

MACINTOSH
PROGRAMMING
SECRETS

Scott Knaster

...
~
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid Bogota

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book and Addison-Wesley was aware of a trademark claim,
the designations have been printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

Knaster, Scott.
Macintosh programming secrets.

Includes index.
1. Macintosh (Computer)-Programming. I. Title.

QA76.8.M3K683 1987 005.265 87-19374
ISBN 0-201-06661-0

Copyright© 1988 by Scott Knaster.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

Cover design by Doliber Skeffington
Text design by BMR, David Crossman
Set in 10/12 Palatino by BMR

0-201-06661-0 ABCDEFGHIJ-HA-8987
First printing, November, 1987

Foreword

Macintosh has the finest collection of software for any personal com
puter. You can pick from over 2,500 powerful, easy to use, and elegant
applications. This achievement is the result of the hard work of
many people-programmers, evangelists, writers, and testers, to
name a few.

A few individuals made outstanding personal contributions to
this achievement. Scott Knaster is one of them. For over two years,
Scott was responsible for the technical support of Macintosh and Ap
ple II developers. He managed a group of zealots who cajoled,
coached, and scolded developers into creating great products.

There are two kinds of computer books. One is the result of ad hoc
research on what a publisher thinks will sell. The other is the fruit
of being immersed in a subject for years. This is the latter kind of
book.

In this, his second book, Scott explains more about the art-and
it is an art-of Macintosh programming. This book is the result of
Scott's living and breathing Macintosh programming. He captures
not only the how but also the why of Macintosh programming.

Scott's insights into Macintosh software are unique because he
worked closely with Apple's software and hardware engineers and
with all the Macintosh third-party developers. This book reflects
his inside knowledge of Apple and the synthesis of the techniques of
hundreds of Macintosh programmers.

iii

iv Foreword

Scott has written a most insightful book on Macintosh program
ming techniques. Read this book and you'll see that it's not just "how
to program" but a treatise on the Zen of the Macintosh Way. Enjoy.

Guy Kawasaki
August, 1987

Acknowledgments

I created everything in this book. I wrote it, I edited it, I drew all
the figures, I personally made the ink to print it, I chopped down the
trees for the paper, I bound every copy, I sold it, I shipped it. I thank
no one.

Just kidding.
Bill Dawson worked from a crazy idea to produce the Amazing

Journey section, using a method of storytelling I've always wanted to
try. Steve Stansel provided counsel and humor and once threatened
to kill my dog-but I'm even with him because I still have his Lau
rie Anderson records. Carole Alden stayed with me and helped me
find my way forward. Linda O'Brien is just the greatest. Alain Ross
mann of Radius, former Apple Chief Evangelist, is the source for the
FPI rule in Chapter 1. Jean-Louis Gassee is the inspiration for the
section on making computers "more analog." Guy Kawasaki, my boss
at Acius, let me go home from the startup wars at 7 o'clock often
enough to finish this book. Barbara Knaster created the figures and
helped with just about everything else. Jess Knaster, age one, helped
by moving disks around, opening and closing books, and even trying to
type something now and then.

This one is for my family: my parents, Shirley and David; my
grandmother, Pearl Fox; my brother, Ken; my wife, Barbara; and my
son, Jess.

v

Contents

Introduction xi
About this Book . xv

PART ONE Concepts and Ideas 1

Chapter 1 Macintosh and Software 3

A little history 4
The soul of the new machine 5
Hidden factors 7
Success and failure 9
Standards 11
Ease of learning vs. ease of use 12
The closed computer 14
A close look at the user interface 17
The FPI rule 29
Introduction to compatibility 31
Other Apple utilities 38

Chapter 2 Compatibility 41

vii

viii Contents

Good relations 42
Let a thousand flowers bloom 43
Designing compatibility 44
Specializing 48
Generality and compatibility 52
Good behavior 54
Levels of interface 57
Usability 59
Medium-level interface 60
Medium-level summary 81

Intermission 83

Amazing Journey 84

PART TWO Technical Adventures 95

Chapter 3 Color 97

About color QuickDraw 98
Color drawing models 101
Color structures 102
Things to remember 111

Chapter 4 Event Manager 127

Using the mouse and keyboard 128
Have it both ways 129
Streamlining 131
Command keys for buttons 134
Localizing 136
Standard file dialogs 137
Things to remember 137

Chapter 5 Finder 139

Contents ix

Quitting to another application 140
Launching and quitting 141

Chapter 6 Printing Manager 145

The current printer 146
Displaying the document's name 166
General printing information 169
LaserWriter specifics 170

Chapter 7 QuickDraw 187

Bit image updating 188
The multibit shuffle 208
Things to remember 221

Chapter 8 Resource Manager 223

Restoring the state of things 224
Things to remember 232

Chapter 9 Window Manager 233

Managing your windows 234
The tiling algorithm 246
Stacking and tiling with multiple screens 256
Things to remember 263

Appendix A New Machines and System Software 285

Appendix B 68020 Microprocessor Overview 343

Appendix C Macintosh Technical Note #110 349

Glossary 357
Index 365

Introduction

This book has two parts with an intermission between them, three
appendices, a glossary, and an index. This introduction will give you
an idea of what to expect.

Part One, "Concepts and Ideas," is the more abstract part of the
book. It focuses on the standards, customs, and software that have
defined Macintosh computers and their user interface since the Mac
intosh 128K appeared in 1984. Chapter 1, "Macintosh and Soft
ware," is about the evolution of the Macintosh and other personal
computers. It includes a discussion of the user interface, and takes a
practical look at which features are important in making software
easy to use. Chapter 2, "Compatibility," tells about how you can
write your software today so that it works on the Macintoshes that
Apple will introduce tomorrow, saving you the trouble of bribing
someone for inside information or digging through Apple's dumpster.
After Chapter 2 you'll find the Intermission, an attempt to impart
some important technical information without being desert dry about
it. If you forget that it's educational, it will no doubt be more fun.

Part Two, "Technical Adventures," contains information on how
things work in the Macintosh world and how you can do special
tricks in your programs. It's organized by topic: most chapters are
named after an appropriate part of the Toolbox and the chapters are
arranged in alphabetical order by their names. Chapter 3 is the
"Color'' section (not like the color section in your Sunday funnies),
which talks about the new stuff Apple has done in the Macintosh II
to make color video possible. Chapter 4, "Event Manager," tells how
you can set up your applications to work with both mouse clicks and

xi

xii Introduction

keystrokes. Chapter 5, "Finder," discusses the technique of quitting
from your application and launching another one directly, without
running the Finder in between.

Chapter 6, "Printing Manager," discusses the trick of finding the
icon for the currently selected printer, branches into a more general
technique for finding any file's icon, and then gets into some of the
special features of the LaserWriter and how to get at them from your
programs. Chapter 7, "QuickDraw," describes the technique of
drawing things quickly by using off-screen bit images and pixel im
ages; it also covers a little about using color. Chapter 8, "Resource
Manager," tells about how you can make your programs super
friendly by putting everything back the way it was when the user
was last working. Chapter 9, "Window Manager," explains how you
can deal with the proliferation of windows on giant screens that's
happening in the Macintosh world.

Appendix A, "New Machines and System Software," presents an
overview of the Macintosh SE and Macintosh II, plus information
about new features in system files with version numbers of 4.1 or
greater. As the navigator said in the movie Dune: "Many machines.
New machines." Appendix B, "68020 Microprocessor Overview,"
goes into the 68020 that's built into every Macintosh II and is avail
able as a third-party option for other Macintosh computers. Appen
dix C, "Macintosh Technical Note #110," is the saga of an interesting
piece of technical information, which has been circulating among
Macintosh techies for some time. After the appendices is a glossary
of some important terms as well as an index.

Conventions

This is a guide to the way things are represented in this book.
All words that are in boldface· type have entries in the glossary.
Hexadecimal numbers are always preceded by a dollar sign, as in
$48, $FFFF, and $AD6. Numbers without a dollar sign are decimal
numbers, unless it says otherwise.

You can watch for several kinds of special paragraphs that
break up the prose. They look like this:

These paragraphs contain information that's a little bit off the
subject, but interesting. If you're in a hurry or you don't care, you can
skip these paragraphs without losing track of what's going on in the
book.

Introduction

A paragraph marked this way is warning you about something
dangerous. It usually relates information that's vital to keep your
program from crashing or your files from getting messed up, or some
thing equally important.

As you probably guessed, paragraphs marked like this are about
the Macintosh II.

This crystal ball icon marks information that will suffer from
the time warp of writing a book. Between the writing and the book's
appearance, months go by; more months intervene before you read it.
The topics of paragraphs marked this way weren't perfectly defined
when the writing was done.

Sincere Plea

Programs have bugs, and so do books about programming. If you
find any, please let me know about them. If you have access to Ap
pleLink, you can get me at address KNASTER2. Otherwise, you can
use the U.S. mail, via Addison-Wesley, Reading, Massachusetts.
Thanks, and have fun reading the book.

xiii

About This Book ...

Welcome

This book is about writing software for Macintosh computers. If
you've written Macintosh programs, or you're interested in learning
how it's done, you'll be interested in the stuff inside. To get the most
out of this book, you should be familiar with Pascal or C and you
should have spent some time reading through Inside Macintosh
(Addison-Wesley, 1985, 1986),the definitive Macintosh technical
reference manual. If you know assembly language, have been writing
Macintosh software for a while, enjoy listening to music, or have a
sense of humor, you'll get even more out of this book.

This Book's Purpose

There are enough programmer's goodies in the Macintosh to fill
a hundred books the size of Inside Macintosh. There's so much soft
ware, it does so much, and it's so tightly woven that you can ap
proach it in many different ways. With Inside Macintosh, Apple
supplies the absolutely necessary documentation: a reference manual
describing how to use the tools and what they do.

With the release of new Macintosh technical documentation in
1987, Apple broadened its coverage: now, in addition to the informa
tion in Inside Macintosh, there are books to help you get started, to

xv

xvi About This Book ...

help you put all the pieces together, and to help you build hardware
or write the software that will make add-on hardware work.

Even with all these thorough and well-written manuals, there's
more to do (which is how I can get away with writing this book).
The Macintosh software architecture is so rich that it can withstand
many different approaches to documentation-even, I think, mine.

I've been working with Macintosh programmers for over three
years providing technical support to software developers. I've been
lucky enough to learn about how the Macintosh works by asking the
people who've made it work. This book is about what I learned be
cause I had to or because it was interesting.

Much of this book (especially Part Two) is written in a pretty
nonlinear fashion. If you majored in literature, you might even call it
anecdotal. It consists of lots of tips, ideas, techniques, pointers, fun
facts, and obscure trivia designed to interest Macintosh program
mers. Everything in the book meets at least one of these criteria:

• It's a vital fact that can really make a big difference in your
software.

• It's a mysterious or misunderstood feature that deserves to be ex
plained.

• It's a great capability that's little-known or underused.
• It's a commonly asked question or frequent complaint, problem, or

pitfall.
• It's something interesting or fun.

If you've read my previous book, How to Write Macintosh Soft
ware (Hayden Book Company, 1986), you know I like to keep things
interesting, even when they get heavy. A subject like programming
the Macintosh-which has virtually no geopolitical implications
and is not related to organized religion-deserves to be treated with
a sense of humor. Since I believe you have a right to know as much
about a subject as I can tell, I also try not to leave you hanging with
out telling the complete story.

The things in this book can make your programs better, more
powerful, and easier to use. However, if you decide to give up pro
gramming, you can always use this book for gooshing spiders, and the
laminated cover makes an excellent beverage tray.

p A R T 0

Concepts and Ideas

CHAPTER 1 Macintosh and Software

CHAPTER 2 Compatibility

N E

1

2 PART ONE CONCEPTS AND IDEAS

In Part One, we'll discuss a little of the history and phi
losophy behind the Macintosh. We'll get technical at
times, but we'll spend a lot of time just exploring the
theories and ideas that have made the Macintosh what
it is.

If you're into programming (and if you aren't, con
gratulations for deciding to read this book!), you may
find a new perspective here. The idea is this: the Macin
tosh requires programmers to think about things they
may not have thought much about before, including
user interface design. Part One will help you figure out
what things are important when creating Macintosh
software.

c H A p T E R 1

Macintosh and Software

The history and early impressions of the Macintosh.
The ill-fated but groundbreaking Lisa computer is re
called. The contents of the wondrous Macintosh ROM.
The evolution of the Macintosh product line. A discus
sion of standards. Why ease of learning and ease of use
are different and why that matters. What makes an
open and a closed computer. The important parts of the
famed Macintosh user interface. The invention, discus
sion, and application of the FPI rule. In which surpris
ing reasons for software popularity are revealed. Soft
ware compatibility and what it means to you. Leaving
the system file alone.

3

4 PART ONE CONCEPTS AND IDEAS

A Little History

Return with me now to those thrilling days of yesteryear . . .
back, back to 1984, when Apple introduced the Macintosh to the
world. It was a real milestone in personal computer history for sever
al reasons. It was the first computer that had a radically different,
easy-to-learn user interface, a price that lots of people could affor,d,
and a company that could spend a lot of time and money getting peo
ple interested in it. Other computers fit one or two of these criteria,
but the Macintosh was the first one that met them all.

Apple itself had introduced the Lisa just a year earlier, a system
with a megabyte of memory (an amazing amount in 1983) and a user
interface that would look pretty familiar to any current Macintosh
user; but the Lisa retailed for $9,995, locking many people out be
cause of price alone.

Many features that are a part of what we now call the Macin
tosh interface were originally invented by Xerox in its user interface
research. Some computers available from Xerox before 1983 actually
used elements of this interface, but they were even more expensive
than the Lisa. When the Macintosh came out in 1984 with a list
price of $2,495, it was the first time a system with this interface was
priced in the mainstream of personal computers.

A lot of things made the Macintosh different from other comput
ers when it was introduced. The first thing that people noticed was
its unique industrial design. At the time, computers were put togeth
er two ways. The so-called portables usually had two disk drives to
the right of the screen in a vertical orientation, and a keyboard that
folded over. The other common construction was the three-box, used
for almost all IBM PCs and clones; one box contained the computer's
guts and disk drives, one box was the monitor, and the third box was
the keyboard. The Macintosh, with its built-in monitor and disk
drive and tall, vertical orientation, didn't look like anything else.

Its unique appearance prepared people for some of the other unu
sual things they'd discover about the Macintosh. The 3 1/2-inch disk
drive was a pretty radical idea in 1984, but by far the most unusual
thing about the Macintosh was the appearance of its software. The
first strange thing users noticed about the software was the way the
display showed black characters on a white background, the reverse
of most computer displays. Back then, this was called inverse video
even though it was designed to look like letters on a piece of paper.

Another funny thing was that all the applications looked very
much the same: they all had a list of menu titles at the top of the
screen and displayed their information in windows that could be

Macintosh and Software

moved around the screen. Most of these windows had little boxes and
arrows allowing you to control their display.

The Macintosh was so different that it was hard to answer some
of the conventional questions about computers. How many characters
per line does it display? That's hard to say, since you can choose
from different fonts and the characters are proportionally spaced.
What printers does it work with? Just one, Apple's printer. How
many function keys on the keyboard? None, but it does come with a
mouse.

The Macintosh was unique mainly because of the decision to
make the user interface a vital part of the computer. The original
Macintosh had 64K of ROM and a good chunk of that was devoted to
the User Interface Toolbox, a collection of routines that programmers
can use to give their software all the familiar goodies like menus
and windows.

The Soul of the New Machine

No other computer had ever paid so much attention to the user
interface. Because the Toolbox was in ROM, programmers could use it
without having to use up any valuable RAM space. In fact, since the
original Macintosh had only 128K of RAM, programmers who
wanted to reinvent some parts of the Toolbox were persuaded to
abandon those plans due to the lack of available memory.

At first, it was tough to convince software developers that they
should follow Apple guidelines for user interface design. One of the
biggest strengths of the Macintosh user interface is its consistency
almost all applications use the same design. Of course, when there
weren't any applications, selling this fact was pretty tough. Apple
convinced many early Macintosh developers to follow the user inter
face through a unique form of evangelism, consisting of enthusiasm,
hype, and gentle coercion.

As more and more Macintosh software became available, the
user interface started to become a real standard and an important
part of applications. Software reviewers began to knock off points if
an application didn't follow Apple's user interface guidelines. The
term Macintoshlike (or Maclike) was invented to describe software
that seemed to use the interface in the proper way. The Macintosh
user interface became an acceptable, even advanced, way of doing
things.

5

6 PART ONE CONCEPTS AND IDEAS

The name game. In the early days of the Macintosh project at
Apple, before it was released to the world, the nickname Mac
became common usage for those in the know. Then, in late 1983,
just before the computer was ready to ship, Apple employees
were asked to stop using Mac and to stick to Macintosh, appar
'ently because of trademark conflicts (rumored to be coming from
McDonalds, as in the hamburgers). Finally, in 1986, Apple's
gallant lawyers secured the rights to both names-just thought
you'd want to know.

Another interesting phenomenon validated the Macintosh inter
face: lots of mutations and variations of it began to appear on other
personal computers. Digital Research, inventor of the CP /M operat
ing system that once dominated the industry, came up with GEM
(graphics environment manager), one of the most prominent of these
variations. After many delays, Microsoft came out with Windows,
which seems destined to become the most popular of the MS-DOS
based systems that use a Macintoshlike user interface, especially
now that Microsoft has announced that Windows will be built into a
future version of OS/2. It's interesting to note that, according to pub
lished press reports, both Digital Research and Microsoft have li
censes from Apple allowing them to use certain parts of the user in
terface.

The corporate world. If Microsoft licenses parts of the inter
face from Apple, and IBM licenses Windows from Microsoft,
does that mean that Apple will hold the rights to a crucial
part of IBM's operating system future? It doesn't seem likely
but, as they say, only time will tell.

Apple itself has spread the user interface to the Apple II family
of computers. The Apple Ilgs, which was introduced late in 1986, in
cludes many user interface tools that are similar to their Macintosh
counterparts. An experienced Macintosh programmer moving to the
Apple Ilgs finds a lot of familiar concepts there.

Macintosh and Software

Hidden Factors

The user interface and the Toolbox that makes it available to
programmers are the most obvious things that make the Macintosh
unique. However, anyone who writes Macintosh software discovers
that there's more than just user interface things in the Macintosh
ROM. The Toolbox gives you tools for creating the user interface, but
it also provides lots of ways to customize the behavior of things so
that you can implement specialized features for your applications.
You can redefine any of the Toolbox or operating system routines by
putting in a patch; you can use hooks in the system to put in your own
routines; and you can play with low-memory globals to modify the
way the system works. Apple took a lot of heat because the original
Macintosh had closed hardware, but it really didn't get a lot of
credit for the open software architecture that allowed so much flexi
bility. There's a lot more on how these things work in Chapter 2.

The "carrot and stick" effect of having the Toolbox in ROM and
not having very much RAM helped convince developers to do things
Apple's way, but these weren't the only reasons. The most important
factor was that most of the Toolbox software was really great. Also
important was the flexibility provided by things like patches,
hooks, and globals, allowing a programmer to make a choice to use
certain parts of the software and not others. It's possible to use
QuickDraw to do everything except, say, drawing rectangles. If you
think you have a better way to draw rectangles, you can implement
it and still use the rest of QuickDraw. This flexibility encouraged
programmers not to reinvent too much.

Speaking of QuickDraw, it's another thing that makes the Mac
intosh a great machine for programmers. QuickDraw is used to draw
all the text and pictures that you see on the screen and its power and
flexibility have helped keep the Macintosh ahead of its competi
tors and imitators. Over the years, QuickDraw has been enhanced
and extended to take advantage of bigger screens, color output, and
the 68020 microprocessor.

7

8 PART ONE CONCEPTS AND IDEAS

The Macintosh II version of QuickDraw, called Color Quick
Draw, has been extensively revised. It now includes lots of sup
port for color and the ability to work with video cards in slots
and multiple screens. Because Color QuickDraw uses 68020 in
structions extensively, . it isn't available for other Macintosh
models.

The Toolbox is the most visible part of the Macintosh for pro
grammers, but other interesting features have helped make the Mac
intosh popular. Built into every Macintosh is the ability to live on
an AppleTalk network; all you have to add is the cable. Because of
this convenient connection to a reliable local area network and be
cause of the popularity of the LaserWriter printer, which can be
shared on AppleTalk, the Macintosh has become probably the
world's most widely networked personal computer.

Another reason for the Macintosh's popularity is its easy connec
tion via AppleTalk to the AppleShare file server, a device that al
lows all the users on a network to share files located on one central
disk. AppleShare is a wonderful example of how the Macintosh in
terface can be applied to a fairly complicated operation like con
necting to a file server. If you go through the process of connecting to
an AppleShare file server, you can see that its designers really un
derstood how to use the Macintosh user interface. The procedure
could be made a bit easier, but if you don't appreciate the ease and
simplicity of the operation as it is, ask someone to show you how to
connect to a file server on a non-Macintosh system. You'll be fasci
nated.

If you dig deeper into the system, you'll find one of the most so
phisticated implementations of a file system on any personal com
puter. The Macintosh's Hierarchical File System (HFS) is designed
to work well with huge volumes and with file servers. It keeps track
of files and directories with a system that's very much like a pow
erful database, using indexes called b-trees to locate the things it
keeps on the disk. It also uses this system to keep track of each chunk
of space on a disk. Because a big disk can hold thousands of files and
directories, HFS becomes even more important as your disk fills up.
In addition, HFS, along with the Disk First Aid utility program,
works hard to make sure you don't lose information stored on the
disk.

Macintosh and Software

Success and Failure

The Macintosh product line has experienced more than its share
of both success and failure during its brief existence. Because Apple
has taken so many chances with its introduction, the Macintosh has
given birth to an interesting history for a product that's just a few
years old.

Introducing the original Macintosh computer was the biggest risk
and most radical statement, of course. When it was introduced, Ap
ple set out in a different direction from other personal computer man
ufacturers. The Macintosh contained a powerful, advanced micropro
cessor, the 68000, but rather than use the processor's power to do the
same old things the same old way only faster, Apple decided to take
a giant left turn and try to make the computer easier to learn. The re
sult was the heavy emphasis on the user interface and the creation
of the Toolbox.

The original Macintosh had plenty of drawbacks, too. One of the
most serious was the small amount of RAM and disk space. Apple
had only designed in 128K of RAM, which just wasn't enough for
most programmers on the Macintosh, especially since the system
took away about 40K for the video display and various other things
like the stack and the system heap. To make the situation worse,
Apple was desperately short of external disk drives when the Mac
intosh first shipped, and so most users had a single 400K disk drive.
Early users cursed the Macintosh for making them swap disks in and
out of the drive so frequently.

Always look on the bright side. Most early Macintosh users
probably came close to heaving their computers down the stairs
more than once because of frustration over disk swapping. The
idea was that the operating system could have access to a disk
that wasn't inserted just then merely by a_sking for it. It was a
good idea but it turned out to be a big pain for users. If you think
that was bad, though, imagine the results if Apple had had
conventional disk drives, with doors that had to be opened and
closed every time. Aaaaaargh!

There were some other holes in the original Macintosh. It wasn't
designed to work with a hard disk drive; although several third
party developers eventually created hard disks for the Macintosh,
they had a lot of trouble fitting them in. The only way they could
interface was through one of the serial ports or through the external

9

10 PART ONE CONCEPTS AND IDEAS

disk port, which kept them from operating very fast. A bigger prob
lem was the Macintosh's system software, in particular the Finder
and the File Manager. Both of these guys were designed for small
disks and both ran into serious trouble when trying to handle hard
disks with many megabytes and hundreds of files. The Finder would
slow to a crawl as it tried to see all the files on a big disk, and the
File System's block allocation scheme was very wasteful for hard
disks, allocating several thousand bytes even for the smallest file.

The original Macintosh also had an interesting marketing-type
problem with printing. One of the things that made the Macintosh a
very powerful system was its great graphics capability. In today's
world of desktop publishing and fancy drawing programs, it can be
hard to remember just how magical MacPaint was back when the
Macintosh was new. To make it even more impressive, anything that
you could create on the screen could be printed on the inexpensive Im
agewriter printer that Apple sold.

Since printers use many different methods for printing graphics,
software to do printing of graphics from the screen has to be rewrit
ten for every kind of printer. Apple chose to support only the Ima
gewriter on the Macintosh, and took a lot of criticism for this deci
sion, which locked users into buying an Apple printer to go with
their Macintosh. The fact that the printer provided very good qual
ity and performance at a reasonable price helped keep this from be
coming too big a deal. However, for businesses that wanted to use
daisywheel printers to create documents that looked typewritten,
the lack of a higher quality printer was a big reason not to buy a
Macintosh.

Macintosh and Software

Many of the early Macintosh critics complained about the key
board: it didn't have cursor keys or function keys, like the keyboards
offered by you-know-who. Of course, these features didn't really fit
with the new kind of interface the Macintosh presented, but their
absence was criticized anyway. All these early objections were even
tually answered by other Macintosh models, which you can read
about later in this chapter.

Standards

A lot of press has focused on the Macintosh's failure to sell as
well as expected, and eventually Steve Jobs was fired as head of Ap
ple's Macintosh Division. But not nearly as much has been said about
the Macintosh's real successes and the important ways it has
changed personal computers. When the Macintosh was introduced,
Apple's marketing called it the third standard in business comput
ers, after the Apple II and the IBM PC. How accurate was this mes
sage?

There are several ways to look at what makes a standard in per
sonal computers. Probably the most common way is by looking at how
many different manufacturers make computers that can use a particu
lar operating system. If you look at things this way, you have to say
that the first standard was CP /M, and that it was replaced in the
mid-1980s by MS-DOS. This seems to be a pretty narrow perspective,
though, since it leaves out several million Apple II computers, not to
mention more than a million Macintoshes. See Figure 1-1 for a look
at some of the standards of their day.

1976-1982
1977-1983
1981-present
1983-present
1984-present
1987-present

"Standard"

CP/M
Apple DOS
MS-DOS
Apple ProDOS
Macintosh O.S.
OS/2

Primary reason

Dozens of manufacturers
Millions of computers
Hundreds of manufacturers
Millions of computers
Ouer a million computers
Support from you-know-who

Figure 1-1. Personal computer "standards"

A more interesting criterion for a standard computer is the total
number of computers in the world-not the number of different manu
facturers-that support a particular operating system. This basis for

11

12 PART ONE CONCEPTS AND IDEAS

judgment allows us to say that the Apple II was certainly a standard
after CP /M in the early 1980s, since the total number of Apple IIs
was probably greater than the total number of all CP /M machines
from all manufacturers.

Another neat way to see whether a computer is a standard is by
asking this question: does it run the current hot software? By apply
ing this test, we can verify that the Apple II was really a standard,
since it was the computer that ran VisiCalc, the first spreadsheet
and the first application type uniquely invented for personal com
puters. When Lotus 1-2-3 surpassed VisiCalc in the mid-1980s, MS
DOS became a standard. Of course, this standard varies according to
the area of computing involved. In desktop publishing, PageMaker is
the standard, so both the Macintosh and the IBM PC qualify, but the
Macintosh is the leader because it established its position first and
provides a better solution.

The most important way that the Macintosh has established it
self as a standard is in its greatest difference from the rest: the user
interface. Because of the Macintosh, it's no longer acceptable for so
phisticated software to have crummy, stupid interfaces. Making a
program easy to learn and use is now an important part of software
development. Specific elements of the Macintosh interface, espe
cially windows, pull-down menus, and dialogs, are widely used in
software that runs on other computers. The Macintosh has esta
blished a new standard in personal computers: a great interface is
important for software.

Ease of Learning vs. Ease of Use

When someone who has never used a computer sits down with a
Macintosh and learns the basics of using it within a few minutes,
Macintosh shows that it's easy to learn. The interface is ideal for
ease of learning. Commands are listed in pull-down menus, so you
don't have to remember what they are. You make things happen by
clicking on familiar objects on the screen like buttons and arrows.
Once you learn the basic cut and paste operation, you know how to
move information around, no matter what application you're using.

After you've had the computer for a while and you use it every
day, an interesting thing starts to happen. You begin to remember
some of those complicated commands. You know what buttons you
want to click in a dialog even before the dialog is drawn on the
screen. In short, you mutate into a (drum roll) ... Power User! (sounds
like a comic book superhero). When this happens, you find that you
no longer have patience for those great little touches that made
learning the program so easy. As the Macintosh made its way into

Macintosh and Software

the real world, it became obvious that most Macintosh software was
easy to learn but started to cramp your style once you knew what you
were doing; in other words, it was not easy to use. A few built-in fea
tures of the interface did make software easier for an experienced
user: Command key equivalents on menu items, for example. But for
the most part Macintosh software was heavy on ease of learning,
light on ease of use.

Another problem was the message that Apple's marketing was
pumping out at the time: the Macintosh was "the computer for the
rest of us." This slogan helped establish the Macintosh's image as an
easy-to-learn computer but it had a rotten side effect: it caused peo
ple to think that the Macintosh didn't have a lot of power, that it
was a computer with training wheels you couldn't take off. This im
age caused people who wanted powerful computers to stay away
from the Macintosh even though it was an incredibly powerful com
puter.

This had a real "chicken and egg" effect with software develop
ers. They saw that the people buying Macintoshes weren't power us
ers, so they assumed that they should come out with software that
wasn't real powerful-that ease of learning was the only important
feature for Macintosh software. This caused them to leave a lot of
power out of their applications. Most of the applications that fit
this description have not sold very well.

Eventually, the Macintosh got a reputation for wimpy software
that lacked power features. Whether it was justified or not, the big
gest boost to this reputation came when Lotus released its product,
Jazz, in 1985. Although Jazz had six different integrated functions
combined under a nice interface, it was better known for the fact that
it didn't allow users to string a series of commands together in macros
like the MS-DOS version of Lotus 1-2-3. Conventional wisdom usu
ally blamed this on the non-fact that the Macintosh just wasn't ca
pable of supporting powerful applications, ignoring the fact that
some folks had figured out how to use the Macintosh for incredibly
powerful applications.

Definition comer. Conventional wisdom is something that
passes for the truth when (1) the truth isn't well known, (2) the
truth isn't easy to understand, or (3) the truth isn't what a lot
of people would like it to be. Conventional wisdom is almost
never the same as the real truth. This has been a public service
announcement.

The myth that powerful software couldn't be written for the
Macintosh started to crumble in late 1985. Big blows were struck

13

14 PART ONE CONCEPTS AND IDEAS

when Microsoft released Excel, generally known as the most power
ful spreadsheet available for any personal computer, and when an
unknown company called Aldus shipped PageMaker, creating a
whole new industry.

Suddenly (or so it seemed), developers were figuring out how to
use the Macintosh interface to create software that was easy to use
and easy to learn. By 1986, there were a whole bunch of applications
in almost every category that were at least as powerful as their
counterparts in the MS-DOS world, outline processors (MORE), da
tabases (4th Dimension), and even accounting software (Insight).
The Macintosh also gained a wide variety of excellent development
tools. These included several fast and powerful Pascal and C compil
ers, the TMON debugger, and Apple's own Macintosh Programmer's
Workshop, which featured a powerful shell, Pascal and C compil
ers, an assembler, and MacApp, one of the industry's most advanced
object-oriented development systems.

For the first time the Macintosh began to get the reputation for
having the most powerful and most innovative software, rather
than the most crippled. The image of the Macintosh as a toy was
probably killed forever by the introduction of the Macintosh II in
March 1987. This computer has features that can match anything
else in its price range: a 68020 microprocessor, a minimum of one meg
abyte of RAM, with an option to expand to eight megabytes, an op
tional built-in hard disk, and expansion slots, just to name a few fea
tures. Even the truly narrow-minded have to think of the Macintosh
II as a real computer-after all, it's made of three boxes and it can
run MS-DOS if you really want it to!

The Closed Computer

One thing about the original Macintosh that surprised a lot of
people was its so-called closed architecture-in other words, it
lacked expansion slots, unlike the Apple II and the IBM PC. The ex
pansion slots in other personal computers were used for adding disk
drives, additional memory, printer interface cards, fancy video
cards, clock/ calendar cards, and lots of other neat stuff.

Though it didn't have slots, the Macintosh did have a lot of
built-in features that had to be added as options to other computers:
two serial interface ports, one of which could be used (eventually)
for AppleTalk; a disk drive and connector for another drive; a mouse
interface; advanced sound and graphics capabilities; and a clock and
calendar. Even though the options most users would want were built
in, the Macintosh still took a lot of criticism.

Macintosh and Software

The worst thing about not having slots is that it prevents a user
from adding the great new peripheral that nobody had thought of
when the computer was designed. For example, an expansion card
with a hard disk on it became a hot item in the IBM PC world, but
nobody could build one for the slotless Macintosh.

Another reason why a sealed computer without.slots is criticized
has nothing to do with engineering design, customer acceptance, mar
keting, or the phases of the moon. It has to do with how most per
sonal computers are sold, especially Apples: by retailers. Retail
computer dealers spend a lot of time in price wars with each other.
One of the tools that smart dealers use is the ability to uniquely con
figure a system, either with a particular peripheral that adds
value to the system or by installing a feature such as more memory or
an internal har4 disk that the dealer can get less expensively than
the competition down the block.

With the original Macintosh, every dealer was selling exactly
the same system. This forced the dealers to compete on price, which
is initially a great situation for people buying computers but is ulti
mately not so great, because someone will not be able to keep up, and
will go out of business. The original Macintosh's closed box prevented
dealers from customizing it and making it more interesting to their
customers. This knock against a closed machine may seem a little bi
zarre, but it certainly was a factor holding back the success of the
Macintosh.

Why was the Macintosh a closed, nonexpandable box? The an
swer that seems to be most widely believed (conventional wisdom)
is that the folks who designed the Macintosh were so arrogant that
they figured they knew exactly what everyone would ever want,
built just that much into the computer, then made sure that nobody
could add anything to it that would mess up their masterpiece.

Actually, the original Macintosh was made the way it was for
a fairly noble reason: to simplify things. At the time that the Mac
intosh was being designed, Apple's computer was the Apple II with
its expansion slots. Into those expansion slots were plugged things
never dreamed of when the computer was first designed: cards with
other microprocessors on them, cards to provide a full 80 columns of
text per line instead of the normal 40, cards with music synthesizers
on them, cards to speed up the computer, and hundreds more.

An Apple II owner could add all these cards to enhance the sys
tem. Along the way to massive expandability, an interesting thing
happened. Programmers had to start worrying about making sure
that their software worked with all these different cards. There
were at least six different 80-column cards, each behaving in a

15

16 PART ONE CONCEPTS AND IDEAS

slightly different way. There were literally dozens of different
printer interface cards, both serial and parallel. Expanding the
memory of the original Apple II creates a memory map with more
holes and switches than a mountain highway. Programmers were go
ing nuts trying to keep up with all this.

Out of this mess came one of the fundamental ideas for the Mac
intosh, that it would have exactly one configuration for program
mers to worry about. Every computer would have 128K RAM, a 9-
inch black and white monitor with 512 by 342 resolution, an internal
disk drive, two serial ports, and a mouse. Only the tiniest variations
were possible: there might be an external disk drive, a modem, and a
printer. This meant that the programmer didn't have to write a ton
of special case code for lots of different kinds of devices.

Closing the computer to the outside world in order to make life
easier for programmers turned out to be a mixed blessing, at best. It's
true that developers didn't have to worry about different configura
tions, which simplified things; but designing powerful software
with a good user interface was a whole new skill to learn, so the
Macintosh made things hard for programmers in different ways.

An interesting phenomenon that occurred around the Macintosh
was this: if you don't have slots, people will create them; it will just
take longer and will be harder to do. By 1986, the original, slotless,
so-called closed Macintosh could get a 68020 board, a color video
modification, memory upgrades to a megabyte and beyond, and your
choice of more than a dozen different internal hard disk drives.
Clever developers figured out how to do this. Sure, it would have
been easier and cleaner to do with slots (and it was, once the Macin
tosh SE came out) and more options would have been available, but
it happened anyway.

For many Macintosh owners, maybe even the majority, expansion
slots aren't necessary. The great number of things built into the box is
enough power for most users and they never need to add anything
that doesn't plug directly into the back. For these people, the origi-

Macintosh and Software

nal closed design of the Macintosh works just fine. This suggests that
the closed hardware Macintosh was not necessarily a bad idea. In
fact, Apple continues to sell the slotless Macintosh Plus and it's very
popular. The difference is that now, potential customers have a
choice: the compact, all-in-one Macintosh Plus, the compact but ex
pandable Macintosh SE, or the modular, very expandable Macintosh
II. Different people have different needs, and having several op
tions to choose from simply lets more people use a Macintosh.

A Close Look at the User Interface

The computer industry really tries to destroy the English lan
guage. One of the most offensive terms that gets tossed around,
though less and less these days, is user-friendly. This term always
conjures up for me one of those happy faces you used to see all the
time (see Figure 1-2). User-friendly can be bent to mean whatever
you want it to mean, as can words like relational database or free
dom fighter; so it really means very little. To define the Macintosh
user interface, we'll try to use some more precise (or at least less ob
noxious) terms.

0
0

Hi, I'm User-Friendly

Figure 1-2. Author's view of "user-friendly"

The standard Apple guidebook to the implementation of the user
interface is the book Human Interface Guidelines: The Apple Desk
top Interface (Addison-Wesley, 1987). In this section, we'll talk
about some of the principles that are defined in that book.

The most famous principle of the user interface is ease of learn
ing, which we've discussed a little already. In general, arbitrary
terms, we can say that a program is easy to learn if a user can begin to

17

18 PART ONE CONCEPTS AND IDEAS

do useful work with it in less than an hour. The Macintosh user inter
face is obviously designed to help make things easy to learn. Pull
down menus allow users to get an idea of what actions are possible.
Using the mouse to operate controls like buttons and scroll arrows is
pretty easy to figure out. Clicking on objects to select them is another
technique that can be understood quickly. In this section, we'll talk
about features of the user interface that make Macintosh software
easy to learn.

Consistency

One of the most important principles of the user interface is the
idea of different programs doing similar things in the same way:
consistency. There are two kinds of consistency: consistency within an
application and consistency across applications. An insane techie
terminology-inventor might call these local consistency and global
consistency, but I would never call them that.

Global consistency means that every program uses windows in a
familiar way-the windows look much the same and the same ac
tions can be used to manipulate them, no matter what program you're
using. Any window that has a title bar can be moved around the
screen by letting the user drag the title bar. A window with a grow
box should allow the user to resize it. Scroll bars should work the
way that users (or humans) expect them to. The first three menus
should be the Apple, File, and Edit menus, and they should contain
familiar items, with familiar Command-key combinations that do
familiar things, and so on.

The benefit of this global consistency is obvious: once a user
knows how to use one Macintosh program, lots of others will look

Macintosh and Software

pretty familiar. This doesn't mean that someone who learns Mac
Write will be able to churn out killer spreadsheets in Excel without
learning anything new, but it does mean that people should get into
new applications faster and more easily than they would on comput
ers that lack a consistent interface.

Global consistency also means that you should sometimes give in
to standards, even when you have a slightly better (or just a slightly
different) idea. Momentum is very important when choosing a de
sign, and standards have a lot of momentum. Maybe you think bold
is a bad description for that particular text attribute and you'd rath
er call it thick. Maybe you even discovered an old textbook on typog
raphy that says that thick is the right term, not bold. Don't change
it. Stick with bold. A little bit of correctness is not as important as a
lot of consistency.

Local consistency means that applications do similar things in
similar ways and that they don't make the same command mean dif
ferent things at different times in the program. For example, any
kind of window hanging around on the desktop, whether its a docu
ment, the clipboard, or a search window, should be able to be closed
by clicking in its close box. Any button can be pressed just by clicking
on it. Choosing Cut from the Edit menu should always remove what
ever was selected and place it on the clipboard. If you're using Cut in
part of your program to mean something slightly different, you
should probably make it a new command instead.

Real World Metaphors

When you're designing a feature into your program, think about
how it would be done in the real world-you know, the one outside
the computer-and try to simulate that in your program. In the real
world, documents are stuck in folders; the same thing happens in the
Finder. Unwanted documents go to the trash; same in the Finder. If
you accidentally throw something away, you can retrieve it from the
trash if you don't wait too long; the Finder gives you the same
chance, with the added advantage that there's no coffee grounds
and orange peels all over it.

The real world is a good source for your design because people al
ready know how to work with the real world-most of them live in
it. Similarity to the real world makes your application better by
making it easier for the user to learn and use. Sometimes, though,
you have to put something in a program that isn't like anything the
user would find in the real world. For example, there's really noth
ing like scroll bars in everyday life.

19

20 PART ONE CONCEPTS AND IDEAS

In these cases, you should be sure to follow the laws of physics in
your design: don't create the metaphorical equivalent of a ball rol
ling uphill. For example, don' t create a speed gauge that makes the
computer slow down when you click on an up-arrow. Breaking the
laws of physics in your application will cause your users to feel con
fused and out of control.

Half full or half empty? You may find that the laws of phys
ics vary from person to person. Switcher, the program
switching utility for the Macintosh, is a great example.
Switcher draws a left-arrow and a right-arrow, and you click
an arrow to switch to the next program. When you click th~
right-arrow, does that mean you want the program on the right
to switch in, or does it mean you want the current program to
slide to the right, bringing in the next one on the left? This
question caused some debate while Switcher was being de
signed, so the program's author, Andy Hertzfeld, decided on
the ultimate solution: the user can choose the correct reality in
an Options dialog. It's a small matter, but it shows you how a
program can be made really friendly.

Ease of Use

The next important feature of a program's interface, which is
sometimes forgotten, is ease of use. Easy-to-use programs provide
shortcuts for people who use them every day. The "cut and paste"
metaphor for moving a paragraph from one place to another in a doc
ument is easy to explain and puts power in the hands of a novice, but
a more advanced user may want a quicker way, such as somehow be
ing able to drag the paragraph directly to its destination with the
mouse.

When you implement more complicated, specialized features
like this, it's important to hide them from the novice user. If you
don't support the standard ways of doing things, you risk making
your application hard to learn. The most common way to implement
advanced functions is through special keys such as the Option and
Command keys. For example, holding down the Command key while
double-clicking on text might be used to select an entire sentence in
stead of a word; holding down the Option key might allow you to
drag selected text in a word processor.

If you put in lots of power features and make use of the special
keys, you may create some obnoxious-looking keyboard combinations.
That's why you should make sure these features are only used for ad-

Macintosh and Software

vanced operations, not simple ones. If your application uses an odd
combination of keys to perform a complex operation that would oth
erwise take two or three menu selections, the user who has to per
form that operation a lot will likely take the trouble to remember
the keystrokes. If the user doesn't do that operation very often or
forgets how to do it, selecting it from the menus should always be
available.

When you add shortcuts, you should make sure to follow the
standard way, if there is a standard defined for the feature that
you're performing. Again, one of the most important features of the
user interface is consistency. Because Macintosh programs are pretty
consistent, a user can go from one to another with some idea of how
things work in each. For example, in almost every Macintosh appli
cation, the user can open and close files with a file menu, make
changes to text with the edit menu, or open desk accessories with the
Apple menu. Most windows can be moved, resized, and scrolled in
standard ways, too. This consistency is incredibly important in mak
ing Macintosh software both easy to learn and easy to use.

Direct Control and Feedback

Wherever you can, you should make actions happen as a direct
result of something that the user does. Direct control makes the user
feel on top of the program, leading to happier and more productive
use of the software. Giving the user a choice about how to do things,
rather than assuming a particular implementation and not offering
any options, is one way of offering the user control, as in the case of
Switcher's arrows.

If you have to make an arbitrary choice in your program, such as
the size or arrangement of something on the screen, and it really
doesn't matter to your program's logic what you do, see if you can let
the user make the choice. This allows the user to customize the pro
gram's environment without costing you very much programming ef
fort. Remember, you're not writing your application for yourself
(usually); you're writing it for other people, so don't forget them.

To back up the notion that the user is in control, you must provide
feedback to user actions. There are lots of standard examples of this
kind of behavior in the user interface: menu items flash when
they're selected, buttons light up when they're clicked, text lights
up when it's selected, and so on.

When the user takes an action, draw something on the screen to
show what's going on. For example, if the user asks to sort a data
base with 5000 records, a nice application will put up a dialog that
shows the progress of the sort. It's pretty hard to estimate the actual

21

22 PART ONE CONCEPTS AND IDEAS

time that an operation will take, since the computer may have any
of several different microprocessors, RAM upgrades, disk drives, and
who knows what else. A good alternative to showing the actual time
of an operation is to show how much of the operation has been done
and how much is left.

Figure 1-3 shows some techniques used by different programs to
show an operation in progress. FileMaker uses words and numbers to
show what's going on as records are added to a file. MORE provides
a more visual indicator by filling up the picture of the document
with black as the document is loaded. The AppleLink display shows
both a graphic indicator and a time estimate.

A time estimate is a nice feature, but you have to be very careful
when you indicate real time. Your application may be running on a
Macintosh Plus with a 68000 or a Macintosh II with a 68020 running
at twice the clock speed. In the case of AppleLink reading a message,
the time estimate is accurate on any Macintosh, because the time it
takes to read a message is limited not by the computer's clock speed
but by the modem's speed, which is usually 1200 baud. If you want to
show a real time estimate in your application, you can use a global
called TimeDBRA to figure out. how fast the computer's microproces
sor is running. This is an arcane art-have fun trying it.

A voiding Modes

A mode is an environment within an application that defines
and restricts what the user can do. Traditional computer applica
tions require the user to enter modes to take various actions. For ex
ample, a word processing program may have an editing mode for
typing and revising text, a filing mode for working with files on
disk, and a separate mode for printing documents. In each mode, cer
tain actions are impossible: you can't edit a document while you're in
printing mode, for example. This often confuses humans, since they
don't work that way in real life.

Typically, each mode also defines its own set of commands,
which can further confuse the poor user. The command that means
"display directory" in filing mode may mean "delete paragraph" in
editing mode. Oops. Another thing that makes modes harder for us
ers is that you have to enter them and leave them. This adds extra
commands that are only useful for navigating through the modes.

Modes can be used properly within the Macintosh user interface.
Apple defines several cases in which modes are considered a reason
able way to implement something:

~
~

Rub-a-dub

Opening 11 Rub-a-dub 11
•••

MORE

Macintosh and Software

(Cancel)

20 records remaining to input from 11 Rub-a-dub 11
•

To cancel, hold down the 3€ key and type a
period (.).

FlleMaker Plus

Receiuing 11 Rub-a-dub 11
•

To cancel, hold down the 3€ key and type a period (.).

Percentage Complete:

• 111

0 25 50 75 100

Time remaining: about 7 minutes.

Applelink

Figure 1-3. Progress dialogs

23

24 PART ONE CONCEPTS AND IDEAS

• Long-term modes. When you want to write a letter, you go into
"letter writing mode" -that is, you start a word processing pro
gram, a long-term mode. Each application, or each function
within an integrated application, is a mode of this kind.

• Spring-loaded modes. This kind of mode must be actively main
tained with some constant action, such as holding down a key or
the mouse button. When you pull down a menu, you can only look
at menus for as long as you hold down the button; you could say
that you're in "menu selection mode." As soon as you let go of the
button, poof: you're out of the mode. Spring-loaded modes are
easy to get out of, so they're not painful to users.

• Alert modes. These modes come about when you have to tell the
user something or ask the user to do something, for example to un
lock a disk so that your application can write stuff onto it.

• Real life modes. Some things are modal in real life, like select
ing which document you want to work on, picking a pencil or pen
to draw with, or deciding to launch thermonuclear weapons.
These kinds of modal real life actions should be duplicated by
applications. Drawing applications like MacPaint and Full
Paint have palettes of tools to choose from that work something
like real life.

The Macintosh user interface provides lots of tools and tech
niques for avoiding modes. For example, windows help choose long
term modes, since they allow the user to pick the right thing to work
on. Pull-down menus also help avoid modes, since the user can choose
virtually any action from a menu at any time. A more subtle tech
nique that's used to help avoid modes is discussed next-don't stop
reading now!

Select, Then Act

If you want to change the font of some text in a Macintosh pro
gram, you start by selecting the text you want with the mouse. Then,
you choose a command from a menu to make the font change happen.
The technique of selecting something and then acting on it is a funda
mental feature of the Macintosh interface.

If you think about it, you'll find that this concept is behind al
most all the work you do in a Macintosh application. Traditional
computer programs work the other way: first, you figure out what
you want to do, like deleting text; then you go and delete it. In fancy
human interface terms, this technique (or paradigm, to use a ten
dollar word) is called verb-noun. The verb is what you want to do;
the noun is what you want to do it to.

Macintosh and Software

The Macintosh technique, of course, is noun-verb. What makes
one more desirable than the other? In the previous section, we de
cided that modes should be avoided in general, since they confuse us
ers and restrict their actions for no obvious reason. The verb-noun
technique, in which the action is chosen first, leads directly to
modes: to delete text, for example, you go into delete mode. The noun
verb technique-select, then act-is a way to avoid modes. In Macin
tosh text editing, you are never in delete mode. You select the text
you want to work with, then choose the appropriate command from a
menu. When you're done, there's no mode to get out of.

If you accept the argument that the arbitrary use of modes is bad
for the user interface, it follows logically, as Mr. Spock would say,
that you should use the "select, then act" technique in your user in
terface, because it helps you avoid modes. This principle of the user
interface is subliminal to most users; they don't realize that they're
using the noun-verb rather than the verb-noun technique, of course.
Without this basic principle, though, the whole character of the
user interface would change.

Using Graphics and Analog Indicators

The Macintosh has no text mode. Everything you see is drawn,
not written. The dots on the screen are rectangular and there's no
space between adjacent dots, so they bleed together. The Macintosh
has QuickDraw, one of the world's most powerful graphics pack
ages, in its ROM-you already know this, right? The point is that
graphics are an integral part of the Macintosh interface, so use
them.

Graphics can help convey an idea much more clearly than text
can. For example, look at the way MORE shows the progress of a
document being opened (Figure 1-3). Some people would have a hard
time figuring out how far along they were with information like
"12950 of 71440 bytes read," but a little document that fills up as the
operation proceeds has obvious meaning to all users.

Pictures and icons can also convey information. The meaning of
the Trash is obvious and every user soon figures out how to use it.
However, you can go overboard with icons. Some complex concepts
can be reduced to simplicity with insanely brilliant sets of pictures,
but other ideas just get more complicated when you try to take away
the words. The only way to find out if you've got it right is to try it
out on real people.

25

26 PART ONE CONCEPTS AND IDEAS

''"!;;~1:;: :cc ;;ii ;--·,"'+'' :;

<iT:ifl1 :·;:'.;>,~·: .. , :.'·.::.:;::,:y;:_;:::;::::J;.::/'· _- '.: :_ _. _ · · ;-:<- __ i'?'''.:_<:J.<i:lng_:.1~F]1:''i)''.: .. ::.. '.:·::_:";,0 '.f
,t\.naltig ~s~\'8.igif~; Tliere. ar7 other advaq.~ges;'~fo u .. ·...• pk'-
turesif1s~e . f~~ii:l~ . nUlill;>ers;•··J?ictu~~s:.!'.l9~~ Ji~~~ .. t9,g~
transl~t~d ... oth1er la . ·. · ges;usua1ly, a11d>picffires · atiifoseffil
if yoll!" softw~re'~·µsers·~~n'iread {Uke if tney'i;~.verr.yo~g
~ids)~~:~, 1;,,~~+\ -··':,;;;:J::1·;r;!1t/> ');:;foprr~1:;1;:1:::~: 1 • :,:n::r~1<::;: , -1 ;~1~r'i 'i-'.1;t\i::

';:·•;

The last decade or so has seen a massive increase in digital
things: clocks, recording equipment, car speedometers, television
channel indicators, stereo receiver volume controls, and oven temper
ature settings all often use numbers today. In the past, of course, all
these things used knobs or dials and their values varied across a
range rather than being set to discrete numerical values: they were
analog.

Some interesting discoveries were made after the digital craze
blossomed in the 1970s. Despite the absolute accuracy of reading a
digital watch, lots of people preferred analog displays (or hands, as
normal humans call them). Seeing a watch with hands indicating
that it was almost 5 o'clock was more meaningful (though less accu
rate) than seeing that it was 4:58:37. The same thing happened with
car speedometers: many people felt more comfortable with the old
fashioned needle than with a digital display.

Why are many people happier with analog displays, which are
inherently less accurate than digital ones? One reason is the subcon
scious meaning attached to looking at a display. An analog display,
such as a clock, can have many different appearances, so someone
who loo~s at it all the time can attach subconscious, rapidly derived
meaning to particular displays or times. A digital display must be
interpreted more rationally: most people have to think about it more
to grasp its meaning, despite its apparent pinpoint accuracy.

Another reason for the decline in popularity of some digital
displays is that many people don't care for that much accuracy.
Who needs to know that it's exactly 4:58:37? That's probably not the
right time anyway! Most people don't care if they're going 56.8
miles per hour unless they get a ticket for speeding. In many cases,
analog displays seem to be more human, and they provide all the in
formation that we need.

Analog indicators in your programs, like the filling document
in MORE or the time-remaining bar in AppleLink, are easily under
stood by users and have the added advantage of usually not needing
to be translated to other languages. Computers are completely digi
tal creatures. Making them more analog is a great way to help peo
ple figure out what they're doing.

Macintosh and Software

WYSIWYG

One of the most common uses of computers is to generate pieces of
paper. If a paperless office with everything stored in the computer
and nowhere else is possible, it's a long, long way off. So for the time
being you should keep in mind that people who use your application
will probably want to print something eventually and they'll want
it to look like what they see on the screen. This principle is some
what awkwardly known as "what you see is what you get" or WYSI
WYG, which is pronounced (yes, it's really pronounced) "wizzy
wig."

Traditionally, printers have been able to do much fancier things
than personal computer screens. This is still true today: a Laser
Writer crams 300 dots into an inch, while the Macintosh screen
shows 72. Still, 72 dots per inch, combined with enough inches, is
enough real estate to allow a close approximation of what will be
printed. The Macintosh lets you show different fonts, styles, and
sizes, as well as all sorts of graphics. Your application can even get
information about the printer-for example, its resolution and paper
size-to make the screen display a more accurate picture of what
will come out of the printer. Because of factors like the difference in
resolution between the screen and the printer, exact WYSIWYG isn't
really possible on a Macintosh, but it can be close enough so that most
users won't really notice the difference. A good goal for your appli
cation is to show the user a preview of the output that's so accurate
that it will rarely be necessary to do a test print.

27

28 PART ONE CONCEPTS AND IDEAS

Forgiveness

Most Macintosh applications have an Undo command that al
lows the user to reverse the action of the last command. For example,
in a word processor, if you accidentally delete the selected text by
pressing the backspace key, you can get it back by using the Undo
command. This is a wonderful feature for anyone who's ever acciden
tally lost some work in a. computer program-in other words, every
one.

Although it's not as commonly discussed as some other parts of
the interface, the forgiveness feature is something that users love
most, as you can imagine. It should be available for more than text
editing, of course. You should try to make actions undoable whenever
possible. Of course, some actions cannot be undone, like initializing a
disk or drying your pet in a microwave oven. When the user wants to
take some serious action that's not undoable, you should issue a
warning (usually with an alert box) saying that the action can't be
undone. This way, at least you give the user one last shot before per
forming the command.

Stability

Most people using computers don't understand how they work
and they don't really care to know. The whole point of a user inter
face is to make work on a computer more familiar to users. To achieve
this goal, you must provide an environment for your users that does
not constantly change. You should try to keep the same menus and
menu items throughout the program, for example. Your dialog boxes
should be similar in style. Stick to your terminology: if you invent
something in your program and call it a potrzebie, be sure to always
call it that.

When an action is temporarily not available, like the Close
item when no windows are open, the option is drawn in gray, not re
moved. Macintosh users are taught to understand this and it's useful
any time you want to show that some option isn't available right
now.

In general, you should avoid changing menus and menu items
while your application is running. One exception is the Show /Hide
menu item. This item says (for example) "Show Clipboard" to open
the Clipboard window. When it's open, the item changes to say
"Hide Clipboard."

Macintosh and Software

User Interface Words To Live By

These are the general principles of the user interface. Always
remember the principle at the heart of a good interface: the program
is for other people, so keep them in mind while you're designing.
Don't be afraid to innovate: try new things that are consistent with
the standard user interface principles.

You should not consider the Apple definition of the interface the
ultimate definition for every possible situation. That doesn't mean
that you should contradict the guidelines just because you think that
something is wrong or that you have a marginally better idea; but if
you have an application that does something not thoroughly cov
ered in the guidelines, try something clever and elegant that makes
sense for the situation. You'll know you've done a great job if other
programs start stealing your idea.

The FPI Rule

The Macintosh user interface is certainly one of the most impor
tant reasons why the Macintosh family of computers has been suc
cessful, but it's not the only reason. The advanced interface makes
the Macintosh unique and the Macintosh is best known for its ease of
learning, one of the fundamental principles of the user interface. But
a great interface that makes software easy to learn will not make a
computer successful when you try to sell it to businesses, as Apple
learned in 1984 after introducing the Macintosh. It wasn't until soft
ware developers started coming out with beefier applications that
many business computer users started considering using Macintoshes.

What things other than user interface are important in soft
ware? The most important consideration is amazingly obvious: the
program's features. If a program doesn't have the features a prospec
tive user is looking for, it doesn't matter how easy to learn the pro
gram is. As obvious as this little fact may seem, it was often over
looked by software developers creating their first Macintosh prod
ucts. They got lost in the noise of ease of learning and forgot to put
features in their software. Unfortunately, the customers they were
trying to reach were not willing to trade features for ease of learn
ing.

Once a prospective software buyer finds a program with the ne
cessary features, the speed with which the program performs its
tasks becomes very important. Many software developers don't pay
close attention to the speed their of programs. A lot of programmers
seem to think that the computer is pretty fast and it lets people

29

30 PART ONE CONCEPTS AND IDEAS

work faster than they could otherwise, so they don't really need to
work at making the program faster. Of course, some programmers
work hard at speeding up their programs; this performance differ
ence can separate a fair, functional program from a great one.

Programs that have been tuned for speed are often the most pop
ular. In fact, many users of computers in business find speed so impor
tant that they're not willing to give up performance in order to have
a better user interface; in other words, they think it's great if the in
terface makes the program easy to learn but it better not slow you
down once you've become proficient.

For many Macintosh users, a program's features and performance
are the most important factors in figuring out which program to use.
They would rather have an application with a slightly cumbersome
interface that does everything they want it to very quickly than a
perfect implementation of the interface that leaves out crucial fea
tures or runs at glacial speed. It took software developers a while to
realize this fact (some never did-may they rest in peace): the best
and most popular applications have all three qualities-features,
performance, and interface. This is the FPI rule, named after the
three elements that make it up.

Of course, any Macintosh application with even the barest mini
mum of the standard user interface will have a better interface than
a typical old-world program running on another computer. The FPI
rule says you should make sure your programs have enough features
to make them useful and run at a usable speed before you create ex
otic enhancements to the user interface.

This does not mean you should spend all your development time
adding features and tuning performance and so little on the user in
terface that it makes a typewriter seem advanced. You must be sure
not to break any of the fundamental rules of the user interface. In
particular, if an interface for a feature exists that has been esta
blished as a standard by other applications, you should follow that
standard unless you have a very, very good reason for doing it differ
ently (thinking your technique is slightly better than the standard
is not a good enough reason).

Remember that the best Macintosh applications are strong in all
three areas addressed by the FPI rule. They have plenty of features,
so they're useful to the widest possible range of users; they work
fast, so the features are actually usable without having to wait for
ever; and they implement the Macintosh user interface, following
the standards and extending them in reasonable, intuitive ways
where there are no precedents. Applications that pay attention to
all three FPI areas are the ones that become classics.

Macintosh and Software

The finaf~ro~ifer. The original Macintosh.~oni~ute;~;Which·
had l~K1of .~and a maximum of BOP!> ()(i~dis~$pace, wa§. a
greatl:>reakthrough because it had.an adva:rtced'userqiterface

. ~nd yet its· pric~ wa$:in .the i,;aµte. ti;i)lge !as·otl).er ~erso~l cQ~'.'.'
puters: Itbecaiile obvious that 128K1of Ei.ANVand•800:Kof disk
weren't nearly·epm.~glb.fox: thi§..kmd;;qf computet;mpart:)t>eca14i;e
of all the extra :;Wor1' that had to b~ do~ to keep: track of tlie.
interfa:ce::Iti. e$$'ehce;~the intei:face isaniiiJlu·siQn':·~eated:·by tJi.e
applications and system software. There'i; r7ally no desJ..<top, l"{o
wind0Ws;and0ij'o buttons inside the2 tom:pute!!91 'of·~(:)urs~Nt' s hl1
an illusion that's there to mal<e it easier Jor humans. This p~·r
ticular illusion•;ilS . ej(pensive and p'fetfy difficult.to ntaintai:fi~
Think of it this11way; it's like one of the S~r·.'T:retepisodes m
which the ·Enterprise ani:J:ocrew vislt a planefiwitli: an 'increui
bly powex:tw. being or force that holdi,; them ~d w@:n't let them
go. ID: various epfsodes, this force wasl:\and~):Va~l~ or Apollo
(the sun god, n()t the cori:wut~r); in the end, ~apt.ain Kirk and
friends w~ld always find the power· sdurce)f.hl it~~nl;t destroy
the illusioµ. Unf<;>rluna~ely, tj:lis is .what happene.~ to ·a lqt;:9f
software that ran on early versions of the Macfutosh. They· pre
sente~ a great illusion (the use.r; interface), bµ~tin the ~nd, "".'~e.n
the users challenged the computer by exerc~ing the software,
the. }'.>.awer source (the Macintosh hardwar~~~:couldJ:t't hallcl.le
the illusion any more and eventually. it was destroyed (the
software slowed to a crawl or·crashed);,The,1.'ix: for·.·this' Wastto
make the power source more powerfulj Appi~·has;}done thi$ in
more·recentmodels;rof the.~cintQ.sh. ltthe~attei:i.&1;ev~.~!·1i~~~e.1 :L1

this out, the cr~w of the Enterprise may be in deepb:oub}e.
-,1;;~"

Introduction to Compatibility

You'll find information in this book about maintaining compati
bility with the various models in the Macintosh family of comput
ers. This subject is very important, since new models of the Macintosh
are coming out every year in addition to the seven different models
already released by Apple (OK, since you asked: Macintosh 128K,
512K, XL, Plus, 512K enhanced, SE, and II). The best way to make
sure that your application will work with future Macintosh comput
ers is to think about compatibility while designing and writing the
application. This section is a short introduction to the philosophy of
compatibility among Apple's Macintosh computers.

31

32 PART ONE CONCEPTS AND IDEAS

Much of the Macintosh was designed with great generality in
mind; in other words, the system software can be enhanced and ex
panded in many ways without breaking applications that work
with the original system. This philosophy is very important to Ap
ple when it designs a new computer. If a new Macintosh comes out
and a significant amount of existing software doesn't work with it,
people won't buy the computer-a situation Apple tries to avoid. So,
in designing new Macintoshes, Apple first tries to design extensions
and enhancements that won't kill existing applications and then
spends a lot of time and effort testing non-Apple software to make
sure the designed compatibility really works.

This commitment to generality and compatibility is obvious
when you look closely at the system software. For example, when a
program needs a chunk of memory, it calls the Macintosh Memory
Manager, and the Memory Manager figures out whether enough
memory is available to handle the program's request. This means
that if the user adds more memory to the Macintosh, an application
that asks for its memory chunks by calling the Memory Manager will
now take advantage of the expanded memory with the same code
that ran on the unexpanded machine. This is a great advantage over
machines that don't allow programs to use expanded RAM automati
cally.

There are lots of tricks and techniques used in the Macintosh to
give you a chance to make your software compatible with future
members of the family. Even though no one, including Apple, knows
exactly what kinds of features these new Macintoshes will have, if
you take advantage of these tricks, your software may be compatible
(or almost compatible) with future machines when they come out.

Hierarchical File System and Standard File

Another example of compatibility came with the introduction of
the Hierarchical File System (HFS) in 1985. When this happened,
Apple replaced a fundamental part of the operating system, the File
Manager, converting it from a flat system to a hierarchical one. De
spite this radical change, many applications continued to work well
under the new system, because Apple had made sure that all the old
File Manager calls were supported under the new system and because
a clever trick allowed old applications to see files in directories (see
Chapter 2 for more on how this works).

The user interface shields users from many of the raw facts of the
system's hardware. This helps to make compatibility easier to
maintain for many hardware and software changes. Adding a hard

Macintosh and Software

disk or changing from single-sided to double-sided disks is often a
traumatic upgrade on many personal computers. On the Macintosh,
most applications talk to files through the File System and the
Standard File Package, which is the code that takes care of things
when the user wants to open or save a file.

Standard File automatically lets the user look through the
available disk drives and directories, eject disks and insert new ones,
and even initialize new disks if necessary. Most applications don't
have to bother knowing about the number, kind, or sizes of disk
drives. If the programmer wants to know this stuff, there are clean
ways to find it out.

The generality and high level of interface provided by Stan
dard File and the File Manager make using file servers like Apple
Share almost invisible to application programmers. If the user is
connected to a file server, Standard File will display the file server
volume along with the other volumes when a file is opened or saved.
Again, the programmer doesn't have to bother with the fact that a
document is being saved on a file server instead of a local disk drive.

Using Global Variables

The Macintosh system software maintains an area of global var
iables. The size of this area depends on the version of the ROM, but
the globals of each new ROM are a superset of the previous ones. In
other words, once a global is defined in a certain location, it keeps its
definition for future RO Ms (at least, this has been true so far and it's
likely to continue to happen). For example, location $906 is defined
as a global variable called WindowList, and it contains a pointer to
the frontmost window. This definition was made for the ROM in the
original Macintosh and has remained valid for all the ROMs re
leased since then. Although you can also find the frontmost window
by calling FrontWindow, in many other cases, there's no other way
to get the information that's in the global.

Is it likely that Apple will continue to maintain this variable,
in the same location, in future versions of the ROM? That's an inter
esting question. There are probably hundreds of programs running
around in the real world that depend on current definitions of vari
ous globals. These programs would fail if these globals no longer had
the same meanings, and Apple is pretty fanatical about not making
changes that will cause lots of applications to fail.

On the other hand, if Apple someday decides to make radical
changes to the Macintosh operating system, some of today's globals
may no longer be valid. If this happens, WindowList may be a good
candidate for getting zapped, since there's a Toolbox call, FrontWin-

33

34 PART ONE CONCEPTS AND IDEAS

dow, that does nearly the same thing but with a higher level inter
face. It's much easier for authors of future ROMs to make sure that
Toolbox calls do the same thing than to guarantee that the globals
will mean the same thing. This is especially true now that Apple is
evolving the operating system to support multitasking.

What's the bottom line in this discussion? Right now, Apple is
strongly committed to maintaining a high level of compatibility
when each new ROM is released. No changes are made that would
cause a lot of applications to fail on the new system. This means,
among other things, that all globals have to maintain their loca
tions and their meaning whenever possible. However, Apple some
day may decide that it must change the operating system so radical
ly that some globals will no longer be maintained. If this should
happen, Apple will likely give plenty of notice and guidelines about
the change.

It's not real likely that this radical change will happen all at
once, though, so you shouldn't worry too much about it. It used to be
that any feature documented without a warning in Inside Macintosh
was all right, but with changes for multitasking that's not true any
more. To be on your best behavior, you should stick to the ROM calls
and pay attention to new information from Apple. Also, watch out
for those warnings. For example, Inside Macintosh tells you how to
modify the Standard File dialogs, but it also warns you that "future
compatibility is not guaranteed if you do not use the standard dia
logs."

So there. As John Parker said, "Believe it!"

Don't Touch That File!

As you probably know, the ROM doesn't have everything in it
that you need. When you start up a Macintosh, one of its first living
acts is to open the file called System (or the system file) on the
startup disk (if the disk doesn't have a file called System, it can't be
a startup disk). The system file contains more important stuff that's
needed to make the Macintosh work; how's that for a precise, scien
tific definition? Actually, System includes many common resources,
including fonts, desk accessories, patches to the ROM, packages like
Standard File and the List Manager, and much more. In short, Sys
tem is a lot like Los Angeles: it's one big thing that's really com
posed of lots and lots of smaller things.

Whenever Apple issues an update to any of these pieces, System
must be changed or replaced. Since the system file is so important to
the computer and since it's open all the time, even while you're mod-

Macintosh and Software

Hying it, and can't be closed, munging around with it can be a fairly
delicate operation. For this reason, Apple has always advised de
velopers not to make any changes to System. This advice is just fine,
but what if you want to make some feature change that requires a
modification to the system file?

Three tools are available to enforce the "don't touch the system
file" rule that Apple preaches. The most common thing people do to
System is to install fonts and desk accessories. Apple provides a
standard tool for messing around with fonts and desk accessories, the
well-known Font/Desk Accessory Mover. It doesn't matter if a font or
desk accessory was created by Apple or by anybody else: Font/Desk
Accessory Mover can install it.

Running numbers. The Font/Desk Accessory Mover has to b
pretty clever as it shuffles those fonts and desk accessories
around. Every FONT and DRVR resource, of course, has a re
source ID. When the FDA Mover is told to move something from
one file to another, it first must check in the destination file to
see whether a resource with the same type and ID already ex
ists. If so, it has to renumb~r the resource being moved in before
adding it to its new file. That's not all. You may know that
desk accessories are permitted to "own'; other resources, such as
pictures, controls, text strings, or anything else they use. This
ownership is established by a special numbering scheme: every
desk accessory owns all resources within a certain range of re
source ID numbers. If the desk accessory is renumbered, the
owned resources have to be renumbered, too. The FDA Mover
takes care of this. And there's more. (This is getting to be like
one of those TV commercials for the Ginsu khives.) Sometimes,
resources contain the IDs of other resources embedded within
them; for example, a DLOG resource contains the ID of the
DITL that it uses. If these resources are also owned by the desk
accessory, they have to be copied and, if the desk accessory is
renumbered, they have to be renumbered too. Now you see why
Font/Desk Accessory Mover is a fairly complex program.

The second tool Apple provides to allow you to leave the system
file alone is the INIT 31 mechanism. The story is this: the original
Macintosh system file contained resources of type INIT, which were
little pieces of code. When the system was starting up, these INITs
would be loaded and executed. By creating your own INITs, you could

35

36

System

PART ONE CONCEPTS AND IDEAS

have any arbitrary code execute at system startup time, which is a
very handy feature.

Unfortunately, in order to make your INIT work under this
scheme, it has to be in System, and Apple tells developers not to put
anything into System. What can you do? Well, in all versions of the
system file released since January 1986 (version 3.0 and later),
there's a neat trick added. Apple supplies a special INIT with ID 31
that comes as part of System. When it gets executed at startup time,
it goes out and looks for any other files in the system folder that
have the file type INIT. If it finds one, it opens the file and then
searches in the file for resources with resource type INIT. If it finds
any INIT resources, it loads them and executes them. This flow is il
lustrated in Figure 1-4.

File z
File type: INIT

IN IT resource 3
IN IT resource 5

File R
File type: INIT

IN IT resource 1
INIT resource 5
INIT resource 37

File Q
File type: INIT

IN IT resource 1

Figure 1-4 . INIT resource execution

INIT 31
in System
eHecutes
other INITs

The standard system file now contains INIT 31, so if you want to
have an INIT resource executed when the system starts up, you don't
have to modify the system file. All you have to do is create your
INIT resource, put it in a new file of type INIT, then put it (or ask
your users to put it) in the system folder. When the system starts up,
your INIT will be run.

Macintosh and Software

The Font/Desk Accessory Mover and the INIT 31 mechanism pro
vide ways to avoid having to touch the system file, but only in
highly specialized cases; they're only useful if the resources you're
dealing with are fonts (type FONT), desk accessories (type DRVR),
or INITs. What about more general situations, when you want to in
stall or remove some other kind of resource? How can you avoid
touching the system file then?

The answer is a slick utility called Installer. This program, re
leased by Apple in 1986, allows you to add, replace, or remove any
file or resource in a file. You can think of Installer as a sort of high
level interface for modifying system software. You tell Installer ex
actly what to do with Installer scripts, which are resource files that
contain Installer instructions. Apple has used Installer for all its sys
tem software updates since early 1986. These include new releases of
the system file, the Finder, printing software, and the AppleShare
file server.

The neat thing about Installer is that it can be us~d to select
ively copy or replace files and resources within files. If you're just
copying or replacing resources, the rest of the file remains intact.
Let's say you're releasing an update to your product consisting of some
new CODE resources. It would be pretty simple just to put a copy of
the complete new version on the update disk, but this presents at
least one problem if you're a third-party developer: you'd like to be
sure that people who buy the update already have the original soft
ware and aren't getting a complete package for the price of an up
date.

You can solve this problem by using Installer to do the update.
By creating an Installer script to update the application, you can just
provide a subset of the application instead of the whole thing. Even
if you replace virtually all of the application's resources, you can
still have Installer verify that the application is really there be
fore performmg the update. Sure, smart (and even semi-smart) peo
ple can get around this technique, but most won't bother. Macintosh
Technical Note #75 describes how to create Installer scripts. You
might find Installer useful if you have to create a software update.

Sometimes, creating an Installer script for a job can be overkill. If
the installation process for your program is easy, you probably won't
need to provide your users with an Installer script. For example, if
all they need Jo do is put a file or two into the system folder, they
don't need an Installer script. However, if you want to perform the
delicate surgery of selectively replacing resources, or if there are
several files to be replaced or modified, you should consider cooking
up an Installer script to do the dirty work.

37

38 PART ONE CONCEPTS AND IDEAS

Other Apple Utilities

In addition to the Font/Desk Accessory Mover, the INIT 31
mechanism, and Installer, Apple provides a number of other neat
tools and tricks you can use to your advantage when you're writing
something for the Macintosh. This section describes some of the more
interesting ones.

Control Panel

The Macintosh system software has always included a desk ac
cessory called the Control Panel. It lets the user set such things as
the desktop pattern, the correct ~ime and date, and the speaker vol
ume. With the release of the Macintosh II in 1987, Apple revised
and extended the Control Panel's power. Now, the Control Panel
groups its settings together by function or device. There's a group of
settings for the mouse, the keyboard, the sound capabilities, and
soon.

The best thing about the new Control Panel is that it's extensi
ble. When the user opens the Control Panel, it checks for files of type
cdev. If it finds any, it looks into them for resources that define the
appearance of the Control Panel selections for that device. If you're
creating any kind of device that requires the user to choose settings,
you can create a cdev file that will present the choices in the Control
Panel. This means you may be able to avoid writing a special control
panel or preferences program of your own. Also, your user already
knows how to use the Control Panel, which makes the process easier.
For the official documentation on the Control Panel, see Inside Mac
intosh, Volume V (soon to be a major motion picture).

Chooser

When the LaserWriter was introduced in 1985, Apple released a
desk accessory called Choose Printer, which let the user select be
tween the directly connected ImageWriter and the AppleTalk
connected LaserWriter. This desk accessory was straightforward and
specialized: it was used to select printers, period. Life was simple
then.

As the utility of AppleTalk grew and more things became avail
able for the network, Choose Printer was transformed into the more
general Chooser. The Chooser is a desk accessory that allows the
user to choose which specific devices will be used for various func-

Macintosh and Software

tions. The Chooser can be used to select a printer from among directly
connected and AppleTalk-connected devices; it can select file server
volumes to be mounted; and it can select a mail server. But it isn't
really just for picking printers and file servers.

The Chooser is designed as a general-purpose friend to the user.
It figures what to offer the user by communicating with files of type
RDEV that it finds when the user selects Chooser from the Apple
menu. The RDEV file contains code to tell the Chooser what to dis
play for that device and what to do when the user chooses some
thing.

By creating your own RDEV file, you can (you guessed it) have
your own device show up in the Chooser, just like the standard Ap
ple ones do. There's information on how to do this in Inside Macin
tosh, Volumes IV and V.

You might think that the functions of the Chooser and the Con
trol Panel overlap somewhat. You're right. They both provide the
user with a method for setting up devices and their characteristics.
In fact, their functions are so similar that it's possible someday
they'll be combined into a single jumbo-deluxe desk accessory that
does it all. The Control Chooser? The Chooser Panel?

Until that happens, how do you decide whether to put your de
vice-setup stuff into the Control Panel or the Chooser? In general,
the Control Panel is used to set up how a device works, like the
speed of a coprocessor card, the display characteristics of a video
card, or the volume of the sound output. The Chooser is more appro
priate for selecting one or more things from a whole list of things,
like picking which printer to print on, which file server volumes to
mount, or which AppleTalk-connected popcorn poppers to tum on.

If the functions of the Control Panel and the Chooser are ever
combined into a single desk accessory, we can probably trust Apple's
desire for compatibility with existing software to maintain the in
terface to the current Control Panel and Chooser. You should assume
that things will continue to work as they're currently defined and
that Inside Macintosh is the ultimate reference for how they work.

Things to Remember

To understand how to make your Macintosh software great, you
have to know a little about the philosophy and history of this line
of computers. You have to design things with your users in mind from
the start. They're the ones that you're making your software for, so
don't forget them.

39

c H A p T E R 2

Compatibility

What is compatibility and why should anyone care? A
discussion on the great virtue of generality in computer
design and what it has meant to the Macintosh product
line. An introduction to good behavior as a way of life.
The care and feeding of the medium-level interface.
What you can get away with when customizing features
like Standard File and the printing dialogs and what
will come back to haunt you. What might change in the
file system and what will likely stay the same.

41

42

Model

Apple II
Apple 11 Plus
Apple I le
Apple I le
Apple I lgs

PART ONE CONCEPTS AND IDEAS

Good Relations

In January 1984, Apple introduced the Macintosh. Its software
was absolutely incompatible with every other computer ever built,
even the ones built by Apple. Of course, there was a good reason for
this: when you set off in a completely new direction, you allow your
self freedom from the constraints of the past.

If a new computer doesn't have to be compatible with anything
else, its designers can be a lot freer and more revolutionary-and
have a lot more fun-than they can when working on the evolution
of an existing design. Apple has a lot of experience with both revolu
tionary and evolutionary computer design. The Apple II (often
called the venerable Apple II, which is fine witb me) was intro
duced in 1977. Since then it has undergone several face lifts, emerg
ing at various times in the bodies of the Apple II Plus, Apple Ile,
Apple lie, and Apple Ilgs. The most recent of these was introduced in
1986, nine years after the original Apple II. Yet Apple has managed
to build a great deal of compatibility into every member of this
product family. Every model has provided some improvements or
different configuration but all of them can run a lot of late-1970s
vintage software. Figure 2-1 tells you a little about the history of
the Apple II.

First year shiooed

1977
1980
1983
1984
1986

New Features

4K to 48K RAM, 40 column teHt
Floating-point BASIC
up to 128K RAM, 80 column teHt
built-in disk driue & carrying hon die
256K RAM and up; 16-bit processor

Figure 2-1. Apple II models

Of course, all this compatibility doesn't come free or even cheap.
Each Apple II is compatible with its predecessors because it was
planned that way. Apple's commitment to making all its Apple II
computers compatible has gone from strong to nearly fanatic in the
last few years. A lot of time and money spent developing the Apple
Ilgs could have been saved if it hadn't had to be compatible with its
predecessors.

Why spend this big investment in compatibility? Is it really so
important? You bet it is. When a new computer ships, there's a group
of people interested in it, whether or not it runs very much software.

Compatibility

When Apple introduced the Macintosh in 1984, a lot of interested
folks bought one mainly on the promise of great software to come, a
promise which took a while, but came through spectacularly. A
really successful computer, though, must have lots of great applica
tions software. Thousands of software packages are available for
the Apple II. Inventing an Apple II that couldn't take advantage of
most of these would be a big mistake and Apple knew it.

Apple faced a similar situation with the Macintosh Plus, which
was introduced in January 1986, and the Macintosh SE and Macintosh
II, which came out in March 1987. The whole point of an evolving
product line is to take advantage of existing software and periph
eral hardware. If Apple ships a new Macintosh that doesn't run the
most popular existing Macintosh software, not many people would be
interested in buying it.

Let a Thousand Flowers Bloom

There is another option available when you ship a new com
puter. Instead of ensuring that new machines work with existing
software, a manufacturer can work with software developers in ad
vance of a product's introduction, providing them with prototypes
and technical help so they can have new software and peripherals
ready by the time the computer is introduced.

This sounds like a great idea and in fact is exactly what hap
pens. Months before a new computer is shipped, Apple's Evangelism
group shows off plans and prototypes to developers. The lucky and
talented ones become seeded; that is, they get prototype hardware
and pre-release software and documentation. These brave souls then
get to spend their days pounding away on a fascinating piece of ex
citing, not quite debugged new hardware, working feverishly to fin
ish their products before the new computer is sent out into the world.

There are a couple of problems with this process. First of all,
seeding periods are always too short. When a new computer is de
bugged, tested, and ready to be produced, it gets introduced to the
world. This means that the prototypes that seeded developers work
on are often ill-behaved beasts. Both the hardware and the soft
ware are changed and upgraded frequently, so the developer really
has to know what's going on. Playing with a new Macintosh months
before the rest of the world gets to see it may be fun, but it can also be
trying.

Another problem with relying on seeded developers to produce
all the software anyone would ever need is that only a select few de
velopers get to be seeded. Seeding locks out the unknowns, the up and

43

44 PART ONE CONCEPTS AND IDEAS

coming, and the Next Big Thing. Programs like PageMaker come
from companies that Apple never heard of, once upon a time; and it's
tough for unknown companies to get seeded with new hardware.
Much of the real innovation in software comes only after a new com
puter has been out in the world for a while, when the machine's
tricks and power have been discovered by the programming commu
nity (which, as you know, is somewhere near Berkeley). This is
great for the new computer as it matures, but it doesn't help at all
when it's struggling for acceptance.

So, if seeding isn't good enough, and the manufacturer wants to
have lots of software available when a new computer ships, the
only alternative is to make it compatible with something else.
When the new computer just happens to be a Macintosh, like the
Macintosh Plus was in January 1986, it seems like a reasonable idea
to make it compatible with existing Macintosh software.

Designing Compatibility

How hard is it to make a new computer compatible with its par
ent? That depends on several things, including the original comput
er's design, the magnitude of changes in the new computer, the defi
nition of compatible, and the designer's commitment to compatibi
lity. Let's talk about each of these factors.

The best time to start thinking about a computer's future models
is when the first model is being designed. In a sense, the designers of
the original Macintosh were thinking about the Macintosh Plus, SE,
and II when they were designing the original machine, although
they really had no way of knowing what was going to happen that
far in the future.

The first and most important way they accounted for future evo
lution was by recognizing that they couldn't possibly know about the
changes and new features that would happen. That recognition al
lowed them to use one of the most powerful concepts in software: gen
erality. When designers realize that redesigners, who will make
modifications and enhancements, will follow them, they make the
software for a particular task as modular and changeable as possi
ble. Building in this generality allows future architects and devel
opers to make changes and additions more painlessly.

Compatibility

Great moments in marketing: the XL story. After Apple gave
up on the Lisa, it realized that a Lisa running MacWorks (the
Macintosh emulator) was actually a pretty popular system. So,
in 1985, Apple renamed the Lisa, calling it Macintosh XL. The
hardware did not change-just the packaging and marketing. It
was now obvious that this computer was in.tended to be used as
a big screen, large-memory Macintosh. The funny thing is that
it was a brilliant move; it worked. For the first time, Apple
was selling a lot of Lisas. There was a problem though. Apple
had already torn down the production facilities for the Lisa (or
XL). Just at its height of popularity, the Macintosh XL (or
Lisa) was killed.

There are zillions of examples of generality in the Macintosh's
software architecture. The Window, Menu, Control, and List Manag
ers are all written in wonderfully general ways that allow new fea
tures to be added just by writing definition functions to implement
them. For example, the standard menu definition function draws the
menus you see most of the time: lists of text items, some with com
mand key equivalents, check marks, and other options. However, if
you want to make your own kind of menu, such as a menu of patterns,
you can do it by writing a menu definition function. The Menu Man
ager will still handle drawing the menu title, pulling down the
menu, highlighting the items, and reporting back to the application
which item has been selected. The Menu Manager is general enough
to allow different kinds of menus to work properly. Because of the
generality of its design, the Menu Manager (and the Control, Win
dow, and List Managers) allow for future expansion. Building gener
ality into software means admitting that the world will change in
ways that the designer can't foresee, which is a humble and abso-
lutely valid assumption. -

The Macintosh system software shows its generality in lots of
other ways. Most of the system's important features are accessed
through traps, or calls to the ROM and RAM-based system software.
Because of a clever scheme implemented by the ROM, the program
mer does not have to know the address of a trap in order to use it
just its number. Making sure that a ROM routine keeps its address as
the ROM is modified is very difficult; making sure that it has the
same trap number is very easy (see Figure 2-2). If you want to know
more about how this works, see the chapter "Assembly Language" in
Inside Macintosh .

45

46 PART ONE CONCEPTS AND IDEAS

Trap Numbers
NewMenu SA931
SetFPos $A044
lnvalRgn

Hlock
ClosePicture

$A'l2.7

SPC'JE
$A8F4

same trap numbers

New Me nu

SetFPo s

lnvalRg

Hlock

n

__. -
ROM __.
CODE

....
(64K

.... bytes)

Hlock __.

NewMe nu ROM
CODE

s .. - (128K
SetFPo

CloseP icture _.. bytes) -
cture .al - n _.. Close Pi lnvalRg

ROM Version $69 ROM version $75

Figure 2-2. Addresses vs. trap numbers

The table that matches trap numbers to addresses is contained in
RAM, not ROM. The system provides an easy mechanism for chang
ing a trap's function or features by patching it. Actually, this partic
ular feature wasn't implemented in the name of generality, just to be
sure that there was a way to fix the bugs that inevitably crop up in a
big ROM. Still, the fact that the basic features of the ROM can be
changed in such a general way opens the door for lots of great soft
ware, such as the Japanese, Arabic, and Chinese Macintoshes, that
would otherwise be very difficult or impossible to create.

Compatibility

Liquid ROM. .One interesting benefit of having the operating
syste;ni.. iln})?J~~At~9-. a~·.pa~<;haple traps is Jhat the ~OM can be
"Todified" with a disk. A bug in the ~8¥ .. ca~ alTost al\'Vays

•l(be:;#xed byimplementing anewi patch.ea ttapthat l~et$Uoaded
. ~ tts>;~ th.e .• S~~~~ :ft!e on .. dj~k. In f a<;t, tflis ··~~ ,e~a.ct!~ .~J\lal Ap
... pie does w.ith~.e\'V.felea.ses,ofthe MaciJ:itos,h systeT dis,k. ~u~
mero~·b4gs inithel~J2~R©M (ROM version $75) were fixe · ·
the ·• ftl.e :yers~on 3.2. l'h.~~s~~~o ..

· .. ugs witllo~t releasing · ·· e~l~
b~fixed bya•lpateh in ·y:~te

<?~s it~ dapiage befor~~Jhe syste .
tug process cannot beipatched b <·

syst~~~iile~i~hi:¢ :k~$•sense ·'When you think;about it. Foi::·.~~;·:•1·
a;ni.g!e.l) .. ~~t?i·Ma,f~t~~h.J?lus RO~ (~;F~i9p ~;~p · s,' .a,~.tJg .•

. ·'.thatca • .fses?the'sy~em'to hang wh.;~ ~tart~~ ·.·~·····~ .••. ~on-
ii~~~~lc;J:~· ... ': ~ •. ~.,~<;;~r deYiF.~is .attaehEld".b~t· 1P0w~~d· <)ff, ·W~is ·

... ;b · ,,~T 'nee it9£B1~ b~f9i::. · ·~···~.s,
: .•..... He::p .•.•... · ... < y to f~ if•is to in ·new·•· ...

~\\7.#e~din,g ci;>\1,e repairedi:i:• : •:.;.!:~: :.::c:;: •r•.: •<:,:~r:1: . ::

The generality of the Macintosh system software is extended
even more by the use of hooks in almost every part of the system.
Hooks are pointers to programmer-supplied routines (that is, ad
dresses of routines) that allow a routine's function to be customized
without hurting the general way things work. For example, a hook
called EjectNotify contains the address of a routine that gets called
whenever the user ejects a disk. This hook normally contains a zero,
indicating that no special routine is called when a disk is ejected. By
writing a routine, finding a place for it in memory, and putting its
address into EjectNotify (which is at location $338), your routine
will be called whenever a disk is ejected. Your application can use
this as a sort of "disk-uninserted event" if you want to keep track of
such things. The Finder uses this feature to clean up a disk before lhe
user ejects it with Command-Shift-1 or Command-Shift-2.

As Appie Ji:~:V~~ toward a true multitasking operating $ystem,
.~o:tl.'.}e ofthe~\rules are changing,Jn particulzt;r, Apple no~ sug~
~$~~s that h~~Jike EjectNotify may c~(lpg~ or.?o <l\'V<l~~Jnthe
~f~~tij:re. Again, the best way to protect ytmrself is fo wa~'l:h the

smQke ~omii:ig,oµt ofApple'cs chimney in th'e form ofte~hniqal
notes as tim¢ gogs by.

47

48 PART ONE CONCEPTS AND IDEAS

Specializing

Generality in software is great because it allows for future vari
ations and customization. Generality also describes code that imple
ments a general, often elegant algorithm for handling a wide vari
ety of cases. Just as for almost any design consideration in computer
software, there's a tradeoff. The usual tradeoff for generality is
speed. A very general piece of code is probably not taking advantage
of special situations to the fullest possible extent.

As an example of this, consider a function like Line in Quick
Draw, which draws an arbitrary line. Line has to be able to handle
drawing any requested line: horizontal, vertical, or diagonal with
an arbitrary slope. By implementing a general algorithm, Quick
Draw can accomplish this task with a small amount of code, and it
will work just fine. Are their other ways to do it? Sure there are.

The Macintosh, like many personal computers, uses memory
mapped video. This means that the dots (or pixels) you see on the
screen correspond to bits in the computer's RAM. On monochrome (an
ancient Aramaic word meaning "black and white") screens like those
found on most Macintoshes, one dot on the screen is represented by one
bit (or binary digit) in RAM. A bit can have two values: 0 and 1. A
bit value of 0 produces a white dot and a 1 makes it black.

On the Macintosh, as on most personal computers with memory
mapped video, the pixels are laid out horizontally in memory. That
is, the upper left-most dots on the screen are represented by the first
bits in video memory; as you move higher in video RAM, you move
horizontally across the screen. When you reach the end of the line,
you move to the start of the next line down. Figure 2-3 illustrates
this mapping.

video RAM
byte#65-

video RAM
byte #1

~

video RAM
byte #2

•
J

Compatibility

screen

(Macintosh l 28K, 5 l 2K, Plus, or SE)

Figure 2-3. Screen mapping in RAM

Imagine some of the calculation necessary for drawing a line
from point 0,0 to 100,100. As you can see in Figure 2-4, QuickDraw has
to figure out where to place the dots on each horizontal line as it
moves from line 0 to line 100; then it must determine which bits in
memory correspond to each of these dots. This process involves stor
ing data into 100 different bytes in memory. So, even without compu
tation, 100 different machine language instructions must take place
to make the right dots appear on the screen.

Now imagine that you're drawing a horizontal line from 0,0 to
100,0 (Figure 2-5). If a general drawing algorithm is used, placing
the dots one by one, you would still need 100 different machine lan
guage instructions to make the dots light up to form the line. This is
incredibly wasteful. The 68000 can address up to 32 bits of data, a
long word, with one instruction. If the line drawing routine is smart
enough to figure out when horizontally adjacent dots are being
changed, the number of instructions required can be greatly reduced.

If the line drawing routine is really smart, it will determine in
this case that the 100 bits it needs to set are all adjacent in memory.
Since the 68000 can deal with 32 bits at once, all the dots in the line
can be set with just four instructions: the first three can each set 32

video RAM
byte#64

•
l

49

50

video RAM
byte#3205

video RAM
byte#6347

PART ONE CONCEPTS AND IDEAS

video RAM
byte #1

video RAM
byte #1

video RAM
byte#65

Figure 2-4. A line from 0,0 to 100,100

video RAM
byte #2

video RAM
byte #13

Figure 2-5. A line from 0,0 to 100,0

Compatibility

bits, for a total of 96, leaving the remaining four bits to be set by a
fourth instruction.

Let's ponder this discovery for a minute. This is important. This
means something. We've discovered that by making the line draw
ing routine a little less general, by having it take special notice of
horizontal lines, we can speed it up enormously. Drawing a horizon
tal line is said to be a special case of drawing lines. Adding special
cases to a general routine has advantages and disadvantages. The
advantage is obvious: performance for the special case is greatly en
hanced. A horizontal line will be drawn much faster than it would
have been without the special case code. This is the main argument
in favor of adding special cases to general algorithms: speed.

There are a couple of problems with special cases in code. For one
thing, special casing causes a loss of generality. In our example it
was no big deal, because the structure of QuickDraw doesn't allow us
to define different kinds of lines the way the Menu Manager allows
for different kinds of menus.

There are other, potentially more significant drawbacks to ad
ding special cases to our line drawing routine. The first is the fact
that the code gets bigger. For each special case that's added, more
code has to be written, using up more memory. Another drawback is
that while special casing enhances the performance of the special
case, it slows down all the others. How? Well, if every line has to be
checked to see whether it's horizontal, that means that non
horizontal lines will take longer to be drawn while they're checked
out by the special-case decider.

How can you tell whether adding special cases to a general rou
tine is worthwhile? The important factors are the frequency of the
special case, the amount of code necessary to implement it, and the
performance benefits gained. If half of the lines drawn are horizon
tal lines, it's worth any reasonable amount of code to implement the
special case, even if the performance improves only a little. On the
other hand, if very few of the lines ever drawn are horizontal, this
special case is worth doing only if the code required is small and the
results are pretty impressive. When you're writing a general algo
rithm and have a chance to use special casing to improve perfor
mance, you should weigh the facts in your situation to see if adding
the special case is a good idea. As Smokey says, "Only you can pre
vent forest fires." Of course, some situations seem to resist any at
tempt to find a generalized algorithm. If you get stuck with one of
these, you can't do much but keep looking for those generalizations
and keep improving the most important special cases.

51

52 PART ONE CONCEPTS AND IDEAS

Generality and Compatibility

Preserving compatibility across a product line means that new
computers do a pretty good job of running software designed for the
older members of the line. A computer manufacturer can try several
good strategies when striving for compatibility. One is to define an
architecture-a design specification-for an entire product line as
soon as the first computer in the line is introduced.

With this approach, you define compatibility right from the
start. When you ship the first computer, you tell the world exactly
which features will and will not work in future versions. This
doesn't mean you come up with and announce all the specifications of
all the computers you ever intend to ship as soon as you introduce the
first one. It just means that you lay out the ground rules and you warn
that anyone who doesn't follow them will have software that
doesn't work in the future.

When the original Macintosh was introduced in 1984, there was
no official architecture announced by Apple. However, there was a
very in-depth technical manual, Inside Macintosh, which served as
a reasonable substitute. Apple had fought the compatibility wars
many times with various models of the Apple II, and the Macintosh
was designed with future compatibility in mind. Inside Macintosh
contains suggestions and warnings about how to do things and what
to avoid if you really want to be compatible with future machines.

Inside Macintosh became (and has remained) the main source of
compatibility guidelines for the Macintosh. If a routine is docu
mented there with no warnings or special guidelines, it's likely to be
supported on future ve"rsions of the machine. On the other hand, a
piece of software that thumbs its nose at a specific warning in Inside
Macintosh is almost guaranteed to have problems working on future
machines.

The problem with using Inside Macintosh as the guide for what's
legal and what's not is that it really wasn't designed for that pur
pose. It provides a lot of information about how to stay compatible
but since it wasn't meant to be the all-time compatibility directory,
it can't tell you everything. At some point in the future, Apple may
release a more complete specification on what is and is not legiti
mately available for use in the Macintosh. If you think it's too late
for that because the Macintosh can't possibly undergo any more tor
tuous changes than it already has in its brief history, consider the
Apple II, ten years old, still being enhanced, and still selling hun
dreds of thousands of computers every year.

If system software has lots of generality, it's easier to maintain
coi;npatibility for new computers. For example, on some computers,

Compatibility

like the original Apple II, making a call to the system involves
jumping directly to the address where the routine is located. This
makes compatibility real hard when you're revising the system soft
ware because you have to make sure all the system routines have
their starting points at the same place. This is a wonderful (and
sometimes impossible) exercise in discipline for a programmer.

Later versions of Apple II system software, including ProDOS
and the Apple Ilgs Toolbox, have a better idea: system calls are
made by jumping to a single dispatching location with a call number
that tells what function to perform. Obviously, it's easy to make sure
that this one location stays the same when the system is revised.
Figure 2-6 shows how this works. The Macintosh trap system is simi
lar to this, with a slight refinement: even the dispatching location
can change when the system is changed, because of the neat way
that the Macintosh implements trap calls. Macintosh programs
don't even have to jump to a dispatching location to make ROM
calls; they simply execute a special 68000 instruction that finds the
trap dispatcher. This clever technique is shown in Figure 2-7.

LDA#l3
JSR DISP

MOVE.W #9,-(A7)
=TextSize

Put call number in A-register
Jump to dispatcher

i
Dispatcher gets call number from A-register
Looks up routine address in dispatch table
Jumps to routine

Figure 2-6. Apple II ProDOS call dispatching

Push parameters on stack or load into registers
Trap word is an instruction
(Jumps to address pointed to by location $28)

i
Trap dispatcher gets call number from trap word
Looks up routine address in dispatch table
Jumps to routine

Figure 2-7. Macintosh ROM call dispatching

53

54 PART ONE CONCEPTS AND IDEAS

Why would you want to be a bad guy and violate any of the com
patibility guidelines? The most common reasons are to gain better
performance in your software, because you don't know the "right
way" to do it, or you do know the right way to do it, but you goofed.
Obviously, the first reason is the only legitimate one. The way to
avoid the second situation is just to learn as much as you possibly can
about how the system works. The only way to avoid the third situa
tion is through diligent testing. There's a great debugging tool called
Discipline that helps expose these kinds of problems. Discipline is
available as a standalone application or as a part of TMON, the
super Macintosh debugger made by ICOM Simulations in Wheeling,
Illinois.

Good Behavior

The legitimate reason for not playing by the rules, to make your
software perform better, is another part of the generality vs. special
casing argument. The authors of the system software have the diffi
cult job of providing software that serves all applications, so it has
to be general enough to handle all kinds of programs. Any particular
application can probably write a special case version of a system
function that will be faster than the standard one. For example, a
MacPaintlike program could certainly rewrite parts of QuickDraw,
or bypass QuickDraw and write directly to the screen's RAM, to
make itself faster. Is it worth it to risk compatibility this way to
improve your product?

This is an eternal computer science argument, especially when it
is about personal computers. If the services provided by the operat
ing system aren't fast enough or flexible enough, programmers won't
use them, and their chance at staying compatible goes way down. In
the IBM world, programs that obey the rules are called well
behaved, and it's interesting to note that many of the most popular
and powerful programs are not well-behaved.

If well-behaved means "following the general guidelines Apple
has provided for compatibility," a lot of Macintosh programs are
pretty well-behaved. For example, if you ran the Macintosh Plus
versions of some of the popular painting programs on the Macintosh
11, you'd find they work pretty well when you use them in black and
white, even on the larger screen (although some simply ignore the
extra screen real estate). When you switch to gray scale or color,
though, a few of them would freak out. This happens because they
draw directly into the screen RAM and they always assume that one
bit in memory corresponds to one dot on the screen, an assumption

Compatibility

that's blown away when the Macintosh II draws in gray scale or
color. I'd call that reasonably well-behaved.

Programs that work that well are doing several things right.
They're probably doing their drawing through QuickDraw; if not,
they're making use of global variables that give information about
the screen. There's a global called screenBits, which tells how large
the screen is and where in memory the screen RAM begins. If the pro
gram takes the trouble to check these variables when starting up,
rather than blindly assuming that the screen has the same charac
teristics as the Macintosh Plus, it can be compatible with different
screen configurations. You can see how this works in Figure 2-8.

Macintosh Plus

ScreenBits.bounds 0,0,512,342
ScreenBits.baseAddr $FA700
ScreenBits.rowBytes 64

Figure 2-8.

Macintosh 11 with Aoole monitor

ScreenBits.bounds 0,.0,640,480
ScreenBits.baseAddr depends on slot
ScreenBits.rowBytes 128

Using screenBits

Of course, if a program that bypasses QuickDraw doesn't bother
to check screenBits to see where the video RAM begins, it will fail
miserably when run on a Macintosh II. There's really no good reason
to avoid checking the start of video RAM by looking at screenBits.
There's no tradeoff involved: it costs virtually nothing in terms of
speed and extra code and the benefits are great. This suggests that
there are several levels of compatibility, depending on how a pro
gram works: it can do all its drawing through QuickDraw; bypass
QuickDraw but still use globals like screenBits; or rely completely on
the hardware never changing. We'll talk more about these three
levels a little later.

Despite this fairly good behavior, programs that draw directly
into screen RAM all croak when they try drawing in color or gray
scale, where multiple bits in RAM are mapped to the same pixel on
the screen. The main reason for this is that using multiple bits per
pixel is a new technique for the Macintosh, and these programs had
no way to anticipate how Apple was going to do it. If Apple had
provided a specification of how all the bits would be mapped into
each pixel when these programs were written (circa 1985), they
would have had a chance to conform to the spec and might have
worked without modification from the Macintosh Plus versions.

Of course, it was impossible for Apple or anyone else to know
how the Macintosh II video would work in 1985 because it hadn't
been invented yet. It's virtually impossible to guess all the possible

55

56 PART ONE CONCEPTS AND IDEAS

twists that future models of a computer will take, making it very
hard to specify a complete architecture for a product line when the
first computer in the line is created. If the original Macintosh was
taken as a thorough specification for all future models, it might not
have been possible to implement major changes such as the hierar
chical file system (the original Macintosh file system was flat) and
color video.

~M~4:t~~'~.,··.· .. ,. Q~~!i~sl< ancr ... ··>·.·,
in the· M(leh1t<Jsh diVision bega,n ,f~ !'l1t

> tosh. By most accounts, it .was a power-
· p~based sys~em. It never did com¢ out,

obs left A the more modest Mac-

. ~~ . gp¢~· ,.. ..· ... ······. ·. \
in . , .•• , ..• ,. .. e:Maci > ... ,.·'·.·. :µsa,1'":

• < i e <the;pte tlcflin~. Apples, ms' to have leanied this
clesson well, since it took only 14 months to follow the Plus with
the SE and the II.

It seems like it would have been nice for the original Macintosh
specification to have had things like a hierarchical file system,
color video, multitasking, and other neat innovations. There were
several factors working against this, though. One was the Macin
tosh's design center: what it was originally designed to be and do.
The original Macintosh was never designed to use a hard disk, so its
file system was tuned to work very well with small disks. It was de
signed to be a self-contained box, so color video was not an issue.

Another important reason why it's tough to write a· specification
for an entire product line when the first one appears is that personal
computer technology moves so fast. It's hard to know what will be
available, interesting, or important in a year, let alone five or ten
years.

Compatibility

A less obvious reason why it was difficult to have a complete
Macintosh specification when the original Macintosh was intro
duced has to do with creativity. In working on the original Macin
tosh, the product's current "specification" consisted of whatever
work had been done the night before. The discipline of writing
things down can interfere with artistic creativity, and the creation
of the Macintosh was definitely undertaken as an artistic effort.
Writing specifications was not a big part of the original Macintosh
design work. Making a computer was. This design technique has ad
vantages and disadvantages, but that doesn't really matter here.
That's just the way it was done. ·

If these programs work as well as they can even without going
through QuickDraw, what's the penalty for going around the system
and special casing? The penalty comes when the system is modified,
either with new hardware or new software. In general, the higher a
level of interface that software uses, the easier it is to retain com
patibility with future versions.

In other words, software that relies on specific qualities of the
hardware (the lowest-level interface), such as the location in RAM
of the video, is the most likely to fail on future machines. Programs
that skip QuickDraw but use global variables like screenBits work
OK sometimes, but at other times they don't, like when using color or
gray scale. Programs that stick to the highest-level interface avail
able (QuickDraw calls only, such as LineTo, FrameRect, FillOval,
and so on) will work fine in almost all cases, even when drawing in
color.

Levels of Interface

QuickDraw and painting programs have been our example in
this section, but the same rules and tradeoffs apply to all parts of
the system. When Apple changed to its Hierarchical File System
many programs had no compatibility problems, mainly those that
stuck to the highest-level interface provided by the File Manager
and the Standard File Package. Some other programs, which by
passed the File Manager but still made intelligent use of global var
iables, worked well most of the time but had subtle compatibility
problems that had to be fixed. Finally, a few programs that relied
on specific facts, like the structure of a disk directory, had to be re
written.

57

58 PART ONE CONCEPTS AND IDEAS

If we sink lazily into broad generalities here, we can say that a
programmer has three choices when thinking about a design strategy
for a particular routine or feature.

1. Play completely by the rules, using only the highest level inter
face to the system software. The advantages to this choice are
that the program stands the best chance of continuing to work
when the computer's hardware or system software is changed
and this interface is usually the best documented. The disadvan
tages are that the high level interface provided is usually pret
ty general and so does not provide the best possible performance.

2. Avoid all but the most minimal software interface and code di
rectly for the hardware. This approach has the mixed blessing
that you get to reinvent system software that will only be used
by you. Since this is by definition a special case, you can make
things work just as you want them to. Of course, you'll spend a lot
of time redoing work that's already done and you virtually guar
antee that your program won't work on any other flavor of this
computer. This approach is rarely the best one to take.

3. Use a "medium-level" interface. This means you bypass the
high-level calls so that you can special case and improve perfor
mance but you're intelligent about it, and you take advantage of
things like patching traps and system globals to maximize your
generality. Again, a good example of this is using screenBits to
find the video RAM and its size, even if you don't use Quick
Draw for drawing.

Most Macintosh applications use a combination of the high
level and medium-level approaches. This gives them the ability to
maximize their performance while still making smart decisions
about compatibility. In general, you should avoid using the hard
ware-level interface in applications unless you can guarantee the ex
act configuration of the hardware, ROM, and system file that's go
ing to be used, which is pretty difficult to do if your program is going
to last more than a few months. In Figure 2-9 you can see examples of
these three levels of interface.

Of course, just because a program bypasses the high level inter
face and violates the compatibility rules doesn't mean it's a bozo ef
fort. A good programmer will try to stay within the guidelines as
much as possible, as long as that doesn't have a terrible effect on the
program's performance. Making a program faster by using the
medium-level interface is a good way to enhance performance
without completely sacrificing compatibility.

Leu el
High
Medium
Low

EHample
theWindow:=FrontWindow
scrDmpEnb ":=$FF
BitClear (pointer($EFFFFE),2)

Compatibility

Comments
should work foreuer
Lomem global; may change someday
Works on 128K & 512K only

Figure 2-9. Three interface levels

·Although the medium-lev
varial:>les and not

· chartges.in . .IJi·ll~
you compatible, A.SaZsys
difficult to 11:\~k,e .. ~~e
same. BvenWally~ ~ppl
rangement of global varia
of a qua:ntu1r'. erth~ceme
tasking opefatirl.g S:M.Stem.. . .
rely on the mediwn-leve terfa~~,.
How~v.er, it .&eems ~ely .~~t.)\ ··· · ··
ty ofnotice before ~S·~'·~~

Usability

For a system's high-level interface to be usable, it has to have
several important qualities. First, it must provide powerful services.
If the hardware is capable of, let's say, drawing in 4000 colors, then
a graphics package that only offers a choice of 16 colors is not power
ful enough for many developers; they will go around it and invent
their own way of doing things.

A second measure of a high-level interface is flexibility or gen
erality for the programmer. If the system forces you to do things in
only one way and that one way doesn't fit the need, you have no
choice but to roll your own. For example, if you want to create a menu
that's shaped like Malaysia instead of a rectangle, the Menu Man
ager allows you to write your own menu definition function to do it.
You still get the benefit of the Menu Manager's services, such as
drawing the menu bar and pulling down the menu. Because of that
flexibility, more programs can implement special kinds of menus and
still use the Menu Manager. Of course, if you want to create a radi-

59

60 PART ONE CONCEPTS AND IDEAS

cally different menu, like a menu that somehow allows multiple
items to be selected at once, you'll probably have to abandon the
Menu Manager.

The third important usability aspect of a high-level program
mer's interface is speed. The system software can provide lots of neat
services with tremendous flexibility, but if they don't work fast,
they won't be used. All of the great features built into QuickDraw,
such as drawing lines, polygons, regions, text, filling with patterns,
recording and playing back pictures, and everything else, would be
generally ignored by developers if they weren't fast. The basic illu
sion of the Macintosh user interface-that windows on your computer
screen are documents stacked on top of each other-would fail if
QuickDraw weren't quick. The speed at which system software
works is just as important as the services it provides. If the software
is too slow, programmers will be forced to invent their own, even if it
blows their compatibility with future systems.

Medium-level Interface

We've talked about the medium-level interface as a way to gain
performance over the high-level interface without all the risks of
going directly to the hardware ("programming to the bare metal," as
some folks say). We've also said that this level is a little danger
ous-it's not as stable as the high level. Let's define the medium
level a little more clearly. In general, the medium-level interface to
the system consists of the features and capabilities of the Macintosh
system that are not available simply by calling the ROM or system
software, but do not require operating directly on the hardware.

Just like several of the Ten Commandments, this statement de
fines things in terms of nots. This is because the range of things that
fit into this category is very broad. Note that this definition impli
citly refers to system calls made specifically by your program; obvi
ously, every system call eventually operates directly on the hard
ware. If you call FrameRect, it eventually bangs the hardware, but
the banging is not done by your application. This makes it OK: for
each new Macintosh, the ROM is revised to make sure that hard
ware-specific things work.

We can use this definition as a basis for two others. First, the
high-level interface consists of the features and capabilities of the
Macintosh system that are available simply by calling the ROM or
system software. It includes all the system calls listed in Inside Mac
intosh and all the features of those calls that are available by pass-

Compatibility

ing parameters to those calls. All calls to the Toolbox, operating sys
tem, and Quickdraw fall into this category.

Second, the hardware-level interface consists of the features
and capabilities of the Macintosh system that require operating di
rectly on the hardware. Items in this category include setting the
speaker volume by storing a value into the Versatile Interface
Adapter (VIA) chip, programming the Small Computer System In
terface (SCSI) controller chip directly, or manipulating the control
registers on the Macintosh II video interface card. All these things
work fine if the right hardware is attached and fail catastrophi
cally if not.

Now that we've semi-formally defined these three levels of in
terface, let's explore the interesting middle one. It's really a catch
all for whatever falls between the high and low levels, but what
specifically does it catch? Let's look at several categories: global
variables, trap patching, definition functions, QuickDraw bottle
necks, and assorted miscellaneous things.

Global Variables

The chunk of memory below the system heap contains global
variables, also known as low-memory globals or just globals. These
globals are used for a wide variety of purposes, mostly as data stor
age for various Toolbox and operating system routines. Although you
might assume these globals would be private and their contents un
derstood only by the routines that maintain them, that's not the
case. In fact,,many of these variables are intentionally designed to
allow programmers to subtly modify or play with the way things
work. A lot of the magic of Macintosh applications would be impos
sible without globals.

There are several hundred of these globals and many of them are
officially documented in Inside Macintosh. Some of them contain in
formation that's available to you; for example, location $A26,
called TheMenu, contains the menu ID of the currently pulled down
menu after a menu selection has been made. Some enterprising desk
accessory that needs to know about menu selections may be able to use
the information provided here. Other globals contain values that
can be manipulated by programmers to make things happen. An ex
ample of this is ScrDmpEnb, a byte at $2F8, which can be set to 0 to
disable Command-Shift-number key combinations normally used to
perform functions such as printing the screen.

Another type of global is a hook. This is the address of a routine
that will be called at certain well-defined times and that's used to

61

62 PART ONE CONCEPTS AND IDEAS

modify the behavior of some system call. Most hooks are normally
set to 0 (nil), meaning that no routine is implemented. When you
want to install a routine into a hook, you just put the routine's ad
dress into the hook.

There are lots of hooks that let you customize standard things. A
hook called DeskHook (located at $A6C) is called whenever the
desktop needs to be repainted or when the user clicks in the desktop
(outside of any window). If you want to take some special action in
response to these situations, you can write a routine and install a
pointer to it in DeskHook.

One other kind of useful global variable is available to Macin
tosh programmers: QuickDraw globals. Because QuickDraw actually
predates the rest of the ROM, it does some things a little bit differ
ently than the rest of the system does. Instead of having all its glo
bals in low memory, some QuickDraw global variables are kept
somewhere else in memory; their exact location is pointed to by a
variable whose address is stored in the 68000's AS register. For more
on exactly how this pointer works, see the QuickDraw chapter of In
side Macintosh, or Chapter 5 of How to Write Macintosh Software.

The most important of the QuickDraw globals are thePort, a
pointer to the current (or active) GrafPort, and screenBits, which
we've already mentioned. ScreenBits is a record containing three
fields:

• BaseAddr holds the address of the start of video RAM.
• RowBytes, an integer, tells the offset in memory from the start of

one row to the start of the next row.
• Bounds, a rectangle, gives the dimensions of the screen in pixels.

Obviously, screenBits is very important if you want to be com
patible with different kinds of screens. By examining its values,
a program can figure out the size and location in RAM of the
screen.

Compatibility

Where have all the globals gone? How safe from change are
these globals? What would happen if their locations ever
changed? Almost all the Macintosh software on earth refers to
at least one low-memory global variable, especially the Tool
box itself. A lot of software that refers to specific low-memory
globals is in assembler and uses symbolic names rather than
hard addresses in the source code. Once the source is assembled,
the hard addresses are all that remain in the object code; the
good old symbolic names are lost. Of course, if any of these glo
bals were moved in future versions of the system, old software
would work only if it were reassembled or recompiled with new
values for the globals that were moved (the whole process is
illustrated in Figure 2-10). Since this would be a pretty painful
process for software developers to go through, it's not likely to
happen until br unless there's a very compelling reason to do it.

You write an assembly language program
that uses an Apple-defined symbol :

MOVE.L GrayRgn,-(A7)

After you assemble, the symbol is gone
and only the hard address remains:

MOVE.L $9EE,-CA7)

If Apple changes the location of GrayRgn,
you 'd have to reassemble your program.

Figure 2-10. Symbolic names

What system changes might cause problems for users of low
memory globals? The structure of low memory reflects the Macin
tosh's original design center of running just one application at a time.
Since then, there have been various approaches toward giving the
Macintosh the capacity to run more than one application at a time or
at least appear to do so. Apple's MultiFinder actually partitions the
Macintosh's memory into pieces, one piece for each application. But
there's only one low-memory global area: when an application
changes a global, the global's address is hard-coded; there's no way
to prevent the application from changing it. How does MultiFinder
deal with the fact that each application thinks it has the right to

63

64 PART ONE CONCEPTS AND IDEAS

molest low memory whenever it likes? Through a simple yet elegant
mechanism, naturally.

The first time an application is switched out by the user, a copy
of the low-memory global space is saved. The new application then
owns low memory; the first time it gets switched out, its image of
low memory is saved and the saved low-memory area of the appli
cation being switched in comes back. Fundamentally, each applica
tion has its own copy of low memory. One obvious problem with this
scheme is that a switched-out application can't directly access its
low-memory globals. The way this is handled is by simply suspend
ing the switched out applications. Only the active application is al
lowed to run; the others are frozen until they're switched back in .

. P,J~~ta,s.king
ihgapp . .· .

s tha~;t<:riow at?Put h?jf;fhe system w • can.
tri~, . . . r~J;lings in.tJ;ie backSf9~»$\
switche .•·..!·••·•!. . ·.· ·••··•·•• . ····.·s

Trap Patching

Every call to the Macintosh ROM and RAM-based system soft
ware is done by means of a 68000 unimplemented instruction trap.
System calls show up in object code as a special kind of 68000 instruc
tion. In the 68000 family, all instructions starting with the hex digit
$A are called unimplemented. On the 68000, instructions consist of
one word (two bytes), so an unimplemented instruction is any four
digit hex number beginning with $A, like $A9F2 or $AC2D.

When the 68000 hits one of these unimplemented instructions
(also called A-traps, since they always start with $A), it jumps to
the routine pointed to by memory location $28. On the Macintosh,
this routine is called the trap dispatcher. The trap dispatcher takes
a look at the other three digits in the instruction and figures out
which routine the program is trying to call (for example, $A93D is
MenuSelect, and $A851 is SetCursor). The trap dispatcher uses the
rest of the instruction to get the address in ROM or RAM of the rou
tine that the program is calling and then goes to that location.

The original Macintosh contained 64K of ROM, which was a
large amount at the time. The idea was to put as much of the Toolbox
and operating system as would fit into that ROM. Since the idea of
shipping 64K of code that's forever cast in silicon can give you night-

Compatibility

mares-it makes bug fixes pretty tough-the trap dispatcher design
includes an easy way to replace a buggy ROM-based routine with a
fixed-up routine in RAM. The table of addresses that the trap dis
patcher uses to translate trap numbers into routine addresses is itself
in RAM. The operating system even provides a ROM call to change
the addresses of system routines (it's called SetTrapAddress). Since
all Macintosh Toolbox and operating system calls are implemented
as traps, Macintosh programmers have a great opportunity to fool
around with the system and customize its behavior, and, if they're
careful and not too radical, they still stand a reasonable chance of
working on future systems.

One of the problems with doing neat things by patching traps is
that somebody else might have another wild idea whose implemen
tation involves patching the same trap as you did. This can lead to
the annoying problem of "last one in": the last program that gets to
apply its patch has control and has to be really careful to avoid
killing anything else. Of course, this is only a problem if the patcher
is something other than an application, such as a desk accessory or a
persistent piece of code like the Talking Moose. Luckily, these con
flicts are pretty rare, but they can happen, so you should watch out
if you're not writing an application and you're patching traps.

Smart. \'Vhen y~µlre qsin,g switc~ng aµd multit~.~king sy~tems
··like.Switcher .. (!)J.;·Mt1ltiEinder, .. 4p:~i~~~~~~t1•~~W~~~ti~~~: 1bllve·
.to be careful ofpatch!ng the satl):e trcf p~?, N(j, Wih~ · s'Witqh:ing

.. mechani!;!m tal<es care pf making·sure.tb,at ev~~1;applicat:j.pn's,
h . ·. . .. nl' .: ·••i .. •·.·; . ·.•: .•

pate es~are usecl.o .. y when tha~1.aBpJ1q~t1!i'1~1:~~::1;a~jM.e1::·:i •. \1i1:1i!:y.:
":'1: '1' ' <,,'' «i,:"{i'''.P 1' I ,nr<,:;,; :'

Trap patching is a fairly fragile process for another reason:
when the system is changed, either with a new system file release or
a new ROM, what a trap does can be subtly different. It might tweak
a global in a slightly different way or it might do things in a differ
ent order-just different enough to break your application. When you
patch traps, you're definitely on the hairy edge of compatibility.
You must retest your software with each new system file and ROM
release (they don't happen all that often, usually every several
months). Of course, testing with new system releases is a good idea
even if you use only the high-level interface to the system. As Joa
quin Andujar says, you never know!

65

66 PART ONE CONCEPTS AND IDEAS

Definition Functions

One of the best ways the Macintosh system software implements
its generality is through the use of definition functions. These let you
create your own kinds of menus, windows, controls, and lists (for the
List Manager), which can be very different from the standard ones.
The beauty of creating your own creatures by writing new definition
functions (or defprocs, as cool Macintosh programmers call them) is
that you still get to use the Toolbox to do a lot of your dirty work. If
you write your own window definition function, you can slip it into
your application fairly easily and still use the tactic of handling
events in windows. You can even give your new definition function to
your friends to include in their applications.

There are several standard definition functions. They define two
windows, two controls, one menu, and one list, and are listed in Figure
2-11. The Toolbox Managers that use definition functions-the Win
dow, Menu, Control, and List Managers-don't play favorites when
using the standard definition functions. They're called in exactly the
same way as custom ones that you create in your own home.

Resource
~ lQ
CDEF 0
CDEF l
LDEF 0
MDEF 0
WDEF 0
WDEF l

In
Description Plus ROM

Buttons, check boxes
Scroll bars
Standard lists
Standard menus
Document & dialog windows
Round-cornered windows

No
No
No
Yes
Yes
No

Figure 2-11. Standard definition functions

Jn
SE ROM

Yes
Yes
No
Yes
Yes
Yes

In
II ROM

Yes
Yes
No
Yes
Yes
Yes

Compatibility

The defprocs are called through a well-defined, Pascal-style in
terface that's documented in Inside Macintosh. When the defproc's
manager wants the defproc to do something, it calls it through this
interface. Each defproc has to handle the various possible calls-or
messages-that may come its way. For example, window definition
functions must be able tc handle seven different messages, including
calls to draw the window's frame, draw its grow box, and draw its
size box; menu defprocs have to be able to draw the menu they de
fine, highlight the chosen item, and calculate the rectangle that
contains the menu; control and list defprocs have to handle other
kinds of messages.

Since the interfaces to the defprocs are respected by the Toolbox
managers, the interfaces have remained very stable throughout the
various incarnations of the ROM. Even though writing your own def
inition functions has proven to be a pretty stable aspect of the medi
um-level interface so far, it may be subject to change in the future.
The facts that it's so well documented and so commonly used by the
Toolbox itself generate lots of momentum for keeping it the same.

QuickDraw Bottlenecks

QuickDraw lets you perform five different kinds of graphic op
erations on shapes: frame (drawing around the perimeter of an ob
ject), paint (filling an object with the pen's pattern and mode), erase
(filling an object with the background pattern), invert (changing all
the dots in an object from white to black and from black to white),
and fill (filling an object with a specified pattern). Each of these op
erations can be done to six different kinds of shapes: rectangle,
rounded-comer rectangle (roundrect, for you jargon seekers), oval, arc,
polygon, and region. A matrix representing these operations is given
in Figure 2-12. QuickDraw also lets you draw text and lines, perform
bit transfers, and record and play back pictures. All these capabili
ties are available through high-level QuickDraw calls correspond
ing to standard trap calls to the Macintosh ROM, which you can
patch with the normal SetTrapAddress mechanism we discussed
earlier.

As well as defining each of these calls as traps, QuickDraw pro
vides an additional level of interface for folks who want to custo
mize their operation. All the trap calls that do shape drawing, text
drawing, text measuring, bit transfer, picture recording, and picture
playback are eventually piped through one of 13 special hooks asso
ciated with each grafport. These special hooks are called Quick
Draw bottleneck routines or just bottlenecks. They're called bottle-

67

68 PART ONE CONCEPTS AND IDEAS

Frame

D
rectangle

CJ
roundrect

0
oval

arc

polygon

(} <3
cg
region

Erase. Invert

Figure 2-12. QuickDraw shapes and operations

~
~

Compatibility

necks because almost all the QuickDraw routines have to pass
through them in order to do their work. You'll find a list of the 13
bottlenecks and a brief description of what they do in Figure 2-13.

textProc
lineProc
rectProc
rRectProc
ovalProc
arcProc
polyProc
rgnProc
bitsProc
commentProc
txMeasProc
getPicProc
putPicProc

Description

Draws all text characters
Draws lines for Line, Line To, etc.
Draws rectangles for all grafverbs
Draws round-corner rectangles
Draws ovals for all grafverbs
Draws arcs and wedges
Draws pre-recorded polygons
Draws regions
Handles requests from CopyBits
Processes picture comments
Called to measure chunks of text
Gets information from recorded pictures
Puts new information into pictures

Figure 2-13. QuickDraw bottlenecks

Every grafport includes a field called grafProcs. This field con
tains a pointer to a record whose type is QDProcs. The QDProcs
record consists of 13 more pointers, which hold the addresses of the
bottleneck routines. If you want to customize the operation of any of
the bottlenecks, you can do so by writing your custom routine and then
putting its address in the appropriate pointer.

The advantage to hooking into the bottlenecks is that you can
customize all the drawing relating to a particular object without
having to patch multiple traps. If you want to implement your own
technique for drawing ovals, for example, you'd have to patch all
five of the oval-drawing traps, but you can hook in more easily by
setting up ovalProc, the field in the QDProcs record that gets control
whenever an oval is drawn. This sounds like an interesting capabi
lity, but what would you ever want to use it for? In practice, most
bottlenecks aren't used very often. Some programs, especially text
editors and word processors, hook into the text drawing and text
measuring routines to customize their drawing of text on the screen.

Another bottleneck some programs use is the one that processes
picture comments. These are a mechanism that allows a picture
recording program to put additional, non-QuickDraw information
into a picture when it's created. The assumption is that some piece of

69

70 PART ONE CONCEPTS AND IDEAS

software that will be playing back the picture (maybe the same pro
gram) will understand the comments and will do something intelli
gent with them. For example, MacDraw uses picture comments to
record additional, non-QuickDraw information about its documents,
such as groups of objects, smoothed polygons, and arrows.

The most common use for the bottlenecks is in Apple's implemen
tation of printing. When you print through the Printing Manager,
one of your first steps (usually) is to call PrOpenDoc, which sets up a
grafport to be used for printing. When this happens, special values
are inserted into the printing port's bottleneck pointers. These custo
mized versions of the bottlenecks then take care of QuickDraw calls
the application makes when printing a document.

Since both QuickDraw and the Macintosh's printing architecture
are based on the bottlenecks, it seems that this interface is pretty
safe from future change, but as with all of the medium-level inter
face stuff, pay close attention to information coming out of Apple, just
in case.

Customizing Standard File

Anyone who has had to use an old-fashioned computer knows
the incredible rage and frustration that results from forgetting the
name of a file that you want to open. You type the name that you re
member and the computer says "File not found." You try a different
spelling and you get "File not found." A third spelling-"File not
found." You throw the computer through the window. You give up on
computers and become a yak herder.

To experienced computer users, one of the most wonderful things
about the Macintosh user interface is the Standard File Package.
This is that wonderful piece of software that magically allows the
user to choose a file without having to bother typing in its name.
Standard File probably does more user-interfacey things with one
trap call than any other part of the system.

The Standard File call that allows the user to open a file by
choosing from an existing list of file names is SFGetFile. Consider all
the processing you get for this one little call: the system puts up a di
alog box that shows a scrolling list of files and folders at the top
level or root directory of the current disk. The programmer gets to
choose which file types will be listed; for example, MacWrite lists
all MacWrite documents and all text files. The user can open a file or
folder by double-clicking on it. If the user opens a folder, the list of
files changes to show the contents of the folder. Controls let the user
look at a different disk, eject a disk, move back up through the

Compatibility

folder hierarchy, or cancel the whole operation. All of this messing
around is handled by SFGetFile.

When the user, at long last, finally opens a file or cancels the di
alog, SFGetFile returns and informs the caller which file was sel
ected. The system also remembers the last folder the user opened and
the next time Standard File is called, that folder is the one dis
played. A lot of value for one little call.

A corresponding call, SFPutFile, is used when the user wants to
save a file and it does even more. Like SFGetFile, it also displays a
scrolling list of file and folder names, but the file names are there for
reference only: Standard File draws them in gray to show that they
can't be selected. The folders, of course, can be opened to indicate
where the file should be saved.

As in SFGetFile, there are controls for moving between disks,
ejecting a disk, traversing the folders, or canceling. There are a
couple of other neat features, too. If the user tries to save a file with
the same name as an existing file, the system will put up an alert
asking the user to confirm the save since it will mean writing over
the old file. Also, if the user inserts a new, blank disk while Stan
dard File is in control, it will present the disk initialization dialog
and allow the user to format the disk. Once again, you get an awful
lot of stuff for just one system call.

As usual, the Macintosh system software designers have gone out
of their way to allow for flexibility in the use of Standard File. The
operations of Standard File can be customized in several ways to al
low for specialized performance. The most common way is through
the use of hooks in the SFPutFile and SFGetFile calls.

There is one hook available in SFPutFile. When you call SFPut
File, the fourth parameter is called dlgHook. This is a pointer to a
function that gets called every time SFPutFile receives an event. The
hook function can use this call to perform any kind of special han
dling when a particular event takes place. In fact, you can even add
new things to the dialog item list resource (DITL) that contains the
items for the SFPutFile dialog and then handle these new items by
using the dlgHook parameter to SFPutFile. This allows you to add
new functionality on top of the standard already provided.

The SFGetFile call contains two hooks. The first one, fileFilter,
gives you more control over which files will be shown in the list of
file names. If you pass a pointer to a function in fileFilter, SFGetFile
will call your function with the name of every file it encounters. You
can then use whatever criteria you like to determine whether the
file should be displayed. Maybe you only want to list files that start
with the letter G, or maybe you want to prevent a certain specific
file from being listed. You can use the fileFilter hook to accomplish
this special discrimination.

71

72 PART ONE CONCEPTS AND IDEAS

The other hook that SFGetFile uses is called dlgHook, which is
similar in function to the dlgHook parameter that we already
talked about in the SFPutFile call. If you want to perform some spe
cial handling of any of the dialog's items or to add your own items
that will require special handling, you can us dlgHook.

In addition to these two calls, which do the work in most appli
cations and provide lots of flexibility, two alternate calls allow you
to do even more bizarre and obnoxious things. They're called SFPGet
File and SFPPutFile. Note the letter P in the names after the letters
SF: it stands for programmer, I think. These special versions of the
Standard File calls provide all the parameters the regular versions
take plus two additional ones. The first, called dlglD, is the resource
ID of the dialog template (DLOG resource) that will be used for the
dialog displayed by the call. This gives you a chance to invent your
own custom dialog with a new ID rather than messing with the stan
dard ID.

The second new parameter in the "P" calls is filterProc, and it's
another hook that increases your flexibility. This parameter is used
in the same way as the filterProc parameter that you pass to Modal
Dialog. In fact, since the SF calls use ModalDialog to handle events,
that's exactly what this parameter is for. This gives you a chance to
perform any special event filtering or changing of events to look like
other events. For example, you might want to define a special Com
mand-key combination as equivalent to a button click.

If you take advantage of any or all of these clever tricks, how
likely are you to be compatible with future releases of the system
software? When Apple converted from the Macintosh's original flat
file system to the current hierarchical system, many changes had to
be made to Standard File, of course. Because of thoughful planning,
testing, and compassion, many applications stayed compatible with
the new, hierarchical, Standard File even if they had made exten
sive use of its customization capabilities.

In general, there's certainly no problem with using the fileFilter
hook in SFGetFile, and it's probably OK if you use the filterProc and
dlgHook routines to modify or enhance the behavior of the standard
items in the dialogs. You might stay compatible if you add your own
items to the dialogs, but be warned: Inside Macintosh says clearly
that "Future compatibility is not guaranteed if you don't use the
standard dialogs." The ability to modify the Standard File dialogs

, is one of the more volatile features of the medium-level interface, so
avoid changing the dialogs if you can.

Compatibility

Customizing the Print Manager Dialogs

The Printing Manager provides two dialogs that are the user's
interface to printing in most applications. The first one, the style di
alog, is usually associated with the Page Setup item in the File
menu. This dialog asks the user about the paper type, whether the
page should be in tall or wide (sideways) format, and other ques
tions that depend on the kind of printer being used. The second dia
log is the job dialog. This one asks the user to choose the range of
pages to be printed, the number of copies, and other stuff that's
printer-type dependent, such as the paper source for the LaserWriter
or the print quality for the ImageWriter.

Programmers want to customize things that are standard, so
many developers were interested in adding things to these print dia
logs. Developers of word processors wanted to add margin informa
tion to the style dialog, for example, and others wanted to disable
certain buttons that weren't appropriate to their applications.

For almost three years after the Macintosh was shipped, the
print dialogs were available only in the standard forms issued by
Apple; they could not be modified by programmers. Actually, a more
correct statement would be that there was no "official" or recom
mended way they could be modified. Enterprising programmers
found various ways to do it, often causing problems for themselves as
the system software was updated. In late 1986, Apple issued Macin
tosh Technical Note #95, which describes a method for messing
around with the print dialogs. It lists several warnings and makes no
promises about future compatibility for any brave souls who use its
techniques. This sounds exactly like another feature of the medium
level interface, so it's listed here.

What's your outlook for compatibility if you customize the print
dialogs? Since Apple has provided a recommended method for doing
this, you should assume they'll make an effort to protect the inter
face described in the technical note, but given the warnings in that
note, it's quite possible changes will come in the future that will in
validate the techniques shown there. Of course, if you do something
that goes against the principles of the technical note, you should
definitely expect to have your application fail miserably on future
printing software.

File System Information

When Apple upgraded to the Hierarchical File System (HFS)
in 1985, one of the most important features of the new system was its

73

74 PART ONE CONCEPTS AND IDEAS

compatibility with existing software. A key design goal of HFS was
for it to cause a minimum number of headaches to software that al
ready worked. This meant that all the calls and features of the orig
inal file system had to be supported in the new world.

Of course, any change as major as adding hierarchy to a file sys
tem is bound to cause some incompatibilities and HFS certainly
caused a few. However, the problems that cropped up were more fre
quently the result of something unavoidable: the fact that the files
on the disk were no longer all at the same level but were now orga
nized into directories or folders. The creators of HFS were very care
ful to minimize the weirdnesses that can result from making this
transition.

There are two important features that are at the heart of HFS's
high degree of compatibility with the original flat file system. The
first is the emulation of all flat system calls under HFS. The second
and more clever feature is the working directory, which we'll talk
about now.

When you make a call such as PBOpen, the file system can only
"see" files that are in one directory. Under the flat file system, all
the files on a disk volume could be seen at once, since they were all at
the same level. To see all the files on a hierarchical disk, the pro
grammer has to look into all the folders. Also, a file in one folder can
have the same name as a file in another folder. Folders have many
of the same characteristics as separate volumes did under the flat
file system.

On the flat file system, a volume reference number is a way of
uniquely identifying a volume. No two volumes that are mounted can
have the same volume reference number (also called the vrefnum,
pronounced "vee-ref-num"), so it's the best way to refer to a volume
when making a system call. HFS implements a similar concept for
folders: the working directory reference number. When a program
wants to work with a directory, it can use the PBOpen WD call to
create a working directory reference number (or WDrefnum, as you
may have guessed) for that directory. This WDrefnum can then be
used to identify that directory uniquely in file system calls. The pro
gram doesn't ever have to worry about reconstructing the chain of
folder names that lead to the folder, since the WDrefnum will iden
tify it. Figure 2-14 shows the process of using a working directory.

Compatibility

err:=PBOpenWD (paramBlock, false); Opens a working directory

You can now use the working directory ID when calling the File Manager.

Figure 2-14. Working directory

The real magic of the WDrefnum is that it's treated exactly like
a vrefnurn when you make a system call. In other words, all the old
(flat file system) calls that expect a vrefnum and a file name will
work fine if they're given a WDrefnum instead of the vrefnum. So, if
you call PBOpen and you put a WDrefnum in the vrefnum field, the
file will be opened from the specified directory.

Many applications only use the file system for opening and sav
ing their documents, and most Macintosh applications ask their users
for the names of documents by using Standard File. The usual se
quence of calls for opening a document looks like this:

75

SFGetFile (where, prompt, fileFilter, numTypes, typeList, dlgHook, reply);
{ this call asks the user which file to open }

errorcode := FSOpen (reply.fName, reply.vRefNum, fileRefNum);
{ reply.fName and reply.vRefNum came from the SFGetFile call }

The call to Standard File returns two important pieces of informa
tion in the reply record: the file name selected and its vrefnum. The
application then calls FSOpen (or sometimes PBOpen) with the cho
sen file name and vrefnum, and the file is opened. On the hierarchi
cal version of SFGetFile, Standard File gets a WDrefnum for the
folder that holds the selected file and then returns that WDrefnum
in the vrefnum field of the reply record. Since the application will

76 PART ONE CONCEPTS AND IDEAS

simply take this value and use it in its FSOpen call, it will open the
file it wants, as illustrated in Figure 2-15. This little invention, a
WDrefnum that can be used as a vrefnum in file system calls, is the
reason many applications were instantly compatible with HFS.

Flat file system (MFS):
User selects a file
File name is returned in SFReply.fName
Vrefnum is returned in SFReply.vRefNum
Application calls FSOpen with this file name and vrefnum

Hierarchical file system (HFS):
User selects a file
File name is returned in SFReply.fName
WDRefNum is returned in SFReply.vRefNum
Application calls FSOpen with this file name and with WDRefNum used

as a vrefnum; the application doesn't have to know if an MFS or
HFS volume was used

Figure 2-15. Standard File process

·~ames~(\n~~Bers~c .· .>~gr~·~h\¢ a~§~~~i··~µ-eqtd
reference'numBerto re er to a directo ; ofcourse., you have t().
5all Ope11~Standai;~lFile callsi~.fQ ou. Howd<,>y()U speq;f;.
ffy whi~h ~ir~5tpi;y }{~· ~il:U~] Th e s~~~l'.~lt~~hfli'l~
you can use. Every ry has a , and you cari spei ··

. the dip~qtoryypu wa. u~~gtif ~t .. /.~~~Sh i~
·fist of drreC:foeyJ:\ames,<• tihgwitll ·. ····.····.···· oi .. · .• am.~~n)r roQ
that leads you down a path to the directory that you want. You
~se a 5glo'(t . t.() .~era~~te ·.each p~ir .C>f .·direct.()~ pa s in t

:.•'pathn.a~ev F.C!p•·exam .•.. youA .. •qa . 'fy a.:0 •:.~~. ..· ... ·. . •....

·('Beethoven· 9 .Symph()2.11~n:disc 4:Sy ·. < .· onie · Nr. 6.'!& ouc~~1;
also use a combinatio'(tpf the volume ~eference num~er and ~··
partial . pathname, w!i'qh specifies eyerything hut .• ~he roo~i
Note that everything but the root means the file name:on a flat ··
volume.~ s~nce the,re ~~¢no ot}le,r dire,~ories>J'tt ~ddi'' n to ·

.name, eyery·~i41eqto~::. di:t~t1to~·1~;~that:·5~n .
to identify it. Every di . . tory on a vohime has a . rent
rectory ID, but IDs can ~e the same acr?ss dffferent v~ltnnes,
you need to use a volume reference n~ber with the.~irecto
ID. These techniques caflbe used when.eyer you need edfy
name on.an fl;J:1Svolu.It1;~, and you can:see tM:tn a
'2~ 1·6. ';<q'''.'l.''o '

Compatibility 77

Fagen
uRefNum =

WDRefNum = 8012

IGY

Full pathname

Partial pathname

Directory ID & filename

Working directory & filename

dirlD = 38

fileName := 'Fagen:Nightfly:IGY'

paramBlock.ioURefNum :=2;
fileName := ':Nightfly:IGY';

paramBlock.ioURefNum :=2;
paramBlock.ioDirl D :=38;
fileName: = ':IGY';

paramBlock.ioURefNum :=8012;
fileName := 'IGY';

Figure 2-16. Specifying a file

These features are elements of the high-level interface of HFS
and programs that used them were rewarded with compatibility
when HFS was released. The file system also provides lots of oppor
tunities for the medium-level interface we've been discussing. Let's
look at some of those now.

Like any other file system, HFS organizes things in a certain
way on its disks. It likes to put its boot blocks (or system startup in
formation, as Inside Macintosh more stuffily calls it) in a certain
place; it has to know where its directories are; and so on. These
things don't matter to most applications but they do to some, partic
ularly things like disk editors and data recovery programs. Of
course, system startup information changed completely when HFS
was implemented, but that was absolutely unavoidable:

78 PART ONE CONCEPTS AND IDEAS

The file system uses several important data structures to keep
track of what's going on. If you use these guys, you may run into some
interesting compatibility issues, which we will now cover. The vol
ume information block, which is kept in block 2 of the disk, contains
some interesting stuff like the size of an allocation block (the mini
mum amount of space than can be allocated at one time), the number
of unused allocation blocks, and the volume name itself.

In the interest of compatibility, the volume information block on
a hierarchical volume contains all the information that a flat vol
ume does and in the same place. For example, the drFreeBlocks
field, which contains the number of unused allocation blocks on a
disk, is located in bytes 34 and 35 of the volume information block on
both flat and hierarchical volumes. Obviously, this was done to
give applications the best possible shot at working with the hierar
chical file system. The volume information block for a hierarchical
volume contains a lot more information than a flat volume. Most of
the additional fields are used to maintain HFS's sophisticated sys
tem of catalogs and disk space allocation. This additional informa
tion is placed right after the original information on a hierarchical
volume.

Another important file system data structure is the volume con
trol block, usually called a VCB. Every mounted volume has a VCB
that's maintained by the file system. It includes information that's
a lot like the stuff in the volume information block. In fact, most of
the things in the VCB are read from the volume information block
and are updated when they change. In addition to this information,
the VCB includes some other goodies, including the volume's drive
number and the reference number of the driver that handles this vol
ume. As with volume information blocks, a VCB for a hierarchical
volume contains all the information that a flat volume does, in the
same places, plus additional information that's valid for hierarchi
cal volumes only.

Compatibility

There's an easy, high-level way to get most of the information
that's found in the VCB. A File Manager call named PBGetVInfo
will tell you most of the information in the VCB, and this call is
very likely to stay supported on future systems. If you need informa
tion that's not returned by the PBGetVlnfo call, you can use an ex
tended version called PBHGetVInfo if you can guarantee that HFS is
available. For example, the reference number of the driver that
reads and writes to this volume can be found by calling this hierar
chical version. If you really need to know one of the few values in
the VCB not available by calling PBHGetVlnfo, you can look di
rectly in the VCB, if you're careful.

All the VCBs are chained together in a queue. To find the start
of the queue, you can call GetVCBQHdr from most high-level lan
guages or you can examine the global called VCBQHdr at location
$356. To get from one VCB to the next one in the chain, you can sim
ply look at the first field in the VCB, called qLink, which is a
pointer to the next entry. When this field is nil, you're looking at
the last VCB.

When Apple went from the flat file system to HFS, the hierar
chical version of the VCB was made a superset of the flat one. All
the fields in the flat version of the VCB that still make sense in a
hierarchical system are found in the same location; the new fields
are tacked onto the end. It seems likely, though it's not guaranteed
(how's that for building your confidence?), that Apple would con
tinue this strategy in the future, only adding new things at the end of
the VCB.

The file system creates another data structure, called a file con
trol block (PCB), for every access path to an open file. The PCB in
cludes information about the file's physical and logical end of file,
and about the directory that contains the file.

Just like with the VCB, Apple was very smart about extending
the structure of the PCB for the hierarchical file system. The ex
tended version is a superset of the flat one, containing all the same
information in the same locations, with the new stuff added at the
end. As with volume control blocks, you can usually stick to a high
level interface to find out things about a file. Some of the informa
tion in a file's PCB can be found by calling PBGetFinfo and more can
be discovered by calling PBGetFCBinfo, which is available only un
der the hierarchical system.

79

80 PART ONE CONCEPTS AND IDEAS

There's some information that you can get only in the file control
block itself; no File Manager call returns it. In this case, you have to
go slogging around in the FCB yourself. Unlike volume control blocks,
the FCBs are not linked together in a queue. Instead, all the FCBs
are jammed together into one big nonrelocatable block in the system
heap. This structure is called the file control block buffer. The first
word of this buffer contains the total length of the entire buffer. On a
Macintosh Plus running System 3.2, there's enough space for 40 files
in the FCB buffer, and each file uses 94 bytes, so the size of the FCB
buffer is 40 times 94 or 3760, plus the two-byte length field at the
start, for a total size of 3762 bytes.

To find the FCB buffer, you can use the global at $34E, called
FCBSPtr (file control block size pointer). It holds the address of the
start of the FCB buffer, which is the FCB buffer's length word, as
discussed in the preceding paragraph. The FCB for the first file be
gins right after the length word. You got all that, system detec
tives?

If you want to look through all the entries in the FCB buffer, you
have to be able to get from one entry to the next. To make this possi
ble, HFS keeps a global at $3F6 (FSFCBLen) that tells the length of
a file control block. To get from one entry to the next, you should add
this value to your pointer. If you hard-code the FCB size to 94,
which is the right value for now, you stand a good chance of getting
clobbered in the future, especially since Inside Macintosh warns,
"The size and structure of a file control block may be different in fu
ture versions of Macintosh system software." Hmmm. Seems like In
side Macintosh is saying, "Read my lips." Peeking directly into the
FCBs is a dangerous enough way to live; you should take all the pre
cautions you can, like using FSFCBLen to find out the size of an FCB.

The stru~ture of a file control block was extended for HFS in
much the same way as volume control blocks. All the flat file system
information is maintained in the same locations and the new stuff for
HFS is glued onto the end. It seems reasonable to expect that in the
future Apple will add any new fields at the end of the FCB and
leave the current ones intact if at all possible.

In addition to the volume control blocks and file control blocks,
the File Manager defines a few other interesting data structures that

Compatibility

we won't go into here, just to maintain a little sanity. These include
the drive queue, which has information on all the disk drives at
tached to the system, and a bunch of data structures that are used to
maintain a volume's hierarchical file catalog and disk space alloca
tion.

Medium-level Summary

This list of things that belong to the medium-level interface
may not be complete but it should give you a flavor of the kinds of
things that are possible in this realm of Macintosh programming,
and it also may have given you some ideas for great features that
you can add to your programs.

When you use these features, remember that many of them are
only semi-documented or even disclaimed by Apple. You should al
ways be careful to use any extra hints that are around. For example,
when you see a global like FSFCBLen that gives you the length of a
file control block, you should use it and you shouldn't be surprised if
the value changes in the future. As long as you're using the global's
value and not hard-coding for the current correct value, you have a
much better chance of surviving a change.

Another fact that's important to remember is that Apple is much
more likely to stick to a feature that's documented in Inside Macin
tosh than one that's been discovered and never mentioned. Macin
tosh Technical Notes are another good source of official stuff from
Apple. Although they don't seem to carry the cast-in-stone gravity
of Inside Macintosh, they present amendments and updates to the
documentation as well as techniques of the medium-level interface
that are likely to be supported in the future. They even have jokes in
them now and then.

When changes are made to the system software, Apple knows
it's a real good idea to make sure that there's a high degree of soft
ware compatibility. When there are changes that cause applica
tions to break, they're usually made to provide some major extension
or necessary enhancement to the system. It's very rare that you'll
find something changed just for a minor performance enhancement or
for no apparent reason. Compatibility is always high on the list of
design goals for any new Macintosh system software that Apple pro
duces.

The last thing to remember about the medium-level interface is
this: even if you follow the rules and don't do anything overtly anti
compatibility, you may find that something will change on you one
day and you'll have to modify your code. To make the best of this

81

82 PART ONE CONCEPTS AND IDEAS

possibility, always be sure to test your applications with each new
release of _system software and especially with new machines. Al
though Apple does some testing of third-party applications, there's
no way they can do it all, so it's up to you. Be careful with the medi
um-level interface, be creative, and have fun.

Things to Remember

Apple is interested in helping outside developers, so lots of
things in the Macintosh are designed to make their lives easier.
Compatibility with existing software, for example, is a high prior
ity when new computers are designed.

You should use the high-level interface whenever possible and
avoid the low-level. A lot of Macintosh features are accessible
through a medium-level interface, but you should be cautious about
using them.

Intermission

Did you ever wonder what really goes on in your Mac
intosh? Well, this is your chance to find out. Come
closer ... closer still ... right up inside your Macintosh!
We're about to embark on an amazing journey.

83

84 Intermission

A mouse is clicked! A button highlited! Power surges!
What REALLY happens when a mouseDown event occurs inside a Macintosh?
Find out in ...

Click!
(a second story)

by Bill Dawson]

[ff] on has been
awakened by the pizza
he had for dinner.

@ roping his way
down the hall in search
of the bathroom he
wanders into his office.

jJ Macintosh is on the
desk.

Intermission 85

86 Intermission

[ff]on has a lot on his
mind at 3:00am ... , but
pushes it aside and logs
onto his favorite bulletin
board.

[ff]on uses custom
software designed
especially for him!

f}{}e clicks the
mouse.

Arli'IJDUsure\halyouwanllo
launtllth e mlnles anddes1roy
1lu ll lzat1on as weknow H ?

The click goes
down the wire ...

Are you sure thGt you want to
ltaunch the mlssles 11nd destroy
clulllz11tlon t11s we know 11?

~ [3J

He has to post a
mouseDown event
and tell the
Application
about the
click.

Intermission

Trrm@ Df@flao@&JO

!ffl@a[f&J©® fkD&JUiJ&J@®fl,

always on the
lookout for things

like mouse
movement and

clicks checks the
VIA and discovers a

click!

87

88 Intermission

The Newly
boxed

auto-key event

mouseDown event
To: Event Queue, PostEvent,

clo Event Manager,
Macintosh ROM

RUSH

mouseDown
event goes
into the event

queue.

GetNextEvent
takes the

mouseDown event
from the event

queue.

Intermission 89

90 Intermission

The Application
gets the event.

The
Control Manager consults
his map of the
screen and sees
that the click
occured in the
OK button.

He calls the Control
Manager to find out

if a control was
hit.

The
Application
gets a letter

back from the Control
Manager telling him the
OK button was hit! So

he gets ready to send back
another message addressed
to "TrackControl c/o Control
Manager, Macintosh ROM".

The Control Manager reads the
note from the Application and
gets ready to tell QuickDraw to
light up the OK button.

Intermission

@@U&fk@[(&JW

will call the
screen and ask
the bits to invert

themselves.

<)

91

92 Intermission

~·: ~ : :<· :; .. , .. , ., .,. . ..,

::·?? :~ ... :: :~)~: r- :·:<· :<· / .
.·.·,.·,.·.··.·.·.·,·.· . ·~ ·. ·~ ., .. , .. , . · .. : .. : :· :: : .: . ·. :· . :~ ·: :: ..) :-:: :::. >: ::. -~::

QuickDraw inverts the bits.

Intermission 93

The button is highlited.

94 Intermission

[The End]

p A R T T w
Technical Adventures

CHAPTER 3 Color

CHAPTER 4 Event Manager

CHAPTER 5 Finder

CHAPTER 6 Printing Manager

CHAPTER 7 Quickdraw

CHAPTER 8 Research Manager

CHAPTER 9 Window Manager

0

96 PART TWO TECHNICAL ADVENTURES

Almost every Macintosh application follows Apple's
user interface guidelines, which means there's a lot of
friendly, easy-to-use software out in the world. If you
use a lot of Macintosh software, though, you'll find that
some companies and programmers have really done a
great job of adding little tricks and features that make
their programs fast, easy, and interesting to use.

In this part of the book, we'll look at some of the
most interesting and clever techniques that can make
programs slicker and easier to use. Most of these tech
niques are not officially part of Apple's user interface
guidelines and they're not in Inside Macintosh,so only
the smartest developers have put them into their soft
ware. In this part, we'll discuss some of the most inter
esting and convenient of these tricks. Since compatibil
ity with future members of the Macintosh product fa
mily is very important, we'll address compatibility is
sues for these features. For some of the features, we'll
look at a little bit of code that will help you implement
the tricks, and for others, we'll just talk about how you
might go about it, leaving the actual implementation as
an exercise for the reader (as the old saying goes).

c H A p T E R 3

Color

The transformation of QuickDraw into color. The old
and new models of color drawing. A vast array of new
data structures that convey color information. How
pixel maps will change the world. Colorizing pictures in
a way Ted Turner never thought of.

97

98 PART TWO TECHNICAL ADVENTURES

The Macintosh II has color! Apple spent a lot of the first three
years of the Macintosh's existence explaining why there was no color
monitor for the system and denying rumors of the imminent release of
one. Finally, in March 1987, the Macintosh II was announced and full
color support was built-in.

Most of the changes in the Macintosh II ROM were done to sup
port color video. These new capabilities have added a bunch of
pages to Inside Macintosh, Volume V, and this section isn't designed
to cover all of them. Instead, we'll get an overview of the color capa
bilites and how they work, discuss what you have to do to get color
in your programs, and talk about some of the color data structures.
The first section will concentrate on how QuickDraw implements the
guts of the color features that you'll have to deal with when you're
programming. In addition to QuickDraw, many of the Toolbox man
agers have been enhanced to support color. There's a lot of informa
tion about how they work in Appendix A.

About Color QuickDraw

There's so much new stuff in QuickDraw to support color that it's
been renamed Color QuickDraw. Color QuickDraw lets you do every
thing you could do with the original classic QuickDraw, plus the
following new fun features.

• You can draw anything in 16 million different colors, give or take
a few hundred thousand, and you can display up to 256 different
colors at a time using standard Apple hardware.

• The user can choose how much color, if any, is displayed. If the
monitor isn't color, gray scales will be shown automatically.

• There are new transfer modes to do fancy new things with colors,
like blending them together.

There are actually several pieces of hardware and software
that work together closely to give you what you see on the screen.
When you program, you usually call one of the Toolbox managers or
QuickDraw, asking for the colors you want. QuickDraw then calls on
a new piece of the Operating System called the Color Manager,
which knows how to translate what QuickDraw wants into what
the monitor can actually provide.

The Color Manager then communicates with the monitor by mak
ing calls to its driver, which is usually supplied on a ROM on the
video card that runs it. On the Macintosh II, there's no built-in
video, so every monitor is connected to a card that's in one of the six

Color

NuBus slots inside the box. The driver actually turns on the little
bitty lights that form the images you see on the monitor.

This new version of QuickDraw is present in the Macintosh II
ROM only, for two reasons. First, this is the only Macintosh that has
an Apple-supplied color monitor. Second, Color QuickDraw uses
68020 code heavily and the Macintosh II is the only Macintosh that
comes with a 68020 built-in.

Color Basics

In the original version of QuickDraw, every bit in the RAM
that's dedicated to the screen controls one pixel. Since a single bit
can have two values, 0 and 1, every pixel can show two things, white
or black. On Macintoshes with a 512 by 342 pixel black and white
screen, there are exactly 175,104 pixels (multiply it yourself if you
don't believe me); at eight bits per byte, that means that there's ex
actly 21,888 bytes of RAM devoted to the video screen.

In Color QuickDraw, every pixel must be able to show more than
just black and white. This means that one bit is no longer enough to
hold the contents of a pixel. The number of different colors that a
single pixel can display is determined by the number of bits in memo
ry dedicated to that pixel. For example, with two bits per pixel, we
can have four different bit patterns, representing four different col
ors. Eight bits per pixel produces 256 different colors, the maximum
that Apple's color monitor will allow.

On the Macintosh II, the actual colors that will be displayed on
the screen are determined by the monitor's driver and the hardware
itself. As a programmer, you don't have to know anything about the
video capabilities to work well with different kinds of screens.
When you draw in color, you specify each color by giving an intensity
value for the red, green, and blue components of the color. The three
numbers that you get when you specify a color like this are called
the RGB value of the color, named after Reinhardt G. Barnsfarfle,
the inventor of the puce scroll bar.

The red, green, and blue components are each 16 bits, which
means that you get to use three different numbers ranging from 0 to
65535. For each value, 0 indicates that none of that color will be used
and the maximum value of 65535 means that the full intensity of
that color will be added to produce the final result. This means that
you can specify an intense green with an RGB value of 65535 for the
green component and 0 for the blue and red parts. An RGB with a red
value of 65535 and blue and green settings of 0 will create a rich, full
bodied red, with a fine flavor and a good bouquet.

99

100 PART TWO TECHNICAL ADVENTURES

True colors. If you're a fan of combinations and permutations,
you may have figured out that if the red, green, and blue com
ponents of an RGB can each range from 0 to 65535, there are
65536 times 65536 times 65536, or 281,474,976,710,656 (that's 281
trillion, sports fans) different combinations of RGB values.
Does this mean that QuickDraw can display all those differ
ent colors? Yes and no. Yes, you can specify any of the 281 tril
lion colors when you draw. No, the current combination of
QuickDraw and the available color hardware can't handle it.
For example, colors on the Apple color monitor are mapped ac
cording to the upper eight bits only of each RGB component;
this means that colors are limited to a much more narrow selec
tion of just 16,777,216 different values, which is enough to give
a different color to every person in Czechoslovakia.

Before pixels are displayed on the screen, the colors are deter
mined on the basis of the RGB values that you ask for. Since you can
specify 281 trillion different RGB values and only 256 different col
ors can be displayed at once on most color monitors, there's obviously
some mapping taking place. It works like this: when you draw, you
ask QuickDraw to use your favorite RGB values; QuickDraw asks
the Color Manager for the available color that comes closest to the
one you asked for and then draws in that color.

How are the available colors determined? Most of the monitors
that work with a Macintosh II have the ability to match RGB val
ues to colors by using a color lookup device, which lets you change
which colors are available for use on a monitor at any given time. On
the video card that controls Apple's color monitor, there's a color
lookup device that allows any 256 of the 16 million colors to be used
at once. Usually, this color choosing is done by the system, but if you
want to get tricky, you can change it by using the Palette Manager, a
new part of the Toolbox that controls color usage.

When you write your application, you have no way of knowing
the specific color environment that your user will have. Not only are
there zillions of different monitors available, but the user can
change the number of bits of color information per pixel by using the
Control Panel. If you had to worry about all of this when you were
programming, you'd go nuts.

Luckily, the system handles all this for you. When your appli
cation draws, QuickDraw and the Color Manager will find the best
match for the colors you want based on the current monitor, video
card, and user settings. If you try to draw in 256 different colors
while the user has the monitor set for four-bit color, QuickDraw and

Color

the Color Manager will map each of your 256 requested colors into
the nearest match from a color lookup table that has 16 colors (the
maximum number you can specify with four-bit values). The same
thing will happen if the user has set the monitor for gray scales. The
worst case is one-bit mode, in which all colors except white will be
displayed as black.

Color Drawing Models

The original version of QuickDraw actually supported color out
put; it must have been pretty interesting trying to test it. In this ver
sion, you could specify that you wanted to draw in any of eight dif
ferent colors, including black and white. The idea was that for black
and white (one bit per pixel) devices, all the non-white colors would
just become black, but for devices that could use color information,
eight different ones could be specified. Color QuickDraw in the Mac
intosh II supports this technique, which is doomed to be known for
ever as the old model of color drawing.

To draw using the old model, a programmer can choose from the
eight colors by using the ForeColor and BackColor procedures. These
procedures let you decide which colors you want selected for fore
ground and background drawing operations. They're very simple to
use: for example, to draw a blue rectangle, just call ForeColor
(blueColor), then PaintRect.

A few clever applications actually started using this technique
to draw as early as 1984, anticipating the day when QuickDraw
would really be able to draw in color. If they did it right, these pro
grammers had the thrill of seeing things work in color on the Macin
tosh II.

For the nifty color hardware of the Macintosh 11, eight colors
just aren't enough, of course. As we just discussed, Color QuickDraw
lets you specify an amazing number of different colors with RGB val
ues. These colors are matched with available ones from a lookup
table to decide what to show on the screen, and the number of avail
able colors varies depending on the color hardware and the user's
settings.

This technique of choosing colors by using RGB values is called
the new model. For programs that want to take full advantage of
Color QuickDraw, the new model is obviously the only way to go.
When you're using the new model, you choose colors by calling
RGBForeColor and RGBBackColor. These work like their relatives
from the old country, ForeColor and BackColor, in letting you set up

101

102 PART TWO TECHNICAL ADVENTURES

foreground and background colors, but they take full RGB values as
parameters.

When you write your application, you have a choice to make
about compatibility. If you use routines that are in Color QuickDraw
only, your application will crash if it's run on anything but a Macin
tosh II. So, you have to decide whether you want to take full advan
tage of Color QuickDraw, which will limit your application to just
Macintosh II, or whether you should stick with the eight old-model
colors and remain compatible with the black and white Macin
toshes, since all versions of QuickDraw understand ForeColor and
BackColor. You can also choose to write code that handles each case
separately. The choice depends on how much you want your program
to do and who you expect to use it. The right choice is the one that
fits your situation.

Color Structures

QuickDraw uses a whole bunch of new data structures to imple
ment its new color features. Most of them have counterparts that
serve similar functions in the original version of QuickDraw. In this
section, we'll show each data structure, discuss its fields, gossip
about it, and find out what the heck it does.

The basic color data structure in the Macintosh II is the RGB
record. This is simply a record composed of red, green, and blue val
ues. It looks like this:

type RGBColor = Record

end;

red: Integer;
green: Integer;
blue: Integer;

Each field in the RGB record simply defines the magnitude of that
color. As we said earlier, setting all three integers to 0 produces
black, while the maximum value for each will create white.

The color stuff on the Macintosh II uses lookup tables extensively
to translate various kinds of index values into RGB values. For exam
ple, the values for each pixel you draw are mapped into their RGB
values through a lookup table associated with the image. To create
these lookup tables, QuickDraw defines a color specification record,
which combines an RGB with an integer that's used as an index or

Color

other reference value. The color specification record is declared this
way:

type ColorSpec Record

end;

value: Integer;
rgb: RGBColor;

A color table is built by gluing together a bunch of color specification
records, plus a couple of new fields:

type ColorTable = Record
ctSeed: Longint; {usually not used}
transindex: Integer; {usually not used}
ctSize: Integer; {entries minus l}
ctTable: array [0 .. 0] of ColorSpec;

end;

CTSeed provides a color table with a unique identifier. Usually,
color tables you use will be attached to some other data structure,
such as a window or pixel map, and the ctSeed field will not be used.
The transindex field can be used with some Color Manager calls to
set a "transparent" pixel in each color table.

The heart of the color table is in the last two fields. CTSize tells
how many colors are mapped by this table, minus one (the Color
Manager starts counting at zero), and ctTable contains the actual
color specifications, each one including an index value and an RGB.

These color tables are used all over the place in the Macintosh
IL Virtually every manager in the Toolbox uses a color table to map
parts of its structures to RGB colors; for example, the Control Man
ager has one that tells how to colorize each part of a control. You can
find out more about how color tables are used by the Toolbox in Ap
pendix A.

Pixel Maps and Pixel Patterns

The next new concept we'll talk about is the pixel image. In the
original QuickDraw, a bit image is defined as a bunch of bits that
represent an image enclosed by a rectangle. Color QuickDraw extends
this definition to create the concept of a pixel image, which is a col
lection of bits that represent an image that may have more than one
bit of information per pixel.

103

104

type PixMap

PART TWO TECHNICAL ADVENTURES

Color QuickDraw defines a data structure called a pixel map,
which describes a pixel image and associated information in the co
ordinate plane. The original QuickDraw bit map, a direct ancestor of
the pixel map, was a pretty simple structure, containing just three
fields. The pixel map tells a lot more: its first three fields are simi
lar to the ones in a bit map, but there are 12 additional fields filled
with information.

Here's the structure of a pixel map:

Record
baseAddr:Ptr; {pointer to pixel image}
rowBytes:Integer; {offset between rows}
bounds:Rect; {boundary rectangle}
pmVersion:Integer; {version ID, currently 0}
packType:Intger; {packing format, currently 0}
packSize:Longint; {size of packed image}
hRes:Fixed; {horizontal pixels per inch}
vRes:Fixed; {vertical pixels per inch}
pixelType:Integer; {currently 0}
pixelSize:Integer; {number of bits per pixel}
cmpCount:Integer; {currently 1}
cmpSize:Integer; {bits used per RGB}
planeBytes:Longint; {currently 0}
pmTable:CTabHandle; {handle to color table}
pmReserved:Longint; {currently 0}

end;

There's a lot of new stuff in there. BaseAddr is a pointer to the start
of the pixel image in memory, just as in a bit map. RowBytes defines
the number of bytes in RAM needed to get from one row to the same
pixel position in the next row.

The first three fields of a pixel map look just like a bit map and
you can substitute one for the other in various places, so Color Quick
Draw uses a flag to indicate that you've got a pixel map: it sets the
high bit in the rowBytes field. Since this field is an integer, this is
the same as adding 32768 (or $8000 hex) to the value of rowBytes.

The bounds field, just like in a bit map, encloses the pixel map
and also defines its coordinate systeIJl. The pmVersion field tells
which version of QuickDraw created this pixel map; for the first
version of Color QuickDraw, this is 0. Note that "currently" in the
pixel map declaration above means that this is how it works in the
first version of Color QuickDraw.

PackType and packSize are used if the pixel image is packed.
Currently, pixel maps are unpacked, so both of these fields are set to

Color

0. The hRes and vRes tell the horizontal and vertical number of pix
els per inch. Usually, these values are both 72. PixelType is used to
indicate how the pixel image is arranged in memory. Color Quick
Draw always uses adjacent bits in memory to form each pixel; this is
called the chunky format and is indicated by a zero in pixelType.
Other formats may be supported in the future that separate the
pixel image into planes with each plane containing one bit of
information per pixel, an arrangment called planar.

The pixelSize field is used to tell how many bits per pixel are in
the pixel image. This is called the depth of the image. CmpCount
tells how many RGB values, or components, are used to make up each
pixel. Although QuickDraw currently provides one RGB per pixel,
future versions could allow more to provide greater resolution and
cmpCount will show how many are being used.

CmpSize indicates how many bits of RGB information are used to
draw this pixel map. Since one bit of depth is needed for each bit of
RGB information, this field is the same as pixelSize. PlaneBytes
isn't used now; if QuickDraw ever supports planar pixel images, it
promises to give the offset from one plane to the next.

PmTable contains a handle to a table of colors that's used by this
pixel map. It matches pixel values to RGB colors. The last field,
pmReserved, isn't used by the current version of Color QuickDraw
and it should always be set to 0.

The Macintosh II version of CopyBits can be used to manipulate
pixel maps as well as bit maps. This is where that handy flag in the
high bit of rowBytes comes in. When you call CopyBits, it can tell
whether it's dealing with a bit map or a pixel map by checking this
bit. If it's a pixel map, it learns the depth from the pixelSize field;
bit maps always have a depth of 1, of course.

When you use CopyBits, it will examine the depth of the source
and destination bit maps (or pixel maps). If they're not the same
depth, it will automatically adjust the source's depth to the desti
nation's. So, you can copy from pixel maps to bit maps and the other
way around. Of course, if you go from a multibit pixel map to a bit
map, you'll lose all the color information since there's nowhere to
keep it. CopyBits will make sure the image remains intact, in black
and white anyway.

The next new idea is a new kind of pattern. In the original ver
sion of QuickDraw, a pattern is an 8 by 8 bit image that defines a de
sign or texture that's repeated to fill an area on the screen. Color
QuickDraw defines a pixel pattern as a pixel image of virtually any
size, and containing color information, which can be repeated to fill
screen areas. Pixel patterns can also simulate old-version patterns, if
necessary.

105

106 PART TWO TECHNICAL ADVENTURES

type PixPat

This is the definition for a pixel pattern:

Record
patType: Integer; {indicates b & w or color}
patMap: PixMapHandle; {handle to pixel map}
patData: Handle; {handle to pixel image}
patXData: Handle; {used internally}
patXValid: Integer; {valid pattern flag}
patXMap: Handle; {used internally}
patlData: Pattern; {old-version pattern}

end;

The patType field tells what kind of pattern this is. There are three
possibilities: 0 specifies an old-version, black and white pattern; 1
indicates a full color pattern, which can have a wide mix of colors;
and 2 is for an RGB pattern, which is a pattern based on a single RGB
value.

Creating RGB patterns is especially useful for simulating more
colors than you actually have. By using a technique which alter
nates colors in adjacent pixels, your screen can appear to have a new
color. This is called dithering. For example, by dithering blue and
green, you can simulate a single blue-green color. Of course, this only
works when you're drawing more than one line, which is why it can
be used with patterns. If you draw just one line or just one pixel, it
will appear in just one color.

PatMap contains a handle to a pixel map. All the fields in this
pixel map are used to define the characteristics of type 1 (full color)
patterns, except for baseAddr. Instead of using baseAddr to point to
the pixel image, patData is a handle to the pixels, for easy access.
The other fields of the pixel map in patMap give other information
about the pattern's pixel image, such as its size, depth, color table,
and soon.

The pattern can be used with screens of any depth, so it must be
expanded or contracted when a screen with a new depth is encoun
tered. To speed up drawing with the pattern, QuickDraw will keep
a copy of the pattern in the current screen's depth in the patXData
field. Whenever the current screen's depth is changed, patXData
has to be rebuilt. PatXValid indicates whether the current
patXData has to be rebuilt; it's -1 if it does and 0 if it already has
the right pattern.

PatXMap is used internally by QuickDraw. The last field,
patlData, contains a copy of the pixel pattern represented as an old-

Color

version bit pattern. This is used by QuickDraw for fast pattern draw
ing when bit patterns are needed.

You can use the patXValid field if you want to change the
pattern or its colors. After you make the change, just set patXValid
to -1. This will make QuickDraw rebuild the patXData before it
draws with the pattern, just as if the screen depth had changed.

Color Grafports

All drawing in QuickDraw is done in grafports, which define
the rules and environment for the drawing. Color QuickDraw adds a
new kind, a color grafport, that lets you take full advantage of the
Macintosh II's color capabilities. If you're using the old model of
color drawing (eight colors), you can use an old-version grafport. To
draw using RGB colors, you'll need a color grafport.

When you create a window, a grafport is contained in the win
dow record, and all drawing in the window is done with this graf
port. The Window Manager in the Macintosh II lets you open a new
window with either an old-version grafport or a color grafport (see
Appendix A). This choice determines which color model you can use,
since old-version grafports can only support the eight old-model
colors.

Here's the structure of a color grafport:

type CGrafPort = Record
device: Integer;
portPixMap: PixMapHandle;
portVersion: Integer; {QuickDraw version}
grafVars: Handle; {more fields}
chExtra: Integer; {fractional spacing}
pnLocHFrac: Integer; {for fractional text}
portRect: Rect; {usable rectangle}
visRgn: RgnHandle; {same as in GrafPort}
clipRgn: RgnHandle; {same as in GrafPort}
bkPixPat:PixPatHandle; {background pixPat}
RGBFgColor: RGBColor; {foreground color}
RGBBkColor: RGBColor; {background color}
pnLoc: Point; {old stuff follows}
pnSize: Point;
pnMode: Integer;
pnPixPat: PixPatHandle; {pen pattern}
fillPixPat: PixPatHandle; {fill pattern}
{remaining fields same as GrafPort}

end;

107

108 PART TWO TECHNICAL ADVENTURES

Lots of the fields in a color grafport are the same as they were in
the original so we'll just talk about what's new. It's interesting to
note that a color grafport is exactly the same size as an old-version
grafport. How can this be, if it has to hold all this new color infor
mation? The answer is that several fields that were found directly
in the grafport are now stashed in relocatable objects and handles to
them are stored in the color grafport.

Specifically, the portBits, bkPat, fillPat, and pnPat fields have
been replaced by handles: portPixMap, bkPixPat, fillPixPat, and
pnPixPat. Handles take up four bytes each, so these four handles use ·
up a total of 16 bytes. Bit maps consume 14 bytes, and patterns take
up eight, so these four fields in old-version grafports use 38 bytes.
That leaves 38 minus 16, or 22 bytes for new stuff and all of them are
used.

The portPixMap field replaces the portBits field in an old
version grafport. It's a handle to the pixel map associated with this
grafport. PortVersion is used to tell Color QuickDraw if this graf
port is color or not. If it's a color grafport, this field should have its
high two bits set, which is decimal 49152 and hex $COOO. For old
version ports, this is the rowBytes field of the portBits record,
which should always have its high two bits clear. This is how
Color QuickDraw determines whether to treat the grafport as a new
one or not, so it's very important that it be set correctly.

To cram more stuff into the color grafport, the grafVars field was
invented. It contains a handle to seven more fields that didn't fit
into the main part of the grafport. We'll look at these additional
things right after we're done examining the grafport itself.

The next two fields, chExtra and pnLocHFrac, are used when
drawing characters with fractional pixel widths. ChExtra is used to
specify the amount to add to the width of each non-space character,
which allows you to simulate proportionally spaced text on the
screen. PnLocHFrac contains the fractional component of the horizon
tal pen position for drawing text.

The next three fields are the same as in an old-version grafport,
so we won't talk about them here. BkPixPat is a handle to a pixel
pattern that's used for background filling operations in the grafport,
such as EraseRect. RGBForeColor and RGBBackColor contain the
RGB values for the foreground and background colors in the grafport.
They're the modern version of the fgColor and bkColor fields in an
old-version port.

After the RGB colors, there are three more fields that do the
same thing as in a non-color grafport. The remaining two new fields
are pnPixPat, which holds a handle to the pattern used for drawing
in the grafport, and fillPixPat, which holds the pattern used when
you make one of the new calls that fill an object with a pattern, such

Color

as FillCOval or FillCPoly. In addition, when you make one of the
old filling calls that work with bit image patterns, like FillRgn or
FillOval, the pattern is stored in the pixPat record at the end of the
fillPixPat handle .

. Now let's talk about the additional things in the grafVars
field:

type GrafVars Record
rgbOpColor: RGBColor; {for transfer modes}
rgbHiliteColor: RGBColor; {for hilite mode}
pmFgColor: Handle; {Palette Mgr foreground}
pmFgindex: Integer; {foreground index}
pmBkColor: Handle; {Palette Mgr background}
pmBkindex: Integer; {background index}
pmFlags: Integer; {Palette Mgr flags}

end;

The rgbOpColor field is used by Color QuickDraw's new arith
metic transfer modes, which allow you to combine colors in very in
teresting ways such as adding and blending. RGBHiliteColor is used
to highlight an object by drawing it on a colored background so that
it looks as if it were colored with a highlighting marker. This
method of highlighting can be set when you use the invert calls
(InvertRect, InvertArc, and so on). To use it, you have to clear the
high bit of the low memory global HiLiteMode; there's no easy-to
use trap call that will clear this bit for you.

The last five fields of the grafVars record are used by the Pal
ette Manager, a Macintosh II invention. On most Macintosh II color
monitors, the current set of colors is determined by a color table and
at any one time a comparatively small number of colors are avail
able from a huge possible number (on Apple's monitor, it's 256 out of
16 million). With MultiFinder, lots of different programs can be
sharing the screen.

If each program went around blasting the color table whenever it
wanted a new color, there could be chaos. The Palette Manager was
created to provide a central clearinghouse for all applications and
desk accessories that want to use a specific color. The Palette Man
ager provides a higher level of access to colors. You can specify the
colors you want in your application and the Palette Manager will try
to provide them with a minimum of disruption to the other applica
tions using the screen. You even get to attach a priority to your color
request, and you can be as courteous or as demanding as you like when
asking for your colors.

109

110

type CCrsr

PART TWO TECHNICAL ADVENTURES

Color Cursors and Pictures

The original QuickDraw definition of a cursor allowed for a 16
by 16 bit image, in black and white. In Color QuickDraw, a cursor is
still the same size, but a pixel image is used to define it, so it can
have color information. This is the declaration for a color cursor:

Record
crsrType: Integer; {color or b&w cursor}
crsrMap: PixMapHandle; {handle to pixel map}
crsrData: Handle; {handle to pixel image}
crsrXData: Handle; {used internally}
crsrXValid: Integer; {valid cursor flag}
crsrXHandle: Handle; {future}
crsrlData: Bits16; {old-version cursor}
crsrMask: Bits16; {mask for drawing cursor}
crsrHotSpot: Point; {point aligned with mouse}
crsrXTable: Longint; {used internally}
crsrID: Longint; {used internally}

end;

The crsrType field tells what kind of cursor it is: 32768 is used for
a bit image cursor, -32767 indicates a color cursor. CrsrMap contains a
handle to a pixel map and the cursor uses all the pixel map's field
except baseAddr, just as pixel patterns do. The main use for this is to
define the cursor's color table.

The next few fields are also used like their counterparts in a
pixel pattern. CrsrData is a handle to the pixel image for the cursor;
crsrXData contains the cursor image refitted to match the current's
screen's depth; crsrXValid tells if the crsrXData field is correct;
crsrlData contains an bit map cursor that can be used with old
version grafports.

CrsrMask does the same thing as the mask field in an old
version cursor: it defines what happens under the cursor as it moves
over the screen. CrsrHotSpot anchors the cursor to the mouse point,
just as with old-version cursors.

QuickDraw's definition of a picture has been extended so that
color stuff can be recorded. In the original version of QuickDraw,
each operation was represented by an operation code or opcode that's
one byte long. To allow for a greater number of opcodes, this field has
been expanded to two bytes in Color QuickDraw.

To distinguish between these two versions of pictures, there's a
handy version opcode that should be the first thing in all pictures.

Color

The version opcode is hex $11, so all old-version pictures start with
$11 01, which indicates version 1. New-version pictures start with a
new opcode that flags them to QuickDraw. QuickDraw is very flexi
ble in dealing with color in pictures. Old-version pictures can use the
old model calls, ForeColor and BackColor, and new pictures can use
the full range of color calls. An old-version picture with color can be
drawn in either kind of grafport with no problems. A new-version
picture, which can have RGB colors, pixel maps, pixel patterns, and
other color things, can also be drawn into a old-version grafport. The
new version of DrawPicture automatically best-cases Color Quick
Draw operations in an old-version grafport. Here's what it does:

• Pixel patterns are replaced by bit patterns that simulate the in
tended effect as closely as possible.

• RGB colors are mapped to the old-model eight colors, again as
closely as possible.

• Pixel maps are drawn by CopyBits, which adjusts to the appro
priate screen depth.

Because of the smart new version of DrawPicture, new-version
pictures that were recorded in full RGB colors on color grafports can
be drawn into old grafports. If they're running on a Macintosh Plus or
SE, they'll be in black and white; on a Macintosh II, they can show
colors.

Things To Remember

Color QuickDraw is a clever new implementation of the classic
Macintosh drawing system that supports both the old ways of doing
things and new techniques for adding color to your life. You can mix
old-version grafports, bit maps, patterns, and pictures with new
ones. You have to be careful about using new Color QuickDraw calls,
since they'll only work on a Macintosh 11, but in general QuickDraw
is pretty good about allowing you to mix old and new.

Color QuickDraw decides which colors to draw in by using look
up tables. These tables attach an RGB color value to every set of bits
that describes a pixel. Ultimately, the actual color displayed on the
screen comes from a color lookup device, which is usually on the mon
itor's interface card.

The RGB model, as implemented by QuickDraw, allows you to
specify 48 bits of color information, or more than 281 trillion differ
ent colors. The current version of QuickDraw, used in conjunction with

111

112

program Colorit;

PART TWO TECHNICAL ADVENTURES

Apple's monitor, can display 16 million of those colors; any 256 of
them can be on the screen at the same time.

The current implementation of QuickDraw uses the chunky bit
arrangement, which groups all of a pixel's bits together in memory.
Future versions may include support for the planar model, which
separates the pixel image into a set of one-bit-deep planes.

You can write general-purpose color drawing code that will work
correctly on all Macintoshes, if you stick to the old model of color
drawing. To use the full features of the Macintosh Il's color capabili
ties, you either have to write special-case code or sacrifice compati
bility.

You'll find Listing 3-1 next. This program provides a simple ex
ample of how you can use the old model and get eight colors but still
be compatible with non-color systems without having to write spe
cial code.

{Listing 3-1 Example of old-model color drawing that works with
all Macintoshes}

uses
{$U HD:MPW:Interfaces.p:MemTypes.p
{$U HD:MPW:Interfaces.p:QuickDraw.p}
{$U HD:MPW:Interfaces.p:OSintf.p }
{$U HD:MPW:Interfaces.p:Toolintf .p }
{$U HD:MPW:Interfaces.p:Packintf.p }

const

MemTypes,
QuickDraw,
OSintf,
Toolintf,
Packintf;

appleID = 128; {resource IDs/menu IDs for Apple, File and Edit menus}
fileID = 129;
editID = 130;
colorID = 131;

appleM = l; {index for each menu in myMenus (array of menu handles)}
fileM = 2;
editM = 3;
colorM = 4;

menuCount = 4; {total number of menus}

aboutitem = l; {item in Apple menu}

undo Item l; {Items in Edit menu}
cut Item 3;
copy Item 4;
pasteitem = 5;
clearitem = 6;

'

Color 113

Listing 3-1 continued

newitem = 1;
closeitem = 3;
quititem = 5;

(items in File menu)

blackitem = 1;
whiteitem = 2;
reditem = 3;
greenitem = 4;
blueitem = 5;
cyanitem = 6;
magentaitem = 7;
yellowitem = 8;

wName = 'Window '; (prefix for window names)

windDX
windDY

25;
25;

(distance to move for new windows)

leftEdge = 10; (initial dimensions of window)
topEdge = 42;
rightEdge = 210;
botEdge = 175;

var
myMenus: array [1 .. menuCount) OF MenuHandle; (handles to the menus)
dragRect: Rect; (rectangle used to mark boundaries for dragging window)
txRect: Rect; (rectangle for text in application window)
textH: TEHandle; (handle to Textedit record)
theChar: char; (typed character)
extended: boolean; (true if user is Shift-clicking)
doneFlag: boolean; (true if user has chosen Quit Item)
myEvent: EventRecord; (information about an event)
wRecord: WindowRecord; (information about the application window)
myWindow: WindowPtr; (pointer to wRecord)
myWinPeek : WindowPeek; (another pointer to wRecord)
whichWindow: WindowPtr; (window in which mouse button was pressed)
nextWRect: Rect; (portRect for next window to be opended}
nextWTitle: Str255; (title of next window to be opened)
nextWNum: Longint; (number of next window (for title))
savedPort: GrafPtr; (pointer to preserve GrafPort)
menusOK: boolean; (for disabling menu items)
scrapErr: Longint;
scrCopyErr: Integer;

procedure SetUpMenus;
(set up menus and menu bar)

var
i: Integer;

114 PART TWO TECHNICAL ADVENTURES

Listing 3-1 continued

begin
{read Apple menu} myMenus[appleM] := GetMenu(appleID);

AddResMenu(myMenus[appleM], 'DRVR');
myMenus[fileM] := GetMenu(fileID);
myMenus[editM] := GetMenu(editID);
myMenus[colorM] := GetMenu(colorID);

{add desk accessory names}
{read file menu }
{read Edit menu }

for i:=l to menuCount do
InsertMenu(myMenus[i],0); {install menus in menu bar}

DrawMenuBar; { and draw menu bar}
end; {SetUpMenus}

procedure OpenWindow;
{ Open a new window }

begin
NumToString (nextWNum, nextWTitle); {prepare number for title}
nextWTitle := concat (wName, nextWTitle); {add to prefix}
myWindow := NewWindow (Nil, nextWRect, nextWTitle, True, noGrowDocProc,
Pointer (-1), True, 0); {open the window}
SetPort (myWindow); {make it the current port}
txRect := thePortA.portRect;{prepare TERecord for new window}
InsetRect (txRect, 4, 0);
textH := TENew (txRect, txRect);
myWinPeek := WindowPeek (myWindow);
myWinPeekA.refcon := Longint (textH); {keep TEHandle in refcon!}
OffsetRect (nextWRect, windDX, windDY);{move window down and right}
if nextWRect.right > dragRect.right {move back if it's too far over}
then OffsetRect (nextWRect, -hextWRect.left + leftEdge, 0);
if nextWRect.bottom > dragRect.bottom
then OffsetRect (nextWRect, 0, -nextWRect.top + topEdge);
nextWNum := nextWNum + l; {bump number for next window}
menusOK := false;
Enableitem (myMenus [editM],0); {in case this is the only window}

end; {OpenWindow}

procedure KillWindow (theWindow: WindowPtr);
{Close a window and throw everything away}

begin
TEDispose (TEHandle (WindowPeek (theWindow)A.refcon));

{throw away TERecord}
DisposeWindow (theWindow); {throw away WindowRecord}
textH := NIL; {for TEidle in main event loop}
if FrontWindow = NIL {if no more windows, disable Close}

then Disableitem (myMenus[fileM], closeitem);
if WindowPeek (FrontWindow)A.windowKind < O

{if a desk ace is coming up, enable undo}
then Enableitem (myMenus[editM], undoitem)
else Disableitem (myMenus[editM], undoitem);

end; {KillWindow}

Color 115

Listing 3-1 continued

function MyFilter (theDialog: DialogPtr; var theEvent: EventRecord;
var itemHit: Integer): Boolean;

var
theType: Integer;
theitem: Handle;
theBox: Rect;
finalTicks: Longint;

begin
if (BitAnd(theEvent.message,charCodeMask) = 13) {carriage return}

or (BitAnd(theEvent.message,charCodeMask) = 3) {enter}
then

begin
GetDitem (theDialog, 1, theType, theitem, theBox);
HiliteControl (ControlHandle (theitem), l);
Delay (8, finalTicks);
HiliteControl (ControlHandle (theitem), 0);
itemHit := l;
MyFilter := True;

end {if BitAnd ... then begin}
else MyFilter := False;

end; {function MyFilter}

procedure DoAboutBox;

var
itemHit: Integer;

begin
myWindow := GetNewDialog (1000, Nil, pointer (-1));
repeat

ModalDialog (@MyFilter, itemHit)
until itemHit = l;
DisposDialog (myWindow);

end; {procedure DoAboutBox}

procedure ColorMe (color: Integer);

begin
myWindow := FrontWindow;
SetPort (myWindow);
BackColor (color);
InvalRect (thePortA.portBits.bounds);

end;

procedure DoCommand (mResult: LONGINT);

var
itemString: STR255;

(Execute Item specified by mResult, the result of MenuSelect}

116 PART TWO TECHNICAL ADVENTURES

Listing 3-1 continued

var
theitem: Integer; {menu item number from mResult low-order word}
theMenu: Integer; {menu number from mResult high-order word}
name: Str255; {desk accessory name}
temp: Integer;

begin
theitem := LoWord(mResult); {call Toolbox Utility routines to set}
theMenu := HiWord(mResult); {menu item number and menu number}

case theMenu of

appleID:
if theitem = aboutitem

then DoAboutBox
else

{case on menu ID}

begin
Getitem(myMenus[appleM],theitem,name);
{GetPort (savedPort);}
scrapErr := ZeroScrap;
scrCopyErr := TEToScrap;
temp := OpenDeskAcc(name);

Enableitem (myMenus [editM],0);
{SetPort (savedPort);}
if FrontWindow <> NIL

then
begin

Enableitem (myMenus [fileM], closeitem);
Enableitem (myMenus [editM], undoitem);

end; {if FrontWindow then begin}
menusOK := false;

end; {if theitem ... else begin}
fileID:

case theitem of

newitem:
OpenWindow;

closeitem:
if WindowPeek (FrontWindow)A.windowKind < 0
then CloseDeskAcc (windowPeek (FrontWindow)A.windowKind)
{if desk ace window, close it}
else KillWindow (FrontWindow);
{if it's one of mine, blow it away}

quit Item:
doneFlag := TRUE; {quit}

end; {case theitem}

editID:
begin

if not SystemEdit(theitem-1)
then

case theitem of {case on menu item number}

cutitem:

Color

TECut(textH); {call TextEdit to handle Item}

copyitem:
TECopy (textH) ;

pasteitem:
TEPaste (textH) ;

clearitem:
TEDelete(textH);

end; {case theitem}
end; {editID begin}

colorID:
begin

Getitem (myMenus[colorM],theitem,itemString);
myWindow := FrontWindow;
SetWTitle (myWindow, itemString);
case theitem of

blackitem: ColorMe (blackColor);
whiteitem: ColorMe (whiteColor);
reditem: ColorMe (redColor);
greenitem: ColorMe (greenColor);
blueitem: ColorMe (blueColor);
cyanitem: ColorMe (cyanColor);
magentaitem: ColorMe (magentaColor);
yellowitem: ColorMe (yellowColor);

end; (case theitem}
end; {colorID begin}

end; {case theMenu}
HiliteMenu(O);

end; {DoComrnand}

procedure FixCursor;
var

rnouseLoc: point;

begin
GetMouse (mouseLoc);
if PtinRect (mouseLoc, thePortA.portRect)

then SetCursor (GetCursor (iBeamCursor)AA)
else SetCursor (arrow);

end; {procedure FixCursor}

117

Listing 3-1 continued

118

'

PART TWO TECHNICAL ADVENTURES

begin {main program}

InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent,0);
InitWindows;
InitMenus;
TEinit;
InitDialogs(NIL);
InitCursor;

SetUpMenus;
with screenBits.bounds do

SetRect(dragRect,4,24,right-4,bottom-4);
doneFlag := false;

menusOK := false;
nextWNum := l; {initialize window number}
SetRect (nextWRect,leftEdge,topEdge,rightEdge,botEdge);

{initialize window rectangle}
OpenWindow; {start with one open window}

Main event loop
repeat

SystemTask;
if FrontWindow <> NIL
then

if WindowPeek (FrontWindow)~.windowKind >= O
then FixCursor;

if not menusOK and (FrontWindow = NIL)
then

begin
Disableitem (myMenus [fileM], closeitem);
Disableitem (myMenus [editM], 0);
menusOK := true;

end; {if FrontWindow ... then begin}
if textH <> Nil
then TEidle(textH);

if GetNextEvent(everyEvent,myEvent)
then
case myEvent.what of

mouseDown:
case FindWindow(myEvent.where,whichWindow) of

inSysWindow:
SystemClick(myEvent,whichWindow);

Listing 3-1 continued

Color 119

Listing 3-1 continued

inMenuBar:
DoCommand(MenuSelect(myEvent.where));

inDrag:
DragWindow(whichWindow,myEvent.where,dragRect);

inContent:
begin

if whichWindow <> FrontWindow
then SelectWindow(whichWindow)
else

begin

GlobalToLocal(myEvent.where);
extended := BitAnd(myEvent.modifiers,shiftKey) <> 0;
TEClick(myEvent.where,extended,textH);

end; {else)
end; {inContent)

inGoAway:
if TrackGoAway (whichWindow, myEvent.where)

then KillWindow (whichWindow);

end; {case FindWindow)

keyDown, autoKey:
begin

theChar := CHR(BitAnd(myEvent.message,charCodeMask));
if BitAnd(myEvent.modifiers,cmdKey) <> 0

then DoCommand(MenuKey(theChar))
else TEKey(theChar,textH);

end; {keyDown, autoKey begin)

activateEvt:
begin
if BitAnd(myEvent.modifiers,activeFlag) <> 0

then {application window is becoming active)
begin

SetPort (GrafPtr (myEvent.message));
textH := TEHandle (WindowPeek (myEvent.message)A.refcon);
TEActivate(textH);
Enableitem (myMenus[fileM],closeitem);
Disableitem(myMenus[editM],undoitem);
if WindowPeek (FrontWindow)A.nextWindowA.windowKind < 0

then scrCopyErr := TEFromScrap;
end {if BitAnd ... then begin)

120 PART TWO TECHNICAL ADVENTURES

Listing 3-1 continued

else {application window is becoming inactive}
begin
TEDeactivate(TEHandle(WindowPeek(myEvent.message)A.refcon));
if WindowPeek (FrontWindow)A.windowKind < 0

then
begin

Enableitem (myMenus[editM], undoitem);
scrapErr := ZeroScrap;
scrCopyErr := TEToScrap;

end {if WindowPeek ... then begin}
else Disableitem (myMenus[editM], undoitem);

end; {else begin}
end; {activateEvt begin}

updateEvt:

end;

begin
GetPort (savedPort);
SetPort (GrafPtr (myEvent.message));
BeginUpdate(WindowPtr(myEvent.message));
EraseRect(WindowPtr(myEvent.message)A.portRect);
TEUpdate(WindowPtr(myEvent.message)A.portRect,
TEHandle(WindowPeek(myEvent.message)A.refcon));
EndUpdate(WindowPtr(myEvent.message));
SetPort (savedPort);

end; {updateEvt begin}

{case myEvent.what}

until doneFlag;
end.

resource 'BNDL' (128) {
'Scot',

};

0,
{ /* array TypeArray: 2 elements */

/* [1] */
'ICNt',
{ /* array IDArray: 2 elements */

I* [lJ */

},

0, 128,
I* [21 */
1, 129

/* [2] */
'FREF',
{ /* array IDArray: 2 elements */

/* [1] */
0, 128,
I* [21 */
1, 129

resource 'DITL' (1000, "About box") {
{ /* array DITLarray: 2 elements */

/* [l] */
(61, 191, 81, 251},
Button {

},

enabled,
"OK"

/* [21 */
(8, 24, 56, 272},
StaticText {

disabled,

Color

"ColorMe example program\nby Scott Knaster"
"\nversion 1. 0 12: 31 AM 7 /11/87"

};

resource 'DLOG' (1000, "About box") {
(62, 100, 148, 412},
dBoxProc,
visible,
goAway,
OxO,
1000,
"New Dialog"

};

121

Listing 3-1 continued

122 PART TWO TECHNICAL ADVENTURES

resource 'FREF' (12S) {
'APPL',
0,

);

resource 'FREF' (129) {
'TEXT',
1,

);

resource 'ICNf' (12S) {

);

I* array: 2 elements */
/* [lJ */
$"FFFF FFFF
$"9100 0005
$"912S 0005
$"SSSO osos
$"SSAS 2A05
$"9000 0005
$"9C90 C405
$"S010 0005
I* (21 */

sooo 0005
91EF 0005
912F 0005
SS9S C905
SFlS C905
9000 E4S5
9290 2605
SOlO 0005

FOOO
9129
sooo
SF25
sooo

0005
0005
osos
2A05
0005

9100
912F
SFOO
SSAS
sooo

0005"
0005"
OS05"
2C05"
0005"

9001 0505 9001 0605"
9290 2505 9CF1 C4S5"
SOFO 0005 FFFF FFFF",

$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

resource ' ICNf' (129) {

I* array: 2 elements *I
/* [1] */
$"0FFF FEOO osoo 0300 0900 02SO 0900 0240"
$"0900 0220 0900 0210 0900 03FS 0900 OOOS"
$"0900 OOOS 0900 ooos 0900 ooos 0900 OOOS"
$"09FO OOOS 0910 ooos 0910 ooos 0910 OOOS"
$"0910 ooos 0910 ooos OSEO ooos 09FO OOOS"
$"09FO OOOS 09FS ooos 09FS ooos 09ES 5FES"
$"09FS OBES osoo 3FES OSFO FFES OS70 3FES"
$"0S19 FFES osoo ooos osoo ooos OFFF FFFS",

Listing 3-1 continued

r

I* [2] *I
$"0FFF FEOO OFFF
$"0FFF FFEO OFFF
$"0FFF FFF8 OFFF
$"0FFF FFF8 OFFF
$"0FFF FFF8 OFFF
$"0FFF FFF8 OFFF
$"0FFF FFF8 OFFF
$"0FFF FFF8 OFFF

};

resource 'MENU' (128)
128,
textMenuProc,
Ox7FFFFFFD,
enabled,
apple,

FFOO OFFF
FFFO OFFF
FFF8 OFFF
FFF8 OFFF
FFF8 OFFF
FFF8 OFFF
FFF8 OFFF
FFF8 OFFF

{ /* array: 2 elements */
I* [ll */

};

"About ColorMe ... ", noicon,
/* [2] */
"-", noicon, nn, "", plain

resource 'MENU' (129)
129,
textMenuProc,
Ox7FFFFFF5,
enabled,
"File",

/* array: 5 elements */
/* [l] */

FF80
FFF8
FFF8
FFF8
FFF8
FFF8
FFF8
FFF8

"New", noicon, "N", "", plain,

} ;

/* [2J */
"-", noicon, "", "", plain,
/* [3] */
1'Close 11 , noicon, ''W'', '''', plain,
/* [4] */
"-", noicon, "",
/* [5] */

"" , plain,

"Quit", noicon, nQ", 1111 , plain

Color 123

Listing 3-1 continued

OFFF FFCO"
OFFF FFF8"
OFFF FFF8"
OFFF FFF8"
OFFF FFF8"
OFFF FFF8"
OFFF FFF8"
OFFF FFF8"

plain,

124

r

PART TWO TECHNICAL ADVENTURES

resource 'MENU' (130)
130,
textMenuProc,
Ox7FFFFFFC,
enabled,

};

"Edit",
/* array: 6 elements */
/* [l) */
"Undo", noicon, "Z",
I* C2J */

1111 , plain,

"-'', noicon, "", ''", plain,
/* [3) */
"Cut", noicon, "X", "", plain,
I* [41 */
"Copy", no Icon, "C", .. ", plain,
/* [5) */
"Paste", noicon, "V", "", plain,
I* [61 */
"Clear", noicon, 1111 , "", plain

resource 'MENU' (131)
131,
textMenuProc,
allEnabled,
enabled,

};

"Color",
l* array: 8 elements */
I* Cll */
"Black", noicon, , ""
I* [2) *I
"White", noicon, "" "" ,
/* [3) *I

, plain,

, plain,

"Red", noicon, "", "", plain,
/* [4) */
"Green", noicon, "", "", plain,
/* [51 */
"Blue", noicon,
I* [61 */
"Cyan", noicon,
I* [71 */

"" , 1111 ,

"" ,

plain,

plain,

"Magenta (in another dimension ...) ", nolcon,
I* CBJ */
"Yellow", no Icon, 1111 , "", plain

1111 , 1111 , plain,

Listing 3-1 continued

\.

data 'Scot' (0) {

} ;

$"1853 686F 776F 6666 2063 7265 6174 6564"
$"2030 372F 3131 2F38 37"

Color 125

Listing 3-1 continued

/* .ColorMe created */
I* 7/11/87 */

c H A p T E R 4

Event Manager

The mouse placed in perspective. The keyboard resur
rected as a way of issuing commands. A look at some
unusual software. A discussion on the enhancement of
the user interface. Some closing tips about ensuring
compatibility with other languages and customizing
Standard File.

127

128 PART TWO TECHNICAL ADVENTURES

Using the Mouse and Keyboard

When the Macintosh was first introduced, there was a popular
feeling that the essence of the Macintosh user interface was to put
all the functionality of a program into its menu items. By having
everything a program could do available through menu items, the
application could avoid hidden complexities that might make the
user go crazy wondering how to do something.

Although the user interface has always provided for the capa
bility of attaching a Command-key equivalent to any menu item,
Command keys weren't heavily used by early Macintosh applica
tions. As real people began to use Macintosh software, though, an in
teresting thing happened: they discovered that it wasn't necessarily
bad to have to memorize that, for example, Command-Shift-E is a
shortcut for choosing a new font. If you have to choose new fonts all
day, every day, you'll likely remember Command-Shift-E and
you'll be grateful that it exists. A truly nice application provides
both menu commands and keyboard equivalents for as many features
as possible.

Another reason why it's important to provide two ways of get
ting to commands is because of the way people use software. Funda
mentally, it works like this: sometimes you're typing and.sometimes
you're mousing. Very profound, right? If you're typing a lot of text
and your hands are on the keyboard, you'd probably rather type a
command (assuming you know what to type) than reach for the
mouse and pull down a menu. If you're busy mousing, such as when
moving things around with a graphics editor, you probably would
rather keep using the mouse to perform commands.

Remember that the idea here is to provide both ways of doing
things: menu items (or other things to click on, like buttons) and key
board commands. If you leave out one or the other, you're short
changing some of your users. The cleverest applications find a way to
allow almost any operation by either typing or clicking.

While you're studying your application to figure out how to give
equal time to keyboards, though, don't forget that many things the
Macintosh does with a mouse and graphics just can't be simulated by
the keyboard and text. It's easy to use the keyboard for binary kinds
of functions, like saving a document, left-justifying some text, or
printing. It's a lot harder to use the keyboard for more analog acts
like dragging the scroll box to the location where you think a certain
part of your term paper will be found or resizing a window to exactly
the right dimensions. You can't do everything with the keyboard;
imagine trying to get MacPaint to draw a picture using only a key
board.

Event Manager

Have It Both Ways

How can you be sure to provide both mouse and keyboard ways of
executing commands? To answer this question, we'll look at several
different kinds of mousing commands. We'll talk about each of them
and some ideas for implementing keyboard equivalents.

The first and easiest category to deal with is selecting things
from pull-down menus. The Menu Manager allows you to specify a
Command key to go along with any menu item, and then takes care of
much of the work of implementing it for you. All you have to do is set
up the Command key in your resource file, for example by specifying
it in an MPW Rez source file or by using ResEdit. You can even play
around with other people's applications, by editing their menus us-
ing ResEdit. .

The other categories of keyboard equivalents are a little trick
ier. We'll take a look at setting up keyboard equivalents for buttons
that appear in dialogs. Let's say that you're entering lots of data
into a spreadsheet (use your imagination) and you want to bring up a
dialog that will allow you to set the font for cells in the spread
sheet. If you power-use that spreadsheet, you probably know the
keyboard equivalent for the font command you want, so you type it.
The dialog comes up, and it wants you to select from three radio but
tons and then click Enter or Cancel. Of course, you can also choose En
ter by typing the Return key; wouldn't it be nice if you could select
the radio button you wanted by typing, too? That way, your hands
wouldn't have to leave the keyboard.

129

130 PART TWO TECHNICAL ADVENTURES

You may have noticed that a few clever applications have a
way of letting you do this. Being able to choose the default button
(usually, it has a thick outline around it) by pressing the Return or
Enter keys is standard and many applications allow you to choose
the Cancel button by typing Command-period. Only a few applica
tions go out of their way to provide keyboard equivalents for other
standard buttons, check boxes, and radio buttons as described in our
scenario.

Putting in keyboard ways of choosing buttons seems like a nice
thing to do for users who are in the middle of data entry anyway,
since they're busy using the keyboard. How do we do it? The first
thing to think about is the user interface. Let's continue with our ex
ample of a font dialog in a spreadsheet. Figure 4-1 shows a picture of
the dialog.

@ Geneua [OK »
0 New York

0 Monaco (Cancel)

Figure 4-1. Font choice dialog

As you can see, the dialog gives you a choice between three fonts,
and it has the standard OK and Cancel buttons with OK set up as
the default button. What would be a good way to let users type their
choice of font? Normally, of course, keyboard equivalents for com
mands are typed with the Command key (maybe that's why Apple
gave that name to that funny-looking symbol). This distinguishes
between regular typing to enter data and special requests to do com
mands.

Event Manager

Apples on command. On Macintosh models up to and including
the Macintosh Plus, the Command key on the keyboard con
tained the special command symbol (38). Starting with the
Macintosh SE and Macintosh II keyboards, the Command key
has both the 88 and the Apple logo. This was done to help
move the two Apple product lines, Macintosh and Apple II, to
the same keyboard layout. Apple II computers have had two
keys with Apple logos on them for a long time. Actually, this
move was a compromise. Macintosh users have to get used to
the Apple logo instead of the Command symbol; Apple II users
lost one of their Apple keys.

So, should we use Command keys to set up keyboard commands
for the three radio buttons? We could have Command-G for Geneva,
Cornrnand-N for New York, and Command-M for Monaco. Is this rea
sonable? Sure, and it's easy for the frequent flier to memorize. If we
wanted to, we could even put little reminders into the dialog, as
shown in Figure 4-2.

@ Geneua OOG [OK »
0 New York OON

0 Monaco OOM (Cancel)

Figure 4-2. Font choice dialog

Streamlining

If we think about this a little more, we can come up with an even
classier way to set up keyboard equivalents for these radio buttons.
In this dialog and in others like it where there's nothing but buttons,
the user normally doesn't have to do any typing at all. Usually, in a
dialog like this, anything typed by the user would just be ignored, or ,
would be considered an error and answered with a rude beep.

Well, why not have a single keystroke-a typed letter G, N, or
M- turn on the appropriate radio button? There's no conflict with
any fields for typing since there's nowhere in the dialog for the user

131

132 PART TWO TECHNICAL ADVENTURES

to type. In fact, what we should really do in a case like this is ignore
the use of any modifier keys, such as the Command key, and be
happy with the keystroke either way. That way, if the user is more
comfortable using the Command key for keyboard equivalents, it's
perfectly acceptable to have the Command key held down while
typing. A real veteran cosmic user, though, need not use the Com
mand key in this case because the letter key will be enough.

This technique is fine for dialogs that don't ask the user to type
text, but what about those that do, like the dialog (from the popular
baseball manager's program, ConnieMac) in Figure 4-3? In this dia
log, there are simple buttons for OK and Cancel, radio buttons for
how to pitch to the hitter, and a text field to type in the name of a
relief pitcher. We can't let the user just type the letter I for inten
tional walk, because it might be a letter in the name of the pitcher
being typed into the text field. In this case, the only thing we can do
is require that the user hold down the Command key while typing
the appropriate letter.

O Intentional walk

O Hit him in the head

O Pitch inside

D Throw fastballs

D Throw curues

Put in relief pitcher IF!iif Id

OK (cancel)

Figure 4-3. Simple common dialog

It seems we've arrived at a reasonable solution here. If there are
any text fields in the dialog, the user can "click" a button from the
keyboard by using a Command key. If there are no text fields in the
dialog, the user can just type a letter key to press a button, but typing
with the Command key down will accomplish the same thing.

Now that that's settled, let's throw in one more complication. In
both of our examples so far, there have been just a few buttons in each

Event Manager

dialog and each choice has started with a different letter, making it
easy to figure out what the right Command-key combination would
be for each one. What if we've got a much more complex dialog, with
lots of buttons to choose from and no easy way to figure out which
keys should correspond to which choices? For an example of a dialog
like this see Figure 4-4, which is an example of a dialog that might
appear for an electronic juke box.

Music Maker

Rrtist I Meatloaf

Rib um Bat out of Hell

O Parad_ise by the Dashboard Light

® Hot Summer Night

O Bat out of Hell

0 Heauen Can Wait

O For Crying Out Loud

O Hll Re1.11.1ed Up with No Place to Go

D Surround Sound 181 Reuerb

OK (Cancel)

Figure 4-4. Musical dialog

This dialog has zillions of buttons, or at least ten anyway, sev
eral of them beginning with the same letter. There's no easy way to
assign keyboard equivalents to each of them. What can we do? Let's
think about the similar situation that's found in menu items. Not
every menu item that has a keyboard equivalent uses a mnemonic
one. Eventually you just run out of letters-that happens in Roman
languages, you know.

To remind you of the keystrokes that you can use for various menu
items, we'll use a very simple strategy: you get to see the Command
key listed right in the menu when you pull it down. We can apply

133

134 PART TWO TECHNICAL ADVENTURES

this technique to buttons in our big dialog by putting a cheat note for
each Command key right in the button text. We've transformed our
juke box dialog by adding keyboard equivalents for the buttons and
showing them in the buttons themselves, and you can see the result in
Figure 4-5.

Music Maker

Artist j Meatloaf

Album Bat out of Hell

O Paradise by the Dashboard Light ~P

@ Hot Summer Night ~H

O Bat out of Hell OOB

0 Heauen Can Wait OOW

O For Crying Out Loud OOF

O All Reuued Up with No Place to Go OOA

D Surround Sound OOS 181 Reuerb OOR

OK (cancel)

Figure 4-5. Command keys added

Although this looks kind of funny when you're not used to seeing
it, it seems like something that you could get used to quickly. Now
that we've figured out what the user interface will look like, we can
work on the implementation and talk a little about how to write the
code to handle the keystrokes.

Command Keys for Buttons

The Menu Manager takes care of mapping keystrokes to menu
items for you almost automatically: when the user types a Command
key, you call the Menu Manager routine MenuKey and it tells you

Event Manager

which menu item was selected. Unfortunately, there's nothing like
that available in the Dialog Manager, so we'll have to do most of
the work. Since we're at the cutting edge of technology here, we'll
have to figure out a good way to get from the keystroke typed by the
user to the desired button.

We can use one of the Dialog Manager's best tricks to simplify
the processing of button-press keystrokes. Remember that when you
call ModalDialog, you get to create a dialog filter function, better
known as the filterproc. Whenever the Dialog Manager gets an
event, it gives your filterproc a chance to check out the event and do
something with it.

In your filterproc, you can decide just what you really want to do
with the event before handing it off to the guts of ModalDialog.
Generally, you'll do one of three things.

• If you're not interested in the event, you can do nothing and just
let ModalDialog handle it normally.

• If the event is a special one you want to respond to, you can do so
and not let ModalDialog deal with it at all.

• If you're really sneaky, you can actually change the event record
as it's passed to your filterproc, which makes it look like some
thing else by the time ModalDialog gets hold of it.

You can use either the second or third technique to convert keys
trokes into simulated button hits. To use the third technique, chang
ing the event record, you have to do a couple of things. First, you
have to change a keydown event into a mousedown event and then
you have to figure out the right mouse point to put into the event
record. To find the right coordinate, you can use GetDitem to find the
location of the item, then LocalToGlobal to convert it to global coor
dinates before stuffing it back into the event record. This way gives
you the advantage of having ModalDialog automagically handle
the events on controls for you. ModalDialog calls the Control Manag
er to highlight buttons, so you don't have to.

135.

136 PART TWO TECHNICAL ADVENTURES

The second technique, handling the event yourself in the filter
proc, requires you to highlight the buttons yourself, but you don't
have to munge around with the event record to make it appear that
a button was clicked. Instead, you use brute force and highlight the
button yourself, by calling HiliteControl. You'll actually call
HiliteControl twice: once with a hiliteState of 1 to light up the but
ton, then with a value of 0 to turn the button off. In this case, you
have total control over what happens in response to the event since
you're not relying on ModalDialog to track the buttons. This lets you
decide how long you want the button to be lit up-eight ticks seems a
pretty good-looking value.

In your filterproc, you can do virtually anything you want except
what's prohibited by law. In this case, we'd like to check the event
record for Command keys and then use something like a case state
ment to figure out exactly what to do f9r each particular keystroke.
If we use this technique, we have to tell ModalDialog that we've
already taken care of things and that it shouldn't do anything about
this particular event. That's easy to do; here's how.

Remember that the filter we're using to examine all the events is
a function, and functions get to return values. Specifically, a dialog
filterproc always returns a boolean value. If it returns False, Modal
Dialog will handle the event, which might be the real one caused
by the user or the doctored one that your filter messed with. If your
filterproc returns True, you're telling ModalDialog to leave this
event alone and that you've already done everything you wanted to
do with it. So in this case, we'll set the filterproc's value to True and
ModalDialog will leave it alone.

Localizing

There are a few things to watch out for. One important consider
ation when setting up keyboard equivalents for your dialog buttons is
whether they will make sense when your product is localized into
other languages. For dialogs with just a few buttons, you'll probably
try to keep the keyboard equivalents mnemonic, as in the examples
earlier in this section.

It's important not to hard-code the buttons' keyboard equival
ents into your program. Hard-coding makes it much more difficult
than it ought to be to change the keystrokes when you convert to
other languages. One idea is for each dialog item list to have an
associated string list (STR#) resource that contains the keystrokes
you're using as shortcuts for each item. Keeping this stuff in resources

Event Manager

instead of hard-coding it will make life much easier for your trans
lator and for yourself.

Standard File Dialogs

Two special, very common dialogs that every program uses are
the Standard File dialogs for opening and saving, called by SFGet
File and SFPutFile. It's a nice touch to add keyboard equivalents to
the buttons that appear there. We'll briefly go over an easy way to
accomplish this here.

When you call SFGetFile or SFPutFile, they in turn call on Mod
alDialog to handle most of the event processing that takes place as
the user chooses a file to open or save. ModalDialog takes care of all
the list scrolling, typing, and button clicking. However, you don't get
to have a filterproc for the calls that Standard File makes to Mod
alDialog. What can you do?

The trick is to not use SFGetFile or SFPutFile, but instead to use
their exotic cousins SFPGetFile and SFPPutFile (note the extra letter
Pin each call, careful reader: it stands for programmer). When you
use these versions of the Standard File calls, you get to use a
filterproc as one of the parameters.

The P versions of the calls let you use the filterproc to look for
special keystrokes and handle them as hits on the buttons. Typi
cally, you'd want to look for the Command key plus 0, C, D, and E,
and convert them to the Open, Cancel, Drive, and Eject buttons in the
getfile dialog, and use the same set for putfile with the change of S
for the Save button. If you add any of your own buttons, such as but
tons to save in special formats in the putfile box, you can look for
those as well. Of course, if you want, you can put the keyboard equiv
alents right in the button text, as we did earlier.

Things To Remember

Although the Macintosh interface is most famous for its nifty use
of pull-down menus and clickable controls, other elements are neces
sary to successfully support people who use the same piece of soft
ware every day-those well-known power users. To really make
those users into big fans of your programs, you have to make their
lives easier, and a very good way to do that is to let them perform
commands both with something mouseable and something typeable.

Command key equivalents for menu items are obvious and easy to
do, but don't forget about them. Be sure to implement as many key-

137

138 PART TWO TECHNICAL ADVENTURES

board equivalents for menu items as you can. Since your users can al
ways do things with familiar and friendly pull-down menus, they're
never forced to use those mysterious Command keys unless they want
to, and after they've become intimate with the program, they'll al
most certainly want to.

Using keyboard equivalents for buttons is a more unusual idea
and there's less support for it in the Macintosh Toolbox. Still, the
principle is the same, and that's never to force the user to dance be
tween the keyboard and the mouse in order to get something done
quickly.

Allowing keystrokes as alternatives for buttons is a good way to
do this. In fact, supporting keystrokes that do the same thing as
standard buttons sounds like something Apple might even implement
someday as the Macintosh interface evolves. For now, though, you
have to do much of the work yourself. The best way to start is by us
ing the filterproc in your dialogs. With some clever effort, you can
help to evolve the interface and make it, like Steve Austin, better
than it was.

c H A p T E R 5

Finder

A brief look at living with the Finder. A discussion of
the changing world of the Macintosh operating system.

139

140 PART TWO TECHNICAL ADVENTURES

Quitting to Another Application

Many Macintosh applications follow pretty much the same user
interface standards, meaning that it's relatively easy for a user to
figure out how to work a new application at least a little. Market re
search (a slightly less exact science than programming) has shown
that most Macintosh owners tend to own more software than folks
who own other personal computers, and it seems that one reason is
that the standard interface makes it easier to play with and learn a
new program.

Since most Macintosh owners use a lot of different pieces of soft
ware, they like to be able to switch between them quickly. Through
out the history of the Macintosh, inventors have tried to come up
with easier ways to make this happen. One idea was Switcher,
which let you chop up your Macintosh into pieces and then run an ap
plication in each piece.

This made it very easy to switch between applications, but each
application took over the whole screen. If you wanted to see win
dows from your word processor and your drawing program at the
same time, you were out of luck. However, you could switch between
them very quickly and easily once you had started them up.

The next evolution of this idea was Apple's multitasking version
of the Finder, called MultiFinder. With this system, you can have
lots of applications open at the same time, but you can share their
windows on the screen all at once if you want to. This makes the in
terface a little more intuitive, since you can just click on a window to
make its application come to life.

Both these ideas are great leaps in the power of Macintosh sys
tem software. But there are still some little things you can do in your
application to give even more power to your friend, the user. One of
these is the ability to avoid going back to the Finder when your ap
plication quits.

Sometimes, a user wants to quit an application and start another
one right away, without going to the Finder. The Macintosh, of
course, always wants to return to the Finder as a sort of purgatory be
tween applications. Some folks don't ever want to go back to the
Finder, so a bunch of Finder replacements have cropped up over the
years to take its place. These programs usually provide a different
way of doing the Finder's job of managing files and launching appli
cations.

Finder

Often imitated. Trying to come up with something to replace
the Finder is an intimidating task. You have to replace lots of
obvious functions displaying the contents of disks, launching
applications, deleting files, creating directories, copying files
from disk to disk. In· addition, there are other, more subtle
things that are very closely related to the evolution of the sys
tem. These are tough for someone outside Apple's system soft
ware group to keep up with; they include support for the Ap
pleShare file server and compatibility with the multitasking
operating system. There are some good Finder-substitutes, but
the Finder does things that replacement programs usually
don't.

Of course, when you're running MultiFinder, it's very easy to
start another application without having to return to the Finder.
Under this system, the Finder is always around and so no time is
wasted quitting your application and starting the Finder. Still, it's
handy to give your users the option of closing up the application and
starting another all in one step.

Another way to avoid the Finder when quitting is to give your
user a menu option either to exit the normal way and start the Finder
or to name another application and just go straight to it. To figure out
how we can do this, we should look at the process that takes place
when an application runs.

Launching and Quitting

Most of the time when you want to start an application, you
double-dick it in the Finder. It calls a trap named Launch, which
starts the application by opening its resource file, loading in the
first couple of CODE resources, and jumping right in. What happens
when the application is all done? Is there some sort of "Quit" ROM
call that takes place and puts everything back the way it was?

In fact, the ROM does nothing formal when an application ends.
It just comes back to the ROM on the "other side" of the application,
at which point the system makes another Launch call, this time
launching the application called Finder (or whatever other appli
cation is pretending it's the Finder at the moment) .

141

142 PART TWO TECHNICAL ADVENTURES

Find the Finder. After your application terminates and the
ROM returns to do the post-launching stuff, it isn't hard-coded
to launch the application called Finder. Instead, it launches
the program whose name is stored in the low-memory global
variable called FinderName (a dead giveaway) . However,
you shouldn't try to put your own application's name here so
that it will replace the Finder. Apple has recently defined a
new way of making your application into a Finder-
replacement, or shell, by enhancing the functions of the Launch
call. Unfortunately, thanks to the magic of publishing, the de
tails on how this works weren't available at press time, as the
saying goes.

Since the system just launches another application, usually the
Finder, after it quits your application, you can just call Launch if you
want to start up something else when the user quits from yours. A
reasonable interface to use here is to present an SFGetFile dialog
listing all the files of type APPL, then let the user choose one of
them. After one is picked, you can call Launch on it and it will start
up as your application quits.

In the first applications that used this technique, the menu item
that allowed a user to start another application upon leaving yours
was usually labeled Launch. This was a very programmery name to
use, since most nontechnical users have absolutely no idea what it
means. In fact, most people are more comfortable thinking they're
quitting one program (which they are) and starting another instead
of the Finder. A better command name, Transfer, started to appear
after a while, but an even more appropriate name for this menu op
tion is Quit To, which also looks right when placed next to the stan
dard Quit item in the File menu.

As we said earlier, Apple has recently implemented changes to
the way Launch works, in conjunction with the release of Multi
Finder. The time warp between the writing of this book and
your reading it means that there's no more information avail
able right now. Before implementing a Quit To feature, or even
before calling Launch from your application, you should check
the latest documentation and technical notes from Apple to
find out about the current state of the art.

Finder

Things To Remember

Every application has to live with the Finder, because it's vir
tually an extension of the Macintosh's operating system. It's been
tough to take full advantage of every possible trick, though, because
the Finder has been evolving and changing over the last two years.
You should watch for Finder technical information from Apple so
you can keep up with the state of the art and keep your programs
working right.

143

c H A p T E R 6

Printing Manager

Finding and using the icon of your choice. In which we
adventure into the unknown regions of the desktop
file. The vital signature resource. A general discussion
of the Laser Writer: not so much a printer as a computer
with a toner cartridge. Using Postscript tricks to make
your LaserWriter get fancy.

145

146 PART TWO TECHNICAL ADVENTURES

The Current Printer

When it comes to having to support a variety of printers, Macin
tosh programmers definitely have it easy. One of the hardest things
for programmers to deal with on many personal computer systems of
the past and present are the zillions of different printers and printer
interfaces that are available. Printers differ in how they do graph
ics, how they set tabs, how they do carriage returns and line feeds,
and just in their basic interface to the computer. It's not uncommon in
non-Macintosh systems to have to deal with dozens of different
printers individually with printer drivers or other arcane solutions.

When the Macintosh first appeared, being able to print graphics
was an absolutely integral part of the package. Apple had worked
hard to come up with a printer that could handle this important re
quirement, and the result was the original ImageWriter. The Macin
tosh system software was designed to work with this printer and no
other.

So, Apple offered a good quality dot matrix printer at a reason
able price that was really the only option buyers had if they want
ed hard copy. Some people predicted that users would revolt at not
being able to choose another brand of printer. Interestingly enough,
this didn't happen very much. Instead, most Macintosh buyers were
happy to find a printer that was as good a value as the ImageWriter
and matched the system so well.

In 1985, Apple introduced the now legendary LaserWriter,
which started the whole idea of computers being used for desktop
this and desktop that. After the release of the LaserWriter (and
later models in both the laser and dot matrix lines), the number of
Macintoshes with Apple printers attached to them is astonishingly
high. More than 90 percent of Macintosh users who are connected to a
printer use an Apple printer.

The fact that all those folks are using Apple printers really
helps stabilize what software developers have to do for printing.
The real key to making printing possible is the Macintosh printing
model, which has stayed pretty stable over the years since it was
first introduced. Despite vast differences in supported hardware and
changes in system software, the way printing works is very much as
it was in 1984 when the Macintosh came out. This is pretty good, con
sidering that supported printers range from a 72 by 72 dot-per-inch
machine that uses pins to strike a piece of paper through a ribbon, to
a 2000 by 2000 dot phototypesetting engine that uses a ROM-based
page description language (very different from QuickDraw) to create
and image an entire page at once. Just to make it more interesting,

Printing Manager

both the typesetter and the dot matrix printers will sometimes be
connected across a network.

Since the printing interface on the Macintosh has become so stan
dardized, it's possible to pull off some interesting tricks to make life
more fun for your users. Specifically, some applications like informa
tion about the currently selected printer, such as its kind or even its
icon. There are ways of finding out all this stuff or the next section
wouldn't be in the book!

The Printer's Type, Name, and Icon

For some applications, it's useful to know what kind of printer is
being used-just the type of printer, like ImageWriter or Laser
Writer, and nothing about its capabilities-as well as its icon and
its name, if it has one. This kind of stuff is mainly used for decora
tive purposes, such as displaying the printer's icon while you're
printing so that you can "fill 'er up" as the document is printed (see
Figure 6-1). You can find out this information by looking in the right
places in the system and printer resource files. You can even deter
mine whether the printer that's currently chosen is directly at
tached to the Macintosh's serial port or has to be shared across an
AppleTalk network. With a little more digging, you can find out the
icon that's used to show that printer's type in the Chooser. If the
printer is an AppleTalk device, you can also find out its name.

The first thing you'll want to do is to learn what type of printer
is the currently chosen one. You can do this by looking at resource STR
number -8192 in the system file. This resource contains a string that
gives the name of the current printer's type; it will say something

147

148 PART TWO TECHNICAL ADVENTURES

Doodah'w'riter

Figure 6-1. Printer icon filling up

like "LaserWriter" or "AppleTalk ImageWriter," depending on the
printer you selected the last time you were in the Chooser.

Getting used. To find the current printer type, you need to
check STR -8192 in the system file, not just any old STR -8192.
If you just call GetResource asking for tHis particular string,
there's no guarantee you'll get it from the system file. Remem
ber that the Resource Manager normally searches back through
the chain of open resoµrce files, starting with the most recently
opened and ending up with the most ancient, which is always
System. To get around this and make sure you're pulling the
right string, you can call CurResFile to find out the current re
source file number and stash it somewhere~ then UseResFile (0)
to get resources from the system file only, before calling GetRe
source on STR -8192. After you have the resource, you can set
the resource map chain back to normal by calling UseResFile
with the value you saved from your first CurResFile call.

Once you know the printer type, you can find out more about the
printer itself. The next thing to do is to find out whether it's a local,
directly connected printer or if it's sitting on the AppleTalk wire. To
do this, you need to know the printer type, which you already got
from the system file in the preceding step. This string has another
meaning: it also represents the file name of the resource file for that
printer. So in other words, if STR -8192 said the current printer type
was LaserWriter, then there should be a file called LaserWriter
that contains more info about the printer.

Printing Manager

Any printer resource file that corresponds to the current printer
should be located in the blessed folder of the current disk, which is
the directory containing the open System file. To find this folder,
you can use the SysEnvirons call. The sysVRefNum field of the
record returned by SysEnvirons contains the working directory refer
ence number of the folder that has the current printer's resource file
in it. So, if the current printer's type is LaserWriter (that is, if the
STR -8192 resource in the System file is "LaserWriter"), there's a
file in this directory called LaserWriter that will tell us some other
interesting stuff.

By looking at this file's type, we can determine whether the
printer is directly connected or is an AppleTalk device. A standard
for which we can thank the Chooser says that directly connected
printers have files of type PRES, while AppleTalk-connected print
ers' files are type PRER. The Chooser sets up this distinction so that
it can know how to deal with each type of device as it encounters
them.

We can use PBGetFinfo or GetFinfo to find out the file's type. Af
ter making either of these GetFinfo calls, you'll get back a field of
type Flnfo. The Flnfo field includes a field called fdType, and this
field contains the file's type, interpreted as four ASCII characters.

149

150 PART TWO TECHNICAL ADVENTURES

After using one of the File Manager's calls to find out the file's
type, we'll know whether the printer is directly or remotely con
nected. If it turns out to be an AppleTalk device, we know something
else: it must have a name. We can find out the name by looking at a
resource within the file. If the file is type PRER, then it will have a
resource of type PAP A and ID -8192, which will contain a string
that's the name of the currently selected device of this type. There's
more information stored in the PAP A after the printer's name but
this is all we're interested in right now. If no printer of this type has
been selected, the string will be empty.

Notice that every AppleTalk printer type has a "current" de
vice name, even if it's not the currently selected type of printer. This
is so that when you change from one printer type to another and then
back to the first, the Chooser can make your life a little easier by re
minding you of your previous choice. Of course, if it can't find that
choice out on the network (maybe someone has taken it to the beach
this weekend), it just doesn't select any printer.

Remember that the printer's resource file has to be open if you
want to read the printer's name from it, of course. To make sure it's
open, you can call OpenResFile on it. If it's already open, no harm is
done since OpenResFile will just return the right reference number to
you.

:::,:'l~~~:;,~~~;~'::~r~~dt· .. Tll~•·,,obviqµs .qu~~UR! ~,:,~':::~~i~~.~py.·.on
earth is the resource type.called PAP A? Is s one!expressmg a

,~i~~t~ ~8 ,. , . ity? ActuilUY~ it's muchre9~~'~"ffl~~9e,~~~less
/sentiment . ah that The package of cq:~e tha't'. App[e'talk
~nd t~e Pri9ting Manager use to. connect yg is palled Printer

ii,'~cc~~~ J>r,ot~~pl,prJ>AP for short. The resqµr~~ ty~~,J>~~ prob
ably comes from PAP Address. Isn't that easier to swallow than

1,,. 1 ,; 1*i??'P:~:~~~9,~~,:9~~!pai·.·.~~.'planc,ttjpn?
; .. ,:"''·'· ', ·,,,:"•," .. ",',',,.·',.,",,!'(; ·i:,,-·i.:'«::.:·'!'•:' - I

We now know the current printer's type and whether it's an Ap
pleTalk or a local device. If it's AppleTalk, we also know its name.
The next interesting thing to discover is its icon. Finding this is easy
to explain conceptually but a little trickier to do in code, since it in
volves unraveling some tightly wound resources.

Printing Manager

Finding the Custom Icon: Journey into the Unknown

To find the printer's icon, we have to play with various kinds of
resources in the printer's resource file. The types we'll look at are
the ones that combine to hook up a file to a custom icon in the Find
er's display. The first resource type, FREF, tells which file types
should be associated with which icons; for example, it might say
that files of type ABCD should have icon number 2000. This means
any files that have the same creator as the file itself (for example,
LWRT in the case of the LaserWriter), and the type ABCD will be
displayed on the desktop with icon 2000 from the LaserWriter re
source file. This mapping is pictured in Figure 6-2.

FREF resource

Type ABCD ---•• ICON 2000

Type LOAF • ICON 3102

Type BLUB • ICON 6532

Figure 6-2. FREF file type mapping

So far, this is pretty simple. However, there are a few complexi
ties thrown in which will make it a little harder to follow, so watch
closely here as we go through them. The first complication involves
icons. As you may know, icons displayed by the Finder aren't just
easy little bitmaps. To get really great visual effects, the icons that
the Finder displays for files are actually two separate bitmaps.

The first shows what the icon looks like when it's not selected;
the second is a mask that shows what the icon should look like
when it is selected. Each of the two bitmaps is an icon. The two of
them together are called an icon list, which is ICN# to the Resource
Manager. So, the value in the FREF after the file type is actually an
ICN#, an icon list, and not just an icon. We'll modify our diagram to
represent this fact as shown in Figure 6-3.

Now comes the interesting part. Let's think about what happens
to the FREF and ICN# resources that are stored in your average re
source file. The main reason they're there is to allow the Finder to
display custom icons for each file type it shows. Since the Chooser
also uses icons to display the device types, it can conveniently pick
up the icon that's indicated by the FREF and ICN#. Most files have

151

152 PART TWO TECHNICAL ADVENTURES

FREF resource

Type ABCD ---•.. ICN# 2000

Type LOAF • ICN# 3102

Type BLUB • ICN# 6532

Figure 6-3. FREF to ICN# mapping

nothing to do with the Chooser, though, so their custom icons are
only used by the Finder.

The Finder is sort of a collector of icons. Whenever it sees a new
file on the disk, it grabs the file's FREF and ICN# information,
which tells about the custom icon, and sticks them in a file called
Desktop. This Desktop file is a kind of giant dust magnet for infor
mation about files on the disk. Every disk that's been seen by the
Finder has a Desktop file.

When the Finder sees a fresh new file, it eagerly checks the file
to see whether it has information about custom icons. If it does, the
Finder copies the custom icon stuff to the Desktop file. Why does it
bother making a copy of these resources when it can always just use
the originals? The Finder does this so it will be sure to remember the
icon even if the original file is removed from the disk. Remember
that the FREF and ICN# are usually only found in one file for each
signature, such as an application or a Chooser device file, so if that
file goes, there's nowhere else to look for the icon.

When the Finder copies the FREF and ICN# to the Desktop file,
a potential conflict arises, which already may have occurred to you.
The problem is this: the programmer gets to choose the resource IDs
for resources like the FREFs and ICN#s that are in the file.
However, what happens if two different applications just happen to
choose the same resource ID for an FREF or an ICN#, and the Finder

Printing Manager

tries to copy these resources into the Desktop file? Sounds like this
situation has great potential for disaster, as you can see in Figure 6-4.

FREF 137
FREF 278
ICN# 415
ICN# 707

ID collision

File "Desktop

FREFs
ICN#s

File "Marty"

FREF 17029
ICN# 672

File "Paul"
FREF 9057

REF 278
3196
1211

67

Figure 6-4. Resource ID collisions

ID collision

One possible solution to this problem would be for the Finder to
renumber the resources as it moves them into the Desktop file, just
like Font/DA does with font IDs that conflict. This wouldn't work
very well, though, because the resources refer to each other. The
FREF resource contains the ICN# resource's ID, so changing that ID
would completely confuse the FREF (see Figure 6-5).

Since hundreds of thousands of Macintoshes face this problem
every day and manage to deal with it, there must be a solution that
works. How does the Finder resolve this conflict? It uses an elabo
rate little indirect numbering scheme that gives each FREF and
ICN# resource two different IDs. It works like this: when you create
your ICN# resources, each one gets a normal resource ID, but it also
gets a special number called a local ID. To assign these numbers, you
usually just say that your first ICN# is number 0 or number 1 and count
up consecutively from there. If you only have one icon list, it's sim
ply assigned a local ID of 0.

153

154 PART TWO TECHNICAL ADVENTURES

File "Desktop '

FREF 137
(ICN# 415)

FREF 278
(ICN# 707)

FREF 9057
(ICN# 1211)

FREF 278
(ICN# 672)

FREF 3196
(ICN# 7150)

FREF 17029
(ICN# 672)
ICN# 415
ICN# 707
ICN# 1211
ICN# 9315----11-
ICN# 7150
ICN# 2344----11--

These ICN#s ha1.1e been renumbered

(renumbered)

(renumbered)

Figure 6-5. Renumbering resources

To tell the Finder how this assignment has been made, you then
have to supply some information that maps the local IDs into the
regular resource IDs that you set with Rez or ResEdit. The resource
that tells about this local to global mapping is a BNDL-type re
source (for bundle), which is actually constructed as a general
purpose way of mapping local to global IDs, although the Finder
only uses it for ICN#s and FREFs. The BNDL resource gets copied
into the Desktop file along with the FREFs and ICN #s. Since each
application has only one BNDL, its resource ID isn't important; in
fact, the Finder will change this ID anyway when it ships the
BNDL off to the Desktop so that there are no numbering conflicts.

il; .. •rehuu ·
~'w;dfi3yo

Alsq, this ~o
tf me .. ~, so;f;~u s ;.

two-"gigabffe re

Printing Manager

By looking at the BNDL when it copies the custom icon informa
tion into the Desktop file, the Finder can renumber the resources
without messing anything up. In Figure 6-6 you can see how the
Finder uses the information in the BNDL to renumber the resources
while keeping the ICN# relationship intact. Since the Finder also
has to copy the FREF resources into the Desktop file, it may have to
renumber them too, so your BNDL should include a local ID to re
source ID mapping for them too.

Now we can see the elaborate copying and renumbering mecha
nism the Finder has to go through in order to install a custom icon for
a file. At a time like this, it's a good idea to step back for a moment
and remember what the heck we're doing here. Our objective, you
may recall, was this: given the name of a file--in this case the name
of the current printer's resource file--get its icon. To do this, we have

155

·~

156 PART TWO TECHNICAL ADVENTURES

File "Paul" .1 Finder changes these numbers

BNDL resource ' ICN# 1 • 1211
ICN# 2 • 672

ICN# 3 • 7150

FREF 1 • 9057

FREF 2 • 278

FREF 3 • 3196

These mappings stay the same

FREF resource
..JI..

Type DEAD _____. ICN# 1
Type SHIP _____. ICN# 2
Type STAR _____. ICN# 3

Figure 6-6. Finder renumbers resources

to understand and untangle the bundle of resources that's used to give
an icon to a file. With that refresher in mind, we can move forward.

We're almost finished decoding this process so that we can go
through it ourselves and find the icon. If you've been following along
and trying to develop your own algorithm, you may have noticed
that there's still one crucial nugget of information missing. We know
that every file with a custom icon will have a corresponding BNDL
in the Desktop file, but we don't know the BNDL's resource ID, since
the Finder renumbers BNDLs when installing them. How do we find
the BNDL we're looking for?

Signature Resource

There's one more thing the file has to provide when it wants a
custom icon. There must be a resource called the signature resource.
This is a resource whose type is the same as the file's signature. For
example, the LaserWriter file, which has creator LWRT, also has a
resource of type LWRT. It's interesting to know that the Finder abso
lutely ignores both the resource ID and the contents of this resource;
all it cares about is finding the resource itself, although it's conven
tional to use a resource ID of 0. When it finds the signature resource,

Printing Manager

it creates a corresponding resource in the Desktop file that's six bytes
long and has resource ID 0. The last two bytes of this resource tell, at
last, the ID of the BNDL for that file.

That's it. This is the whole process that the Finder runs through
in order to install a file's icon into the Desktop and make sure it's
unique. Of course, if any file comes along with the same signature as
one the Finder's already seen, it will assume that the new file is a
later and greater version of the thing it already has and it will toss
the old one and put in the new one. This is fine if you've really got a
new version of the same old application (or other kind of file). If it's
really a different application, though, and it has the bad luck to
have to same signature as an application you've already got, the old
icon will be lost and both files will now share the same icon. This
can look pretty funny if the two files have nothing to do with each
other.

If you've ever copied a new application to a hard disk, then
found that an old favorite program has suddenly taken on the same
icon as the new toy, this is probably what's happened. Also, if you
do get two different applications with the same signature, an even
more serious problem can happen: when you double-click on a file
that's not an application, the Finder uses the signature to figure out
which application to launch. This can easily lead to launching the
wrong application, which will proceed to try to open a document
that doesn't belong to it, resulting in no fun at all.

Register and vote. Having several different kinds of files
share the same signature and thus get their icons confused is not
exactly desirable, and it's certainly not behavior that you'd
normally expect from a major appliance. To prevent this from
happening, the venerable Macintosh Technical Support group
at Apple has been faithfully collecting signature types from
software developers for almost four years now, just like it says
on page 9 of Inside Macintosh, Volume III.The idea is that de
velopers should check with Apple to be sure they don't come tip
with a signature that conflicts with anyone else's. In practice,
this works pretty well, since many developers take the time to
register their file's signatures. Anyway, the odds are on your
side; there are more thal) four billion different signatures possi
ble and there aren't that many different applications yet.

So, if we want to find a file's icon in the Desktop file, like the
Finder does, we have to reverse-engineer this process. This means
that we begin by finding out the file's signature, which is easy to do

157

158 PART TWO TECHNICAL ADVENTURES

with GetFinfo or PBGetFinfo. Then, we have to get the signature re
source from the Desktop file. To accomplish this, we'll have to open
Desktop with OpenResFile, then use the Resource Manager to load
in the appropriate signature resource (remember that the signature
resource's type is the same as the file's signature-LWRT for Laser
Writer, for example). The signature resource will be six bytes long,
and the last two bytes will contain the resource ID of the BNDL
we're looking for (see Figure 6-7 for the format of the signature re
source in the Desktop file).

File "Desktop"

LWRT resource
$7723 1199 (4 bytes)
BNDL ID (2 bytes)

Figure 6-7. Signature resource in Desktop

Once we've got the BNDL resource ID from the signature re
source, we can take the next step, which is to unlock the secrets in the
BNDL. Specifically, this is where we'll find the mapping between
the local and global PREF and ICN# IDs that will get us the icon
we' re looking for.

In the BNDL, the first thing to look at is the list of PREF re
source IDs that are used for this signature. A typical BNDL is shown
in Figure 6-8 (it's the one for the LaserWriter file that we've been
using as an example). As you can see from the figure, a BNDL begins
by telling us the signature that owns it, which we can use to double
check that we're looking in the right place. Following that is a list
of types, and each type contains pairs of numbers. The pairs within
each type match up the local IDs with the resource IDs.

By scanning through the BNDL' s list of PREF pairs, we can find
out which PREF resources in the Desktop file belong to this signa
ture. We can then use GetResource to load and examine the PREFs
themselves. Figure 6-9 shows what one looks like when you cut it
open. The PREF is real simple: it has a file type and a local ID for an
ICN# resource. The file type tells which type is being defined by
this PREF and the ICN# local ID gives the icon list that should be
used to display a file of this type.

Printing Manager

File "Desktop"

BNDL resource
LWRT (owner : 4 bytes)
o (ID : 2 bytes)
1 (number of types minus 1 : 2 bytes)
ICN# (type : 4 bytes)
3 (number of ICN#s minus 1 : 2 bytes)

26634
2
1200
3
25217
4
27145
FREF
3

8690
2
22605
3
1541
4
29143

(local ID : 2 bytes)
(resource ID : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)
(type : 4 bytes)
(number of FREFs minus 1 : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)
(local ID : 2 bytes)
(resource ID : 2 bytes)

Figure 6-8. LaserWriter BNDL resource

File "LaserWriter"

FREF resource

PRER (File type: 4 bytes)
1 (local ICN# ID : 2 bytes)

Figure 6-9. FREF format

159

160 PART TWO TECHNICAL ADVENTURES

So, using the example BNDL and FREF that we've just seen, we
can learn that there are custom icons for four different types of Laser
Writer resource files; we know that because there are four different
FREFs. The FREF tells us even more: it says that files of type PRER
will be shown with the ICN# that has local ID 1, files of type
LROM will get ICN# with local ID 2, and so on.

I like icons. You may be surprised to discover that there are
three different custom file icons owned by the LaserWriter.
What are they? There's the standard one you see in the
Chooser, of course. There's also the icon used by the LaserPrep
file, which holds the PostScript dictionary that gets shipped
to the LaserWriter when it's initialized. Then, there are two
seldom seen icons that are used for two kinds of files containing
downloadable fonts. If you're interested, you can take a look at
them with ResEdit.

To translate from these local IDs to the resource IDs, we can take
another look at the BNDL, which says that the ICN# with local ID
1 is kept in the ICN# that has the resource ID 26634. We know from
our previous discussion that the PRER-type file is the resource file
for an AppleTalk-connected printer, like the LaserWriter, so this is
the one we want. By calling GetResource on this ICN #, we finally
have the LaserWriter's icon.

Let's think for a minute about what we now know how to do. We
started out with no information at all about the current printer. We
were able to find out what kind of printer it was and, since it was an
AppleTalk device, we also got its name. Then, by digging into the
Desktop file, we came up with the icon that the Finder displays for
the printer's resource file. Great!

Printing Manager

You may have realized by now that this technique of extracting
an icon from the Desktop file doesn't just apply to printer resource
files. You can use it for any file that has a custom icon in the
Finder-usually an application. All you have to know to get started
is the application's signature. Even if you don't know the signature
but do know what folder the file is in on the disk, you can get the sig
nature just by calling PBGetFinfo and looking in the ioFlFndrlnfo
field.

The~~,~~st b~:'ll~.~~~··~ay. ~9far;w~Ve onl.~'~alked a~oufl~·:f.
catmg'~fons in the Dij~ktop file. This technique is useful f6t.
trackit\~ down the ico~. for ariy file th~ Finder· .has. seel\. anq

·· 'added:~o its Desktop c$!llectiom(!f.)79~· ~al} t;\tee J~~~· yoµ •
have access to the original file.·q:nd ·not just ··esktop infor"'
matio!l1 the process is a little easier, sinceyou'Can find the cus
tom ~i:;~~l inthe file. its!]Jf. You ~an skip the fii-~ few steps all~ .
go dir~~~ly to looking at the fi.le's FREFs. Yo\ldon't need to ·
know their resource IDs; just use GetlndResourfe to grab them
?ne by0 one. Ftom that point on,. the rest of t~f'Pl'OCe&$ is the.
same.· You'll still need to use the file's BNDL to determine the
correspondence of the ICN#'s loeal ID to its resource ID.

To see how this works for an application's icon, let's go diving
into the Desktop file again, this time to try to find the icon for eve
rybody's first program, MacPaint. Before we get started, we'll sum
marize the steps we have to take to find a file's icon in the Desktop
file.

161

162 PART TWO TECHNICAL ADVENTURES

1. If you don't already know it, find the file's signature. You can get
the signature from the file itself by calling PBGetFinfo and
looking in the fdCreator field of the ioFIFndrlnfo parameter, or
by calling GetFinfo and examining the fdCreator field of the
fndrlnfo parameter.

2. In the Desktop file, you should find a resource with the same
type as the signature. The ID doesn't matter-you can use
GetllndResource to get whatever resource of this type is there.
You'll get a six-byte resource. Pull out the last two bytes and look
at them as an integer (a resource ID). If you should find that
there's no resource of this type, give up peacefully, as it proba
bly means there's no icon for this file or it's been lost somehow.

3. Using the resource ID that you just acquired, get the BNDL re
source that corresponds to it (still looking in the Desktop file).
This will be the BNDL that holds the information for the signa
ture we're looking for. Again, if you don't find a BNDL with this
resource ID, you should resign gracefully.

4. Get the resource IDs of the FREFs from the BNDL and start load
ing them in, one by one, until you find the one for the particular
file type you're after. If you're looking for an application's icon,
you'll want type APPL; if it's an AppleTalk printer, the type is
PRER; a directly connected printer will have type PRES; some
other kind of Chooser-friendly fellow will be type RDEV. If
you're looking for anything else, you'll have to know its type; for
example, to find the icon that MacPaint uses for its documents,
you'll need to look for type PNTG.

5. When you spot the file type you want in its FREF resource, note
the local ID for the ICN# that's also part of the resource (see
Figure 6-9 to remember what this looks like). You'll need to map
this local ID into the resource ID to find the actual ICN# re
source.

6. Look through the BNDL resource at the ICN# mapping informa
tion until you find the entry for the local ID you just got out of the
FREF. When you see this, get the resource ID that's mapped to
the local ID.

7. Get the ICN# resource that has the ID you just found, and that's
it.

Now we're all ready to start searching for MacPaint's icon in the
Desktop file. The first thing we'll need to know is MacPaint's signa
ture. If we know where it is on the disk, we can use PBGetFinfo to
learn the signature, which is MPNT.

The next thing to do is to get the signature resource by calling
GetResource for type MPNT and resource ID 0. When we get it, we'll
look at the last two bytes of it to find the bundle ID for MacPaint. To

Printing Manager

make this munge-along a little easier to follow, let's plug in some
real numbers. We'll say that the ID we get from the signature re
source is 14284, as shown in Figure 6-10. By loading this resource, we
can see all the FREFs and ICN#s for MacPaint (also in Figure 6-10).

File "Desktop"

MPNT resource 0
$?723 l lOO (always first 4 bytes)
14284 (BNDL ID : 2 bytes)

BNDL resource 14284
MPNT (owner: 4 bytes)
o CID : 2 bytes)
l (number of types minus l : 2 bytes)
ICN# (type : 4 bytes)
l (number of ICN#s minus l : 2 bytes)
l (local ID : 2 bytes)
24927 (resource ID : 2 bytes)
2 (local ID : 2 bytes)
6965 (resource ID : 2 bytes)
FREF (type : 4 bytes)
l (number of FREFs minus l : 2 bytes)
l (local ID : 2 bytes)
29226 (resource ID : 2 bytes)
2 (local ID : 2 bytes)
6857 (resource ID : 2 bytes)

Figure 6-10. The larch

The bundle in Fisure 6-10 shows that there are apparently two
custom icons for files with the MPNT signature. This is pretty consis
tent with what we would expect for applications, since there's usu
ally a custom icon for the application itself and the documents that
the application can produce. In fact, applications that can create
several different kinds of files will usually have one FREF and one
ICN# for each. The all-time champion of custom Finder icons is prob-

163

164 PART TWO TECHNICAL ADVENTURES

ably 4th Dimension, which has 12 different icons for the 12 different
types of files it owns.

The next step is to load and look at the FREFs until we find the
one we want. In this case we're looking for the application's icon, so
we'll search through FREFs until we find the one that tells us about
file type APPL (for application). The first PREF listed has resource
ID 29226 (see Figure 6-10 again), so it's the first one we'll look at. Its
contents are shown in Figure 6-11. It looks like we've hit the one we
wanted on the first try. This isn't really very surprising, since the
FREFs are just listed in the order the developer defined them and
the APPL type is almost always the first one defined.

File "Desktop"

FREF resource 29226
APPL (file type : 4 bytes)
1 (local ID : 2 bytes)

Figure 6-11. FREF for MacPaint

The important tidbit that the PREF is telling us is that files
with type APPL will have the ICN# with local ID 1; in other
words, the Finder will use this icon list for the MacPaint applica
tion. To figure out this ICN#'s resource ID, we just look back at the
BNDL in Figure 6-10, and we can see that this ICN# is stored in the
Desktop file with resource ID 24927. All we have to do now is use
GetResource to load the icon and we can draw it on the screen or do
whatever we want. As Darth Vader said to Luke, "I have you now!"

Printing Manager

A lot of the stuff we've done in this section is undocumented and
is likely to be subject to great change in the future. Specifically,
looking through the Desktop file for things is a technique that
might go bad on you as the Finder and the other system soft
ware evolves. You can also run into problems when the Desktop
file you're spying on happens to belong to an AppleShare file
server. Your life will be much, much simpler if you try to find
the custom icon resources by looking in the resource file you're
interested in, rather than the Desktop file, if you can locate
the file in question. That technique has a much longer life
expectancy than one based on assumptions about the format of
Desktop.

Another compatibility issue to worry about is the method
we used to find the current printer. Again, although system 4.1
supports this way of doing things, Apple hasn't promised that
it will stay that way forever. In fact, various technical goop
out of Apple has hinted at major changes in the way the
printing architecture works. If past performance is any indica
tion, this usually means that Apple will try pretty hard not to

·break any applications that used things documented in Inside
Macintosh and the Macintosh Technical Notes. However, any
thing that steps outside those boundaries probably will not be
treated as kindly, so be careful.

There are a couple of things you can do to minimize the
pain you would feel if Apple makes a system software change
that leaves you out to lunch. The first thing to do is document
the things you're depending on and understand that they're
shaky. If you're counting on an undocumented feature like the
current printer's type being in STR -8192 in the system file,
make sure you note that fact as a comment in your source code-
you do comment your source code, don't you? The other thing to
do if you're living dangerously is to minimize your risks. If
there's a more compatible road to take, take it. For example,
trying to find a file's custom icon resources in the file itself is
better than trying to get them out of the Desktop file.

Once you have the current printer's name, what can you do with
it that's useful? You can do lots of things to make your users' lives a
little easier. We discussed one trick, which is to display the current
printer's icon while you're printing, filling it up with black a little
at a time to indicate the progress of the document being printed.

Another thing you can do with the printer's icon is to use it in a
dialog that gives the user some sort of status report about the docu-

165

166 PART TWO TECHNICAL ADVENTURES

ment that includes printing information. This could be really useful
if you're writing a network utility that tells the user how things are
going with any particular printer. Once you know the icon, you have
a very convenient way to communicate with the user about the cur
rent printer.

Displaying the Document's Name

When you print to a remote, shared printer like a LaserWriter or
an ImageWriter with an AppleTalk card installed, the Printing
Manager and the associated AppleTalk software get together to dis
play some handy information in a little alert at the top of the
screen. This information is useful not only to the person who's print
ing but also to anyone else who is trying to get to that printer. While
the document is printing, the alert displays the name of the docu
ment being printed as well as the user who's doing the printing (see
Figure 6-12). That lets you know who to yell at when you absolutely
have to print your stuff right now.

user: Joe J.; document: Beat Crazy; status: printing

Figure 6-12. LaserWriter status alert

Where does the information in this alert come from? Every user
on an AppleTalk network has a user name, which is usually entered
into the Chooser. This name uniquely identifies the user for elec
tronic mail and other network messages. After the name is entered,
it's kept in the Macintosh's parameter RAM and also stored in the
system file as a resource, specifically STR -16096.

Some clever programs have had fun with the user name by grab
bing it and putting it in interesting places. One of the earliest uses
was a small patch that ran around inside the Macintosh group at
Apple for a while when AppleTalk was first being developed. This
patch modified the startup alert (the one that usually says
'Welcome to Macintosh") so that it added the user's name onto the
end, as in "Welcome to Macintosh, Steve." Cute.

Another trick with the user name can be found in versions of
ResEdit that appeared around the beginning of 1986. ResEdit,
legendary as a program that was incredibly hard to write, was in its
"final" testing at the time. Opening the About dialog presented an

Printing Manager

address and a request for bug reports. Next to the address was, liter
ally, a bullet with your name on it-a small picture of a bullet with
the user name, grabbed from STR-16096, drawn on top of it. This was
a very appropriate metaphor for ResEdit at that time.

There are other, more practical things you can do with the user
name, of course. We've already mentioned that the user's name ap
pears in the LaserWriter status alert. In addition, AppleShare uses
the name as the default entry when you're signing onto a file server.
The InterMail electronic mail system from Interactive Network
Technologies also takes its default from the user name and even
greets the user by name when the system starts up.

In addition to the user name, the LaserWriter status alert also
gives the name of the document that's being printed. Where does it
find this name? Actually, it has no way of knowing the name of the
file that's being printed. So it uses a reasonably clever trick, one any
good hacker would be proud of: it looks at the frontmost window and
it uses its title. If there are no windows at all when the printing is
happening, the status alert just says that the document is
"Unspecified," which is not very friendly.

This isn't usually a problem when you're printing, because the
frontmost window is almost always the one being printed. However,
sometimes this isn't the case. In particular, when the user chooses a
document in the Finder and then selects the Print item from the File
menu, most applications don't bother opening any windows. They
usually just find the document, open the file without creating a win
dow for it, and print.

With this technique, since no windows are open when the print
ing takes place, the Printing Manager will be reduced to thinking
that the name of the document it's printing is "Unspecified." This
always makes it look as if the computer and the LaserWriter aren't
talking to each other very well and something must be wrong. It's a
situation that does not inspire confidence in your users and we should
really do something about it.

To tell the LaserWriter the name of the document we're printing,
we have to create a window with the desired name and make it
frontmost. This presents a dilemma, since we don't really want to
have to open a window here. What can we do?

There are actually several choices. When you print, it's a good
idea to put up an alert that allows the user to cancel printing by
clicking on a Cancel button or typing Command-period. Usually, this
alert uses the window type dBoxProc, which doesn't display its
title. How convenient! All we have to do is make the window's title
whatever we want to appear in the printing status alert and we're
all set. Since the window doesn't display its title, we won't be faced
with the funny appearance of a cancel printing alert that has the
title of the document being printed.

167

168 PART TWO TECHNICAL ADVENTURES

This will work fine if we have a cancel alert, since it provides a
window that we can name. What do we do if there is no cancel alert
and no place to hang our window name? We still have to come up
with a window. One idea would be to open a window with the name
we want and then make it invisible. This is a neat idea, but it won't
work, since the Printing Manager outsmarts us by making sure that
the title it uses comes from a visible window.

On the Macintosh, there's usually more than one way to scam a
clever piece of code. In this case, we can make a visible window, but
we can stick it way, way out in the QuickDraw coordinate plane,
starting at an x,y position of something like 32000,32000, which will
put the window just south of Tierra Del Fuego. This will ensure that
the window won't be seen, but its title will still be grabbed by the
Printing Manager for its alert, which is just what we want.

It's interesting to note that the Printing Manager actually keeps
the name of the document it's printing in the print record. This means
that a really clever application that wants to go right to the heart
of things can set the document name directly by messing around with
the print record. This is a very bad idea if you care about compati
bility with future versions of the printing software. Not only is the
location of the name not documented, but even more ominously, Apple
has warned in technical notes that this field won't be in the same
place in the future.

We should talk about one other aspect of the Printing Manager's
technique here. The Printing Manager looks for the frontmost win
dow's name when you call PrValidate; then it gets the name and
stuffs it into the print record that's passed to PrValidate via a
handle. If you're printing more than one document and you want to

Printing Manager

switch your distant window's title to display the right name, you
should do it after you finish printing one document (after you call
PrCloseDoc). Then, before you start printing the next document, call
PrValidate on the print record to stick the new window's name into
the print record.

One last long word of advice about this stuff: be sure you don't
call PrValidate while you're in the middle of printing out a docu
ment. You'll find that strange things will happen to the print record,
and what comes out of the printer may resemble Jeff Goldblum in The
Fly (a good movie to see after a hard day of writing code, by the
way).

General Printing Information

One of the fun and disorienting things that new Macintosh pro
grammers discover is that printing just ain't what it used to be. On a
conventional personal computer, printing something involves shoot
ing ASCII characters out the printer port. For example, if you want
to print the string "Reconstruction of the Fables," you just send that
string to the printer, usually with some kind of standard output
statement that your programming language provides.

Things don't work quite that way on the Macintosh, for a number
of reasons. The fundamental reason is that users almost never print
documents composed purely of text with their Macintoshes. If they'd
wanted to do that, they probably would have bought an Intimidat
ing Blue Machine instead of a Macintosh. On a Macintosh, documents
that come out of the printer are composed of thousands or millions of
pixels-they're bitmapped.

Printing with lots of little dots makes it impossible to just send
ASCII to tell what to print. Another reason Macintosh printing can't
work that way is that when you're printing, you might be working
with a printer plugged into a serial port and sitting next to the com
puter, or you might be dealing with a phototypesetter connected via
AppleTalk, an AppleTalk bridge, and a telephone link, which
might be sitting in a barn in France for all you know. Since the photo
typesetter is really a Postscript-speaking computer that also hap
pens to know how to print, you can't be expected to try to talk to it
just by sending plain old ASCII text.

So, in order to be able to talk to the graphic printers the Macin
tosh demands, you do your printing in the same way as you get things
on the screen: by drawing with QuickDraw commands. Before you be
gin printing, you go through a little ritual, which tells the system
that although you're acting as if you were drawing things in a regu-

169

170 PART TWO TECHNICAL ADVENTURES

lar grafport, you really want them to appear on a printed page. Spe
cifically, you call PrOpenDoc, which gets you started by creating a
grafport set up for printing. Then, for each page, you call PrOpen
Page, then whatever QuickDraw stuff you need to draw your image,
followed by PrClosePage to tell it when the page is finished.

One of the big ideas of the Printing Manager is generality, some
thing the Macintosh system software really shines at, as we've dis
cussed. For the Printing Manager, this translates to printer indepen
dence, which means you should be able to write the part of your pro
gram that does the printing and have it work on any printer~ Re
member that the user gets to decide which printer to use with the
Chooser and might even change the selected printer right in front of
your nose while your application is running.

You can write printer independent code for your application and
have it work properly on any of Apple's supported Macintosh print
ers, just as you can write programs that open, read, and write files
and have them work correctly whether the file is on a floppy disk, a
hard disk that has 20, 40, 73, or 119.5 megabytes, or a file server.

LaserWriter Specifics

Just as with the different kinds of drives, you may want the flex
ibility of doing something special for a particular kind of device. For
example, you might want to prevent a user from saving certain kinds
of files on a file server but allow it if it's a local disk. In the same

Printing Manager

way, you might want to take advantage of the special capabilities a
LaserWriter offers; after all, you paid a lot more for it.

The process that takes place when you print is interesting
enough, but the things that happen when you print to the Laser
Writer are downright fascinating. As your program gets ready to
print, if the printer that the user has chosen is a LaserWriter, the
Printing Manager has to set up communications with the printer
across the AppleTalk network.

When you start to print your document, you make things happen
by using QuickDraw commands to draw into the printing grafport
that PrOpenDoc created for you. The LaserWriter, of course, doesn't
know anything about QuickDraw-it has the PostScript page de
scription language in ROM. The LaserWriter must have some way of
figuring out how to deal with the mess of QuickDraw commands your
program ships out.

The answer is a very slick translation that takes place from
QuickDraw to PostScript. You can draw your document's image in
QuickDraw, but the LaserWriter driver converts everything to Post
Script so that the LaserWriter knows what to do. This is no mean
feat, since QuickDraw and PostScript are very different ways of de
scribing how to put graphics and text onto a page. The LaserWriter
driver tries to do as much as it can to turn your QuickDraw doodles
into the right PostScript code to make the same doodles.

The basic philosophy behind drawing is quite different in
QuickDraw and Postscript, and this presents some of the difficulty
in translating from one to the other. QuickDraw was originally de
signed to be used with memory-mapped screens and so it includes
things created with that in mind.

For example, QuickDraw includes the ability to combine bits
that are already on the screen with new bits in a variety of different
ways called transfer modes. You can directly transfer bits to the
screen without caring about what was there before (called source
copy mode), you can add your image to the ones that were already on
(this is source-or mode), or you can combine the pixels in several
other ways.

171

172 PART TWO TECHNICAL ADVENTURES

The original version of QuickDraw supports eight fairly
straightforward transfer modes that use logical functions on
the bits. In Color QuickDraw things are a lot more interesting,
since color combinations can be made in so many different ways.
To allow more flexibility in combining colors, several new
transfer modes for color are available. These include AddOver,
which adds the RGB values of the source and destination pix
els, and SubOver, which subtracts the destination from the
source. If the result of the addition or the subtraction is an over
flow or underflow (that is, if the red, green, or blue component
is greater than 65535 or less than 0), the value simply wraps
around. This means that almost-white colors can wrap around
to almost-black colors, which is often not what you want. For
this reason, there are the AddPin and SubPin modes, which let
you set the highest and lowest RGB values that can be created
when combining pixels. For more on how color works, see
Chapter 3.

PostScript's basic assumption is that you're drawing on a page
that is already white, rather than on a screen that might have some
stuff on it already. This means that QuickDraw-style transfer
modes, which combine an existing image with a new one, don't make
sense in PostScript. In fact, operations that work on existing bits in
the grafport, such as EraseRect, usually aren't necessary when you're
printing, because the paper starts out blank anyway.

About Postscript

PostScript was designed for devices that typically have a lot
more resolution than the Macintosh screen: a LaserWriter has 300
dots per inch, compared to the typical Macintosh screen's 72 dots per
inch. PostScript was made to build pages for a printer; QuickDraw's
main purpose was to implement the very interactive nature of the
Macintosh user interface. These facts combine to give PostScript
great features for doing tricks on your output.

PostScript lets you draw several different kinds of things on a
page. You can use line- and curve-drawing operators to build differ
ent kinds of shapes, simulating QuickDraw's shape-drawing com
mands. You can also change a curve into a series of lines, fill up an
area with a gray tone, change the width of lines that you draw, and
rotate things until you're dizzy.

Printing Manager

PostScript gives you some very slick ways to deal with text.
Each character is stored as an ordered bunch of points that describe
an outline of the character, and the character is drawn by connecting
the points with curves. The main advantage to this technique is that
the characters can be scaled to any size without looking jaggy. This
is why any text that's printed in a font stored in the LaserWriter
ROM, such as Helvetica or Times, is always nicely scaled, even if it
looks bizarre on the screen.

PostScript has a lot more goodies for producing nice images. It
can deal with digitized data and bitmaps and do clipping to speci
fied areas. It even contains commands for working with color, if only
a color LaserWriter would drop from the heavens.

There's an extensive set of general-purpose programming lan
guage things in PostScript that make it easier to do your job when
you have to apply some math to your image. PostScript includes com
mands for the basic four functions, plus a bunch of fancy functions like
log, sine, cosine, and square root. Gee, remember back a few years ago
when computers were computers and printers were printers? Now we
have a printer that knows how to calculate square roots! There must
be a really slick hacker-type application there somewhere.

For most applications, the automatic translation from Quick
Draw to PostScript that the LaserWriter driver does for you is
enough to make your output beautiful. Sometimes, though, when you
really want to produce great printed results and you know you get to
print on a LaserWriter, it's nice to take advantage of some of the
special tricks that PostScript can do with a printed page. Laser
Writers have become common enough, in fact, that lots of programs
work only with a LaserWriter or other PostScript printer. Remember
that you can find out whether you have a LaserWriter handy by
looking at the prStl.wDev field of the print record.

If you are printing to a LaserWriter, you might want to do all
your printing in PostScript. This is kind of similar to choosing to do
all your color drawing in the new Color QuickDraw model: you trade
the generality of code that works on all systems for some specific ad
vanced features. If you want to have full control of the power in the
LaserWriter's PostScript ROM, you can abandon QuickDraw for your
drawing and stick with PostScript.

For most applications, though, what you'd really like to do is
let the LaserWriter driver translate most of your drawing automati
cally from QuickDraw into PostScript. Then, in those very special
places where you've just gotta have some PostScript action, you can
insert it. The Printing Manager and the LaserWriter driver give you
a bunch of different ways to do this, and we'll discuss them now.

173

174 PART TWO TECHNICAL ADVENTURES

Using Postscript

When you draw pictures in QuickDraw, you pass a series of oper
ators, like FrameRect, CopyBits, or FillRgn, along with the appro
priate data, like the rectangle that you're framing, the bits you're
copying, and the region you're filling. In addition to the commands
that draw things, QuickDraw allows you to stick comments into your
pictures. These picture comments can be used to store things that
QuickDraw doesn't really care about in the picture.

When you draw a picture, QuickDraw normally just ignores any
comments that are stored along with the drawing commands. If
you're clever, though, you can set up a hook to receive all the com
ments as they're processed by QuickDraw's DrawPicture call. Picture
comments present an interesting method for communication between
programs that create them, such as your application, and programs
that install themselves into the hook that sees all the picture com
ments come flying by. In fact, this is exactly what the LaserWriter
driver does when it sets up a printing grafport: it makes sure its com
ment-processing routine will see all the comments.

By sticking things into the picture as comments, we can store any
kind of special instructions we want to; QuickDraw will leave them
alone and just pass them through. It would be really slick if we could
put Postscript commands into a picture comment. Then, when Quick
Draw was drawing the picture, it would just pass the comments along
to the routine that was hooked in. If that routine were set up to ex
pect Postscript commands, we'd have an easy way of adding Post
Script to our QuickDraw pictures.

Printing Manager

Well, this is such a good idea that Apple implemented it. There
is a standard set up so that an application can hide PostScript com
mands in picture comments. When the program calls DrawPicture to
print the thing, the LaserWriter driver will recognize the comments
as PostScript commands and will execute them. If the printer isn't a
PostScript device, no worry-remember that by default QuickDraw
simply ignores comments, so nothing will happen when the comments
are processed.

How does t~e LaserWriter know that a particular comment con
tains PostScript code? It would be pretty dosed-minded for the driv
er to assume that it owned every comment in the picture. In fact,
QuickDraw picture comments carry along an integer called the com
ment kind, a convenient number that lets you tell one type of comment
from another (after all, they all look alike to us humans).

In addition to the comment kind, every comment carries along
some data, which is also used to figure out what to do. The meaning
of the data varies from one kind of comment to the next, as we'll see.
Putting a comment into a picture is very simple: you just set up the
comment kind and the data that you need, then call the QuickDraw
procedure PicComment, which adds the comment stuff to the picture,
assuming you've already opened a picture by calling OpenPicture
and you're recording commands into it.

The Postscript Comments

If you want to send Postscript to the printer with QuickDraw
comments, you get to choose from several different ways of doing it.
The choices you have involve the source of the PostScript commands,
but no matter which technique you choose, you have to start out the
same way. You begin with a comment that tells the LaserWriter
driver that some PostScript stuff is coming, so it gets ready and flips
off its QuickDraw-to-PostScript translator for awhile.

The comment you'll start with is named PostScriptBegin, which
has a comment kind of 190. No other data gets sent along with this
comment, since it just alerts the driver to the fact that some Post
Script is about to come down the wire-it doesn't actually send any
PostScript code itself.

The PicComment procedure actually takes three parameters: the
kind of comment (an integer), the size of the data (another integer),
and a handle to the data itself. When we want to set the driver up

175

176

show'

{var
p : Str255;}

PART TWO TECHNICAL ADVENTURES

for PostScript, we'll just make a PicComment call with the Post
ScriptBegin comment, which is number 190:

PicComment (190, 0, Nil);

Since no data has to be sent with this comment, the second parame
ter, the data size, is 0, and the third parameter, which is usually a
handle to the additional data, is Nil here.

Any commands that come next in the picture will be treated dif
ferently, since we've placed the LaserWriter driver into PostScript
mode. Now we have to decide which of several methods we want to
use to draw our masterpiece. The simplest technique, which is espe
cially useful for PostScript one-liners, is the PostScriptHandle com
ment. This kind of comment lets you put some PostScript code into a
relocatable object as a string and then ship it off to the LaserWriter.

The PostScriptHandle comment is comment kind 192 and the
data that goes with it is the string of PostScript commands. You can
actually have as much Postscript code as you want in the relocata
ble object, as long as the last character in the string is a carriage re
turn (ASCII 13). The trickiest part of using this method is convincing
your programming language to stick the bytes into the relocatable
object. One way to do it in Pascal would be to start by putting the
PostScript text into a plain old string, like this:

p:=' /Helvetica findfont 18 scalefont setfont 10 10 moveto (Beam me up)

Even if you're not familiar with PostScript, you can _probably
figure out that this command sets the Helvetica font in 18-point
type, moves to a specific location on the coordinate plane, then
writes some text. The next thing we have to do is to tack a carriage
return onto the end of it.

{canst
er = chr (13);}

p := Concat (p, er);

Printing Manager

Now we need to create a new relocatable object that we'll pass on to
the picture and then copy the information from the string into the
new object:

{var
postParcel : Handle;}

postParcel := NewHandle (length (p)); {should error-check here!}
BlockMove (pointer (ord (@p)+l), postParcelA, length (p));

{confusing syntax forced by Pascal: just moving bytes}

The weird first parameter to BlockMove is just a way of convinc
ing Pascal to move all the bytes in the string except the first, since
the first byte contains the length and isn't really part of the string.
Also, note that we don't have to HLock the postParcel handle be
cause there's nothing in the BlockMove call that could cause a heap
compaction (that is, no new objects are allocated).

Once we've moved the data into the relocatable object this way,
we can go ahead and mail it in:

PicComment (192, length (p), postParcel);

This PicComment will put the text at the end of the handle into the
picture. Then, when the application calls DrawPicture to print to
the LaserWriter, the Printing Manager will send it to the printer as
PostScript commands.

If this method of sending PostScript to the printer isn't conven
ient, there are lots of other ways to do it. The next technique we'll
look at uses the TextlsPostScript comment kind. This comment allows
us to just draw text by using QuickDraw's regular text commands,
mainly DrawString. By preceding the text with a TextlsPostScript
comment (which is comment kind 194), the text isn't really drawn in
the grafport; instead, it's interpreted as PostScript commands.

To make this magic happen, just include a comment number 194 in
your picture, then follow it with QuickDraw text drawing com
mands. The TextlsPostScript comment doesn't require any additional
data when you call it since all the PostScript commands appear af
ter it. Make this call to start using this technique:

PicComment (194, 0, Nil);{TextisPostScript, no data needed}

Following this comment, we'll send some PostScript off to the
printer by using standard QuickDraw text-drawing commands. So, if

177

178

show'

PART TWO TECHNICAL ADVENTURES

we want to do the same thing we did in the previous example-write
a string of text-we can do it like this:

Drawstring ('/Helvetica findfont 18 scalefont');
Drawstring ('setfont 10 10 moveto (Beam me up) show');

This time we've split the command into two lines just to make it a
little more readable. Notice that we don't have to care about where
the end of the line is and we don't have to add a carriage return at
the end as we did with the previous method.

This technique is handy for sending a lot of PostScript com
mands. It's much more convenient than trying to load everything up
into one relocatable object as with the PostScriptHandle comment we
used earlier. Whichever technique you choose, remember to start
with the PostScriptBegin comment that tells the LaserWriter driver
to expect something in PostScript.

The third method of sending PostScript through the Laser
Writer driver is to put the Postscript commands into a disk file. This
can be useful for exchanging PostScript information between two ap
plications, although it can be dangerous because the LaserWriter
driver expects the file to be there when it prints. Since the user
doesn't know when PostScript is being printed from a file, there's no
easy way to recover if the file is missing, so the LaserWriter just
quits printing if it can't find the file.

There are two ways to include PostScript commands in a file: as
resources and as data. The resource format lets you create a new re
source that has PostScript commands in it and then add the appro
priate comment to your picture. The comment data for this method is
the resource type, ID, and an offset into the resource telling where to
start looking for the commands. Most folks, including Apple, use re
source type POST for PostScript in a file, so you should probably use
it too. Also, there seems to be a standard that POST resource IDs
should start at 501, although this doesn't seem to be a requirement.
Maybe someone is a fan of a particular brand of jeans.

Let's take the same example we've been using and put it into a
PostScript resource. Before we can use the PostScript resource, we
have to put a little header on the data. The LaserWriter requires
two bytes to identify this type of resource, and they should always
be $0100. We can build our string like this:

p:=' /Helvetica findfont 18 scalefont setfont 10 10 moveto (Beam me up)

p := Concat (chr (1), chr (0), p); {add header to string}

Printing Manager

Before we can make it into a resource, we have to get the Post
Script stuff into a relocatable heap object. If you remember, our first
example started by stuffing some Postscript commands into a varia
ble and then used BlockMove to move them into a relocatable object.
We'll do the same thing now.

postParcel := NewHandle (length (p)); {should error-check here!}
BlockMove (pointer (ord (@p)+l), postParcelA, length (p));

Once we've done this, we can make it into a resource pretty easily.

AddResource (postParcel, 'POST', 501, '');

This makes our PostScript command string into a resource with
type POST, ID 501, and no name (that's the empty string in the last
parameter). Now that it's a resource, we can use it later in a picture
with the right PicComment call. For this method, the comment kind
we want is called ResourcePS and its number is 195. As we said, the
data for the comment is the type, ID, and index, so we'll have to put
those things together first.

{var
postData : Record
theType: resType;
theID: Integer;
theindex: Integer;

end;}
postData.theType := 'POST';
postData.theID := 501;
postData.theindex := 2;{start just past the header}

Now that we've finally got everything that we need, we can
proceed to record the picture comment. Here's how we'd do it:

PicConunent (195, GetHandleSize (postParcel), postParcel);

When this comment is processed as the picture is drawn by the ap
plication, the LaserWriter driver will try to find the resource (in
this case, it would be POST 501), look into the resource at the index
given by the comment, and send the PostScript that it finds.

179

180 PART TWO TECHNICAL ADVENTURES

Resourceful. The technique for sending PostScript as a resource
is mainly intended for downloading fonts to the LaserWriteF.
This is the process the LaserWriter goes through when you
need to print a font that it doesn't have in ROM. Some software
developers, including Adobe System, the creator of PostScript,
use this format to distribute fonts for the LaserWriter to print.
If you need more information on how downloadable fonts are
constructed or you' re just interested in learning about yet an
other arcane subject, you should consult the Laser Writer Refer
ence Manual published by Addison-Wesley.

If you don't want to fool around with resources, or you need to
bring in some PostScript code from an application that prefers data
files, you can use another comment that lets you put the PostScript
into a data file rather than a resource. This comment is called Post
ScriptFile and it's comment number 193.

When you use the PostScriptFile comment, you just store the
Postscript statements in a data file on disk. As with the POST re
source, you have to put a two-byte header on the data that tells the
LaserWriter what to expect. You should again use $0100 for the
header to indicate that you're sending text with PostScript com
mands in it.

When you make the PicComment call, the data handle should
be a handle to a string containing the name of the file with the Post
Script in it. The file name should be in Pascal format, with a length
byte preceding the characters. Of course, this means that you'd bet
ter make sure the file is around when the user tries to print, or the
LaserWriter driver will give up, leaving the user pretty confused.

When you're ready to create the comment, it will look something
like this:

PicComment (193, GetHandleSize (fileNameHdl), fileNameHdl);

We've now talked about four different ways of sending Post
Script to the printer using picture comments. With these comments,
we can print in PostScript without having to give up QuickDraw. In
fact, you can be cruising along printing with QuickDraw calls and
switch to PostScript using the comments we've discussed.

One more thing to know is how to turn the QuickDraw-to
PostScript translator back on in the LaserWriter driver. As you
might expect, you do this with another comment, one named Post-

Printing Manager

ScriptEhd. This comment is number 191 and it doesn't take any addi
tional data, so it should look like this when you call it:

PicComment (191, 0, Nil); {Turn off Postsc~ipt mode in driver}

Remember to put one of these in your picture after you're through
drawing in PostScript, or you'll find some very strange results.

Fixing the Coordinate System

There's another little trick that you'll need to know if you're go
ing to do PostScript tricks from QuickDraw picture comments. One of
the differences between PostScript and QuickDraw is the way the
coordinate systems are set up. In QuickDraw, the x-coordinates in
crease as you move to the right and the y-coordinates get larger as
you move down on the screen or page. PostScript is set up like a con
ventional coordinate plane, with the y values increasing as you
move from the bottom of the page to the top.

This means that when you try to print some PostScript from the
middle of your QuickDraw picture, you'll get a surprise: the image
will be upside down and mirrored! This is probably not what you
want. Luckily, PostScript is flexible enough to allow you to redefine
the coordinate system to work the same way as QuickDraw's. To do
this, you have to issue two PostScript commands to the printer: one to
move the origin and one to change the direction of the y-axis.

The PostScript commands you need are these:

0 730 translate
1 -1 scale

% This operation moves the origin
% This says to reverse the y-axis

The things on each line following the percent signs are comments,
and they're ignored by the PostScript interpreter. The effect of these
two commands is to tum the coordinate system into approximately
the same one that QuickDraw uses. After sending these two com
mands, you can use QuickDraw comments to draw things and they'll
come out right side up. Of course, if you really want them to come out
upside down, you can skip changing the coordinate system, but if
you're a real PostScript hacker, you can figure out how to rotate or
flip anything you want easily.

181

182 PART TWO TECHNICAL ADVENTURES

Escape to PostScript

If you thought you'd already read about a lot of different ways
to send PostScript to the printer through the LaserWriter driver, get
ready for another one. The driver defines a font, the PostScript es
cape font, which can be used for sending PostScript commands. It
works like this: in the LaserWriter resource file, there's a STR re
source with ID -8188. If you set this string to the name of a font, then
text that's sent to the printer in that font will not be printed but will
instead be interpreted as PostScript code.

This is an interesting way to allow PostScript to go to the
printer. It means that a user with ResEdit could get into the
LaserWriter file and change the STR -8188 resource to a font that
never gets used; then, the user could fire up any old word processing
program and program in PostScript, just by using the escape font!
Talk about power users. This means you can use PostScript directly
from MacWrite or anything else that lets you have your choice of
fonts .

If you don't change it, STR -8188 is normally set to the string
"PostScript Escape," just to remind you of what it does. Note that
when you pick a font, you should pick one that you don't want to
print in, since anything in that font will be shipped off to the Post
Script interpreter and not printed. Another tip is to pick a font that's
in the LaserWriter ROM; if the PostScript escape font isn't in the
LaserWriter's ROM, the driver will download it to the printer, even
though it doesn't really need it.

This little problem of downloading the escape font is present in
LaserWriter version 3.1, but it's likely that it will be fixed in
the future, and maybe even by the time you read this.

One note of caution about using this trick: if you set the escape
font, forget you've done it and then try to print something in that
font, you'll have a terrible time. The LaserWriter driver will try to
interpret your letter to Aunt Minnie as the next great PostScript mas
terpiece. If you set the escape font, don't forget you've done it.

Other PostScript Tricks

You can use any of the techniques we've discussed to send Post
Script commands directly to the printer. There are some other inter-

Printing Manager

esting tricks you can do with the LaserWriter driver that give you
access to PostScript at a slightly higher level. We'll talk about a
few of those briefly now.

PostScript allows you to define dashed lines to a very great
level of detail. You can set a dash pattern for a line and then draw
with that pattern. A pair of QuickDraw picture comments, Dashed
Line and DashedStop, allow you to record PostScript dashed line in
formation in a picture. You have to define the parameters for the
dash and then tell where to draw it.

One of the neatest things about Postscript is that it allows you
to draw at the LaserWriter's full resolution of 300 dots per inch. Usu
ally you have to delve directly into PostScript to draw really tiny
dots at Laser Writer resolution; but there's another picture comment
that will help you draw very fine lines. This is the SetLineWidth
command, which allows you to specify a pen size (height and
width) in LaserWriter resolution. When you send this comment, the
additional data is an x-y size for LaserWriter line widths. After
sending this comment, lines will be drawn in this size.

QuickDraw also has the ability to draw polygons defined by a
set of points. You set one up by drawing lines; QuickDraw remembers
the point at each corner (or vertex, for you geometry fans) and re
draws the polygon by connecting the dots. Postscript includes some
more advanced techniques for drawing polygons. The LaserWriter
driver gives you access to PostScript's curve-smoothing capabilities
by defining polygon comments. These comments use a curve drawing
algorithm defined by cubic equations (gee!) to precisely define the
curves.

PostScript has the neat capability to rotate things before plac
ing them on the page. There are QuickDraw picture comments that
let you rotate things easily. You can rotate any image in general or
you can use a special set of comments just to rotate text.

A few other comments give you control over what goes on in the
LaserWriter's PostScript brain. The LaserWriter normally plays
around with the space between words to make sure that things you
print come out where you expect them to. Sometimes, you want to
make sure that a block of text comes out exactly centered on the page
or pushed up against the right margin, and there are picture com
ments that you can use to do this.

Sometimes an application will have to print a slight variation
of the same page, like a filled-out form, many times in a row. Nor
mally, you have to redraw everything on every page when you print,
which takes time and effort in your program and in the printer.
There's a picture comment that lets you tell the LaserWriter that
you're going to be doing this kind of printing. When you use this com
ment, the LaserWriter will keep the page definition around in mem-

183

184 PART TWO TECHNICAL ADVENTURES

ory after printing it and you just have to draw the stuff that's
changed.

These are most of the picture comments that have been defined
for the LaserWriter driver as of version 3.1. Apple usually adds cap
abilities to the driver with each release. If you're interested in tak
ing full advantage of the amazing LaserWriters, you should keep up
with the latest technical information by reading Apple's Macintosh
Technical Notes and the technical documentation, such as the Laser
Writer Reference Manual. By using the power in the LaserWriter
you can really add some magic to your printed documents. Just
think-you can help desktop publishing live forever.

P.S.

In this section we've talked a lot about how you can get to Post
Script from within your usually QuickDraw-speaking application.
Since you'll almost certainly use QuickDraw to draw things on the
screen, you'll probably be doing most of your printing that way, too.
This makes it most convenient to use the occasional PostScript tech
niques we've talked about. Sometimes, though, it's fun (and educa
tional too) to mess around with PostScript directly so that you can
get a feel for what it can do. There are several ways to do this, and
it's worth a few paragraphs to discuss them.

The most direct way to speak PostScript to your LaserWriter is
to do it just that way: directly. This means that instead of hooking
up to the printer across an AppleTalk network, you just plug right in
through the LaserWriter's serial port. To do this, you'll need to ad
just the communication-setting knob on the back of the printer. It has
four settings: AppleTalk, which is how it's usually set; 1200 baud
and 9600 baud serial communication; and Special, which should
really be entitled Lobotomy, because it makes the printer forget that
it's got PostScript and forces it to emulate a Diab lo 630 daisywheel.
This is roughly equivalent to making a Macintosh II emulate a four
function calculator. This last setting is mainly for the Big Blue crowd
who may not have software that knows how to talk to a p'rinter
with a computer inside it.

To send Postscript to the LaserWriter directly, you can set the
communication knob to 9600 baud and then just connect your Macin
tosh directly to either the nine-pin or the 25-pin port on the Laser
Writer. You'll need a run of the mill communications program on the
Macintosh, and you should set it for 9600 baud and no parity. To get
the printer to say something, you can type a Control-T, which is like
asking the LaserWriter how it's doing right now. It should tell you

Printing Manager

something like its name and the fact that it's idle, and you can go on
from there. You'll find the PostScript Language Reference Manual
very valuable in this endeavor.

Of course, to plug directly into a LaserWriter requires you to
have a spare one sitting in a closet somewhere not doing anything;
otherwise, the people on the network might get pretty hacked off at
you when you disconnect it for your own playing around.

Well, there is a better way. A number of programs let you try out
PostScript commands without having to cut off your friends and co
workers. You can find out about these programs by checking out the
software ads in any recent issue of your favorite Macintosh maga
zine.

One program you may not have heard of is called PostHaste, put
out by Micro Dynamics, Ltd. of Silver Spring, Maryland. PostHaste
implements a very simple idea: you can open windows and edit a
PostScript program on the screen, and when it's finished, you can
shoot it off to the LaserWriter. The printer is still in its native hab
itat, an AppleTalk network, and you still behave like a good net
work citizen when you communicate with it. Of course, since you
have access to PostScript directly, you can do nasty things anyway,
but PostHaste treats your printing job just like any other on the net
work.

With PostHaste, you can experiment by typing in PostScript
commands directly and then sending them to the LaserWriter to see
what they do. You can write your own programs, use the examples
that come with Postscript, or try some things from the Postscript
Language Tutorial and Cookbook, another volume put out by Adobe
and published by Addison-Wesley.

As with any computer language, you can learn more about it by
looking at some example code. With PostScript, there's an easy way
to get lots of example code to study. A special feature of the Laser
Writer driver allows you to see the PostScript that would normally
be sent to the LaserWriter when you print a document. To use this
feature, you hold down the Command and F keys right after clicking
the OK button in the print job dialog. Be sure to keep holding the
keys down until the alert appears telling you that it's creating a
Postscript file.

This trick will make a file called PostScriptn, where n starts at
0 and gets bumped up by one for every new file you create. After mak
ing one of these files, you can look at it with any word processor or
text editor and learn a little about what PostScript code looks like.

185

186 PART TWO TECHNICAL ADVENTURES

Definitions. If youJook through a PostScriptfile created with
Command-F, you'llJind a lot of omrnand~ thq.f aren't listed in
the ~ostScript re jsJsp:~S~ ppl~defjnes

· a bunch of additi \ h ar~ ~ y . }e:n.sively by ·
the LaserWriter · .·.··.·•· .. ··•• .· ·.. · .. ·· .. ·.··· •· .rep file cp11~ains the defini-'-
tions for these ~ornrnands. To see the definitions, when you
prhtt,. hold· down §{>J'llmand a:n¢l<I<; .!ilfter clicl<i.J;l.g,OK. This will
create a te){t file >~Q .h¢~ · what's
going on with yo

By using utilities like PostHaste and diligently studying the
PostScript and LaserWriter manuals, you can really make the Laser
Writer do some amazing things for you. Remember, though, that if
you write PostScript code, you'll only be compatible with printers
that have PostScript, so you should be careful about what you im
plement if you want your program to be used by folks with other
kinds of printers.

Creating special effects with PostScript can be really interest
ing. After working with the LaserWriter in PostScript, you'll begin
to appreciate why Apple used to call the LaserWriter "the most
powerful computer Apple has ever built," which was absolutely true
until the Macintosh II appeared.

c H A p T E R 7

QuickDraw

Behind the scenes with QuickDraw. Meet the bit image,
the heart of everything you see on the screen. The
world as perverted by color. Drawing on a screen that's
not a screen. Pixel images and color tables.

187

188 PART TWO TECHNICAL ADVENTURES

In this chapter, we'll talk about some QuickDraw hints and tips.
QuickDraw is vital to virtually every Macintosh application. Any
thing you can do to increase your knowledge of how it works should
lead to better applications and more fun creating software.

Bit Image Updating

Have you ever noticed that some applications seem to update
the screen very fast, drawing in one burst, while others seem to take
a long time as you actually watch the pieces being drawn on the
screen? If you've never noticed this phenomenon, compare the amount
of time it takes to draw the newly exposed area of a window that's
just been enlarged to the time it takes to redraw the covered-up part
of a window when a pulled-down menu is released (see Figure 7-1).

~
~

Edit

Saue
Saue As ...

Window2

Page Setup ... --~
Print... 3€9
Quit 3€Q

S File Edit

D Window 1

II :42:-.
LJiillh -

Figure 7-1. Updating the screen

Objects uncovered
are drawn one by
one

All uncovered bits
are drawn at once

QuickDraw

When you let go of the mouse after pulling down a menu, the
area "behind" the menu seems to reappear instantly. By comparison,
when you make a window larger, most applications take a small but
noticeable amount of time to draw into the new part of the window.
How do these two drawing operations differ?

These two ways of drawing present a classic case of a tradeoff in
computer programming. Consider what happens when you scroll the
window. The application draws the newly displayed part of the
window by figuring out what should go where and then calling
QuickDraw to actually do the drawing. For example, if the applica
tion is an object-drawing program like MacDraw, it will go through
its data structures to determine what objects (like rectangles, ovals,
and so on) should be displayed in the newly opened part of the win
dow. If you've never had the window open to that point before, there
will be nothing to draw, of course, but if you have previously been
working in that part of the document, it has to show you what's
there (see Figure 7-2).

Window

Before scrolling MacDraw must draw the new rectangle and
oval with separate commands

Figure 7-2. MacDraw redrawing

When the application finds an object that needs to be drawn into
the new part of the window, it calls QuickDraw to do the drawing.
Let's say that it's MacDraw and it has to draw an oval. MacDraw
will call one of QuickDraw's oval-drawing routines, like Frame
Oval, and QuickDraw then determines just what bits to change from
white to black on the screen in order to draw the oval. Changing
from a FrameOval call into dots on the screen is basically a mathe
matical operation and it can take some time. But remember that

189

190 PART TWO TECHNICAL ADVENTURES

some time is a relative term. When the car dealer says it'll be some
time before that part you need comes in, he probably means days;
we're talking milliseconds here.

Blitting

The Menu Manager uses a different technique to redraw the part
of the screen that was behind the menu. Instead of having to redraw
everything by calling object-drawing commands (or even text
drawing commands like DrawChar), the Menu Manager simply
saves a bit image of the rectangle on the screen that will be occupied
by the menu before it actually draws the menu. When it wants to re
store the image and get rid of the menu, it simply copies the saved
bits directly back to the screen location where it saved them from.
This operation is pictured in Figure 7-3. This technique of moving
data around to change the screen is known by some computer folks as
blitting (really). On the Macintosh, you can do this with the Copy
Bits call.

The color version of QuickDraw that's in the Macintosh II in
cludes an enhanced version of CopyBits. This mew call knows
about the various image depths that are possible with the
wondrous new version of QuickDraw. For more about how it
works, see Chapter 3.

As you can tell just by watching how quickly a mP.nu is erased,
blitting can be incredibly fast. There's no translation that has to
take place between a geometric object like an oval and the layout of
the Macintosh's screen RAM. Instead, the Menu Manager just calls
CopyBits before drawing the menu to save the part of the screen
that's about to be wr.itten over by the menu and then calls CopyBits
again to move the saved bits back onto the screen. It's pretty easy
and very fast.

So, the obvious question arises: if zapping the bits around with
CopyBits is so fast and easy, why do we need to bother updating the
screen in any other way? The answer is the eternal computer tradeoff
between speed and size. Redrawing the screen by saving and restor
ing bits takes a lot of memory: one bit of memory for every screen bit
saved (a pretty straightforward calculation). So, for example, to
save the bits in a rectangle that's 128 dots wide and 100 rows high,
you'd need 128 times 100, or 12,800 bits. There's eight bits in a byte,

S File Edit

§0-- = Window

Elvis

l . User about to pull down menu
Menu Manager computes size of
rectangle where menu will be drawn ..

Edit

Saue
Saue As ...
Page Setup ...
Print... ~9

Quit

3 draws the menu ...

QuickDraw

Windo~

El vi:

~
==i 1-

2. Menu Manager saves
bits offscreen . ..

S File Edit

§0-- = Window

Elvis

4 and restores the screen
when the mouse button is released.

Figure 7-3. Menu Manager screen action

191

192 PART TWO TECHNICAL ADVENTURES

so you'd have to reserve 1,600 bytes in RAM to save the image in the
rectangle.

If your user has a Macintosh II with gray scale or color turned on,
the RAM needs are even greater. Every bit of depth in the image is
like another layer and the memory requirements are multiplied for
every additional bit. For example, if you've got two-bit color, which
is pretty cheap, you have to double the memory requirements (in the
previous example, that would mean 3,200 bytes). If the Macintosh II
is cranked up to eight bits per pixel, your memory requirements
really zoom up, all the way to 12,800 bytes for our little bitty
rectangle.

If you used the other technique, remembering a description of the
objects on the screen rather than the actual bits that comprise the
image, how much RAM would it take? Well, it would depend on how
many objects were contained in the area you wanted to save, but let's
think about it for a minute. Most MacDraw-type objects can be de
scribed in just a few bytes. For example, a rectangle of any size can be
described in just eight bytes: the top, left, bottom, and right coordi
nates, each of which takes two bytes.

What if the rectangle were filled with a pattern? A QuickDraw
pattern also takes up just eight bytes. So, the definition for a filled
rectangle would take only 16 bytes, no matter how big the rectangle.
By contrast, we said that a 128 by 100 rectangle would take 1,600
bytes if we saved all its bits! You can see how this works in Figure
7-4. Of course, this is a fairly extreme example, since the rectangle
we saved with just 16 bytes can only be filled with a simple pattern;
when we save all the bits, the rectangle can be filled with anything
and the number of bytes needed will be just the same.

Implementation Choices

This example serves to show the tradeoff between saving object
information and saving bit images. When we save object information,
we use a lot less memory but it takes longer to redraw, since Quick
Draw has to do more work to draw an object than it does to simply
move bits with CopyBits. On the other hand, although CopyBits is
pretty fast, it takes a lot more memory to save the image than when
using object information. What's a poor programmer to do?

Although using object information rather than bit images saves
memory, a lot of people now have Macintoshes with a megabyte or
two of RAM, and it's not unusual to see four megabytes (although it
still costs big bucks). Of course, this trend will continue in the future:
more and more memory will become available. In light of this fact,
saving a few thousand bytes here and there is no longer as important

QuickDraw

128 piHels

100 piHels

Sauing all bits:
128 piHels H 100 rows =
12800 piHels =

1600 bytes

Sauing object definition:
top left coordinate = 4 bytes
bottom right coordinate = 4 bytes
QuickDraw pattern = 8 bytes

16 bytes total
Figure 7-4. Saving rectangle information

as it once was, long, long ago in 1984 and 1985 when machines with
128K RAM were common.

In today's megabitten world, you can really improve your pm
gram' s performance by using bit images to update the screen. Most
applications update their windows by drawing from data structures.
For example, a word processor will figure out what text is supposed
to be on a newly exposed part of a window and then make Quick
Draw text drawing calls like DrawChar and DrawText to update
the screen. If all updates could be done from bit images, everything
would be much faster.

The ultimate technique for speed of updating would be to main
tain a bit image of all your open documents in a buffer somewhere. If
you had this bit image, you could do all your updating, including
scrolling and resizing, by copying bits from the bit image buffer.
You'd only have to use the QuickDraw object-drawing calls when
the user added new things to a document.

To be complete, the bit image would have to include all the bits
in the whole document, not just the window and the part that's dis
played on the screen. Then, when you had to update the window, you
could just Copy Bits it back onto the screen and you'd get a very fast
update.

Of course, you'd need about a zillion bytes of RAM to use this
technique, which is more than the maximum amount of memory sup
ported by the Macintosh Operating System. The reason is this: to

193

194 PART TWO TECHNICAL ADVENTURES

save one standard size page (8 1/2 by 11 inches) at the Macintosh's
resolution of 72 dots per inch would take about 60K bytes of RAM
(you can see how this calculation was made in Figure 7-5). This
means that a 20-page word processor document would require an in
credible 1.2 megabytes, and that's not even a very big document. Re
member, too, that you'd need memory for every one of your open docu
ments. If you've got four documents open on, and each one is about ten
pages long, that means that you'd need over two megabytes of space!

page = 8.5 * 11 inches
inch = 72 piHels

1 byte = 8 piHels

1 page= (8.5 * 72) * (11 * 72) piHels
= 484704 piHels
= 60588 bytes

Figure 7-5. Memory required for a page

Finding space for color or gray scale images is even worse. Again, for
every additional bit per pixel, you have to multiply the amount of
memory you need: a single 8 1 /2 by 11 page of eight-bit images would
take 480K bytes.

It looks like the idea of keeping a bit image of absolutely every
thing is impossible for most applications, so let's try to scale down
our ambitions. There are several other ways we can use the bit image
updating technique to make programs faster.

One idea is to simply keep a bit image copy of the screen, rather
than a copy of all the bits in every document. This is a little more
reasonable. The idea behind this technique is to save an image of
the screen with CopyBits whenever you're finished drawing some
thing. With a bit image of the screen, we can do updates that in
volve restoring things that were behind other things and then ex
posed, such as when windows are closed or moved. This technique
doesn't help us do any updates that involve displaying information
that's newly scrolled onto the screen or parts of windows that are
newly seen after the user enlarges the window with the grow box.

How much memory does this take? It depends, of course, on the
size of the screen. The classic 9-inch Macintosh screen takes about
22K, which is not an outrageous amount. A Radius Full Page Display
has screen dimensions of 640 by 864, so it would require 640 times 864,
divided by 8, bytes-about 68K bytes for those of you without a cal
culator. That much RAM can be a little tougher to find. When you
also add the possibility of a really huge (say 1024 by 1024) screen,
you can wind up needing 128K of RAM to preserve your bit image.

QuickDraw

That's a pretty big chunk to devote to fast screen updating, not to
mention the possibility of multiple-bit-per-pixel screens.

One way to solve the problem of finding enough RAM for a bit
image for the whole screen is to allocate the memory for the image
at the start of the program and use it for updates. Then, if you start
to run out of memory, you can get rid of the bit image so that you can
use the RAM for something else. One way to do this would be to in
stall a GrowZone function that deallocated the bit image buffer
with DisposHandle if the program desperately needed memory (see
the Memory Manager chapter of Inside Macintosh for more informa
tion about GrowZone functions). Without the bit image, you'd have
to do updates the slow way, by drawing things based on your data
structure, but at least you wouldn't run out of memory. You could also
monitor available RAM and if enough free memory opened up again,
you could get your buffer back and speed things up again.

yYhen you're .running with Apple's MultiFinder, the rules
change a littl.e bit. Imagine that your application is running
and you've taken a snapshot of the screen by CopyBitsing it to a
bit image. Meanwhile, some hardy little application has been
running in the background and while doing so it's changed some
thing in one of its windows, which is visible on the desktop. If
you try to update the screen by just copying the bits you saved
previously, a bad thing happens: you copy the old bits back to
the screen, thus wiping out whatever changes the hardy little
background application had made to its windows. Oops. How
can you avoid this problem? When you call CopyBits, you can
specify a region (the parameter called maskRgn) which limits
the area copied. You can set up maskRgn to be the union of the
visRgns of your windows. Then, when you save and update the
screen with CopyBits, you won't touch the parts that don't be
long to you.

If you don't think you can spare a buffer for the whole screen
even some of the time, a compromise is available that's used by sev
eral of today's most advanced Macintosh applications. It works like
this: whenever the application is about to cover up part of the screen
(usually with a modal dialog), it does a CopyBits to save the part of
the screen that's about to be obliterated by the dialog. Then when
the dialog goes away, the application updates the screen by Copy
Bitsing the saved image back to the screen. This is a lot like the way
the Menu Manager does its thing. Here's a list of the steps you could

195

196 PART TWO TECHNICAL ADVENTURES

take to implement this technique in your program when you're about
to put up a dialog.

1. Determine the size of the dialog's rectangle. You can get this
from the DLOG resource of the dialog that will be drawn.

2. Determine the amount of memory you'll need to save the bit
image.

3. Get memory for the bit image by calling NewHandle. If the
NewHandle call fails due to a lack of memory (it returns
memFullError), you can't save the bit image, and you should skip
the save/restore trick and just redraw the window when it's time
to update it. If this happens, you're probably in deep memory
trouble anyway.

4. Save the bit image by calling CopyBits.
5. Put up the dialog and handle it normally.
6. When it's time to return from the dialog, call CopyBits again,

this time reversing the procedure by copying from the saved bit
image to the screen.

Does this take up much memory? Not really. Most dialogs are
small enough that you only need a few thousand bytes to hold the
saved bits. Of course, bigger dialogs can approach 20K of bits, which
can be a little harder to find. Using this technique of saving and re
storing the screen with CopyBits around a dialog is a fairly easy
way to make your program faster, both in reality and in your users'
perception: it will be faster and it will feel faster, too.

Color

With the introduction of the Macintosh II, Apple now officially
supports color and gray scale images. When pixels on the screen can
only be in two states, black or white, one bit is enough to represent
each pixel, but when you can have color or gray scale, you need more
bits per pixel. Two bits can hold four different numbers: 00, 01, 10,
and 11. This means you can get four different colors (or shades of
gray) if you have two bits per pixel. Four bits per pixel means 16 col
ors, and eight bits per pixel gives you 256 colors.

QuickDraw

On the Macintosh II, the user is in control of the number of bits
per pixel. With the right video hardware, your friendly user can use
the Control Panel to run your application with two, four, or eight
bits per pixel. What does this mean to you?

If more bits are being used to show what's on the screen, you have
to save more bits in your bit image. To save all the possible informa
tion on the screen, you have to save the color information, if there is
any. Consider this: if the user picks two bits per pixel, there are now
twice as many bits required to display the screen. (The number of bits
per pixel in an image is called the depth, by the way). In memory,
adjacent bits are used to construct each pixel (see Figure 7-6). If you
only save the number of bits necessary to keep a one-pixel-deep im
age, what will happen? Let's all find out now.

The color version of QuickDraw defines a new data structure
that's like a bit map except that it can have any image depth. This
structure is called a pixel map, and you can see what it looks like in
Figure 7-7. Color QuickDraw's version of CopyBits is very smart
smart enough to figure out whether you're copying information from
the screen to a bit map, for example, which is the technique we've
been talking about. When you do this, Color QuickDraw automati
cally ensures that it copies the complete, black and white (one-bit
deep) image, no matter what the depth of the screen.

When you copy back from the bit image to the screen, CopyBits
will again make sure that the proper bit depth is maintained and it
will ensure that the one-bit-deep information is copied back correct
ly. Of course, if you copy into a bit map, you'll lose any color infor
mation, since a bit map (as compared to a pixel map) is always one
bit deep (see Figure 7-8). How can you make sure that you copy color
information, too?

The answer, again, lies in using the new version of CopyBits pro
vided by Color QuickDraw. The new version acts a lot like the old
CopyBits, except that it can also be used with pixel maps and so you
can use it on images of any depth. In order to make sure you're copy-

197

198 PART TWO TECHNICAL ADVENTURES

RAM screen
One bit per pixel

RAM screen

Figure 7-6. Screen mapping

PixMap = Record
baseAddr : Ptr ; {address of pixels}
rowBytes : Integer; {offset between lines}
bounds : Rect ; {boundary of pixMap}
pmVersion : Integer ; {version number}
packType : Integer ; {pixMap packing format}
packSize : Longint ; {packed data size}
hRes : Fixed ; {horizontal resolution, pixels per inch}
vRes : Fixed ; {vertical resolution}
pixelType : Integer ; {always 0 for chunky format}
pixelSize : Integer ; {bits per pixel}
CmpCount : Integer ; {always 1 for 1 RGB per pixel}
cmpSize : Integer ; {bits per component}
planeBytes : Longint ; {always O for chunky}
pmTable : CTabHandle ; {handle to PixMap's colors}
pmReserved : Longint; {must be 0 for now}

end;

Figure 7-7. PixMap structure

screen

0 0 0

PiHMap
(2 bits per piHel)

QuickDraw

CopyBits • 0 I I
BitMap

(always 1 bit per piHel)

Figure 7-8. BitMap loses color information

ing the right stuff, you can call CopyBits to save and restore the
screen image into a pixel map.

There's something else you need to remember if you' re using
CopyBits to copy a multiple bits per pixel image: your bit image
buffer has to be big enough to handle the image depth the user has
chosen. For example, if the user is cruising along in four-bit depth,
your buffer has to be big enough for four bits per pixel. Obviously,
this can make your buffers get pretty big, but since the only Macin
toshes that have color also have a lot of RAM, the problem is less
serious. If your application doesn't do anything in color, you may
want to suggest in your documentation that the user not change the
pixel depth, since it'll just cause headaches and use more RAM for
your bit image buffers. In general your software should work right in
all pixel depths, but if you don't have any special features for color
or gray scales, there's no point in the user setting up for it. We'll talk
more about using offscreen buffers with multibit images a little later
in this section, so please stay tuned.

Using Bit Image Buffers

In addition to using CopyBits to copy things between the screen
and a buffer, it's useful sometimes to actually draw into the buffer's
image rather than directly to the screert. There are a number of uses
for this technique:

•

•
•
•

Drawing things that have to be manipulated before they're dis
played, such as rotated text.
Drawing the same image multiple times .
Updating an image without having to erase and redraw it .
Making an image appear on the screen all at once, rather than
piece by piece.

199

screen

200 PART TWO TECHNICAL ADVENTURES

It's interesting to note that drawing into an image buffer and
then using CopyBits to copy it to the screen takes just as long as
drawing it directly to the screen; actually, it takes a little longer,
since the bits have to be copied to the screen after they're drawn.
Even though it takes just as long, a lot of users perceive the process as
faster when the whole image appears in one shot, rather than when
they watch it draw piece by piece.

The first step in using a bit image buffer is getting the memory to
hold it, and before you can do that, you have to figure out how much
memory you need. In the previous section, we talked a little about
the sizes of bit images. Now we'll get into the grimy facts of figuring
out exactly how much memory we need.

Drawing into an Offscreen Buffer

This technique is known variously as drawing into an offscreen
buffer, drawing offscreen, and using an offscreen bitmap. Here's the
idea: when you draw on the Macintosh screen, you call QuickDraw
commands that cause bits to be set to 1 or 0. Because that memory is
usu-ally the memory that the Macintosh screen uses to tell it what it
should display, this magically causes words and pictures to appear.

What happens if the memory that QuickDraw affects is not the
memory that the Macintosh screen is showing? QuickDraw doesn't
really care; it still sets the ls and Os the same way, just as if it were
drawing to the screen's memory. The memory that's drawn into is af
fected the same way, whether it's actually displayed on a monitor
or not.

Bit-o-plenty. How does the Macintosh video hardware inter
pret the ls and Os that Quic~Draw sets in memory? Every bit
that contains a 0 shows up on the screen as a white dot; the ls
come out black. If you're familiar with monochrome graphics on ,
most other personal computers, you know that this is back
wards from the usual scheme: most computers use 0 to represent
black and 1 to indicate white. Is this a subtle indicator of the
Macintosh's differences from standard computers? Is it a .conse
quence of the Macintosh's black on white, paper-like text dis
play, compared to most computers' white on black? l don't
know. This is a software book. Sorry. Thought you'd like to
know anyway.

QuickDraw

To use an offscreen buffer you have to be able to tell QuickDraw
what chunk of memory to use when you draw. Normally, of course,
QuickDraw is set up to draw into the screen's memory automatically.
If you want to draw into an offscreen buffer, you have to make sure
there's memory reserved to receive the drawing. If you're not careful,
you risk drawing right on top of anything else in memory, like your
program's code or Uncle Elvis's Christmas card list.

There are two ways to set aside memory to be used for an off
screen buffer, and they're the two standard Macintosh ways of allo
cating memory. Since the offscreen buffer is simply a chunk of mem
ory, you can use ordinary techniques for finding the memory: you can
either declare a variable that's large enough to hold the buffer or
you can call the Memory Manager to find some memory for you. Let's
look at how to do each of these and how to figure out how much
memory you need.

Before you allocate memory for the offscreen buffer, you have to
know the size of the area you'll be drawing into. Let's say, for exam
ple, that you're going to be drawing an image into a rectangle that's
200 pixels on each side. First, we'll set up some constants, like this:

drawLeft = 0;
drawTop = O;
drawRight = 200;
drawBottom = 200;

Now that we know the size of the area we're going to draw into,
we can figure out how much memory we have to grab for the buffer.
Let's see: we know that one pixel on the screen takes up one bit in
memory and that a byte contains eight bits; therefore, it seems like
the number of bytes required should equal the number of pixels times
eight.

Does this work? Well, no. There are a few problems with this
simple assumption. The first problem is the way bitmaps are de
scribed by QuickDraw. Every QuickDraw bitmap, whether on the
screen or not, includes a field called rowBytes that tells the number
of bytes in each row of pixels. The first step in computing the number
of bytes for the bit image buffer is to figure rowBytes.

201

202

baseAddr

row Bytes
(offset from
one row to
the next)

PART TWO TECHNICAL ADVENTURES

More than. meets the eye. Actually, the c::c;>mfl0;t~<il~tiop:~f~ ·':'
rowBytes is a little more subtle than that:~A~'.yoh may bi:ow:.';1:

(and ff you don't, you'll learn it as you read¥pn intltis .sectio~)/a ·.
QuickDraw bitmap includes a boundi:rlg'r ·· 4'Q,1ldijl~~tQ.;•:•,

··.• 1he l'owBytes field. This seems redumftmt . . . •. ~~1'.i$~e~~'~e~~·:,::~;
dgJ'.!dant: row Bytes tells you the Width of th~::lt>~t~~~flj~) so 'YhY:.;)' 1::~
1rQ1you also need a rectangle? 1'}1:e ansY".'er · e(· • . ~ .. ~::

. ,.::;u •·· dpitsattheend 0feach.r9'%,.so · ·
·· e 1 to indieate the :right edge (;)f the

the: image (see Figute 7-9):So;. a better d ... ··· ... ·. ·.·· .. . •:
that it defines the offset in memory from ohe>ri:lw:fo ~ ri.e~; .1:

This definition becomes· especially in;tpottimt when·ydu'!!f!; .
dealing with the Macintoshcii, where you c:an find.,:inµl#,plli!::·;';
bits per pixel. · · · · · · · >

J::::::_
T

--:::::::: 1.

Figure 7-9. BitMap

01~
~

v
~~

bounds
(enclosing
rectangle)

There's a non-obvious formula for computing rowBytes based on
the width of the image that you're drawing. It goes like this:

bitsRowBytes := (((drawRight - drawLeft - 1) div 16) + 1) * 2

Now you know why I said this· formula was non-obvious. Without
going into it so deeply we both go insane, let's talk a little about
where the formula came from. The basic ideas are these:

• RowBytes is approximately equal to the width of the bit image
in pixels divided by eight. This accounts for subtracting draw-

QuickDraw

Left from drawRight, integer-dividing by 16 (that is, divide and
throw away the remainder), and multiplying by two.

• RowBytes must always be even. This is why we have to go
through the bizarre complication of first subtracting one, inte
ger-dividing by 16, adding one, and then multiplying by two,
rather than just dividing by eight.

Let's see what happens after we pump our numbers through this
formula.

bitsRowBytes := (((200- 0 - 1) div 16) + 1) * 2
((1 9 9 div 16) + 1) * 2
(12 + 1) * 2
26

As a reality check, we can use the fact we discovered above, that
rowBytes is approximately equal to the width of the bit image in
pixels divided by eight. Does this work here? The width of the im
age, 200, divided by eight is 25, which is as close as you can get to 26
without going over. This seems a good number for rowBytes. Maybe
we can even use this formula to win prizes on "The Price is Right."

Now that we've figured out the size of rowBytes, we can deter
mine how much memory we need for the bit image buffer. Figuring
out this number is a lot more intuitive than the convoluted formula
for rowBytes. To get the size of the buffer, just subtract the bottom co
ordinate from the top and multiply by rowBytes. For those of you
who speak math, the formula looks like this:

bufferSize := (drawBottom - drawTop) * bitsRowBytes

This formula is definitely a lot easier to follow than the previous
one. We're simply figuring the total number of bytes needed by first
computing the number of rows in the image (drawBottom - drawTop)
and then multiplying by the number of bytes per row (bitsRowBytes).
In the case of our example, this comes out to 200 times 26, or 5200
bytes.

Now that we know how much memory we need, we can use the
Memory Manager to find it for us. Normally, we're good Macintosh
citizens and we allocate only relocatable blocks. However, Quick
Draw bit images are something special. When you draw into one,
QuickDraw wants a pointer to it, not a handle. This means you may
as well make it nonrelocatable, since if it were relocatable it would
have to be locked anyway.

203

204 PART TWO TECHNICAL ADVENTURES

To get the memory from the Memory Manager, we recite the fol
lowing incantation:

bufferAddr := NewPtr (bufferSize);

Alternative factor. As we said earlier, you can use either of
the two standard Macintosh ways of getting memory when
you need to create a buffer for offscreen bits. Calling NewPtr
to get the memory from the Memory Manager is one way, of
course; the other is creating a global or local static variable.
For example, in Pascal you could simply declare a variable.

V~ buffer : array (1 .. 2600] of integer;

This little fellow reserves space for 2600 integers, a total of
5200 bytes, just big enough for our buffer. Why did we ask for
2600 integers? That's not really what we're storing, of course.
The answer is that there's no special reason to call the buffer
an array of 2600 integers; any other declaration that reserves
5200 bytes would work just as well. Since we're never going to
be using array indices to refer to the "array," it doesn't really
matter. The important thing here is simply the number of
bytes. Is this the best way to reserve space for our bit buffer?
No, for a couple of reasons. First, most compilers limit the
amount of global storage you can ha:ve, and 5200 bytes is a lot
to use up all at once. Second, this technique assumes you know
how big the buffer will have to be when you write the pro
gram, and this isn't always the case. Often, you have to com
pute the buffer size based on changing factors like the window
size, the screen size, or the pixel depth. The bottom line is
that you'll usually . reserve space for the bit image by calling
the Memory Manager.

Now (assuming the NewPtr call succeeded) bufferAddr has the
address of a block in memory that's big enough to hold all the bits in
our offscreen buffer (in this case, the block is 5200 bytes big) . Now
that we've got the memory, what do we do with it? We need to let
QuickDraw know about it, of course.

To do this, we have to use QuickDraw's bitmap data structure.
As you can see in Inside Macintosh (or in Figure 7-10, presented here
for your convenience), there are three fields in a QuickDraw bitmap.
The first, baseAddr, contains the address of the memory that holds
the bits for this bitmap. The second field, rowBytes, is the number of

QuickDraw

bytes per row of the bitmap, as we've already discussed. The third
field is called bounds and it contains the boundary rectangle that
limits the bit image, as we discussed a little earlier.

BitMap = record
baseAddr : Ptr ; {address of bits}
rowBytes : Integer ; {row to row offset}
bounds : Rect ; {enclosing rectangle}

end;

Figure 7-10. BitMap structure

Before we can draw into our offscreen buffer, we have to allocate
a bitmap and then set up its three fields. Once we've got our bitmap
all set up, we can proceed to use it for whatever kind of drawing op
eration we've got in mind.

Terminology corner. Note that while bitmap is often used to
indicate a collection of bits displayed on the screen or sent to a
printer, the QuickDraw data structure called a BitMap is a
record consisting of the fields baseAddr, rowBytes, and bounds.
It takes up 14 bytes and it does not include any image
representing bitsi instead, it includes baseAddr, which tells
the address of those bits. In this context, the bits themselves
are usually called a bit image.

The easiest way to create a bitmap is to simply declare one as a
static variable, like this:

VAR offMap : bitMap

Now that we have a bitmap and a place to store the bits, we can as
sign the right values to the fields in the bitmap's record:

offMap.baseAddr := bufferAddr;
offMap.rowBytes := bitsRowBytes;
SetRect (offMap.bounds, 0, 0, 200, 200);

Now we're really rolling. The bitmap is set up and we have the buf
fer where we're going to store the bits. The next step is to create the
image itself in the offscreen buffer.

Just what you do at this point depends on what you want to use
your offscreen buffer for. If you're using it to save a copy of part of the

205

206 PART TWO TECHNICAL ADVENTURES

screen for fast updating after putting up a dialog, the next thing to do
would be to call CopyBits to save bits from the screen before putting
up the dialog. For our example, we'll draw some stuff directly into
the offscreen buffer and then copy it to the screen all at once.

With the bitmap all set up, only one step remains before we can
draw directly into it. We've filled in all the blanks in the bitmap
data structure; now we just have to tell QuickDraw that it's the bit
map of choice. How do we do this? Well, remember that QuickDraw
always draws into the current grafport. All we have to do is convince
QuickDraw that our offscreen friend is attached to the current port.
A handy QuickDraw call, SetPortBits, will do exactly what we
want. It takes an existing bitmap and makes the current port use it.
After using SetPortBits on our offscreen bitmap, we're all set for
drawing.

*!'1P~tatic:t11. What d®s ?etPortBits d'Q, i:eaU
hh. :ha~ a field called pqrtBits thelt 9pnta,ilJ1~

'the.~retfport. It see111s.like all y(iu/Q;~~*e
~.e~·~f~re~~ .11it~;t~is.c,"!~ngethe yai . . /. >

is. ~x~~tly whaf·.§,~t:{\'Q:r~],pts does fof; ~~~ •. ::,1 >~
:calJ:-it? Th.is bdn,gs ijp the qld ~:t:gµn:i.e~l: ·
~id .inter~ft.ce. lf yl>1,1 always· ;~etl[: th.e
~it~{ WhateMe:r. in,·fe:~est!il\g ~~g~:ii .&~~:: .

tPortSits in the future... <, \' '·~"': : '
, ;<,:_<3·;,'.:5~,·:; ·,·, JS_··,··_~:~ ,'.:·::.\~·~

After we're done messing around with the offscreen bitmap and
we want to set things back to normal, we're probably going to want to
restore the previous value of the grafport's portBits field. So, before
we blast it by calling SetPortBits, we should save the old value. We
can do this by declaring another bitmap and then saving the port's
real bitmap by assigning it to this variable:

realBits := thePortA.portBits;

There's one more thing we might want to do before we actually
begin drawing into our bitmap. Remember that the memory we got
from the Memory Manager is just a chunk of RAM that's located no
where in particular. Since this memory may have held anything be
fore we grabbed it, it's probably a jumble of ls and Os, which
wouldn't look very nice on the screen. So, before drawing, it's a good
idea to clear the memory to all white (Os). Since we're treating this

Quick Draw

area as a rectangle, an easy way to clear it is by filling a rectangle
with white pixels, like this:

EraseRect (thePortA.portBits.bounds);

All right already, enough fooling around. Can we finally draw
into this thing? We can now actually draw into our offscreen bitmap,
using any old QuickDraw commands you have lying around the room.
This includes just about anything: frame, paint, erase, invert, or fill
commands; anything involving lines, rectangles, ovals, arcs, regions,
or polygons; text-drawing stuff; and bit transfer commands like
CopyBits. All of these will affect the undisplayed image in the off
screen bitmap. If you want to apply some sort of mathemagical trick
to the bits, such as rotating them, you can do that too.

After you've created the image that you want in the offscreen
buffer, the magic moment takes place when you bring it onscreen for
your users to see. This is accomplished in two steps. First, we have to
tell the current port to go back to using its regular bitmap (the one we
saved in realBits, you remember). Then, we use CopyBits to actually
blit the bits from their off screen receptacle onto the screen. Here's
what those two lines of code would look like.

SetPortBits (realBits);

207

CopyBits (offMap, thePortA.portBits, offMap.bounds, thePortA.portRect, srcCopy,
NIL) ;

In the CopyBits call, we're telling QuickDraw to copy from the
offscreen bitmap to the current grafport. The rectangles off
Map.bounds and thePort"'.portRect allow us to further define the rec
tangles to use when copying the bits, in case we want to scale the im
age between rectangles of different sizes. The srcCopy parameter is
where we specify the QuickDraw transfer mode, which defines the
mathematical rules to use when combining bits from the source with
the destination. A transfer mode of srcCopy means that the source
bits will completely replace the destination. For some slightly funk
ier examples, you could invert the source image by using the
notSrcCopy mode or you could "punch a hole" in the destination by
using the srcBic (source bit clear) mode. Check out Figure 7-11 to see
what these would look like.

208 PART TWO TECHNICAL ADVENTURES

0
srcBits dstBits

CopyBits with: 0 -- []
SrcCopy notSrcCopy srcBic

Figure 7-11. QuickDraw transfer modes

That's it. After the CopyBits call, your carefully orchestrated
bits should appear on the screen, just as though they were made from
scratch. Let's go over the steps necessary to pull this off.

• Compute the value of rowBytes by using the formula, which in
case you haven't memorized it already is: rowBytes :=
(((drawRight - drawLeft - 1) div 16) + 1) * 2.

• Compute the size of the bit buffer by subtracting the top coordi-
nate from the bottom, then multiplying by rowBytes.

• Call NewPtr to get some memory for the bit buffer.
• Prepare the three fields of the bitmap.
• Save the value of the current port's portBits and then use Set

PortBits to set it to our offscreen bitmap.
• Draw like crazy into the bitmap.
• When we're done drawing, use SetPortBits to restore the regular

bitmap and then use CopyBits to move the bits onto the screen.

By using offscreen drawing techniques, you can make your win
dow updating faster. If you keep a copy of your data drawn offscreen
and then use CopyBits to copy it onto the screen when you need an up
date, users will really feel like your application is fast. If you play
around with offscreen drawing, you can find lots of uses to enhance
your fun and profit.

The Multibit Shuffle

The Macintosh II has incredibly flexible video capabilities. It
can display both color and black and white, and the black and white
can be turned into gray scale display if you don't have a color moni-

QuickDraw

tor. To further complicate things, the user is in control of the choice
of color, black and white, or gray scale, and can even change it right
smack in the middle of an application. After all, in the Macintosh
way of doing things, the user is supposed to be in charge. The Macin
tosh II video capabilities certainly live up to this.

As if multiple user-selectable video modes weren't enough, the
Macintosh II applies a coup de grace: the user can configure multiple
monitors, which can be set up in any arrangement, with the main
screen (the one with the menu bar) also selectable. Since each moni
tor has individually changeable video settings, this means you can
set up an array of, oh, let's say six monitors, three of them color and
three monochrome, and arrange them in a T-shape, as shown in Fig
ure 7-12. You can set up each monitor for a different video mode: one
of each type, black and white or color, can be set for different pixel
depths, such as one bit, four bits, and eight bits. You can even have a
single window that spans all six monitors! Figuring out how to fi
nance this system is left as an exercise for the reader.

rn1fnfn
~~~ 

. . 

~ 
. . 

Figure 7-12. Six monitors arrangement 

All this flexibility does have a price. Thanks to the beautiful 
generality of the original QuickDraw model, all these enhance
ments to QuickDraw for the Macintosh II are possible in the first 
place, and the enhancements were made while retaining compatibil
ity with many existing Macintosh applications. Some of the new 
goodies come free: QuickDraw and the Window Manager take care of 
letting your windows stretch across multiple screens. All you have to 
do is be smart enough to check the size of your window and take full 
advantage of it, as most good applications (like yours) do anyway. 

Although upward compatibility was a key consideration for 
Color QuickDraw, some of the new features have caused headaches 
for programmers. When you write software for the Macintosh prod-

209 



210 PART TWO TECHNICAL ADVENTURES 

uct line now, you have a fundamental choice to make about video 
displays. 

• You can ignore color entirely, assuming that your users will run 
your application only in the plain old ho-hum black and white 
mode on a Macintosh II. 

• You can choose to support QuickDraw's old color model only, 
which allows for eight different colors without requiring any 
new QuickDraw calls. 

• You can really have fun and support the new color model imple
mented by Color QuickDraw, which allows you to choose 256 col
ors to be displayed on a monitor at any one time. 

Let's take a look at each of these choices, then discuss them as we 
run through our familiar example of using an offscreen bitmap. 

The easiest choice is simply to ignore the new capabilities of 
QuickDraw altogether. To do this, just continue to program as if 
there were no color Macintoshes in the world at all. The applica
tions you create should work OK on color monitors set to display 
black and white, of course. If users try to get sneaky and run your ap
plication in a multibit (color or gray scale) mode, you might be all 
right as long as nobody tries to paste in a color picture that was 
created with another application; if that happens, you could be in 
trouble. 

Why would a color picture cause a problem? It depends on how 
you redraw the screen if you get an update event for the color picture. 
If the user covers up the color picture and then uncovers it again, you 
have to redraw it. Depending on your updating technique, you might 
call DrawPicture with the original picture or you could call Copy
Bits if you've saved the image to an offscreen bitmap. The fun begins 
if you use CopyBits to try to save multibit information. When you 
create the offscreen bit image buffer, you're only allowing space for 
one bit per pixel. If you try to copy, say, a four-bit-per-pixel image, 
something has to give (see Figure 7-13). 

Uh-oh. This looks like it has great potential for disaster. At 
first glance, it seems like the CopyBits command will try to copy 
four times the number of bits you have room for, thus (it would seem) 
really messing up your life by destroying a few thousand bytes of 
memory, which is probably holding other data of some kind. In real
ity, though, good old Color QuickDraw is much kinder and wiser 
than that. If it sees that you're trying to copy a multibit image into a 
mere one-bit-per-pixel bitmap, it will only copy a one-bit version of 
the image into the offscreen bitmap, thus saving your other data in 
RAM. 



Quick Draw 

? m 
• 1 bit per piHel 

4 bits per piHel 

Figure 7-13. Four bit to one bit copying 

Of course, this isn't a completely wonderful solution. When the 
copy of the bitmap is made, there's only one bit of information per 
pixel, which is only enough room to remember two colors. So, if you 
use CopyBits to update your windows, and the user sets up a monitor 
for multiple bits per pixel and the user pastes or displays a color pic
ture, then the picture will appear to lose its color information when 
it's updated. Thanks to Color QuickDraw's smarts, you don't have to 
worry about overwriting memory by trying to put too much in your 
offscreen bit buffer. Very soon we'll talk about how to CopyBits to a 
buffer that will keep track of the screen's color information. 

Instead of ignoring color, a more enlightened choice is to support 
the old color model. Longtime Macintosh aficionados and well-read 
techies know that QuickDraw has had the capability of supporting 
color ever since it was first plugged into the original Macintosh. Of 
course, there were no color output devices at that time, which made 
it a little tough to see your handiwork if you decided to draw in col
or, but the software was there and still is. 

If you support the old model, you can stick to QuickDraw calls 
that are available in all Macintoshes. This means you can draw in 
color by using QuickDraw's old model commands, ForeColor and 
BackColor, and Macintoshes that don't have color displays (like al
most all of them) will display whatever you draw in glorious black 
and white. The rule it uses is that anything that's not white shows 
up as black. 

The great advantages to using the old model are that you don't 
have to write any special-case code and that your software works on 
all Macintoshes. Of course, the limitation is that you only get eight 
colors. For many applications that don't do a lot of drawing, like 
word processors, databases, and shrimp-farm management systems, 
eight colors is plenty. For this reason, many general-purpose appli
cations stick with the old model. 

211 



212 PART TWO TECHNICAL ADVENTURES 

You can also solve the problem of a too small offscreen buffer by 
being a little more clever when setting up your CopyBits to save the 
screen. If you're sure Color QuickDraw is present (you can find out by 
calling SysEnvirons), you can set up a newfangled data structure 
called a pixel map. This Color QuickDraw structure allows for mul
tiple bits per pixel so that when you save information into one, it 
will retain all that carefully created color information. We' ll get 
into using pixel maps very soon. 

The last choice is the most fun: use the new QuickDraw color 
model, which gives you access to up to eight bits of color or gray scale 
information per pixel. With Apple's deluxe video card, you can pick 
256 colors at a time from a palette of over 16 million choices. Of 
course, the big drawback to using the new model is that your program 
will run only on machines with Color QuickDraw. Still, if you need 
more color capability than the eight colors of the old model will 
provide, the new model is for you. You can really produce some 
spectacular images using the eight-bit depth that Apple's 
Macintosh II monitors provide. You can find more information on 
color in Chapter 3. 

Pop quiz. As a homework assignment, name the 16 million col
ors that can be displayed by Apple's video card. Be sure to list 
them in alphabetical order. · 

Offscreen Drawing Revisited 

Let's take another look at that problem of drawing something 
offscreen and then using CopyBits to move it into a window in one 
shot. This time, we'll complicate things severely: we'll say that 
we're drawing with the new color model on a Macintosh IL This 
means that we pour in the possibilities of multibit images and multi
ple screens. Let's see how these new fun features affect our technique. 

Before we can do anything at all, we have to make sure that 
Color QuickDraw is hanging around the computer that our program 
is running on. If there's no Color QuickDraw when we try to make 
calls that don't exist in the original version of QuickDraw, our pro-



QuickDraw 

gram will die horribly, with big nasty pointy teeth. The easiest 
way to do this is to use the SysEnvirons call. 

err := SysEnvirons (1, envRec); 
if (envRec.hasColorQD = True) 

then {it's cool, we can go ahead} 
else {give it up, no color QD here} 

If there's no Color QuickDraw, we can't use the new model; oth
erwise, we can move bravely forward. For this example, we'll use a 
pixel map instead of a bitmap when we draw offscreen, so that we 
can accommodate color stuff. Just like before, we'll begin by setting up 
some constants for the rectangle we're going to use. 

CONST 
drawLeft = 0; 
drawTop = 0; 
drawRight = 2 0 0; 
drawBottom = 200; 

The next thing to do, as before, is to figure the size of rowBytes 
for our offscreen pixel map. The formula we'll use looks a lot like the 
one we came up with for figuring rowBytes in a plain old bitmap. 
However, this time we have to figure in the pixel depth when doing 
the computation, since you need one extra bit per pixel in memory for 
each bit per pixel that displays the image. See Figure 7-14 to under
stand how this works. 

This is great, but how do we find out the pixel depth? We have 
another thing to worry about, too: in order to use the new model, we 
need a new kind of grafport, a color one. Since the current grafport 
may not be a color port, the easiest thing to do is to create a new one 
to do our drawing. So, let's back up a bit and begin with that step. 
We can use Color QuickDraw's OpenCPort call. 

VAR colorPort 
colorPPtr 

CGrafPort; 
CGrafPtr; 

colorPPtr := @colorPort; 
OpenCPort (colorPPtr); 

The variable declarations will allocate space for a new-style graf
port and a pointer to the port; the' two statements will make the 
pointer point to the port and then initialize the port itself so we can 
play with it. 

213 



214 PART TWO TECHNICAL ADVENTURES 

Memory for 2 piHels: 

• GLJ 
2 bits 

1 bit per piHel 

4 bits 

2 bits per piHel 

16 bits 

8 bits per piHel 

Figure 7-14. Memory for multibit images 

Now we're ready to figure out how much memory we need for the 
offscreen pixel buffer. The first step is to compute rowBytes, but be
fore we can use the rowBytes formula, we have to find out the pixel 
depth. Think about the issue of pixel depth. Each monitor attached 
to a Macintosh II can have its own pixel depth setting, as we dis
cussed above when dreaming about our six-monitor fantasy. This 
means that when you create space for your offscreen pixels, you bet
ter make sure there's enough room for the deepest device you've got. 

Luckily, Color QuickDraw has once again anticipated this need 
for us, and provides a handy call for finding out just how deep is 
deep. The new call GetMaxDevice can be used to find out about the 
screen that is set for the greatest pixel depth-that is, the monitor 
that's set to display the most bits per pixel at the time you make the 
call. 

When you call GetMaxDevice, you pass it a rectangle in global 
coordinates and it gives you back a handle to another new Color 



QuickDraw 

QuickDraw data structure called a graphics device or gDevice. The 
gDevice contains information about a graphics device (usually a 
monitor) that's being used by Color QuickDraw. One of the fields in 
the gDevice record, called gdPMap, is a handle to the pixel map be
ing used by the graphics device. Finally, within the pixel map is a 
field called pixelSize, which will tell us the actual number of bits 
per pixel being used. 

So, we can find out the number of bits per pixel by getting the 
handle from GetMaxDevice, following it through the device record 
to look at the pixel map and then pulling out the pixel depth. Since 
we have to pass GetMaxDevice a global rectangle that indicates 
where we want it to look, we have to set up this rectangle. First, 
we'll set up the local rectangle, then convert it to global coordinates. 

copyRect.left := drawLeft; 
copyRect.top := drawTop; 
copyRect.right := drawRight; 
copyRect.bottom := drawBottom; 
LocalToGlobal (copyRect.topLeft); 
LocalToGlobal (copyRect.botRight); 

After doing this, we can go ahead and find out the pixel depth of the 
fanciest device. When we're done with calling GetMaxDevice, we 
can convert our rectangle back to local coordinates for some stuff we'll 
have to do later. 

deepDeviceHdl := GetMaxDevice (copyRect); 
pixDepth := deepDeviceHdlAA.gdPMapAA.pixelSize; 
GlobalToLocal (copyRect.topLeft); 
GlobalToLocal (copyRect.botRight); 

215 



216 PART TWO TECHNICAL ADVENTURES 

Now that we've got the pixel depth, we can use our famous secret 
formula for computing rowBytes, modified to include the new factor 
of pixel depth. Siru::e there's basically one set of bits in the buffer for 
every bit in a pixel, we have to multiply the rowBytes value by the 
number of bits per pixel. Just in case you've forgotten, here's that for
mula again. 

pixRowBytes := ((pixDepth*(drawRight - drawLeft - 1) div 16) + 1) * 2 

Just for fun, let's use this formula to figure out the value of row
Bytes for our example. Let's say that GetMaxDevice found that the 
device we're using was set for eight bits per pixel. In that case, the 
numbers for rowBytes would look like this: 

PixRowBytes := ((8 * (200- 0 - 1) div 16) + 1) * 2 
( 8 * ( 1 9 9 div 16 ) + 1 ) * 2 
(8 * (12 + 1) * 2) 
8 * 26 
208 

Now we're ready to figure out the size of the buffer we'll need for our 
offscreen pixel map. To do this, as you'll recall from back in our black 
and white days, we need to figure out how many rows there are in 
the pixel map and then multiply that value by the rowBytes number 
we just got. That computation looks like this: 

bufferSize := (drawBottom - drawTop) * pixRowBytes 

This plain vanilla formula lets us know how much memory we need 
for the offscreen pixel buffer. Once again, let's fill in the real num
bers from our example. 

bufferSize : = (200 - 0) * 208 
41600 

That's a pretty good chunk of memory for a little buffer. In fact, 
you've probably noticed that it's exactly eight times the amount of 
memory we needed for the black and white example that we did 
earlier. Well, gosh, that sure seems to make sense, since we've said 
that the image we're working with now is eight bits per pixel. Even 
in Color QuickDraw, some things are intuitive. 



QuickDraw 

Living color. Remember that you don't really care here 
whether the user is set up for color or black and white. Theim
portant thing is the pixel depth since that's what determines 
how much memory is needed to hold the bits. 

Now it's time to get the memory for our offscreen pixel map. Just 
like before, we'll get the memory by calling the Memory Manager's 
NewPtr routine. 

bufferAddr := NewPtr (bufferSize); 

To err is human. In real life, it would be a very good idea to 
check for a Memory Manager error after this call. As your off
screen buffer gets bigger, the amount of memory you need grows 
very quickly for multibit images. You won't regret it if you 
check MemErr after trying to allocate memory. This has been a 
public service announcement. 

If the NewPtr call succeeds, we can go ahead and set up our off
screen pixel map so that it's ready for our drawing. Setting up the 
pixel map involves the same steps .as preparing a bitmap: you have 
to initialize the baseAddr, rowBytes, and bounds fields. However, a 
pixel map is a much more complicated gizmo than a bitmap and it 
has many more fields. We have to do a couple more things before we 
can start drawing. First, we have to set the pixelSize field to the 
depth that we want. Then, we have to adjust the rowBytes value to 
tell QuickDraw that we're creating a pixel map here and not a mere 
bitmap. QuickDraw decides whether a pixel map is multibit or not 
by looking at the high bit of rowBytes; if it's set, it's a pixel map. 
Since this is what we want, we'll have to set the high bit of 
row Bytes. 

The pixel map we're playing around with here is associated 
with the new color grafport we created a ways back with the 
OpenCPort command. When we called OpenCPort, it created all the 
data structures used by the new port, including the new pixel map, 
and that's the pixel map that we'll draw into. 

217 



218 PART TWO TECHNICAL ADVENTURES 

Here's the code for setting up the values we need in our pixel 
map. 

with colorPPtrA.portPixMapAA do 
begin 

baseAddr := bufferAddr; 
rowBytes := pixRowBytes 
BitSet (@rowBytes, 0) {turn on high bit} 
bounds := copyRect; 
pixelSize ·= pixDepth; 

end; 

Setting the Table 

Now it's time for another color complication. When you're using 
Color QuickDraw, every pixel map has a color table associated with 
it. This color table helps the system translate between the 256 colors 
that you have available on the screen and the palette of 16 million 
that are available. When we created the color grafport with 
OpenCPort, we got a color table that was a copy of the current de
vice's table. 

To be sure that we keep the colors we want, we have to make a 
new table that's a copy of the one from the deepest device. After we 
do that, we have to do a slight tweak to the color table, since we're 
taking it from a color device but we're going to use it with an off
screen pixel map. The tweak involves filling in the indices for each 
color value and then clearing the high bit in the translndex field of 
the color table. QuickDraw uses the distinction so that it can ensure 
that pictures drawn in color keep the right colors with them. 



Quick Draw 

First, we'll grab the handle to the color table and use the utility 
routine HandToHand to make a copy of it, and then we'll set up the 
new color table. As we return to our story, we find that the color table 
is another field within a pixel map. In this case, we want the one 
that goes with the deepest device. 

colorTblHdl := deepDeviceHdlAA.gdPMapAA.pmTable; 
err := HandToHand (Handle (colorTblHdl)); 

{Makes a copy of the color table; colorTblHdl leads to it} 
with colorTblHdlAA do 

begin 

end; 

for index := 0 to ctSize do 
ctTable [index] .value := index; 

BitClr (@transindex, 0); {clear high bit} 

Utility players. The HandToHand function, which sounds 
like the name of some sort of bizarre marketing campaign, is 
one of a little used group of utility routines in the Macintosh 
ROM helpful for various general tasks with pointers and 
handles. As you've seen, HandToHand lets you make a new rel
ocatable object that's a copy of an existing one. These are the 
others in the group: PtrToHand, which lets you copy any run of 
bytes into a new relocatable heap object and returns the handle 
to it; PtrToXHand, which puts the bytes you specify into an ex
isting relocatable object; HandAndHand, which lets you add 
the bytes from one relocatable object onto the end of another; 
and PtrAndHand, which, given a pointer, grabs a chunk of 
bytes and adds them to a relocatable object. These handy calls 
are present in every version of the Macintosh ROMs, all the 
way back to the original. 

Before we can start drawing, there's one more thing we have to 
do. We'll make the deepest device into the current device, so that 
when we begin drawing QuickDraw can figure out which colors we 
want to use. While we're at it, we'll also set the current grafport to 

219 



220 PART TWO TECHNICAL ADVENTURES 

our offscreen structure. To do this the clean way, we should preserve 
the old device and grafport first and then set the new ones. 

savedDevice := GetGDevice; {preserve the graphics device} 
SetGDevice (deepDeviceHdl); {make the deep device current} 
GetPort (savedPort); {preserve the grafport,. too ... } 
SetPort (GrafPtr (colorPPtr); { ... and set the new one} 

Finally, we're ready to start drawing into our offscreen pixel 
map. We can use any Color QuickDraw commands we want. We 
should start by setting up a background color with RGBBackColor 
and then use EraseRect to fill up the rectangle with that color. This 
will clear out any unwanted stray bits. After doing that, we can set 
up our own colors and use RGBBackColor and RGBForeColor to draw 
in them; we can use the color object-filling commands, like FillCRect, 
FillCRgn, and FillCPoly, to paint shapes with Color QuickDraw 
patterns (called pixel patterns); we can use SetCPixel to set individ
ual pixels to any color; and we can do whatever other neat stuff 
Color QuickDraw provides. 

As we draw offscreen, a buffer will be created that's a replica of 
the bits necessary to display our image on the screen. Since we were 
careful to make sure we had a buffer big enough to handle the maxi
mum pixel depth being used and we set up a color table for our image, 
after we're done drawing we'll be able to copy the whole schmeer to 
the screen and have it show up just as we drew it offscreen. First, 
we'll set the graphics device and grafport back to the screen. 

SetGDevice (savedDevice); 
SetPort (savedPort); 

{Back to reality} 

When we're ready to blast everything onto the screen, here's the 
CopyBits call we'll need. 

CopyBits (BitMap(colorPPtrA.portPixMapAA), 
thePortA.portBits, copyRect, copyRect, 0, nil); 

That's it. Now, let's play "what if." What if we copy it back to 
a screen that's set for a different pixel depth than the one we started 
with? In our case, we drew assuming eight bits per pixel; what hap
pens if we try to copy back to a screen that's only four bits per pixel? 
Is it the end of the world, the end of our program, or what? Well, if 
you don't know the answer, you're probably guessing that Quick
Draw is smart enough to help you out as much as it can, and that's 
exactly right. 



QuickDraw 

First, it will automatically adjust to the different pixel depths. 
That means it will have to map every pixel into a maximum of 16 
different colors, since four bits of information is enough to represent 
16 different things. Since the original pixel map was created with 
256 different colors available, it's likely that it will want colors 
that aren't available in the more restricted four-bit mode. When 
this happens, Color QuickDraw cleverly tries to find the closest 
available color to the one requested. This makes the pixel map show 
up as close as possible to the original. 

Things to Remember 

Let's compare what we had to do to use offscreen drawing with 
old and new QuickDraw. Unfortunately, we can't just write one un
conditional set of code to handle both cases. Right up front, we have 
to check to see whether Color QuickDraw is running; if it is, we can 
then worry about dealing with multibit images. 

Color QuickDraw does help out a lot, though, once that initial 
decision is made. After the test for the existence of Color Quick
Draw, our program doesn't have to worry about a lot of other specific 
tests, such as how many monitors the user has, whether they're set 
for color or black and white, and whether they're set on one bit per 
pixel or more. As long as Color QuickDraw is present, we can handle 
all the other cases with generic code. 

There's a slight fly in the ointment that shows up when you 
draw in color using the old model. If you try to use CopyBits on the 
part of your image that's in color and you use a bit map (not a pixel 
map) as the destination of your CopyBitsing, you'll lose the color in
formation. This means you should use the pixel map CopyBits tech
nique if you want your application to work right on a color Macin
tosh. 

Remember that even if you don't allow your users to draw anyth
ing in color, you could still get color stuff in your documents. This can 
happen if your artistic user makes a color picture with another ap
plication and then copies and pastes it into your document. Color 
QuickDraw cleverly allows pasted pictures (PICT resources) to in
clude color information, so you might be getting color stuff into your 
documents through the back door. 

221 



222 PART TWO TECHNICAL ADVENTURES 

So, the decision of what to support comes back to you. The most 
inoffensive, middle-of-the-road choice is to do the following. 

• Draw in color in the old model only. This allows you to draw in 
eight colors, which is plenty for most applications, and you don't 
have to worry about what the colors will look like when used on 
a Macintosh Plus or SE, since all non-white colors will show up 
as black. 

• Check for Color QuickDraw by calling SysEnvirons and if it's 
there use pixel maps when CopyBitsing images that might have 
color in them. This will ensure that you don't lose any color in
formation that might be in a picture or that your users may have 
drawn with your application. 

That's the end of our offscreen color adventure. There's a lot more 
about the color stuff in QuickDraw in Chapter 3, "Color." You can't 
miss it-it's printed in black and white. 



c H A p T E R 8 

Resource Manager 

Applying the concepts of neatness and courtesy to your 
applications. A discussion of what must be remembered 
to restore the state of a program. A look at a well-done 
example from a surprising source. Errors to watch for. 

223 



224 PART TWO TECHNICAL ADVENTURES 

In this chapter, we'll talk about what you can do to make your 
application's environment more consistent for your users. This idea 
really fits only vaguely under the heading of the Resource Manager; 
but of all the chapters on Toolbox managers; this one is probably the 
best place for this discussion. 

Restoring the State of Things 

One of the Macintosh user interface's best features is the edict 
that says you should do things in a predictable, familiar way. It 
may not sound like a virtue to be predictable and familiar, but in 
software for personal computers, it really is. Most people don't want 
excitement and surprise when they're trying to write a report, create 
a database, or design a new bathroom on their computers. 

Most Macintosh applications have done a pretty good job of fol
lowing this rule. In general, things in Macintosh software behave as 
you would expect them to. Buttons that say "Cancel" usually cancel 
things; clicking on arrows that point down usually makes something 
move down; you can operate on something by pointing at it and click
ing. 

When a user works on an application and then quits, there are 
lots of settings that the user has made, either consciously or uncon
sciously (I hope there aren't too many unconscious users out there). 
Many of these settings automatically become part of the document. 
Every word processor remembers the settings of margins and tabs for 
paragraphs, every spreadsheet keeps track of things like column 
widths and cell entries, and every database remembers the structure 
and the records that you've entered, of course. 

Lots of these applications aren't as friendly as they could be. A 
really great application ought to keep track of other important set
tings for its users. When you're using a spreadsheet program, you 
might have several windows open at once. You may have taken the 
time to carefully position each one on the screen so that the right in
formation from the different windows is showing in just the right 
places. Wouldn't it be nice if the spreadsheet program would remem
ber which windows you had open, where you had them, and how big 
the windows were? Yep, it sure would, and a few of the really cool 
programs do just that. For example, when you quit Excel, it creates a 
document called Resume Excel that remembers all this good stuff. If 
you double-click this document to restart the program, all your win
dows will come back just as you left them-the way your bedroom 
looked after your first vacation from college and your parents hadn't 
cleaned it up yet. If you don't want your previous configuration to 



Resource Manager 

come back but want to start with a clean desktop instead, you can just 
double-click the application instead. 

To implement this fun feature, you have to be foresighted enough 
to save the global state of everything when the user quits your ap
plication. Usually, you can do this in a special resource file, which 
many bright applications like Excel and MORE call the Resume icon. 
This icon represents a file containing the information the applica
tion needs to recreate the world as the user left it. 

There are some potential problems that can arise with this 
scheme. Let's say the user quits the application, then throws away 
one of the documents that was left open in the application. Then, the 
poor unsuspecting user double-clicks the Resume icon, causing the ap
plication to start up again and making it go looking for a file that 
doesn't exist any more. What happens? 

Well, the application is in complete control of what goes on 
here, so it can be just as friendly or as nasty as it chooses. When the 
user restarts the application with the Resume icon, the application 
is going to try to find all the documents that were open the last time 
the user quit the application. If one has been thrown away, the ap
plication will get an unwanted surprise when it tries to open the ex
file: a "file not found" error code. 

At this point, depending on how helpful and clever the applica
tion is, three things can happen. 

1. After finding out that the file it wants isn't there, the applica
tion can just continue starting up without being able to open that 
document and try to do everything else necessary to restore 
things to the way they were when the user quit. 

2. The application can tell the user that it can't find a file and 
give the user the option of looking for the file on another disk or 
in another directory. The easiest way to do this is to call SFGet
File, which will give the user a chance to pick out the file in a 
very familiar way. This is useful if the file that the applica
tion wants to find has been stuck into a different folder by the 
clever user. Of course, if the file has been thrown away, there's 
really nothing much to do. 

3. The really brain-damaged thing to do is to forget to check the 
error result when trying to open the files. This can really lead to 
disaster as the application plows blindly ahead, acting as if the 
file were open and possibly trashing memory along the way. 
This would be bad. 

225 



226 PART TWO TECHNICAL ADVENTURES 

Saving Local Information 

It's very important to save global information, such as the names 
of documents and the sizes and locations of windows, when the user 
quits an application. It's just as important to keep track of local stuff 
that's specific to each window so that it can be restored when the 
user wants to get things going again. Local information varies de
pending on the type of application. If your application is an outline 
processor, the state information that's saved should tell which 
headlines' topics were expanded and which were collapsed and 
should also include remembering which topic was selected when the 
user quit. 

The current selection, or position of the cursor, is a very nice 
thing to keep track of for each window. You should also save some
thing that tells you the place the user was looking at in the docu
ment. Remembering the location of the selection and scrolling right 
to it really makes it convenient when you go back to working on a 
document. Users take time to carefully position and resize windows 
just as they want them (after all, it's a personal computer). Restoring 
the window just exactly as the user left it, including showing the 
right position and selecting the right thing, makes it easy for your 
users to get comfortable and start back up in a hurry. 

Role model. One of the best models for doing this is the MP:W 
Shell. When you edit a document in MPW and save it, MP,W is 
very careful to save everything that will affect the state bf 
the document. This guarantees that the document will com~;up 
just as it was when the user left it. · ··' ·· . 

How to Save the Information 

The usual way of saving the state of things when the user quits 
the application is to create (or modify, if it exists) a file that's often 
called Resume something (like Resume MORE or Resume Excel). This 
is the file that should contain all the global state information, like 
the names of the open documents and any default kinds of settings 
the user has made that affect the whole application rather than a 
particular document. 

It might seem like a clever idea to save the state information in 
the application resource file itself, rather than to create a new file 



Resource Manager 

just for the state information. One reason you shouldn't do this is 
that the application might be a multi-launch version living on a file 
server, which means that several users depend on the same copy. If 
you change the one and only copy of the application, you'll really 
confuse people as they wind up opening someone else's documents. 
Another reason not to change resource files on a file server is that re
source maps aren't designed to be shared by multiple users. It's a good 
idea to let the user choose whether stuff from a previous session 
should be used or not, and creating the Resume icon is a good way to 
do that. 

Legal department. In case you're interested, people may legal
ly use an application from a file server if the license agreement 
that came with the software expressly permits the user to 
share the application on a network. Many applications now 
have a special site license agreement that allows a group of us
ers to pay a set fee for a certain number of users. Other pro
grams, like 4th Dimension, provide a special runtime version of 
the application, which inexpensively allows lots of users to 
work with data. 

To save the state information, you should create a resource with 
space for everything you need to save. Usually, all you need to save 
for global information are the names of the open documents listed in 
the correct order (or at least remembering which window is front
most). For each document, you need to save enough information to 
find it later and open it. One way to do this would be to save the full 
pathname of the file, which includes all the directory information 
needed to find the document. It would look something like this: 

Music:CD:Mister Heartbreak:Sharkey's Day 

As you probably know, full Macintosh pathnames start with a vol
ume name and include colons to indicate each level of directory that 
we pass through; so, in this pathname, "Music" is a volume name, 
"CD" and "Mister Heartbreak" are directory (folder) names, and 
"Sharkey's Day" is the file's name at last. 

There's actually a better way to keep track of files than to 
record the full pathname. In the Macintosh's legendary Hierarchi
cal Filing System (HFS), every directory has a number that uniquely 
identifies it. This number, called the directory ID, never changes 
once it's attached to a directory. The directory ID (also called a dir
ID) sticks with the directory forever (this has been proven), not just 

227 



228 PART TWO TECHNICAL ADVENTURES 

until the system is restarted. The directory ID follows the folder 
around even if it's moved into other folders or brought out to the root 
level of the disk, or even if the directory's name is changed. This 
makes it a very reliable way to find a file's directory. 

To fully specify the file, you'll also have to save information 
about the disk it's on. When you have an application running, the 
best way to refer to a volume is by using a volume reference number. 
Unfortunately, the vRefNum doesn't stick with a volume once it's 
been unmounted from the system, so it's pointless to store the vRef
Num and expect it to be valid the next time you want to open a file 
from that volume. 

The only way you can save information about a volume and use it 
to find the file the next time is to store the volume name along with 
the dirID and the file name. Then, when you have to reopen the file, 
you can use the combination of the volume name, the dirID, and the 
file name. 

It's interesting to note that the user can screw things up in vari
ous ways. Of all this information, only the dirID is guaranteed to 
stay the same after the user quits the program. If the user does any
thing tricky, such as renaming the file or the volume or sticking the 
file in a different folder, the program won't be able to find it when it 
comes looking. If this happens, the application's best recourse is to 
put up an SFGetFile dialog asking the user where the file went. 

Usually, a lot more state information needs to be saved about 
each open document. This includes things like the size and location 
of the window, the position of the selection or insertion point, and 
the part of the document that the user was looking at. Although 
there's more stuff to be saved with each document than there was 
with for the whole application, the general technique is the same. 
Figure out everything you need to save for each window, then create 
a resource with fields for everything and store one of those resources 
in the document's resource fork. 

A good example of the state information to save for a document is 
what the MPW Shell (version 2.0) keeps track of for each of its doc
uments. Every document created or edited by the MPW Shell has a 
resource of type MPSR with ID 1005 (don't ask me), which contains 
the state-saving information for the window. Taking a peek at what 
MPW keeps in this resource will give us an idea of what we have to 
save with documents created by all kinds of applications. 

Documents created by the MPW Shell use one font and font size 
for the whole window. This information is stored in the MPSR by 
MPW. It's valuable to note that the font is stored by its name, not its 
number. This is because the font number can be a fleeting thing. As 
fonts are removed and installed, Font/DA Mover will sometimes re
number them to avoid conflicts in the system file. Font names, on the 



Resource Manager 

other hand, stay very constant. They never change unless users expli
citly change them, and that rarely happens. This makes it safer to 
keep track of the font's name than its number to ensure the right 
thing for the user. 

The MPW Shell also has a global tab setting for an entire win
dow. It keeps this setting as part of the MPSR resource, too. This is 
very straightforward: an integer in the MPSR tells how many spaces 
apart the tabs are set for. 

We said that real friendly applications remember the size and 
location of windows when they're closed. MPW Shell does a good job 
of this. There are actually two different rectangles to remember, 
since MPW like most Macintosh applications allows the user to click 
in the zoom box to grow and shrink the window. The MPSR includes 
space for two rectangles: one of them gives the size and location of 
the window when it's zoomed out and the other tells about it when 
it's zoomed in. 

Other fields in the MPSR resource record information about the 
user's text selection in the window. The values of the starting and 
ending locations of the selection are stuffed into the MPSR. If there's 
no selection and just an insertion point, these two values are the 
same, but in that case they tell where the insertion point belongs, 
just like TextEdit does. 

The next piece of information recorded by the MPW Shell in 
every document's MPSR resource is the position in the file the user 
was looking at when the window was closed. This is called the docu
ment's display position. Note that this doesn't necessarily have 
anything to do with the selected text in the document. A user can 
easily have been looking at a part of the document that's different 
from the part that contains the selection. 

What's the best way to record the display position? You can 
keep track of the setting of the scroll bar, as MPW does. This lets you 
set the scroll bar when you open the window and position the text at 
the right place. If you have both horizontal and vertical scroll bars, 
this technique will allow you to set the document to exactly the 
same place it was when the window was closed. 

When you're editing a document with the MPW Shell, you can 
choose to turn automatic indenting on or off, depending on what kinds 
of things you're editing and whether you like auto-indenting or not. 
This setting is recorded for each window in its MPSR resource. In the 
same way, every window can be set to display characters that are 
normally invisible, like carriage returns and spaces. The window's 
setting for this feature is also kept in the MPSR. 

By saving all this information in the MPSR for each document, 
the MPW Shell can restore the environment of every window to just 
the state it was in when it was last closed. This really makes it easy 

229 



230 PART TWO TECHNICAL ADVENTURES 

and convenient for the user to remember what was going on the last 
time the window was open. When you make the document open up 
right where it was left, you're really doing something nice for your 
users. 

When Something Goes Wrong 

You can run into some problems when you're trying to restore the 
state of things as they were. The problems usually arise from 
changes in the environment that occur between the last time the user 
worked on a document and the next time, when everything is sup
posed to be restored just as it was. 

We already discussed what to do in the most common situation of 
this kind, when a document that's supposed to be opened isn't where 
it should be. Other things can happen, and you should be prepared 
for them so that your application doesn't get so confused that it 
crashes and breaks your user's document. 

A simple way to make sure this doesn't happen is to validate 
the steps you're taking to restore your environment before assuming 
that everything is working OK. Before you assume that you've 
opened a document and you're going to do something to it, make sure 
you were really able to open it by checking the error code returned by 
PBOpen. 

Specifically, when you're trying to restore a window to the way 
it was, you should realize that someone may have used a different 
application to modify the document after the last time your appli
cation saw it. Of course, the other application isn't as clever as 
yours, and so it doesn't know how to maintain your carefully de
signed resource that remembers the document's state. In fact, a 
heavy-handed hacker playing around with ResEdit could have 
messed up the saved state. 

As you're reopening the window and setting it up according to the 
saved data, make sure that every setting is reasonable. It it's not, 
you should set it to some safe default value. For example, be sure 
that you don't set the window size and position to some nonsensical 
value. If the rectangles saved for the window seem to be real bizarre, 
set them back to a nice default value. If you keep a global tab set
ting, as the MPW Shell does, make sure it's not a ridiculous value 
(say, anything greater than 50). If it is, reset it to something reason
able. 

Another example of a possible problem that you should handle 
elegantly involves the font name. Let's say the user saves a document 
in an editor like MPW Shell, which displays an entire window in 



Resource Manager 

the same font. Then, at some later date, the user decides that font is 
just too ugly to be believed and takes it out of the system with Font/ 
DA Mover. What will happen? 

You should be prepared for the chance that the font you're look
ing for may not be there any more. If you try to draw some text in a 
specific font, you can check first to see whether the font is there by 
calling GetResource to get a handle to the font. If GetResource returns 
nil, you'll know it couldn't find the font you want. 

If that happens, you should pick another font to use. Obviously, 
you should try to be sure it's a font that's really there, not a fly-by
night font like the one you've already fooked for. There are a couple 
of things you can do here. You can use font number 0, which is the sys
tem font. If any font at all is available, the system font will be, so 
this is a safe bet. You can also use font 1, which represents the appli
cation font (usually Geneva). In extremely tight memory situations, 
there's a chance the application font won't be around, but this is 
pretty rare. 

You should be aware of some other things that won't cause 
crashes but will drive your users crazy. One of them is especially im
portant in today's world of lots of different Macintoshes with lots of 
different-sized screens. You might be using your Macintosh II with 
19-inch monitor (we've all got those, right?) to work on a document. 
Then, you pass a copy of the document along to your poor coworker 
who uses a good old Macintosh Plus with the classic 9-inch display 
and your document is nowhere to be found. Why? The application 
you're using has thoughtfully placed the window exactly where it 
was when you last had it open; but now, it's about 500 pixels too far 
south to be seen. 

This scenario can even happen to a single Macintosh II user who 
reconfigures the monitor settings. If the user has two monitors ar
ranged with the main one on the right, puts a window over there, 
and then rearranges the monitors to put the main screen on the left, 
the application will put the window out into never-never land if it 
just sticks it back where it was on the desktop. 

The smart way to avoid this situation is to make sure the win
dow is located on the visible part of the desktop before drawing it. 
One way to do this is to check the window's rectangle against the 
global variable called GrayRgn, which contains the region that 
forms the desktop. You can use QuickDraw's RectlnRgn call to see 
whether the window's rectangle is anywhere on the desktop. If Rec
tlnRgn returns false, you'll know the window won't show up any
where on the desktop. If this happens, you should put the window in 
some default location that you're sure of. Since the upper left comer 
of the main screen always starts at 0,0, you can use a location that's 
an offset from that point. 

231 



232 PART TWO TECHNICAL ADVENTURES 

Most of the discussion in this section has been based on the exam
ple of a text editor, such as the MPW Shell. A lot of the stuff that 
we talked about saving, such as the window's location, applies to al
most every application, so you'll be able to use it directly. Other 
things will be specific to your kind of program. 

For example, if you're writing a drawing program and each win
dow can optionally have a tool palette and a design palette asso
ciated with it, you'll have to keep track of whether these palettes 
were open when the user saved the document. If you're creating an 
application that allows split views in a window, your state-saving 
information should tell about where the window was split and what 
was going on in each part of the split. 

Things to Remember 

A great way to win fans for your application is to try to restore 
the way things were when the user last had each document open. To 
do this, you'll have to store the state information. A good technique 
for storing state information is to create a special resource file named 
Resume followed by your application's name (like Resume Tango). In 
this resource file, you should put enough information to set things up 
the way they were when the user quit the application. Usually, 
you'll need the names of any open documents. To open the documents, 
you'll have to know the names of the disks they're on as well as the 
directory IDs of the folders they're in. 

To keep track of information that's specific for each document, 
you should make a saved state resource and stick it in each document. 
This resource will have settings that affect a whole document, like 
the size and location of the window, the position of the insertion 
point or selection, and the display location. You'll also store other 
stuff in this resource that your application needs to reopen the win
dow and make it just like it was. 

While you're busy restoring the world for the user, you should 
watch out for problems that can occur because some ResEdit junkie 
was messing around with the documents or because something in the 
system (like the fonts or the screen configuration) has changed since 
the last time the document was opened. To be very friendly, you 
should validate all the information in the saved-state resource be
fore you rely on it to be true. If anything turns out to be unusable, you 
should substitute a default value. 

With just a little thought and some code, you can add this fea
ture as a nice little touch that will really please your users. Putting 
things back the way you found them is not just good user interface 
practice. It's the polite thing to do. 



c H A p T E R 9 

Window Manager 

The window population explosion and how you can 
help. Nice ways of dealing with many windows. Help
ing your users out by arranging the windows in an or
derly fashion. Tiling and stacking. How to browse 
through the windows with just a keystroke. Multiple 
screens and what they will do to you. 

233 



234 PART TWO TECHNICAL ADVENTURES 

Managing Your Windows 

Among the neatest tricks of the Macintosh is that almost no ap
plications really draw on the screen; instead, they draw into win
dows. This magic difference is the reason it's really quite easy to 
change the dimensions of the screen from the classic 512 by 342 to 
something like 1024 by 1024 and have most applications automati
cally take advantage of the new real estate. They weren't really 
limited to the small screen in the first place; they were drawing into 
QuickDraw's massive imaginary rectangle, with its 65,000 dots on 
each side. From their point of view, even a million pixels is just a 
drop in the bit bucket. 

Many of the first applications were stuck to a single application 
window at a time. But as the state of the art evolved and customers 
got more demanding, folks figured out that it was possible to let the 
user have more than one document open at a time, each one with its 
own window. Eventually, Apple made things even more advanced by 
teaching the Finder to start up other applications without having 
them take over the computer. 

As applications evolved into allowing lots of windows to be open 
at once, users started to have more trouble figuring out where their 
windows were when they needed them, especially on the 9-inch 
classic Macintosh screen. When you've got five or six windows open 
at the same time, it's easy to lose track of the one you want or to be 
unable to click on it because it's completely covered up. 

In the Macintosh world, when necessity cries out, the invention 
is born. Many applications started including a menu that listed all 
the available windows on the screen at any time; when the list of 
windows changed, so did the menu. This gave users a way of bringing 
a window to the front without having to seek it out and click on it. 
Instead, a user could just find the right window title by pulling down 
a menu and perusing the list. There's even a desk accessory that 
looks through the window list and builds a menu with a list of all 
their names and then brings one to the front if the user chooses from 
the menu. 



Window Manager 

Once you've got a menu built that lists all your application's 
windows, the biggest trick is keeping it up to date as your user 
changes things. This is actually pretty easy to do. Every time you 
open a new window, you can call InsMenultem to add the new win
dow's name to your menu. When you close a window, you can call 
(surprise!) DelMenultem to take it out of the list. You should also use 
Checkltem to put a check mark next to the window that's currently 
at the top. 

Sometimes you'll have windows that you don't want to appear 
in the menu's list. This is true, for example, if you have any invisible 
windows, special "ghost" windows that are never supposed to be se
lected, or other funky windows the user shouldn't select. Make sure 
you leave these out of your menu when you're building or updating 
the list. 

The InsMenultem and DelMenultem calls are not available in 
the 64K ROM included in the Macintosh 128K and 512K (that's 
ROM version $69) or any of the 64K ROM images on the Macin
tosh XL. If it's vital that your application work on old ROM 
machines, you'll have to use an alternative technique to mess 
around with your window-list menu. Here are two suggestions. 

1. Completely rebuild the menu every time you open a new win
dow or close an existing one. You can do this by using Delete
Menu to remove the old menu, AppendMenu to construct the 
new one, then calling InsertMenu to stick it into the menu 
list. To learn the names of all the windows, you can either 
maintain a list yourself as part of your global data or you can 
waltz through the window list by using the nextWindow 
field of each window record. For each window, this field 
points at the next window behind it. If you start with the 
frontmost window, you can see all of them; the last one's 
nextWindow field is nil. 

2. For the thrill-seekers: dive directly into the menu's data 
structure in memory, which is well-dcrcumented in Inside 
Macintosh Volume I, and modify the menu's data directly. 
You'll find a handle to the current menu list at location 
$A1C. The menu list consists mainly of handles to the menus. 
With some tricky munging, you can modify the menu directly 
in memory; this is the Macintosh equivalent of open-heart 
surgery, so be careful. If you're sure to do this only on comput
ers with ROM version $69, you'll be OK, since the format of 
a menu is frozen forever on those machines. There's a small 
chance that Apple will someday release a new version of 
the system file that patches in a new Menu Manager in RAM 
for these old systems, but it's extreeeemely unlikely. 

235 



236 PART TWO TECHNICAL ADVENTURES 

Now that we've built a menu listing all your application's open 
windows, we can do something else to make the application even 
easier to use. Sometimes, a user knows the contents but not the name 
of the window that should be brought to the front. One clever way to 
help with this dilemma is through a mechanism that quickly zips 
through the open windows, bringing each to the front, one by one. 

A clever way to do this is to attach a Command-key equivalent 
to the window that's all the way in the back. Just for discussion, let's 
say it's Command-E. When the window list changes, you can remove 
the Command-E from its old item and add it to the new one. By pull
ing down the menu, the user can see which window will be selected 
with Command-E, and your documentation can say that Command-E 
always selects the next window. Power users will love this. An even 
more clever idea might be to use Command-down-arrow to move 
through the windows from front to back, and Command-up-arrow to 
take the backmost window and stick it in front. 

Another trick for quickly selecting a window is to tie a Command 
key to every window in the list. This only makes sense if the Com
mand keys follow some logical progression. One idea is to make the 
first one Command-I, the second Command-2, and so on for up to nine 
open windows, which should be enough to satisfy most folks. 

Segregation. One decision you'll have to make when construct
ing your list of menus in a window is whether to include win
dows that belong to .desk accessories. Probably the best decision . 
is to leave them out, for at least two good reasons. First, if a 
user wants to make a desk accessory window frontmost, select
ing the accessory's name in the Apple menu will do the trick 
very nicely, so there's no need to duplicate this. Second, most 
users think of the windows that make up their documents as 
separate from the ctesk accessories. Also, if you're running a 
multitasking version of the system, desk accessory windows 
may not even appear in your application's window list. 

More Fun with Windows 

There are a few other nice tricks you can provide to help users 
make their multi-windowed lives easier. One of these, making a 
window fill the screen, is supported by the Macintosh Toolbox in all 
versions except the first. (the 64K ROM, version $69). 



Window Manager 

The standard way to deal with this window zooming, as it's 
called, is to draw your windows with a variation code of 8 on the 
standard window definition function. This variation will draw the 
familiar zoom box in the upper right corner of your window. You can 
then use the TrackBox call to watch the user's mousing after a click 
in the zoom box and Zoom Window to make the window full-screen or 
shrink it back down if it's been zoomed already. 

Don't forget that users like to be able to accomplish binary kinds 
of things with the keyboard as well as the mouse and would appre
ciate having a keyboard way to zoom the windows as well. Window 
zooming is an interesting situation: most applications not only don't 
have a keystroke for doing it, they don't have a menu item for it ei
ther. It seems like a good idea to have a menu item with a Com
mand-key equivalent for window zooming, both for keyboard fans 
who want an alternative to clicking the zoom box and for raw begin
ners who may not even know about the zoom box but might figure out 
how to zoom if they saw the item in a menu. 

There are other important window-twiddling functions that an 
application should have that aren't as nicely supported by the Tool
box as window zooming. A nice thing to do for users with lots of win
dows is to stack the windows for them; that is, show them all on the 
screen like a fan of cards, with each window spaced just down and to 
the right of its neighbor, as in Figure 9-1. This tool makes browsing 
through the windows more convenient. 

To stack the windows, you'll have to resize and reposition them. 
They're all going to wind up being the same size, so the first thing to 
do is to figure out what size that will be. A good rule is to take the 
size of the screen and subtract 100 pixels from the width and the 
height. You also have to decide how far apart to space the windows 
as you shuffle them on the screen. Try moving them down and over by 
20 pixels and see what you think, then adjust it to whatever you 
like. 

You should definitely not try to stack any windows that belong 
to desk accessories. Most of them aren't resizeable. You will 
cause them serious brain damage if you try to mess with them. 

To actually move and shrink or grow the windows, you can call 
MoveWindow and SizeWindow. To avoid messy redrawing, you can 
make each window invisible by calling ShowHide, move and resize 
it, and then bring it back to visibility with another call to 
ShowHide. You should increment variables that hold the 
coordinates of the window's upper left corner and pass them to Move-

237 



238 PART TWO TECHNICAL ADVENTURES 

S File Edit Window 

Window 1 

Window 2 

Window 3 

Window 4 

Window 5 

Window 6 

Window 7 

Window 8 

Window 9 

Window 10 

Window 11 

~D Window 12 

Figure 9-1. Stacked windows 

Window. Since you want all the windows to be the same size, you 
don't have to worry about recalculating the size for each window. 

There are a couple of slightly different ways of handling a win
dow-stacking algorithm. One variation is to leave the windows 
sized as they are and just move their top left corners into a stacked 
alignment, as in Figure 9-2. This makes things faster and easier, 
since you don't have to call SizeWindow or bother making the win
dows invisible. 

Another elegant variation is to resize each window so that it ex
tends just to the bottom of the screen. 

Which one of these styles should you use? It's not really that big 
a deal, after all. If you were really fanatical about it, the right 
thing to do would be to implement them all and then allow the user 
to switch between them with some sort of "preferences" or customiz
ing technique; but nobody is really that fanatical, right? 

Sometimes, a user who has a lot of windows open wants to see 
them all, as with stacking. Instead of piling them on top of each 
other with just the title bars showing, though, it might be more in-



Window Manager 

s File Edit Window 

Window 1 

Wi 

Window 17 

Window 16 

Window 15 

~D~ Window 

Figure 9-2. Stacked windows, different sizes 

teresting to resize them all so they're the same size and share the 
screen real estate equally. This is usually called tiling the windows, 
and all the really chic applications do it. 

Tiling involves trying to evenly divide the screen space among 
the open windows. An example of four tiled windows is shown in Fig
ure 9-3. Although this may sound easy at first, there are some pretty 
interesting decisions to make in some cases. Let's consider a few ex
amples and try to build an algorithm for tiling the windows. 

Let's say the user has two windows open and chooses to tile 
them. What should you do? The idea of tiling is to the windows in 
the most usable configuration with no overlap and with each win
dow the same size. With two windows you have two choices: you can 
either put the windows side by side or one above the other. Macin
tosh users are used to seeing most of the width of their documents but 
not the height; having each window full height and half width 
probably wouldn't be the most comfortable configuration for them. A 
better idea is to put them one above the other. · 

What if the user has a portrait-style screen like the Radius 
FPO? This screen is much taller than it is wide, but horizontal stack
ing still seems like a better thing to do. The added screen space of 

239 



240 PART TWO TECHNICAL ADVENTURES 

s File Edit Window 

Window 19 D 
!_ 

Window 21 
Nice Up Dances , Natural 
Beauty . 

Beat Crazy 
One to One 

Do the Dance, Barrington Levy 
Reggae Ska, Michigan & Smiley 
Spri ngheel Skonki ng, Don 
Carlos 

In Every Dream Home (A 
Nightmare) 
The Evil Eye 
Mad at Vou 

Teach Me to Dance, Wayne 
Smith 

Crime Don't Pay 
Someone Up There 

Window 20 Window 22 
I. G. V. 
Green Flower Street 
Ruby Baby 

Alabama Getaway 
Far From Me 
Althea 

Maxine 
New Frontier 
The Ni ghtfl y 

Feel Like a Stranger 
Lost Soilor 

The Goodbye Look 
Saint of Circumstance 
Antwerp's Placebo (The 
Plumber) Walk Between Raindrops 

Figure 9-3. Four windows tiled 

the Radius monitor allows each window to be more reasonably sized. 
You might want to have your tiling algorithm put two windows side 
by side if you find a really huge monitor that has room for two full
width pages, but that's up to you and the demands of your users. 

Things get a lot more interesting when you have three or more 
windows to tile. With three, the best course of action is the same as 
with two: stack them above each other. A third of the screen is 
really too little to devote to a document's width in most cases. 

Stay away from the DA. Just as with stacking, you should not 
try to do your tiling thing on desk accessory windows. Most of 
them get very disagreeable if you try to resize them. It's a good 
idea just to leave them alone and tile your own windows. 

As you have to tile more and more windows, you'll reach a point 
at which it's no longer practical to pile them on top of each other 
with each one occupying the full width of the screen. On a classic 



Window Manager 

Macintosh screen, you get about 320 pixels for windows after sub
tracting space for the menu bar. This means that trying to divide the 
screen's vertical space evenly among, say, four windows would allow 
just 80 pixels for each. 

A mere 80 vertical pixels per window isn't very much when you 
figure that the title bar and the bottom scroll bar, if there is one, 
take up more than a third of that space. When you get to five win
dows, the resulting space of 64 pixels per window is downright ludi
crous (see Figure 9-4). It seems like we should do something else here. 

s File Edit Find Window 

ht 

Charlie Freak 

East St. Louis Toodle-Do 

Figure 9-4. Five windows stacked vertically 

The obvious change to make is to stop allowing windows to take 
up the full width of the screen, and to start making them half
width instead, as we saw back in Figure 9-3. For our algorithm, we 
need to specify when to switch over from full width to half width. 
We should do this whenever the resulting full-width windows 
would come out sized smaller than some minimum we've decided on, 
like 100 pixels. 

241 



242 PART TWO TECHNICAL ADVENTURES 

So, the decision really depends on the vertical size of the screen: 
if it's a big screen with 900 vertical pixels available and we decide 
that the minimum horizontal size is 100, we can have (get your cal
culators out here) nine windows at full width before we have to start 
worrying about splitting the horizontal dimension. For a more com
mon 342-pixel monitor, we should switch to the new style when 
there are four windows to tile. 

As soon as we figure we have enough windows to start laying 
them side by side as well as piling them up, we can start dividing up 
the screen space. Figuring the horizontal dimension (also known in 
English as the "width") is easy: it's just half the width of the 
screen. Computing the vertical dimension (colloquially called the 
"height") is a little trickier, and we'll discuss it now. 

Consider, for example, the case of five windows. We can't make 
them full-width windows because each one would be too small to do 
anything interesting. So we'll put them side by side and divide the 
vertical space equally. There's a problem, though, if we divide all 
the windows into two equal-width columns: two into five doesn't go, 
as they used to say in third grade. We can't have two equal columns 
of windows when there are an odd number of windows. 

There are two possibilities here: the consistent and the conven
ient. To be consistent, all tiled windows should be the same size. So, 
following this logic, we should divide the screen into equal chunks 
using the number of windows; if there's an odd number of windows, 
we should divide by the number of windows plus one. For example, 
with five windows, each of them should occupy one sixth of the 
screen. The remaining sixth will just be blank, which seems kind of a 
waste but does follow the rule of tiling that all windows be the same 
size. This is also the easiest technique to code, since all windows get 
resized to exactly the same dimensions. 



Window Manager 

If you just hate to see a chunk of the screen unused and you don't 
mind straying from absolute consistency, which demands that all 
the windows be the same size, you can do something a little differ
ent. The easiest way to use the whole screen is to choose one window, 
such as the first or last one you resize and move, to take up the full 
width of the screen. This alternative is shown in Figure 9-5. 

S File Edit Find Window ""1ark Utilities 

Insider: System F o Ider: Works h 1 

wind.menu 
Firectory insider: 

I nsider:Dopey 

=o I nsider:Sneezy 

I nsider:Grumpy 

I nsider:Happy 

Figure 9-5. Five windows, one full width 

Another idea is to size the windows in each column indepen
dently, as shown in Figure 9-6. This spreads the wealth of extra 
screen space evenly among all the windows in one column. To figure 
the sizes for these windows, compute their heights by dividing the 
number of vertical pixels by the number of windows in each column. 
The widths of all the windows are still the same, of course. Before 
you bother using either of these tricks, though, remember they'll 
only come into play when the user has five or more windows open. In 
such a case, most folks would probably zoom up each little window 
before working on it anyway. 

Now we've extended our algorithm to include up to twice as 
many windows as before, by reducing each one to half the width of 
the screen. As those of you who are thinking ahead may have al-

243 



244 PART TWO TECHNICAL ADVENTURES 

s File Edit Find Window Mark Utilities 

_ lnsider:System Folder:Worksh1 §0~ lnsider:MPW:book:Billy Bob 
derez ... :Q: On a f i I e server, you ' I I have to a I I ~QI 

MPW Shell 

b.: 

];if l'"'"'''''""""'"""'""""""'iQ~ I nsider:MPW:book:Jim Bob G=L 
A 1 I Si Iver Surfer databases are al lo~,..m-------~,...,..~-.---------.JQ--r-i!Y.__,__,m 

lnsider:MPW:book:Bob Bob 

111111-------J2..,....,.[--------,J,....l2"JQr--&1 To optimize the index ing, the format~ 

lnsider:MPW:book:Joe Bob 
If you choose to run the program as~ 

Figure 9-6. Five windows tiled 

ready realized, we'll run out of space for this technique too, as soon 
as we get enough windows. We've said that 100 pixels was the mini
mum height for each window, so there's room for three windows in 
each column on our plain vanilla 342-pixel-high screen. 

We can obviously accomodate six windows with the scheme, but 
what should be do when we get to seven? One idea is to add another 
column to the screen, splitting it into thirds. This would mean three 
windows in one column and two in each of the others, with each win
dow one third as wide as the screen (Figure 9-7). Earlier we said 
that a third of the width wasn't enough to work on a document, but 
with so many windows as in this case, there isn't much else we can 
do. Even if tiling the windows makes them too small to work with 
conveniently, it does allow the user to quickly zoom one and have it 
fill the whole screen. 

One other option you may prefer is to continue with two columns 
of windows, even if each window has to go below the 100-pixel mini
mum. This is based on the rather arbitrary idea that your users may 
prefer to avoid anything skinnier than half-width windows, even if 
it means making them very short. What you wind up doing also de
pends on your application. It may be that your windows may 



Window Manager 

s File Edit Window 

Window 7 Window 3 Window 5 
quick jumps fox 

Window 1 Window 4 
brown The 

§0§ Window 2 ~ Window 6 
the 1 azy dog over 

Figure 9-7. Seven equal-size windows 

actually show something useful when they're very narrow but may 
have to be, say, at least 150 pixels high to be meaningful. 

If you choose to keep adding another column whenever the win
dows get shorter than 100 pixels high, you'll be able to put nine win
dows into three columns on a classic Macintosh screen, then 12 into 
four columns, which is probably more windows than people should 
open at once. Just to be complete, though, we should also set a mini
mum window width that we'll tolerate. When we hit that limit, we 
should probably just quit trying to tile. For this example, let's use 100 
pixels as the minimum allowable width, just as we did for height. 

Since the standard Macintosh screen has 512 pixels across and 
342 down, we can get up to the fairly ridiculous figure of 15 windows, 
each one at least 100 pixels on each side, tiled on the screen at once. 
Of course, with a larger screen, our tiling algorithm would take us 
down a slightly different path: with 640 by 1024 resolution, we could 
pile up 10 windows before we had to resort to splitting into columns; 
then, we could get up to six columns of 10 windows each, which 
should be enough for even the most demanding fan of spreadsheets, 
word processing, or computerized knitting applications. 

245 



246 PART TWO TECHNICAL ADVENTURES 

The Tiling Algorithm 

Now that we've discussed what will happen when tiling our 
windows all the way up to running out of screen space, we can sum
marize what we want to do when the user wants the windows tiled. 
Each step is shown in words and in code. 

1. Determine the available screen space. You can do this by start
ing with screenBits.bounds, then subtracting the size of the menu 
bar, which can be found in the global called MBarHeight at lo
cation $BAA. If you're not comfortable using low-memory glo
bals, it's a reasonably safe assumption that the menu bar will 
never be taller than 40 pixels. It's usually only 20 pixels high, 
but that can change if you're using a non-Roman script like Chi
nese or Japanese, or something special like a big screen display 
that causes the menu titles to be drawn in a larger point size. For 
both the height and the width, you should also subtract a small 
number of pixels that will give you a tiny buffer against the edge 
of the screen. A good value to try for this is four pixels each at 
the top (under the menu bar), bottom, left, and right, which 
means we subtract eight pixels from both the available height 
and width. You can compute it like this. 

availHeight := screenBits.bounds.bottom - 8 - MBarHeight; 
availWidth := screenBits.bounds.right - 8; 

2. Determine the number of windows you're going to tile. The easi
est way to do this is to maintain a global count in your applica
tion but you can also discover it by going through the window list 
using the nextWindow field of the window record. We'll call 
this variable num Windows. 

numWindows := {However many windows you've got}; 

3. Decide on your minimum acceptable window height and width. 
We've been using 100 pixels for each dimension, but you might 
want to adjust that. 

minHeight := {Your minimum acceptable window height}; 
minWidth := {The minimum window width}; 

4. Divide the height of the screen by the minimum acceptable 
height of a window (round down or use integer division, like the 
"div" operator). The result is the maximum number of spaces for 



Window Manager 

windows vertically on the screen. We'll keep it in a variable 
called maxWindsCol. 

maxWindsCol := availHeight div minHeight; 

5. Can we keep each window the full width of the screen? Divide 
the available height by the number of windows and compare the 
result to the minimum height. If the result is too small, we need 
multiple columns. 

if minHeight > (availHeight div numWindows) 
then {we need more than one column} 
else {hooray, we can fit everything in one column}; 

6. If everything will fit into one column, things are cool. We know 
that each window will be the available width of the screen. To 
compute the height of each window, we can just divide the 
available height by the number of windows and then subtract 16 
pixels to allow for each window's title bar. Once we've computed 
these numbers, if we're only going to need one column we can skip 
the next two steps and go on to the moving and resizing stuff. 

newWidth := availWidth; 
newHeight := (availHeight div numWindows) - 16; 

7. If we need multiple columns, we have to figure out how many. 
We can do that by dividing the number of windows that will fit 
in a column into the number of windows, then rounding up any 
partial columns, which we can check with a remainder function, 
like Pascal's mod. At this time we should also figure out how 
many windows (or blank window-sized spaces) will actually ap
pear in each column. This will usually be the same as max
WindsCol, but it could be smaller if there aren't very many win
dows. 

numCols := numWindows div maxWindsCol; 
if (numWindows mod maxWindsCol) <> 0 {round up # of cols} 
then numCols := numCols + 1; 
numWindsCol := numWindows div numCols; 
if (numWindows mod numCols) <> 0 {round this up too} 
then numWindsCol := numWindsCol + 1; 

8. Compute the size of our windows. If we're going to make them all 
the same size, we can figure out what that size will be using the 
values we got earlier for spaces and numCols. To find out the 

247 



248 PART TWO TECHNICAL ADVENTURES 

width of each window, divide the available screen width by 
numCols; to get the height of a window, divide the available 
height by the value we calculated for the number of windows in 
a column and then subtract 16 for the title bar of each window. 

newWidth := availWidth div numCols; 
newHeight := (availHeight div numWindsCol) - 16; 

9. Now we're ready to move and resize all the windows. First, we 
need to initialize some variables. We'll need a pointer to the 
frontmost window, which we can easily get from the Window 
Manager by calling FrontWindow. We should also initialize a 
variable of type Point that will serve as the destination for the 
windows we're moving. It should start out as the upper left-most 
point we'll be moving windows to. Allowing for the four-pixel 
margin we discussed earlier, this will usually be 4, 24: but to get 
it just right we should compute the vertical coordinate by start
ing with the height of the menu bar. 

tiledWindow := FrontWindow; 
newPoint.h := {value of left margin for windows --- usually 4} 
newPoint.v := MBarHeight + {top margin} + 16 {for title bar} 

10. Beginning with the frontmost window, we should call Sho
wHide to make the window invisible, MoveWindow to move it 
to its new destination, SizeWindow to set it to its new size, and 
ShowHide to make it reappear. After fixing up each window, 
we need to update the Point variable that's keeping track of 
where the next window should go. An easy way to do this is to 
increment the Point.v value (the y-coordinate) by the value of 
newHeight plus 16 for the window's title bar and then test it to 
see whether it runs off the bottom of the screen. If it does, reset it 
to the top of the screen and increment the value of the horizontal 
coordinate of the point by adding newWidth. We can get ready 
to move the next window by going through the window's next
Window field. 



Window Manager 

repeat 
ShowHide (tiledWindow, false); {hide this guy} 
MoveWindow (tiledWindow, newPoint.h, newPoint.v, false); 
SizeWindow (tiledWindow, newWidth, newHeight, true); 
ShowHide (tiledWindow, true); {bring 'im back alive} 
newPoint.v := newPoint.v + newHeight + 16; 
if (newPoint.v + newHeight) > screenBits.bottom {too beeg!} 
then begin {move to top of new column} 

newPoint.v := MBarHeight + {top margin} + 16; 
newPoint.h := newPoint.h + newWidth; {new column} 

end; 

249 

tiledWindow := tiledWindowA.nextWindow; {tiptoe through the windows}; 
until tiledWindow := Nil; {do it for all the windows} 

We also discussed a couple of possible variations that could change 
the dimensions of some windows if there were an odd number of 
them. The first idea was to widen one or more of the windows to 
avoid leaving any unused screen space. If you do this, you have to 
figure out how many windows have to be widened. For example, if 
there are seven windows to be tiled you'll have nine spaces, so two 
windows get to be wider than the others. The other variation was to 
make all the windows in a column the same size. Again, to do this be 
sure you figure out how many windows there are in the odd column . 

.Weqon't serye their kit\(j. While we're . .. 
anothe;t thing to worry <1.bcmt i$:•h0'"'1' to avoid, 

.. ··· sory windows; As we link throtlgl1 the · 
·l,riextWindow field of the window.re.cord 

des~aq~essocy \o\l'ittdt:>:w:retordsthat mi . . . . • Mdttn4··.- . 
How can we av~id them?·.The· best way te detect d$1( acce~~~cy 
windows is by the window Kind field in.their'·... / re~rds: 

'Jt~s negaµye'. To, (lyoid tiling .d.esk aci;:essoty·~t . • WS#'j\iie c~ .. 
<1.dd a. line of code to ensure. that the window we~.reaboU,tto tile ; ; 

.idP~n't have a •negative windowKind.!ield~~ill~·~t•·.~:it:does; 
·.•·.·.;~~~next:~lne will be grabbed instea&. · · · · . •·· .. • 'i~~'.~~:~··.:]I\• ';,~~:{::· 

\"; :,, 

Trying Some Real Numbers 

It's always reassuring to check out numerical algorithms by try
ing actual numbers. This is the time-honored reality check, a good 



250 PART TWO TECHNICAL ADVENTURES 

way to see whether your brain is reasonably well-aligned. We'll in
vent some real numbers and run through the tiling algorithm we just 
summarized. Note that some of the statements here have numbers 
plugged in as if they were constants. Of course, in the program, they 
wouldn't look like this; we're doing it here so that we can compute 
the values for everything. 

The first thing to do is to determine the available screen space. 
For our example, let's say that we're using a standard Macintosh 
screen, which is 342 by 512 pixels, and that the menu bar is the stan
dard size, which is 20 pixels. This leaves 322 vertical pixels. If we 
provided a margin of four pixels each at the top and the bottom, we 
wind up with 314 surviving pixels to work with. For the width, the 
only thing we have to do to the original size of 512 is to subtract the 
four-pixel margin from each edge. There will be 504 horizontal pix
els available for our windows. 

availHeight := 342 - 8 - 20 {314 vertical pizzas ... } 
availWidth := 512 - 8 { ... and 504 horizontal ones} 

How many windows are we going to tile? Let's say arbitrarily 
that we have four open windows to be tiled. What's our minimum ac
ceptable window width and height? We've been using 100 pixels for 
each value, so let's stick with that figure. 

numWindows := 4;{Four windows to be tiled, please} 
minHeight := lOO;{Make sure they're at least 100 high ... } 
minWidth := 100;{ ... and 100 wide, too} 

Now we'll compute the maxWindsCol variable, which tells us 
how many windows can appear in a column. We can calculate it by 
dividing the screen height by the minimum window height. 

maxWindsCol := 314 div lOO;{up to 3 windows per column} 

Now we need to test to see whether all our windows can fit in one 
full-width column on the screen. If we've done things right, it should 
tell us we need two columns, since we know there's not enough room 
for four 100-pixel high windows in one column. 

if 100 > (314 div 4) {Yep, 100 is greater than 78} 
then {we need more than one column} 

Our algorithm told us we need more than one column, so things seem 
to be working so far. Now we can move ahead to the calculations for 
number of columns and number of windows in each column. 



Window Manager 

numCols := 4 div 3;{Integer dividing gives 1} 
if (numWindows mod maxWindsCol) <> 0 {1 <> 0} 

then numCols := numCols + 1; {numCols now becomes 2} 
numWindsCol := 4 div 2;{2 windows per column} 
if (numWindows mod numCols) <> 0 {it divided evenly} 

then numWindsCol := numWindsCol + 1; {remains at 2} 

This one turned out as we expected, too. We wanted the algo
rithm to tell us that there should be two columns with two windows 
in each, and it behaved perfectly. We can now compute the desired 
size of the tiled windows. 

newWidth := availWidth div numCols; {504 div 2 = 252} 
newHeight := (availHeight div numWindsCol) - 16; {157 - 16 141} 

This says that each of our four windows will be 252 pixels across and 
141 pixels down. Mapping that out mentally, it seems to make sense. 
The width of 252 will give us 504 pixels worth of windows across the 
screen and the height of 141, plus two 16-pixel title bars, adds up to 
314 pixels down. 

The next step is to compute the initial point we'll be moving win
dows to. You'll remember that we want to set this one to the first po
sition in the upper left corner of the screen. 

tiledWindow := FrontWindow; {OK, fine} 
newPoint.h := 4;{windows start 4 pixels in from left} 
newPoint.v := 40 {menu bar + 4 pixel margin + 16 for title bar} 

We've made all the computations and we're ready to start the 
real dirty work. The next bunch of statements should move and resize 
our first window. Fasten your seat belt, and here goes. 

ShowHide (tiledWindow, false);{Hides the first window} 
MoveWindow (tiledWindow, 4, 40); {Move it to 4, 40} 
SizeWindow (tiledWindow, 252, 141, true} {Resize 'im} 
ShowHide (tiledWindow, true);{Hey! It moved! It shrunk!} 

At this point, the first window should have been moved and sized to 
the upper left quadrant of the screen, with the title bar just below 
the menu bar and the left edge just in from the edge of the screen. Of 
course, there's no easy way to do a reality check on something like 
this. The only way to really find out whether it's working is to see it 
on the screen. So, we have to take a little leap of faith here or else 
actually sketch out the windows on a piece of paper. 

251 



252 PART TWO TECHNICAL ADVENTURES 

After moving the first window, we now have to set up the values 
for moving the next window. This involves updating the newPoint 
value that tells where we're moving it to, jumping over to the next 
column if we have to, and getting the ne~t window pointer. 

newPoint.v := 40 + 141 + 16; {new coordinate is 197} 
if (197 + 141) > 342{No, 338 is less than 342} 

{room for another window in this column} 

The "if" statement here is designed to test whether another window 
would run off the bottom of the screen. The left side of the statement 
(197 plus 141) will find out where the bottom of the window would 
fall. Since this statement told us that it wouldn't be below screen
Bits.bounds, we can put another window here; so we can move ahead. 

tiledWindow := tiledWindowA.nextWindow; {next, please}; 
until tiledWindow := Nil; {Is this the end?} 

This will set tiledWindow to point at the second to frontmost 
window. If we've just processed the only window, the "until" clause 
will take us out of the window-munging loop. In our case, though, 
we've said that there are four windows, so we know that tiledWin
dow won't be nil. Time to loop through again and fix up the next 
window. 

ShowHide (tiledWindow, false); {don't look} 
MoveWindow (tiledWindow, 4, 197, false); 
SizeWindow (tiledWindow, 252, 141, true); 
ShowHide (tiledWindow, true); {now see what you've done} 
newPoint.v := 197 + 141 + 16; {makes it 354. Hmmm ••• } 
if (354 + 141) > 342 {no room at the inn, so move over ... } 
then begin { ... to next column} 

newPoint.v := 20 + 4 + 16; {y-coordinate is 40, again} 
newPoint.h := 4 + 252; {x-coordinate moves over to 256} 

end; 
tiledWindow := tiledWindowA.nextWindow; {all things must pass} 
until tiledWindow :=Nil; {we're not finished yet} 



Window Manager 

Now, let's quickly go through the loop for the third and fourth win
dows. 

ShowHide (tiledWindow, false); {put in closet} 
MoveWindow (tiledWindow, 256, 40, false); {top right spot} 
SizeWindow (tiledWindow, 252, 141, true); {standard size} 
ShowHide (tiledWindow, true); {let's look in now} 
newPoint.v := 40 + 141 + 16; {back to 197} 
if (197 + 141) > 342 {we can fit another in this column} 
then begin {the "if" is false, so nothing happens here} 

end; 
tiledWindow := tiledWindowA.nextWindow; {yes, there's another} 

until tiledWindow := Nil; {so you want more, do you?} 

And now, the compelling conclusion, with the shocking birth of 
Robin's baby ... 

ShowHide (tiledWindow, false); {close your eyes} 
MoveWindow (tiledWindow, 256, 197, false); {last place} 
SizeWindow (tiledWindow, 252, 141, true); {same old size here} 
ShowHide (tiledWindow, true); {Mr. Window's grinning} 
newPoint.v := 197 + 141 + 16; {354} 
if (354 + 141) > 342 {this column is full} 
then begin {we'll move over, but we're done anyway} 

newPoint.v := 40; 
newPoint.h := 408; {new column, if we had one} 

end; 
tiledWindow := tiledWindowA.nextWindow; {now it's nil} 

until tiledWindow := nil; {finally, it's nil, and we're done} 

That's it. We've now successfully moved and resized all four 
windows. Did our reality check out all right? Everything went 
pretty much as expected. One weird thing that took place when we 
played with the fourth window was that even though we were 
finished moving and shaking all our windows, our algorithm went 
right ahead and got ready to place another window. 

This is because we don't check for the end of the loop, which 
happens when tiledWindow equals nil, until the bottom of the loop. 
The "repeat ... until" statement is Pascal's most convenient way of 
handling this situation. We could add a test to see whether we've 
moved all the windows just as soon as we've finished moving one and 
then jump forward if we have. It's really no big deal either way, 
though, since the few extra statements that get executed don't take 

253 



254 PART TWO TECHNICAL ADVENTURES 

much time and they're only executed once for every time you tile all 
the windows. 

Our reality check showed that things seem to work right for four 
windows. Let's see what happens if we have three or seven win
dows. We won't run through the whole mess for each of these; we'll 
just see whether things get off to the right start and all the globals 
get the correct values. 

First, let's check things out for three windows. 

availHeight := 342 - 8 - 20; {314 again} 
availWidth := 512 - 8; {504 again} 
numWindows : = 3; 
minHeight := 100; 
minWidth : = 100; 
maxWindsCol := 314 div 100; {3, just like last example} 
if 100 > (314 div 3) {iQue es mas macho?} 

then {100 is less than 104} 
else {we can fit everything in one column}; 

newWidth := 504; {big fat windows} 
newHeight := (314 div 3) - 16; {but short: 88 pixels} 
tiledWindow := FrontWindow; {first things first} 
newPoint.h := 4;{set up for first x-y location} 
newPoint.v := 40; 

If we follow this through, it looks as though we'll get all three win
dows into one column. Each window will be 504 pixels wide and 88 
pixels tall (not including the title bar for each). The first window 
will be placed at the same location we always place the first win
dow, at 4,40, which will be tucked up nicely into the upper left cor
ner of the screen. The algorithm still seems all right, so we'll keep 
moving along. 



Window Manager 

Now let's look at what we get if we try for a gaudy seven win
dows. 

availHeight := 342 - 8 - 20; {314 again} 
availWidth := 512 - 8; {504 as always} 
numWindows := 7; {a new high} 
minHeight := 100; {we're keeping these the same} 
minWidth := 100; 
maxWindsCol := 314 div 100; {this stays 3} 
if 100 > (314 div 7) {100 is much more than 44} 

then {figure multi-column info} 
numCols := 7 div 3; {we' 11 fill 2 columns ... } 
if (7 mod 3) <> 0 { ... with two left over ... } 

then numCols := numCols + 1; { ... so we need 3} 
numWindsCol := 7 div 3; {2 windows per column?} 
if (numWindows mod numCols) <> 0 {no, need more ... } 

then numWindsCol := numWindsCol + 1; {3 per column} 
newWidth := 504 div 3; {must squeeze: only 168 wide} 
newHeight := (314 div 3) - 16; {just 88 pixels tall, too} 
tiledWindow := FrontWindow; {get the first window} 
newPoint.h := 4; {destination of the first move} 
newPoint.v := 40; 

If we follow the math through this example, we can discover 
the locations for each of the seven windows. Here's where they'll 
be: 

4,40 
4,144 
4,248 

172,40 
172,144 
172,248 

340,40 
(blank) 
(blank) 

By computing the edge of the windows on the bottom and the 
right, we can learn how close we're coming to filling the whole 
screen. The window in the right column starts at 340 and is 168 pixels 
wide, so it will reach to pixel 508, just in time for our prescribed four
pixel margin at the right edge of the screen. Great! The windows 
that run across the bottom start at 248 and are 88 pixels high. The 
bottom ones end at 336, which is very close to 338, the last pixel 
available before the bottom margin. 

After checking out the algorithm a little bit by plugging in some 
live numbers, we can feel better about how well it will work. If you 
like you can try working through it with some other sets of numbers. 
It would be interesting, for example, to see what would happen with 
a bigger screen, more windows, or a different minimum size. You 

255 



256 PART TWO TECHNICAL ADVENTURES 

should also test boundary conditions, such as trying to tile with no 
windows, one window, or 100 windows (yes, some folks are crazy). If 
you're interested in trying all these, I guarantee you'll find some bugs 
in the algorithm you'll get to fix. Have fun looking. 

Also, since it was important that this algorithm be easy to ex
plain as we walked through it, you might want to change it around 
somewhat. In particular, you might want to experiment with when 
the windows are hidden and shown and when updates are created, to 
see whether you can speed things up. One idea might be to make all 
the windows invisible at the same time, then move and resize them, 
and then make them visible again. You can then see whether this 
looks faster on the screen than our technique of fixing each window 
and then showing it. You should spend some time tweaking this 
technique so that it works exactly as you like. 

Following this chapter you'll find Listing 9-1, which includes a 
window management menu for selecting, zooming, tiling, and stack
ing windows. It implements the algorithms we've discussed in this 
section for listing windows in a menu, stacking windows, and flipping 
through windows. There's even space for you to implement your own 
version of the tiling algorithm. Joe Bob says check it out. 

Stacking and Tiling with Multiple Screens 

The Macintosh II and its flexible video impose lots of interesting 
questions into our programming lives. Usually, Color QuickDraw 
takes care of much of the worry for you and you don't have to wonder 
how many monitors you have or what their characteristics are. 
Sometimes, though, issues come up that do require more information 
1about the expensive collection of monitors plugged into your com
puter. 

One such situation is window stacking and tiling. When you 
stack or tile your windows, you're spewing them out into all the 
screen real estate available. The whole idea is to take the maximum 
advantage of displaying the windows on your screen. How does this 
relate to the idea of multiple screens? What should happen to your 
extra screens when you tile or stack windows? 

This is really a user interface question. Most users with multiple 
monitors use one of them most of the time. The others are used to 
stash whole windows to get them out of the way or to keep tool pal
ettes like the drawing tools in FullPaint, but aren't usually an active 
part of minute-to-minute usage of the program. 

Since most users seem to have created a special use for their sec
ondary (and tertiary, and whatever the fourth, fifth, and so on are 



Window Manager 

called), your tiling and stacking commands should not attempt to use 
any screens other than the main one for displaying the windows. 

Another really good reason to stick by this rule has absolutely 
nothing to do with the user interface. Using the main screen makes 
your code much, much simpler, as you'll see shortly. You have to 
jump through a lot of hoops to find out about additional screens and 
then you have to make your windows jump through those hoops as 
you send them all over the place. Of course, if you decide that you 
absolutely need this kind of feature to make your application a 
little bit better than the next one, you'll be interested in this section. 
We'll talk about what kinds of things you have to do in order to 
make stacking and tiling work with multiple screens. 

Using Rectangles 

Let's think a bit about how we would tile windows if we had 
more than one monitor. One possibility is to treat the combined desk
top area of all the screens as one big space for tiling. This could turn 
out to be pretty weird, though, if you think about it. There's no re
quirement that the desktop be rectangular. What if you have your 
multiple monitors arranged so that the desktop isn't a rectangle? 

If multiple monitors are arranged this way, you can see that fig
uring out how to spray our tiled windows across the whole desktop is 
going to be a real challenge. Before we place any window, we have 
to find out whether we've suddenly moved over to a new screen that 
may be positioned above or below the one we've been working on. If 
you try to move directly to the right from one monitor to the other, 
you'll find yourself drawing windows out into space. 

There's another way to place the windows on multiple screens 
that's a lot easier on your programming time and probably presents a 
more reasonable user interface than treating all the screens as one 
desktop. The idea is simply to redo the tiling algorithm for each 
screen. If you begin by spreading out all the windows to be tiled over 
all the available screens and then rerun the tiling loop for each 
screen, things will be much more convenient. The main reason is that 
each monitor is a rectangle even though the desktop, which is the 
sum of the screens, may not be a rectangle. 

257 



258 PART TWO TECHNICAL ADVENTURES 

Rounding off. Strictly speaking, every screen that contains an 
edge of the desktop is never really a rectangle. Every desktop 
edge includes a tiny rounded corner. Take a close look at the cor
ners of your Macintosh screen. See the rounded edges? You may 
have thought these were actual round corners of the video tube 
and in fact that's exactly how they':re supposed to look. But the 
black corners past the rounded edges are actually capable of be
ing black or white (0r color on a color screen). Rounding them off 
just gives the desktop a more polished appearance. It also 
means that the desktop is never really a rectangle, nor is any 
screen that forms a side of the desktop. 

If we decide to tile the windows by using each screen separately 
as a rectangle, we obviously have to know a few things. For one thing 
we need to know how many screens there are. That's how we'll figure 
out the way to divide the windows among the screens. We'll need to 
know the rectangle for each screen as well. To figure out the availa
ble space on a screen, we should also find out whether it's the one 
with the menu bar on it. If it is, we have to subtract some pixels from 
the top. 

How can we find out all this stuff? Color QuickDraw provides 
some convenient calls to return a lot of the information. For some 
other things, we'll have to go spelunking directly into the graphics 
device (gDevice) data structures that tell about the screens. 

To find out about the screens' rectangles, we'll have to look at 
the gDevices that have the information about our monitors. If you're 
trying something a little unusual or obnoxious when you're program
ming the Macintosh, you can usually find some convenient trick in 
the Toolbox or operating system that will help you out. 

In this case, our lucky deal is that all the gDevices are kept to
gether in memory in a linked list. One of the fields in a gDevice is 
called gdNextGD, and it contains a handle to the next gDevice in 
the list. Just as with window records (and just as you'd expect on the 
Macintosh), if there are no more gDevices, this field is nil, so we can 
tell when we're done. 

We need to know how big the screen's rectangles are so that we 
can figure out how many windows we can fit on them. You probably 
remember that there's a global variable left over from pre-Color 
QuickDraw days called screenBits that has information about the 
screen; but what does this mean in the new-wave world of more than 
one screen? 

Almost every application expects screenBits to be the main 
screen; in fact, most of today's applications were written when every 



Window Manager 

Macintosh had only one screen. Color QuickDraw keeps it that way. 
No matter how many screens are being used, screenBits will give you 
information about the main screen. The main screen is defined as the 
one with the menu bar on it. 

Screening out, How does the Macintosh II figure out which is 
the main screen, how many screens there are, what their align
ment is, and so on? If you were a plain old power user, you'd 
probably say that the screen configuration is determined by the 
Monitors setting in the Control Panel. Well, yes, that's how us
ers should configure the screens, but we've got inquiring minds 
and we want to know how it really works. It's done with re
sources of course. In this case, there's a resource of type scm 
that's kept in the System file. This scrn resource, which has an 
ID of 0, tells the system about all the attached screens. A lot of 
the information in the scrn gets put into the gDevices when 
they're created at system startup time. When you fiddle with 
the Monitors icon in the Control Panel, you're modifying the 
scrn 0 resource. The first thing in the scrn is the number of de
vices; after that, there's a chunk of information for each si;reen, 
inclucl.ing the slot, the video mode that the monitor should 
come up in, and the rectangle that each scteen fits into. For 
more detail about color resources, see Chapter 3. 

Since screenBits only gives information about the main screen, we 
have to find some other way to find out about all the rest of them. 
For that stuff, we can look at a gDevice field called gdRect, which 
gives the global rectangle that this screen occupies. This rectangle is 
given in terms of where it fits into the entire desktop. The main 
screen will always have its upper left corner at location 0,0. 

When we're going through the screens' rectangles trying to figure 
out how big each one is, we can use the gdRect field in the gDevice 
records to find out each screen's global rectangle. This really isn't all 
we want to know, since these rectangles are given as part of the 
whole giant desktop. What we'd also like to find out is the rectan
gle in local terms, starting at 0,0. Of course, we can compute that from 
the global rectangle, but we can save a step if we can find it some
where already presented the other way. 

Well, there is a better way. In the gDevice record, a field called 
gdPMap holds a handle to the device's pixel map (you may remem
ber that we played around with this field back when we were doing 
our offscreen drawing business). One of the fields of the pixel map, of 
course, is the bounds rectangle, which defines the total extent of the 

259 



260 PART TWO TECHNICAL ADVENTURES 

pixels. This rectangle will tell us about the size of the screen from a 
local point of view, beginning with the upper left corner at 0,0. 

We also said we needed to know how many screens there were. 
One way of finding this out would be to look at the beginning of the 
scrn 0 resource that the system uses to configure the desktop. The first 
field in the scrn resource is an integer called scrnCount, which con
tains the number of screen devices. Watch out, though, because this 
won't always work. In the scrn resource, any device may be marked 
as inactive, which means that it won't be used. Even if some devices 
are locked out this way, the scrnCount value includes them in its 
count. So, looking at this number to find out how many live screens 
we've got is not a good idea. 

What else can we do? We said earlier that each gDevice has a 
handle called gdNextGD, which we can use to find the next device 
record. We also said that gdNextGD for the last device in the list 
was set to nil. With this handy information, we can simply step 
through the gDevice list and count the number of devices the old
fashioned way, by incrementing a counter. After we reach the gDe
vice record in which gdNextGD is equal to nil, we'll have the total 
number of devices, but some of these might still be inactive. 

To find out which gDevices are active, we can use another field 
in the record that gives interesting configuration information about 
the device. This field, called gdFlags, can tell us whether or not the 
device is active. If it's not, of course, that means the screen isn't being 
used and we shouldn't count it in our list of good screens. The gdFlags 
field is 16 bits long and the flag that tells if a device is active is 
kept in bit 15, which is called scrnActive. 

One last vital piece of information we need to know is which 
screen is the main device. There are a couple of ways to figure this 
out. One idea is to look at the gdRect field (the rectangle in global 



Window Manager 

coordinates) associated with the gDevice and see whether its 
topLeft value is set to 0,0. If so, this device is guaranteed to be the 
main screen. 

A different way to detect the main screen is to look at another 
flag in the gdFlags field we discussed. Bit 11 is designated as the 
flag called mainScrn; if it's set to 1, it means that the device that 
uses this gDevice record is the main screen. This technique of exam
ining the flags is probably better to use than checking to see whether 
the global rectangle starts at 0,0. Why? The best reason is that it's 
more direct. The fact that the main screen starts at 0,0 is very con
venient, but the mainScrn bit in gdFlags is expressly made for this 
purpose, so it's more likely to stay defined that way for the next 50 
or 60 years. 

The Algorithm 

Now that we've figured out how we're going to get all the infor
mation we need about every screen in sight, let's see whether we can 
come up with the algorithm we'll need to tile windows on all our 
monitors. As we discussed a little bit at the start of this section, the 
general idea will be to take the windows that need to be tiled and 
divide them as evenly as possible among all available screens, fol
lowing the rule that no window can cross screen boundaries. This 
means, for example, that if we have two screens and four windows to 
tile, each screen will get two of them, regardless of the size of the 
screens or the windows. 

After we've divided the windows among the screens, we can 
start chopping up the real estate of each screen to divide it among 
the windows that are going to get moved there. Once we've gotten to 
this stage, we're really just going to repeat the single-screen tiling 
phenomenon we went through earlier, and we already know how to 
do that. 

The rules of this algorithm seem to be pretty simple. First, give 
each screen the same number of windows. If there are windows left 
over, spread them around so that every screen's number of windows is 
within 1 of every other's number. For example, if we have five win
dows and three screens, we want two of the screens to get two win
dows each, with the fifth window going on the third monitor. De
ciding which monitor gets the extra windows can be interesting. You 
might want to make it so that the biggest screens get the greater 
number of windows. 

After we've determined how to divide the windows among the 
screens, we have to perform the tiling on every screen's set of win-

261 



262 PART TWO TECHNICAL ADVENTURES 

dows. The logic for deciding how big each window should be, how 
many columns of windows there ought to be, and so on is the same as 
we figured when we first did the tiling stuff in the previous section. 

We have to deal with a couple of new wrinkles when doing the 
tiling this time. First, we have to know which screen has the menu 
bar on it, so that we can know not to count the menu bar's pixels when 
figuring the available space for windows. We can find out which 
screen has the menu bar by checking the gdFlags field of the gDevice 
record. As we said earlier, bit 11 is the mainScrn bit; if it's set to 1, 
the gDevice that you're looking at is the main one and has the menu 
bar on it. 

To place the windows on each screen, we have to know where to 
MoveWindow them to. MoveWindow takes a point in global coordi
nates, so we can use the gdRect field of the gDevice record to learn 
what global rectangle on the desktop is occupied by this screen. 
When we go through our standard tiling algorithm for each screen, 
we need to adjust all the MoveWindow destinations by the values in 
this rectangle. 

What about the pixel depth settings and color capabilities for 
each monitor? We really don't have to worry about them. Color 
QuickDraw and the Window Manager will ensure that the windows 
are displayed properly no matter what the pixel depth. If a window 
with color information is moved to a monochrome screen, the color on 
the screen will vanish, of course, since not even Color QuickDraw can 
violate the laws of physics, but the system will make sure that the 
image stays right. If the window is later put back onto a color moni
tor, the color information will magically return, since the color infor
mation will still be in the pixel map. 

The same thing will happen when windows are moved between 
windows of different pixel depths. The right pixels will automati
cally be plucked from the pixel maps so that the image is correct on 
the screen no matter what the pixel depth. If there's multibit gray 
scale information in the pixel map, and the window's current screen 
can't handle it, QuickDraw will just map the image into good old 
black and white. 

This discussion of tiling windows on multiple screens is a good ex
ample of learning about how something works without having to 
have a good practical application. You may never really need to 
worry about tiling windows across multiple screens, but thinking 
about what you would do to implement it may teach you something 
or may just be fun and interesting. Either way, these kinds of bizarre 
exercises can be very useful, if you can find the time to do them after 
finishing your real work. The best way to find the time is simply to 
get a job that pays you to write unusual programs for the Macintosh. 



Window Manager 

Things to Remember 

As people get bigger screens and more memory, they start to open 
lots of windows. You can add some features to your programs that 
will make life simpler for for users who like to have lots of windows 
open for convenience. You can construct a menu that lists all the win
dows, provide automatic tiling and stacking, and make a Command 
key to flip through the windows. 

When you implement these features, be sure to think about such 
fun problems as multiple screens and desk accessory windows. The 
best thing to do is just to ignore desk accessory windows in your win
dow-arranging functions and to limit your activity to the main 
screen. 

program WindMenu; 

Listing 9-1 Example of ultra-fancy window management via menus } 

uses 
{$Load Insider:MPW:Pinterfaces:Allinterfaces} 
{$U Insider:MPW:Pinterfaces:MemTypes.p } MemTypes, 
{$U Insider:MPW:Pinterfaces:QuickDraw.p} QuickDraw, 
{$U Insider:MPW:Pinterfaces:OSintf.p } OSintf, 
{$U Insider:MPW:Pinterfaces:Toolintf.p } Toolintf, 
{$U Insider:MPW:Pinterfaces:Packintf .p } Packintf; 

con st 
appleID 
file ID 
edit ID 
windowID= 

128; 
129; 
130; 
131; 

{resource IDs/menu IDs for Apple, File and Edit menus} 

moveDialog = 1001; {DLOG ID for move & resize dialog} 

appleM = 1; {index for each menu in myMenus (array of menu handles)} 
fileM = 2; 
editM = 3; 
windowM = 4; 

menuCount 4; {total number of menus} 

about Item 1; {item in Apple menu} 

undo Item 1; {Items in Edit menu} 
cut Item 3; 
copy Item 4 
paste Item 5 
clear item 6 

263 



264. PART TWO TECHNICAL ADVENTURES 

newitem = 1; {items in File menu) 
closeitem = 3; 
quititem 5; 

tileitem 1; {items in Window menu) 
stackitem = 2; 
moveitem = 3; 

wName ='Window'; 

windDX 
windDY 

25; 
25; 

{prefix for window names) 

{distance to move for new windows) 

leftEdge = 10; {initial dimensions of window) 
topEdge = 42; 
rightEdge = 210; 
botEdge = 175; 

Listing 9-1 continued 

firstWinitem 4; {offset from first item in Window menu to first window) 

var 
myMenus: array [1 .. menuCount] OF MenuHandle; {handles to the menus) 
dragRect: Rect; {rectangle used to mark boundaries for dragging window) 
txRect: Rect; {rectangle for text in application window) 
textH: TEHandle; {handle to Textedit record) 
theChar: char; {typed character) 
extended: boolean; {true if user is Shift-clicking) 
doneFlag: boolean; {true if user has chosen Quit Item) 
myEvent: EventRecord; {information about an event) 
wRecord: WindowRecord; {information about the application window) 
myWindow: WindowPtr; {pointer to wRecord) 
myWinPeek : WindowPeek;{another pointer to wRecord) 
whichWindow: WindowPtr;{window in which mouse button was pressed) 
nextWRect: Rect; {portRect for next window to be opended) 
nextWTitle: Str255; {title of next window to be opened) 
nextWNum: Longint; {number of next window (for title)) 
savedPort: GrafPtr; {pointer to preserve GrafPort} 
menusOK: boolean; {for disabling menu items) 
windowCount: Integer; {number of open windows} 
itemString: Str255; {item selected from menu) 
switchWindow: WindowPtr; {new window to select) 
windowName: Str255; {new window's name) 
curWinName, flipname: Str255;{name of current app. window} 
curWinitem: Integer; {menu item number of current window} 
flipwin: WindowPtr; 
scrapErr: Longint; 
scrCopyErr: Integer; 



Window Manager 265 

Listing 9-1 continued 

procedure SetUpMenus; 
{ set up menus and menu bar } 

var 
i: Integer; 

begin 
myMenus[appleM] := GetMenu(appleID); 
AddResMenu(myMenus[appleM], 'DRVR'); 
myMenus[fileM] := GetMenu(fileID); 
myMenus[editM] := GetMenu(editID); 
myMenus[windowM] :=GetMenu(windowID); 

for i:=l to menuCount do 

{read Apple menu} 
{add desk accessory names} 
{read file menu } 
{read Edit menu } 

InsertMenu(myMenus[i],0); (install menus in menu bar} 
DrawMenuBar; { and draw menu bar} 

end; {SetUpMenus} 

function ItemFromName (theName: str255): Integer; 

var 
itemString : str255; 
whichitem : integer; 

begin 
whichitem := firstWinitem; {start at item no. of dashed line} 

repeat 
whichitem := whichitem + l; 
Getitem (myMenus [windowM], whichitem, itemString); 
until (itemString = theName) or (whichitem > (windowCount+firstWinitem)); 

if whichitem > (windowCount+firstWinitem) 
then ItemFromName ·= 0 
else ItemFromName := whichitem; 

end; 

procedure AddWintoMenu (windowName: Str255); 

begin 
InsMenuitem(myMenus[windowM], windowName, firstWinitem); 

end; 

procedure RemoveWin (theWindow: WindowPtr); 

var 
winName 

begin 

Str255; 

GetWTitle (theWindow, winName); 
DelMenuitem (myMenus [windowM], ItemFromName (winName)); 

end; 



266 

procedure OpenWindow; 
{ Open a new window } 

begin 

PART TWO TECHNICAL ADVENTURES 

Listing 9-1 continued 

NumToString (nextWNum, nextWTitle); {prepare number for title} 
nextWTitle := concat (wName, nextWTitle); {add to prefix} 
myWindow := NewWindow (Nil, nextWRect, nextWTitle, True, noGrowDocProc, 

Pointer (-1), True, 0); {open the window} 
SetPort (myWindow); {make it the current port} 
txRect := thePortA.portRect;{prepare TERecord for new window} 
InsetRect (txRect, 4, 0); 
textH := TENew (txRect, txRect); 
myWinPeek := WindowPeek (myWindow); 
myWinPeekA.refcon := Longint (textH); {keep TEHandle in refcon} 
OffsetRect (nextWRect, windDX, windDY);{move window down and right} 
if nextWRect.right > dragRect.right {move back if it's too far over} 

then OffsetRect (nextWRect, -nextWRect.left + leftEdge, 0); 
if nextWRect.bottom > dragRect.bottom 
then OffsetRect (nextWRect, 0, -nextWRect.top + topEdge); 
nextWNum := nextWNum + 1; {bump number for next window) 
menusOK := false; 
Enableitem (myMenus [editM],0); {in case this is the only window} 
windowCount := windowCount + 1; 
AddWintoMenu (nextWTitle); 

end; {OpenWindow} 

procedure KillWindow (theWindow: WindowPtr); 
{Close a window and throw everything away} 

var 
winName str255; 

begin 
RemoveWin (theWindow); 
TEDispose (TEHandle (WindowPeek (theWindow)A.refcon)); 

{throw away TERecord} 
DisposeWindow (theWindow); {throw away WindowRecord} 
textH := NIL; {for TEidle in main event loop} 
if FrontWindow = NIL {if no more windows, disable Close} 

then Disableitem (myMenus[fileM], closeitem) 
else 

begin 
theWindow := FrontWindow; 
while (WindowPeek (theWindow)A.windowKind<O) 

do 
theWindow := WindowPtr (WindowPeek (theWindow)A.nextWindow); 

GetWTitle (theWindow, winName); 
curWinitem := ItemFromName (winName); 
curWinName := winName; 

end; 



Window Manager 267 

Listing 9-1 continued 

if WindowPeek (FrontWindow)A.windowKind < O 
{if a desk ace is coming up, enable undo} 

then Enableitem (myMenus[editM], undoitem) 
else Disableitem (myMenus[editM], undoitem); 

windowCount := windowCount - l; 

end; {KillWindow} 

function MyFilter (theDialog: DialogPtr; var theEvent: EventRecord; 
var itemHit: Integer): Boolean; 

var 
theType: Integer; 
theitem: Handle; 
theBox: Rect; 
finalTicks: Longint; 

begin 
if (BitAnd(theEvent.message,charCodeMask) = 13) {carriage return} 

or (BitAnd(theEvent.message,charCodeMask) = 3) {enter} 
then 

begin 
GetDitem (theDialog, 1, theType, theitem, theBox); 
HiliteControl (ControlHandle (theitem), l); 
Delay (8, finalTicks); 
HiliteControl (ControlHandle (the!tem), 0); 
itemHit : = 1; 
MyFilter := True; 

end {if BitAnd ... then begin} 
else MyFilter := False; 

end; {function MyFilter} 

procedure DoAboutBox; 

var 
itemHit: Integer; 

begin 
myWindow := GetNewDialog (1000, Nil, pointer (-1)); 
repeat 

ModalDialog (@MyFilter, itemHit) 
until itemHit = l; 
DisposDialog (myWindow); 

end; {procedure DoAboutBox} 



268 PART TWO TECHNICAL ADVENTURES 

function NextNoDA (theWindow: windowPeek): windowPeek; 

begin 
if theWindow <> Nil 

then 
while (theindowA.windowKind<O) {weed out DAs} 

do theWindow ·= theWindowA.nextWindow; 
NextNoDA := theWindow; 
end; 

function LastNoDA : windowPeek; 
{Finds the rearmost window that's not a DA} 

var 
lastGoodUn : windowPeek; 

begin 
if FrontWindow <> Nil 

then begin 
lastGoodUn := NextNoDA (WindowPeek (FrontWindow)); 
while NextNoDA (lastGoodUnA.nextWindow) <>Nil 

Listing 9-1 continued 

do lastGoodUn := NextNoDA (lastGoodUnA.nextWindow); 
end; 

LastNoDA lastGoodUn; 
end; 

function nurnFromitem (theDialog: DialogPtr; itemNo: Integer): Integer; 
{Given a dialog item number, return its value as an integer) 

var 
itemType: Integer; 
item: Handle; 
box: Rect; 
theText: Str255; 
theNum: Longint; 

begin 
GetDitem (theDialog, iternNo, itemType, item, box); {get item handle} 
GetIText (item, theText); {get its text} 
StringToNum (theText, theNum); 
nurnFromitem := theNum; 

end; 

procedure DoWinShuffle (theitem: Integer); 
{Handle Stack, Tile, and Move & Resize commands} 
var 

theWindow: WindowPeek; 
mover: WindowPtr; 
nextPos: Point; 
dlogitem: Integer; 
newTop,newLeft,newBot,newRight: Integer; 



' 

Window Manager 269 

Listing 9-1 continued 

theDialog: DialogPtr; 

begin 
case theitem of 

tileitem:; 
stackitem: 

begin 
nextPos.h := (((windowCount - 1) * windDX) + leftEdge) 

mod (screenBits.bounds.right - leftEdge); 
nextPos.v := (((windowCount - 1) * windDY) + topEdge) 

mod (screenBits.bounds.bottom - leftEdge); 
theWindow := NextNoDA (WindowPeek (FrontWindow)); 
while theWindow <> Nil 

do 
begin 

MoveWindow (windowPtr (theWindow), nextPos.h, nextPos.v, false); 
nextPos.h := nextPos.h - windDX; 
nextPos.v :=.nextPos.v - windDY; 
if nextPos.h < leftEdge {move back if it's too far over} 

then nextPos.h := rightEdge; 
if nextPos.v < topEdge 

then nextPos.v := botEdge; 
theWindow := NextNoDA (theWindowA.nextWindow); 

end; 
end; {case stackitem} 

moveitem: 
begin 

end; 

mover := FrontWindow; 
theDialog := GetNewDialog (moveDialog,Nil,pointer (-1)); 
repeat 

ModalDialog (@myFilter, dlogitem); 
until (dlogitem = 1) or (dlogitem = 2); 
if dlogitem = 1 

then 
begin 

newTop := numFromitem (theDialog,8); 
newLeft := numFromitem (theDialog,9); 
newBot := numFromitem (theDialog,10); 
newRight := numFromitem (theDialog,11); 
MoveWindow (mover,newLeft,newTop,true); 
SizeWindow (mover,newRight-newLeft,newBot-newTop,true); 

end; 
DisposDialog (theDialog); 

end {case theitem of} 
end; {procedure DoWinShuffle} 



270 PART TWO TECHNICAL ADVENTURES 

Listing 9-1 continued 

procedure DoCommand (mResult: LONGINT); 
{Execute Item specified by mResult, the result of MenuSelect} 

var 
theitem: Integer; 
theMenu: Integer; 
name: Str255; 
temp: Integer; 

{menu item number from mResult low-order word} 
{menu number from mResult high-order word} 
{desk accessory name} 

begin 
theitem := LoWord(mResult); {call Toolbox Utility routines to set 
theMenu := HiWord(mResult); {menu item number and menu number} 

case theMenu of {case on menu ID} 

appleID: 
if theitem = aboutitem 

then DoAboutBox 
else 

begin 
Getitem(myMenus[appleM],theitem,name); 
{GetPort (savedPort);} 
scrapErr := ZeroScrap; 
scrCopyErr := TEToScrap; 
temp := OpenDeskAcc(name); 
Enableitem (myMenus [editM],0); 
{SetPort (savedPort);} 
if FrontWindow <> NIL 

then 
begin 

Enableitem (myMenus [fileM], closeitem); 
Enableitem (myMenus [editM], undoitem); 

end; {if FrontWindow then begin} 
menusOK := false; 

end; {if theitem ... else begin} 
fileID: 

case theitem of 

newitem: 
OpenWindow; 

closeitem: 
if WindowPeek (FrontWindow)A.windowKind < 0 

then CloseDeskAcc (windowPeek (FrontWindow)A.windowKind) 
{if desk ace window, close it} 
else KillWindow (FrontWindow); 
{if it's one of mine, blow it away} 



Window Manager 271 

Listing 9-1 continued 

quit Item: 
doneFlag := TRUE; {quit} 

end; {case theitem} 

editID: 
begin 

if not SystemEdit(theitem-1) 
then 

begin 
case theitem of {case on menu item number} 

cutitem: 
TECut(textH); {call TextEdit to handle Item} 

copyitem: 
TECopy(textH); 

pasteitem: 
TEPaste(textH); 

clear Item: 
TEDelete(textH); 

end; {case theitem} 
scrapErr := ZeroScrap; 
scrCopyErr := TEToScrap; 

end {if not SystemEdit ... begin} 
end; {editID begin} 

windowID: 
begin 

Getitem (myMenus [windowM], theitem, itemString); 
if theitem < firstWinitem 

then DoWinShuf f le (theitem) 
else begin 

switchWindow := FrontWindow; 
GetWTitle (switchWindow, windowName); 
while (windowName <> itemString) and (switchWindow <> Nil) 

do 
begin 

switchWindow := WindowPtr (WindowPeek (switchWindow)A.nextWindow); 
GetWTitle (switchWindow, windowName); 

end; 
SelectWindow (switchWindow); 

end; {if theitem < ... else} 
end; {windowID} 

end; {case theMenu} 
HiliteMenu(O); 

end; {DoCommand} 



272 

\. 

PART TWO TECHNICAL ADVENTURES 

procedure FixCursor; 

var 
mouseLoc: point; 

begin 
GetMouse (mouseLoc); 
if PtinRect (mouseLoc, thePortA.portRect) 

then SetCursor (GetCursor (iBeamCursor)AA) 
else SetCursor (arrow); 

end; (procedure FixCursor} 

begin {main program} 

InitGraf(@thePort); 
InitFonts; 
FlushEvents(everyEvent,0); 
InitWindows; 
InitMenus; 
TEinit; 
InitDialogs(NIL); 
InitCursor; 

SetUpMenus; 
with screenBits.bounds do 

SetRect(dragRect,4,24,right-4,bottom-4); 
doneFlag := false; 

menusOK := false; 
windowCount := 0; 
curWinitem := O; 
nextWNum := l; {initialize window number} 
SetRect (nextWRect,leftEdge,topEdge,rightEdge,botEdge); 

{initialize window rectangle} 
OpenWindow; (start with one open window} 

Main event loop 
repeat 

SystemTask; 
if FrontWindow <> NIL 

then 
if WindowPeek (FrontWindow)A.windowKind >= O 

then FixCursor; 
if not menusOK and (FrontWindow = NIL) 

then 
begin 

Disableitem (myMenus [fileM], closeitem); 
Disableitem (myMenus [editM], 0); 
menusOK := true; 

end; {if FrontWindow ... then begin} 
if textH <> Nil 

then TEidle(textH); 

Listing 9-1 continued 



Window Manager 273 

Listing 9-1 continued 

if GetNextEvent{everyEvent,myEvent) 
then 
case myEvent.what of 

mouseDown: 
case FindWindow{myEvent.where,whichWindow) of 

inSysWindow: 
SystemClick(myEvent,whichWindow); 

inMenuBar: 

DoCommand{MenuSelect{myEvent.where)); 

inDrag: 
DragWindow{whichWindow,myEvent.where,dragRect); 

inContent: 
begin 

if whichWindow <> FrontWindow 
then SelectWindow{whichWindow) 
else 

begin 
GlobalToLocal{myEvent.where); 
extended := BitAnd{myEvent.modifiers,shiftKey) <> 0; 
TEClick{myEvent.where,extended,textH); 

end; {else} 
end; { inContent} 

inGoAway: 
if TrackGoAway {whichWindow, myEvent.where) 

then KillWindow {whichWindow); 

end; {case FindWindow} 

keyDown, autoKey: 
begin 

theChar := CHR{BitAnd{myEvent.message,charCodeMask)); 
if BitAnd{myEvent.modifiers,cmdKey) <> 0 

then DoCommand{MenuKey{theChar)) 
else if FrontWindow <> Nil 

then TEKey(theChar,textH); 
end; {keyDown, autoKey begin) 

activateEvt: 
begin 
if BitAnd{myEvent.modifiers,activeFlag) <> 0 

then {application window is becoming active) 
begin 

SetPort {GrafPtr {myEvent.message)); 
textH := TEHandle (WindowPeek {myEvent.message)A.refcon); 
TEActivate{textH); 



274 PART TWO TECHNICAL ADVENTURES 

Enableitem (myMenus[fileM],closeitem); 
Disableitem(myMenus[editM],undoitem); 
scrCopyErr := TEFromScrap; 
if curWinitem <> 0 

then 
begin 

Listing 9-1 continued 

Checkitem (myMenus [windowM],ItemFromName (curWinName), false); 
SetitemCmd (myMenus [windowM], ItemFromName (flipname), chr (0)); 

end; 
GetWTitle (WindowPtr (myEvent.message), windowName); 
curWinitem := ItemFromName (windowName); 
curWinName :; windowName; 
Checkitem (myMenus [windowM], curWinitem, true); 
if windowCount > 1 
then 

begin 
flipWin := windowPtr (LastNoDA); 
GetWTitle (flipWin, flipname); 
SetitemCmd (myMenus [windowM], ItemFromName (flipname), 'F'); 

end; 

end (if BitAnd ... then begin} 
else {application window is becoming inactive} 

begin 
TEDeactivate(TEHandle(WindowPeek(myEvent.message)A.refcon)); 
if WindowPeek (FrontWindow)A.windowKind < O 

then 
Enableitem (myMenus[editM], undoitem) 

else Disable!tem (myMenus[editM], undoitem); 
end; {else begin} 

end; {activateEvt begin} 

updateEvt: 
begin 

GetPort (savedPort); 
SetPort (GrafPtr (myEvent.message)); 
BeginUpdate(WindowPtr(myEvent.message)); 
EraseRect(WindowPtr(myEvent.message)A.portRect); 
TEUpdate(WindowPtr(myEvent.message)A.portRect, 
TEHandle(WindowPeek(myEvent.message)A.refcon)); 
EndUpdate(WindowPtr(myEvent.message)); 
SetPort (savedPort); 

end; {updateEvt.begin} 

end; {case myEvent.what} 

until doneFlag; 
end. 



r 

resource 'MENU' (128) 
128, 
textMenuProc, 
Ox7FFFFFFD, 
enabled, 
apple, 
{ /* array: 2 elements */ 

I* Cll */ 

Window Manager 

"About WindMenu ... ", noicon, noKey, noMark, plain; 
I* (21 */ 
"-", noicon, noKey, noMark, plain 

} ; 

resource 'MENU' (129) 
129, 
textMenuProc, 
Ox7FFFFFF7, 
enabled, 

} ; 

"File", 
I* array: 5 elements */ 
I* Cll */ 
"New", noicon, "N", noMark, plain; 
/* [2] */ 
"Open", noicon, "0", noMark, plain; 
I* [3J */ 
"Close", noicon, "W", noMark, plain; 
/* [4] */ 
"-", noicon, noKey, noMark, plain; 
/* [5] */ 
"Quit", noicon, "Q", noMark, plain 

resource 'MENU' (130) 
130, 
textMenuProc, 
Ox7FFFFFFC, 
enabled, 

}; 

"Edit", 
I* array: 6 elements */ 
/* [l] */ 
"Undo", noicon, "Z", noMark, plain; 
/* [2] */ 
"-", noicon, noKey, noMark, plain; 
I* [3J */ 
"Cut", noicon, "X", noMark, plain; 
I* [41 */ 
"Copy", noicon, "C", noMark, plain; 
/* [5] */ 
"Paste", noicon, "V", noMark, plain; 
I* [6J */ 
"Clear", noicon, noKey, noMark, plain 

275 

Listing 9-1 continued 



276 PART TWO TECHNICAL ADVENTURES 

resource 'MENU' (131) 
131, 
textMenuProc, 
Ox7FFFFFF7, 
enabled, 
"Window", 

} ; 

{"Tile Windows", noicon, "T", noMark, plain; 
"Stack Windows", noicon, "S", noMark, plain; 
"Move and Resize", noicon, "M", noMark, plain; 
"-", nolcon, noKey, noMark, plain 

} 

resource 'BNDL' (128) { 
'Scot', 
0, 

} ; 

I* array TypeArray: 2 elements */ 
I* [1) */ 
'ICN#', 
{ /* array IDArray: 2 elements */ 

/* [11 */ 

} ; 

0, 128; 
I* [21 */ 
1, 129 

/* [21 */ 
'FREF', 
{ /* array IDArray: 2 elements */ 

/* [11 */ 
0, 128; 
I* [21 */ 
1, 129 

resource 'DLOG' (1000, "About box") { 
{62, 100, 148, 412}, 
dBoxProc, 
visible, 
goAway, 
OxO, 
1000, 
"About face" 

}; 

Listing 9-1 continued 



resource 'DLOG' (1001, "Resize") 
{100, 120, 250, 430}, 
dBoxProc, 
visible, 
noGoAway, 
OxO, 
1001, 
"Move me" 

}; 

resource 'DITL' (1001) ( 
/* array DITLarray: 11 elements */ 
I* Ill */ 
{110,70,130,125}, 
Button { 

}; 

enabled, 
"OK" 

I* !21 */ 
{110,200,130,255}, 
Button { 

}; 

enabled, 
"Cancel" 

/* [3] */ 
{9, 68, 29, 213}, 
StaticText { 

disabled, 
"New size for window" 

}, 
I* 141 */ 
{44, 19, 64, 50}, 
StaticText { 

}, 

disabled, 
"top" 

/* 151 */ 
{78, 19, 98, 50}, 
StaticText { 

}, 

disabled, 
"left" 

Window Manager 277 

Listing 9-1 continued 



278 

}; 

PART TWO TECHNICAL ADVENTURES 

/* [6] */ 
{44, 146, 65, 199}, 
StaticText { 

disabled, 
"bottom" 

} , 
/* [7] */ 
{78, 146, 99, 185), 
StaticText { 

disabled, 
"right" 

} , 
/* [81 */ 
{44, 59, 64, 119), 
EditText { 

enabled, 

}, 
/* [91 */ 
{78, 59, 98, 119), 
EditText { 

enabled, 

}, 
/* [10] */ 
{44, 204, 64, 264), 
EditText { 

enabled, 

}, 
/* [11] */ 
{80, 204, 100, 264), 
EditText { 

enabled, 

Listing 9-1 continued 



resource 'DITL' (1000, "About box") { 
{ /* array DITLarray: 2 elements */ 

/* [1] */ 
{61, 191, 81, 251}, 
Button { 

}; 

enabled, 
"OK" 

/* [2] */ 
{8, 24, 56, 272}, 
StaticText { 

disabled, 

Window Manager 

"WindMenu example program\nby Scott Knaster" 
"\nversion 1.0 7/4/87" 

}; 

resource 'FREF' (128) { 
'APPL', 
0, 

}; 

resource 'FREF' (129) { 
'TEXT', 
1, 

}; 

resource 'ICN#' (128) { 
I* array: 2 elements */ 

279 

Listing 9-1 continued 



280 PART TWO TECHNICAL ADVENTURES 

Listing 9-1 continued 

/* [1] */ 
$"FFFF FFFF 8000 0005 FOOO 0005 9100 0005" 
$"9100 0005 91EF 0005 9129 0005 912F 0005" 
$"9128 0005 912F 0005 8000 0805 BFOO 0805" 
$"8880 0805 8898 C905 BF25 2A05 BBA5 2C05" 
$"88A5 2A05 8Fl8 C905 8000 0005 8000 0005" 
$"9000 0005 9000 E485 9001 0505 9001 0605" 
$"9C90 C405 9290 2605 9290 2505 9CF1 C485" 
$"8010 0005 8010 0005 BOFO 0005 FFFF FFFF"; 
I* [2] *I 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

}; 

resource 'ICN#' (129) { 
/* array: 2 elements *I 
/* [1] *I 
$"0FFF FEOO 0800 0300 0900 0280 0900 0240" 
$"0900 0220 0900 0210 0900 03FB 0900 0008" 
$"0900 0008 0900 0008 0900 0008 0900 0008" 
$"09FO 0008 0910 0008 0910 0008 0910 0008" 
$"0910 0008 0910 0008 OBED 0008 09FO 0008" 
$"09FO 0008 09F8 0008 09FB 0008 09EB 5FE8" 
$"09FB OBEB 0800 3FEB OBFO FFEB 0870 3FEB" 
$"0819 FFEB 0800 0008 0800 0008 OFFF FFFB"; 
I* [2] *I 
$"0FFF FEOO OFFF FFOO OFFF FFBO OFFF FFCO" 
$"0FFF FFEO OFFF FFFO OFFF FFFB OFFF FFFB" 
$"0FFF FFFB OFFF FFFB OFFF FFFB OFFF FFFB" 
$"0FFF FFFB OFFF FFFB OFFF FFFB OFFF FFFB" 
$"0FFF FFFB OFFF FFFB OFFF FFFB OFFF FFFB" 
$"0FFF FFFB OFFF FFFB OFFF FFFB OFFF FFFB" 
$"0FFF FFFB OFFF FFFB OFFF FFFB OFFF FFFB" 
$"0FFF FFFB OFFF FFFB OFFF FFFB OFFF FFFB" 

); 



Window Manager 281 

data 'Scot' (0) { 

} ; 

$"1853 686F 776F 6666 2063 7265 6174 6564" 
$"2031 322F 3235 2F38 35" 

Listing 9-1 continued 

/* .WindMenu created */ 
/* 7/4/87 */ 



APPENDICES 

APPENDIX A New Machines and System Software 
APPENDIX B 68020 Microprocessor Overview 
APPENDIX C Macintosh Technical Note #110 

283 



284 Appendices 

New machines and system software. 68020 microproces
sor overview. Macintosh Technical Note #110. 



APPENDIX A 

New Machines and System 
Software 

This appendix discusses new Macintosh develop
ments that Apple released in 1987. Specifically, we'll 
talk about the Macintosh SE and Macintosh II comput
ers, which completely redefined the product line, and 
System files version 4.1 and later, which added a lot of 
features to the Macintosh Plus as well as the new com
puters. 

285 



286 Appendix A 

Macintosh SE 

In March 1987, Apple began shipping the Macintosh SE, which 
immediately became the best-selling member of the Macintosh prod
uct line. When the SE was conceived at Apple, it was called the 
"Plus Plus," which is exactly what it was intended to be-an evolu
tion of the successful Macintosh Plus. 

The Macintosh SE has the following features and characteris
tics. 

1. Two basic models are available from Apple. One comes with two 
internal floppy disk drives, the other with one floppy drive and 
one 20-megabyte hard disk drive. Both systems come with one 
megabyte of RAM. In the summer of 1987, Apple was reportedly 
selling 85 percent of Macintosh SEs in the hard disk configura
tion, and you can bet that a good percentage of the folks who 
weren't buying hard disks from Apple were getting hard disks 
from third-party developers rather than sticking with floppy
based systems. For those who want more than 20 megabytes or a 
faster drive, several manufacturers offer internal hard disks for 
the Macintosh SE. Since Apple doesn't ship the SE with fewer 
than two drives, those who want a different internal hard disk 
have to buy the two-floppy version and figure out how to convert 
the internal floppy to an external one; alternatively, they can 
use it as a hood ornament. 

2. There is a choice of keyboards. The Macintosh SE doesn't come 
with a keyboard, as the box proudly tells you: "Keyboard not in
cluded. Mouse included." You can use the Apple Keyboard, 
which has virtually the same layout as the Macintosh Plus, or 
the Apple Extended Keyboard, which is modeled after the IBM 
PC RT keyboard and includes lots of function keys and obscure 
things like Scroll Lock and Alt. These are Apple's first Macin
tosh keyboards to include Control and Escape keys. You can also 
choose from several alternatives offered by third-party devel
opers. 

3. Both keyboards, as well as the mouse, connect to the computer 
through a scheme called Apple Desktop Bus (ADB), which al
lows the Apple II and Macintosh product lines to share input de
vices and also makes it somewhat easier for third parties to de
velop alternate keyboards, mice, tablets, and other electronic 
thingies to get data into the computer. This has the unfortunate 
side effect of preventing owners of Macintosh Plus and earlier 
machines from using the new keyboards. On the back of the Mac
intosh SE, there are two connectors for Apple Desktop Bus, one 



Appendix A 

for the mouse and one for the keyboard. Interestingly enough, 
both of Apple's keyboards pass the ADB signals through and 
have a connector on each side, which means you can also plug the 
mouse directly into the keyboard. Both ways of plugging in the 
mouse work equally well; you can use whichever way you like. 

4. The Macintosh SE has an expansion slot inside, making it the 
first truly hardware-expandable Macintosh. The reason it has 
only one slot is that it's real crowded in there. "Only" one slot, 
though, has provided lots of expansion opportunities for Macin
tosh SE owners: large screens, accelerator cards with 68020 mi
croprocessors and 6888I coprocessors, debugging boards, and spe
cialized hardware. Of course, most of these things are also 
available for previous Macintoshes, but they're a lot easier to 
design and install for the SE. 

5. The Macintosh SE has ROM version $76. This ROM implements 
the changes necessary to support the new hardware in the Mac
intosh SE, such as the second built-in disk drive and the slot; in 
addition, it has some user interface toolbox changes, such as sup
port for the new version of TextEdit. The ROM contains about 
I92K of code in a 256K-byte pair of chips. The rest of the ROM is 
either empty or filled up with grainy, digitized pictures; the 
pictures are of people who worked on the Macintosh SE, people 
who helped the people who worked on the Macintosh SE, and 
other people who were around when the pictures were made. It 
seems that Apple could have filled the remaining ROM space 
with commonly used resources, but this isn't what happened. See 
the section on Toolbox and operating system changes in this ap
pendix for more information on the new toolbox routines. 

6. The Macintosh SE can be upgraded to several levels of RAM just 
by plugging in special modules called SIMMs (single inline mem
ory modules) and clipping a resistor. SIMMs are available in two 
varieties: 256K and IM. The SE (like the Macintosh Plus) has 
four SIMM sockets and you have to install them in pairs-that 
is, you can't have three of one size and one of another. Given 
these rules, you can have the following RAM totals: 

• Four 256K, for one megabyte. 
• Two 256K, two IM, for 2.5 megabytes. 
• Four IM, for four megabytes. 

7. The Macintosh SE isn't beige. Hey, don't laugh. Not only has 
case color been elevated to the esteemed postion of Religious Is
sue inside Apple, it really raised a stir in the Macintosh world 
when all the computers and peripherals were switched to a 
light gray color called platinum in early I987. This was done as 

287 



288 Appendix A 

part of the effort to give a more uniform look to Apple's entire 
product line, which previously had consisted of some beige 
(Macintosh, Apple Ile, ImageWriter) and some refrigerator 
white (Apple Ile, LaserWriter, ImageWriter II) cases. Since the 
Apple Ilgs and for the foreseeable future, everything is plati
num. Of course, if you don't like it, several companies will give 
your Macintosh a custom paint job, carefully disassembling it, 
painting, and putting it back together, for the techie who has 
everything. 

Little-known feature . The Macintosh SE differs radically 
from earlier models in another important way: it has a high
capacity power supply and a cooling fan. The Macintosh com
munity (which is located near Santa Cruz, California) has had 
lots of reports of power supply failures over the past couple of 
years. The Macintosh SE power supply and fan are designed to 
make sure the system won't overheat or run out of oomph. Since 
there's a fan the old venting slots across the top of the other 
Macintoshes aren't needed any more, so they've been filled in. 
This adds a very handy feature to the Macintosh SE: you can 
pile papers, compact discs, and small toys. on the top without 
fear of making the computer overheat. 

That's it. Those are the most significant differences in the Mac
intosh SE. 

Apple has a pretty good history of providing upgrades to allow 
its customers to add the features of new machines to their existing 
ones. For example, anyone with one of the original Macintosh 128K 
models could move all the way up to a Macintosh Plus with the ap
propriate upgrade hardware from Apple. To give an example from 
another product line, an Apple Ile owner can get to the next genera
tion, the Apple Ilgs, with an upgrade kit. This helps customers stay 
loyal, and it's good business for Apple, since upgrade kits make 
money, too. 

When the Macintosh SE came out, Apple didn't provide a way 
to upgrade existing products. The reason for this is the total redesign 
of the Macintosh that made the SE possible. If you're comfortable 
slicing open your Macintosh, you might want to compare the guts of 
the Plus with the SE. You'll see how different they really are, as 
the SE uses a custom VLSI chip to perform most of the logic functions 
and uses the extra room for the slot. 

One reason the lack of an upgrade path for the SE isn't such a 
bad thing is that except for the slot, most of the SE's capabilities can 



Appendix A 

be had with a Macintosh Plus. The new user interface features in the 
SE's ROM are available in System 4.1 for the Macintosh Plus, so 
there's virtually no software that works on an SE and not a Plus. 

In fact, from a programmer's point of view, the most interesting 
thing about the Macintosh SE is that you should rarely have to 
think about the fact that it's a different model of Macintosh. For an 
application programmer, the real interesting differences are those 
contained in System file versions 4.1 and later, which provide new 
features to the entire Macintosh line of computers and which we'll 
talk about later in this appendix. 

Macintosh II 

The Macintosh II, which Apple announced in March 1987 and 
shipped in May of that year, made several radical changes in the 
Macintosh product line. One of the toughest things about making the 
Macintosh II was that it could not be a completely new computer; it 
had to be an extension of the Macintosh product line. 

To the credit of its designers and engineers, it has many of the 
features that have become famous on the earlier models. The Macin
tosh II still runs almost iill the software that works on earlier ma
chines and Apple has kept the same operating system working across 
the entire current line while still taking advantage of many of the 
Macintosh H's advanced features, a feat that seems to have eluded 
other computer manufacturers. 

Here are the features and characteristics of the Macintosh II. 

1. Two configurations are available from Apple. One model in
cludes one megabyte of RAM and one floppy disk drive; the 
high-end unit comes with a megabyte of RAM, a floppy drive, 
and a 40-megabyte internal hard disk. 

Although these are the only ways it ships from Apple, you 
can get lots of options. An additional internal floppy drive is 
available. You can choose an internal hard disk of 20, 40, or 80 
megabytes. Memory upgrade options are also available. The 
Macintosh II has eight SIMM slots and it requires that you in
stall memory in groups of four SIMMs. These are the possible 
memory configurations for the Macintosh II, using 256K and lM 
SIMMs: 

• Four 256K, four empty slots, for one megabyte. 
• Eight 256K, for two megabytes. 
• Four lM, four empty slots, for four megabytes. 

289 



290 Appendix A 

• Four lM, four 256K, for five megabytes. 
• Eight lM, for eight megabytes. 

2. The Macintosh II, like the SE, comes with a mouse but no key
board and uses Apple Desktop Bus. You can choose from either of 
Apple's keyboards or you can use a third-party ADB model. 

3. Probably the most significant thing that makes the Macintosh II 
different from its other family members is that it has six expan
sion slots inside. These slots, which support the standard NuBus 
connection scheme, allow you to add things to your Macintosh II 
that aren't built into the machine. You do this by plugging in 
NuBus expansion cards, which are available from Apple and 
lots of third-party developers. 

One thing that's not built into the Macintosh II that you'll 
probably want to add right away if you want to get much work 
done is video output. For maximum flexibility, the II doesn't gen
erate video output all by itself. Instead, you plug in a NuBus 
card that connects to a monitor; the card and the monitor get to
gether with QuickDraw and the Slot Manager to show you 
what's happening. 

Apple sells two monitors, a video card, and an upgrade kit 
for the video card. The monitors are a 12-inch black and white 
and a 13-inch color, both of which display 640 pixels across and 
480 down. The video card will support up to 16 colors on the color 
monitor, or 16 gray shades on the monochrome. With the video 
card upgrade kit, you can have 256 colors or shades of gray on the 
screen at the same time. 

A monitor is controlled by a video card in a slot and the Mac
intosh II has six slots, so someone working on the Macintosh II 
thought it would be clever to work out a way to let you use more 
than one monitor at a time. This idea became reality in Color 
QuickDraw, in which the desktop can consist of as many moni
tors as you've got plugged in. 

A Macintosh II user can put windows anywhere on any screen 
or even have them straddle two or more screens, and the magic is 
handled by Color QuickDraw. Using the Control Panel, the user 
can choose a monitor's display settings, such as whether a color 
monitor should be displaying color or not, and how many colors or 
shades of gray should be used. 

4. The Macintosh II has a 68020 microprocessor and a 68881 floating 
point coprocessor as standard equipment. The 68020 is an im
proved version of the good old 68000 that's used in the other Ma
cintoshes. It can push around twice as much information at a time 
as the 68000, and in the Macintosh II it's run at twice the speed 
of the earlier machines. With these numbers, we can crudely es-



Appendix A 

timate that programs run about four times as fast on a II as they 
do on a 68000-based Macintosh. Although that's too simple a 
method to be real, it provides a reasonable approximation. 

The 68881 floating-point coprocessor is a special chip that 
speeds up real arithmetic (that's math with numbers that aren't 
integers) by a huge factor. Most microprocessors, including the 
68000 and even the mighty 68020, can perform arithmetic only on 
integers; real number math has to be done in software, which is 
much slower than encoding it right in the microprocessor. 

On the Macintoshes before the II, floating-point math is 
done in the Standard Apple Numerics Environment package 
(SANE). On the Macintosh II, most applications still go through 
SANE, which knows how to take advantage of a 68881 if one is 
present. The 68881 is a slick invention from Motorola, makers of 
the whole 68000 family, which can do a wide range of real num
ber math. We're not just talking addition and subtraction here, 
either: the set of functions is very complete, including trigono
metric functions, logarithms, square root, exponentiation, and 
other big math-type words. 

The main advantage to using the 68881 instead of SANE is a 
remarkable speed improvement. By using the 68881 directly, cal
culations can be several hundred times faster than when using 
SANE. This shows the power of having features built into a mi
croprocessor or coprocessor. It's interesting to note that in some 
cases, SANE provides better accuracy than the 68881. This hap
pens with some transcendental and trigonometric functions. 

5. The Macintosh II has 256K bytes of ROM. This ROM starts with 
the Macintosh SE version and adds code to take care of the slots, 
the color video capabilities, and various new user interface fea
tures. The Macintosh II ROM is filled to its 256K limit with code 
and some often-used resources; there's no room for anybody's pic
ture. 

Even though the Macintosh II has lots of features that aren't in 
any other Macintosh, it's still quite easy to write software that's 
compatible with the whole product line. Of course, to do that you 
have to use the lowest common denominator, but that really isn't 
very low. About the only general features you have to sacrifice for 
easy compatibility are 256-color mode (also called eight-bit color) 
and direct access to the 68881. The Macintosh operating system lets 
you take full advantage of big screens, multiple screens, larger mem
ory, and multitasking, without having to write special-case code. 

291 



292 Appendix A 

Toolbox and Operating System Changes 

When the Macintosh II shipped, Apple also started shipping 
System version 4.1 with all Macintosh computers. This new version 
was cooked up especially to support the II and the SE, but it also con
tains enhancements for the Macintosh Plus. In this section, we'll talk 
about the new system software features that are provided by System 
4.1 and the ROMs in the SE and the II. 

In some cases, a new feature is implemented partially in ROM 
and partially by patches in the system file; an example of this is 
the new version of TextEdit. For features like this; it's not really sig
nificant to a programmer whether the routine is defined in ROM or 
in the system file. It works the same way in either case. 

For each new feature discussed, you can assume that all three of 
the current Macintoshes (Plus, SE, II) support that feature, unless 
otherwise noted. Although System 4.1 works with the Macintosh 
512K Enhanced, it requires a larger system heap, cutting down on the 
amount of RAM available to applications. If an application can still 
fit in a 512K Enhanced with System 4.1, it can take advantage of the 
new features provided by the new system file. 

We'll go over the new Toolbox features thoroughly, but most of 
the other new stuff (Script Manager, Sound Manager, and so on) is 
just given a quick overview. To go into depth on everything would re
quire a great deal of space, enough to fill an entire book- a book 
called Inside Macintosh, Volume V, in fact, which is the place to 
turn if you're hungry for more information on these features. 

Menu Manager 

The new version of the Menu Manager has added a bunch of fea
tures that extend the user interface. Menu items can now contain me
nus themselves, through a scheme called hierarchical menus. This is 
useful for lists of similar things, like fonts or font sizes. Instead of 
having to clutter up a whole menu with a list of fonts, you can place 
this list in a submenu and it will be seen only when the user is hold
ing down the mouse button on the associated menu item. 

The Menu Manager now supports popup menus, which are menus 
that can appear anywhere on the screen at the click of a mouse. This 
is really just a generalization of what happens when a hierarchical 
menu appears, so it was added to the Menu Manager at the same 
time. 



Appendix A 

The menu bar used to be drawn by hard code in the ROM. Now, 
there's a new definition procedure called the menu bar defproc that 
lets you fool around with the appearance of the menu bar. Like with 
other defprocs, this one gives you the ability to do lots of bizarre cus
tom things with the menu bar. Your menu bar defproc lets you define 
exactly what your menu bar looks like, where it will appear, how 
menus are drawn, and almost everything else about a menu bar's be
havior. 

There are several cosmetic changes and additions to the Menu 
Manager, too. When a menu has enough items to scroll, it now dis
plays a nice black triangle at the bottom of the menu indicating 
there's more than meets the eye. As you scroll down, a triangle will 
appear at the top of the menu to remind you there are more items in 
that direction. 

The Macintosh system software has been greatly enhanced to 
support languages and writing systems that are very different from 
English; in particular, we're talking about writing from right to left, 
as in Arabic and Hebrew, and languages with thousands of different 
characters, such as Chinese and Japanese. To support this, the Menu 
Manager does its part by displaying font names for international 
writing systems (called scripts by Apple) in the appropriate script, 
rather than in the usual Chicago (which is in the United States) 
font; for example, fonts associated with the Chinese script system 
will be shown in Chinese. 

When the user lets the mouse up on a disabled menu item, the 
Menu Manager used to just return a 0 in the MenuSelect routine and 
you had no way of knowing what had happened, only that no valid 
menu choice was made. Now, a routine called MenuChoice will tell 
you the menu and disabled item that the user chose. This can be use
ful for implementing a neat help feature where you can nicely ex
plain to the user just why the menu item is disabled. 

293 



294 Appendix A 

The Menu Manager also supplies support for lots of color in your 
menus if you' re using a Macintosh II. It's very non-obtrusive about it, 
though. The only color you get automatically, without asking, is the 
six-color Apple logo as the title of the Apple menu. Everything else 
is drawn in black and white by default, but you can really go wild by 
adding various resources that tell the Menu Manager to draw in 
color. 

The Menu Manager lets you specify separate colors for lots of dif
ferent parts of your menus. You can choose different colors for all 
these things: 

• The menu bar's background. 
• Each pulled-down menu's background. 
• Each menu's title. 
• Each item's name. 
• Each item's Command key. 
• Each item's mark character (usually a check mark). 

Color blind. As you can see, you can really go wild with color 
in your menus, but you should control your urges in the interests 
.of preserving your users' sanity and their eyesight. Even 
theugh you can do all this fancy stuff with colors in menus, most 
users will probably prefer to stick with legible, ·boring black 
and white in their menus. In general, you should leave it up to 
them te color their menus if they want to. 

The new version of the Menu Manager fixes an interesting limi
tation of preceding versions. In the original Menu Manager, each 
menu contained a long integer that was used as a set of flags to enable 
each item and the menu itself. One bit was used to decide if the menu 
was enabled and the remaining 31 bits in the long word determined 
whether items were enabled. This meant that if you had more than 
31 items in a menu, disabling an item would also disable the item 
that came 32 positions later in the menu, since they would share the 
same flag. 

For compatibility reasons, the size of the flag' s long word 
couldn't be changed in the new Menu Manager. Instead, new code was 
added that makes sure you can only disable the first 31 items in a 
menu. Items past number 31 are always enabled. Since most menus 
that have that many items are lists of fonts and since there's rarely 
a reason to disable a menu item in a font menu, this little trick works 
out pretty well. 



Appendix A 

New Menu Manager routines. 

Procedure InitProcMenu (resID: Integer; aVariant: Integer); 

If you've defined your own custom menu bar defproc, you should 
call this routine instead of InitMenus. This will initialize the menu 
bar properly with the resource ID and variant you specify. Since In
itWindows calls InitMenu to draw the menu bar, be sure you call Init
ProcMenu before calling InitWindows. 

Procedure GetitemCmd (menu: Menuhandle; item: Integer; 
VAR cmdChar: Char); 

.Procedure SetitemCmd (menu: Menuhandle; item: Integer; 
cmdChar : Char) ; 

These two procedures give you an easy way to look at and change 
the Command-key equivalent associated with a menu item. When a 
menu item has a submenu, it will have a "Command key" of $1B, so 
these routines can also be used to monkey around with hierarchical 
menus. 

Function PopUpMenuSelect (menu: MenuHandle; top, left, 
popUpitem: Integer) : Longint; 

This call makes a popup menu appear anywhere on the screen 
and lets the user start tracking through it. The menu parameter is a 
handle to a standard menu, which you can create with Rez or ResEd
it. The top and left parameters give the point where you want the 
selected item in the menu to appear. The popUpltem gives the num
ber of the item that was selected the last time this menu was used. 
This should be set up so that if the user just clicks the mouse button 
and doesn't track through the menu, the choice remains the PopUp
Item. For a good example of how the user interface for popup menus 
should work, check out how Commando works in the Macintosh Pro
grammer's Workshop. 

Function MenuChoice: Longint; 

As we said earlier, you can call this routine after getting back a 0 
from MenuSelect. If the user had the mouse button on a disabled menu 
item when the button went up, MenuChoice will give you the menu 
ID and item number of the item that the mouse pointer was touching. 

295 



296 Appendix A 

Macintosh II only: 

Procedure SetMCEntries (numEntries: Integer; menuCEntries: 
MCTablePtr); 

Function GetMCEntry (menuID, menuitem: Integer) : MCEntryPtr; 
Procedure DelMCEntries (menuID, menuitem: Integer); 

type mcEntry 

These three calls are used to fool around with the menu color infor
mation table, which is the data structure that tells what colors to 
use when drawing a menu bar and its menus. The SetMCEntries call 
lets you set up color information from an array of color entries. Each 
entry in the array can have information for the menu bar, a menu, or 
an item. Here's the format of each element in the array. 

Record 
mctID, mctitem: Integer; {menu and item ID} 
mctRGBl: RGBColor; {title or mark color} 
mctRGB2: RGBColor; {background or item color} 
mctRGB3:RGBColor; {item or Command color} 
mctRGB4: RGBColor; {menu bar or background color} 
mctReserved: Integer; {used by Mr. Menu} 

end; 

The mctID and mctitem are used to tell what you're interested in 
coloring. If both values are 0, the entry is used for the menu bar. For 
this kind of entry, the first RGB color is the default color for menu 
titles; the second is the default for the background of pulled-down 
menus; the third is the default for menu items, Command keys, and 
marks; and the last RGB is used to draw the menu bar itself. 

If mctltem is 0 and mctID isn't, then the table entry is for the 
menu that has an ID of mctID. The first RGB is the color of the 
menu's title; RGB2 is used internally; RGB3 is the default color for 
items in that menu; and RGB4 is the background color for the pulled
downmenu. 

If both mctltem and mctID are non-0, the table entry has infor
mation for a single menu item, specified by using mctID as the menu 
ID and mctltem as the item number. For this kind of entry, the first 
RGB color is used for the item's mark (usually a check mark); the 
second RGB is the color for the item's name; the item's Command
key equivalent is drawn with RGB3; and the fourth color is used in
ternally. 

The menuCEntries parameter in the SetMCEntries call is a 
pointer to an array of these color entries. You should construct a dum
my entry with an mctID of -99 to indicate the end of the table. You 
can use DelMCEntries to remove the color information for any menu 



Appendix A 

bar, menu, or item. GetMCEntry will return the color stuff for any col
ored menu structure. 

Macintosh II only: 

Procedure SetMCinfo (menuCTbl: MCTableHandle); 

Function GetMCinfo: MCTableHandle; 

Procedure DispMCinfo (menuCTbl: MCTableHandle); 

These three calls let you change, examine, and throw away the color 
information for an entire menu bar all in one shot. The data structure 
that you're dealing with in each case is an entire MCTable (even 
though you know that stands for menu color table, aren't you tempted 
to call it a McTable?). 

TextEdit 

One of the original ideas behind the design of the Macintosh 
Toolbox was to provide consistency across different applications. The 
idea was to give programmers a standard way of displaying win
dows, a standard way of implementing pull-down menus, and so on. 
This way, the theory went, users would have an easier time figuring 
out how to move from one application to another-a theory that 
proved to be absolutely right. 

One of the central elements of that consistency is text-editing 
ability. In the Macintosh ROM, TextEdit is used for virtually all 
simple text entry and editing. Users quickly learn the rules about cut, 
copy, and paste, clicking to select, backspacing, double-clicking to se
lect a word, and so on. These rules work in almost every application. 

TextEdit provides all the basic editing most applications need, 
but the wonderful Macintosh capabilities of multiple fonts, sizes, 
and faces (like bold, outline, and italic) really make you want more. 
TextEdit, however, is very limited in that area: each TextEdit 
record must display all its text the same way. 

In the early days of the Macintosh, the solution for those who 
wanted more advanced text editing was a package called CoreEdit. 
This package did a lot of fancy things TextEdit couldn't do, such as 
mixing different fonts, sizes, and faces in a single record and imple
menting a smarter cut and paste. Apple's intention originally was to 
include CoreEdit as a package in the system file, but as it evolved it 
became less and less general-purpose and grew larger and larger. 
Eventually, Apple decided that it was too big, too specific, and pos-

297 



298 Appendix A 

sibly too fragile to be distributed and so it was removed from the sys
tem file. 

The lack of an editing package that could deal with anything 
more than one font was a common complaint from Macintosh devel
opers. So, in both of the 256K ROM versions and in System 4.1, Apple 
revised TextEdit to include support for multple fonts, sizes, and faces 
in a single text record. Since TextEdit was being remodeled at the 
same time that color was being added to the Macintosh, the new 
TextEdit also lets you set a color for each character in the text. 

Of course, the most important goal in retrofitting TextEdit with 
these new features was to make sure that old applications worked 
just as before, but the really exciting parts of the new TextEdit are 
the fancy style capabilities. TextEdit now allows you to apply dif
ferent font information to runs of text within a single record. 

To use these new tricks with TextEdit, you have to start with a 
new-version text record. Once you've got the text record, you can dress 
it up with style information in various ways. TextEdit uses a clever 
trick to indicate that a new-version record is being used. The old 
txSize field, which used to give the font size for the entire record, is 
now used simply as a flag; it's set to -1 to show that this is a new
version record. This works fine, since the size will never be negative 
on an old-version record; on a new-version record the text size can 
vary throughout the record and is kept somewhere else. 

TextEdit uses a similar trick to deal with the multiple fonts, 
faces, and sizes the record can hold. In old-version TextEdit records, 
there are two fields, txFont and txFace, which hold the font ID and 
the text face for the entire record. In new-version text records (which 
can easily be spotted because they have -1 in the txSize field, re
member), these fields are glued together and used as a handle to a 
style record, a thing that keeps track of the different styles used in 
the text. 

The new TextEdit reads and writes a new type of scrap informa
tion, called styl, which includes the style characteristics of a chunk 



Appendix A 

of text. If your application supports the new TextEdit, you'll be able 
to exchange formatted text with other programs that are as smart as 
yours. TextEdit writes the styl type whenever you call TECut or TE
Copy with a new-version record. It also writes type TEXT to be com
patible with the masses. 

New TextEdit calls. 

Function TEStylNew (destRect, viewRect: Rect): TEHandle; 

This is the call to use instead of TENew. It creates a text record in 
the new format. Like TENew, the destRect and viewRect are used to 
tell TextEdit how to draw and how to display the text. 

Procedure TESetStyle (mode: Integer; newStyle: 
TextStyle; redraw: Boolean; hTE: TEHandle); 

Procedure TEGetStyle (offset: Integer; VAR theStyle: 
TextStyle; VAR lineHeight, fontAscent: Integer; hTE: TEHandle); 

These procedures are used to change and look at the style set
tings for a selection. You can use TESetStyle when you want to set the 
current selection to a new style. The mode parameter tells what 
characteristics you want to change. You can charige a selection's font, 
face (bold, italic, and so on), size, or color. There's also a mode that 
changes all of these at once and a mode that increases or decreases 
the font size by a given number of points. 

Here are the constants for the modes. 

con st doFont l; 
doFace 2; 
doSize 4; 
doColor = 8; 
doAll = 15; 
addSi ze=l 6; 

{set a new font ID} 
{change to bold, italic, or whatever} 
{set a new point size} 
{set the color} 
{change everything, one swell foop} 
{change the point size} 

299 



300 Appendix A 

The textStyle parameter holds style information in the following 
format. 

type TextStyle = Record 
tsFont : Integer; 
tsFace: Style; 
ts Size: Integer; 
tsColor: RGBColor; 

End; 

{font ID} 
{style set} 
{point size} 
{color record} 

The redraw parameter to TESetStyle tells whether you want Tex
tEdit to redraw the text in the new style; usually you'll want to do 
this. When you call TEGetStyle, you pass an offset parameter that 
gives the character position to look at in the text and the standard 
TEHandle to the record. You'll get back a style record like the one 
we just talked about plus, as a free added bonus, you'll get the line
height and font ascent for that character. 

Procedure SetStylHandle (theHandle:TEStyleHandle; hTE: TEHandle); 

Function GetStylHandle (hTE: TEHandle): TEStyleHandle; 

These two calls are used when you want to deal with the style 
information for an entire new-version text record. They're mainly 
used when you want to save a new-version text record to disk and 
then bring it back later. A style record (the thing at the end of the 
TEStyleHandle) is really only usable on the text record it was creat
ed with, since it ties style information to specific runs of text in the 
record. 

Procedure TEReplaceStyle (mode: Integer; oldStyle, 
newStyle: TextStyle; redraw: Boolean; hTE: TEHandle); 

You can use this procedure to selectively change all the text 
that's in one style into a different style. For example, you could use 
TEReplaceStyle to change all the text in Helvetica bold 9-point in 
red into Courier 12-point outline in mauve, assuming you know the 
RGB values for mauve. The mode parameters are the same as for 
TESetStyle. Only text that matches all the attributes you specify in 
the mode parameter is matched. 



Appendix A 

Procedure TEStylinsert {text: Ptr; length: Longint; hST: 
StScrpHandle; hTE: TEHandle); 

Procedure TEStylPaste {hTE: TEHandle); 

These procedures let you grab and use formatted text information 
that's on the clipboard in a styl scrap type. Instead of calling TEin
sert, use TEStyllnsert to keep the formatting in the text. You can get 
the hST parameter by using the GetScrap function to read the styl 
information from the scrap. If you're inserting into an old-style 
record, don't worry; it will work just like TEinsert. 

When the user wants to paste into a text record, you should call 
TEStylPaste. This will stick the style information into the record if 
it's a new-version record and there's styl information on the scrap. 
Otherwise, it'll work just like TEPaste, so you have nothing to lose. 

Function GetStylScrap {hTE: TEHandle) : StScrpHandle; 

This function is used to copy the selection's style information into 
the data at the end of the StScrpHandle. You can then write it to 
the scrap if you want by calling PutScrap. When you call TECopy or 
TECut and the text record you're working on is a new-version one, the 
style information will be written automatically along with the text, 
so you may not need to use this call. You could use it if you wanted to 
implement a feature that allowed style information only to be cop
ied and pasted. 

Function TEGetOffset {pt: Point; hTE: TEHandle) : Integer; 

Function TEGetPoint {offset: Integer; hTE: TEHandle) : Point; 

These two handy functions really have nothing to do with the 
fancy style functionality that has been added to TextEdit. They just 
provide a couple of convenient utilities for helping to figure out 
what's going on in your text record. They work with both old and 
new-version records. If you know a point in your text and you want to 
find out what character lies at that point, you can call TEGetOffset 
and it will tell you what character you're in. This is useful for find
ing out what the user has clicked on in a text record. 

The TEGetPoint function does the inverse: if you know a charac
ter offset into your text record and you want to find out where that· 
character is drawn on the screen, it will tell you. The point returned 
is the bottom left of the character, the position where QuickDraw 
normally starts drawing text. 

301 



302 Appendix A 

Function TEGetHeight (endLine, startLine: Longint; hTE: 
TEHandle) : Longint; 

This function is useful for figuring out how much vertical space 
any chunk of text takes up in your record. Given two lines in the text 
record, it totals up the space from the top of startLine to the bottom 
of endLine and returns the answer as the function result. You can use 
this call on old-version records, even though you can also calculate it 
just by multiplying the line height by the number of lines, since all 
lines are the same height in old records. 

Window Manager 

The new version of the Window Manager has been changed 
mainly by the addition of support for color and multiple screens, and 
both of these things are only available in the Macintosh II ROM. 
There are only a couple of new general-purpose calls in the Window 
Manager, and even these don't really add any new functionality. 

A few existing routines work a little differently now so that 
they do the right thing in a world that might contain multiple 
screens and a color desktop pattern. The original Window Manager 
drew non-window things, like the menu bar and window titles and 
frames, in a special grafport called the Window Manager port or 
WMgrPort. For the Macintosh II, grafports. that support the new col
or model have to be a new kind, called color grafports. So, the Win
dow Manager also makes a new structure called the WMgrCPort 
when it starts up and it draws any new-version windows in this port. 

When you use MoveWindow to slide a window (or part of a win
dow) from one screen to another, it doesn't automatically redraw the 
window's structure, as it used to do back in the primitive days of one 
screen per computer. Now, it will only redraw the part of the win
dow structure that stays on the same screen. Any part that gets 
moved to a new screen is drawn when the next update event happens. 

The routines that drag windows and regions around (DragWin
dow, DragTheRgn, DragGrayRgn) work a little differently on the 
Macintosh II. Instead of limiting the dragging to the rectangle that 
you pass, these routines will now examine your rectangle. If it looks 
like your limiting rectangle came from screenBits.bounds (strictly 
speaking, the left, right, and bottom coordinates have to be within 
six pixels of screenBits, and the top coordinate must be within 36 pix
els of screenBits), the dragging calls will let the user drag around all 
the screens. A region that comprises all the screens put together is 
stored in the global variable called GrayRgn. 



Appendix A 

GrowWindow still limits the user to the rectangle you specify 
when resizing a new window. There's a power-user trick that can 
override your limits and let the adventurous user make a window 
that touches more than one screen: holding down the Command key 
while resizing the window removes the limits on the window's size. 
Of course, depending on the application, this may cause big prob
lems, but most programs seem to handle it OK. When you're writing 
your application, be sure to anticipate that your windows might get 
very stretched. As long as you're ready for big windows, you 
shouldn't have to do anything special for multiple screens. 

The Window Manager has invented some new things to support 
the new color model. There's a new data structure called a color win
dow record. It's identical to the original window record, except that 
the old grafport field is now a color grafport. A new structure, called 
an auxiliary window record, holds the colors that are used to draw 
the window's structure. 

Every color window record can have an auxiliary window record 
that tells about its colors. Unfortunately, no field is available in the 
window record to point to the auxiliary window record. Every auxil
iary record contains a field that points to its owner. 

Any color window record that doesn't have a corresponding aux
iliary record is colored according to a resource of type wctb and ID 0. 
If there's no wctb 0 in any open resource file, you'll get the one in 
ROM, which simply sets the window up in beautiful black and 
white. The format of a wctb is the same as a window color table, 
which we'll talk about very soon. 

When you call InitWindows, the Window Manager uses the first 
wctb 0 resource it finds to set up an auxiliary record. Since each aux
iliary record points to its owner, every window that uses colors other 
than the default has to have its own auxiliary record, even if it uses 
the same colors as another window. 

All the auxiliary records are connected together in a linked list. 
There's a field in each one that contains a handle to the next one in 
the list. The last auxiliary record is the one that was created from 
the first wctb found in the resource chain. You can tell it's the de
fault record because its link to the next record (the awNext field) is 
nil. 

303 



304 Appendix A 

Here's a look at all the fields in the auxiliary window record: 

type AuxWinRec = record 
awNext: AuxWinHndl; 
awOwner: WindowPtr; 
awCTable: CTabHandle; 
dialogCTable: Handle; 
awFlags: Longint; 
awResrv: Longint; 
awRefCon: .Long int; 

end; 

We've already said that the awNext field contains a handle to 
the next auxiliary window record in the chain or nil if this is the de
fault record (which, conveniently enough, is also the last record in 
the list). The awOwner field contains a pointer to the window that 
uses this record. The awCTable field has a handle to the color table 
for this window. The color table tells which parts of the window get 
which colors. We'll explore it in just a moment. 

If this auxiliary record is used by a dialog, the Dialog Manager 
will put some of its stuff at the end of the dialogCTable handle. The 
next two fields, awFlags and asResrv, aren't used in this version of 
the ROM and are saved for future fun, so you shouldn't mess around 
with them. The last field, awRefCon, is reserved for your applica
tion's use, just like the other refcon fields throughout the Toolbox. 

Now, as promised, here's the window color table the auxiliary 
record points to. 

type WinCTab Record 
wCSeed: Longint; 
wCReserved: Integer; 
ctSize: Integer; 
ctTable: Array [0 .. 4] of ColorSpec; 

end; 

This table holds the information that tells how to color the structure 
parts of the window. The first two fields aren't used for windows 
(technically, they're reserved by Apple, so you shouldn't use them 
either). The ctSize field gives the array index of the last entry in 
the table. For windows, there are five things that you can color, so 
there are usually five entries in the table; since the first entry has 
index 0, ctSize is usually 4. If you write your own custom window def
inition function, you may have a different number of parts to be col
ored. 



Appendix A 

The last field matches RGB values to parts of the window's 
structure. Each ColorSpec record contains an integer and an RGB 
value. The integer in every ColorSpec has a value that tells what 
part of the window should get the RGB from that record. These are 
the values for the window's parts: 

cons twContentColor = O; 
wFrameColor = 1; 
wTextColor = 2; 
wHiliteColor = 3; 
wTitleBarColor = 4; 

{content region's background} 
{the window frame} 
{the window's title} 
{hilit close and zoom boxes} 
{title bar background} 

Let's say you wanted to set up a window to have a white content, 
a black frame, red text, blue highlighting for the close and zoom 
boxes, and a green title bar (sounds lovely). Here's how you would set 
up the window color table: 

{VAR aTableHdl : WCTabHandle} 
aTableHdl := WCTabHandle (NewHandle (sizeOf (WinCTab))); 
with aTableHdlAA do 

begin 
ctSize := 4; {five elements in color table} 
with ctTable [0] do 

begin 
value := wContentColor; {we want this part white} 
rgb.red := 65535; rgb.green := 65535; 
rgb.blue := 65535; {Pump it Up to white} 

end; 

with ctTable [1] do 
begin 

value := wFrameColor; {set this to black} 
rgb.red := 0; rgb.green := 0; rgb.blue := 0; 
{Can't get Less than Zero} 

end; 

with ctTable [2] do 
begin 

value := wTextColor; {this should be red} 
rgb.red := 65535; rgb.green := O; rgb.blue := 0; 
{The Angels Wanna Wear my Red Shoes} 

end; 

305 



306 Appendix A 

with ctTable [3] do 
begin 

value := wHiliteColor; {Set this one blue} 
rgb . red := O; rgb.green := O; rgb.blue ·= 65535; 
{Almost Blue? No, completely blue!} 

end; 

with ctTable [4] do 
begin 

value := wTitleBarColor; {Green it} 
rgb.red := O; rgb.green := 65535; rgb.blue · = O; 
{Green Shirt} 

end; 

end; {with aTableHdlAA do} 

This code will construct the color table we want for the window. 
We could call AddResource to put the table into a wctb resource and 
then use it with GetNewCWindow. We could also assign it directly 
to a window that's already around using the SetWinColor routine 
discussed below. 

Look up. Remember that the actual color you'll see on the 
screen depends on the monitor and settings that the user has 
chosen. If the user has a device that uses a lookup table, like 
the Apple Color Monitor, several levels of filtering will occur. 
To pick your ideal color, you specify an RGB value. The one dis
played on the screen may be slightly different, depending on 
how many bits per pixel the monitor is set up for and whether 
any entries are available in the color table. The Color Manager 
will try hard to make the color very close to the one you want. 

New Window Manager routines. 
Macintosh II only: 

Function NewCWindow (wStorage: Ptr; boundsRect: Rect; 
title : Str255; visible: Boolean; procID: Integer; 
behind: WindowPtr; goAwayFlag: Boolean; refCon: Longint) 
WindowPtr; 

Function GetNewCWindow (windowID: Integer; wStorage: 
behind : WindowPtr) : WindowPtr; 



Appendix A 

These calls are like their non-colored counterparts, except that 
they set up new-version window records. When you call GetNewC
Window, the Window Manager will look for a wctb resource with 
the same ID as the the WIND resource you're getting. If it finds one, 
it will create an auxiliary record and make it point to this window. 
If there's no corresponding resource, this window will get the default 
colors (the ones that live in wctb 0). 

If you use NewCWindow, the Window Manager won't make an 
auxiliary record for the window, and it'll just use the default colors. 
You can assign an auxiliary record to this window with another call, 
though, which we'll discuss next. 

Macintosh II only: 

Procedure SetWinColor (theWindow: WindowPtr; 
newColorTable: WCTabHandle); 

You can use this procedure to change the color table for a color 
window. This is especially useful after you call NewCWindow, 
where you can't just specify a wctb resource with the color informa
tion. You can just set up the color table and then use SetWinColor to 
make a new auxiliary record and tie it to the window. 

If you create a colorless window with NewCWindow and imme
diately add color to it by calling SetWinColor, the window will 
first be drawn in black and white and then again in color, which is 
not a particularly classy way to do it. Instead, you can specify that 
the window be invisible when you create it, give it an auxiliary 
record, then make it visible. 

Macintosh II only: 

Function GetAuxWin (theWindow: WindowPtr; awHn.dl: 
AuxWinHndl) : Boolean; 

This routine will look through the auxiliary window records and 
find the one that's used for the window given in the theWindow 
parameter. If the window you pass only gets to use the default colors 
(that is, it has no auxiliary record), awHndl will have a handle to 
the default record, and the function result will be false. 

Macintosh II only: 

Procedure CGetWMgrPort (VAR wMgrCPort: CGrafPtr); 

307 



308 Appendix A 

As we said earlier, the Window Manager no\:\' makes a new
version grafport (a color grafport) for drawing all the window's 
structures. This procedure will give you a pointer to that grafport. 

Although this procedure provides a clean, compatible way to 
get a pointer to the color Window Manager port, you should 
avoid drawing into it, since Apple's multitasking operating 
system means that you don't own the whole screen if other ap
plications are running. Of course, the thing that makes the 
Window Manager port so attractive (the ability to draw any
where on the screen) is exactly what makes it dangerous. If you 
decide to draw into it to add a neat trick to your application, 
you may mess up another application that's around. 

Function GetGrayRgn: RgnHandle; 

This new function is part of Apple's overall cleanup effort to con
vince you to stay away from low-memory globals. Using this call, 
you can get a handle to the gray region, the area making up the 
desktop, which may have more than one screen on the Macintosh II. 
This means you shouldn't have to look directly at the GrayRgn 
global. 

Function GetWVariant (theWindow: WindowPtr): Integer; 

This is an interesting little function: it returns the variant code 
for a window. In case you've forgotten, a window's variant code is 
the value that tells the window definition just h::>w the window 
should look. For example, the standard window definition function 
has five variants including a standard document window, called doc
umentProc; a standard alert box, called dBoxProc; and a window 
without a size box, named noGrowDocProc. 

Usually, the window definition functions put the variant code 
into the high byte of the windowDefProc field of the window record. 
The low three bytes of this field contain a handle to the definition 
function itself. At first glance, this function seems pretty innocuous 
and fairly obscure. Why does there have to be a function to return 
this variant, when you can simply look in the windowDefProc field 
to find it? 

The answer is that Apple wants to move the Macintosh operat
ing system toward full 32-bit operation. Currently, several parts of 
the system use the high byte of pointers and handles to stash impor
tant stuff, like the variant code, for example. To use all 32 bits of the 



Appendix A 

pointers and handles for addresses, the other stuff that's crammed in 
will have to be moved elsewhere. 

To prepare for the great day when the Macintosh operating sys
tem uses 32-bit addresses, Apple is beginning to put in calls that will 
let them move the values that are presently stashed in high-order 
bytes of pointers and handles, limiting them to 24 bits. By using the 
GetWVariant call to find a window's variant code, Apple can move 
the variant information somewhere else and you'll still be assured of 
getting the right information. 

Control Manager 

The Control Manager now has the ability to draw controls in lots 
of different colors. Other than that, it's pretty much unchanged. 
Like the Window Manager, there's a new data structure called the 
auxiliary control record, which is used for color information about 
controls. 

Auxiliary control records work very much like their window 
counterparts. When you call InitWindows, the Control Manager 
looks for a resource of type cctb and ID 0 to build a default auxiliary 
control record. If there isn't one, it will find the one in ROM that sets 
up controls for black and white. A cctb resource looks just like a con
trol color table record: a long integer and an integer, which aren't 
used; an integer telling the number of entries in the table minus one; 
then, the table entries, each one consisting of an integer giving the 
part code for the control (the constants are listed below), then one in
teger each for the red, green, and blue magnitude. 

This is the structure of an auxiliary control record. 

type AuxCtlRec = Record 
acNext: AuxCtlHndl; 
acOwner: ControlHandle; 
acCTable: CCTabHandle; 
acFlags: Integer; 
acReserved: Longint; 
acRefCon: Longint; 

end; 

The fields in an auxiliary control record have just the same meanings 
as in an auxiliary window record. The control color table (type 
CtlCTab) is just like a window color table, too, except that there are 
only four different parts of a control that can be colored, so there are 
four ColorSpec records instead of five. 

309 



310 

con st 

Appendix A 

Here are the constants you can use to color the four parts of a con
trol. 

cFrameColor 0; 
cBodyColor 1; 

cTextColor 2; 
cThumbColor = 3; 

{frame, arrows, scroll shaft} 
{buttons background, arrow & 

shaft foreground} 
{button title} 
{interior of scroll box} 

To get access to all the new model colors, you have to draw your con
trols in a window that was created with NewCWindow or Get
NewCWindow. Otherwise, the controls will be drawn in an old
version grafport and only the eight original QuickDraw colors can be 
used. 

New Control Manager routines. 

Function GetCVariant (theControl: ControlHandle): Integer; 

This call is the Control Manager's new way to find out the vari
ant code for a control without looking directly in the contrlDefProc 
field of the control record. You should use it so that your application 
will work right when a 32-bit version of the Macintosh operating 
system becomes available. 

Macintosh II only: 

Procedure SetCtlColor (thecontrol: Controlhandle; 
newColorTable: CCTabHandle); 

Function GetAuxCtl (theControl: ControlHandle acHndl: 
AuxCtlHndl) : Boolean; 

When you create a new control by calling GetNewControl, the 
Control Manager will search for a cctb resource that has the same ID 
as the CNTL resource you're using. If it finds one, it will use it to 
create an auxiliary control record with color information. Other
wise, the new control will have the default colors. 

When you call NewControl, you have no way to instantly attach 
an auxiliary record to the control. Instead, you have to use the 
SetCtlColor call to add the color information and an auxiliary 
record will be constructed to your exact specifications. To make your 
life easier, these things work just like their counterparts in the Win
dow Manager. 

When you create a new control that doesn't have a cctb resource, 
it'll be drawn in the default colors, usually black and white. If you 



Appendix A 

then add color with SetCtlColor, it will be erased and drawn again 
with the new color information. You can avoid this by making the 
control invisible when it's created and calling ShowControl after 
you've added the color. 

With GetAuxCtl, you can get a handle to the auxiliary record 
for any control. You can use this handle to find out what colors are 
being used to draw the control, or you can change the record. If the 
control uses the default colors, the function will return false and the 
value of acHndl will be nil. 

Dialog Manager 

The Dialog Manager has remained unchanged from the outside, 
except for the addition of color support on the Macintosh II. Pro
grams running on classic black and white Macintoshes shouldn't no
tice any difference in the way the Dialog Manager behaves. New 
programs for the Macintosh II that want to take advantage of color 
in dialogs really get a lot of flexibility in coloring things. 

On the Macintosh II, all the elements of your dialogs or alerts 
can be colored. When you call GetNewDialog, the Dialog Manager 
tries to find a resource of type dctb with the same ID as the DLOG 
resource; if it does, it calls NewCWindow for the dialog and uses the 
dctb for color information. The format of the color information in a 
dctb is the same as in a wctb resource, which we've already talked 
about, and you've certainly memorized by now. If there's no dctb, the 
dialog gets the default colors. 

When you make any of the Dialog Manager calls that create 
new alerts (Alert, CautionAlert, StopAlert, and NoteAlert), the 
Dialog Manager will look for an actb resource, which works just like 
the dctb we just went over. If you call CouldDialog or CouldAlert, 
the associated dctb or actb resource will be loaded along with all the 
others. 

As you may remember from your basic studies of Inside Macin
tosh, five fundamental kinds of items can appear in dialogs and 
alerts: controls, text (static and editable), icons, pictures, and user 
items. When you're using a color dialog or alert, each of these items 
can carry color information. The format of the color information dif
fers for each kind of item. We'll talk about how to color each one. 

The color information you provide for a control is simply the con
trol color table, in the same format you would use for a cctb resource 
or a call to SetCtlColor. You can get a little fancier with text items: 
not only can they be colored, but because the Dialog Manager uses 
TextEdit to display text, you can now take advantage of fancy style 

311 



312 Appendix A 

variations for your text. In addition to the TextEdit options for font, 
face, size, and color, you can also set the background color behind the 
text. To make sure your text is drawn in the right font, you can even 
include the font's name, just in case the fonts are renumbered by Font/ 
DA Mover. 

To use color in an icon item, you should create a den resource, then 
put its resource ID into the dialog item list (usually a DITL resource). 
When you create the dialog box, the Dialog Manager will grab the 
den resource to use as the icon. Displaying color pictures is even 
easier, since pictures can have color information recorded in them, of 
course. The Dialog Manager simply draws the picture with the ap
proprate resource ID, so if there's color information, you get color. 

The fifth kind of thing you might want to color in a dialog is a 
user item. Getting color in a user item is entirely up to you, since you 
get to install a procedure to draw the user item. If you want color in 
your user item, just draw in color in your procedure. That's all there is 
to it. 

We've just discovered that icons, pictures, and user items can 
have color goodies associated directly with them, so there's no need 
to add color information to the dialog record. Controls and text items 
have extra stuff, though, like a color table or font information. 
Where do we put this extra stuff? 

The answer, as you probably guessed, is a new data structure, 
called a dialog item color table. This thing contains all the special 
color information for text and control items in the dialog. The dialog 
item color table is a pretty complicated structure. It's usually set up 
with an ictb resource that has the same ID as the DITL for a dialog. 
In fact, the item color table's structure is so wacky that, like some 
other Toolbox structures, it can't be declared with legitimate Pascal 
syntax (although Rez has no problem with it). 



Appendix A 

Don't let me be misunderstood. Note that the ictb is a unique 
data structure; it doesn't look like anything else used in the 
Toolbox. All the other color table resources that work with the 
color Toolbox (wctb, dctb, cctb, and so on) are real color tables as 
defined by Color QuickDraw. That is, they have the following 
Pascal declaration. 

ColorTable = Record 
ctSeed: Longint; 
transindex: Integer; 
ctSize: Integer; 
ct Table: Array [ 0 .. 0 l of ColorSpec; 

end; 

For color Toolbox resources, the first two fields are usually not 
used. The third field tells how many color entries there are in 
the table (less one, since the count is zero-based). Each entry in 
the ctTable array has an integer value, which is used to match 
a part code or bit value, and an RGB value that tells which 
color goes with the integer value. 

Here's a description of the item color table, in classic Inside 
Macintosh style. 

Number of bytes 

For each item: 
2 bytes 

2 bytes 

For each item: 

(for ctrlltems, 
number of bytes 
is shown in 
length field above) 
2 bytes 
2 bytes 
2 bytes 
6 bytes 
6 bytes 
2 bytes 
Optional: 
n bytes 

Contents 

if item type is: 
ctrlltem 
statText, editText 
other types 
ctrlltem, statText, 
editText 
other types 

if item type is: 
ctrlltem 

statText, editText: 

content is: 
length in bytes of color info 
flags for TextEdit (see below) 
0 
offset to this item's color info 
(from start of item color table) 
0 

content is: 
color control table 

font ID or offset to font name 
text face 
text size 
RGB for text 
RGB for background 
text mode (usually srcOr) 

list of font names 

313 



314 Appendix A 

TextEdit flags. For text items, the first field contains flags that de
termine the item's style. If a flag bit is set, then the color entry con
tains information for that attribute. The flags integer is composed of 
the following bits. 

Number of bits Contents 

1 bit font ID field contains an offset to a font name in
stead 

1 bit 
1 bit 
9 bits 
1 bit 
1 bit 
1 bit 
1 bit 

set text mode 
set background color 
unused (reserved) 
set text color 
set text size 
set text face 
set font 

There are constants defined for each of these bits to make it easy 
to set them. Since the item control table structure is so difficult to 
play with, you probably won't be using the constants in your pro
grams, but for your information, here they are. 

doFontName = 32768 
doBackColor = 8192 
doSize = 4 
doFont= 1 

doMode = 16384 
doTextColor = 8 
doFace = 2 

When you construct an ictb, you have to include an entry for 
every item in the dialog, whether it's getting colored or not, even if 
it carries its own color information (like icons and pictures). For 
items that don't have a color entry, use 0 for the length and offset 
values in the item color table. Note that you can use an item color 
table just to set style information for your text items, even if you don't 
color them. If you do this, you still have to have a complete ictb, 
with entries for every item in the dialog. Any text or control item 
that doesn't have its own color entry will be drawn in default colors. 

If you call GetNewDialog, the Dialog Manager will try to find a 
dctb with the same ID as the DLOG and an ictb with the same ID as 
the DITL. If it finds the dctb, it creates a color window, and if the 
ictb is there too, you're in business with color items. You can also use 
a new routine to build a color dialog from scratch, just as with New
Dialog. 



New Dialog Manager routine. 
Macintosh II only: 

Appendix A 

Function NewCDialog (dStorage: Ptr; boundsRect: Rect; 
title: Str255; visible: Boolean; procID: Integer; behind: 
WindowPtr; goAwayFlag: Boolean; refCon: Longint; items: 
Handle): CDialogPtr; 

This routine lets you create a color dialog without specifying a 
DLOG resource, just like the original NewDialog call. When you use 
this call, you'll get a new color dialog, but there won't be any color 
window or color item information, so it'll just be drawn in the default 
colors (usually black and white). To colorize the dialog, you have to 
create an auxiliary window record for it. The easiest way to do this 
is to build a window color table and then call SetWinColor to set up 
the auxiliary window record. Note that this colorizes the dialog 
window's structure, not the items themselves. 

If you want to attach an item color table structure to the dialog, 
you have to first get it into memory, usually by calling GetResource 
to load it from an ictb resource or by building it up from scratch (not 
for the faint of heart). Then, you have to plug the item color infor
mation into the auxiliary record. There's a field in the auxiliary 
record just for this purpose called dialogCTable. Just put the handle 
to the item color table into the dialogCTable field of the auxiliary 
record. The code would look something like this. 

theDialog := NewCDialog (dStorage, boundsRect, title, false, 
procID, behind, goAwayFlag, refCon, items); 

{create dialog, make it invisible} 
{assumes we've set up a window color table} 
SetWinColor (WindowPtr (theDialog), newColorTable); 
itemCTblHdl := GetResource ('ictb', ID); {load an 'ictb' resource} 
temp := GetAuxWin (WindowPtr (theDialog), awHndl);{get aux handle} 
awHndlAA.dialogCTable := itemCTblHdl; {attach item color table} 
ShowWindow (WindowPtr (theDialog)); 

This makes the new color dialog (initially invisible), gives it an 
auxiliary window record so that the structure will be colored, loads 
in an item color table from a resource, puts a handle to it in the auxil
iary record, and then displays the whole mess. For an example of 
how to build a window's color table, see the Window Manager sec
tion earlier in this appendix. As we said, you can also construct the 
item color table programmatically right in memory, but you have to 
be really fond of munging around in memory· to do it. 

315 



316 Appendix A 

Font Manager 

Just like the rest of the user interface toolbox, the Font Manager 
now has the ability to support color. In addition, the Font Manager 
has gotten smarter about which font it gives you if the one you ask 
for isn't available. As with other parts of the system, your existing 
programs should work the same with the new Font Manager, except 
for the new font search technique and some bugs that have been 
fixed. 

When you ask for a font that the Font Manager can't find, it now 
tries very hard to give you a font as close as possible to the requested 
one. First, it looks for a FOND resource, and if there aren't any, it 
tries for a FONT resource that matches the request. If the font can't 
be found hiding anywhere in any open resource files, the Font Man
ager will try to give you the application font. Sometimes even that 
font isn't around, in which case you'll get the system font. Since some 
applications use a different system font and load it into RAM, 
there's even a chance it may not be available. If that happens, the 
Font Manager just pulls the Chicago 12 font out of ROM. 

The Font Manager now provides support for fonts that appear in 
color or gray scale. When you define a font, you can now use multiple 
bits to describe each pixel, just like when you're defining a pixel 
map. The Font Manager's flexibility actually allows you to define a 
different color for every pixel in a character. Using resource type 
NFNT, you can define fonts in all the depths currently supported by 
Color QuickDraw: one, two, four, or eight bits per pixel. 

The Font Manager uses a scheme that's a lot like the one the rest 
of the Toolbox uses to define fonts with mutiple bits per pixel. Each 
different color or gray scale value is specified with a different bit 
pattern; two-bit fonts (what a derogatory-sounding term) can have 
four different colors, while eight-bit fonts can contain 256 different 
colors. 

In the font definition, each pixel is specified with a bit pattern 
representing the color you want. This bit pattern is called the index. 
You can supply an additional resource that's yet another kind of 
color table, a font color table or fctb resource, naturally. This color 
table is in the standard format, as defined by Color QuickDraw. 

The color for each pixel in the font is determined by finding the 
value field in a ColorSpec record that matches the index for that 
pixel. For example, in a four-bit font, all the pixels that have an in
dex of 0110 (six decimal) will be drawn in the color that has 6 as the 
index value in its ColorSpec record. 

The Font Manager does some smart things when your fctb doesn't 
define all the index values used in the font. For index values that 



Appendix A 

aren't in the table, it will average the unknown colors between the 
grafport's foreground and background colors. This can be especially 
interesting if the user is set up for gray scales instead of color. If 
there's no fctb at all, the Font Manager will still assign different 
colors or grays to each index, ranging from the foreground color to the 
background color. 

To keep things moving along swiftly, the Font Manager tries to 
find an NFNT resource that matches the current screen depth. If it 
can't find one, though, it will take what it has and crunch it up to fit 
the current screen. If the screen depth and the font depth don't 
match, the Font Manager constructs a new image of the font at the 
proper depth. This new life form is called a synthetic font. 

The Font Manager has to keep track of each font's depth and col
or information so that it can know what to do when it's time to draw 
with that font. The Font Manager puts several bits of the font record 
to work that were previously unused. Bits 2 and 3 are used to hold 
the depth of the font: 0 is one-bit, 1 is two-bit, 2 is four-bit, and 3 is 
eight-bit depth. Bit 7 is set if the font has an fctb resource that pro
vides color information. Bit 8 is set by the Font Manager if this font 
is a synthetic one that had to be created especially for this screen 
depth. Bit 9 is set as a reminder to the Font Manager for a font that 
has colors (other than black). 

New Font Manager routine. 

Procedure SetFractEnable (fractEnable: Boolean); 

When the Macintosh Plus and ROM version $75 were introduced, 
the Font Manager included a new feature that allowed the use of 
fractional character spacing. This idea allowed character positions 
to be recorded in fractions of a pixel. Although you couldn't actually 
draw characters at fractional pixel positions on the screen, a printer 
like the LaserWriter, with four times the screen's resolution in each 
direction, could make use of this information. 

Apple originally tried to make the fractional character spacing 
happen automagically, but it caused too many applications to fail. 
So, the feature was turned off and a global called FractEnable was 
required to turn it back on. To make it easier for high-level language 
programmers to enable this feature, a call named SetFractEnable 
was implemented in the MPW Pascal and C interfaces. The new ver
sion of SetFractEnable simply implements this call as a trap in 
ROM, so that all developers, including folks working in assembly 
language, can take advantage of it. This is also another example of 
Apple providing a higher-level interface to a global, which means 

317 



318 Appendix A 

that the global might change its meaning in the future. So be sure to 
use SetFractEnable to turn fractional character spacing off and on. 

Resource Manager 

From the outside, the Resource Manager in the Macintosh SE and 
Macintosh II is virtually the same one found in the Macintosh Plus. 
There are some additional resources that have been added to the 
ROM, and there's one new routine that makes it easier to get re
sources from the ROM. 

If you were the Resource Manager, here's a list of the resources 
that you'd find in the Macintosh SE ROM. 

Resource ID Contents 
type 

CDEF 0 Button/ check box definition procedure 
CDEF 1 Scroll bar definition procedure 
CURS 1 Text cursor ("I-beam") 
CURS 2 Cross cursor 
CURS 3 Plus cursor 
CURS 4 Watch cursor 
LISA 0 Precursor 
DRVR 3 Sound driver (.Sound) 
DRVR 4 Disk driver (.Sony) 
DRVR 9 low-level AppleTalk driver (.MPP) 
DRVR 10 AppleTalk transaction protocol driver (.ATP) 
DRVR 40 AppleTalk file server support (.XPP) 
FONT 0 System font name (Chicago) 
FONT 12 System font, 12-point (Chicago) 
FONT 384 Geneva font name 
FONT 393 Geneva font, 9-point 
FONT 396 Geneva font, 12-point 
FONT 512 Monaco font name 
FONT 521 Monaco font, 9-point 
MBDF 0 Menu bar definition procedure 
PACK 4 Floating-point math (SANE) 
PACK 5 Transcendental functions 
PACK 7 Binary-decimal conversions 
SERO 0 Serial drivers 
WDEF 0 Standard window definition function 
WDEF 1 Round-cornered window definition 



Appendix A 

The Macintosh II ROM has all these resources plus a few more, 
mostly to support color. Here are the additional resources in the 
Macintosh IL 

Resource type ID Contents 

NFNT 2 Chicago font, 12-point, 4-bit depth 
NFNT 3 Chicago font, 12-point, 8-bit depth 
NFNT 33 Geneva font, 9-point, 4-bit depth 
cctb 0 Control color table for black and white 
clut 127 Color lookup table for old 8 colors 
gama 0 Color correction table for monitor 
mitq 0 Used by MakeITable call 
wctb 0 Window color table for black and white 

New Resource Manager routine. 

Function RGetResource (theType: ResType; theID: Integer) 

The Macintosh Plus ROM introduced the concept of ROM-based 
resources, but the technique for getting at them was a little weird. In 
order to retain compatibility with existing applications that didn't 
expect any resources to be ROM-based, the Resource Manager only 
searched the ROM resource file if it was explicitly inserted at the 
front of the chain of open resource files by setting a low-memory 
global. 

The new routine RGetResource provides a different kind of func
tionality in a much simpler way. This routine will search through 
the chain of open resource files for a resource; if it can't find the one 
you want, it will look in the ROM as a last resort. If you want to grab 
the ROM-based resource first, you still have to mess around with 
globals, but if you just want to be sure you've tried the ROM as well, 
you can use this new routine. 

Script Manager 

The Script Manager is a whole new chunk of code Apple supplies 
with System 4.1. It's a clever combination of callable routines and 
lots of system patches, a real guerrilla piece of software that could 
only be implemented on a Macintosh. 

Most programmers who've heard of the Script Manager think of 
it as having something to do with localizing applications for use 

319 

Handle 



320 Appendix A 

with non-Roman writing systems, like Chinese, Japanese, Arabic, 
Hebrew, Korean, Laotian, Maldivian, and Telugu (the first person 
who writes me a letter in Telugu, with an English translation, will 
get a special mention in the next printing of this book). 

It's true that the heart of the Script Manager is designed for 
this, but a lot of Script Manager routines are reasonably general
purpose utilities for dealing with text. You can use these utilities for 
any text manipulation needs you have and get the added bonus that 
these calls will work with different script systems. 

Good old all-American ASCII has room for 256 different charac
ters, since a character has to fit into a single byte. Although that's 
plenty for English and other Latin-based languages like French, 
Spanish, and Italian, it's not even close for something like Kanji 
(written Japanese), which has more than 40,000 characters. 

So, one basic change that the Script Manager implements is that 
characters can take up. two bytes instead of just one. Obviously, this 
could cause great confusion if your application assumes that all char
acters are one byte long. The Script Manager provides calls to help 
you figure out what's going on in your text in a way that works with 
both one-byte and two-byte characters. 

One of the most interesting things that changes for some writing 
systems is the direction of writing. In Hebrew and Arabic, for exam
ple, characters are written from right to left. Of course, your basic 
Toolbox routines just aren't set up to deal with this, so the Script 
Manager applies some of its patching magic. The Script Manager 
maintains a low-memory global called TESysJust that tells whether 
the direction of text should be left to right or right to left . 

Lots of decisions are made based on the value of this global. If 
TESysJust is set for right to left, it will affect text drawn with 
TextEdit, text in menus, and labels on radio buttons and check boxes. 
If you're just drawing text, as with DrawChar or DrawText, the 
Script Manager convinces QuickDraw to draw the characters in the 
opposite direction from the usual. 

In addition to the all-new Script Manager, the International 
Utilities Package has been overhauled to be more flexible and to 
work properly with the Script Manager. Instead of using the old 
INTL resources with IDs 0 and 1, there are some new resources that 
allow you to switch between multiple scripts installed in the same 
system. 

The new resources are types itlO, itll, and itl2. The first two con
tain pretty much the same information that was in the old INTL 0 
and 1. Since there can be many resources of type itlO in the system, 
you can have lots of scripts to switch between. The new itl2 resource 
allows you to customize character comparisons to a very high de
gree. 



Appendix A 

The International Utilities provide a few new ways to format 
the existing day and time information. For the time format, you can 
now specify a value of 1 that will cause midnight and noon to be rep
resented as 0:00. There are three new formats for short dates: month
year-day, day-year-month, and year-day-month. 

There are new ways to format the long date, too. The old values 
of 0 and 255 are still respected; if the value is anything else, the for
mat byte is used to determine the order of the elements in a long 
date. Each two-bit field in the byte corresponds to a field in the long 
date. Bits 0 and 1 specify the first thing in the date, 2 and 3 the sec
ond, 4 and 5 the third, and 6 and 7 the last. A value of 0 indicates 
where the day of the month will appear; 1 is for the day of the 
week; 2 indicates the month; 3 is for the year. 

The new International Utilities also allow you to suppress any 
parts of the long date. There's a bit that corresponds to each of the 
four parts of a long date, and setting that bit causes the associated 
part of the date to be suppressed from the long date. Bit 0 is for the 
day of the month; bit 1 is used for the day of the week; bit 2 is used to 
suppress the month; bit 3 keeps the year away. 

Script Manager routines. Only a few routines are listed. 

Function FontScript : Integer; 
Function IntlScript : Integer; 
Procedure KeyScript (code: Integer); 

These routines let you find out and set various information about 
the current 'state of the system from the Script Manager's point of 
view. FontScript tells you the font number of the font that's currently 
being used. IntlScript tells which script system is in use from an Ap
ple-assigned list of more than 30 writing systems. 

The KeyScript routine lets you set the keyboard to work in one of 
the script systems installed on the startup disk. When you do this, 
the Script Manager will draw the icon for the script system you've 
chosen on the far right edge of the menu bar, just to remind you and 
alleviate any surprise that might result from seeing Mongolian 
characters suddenly appear in the middle of your new novel. 

Function CharByte (textBuf: Ptr; textOffset: Integer): Integer; 
Function CharType (textBut: Ptr; textOffset: Integer): Integer; 

These two functions can help you figure out whether a particular 
byte in a chunk of text is part of a two-byte character. To use them, 
set textBuf to the address of the first character in your text and set 

321 



322 Appendix A 

textOffset to the byte position in the text that you want to examine. 
By calling CharByte, you can find out whether the byte is a one-byte 
character (the function returns 0) or the first byte (-1) or second byte 
(1) of a two-byte character. 

The CharType function gives you a way to find out more about a 
byte in a run of text. The function result from CharType is composed 
of five fields, all crammed into that one integer value. Bits 0 
through 3 contain the character type, which can be a standard AS
CII text or number character (1), a punctuation character (0), or a 
"European" non-standard ASCII character (7). Bits 8 through 11 tell 
whether the character is a number (1), a text character (0), or a sym
bol (2). Bit 13 tells whether the character is part of left to right (0) 
or right to left (1) text. Bit 14 says whether the character is upper 
(1) or lower (O) case. Bit 15 indicates whether the byte is part of a 
one-byte (0) or two-byte (1) character. 

Printing Manager 

The Printing Manager has added a couple of interesting new fea
tures, one of them hidden and one functional. The new hidden feature 
is that most of the Printing Manger's routines, which have always 
been added through a linked file, are now in ROM. They're accessed 
through a single trap called _PrGlue, and the interfaces for MPW 
have been changed appropriately. The new functional feature of the 
Printing Manager is a procedure that allows printer drivers to com
municate with the application. This new call is listed next, so read 
on for details. 

New Printing Manager routine. 

Procedure PrGeneral (pData: Ptr); 

This call provides a generic, printer-independent way to find out 
some things about the printer you're using without having to look di
rectly into the print record. Finding out secret things about the 
printer by looking into the print record is a time-honored tradition 
among Macintosh software developers, but it's not one that's likely 
to be well-respected by Apple as the printing code's architecture 
changes in the future. 

Although the fields of the print record were fully documented in 
the early days of the Macintosh, when the original ImageWriter 
was the only available printer, Apple soon realized that lots of 
things would have to change to support vastly different devices like 
the LaserWriter. So, the Printing Manager chapter of Inside Macin-



Appendix A 

tosh was changed to specify a bunch of fields "used internally" 
where more detail was once available. 

Of course, the horse was already out of the barn, as they say, 
and closing the door didn't really stop it. Once the information was 
out in the world, it got used, reused, and passed on like a chain let
ter. Now, as Apple works on improving future printing software, it's 
very likely these fields will change again. Those who depend on 
them will probably fail with the new software, just as many appli
cations failed to work with the LaserWriter at first-soll).ething to 
look forward to. To avoid having this tragedy befall your applica
tion, you should try to steer clear of peeking into the print record. To 
help your self-control in this area, PrGeneral was invented as a 
clean way of finding out some facts about the current printer. 

The structure of PrGeneral is very, uh, general in that it allows 
lots of different kinds of operations to be specified. The pData par
ameter points to a block of things that tell exactly what information 
you're looking for. Here's the Pascal declaration for the parameter 
block. 

type TGnlData Record 
iOpCode: Integer; {call number} 
iError: Integer; {error code returned here} 
lReserved: Longint; {reserved by Apple} 

{additional data, different for each call} 
End; 

The first part of the record is the call number. This determines 
which of PrGeneral's functions you're asking for. Currently, there are 
five PrGeneral calls, and we'll talk about each of them in a minute. 
The next field contains the error code returned by the PrGeneral call. 
The reserved field is just that. Each PrGeneral call also defines some 
additional call-specific fields we'll talk about soon. 

The foliowing are the five calls supported by PrGeneral. 

• GetRslDataOp (call number 4) returns data about the printer's 
resolution capabilities. 

• SetRslOp (call number 5) sets the current printer's resolution. 
• DraftBitsOp (call number 6) allows you to print bitmaps with 

draft printing. 
• NoDraftBitsOp (call number 7) turns off bitmaps during draft 

printing. 
• GetRotnOp (call number 8) lets you find out if the user has chosen 

vertical (portrait) or horizontal (landscape) paper orientation. 

323 



324 Appendix A 

The getRslDataOp call lets you find out about the resolutions 
supported by the current printer, usually specified by the user in the 
page setup dialog. For example, the LaserWriter can print as small 
as 25 percent of actual size, as large as 400 percent, or anything in be
tween; the ImageWriter can print in 72 by 72, 144 by 144, 80 by 72, or 
160 by 144 resolution, and only those values. The getRslDataOp call 
will tell you if the printer supports discrete resolution only, and 
which values if so; for variable resolution, it will give you the 
range. 

The setRslOp call can be used to set the printer's resolution di
rectly, without having to rely on the user to do it right with the 
print dialogs. The idea here is to obtain a resolution that's sup
ported by using the getRslDataOp call and then use setRslOp to plug 
in the new value. If you use values that aren't right, the Printing 
Manager will set the resolution to the printer's default. 

The draftBitsOp routine lets you pull off a neat trick: prining 
bitmaps in draft mode on the ImageWriter. Normally, draft mode 
disables all bitmaps, as well as fonts and font styles. By calling 
PrGeneral with the draftBitsOp constant, bitmaps will be printed 
when the user has selected draft mode. If you're going to use this 
call, you should do it before calling PrJobDialog or PrStlDialog, be
cause it locks the user out of certain choices. Specifically, it forces 
the printing choices to be draft mode and portrait orientation if the 
user is going to print to an ImageWriter. On a LaserWriter, this call 
doesn't do anything, since the LaserWriter's draft mode is its only 
method of printing. 

When you use this call, each bitmap will be printed in turn, from 
top to bottom, and paper motion is always forward. If you have two 
bitmaps side by side, you'll have a problem, because the Image
Writer will finish drawing the first bitmap and then will not be 
able to print the second one, since the print head will be too far down 
on the page and the ImageWriter driver won't move it back up for 
this kind of printing. 

To avoid this problem, you have to make sure you print your bit
maps from the top of the page to the bottom. If the top of any of 
them overlaps the bottom of another, you'll have to combine them 
by CopyBitsing them into the same image and then printing the com
bined image. Oh well. 

When you're all done printing bitmaps in draft mode, you should 
call PrGeneral with the noDraftBitsOp constant. This will turn off 
bitmap printing in draft mode and will return draft mode printing to 
its usual text-only, single-font, boring self. 



Appendix A 

Terminology comer. When the Macintosh and its printing soft
ware first appeared, the ImageWriter was the only printer 
supported. There were two printing methods: draft and spool 
printing. In draft printing, the printing happened immedi
ately, without writing an intermediate file to disk, and only 
text was printed, using only the printer's built-in standard font. 
In spool printing, a file containing a QuickDraw picture was 
created on disk and then sent to the printer, and this picture 
could contain any graphics or font changes you wanted. The rea
son for the creation of spool printing was that printing pictures 
directly required too much memory for the old 128K Macintosh: 
the picture, the code to draw it, and the code to print it all had 
to be loaded at the same time. By creating an intermediate file, 
the application's imaging code could be placed in a segment and 
then unloaded when it was time to print. When Apple intro
duced the LaserWriter, which only worked with Macintoshes 
containing 512K of RAM or greater anyway and which only 
knew one way to print-beautifully-the words draft and spool 
didn't really work right anymore. Now, draft meant "printed 
with no intermediate file," and spool meant "printed with an 
intermediate file," which never happened on a LaserWriter. 
This is why we now have such interesting variations as a La
serWriter that always prints in draft mode (which just means 
no intermediate disk file is created) and an ImageWriter that 
can print bitmaps in draft mode (again, meaning no disk file is 
created). 

The last of the PrGeneral calls is getRotnOp, which tells you if 
the user has selected portrait or landscape orientation. It simply re
turns a boolean value. If it's true, the document is set up for land
scape; otherwise, it's portrait. 

These are the only PrGeneral calls supported now, but there will 
probably be more in the future. As Apple adds more functionality to 
the Printing Manager and implements new high-level ways to deal 
with it you should probably pay close attention, since the high
level interface will probably be the only one that continues to work 
the same way over the next couple of years. 

325 



326 Appendix A 

Operating System Utilities 

As the Macintosh product line has grown and diverged over the 
last few years, it's gotten harder and harder to figure out what fea
tures are available in the machine your application is runn.ing on. 
System 4.1 includes a new call that can help you figure out some 
things about the environment your application is living in. 

New Operating System Utilities routine. 

Function SysEnvirons (versionRequested: Integer; VAR 
theWorld: SysEnvRec) : OSErr; 

There are all sorts of globals, tricks and techniques inside your 
Macintosh that you can use to find out about what kind of Macintosh 
you've got, what's plugged into it, what ROM version it has, and so 
on. Now, for the first time, all of your favorite configuration stuff 
has been gathered together for convenient one-stop shopping in the 
SysEnvirons call. 

In one shot, this call will tell you all the following information: 

• What kind of Macintosh you've got (128K/512K, XL, 512Ke, 
Plus, SE, II, or something from beyond). 

• The version of the System file that's open (4.1 or later only). 
• Which microprocessor is running the computer (68000, 68010, 

68020, or science fiction). · 
• Whether the computer has an Apple-installed 68881 floating

point coprocessor. 
• Whether Color QuickDraw is in the ROM. 
• What keyboard is attached (original, original numeric pad, 

Macintosh Plus, Apple Keyboard [ADB-based], Apple Extended 
Keyboard [ADB-based], or something unrecognizable). 

• The version of the AppleTalk drivers. 
• The reference number of the current System file's folder (a 

WDRefNum) or volume (a VRefNum). 

What a bargain! All that stuff for just one call. In addition, this 
call is designed to be extended when necessary. When you call it, you 
pass along a version number. SysEnvirons responds with that version 
number if it can and the nearest one otherwise. This will allow Ap
ple to add new fields of information to this call in the future, making 
it an even bigger deal for finding out what you've got in your Macin
tosh. 



Appendix A 

Sound Manager 

In versions $69 and $75 of the Macintosh ROM (the 64K and 
128K ROMs), the Sound Driver allowed you to carry a tune on your 
Macintosh. On the Macintosh II, the sound capabilities have been 
enhanced so much that the Sound Driver has been promoted to man
agement-it's now the Sound Manager. 

The biggest news about the Sound Manager for non-musical types 
is the invention of a resource type that holds sound information 
(which can be music, speech, a message to your dog, or the theme 
from "Pee-Wee's Playhouse"). While you have to know what you're 
doing to create these resources, which are type 'snd,' it's easy to 
write code to copy, paste, and play them in your programs. 

Sound Manager routine. Not all routines are listed. 
Macintosh II only: 

Function SndPlay (chan: SndChannelPtr; sndHdl: Handle; 
async: Boolean): OSErr; 

This is the magic call that lets even us total music zeroes play 
music in our programs. The easy way to use this routine is to pass nil 
for the chan parameter, which will create a new channel or queue to 
pass the music commands to. The sndHdl parameter should be a 
handle to an 'snd 'resource that you got from a friend who knows 
how to play piano or that you digitized, and you should pass false 
for the async parameter. 

If you learn a little more about how the Sound Manager works, 
you can create your own sound channels and use them for fancier ef
fects like stereo. You can use some of the other Sound Manager com
mands to control exactly what you want to do. The Sound Manager 
lets you have various synthesizers, or drivers, that can process spe
cial formats like plain notes, wave tables, or MIDI data. For a great 
demo of the Macintosh Il's sound capabilities, check out the alert 
sound that's a stereo recording of an elephant trumpeting. It'll make 
your eyes water. 

Shutdown Manager 

The Shutdown Manager is a little collection of code that makes 
sure your Macintosh is all ready to be turned off when you're done 
working. Most users see it when they choose Shut Down from the 
Finder's Special menu. For those lucky enough to have a Macintosh 

327 



328 Appendix A 

II, this turns the computer's power off; otherwise, it puts up the alert 
that tells you it's OK to turn the computer off yourself. 

The Restart command in the Finder is also performed with the 
help of the Shutdown Manager. When you do a restart, all the 
housekeeping things that take place on a Shut Down command are 
handled; instead of killing the power or putting up the alert, 
though, the computer is restarted. 

If you want something in particular to happen when the Shut
down Manager is called, you can install a procedure that will be 
called when the user shuts down or restarts, or at both times. This is 
handy for such things as signing off a mail server on AppleTalk, 
parking the heads on a hard disk, or playing the chorus from "Shut 
Down" by the Beach Boys ("Tach it up, tach it up ... "). 

Shutdown Manager routines. Not all routines are listed. 

Procedure ShutDwninstall (shutDwnProc: ProcPtr; flags: 
Integer); 

program NewHiyer; 

Procedure ShutDwnRemove (shutDwnProc: ProcPtr); 

The ShutDwnlnstall procedure is used to stick a procedure into 
the queue to be executed when the Shutdown Manager is called on to 
turn off or restart the machine. You can specify just when in the shut
down process you want your routine to be called: before unmounting 
volumes, before closing drivers, or just before restarting or shutting 
down. The second routine is used to take something out of the queue. 

That's it. As long as we're talking about shutting down, we 
might as well end our discussion of the new stuff here. Following 
this, you'll find Listing A-1, which uses the new versions of TextEdit 
and the Menu Manager to do some tricks. 

{Listing A-1 Example of hierarchical menus and stylish TextEdit} 

uses 
{$LOAD Insider:MPW:Pinterfaces:Allinterfaces} 
{$U Insider:MPW:Pinterfaces:MemTypes.p } MemTypes, 
{$U Insider:MPW:Pinterfaces:QuickDraw.p} QuickDraw, 
{$U Insider:MPW:Pinterfaces:OSintf .p } OSintf, 
{$U Insider:MPW:Pinterfaces:Toolintf .p } Toolintf, 
{$U Insider:MPW:Pinterfaces:Packintf.p } Packintf; 



Appendix A 329 

Listing A-1 continued 
con st 

apple ID 128; 
file ID 129; 
editID 130; 
text ID 
font ID 132; 
size ID 133; 
styleID 134; 

appleM l; 
fileM 2; 
editM 3; 
textM = 4; 
fontM 5; 
sizeM 6; 
styleM 7; 

menu Count 7; 

about Item l; 

undo Item l; 
cut Item 3; 
copy Item 4; 
pasteitem 5; 
clear item 6; 

newitem = l; 
closeitem = 3; 
quititem 5; 

fontitem l; 
sizeitem 2; 
styleitm= 3; 

{resource IDs/menu IDs for menus} 

131; 

{index for each menu in myMenus (array of menu handles)} 

{total number of menus (incl. hierarchical)} 

{item in Apple menu} 

{Items in Edit menu} 

{items in File menu} 

{items in Text menu} 

wName = 'Window '; {prefix for window names} 

windDX 
windDY 

25; 
25; 

{distance to move for new windows} 

leftEdge = 10; {initial dimensions of window} 
topEdge = 42; 
rightEdge = 210; 
botEdge 175; 

var 
myMenus: array [l .. menuCount] OF MenuHandle; {handles to the menus} 
dragRect: Rect; {rectangle used to mark boundaries for dragging window} 
txRect: Rect; {rectangle for text in application window} 
textH: TEHandle; {handle to Textedit record} 
theChar: char; {typed character} 
extended: boolean; {true if user is Shift-clicking} 
doneFlag: boolean; {true if user has chosen Quit Item} 
myEvent: EventRecord; {information about an event} 
wRecord: WindowRecord; {information about the application window} 



330 Appendix A 

myWindow: WindowPtr; {pointer to wRecord} 
myWinPeek : WindowPeek;{another pointer to wRecord} 

Listing A-1 continued 

whichWindow: WindowPtr;{window in which mouse button was pressed} 
nextWRect: Rect; {portRect for next window to be opended} 
nextWTitle: Str255; {title of next window to be opened} 
nextWNum: Longint; {number of next window (for title)} 
savedPort: GrafPtr; {pointer to preserve GrafPort} 
menusOK: boolean; {for disabling menu items} 
scrapErr: Long~nt; 
scrCopyErr: Integer; 
theStyle: TextStyle; 
itemString: Str255; 
familyID: Integer; 
fontSize: Longint; 

procedure SetUpMenus; 

{for setting TE style} 
{font name selected} 
{for setting font ID} 
{for setting font size} 

{ set up menus and menu bar } 

var 
i: Integer; 

begin 
myMenus[appleM] := GetMenu(appleID); {read Apple menu} 
AddResMenu(myMenus[appleMJ, 'DRVR'); ·{add desk accessory 
myMenus[fileMJ := ·GetMenu(fileID); {read file menu} 
myMenus[editM] := GetMenu(editID); {read Edit menu} 
myMenus[textM] := GetMenu(textID); 

myMenus[fontMJ := NewMenu(fontID, 'Font'); 
AddResMenu(myMenus[SJ, 'FONT'); 
myMenus[sizeMJ := GetMenu(sizeID); 
myMenus[styleMJ := GetMenu(styleID); 

for i:=l to 4 do 
InsertMenu(myMenus[i],0); {install menus in menu bar} 

names} 

InsertMenu {myMenus[fontMJ,-1); {install hierarchical menus} 
InsertMenu (myMenus[sizeM],-1); 
InsertMenu (myMenus[styleMJ,-1); 

DrawMenuBar; 
end; {SetUpMenus} 

procedure OpenWindow; 
{ Open a new window } 

begin 

{ and draw menu bar} 

NumToString (nextWNum, nextWTitle); {prepare number for title} 
nextWTitle := concat (wName, nextWTitle); {add to prefix} 
myWindow := NewWindow {Nil, nextWRect, nextWTitle, True, noGrowDocProc, 

Pointer (-1), True, 0); {open the window} 
SetPort (myWindow); {make it the current port) 
txRect := thePortA.portRect;{prepare TERecord for new window} 



Appendix A 331 

Listing A-1 continued 

InsetRect (txRect, 4, 0); 
textH := TEStylNew (txRect, txRect); 
theStyle.tsSize := 12; 
TESetSelect (0, 32767, textH); 
TESetStyle (doSize, theStyle, true, textH); 
myWinPeek := WindowPeek (myWindow); 
myWinPeekA.refcon := Longint (textH); (keep TEHandle in refcon!) 
OffsetRect (nextWRect, windDX, windDY);{move window down and right} 
if nextWRect.right > dragRect.right {move back if it's too far over} 

then OffsetRect (nextWRect, -nextWRect.left + leftEdge, 0); 
if nextWRect.bottom > dragRect.bottom 

then OffsetRect (nextWRect, 0, -nextWRect.top + topEdge); 
nextWNum := nextWNum + l; {bump number for next window} 
menusOK := false; 
Enableitem (myMenus [editM],0); {in case this is the only window} 

end; {OpenWindow} 

procedure KillWindow (theWindow: Window~tr); 
{Close a window and throw everything away} 

begin 
TEDispose (TEHandle (WindowPeek (theWindow)A.refcon)); 

{throw away TERecord} 
DisposeWindow (theWindow); {throw away WindowRecord} 
textH := NIL; {for TEidle in main event loop} 
if FrontWindow = NIL {if no more windows, disable Close} 

then Disableitem (myMenus[fileM], closeitem); 
if WindowPeek (FrontWindow)A.windowKind < 0 

{if a desk ace is coming up, enable undo} 
then Enableitem (myMenus[editM], undoitem) 
else Disableitem (myMenus[editM], undoitem); 

end; {KillWindow} 

function MyFilter (theDialog: DialogPtr; var theEvent: EventRecord; 
var itemHit: Integer): Boolean; 

var 
theType: Integer; 
theitem: Handle; 
theBox: Rect; 
finalTicks: Longint; 

begin 
if (BitAnd(theEvent.message,charCodeMask) = 13) {carriage return} 

or (BitAnd(theEvent.message,charCodeMask) = 3) (enter} 
then 



332 Appendix A 

begin 
GetDitem (theDialog, 1, theType, theitem, theBox); 
HiliteControl (ControlHandle (theitem), 1); 
Delay (8, finalTicks); 
HiliteControl (ControlHandle (theitem), 0); 
itemHit := l; 
MyFilter := True; 

end (if BitAnd ... then begin} 
else MyFilter := False; 

end; {function MyFilter} 

procedure DoAboutBox; 

var 
itemHit: Integer; 

begin 
myWindow := GetNewDialog (1000, Nil, pointer (-1)); 
repeat 

ModalDialog (@MyFilter, itemHit) 
until itemHit = l; 
DisposDialog (myWindow); 

end; {procedure DoAboutBox} 

procedure MakeStyle (theitem: integer; VAR theStyle: TextStyle); 

begin 
with theStyle do 

case theitem of 
1 tsFace := []; 
2 tsFace [bold] ; 
3 tsFace := [italic]; 
4 tsFace := [underline]; 
5 tsFace := [outline]; 
6 tsFace := [shadow]; 
7 tsFace ·= [condense]; 
8 tsFace := [extend]; 

end; {case theitem} 
end; {procedure MakeStyle} 

procedure DoCommand (mResult: LONGINT); 
{Execute Item specified by mResult, the result of MenuSelect} 

var 

Listing A-1 continued 

theitem: Integer; {menu item number from mResult low-order word} 
theMenu: Integer; {menu number from mResult high-order word} 
name: Str255; {desk accessory name} 
temp: Integer; 

.I 



Appendix A 333 

Listing A-1 continued 

begin 
theitem := LoWord(mResult); {call Toolbox Utility routines to set 
theMenu ·= HiWord(mResult); {menu item number and menu number} 

case theMenu of {case on menu ID} 

appleID: 
if theitem = aboutitem 

then DoAboutBox 
else 

begin 
Getitem(myMenus[appleM],theitem,name); 
{GetPort (savedPort);} 
scrapErr := ZeroScrap; 
scrCopyErr := TEToScrap; 
temp:= OpenDeskAcc(name); 
Enableitem (myMenus [editM],0); 
{SetPort (savedPort);} 
if FrontWindow <> NIL 

then 
begin 

Enableitem (myMenus [fileM], closeitem); 
Enableitem (myMenus [editM], undoitem); 

end; {if FrontWindow then begin} 
menusOK := false; 

end; {if theitem ... else begin} 
fileID: 

case theitem of 

newitem: 
OpenWindow; 

closeitem: 
if WindowPeek (FrontWindow)A.windowKind < 0 

then CloseDeskAcc (windowPeek (FrontWindow)A.windowKind) 
{if desk ace window, close it} 
else KillWindow (FrontWindow); 
{if it's one of mine, blow it away} 

quit Item: 
doneFlag := TRUE; {quit} 

end; {case theitem} 

editID: 
begin 

if not SystemEdit(theitem-1) 
then 

case theitem of {case on menu item number} 

cutitem: 
TECut(textH); {call TextEdit to handle Item} 



334 Appendix A 

copyitem: 
TECopy (textH) ; 

pasteitem: 
TEStylPaste(textH); 

clearitem: 
TEDelete(textH); 

end; {case theitem} 
end; {editID begin} 

fontID: 
begin 

Getitem(myMenus [fontM], theitem, itemString); 
GetFNum(itemString, familyID); 
theStyle.tsFont := familyID; 
{theStyle.tsSize := 12; {fix to set right size} 
TESetStyle (doFont+doSize, theStyle, true, textH); 

end; {fontID: begin} 

sizeID: 
begin 

Getitem(myMenus [sizeM], theitem, itemString); 
StringToNum (itemString, fontSize); 
theStyle.tsSize := fontSize; 
TESetStyle (doSize, theStyle, true, textH); 

end; {sizeID: begin} 

styleID: 
begin 

MakeStyle (theitem, theStyle); 
TESetStyle (doFace+doSize, theStyle, true, textH); 

end; {sizeID: begin} 

end; {case theMenu} 
HiliteMenu (0); 

end; {DoConunand} 

procedure FixCursor; 

var 
mouseLoc: point; 

begin 
GetMouse (mouseLoc); 
if PtinRect (mouseLoc, thePortA.portRect) 

then SetCursor (GetCursor (iBeamCursor)AA) 
else SetCursor (arrow); 

end; {procedure FixCursor} 

Listing A-1 continued 



begin {main program} 

InitGraf(@thePort); 
InitFonts; 
FlushEvents(everyEvent,0); 
InitWindows; 
InitMenus; 
TEinit; 
InitDialogs(NIL); 
InitCursor; 

SetUpMenus; 
with screenBits.bounds do 

SetRect(dragRect,4,24,right-4,bottom-4); 
doneFlag := false; 

menusOK := false; 
nextWNum := l; {initialize window number) 

Appendix A 

SetRect (nextWRect,leftEdge,topEdge,rightEdge,botEdge); 
{initialize window rectangle} 

OpenWindow; {start with one open window} 

Main event loop 
repeat 

SystemTask; 
if FrontWindow <> NIL 

then 
if WindowPeek (FrontWindow)A.windowKind >= 0 

then FixCursor; 
if not menusOK and (FrontWindow = NIL) 

then 
begin 

Disableitem (myMenus [fileM], closeitem); 
Disableitem (myMenus [editMJ, 0); 
menusOK := true; 

end; {if FrontWindow ... then begin} 
if textH <> Nil 

then TEidle(textH); 

if GetNextEvent(everyEvent,myEvent) 
then 
case myEvent.what of 

mouseDown: 
case FindWindow(myEvent.where,whichWindow) of 

inSysWindow: 
SystemClick(myEvent,whichWindow); 

inMenuBar: 
DoCommand(MenuSelect(myEvent.where)); 

inDrag: 

335 

Listing A-1 continued 

DragWindow(whichWindow,myEvent.where,dragRect); 



336 

inContent: 
begin 

Appendix A 

if whichWindow <> FrontWindow 
then SelectWindow(whichWindow) 
else 

begin 
GlobalToLocal(myEvent.where); 

Listing A-1 continued 

extended := BitAnd(myEvent.modifiers,shiftKey) <> 0; 
TEClick(myEvent.where,extended,textH); 

end; {else} 
end; {inContent} 

inGoAway: 
if TrackGoAway (whichWindow, myEvent.where) 

then KillWindow (whichWindow); 

end; {case FindWindow} 

keyDown, autoKey: 
begin 

theChar := CHR(BitAnd(myEvent.message,charCodeMask)); 
if BitAnd(myEvent.modifiers,cmdKey) <> 0 

then DoCommand(MenuKey(theChar)) 
else TEKey(theChar,textH); 

end; {keyDown, autoKey begin} 

activateEvt: 
begin 
if BitAnd(myEvent.modifiers,activeFlag} <> 0 

then {application window is becoming active} 
begin 

SetPort (GrafPtr (myEvent.message)); 
textH := TEHandle (WindowPeek (myEvent.message)A.refcon); 
TEActivate(textH); 
Enableitem (myMenus[fileM],closeitem); 
Disableitem(myMenus[editM],undoitem); 
if WindowPeek (FrontWindow)A.nextWindowA.windowKind < O 

then scrCopyErr := TEFromScrap; 
end {if BitAnd ... then begin} 

else {application window is becoming inactive} 
begin 
TEDeactivate(TEHandle(WindowPeek(myEvent.message)A.refcon)); 
if WindowPeek (FrontWindow)A.windowKind < O 

then 
begin 

Enableitem (myMenus[editM], undoitem); 
scrapErr := ZeroScrap; 
scrCopyErr := TEToScrap; 

end {if WindowPeek ... then begin} 
else Disableitem (myMenus[editM], undoitem); 

end; {else begin} 
end; {activateEvt begin} 

\. .I 



\ 

Appendix A 

updateEvt: 
begin 

GetPort (savedPort); 
SetPort (GrafPtr (rnyEvent.rnessage)); 
BeginUpdate(WindowPtr(rnyEvent.rnessage)); 
EraseRect(WindowPtr(rnyEvent.rnessage)A.portRect); 
TEUpdate(WindowPtr(rnyEvent.rnessage)A.portRect, 
TEHandle(WindowPeek(rnyEvent.rnessage)A.refcon)); 
EndUpdate(WindowPtr(rnyEvent.rnessage)); 
SetPort (savedPort); 

end; {updateEvt begin} 

end; {case rnyEvent.what} 

until doneFlag; 
end. 

337 

Listing A-1 continued 



338 Appendix A 

resource 'MENU' (128) 
128, 
textMenuProc, 
Ox7FFFFFFD, 
enabled, 

}; 

apple, 
{ /* array: 2 elements */ 

/* [1] */ 
"About Showoff ... ", noicon, 
/* [2] */ 
"-", noicon, "","",plain 

resource 'MENU' ( 12 9) 
129, 
textMenuProc, 
Ox7FFFFFF7, 
enabled, 

}; 

"File", 
/* array: 5 elements */ 
/* [l] */ 
"New", noicon, "N", noMark, plain; 
/* [2] */ 
"Open", noicon, "0 11 , noMark, plain; 
/* [3] */ 
"Close", noicon, "W", noMark, plain; 
/* [4] */ 
"-", noicon, noKey, noMark, plain; 
/* [5] */ 
"Quit", noicon, "Q", noMark, plain 

resource 'MENU' (130) 
130, 
textMenuProc, 
Ox7FFFFFFC, 
enabled, 

} ; 

"Edit", 
/* array: 6 elements */ 
/* [ll */ 
11 Undo'1 , noicon, ''Z'', plain, 
I* [21 */ 
"-", noicon, "","",plain, 
/* [3] */ 
''Cut", noicon, ''X'', 1111 , plain, 
/* [4J */ 
''Copy'', noicon, ''C'', 1111 , plain, 
/* [5J */ 
''Paste'', noicon, ''V'', '''', plain, 
/* [61 */ 
"Clear", noicon, 1111 , plain 

Listing A-1 continued 

plain, 



resource 'MENU' (131) 
131, 
textMenuProc, 
Ox7FFFFFFF, 
enabled, 
"Text", 

/* array: 3 elements */ 
/* [lJ */ 
"Font", noicon, "\OxlB", "\0x84", plain, 
I* [21 */ 
"Size", noicon, "\OxlB", "\0x85", plain, 
/* C3J */ 
"Style", noicon, "\OxlB", "\0x86", plain 

) ; 

resource 'MENU' (133) 
133, 
textMenuProc, 
Ox7FFFFFFF, 
enabled, 
"Size", 

/* array: 9 elements */ 
/* Cll */ 
"9", noicon, noKey, noMark, plain; 
/* [21 */ 
"10", no Icon, noKey, noMark, plain; 
/* [3] *I 
"12" f no Icon, noKey, noMark, plain; 
I* [4) */ 
"14" t no Icon, noKey, noMark, plain; 
/* [5) */ 
"18"' noicon, noKey, noMark, plain; 
/* [ 6) *I 
"24" t noicon, noKey, noMark, plain; 
I* [7] *I 
"36", no Icon, noKey, noMark, plain; 
/* [8] */ 
"48" I no Icon, noKey, noMark, plain; 
I* [9] */ 
"Other ... ", noicon, noKey, noMark, 

) ; 

plain 

Appendix A 339 

Listing A-1 continued 



340 Appendix A 

resource 'MENU' (134) 
134, 
textMenuProc, 
Ox7FFFFFFF, 
enabled, 

}; 

"Style", 
{ /* array: 8 elements */ 

I* [lJ */ 
"Plain", noicon, noKey, noMark, plain; 
I* [21 */ 
"Bold", noicon, noKey, noMark, bold; 
I* [3J */ 
"Italic", noicon, noKey, noMark, italic; 
I* [4J */ 
"Underline", noicon, noKey, noMark, underline; 
/* [5] */ 
"Outline", noicon, noKey, noMark, outline; 
I* [6J */ 
"Shadow", noicon, noKey, noMark, shadow; 
I* [71 */ 
"Condense", noicon, noKey, noMark, condense; 
I* [BJ */ 
"Extend", noicon, noKey, noMark, extend 

resource 'BNDL' (128) { 
'Scot', 

}; 

0, 
{ /* array TypeArray: 2 elements */ 

I* [lJ */ 
'ICN#', 
{ /* array IDArray: 2 elements */ 

/* [1] */ 
0, 128, 
/*'(2]*/ 
1, 129 

}, 
/* [2] */ 
'FREF', 
{ /* array IDArray: 2 elements */ 

/* [1] */ 
0, 128, 
/* [2] */ 
1, 129 

Listing A-1 continued 



resource 'DITL' '(1000, "About box") { 
{ /* array DITLarray: 2 elements */ 

I* [lJ */ 
{61, 191, 81, 251}, 
Button { 

enabled, 
"OK" 

}, 
/* [2] */ 
{8, 24, 56, 272}, 
StaticText { 

disabled, 

Appendix A 

"NewHiyer example program\nby Scott Knaster" 
"\nversion 1. 0 10: 55: 43 PM 6/23/87" 

} ; 

resource 'DLOG' (1000, "About box") { 
{62, 100, 148, 412}, 
dBoxProc, 
visible, 
goAway, 
OxO, 
1000, 
"New Dialog" 

} ; 

resource 'FREF' { 12 8) 
'APPL', 
0, 

}; 

resource 'FREF' (129) { 
'TEXT', 
1, 

} ; 

resource 'ICNlt' (128) { 

I* array: 2 elements *I 
/* [ll *I 
$"FFFF FFFF 8000 0005 FDOO 
$"9100 0005 91EF 0005 9129 
$"9128 0005 912F 0005 8000 
$"8880 0805 8898 C905 8F25 
$"88A5 2A05 8F18 C905 8000 
$"9000 0005 9000 E485 9001 
$"9C90 C405 9290 2605 9290 
$"8010 0005 8010 0005 80FO 
/* [2] *I 

0005 
0005 
0805 
2A05 
0005 
0505 
2505 
0005 

9100 0005" 
912F 0005" 
8FOO 0805" 
88A5 2C05" 
8000 0005" 
9001 0605" 
9CF1 C485" 
FFFF FFFF", 

341 

Listing A-1 continued 



342 

r 

Appendix A 

FFFF FFFF FFFF FFFF FFFF FFFF" 
FFFF FFFF FFFF FFFF FFFF FFFF" 
FFFF FFFF FFFF FFFF FFFF FFFF" 
FFFF FFFF FFFF FFFF FFFF FFFF" 
FFFF FFFF FFFF FFFF FFFF FFFF" 
FFFF FFFF FFFF FFFF FFFF FFFF" 
FFFF FFFF FFFF FFFF FFFF FFFF" 

$"FFFF FFFF 
$"FFFF FFFF 
$"FFFF FFFF 
$"FFFF FFFF 
$"FFFF FFFF 
$"FFFF FFFF 
$"FFFF FFFF 
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF" 

}; 

resource 'ICN#' (129) { 

/* array: 2 elements *I 
I* [l] *I 
$"0FFF FEOO 0800 0300 0900 0280 0900 0240" 
$"0900 0220 0900 0210 0900 03F8 0900 0008" 
$"0900 0008 0900 0008 0900 0008 0900 0008" 
$"09FO 0008 0910 0008 0910 0008 0910 0008" 
$"0910 0008 0910 0008 08EO 0008 09FO 0008" 
$"09FO 0008 09F8 0008 09F8 0008 09E8 5FE8" 
$"09F8 0BE8 0800 3FE8 08FO FFE8 0870 3FE8" 
$"0819 FFE8 0800 0008 0800 0008 OFFF FFF8", 
I* [2] *I 
$"0FFF FEOO OFFF FFOO OFFF FF80 OFFF FFCO" 
$"0FFF FFEO OFFF FFFO OFFF FFF8 OFFF FFF8" 
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8" 
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8" 
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8" 
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8" 
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8" 
$"0FFF FFF8 OFFF FFF8 OFFF FFF8 OFFF FFF8" 

}; 

data 'Scot' (0) { 

$"1853 686F 776F 6666 2063 7265 6174 6564" 
$"2031 322F 3235 2F38 35" 

}; 

I* .NewHiyer created */ 
I* 6/23/87 */ 



APPENDIX B 

68020 Microprocessor 
Overview 

The Macintosh II is run by a Motorola 68020 micro
processor, the latest evolution in the 68000 family 
(although the 68030 is close behind). This is the first 
Macintosh that Apple has produced with something 
other than the 68000 as the standard microprocessor. 
There are several third-party products that will add a 
68020 to your Macintosh, if you want one. 

In this short appendix, we'll talk about what it 
means to have a 68020 under the hood, how it affects 
software, and some of its features. For this appendix, 
and especially for the last part, it would help if you have 
an understanding of assembly language and the 68000, 
but even if you don't, you can still take a look at it
after all, you paid for the whole- book. 

343 



344 Appendix B 

Clock Speed and Data Bus 

There's a common misconception that the Macintosh II and the 
third-party 68020 upgrades are fast just because they have a 68020. 
That's just not true. If you designed a Macintosh Plus that was ex
actly the same as the existing one except that the microprocessor 
was a 68020 instead of a 68000, it would be barely faster. 

There are two big reasons why the Macintosh II is so fast: clock 
speed and bus size. Clock speed is the rate at which the microproces
sor performs its tasks. Every microprocessor instruction requires a 
precise amount of time defined in cycles. A cycle is the time required 
to perform one step of an instruction, such as storing data or adding 
numbers. 

The 68000 in the Macintoshes before the II had a clock speed of 
approximately eight megahertz or eight million cycles per second. 
You can also run a 68020 at this speed and you'd get a system that 
performs a lot like it did with a 68000. The Macintosh II runs its 
68020 at about 16 megahertz or twice the speed of a Macintosh Plus. 
It's an oversimplification to say that this doubles the machine's raw 
speed, although it actually does do just about about that. 

The other factor in the speed of the Macintosh II is the amount 
of data that's pushed around at once, called the data bus size. With 
a 68000, 16 bits of information can be sent at one time between the in
ternal parts of the system, such as from the microprocessor to RAM. 
The 68020 doubles that, letting you slam 32 bits around the system at 
once. Again, we can't strictly say that doubling this number doubles 
the speed of the system, but it's a reasonable estimate. 

You can't add a 32-bit data bus to a system just by dropping in a 
68020 microprocessor. The size of the data bus affects a large part of 
the design of the system, and the Macintosh II was built to accommo
date the 32-bit bus right from the start. The wider data bus and the 
faster clock speed combine to give the Macintosh II much of its speed 
improvement over the models that came before. 

Instruction Cache 

You're probably familiar with the concept of a cache. All the re
cent Macintosh models have included the ability to use a portion of 
RAM as a cache for stuff that's usually on the disk. You can control 
the size of this cache by using the Control Panel. 

The 68020 has its own version of caching. Built right into the mi
croprocessor is a cache for machine language instructions. As the mi
croprocessor executes instructions, it keeps them in this cache, which 



Appendix B 

can hold up to 256 bytes. Before fetching the next instruction, it 
checks to see whether it already has it in the cache. If so, it doesn't 
have to bother getting it from memory, and it can execute the instruc
tion much faster from the cache than from memory. This technique is 
especially useful when running through small loops, in which the 
same few instructions are executed again and again. 

The 68020's instruction cache works by keeping track of the ad
dresses that it has grabbed instructions from and then compar
ing them to the addresses of instructions that it's about to exe
cute. If your code modifies itself, you could be in trouble, because 
the 68020 may have cached the old version of your code, and 
then try to execute it. The best way to avoid this is to avoid 
self-modifying code, a good idea in the Macintosh world any
way. The Macintosh Operating System, which has to move 
code segments around all day, gets around this problem by in
validating the cache whenever it needs to with a 68020 instruc
tion. 

Coprocessor Interface 

The 68020, like most microprocessors, doesn't do floating-point 
arithmetic. It has a close cousin, though, called the 68881, which 
does do floating-point arithmetic and does it very fast. The 68881 is 
called a floating-point coprocessor, since it works in close alliance 
with the microprocessor. Real number calculations with the 68881 
are up to 200 times faster than without it. We're not talking about 
200 percent faster, which would mean twice as fast, but 200 times 
faster. 

You can use a 68881 with a 68000, but it's really designed to work 
best with a 68020. The coprocessor interface with the 68020 is very 
clean. Instructions that drive the 68881 look like 68020 instructions 
and they can be written directly in your code. The Macintosh II in
cludes a 68881 as standard equipment in every unit. 

Addressing Modes 

The 68000 defines a pretty rich set of addressing modes for pro
grammers. In fact, most programmers never get to use all of them. The 

345 



346 Appendix B 

68020 adds a few more you'll want to try and a few others you'll 
never get to, either. 

The most interesting new mode for Macintosh programmers is 
known technically as memory indirect addressing. In the 68000, you 
can only use a register as an indirect address-never memory itself. 
The 68020 adds the ability to use a memory location as a base for the 
effective address. Since you also get to specify the memory address 
itself indirectly, usually through an address register, this amounts 
to double-indirection, which matches very nicely with the way 
handles work in the Macintosh. 

You can combine memory indirect addressing with another new 
feature, called scaled index. By using scaled index mode, you can 
have an index into an array of bytes, words, long words, or double
long words, and the instruction will automatically multiply the in
dex by one, two, four, or eight, depending on the size of the elements 
in your array. 

By combining memory indirect addressing with scaled index, you 
can have amazing flexibility in specifying the effective address. For 
example, in the memory indirect post-indexed mode, you can write 
an instruction like this: 

MOVE.L ( [8,Al] ,01*4,36), 02 

This instruction starts by getting the value in register Al and 
then adding eight to it (called the base displacement). The number 
that results is called the indirect memory address, and in this case it 
would probably be the start of an array or table of values. The 68020 
then gets the value in that address and adds the value from register 
Dl multiplied by four; since we're multiplying by four, this would 
suggest that the values in the array are four bytes each. Finally, 36 
is added to this value, giving the effective address at last. The 36 is 
called the outer displacement, and it gives us one last shot at index
ing into an array. In an anticlimax, the value in this location would 
then be moved into register 02. 

Don't worry about all this. Any of the values in this addressing 
mode can be 0, so you'll usually write something much simpler, like 
this: 

MOVE ([Al], 48), 252 (AS) 

If you have a handle to an object stored in a register (Al in this ex
ample), you can use a single instruction to move the word that's 48 
bytes into the relocatable object to the location at 252 off AS. Obvi
ously, this can really help when you're writing Macintosh code. 



Appendix B 

Instructions 

The 68020 defines a few new instructions that you can use to en
hance your programs. A bunch of instructions have been enhanced to 
support 32-bit displacements, where only 16-bit dispacements are al
lowed on the 68000. These include the branch instructions (BEQ, 
BCC, and so on), and the LINK instruction that's used to build stack 
frames. Several instructions now work with larger values. The mul
tiply instructions (MULS and MULU) now allow 32-bit operands; the 
divide instructions (DIVS and DIVU) work with 32-bit and 64-bit 
operands; and the CHK instruction can have 32-bit operands. 

There are also a lot of brand new instructions. The biggest collec
tion of them are the bit field instructions, which allow you to di
rectly examine and manipulate individual bits or groups of bits 
within bytes. For example, you can use the BFINS (bit field insert) 
instruction to move a group of bits directly into the middle of a byte. 
There's also a BFTST (bit field test) instruction which you can use to 
see if a bit field is zero or not. Probably the best name for a 68020 in
struction is BFFFO (bit field find first one), which will find the first 
bit that's a one in a bit field, but more importantly, you can pro
nounce this instruction either "biffo" or "boffo." Both are acceptable. 

Things to Remember 

The 68020 makes a computer fast because it's usually clocked at a 
fast speed and because it can support a 32-bit data bus. The 68020's 
instruction cache also helps speed up your programs, but you have to 
watch out for self-modifying code, or your programs may get a not so 
nice surprise. 

The 68020 has a very tight coprocessor interface, which works 
very well with the 68881 floating-point coprocessor. The 68020 also 
has new addressing modes, including one in which you can place a 
handle in an address register and pull in bytes directly from the rel
ocatable object. There are also a lot of new instructions for working 
with bit fields and enhancements to existing instructions that let you 
work with larger values. 

347 



A p p E N D I x c 
Macintosh 
Technical Note #110 
Late in 1986, a very unusual and mysterious technical note appeared 
on various Macintosh bulletin board systems. It looked like an offi
cial Macintosh Technical Note from Apple. Although the note 
listed me as the author, I didn't have anything to do with writing it 
and I was pretty surprised to see my name on it, especially since it 
contained a pretty bizarre parody of technical notes in general. 

This technical note, which was listed as number 110, was filled 
with satirical comments and puns, but it was done with subtlety. Al
though it was obvious to most people familiar with the Macintosh 
world that the note was a parody, a few folks inside Apple didn't 
see it that way and decided that it was a really bad idea to have 
this thing be an official-looking document from Apple. While vari
ous factions recommended everything ranging from a public dis
claimer to litigation to tactical nuclear weapons, Jean-Louis Gassee 
had the best idea, as he often does. "Write one of your own," he said, 
"that's so bizarre that it will obviously be a joke." 

So I did, and subtlety was not, as they say in product develop
ment, part of the design center. Here are the original note, whose au
thorship is now suspected but still unclaimed, and the "corrected" 
version. 

349 



350 AppendixC 

Macintosh Technical Notes 

#110: Processor Compatibility 

See also: Technical Note #2-Macintosh Compatibility Guidelines 

Written by: Scott Knaster December 2, 1986 

This document is a brief look at compatibility problems in applica
tions whose code assumes they're running on a 68000 processor. 

Many applications which work on existing Macintosh architectures 
have encountered problems when running on processors other than 
the 68000, such as third-party processor boards and prototype ma
chines at Apple. To be fully compatible with these CPUs, your applica
tion will have to observe the rules discussed here. 

Caching Considerations 

The 68020 has a 256-byte, on-chip "instruction cache." This auto
matically caches only those memory locations fetched as instruc
tions, and thus is read-only. Operations which alter code (such as 
impure tables in code) or move code segments (as naturally occurs in 
Macintosh memory management) must invalidate the cache's con
tents. This invalidation should not be done frivolously, as it's impor
tant to maintain cache flow. 

The CCR-Condition Code Register-on the 68000 is the Cache 
Control Register on the 68020, or Cache Register for short. Motorola 
has redefined the "C" flag (the "Carry" condition code) to serve a 
dual purpose, keeping backwards compatibility but also using the 
flag to signal whether the cache is valid. This double-duty bit is 
now called the Cache/Carry flag. 



AppendixC 

Memory Alignment 

Word- and long-sized memory operands must be even-aligned in 
the 68000. The 68020 has no such restrictions, but you should continue 
to observe them so your application will work with older architec
tures. 

Apple is considering low-end architectures, including a home 
version of the Macintosh (the "Mac Jr.") using the 68008, which is es
sentially a 68000 with an eight-bit internal architecture. Unfortu
nately, VLSI design constraints forced Motorola to swap the number
ing of bytes within a word, so the memory organization closely re
sembles the Intel processor family. The processor will automatically 
compensate for this when fetching instruction operands, and RAM
based patches to the Resource Manager will be available. However, 
all other in-memory data structures will require byte-swapping be
fore using them. 

On-Site Hardware Upgrades 

In my recent book How to Write Macintosh Software, I discussed 
the need to prevent applications from depending on the location of 
subroutines in ROM. The Toolbox interface is intended to maintain 
this independence. As pointed out on page 368, "Apple guarantees 
that the ROM will not change while your application is running." 
While this will probably b~ true in future architectures, Apple is 
considering applications which will need hardware upgrades during 
the time an application is running. Systems such as file servers, life
support monitors, and MazeWars servers can't interrupt operation 
just for an upgrade. 

It is possible to suspend the processor by driving the HALT sig
nal (pin #54) high. At this point, future architectures may provide 
hardware facilities for swapping processors, or adding peripheral 
chips such as MMUs or FPUs. Applications need to know that this 
has occurred, especially when the transition is from a 68020 to a less 
powerful chip (as might happen when a failing 68020 processor's 
only available replacement is a 68000). 

To handle this, new ROMs will detect when the HALT signal 
has been used for any reason and give the application the option of 
receiving notification by storing the address in a hook for this pur
pose. 

JcpuHALT.EQU $81B cpu-HALTed hook [pointer] 

351 



352 AppendixC 

Note that this hook is valid only in ROMs where ROMBS is 
$3FFF or less. Other ROMs cannot guarantee to detect and notify the 
condition. 

Actually, Apple is considering provisions for dynamically up
dating ROMs in a similar manner. Since this would invalidate all 
addresses obtained through GetTrapAddress, it may cause problems 
for existing applications. You may want to keep ROM addresses in 
handles, since the ROM will be able to easily find and correctly up
date all master pointers which point into ROM. 



AppendixC 

Macintosh Technical Notes 

#110: Processor Compatibility 

See also: Technical Note #2: Macintosh Compatibility Guidelines 
Motorola MC68020 Reference Manual 
Random House Almanac, 1957 Edition 
The Baseball Encyclopedia 
Star Trek Concordance 

Not written by: 
Written by: 
Modified by: 

Scott Knaster 
Mike Morton 
Scott Knaster 
John Smallberries 

ever 
December 2, 1986 
January 7, 1987 
November 1, 1938 

This document is a brief look at compatibility problems in applica
tions whose code assumes they're running on a 68000 processor. It 
includes recent modifications intended to make the intent and mean
ing of this note clear to even the casual reader. 

Many applications which work on existing Macintosh architectures 
have encountered problems when running on processors other than 
the 68000, such as third-party boards containing a 68010, a 68020, a 
68008, a Z-80, or an Intel 8080. To be fully compatible with these 
CPUs, your application will have to observe the rules discussed here. 
Failure to do so would be bad. 

Caching in the Chips 

The 68020 utilizes VLSI technology to support many advanced 
features directly on the chip, and implements these features in its 
dual-inline package (DIP). This "chip in a DIP" technique, as real 
engineers call it, is used to implement a 256-byte, on-chip instruction 
cache. This instruction cache can be used to speed up processing, or for 
other special applications, such as fault-tolerant operation, in 
which computers are kept running even when they're about to fail. In 
well-documented experiments at Xerox PARC in 1981, for example, a 
technique was perfected to reliably cache a failing Star, but the 

353 



354 

Instruction format: 

AppendixC 

costs of the associated hardware continued to telescope until they 
became astronomical. 

In normal operation, the cache fills with instructions as they are 
fetched. The cache makes no provisions for code which modifies it
self (known as "self-abusive code"). Any code which modifies itself 
can cause problems with cache flow if the code may be executed re
peatedly. To help with this problem, some versions of the 68020 con
tain a special instruction which automaticaly disables the cache 
"conditionally on warning"; that is, if the code has been modified. 
Assembler information for this Cache Conditionally on Warning in
struction (which was inexplicably left out of the official Motorola 
documentation) is provided here: 

CACHE COW Cache Conditionally on W aming 

bit #15 14 13 12 11 10 9 8 
0 

7 6 5 
0 

4 
0 

3 2 
1 1 

1 
1 

0 
0 value 1 1 1 1 1 1 1 1 1 

To accommodate new features, the condition codes register (CCR) 
has been broken up. The main part of CCR, known as the JF (John Fo
garty), has become a solo register, and has issued two implementa
tions thus far. The reassignment of the other former members of CCR 
has not yet been determined, except that the carry bit of the CCR is 
now also a valid indicator of the cache status, so this bit has been re
named the cache and carry flag. 

Memory Alignment 

In the 68000, word- and longword-sized operands must begin at 
an even address, or an address error will occur. The 68020 has no such 
restriction; however, a new Toolbox Manager, called The Masochist, 
implements a technique known as "front-end alignment" which will 
force an address error under the following circumstances: 

1. An odd memory reference was made for a word- or longword-
sized operand. 

2. A rather odd chunk of code was executed. 
3. A pretty odd programmer tried to execute some code. 
4. Every now and then, at random intervals, depending upon the 

Venusian calendar. 



AppendixC 

As a possible future enhancement, Apple is considering a new mi
croprocessor, the V-8, which almost perfectly emulates the 68000, 
but with much higher performance. The most significant difference 
in programming the V-8 is that it utilizes the AOK (approximations 
are OK) protocol, which means that all values include a possible er
ror of 3,448,332,884 plus or minus. Your code should include error
checking techniques to verify that you have the right values. 

Algorithm and Blues 

The latest system release, version 4.0, includes a new, powerful 
version of the PackBits utility which compresses data. This call is 
named PackMan and its parameters are the same as PackBits. The 
packing algorithm used for this new call is efficient enough to guar
antee that the packed data will be no longer than one byte, regard
less of the length of the unpacked data. Here is the calling format: 

PROCEDURE PackMan (VAR srcPtr,dstPtr: Ptr; srcBytes: INTEGER); 

A corresponding call to unpack the data is forthcoming. 

355 



G L 0 s s A R y 

A-trap A 68000 instruction that begins with $A; on the Macintosh, 
it calls the system software. 

allocation block The smallest unit of space that can be allocated to 
a disk file. 

analog Continuously variable over a range, like a standard clock or 
gas gauge. 

auxiliary control record A data structure that correlates each part 
of a color control to an RGB value. 

auxiliary window record A data structure that correlates each part 
of a color window to an RGB value. 

b-tree A technique used for creating an index into a large collection 
of data. 

bit image A group of bits in memory that represent a graphical im
age enclosed by a rectangle. 

bitmapped Represented by bits, as the Macintosh display. 

blessed folder The directory that contains the copy of System and 
Finder that are used to start up a disk. 

357 



358 Glossary 

blitting Moving bit images from one place to another. 

boot blocks System startup information located in the first two 
blocks of a volume. 

bottleneck A QuickDraw low-level processing routine. 

bus size The number of bits that can be transferred at one time be
tween memory and the microprocessor. 

chunky A model of color representation that uses adjacent bits in 
RAM to form each pixel in an image. 

clock speed The rate at which a microprocessor executes instruc
tions. 

closed architecture A computer design technique that prevents ex
pansion. 

color lookup device A device, usually a chip on a video card, that 
relates index values to colors. 

color specification A Color QuickDraw data structure that contains 
a value and an RGB record. 

color table A Color QuickDraw data structure that contains a unique 
identifier called a seed, a transparent pixel index, and an array of 
color specifications. 

comment kind The value that defines a QuickDraw comment. 

definition function A routine that determines the precise appear
ance and behavior of a Toolbox element, such as a menu or window. 

depth The number of bits per pixel. 

design center The set of goals and definitions that specify a product. 

dialog item color table A data structure that determines the colors 
for items in a dialog. 

digital Represented by discrete values only, like a digital clock or a 
TV channel indicator. 



Glossary 

directory A part of a volume that can contain files; also called a 
folder. 

directory ID A number, unique on a volume, that indicates a 
directory. 

dirID Shortcut for directory ID. 

dithering A technique that combines two or more colors in adjacent 
pixels to produce the effect of a new color. 

drive queue A data structure that contains an entry for each drive 
attached to a Macintosh. 

easy to learn Characterized by simple, straightforward operation, 
with all basic functions easily understood and accessible. 

easy to use Characterized by shortcuts, features, and techniques for 
users to become more productive as they learn a program. 

file control block A data structure that contains information about 
each open file .. 

file control buffer A block in the system heap that contains the file 
control blocks. 

font color table A data structure that contains the color specifica
tions for a font. 

forgiveness The user interface principle that permits users to undo or 
correct operations. 

full pathname A form of file specification that specifies a volume 
name, all appropriate directory names, and a file name. 

gDevice A Color Manager device, also called a graphics device. 

general A description of software that incorporates flexibility and 
can be modified for future enhancements. 

global consistency Similar behavior among different applications. 

GrowZone function A function implemented by an application pro
gram that provides a technique for freeing up memory when there 
are no bytes free. 

359 



360 Glossary 

hook A pointer to a routine that can modify the behavior of a sys
tem routine. 

job dialog The dialog that asks for information about a printing job. 

local consistency Logical, consistent behavior in all parts of an 
application. 

local ID A local identifying number attached to a resource in a 
BNDL, such as an icon list. 

low-memory global A Macintosh system variable that's stored in 
the first few thousand bytes of RAM. 

macro A series of commands that can be recorded and replayed. 

mask A bit image that is used to modify a cursor or icon when it's 
drawn. 

memory indirect A 68020 addressing mode that allows a memory 
location to be used as a base for an indirect address. 

memory-mapped video A design technique that represents the vid
eo screen with some part of RAM. 

message A call made to a definition function that causes it to per
form some action. 

multi-launch For an application, the ability to be run from a shared 
volume by several users at the same time. 

noun-verb The user interface technique in which the user selects an 
object, then an action. 

outer displacement In the memory indirect addressing mode, the 
final displacement value. 

paradigm A user interface technique or concept. 

partial pathname A file specification that does not contain a vol
ume name. 

patch A modification to a Macintosh system routine. 



Glossary 

picture comment Data that's recorded with a picture and usually 
ignored by QuickDraw, but which can be used by other software, such 
as the LaserWriter driver. 

pixel A single dot on the screen (from "picture element"). 

pixel image A group of bits, which represent a graphic image that 
may contain more than one bit per pixel. 

pixel map A Color QuickDraw data structure that defines a pixel 
image and its characteristics. 

pixel patterns A variable-sized pixel image, used to define a 
repeating color or design. 

planar A model of color representation that separates each pixel 
into separate planes, with one bit per pixel of information in each 
plane. 

pointer arithmetic A programming technique that involves moving 
a pointer through a data structure by directly modifying the pointer. 

Postscript escape font A font in which all text is treated as Post
Script commands when printed to a LaserWriter. 

print dialog Either of the two Printing Manager dialogs, the job 
dialog or the style dialog. 

reality check A debugging technique in which the programmer man
ually verifies that information is sensible. 

recursion See recursion. 

RGB value A specification for a color, which consists of magnitude 
values for its red, green, and blue components. 

root directory The directory that corresponds to a volume on a disk. 
All files that are not in a folder are in the root. 

script A system for writing and typing in a particular language and 
set of characters. 

seeded Given pre-release, prototype equipment under special agree
ment. 

361 



362 Glossary 

sexy A modern marketing term that indicates an allegedly clever or 
interesting concept. 

shell A program that controls the launching of other programs. 

signature resource A resource whose type is the same as the owner's 
signature. 

special case A programming situation that is handled by code 
that's specifically written for that purpose. 

stack A window management technique that makes a portion of 
each window's title bar visible. 

style dialog The dialog that sets the page information for printing. 

style record A TextEdit data structure that contains information 
about text's font, face, size, and color. 

synthetic font A font that was specially constructed for the current 
screen's depth. 

system startup information Configurable information that's stored 
in the first two blocks (the boot blocks) of a volume. 

tiling A window management technique that divides the screen 
space among all open windows. 

transfer mode One of a set of logical functions that are performed 
when QuickDraw combines two bit images. 

trap A call to the Macintosh system software, also called an 
A-trap. 

trap dispatcher The part of the Macintosh system software that 
converts trap numbers to memory addresses and calls the routines. 

unimplemented instruction trap The 68000 feature that's used to 
capture instructions that start with $A (see A-trap) and send them 
to the trap dispatcher. 

User Interface Toolbox The part of the Macintosh system software 
that implements the user interface features. 

venerable Commanding reverence by virtue of position or age. 



Glossary 

verb-noun The user interface technique in which the user selects an 
operation first, such as insertion or deletion, then the object. 

vertex A comer of a polygon. 

volume control block A data structure in memory that contains infor
mation about a volume. 

volume information block Information about a volume stored on the 
volume itself. 

volume reference number A unique number that's assigned to a vol
ume when it's mounted. 

vRefNum See volume reference number. 

working directory A technique in the Hierarchical File System for 
referring to a volume and a disk directory with a single integer. 

working directory control block A data structure maintained by the 
Hierarchical File System, which keeps track of a working direc
tory. 

working directory reference number A number that's assigned to a 
working directory, which can be used in file system calls. 

363 



Index 

68020 processor, 288, 341-346 
68881 floating point co-processor, 289, 343 
A-traps, 64, 357 
Addresses, 

matching trap numbers to, 46 
!'ystem routine, 65 

Addressing modes, 68020, 343-344 
Advanced operations, implementing, 20 
Alert modes, 24 
Algorithm, 

multiple screen windowing, 261-262 
special case, 51 

Allocation block, 78, 357 
Analog, 357 

indicators, 25-26 
APPL file type, 164 
Apple Desktop Interface, 7 
Apple II, history of, 42 
Apple Ilgs, 6 
Apple LaserWriter, 170-186 
AppleShare, 8 
AppleTalk network, 8 

using with Printing Manager, 166 
Applications, 

quitting, 140 
restoring the state of, 224-226 

ASCII text, sending to printers, 169 
Auxiliary control record, 307, 357 
Auxiliary window record, 357 
B-trees, 8, 357 
BackColor procedure, IOI 
Bit image, 357 

buffers, 199-200 
updating, 188-196 

Bitmap record, 205 
Bitmaps, 169, 357 

copying to pixel maps from, 105 
offscreen, 200 

Blessed folder, 357 
Blitting, 190-192, 358 
BNDL resource, 159 
Boot blocks, 77, 358 

Bottlenecks, 358 
QuickDraw, 67 

Buffers, 
bit image, 199-200 
offscreen with Color QuickDraw, 212-218 

Bus size, 358 
Buttons, designing, 135 
Caching considerations, 348 
Cancel alert, 168 
Chooser, 38 

selecting a printer with, 149 
Chunky format, 105, 358 
Clearing memory, 206 
Clock speed, 358 

68020, 342 
Closed architecture, 14-17, 358 
Color, 97-126, 196-199 

cursors, 110-111 
drawing models, 101 
grafports, 107-109 
lookup device, 100, 358 
Manager, 100 
models, listing for creating, 112-125 
monitors, designing for, 210 
Quickdraw, 8, 98-126, 197-212 
specification, 358 
specification record, 102 
table, 103, 218, 313, 358 
support in Dialog Manager on Macintosh II, 

309-313 
support in Font Manager on Macintosh II, 314-

316 
support in Windows Manager on Macintosh II, 

300-307 
table, 103, 218, 313, 358 

Colors, 
maximum number of, 98 
RGB values of, 99-100 

Command key 
equivalents, 128, 236 
symbols, adding to dialog box, 134 

Command keys, 128 

365 



366 Index 

Commands, 
PostScript, 178 
providing equivalent mouse and keyboard, 128-

137 
Comment kind, 358 
CommentProc pointer for grafports, 174 
Communication settings, LaserWriter, 184 
Compatibility, 41-82 

introduction to, 31-39 
Control Manager, Macintosh II, 307-309 
Control Panel, 38 

screening out with the, 259 
Coordinate systems, QuickDraw and PostScript, 181 
Coprocessor (see also Motorola 68881), 343 
CopyBits, 105, 190-196 

color version of, 197-212 
using to save multibit information, 210 
using with MultiFinder, 195 
using with offscreen buffer, 200-208 

CoreEdit, 295 
Cursors, color, 110-111 
Custom icons, 151-156 
Cycles, clock, 342 
Daisywheel printer support, 10 
Dashed lines, recording PostScript, 183 
Data bus, 68020, 342 
Data structures, file system, 78 
Date formats, new, 319 
Default buttons, selecting, 130 
Definition functions, 45, 66-67, 358 
Defprocs, 67 
DelMenultem, 235 
Depth, 358 
Dereferencing handles, 161 
Design center, 358 
Design considerations, user interface, 18-29 
Desk accessory windows, 236, 249 
DeskHook, 62 
Desktop file, 

finding icons in, 162 
rebuilding the, 155 

Device names, current, 150 
Devices, choosing, 38 
Dialog item color table, 310, 358 
Dialog Manager, 

interpreting commands with, 135 
Macintosh II, 309-313 

Dialogs, Standard File, 70-72, 137 
Digital, 358 

analog versus, 26 
Direct control, 21 
Directories, working, 74 
Directory, 359 

ID,227,359 
names, 76 

dirlD,359 
Discipline, debugging tool, 54 
Disk drives, 9 
Disk First Aid, 8 
Dithering, 359 
DLOG resource, 313 
Document names, displaying print, 166 
Downloading fonts to LaserWriter, 180 
Draft mode, 323 
Drag window routines, Macintosh II, 300 
Draw Picture, 111 
Drive queue, 359 
Dual-inline package, 351 
Ease of learning versus ease of use, 12-14, 359 
EjectNotify, 47 
Escape font, PostScript, 182 
Event Manager, 127-138 
Excel, Microsoft, 14 
Expansion slots, lack of on Macintosh Plus, 14 
FDA Mover (see Font/Desk Accessory Mover), 

Feedback, user, 21 
File control block, 79, 359 

buffer, 80, 359 
File system 

compatibility, 32, 73-81 
data structures, 78 

Files, 
Desktop, 152 
managing, 140 
rebuilding Desktop, 155 
resource, 148 
resume, 226 
specifying, 77 

Filterproc, 135-137 
Finder, 140-144 

early limitations of, to 
resource numbering, 156 

FinderName variable, 142 
Floating point co-processor. 289, 343 
Font color table, 359 
Font Manager, Macintosh II, 314-316 
Font names, restoring, 228 
Font/Desk Accessory Mover, 35 
Fonts, 

downloading to LaserWriter, 180 
escape, 182 
international, 291, 318 
setting in PostScript, 176 

ForeColor procedure, IOI 
Forgiveness, 359 
FPI rule, 29-30 
FREF, 151-156 
Full pathname, 359 
gDevice, 359 

record, 259 
gdNextGD, 260 
GEM,6 
General, 359 
Get Info text, 155 
GetMaxDevice, 214-215 
GetResource, 161 
GetVCBQHdr, 79 
Global consistency, 18, 359 
Global variables, 61-64 

medium-level interface, 59 
using, 33-34 

Grafports, 
bottlenecks in, 174 
color, 107-109, 213, 306 

Graphics, using as indicators, 25 
Gray scale images, 196 
GrowZone function, 359 
Handles, dereferencing, 161 
HandToHand function, 219 
Hard disks, 9 
Hardware upgrades, on-site, 349 
Hardware-level interface, 61 
HFS (Heirarchical File System), 8, 73-81, 170, 227 
High-level interface, 58-60 
HiliteControl, 136 
History of the Macintosh, 4-5 
HLock, 161 
Hooks, 7, 47, 61, 360 
Human Interface Guidelines, 17 
HUnlock, 161 
JCN#, 151-158 
Icons, 

custom, 151-156 
finding in Desktop files, 162 

!NIT 31 mechanism, 35-36 
Inside Macintosh technical reference manual, ix, 52 
lnsMenultem, 235 
Installer utility, 37 
Instruction cache, 68020, 342, 348 
Instruction trap, unimplemented, 64 



Instructions, 68020, 345 
Interface levels, 58-59 
Interface, 

hardware-level, 61 
high-level, 60 
low-level, 61 
medium-level, 60-61 
summary of medium-level, 81-82 

International Utilities Package, 318 
job dialog, 360 
Keyboard, 

equivalents, 129 
layouts, new, 131 
using the, 128 

Keys, special, 20 
LaserPrep file, 186 
LaserWriter, 170-186 

communication-settings, 184 
Launch, 142 
Line drawing routine, video RAM, 50 
Lisa, 4, 45 
Local consistency, 19, 360 
Local ID, 153, 360 
Long-term modes, 24 
Low-memory globals, 7, 61-64, 360 
LWRT resource type, 157 
Macintosh II, features and characteristics of, 287-326 
Macintosh SE, features and characteristics of, 284-

287 
Macintosh XL, 45 
Macro, 360 
Mask, 360 

icon, 151 
Medium-level interface, 58, 60-61 

summary of, 81-82 
Memory alignment, 349, 352 
Memory indirect addressing, 344, 360 
Memory upgtade options, Macintosh II, 287 
Memory, 

allocating for offscreen buffer, 201 
clearing, 206 

Memory-mapped video, 48, 360 
Menu Manager, 

Macintosh II, 290-295 
mapping keystrokes with, 134 
program using new features of, 327-340 

Menus, 
consistency of, 28 
designing, 235 

Message, 360 
Metaphors, real world, 19 
Mnemonics, keyboard equivalent, 136 
ModalDialog, 135 
Models, program for creating color, 112-125 
Modes, 

avoiding, 22-24 
types of, 24 

Monitor, Apple color, 99-100, 109 
Monitors, 

designing for color, 210 
multiple, 256 

Motorola 68020, 288, 341-346 
Motorola 68881, 289 
Mouse commands, providing keyboard equivalents 

for, 128-137 
Mouse, using the, 128 
MPNT, 162 
MPSR, 228-229 
MPW Shell, 228 
Multi-launch, 360 
Multibit images, 208-212 

memory for, 214 
MultiFinder, 63-64, 140 

updating the screen in, 195 
Multitasking, 64 
Names, path and directory, 76 
Network, AppleTalk, 8 

Noun-verb technique, 25, 360 
Offscreen buffers, 

drawing into, 200-208 
using with Color QuickDraw, 212-218 

OpenCPort, 213 
Operating system utilities, Macintosh II, 324 
Outer displacement, 360 
Page definitions, Postscript, 183 
Page Setup, 73 
PageMaker, 14 
Palette Manager, 100, 109 
PAPA, 150 
Paradigm, 360 
Partial pathname, 360 
Pascal, handling resource types with, 161 
Patch, 7, 360 
Path names, 76 
PBGetFCBinfo, 79 
PBGetFinfo, 79 
PBOpenWD, 75 
PicComment, 175 
Picture comment, 361 
Pictures, color, 110-111 
Pixel, 48, 361 

depth setting, 212, 215 
image, 103, 361 
map, 104, 361 
pattern, 105, 361 

PixMap structure, 198 
Planar, 361 
Pointer arithmetic, 161, 361 
Port settings, LaserWriter, 184 
PostHaste, 185 
PostScript, 169, 170-186 

commands, sending, 178 
comments in, 175 
escape font, 182, 361 
sending directly to LaserWriter, 184 

PostScriptBegin, 175 
PostScriptFile, 180 
Print dialog, 361 
Print Manager dialogs, customizing, 73 
Printer Access Protocol, 150 
Printer resource files, 151-166 
Printers, 

Apple's choice of, 10 
identifying the current, 147-150 
LaserWriter, 170-186 
supported, 146 

Printing information, general, 169-170 
Printing Manager, 145-186 

Macintosh II, 320-324 
using with AppleTalk, 166 

Program, 
TextEdit and Menu Manager, 327-340 
window management, 263-282 

Programs, 
features and performance of, 29 
restoring the state of, 224-226 
well-behaved, 54 

PrValidate, 168 
QDprocs,69 
Quickdraw, 7, 187-222 

bottlenecks in, 67-70 
Color, 8, 98-126, 197-212 
global variables in, 62 
old and new model commands, 211 
shapes and operations in, 68 
translating to PostScript, 173-181 
using to send PostScript commands, 177 

Quitting to another application, 140 
RDEV file, 39 
Real life modes, 24 
Real time estimates, 22 
Rectangles, rounding off, 258 
Relocatable blocks, allocating, 203 
Relocatable objects, 161, 177 

Index 367 



368 Index 

Renumbering resources, 154 
ResEdit, 152, 160, 166 
Resolution, 

color screen, 99 
LaserWriter, 170-186 

Resource files, 149 
Resource ID collisions, 153 
Resource Manager, 223-232 

Macintosh II and SE, 316-317 
Resource STR numbers, 147 
Resources, 

renumbering, 154 
screen, 259 

Restoring state of a program, 224-226 
Resume icon, 225 
RGB (Red, Green, Blue) values, 99-100, 361 
RGBBackColor, 220 
RGBForeColor, 220 
ROM call dispatching, 53 
ROM, modifying, 47 
Root directory, 361 
Rounding off rectangles, 258 
RowBytes, 202 
SANE, 289 
Saving local information, 226 
Scaled index, 344 
Screen mapping, 49, 198 
Screen resolution, color, 99 
Screen, 

saving and restoring with CopyBits, 196 
updating the, 188-196 

ScreenBits global variable, 55 
Screens, stacking and tiling with multiple, 256-262 
Script, 361 
Script Manager, Macintosh II, 317-320 
Scripts, 

Installer, 37 
international, 291, 318 

Scm resource, 259 
SCSI device, 47 
Seeded, 361 
Seeding period, 43 
SetFractEnable, 315 
SetPortBits, 206 
SetTrapAddress, 65 
SFGetfile, 71, 137, 225 
SFPutFile, 71, 137 
Shell, 362 
ShowHide, 237 
Shutdown Manager, 325-326 
Signature resource, 156, 362 
SIMMs, 285 
SizeWindow, 242 
Software, development of powerful, 14 
Sound Manager, Macintosh II, 325 
Source bit clear, 207 
Special case, 362 
Special case versions, program, 54 
Spring-loaded modes, 24 
Stack, 362 
Stacking and tiling with multiple screens, 256-262 
Stacking windows, 237-239 

program for, 263-282 
Standard Apple Numerics Environment, 289 
Standard dialogs, 34 
Standard File dialogs, 137 
Standard File system, 33 
Standard File, customizing, 70·72 
Standards, effect of Macintosh on computer, 11 
Status alert, LaserWriter, 166 
Style dialog, 73, 362 
Sty le record, 362 
Styles, text, 296 
Switcher, 140 
Synthetic font, 362 
SysEnvirons, 222, 324 
System 4.1, 290 

System calls, design of, 53 
System file, importance of leaving alone, 34-37 
System startup information, 77, 362 
Text styles, 296 
TextEdit, 

flags, 312 
Macintosh II, 295-300 
program using new features of, 327-340 

TextlsPostScript, 177 
Tiled windows, 240-246 
Tiling, 362 

algorithm, 246-256 
and stacking with multiple screens, 256-262 
windows, program for, 263-282 

Toolbox, 5, 7 
color resources, 311 
Macintosh II, 290 

Transfer mode, 362 
Trap, 362 

dispatcher, 64, 362 
numbers, 46 
patching, 64-65 
system, Macintosh, 53 

Traps, 45 
Undo feature, 28 
Unimplemented instruction trap, 362 
User control, 21 
User Interface Toolbox (see also Toolbox), 362 
User interface, 

characteristics of, 17-29 
consistency of, 5, 18-19 
design considerations, 18-29 

User names displaying, 166-167 
User-friendly, meaning of, 17 
Utilities, Apple, 35-39 
Variables, global, 33-34, 59, 61-64 
Variant code, window, 306 
Verb-noun technique, 24, 363 
Vertex, 363 
Video modes, user-selectable, 209 
Video RAM, 50 
Video, 

color, 97-126 
memory-mapped, 48 

Visual indicators, 22 
Volume control block, 78, 363 
Volume information block, 78, 363 
Volume reference number, 74, 363 
vRefNum, 363 
WDrefnum, 75 
Well-behaved progrilms, 54 
Window management program, 263-282 
Window Manager, 233-282 

Macintosh II, 300-307 
using grafports with, 107 

Windows, 233-282 
desk accessory, 236, 249 
filling the screen with, 236 
Microsoft, 6 
placing on multiple screens, 256-262 
resizing, 248 
sizing, 241 
stacking, 237-239 
tiled, 240-246 
tiling algorithm for, 246-256 

Working directory, 74, 363 
Working directory control block, 363 
Working directory control block, 75, 363 
WYSIWYG, 27 
Zooming windows, program for, 263-282 






