStub( void 
{ 

II reserve space on stack for "real" PostEvent address 
sub.l #4, SP 

II save registers (not A0 & 00, though) 
movem.l A1-A5101-07, -(SP) 

II push A0 & 00 on stack for call to MyPostEvent68k below 
II we must do this before SetUpA4 since it modifies registers 

move .1 00, · (SP) 11 push event message 
move.w A0, ·(SP) 11 push event code 

jsr SetUpA4 II give us global access 

II put address of "real" postevent in place reserved on stack 
II note that it is the first field in the gGlobals structure 

move.! 
move.! 

II 

II 

II 
jsr 

move.w 
add.l 

gGlobalsPtr, A0 
(A0), 54(SP) 

call MyPostEvent68k 
parameters are on the 
00.w returns with the 

MyPostEvent68k 

00, A0 
#2, SP 

stack already 
new event code 

II A0.w = event code 

II clear old event code from stack 
move.! (SP)+, 00 II restore event message from stack 

II restore registers 
movem.l (SP)+, A1-A5I01-07 

II jump directly to original PostEvent code 
II the address was placed on the stack in the above code 

rts 
} I* end PostEvent68kStub() *I 



1:::\,. Power Macintosh Programming Starter Kit 
~·············································································································· 

pascal void GetMouse68kStub( Point *mouseloc ) 

long oldA4; 

oldA4 = SetUpA4(); 
MyGetMouse ( mouseLoc ); 
RestoreA4( oldA4 ); 

} /*end GetMouse68kStub() */ 

#endif /* 68k code */ 

/* 

*/ 

@@@@@@@@@@@@@@@ Shared Code @@@@@@@@@@@@@@@ 

This code gets compiled into both 68k and PowerPC object code. 
The 68k code gets called from 68k patches & code. 
The powerpc code gets called from powerpc patches & code. 

If these routines were very large, or called infrequently, we could 
just have a single version that is called by the "other" object code, 
but it's not worth the hassle & context switch. 

Handle Get1Resourcesys( OSType rezType, short rezID ) 
{ 

THz 
Handle 

oldZone; 
h; 

oldZone = Getzone(); 
Setzone( Systemzone() ); 
h = Get1Resource( rezType, rezID ); 
SetZone( oldZone ); 
return h; 

/*end Get1ResourceSys() */ 

/* Our custom GetMouse function. We do our screen stuff here because 
GetMouse is allowed to move memory, and is called frequently. 

*/ 

void MyGetMouse( Point *pt ) 
{ 

long currentDepth; 



Appendix C • Program Listings ~ 
··············································································································~ 

/* 

*/ 

if ( gGlobalsPtr->gRequestFlag /* Event is for us ? */ 

gGlobalsPtr->gRequestFlag = FALSE; /* Clear flag or else get called indefinitely */ 
currentDepth = Fetch_Depth(); 
if ((currentDepth == BLACK_WHITE) && (currentDepth I= gGlobalsPtr->gOldScreenDepth)) 

Change_Depth(gGlobalsPtr->gOldScreenDepth); 
else 

Change_Depth(BLACK_WHITE); 

/* end if *I 

CallGetMouse( pt ); /* Hop to original GetMouse() */ 

/*end ourGetMouse() */ 

Note: 
returns the (possibly modified) event code 

Don't modify the local variables eventNum & eventMsg 
they're used by the stub routine and modifying 
locals here can have a global effect 

short MyPostEvent68k( short eventNum, long eventMsg ) 

short newEventCode = eventNum; 

if ( (eventNum == keyDown) II (eventNum == autoKey) ) 

{ 

if ( (lowMemKeyModifiers == KEY_COMBO) && (lowMemKeyStroke == T_KEYCODE) 

newEventCode = nullEvent; /* Suppress the event */ 
gGlobalsPtr->gRequestFlag = TRUE; 

/* end if KEY_COMBO && T_KEYCODE */ 
} /* end if */ 

return newEventCode; 
/* end MyPostEvent68k() */ 

#ifdef powerc 
OSErr MyPostEventPPC( short eventNum, long eventMsg ) 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

OSErr result; 

if (eventNum == keyDown) II (eventNum == autoKey) ) 

if ( (lowMemKeyModifiers KEY_COMBO) && (lowMemKeyStroke == T_KEYCODE) 

eventNum = nullEvent; /* Suppress the event */ 
gGlobalsPtr->gRequestFlag TRUE; 
} /* end if KEY_COMBO && T_KEYCODE */ 

} I• end if •I 

result CallPostEvent(eventNum, eventMsg); 
return result; 

/* end MyPostEventPPC() */ 

#endif 

/* Get the current screen depth- Also get the GDevice of main screen and its 
device number (to use the driver) */ 

long Fetch_Depth(void) 
{ 

long screenDepth; /* Current bit depth of our screen */ 
GDHandle thisGDevice; 

thisGDevice = GetMainDevice(); 
gGlobalsPtr->gOurGDevice = thisGDevice; 
screenDepth = (**thisGDevice).gdMode; 

/* Get GDevice of main screen */ 
/* Hang onto this gDevice's handle */ 
/* Get current video mode */ 

gGlobalsPtr->gDevRefNum = (**thisGDevice).gdRefNum; 
return screenDepth; 

/* Get screen's device ref. # */ 

/* 

*/ 

/* end Fetch_Depth() */ 

Change screen depth. New screen depth is resource ID of 
a display mode the video hardware supports. 

void Change_Depth(long newDepth) 

Graf Ptr 
Rect 

oldPort; 
ourGDRect; 



Appendix C • Program Listings ¢ 
··············································································································~ 

RgnHandle thisScreenBoundary; 
GrafPtr theBigPicture; 

WindowPtr theFrontWindow; 

HideCursor(); /* Hide pointer since its depth will change */ 

/* At last we change the screen depth! */ 
InitGDevice(gGlobalsPtr->gDevRefNum, newDepth, gGlobalsPtr->gOurGDevice); 

theFrontWindow = FrontWindow(); 
ActivatePalette(theFrontWindow); 
AllocCursor(); 

Showcursor(); 

/* Use active window's color palette */ 

/* Draw cursor at new screen depth */ 
/* Put it back on-screen */ 

/* The desktop's still a mess: redraw it */ 
thisScreenBoundary = NewRgn(); /*Get a region to hold this screen*/ 

if (!MemError()) /*Trouble?*/ 

{ /* No */ 

ourGDRect = (**gGlobalsPtr->gOurGDevice).gdRect; 
RectRgn(thisScreenBoundary, &ourGDRect); /*Get boundary of gDevice */ 
GetPort(&oldPort); /*Save current port*/ 
GetWMgrPort(&theBigPicture); /*Get Desktop's port*/ 

SetPort(theBigPicture); 

DrawMenuBar(); 

/* Make it the current port */ 

PaintOne(NIL, thisScreenBoundary); /*Paint the background*/ 

/* Now the other windows */ 
PaintBehind( *(WindowPeek *) Windowlist, thisScreenBoundary); 

SetPort(oldPort); 
DisposeRgn(thisScreenBoundary); 

} /* end if IMemError() */ 

else 
SysBeep(30); /* Couldn't make the region, complain */ 

} /* end Change_Depth() */ 

Klepto.c 

#include <Types.h> 

#include <QuickDraw.h> 
#include <Windows.h> 
#include <Fonts.h> 

#include <Memory.h> 

#include <ToolUtils.h> 

#include <StandardFile.h> 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

#include <Errors.h> 
#include <Resources.h> 

/* Various constants */ 
#define NIL 
#define FALSE 
#define TRUE 
#define DEFAULT_VOL 
#define ONE_FILE_TYPE 
#define POWER_PC_FRAG 
#define FRAG_ID 

0L 

false 
true 

0 
1 
'PPC ' 

300 

void Move_Fork(short input); 

void main(void); 

void Move_Fork(short input) 
{ 

OSErr 
long 
Handle 

finputErr; 

codeFragSize; 
fragBuff; 

finputErr = GetEOF(input, &codeFragSize); 
if ((fragBuff = NewHandle(codeFragSize)) !=NIL) 

/* PowerPC resource type */ 
/* PowerPC resource ID */ 

/* Get file length */ 
/* Enough data buffer memory? */ 

if (! (finputErr = FSRead(input, &codeFragSize, *fragBuff))) /*Read in fragment*/ 

/* Treat buffer as a resource */ 
AddResource(fragBuff, POWER_PC_FRAG, FRAG_ID, NIL); 

if (!ResError()) /*Trouble?*/ 
{ 

WriteResource(fragBuff); 
if ( ResError ()) 

SysBeep(30); 
} /* end if !ResError */ 

/* !finputErr */ 

/* end if != NIL */ 
UpdateResFile(CurResFile()); 
ReleaseResource(fragBuff); 

/* end Move_Fork() */ 

void main(void) 

unsigned char fileName[14] {'\pKlepto.n.rsrc'}; 

/*Write frag to resource fork */ 

/* Update file's resource map */ 
/* Free the memory */ 



Appendix C • Program Listings 081 
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

OSType fileCreator = {'RSED'}; /* File type and creator for our output file */ 
OSType fileType = { 'rsrc'}; 
OSErr fileError; 
short inFileRefNum, outFileRefNum; 
StandardFileReply inputReply, outputReply; 
short 
SFTypeList 
CursHandle 

oldVol; 
shlbType = {'shlb'}; 
theCursor; 

/* Lunge after all the memory we can get */ 
MaxApplZone(); 

/* File type for shared libraries */ 
/* Current pointer icon */ 

/* Make sure we've got some master pointers */ 
MoreMasters(); 
MoreMasters(); 
MoreMasters (); 
MoreMasters(); 

/* Initialize managers */ 
InitGraf(&qd.thePort); 
InitFonts(); 
FlushEvents(everyEvent, 0); 
InitWindows ( ) ; 
Ini tMenus () ; 
TEI nit(); 
InitDialogs(NIL); 

/* Open the input file */ 
StandardGetFile(NIL, ONE_FILE_TYPE, shlbType, &inputReply); 
if (inputReply.sfGood) 

{ 

GetVol (NIL, &oldVol); /*Save current volume*/ 
if ((fileError = FSpOpenDF (&inputReply.sfFile, fsCurPerm, &inFileRefNum)) != noErr) 

{ 

SysBeep(30); 
return; 
} /* end if error */ 

/* Open the output file */ 
StandardPutFile ("\pSave code fragment in:", fileName, &outputReply); 



~ Power Macintosh Programming Starter Kit 
~············································································································· 

if (outputReply.sfGood) 
{ 

SetVol(NIL, outputReply.sfFile.vRefNum); /*Make the destination volume current*/ 
fileError = FSpCreate(&outputReply.sfFile, fileCreator, fileType, smSystemScript); 
switch(fileError) 

{ 

case noErr: 
break; 

/* Process result from File Manager */ 

case dupFNErr: 
if ( (fileError 

/* File already exists, wipe it out */ 
FSpDelete(&outputReply.sfFile)) == noErr) 

if ( (fileError FSpCreate(&outputReply.sfFile, fileCreator, 
fileType, smSystemScript)) I= noErr) 

else 

SysBeep(30); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 

/* end if I= noErr */ 

/* end == noErr */ 

SysBeep(30); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 
return; 
} /* end else */ 

break; /* end case dupFNErr */ 

default: 
SysBeep(30); 
FSClose (inFileRefNum); 
SetVol(NIL, oldVol)j 
return; 

/* end switch •/ 

/* Unknown error, try to abort cleanly •/ 

/* Close the input file */ 

/* Restore original volume */ 

/* Open file's data fork. We do this only to get a file ref number */ 

if (! (FSpOpenDF (&outputReply.sfFile, fsCurPerm, &outFileRefNum))) 

/* MUST create resource map in resource fork or no resource writing occurs */ 

FSpCreateResFile (&outputReply.sfFile, fileCreator, fileType, smSystemScript); 
if (I Res Error()) 

{ 



Appendix C • Program Listings 083 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

FSpOpenResFile (&outputReply.sfFile, fsCurPerm); 
if ( I ResError () ) 

{ 

theCursor = GetCursor(watchCursor); 
SetCursor(&**theCursor); 
Move_Fork (inFileRefNum); 
FSClose (outFileRefNum); 
SetCursor(&qd.arrow); 
} /* end if !ResError */ 

/* end if !ResError */ 
FlushVol (NIL, outputReply.sfFile.vRefNum); 

/* end if !FSpOpenDF */ 
/* end if outputReply.sfGood */ 

FSClose (inFileRefNum); 
SetVol(NIL, oldVol); 

/* end if inputReply.sfGood */ 

/* end main() */ 

/* Open resource fork */ 

/* Change the cursor */ 

/* Restore the cursor */ 

/* Restore current volume */ 



Where to Go for Help 
and Information 

If you run into problems (remember, please don't contact 
Metrowerks directly for support until after you buy the commer
cial version of Code Warrior) or if you just want to link up with 
other people using Metrowerks Code Warrior, there are a num
ber of forums on various online services that you can get in
volved in. To find out what forums are available and where you 
can find them, Metrowerks has established a system that will 
automatically send you a complete listing of the forums cur
rently operating, product and order information, and the latest 
Metrowerks news. 

To get this listing, you need to send an E-mail 
message to the Internet address 
news@metrowerks.ca . .Any message will do. You're 
going to get an automatic response, so don't 
expect to have a 
conversation 
through this 
address. However, 
you will gets lots of 
valuable informa
tion. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

How to Address Your Request 
Even if you don't have direct access to the Internet, you can still send the 
request through most online services. If you don't know how, limited 
instructions are provided below. These give you the addressing schemes 
for Internet messages for some of the major services. If you need additional 
assistance, refer to a book on the Internet such as Hayden's Intemet Starter 
Kit for Macintosh. 

Applelink 
To send the request from AppleLink, add @internet# to the end of the 
address provided on the previous page. So send an E-mail message to: 
news@metrowerks.ca@internet#. 

CompuServe 
To send the request from CompuServe, add >INTERNET: to the beginning of 
the address. Thus, from CompuServe, address your request to: 
>INTERNET:news@metrowerks.ca. 

GEnie 
From GEnie, add @inet# to end of the address, like so: 
news@metrowerks.ca@inet#. 

America Online 
To send the request from AOL, just use the address news@metrowerks.ca. 

Delphi 
From Delphi you don't need to do anything special. Just use the address 
news@metrowerks.ca. 

After You Get the List 
After you receive the list, find a suitable forum and get into it. You can bet 
that there will be a lot of people to talk to and undoubtedly someone will 
have the same questions that you do. Who knows, you might even be able 
to answer someone else's questions! 



111/ .. /' 

' ' . ' ' .:;:f'-. / 

,',• 
.. 

Glossary 

A5 world The area within a 68K application's memory parti
tion that contains the application's global variables and refer
ences to functions in other code segments. (See Jump table.) All 
of the objects are referenced as offsets from a base address 
contained in the A5 register, hence the name. 

API Application Programming Interface. A standard or speci
fication that describes an operating system's services and how 
to use them. The various Managers implement the Mac APL 

Apple Events An interapplications communications protocol 
that complies with the Apple Event Interprocess Messaging 
Protocol (AEIMP). It uses high-level events to communicate with 
other applications. 

AppleScript A programming language that 
automates repetitive operations or can control 
one or more Mac applications in a predefined 
sequence. It uses 
Apple Events 
to direct the 
applications. 



0 Power Macintosh Programming Starter Kit 
~·············································································································· 

Breakpoint A software marker in program code that suspends the 
program's execution and transfers control to a debugger. Used to stop a 
faulty program's execution in suspect areas so that the code and variables 
can be examined just prior to a crash. 

CISC Complex Instruction Set Computing. So called because the machine 
instructions can perform a complicated set of operations. A single CISC 
instruction might fetch a value from memory, add a value to it, save the 
value elsewhere, and then index to a new memory location. These instruc
tions achieve a high code density: That is, a small number of instructions 
can implement a sophisticated algorithm. The down side is that the proces
sor requires a complex instruction decoder to decipher each instruction 
into its corresponding processor actions. See also RISC. 

Code fragment The basic unit of PowerPC executable code on the 
Power Macintosh. Code fragments can be shared libraries, applications, or 
stand-alone executable resources. They can be any size, and are usually 
stored in a file's data fork. The executable code in a Power Mac application 
is a single code fragment, although the architecture supports multiple 
sections of code. 

Code Fragment Manager The set of Mac OS routines that manage the 
loading and use of code fragments. The Process Manager uses the Code 
Fragment Manager to load a native Power Mac application's code frag
ment into the memory partition. 

Code segment A unit of 680x0 executable code, stored as a resource of 
type 'CODE'. Code segments usually have a maximum size of 32K. This is 
due to the fact that the program code uses only PC-relative instructions, 
whose offset limit was 32K. 

Debugger, high-level A debugging program that trades robustness for 
ease of use. It relies on the integrity of the operating system so that it offers 
a sophisticated interlace. It displays the program under test as source code 
and lets you examine variables by name and in a variety of formats. 

Debugger, low-level A debugging program that uses minimal operating 
system resources and thus continues to function after a severe program 
crash. For this same reason, it also has a minimal user interface, although 
certain debuggers blur this definition by providing high-level debugger 
features. 



.............................................................................................. ~ ... ~~~~~~~.~ 
DeRez A MPW tool used to disassemble resources into a textual descrip
tion that describes the resource. See also Rez. 

Emulator A program designed to read, interpret, and faithfully execute 
the machine code of another processor. The emulator program might be 
part of an application that mimics the environment and processor of an
other computer system (such as Insignia Solution's SoftWindows), or part of 
the operating system (such as the Power Mac's 68LC040 emulator). 

Event An action initiated by either the user or a computer subsystem. 
These events might be handled by an active application or the operating 
system. Low-level events are keystrokes, mouse clicks, and disk insertions. 
High-level events are messages sent between applications to request 
services. 

Event loop The program loop that's the heart of an event-driven applica
tion. The event loop constantly looks for any events sent to the application. 
The loop determines the type of event it has received and calls the appro
priate functions to handle the event. 

File fork A stream of bytes on disk. The Mac's file system recognizes two 
types of forks in a file: a data fork that contains data created by an applica
tion or code fragments, and a resource fork that contains resources. See 

also Resources. 

File signature A pair of four-character codes that uniquely identify the 
file. The first code, called type, describes the file's contents, such as 
whether the file contains text data (type 'TEXT') or is an application (type 
'APPL'). The creator code identifies the application that created the file 
(MacWrite Pro, Photoshop, or Excel, for example). The file's signature codes 
are stored in the desktop database for use by the file system. 

IDE Integrated Development Environment. A program, such as 
CodeWarrior or THINK C, that incorporates a program editor, 
compiler, and linker into one application. This enables a fast 
turnaround time in the development cycle and it also allows the various 
components to communicate information to one another. 

ISA Instruction Set Architecture. The instruction set and programming 
model of a processor. 



~ Power Macintosh Programming Starter Kit 
~·············································································································· 

Jump table A table of addresses that points to functions in different 68K 
program segments. Each table entry contains either a function address or a 
trap word that invokes the Segment Loader to load the missing code 
segment into memory. These entries are referenced off a base address 
stored in register A5. See also A5 world. 

Make Compiling and linking library files to make an application or code 
resource. Often used as a verb, as in, "Make the SwitchBank application." 

Manager A group of related Mac OS routines, such as the Code Frag
ment Manager and File Manager. 

Microcode Software within a processor that directs portions of the 
processor hardware to execute the instruction. Typically found in CISC 
processors. 

Modifier A key that changes the meaning of other keystrokes when it is 
held down. The modifier keys are Shift, Control, Option, and Command 
keys. 

MPW Macintosh Programmers Workshop. A term for Apple's collection 
of development tools. 

Native A program or code resource, written in PowerPC code, as in a 
"native" application. 

PC relative addressing A program whose machine instructions make 
jumps to other portions of the program, relative to the current address in 
the program counter (PC). This enables the program code to be position
independent. On the 68000 processor, the largest offset possible was 32K. 

PEF Preferred Executable Format. Developed by Apple, this file format 
stores PowerPC code in a compact form. All code fragments are stored in 
the PEF layout. 

PlainTalk The voice recognition software and text-to-speech engine used 
in AV Macs and AV Power Macs. 

Procedure The Pascal equivalent to a C function. 

Process A running application or task. 



,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.~ ... ?~?;::'.':..~ 
Project A Code Warrior file that encompasses all of the information 
required to build a program. It contains references to the source files, 
object files, symbols, and the preferences for various components in the 
integrated environment. 

QuickTime A collection of routines used to create, control, and display 
time-dependent data, such as sounds or digital movies. 

Rez A MPW tool used to compile textual descriptions of a resource into a 
binary format. 

RISC Reduced Instruction Set Computing. A processor/instruction set 
design that uses simple instructions to achieve high throughput. While 
each instruction might not accomplish as much as a CISC instruction, a 
RISC processor's pipelines enable it to process more instructions over a 
given interval and at a constant rate. 

Resource Data or code stored in a special format. Each resource has a 
type and ID number that uniquely identifies the resource to the Mac OS. 
The resource type tells the Resource Manager how to interpret the 
resource's contents. 

Routine A Toolbox function. The term is used to differentiate between 
your program functions and those written by Apple to implement the Mac 
APL 

Routine descriptor A data structure used to identify to the Mixed Mode 
Manager what ISA the routine is written in and the type of arguments the 
routine requires. 

SANE Standard Apple Numeric Environment. A hardware-independent 
library of floating-point math routines. 

Segment See Code segment. 

Segment Loader The part of the Mac OS used by the Process Manager 
to load 68K code segments into a memory partition. 

Shared library A code fragment that exports routine names and data. 
This makes it capable of being shared among two or more applications. 
The first application requiring the library's services has the Code Fragment 
Manager load it into memory. The shared library is removed from memory 
when it is no longer used by any application. 



~ Power Macintosh Programming Starter Kit 
~············································································································· 

Stand-alone code Code loaded and executed in place. Contrast this to 
application code, where the Process Manager builds an A5 world for the 
program code (68K application) or the Code Fragment Manager prepares a 
code fragment for execution (native Power Mac application). 

TOC Table of Contents. The TOC resides in the code fragment's data area 
and contains pointers to data in an application's own code fragment or to 
data or functions in other code fragments. Portions of the TOC are set up 
by the Code Fragment Manager when it prepares a code fragment for 
execution. 

Tool A program that has little or no interlace code. It only operates within 
the environment provided for it by the MPW shell or ToolServer. 

Toolbox The collection of basic system routines that implements the 
Mac APL Technically, the Toolbox handles most low-level system services, 
while other services, such a File I/O and printing, are considered operating 
system routines. To minimize confusion, both types of routines are grouped 
under this term. 

Transition vector A data structure used by one code fragment to access 
a function in another code fragment. The structure consists of one pointer 
to the target fragment's TOC and a second pointer to a function within the 
target code fragment. 

Trap A 68K instruction that causes an error condition or exception. The 
processor automatically responds to this exception by calling a handler 
written to deal with the problem. Apple uses certain trap values to route a 
68K program's execution to the Toolbox routines. 

UPP Universal Procedure Pointer. A data structure that's wrapped 
around a procedure (function) pointer and describes the target function's 
ISA, argument passing convention, and the size of each argument. 

XCOFF Extended Common Object File Format. A file format for 
Macintosh PowerPC binary files. It's an enhancement of a binary file format 
used by UNIX workstations. This format is prevalent on IBM RS/6000 
workstations and is partially supported by the Code Fragment Manager. 
XCOFF files were used during Power Macintosh development while the 
operating system was being written using IBM development tools. 



Index 

Symbols 
OxA986 trap word (StopAlert 

routine), 151 
OxA9FO trap word, LoadSeg( ), 171 
32-bit values in processors, 

function calls, 146 
601/603 processors, see PowerPC 

microprocessors 
680x0 processors (68K) 

applications 
jump tables, 148 
memo.zy structure, 147 
run-time architecture, 144-153 

processor emulation speed, 12 
68LC040 emulator, 10, 144, 

221, 389 
88000 RISC processor 

(Motorola), 5 
88110 RISC processor (Motorola), 

PowerPC processor bus, 299 

A 
A trap word, Toolbox routines, 151 
A5 world memory, 147, 387 
About Munger ... command (Apple 

menu), 76 
Access Paths group settings 

(CodeWarrior), 39 
accessing Toolbox routines, 150 
activate event, 114-115 
ActivatePalette( ) function, 252 
Add File command (Project menu), 

21-22, 48, 97 
Add Window command (Project 

menu), 21-22 
AddResource( ) function, 255 
addresses, Internet E-mail for 

CodeWarriorforums,385 
addressing, PC-relative, 146 
AECountltems() routine, 130, 209 
AEDisposeDesc( ) routine, 131 



To 

i11111 ••••••• , ...... . 
.1'••··· ••••••• •••••• .......... 
~-·-· 

Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

AEGetNthPtr( ) routine, 130, 209 
AEGetParamDesc{ ) routine, 

129-131, 209 
AEIMP (Apple Event Interprocess 

Messaging Protocol), 387 
AEinstallEventHandler{ ) 

routine, 124 
AEProcessAppleEvent( ) 

routine, 124 
alert boxes (Rez program), 177-179 
alerts 

caution alerts, 88 
making, 88-94 
munger program, 134-135 
note/stop alerts, 88 

Alignment menu (ResEdit), 84 
AMD 29000 RISC processor, 5 
America Online (AOL), 

Code Warrior forum requests, 386 
ANSIC 

compliance of PowerPC code, 303 
Standard Libraries, 41 

stdinlstdoutlstderr streams, 44 
_ANSI_Exit termination 

function, 51 
API (Application Programming 

Interface), 387 
appending buttons to dialog 
boxes, 84-85 

AppendResMenu{ ) routine, 118 
APPL files, 71 
Apple 

DebuggerINIT program, 276 
DebugServices for PowerPC 

program, 275 

IBM-Motorola partnership, 7-12 
Macintosh Debugger for 

PowerPC, 265 
PPCTraceEnabler Extension, 275 

Apple Event initialization function 
setting breakpoint for, 277 

Apple Events, 120, 387 
Apple menu, 75-76 
Apple Tools folder, 189 
AppleLink, Code Warrior forum 

requests, 386 
AppleScript, 8, 219, 387 
application zone of memory, 223 
application-specific functions, 

SwitchBank program, 199-200 
applications 

68K memory structure, 147 
A5 world, 387 
code fragments, 388 
context switching, 113 
DebuggerINIT (Apple), 276 
debugging, 261-262 

processes/techniques, 286-288 
DebugServices for Power PC 

(Apple), 275 
eventloops,95,389 
fat binary, 215-219 
filtering events, 113 
IDE, 16 
making, 390 
mode switching, 125 
MW Debug, 265-283 
native, 390 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Power Mac 
memozy structure, 155 
native, 13 
starting, 155 

PPCTraceEnabler Extension 
(Apple), 275 

processes, 390 
software debuggers, 263 
SwitchBank, 170 
ToolServer, compiling Rez 

program, 186 
see also emulators; programs; 

software 
Ask_File( ) function code listing, 

314-316 
auto key events, 114-116 
AV Technologies expansion 

boards, 8 

B 
binary applications (fat), 215-219 
bit-mapped data, 71 
BNDL bundle resource, Rez 

program, 179 
Braces icon, 28 
bracket characters, 32 
breakpoints, 388 

Apple Event initialization 
function, 277 

debuggers, 264 
Open Document function, 280 
programs, 274 

bugs 
logic, 288 
memoryleak,291 
memory shuffling, 291 
side-effect, 291 
Toolbox routine, 289-291 

Build Library command (Project 
menu), 22 

building munger program, 119-120 
bundle resources, 135-140 
Button( ) routine, 68 
buttons, appending to dialog 

boxes, 84-85 

c 
C programming language, 16 
C compiler, 33 
C Library, 63 
C Standard Library 

(CodeWarrior), 61 
C++ programming language, 16 
CallUniversalProc( ) function, 

SwitchBank program, 198 
Cancel button (Preference 

window), 34 
case statement, munger 
program,47 

caution alerts, 88 
CautionAlert( ) routine, 131 
CD-ROMs, ejecting with 

SwitchBank program, 173-191 
Centris 610/650, 4 



Index 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

.... -· 
i11111 ......... , ..... .. 
Ul•1•1 •••••••• •••••• ,..,. .... 
1..!P•·-· 

cfrg resource, 155 
Change_Depth() function, 247-251 
Check_System( ) function, 

SwitchBank program, 210-211 
cicn resource, Rez program, 185 
CISC (Complex Instruction Set 

Computing) processors, 5-7, 
298,388 

Classic Mac, 2 
CMOS production of PowerPC 
processors, 299-300 

code 
bracket characters, 32 
comments, 100 
Controls menu (SwitchBank 

program), 211 
fat trap, debugging, 293 
FlipDepth program, 254-255 
machine, viewing with The 

Debugger, 284 
munger program, 97-120 

building, 119-120 
firstfunction, 100-101 
high-level events, 121-134 
initialization function, 117-119 
input/ output filenames, 104-108 
main event loops, 111-117 
user interface, 108-111 

patch, 223 
porting existing versions to Power 

Macs, 303-306 
PowerPC Mac initialization 

(FlipDepth program), 238-239 
Rez program error messages, 176 
shared library, 391 

SonOMunger program 
alerts, 134-135 
bundle resources, 135-140 
running, 140-141 

source, viewing with The 
Debugger, 284 

stand-alone, 223, 392 
styles, 100 

Code Fragment Loader 
routines, 156 

Code Fragment Manager, 155, 388 
code fragments, 26, 153, 220, 388 

import symbols, 158 
libraries/routine names, 157 

CODE resource 0, File Sharing 
Extension, 171 

CODE resources, 144 
code segments, 388 
CodeWarrior (Metrowerks), 

1540, 389 
C compiler, munger.c file, 44-46 
C Standard Library, 61 
compiler, 33, 63 
Disassemble command, 18 
editor, 27-32 
file name precautions, 73 
forums, 385 
hardware/software needed, 17-18 
linker, 33 
'NIW Debug program, 265 
Preferences command (Edit 

menu), 33 
Project window, 24 
projects, 19-27, 391 
SIOUX (Simple Input/Output User 

exchange) library, 44 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Toolbar, 18-19 
customizing, 19 
deleting commands, 19 

Toolbox, 61-70 
version tracking, 20 

color icon formats, Rez 
program, 185 

Command-Key equivalents, 77 
commands 

Apple menu, About Munger..., 76 
Control menu, "NNJ Debug 

program, 273 
deleting from Toolbar, 19 
Edit menu, Preferences .. . , 33-40, 50 
File menu 
New, 21 
New Project ... , 48 
Quit, 24 
Select New Project ... , 20 

keyboard equivalents, 77 
Project menu 
Add File, 21-22, 48, 97 
Add Window, 21-22 
Build Li.brazy, 22 
Compile, 21 
Disassemble, 21 
Make, 21 , 51 
Remove, 21 
Run, 22 

Resource menu, Create New 
Resource, 73 

View menu, Show Invisibles, 52 
comments (code}, 100 
compilers 

CodeWarrior,33,63 
Metrowerks C, 41, 44-46 
porting Mac code to Power PC, 304 

compiling Rez program, 186 
Complex Instruction Set 

Computing, see CISC 
CompuServe, CodeW arrior forum 

requests, 386 
concurrent stand-alone code, 224 
context switching 

(applications), 113 
Control menu commands, "WN 

Debug program, 273 
Control Panel files, third party 

enhancements, 153 
Controls menu code, SwitchBank 

program, 211 
converting error code to 

strings, 100 
cooperative multitasking, 110, 150 
counters, icount/ ocount (munger 

program), 47 
CR (carriage-return) character, 
munging text, 43-44 

Create New Resource command 
(Resource menu), 73 

CreateFatDescriptorSys( ) 
function, 242-243 

crflag flag (munger program), 47 
custom handlers, 166 
customizing Toolbar, 19 

D 
data forks, 70, 106-107, 389 
data structures, 57, 194-196 
DebuggerINIT (Apple}, 276 



Index 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

... -· ···••1 ••••••• "••··· Ul•1•1 •••••••• ....... .......... 
':..!!!!" ....... 

debuggers, 262-265 
breakpoints, 264 
hardware, 263 
high-level, 264 
invocation statements, 295 
low-level, 264, 283-286 
MacErrors program (Wachter/ 

Kearney), 296 
Programmer's Key program (Paul 

Mercer), 296 
software,263 
two-machine, 264 

debugging 
fat routine descriptors, 294 
fat trap code, 293 
processes/techniques, 286-288 
programs, 261-262 

high-level/low-level 
debuggers, 388 

shared library files, 281 
SwitchBank program, 266-283 

DebugServices for PowerPC 
application (Apple), 275 

default buttons (dialog boxes), 92 
Delay( ) routine, 103, 113 
deleting Toolbar commands, 19 
delivery mechanism (high-level 

events), 123-126 
Delphi, CodeWarrior forum 
requests, 386 

DeRez tool, resource 
disassemblers, 94, 173, 389 

describing resources for Rez 
program, 174-176 

Desk Accessories, 110 
DetachResource( ) function, 237 

determining event handling 
levels, 133-134 

development tools, MPW, 390 
dialog boxes 

appending buttons, 84-85 
default buttons, 92 
editing, 82-84 
Go To Line Number, 31 
making, 80-86 
numbering items, 85-86 
Preferences, 33 
Rez program, 177-179 
Standard File, 20, 39, 48, 73 
static text, 83 

dialog item lists, Rez program, 
177-179 

Dialog Mana~er, 103 
Dialogs.h header file, 151 
DIBadMount( ) routine, 116 
DILoad( ) routine, 116 
directories, pathnames, 46 
Disassemble command (Project 

menu), 18, 21 
disk insertion events, 114-117 
dispatch tables, Toolbox routine 
trap words, 152 

displaying menus, 119 
DisposeWindow() routine, 68 
DIUnload( ) routine, 116 
Do_ Command( ) function, code 

listing, 316-318 
DolnitForOldMacs( ) function, 237 
DolnitForPPCMacs( ) function, 237 
drag and drop filtering, 135-140 
DrawDialog() routine, 103 
DrawMenuBar( ) function, 253 
DrawMenuBar( ) routine, 119 
Drawstring() routine, 67 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

E 
E-mail addresses on Internet, 

CodeV\Tarriorforums/ 
information, 385 

Edit menu Preferences ... 
command, 33-40, 50 

editing dialog boxes, 82-84 
editor, CodeV\Tarrior, 27-32 
Editor preferences 

(CodeV\Tarrior), 35 
ejecting 

CD-ROMs with SwitchBank 
program, 173-191 

volumes with SwitchBank 
icon, 173 

emulation capacity, 10-12 
emulators, 68LC040, 144, 389 
error checking, 67 
error code, converting to 

strings, 100 
error messages, code for Rez 
program,176 

error reporting function, 
SwitchBank program, 199 

errors 
in programs, 287 
reporting, 88-94 
switch statements, 107 

eventloops,95,389 
Event Manager (CodeV\Tarrior), 

62,95 
event types, 114 

events, 95-97, 389 
activate, 114 
Apple events, 120 
auto key, 114-116 
disk insertion, 114-116 
filtering, 113 
high-level events, 95,114, 

120-141, 389 
delivery mechanism, 123-126 
detennining capacity to handle, 

133-134 
event loop code, 123 
munger program, 121-134 
writing handlers, 126-133 

key down, 114, 116 
keyup, 114 
low-level, 95, 389 
mouse down, 114-115 
mouse up, 114 
null events, 114 
Open Application, 120 
Open Document, 127 
Open Documents, 120 
Print Documents, 120 
Quit Application, 120 
update, 114 

exception frames, 150 
exception handlers (debugger 

programs), 262 
executable statements (Debugger 

program), 284 
execution units 

PowerPC 601, 300 
PowerPC 603, 301 

Extension files, third party 
enhancements, 153 

Extensions (File Sharing), 171 



Index 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

.... -· ···••1 ·'····· 1•••••11 
Ul•1•1 •••••••• ....... , ......... 
t.!P--·-· 

F 
Factory Settings button 

(Preferences window), 34 
fat binary applications 

(AppleScript generation), 215-219 
fat routine descriptors, 

242-243, 294 
fat trap code, debugging, 293 
fat traps (FlipDepth program), 

253-260 
Fetch_Depth() function, 247, 

250-251 
file extensions, 48 
file forks, 389 
File menu commands 

New, 21 
New Project ... , 48 
Quit, 24 
Select New Project ... , 20 

File Sharing Extension, correcting 
CD-ROM problems, 171 

File Sharing Setup Control Panel, 
CD-ROM problems, 170 

file signatures, 389 
File Window (MW Debug 

program), 272 
File_Share_On() function 

(SwitchBank program), 200-201 
files 

68K application, 145 
APPL format, 71 
Control Panel, third party 

enhancements, 153 
data forks, 70 

Dialogs.h, 151 
Extension, third party 

enhancements, 153 
FlipDepth.c, 253 
forks, 70-72 
fp.h, 305 
fpenv.h, 305 
INIT.h, 226 
Klepto.c, 258 
library 

adding to Munger program, 49 
debugging, 281 

LowMem.h, 304 
munger.c (CodeWarrior C 

compiler), 44-46 
MW Debug program operation, 267 
opening data forks, 106-107 
process.c, 56 
resource forks, 70-71 
SwitchBank.n.rsrc, 189 
SwitchBank.r, 186 
System Enabler, 152 
SysTypes.r, 173-174 
TIFF format, 71 
touching, 25 
Types.r, 173-174 
version tracking, 20 
XCOFF, 392 
see also programs; listings 

Files & Paths window, 189 
fileShareWasOn flag (SwitchBank 

program), 210 
filtering events, 113 
Find_File_Sharing( ) function 

(SwitchBank program), 205-206 



Index 
111111111111111111111 1 11111111111111111 1 111111111111111111111 1 11 1 111 1 11 1 11111111111111111111111111111111111 

FindFolder() function 
(SwitchBank program), 214 

FindSymbol() routine, 241-242 
FindWindow( ) routine, 115 
flags 

crflag, 47 
file Share Was On, 210 
gdragNDropFlag, 210 
gRequestFlag, 247 
isHighLevelEventAware, 214 

FlipDepth program, 220, 225-253 
function prototypes, 229-230 
Get1ResourceSys( ) function, 234 
GetEOF( ) routine, 255 
GetMouse() routine, 231 
gRequestFlag flag, 247 
initialization code (Power PC Mac), 

238-239 
MylnitGlobals globals block, 

232-233 
NewFatRoutineDescriptor( ) 

routine, 228 
PostEvent( ) routine, 230 
project code, 254-255 
zeroed memory blocks, 236 

FlipDepth.c file, 253 
FlipDepth.c program, code listing, 

364-380 
floating Toolbar (MW Debug 

program), 268 
Floating-Point C Extensions 

(FPCE), 305 
FlushEvents() routine, 66, 113 
Flush Vol() routine, 108 
folders, 189 

Font Manager (CodeWarrior), 62 
fopen( ) function, 46 
forks (files), 70-72 
formats, color icon (Rez 

program), 185 
forums, 385 
fp.h file, 305 
fpenv.h file, 305 
FPU (floating-point unit) 

instructions, 10 
freeware debugger utilities, 296 
FREF resource (Rez program), 179 
FSMakeFSSpec( ) routine, 130 
FSpCreate() routine, 107 
FSpDelete( ) routine, 107 
FSpOpenDF( ) routine, 107 
FSRead() function, 255 
FSRead( ) routine, 103 
FSWrite() routine, 103 
function declarations (SwitchBank 

program), 193-194 
Function icon (MW Debug 

toolbar), 274 
Function menu, 28 
function prototypes, 99, 229-230 
functions 

ActivatePalette( ), 252 
AddResource( ), 255 
_ANSI_Exit termination, 50 
Apple Event initialization, setting 

breakpoint, 277 
Ask_File() (code listing), 314-316 
calls (32-bit values in 

processors), 146 
CallUniversalProc( ) (SwitchBank 

program), 198 



... -· ···••1 ••••••• 1111•··· 
Ul•1•1 •••••••• ....... .......... 
~ ......... 

Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Change_Depth( ), 247, 250-251 
Check_System() (SwitchBank 

program), 210-211 
CreateFatDescriptorSys( ), 242-243 
DetachResource( ), 237 
Do_Command() (code listing), 

316-318 
DolnitForOldMacs( ), 237 
DolnitForPPCMacs( ), 237 
DrawMenuBar( ), 253 
Fetch_Depth( ), 247, 250-251 
File_Share_On() (SwitchBank 

program), 200-201 
Find_File_Sharing( ) (SwitchBank 

program), 205-206 
FindFolder( ) (SwitchBank 

program), 214 
FindSymbol( ), 242 
fopen( ), 46 
FSRead( ), 255 
Get_FS_Info( ) (SwitchBank 

program), 199-200 
Get1Resource( ), 237 
Get1ResourceSys( ), 234 
GetMernFragment( ), 239 
GetMouse( ), 246-247 
GetNewMBar( ) SwitchBank 

program, 214 
GetNextProcess( ), 57 
GetProcesslnformation( ), 58 
gets(), 46 
GetWMgrPort( ), 253 
GetZone( ), 243 
Init_AE_Events( ) (SwitchBank 

program), 214 
Init_Mac() (code listing), 319-320 

InitGDevice( ), 251 
LoadSeg() (Segment 

Manager), 148 
Main_Event_Loop() (code listing), 

318-319 
Move_Fork( ), 255 
Munge_File( ) (code listing), 

313-314 
MyGetMouse( ), 246 
MyPostEvent68K( ), 245 
mySyncServerDispatch( ) 

(SwitchBank program), 198, 202 
NewFatRoutineDescriptor( ), 243 
NewHandle( ), 255 
NewModalFilterProc( ), 166 
NewPtrSysClear( ), 236 
NewRegion( ), 253 
NGetTrapAddress( ), 238, 242 
Open Document, setting 

breakpoint, 280 
PaintBehind( ), 253 
PaintOne( ), 253 
PatchTrapsForPPCMac( ), 241 
PBHGetVInfo( ) (SwitchBank 

program), 201 
PBHGetVolParms() (SwitchBank 

program), 201 
PostEvent68kStub( ), 245 
printf( ), 46 
RectRgn( ), 253 
ReleaseResource( ), 255 
RemernberA4( ), 236 
Report_Err_Message( ) 

(SwitchBank program), 199 
SetCurrentA4( ), 236 
Start_File_Sharing() (SwitchBank 

program), 203 



Index 
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

Stop_File_Sharing( ), 203 
(SwitchBank program), 202-204 

StopAlert( ), 151 
SyncServerDispatch() 

(SwitchBank program), 197-198 
SysEnvirons( ), 236 
SystemZone( ), 243 
Toggle_File_Sharing( ) 

(SwitchBank program), 207 
UnloadSeg( ) (Segment 

Manager), 149 
WaitNextEvent( ), 161 (SwitchBank 

program), 203 
WriteResource( ), 255 

G 
gdragNDropFlag flag (SwitchBank 

program), 210 
GEnie (CodeWarrior forum 
requests), 386 

Gestalt Manager, 211 
Get_FS_Info() function 

(SwitchBank program), 199-200 
Get1Resource( ) function, 237 
Get1ResourceSys( ) function 

(FlipDepth program), 234 
GetCursor() routine, 107-108 
GetEOF( ) routine (FlipDepth 
program), 255 

GetMainDevice() routine, 250 
GetMemFragment( ) function, 239 
GetMenu( ) routine, 118 
GetMenuitemText( ) routine, 110 

GetMouse( ) function, 246-24 7 
GetMouse( ) routine (FlipDepth 

program), 231 
GetNewDialog() routine, 103, 110 
GetNewMBar( ) function 

(SwitchBank program), 214 
GetNextEvent() routine, 114 
GetNextProcess() routine, 57 
GetProcessinf ormation( ) 

routine, 58 
gets( ) function, 46 
GetVol() routine, 106 
GetWMgrPort( ) function, 253 
GetZone( ) function, 243 
global variables 
patch code, 223 
PowerPC Mac code (FlipDepth 

program), 240 
globals blocks (MyinitGlobals), 

232-233 
Go To Line Number dialog box, 31 
graphics (TIFF files), 71 
gRequestFlag flag (FlipDepth 

program), 247 
GUI (graphic user interface), 2 

H-1 
handler functions, 125 
hardware debuggers, 263 
hardware requirements 

(CodeWarrior), 17-18 
head patches (Toolbox 

routines), 222 
header files (CodeWarrior), 63 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

.... -· ···••1 ...... , 
1111 ..... 
Ul•1•1 •••••••• ........ ......... 
':..!!!!I' ....... 

I 

fp.h, 305 
fpenv.h, 305 
LowMem.h, 304 

heap, 147 
hello1.c program (code listing), 

310-311 
high-level debugger, 388 
high-level debuggers, 264 
high-level event, 114 
high-level events, 95, 120-141, 389 

munger program, 121-134 
SonOMunger program 

delivery mechanism, 123-126 
determining capacity to handle, 

133-134 
event loop code, 123 
writing handlers, 126-133 

history of Macs, 2-12 
HiWord( ) routine, 110 

IBM 
64-bit architecture, 299 
Apple-Motorola partnership, 7-12 
microprocessor foundry, 299-300 
software development tools, 299 

ICEs (In Circuit Emulators), 263 
ICON resource (Rez program), 

179-185 
icons 

CD-ROM, ejecting, 173 
coloring, 137 
Function (MWDebugtoolbar), 274 
Linker group, 50 
masks, 136 
MW Debug, 267 
stopwatch cursor, 107-108 
SwitchBank, ejecting CD-ROMs, 173 

icountj ocount counters (munger 
program), 47 

IDE (Integrated Development 
Environment), 16, 389 

ifile array, 46 
import symbols (code 

fragments), 158 
information on Code Warrior 

forums, 385 
INIT resources, 153 
INIT.h file, 226 
Init.h program (code listing), 

363-364 
lnit_AE_Events( ) function 

(SwitchBank program), 214 
lnit_Mac() function (code listing), 

319-320 
lnitCursor( ) routine, 68, 119 
InitGDevice( ) function, 251 
lnitGraf( ) routine, 65 
initialization code for PowerPC Mac 

(F1ipDepth program), 238-239 
initialization function (munger 

program), 117-119 
initialization routine (SwitchBank 

program), 212-214 
initializing volumes, 116 
initializing Managers, 65-69 
lnitWindows( ) routine, 66 
input/ output filenames, 104-108 
InsertMenu( ) routine (SwitchBank 

program),119, 214 
installation problems (ToolServer 

program), 190 
interapplications communications 

(Apple Events), 387 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Internet, CodeWarrior E-mail 
address, 385 

ISA (Instruction Set 
Architecture), 389 

isHighLevelEventAware flag 
(SwitchBank program), 214 

J-K-L 
Jasik Designs (Debugger 

program), 284 
jump tables, 390 

68K applications, 148 
CODE resource 0 (File Sharing 

Extension), 171 

Kearney, Phil (MacErrors 
program), 296 

key down events, 114-116 
key up event, 114 
keyboard equivalents 

(commands), 77 
keystrokes, 390 
Klepto {Klepto.c) program, 

258-259, 380-383 
Language preferences 

(CodeWarrior), 36, 69 
LaunchApplication( ) routine 

(SwitchBank program), 203 
launching MWDebug program, 267 
LF (linefeed) character, munging 
text,47 

libraries 
C Library, 63 
code fragment requirements, 157 

library files 
adding to Munger.TI program, 49 
debugging, 281 

Lightspeed C, 16 
linker (CodeWarrior), 33 
Linkergroupicon,50 
Linker preferences group 

(CodeWarrior), 37 
listings 

functions 
Ask_File( ), 314-316 
Do_ Command(), 316-318 
Imt_Mac( ), 319-320 
Main_Event_Loop( ), 318-319 
Munge_File( ), 313-314 

programs 
FlipDepth. c, 364-380 
hello1.c, 310-311 
Init.h, 363-364 
Klepto. c, 380-383 
macmunger.c, 311-312 
munger. c, 307-309 
process.c, 309-310 
SonOMunger. c, 320-334 
SwitchBank. c, 334-353 
SwitchBank.r, 357-363 

see also programs 
loading menu resources, 118 
LoadSeg() routine, 148 
LoadSeg( ) trap (OxA9FO), 171 
logic bugs, 288-289 
loops (munger program), 47 
low memory globals, 249 
low-level debuggers, 264, 

283-286, 388 
low-level events, 95, 389 



Index 
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

11111111111111 

.... -· ···••1 ...... , 111111•··· 
Ul•1•1 •••••••• ....... . ~ .... 
~-·-· 

LowMem.h file, 304 
LoWord( ) routine, 110 

M 
Mac Toolbox 

programming tools, 42-60 
routines, 56 

MacErrors program (Wachter/ 
Kearney), 296 

MacHeaders, 63 
machine code, viewing with The 

Debugger program, 284 
Macintosh Debugger for 

PowerPC, 265 
macmunger.c program (code 

listing), 311-312 
macros, ONEWORDINLINE, 151 
Macs 

classic Mac, 2 
history, 2-12 
Mac II, 4 
see also Power Macs 

Macsbug program, 283 
main event loops (munger 

program), 111-117 
Main_Event_Loop( ) function 

(code listing), 318-319 
Make command (Project menu), 

21, 51 
making applications, 390 
Managers, 62-70 

Dialog Manager, 103 
Event Manager, 95 

initializing, 65-69 
running code, 69-70 
TextEdit, 118 
Toolbox Manager, 63 

marking resources as 
purgeable, 93 

Mathffisthetic (Resourcer 
program), 254 

MaxApplZone( ) routine, 65 
MBAR resource (SwitchBank 

program), 214 
memory 

68K application structure, 147 
A5 world, 147, 387 
application zone, 223 
heap, 147 
low memory globals, 250 
Power Mac application 

structure, 155 
releasing allocated, 131 
segment loaders, 391 
stack, 147 
system zone, 223 
zeroed blocks, 236 

memory leak bugs, 291 
Memory Manager 

(CodeWarrior), 62 
MaxApplZone( ) routine, 65 
MoreMasters( ) routine, 65 
Power Mac, 306 

memory shuffling bugs, 291 
menu resources 

describing for Rez program, 
174-176 

loading, 118 
MenuKey()routine,116 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

menus 
Apple menu, 75 
displaying, 119 
making, 74-79 
separator lines, 76 

Mercer, Paul, Programmer's Key 
program, 296 

Metrowerks 
C compiler, 41 
Code Warrior 

forums, 385 
MW Debug program, 265 

see also Code Warrior 
microcode, 6, 390 
microprocessors 

PowerPC 601, 299-300 
PowerPC 603, 300-301 
RISC, 297 

mini-tower systems, 4 
Mixed Mode Manager, 11-12, 163 
MMU (Memory Management 

Unit), 10, 300 
ModalDialog() routine, 110 
mode switching, 125 
modifiers, 390 
MoreMasters()routine,65 
Motorola 

88110 RISC processor (PowerPC 
processor bus), 299 

Apple-IBM partnership, 7 
MOS-11 plant (PowerPC 

processors), 300 
mouse down/up events, 114-115 
Move_Fork( ) function, 255 

MPW (Macintosh Programmers 
Workshop), 94, 390-391 

MSR (Machine State Register) 
PowerPC 601 processor, 275 

MultiFinder, 110, 150 
Munge_File() function (code 

listing), 313-314 
munger (munger.c) program, 

97-120 
building, 119-120 
code listing, 307-309 
Code Warrior C compiler, 46-48 
file munging code, 101-104 
first function, 100-101 
high-level events, 121-134 
initialization function, 117-119 
input/ output filenames, 104-108 
main event loops, 111-117 
munger.c file, 44-46 
starting, 52-55 
user interface, 108-111 

munging CR (carriage-return) 
characters in text, 43-44 

MW Debug program, 265-283 
Control menu commands, 273 
floating Toolbar, 268, 274 
icon, 267 

MyGetMouse( ) function, 246 
MyinitGlobals globals block, 

232-233 
MyPostEvent68K() function, 245 
mySyncServerDispatch( ) function 

(SwitchBank program), 198, 202 



Index 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

... -· 
•••••• ...... , , ..... .. 
"'•··· •••••••• ........ 
.n. .. .. 
~ ....... . 

N-0 
native Power Mac applications, 
13,390 

New command (File menu}, 21 
New Project ... command (File 

menu), 48 
NewAEEventHandlerProc( ) 

routine, 125 
NewFatRoutineDescriptor( ) 

function/routine, 228, 243 
New Handle( ) function, 255 
NewModalFilterProc() routine, 166 
NewPtrSysClear() function, 236 
NewRegion() function, 253 
NewWindow( ) routine, 67 
NGetTrapAddress( ) function, 

238,242 
NGetTrapAddress( ) routines 

(Toolbox trap words/types), 221 
note alerts, 88 
NSetTrapAddress( ) routines 

(Toolbox trap words/types), 221 
NuBus slots, 4 
null events event, 114 
numbering dialog box items, 85-86 
NumToString( ) routine, 100 

ocount counter (munger 
program), 47 

OK button (Preferences 
window}, 34 

ONEWORDINLINE macro, 151 
online services, Metrowerks 

CodeWarriorforums,385 

OOP (Object Oriented 
Programming), 16 

Open Application events, 120 
Open Document events, 127 
Open Document function, 280 
Open Document handler 

(SwitchBank program), 207-209 
Open Documents events, 120 
OpenDeskAcc() routine, 110, 118 
opening data forks, 106-107 
Operating System routines, 230 
Optimize pop-up menu 

(CodeWarrior), 37 
OS (Operating System) traps, 231 

p 

PaintBehind( ) function, 253 
PaintOne( ) function, 253 
ParamText( ) routine, 100, 131 
Pascal programming, 16 
patch code, 223 
patch functions, 

MyPostEvent68K( ), 245 
patch traps (PowerPC run-time 

architecture), 241-242 
PatchTrapsForPPCMac( ) 

function, 241 
pathnames, 46 
PBCatSearchSync( ) routine 

(SwitchBank program), 206 
PBHGetVlnfo( ) function 

(SwitchBank program), 201 
PBHGetVolParms() function 

(SwitchBank program), 201 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PC-relative addressing, 146, 390 
PDAs (Personal Digital 

Assistants), 297 
PDS (Processor Direct Slot), 4 
PEF (Preferred Executable 

Format), 38, 156, 390 
Performas, 4 
PICT images, 292 
pipelining in processor design, 298 
PlainTalk, 8, 390 
PLL clock (phased lock loop) 

multiplier circuits, 301 
porting 

existing Mac code to Power Macs, 
303-306 

processes to PowerPC RISC 
code, 172 

PostEvent addresses (FlipDepth 
program), 243 

PostEvent( ) routine (FlipDepth 
program), 230 

PostEvent68kStub( ) function, 245 
POWER (Performance 

Optimization With Enhanced 
RISC), IBM 64-bit 
architecture,299 

Power Macs, 1, 10 
application memory structure, 155 
emulators, 10-12 
hardware comparison, 8-9 
see also Macs 

PowerBooks, 4 
PowerPC 601, 7-8 

microprocessor, 299-300 
MMU (Memory Management 

Unit), 300 
MSR (Machine State Register), 275 

PowerPC 603, 7 
microprocessor, 300-301 
MMU (Memory Management 

Unit), 300 
PLL (phased lock loop) clock 

multiplier circuits, 301 
PowerPC 604, 7 
Power PCs 

applications 
architecture, 143-144, 153-167 
IBM development tools, 299 
starting, 155 

processor bus (88110 RISC 
processor (Motorola), 299 

PowerPlant (CodeWarrior), 17 
PPCTraceEnabler Extension 

(Apple), 275 
#pragma segment directive, 25 
Preferences dialog box, 33 
Preferences ... command (Edit 

menu), 3340, 50 
Print Documents events, 120 
printf( ) function, 46 
.prj file extension, 48 
procedures, UPP (Universal 

Procedure Pointer), 390-392 
Process Manager, 56, 146 
process.c file, 56 
process.c program (code listing), 

58-59, 309-310 
processes, 56-59, 390 

debugging, 286-288 
File Sharing Extension correcting 

CD-ROM problems, 171 
porting to PowerPC RISC code, 172 
System 7, 56 

ProcesslnfoRec data structure, 57 



.... - .. 
i11111 

·'····· "·•··· Ul•1•1 •••••••• ....... 
•i\••u 
1..!!I ...... - • 

Index 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Processor Direct Slot, see PDS 
Processor preferences 

(CodeWarrior), 37 
processors 

32-bit values (function calls), 146 
CISC (Complex Instruction Set 

Computing), 298 
pipelining in design, 298 
PowerPC 601/603/604, 7-8 
RISC (Reduced Instruction Set 

Computing), 298 
speed, 10 

program code, see code 
Program Window ('MW Debug 

program), 268-271 
Programmer's Key program (Paul 

Mercer), 296 
programming tools, Mac Toolbox, 

42-60 
programs 

AppleScript, 387 
breakpoints, 274, 388 
comments, 100 
DebuggerINIT (Apple), 276 
debugging, 261-262, 286-288 
DebugServices for PowerPC 

(Apple), 275 
error checking, 67 
event loops, 389 
FlipDepth, 220, 225-255 

code listing, 364-380 
hellol.c (code listing), 310-311 
high-level debugger, 388 
Init.h (code listing), 363-364 

Klepto, 259 
code listing, 380-383 

low~level debugger, 388 
MacErrors (Wachter/Kearney), 296 
macmunger.c (code listing), 

311-312 
Macsbug, low-level degugger, 283 
munger (munger.c), 97-120 

building, 119-120 
code listing, 307-309 
Code Wanior C compiler, 46-48 
filemungingcode, 101-104 
first function, 100-101 
high-level events, 121-134 
initialization function, 117-119 
input/ output filenames, 104-108 
main event loops, 111-117 
starting, 52-55 
user interface, 108-111 

MW Debug, 265-283 
PPCTraceEnabler Extension 

(Apple), 275 
process.c, 58-59 

code listing, 309-310 
Programmer's Key (Paul 

Mercer), 296 
reporting errors, 88-94 
Resourcer (Mathresthetic), 254 
Rez program, 17 4-179 
segmenting, 25-26 
software debuggers, 263 
SonOMunger (SonOMunger.c) 

alerts, 134-135 
bundle resources, 135-140 
code fragment reqillrements, 157 
code listing, 320-334 
running, 140-141 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SwitchBank, 170 
data structures, 194-195 
debugging with MW Debug 
program, 266-283 

ejecting CD-ROMs, 173 
function declarations, 193-194 
resource defimtions, 191-193 
SwitchBank. c file code listing, 

334-353 
SwitchBank.r file code listing, 

357-363 
The Debugger (Jasik Designs), 284 
tools, 392 
ToolServer 

compiling Rez program, 186 
installation problems, 190 

see also applications; code; 
emulators; listings; software 

project code (FlipDepth program), 
254-255 

Project menu commands 
Add File, 21-22, 48, 97 
Add Window, 21-22 
Build Library, 22 
Compile, 21 
Disassemble, 21 
Make, 21, 51 
Remove, 21 
Run, 22 

Project preferences 
(CodeWarrior), 39 

Project window (CodeWarrior), 24 
projects, 391 

CodeWarrior, 19-27 
munger program, 48-52 

PSNs (process serial numbers), 
56-59 

purgeable resources, 93 

Q-R 
Quadras, 4 
QuickDraw, 11, 65-66 
QuickTime, 391 
QuickTime Extension, 8 
Quit Application events, 120 
Quit command (File menu), 24 

ReallySuperbService( ) routine, 152 
RectRgn( ) function, 253 
reentrant library routines, 160 
register-based routines, 232 
relative addressing, 390 
ReleaseResource( ) function, 255 
releasing allocated memory, 131 
RememberA4( ) function, 236 
Remove command (Project 

menu), 21 
Report_Err_Message( ) function 

(SwitchBank program), 199 
reporting errors, 88-94 
Require Function Prototypes ,item 

(Language preferences), 69 
ResEdit, 73, 84 
resource disassemblers (DeRez 

tool), 173 
resource files, 173-174 
resource forks, 70-71, 389 
Resource menu commands, 73 
Resourcer program 

(Mathffisthetic), 254 
resources,391 

BNDL bundle (Rez program), 179 
cfrg, 155 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

... -· 
•••••• ...... , 

1 ..... .. 
Ul•1•1 ........ ....... ,.,,. .... 
t.!!11'•·-· 

cicn (Rez program), 185 
CODE, 144 
de~cribing for Rez program, 

174-176 
FREF (Rez program), 179 
generating for CD-ROM ejection 
with Rez program, 173-191 

ICON (Rez program), 179-185 
INIT, 153 
making, 72-95 

alerts, 88-94 
dialog boxes, 80-86 
menus, 74-79 
status display, 86-88 

marking as purgeable, 93 
MBAR (SwitchBank program), 214 
saving as text, 94-95 
SIZE, 145 
STR# (Rez program), 176 
SwitchBank program definitions, 

191-193 
Revert Panel button (Preferences 

window), 34 
Rez Options window, 188 
Rez program, 94, 391 

AECountitems( ) routine, 209 
AEGetNthPtr( ) routine, 209 
alerts/ dialog boxes/ dialog item 

lists, 177-179 
compiling with Rez tool, 186 
describing resources for, 17 4-176 
error message code, 176 
generating resources for CD-ROM 

ejection, 173-191 
ICON resource, 179-185 
Toolbox Eject( ) routine, 210 

Reztool 
compiling Rez program, 186 
describing resources, 173 

Rez window, 187 
Rlncludes folder, 189 
RISC (Reduced Instruction Set 

Computing}, 5-7, 391 
RISC microprocessors, 297 
routine descriptors, 391 
routines, 391 

AECountitems( ), 130, 209 
AEDisposeDesc( ), 131 
AEGetNthPtr( ), 130, 209 
AEGetParamDesc( ), 129-131, 209 
AEinstallEventHandler( ), 124 
AEProcessAppleEvent( ), 124 
AppendResMenu( ), 118 
Button( ), 68 
CautionAlert( }, 131 
Code Fragment Loader, 156 
code fragment requirements, 157 
Delay( ), 103, 113 
DIBadMount( ), 116 
DILoad( ), 116 
DisposeWindow( ), 68 
DIUnload( ), 116 
DrawDialog( ), 103 
DrawMenuBar( ), 119 
DrawString( ), 67 
fat routine descriptors, 

debugging, 294 
FindFolder( ) (SwitchBank 

program), 214 
FindSymbol( ), 241 
FindWindow( ), 115 
FlushEvents( ), 66, 113 



Index 
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

FlushVol(), 108 
FSMakeFSSpec( ), 130 
FSpCreate( ), 107 
FSpDelete( ), 107 
FSpOpenDF( ), 107 
FSRead( ), 103 
FSWrite( ), 103 
GetCursor( ), 107, 108 
GetEOF( ) (FlipDepth program), 255 
GetMainDevice( ), 250 
GetMenu( ), 118 
GetMenultemText( ), 110 
GetMouse( ) (FlipDepth 

program), 231 
GetNewDialog( ), 103, 110 
GetN extEvent( ) , 114 
GetNextProcess( ), 57 
GetProcesslnformation( ), 58 
GetVol( ), 106 
HiWord( ), 110 
InitCursor( ), 68, 119 
InitGraf( ), 65 
initialization (SwitchBank 

program), 212-214 
InitWindows( ), 66 
InsertMenu( ) (SwitchBank 

program), 119, 214 
LaunchApplication( ) (SwitchBank 

program), 203 
LoadSeg( ) (Segment 

Manager), 148 
LoWord( ), 110 
Mac Toolbox, 56 
MaxApplZone( ), 65 
MenuKey( ), 116 

ModalDialog( ), 110 
MoreMasters( ), 65 
NewAEEventHandlerProc( ), 125 
NewFatRoutineDescriptor() 

(FlipDepth program), 228 
NewModalFilterProc( ), 166 
NewWindow( ), 67 
NGetTrapAddress( ) (Toolbox trap 
words/types), 221 

NSetTrapAddress( ) (Toolbox trap 
words/types), 221 

NumToString( ), 100 
OpenDeskAcc( ), 110, 118 
Operating System, 230 
ParamText( ), 100, 131 
PBCatSearchSync( ) (SwitchBank 

program), 206 
PBHGetVInfo( ) (SwitchBank 

program), 201 
PBHGetVolParms() (SwitchBank 

program), 201 
PostEvent( ) (FlipDepth 

program), 230 
ReallySuperbService( ), 152 
register-based, 232 
selectors, 290 
SetCursor( ), 107-108 
SetPort() routine, 67 
SFGetFile( ), 108 
SFPutFile( ), 108 
stack-based, 232 
StandardGetFile( ), 108 
StandardPutFile( ), 106-108 
StopAlert( ), 101, 151 
SysEnvirons( ) (SwitchBank 

program), 211 



... -· ···••1 ....... 
11111 ..... 
Ul•••1 ........ ....... 
.~ .... 
~--·-· 

Index 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

Toolbox 
A trap word, 151 
accessing, 150 
functions, 42 

Toolbox Eject( ), Rez/SwitchBank 
programs, 210 

Toolbox functions, 42 
UnloadSeg() (Segment 

Manager), 149 
WaitNextEvent( ), 95, 113-114, 161 

Run command (Project menu), 22 
run-time architecture for 

programs,144-153 
running code, 69-70 
running SonOMunger, 140-141 

s 
SANE (Standard Apple Numeric 

Environment), 391 
saving 

resource data as text, 94-95 
volume numbers, 106 

screen depths (FlipDepth 
program), 225, 249 

search functions (CodeWarrior), 29 
segment directives ( #pragma), 25 
segmentloaders,391 
Segment Manager 

LoadSeg( ) routine, 148 
UnloadSeg() routine, 149 

segmenting programs, 25-26 
Select New Project ... command 

(File menu), 20 

selectors of routines, 290 
separator lines (menus), 76 
SetCurrentA4( ) function, 236 
SetCursor() routine, 107-108 
SetPort( ) routine, 67 
SFGetFile( ) routine, 108 
SFPutFile( ) routine, 108 
shared libraries, 265, 281, 391 
shareware/freeware utilities 

(debuggers), 296 
Show Invisibles command (View 

menu), 52 
side-effect bugs, 291 
Sigma symbols (The Debugger 

program), 284 
signatures (files), 389 
SIOUX (Simple lnputjOutput User 
exchange) library, 
CodeWarrior, 44 

SIZE flags, 39 
SIZE resource, 145 
Slot Manager resources, see 

sResources 
software 

68K applications architecture, 
143-153 

debuggers, 263 
development 

IDEs, 16 
overview, 15-40 

IBM software development 
tools, 299 

microcode, 390 
requirements for Code Warrior, 

17-18 
see also applications; programs 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SoftWindows, 389 
SonOMunger (SonOMunger.c) 
program 
alerts, 134-135 
bundle resources, 135-140 
code fragment requirements, 157 
code listing, 320-334 
high-level events 

delivery mechanism, 123-126 
determining capacity to handle, 

133-134 
event loop code, 123 
writing handlers, 126-133 

running, 140-141 
< source code, viewing The 

Debugger program, 284 
speeds, emulation/processors, 

10-12 
sResources, 251 
stacks, 147 
stack-based routines, 232 
stand-alone code, 223, 392 
Standard C Library, 63 
Standard File dialog box, 20, 39, 
48,73 

StandardGetFile() routine, 108 
StandardPutFile( ) routine, 106-108 
Start_File_Sharing( ) function 

(SwitchBank program), 203 
starting 

munger program, 52-55 
MWDebug program, 267 
PowerPC Mac applications, 155 
ToolServer program, 186 

statements 
case (munger program), 47 
debugger invocation, 295 

static text (dialog boxes), 83 
status displays, 86-88 
stdin/ stdout/ stderr streams 

(ANSI C Standard Libraries), 44 
Step Over/Into/Out commands 

(MW Debug program), 273 
stop alerts, 88 
Stop_File_Sharing() function 

(SwitchBank program), 202-204 
StopAlert( ) routine, 101, 151 
stopwatch cursor, 107-10 
STR# resource (Rez program), 176 
streams, stdin/ stdout/ stderr 

(ANSI C Standard Libraries), 44 
strings, error code conversion, 100 
Struct Alignment pop-up menu 

(CodeWarrior), 37 
structures 

data (ProcessinfoRec), 57 
SwitchBank program data, 194-195 

styles (code), 100 
switch statements, 107 
SwitchBank f folder, 189 
SwitchBank program, 170 

AECountltems( ) routine, 209 
AEGetNthPtr( ) routine, 209 
AEGetParamDesc( ) routine, 209 
CallUniversalProc( ) function, 198 
Check_System() function, 210-211 
color icon resource, 179 
Controls menu code, 211 
conversion to fat binary 

application, 217 
data structures, 194-195 
debugging with MW Debug 

program, 266-283 
ejecting CD-ROMs, 173 



.. 
···••1 ••••••• 1111•1w11 

~·····I •••••••• ........ ........... 
~ ........ 

Index 
I I I I I I I I I I 111 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 11 

File_Share_On() function, 200-201 
fileShareWasOn flag , 210 
files 

SwitchBank. n .rsrc, 189 
SwitchBank.c (code listing), 

334-353 
SwitchBank.r, 185 
SwitchBank. r (code listing), 

353-363 
Find_File_Sharing( ) function, 

205-206 
function declarations, 193-194 
gdragNDropFlag flag, 210 
Get_FS_Info( ) function, 199-200 
GetNewMBar() function, 214 
icon, ejecting CD-ROMs, 173 
Init_AE_Events() function, 214 
initialization routine, 212-214 
InsertMenu() routine, 214 
isHighLevelEventAware flag, 214 
LaunchApplication( ) routine, 203 
MBAR resource, 214 
mySyncServerDispatch( ) function, 

198,202 
Open Document handler, 207-209 
PBCatSearchSync( ) routine, 206 
PBHGetVInf o( ) function, 201 
PBHGetVolParms() function, 201 
Report_Err_Message( ) 

function, 199 
resource definitions, 191-193 
Start_File_Sharing( ) function, 203 
Stop_File_Sharing( ) function, 202 
SyncServerDispatch() function, 

197-198 
SysEnvirons() routine, 211 

Toggle_File_Sharing( ) 
function, 207 

Toolbox Eject() routine, 210 
WaitNextEvent() function, 203 
word-aligned data structures, 196 

SyncServerDispatch() function 
(SwitchBank program), 197-198 

SysEnvirons( ) function, 236 
SysEnvirons( ) routine 

(SwitchBank program), 211 
System processes, 5-7, 56 
System Enabler files, 152 
System Error Handler, 262 
system zone of memory, 223 
SystemZone( ) function, 243 
SysTypes.r file, 173-174 

T 
tail patches (Toolbox 

routines), 222 
techniques for debugging, 286-288 
text, saving resource data as, 

94-95 
text-to-speech engine, 390 
TextEdit Manager, 118 
The Debugger program (Jasik 

Designs), 284 
THINK C, 16, 389 
THINK Technologies, 16 
third party enhancements 

Control Panel files, 153 
Extension files , 153 

TIFF files, 71 



Index 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

TOC (Table of Contents), 392 
TOC Register (RTOC), 160 
Toggle_File_Sharing( ) function 

(SwitchBank program), 207 
Toolbar 

CodeWarrior, 18-19 
customizing, 19 
deleting commands, 19 
N'f.W Debug program, 268, 274 

Toolbox, 392 
CodeWarrior, 61-141 
events, 95-97 
high-level events, 120-141 
making resources, 72-95 

alerts, 88-94 
dialog boxes, 80-86 
menus, 74-79 
status display, 86-88 

programming tools, 42-60 
routines, 56 

Toolbox Eject( ) routine, Rez/ 
SwitchBank programs, 210 

Toolbox Manager, 63 
Toolbox routine bugs, 289-291 
Toolbox routines, 2-3 

A trap word, 151 
accessing, 150 
head/ tail patches, 222 

Toolbox traps, 231 
tools, 392 

DeRez resource disassemblers, 173 
programming (Mac Toolbox), 

42-60 
Rez, 173, 186 

ToolServer program 
compiling Rez program, 186 

installation problems, 190 
starting, 186 

ToolServer Worksheet 
window, 187 

touching files, 25 
transition vectors, 159, 162, 392 
Trap Dispatcher, 152, 162 
trap words (Toolbox routines), 152 
traps, 230, 392 

fat (FlipDepth program), 253-260 
LoadSeg( ), OxA9FO, 171 
OS (Operating System), 231 
patch (Power PC run-time 

architecture), 241-242 
Toolbox, 231 
see also Operating System 

routines 
Triangle menu, 27 
two-machine debuggers, 264 
Types.r file, 173-174 

U-V-W 
UNIX C function libraries (ANSI C 

Standard Libraries basis), 43 
UnloadSeg( ) routine (Segment 

Manager), 149 
update event, 114 
updating PICT images to 

windows, 292 
updating volume information, 108 
UPPs (Universal Procedure 

Pointers), 125, 392 
user interface (munger program), 

108-111 



Index 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

.... - .. ···••1 ••••••• 1 ..... .. 

_Ul•1•1 ••••••• •••••• ,.,.... .. .. 
1..!!I' ......... . 

utilities 
FlipDepth, 220 
shareware/freeware 

debuggers, 296 

version tracking, 20 
View menu commands (Show 

Invisibles), 52 
viewing source/machine code 
with The Debugger program, 284 

virtual key codes, 116 
voice recognition software, 390 
volume numbers, 106 
volumes 

ejecting with SwitchBank icon, 173 
information, 108 
initializing, 116 

Wachter, Marty (MacErrors 
program), 296 

WaitNextEvent( ) function 
(SwitchBank program), 203 

WaitNextEvent( ) routine, 95, 
113-114, 161-162 

while loop (munger program), 47 
Window Manager 

(CodeWarrior), 62 
windows 

File CNIW Debug program), 272 
Files & Paths, 189 
Program (MW Debug program), 

268-271 
Rez, 187-188 
ToolServer Worksheet, 187 
updating PICT images, 292 

word-aligned program data 
structures (SwitchBank 
program), 196 

WriteResource( ) function, 255 
writing handlers, 126-133 

X-Y-Z 
XCOFF (Extended Common 

Object File Format), 156, 392 

zeroed memory blocks (FlipDepth 
program), 236 





Beco111e a CodeWarrior no\N! 
Order the commercial version of 
Metrowerks CodeWarrior! 

Metrowerks CodeWarrior delivers three times a year. 
When you buy Metrowerks CodeWarrior and register 
with Metrowerks, you will receive free updates 
throughout the year. 

Bronze (For 68K Macintosh) 
Silver (For Power Macintosh) 
Gold (For Power & 68K Macintosh) 

Metrowerks 
Code Warrior. 
The only native 
development 
environment for 
the Power 
Macintosh is 
here. 

Native C++ and C compilers for the 
Power Macintosh. Native C++, C, and 
Pascal compilers for the 68K 
Macintosh. 68K Macintosh-hosted 
Power Macintosh compilers. Power 
Macintosh-hosted 68K complilers. 
68K and Power Macintosh 
source-level debuggers. A 
new Power Macintosh and 

$199.00 
$299.00 
$399.00 

68K Macintosh application 
framework-Metrowerks PowerPlant. 
ToolServer, SourceServer, and other developer 
utilities from Apple Development Products. 
It's all here. 

"Without the Metrowerks PowerPC compiler it would be 
virtually impossible to develop Adobe Illustrator for the 

Macintosh on the PowerPC." 
Don Melton 

Software Engineering Leader, 
Adobe Illustrator for Power Macintosh, 

Adobe Systems Inc. 

"Mac developers have been waiting a long 
time for an environment like Metrowerks 

Code Warrior." 
Stanley Crane 

General Manager R&D, 
cc: Mail Division, 

Lotus Development Corp. 

"Great company, fast compilers ... 
how can you beat that?" 

Lee Richardson 
Development Manager, MacWrite 

Claris Corporation 

Metrowerks 
CodeWarrior is a 

screamer 
Experience RISC technology. 

Compile 200,000 lines a minute on 
the Power Macintosh 8100. 

See other side for 
ordering information 



To Order: 

17\ Metrowerks CodeWarrior Order Form 

Gold @US $399 ea. x __ = ___ _ 

Silver @US $299 ea. X __ = ___ _ First & Last name 

Bronze @US$199ea.X __ = ___ _ 

Subtotal ___ _ Company 

Plus sales tax & shipping 
(as may apply) ---- Street 

Total 
==== 

Method of Payment: 
OVISA [][] 

Exp. Date (M/Y) 0 Mastercard 

I I I I I I I I I I I I I I I I I 

City 

State/Prov./Country 

Credit Card Number Signature 

Fax to: (419) 281-6883 or call (800) 247-6553 

or Mail to: 

For Sales info: 

Metrowerks Inc. 
Attention: Matt Vacaro 
Suite 300, 1500 du College 
St. Laurent, QC 
H4L 5G6 Canada 

BookMasters 
1444 U.S. Route 42, RD 11 
Mansfield, OH 44903 

Voice: (514) 747-5999, ext 301 

Fax: 
applelink: 

(617) 246-4525 
(514) 747-2822 
saleswerks 

Phone 

Applelink 

Internet 

Fax 

Zip/Postal Code 

Date Ordered 



Software License 

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE 

SOFTWARE. 

BY USING THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY 

THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE 

TERMS OF THIS LICENSE, PROMPTLY RETURN THE UNUSED SOFT

WARE TO THE PLACE WHERE YOU OBTAINED IT AND YOUR MONEY 

WILL BE REFUNDED. 

1. License. The application, demonstration, system, and other software 
accompanying this License, whether on disk, in read only memory, or on any 
other media (the "Software"), the related documentation, and fonts are 
licensed to you by Metrowerks. You own the disk on which the Software and 
fonts are recorded, but Metrowerks and/ or Metrowerks' Licensors retain title 
to the Software, related documentation, and fonts. This License allows you to 
use the Software and fonts on a single Apple computer and make one copy of 
the Software and fonts in machine-readable form for backup purposes only. 
You must reproduce on such copy the Metrowerks copyright notice and any 
other proprietary legends that were on the original copy of the Software and 
fonts. You may also transfer all your license rights in the Software and fonts, 
the backup copy of the Software and fonts, the related documentation, and a 
copy of this License to another party, provided the other party reads and 
agrees to accept the terms and conditions of this License. 

2. Restrictions. The Software contains copyrighted material, trade secrets 
and other proprietary material. In order to protect them, and except as 
permitted by applicable legislation, you may not decompile, reverse engineer, 
disassemble or otherwise reduce the Software to a human-perceivable form. 
You may not modify, network, rent, lease, loan, distribute or create derivative 
works based upon the Software in whole or in part. You may not electroni- . 
cally transmit the Software from one computer to another or over a network. 

3. Termination. This License is effective until terminated. You may terminate 
this License at any time by destroying the Software, related documentation 
and fonts and all copies thereof. This License will terminate immediately 
without notice from Metrowerks if you fail to comply with any provision of 
this License. Upon termination you must destroy the Software, related 
documentation and fonts and all copies thereof. 



~ Power Macintosh Programming Starter Kit 
~············································································································· 

4. Export Law Assurances. You agree and certify that neither the Software nor any other 
technical data received from Metrowerks, nor the direct product thereof, will be exported 
outside the United States except as authorized and as permitted by the laws and regulations 
of the United States. If the Software has been rightfully obtained by you outside of the 
United States, you agree that you will not re-export the Software nor any other technical 
data received from Metrowerks, nor the direct product thereof, except as permitted by the 
laws and regulations of the United States and the laws and regulations of the jurisdiction in 
which you obtained the Software. 

5. Government End Users. If you are acquiring the Software and fonts on behalf of any 
unit or agency of the United States Government, the following provisions apply. The 
Government agrees: 

(i) if the Software and fonts are supplied to the Department of Defense (DoD ), the 
Software and fonts are classified as "Commercial Computer Software" and the 
Government is acquiring only "restricted rights" in the Software, its documentation 
and fonts as that term is defined in Clause 252.227-7013(c)(1) of the DF ARS; and 

(ii) if the Software and fonts are supplied to any unit or agency of the United States 
Government other than DoD, the Government's rights in the Software, its documenta
tion and fonts willbe as defined in Clause 52.227-19(c)(2) of the FAR or, in the case of 
NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR. 

6. Limited Warranty on Media. Metrowerks warrants the diskettes and/or compact disc 
on which the Software and fonts are recorded to be free from defects in materials and 
workmanship under normal use for a period of ninety (90) days from the date of purchase as 
evidenced by a copy of the receipt. Metrowerks' entire liability and your exclusive remedy 
will be replacement of the diskettes and/ or compact disc not meeting Metrowerks' limited 
warranty and which is returned to Metrowerks or a Metrowerks authorized representative 
with a copy of the receipt. Metrowerks will have no responsibility to replace a disk/ disc 
damaged by accident, abuse or misapplication. ANY IMPLIED WARRANTIES ON THE 
DISKETTES AND/OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN 
DURATION TO NINETY (90) DAYS FROM THE DATE OF DELNERY. THIS WARRANTY 
GNES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HA VE OTHER RIGHTS 
WHICH VARY BY JURISDICTION. 

7. Disclaimer of Warranty on Apple Software. You expressly acknowledge and agree 
that use of the Software and fonts is at your sole risk. The Software, related documentation 
and fonts are provided "AS IS" and without warranty of any kind and Metrowerks and 
Metrowerks' Licensor(s) (for the purposes of provisions 7 and 8, Metrowerks and 
Metrowerks' Licensor(s) shall be collectively referred to as "Metrowerks") EXPRESSLY 
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU
LAR PURPOSE. METROWERKS DOES NOT WARRANT THAT THE FUNCTIONS CON
TAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERA
TION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT 
DEFECTS IN THE SOFTWARE AND THE FONTS WILL BE CORRECTED. FURTHERMORE, 
METROWERKS DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING 
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE AND FONTS OR RELATED 
DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR 
OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GNEN BY 
METROWERKS OR A METROWERKS AUTHORIZED REPRESENTATNE SHALL CREATE A 
WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE 
SOFTWARE PROVE DEFECTNE, YOU (AND NOT METROWERKS OR A METROWERKS 
AUTHORIZED REPRESENTATNE) ASSUME THE ENTIRE COST OF ALL NECESSARY 



• Software License 0. 
············································································································~ 

SERVICING, REPAIR OR CORRECTION. SOME JURISDICTIONS DO NOT ALLOW THE 
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY 
TO YOU. 

8. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING NEGLIGENCE, 
SHALL METROWERKS BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUEN
TIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY TO USE THE SOFTWARE 
OR RELATED DOCUMENTATION, EVEN IF METROWERKS ORA METROWERKS AUTHO
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM
AGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF 
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITA
TION OR EXCLUSION MAY NOT APPLY TO YOU. 

In no event shall Metrowerks' total liability to you for all damages, losses, and causes of 
action (whether in contract, tort (including negligence) or otherwise) exceed the amount 
paid by you for the Software and fonts. 

9. Controlling Law and Severability. This License shall be governed by and construed in 
accordance with the laws of the United States and the State of California, as applied to 
agreements entered into and to be performed entirely within California between California 
residents. If for any reason a court of competent jurisdiction finds any provision of this 
License, or portion thereof, to be unenforceable, that provision of the License shall be 
enforced to the maximum extent permissible so as to effect the intent of the parties, and the 
remainder of this License shall continue in full force and effect. 

10. Complete Agreement. This License constitutes the entire agreement between the 
parties with respect to the use of the Software, the related documentation and fonts, and 
supersedes all prior or contemporaneous understandings or agreements, written or oral, 
regarding such subject matter. No amendment to or modification of this License will be 
binding unless in writing and signed by a duly authorized representative of Metrowerks. 

METROWERKS AND METROWERKS' LICENSOR(S), AND THEIR DIRECTORS, OFFICERS, 
EMPLOYEES OR AGENTS (COLLECTIVELY METROWERKS) MAKE NO WARRANTIES, 
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE 
SOFTWARE. METROWERKS DOES NOT WARRANT, GUARANTEE OR MAKE ANY 
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE 
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS 
OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE 
SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT 
PERMITTED BY SOME JURISDICTIONS. THE ABOVE EXCLUSION MAY NOT APPLY TO 
YOU. 

IN NO EVENT WILL METROWERKS AND METROWERKS' LICENSOR(S), AND THEIR 
DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS (COLLECTIVELY METROWERKS) BE 
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES 
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, 
LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR 
INABILITY TO USE THE SOFTWARE EVEN IF METROWERKS HAS BEEN ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS DO NOT 
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR 
INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. 
Metrowerks liability to you for actual damages from any cause whatsoever, and regardless 
of the form of the action (whether in contract, tort (including negligence), product liability or 
otherwise), will be limited to $1. 



What You'll Find 
on the CD 
The Power Macintosh Programming Starter Kit CD contains a limited version of Metrowerks 
CodeWarrior as well as all sample code discussed in the book This version of Metrowerks 
Code Warrior is limited in that it can only be used with the code provided on the CD. Certain 
commands (such as New Project and Add File ... ) have been disabled. But, this version 
retains the functionality of Code Warrior except for those functions. So, you can use almost 
all of CodeWarrior's features to learn to program your Power Mac. You can even run it on a 
68K Mac as well! 

Metrowerks cannot provide technical support for this limited version of Code Warrior 
bundled with the "Starter Kit". If you have trouble, see appendix D for where to go for help, 
but please do not call Metrowerks until you have purchased the fully-functioning version of 
Code Warrior. 

Using the CD is simple; just pop the disc into your drive and dive in. You probably will want 
to read chapter 2 first so you can get a good idea of how to use Code Warrior. 





Everything You Need to Program for the Power Macintosl 
With Power Macintosh Programming Starter Kit, you can learn how to program 

0 
powerful applications in this new architecture. This book provides a tour of the entire 
Power Macintosh environment, from fundamental concepts to an extensive overview 
of the Power Macintosh run-time architecture. 

0 
0 

Metrowerks CodeWarrior"', which is featured 
on the CD-ROM, is becoming the programming 
environment of choice for application develop
ment. You can view, explore, and even modify 
the functional and useful utilities provided on the 
disc. With this book/CD you experience 
Power Macintosh programming. 

CD·ROM contains a special 
version of 
Metrowerks 

Code Warrior. 

)oftwore runs on both 
PowerPC and 680x0 

Tom Thompson is a Senior Technical Editor for 
BYTE Magazine. He is an assistant Apple Developer 
and has extensive programming experience. He 
has been involved with Macintosh since its inception 
and is widely recognized as both a programmer and 
a writer. 

Category: Programming 
User Level: All Users 
Covers: Macintosh and Power Macintosh 

Moc Requirements for Programming Slorler Kit: 
680xO Macintosh: System 7, 68020, l .5M RAM, 7M hord 
disk space (68030, 5M of RAM recommended) 
p_. Macintosh: 2M RAM, 7M hord disk space 

1 .. t§j(.fjjil 

ISBN 1-56830-091 -3 

9000( 

9 781568 300917 




