M] ACINTOSH°PROGRAMMING SERIES

DISK INCLUDED

MACINTOSH €
PROGRAMMING
BY EXAMPLE

A Step-by-Step
Guide to
Developing

Programs with

THINK C”

KURT W. G. MATTHIES
THOM HOGAN

..c:..N
o
EO
MH
5
-
=
=
4

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1991 by Kurt W.G. Matthies

All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Matthies, Kurt W.G., 1954—
Macintosh C programming by example : a step by step guide to
developing programs with Think C / Kurt W.G. Matthies, Thom Hogan.
p. cm.
Includes index.
ISBN 1-55615-357-0 : $34.95 ($44.95 Can.)
1. Macintosh (Computer)--Programming. 2. C (Computer program

language) I Hogan, Thom, 1952— IL. Title.
QA76.8 M3M37648 1991
005.265--dc20 91-37506

CIP
Printed and bound in the United States of America.
123456789 MLML 654321

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Apple® Mac® and Macintosh® are registered trademarks of Apple Computer, Inc. Macreations™, Tycho™ and
Tycho Table Maker™ are trademarks of Macreations Publishing Corp. Symantec® and THINK C® are
registered trademarks of Symantec Corporation.

Acquisitions Editor: Marjorie Schlaikjer
Project Editor: Erin O’Connor
Technical Editor: Jeff Carey

CONTENTS

PREFACE vii

3.

4.

7.

PROGRAMMING THE MACINTOSH WITH THINK C 1

USING THINKC 9

A CPRIMER 35

MACINTOSH APPLICATION FUNDAMENTALS 69

MACINTOSH MEMORY MANAGEMENT 87

INTRODUCTION TO THE GENERIC APPLICATION 113

A SHELL THAT MANAGES MULTIPLE DOCUMENTS 137

SCROLLING WINDOWS 163

LOSER: A LESSON IN PROGRAM DESIGN 191

THE MACINTOSH FILE SYSTEM 217

BROWSER: OUR CULMINATING APPLICATION 237

APPENDIX: SYSTEM 7.0 COMPATIBILITY 259

INDEX 270

PREFACE

Why anyone would want to do what I do for a living—sit day and night in front of a
stolid, one-eyed deity and wrestle with abstract bits of mind-fluff—continues to be a
source of wonder—to me and to my long-suffering family. Is it for the long hours, the
backaches, the spreading middle, the chronic tic of eye strain? For all this and more.

Sarcastic reflections aside, if you have the right temperament, programming the
Macintosh can be one of the most rewarding preoccupations in this wide world.
Granted, it can turn ugly as fast as the weather changes here in Colorado’s Front
Range. To paraphrase Robert Pirsig in Zen and the Art of Motorcycle Maintenance,
writing a Macintosh application requires “great peace of mind.” One thing is for
sure: A Macintosh application’s ease-of-use is directly proportional to the effort the
programmer puts into writing it. Creating a Macintosh applicaton is tricky under the
best conditions, and learning to write a maintainable application that’s relatively free
of errors takes years of experience. We've written this book to reduce the time it
takes you to become an effective Macintosh programmer.

You already know how to program? So did we. I came to Macintosh programming in
1986 with a strong background in the UNIX environment, and Thom had spent years
in CP/M and MS-DOS programming. In spite of our combined experience, we
weren't prepared for the Macintosh’s totally different software development require-
ments. And, unfortunately for us, back then there weren't many Macintosh applica-
tion examples around to teach us Mac ways.

I've always found that I learn programming techniques best by example. If I can find
a code example that does the kind of thing I want to do, I use that code as a founda-
tion and work a “variation on a theme” to solve my particular programming prob-
lem. This book provides the foundation common to almost all Macintosh application
programming.

The book came out of a relationship between Thom and me that’s spanned several
years and several ventures. Early in 1990, we started up a series of columns for
MacUser magazine. The Power Programming series ran from February 1990,
through June 1991. Each column focused on skills in a particular area of Macintosh
programming: windows, menus, dialog boxes, text files, graphics, file-handling, and
so on. What was unique in our approach was that we always demonstrated the spe-
cialized skill in the context of whole applications.

Writing programs for the Macintosh requires much more than knowing how to use
the various Macintosh Toolbox software managers—the utility routines embedded
in the Macintosh read-only memory chips that display windows, report the mouse
location, and read menu selections. Effective Macintosh application programming
also requires that you engineer your program code so that your application uses
memory and the Toolbox routines efficiently.

vii

MACINTOSH C PROGRAMMING BY EXAMPLE

The approach we used in the MacUser columns got a lot of positive feedback from
readers. Experienced programmers said, “I wish I'd had this when I was learning to
write for the Mac.” Beginners expressed their gratitude and enthusiastically de-
manded more.

Last year, Microsoft Press gave us the opportunity to publish the particulars of our
approach in book form, a boon that has allowed us to rethink the columns without
the magazine’s 2500-word limit hanging over our heads. We’ve rethought, expanded,
and rewritten the Power Programming columns. Now you'll find three full applica-
tions—Generic Application, Loser, and Browser—each of which describes a Mac-
intosh programming paradigm. We develop the applications over the course of the
book’s chapters, and you’ll find fully finished copies on the disk that accompanies
the book. And we’ve added a chapter on the C language that makes a point of going
into aspects of the language that require special attention in the Macintosh program-
ming context.

We thank everyone at Microsoft Press for helping this book come into being espe-
cially Marjorie Schlaikjer, the acquisitions editor whose superhuman stamina saw the
writing of this book through to completion; our technical editor Jeff Carey, who kept
us honest; and our manuscript editor Erin O’Connor, who provided an antidote to 20
years of bad writing habits. Principal proofreader Deborah Long made many valu-
able suggestions, and text processors Debbie Kem and Barb Runyan prepared the
manuscript for typesetter Carolyn Magruder’s ministrations. Kim Eggleston, Lisa
Sandburg, and Peggy Herman collaborated on the design, art, and layout.

While we're at it, we want to thank Paul Somerson, Jim Bradbury, and Rhoda Sim-
mons at MacUser. Their work with us on the Power Programming series was
invaluable. ‘

I'd like to make special acknowledgment of the best software designer I ever met,
Dennis K. Ward, whose thinking permeates the code examples in this book. Dennis
and I have worked so closely together on Macintosh projects that it’s no longer clear
where his ideas about Macintosh applications end and mine begin. I also want to
thank my good friend David J. Hall, who introduced me to the Macintosh way back
when. And eternal love and kisses to Debby, Jason, Adam, and Jamie, who let me
hang around the house all day in my pajamas.

I sincerely hope this book helps you become a better Macintosh programmer. With
the new, low-priced Macintoshes, System 7.0’s interapplication communications fa-
cilities, and the latest agreement between Apple and IBM, the Macintosh seems here
to stay. The need for Macintosh software is greater than ever, and the opportunities
available to Macintosh programmers have never been better. Even if programming is
a pain in the neck, it sure beats working for a living,

Kurt W.G. Matthies
Boulder, Colorado
September 13, 1991

viii

PROGRAMMING
THE MACINTOSH
WITH THINK C

Why would anyone want to become a Macintosh programmer? The answer is more
complex than you might think. Several circumstances make a familiarity with pro-
gramming the Macintosh helpful if not downright necessary.

B Mac users are becoming more sophisticated and are demanding more from
their machines. Many state-of-the-art application programs allow user pro-
gramming through either macros or a built-in control language such as Basic.

B Apple has privately indicated that a scripting language might eventually
become part of the Macintosh operating system.

B HyperCard and SuperCard give Mac users a taste of programming but lead
them on. To accomplish meaningful work, HyperTalk and SuperTalk scripts
usually have to resort to external commands (XCMDs) written in a traditional
programming language such as C or Pascal.

B The way programs are built dictates the way programs are used. A user famil-
iar with Mac programming restrictions won't be surprised by the behavior of a
Mac application.

B Corporate Mac use inevitably leads to custom applications and the need to tie
the Macintosh into existing database and entry applications running on other
machines.

But more to the point, we’ve seen over time that virtually all Mac users eventually
express an interest in learning how the Mac does what it does. Apple’s documenta-
tion doesn't always explain underlying concepts, and the curious Mac user conse-
quently senses a wall between him or her and the inner confines of the Toolbox
built into the Mac ROM. We’ve written this book to help you break through that wall.

MACINTOSH C PROGRAMMING BY EXAMPLE

No Degree Necessary

You won't need a degree in computer science to become a Mac programmer, but you
will need some preparation. We know that the main hurdle in writing a first Mac ap-
plication is the volume of code it takes to put up a single window. That’s where we
can help. Our charter for this book is to help the casual programmer explore the
wealth of system software that comes with the Mac.

How This Book Will Proceed

Before we get down to writing applications, we'll take care of a few important
preliminaries. We'll introduce you to the THINK C compiler in Chapter 2, and in
Chapter 3, we’ll take a look at C language fundamentals.

Then in Chapter 4, we’ll develop a simple application. We'll step back in Chapter 5 to
see how the Mac manages memory, and then in Chapters 6 through 8 we’ll develop a
generic application that will form the basis of all your future programming projects.
In later chapters, we'll use this generic application to create applications that explore
the file system, that demonstrate the graphics capabilities of the Mac, and that show
how the Mac handles text. We’'ll look at a host of other examples of using the Mac’s
Toolbox. Every project will be a complete working application.

If You’re New to €

For the projects in this book we’ll use the C programming language. If you're new to
C, look at the short C primer in Chapter 3. It’s only a primer. It is not an introduction
to programming. We assume that you already know about fundamental program-
ming concepts such as variables, subroutines, and assignments. We don't expect you
to know C itself.

Know Thy Mac Interface

You do need to be familiar with the conventions of the Mac interface. We’ll assume
that you know what a menu, a dialog box, a button, and a window are, and we'll
focus on how to put them together in an application program.

If you study a Macintosh application carefully, you’'ll notice how the menus lead to
dialog boxes, how button and command names refer to actions that the user takes,
and how well-organized dialog boxes lead the user from the most significant choices
to the less important ones. Compare two similar applications—two word processors,
say—and notice which elements of the user interface are the same in both programs
and which differ. Which interface do you like better? Why? If you can answer these
questions, you're well on your way to understanding how to design a user interface
for your programs.

One advantage of programming the Mac over programming other machines is that
much of the Mac’s user interface is well defined and directly supported by the

1: PROGRAMMING THE MACINTOSH WITH THINK C

operating system. You don't have to invent a window, a menu, a scroll bar, or any of
the other features of the Macintosh interface.

The small price you pay for having a standard interface is conformity. All Mac appli-
cations have an Apple, a File, and an Edit menu, and these menus have standard sets
of basic commands and standard command-key equivalents for their menu com-
mands. That’s because Mac programmers have agreed to cooperate with Apple and
make their applications conform to the Macintosh user interface guidelines. This set
of “suggestions” about what a Macintosh application should look like helps users
know where things are when they first sit down to use a program.

Your application designs should follow the guidelines—unless, of course, you have
discovered a much better way of doing things; that’s progress, after all. If your modi-
fications to the standard interface don’t work, if they don't feel right, your users will
let you know about it. One of the first applications for the Macintosh was a document
outliner very Mac-like in all respects but one: The way the user scrolled text differed
from Apple’s specification. Users complained directly to the company, in letters to
the editor in Macintosh magazines, in online comments on services like Compu-
Serve, and in many other ways. The program was redesigned, and later versions
worked according to the guidelines.

The sample applications in this book follow Apple’s guidelines, and if you've used
your Mac for some time, you probably have a pretty good idea of how a Macintosh
application should look and feel. If you need information about a particular interface
issue, you'll find the complete user interface guidelines in two books: The Program-
mer’s Introduction to the Macintosh and The Macintosh Human Interface Guide-
lines, both published by Addison-Wesley. As a casual programmer, you're not likely
to need these books, but they do deserve a browse. A professional programmer
should have both.

Know Thy Toolbox

You also need to know something about how Apple divided the Macintosh’s resident
software into Toolboxes and Managers—roughly, Toolbox routines for the interface
goodies and Manager routines for operating system chores like file handling. The
six-volume Inside Macintosh, also from Addison-Wesley, is the definitive source for
Macintosh programming information. Known tersely as /M by those of us who fre-
quent the Apple Macintosh Developer Technical Support electronic mail facility, Ir2-
side Macintosh is the basic reference for system routine call syntax and for data
structures. You don’t need to rush out and buy all six volumes—the whole set repre-
sents a sizable investment. Start by buying Volume I. As you progress, you'll know
when it’s time to get the other books.

Volumes I and II contain the original Macintosh programming information. Volume I
focuses on the user interface, and Volume II on the behind-the-scenes operating sys-
tem activity. You’'ll use Volume I a lot and Volume II hardly at all. Volume III
describes the Macintosh hardware and fills the reader in on changes to the Toolbox
and Manager routines between the initial Mac (128K) and the Lisa XL. Volume IV

3

MACINTOSH C PROGRAMMING BY EXAMPLE

covers changes that resulted from the introduction of the Plus and 512E models. Vol-
ume V describes changes that resulted from the addition of color and other hardware
innovations with the Mac I1. Volume VI describes changes that accompanied the ad-
ditional Mac models introduced in late 1990 and System 7.0, the new Mac operating
system introduced in 1991.

You might think of the volumes after I and II as “delta documents,” documents that
describe only changes or additions but that do not recap the original information.
This makes IM somewhat hard to use. For casual programming, we recommend that
you try a third party reference. A professional programmer will need all the IM vol-
umes at some point in his or her career because their detailed information will even-
tually come in handy for troubleshooting.

A good third party resource is Encyclopedia Mac ROM, by Mathews and Friedland,
from Brady Books. A software utility Kurt finds useful is the Inside Mac Desk Ac-
cessory, a shareware utility written by Bernard Gallet. This DA, available directly
from its author, is first-rate—better than anything available from commercial pub-
lishers. It contains a database of the Toolbox calls and the data structures found in
IM. 1t really helps to have the information online and quickly accessible. A commer-
cial product of this type is available from Addison-Wesley, but we find the shareware
utility much more useful.

Know Thy Programming Language

Picking a programming language is an emotionally charged decision. Everyone has
his or her own ideas about which one is best. For the Mac, five general choices were
available to us: HyperTalk, Basic, Pascal, C, and assembly language.

We ruled out HyperTalk for many reasons. Although it comes free with every Mac, it
simply doesn’t have the power to control all aspects of the Macintosh by itself.
XCMDs are available, but they must be programmed in one of the other languages.
Moreover, the disjointed nature of HyperTalk scripts, scattered as they are within
HyperCard stacks, makes it difficult to present finished solutions. HyperTalk also
brings along a large overhead because it is interpreted by HyperCard, which eats up
a lion’s share of the available memory in a 1-megabyte Mac. Finally, HyperCard is
mostly object oriented, which we feel makes it less suited for procedural operations
such as scientific calculations or for carefully controlled sequences of events.

Basic has many appealing features. You can run it interactively, so you don't have to
wait until compile time to see whether a statement is going to execute the way you
think it will. Basic is easy to understand. It’s inexpensive and readily available.. Un-
fortunately, Basic belongs to the old sequential world of computing, in which instruc-
tions are always executed in a particular order. (In the original Basic, that order was
dictated by line numbers.) The event-driven Mac interface isn’t well suited to this
sequential control. Moreover, the Macintosh ROM expects to deal with special
groupings of data called data structures, and Basic has no way of dealing with data
structures directly, which means that Mac programs would have to be more compli-
cated than they might otherwise have to be.

a

1: PROGRAMMING THE MACINTOSH WITH THINK C

Pascal has a reputation as a fine teaching language. Better still for our purposes, it
was the language of choice internally at Apple as the Macintosh was developed. The
data structures that the Toolbox and the operating system expect to deal with are
forms Pascal directly understands. Two problems made us avoid Pascal: Coding
pointers and handles—two basic types of Macintosh data—is somewhat cumber-
some in Pascal; and accessing low-level data such as individual bits is possible only
through Toolbox macros.

Assembly language, of course, lets you access the bits and bytes in memory, but we
ruled it out because creating data and control structures tends to become quite com-
plex. Assembly language has no data structures or structured loops, leaving you to
invent them yourself. And good assembly language code is difficult to read quickly.

That left us with C, the language we have used for most of our programming projects
in the last five years. We feel strongly that C does a better job of showing the control
and manipulation of data structures for Mac programming than any other language
does. The only real drawback to using C is that the Macintosh’s native language is
Pascal, and C data types and calling conventions differ from their Pascal counter-
parts. Another drawback is that C lets you do some very stupid things. C is a laissez-
Jaire language: It usually lets you do what you want to do as far as assignments and
pointer arithmetic are concerned, but, because it’s so lenient about checking for
compatible data types across assignment operations, it will let you do nonsensical
things in your code without much warning or complaint from the compiler.

C assumes that you know what you’re doing. This is the Pascal aficionado’s major
complaint against C, but it’s a feature that we enjoy. Be forewarned, though, that
novice C programmers are virtually guaranteed to fall into one of C’s traps at some
point early in their careers. Guard against C’s traps by double-checking every
change you make to a program and by constantly double-checking your data types.

As a prospective Mac C programmer, you need to be familiar with the syntax and se-
mantics of the C programming language. Sure, we'll supply you with working code,
but you'll need to understand the language if you want to write your own code and
get the most benefit from this book. You'll need to learn the fundamentals of C—
variable declarations, assignments, function definitions, function calls. Don’t worry
if you don't have any experience with the language—we’ll meet you halfway. Chap-
ter 3 is a brief C primer you can use as a reference. We do suggest that you pick up a
copy of Kernighan and Ritchie’s The C Programming Language, published by Pren-
tice Hall, if you’re serious about learning C. This classic, known by the blue C on its
cover, was the first book on the language. Recently revised, K&R is still our favorite,
despite competition from dozens of other introductory books on C.

Although the Kernighan and Ritchie book is excellent for learning how to use C, it
doesn’t teach you a thing about programming the Mac. As you read along in this
book, we'll alert you to common pitfalls that await the new C programmer of the
Mac, and we'll beef up our efforts when we get to more advanced topics like data
structures, pointers, and dynamic memory allocation—and their relationship to the
Mac. Of course, we think the best way to learn a language is by example. In each

MACINTOSH C PROGRAMMING BY EXAMPLE

chapter, study the examples and read the code. We can’t emphasize that enough. The
code will teach you more about how to put a Macintosh application together than
any description can.

If you are a C programmer experienced in other development environments, forget
everything you've learned about console-based systems. You'll find that all the basic
stdio library routines for console input and output—routines such as getch, scanf,
and the ubiquitous printf—are provided with the THINK C environment, but you’ll
be hard-pressed to find any real use for them in a Mac application. The good news is
that you already know a lot about C that you can put to immediate use on the Mac.

Know Thy Development Environment

But why Symantec’s THINK C? Why not Apple’s own Macintosh Programmer’s
Workshop C (MPW C)? That’s an easy question to answer. MPW C is definitely a big-
league compiler, but with roots in UNIX, it isn’t exactly the interactive, event-driven
product Mac users are used to. MPW C comes with all kinds of special tools, but
they’re all invoked with cryptic command-line instructions or macros. The THINK
C environment follows the Mac Interface Guidelines; it’s easy to learn; it’s as full-
featured as MPW C; it produces code that is as small, reliable, and fast as MPW C
code; and it costs less.

We're not the only ones who think so, either. Some of the largest development
houses in the industry, companies like Aldus (PageMaker, Freehand, and Persuasion),
Claris (MacWrite and others), and Quark (XPress), have selected THINK C as their
primary development environment. Indeed, we would guess that if you were to poll
all applications developers, you'd find that more commercial programs had been de-
veloped with THINK C than with any alternative.

Although THINK C is one of the easiest development environments to use, the next
chapter is geared toward those who have little or no experience with THINK C. We
might even have a thing or two to teach THINK C veterans.

The Programming Process

All of this brings us to the actual act of writing a program for the Mac. We'll start with
an oversimplification. A program usually starts with your idea for a computer-based
tool, which you then break into smaller, logically oriented pieces. Until you've
figured out what it is you're trying to accomplish, you shouldn't start to code. The
first steps often take the form of notes, diagrams, samples of screens, or printouts.
The more you refine your ideas before you sit down to code, the more likely you are
to produce a useful program.

A case in point: We spent two man-years sketching out our ideas and designing
before we started the programming that eventually became Tycho Table Maker, our
commercial table-editing program. We spent much of that time looking at examples

1: PROGRAMMING THE MACINTOSH WITH THINK C

of tables and extrapolating the basic concepts our program had to treat. And we
looked at how to put information into Tycho. (It doesn’t make any sense to retype
something that already;exists, does it?)

Our ruminations resulted in several paper designs for specific pieces of Tycho. In
particular, we spent a great deal of time designing the underlying database the pro-
gram uses. But we wouldn’t have even realized that a table editor needs an underly-
ing database if we hadn’t done the preplanning. Had we simply jumped in and
started to program, we probably would have spent a great deal of time inventing a
database by trial and error—which, as you might suspect, is not the most efficient
way to design software.

When you fully understand the product you want to create, it’s time to start pro-
gramming. You take your ideas and your paper design, and you begin to type source
code into an editor. Source code is a sequence of computer-specific instructions for
performing the process that carries out your program idea. All a computer does is
process a sequence of instructions in a tightly controlled fashion. The real key to
successful programming, therefore, is to identify the right process to encode, to
think of all potential exceptions to the process that your program might encounter,
and to keep the sequence of execution correct.

A good computer language helps in these tasks. C is a structured language—which
lets us create data structures and control structures that imitate the real-life ele-
ments we try to model in programs. C also provides the low-level access to data ob-
jects, such as pointers or the bits of a data word, that we need for writing efficient
programs.

THINK C has an adequate editor for typing in and organizing your source code. It
also has a compiler and a linker and a debugger for examining your program in
detail as it executes. Until this point in the programming process, you have used
only the editor as you typed in your first-pass source code. Next in our programming
sequence, you use the compiler to parse the source code instructions you typed into
machine code, usually called object code, that the computer can understand di-
rectly. On the Mac, that object code must be linked into a file that the operating sys-
tem can understand and execute. Figure 1-1 on the next page illustrates the process.

Finally, you've got a runnable application. Of course, if you didn't do a good job of
designing it or if you put in illogical or nonsensical instructions, it might not run too
well. Then you use the Debugger to explore your code. Rarely does the first pass ata
program come even close to working. (You’ll have an advantage with the examples
in this book, though, because we’ll provide source code listings that we know will
work.) In real life, you often find yourself back at step 2 (entering and modifying
source code) or even at step 1 (isolating and designing key modules of the program
on paper). And so it goes. You edit, compile, link, and run your program, find the er-
rors, and go back through the sequence again.

MACINTOSH C PROGRAMMING BY EXAMPLE

Text editor
Program
5yntax Compilﬁr
correct?
All code)
modules Linker

here?

Figure 1-1.
The programming cycle.

What to Do Next

To get yourself ready:

B If youre a newcomer to programming, get some exposure to programming
concepts and terms. We’'ll explain advanced concepts, but you need to know
what a bit, a byte, an assignment, a loop, and a conditional expression are.

B Get familiar with the C language. Chapter 3 is a helpful introduction, but we
also recommend that you read The C Programming Language, Second Edi-
tion, by Brian Kernighan and Dennis Ritchie.

B Know why you want to program the Mac. Are you merely curious about what it
takes? Do you have specific needs that aren’t met by existing programs? Are
you looking for shortcuts? Do you want to be the next Andy Hertzfeld? If you
understand why you want to know about programming, you’ll get more from
this book.

So start up your editor. You're about to tackle your first Macintosh program.

2

USING THINK C

THINK C is one of the best-integrated programming environments to come along in
years. You edit, compile, link, and run your program without leaving the environ-
ment. And, under MultiFinder with at least 2 megabytes of memory, you can use the
THINK C Debugger to trace the execution of your program, stepping statement by
statement through your source code.

The editor in THINK C behaves as any Macintosh text editor or word processor you
might be accustomed to does. As in most programming editors, text doesn’t wrap at
the end of a line as it does in a word processor and the editor supports automatic in-
dentation of subsequent lines, which is handy for writing structured code. You can
cut and paste text, find and replace text strings, and take advantage of other features
that are useful for programmers, such as the ability to find curly brace pairs.

THINK C’s built-in compiler converts your source code into machine readable in-
structions and stores this object code in the project file. You might be accustomed to
development environments in which you have to keep track of the object files, the .o
or .obj files that the compiler creates as a result of compilation. You won’t have to do
that in THINK C.

Likewise, linking the code, the final step in creating a runnable application out of
source code, is automatic in THINK C. Linkage proceeds as a result of running the ap-
plication. Because the objects are maintained and kept hidden by THINK C, there’s no
need for a script to control linkage.

The Development Folder

If you haven't installed THINK C on your hard disk yet, now’s your chance. You’ll
find that THINK C works better if you follow the file system organization scheme we
describe in this chapter.

Keep all your development projects and the compiler in subfolders within one main
folder, the Development folder. (We usually put this folder at the top of the file sys-
tem hierarchy, although you can put it anywhere.) Inside the Development folder is a
folder named THINK C, in which the compiler, the debugger, and associated files
will reside. Each programming project folder will reside at this level.

MACINTOSH C PROGRAMMING BY EXAMPLE

The most important files on the THINK C distribution disks are the THINK C inte-
grated programming environment file and the THINK C symbolic debugger file. Put
these two application files, named THINK C and THINK C Debugger, in the THINK
C folder. You'll also need ResEdit, the Apple resource editor, if you're to follow some
of the examples in this book, so copy ResEdit from the THINK C distribution disks
into the THINK C folder.

Along with the compiler environment and the debugger come programming librar-
ies, header files, the precompiled headers file, library sources, and the class library.
Minimally, you'll need to put the programming libraries and the header files in the
THINK C folder. Put the file MacHeaders, the Mac #includes folder, the Mac Libraries
folder, and the C Libraries folder in the THINK C folder.

Although we don't use the class library for any of our programming projects in this
book, you might want to play with some of the THINK C object-oriented program-
ming (OOP) examples, so you might as well install those files now. Add the oops Li-
braries folder and the THINK C Class Library folder to your THINK C folder.

If you have a lot of disk space, copy the programming examples from the THINK C
distribution disks. The best way to learn programming is to study actual programs
that work. The more code you have access to, the more approaches you’ll have to
your particular programming problems. Some of the example projects are good for
starting small applications as well as Control Panel utilities (CDEV) and desk ac-
cessories (DA). Instead of putting these code example folders in the THINK C folder,
put them in the Development folder, at the same level as the THINK C folder in the
file system organization.

Another likely candidate for copying onto your hard disk is the C Library sources
folder. This folder contains all source code for the THINK C programming libraries.
(We'll talk about these in detail in a moment.) Again, put this folder in the Develop-
ment folder, at the same level as the THINK C folder. The other file folders at this
level can be independent projects, other programming libraries, or other devel-
oper’s tools.

Finally, put all the project folders from the source code disk for this book into your
Development folder. Figure 2-1 illustrates a typical layout of the Development folder.

With all these files in the Development folder, you might wonder how THINK C
finds a particular file. It makes use of two hierarchies: the THINK C tree and the
project tree. The THINK C tree encompasses every folder and file in the THINK C
folder; the project tree encompasses every file in a project folder. This is why we ad-
vised you to put project folders at the same level as the THINK C folder. If you put
the project files in the THINK C folder, THINK C would search all your project files
every time it Jooked for a file, and it would run into trouble if you had multiple source
files of the same name.

2: USING THINK C

(]

DA stuff

A THINK € 5.0 THINK C Debugger 5. oops Libraries
1
Develop f THINK C 5.0 Folder Mac Libraries C Libraries
Mac #inoludes cdev stuff THINK Class Library 1.1
DA stuff DA shell
(] <&
THINK C 5.0 Utilities Rez Utilities compare oConv Prototype Helper
‘ iniEdit Folde te
THINC 5.0 bemos Bullseye Folder MiniEdit Folder m sample cdev
Hex Dump DA OOP Demos
—]]
| I Art Class Folder Starter Folder cdev stuff
TCL 1.1 Demos
NewClassDemo Folder TinyEdit Folder
P =
Y=
Hello # hello mac . Hello Project
] (1]
L
GenApp f GenAppTl GenAppf rsrc GenApp Sro GenApp Hdr
(=> (=) = (="
- 2
| | = = }
C Library Sources § alloc.c arith.c assert.c atexit.c
Figure 2-1.

Layout and organization of a generic development folder. The THINK C folder,
Utilities folder, Demos folders, C Library Sources folder, and project folders are

all at the same level.

Programming Libraries
The header files that come with THINK C and the programming libraries take up
the bulk of the THINK C distribution disks. You can't write a Macintosh application
without the Macintosh header files and the Macintosh libraries. The Macintosh
headers contain definitions of the Macintosh data structures, and the libraries con-
tain the hooks into the Macintosh’s programming Toolbox, which includes the rou-
tines to display a window, read a menu selection, and get a mouse click.

A programming library is an organized collection of program pieces. These pieces,
called functions, can be used by any program that connects, or links, the library
with the program. The THINK C environment has a built-in linker for this purpose.

MACINTOSH C PROGRAMMING BY EXAMPLE

Library functions provide a software toolbox for your program. Included in the
many libraries that are shipped with THINK C are routines to process strings, format
numeric values, search a list, sort a table, and perform file I/O (input and output),
along with a wealth of other routines.

The functions in a library are in compiled, or machine readable, form. The human
readable source code for a library is not usually available or, in the case of a com-
mercial library, is available only for a price. This is not the case with THINK C,
whose library sources are included on the distribution disks. We salute Symantec for
including these sources with the library functions.

Library code is (usually) thoroughly debugged. When you modify proven source
code, you run the risk of introducing new bugs into the code. You can’t modify li-
brary code directly in binary format, so the use of compiled libraries can contribute
to software reliability. This impenetrability of library code means, though, that each
library function needs complete, descriptive documentation of its name, action, in-
puts, and outputs. The inputs to a function are called “parameters,” or, informally,
“arguments.” The output of a function is known as its “return value.”

The Standard Libraries Reference

The THINK C library functions are documented in the Standard Libraries Reference
manual that comes with THINK C. Symantec has borrowed the style for the entries
in this book from the old UNIX Programmer’s Manual, the original source of C func-
tion library documentation. The entries appear one function per page, with four
main sections for each entry. At the top of the page, the function name appears, fol-
lowed by a one-line description of the function’s action. The syntax, or usage, sec-
tion follows. Here’s an example, the syntax for the function toupper():

f#Hinclude <stdio.h>
int toupper (char c);

The first line tells us that we need to include stdio.b in order to use this function. The
.b indicates that stdio is a header file. (We’ll go into header files later in this chapter.)
The second line tells us that toupper() accepts a character argument and returns an in-
teger. This gives us enough information to use toupper() in an application:

fHinclude <stdio.h> /* placed at top of source file */
myFunction()
{

int upperC; /* declared inside function */
char c;

upperC = toupper (c); /* converts the character */

The most important section of a library reference entry is the description, which
tells you what the function does. The description for foupper() says that it returns

2: USING THINK C

the uppercase equivalent character of a lowercase letter c...,” so you know that
toupper() converts lowercase letters to uppercase.

If the function returns a value, the return value section of the entry describes the
range of data values or the error value you can expect when the function returns.
The function toupper() returns the uppercase equivalent of a lowercase letter. (The
manual doesn't tell you what foupper() returns if the original character wasn't in the
lowercase letter range—you have to find that out for yourself.)

The reference manual is organized by library. The names of the several libraries that
come with THINK C differ depending on the version of the compiler you are using
(version 3.0; version 4.0; or version 5.0, the new System 7.0 compatible compiler).
Here are some of the important THINK C libraries:

MacTraps This is the most important library that comes with THINK C because it
contains all references for the Macintosh Toolbox routines. Any program that uses a
Toolbox function needs to link with the MacTraps library. In other words, virtually
any program you write needs to link with MacTraps.

ANSI The ANSI (American National Standards Institute) committee concerned with
C has been active for years in an attempt to standardize the language. The functions
in THINK C's ANSI library support the new standard. The library contains all of the
1/0 functions, including printf(), file stream utilities, and character I/O primitives. It
also contains floating point support. If your application includes floating point (non-
integer) calculations, you need to use the ANSI library.

ANSI-small This library is similar to the ANSI library, but it doesn't include the
floating point routines. Use this library if your application does not use floating
point calculations and you want to save some space.

math If you plan to use the C math functions, such as the square root, trig-
onometric, or logarithmic functions, you need to use the math library.

unix The unix library is provided to help you convert UNIX applications to Mac-
intosh applications. Some of the unix library functions don't do anything— setpid(),
for instance, is provided simply for compatibility. We’'ve never needed to use this li-
brary when programming the Macintosh, and unless you’re coming from the UNIX
world, you won't either.

THINK C comes with scores of header files, whose names characteristically end
with the .h extension. The contents of these files are organized along the lines of Ir-
side Macintosh, by Toolbox manager. The names of the files differ depending on
which version of THINK C you’re using. If you're using anything other than THINK
C 5.0, for example, Event Manager constants and structures are defined in the file
EventMgr.h, QuickDraw stuff in QuickDraw.h, and Window Manager structures in
WindowMgr.h. In THINK C 5.0, the file names conform with those used in MPW C:
Events.h, QuickDraw.h, and Windows.h.

MACINTOSH C PROGRAMMING BY EXAMPLE

C programmers use header files to define constants, macros, data types and struc-
tures, variables, and function prototypes. In programming, one header file is usually
included by multiple source files, so the header file serves to fix a constant or data
structure definition for all files in a project. Defining something, like a constant’s
value, in one place is organizational good sense: If you need to change the value, you
need to do it only once. As your programs become larger and more complex—
perhaps encompassing dozens of source code files—the proper maintenance of
header files becomes very important.

Header files are sometimes called “include” files because their contents are included
in the compilation stream with the contents of other files. In a C source file, you in-
clude the contents of one file in the compilation stream of another by using the
#include directive. Consider the following source file, in which we've used #include
to include two header files:

#tinclude "AppConstants.h"
#include “"FileUtil.h"

main ()
{

}

In Figure 2-2, you see a diagram of the result. The compiler reads the contents of
AppConstants.h and FileUtil.h before it looks at the source file code.

Contents of
THINK C editor
2N
{
}
el ol FileUtilh AppConstante.h Compiler

Figure 2-2.
The compilation stream using the #include directive. The compiler sees
AppConstants.b, then FileUtil.h, and then the main() code.

A note about the syntax of #include statements: When the compiler sees double
quotes around the header file’s name, as in

ftinclude "constants.h”

it searches the current project folder tree, looking for the file constants.h. Converse-
ly, when the compiler finds angled brackets, as in

#include <QuickDraw.h>

14

2: USING THINK C

it looks for the header file in the THINK C folder tree. The angled brackets signify
that the file is a compiler-supplied header file that resides in the THINK C hierarchy.
If you've set up your Development folder as we've recommended, you must use the
angled bracket form for THINK C header files.

Inside Macintosb is the standard guide to which header files you'll need to include in
a particular source file. If you are using the Window Manager and accessing a
WindowRecord data structure, you'll need somewhere in your source file the
statement

f#include <Windows.h>
if you're using THINK C 5.0 or
finclude <WindowMgr.h>

if you’re using an earlier version of THINK C. Your program needs to know about
the Window Manager data structures. (If you don’t know what a data structure
definition is now, don't worry—we discuss this in the next chapter.)

The problem with this organizational convention is that you need Inside Macintosh
to get started. The number of files that you’ll need to include for most applications
runs high. Beginners find that the compiler’s syntax-checking error messages can get
to be pretty annoying before they come up with a combination of header files that
includes all the structure definitions.

One solution to this problem is to use our Generic application, discussed in Chapters
6, 7, and 8, which already includes the necessary header files.

Beginning with THINK C version 3.0, Symantec came up with an elegant solution to
this problem: precompiled headers. MacHeaders, the precompiled header file sup-
plied with THINK C, contains definitions for most of the commonly used managers.
The file loads more quickly during compilation because it is in binary form, unlike
conventional text header files. And you never need to load a manager include file be-
cause the compiler includes the MacHeaders file automatically if you set the
MacHeaders compiler option. (You'll find compiler options in the THINK C editor’s
Edit-Options dialog box.)

Custom Mcclleéclen File

If you really know what you're doing with header files, you can build your
own MacHeaders from the text file Mac #includes.c, using the Precompile
command on THINK C'’s Source menu. Just modify Mac #includes.c so that it
will include the files you're interested in, and precompile it. If THINK C is to
recognize the new file, you have to name it MacHeaders, so you might want
to rename the original MacHeaders to avoid duplication.

MACINTOSH C PROGRAMMING BY EXAMPLE

The Project Folder

A project folder holds all a project’s files. Each of your programming projects should
be in its own folder. A typical project folder contains four types of files:

B The project file
B C language source files, called “.c files,” usually kept in a subfolder
B C language header files, usually kept in a subfolder

B The project resource file

The Project File

The project file is the master file for the project. Each programming project centers
around the project file, which contains everything THINK C needs to construct the
application from your source files. All project management is done from this file.
When you open the project file in THINK C’s integrated environment, a list of the
source files appears in the project window, as shown in our example in Figure 2-3.
To open an individual source file, double-click on its name in this window. You can
use the arrow keys to move the selection bar up and down in the window. If you
type the first few letters of a file’s name while this window is active, the selection
cursor jumps to that file’s name. If there are multiple files with similar names (for ex-
ample, FileBuf.c, FileMgr.c, and FileUtil.c), the Tab key will move you to the next file
name that contains the matching first few letters.

Figure 2-3. & File Edit Search Project Source Windows 3]

The project file === miniGenfApp1-1v5.0 ===
. Name obj size
window for AboutBox oc
o o Applnit. 0
miniGenAppn from Dialogutiv.e) |
Chapter 6. The file { Display.c o

. E DocUtil.c 0

names are listed in E FileUtil.c 0
2 E 5 H MenuUtil. (1]
this window with iy 8
the file sizes. Shelle o
YindowUtil.c 0

ANSI—small (1]

MacTraps 0

The Full Titles option (from the Windows menu) is useful when you have more than
one version of the source code on disk. It displays the file’s path in the window title.

For building programs, THINK C offers a built-in, UNIX-like make facility. (When
we say UNIX-like, we mean in essence, but certainly, we hasten to add, not in

2: USING THINK C

appearance.) This facility keeps track of compilation dates and dependency infor-
mation for your source files and stores the data in the project file. In UNIX and MS-
DOS terms, this means there’s no makefile. When you make a change to a file, the
date and time are noted internally. When you try to run your program, THINK C re-
minds you that the project needs to be brought up to date. You can also configure
the environment to automatically make the program before you run it, again with
the Edit-Options dialog box.

There are no .o files with THINK C. The project file holds the object code (machine
language instructions) that is compiled from the source files. The project file also
contains debugging data and linking data, such as symbol and line numbers, and
code resource segmentation data. As a result, the project file can grow to be very
large. Using the Precompiled Headers option can help reduce the size of your proj-
ect file, but you won't have to worry about the projects in this book taking up too
much space.

The C language source files constitute your program code and end with the .c suffix.
Generally, you'll have more than one source file to a project. To minimize the num-
ber of files in the project folder so that it doesn't become cluttered, put all your
source files in a subfolder of the project folder. We organize all of our more extensive
projects this way. For example, if the project file name is miniGenApp, we name the
source subfolder miniGenApp Src.

Header files end with the .h suffix. They contain constants and the definitions of
data types and structures, variables, and function prototypes. Again, you'll usually

Source File Suffixes

The .c or .h suffix in these file names is a holdover from command-line sys-
tem days. Because the Macintosh system software designers chose a free-
form file naming convention, we don’t have to suffer with an abbreviated
name such as ACCNTS09.DBF, as our MS-DOS counterparts do. The free-
form convention means that file names can be more descriptive. We can
change ACCNTS09.DBF to Sept. Accounts. (Periods can appear anywhere in
the name.) On the Mac, there’s really no need for a file name “extension” to
classify the file. The Finder notes the file’s origin internally, so we don’'t need
the .DBF extension to tell us that this is a dBASE file; the icon tells us that.

Source file names in THINK C are a different story. C source file names must
end with .c. That’s how THINK C recognizes them as C language source files.
Likewise, by convention, header file names always end with .h. It’s a throw-
back, admittedly, but for now, that’s the way it is.

17

MACINTOSH C PROGRAMMING BY EXAMPLE

have more than one of these files in a project. We like to collect them in their own
subfolder, under the project folder.

The Project Resource File

The final item you might put in the project folder is the project resource file. This
file contains the program’s resources—menu descriptions, dialog box item lists,
PICTs, control definition functions, or other resources the application needs at run-
time. We build all our resource files with Apple’s ResEdit, one of the so-called
resource editors. Symantec ships ResEdit with THINK C.

If you come from a different programming environment, the resource file concept is
probably new to you. The principle behind resource files is that it’s advisable to split
program code from the user interface items, that any messages that a program dis-
plays to the user belong in the resource file, not in the source code. The idea is that if
an application’s interface items, such as strings, dialog box contents, menu titles, and
other items of text within a program, are accessible from an outside source, the pro-
gram can be easily converted to another language system.

This principle works pretty well, and we follow it in our examples. Anything a user
sees in a program we place in the program’s resource file. Each of our example pro-
grams has a resource file (except our first example, Hello Mac!, which doesn't really
count as a full-fledged application).

In a stand-alone application, the program’s resources are built into the program file,
in its resource fork (a topic we’ll cover in Chapters 10 and 11). But in the THINK C
environment, the application has to have access to the resource file. There are two
ways to set this up.

If you name the resource file correctly, THINK C automatically opens the resource
file when you run your program. You should name the resource file after the project
file name and give it an .rsrc extension. If the project name were GenericAppn, for
example, the resource file should be named GenericAppm.rsrc. The resource file has
to be in the same folder as the project file.

The alternative is to use the OpenResFile call in your program. For example, the call
OpenResFile ("GenericAppm.rsrc”);

will open the resource file for your program’s use. You must make this call before
your program accesses any resources. A program will eventually bomb if it doesn’t
have access to the resource file. There is no warning or safeguard against this in
THINK C, and there shouldn’t be. C programmers are masters of their own destinies.

Working with THINK C

Application development centers on the project file, and the THINK C environment
won’t operate unless a project file is open. So, the best way to begin a THINK C ses-
sion is by double-clicking on the project file name. If you open THINK C without a

2: USING THINK C

project file, the environment will ask for one by presenting the Open Project dialog
box. You must either select a project file to open or create a new project file.

You're going to become very familiar with the features and commands in the
THINK C environment as you spend hours and hours getting your programs up and
running. You might spend most of your time in the editor. The multiwindow editor
supports just about everything you’ll need to edit your program’s code. It is fast, it is
highly functional, and it works as most Macintosh editor applications do.

After the project file is open, you open the source code files by double-clicking on
their names in the project file window or by choosing Open from the File menu.
THINK C's Windows menu is handy for managing these files—it lists each open file.
You bring an open window to the top by selecting it. The first nine open files get
Command-key equivalents, Command-1 through Command-9, which you can use to
bring a window to the top. Command-0 selects the project window.

You save a file by using the File menu’s Save command. Save As works a little differ-
ently than you might expect. Save As not only creates a new file with a new name,
but it also changes the file name stored in the project file. If you want to save a file
with another file name without changing the name in the project file, use Save A
Copy As.

You edit text in a THINK C editor window as you would in a Macintosh word pro-
cessor. Text does not wrap in the editor; you must use the Return key to start a new
line. The editor automatically indents (autoindents) each line of text, which means
that the next line begins under the first character of the previous line.

You use the mouse to select text ranges. A double-click selects a word,; a triple-click
selects a line. There’s no overstrike mode as there is in WordStar-like editors. The
editor is always in insert mode. You overstrike text by selecting it and then typing
the replacement text. Typed text always replaces any selected text on the Mac.

You can use the arrow keys to move the text cursor around the screen. Alone, the ar-
row keys move the cursor character by character horizontally and line by line ver-
tically. The Option-arrow key combinations move the cursor as far as it can go in a
particular direction: Option-up moves the cursor to the top of the file; Option-down
to the bottom of the file; Option-left to the beginning of the current line; Option-
right to the end of the current line. The Shift-arrow key combinations extend the

Changing the Default Font

The THINK C editor uses a 9-point Monaco font as its default font. Some
people don't like this font for one reason or another. The default font number,
size, and tab size reside in the second, third, and fourth words of the THINK
C CNFG #0 resource. You can change these values with a little ResEdit-style
surgery on your THINK C application. Remember to enter these values in
their hexadecimal equivalents.

MACINTOSH C PROGRAMMING BY EXAMPLE

selection range. These are nice features if you like to work without taking your
hands from the keyboard. Pressing the Enter key scrolls the window contents so that
the text cursor is in the middle of the window, which is handy for finding your place
after scrolling around.

The editor’s Edit menu supports full cut, copy, and paste operations, which are all
supported by their conventional keyboard shortcuts (Command-X, Command-C,
and Command-V). You can shift blocks of text left or right by using the Shift Left and
Shift Right commands on the Edit menu or by using the keyboard shortcuts
Command-[and Command-]. This feature is illustrated in Figure 2-4. The Balance
command (Command-B) on the Edit menu is useful for finding syntax errors caused
by your forgetting to close a block with a curly brace.

Figure 2-4. e—m————— pphitt ==—————=—
Sb%ftlng text tht ” setUpMenus - set up the application menus
To use the Shift il

o setUpMenus ()
Right command, {
gDeskMenu = GetMenu (kAppleMenulD);

select the lines you AddRestenu (gDeskMenu, 'DRUR')
. InsertMenu (gDeskMenu, 0);
want to shift, as
shown on the top
Edi tM = Geth CKEdi tM 1D0);
screen, and then Trsartions cgEdittona, 035
press Command-].

The text shifts
right, as shown on ~ |fHE——————== ABRINItC

/*
the bottom screen. setUpMenus - set up the application menus
3.30.90kwgm

aF i leMenu = GetMernu CkFileManul D]
caFiletenu, 00

|nzer thenu

setUpMenus)
{

gDeskMenu = GetMenu (kAppleMenulD);
AddResMenu (gDeskMenu, ‘DRUR');
InsertMenu (gDeskMenu, 0);

aFi leffenu = Getlenu K letenulDD,

Inzerttenu CaFiletenu, 00

gEdi tMenu = GetMenu (KEditMenulD);
InsertMenu (gEditMenu, 0);

If you hold down the Option key or the Command key and hold down the mouse
button while the cursor is in an editor window title bar, THINK C displays a pop-up
menu that lists the names of the header files included by the project file. If you then
select one of the header file names, THINK C opens that file in the editor. This fea-
ture uses some internal project file information, so the source file must be part of a
project and must have already been compiled for this feature to work.

Searching for Text Strings

The Search menu supports full text search and replace capability. You can search for
text strings in single or multiple files. The search mechanism finds strings that match
the search string and can replace them with the replace string.

2: USING THINK C

You enter the search and replace information into the Find dialog box shown in
Figure 2-5, which appears when you choose Find from the Search menu (or use the
keyboard equivalent, Command-F).

Figure 2-5.

The Find dialog
box. Note the check
box options in the
lower left corner.

Search for:

Replace with:

[0 Whole Words Only
X wrap Around
X Ignore Case

O 6Grep [Multi-File Search

[Fina

J|(pon*t Fina] cancer]

After you specify a search string, you can find each occurrence of the string by using
Find Again (or Command-A). You can replace the occurrence of the search string
with the replace string by using Replace (Command-P) or Replace and Find Again
(Command-W), which replaces the current selection and moves the cursor to the
next occurrence of the string.

Say, for example, that you want to change the name of the global variable gKill to the
more descriptive gDeleteRefs. A global variable can occur in any file, so you’ll have to
search the entire project. Here is how you go about this in a project:

1. Find the first occurrence of gKill.

2. Select the word by double-clicking on it.

3. Choose Enter Selection from the Search menu (or press Command-E). This sets
the string for the search to the selected text, gKill.

4. Type gDeleteRefs. Because gKill was selected, the typing replaces this string.
5. Double-click on gDeleteRefs to select the word.

6. Choose Copy from the Edit menu (or press Command-C) to copy this word to

the Clipboard.

7. Choose Find from the Search menu (or press Command-F). Select the Replace
With edit box, and press Command-V to paste the Clipboard contents into the
dialog box. This sets the replace string to gDeleteRefs.

The Find dialog box reflects the search and replace options shown in
Figure 2-6. If you were replacing the search text in this source file only, you'd
be ready to go. But because you're looking for all the instances of a global vari-
able, you need to set up the search so that THINK C will scan all source files.

Figure 2-6.

The Find dialog
box. gKill is the
search string and
gDeleteRefs is the
replace string.

Search for:

Replace with:

gKill

gDeleteRefs

[J whole Words Only
X Wrap Around
X Ignore Case

[Grep QMultl—Flle Search

(

Find

J][Don’t Find](Cancel]

MACINTOSH C PROGRAMMING BY EXAMPLE

8. Click on the Multi-File Search check box. You're presented with a dialog box
that looks something like the one shown in Figure 2-7. Click the Check All but-
ton, and click OK.

FI’III’O 2-7. € file Edit Search Project Source Windows
The Multi-File I

Search dialog box. ;?;;T? Source files to 10
ot Include files to search: O w M
{
gDesk|
foane

Whole Words Only
[wrap Around [[
Ignore Case

Multi-File Search

Find | bon't Find) cancel)

You are ready to start the search. You can replace occurrences of gKill one at a time
with Replace and Find Again (Command-W) or replace all occurrences in a file at
once with Replace All (no keyboard equivalent). When you’re ready for the next file,
choose Find In Next File from the Search menu (Command-T).

To find function and global variable definitions, hold down the Option key or the
Command key and double-click on the function name or the variable name. THINK
C will open the source file in which the function or variable is defined and find the
first instance of the string. If you include all your global variables in a header file,
THINK C will open the source file containing the definition of main(.

[[]
Using the grep Option
The search routine has a built-in grep facility that lets you use a regular expression
instead of a literal string as your match string. Unlike a literal string, which specifies

grep

THINK C's grep feature is derived from a UNIX utility program of the same
name. The name grep is an acronym that stands for (g)lobal (r)egular
(e)xpression and (p)rint. When it comes to esoterica, UNIX excels. The
names of its five string-processing utilities—awk, grep, sed, lex, and yacc—
are classic examples of the jargon that permeates the computer sciences. The
name awk is made up of the first letters of its authors’ names: (A)ho, (W)ein-
berg, and (K)ernighan. The name sed is for a (s)tream (ed)itor. The lex utility
builds (lex)ical analyzers, and the name yacc is an acronym for (yet
(@nother ()ompiler (c)ompiler, which isn’t an entirely accurate name be-
cause it's only a parser generator. That’s some computer programming
folklore. We just thought you'd like to know.

22

2: USING THINK C

only one string to match, a regular expression specifies a set of strings to match. A
regular expression contains both alphanumeric characters and operator characters,
called “metacharacters,” that control comparisons, repetitions, and other features of
the expression-matching facility. Some examples will illustrate what we mean.

Any single character matches itself. For example,
a

matches a. You can freely concatenate expressions, just as you concatenate letters to
make words. Any string as a regular expression therefore matches itself. Thus, the
regular expression

hello

matches any occurrence of the string bello in the source text. The dot (period char-
acter) matches any single character. Therefore, the regular expression

matches g, 1, K; . (the period itself), or any other single character. By itself, the dot is
useless—it matches everything. But used with other characters, it becomes very
handy. The expression

c.t

matches cat, cot, cut, cmt, c_t, and any similar string. If you want to find the dot and
only the dot, however, you need to tell grep to treat the dot as a dot, not as a
metacharacter. You do this by “escaping” the metacharacter with the backslash. For
example, if you wanted to find all periods, you'd enter

\.
The expression that matches the backslash itself is

\

The origin of the term “escape,” which means to remove any special context
of a character, comes from data communications, in which programs send
special control characters in a data stream to control communications. For
example, in certain protocols, the end-of-text character (ETX) signals the
end of a data block and the beginning of a checksum value. If binary data is
being transmitted, however, it is likely that the ETX character (which has a
value of 3) is part of the data. The transmitting software therefore prefixes
any control character with the data-link escape character (DLE). The receiv-
ing program understands that any character following the escape is data, not
control, and therefore places the ETX in its data buffer.

23

MACINTOSH C PROGRAMMING BY EXAMPLE

If you wanted to find a word with an embedded blank, you’d escape the blank, as in
hello\ world

The A operator specifies the beginning of a line. Therefore, the expression
rc.t

matches the word cat if it occurs at the beginning of a line, but not the second syl-
lable of the word concatenate. The operator § matches the end of a line. The regular
expression

LU

matches all lines that contain a single three-character word.

The * operator specifies zero or more occurrences of an expression. The expression
caxt

matches cat, caaaaaaaaat, or ct.

You specify a “character class” between square braces. A character class is a set of
characters for grep to match against. The expression

[bchm]

matches a single character from the set b, c, b, or m. Again, this match might not be
useful by itself, but its value becomes evident when you concatenate character class
expressions, such as

[bchm]at
This expression matches the words bat, cat, bat, and mat.

You use the - operator in a character class to specify a range of characters. For
example,

[a-z]
matches any lowercase character, and
[A-Za-z]*

matches all text words. If you know C language syntax, you can use regular expres-
sions to find text words. (If you don't know C syntax, you'll learn about it in the next
chapter.) For example, the expression

ATA-7_a-z1[0-9A-Z_a-z]1*[1+()[1+$
works pretty well for finding your function declarations, and
ATA-71_a-z]1[0-9A-Z_a-z][J1*=[1*~[A-Z_a-z][0-9A-Z_a-z][1*;$

finds most assignment statements.

24

2: USING THINK C

Within the bounds of a character class, the A operator matches all characters except
the one that follows. For example,

[~a]
matches all characters except 4, and
[*A-Za-z]

matches any character that is not a letter. Note that, inside a character class, the cir-
cumflex does not match the beginning of a line. An expression such as

A[MA-Za-2z]

therefore matches any nonletter, but only at the beginning of a line. We apologize for
this apparent contradiction in meaning, but regular expressions are inherently con-
text dependent. Using grep takes a special mindset. Although grep might offer a
little more power than you think you’ll ever need, it’s nice to know it’s there. THINK
C’s grep supports other operators, and we refer you to the well-written THINK C
user’s manual for more detail.

Running with THINK €

After you've created your application’s source code, you'll probably want to run it.
THINK C’s Project and Source menus control compilation, code generation, and
program execution.

The Set Project Type command from the Project menu brings up a dialog box similar
to the one shown in Figure 2-8.

O Device Driver
O Code Resource

Figure 2-8.

The Set Project © Application § File Type

Type dialog box. OpDesk Accessory | ¢, vor
|

Partition (K) [Far CODE

[Far DATA

SIZE Flags B [JSeparate STRS
-

Notice the radio buttons in the upper left corner of the dialog box in Figure 2-8. The
Macintosh system software has different code configuration requirements for appli-
cations, desk accessories, and CDEVs. THINK C can create any kind of executable
code on the Macintosh and therefore can create four types of projects: applications,
desk accessories, device drivers, and code segments. All the examples in this book
use the Application option.

MACINTOSH C PROGRAMMING BY EXAMPLE

Each application has a file signature that consists of the file type and the creator. An
application is always of type APPL. The creator defines how Finder

B Maps an icon to an application
B Associates an application’s documents with the application

The partition size defines how much memory MultiFinder will allocate to the appli-
cation when it starts up. This is all the memory your application will get for both
code and data, so it has to be enough. But it should not be so much that it hogs all the
space on the user’s machine—your user might want to run a concurrent application.

You arrive at a reasonable value for the partition size by some initial guessing and
trial and error. If you find that your application is running out of memory, you can
bump up the value. It’s a good idea to run an application in the smallest partition
possible and in the partition that maximizes the number of applications your user
can open. Our sample applications all use small partitions, but larger applications re-
quire more memory.

To learn the size of your modules, use the Get Info command from the Source menu.
Its dialog box displays the code size, data size, STR size, and jump table size for each
module and segment and for the entire project. Code size is the size, in bytes, of the
object code. The Macintosh system software requires that object code be grouped in
segments (taken care of by the compiler’s “back end” code generator), and each seg-
ment is limited to 32K. The code size value gives you an idea of how large your seg-
ments are getting. See the sidebar on segmenting your code for more information on
how to keep your code segments under the 32K limit.

There are other limits on Macintosh applications: 32K on data size and 32K on jump
table size. If your data size is growing too large, which should occur only in some
large projects, or if you've allocated memory for some large arrays on the stack,
check the Separate STRS option in the Set Project Type dialog box to move your
program’s string constants into a resource and free up some space. The jump table
limit won’t be reached, again, except in large programs. If you're careful about
keeping your code modular and using static functions, you shouldn’t have any prob-
lem with the jump table size. But a vigilant programmer pays attention to organiza-
tion. Just because you don't need the space in small applications doesn’t mean that
you can be careless with space. We discuss techniques for managing jump table size
in Chapters 3 and 5.

Segmenting Your Code

If one of your code segments grows larger than 32K, you’ll observe some
strange behavior. When a segment grows too large, you have to move one or
more modules to another segment. The segments are separated visually in
the project window with a dotted line. It’s easy to resegment your project by
dragging a module name in the project window to another segment.

2: USING THINK C

You add new source modules to the project file with either of two Add commands
from the Source menu. You can’t compile a source file until it belongs to a project file
because THINK C writes the resulting object code into the project file. The Add
command without the ellipsis adds the file associated with the current editor win-
dow to the project file. The Add command with the ellipsis opens a standard file dia-
log box and lets you select files to add to the project file. This dialog box stays open,
letting you add multiple files with a single command, until you select the Cancel but-
ton. You remove a module from the project file by selecting the module name in the
project window and choosing Remove from the Source menu.

For most applications, you will need to add the MacTraps library to the project file.
You do that by selecting Add (with the ellipsis) from the Source menu, navigating to
the THINK C folder, selecting MacTraps, and clicking the Add button. THINK C will
load the MacTraps library contents into the project file either automatically, when
you run the program, or when you select the library name in the project window
and choose Load Library from THINK C'’s Source menu.

Compile and Make

To run a program, THINK C first compiles the source code into machine-readable
object code. The combination of a source file and its associated object code is called
a “module.” Whenever you change a file’s source code, you need to regenerate the
file’s object code by compiling it. A source file needs compilation when

B You first create it

B You modify it

B You modify another file that it includes

Compilation occurs on a file-by-file basis. In THINK C, the source file name must
end with the .c extension, and the compiler will not compile a file that doesn’t
belong to a project. You manually invoke compilation of a particular source file by
choosing Compile from the Source menu (Command-K) to compile either the file

displayed in the currently open source file window of the editor or the file selected
in the project window if no source file window is open.

If you’re accustomed to other C compilers—say UNIX’s cc, the Microsoft Optimizing
compiler for MS-DOS, or the MPW C compiler—you’re in for a pleasant surprise.

Checking Syntax -

You can check a source file’s syntax without invoking the compiler’s code

generator by choosing the Check Syntax command from the Source menu

(Command-Y). Because the code generator is not run, you can use this

method to check the syntax of a nonproject file or a file that doesn’t end in .c.
~ And because it doesn’t generate code, this feature proves to be slightly faster

than using Compile from the Source menu (Command-K).

27

MACINTOSH C PROGRAMMING BY EXAMPLE

The THINK C compiler is very fast. (Early versions of THINK C were called
Lightspeed C.) Because THINK C’s compiler is so fast, some developers use the
compiler to check their code’s syntax. The compiler stops when it finds a syntax er-
ror, opens a window into the file containing the error, puts the text cursor on the of-
fending line, and opens a message window that describes the error.

In a working environment, most programmers let THINK C'’s built-in make facility
take care of remembering which source files need recompilation. There are no
makefiles to create and maintain in THINK C, which uses the project file informa-
tion and derives the dependency information directly from the source files.

Choosing Run from the Project menu (Command-R) executes the program from
within the THINK C environment. The make facility is automatically invoked when
you run the program, so you never need to worry about whether your program is in
phase with the source code. You can set an environment option to run the program
either by beginning the recompilation process automatically or by putting up a dia-
log box that gives you the choice of compiling or of running the program without
changing the object code. You can also invoke the compilation process by choosing
Bring Up To Date from the Project menu (Command-U). If the project is already up
to date, the environment simply runs the program.

THINK C's make facility is almost always right about which files need compilation.
When it's wrong, that’s either because you've moved files into the project folder from
backup disks and the modification times therefore don’t apply to the current project
or because you've manually manipulated the flags signaling that a file needs to be
recompiled.

Choosing the Make command from the Source menu brings up the dialog box shown
in Figure 2-9. You easily turn recompilation on or off by clicking next to the module
name. There are also buttons to force compilation of all modules or none. When the
make facility becomes confused, it is best to click the Use Disk button and turn off
the Quick Scan option by clicking its check box. Then THINK C will reset the make
flags according to the results of its search through each header and source file for de-
pendency information and each file’s time of modification.

Figure 2-9.

The make dialog Source files to compile: 1

box. Click on Libraries to load: 0

module name AboutBox.c

. Init.
to compile that gt
module. Selection is Displage g4 T
DacUtil.c

indicated by check Paewtiie
. MenuUtil.o X Quick Scan

mark. Click on MiscUtil.c

name a second ﬁ

time to clear mark. Make [Don’t Mam [Cancel]

2: USING THINK C

The Debugger

The symbolic debugger completes the THINK C development package. The debug-
ger is a separate application that runs concurrently with the THINK C environment.
You must therefore have enough memory to run both the environment and the
debugger, and, in System 6, you must be running MultiFinder. (The System 7.0
Finder incorporates the concurrency features of MultiFinder.) You need only 2
megabytes for small projects like the examples in this book. But if you're serious
about developing average-size applications, you'll need more memory—about 4
megabytes minimum.

You'll find a second monitor useful when you start to work with the debugger. You
can use your primary screen for your program display and configure the THINK C
Debugger to run on the second monitor. In our opinion, this is the only way to
debug glitches in user-interface software. When we developed our Tycho Table
Maker application, we ran into problems with our user interface modules when the
debugger windows interacted with the Tycho windows they overlapped. As soon as
we moved the debugger to a second screen, the problems disappeared.

To run your program with the THINK C Debugger, choose Debug from the Project
menu. If you created your project without the debugging option, you'll need to
recompile all your source code so that the symbol information gets generated. Don’t
worry—THINK C knows this and does it for you automatically the first time you try
to run the program with the symbolic debugger.

When you have the THINK C Debugger up and running with your program, you
have three applications running: the THINK C environment, the THINK C Debug-
ger, and your program. This can get quite confusing, especially if you use keyboard
shortcuts and consequently don’t look at the menu bar to see which application is ac-
tually in the foreground.

The THINK C Debugger has two main windows: the source window and the data
window shown in Figure 2-10 on the next page. If you have a two-monitor system,
the source and data windows appear on the second screen. On a single-monitor sys-
tem, these windows appear on the lower third of the screen.

—

make and makefiles

The make facility in THINK C is based on a UNIX program that drove com-
pilation. In its day, make was a technological wonder, using a combination of
file dependency data and times of file modification data to determine which
files in a programming project needed recompilation. The project adminis-
trator or a programmer defined the dependency information in a text file
called the “makefile.” The makefile also contained information about how to
generate the object code, how to'link the object code, and what program-
ming libraries to include to create the stand-alone program.

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 2-10. € File Edit Debug Source Data Windows (2 B
The debugger miniGenAppm-5.0

= A Name obj size
windows. * AboutBox.c 370 [0

+ Applnit.c 414 |
+ DialogUtil.c 316
© Display.c 280
% DocUtil.c 308
¢ FileUtil.c 110
¢ MenuUtil.c 444

zoo

DialogPtr dialogPtr;
Boolean result;

i long waitTicks;
o® initApplication ¢);
i openfpplocs ()

FlushEvents (everyEvent, 0);

The Source Window

The source window’s name is that of the currently active source module (Shell.c in
Figure 2-10). When the debugger starts up, the module in the window will be the
one that contains the function main(). Execution will be at a halt at the first state-
ment in your main() function. This statement might be an assignment statement. At
the bottom left of the window you’ll see the current function’s name—when you
first start the debugger, main. As you continue to run your program within the
debugger source window, the name changes to that of the current function. If you
hold down the mouse button when the pointer is in this region, a pop-up menu ap-
pears that contains the names in the chain of calls that got you to that function. This
chain is sometimes called the “call stack.” (If the program burrows deeply into func-
tion after function, it might take longer than you expect to create this menu. Hang in
there—it will show up.) This menu is a live menu: When you select one of the func-
tion names, the debugger source window displays that function’s source code.

The six buttons at the top of the source window correspond to the first six menu
commands in the Debug menu. If you click one of the buttons or choose the corre-
sponding command from the Debug menu, the button appears to be pressed, as
shown in Figure 2-11. You can figure out where you are in the debugging process at
any time by looking at these buttons.

Figure 2-11.

The Go button is

bigbligbted when] DialogPtr dialogPtr
- : Boolean result;

you click it. [long wai tTicks;

initApplication (J;
openfippbocs (J;

FlushEvents (everyEvent, 0);

main Gl

T -

30

2: USING THINK C

The Go button begins execution of your program and continues execution until a
breakpoint or an error occurs.

The Step button executes a single statement and returns control to the debugger. In
C, a statement can contain multiple function calls, so if the line contains any function
calls, the functions are run as a single statement.

The Trace button works the way the Step button does in that it executes a single
statement. But if the current statement is a function call, Trace traces control flow
into the function and control stops at the first statement of the function.

The In button also steps into a function, but it executes any number of statements up
to the first statement of the next function in the statement stream.

The Out button steps out of the current function. Like In, it executes any number of
statements, but it stops at the statement after the current function returns.

The Stop button stops your program regardless of the part that is executing. You can
use the Command-period equivalent for Stop.

NOTE: Be careful when using Out around the main event loop. If you're in
the outermost level of your main() function and you select Out, the debugger
will never return! You'll bave to quit and restart your debugging session.

The arrow on the left side of the source window (visible in Figure 2-10) points to the
current statement. The little diamonds to the left of this arrow, called statement
markers, correspond to statements in your source file. Each statement marker is a
potential “breakpoint” at which the debugger will stop your program, letting you ex-
amine variables and other elements.

To set a breakpoint at a particular statement, click on its statement marker. The dia-
mond will turn black to indicate that the breakpoint is set. When you press the Go
button and execution reaches the statement, the debugger will stop the program and
place the current statement arrow at that line. To clear a breakpoint, click on its
darkened statement marker or select the line in the source window and choose Clear
Breakpoint from the debugger’s Source menu. You can remove all of a program’s
breakpoints at the same time by choosing Clear All Breakpoints from the debugger’s
Source menu.

Setting a breakpoint in another module

The source window displays the source module associated with the current state-
ment, and you can set breakpoints only in this module. The THINK C environment
and debugger were designed to work together, however, and you can set a break-
point in another module:

1. Switch out to THINK C by clicking in the project file window or selecting the
project window from the debugger’s Window menu.

31

MACINTOSH C PROGRAMMING BY EXAMPLE

2. Open the file that contains the module in which you want to set the
breakpoint.

3. Choose Debug from THINK C's Source menu (Command-G).

The source code for the new module will appear in the debugger’s source window,
so that you can set the new breakpoint by clicking on the appropriate statement’s
diamond.

Editing a source file while debugging

The linkage between the THINK C environment and the debugger works both
ways: You can invoke the THINK C editor on the source file displayed in the debug-
ger window by choosing Edit from the debugger’s Source menu (Command-E). This
is a handy feature when you discover a problem and want to make a quick fix in the
source code without quitting your program (the program you’re debugging, not
THINK C or the THINK C Debugger).

Setting a temporary breakpoint

You set a temporary breakpoint in your program by holding down the Command
key or the Option key while you click on a statement marker. After you release the
mouse button, the debugger will run your program up to that breakpoint and then
clear the breakpoint. Two other commands from the Debug menu, Go Until Here
and Skip Until Here, create something like temporary breakpoints. Both work with
selections in the source window. After you select a statement (by double-clicking on
the corresponding line in the source window), choosing Go Until Here (Command-
H) will cause your program to execute up to the selected statement.

The Skip Until Here command “jumps” the current statement arrow to a statement
selection without executing the code between the arrow’s old location and its new
location. This feature can be useful for skipping over code that you know has bugs,
when you want to test the various cases of a determinant expression, or even when
you want to jump backward to re-execute some statements. But be smart about how

Stuck in Auto-Mode

The debugger has what the documentation calls its “auto-mode.” A more
descriptive name might be “sticky mode.” If you hold down the Option key
or the Command key when you click on one of the buttons at the top of the
debugger’s source window (Go, Step, In, Out, Trace, or Stop), the debugger
will loop on each command as if the button were stuck. For example, if
you're in auto-Step mode, the debugger will execute the next instruction,
stop, update the source and data windows, and then step again, as if you had
clicked the Step button again. The auto-mode is useful when you would like
to watch a variable’s value change as the program executes. You cancel auto-
mode by pressing Command-Shift-Period.

2: USING THINK C

you use Skip Until Here. Don't skip over allocations and then try to use that memory,
for example. And don't skip from one stack frame to another; youw'll mess up the pro-
gram stack.

Coming to a screaming halt

Sometimes programmers inadvertently create infinite Ioops in their code. If your
program is running but isn’t responding to commands or if a breakpoint you set
hasn’t been reached in a reasonable amount of time, you can halt program execution
by pressing Command-Shift-Period—what Symantec calls “the panic button.” This
key combination stops your program, invokes the debugger, and places the current
statement arrow wherever the program was when you pressed the keys. The key
combination works when the program itself is running in the foreground, but it
won'’t work if your program intercepts the panic button (Command-Shift-Period).

Setting a conditional breakpoint

The THINK C Debugger also supports conditional breakpoints, called “watch-
points” in some debuggers. A conditional breakpoint halts execution only when a
condition fails. To set up a conditional breakpoint:

1. Click on the statement marker in the source window.

2. Double-click on the statement line to select the statement.
3. Click on an expression in the data window.

4. Choose Attach Condition from the debugger’s Source menu.

The statement marker turns gray to signify a conditional breakpoint.

You clear a conditional breakpoint just as you would a regular breakpoint—by
clicking on the corresponding statement marker or by selecting the statement and
choosing Clear Breakpoint from the Source menu.

If you want to check the condition associated with a conditional breakpoint, select
the statement and choose Show Condition from the Source menu.

The Data Window

The condition governing a conditional breakpoint depends on an expression in the
debugger’s data window. In the data window, you can examine the contents of your
program’s variables. The data window has three parts. The upper part is an edit box
in which you can enter variable names or C language expressions. Below the edit
box are two columns: The left column contains the names of data objects; the right
column contains the values of the objects. (Objects in this discussion have nothing
to do with object-oriented programming. They re basically variables, but they could
be constants or enumeration types.)

To display a variable, either enter its name in the edit box at the top of the data win-
dow or double-click on the variable name in the source window to select it and then
choose Copy To Data from the debugger’s Edit menu (Command-D).

33

MACINTOSH C PROGRAMMING BY EXAMPLE

The data window supports many of the fundamental C data types. The types it
supports are listed in the debugger’s Data menu. When a data object’s value is dis-
played in the right column of the data window, you can format the value by selecting
it and then choosing the appropriate format type from the Data menu. To change an
object’s value, select the value in the right column to place the value in the edit box,
enter the new value in the edit text box, and press Return or Enter. The value must
be consistent with the object’s type and with the rules of the C language. You can't
reassign a constant value, for example.

If the data value is a pointer or a handle, double-clicking on it in the right column
will create a new dereferenced value in the data window. This feature is handy for
tracking through memory to look at objects on the heap. If the data object is a
pointer to a structure, a subsequent double-click on the data object’s value will open
a window on the structure values. The data window automatically uses data struc-
ture information from the project file and the header files, so formatting and field in-
formation in the data window match the source code in its (the source code’s)
window.

Each data object in the data window has a specific context in which its value is valid.
The rules that govern the validity of data object values in contexts follow the scope
rules of the C language. (See Chapter 3 for more information on the scope of data ob-
jects in C.) For example, a local variable’s value is valid only within the context of the
function in which the variable is defined. You can therefore have three local vari-
ables named 7 in the data window, each with a different context. And, because you'll
probably forget the context of a value, especially if you have three #’s in your data
window, you can see the context of a data window’s data object by selecting the
data object’s name in the left column of the data window and choosing Show Con-
text from the Data menu. The source window will show the function in the source
file in which the object is defined.

Using the THINK C environment with the THINK C Debugger is like using any
tool—it takes practice. Some of the features will become second nature to you.
Others you’ll never get used to. All in all, we’re sure that you'll find THINK C as
comfortable a development environment as we do. As the product has evolved, Sym-
antec has delivered more features, compatibility with new systems, and com-
patibility with other development environments, including their popular THINK
Pascal and Apple’s MPW Pascal. If you use THINK C as your primary development
environment, you can rest assured that your investment will be protected. This prod-
uct is here to stay.

In this chapter, we’ve made a few assumptions about your knowledge of C. In the
next chapter, we’ll survey the C programming language as it applies to the Mac-
intosh. If you're already pretty good with C, you might want to catch up with us in
Chapter 4. Otherwise, turn the page.

34

3

A C PRIMER

Developed at Bell Laboratories in the early 1970s by UNIX pioneer Dennis Ritchie, C
is today the most popular professional programming language in the world. De-
scribed by its author as a “low-level language,” C has operators for bit manipulation
and pointer arithmetic yet supports most of the functionality of a high-level language
with data structures and typing and a wide variety of operators and program control
semantics. C is based on ALGOL (short for ALGOrithmic Language), a language of
the 1950s and 1960s that has its roots in the work of the computer science pioneers
E. Dijkstra, C.A.E. Hoare, and P. Naur. You can trace the ancestry of all the structured
languages—Pascal and PL/I as well as C—back to ALGOL. Their common ancestry
explains why Pascal and C have similar language constructs, and why we can grate-
fully program the Mac in C now, instead of Pascal.

C is a primitive language. It has none of the built-in features for input and output,
string manipulation, and higher mathematics that you find in many languages. C’s
features come in function libraries, which makes C an ideal language to implement
in a variety of programming environments. The function libraries can contain most
of the environmental dependencies. Thanks to this arrangement, C programs tend to
be “portable,” that is, easily moved from one machine environment to another.

The strategy has been a success: More code is written in C than in any other lan-
guage. Engineers have ported the C language to dozens of computing environments.
Today, you'll find a C compiler for every major computer on the market.

Of course, being all things to all environments has involved trade-offs. As every en-
vironment got its C compiler, it became harder to port a C program from one envi-
ronment to another, primarily because of variations in the function libraries. To
standardize the language, the American National Standards Institute (ANSI) con-
vened the X3J11 Committee on C. As a result of their work, we now have an ANSI
standard for the C function libraries. THINK C’s ANSI library supports the standard,
and version 5.0 supports the standard’s language extensions.

35

MACINTOSH C PROGRAMMING BY EXAMPLE

C Languvage Fundamentals

Now that you know something about the history and evolution of the C language,
we’d like to turn your attention to the language itself. Any section of a C program is
likely to contain these language elements:

W Variables. Created by you, the programmer. Used for data storage and expres-
sion operands.

B Function calls. Created by you or provided with the compiler in function li-
braries. Used to direct a program to execute collateral pieces of code, called
functions, and then return and pick up program execution in the instruction
stream immediately following the function call.

B Operators. Built into the language. Used for assignment, arithmetic, com-
parison, and so on.

B Control statements. Built into the language. Used to control the order in which
functions and other statements are executed.

If we were to compare C to a natural language such as English, the variables, func-
tion calls, and operators would be the parts of speech.

Case and Spaces

C, like English, is a case-sensitive language—you can use either uppercase or lower-
case letters for variable and function names, but an uppercase letter will be treated
distinctly from a lowercase one. In the following example, the newWindow variable
and the NewWindow function are different objects:

WindowPtr newWindow;
newWindow = NewWindow (OL, &winRect, "\p", 0, 0, -1L, 1, OL);

How do you know which is which? The clues are in the code. The position of the
element newWindow on the left side of an assignment operator signifies that the ele-
ments on the right side of the equals sign will be assigned to newWindow. An ele-
ment that is assigned to is a variable, so we know that newWindow is a variable.

On the right side of the equals sign, NewWindow is followed by an argument list
enclosed in parentheses—a tip-off that NewWindow is a function. (It is, in fact, a
Macintosh-defined routine.)

Of course, you could eliminate any potential confusion of the variable with the func-
tion by calling the variable newWindow something else—say, myWindow. But that’s
not necessary because C is case sensitive. You can create names that read the same
but that are treated differently by the C compiler.

The C compiler is sensitive to case but oblivious to white space (spaces, tabs, extra
lines, and other nonprinting characters). You can use white space in your programs to
make them more readable, but the compiler doesn’t care. Nor does a C compiler care
about line and column numbers in a C source file the way compilers of other program-
ming languages, notably Basic and FORTRAN, do. You can write an assignment as

3: ACPRIMER

_) -

The three statements look the same to a C compiler.

Comments

There’s no such thing as self-documenting code! Comments in a program help you
remember why you did what you did. In C, one way to treat comments is to put them
between /* and +/, as in

/* this is a comment */

A comment can span multiple lines, but you can’t “nest” comments. After you open a
comment with /+, the comment is closed at the first /. Watch what happens in this
example:

/* comment out the following code:
if (ISDIRTY(theDoc))
SelectWindow (theDoc); /* bring to front and highlight */

*/
if (doCloseDoc (theDoc) == kSaveChangeCancel)
{
result = false; /* user canceled */
break;
}

You'll get a syntax error at the first +/, right after the word highlight, because of the
nested comment after SelectWindow. It’s a good idea to use comments to describe
single lines of source code only. One easy way to avoid nested comment problems is
to comment on a whole section of source code using the #if O directive, as in this
example:

fif o
if (ISDIRTY(theDoc))
SelectWindow (theDoc); /+ bring to front and highlight #*/

fendif
if (doCloseDoc (theDoc) == kSaveChangeCancel)
{
result = false; /* user canceled */
break;
}

37

MACINTOSH C PROGRAMMING BY EXAMPLE

The #if Odirective tells the compiler to ignore everything between the #if Oand the
#endif in the compilation stream. Of course, you still need to be careful not to nest
#if O directives, but along the left edge of the code they’re easier to spot than a com-
ment usually is.

ANSI C offers another way to indicate comments, and the THINK C 5.0 compiler
supports the new commenting style. The double slash, //, “comments out” an entire
line, as in

// this is a comment

The comment ends with the source line. Double slash comments don't span multiple
lines:

// this is a comment

this is not!

We'll use all three kinds of comment notation in this book. Now, we’ll take up the C
language elements.

Statements and Expressions

If variables, function calls, and operators are the words of the language, statements
are the complete sentences. (The compiler, by the way, will flag an incomplete state-
ment as a syntax error.) A statement is closed with a semicolon. Here are some ex-
amples of statements:

i=6;
theDoc->type |= docParams->attributes & kDocTypeMask;

SFGetFile (aPt, promptStr, OL, @, OL, OL, &reply);

Although C has no line numbers, programmers continue to use “line of code” as a
unit of measurement that helps them quantify the source size of a program, as in
“This program has 100,000 lines of code.” Old habits die hard. The number of state-
ments would yield more information about the size of a program, but you’ll never
hear a C programmer say, “This program has 75,000 statements.”

A statement can span multiple lines, as in

if (theHandle) // if theHandle is nonzero,
DisposHandle (theHandle); // dispose of it

The example is one statement. To satisfy ourselves that it is, we could rewrite the
code:

if (theHandle) DisposHandle (theHandle);

We prefer the first form because the indentation of the second line illustrates its de-
pendency on the first.

3: AC PRIMER

By the way, an empty statement is perfectly legal:

Using an empty, or null, statement is a logical thing to do in some contexts, as in the
branch of a conditional:

if (!theDoc) // if theDoc is equal to 0,
H // do nothing
else
return (theDoc->type); // otherwise, return its type field

In this example, if theDoc is equal to 0, no action is required; otherwise, the frag-
ment returns the value of the document’s type field. (We'll explain why in detail as
we go on.)

With a little rethinking of the problem, you can usually structure a portion of code
so that you don't need the null statement:

if (theDoc)
return (theDoc->type);

This statement says, “If the value of theDoc is nonzero, return the document’s type
field.” The two example statements are equivalent, but the second requires less code
and is therefore more efficient. In programming, efficiency counts.

In both statements, theDoc is an “expression,” a fragment of code that yields a value.
In our example, the value is simply the value of the variable, theDoc. Expressions are
used all the time in C and are usually the results of assignments or function calls.
The following three expressions

i=6
i == 6
getchar (filePtr)

all yield values. The first is simply the value of i—in this case, 6. The second com-
pares i to the constant 6. If the value of i is actually 6, the value of this expression is
1, which stands for true. If the value of 7 isn't 6, the value of the expression is 0, or
Jfalse. The final expression is a function call, getchar(), that returns the next charac-
ter from some input stream of characters. The value of that expression is the value
returned from the function, a character value.

Variables

Variables store data—numbers, characters, strings, pointers, handles, or data struc-
tures—the value of which can vary. The data is stored somewhere in RAM. Think of
a variable as having two parts: a name and a value.

The name is your access to the variable—for storing a value in the variable or
retrieving the value stored in the variable. You can use any of the uppercase or
lowercase alphabetic characters in a variable name, as well as the numeric characters
and the underscore (). A variable name cannot begin with a number.

39

MACINTOSH C PROGRAMMING BY EXAMPLE

In this book we use a mixed uppercase and lowercase convention in naming our
variables. We begin with a lowercase letter and then begin each syllable or word in
the name with an uppercase letter. This is a common practice among C program-
mers in general, and particularly among Macintosh C programmers.

You can create long variable names, as in
theDocumentPrintRecordHandle

The length of a variable name is up to you. You can use any number of characters in
a variable name, although it’s usually a good idea to limit the length of a variable
name to 32 characters.

The kind of data you store in a variable depends on its use. You might have charac-
ter data in your variable if the variable will store a person’s name. You might need to
store fractional numerical data with great precision in your variable. The format of
the data determines the variable’s type.

A character is small—8 bits. You can store one character per byte in RAM. A frac-
tional numeric value, called a floating point or real number, is 10 times as large as a
character—80 bits. It takes 10 bytes to store a floating point number.

The variable’s type tells the compiler how many bytes to allocate for a particular
variable. The variable’s type also lets the compiler know how to operate on the data.
Multiplying two real numbers requires different steps than multiplying two whole
numbers (called “integers”). The type of the variable operands on either side of the
multiplication operator determines what instructions the compiler generates to per-
form the operation.

The six built-in variable types in C are shown in the following table by their declara-
tors (type names), their sizes, and the kinds of data they can store. Notice that two of
the six C variable types aren’t used in C programs for the Mac.

Type Name

(Declarator) THINK C Size Used For

char 8 bits character data

int 16 bits, signed whole numbers (not used on the Mac)
short 16 bits whole numbers (< 32768)

long 32 bits whole numbers (> 32767)

Sfloat 32 bits real numbers (not used on the Mac)
short double 64 bits real numbers

double 80 bits real numbers

Defining a Variable

You must define a variable in your program before you can use it. When you define
the variable, the compiler creates space for it in RAM and maps its name to that

40

3: ACPRIMER

memory location. Because you specify a type for the variable when you define it, the
compiler knows how much space to create for the variable. The syntax for a single
variable definition is

typename varname;
You can define a series of variables of the same type in a single statement, as in

typename varl, var2, var3;

Character variables—char
As our table indicates, the smallest data type, a 1-byte variable, is the char. A com-
mon name for a charvariable is ¢, as in this variable definition:

char c;

integer variables—short and long
An integer variable is a simple numeric variable. A common name for an #nt variable
is 4, as in this variable definition:

int i
Symantec chose to use a 2-byte int for THINK C versions 1.0 through 4.0 (to coin-

cide with the size of their Pascal integer type), and Apple chose to use a 4-byte int
for MPW C (to match the register size of the 68000 processor).

CAUTION: Don't use the int type on the Mac.

In THINK C 5.0, you can configure the compiler to use either a 2-byte or a 4-byte
int. Even so, when you define an integer in THINK C, it’s a good idea not to use ##t;
use the short or long type name instead. The short type takes up 16 bits. The long
type takes up 32 bits. If you use short or long instead of int, you'll know what you’re
getting, no matter where your code ends up being compiled. Explicitly type your in-
teger variable as either short or long. Common names for shortand long integer vari-
ables appear in these variable definitions:

short i, js /* 2 bytes */
Tong 1; /+ 4 bytes */

How do you know whether to use short or long for your data type? Consider the size
of any number the variable might be required to hold. If the number will always be
less than 32,768, define your variable as a short type. If the number will be greater
than 32,767 but less than 2,147,483,648, define your variable as a long type. If the
number will be larger than 2,147,483,647, define your variable as a double type.

Real variables—float, short double, and double

In THINK C, real variables come in three types. The smallest THINK C real variable
takes up 4 bytes and is declared with the keyword float. The next largest takes up 8
bytes and is declared with short double. The largest takes up 10 bytes and is declared
with the keyword double.

41

MACINTOSH C PROGRAMMING BY EXAMPLE

Which do you use? Unless you're really under a space constraint, we recommend
that you use 10-byte double variables. These largest real variables follow the
IEEE-488 standard for real numbers and are supported by SANE, the Macintosh’s
built-in floating point routine library, so processing values of this type is faster than
processing values of either of the shorter real variables.

NOTE: Floating point aritbmetic is inberently slow. Avoid it unless it’s ab-
solutely necessary. (And it rarely is!)

The fixed point alternative Using fixed point real variables is an efficient alterna-
tive to using floating point real variables. While not supported with a built-in
declarator as the “native” C types are, fixed point variables are supported by the
Macintosh Toolbox. Fixed point values give your application precision approaching
that of floating point values, and simple operations on them, like addition and sub-
traction, are as fast as operations on long integer values.

That’s because fixed point addition and subtraction are essentially the same opera-
tions as long integer addition and subtraction. A fixed point variable is 32 bits wide,
the same size as a Jong. You declare a fixed variable using the Fixed type:

Fixed fsin, fcos;

The format of the number allows it to contain a fractional part as well as an integer
part. Figure 3-1 illustrates how Fixed numbers work.

Upper 16 bits (integer part) Lower 16 bits (fractional part)

Figure 3-1.
AFixed value. The value shown, 0x00018000L, represents1.5.

The upper 16 bits contain the integer part of the value, so a Fixed variable is like a
short integer variable in that a variable of Fixed type can range from —32768 through
+32767. The lower 16 bits hold the fractional part of the value. Because a Fixed value
is simply a long integer, addition of Fixed values is a simple matter of /ong addition.
Figure 3-2 illustrates the addition operation with Fixed numbers. The Toolbox con-
tains routines for performing more complex operations on Fixed numbers—
multiplication, division, and conversion of fixed point values to floating point values.
Fixed multiplication and division are of course more complex than integer
multiplication and division and are therefore a bit slower. But they are much faster
operations than their floating point counterparts.

A Fixed type is a user-defined type—one not native to C that is created by a user. In
the case of the Fixed type, the user was Apple, and the THINK C compiler supports

42

3: ACPRIMER

Apple’s Fixed type. The user can also define derived data types in C. We'll get into
greater detail about user-defined types in 2 moment.

Upper 16 bits (integer part) Lower 16 bits (fractional part)
o 0] o 1 & o] 0 0]
+ o} 0] 0] 1 & 0] 0 0
0 0] o] 3 0] o] 0 0]
Figure 3-2.

The addition of two Fixed numbers (1.5 + 1.5 = 3.0).

Unsigned variables

Normally, integer variables are “signed,” meaning that they can store either positive
or negative numbers. A signed short integer can hold values in the range —32768
through +32767. If you're not interested in negative values, you can use the unsigned
keyword to force the compiler to interpret the contents of the variable in the range 0
through 65535. (See the sidebar on two’s complement storage to see how the com-
puter stores signed and unsigned numbers.)

Here are some examples of unsigned variable definitions:
unsigned char c;
unsigned short i;

unsigned long 1;

Two’'s Complement Storage

To understand the unsigned keyword’s significance, you need to understand -
that a computer stores positive and negative numbers differently. The com-
puter stores positive numbers as pure binary numbers. For example, 1 is
stored as 0001, 2 is stored as 0002, 3 as 0003, etc. But the computer stores
negative numbers in two's complement form -1 is stored as FFFF, -2 as
'FFFE, -3 as FFFD, and so on. :

MACINTOSH C PROGRAMMING BY EXAMPLE

User-defined types

The types of the variables you use in a program aren't limited to the types native to
C. Using the typedef keyword, you can declare your own, user-defined, types.
Here’s an example declaration for a type named ushort:

typedef unsigned short ushort;
After this declaration, you define your own variable as
ushort i;

The Mac System software has many of its own user-defined types. Here are the dec-
larations for a few of them.

typedef unsigned short OSErr;

typedef unsigned char Byte;

typedef char * Ptr;

typedef char ** Handle;

typedef short (xProcPtr)();

typedef long Fixed, Fract;

typedef long Size;

typedef enum { false, true, FALSE = @, TRUE } Boolean;
typedef unsigned char Str255[256];

You should get used to using these Apple-defined types as you program.

Now that you know how to create variables, you’ll probably want to assign values to
them and use constant values for those assignments. Here are some native and user-
defined variable types and examples of appropriate constant values for them.

Variable Type = Sample Constant Comment

decimal short 1 Integers are base-10 numbers.

integer

decimal long 16L Notice the “L” after the number.

integer

octal integer \7 The backslash signifies base 8.

hexadecimal OxFFFF The leading “0x” signifies base 16.

integer

real 1.44 The decimal point signifies a real
number.

character X' Notice the single quotation marks.

string "Now is the time for all good men" Notice the double quotation marks.

3: ACPRIMER

Symbolic constants

A symbolic constant is a constant value shown by a name, not by the value. Using
symbolic constants, assigning names to your constant values, gives meaning to your
code. Rather than simply having a naked 15 in your code, as in this expression,

right --left - 15;

you can help describe what’s going on in your code by changing the 15 in the ex-
pression to a symbolic constant that has a meaning, as in

right - left - kScrollBarWidth;

You define symbolic constants with the #define preprocessor directive:

fdefine true 1

fdefine false)

fdefine kScrol1BarWidth 15

fidefine pi 3.141592654

fdefine KErrMsg "Warning: Call tech support"
fdefine kBytesPerInt 2

Naming symbolic constants

If you've looked at any of the old-time, traditional C books, you've probably noticed
that in most of them, the authors put their symbolic constant names in all capital let-
ters. Indeed, when Kurt wrote UNIX-based programs, he too used all capital letters
in his symbolic constant names, as did just about everyone else. It used to be that the
preprocessor, the part of the compiler that processes #define directives, was not case
sensitive and therefore couldn’t distinguish among words like ERRMSG, errMsg, and
errmsg. C programmers therefore chose to adopt the convention of defining con-
stant names using all capitals, in order to foster a means by which a constant could
readily be identified in a block of code. The prominence of constant names helped
programmers avoid duplicating constant names.

The modern preprocessor is case sensitive, so the name ERRMSG is different from
the name errMsg, and both are different from the name errmsg. We think that mix-
ing uppercase and lowercase characters in any constant name helps to break the
word up into syllables (and that words that consist entirely of capital letters are ugly!
and therefore like to name our constants as we name our variables, with mixed up-
percase and lowercase letters. To distinguish most symbolic constants from variables,
though, we begin the name of a constant with a lowercase &, for “konstant.”

Sometimes you need to define symbolic constants for nonprintable characters such
as tab, backspace, linefeed, carriage return, and formfeed and for serial control char-
acters such as XON and XOFF. You represent these characters with octal or hexadeci-
mal constants. You construct octal constants from the character set 0.. 7(because they
are base-8 numbers) and begin them with a backslash. Here are some examples of oc-
tal constants:

fdefine kBell \7
fdefine kFormFeed \14 /% octal constants */

45

MACINTOSH C PROGRAMMING BY EXAMPLE

If you prefer to work in base-16 numbers, you construct hexadecimal constants from
- the character set 0..9 and a..f or A..F, beginning with the prefix Ox (zero-x). Here
are some examples of hexadecimal constants:

fdefine kBackSpace 0x08

ftdefine kTab 0x09
fidefine kLineFeed 0x0A
fHdefine kReturn 0x0D /* hexadecimal constants */

C defines special “escape sequences” for some of these characters. Although escape
sequences are remnants of terminal-based implementations of C, they’re supported
in THINK C:

#define kBackSpace "\b'

fdefine kTab "t'

fdefine kLineFeed "\n'

fdefine kReturn \r' /* special C char constants */
Assignment

You assign a value to a variable with the equals sign (=). Here are some integer type
definitions followed by examples of integer assignment:

short x, y;

long z;

x=0; /* C ignores white space */
y=4 /* both are valid assignments */
z=12;

Here is a floating point type definition followed by some floating point assignments:

double sinx, cosy;

sinx = 0.707106781;
cosy = 0.866025403;

Here is a character assignment:
c = ' K L] :

Here is a user-defined type definition followed by some assignments:

Point pt;
pt.h = 40;
pt.v = 10;

You can also assign a value to a variable when you define the variable, as in

short i =0, j = 10;

3: ACPRIMER

Multiple assignments in one statement are also allowed, as long as the assignment
doesn't occur during definition. Assignment is performed from right to left.

short i, j, k;

This kind of assignment is more efficient than assigning each variable a value sepa-
rately, as in

0;
0;
0;

J
k

But note that in multiple assignments, values are assigned from right to left. Thus,
first & = O, then j = k& (which is 0), and then 7 = . The more complex your assign-
ments, the more likely that multiple assignments might get you into trouble.

Avtomatic Type Conversion

At assignment, the compiler automatically converts the types of values. The
definition

double x = 1;

defines a variable x of type double and assigns it a value of exactly 1.0, even though
the constant 1 is an integer.

If you're not careful, you can be surprised by the outcome of a type conversion at
assignment, as in this example:

short X3
double Yy, Z;
y=x=2.5;

Z =X +Yy; /* what is the answer? */

Surprisingly, z is 4.0. That’s because the assignment x = 2.5 doesn’t work the way
you might expect it to. The variable x is a short, so it can store integers only. The
compiler therefore automatically reduces 2.5 to 2.0. The variable y gets its value
from x, so it will be assigned 2.0as well. And 2 + 2= 4.

In the similar example,

short y:
double X, Z3
y=x=2.5;

Z=Xx+Yy; /* what is the answer? */

47

MACINTOSH C PROGRAMMING BY EXAMPLE

z is 4.5. The difference between the two examples lies in their variable definitions.
Although the source code is identical in both fragments, the value of z depends on
the variable type. In the second example, 2.5 is assigned to the x variable now of
type double and thus retains its full fractional value. But y, of the short type, is an
integer and is therefore assigned the value 2.0. The value of zis therefore 2.5 + 2.0.

Operators

You haven't learned all you need to know about variables yet—we’ll get back to
them soon. But data storage is only one aspect of the C language. You need to know
something about the operators you use to affect the data. C supports a wealth of
built-in operators to manipulate the data held in a variable.

Binary Operators

A binary operator requires two operands. If @ and b are operands—variables, con-
stants, or expressions—expressions using the binary operators take the form

aopb
where o0p is one of these operators:
* Multiply
/ Divide
% Modulus
= Assign
- Subtract
+ Add
>> Bit shift right
<< Bit shift left
> Greater than
< Less than
<= Less than or equal to
>= Greater than or equal to
== Equal to
I= Not equal to
& Bitwise AND
A Bitwise XOR (exclusive OR)
I Bitwise OR
&& Logical AND
I Logical OR

3: ACPRIMER

The operands can be variables, constants, or the results of other expressions. Here
are some example expressions:

i==12 /* is the value of i equal to 12?7 #*/
¢ & Ox00FF /+ yields the Tower 8 bits of c */
x <1 /* shift x left by 1 bit %/

(count > 0) && theDoc /* two conditions:
count is greater than @ and
theDoc is nonzero */

Assignment operators
In addition to the simple equals sign (=), C has a wealth of assignment operators.
Any expression of the form

a=aopb

can be rewritten using an assignment operator. For example, the expression
a=a+b;

is rewritten, using the += assignment operator, as
a+=b;

These are binary assignment operators because they take the binary form
aopb

The variable on the left side of the operator gets the assignment. Here is a table that
shows the binary assignment operators, their uses, and their effects.

Operator Usage Result in a After Operation
= a=b - b

+= a+=b aplusb

—= a—=b a minus b

= a+=b atimes b

/= a/=b a divided by b

%= a%=b a modulus b

>>= a>>=b a shifted right by b bits
<<= a<<=b a shifted left by b bits
&= a&=b a ANDed with b

A= aA=b a exclusive ORed with b
= al=b a ORed with b

49

MACINTOSH C PROGRAMMING BY EXAMPLE

Unary Operators

A unary operator, as you might expect, affects only one operand, and the operand
appears to the right of the operator in the instruction stream. Here’s the syntax for a
unary operator:

opa

where op is the operation and a is the operand. Here are the unary operators:

* Pointer
dereference
& Address
- Negate value
! Logical NOT
~ Bitwise NOT
++ Increment
— Decrement
sizeof Size in bytes

Pointer dereference and address operators return the result of an address calcula-
tion. We'll cover more of pointers and addresses later in this chapter.

Increment and decrement operators
C provides two unary operators for incrementing and decrementing integer
variables:

++and —

A shorthand means of applying an assignment, the increment and decrement opera-
tors were designed to take advantage of special register instructions. The ++ or —
operator means that a variable is assigned itself plus or minus 1:

i++ isthesameas i=i+1
i-——isthe sameasi=i—1

You can use the increment and decrement operators as either postfix or prefix op-
erators, but the results can be different. Consider these two examples:

X =5;

Yy = x++; /* y equals 5, and x = 6 */
and

X =5;

y = Hx; /* y and x equal 6 */

In the first example, x++ is a postfix-increment operation, so the assignment occurs
first, and then the value of x increases. Thus, after the statement executes, y is 5 and
x has become 6. In the second example, ++xis a prefix-increment operation, so the
value of x gets “bumped” before the assignment takes place. After the statement
executes, both x and y equal 6.

3: A C PRIMER

You would typically use an increment or a decrement operator to manipulate a loop
variable, as in a_for loop:

for (i =0 ; i < someMax ; i++)

We'll talk more about for loops in a moment.

The Ternary Operator
C’s ternary operator has three parts:
?, :, and some operator like — or ++

You use the ternary operator when you could otherwise use an if-then-else state-
ment, as in

if (lc)
return;
else
c--s

According to this statement, if ¢ is 0, execution returns to the caller; otherwise, c is

decremented. We can rewrite this statement, using the ternary operator:

Ic ? return : c--;

No wonder C has a reputation for being terse! The syntax for using this operator is
expression ? true part: untrue part

C’s evaluation of an expression involving a ternary operator is If the expression is
true, do the true part; otherwise, do the untrue part.

Operator precedence determines the order in which expressions will be evaluated.
A simple expression like

X*y+z

can have two different results, depending on whether the multiplication is per-
formed before or after the addition.

C’s built-in sequence of operator precedence, highest precedence to lowest prece-
dence, is shown in this list:

on-—. A

! ~ ++ —— — (cast) * & sizeof |

+/ % &&

+ - [l

<< >> 2%

< <+ > >+ = += —= /= *= elcC.
== I=

&

MACINTOSH C PROGRAMMING BY EXAMPLE

To force evaluation in some other sequence, you can use parentheses. Normally, the
expression

X*y+z
would add z to the product of x and y because the * operator has a higher prece-

dence than the + operator. If you wanted to multiply x by the sum of y and 2, you
would write

x+(y+2)
Expressions that appear within parentheses are evaluated first.

Casting

Now that you're familiar with the operators in C, let’s continue our discussion of data
and storage. Sometimes (usually when assigning pointers) you need to explicitly
change the type of a variable. You perform temporary type conversion with a “cast.”
Casting forces a type conversion for the duration of one statement—the one in
which the type cast variable is used. You put the new type name in parentheses,
before the variable whose type you want to cast. In the next example, we’ll cast x to
a short so that the fractional number will be truncated to a whole number:

double X = 3.141592654,
VH

y = (short) x;

The value of x is temporarily cast to short. The resulting value of y is 3.0.

You can also use casting to round to the nearest integer, as in this example:

double X, ¥

X =4.67;

y = (short) (x + 0.5);
X = 4.45;

y = (short) (x + 0.5);

In the example, when x is greater than 4.5, x + 0.5 is greater than 5, and with trun-
cation caused by the cast to short, y equals 5.0. When x is less than 4.5, x + 0.5 is
less than 5, and the truncation results in a return of the integer part, 4: y equals 4.0.

Storage Classes and Scope

In some languages, Basic, for instance, you can use a variable anywhere in a pro-
gram. In C, the places in which you can use a variable—the “scope” of the vari-
able—are governed by the variable’s storage class. A variable’s storage class
determines where in RAM the compiler will put the variable. The two storage
classes are “automatic” and “static.”

3: ACPRIMER

Avtomatic Variables

An automatic variable resides on the stack. If you don’'t know what a stack is, don't
worry about it—you don’t have to know anything about the stack to create an auto-
matic variable. You define an automatic variable inside a function definition. The
compiler automatically creates the variable (on the stack) when the function begins
to execute and destroys the variable when the function returns. (We'll get to more
about functions in a moment.) Here’s an example of an automatic variable definition:

someFunction()
{
short i, §s

You can reference an automatic variable only inside the function in which it’s de-
fined. An automatic variable is also called a “local variable” because it is “local to the
function”—available only within the function in which it’s defined.

Programmers use local variables for values a program needs for only a short time. It's
a good idea to make a loop counter automatic, for example—once the program is
finished with the loop, it doesn’'t need the counter variable.

Static Variables

A program usually needs to keep some variables around much longer—maybe for
the life of the program. That’s where the static variable storage class comes into play.

Unlike an automatic variable, which resides on the stack, a static variable resides
somewhere else in RAM. Where a static variable resides depends on both the par-
ticular operating system and the particular implementation of the compiler. In
THINK C on the Mac, statics reside in a place in RAM called “the application
globals.”

You define a static variable outside a function definition. What’s important about a
static variable is that it sticks around for the life of the program. You can store a value
in a static and have it survive over many function calls. Because of this persistence,
statics are also called “global variables”—they can be accessed globally by all rou-
tines in a program. In this example, gHasColorQD is defined as a static variable out-
side any function, and i and j are automatics defined within a function:

Boolean gHasColorQD;

someFunction()
{
short i, Js

The register and static modifiers

You can use the two keywords register and static to modify automatic and static
storage classes. The register directive, when used in an automatic variable defini-
tion, will direct the compiler to use a CPU register for the variable instead of the

53

MACINTOSH C PROGRAMMING BY EXAMPLE

stack if the registers are not otherwise occupied. In THINK C, four data and three
address registers are available to your application. With judicious use of the register
modifier for automatic storage classes, you can really speed up your application.
(You don’t want to assign the register modifier to 50 variables—you’ll run out of
registers!) The scope of a register automatic class variable is limited to the function
in which it’s defined, and you can't define a pointer to a register variable.

You can use the static keyword with either an automatic or a static variable. If the
variable is an automatic, the static keyword limits the variable’s scope to the function
in which the variable is defined—you can'’t access the value of the static automatic
variable outside the function. But the compiler will create the variable in the global
variable space of RAM, not on the stack. The static automatic variable’s value there-
fore persists across function calls.

When you declare a static variable explicitly with the static keyword (as opposed to
merely defining the variable outside any function), the variable’s scope is limited to
the source file in which it is defined. Most programmers modularize their code into
separate source files—we’re no exception. A judicious use of the static static vari-
able can sometimes solve a difficult programming problem.

The extern modifier
When you want to use a variable in a source file other than the one in which it’s de-
fined, you declare it with the extern keyword, as in

extern short count;
Of course, if you don't have a proper definition of the variable
short count;

in the proper place in another of the project’s source files, you'll get a link error.

Arrays

Data often presents itself in array form. You declare an array with its number of ele-
ments in square brackets, as in these examples:

char filename [33];
double x [31, y [3]:

unsigned short range [100];

You can specify any number of dimensions for an array, as in this two-dimensional
definition:

char symbol1Tb1 [12][48];
or this four-dimensional definition:

short bigArray [41[41[41[4];

3: ACPRIMER

but an array is limited to a total of 32K. On the Mac, it’s better to allocate memory for
an array on the heap, not the stack, and we’ll show you how to do this in Chapter 7.

Array subscripting always starts at index 0, which means that the last valid index is
the size of the array less 1. For example, if the array is declared as

char a [10];

it has 10 elements, and the names of these elements are a/0), a1, through a/9]. a/10]
would not be a valid element for this 10-element array.

C does no bounds checking for you on the index, so if you index off the end of the
array, you'll be reading from or writing to something other than the array. Reading
from something other than the array is usually nonfatal—you’ll just end up with
digital junk in your variable. But writing beyond the array bounds is always a fatal
programming error. You've been warned.

An array is stored as contiguous bytes—the array elements are stored next to each
other. You can speed up array access by taking advantage of this fact, by using a
pointer. We'll talk more about pointers in a moment.

Other Data Struclures

Any data structure collects one or more simple types into a composite group. You
structure data definitions to fit data needs. For example, to model a calendar date,
you would need to store information about the month, the day, and the year.

You create a data structure with the struct type keyword. Here’s the definition for a
structure for the calendar date:

struct date
{
short month,
day,
year;
};

The structure’s “tag,” a name for the structure, is date. The structure’s “members”
are month, day, and year. Now we'll create a variable called today that uses the date
structure:

struct date today;
You access the members of a structure with the dot operator (a period). For example,

today.month = 12;
today.day = 23;
today.year = 1980;

initializes the structure with the date December 23, 1980.

MACINTOSH C PROGRAMMING BY EXAMPLE

Structures can be embedded in structures. Here's a structure for a personnel record:

struct person

{
char name [128],
ssnum [12];
struct date birthDate,
hireDate;
1

struct person aPerson;

Notice the embedded structure date in the definition for person. We've defined
aPerson to be a person structure variable. You also access the members of an em-
bedded structure with the dot operator, which has left-to-right precedence:

aPerson.birthDate.day = 13

aPerson.birthDate.month = 9;
Structure Types

In Macintosh applications, the convention is to type data structures and then use
those types to define variables. Here’s an example, our personnel record recast as a

typedef
typedef struct person

{
char name [128],
ssnum [12];
struct date birthDate,
hireDate;
} Person;

Notice the change in syntax. We can now declare a variable of type Person:

Person employee;

employee.hireDate = todaysDate;

Pointers

A pointer is used to hold the address of something in memory. You declare a pointer
with the star operator (*). The declaration

char *p;

declares a character pointer, p. The type declaration is important. The following ex-
ample demonstrates why. Let’s declare a pointer to index through an array.

3: ACPRIMER

short values [12]; /* the array */
register short *pvalues; /* the pointer */

pvalues = values;
The statement
pvalues = values;

assigns the address of the first element of the array to the pointer. Now, assuming
that we want to copy the several elements of the array into separate variables, we
would use the pointer to step through the array, as in

valuel = *pvalue;
value2 = *(pvalue + 1);
valued = *(pvalue + 2);

valuel2 = #(pvalue + 11);

This code yields the same result that using the index would:

valuel = values [0];
value2 = values [1];
value3 = values [2];

valuel2 = values [11];

except that with pointer use, the code is more efficient. Note the use of parentheses.
The star operator (*) has a higher precedence than the plus operator, so to do
pointer arithmetic (as this is called), we need to perform the address calculation, by
adding 1 to the address, before the star operator uses that address to access the value.

Pointers to Pointers—Handles

Because of the way the Macintosh manages memory, we need to take this pointer
concept one step further, to the idea of a “handle.” A handle is a pointer to a pointer;
that is, a handle is a variable that holds the address of a pointer. It’s defined this way:

char *x

Why would you use a handle? We’ll see why shortly.

Just as you can have a pointer to a simple data type, you can create a variable that
points to a structure. One of the most basic Macintosh types is the rectangle, named
Rect. A Rect structure is defined this way:

typedef struct Rect
{

short top, left, bottom, right;
} Rect;

57

MACINTOSH C PROGRAMMING BY EXAMPLE

In the next example, we define a Rectand a Rect pointer. We then use the pointer to
zero the structure:

Rect r,
*p;
p = é&r;
p->top = p->left = p->bottom = p->right = 0;

We've used the ampersand operator (&) to return the address of the rectangle 7,
which we then assign to the pointer p. Then we use the —> operator (created with
the — and > characters) to access the members of the structure. If the pointer is a
register variable, this section of code is highly efficient.

You could also access the members of the rectangle this way, using the dot operator:
(*p).top = (*p).left = (*p).bottom = (*p).right = 0;

Again, notice the use of parentheses around the *p. The dot operator has a higher
precedence than the star operator, and in this example, we want the compiler to
calculate the address of the data structure first, before it adds the offset of the struc-
ture’s member to this address. When you’re dealing with pointers and structures,
you have to stop and think about what you want to happen first.

Figure 3-3 illustrates the relationship between a pointer and the data it points to.

A

Data [.:. andawKec i

Pointer

Figure 3-3.
A pointer.

3: ACPRIMER

Handles to Structures

More often than not in Macintosh programming, you’ll have a handle to a structure
and will need to access one of the members of the structure. Given a handle » to a
Rect structure (Rect **b;), you would access the members this way:

(*h)->top = 0;
or
(**h).top = 0;

The constructs are equivalent. We prefer the first, although the second offers a
singular advantage: If you ever need to find all the handle references in your pro-
gram, you can search globally for *, which is usually unique to handle accesses.

Figure 3-4 illustrates the relationship of a handle (ControlHandle) to its associated
structure (ControlRecord) in RAM.

Program Flow Control

The C language supports a wealth of program flow control constructs. The simplest
is the test and branch, performed by means of the if statement. Here’s the syntax for
an if statement:

if (expression)
statement

Master ojrer:

ke

ControlHandle —

Figure 3-4.
A bandle.

MACINTOSH C PROGRAMMING BY EXAMPLE

In this example, statement will execute if expression results in a nonzero value. In
the next example, DebugStr will be called if the variable gDevel is nonzero:

if (gDevel)
DebugStr (string);

The if-else statement provides an alternative branch to be taken when the expression
under scrutiny is O:

if (expression)
statement 1
else
statement 2

If expression is true, statement 1 is executed; otherwise, statement 2 is executed. In
the next example, if the gDeve! flag is on, the debugger is entered with the call to
DebugStr. (We’'ll get to that call in a later chapter.) Otherwise, the program takes the
second branch and puts up a dialog box on the screen with the call to errorDialog(:

if (gDevel)

DebugStr (string);
else

errorDialog (string);

Two or more statements are called a “compound statement.” You create a compound
statement inside curly braces, { and }. In the next example, the else part of the if-else
statement consists of a compound statement:

if (gDevel)
DebugStr (string);
else

{
SysBeep (1);
GetPort (&savePort);

if (1(theDialog = GetNewDialog (kDebugStrAlert, 0L, -1L)))
return (1);

ParamText (OL, string, OL, OL);

ModalDialog (DLOGfilterProcl, &itemNumber);
DisposDialog (theDialog);

SetPort (savePort);

3: ACPRIMER

A compound statement actually defines a code block, for which a stack “frame” is
generated. (You'll find an extensive discussion of stack frames in Chapter 7.) This
means that you can define variables within the block, as in

if (!gDevel)

{
GrafPtr savePort; /* local to block */
GetPort (&savePort);
if (!(theDialog = GetNewDialog (kDebugStrAlert, oL, -1L)))
return (1);
ParamText (OL, string, OL, OL);
ModalDialog (DLOGfilterProcl, &itemNumber);
DisposDialog (theDialog);
SetPort (savePort);
}

The local savePort isn't used outside the if statement. If you try to reference savePort
outside the statement, the compiler will generate an error.

Multiway Branching

A one-out-of-many choice, called a “multiway branch,” is a common programming
construct. The if-else if-else statement is the most flexible implementation of a multi-
way branch:

if (expression 1)
statement

else if (expression 2)
statement

else
statement

You use the if-else if-else construct when the test expression changes for each
branch, as in the next example:

if ({1istHd1) /* not found */
return (OL);

else if (prevListHdl == listHdl) /* head of list */
(*objectHd1)->ref = (*#1istHd1)->next;

else
(*prevListHd1)->next = (*1istHd1)->next; /* link last to next */

MACINTOSH C PROGRAMMING BY EXAMPLE

In other instances of the multiway branch, an expression is compared to a variety of
constants. In the next example, objectType is compared to a number of constants:

if (objectType == kSquare)
doSquare (theObject);

else if (objectType == kCircle)
doCircle (theObject);

else if (objectType == kRoundRect)
doRoundRect (theObject);

else
doError (kUnknownTypeErr);

Placement of Curly Braces

Three widely acknowledged styles regarding the placement of curly braces
for compound statements are in use today. The standard style is adopted
from the practice of Thomas Plum, a well-known authority on C program-
ming and the author of many books on the language. The braces appear on
lines of their own, beneath the tab stop of the controlling keyword: .

if (expr)
{

statements
]

The Whitesmith style, from an organization influential in the developme'ﬁtﬁof c
language standards, puts the braces on lines of their own but indented one tab
stop from the controlling keyword’s tab stop: :

if (expr)
{
statements
}

The Kernighan and Ritchie style puts the openmg curly brace at the end of the
~ line containing the controlling keyword and the closing curly brace . onaj line
of its own beneath the tab stop of the controlhng keyword o

if (expr) {
statements

}
'We choose to use the standard Plum style. You can use wh.tchcver sty you
hke, as long as you stlck to it. ,

3: AC PRIMER

A more efficient way to achieve a multiway branch is to use a switch statement based
on a value that can take on a set of constant values. Here’s the syntax for a switch
statement:

switch (value)
{
case constantl:
statement
break;

case constant2:
statement 2
break;

default:
statement n
break;
}

Here’s the previous multiway branch example, recoded as a switch statement:

switch (objectType)
{
case kSquare:

doSquare (theObject);
break;

case kCircle:
doCircle (theObject);
break;

case kRoundRect:
doRoundRect (theObject);
break;

default:
doError (kUnknownTypeErr);
break;
}

Notice how the cases are enumerated. If no case matches the expression, the op-
tional default case is executed. The break statement at the end of each case causes
control to jump to the bottom of the switch statement. If the break were left out, con-
trol would continue through the remaining cases.

Loops
Use a loop when you want to repeatedly execute a statement. The loop loops as long

as a controlling expression is true. You specify a loop in one of three ways: in a
while statement, in a do-while statement, or in a for statement.

63

MACINTOSH C PROGRAMMING BY EXAMPLE

while loops

Use a while loop when you want to test the expression before the loop is entered.
Here’s the syntax for the while construct:

while (expression)
statement

The statement executes as long as expression is true. Here’s a typical example of a
while construct:

while ((*1istHd1)->next)
listHd1 = (*1istHd1)->next;

In this example, execution loops through a null-terminated linked list of objects
stored in the heap. Execution exits the loop when the handle to the next element of
the list is null (has a O value).

do-while loops

The do-while loop is similar to the while loop, except that the test of expression is
made at the bottom of the loop—you are assured that the body of the loop will exe-
cute at least once. Here’s the syntax for a do-wbile loop:

do
statement
while (expression);

for loops
Use a for loop when you know how many iterations are necessary. Here’s the syntax
for a for loop:

for (initial expression ; test ; increment)

Notice that there are three expressions inside the parentheses of a for loop. The first
expression initializes the loop counter variable. The second is the test expression.
The loop loops as long as this expression is true. The third increments the loop vari-
able. The next example illustrates the initialization of an array:

short i, c [MAX];
for (i =0 ; i < MAX ; i++)
¢ [i] =0;

This is a simple initialization loop in which # takes on all integer values from 0
through MAX-1. You can set up your loop variable to take on only even values, or
only multiples of 5, or whatever you want it to take on, by selecting an appropriate
expression for the incrementing expression of the for statement, as in

for (i =5 ; i < SOMEVALUE ; i += 5)
doSomething (i);

3: ACPRIMER

Breaks and Confinves

You've already seen break in the switch statement. A break causes execution to jump
to the bottom of a switch or a loop. Here’s an example:

while (1)
{
c [i]1=0;
if (it > MAX)
break;
}

Whenever i is greater than MAX, the loop execution exits. Of course, smart C pro-
grammers will recognize that this loop could be rewritten as

while (i < MAX)
c [i++] = 0;

The continue statement causes execution to jump to the top of a loop. Here’s an
example:

while (count--)
{
if (fileType != kOurType)
continue; /* jump to top of while loop */

fileParams = getNextFileName();
if (doOpenFile (&fileParams))
loadDoc (&fileParams);

numOpenDocs++;

if (msg == doPrint)
printFile (&fileParams);
}

This example, and the preceding one, could be rewritten without the use of either a
break or a continue. Proponents of structured programming would argue that break
and continue aren’t actually essential (as far as loops are concerned— break is nec-
essary in a switch statement). We occupy the middle ground on this question: If you
need break and continue, use them. We don’t frown upon their use, although we do
realize that most C code can be structured so that they are not necessary. Use them

sparingly.

We do recommend the use of functions to divide a program into small, logically dis-
tinct parts that are reusable: You can call functions from various points in a program,
reducing your code size. If you publish the functions in a library, other programmers
can use them too, and you’ll have reduced their need to “reinvent the wheel.”

MACINTOSH C PROGRAMMING BY EXAMPLE

When your program calls a function, control is passed to the function, and execu-
tion continues until the function ends or a return statement is encountered. Figure
3-5 illustrates the control process.

Program stream for module 1.
sl, 82, etc. are statements.

1l

82

I%6)

s4

s5 Function call

56

—>»57
58
The function execution
>
sl
52
89
s4
5
56
Function return
Figure 3-5.

A function call, execution, and return to the next program statement.

You call a function with its name and a parenthesized argument list, as in
disposeDocContents (theDoc);

Here, the function is called with one argument: theDoc. You call a function without
an argument with its name and empty parentheses:

PenNormal ();

A function can return a value on the stack. You receive the value as the result of an
expression that contains the function, as in

theWindow = FrontWindow ();

Here, the return value of the function FrontWindow() gets assigned to theWindow
when the function returns.

All of the Macintosh Toolbox routines are accessible to your THINK C program
through a function call if you add the MacTraps library to your project. (We'll discuss
this in the next chapter.) The FrontWindow function in the previous example is a
Macintosh Toolbox Window Manager routine.

3: ACPRIMER

You can define your own functions. Here’s the syntax for a function definition:

return-type
name (argument list)
{

declarations

statements
}

You have several options for defining functions. You can define a function to return
a value by using the return statement. In the next example, the function returns a
DocPtr value.

static DocPtr /* return type */

allocDoc () /+ function name #*/

{
DocPtr newDoc; /* variable definition */
newDoc = 0OL; /+* function body #*/

if (gNumOpenDocs < kMaxOpenDocs)
newDoc = newClearPtr ((Size)sizeof (Doc));

return (newDoc); /* return value */

} /* allocDoc */
A function that doesn’t return a value is declared as void. Here’s an example:

void
getRGBColor (RGBColor *theColor)
{

GetForeColor (theColor);

}
There is no return statement in getRGBColor.

In the early versions of the C language, a function’s arguments were declared as
automatic variables would be, outside the parentheses, as in

short

openFile (fileParams, copy)
FileParamsPtr fileParams;
Boolean copy;

67

MACINTOSH C PROGRAMMING BY EXAMPLE

When you define a function according to the ANSI C standard, the function’s argu-
ment list appears in the parentheses.

short
openFile (FileParamsPtr fileParams, Boolean copy)
{

}

Function prototypes

The advantage of the new ANSI standard function definition syntax is that you can
use the definition itself as a function prototype—as a model of the function’s name,
argument types, and return value. The prototypes for the three functions we've
looked at so far in this section are

DocPtr allocDoc (void);
void getRGBColor (RGBColor *theColor);
short openFile (FileParamsPtr fileParams, Boolean copy);

A prototype is a statement, so it needs to be followed by a semicolon. Prototypes
keep you from making mistakes when calling functions. When you've selected
Check Prototypes from the THINK C environment’s Preferences menu, the compiler
will check all your function calls for

B the correct number of arguments
B the correct type for each argument
B the correct type for the function return value

This prototype checking keeps your code free of nasty bugs. Prototype definitions
have to appear before the function is either defined or used.

To manage function prototypes, we create a separate include file (with the exten-
sion .h) for each source file in a project. The include file contains the prototypes for
the source file. We use a Prsuffix with the include file’s name to flag the include file
as a prototype file. For example, if the source file is named DocUtil.c, we name the
prototype file DocUtilPr.h. We then include DocUtilPr.h in DocUtil.c and in any other
source file that uses a routine from DocUtil.c.

4

MACINTOSH
APPLICATION
FUNDAMENTALS

In this chapter, we'll create our version of every programmer’s first, the program
Hello World. We’ll modify the program, call it Hello Mac!, and use it to address some
fundamental concerns common to all Macintosh application development—screen
organization, Macintosh events, and Toolbox Manager initialization.

Macintosh programs have a characteristic interface: Overlapping windows and pull-
down menus, the point-and-click metaphor, and the visual file system are standard
features in every application. They give your programs an edge over those with line-
oriented interfaces.

The Hello World Example

Every C programmer’s first exposure to a complete program is Hello World. Here’s
the THINK C user’s manual version of Hello World in its entirety:

f#include <stdio.h>

main ()
{

printf ("hello, world\n");

}

This trivial first program illustrates the fact that every program has to have a main()
function, the program entry point.

69

MACINTOSH C PROGRAMMING BY EXAMPLE

Hello World is a complete C program. If you wanted to run it, you would type it into
a source file, create a new project, and add the source file and the ANSI library to
the project. When you ran the program, your screen would look something like the
screen in Figure 4-1.

Figure 4-1. & File Edit 7
The Hello World E==—————= press «return» to eit
example program

in THINK C.

hello, world

Unfortunately, this example program doesn't look or function the way a Macintosh
program should. The window on the screen in Figure 4-1 is a product of the THINK
C stdio library. This window, titled “press <<return>> to exit,” is created for you
when you issue a call to the library function printf. When printf returns, the appli-
cation beeps at you until you press Return. You’d be hard-pressed to call this an ex-
ample of a stand-alone application.

To create a stand-alone Hello World that works the way you expect a Macintosh pro-
gram to work, you need to use the Macintosh Toolbox in place of the stdio calls.

THINK C’s stdio Library

THINK C'’s console routines, provided in the stdio library, are the source of
the primitive window management routines used in the Hello World ex-
ample. These routines open a single window that emulates a character termi-
nal’s screen. Console I/0 is based on the character streams stdin and stdout.
UNIX aficionados will appreciate that stdio functions like printf work in this
screen. Using THINK C’s stdio is easy: Add the library to the project (by
using the Add command from the Source menu), and include the header file
stdio.h in your source file. The THINK C user’s manual contains a tutorial on
using this library.

70

4: MACINTOSH APPLICATION FUNDAMENTALS

Before your Mac can say “hello,” it needs a window and an associated grafPort in
which to put the greeting. And before you can create a window, you need to initial-
ize the application’s QuickDraw globals. Here’s the Macintosh way to say “hello™:

main ()

{
WindowPtr theWindow;
Rect windowRect ;
EventRecord eventRec;

// initialize managers
InitGraf (&thePort);
InitWindows ();
InitFonts ();
InitCursor ();

FlushEvents (everyEvent, 0);

// create window

SetRect (&windowRect, 40, 40, 340, 240);

if (theWindow = NewWindow (OL, &windowRect,"\p",
true, dBoxProc, -1L, false, 0OL))

{
SetPort (theWindow);
MoveTo (20, 30); // move pen
TextFont (1); /] text attributes
TextSize (12);
TextFace (0);
DrawString ("\pHello, Mac!"); // why we're here
// wait for mouse-down
while (!GetNextEvent (mDownMask, &eventRec));
DisposeWindow (theWindow); // kill window

}

ExitToShell ();

} /* main */

This is a program you’ll actually want to enter and run, so start up THINK C.

When you start up THINK C without naming a project, a dialog box prompts you to
open a project. When you click the New Project button in this dialog box, you see
the dialog box shown in Figure 4-2 on the next page.

n

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 4-2. € file Edit Search Project Source (Windows (2
THINK C’s New
Project dialog box.

O GenApp f
0O Hello f

0 Mac C Primer
0O TCL 1.1 Demos Desktop

[THINK C 5.0 Demos
0 THINK C 5.0 Folder

Name new project: ﬂ Create ;!

Hello Project l Cancel

Type the name Hello Project in this dialog box, and click the Create button. THINK
C creates a window that looks like the one in Figure 4-3.

Figure 4-3.
The empty project
window.

€ File Edit Search Project Source Windows (2 @

== Hello Project
| Name obj size

Now open a new document by choosing New from the File menu, and type in the
source code shown on page 71.

When you've finished typing in the source code, choose Save As from the File menu
and type Hello Mac.c as the file name.

Choose Add from the Source menu. When THINK C finishes this operation, the
project window should look like the one in Figure 4-4.

Next, you need to add the MacTraps library to the project file. Choose Add from the
Source menu, and navigate to the MacLibraries folder in your THINK C folder, where
you should find the file MacTraps. (If you followed our installation instructions in

72

4: MACINTOSH APPLICATION FUNDAMENTALS

Figure 4-4. & File Edit Search Project Source Windows (2 (@]
The project window | = ' '

after adding the .

Hello Mac.c file. . odiwujest

Z Hello Mac.c

Chapter 2, you'll find MacTraps in this folder. If not, you might need to look else-
where or reinstall THINK C.)

That’s all you need to do to set up the project. Bring it up to date, which should load
the library and compile the source file. (Fix any syntax errors you entered while typ-
ing in the source file.)

Run the program.

As you can see from looking at the source file, doing things the Macintosh way adds
to the overhead of creating an application. This additional overhead is what makes
programming the Mac both interesting and hard to learn. Even experienced C pro-
grammers will have a lot to learn—we doubt they’ll recognize any of the function
calls in Hello Mac! unless they’ve already cracked open Inside Macintosh and done
some reading.

Most of the programming overhead in our simple example comes from creating the
window in which to draw the text. On the Mac, characters are drawn by QuickDraw,
the drawing part of the Mac Toolbox, which treats characters just as it does any other
graphics entities (lines, circles, and so on). Drawing is possible only inside a
grafPort. But before you can use a grafPort, you’ll need to know a little more about
the Mac’s screen organization.

GrafPorts and Windows

A grafPort is a Macintosh construct that provides a “world” for a program to draw in.
The coordinates of the grafPort world are defined within an imaginary grid, starting
at the upper left corner of the Macintosh screen and extending in all directions from
that point.

73

MACINTOSH C PROGRAMMING BY EXAMPLE

A location in this grid, the Macintosh coordinate system, is described by Point,
which has a horizontal and a vertical component. A data structure of type Point is
defined this way:

typedef struct Point
{
short v, h;

} Point;

The origin of the Macintosh coordinate system is at location (0,0). The first value is
the horizontal component, and the second value is the vertical component. Values
increase as a point moves down the screen and to the right. For example, the point
(10, 20) is 10 points to the right and 20 points below the origin.

A pixel is a screen unit that corresponds to a point. The grid values range from
—32,767 pixels through +32,767 pixels in either direction, so you can imagine that
there are more pixel locations off the screen than on it. The Mac Classic displays 352
horizontal pixels by 512 vertical pixels, which is only a small fraction of the area ref-
erenced by a grafPort; the standard 14-inch Apple color monitor has a resolution of
640 by 480 pixels, or 640x480 in tech-speak, still only a small part of the area you
can reference with QuickDraw. Figure 4-5 illustrates the grid behind the Macintosh
screen. The grafPort associated with this coordinate system is called the WMgrPort.
Applications don’t draw in the WMgrPort, which is the domain of Finder; rather, they
use a grafPort associated with one of their windows.

Each open window has its own grafPort and might be said to “own” the grafPort.
The grafPort’s origin is below the upper left corner of the window, immediately

-32767,-32767 32767,-32767
(0.0
, 35 121350
¢
-32767,32767 32767,32767
Figure 4-5.

The Macintosh WMgrPort coordinate system.

74

4: MACINTOSH APPLICATION FUNDAMENTALS

below the title bar. The grafPort has its own coordinate system, and values in its sys-
tem also increase to the right and down from the origin point. We call this a “local
coordinate system” to differentiate it from the WMgrPort’s “global coordinate sys-
tem.” Figure 4-6 illustrates the relationship between these two systems.

Global 60,100

Global

0,0

Local Foint 0,0
Local Foint 0,200 Local Foint 300, 200

Global
0,460
Figure 4-6.

The two coordinate systems of the Macintosh screen.

The Toolbox routine LocalToGlobal converts point values in the local coordinate sys-
tem of a window to those of the global space. The companion routine GlobalToLocal
works conversely, converting point values in the global system to local point values.

These conversion routines accept the address of a Point structure. Here’s an ex-
ample of their use:

Point p;

GlobalTolocal (&p);
LocalToGlobal (&p);

Notice that the points are passed by reference—that is, their addresses are taken
with the ampersand. This is done so that the Toolbox routines can change the actual
values of the passed variables.

Creating a Window and a GrafPort

Where there’s a window, there’s a grafPort (often called a “port,” in programmer’s
slang). GrafPorts are rarely created by themselves—usually they’re created auto-
matically when a window is created. We show the definition of a WindowRecord,
the foundation of a window, on the next page.

75

MACINTOSH C PROGRAMMING BY EXAMPLE

typedef struct WindowRecord

{
GrafPort port;
int windowKind;
char visible;
char hilited;
char goAwayFlag;
char spareflag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
int titleWidth;

struct ControlRecord ** controllist;
struct WindowRecord * nextWindow;
PicHandle windowPic;
long refCon;

} WindowRecord, *WindowPeek ;

Notice that the first member of the WindowRecord, port, is a grafPort.

The Window Manager is the part of the Macintosh Toolbox that contains the routines
that create and work with Macintosh windows. We’ll use the Window Manager call
NewWindow to create a window, which creates a WindowRecord. By referencing
Dport, we can reference the grafPort we’ll be drawing in.

Passing Parameters to
Toolbox Routines in THINK C

One common concern in using a language such as C on the Pascal-based Mac is how
to match the Pascal function-calling convention. In languages such as C and Pascal
that maintain a stack-based parameter-passing mechanism, there are two methods
of passing function parameters, or variables. Passing a variable “by value” means that
a copy of the variable’s contents is passed to the called function. Because it is passed
a copy, the called function is free to change the value of the variable without conse-
quence in the caller. Passing by value gets expensive, both in time and in memory,
when the variable is a large data structure. A Pascal compiler consequently tries to
optimize time and memory by passing all parameters that are more than 4 bytes in
size “by reference.” When a variable is passed by reference, the variable’s address is
placed on the stack, and no copy of the data is made. In C, because the called func-
tion gets the address of the variable in the caller, any changes made will be reflected
in the value of the variable when the function returns (in C only—Pascal safeguards
against this “side effect”).

Fortunately, the compiler manages the stack for you, but it’s your job to get the types
of the parameters correct. Here’s a rule of thumb that usually works: If the size of the

76

4: MACINTOSH APPLICATION FUNDAMENTALS

parameter is more than 4 bytes, pass it by reference. In other words, pass its address.
The rationale behind this thinking is that if an address is 4 bytes, passing by refer-
ence limits the maximum size of a stack parameter. This approach places a burden
on you, the programmer, because you need to know something about the data struc-
tures of the parameters of the Toolbox routines that you use.

Of course, every rule has an exception, and here’s the exception to our rule of
thumb: Whenever you find a Toolbox procedure-definition parameter that has a VAR
in front of it, pass the address of the variable. Do this because some functions are de-
signed to modify the contents of the variables passed to them. Pascal has a mecha-
nism called a “variable parameter” specifically for this purpose, and the modifier
VAR is placed before the name of the variable in the definition of the function to
signify that the parameters are modifiable.

A point is 4 bytes, so normally you'd pass it by value, as in

Point mouseloc;

if (PtInRect (mouselLoc, &portRect))

Notice that the point mouseLoc is passed by value, and that the rectangle portRect is
passed by reference—that is, we pass its address. The point is passed by value be-
cause it is 4 bytes, but a Rect structure is larger than 4 bytes and is therefore passed
by reference. Now consider the Event Manager routine GetMouse, defined this way:

Procedure GetMouse (VAR mouselLoc: Point);
This changes the way you'd pass a Point:

Point mouseloc;

GetMouse (&mouseLoc);
if (ABS(mouselLoc.h - oldMouselLoc.h) >= kMouseLimit)

C and Pascal

The Macintosh Toolbox routines are designed to be called from a Pascal pro-
gram, and Inside Macintosh documents all the routines as if you were using
Pascal, not C. Experienced C programmers probably adjust quickly to the dif-
ferences, but beginning C programmers might think that, just as they've
begun to learn one language, they need to learn another.

C and Pascal are very similar because they share a common ancestry. They
have similar data types: integers, reals, and characters. They share the ability
to structure data: Pascal data structures (called records) can be and are
mimicked by C data structures. And the two languages have similar control
structures, so a C program can be ported to a Pascal program, and vice versa.

77

MACINTOSH C PROGRAMMING BY EXAMPLE

In the case of GetMouse, the VAR modifier calls for passing by reference. GetMouse
returns the current mouse position in this variable and therefore needs the address
to which it will write this information.

C has a built-in feature, called function prototyping, whereby the compiler will
check a function’s parameter types. To use prototypes, you must first tell the com-
piler to check for them. You'll find the option in the Compiler Flags section. You also
need to declare prototypes for each of your functions, but you don't need to write
prototypes for the Toolbox routines that you use in your program—they’re built into
THINK C. All of our projects use prototypes. For the small amount of up-front effort
required to use them, they really pay off in time otherwise spent finding parameter
type errors. We strongly recommend that you use them.

Here’s the prototype declaration of NewWindow, which describes how you would
call it from an application:

WindowPtr NewWindow (Ptr wStorage, Rect *boundsRect, Str255 title,
Boolean visible, short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon);

You might first notice that this function has eight parameters. Each one is important.
You can get the complete story on each parameter from Inside Macintosh. All the
Toolbox calls used in this chapter are described in Volume I. We don’t have the
space to describe each Toolbox call in this book, but we’ll make a few comments
about NewWindow that apply to using Toolbox calls.

Who Allocates the Storage?

The first NewWindow function parameter, wStorage, is a pointer to some memory
to be used for the WindowRecord, the data structure associated with the window.
We're given the opportunity to allocate this memory ourselves for reasons that are
not worth going into here—we’ll discuss the heap and fragmentation in Chapter 5.
But Inside Macintosb tells us that if we pass a null pointer (the value 0x00000000L)
for this parameter, the Window Manager will allocate the memory for us.

This is a common convention in the Window Manager, the Dialog Manager, and
other parts of the Toolbox: You pass either the address of some allocated memory or
a null pointer. In our simple example, it will suffice to let the Window Manager allo-
cate the memory for us.

Passing by Reference

The second argument to NewWindow is a rectangle that specifies where to place the
window in global space. Because of Pascal parameter-passing conventions, you must
pass this rectangle by reference, as was mentioned earlier.

78

4: MACINTOSH APPLICATION FUNDAMENTALS

Pascal Strings vs. € Strings

The title field is defined as a Str255 type, also known as a Pascal string. NewWindow
expects a string pointer in this argument, but Pascal and C differ in their string for-
mats. The first byte of a Pascal formatted string contains the length of the string and
is followed by the string of characters. A traditional C string, like those described by
Kernighan and Ritchie, consists of the characters followed by a terminating 0. These
two formats are illustrated in Figure 4-7.

Count byte (the
length of the
string) Fascal string: \pHello World
1 H e | 0 w 0 r | d

Index

C string: Hello World

H e | o W o r I d | 0x00
Null
terminator
Figure 4-7.

The formats of Pascal strings and C strings.

The designers of THINK C were considerate in that they invented a notation for
quickly specifying Pascal string constants: A string that begins with the token \p is
created as a Pascal string. For example, \pUntitled is compiled into the Pascal string
that NewWindow will interpret as the Pascal format of the string. A traditional C
string is defined between double quotes—" Untitled" for example.

Creating a Window

We've excerpted the code from Hello Mac! that creates the window. The first call, to
SetRect, initializes the Rect structure that defines the window’s rectangle. A Rect
structure is defined this way:

typedef struct Rect

{
short top, left, bottom, right;
} Rect;

79

MACINTOSH C PROGRAMMING BY EXAMPLE

This window rectangle is specified in global coordinate space, so it will be 40 pixels
from the top and 40 pixels from the left edge of the screen, and it will be 300 pixels
wide by 200 pixels high.

SetRect (&windowRect, 40, 4@, 340, 240);
if (theWindow = NewWindow (OL, &windowRect,"\p", true, dBoxProc, -1L,
false, 0L))

Again, a rectangle is larger than 4 bytes, and to follow Pascal calling conventions, we
therefore have to pass windowRect’s address.

After the call to SetRect, we've placed the call to NewWindow, within an if state-
ment’s conditional expression. NewWindow will return a nonzero window pointer if
it was successful in creating the window, and we can draw in the grafPort only if the
window was created, which is why the program tests the pointer value.

Notice the programming style here. The Macintosh programming world has adopted
a convention in which a Mac construct begins with a capital letter and has a capital
letter at the beginning of each important consonant sound (WindowPtr, SetRect,
NewWindow, and so forth). For clarity, we’ll always begin the function names and
variable names that we write with lowercase letters so that you’ll know at a glance
which functions are Toolbox calls and which ones are defined in the source code.

Which GrafPort to Draw In?

All drawing in a window is specified in the local coordinate system. But, because
multiple grafPorts can be open on the screen, where does the drawing appear?

QuickDraw draws to the current grafPort. The QuickDraw routine SetPort assigns
the current grafPort. You pass SetPort a pointer to the window that you want to be
current, as in

SetPort (theWindow);

The Pen and the Port Rectangle

Each grafPort has a “pen,” which is actually an abstract concept that defines where
the next drawing action will appear in the port. Before you can draw text, the pro-
gram has to locate the pen at an appropriate place in the window. You use the
MoveTo routine to set the pen to an absolute position in the grafPort. The statement

MoveTo (20, 30)

moves the pen to point (20, 30). Remember, this refers to the point in the window, in
the local coordinate system, not to the screen point.

The GrafPort data structure contains information that QuickDraw uses to control
drawing. We repeat the definition of a GrafPort on the next page, with short de-
scriptions of its many fields.

4: MACINTOSH APPLICATION FUNDAMENTALS

typedef struct GrafPort

{
int device; // @ if on screen
BitMap portBits; // RAM used for this port
Rect portRect; // portRect
RgnHandle visRgn; // visible region
RgnHandle clipRgn; // clipping region
Pattern bkPat; // background
Pattern fillPat; // pattern used for fills
Point pnLoc; // current pen location
Point pnSize; // current pen size
int pnMode; // current pen transfer mode
Pattern pnPat; // current pen pattern
int pnVis; // current pen visibility state
int txFont; // current font number
Style txFace; // current font style
int txMode; /! current font transfer mode
int txSize; // current font point size
Fixed spExtra; // amount to add to every text space
long fgColor; // foreground color (pen color)
Tong bkColor; // background color
int colrBit; // used internally
int patStretch; // used internally
Handle picSave; // used internally
Handle rgnSave; // used internally
Handle polySave; // used internally
QDProcsPtr grafProcs; // grafProcs
IH

A member of the GrafPort structure named portRect describes the port’s rectangle
in local coordinates. You can get the width and height of the grafPort from these
coordinate values.

Recall from earlier in the chapter that the first member of the WindowRecord is a
GrafPort, and, in fact, on the Mac a WindowPtr is actually defined as a pointer to a
GrafPort, so you can get the port rectangle this way:

Rect portRect;

portRect = theWindow->portRect;

Let’s say that you want to draw theé string in the middle of the window. You could use
the portRect and the string width of your string to calculate the starting pen position
for the DrawString, which draws the text at the current pen position. The Quick-
Draw function StringWidth returns the pixel width of a string.

The function sayHey(), shown on the next page, calculates the point at which it will
draw an arbitrary string centered in a window and then draws it.

MACINTOSH C PROGRAMMING BY EXAMPLE

sayHey (WindowPtr theWindow, StringPtr theString)
{

Rect windowRect;

Point penLoc;

/+ get the center of the window */

// first, point to our window
windowRect = theWindow->portRect;

// next, calculate the horizontal center
penLoc.h = (windowRect.left + windowRect.right) / 2;

// now calculate the vertical center
penLoc.v = (windowRect.top + windowRect.bottom) / 2;

/* offset the pen's horizontal location by one-half
the string width */
penLoc.h -= StringWidth (theString) / 2;

MoveTo (penLoc.h, penlLoc.v);
DrawString (theString);

} /* sayHey */

What if you wanted to write “Hello” and “Mac!” in different fonts? A GrafPort main-
tains values for the current font, font size, and face. DrawString always draws text
using these current values. To draw each word of the string Hello, Mac! in a different
font, you'd have to split the string in half, changing fonts with TextFont after draw-
ing the first word. The code would look something like this:

TextFont (1); // font 1 is the application font (Geneva)
MoveTo (penLoc.h, penLoc.v);

DrawString ("Hello, ");
TextFont (0); // font @ is the system font (Chicago)

DrawString ("Mac!");

You might wonder why MoveTo was called only once in this last example. Don'’t you
need to relocate the pen before drawing the second word? Actually, DrawString
moves the pen for you. When it draws a string, it moves the pen to a location follow-
ing the last character. In other words, the pen always has a location at which it will

4: MACINTOSH APPLICATION FUNDAMENTALS

perform its next action; you need to move the pen only when you want it to draw in
a different location.

Exploring Other QuickDraw Graphics Entities

Now that you have a window and you know something about a grafPort, you can
modify Hello Mac! to draw any QuickDraw entity you like.

Lines are the simplest objects to draw. LineTo draws a line from the current pen
location to a specified point. LineTo moves the pen to the specified point after it
draws the line. The following statements draw a 50x50-pixel square:

MoveTo (10, 10);
LineTo (10, 60);
LineTo (60, 60);
LineTo (60, 10);
LineTo (10, 10);

In addition to lines, QuickDraw supports six other kinds of graphics “primitives”:
rectangles, rounded rectangles, arcs, ovals (circles), regions, and polygons. It also
supports five “graf Verbs,” Apple’s word for operations that you can perform on
these primitives: Frame, Invert, Erase, Fill, and Paint. For example, you can have an
oval that is painted, a region that is filled, or a rectangle that is inverted.

You create the name of the QuickDraw routines that draw the primitives by matching
a grafVerb with a primitive, as in FrameRect, InvertArc, ErasePoly, FillOval, PaintRgn.

The routine paramenters differ, depending on the primitive you’re using. Refer to Irz-
side Macintosh, Volume I, Chapter 6, for more detail.

Events, or When to Go Away

You've seen what it takes to create the window and draw the string. The last part of
Hello Mac! terminates the program. You might have read that the Macintosh uses an
event-driven operating system. This means that when a user clicks with the mouse,
types a character, inserts a disk, or generates some other “event,” somehow the pro-
gram is notified with a data structure for that event and reacts to it.

The Macintosh understands many events—each corresponds to a real-world hap-
pening. Hello Mac! looks for one kind of event—a mouse click—before returning
control to the Finder.

Events are “posted” to the event queue by the Macintosh operating system. We’re not
concerned with the event queue mechanism—applications should always detect
new events by using the routines of the Event Manager.

Hello Mac! calls the Event Manager procedure GetNextEvent in a loop to see whether
a new event has been posted. (See the sidebar “The Correct Way to Wait for an
Event.”) GetNextEvent accepts two arguments: an event mask and the address of an
EventRecord structure. The event mask tells GetNextEvent which events you’re

MACINTOSH C PROGRAMMING BY EXAMPLE

interested in. If GetNextEvent returns a nonzero value, an event of interest is avail-
able and the routine fills an EventRecord structure with data describing the event.
The code we're talking about is

while (!GetNextEvent (mDownMask, &eventRec));

If you want to know about all events that occur while the application is running, you
pass the mask everyEvent. Because Hello Mac! waits for a mouse click (mouse-
down), you pass the mask mDownMask.

The Correct Way to Wait for an Event

The correct way to wait for an event is to call WaitNextEvent. This procedure
lets your application work with MultiFinder. Because we’re not concerned
with MultiFinder context switching during Hello Mac! and because it’s

_ simpler to use, we use the lower-level function GetNextEvent. We'll discuss
WaitNextEvent in detail in Chapter 6.

Disposing of the WindowRecord

After the program receives a mouse-down, it can return control to the Finder. But
before a well-mannered Macintosh application terminates, it “cleans up after itself.”

When Hello Mac! created its window, it had the Window Manager allocate space for
the window’s WindowRecord. This structure is kept in memory in the application
heap, and because the program is finished with the window, it should free the
memory that has been used by the window. The Window Manager provides the rou-
tine DisposeWindow expressly for this purpose.

Note that you never call DisposeWindow with a null pointer, and you never call it
twice with the same WindowPtr. If you do, you'll see the dreaded bomb alert box.
This gives us an opportunity to introduce some formal computerese. We can say that
the program is structured to be “well-behaved” (it doesn't crash) in the event of an
“exception” (something goes wrong). If Hello Mac! can't get a nonzero WindowPtr
from NewWindow, it exits. Drawing occurs only if the program opens the window
successfully. Drawing in an unspecified port will also cause unpredictable results.

Hello Mac!’s last call is to ExitToShell, which returns control to the Finder. This call is
actually unnecessary. A THINK C application calls ExitToShell automatically when it
terminates. We include it in our programs to remind you that execution of the pro-
gram will halt when ExitToShell is reached.

Before any program can run, you need to set up the Toolbox managers that the pro-
gram will use. Hello Mac! requires initialization of QuickDraw and the Window and
Font managers as shown on the next page.

84

4: MACINTOSH APPLICATION FUNDAMENTALS

// initialize managers
InitGraf (&thePort);
InitWindows ();
InitFonts ();
InitCursor ();

The program initializes QuickDraw with this call:
InitGraf (&thePort);

The variable thePort is actually an external variable declared in the THINK C file
QuickDraw.h this way:

GrafPtr thePort;

It is defined in the MacTraps library. This variable is a QuickDraw global, part of the
application’s Macintosh environment. We’'ll talk more about QuickDraw globals in
the next chapter, but for now you should know that you can use this variable any-
where in your application, whenever you need to get at the current grafPort, as in

currentWindowRect = thePort->portRect;

That’s your first Mac application. We recommend that you use it to play with
QuickDraw. Consult Inside Macintosh, Volume 1, Chapter 6. Then try to use some of
the graphics described in the chapter. Discover how simple it is to be a graphics pro-
grammer when you have a good platform to work on.

When you've had enough of Hello Mac!, go to the next chapter to find out how a
Macintosh program should use memory.

O e
The Programmer’s Switch '

Remember that little plastic bar that came with your Mac and looked like
some kind of high-tech paper clip? It’s called the programmer’s switch. We
recommend that you install it. Think of it as a panic button. Actually, it has
two buttons. The one farthest from you switches control to the built-in ROM
debugger or to the TMON or Macsbug debuggers if they’ve been installed.
The button closest to you reboots your system. New programmers sometimes
experience strange Mac behavior, such as the video’s going wild or the Mac’s

. emitting “machine gun” sounds. Such behavior occurs because the program
is writing to memory that shouldn’t be written to, most likely with an errantor -

. uninitialized pointer. The video and sound phenomena occur because the

~ program contains nonsensical information in the video or sound buffer
memory. If this happens to you, don’t be too concerned about damaging your
Mac; simply use the programmer’s switch to stop the process. Of course, if
‘you smell smoke you can always pull the plug. :

5

MACINTOSH
MEMORY
MANAGEMENT

Now that you’ve seen how an application is put together, let’s step back and examine
how the Macintosh manages memory. Memory is the prime commodity of a com-
puter. Programs need memory to store their instructions as well as data. Memory
makes the Mac go 'round: You can’t run a program without it.

And memory is a shared resource. The System, INITs, CDEVs, DAs, and other appli-
cations can all run at the same time as your foreground application. These programs
all need RAM to hold their code and data. To get these programs to work together,
your computer uses the Macintosh Memory Manager. And to get these programs to
work together properly, your application program needs to follow some common-
sense rules.

Application programmers aren’t ordinarily concerned with the goings-on in
memory. Usually, you can ignore the details of low-level actions such as the alloca-
tion of automatic variables on the stack. But when the dreaded bomb alert box ap-
pears and the source code doesn't readily reveal the cause of its appearance, your
only recourse is to dig in at the machine level to see what'’s happening in memory.
Knowing how your code and data look in RAM at runtime is the most important
aspect of the black art of debugging.

In this chapter, we’ll take a look at how a Macintosh application uses memory. We'll
explore the stack and the heap as they relate to C programming, keeping an eye out
for the pitfalls of working with data objects.

87

MACINTOSH C PROGRAMMING BY EXAMPLE

Memory Map

When you launch a program from the desktop, the Operating System allocates some
of RAM to your program and organizes this RAM as shown in Figure 5-1.

Macintosh Memory Map

High memory
|

— Video and sound area

— Jump table
— Application globals
— QuickDraw globals

— Application stack

Application |
space
— Application heap
1 — System heap
System
space
3 — System globals
| Erd T e)T Rt o bt — Interrupt vectors
|
Low memory
Figure 5-1.
The Macintosh Memory Map.

5: MACINTOSH MEMORY MANAGEMENT

The “system globals” make up the lowest memory addresses. These locations hold
information used by the Operating System. Programmers should use these locations
sparingly, never within an application and only during program debugging. As the
Macintosh OS develops, Apple often decides to change the meanings of some system
globals. If your application relies on any of these changing variables, it becomes in-
stantly obsolete with the release of a new system.

Above the system globals is the “system heap,” where the OS and other critical data
reside. Avoid using this section of memory completely. Imagine what would happen
if some of the Operating System’s code were overwritten by an errant pointer in your
program.

Above the system space sits the application space, which includes the application
heap, the application stack, the QuickDraw globals, your application’s globals, and
the jump table. We’ll discuss the contents of each in a moment.

In MultiFinder and under System 7.0, you can open multiple applications. The
memory map for a multiple application configuration has multiple application
spaces, as illustrated in Figure 5-2 on the next page.

The lines between the system, the applications, and their components are abstract.
Right now applications don’t run in a protected, private area of RAM. (You'll have to
wait for System 8.0 for that.) As a result, if one of the programs loaded and running
in RAM has a bug, it can clobber the code of any of the other applications.

Program Code in Memory

We've already seen that source code consists of text files written in a high-level lan-
guage. In memory, code consists of long lists of machine language instructions
derived from source code and created by the compiler and built-in assembler. Each
machine language instruction is a 16-bit, binary word that tells the machine to do
something simple such as loading a value into a register, moving data from one
memory location to another, or adding the contents of two data objects. We've
known programmers who could read and edit machine code, poking bits here and
there in RAM to fix a problem, but most people think of machine language instruc-
tions in terms of their mnemonic equivalents. The set of mnemonics for a processor
is its “assembly language.” A machine-level debugger such as TMON or MacNosy
contains a “disassembler,” which converts the binary form of an instruction to its
mnemonic form, making the code more understandable. Although you can view the
assembly language generated by THINK C 5.0 by selecting Disassemble from the
Source menu, using a debugger is the only practical way to view machine code.

The THINK C compiler generates the machine code from your source code and
places it in your project file in CODE resources. Each resource corresponds to a code
segment that you define in the project window of the compiler. Each code segment
is limited to 32K, so a standard-size program of 100K or so must consist of multiple
code segments. The GetInfo menu selection in the THINK C environment reports
the sizes of your code segments.

MACINTOSH C PROGRAMMING BY EXAMPLE

Macintosh Memory Map

QuickDraw globals/Application
e globals/Jump table

] — Application stack

Application 1 — Al — Application heap

QuickDraw globals/Application
_~ globals/Jump table

o — Application stack

Application 2 — — Application heap

QuickDraw globals/Application
— ~ globals/Jump table

q— Application stack

Applicati —
pplication 3 — Application heap

— System globals

Figure 5-2.
The Macintosh Memory Map with three applications loaded.

Why is code segmentation necessary? Machine code must be in RAM while it is exe-
cuting, but an entire application’s code need not be resident for the program to run.
With good planning, you can divide a program into multiple code segments and
have it run in a limited space. Large applications manage memory by controlling
which code segments are in RAM at a given time. This is how a program with 720K
in code segments can run in a MultiFinder partition of 512K: Some code segments
are removed from RAM when others are moved in.

Segment loading is automatic at runtime. The system moves segments in from the
disk as they are needed, so you never need to worry about whether code that needs
to execute is in RAM. The part of the system that manages this task is called the Seg-
ment Loader.

5: MACINTOSH MEMORY MANAGEMENT

To save RAM, however, you might want to unload a code segment when you've fin-
ished with it, so you’ll need to help the Segment Loader. The Toolbox call UnloadSeg
marks a CODE resource as “purgeable,” making it a likely candidate for replacement
when another resource is brought into RAM. Some applications call UrloadSeg on a
set of program segments each time through the event loop. Another strategy is to
call UnloadSeg before trying to save a document. Our Generic App, presented in
Chapters 6 through 8, never calls UnloadSeg—small applications usually don't. If
you do use Generic App to create a large program, you’'ll want to review the infor-
mation here and in Inside Macintosh regarding the handling of code segments.

The Jump Table

You might wonder how the Segment Loader knows to load a segment when it’s
needed. Whenever your program makes an intersegment function call, it does so
through a structure called the “jump table.” The jump table is set up by the linker
during compilation and is loaded into the application’s memory with the program.
(The jump table information is kept in CODE #0, which is the first segment to be
loaded when a program is launched. If you want more than our simple description,
see Inside Macintosh, Volume II.)

The linker creates a jump table entry for each external function in your program. A
Macintosh program never directly calls an external function. Instead, it makes a call
to the last 6 bytes of the function’s jump table entry. The contents of these 6 bytes
differ depending on whether the segment has been loaded. If the segment for that
function has been loaded, these bytes contain the address of the function in RAM
and program control continues from there. If the segment has not been loaded, these
bytes contain a call to LoadSeg, the Segment Loader routine that loads the segment
and initializes all of the jump table entries for that segment before control is passed
to the function.

All intersegment function calls involve the overhead of passing through the jump
table, but this is a small price to pay for the efficiency of a segmented code map.
Nevertheless, careful organization of applications larger than 32K can result in sig-
nificant performance improvements. You wouldn’t want to have two related func-
tions that are always called in sequence separated in two different program
segments, for example.

Because CODE #0, where the jump table resides, is a segment, your program’s jump
table is limited to 32K. In a large program with a lot of functions, you might find
yourself approaching this limit if you don’t make use of static functions. These func-
tions, declared with the static keyword, are called only from the module and there-
fore from the segment in which they’re defined, so they don't need a jump table
entry. Use static functions to save jump table space.

Program Data in Memory

Code has to share memory with data. The data of a running program is a dynamic
collection of values kept in known locations of RAM. The program reads and writes

MACINTOSH C PROGRAMMING BY EXAMPLE

to a2 memory location by means of an address. To access a value in RAM, the pro-
gram loads the contents of a 32-bit address register with an address and uses an in-
struction to fetch or to store the value.

An addressing mode defines how a particular processor uses a combination of its
registers and their values to access RAM. The 68000 family of processors support
more than a dozen addressing modes. The ins and outs of these addressing modes
are primarily of interest to assembly language programmers, but if you plan to do
any serious development, you are eventually going to need to get down and use a
low-level debugger. Understanding what’s going on at the machine level is critical to
getting at the heart of a problem. Although the ultimate authority on 68000 machine
organization is Prentice Hall’s reprints of the Motorola MC68000 family user manuals,
we can go into a few basic facts about these processors here.

The Macintosh processors have eight 32-bit address registers, named A0 through A7,
and eight 32-bit data registers, named DO through D7. The address registers, shown
in Figure 5-3, are used for address calculations and for access to values in RAM. The
data registers, also shown in Figure 5-3, are used as scratch space for arithmetic cal-
culations. Register access is faster than RAM access, and clever use of register vari-
ables in your C program can dramatically speed up a sluggish application.

Some of the registers have special purposes on the Mac. Address register A7, for in-
stance, is used as the stack pointer, and A6 as the frame pointer. We'll look more
closely at those two registers in a moment. Register A5 points to your application’s
global variables. OS routines use register DO and sometimes D1 to return values.

Memory is organized with its beginning at address 0 and its maximum possible ad-
dress at 4,294,967,295, which corresponds to the value 232 — 1. Addresses are usually
specified in hexadecimal notation, so the “address space” of a 32-bit machine is
0x00000000 through OXFFFFFFFFE. Note that until System 7.0, the Macintosh used
only the least-significant 24 bits of an address, limiting the Macintosh’s address space
to 16 megabytes.

A variable begins at an address and occupies 1 or more of the bytes that follow. The
number of bytes that a data object occupies depends on its type. All types other than
char and unsigned char are aligned on even-numbered addressing boundaries.
Structures and unions can be larger than you might think because they can be pad-
ded (have additional bytes added) so that the next data object begins on an even-
numbered addressing boundary. If you're looking at data objects in RAM, you'll see
that there are no visible boundaries between consecutive variables. To know where
one object ends and another begins, you need to know the sizes of the basic types.
We’ve shown some of the sizes in Chapter 3; Figure 5-4 on page 94 contains a com-
plete list. You need to know the data type sizes as well as you know the multiplica-
tion tables or the alphabet.

5: MACINTOSH MEMORY MANAGEMENT

685000 family address registers

This register is used by the compiler

AO — for address calculations and
certain addressing modes.
Al
These registers are available for
A2 application use — in C, through the
register declarator.
AD
The Macintosh 0S5 uses these registers.
This register is used for global
A4 — reference in nonapplication programs
such as DA, INIT, XCMD, etc.
This register is used for global
AS — e
reference for applications.
A6 — Frame pointer
A7 — Stack pointer
< 32 bite >
. 868000 family data registers
These registers are reserved for use by Macintosh OS and compiler.
DO ___ This register is used for
0S routine return value.
D1
D2
D3
D4

. These registers are available for
D5 , — application use — in C, through the
register declarator.

D6

D7

Figure 5-3.
The 68000 family address and data registers.

23

MACINTOSH C PROGRAMMING BY EXAMPLE

C Type Mac (Pascal) Type Size in Bytes
unsigned char Byte

int Integer 2or4
short Integer 2
long Longint

float — 4
double Extended 10
Size Size i
Fixed Fixed 4
char* Ptr 4
char** Handle 4
char [250] Str255 256
unsigned char Boolean! 1
Boolean? Integer 2or4

1Pascal language defined (Toolbox) 2C language defined (application)
Figure 5-4.
Sizes of fundamental C and Macintosh data types.

Scope of Variables

Some variables are long-lived; others last for only the duration of a function call. The
“scope” of the variable is the length of time it contains valid data. A global variable
persists: It is initialized when the program is loaded, and space for it is reserved in
the application heap until the program is exited. A variable declared inside a func-
tion—a local variable—exists for only the life of that function. A local variable is not
initialized when it is created, its value is unknown. You must initialize a local vari-
able before using it. Not doing so is the source of a common C bug.

Another programming bug arises from using a variable outside its scope. The foo()
function, shown in Figure 5-5, copies a null-terminated string of characters (a string
ending with a byte whose content is zu/l or 0) and returns a pointer to the copy.

char #*
foo (char * sourceStr)
{

register char xp;
char destStr [BUFSIZ];

p = destStr;
while (*p++ = *sourceStr+);

return (destStr);

Figure 5-5.
The foo() function is a string copy utility.

o4

5: MACINTOSH MEMORY MANAGEMENT

foo(f) Under the Microscope

The foo() function (a typical, unenlightening name for a generic function)
has a simple job: When it is passed a pointer to a null-terminated character
string, it copies the string and returns a pointer to the copy. To this end, foo()
uses two local variables: p, a character pointer; and destStr, the destination
buffer declared to be BUFSIZ bytes long. We've directed the compiler,
through the use of the register keyword, to use one of the three available
680X0 address registers for pand then to assign the address of our buffer to it.
Take a look at the assignment

p = destStr;

In C, the name of an array represents the address of its first character if you
don't use square braces in the expression. If you don't choose to make use of
this shortcut, another way to get the address of the first character is with this
assignment:

p = &destStr[0];
Using this form, you can point to the 7 item in an array, as in

short n;

p= &destStr[n]

But don't forget to initialize 7 so that you don’t pomt off mto who-knows-
where and come up with garbage.

The copying of the string occurs inside the while statement. When a nuil value
(0) is assigned to the buffer, the test fails and the loop exits. The function com-
pletes execution by returning a pointer to the first character—again, by using
the name of the buffer but without the square braces.

Notice that we use a register variable for the pointer. This is simply to speed
things up. The copying loop executes about four times faster than it would if
we didn't use the register pointer. And notice the use of pointer arithmetic
(p++) to step through the two strings. The semicolon after the while statement
means that the loop has no loop-body; all execution is performed inside the
while test clause. The brevity of this assignment exemplifies tight C code:

*p+ = *sourceStr+

The #sourceStr++ gets the next character from the string and then increments
the pointer, and the #p++ assigns.the character to the destination string and -
then increments the destination pointer. .

We can't take credit for these constructs “Asyou read on, you'll dxscover thef .
origin of this code o

MACINTOSH C PROGRAMMING BY EXAMPLE

The foo() function has a serious flaw: The destination buffer is defined inside the
function, as a local variable. The function returns a pointer to a buffer that ceases to
exist as soon as foo() returns. This function really needs to be passed a pointer to
the destination buffer, which is declared in the caller. We show the fix in Figure 5-6.
And while we're at it, let’s call foo(by its real name.

char *
strcpy (char * destStr,
char * sourceStr)

{
register char *p;
p = destStr;
while (*p++ = *sourceStr+);
return (destStr);
}
Figure 5-6.

The strcpy() function is passed a pointer to the destination string.

Notice that strcpy() returns a pointer to one of its arguments; it therefore knows the
address of this string. You might ask, “Why would a function return a pointer to a
variable that was passed to it as a parameter?” The answer is, “So that you can write
one-statement programs that look like LISP programs,” as in Figure 5-7.

printf ("%s", strcat (strcpy (aStr, “"Hello"),
strcat (strcpy(bStr, ","), strcpy (cStr, "World")))):;

Figure 5-7.
Hello World redux.

The Stack

Automatic variables come into and go out of existence with a function because
they’re created on the application stack. A stack, sometimes called a push-down list,
is a LIFO, meaning Last In, First Out—the way it receives and gets rid of data. The
stack grows and shrinks as data objects are pushed onto and popped off it. Access to
the objects is from the top of the stack. The stack mechanism is often represented
by the child’s toy shown in Figure 5-8.

The top of the stack is maintained in register A7. The stack base starts in high
memory and grows downward, so register A7’s value decreases as items are added
to the stack. In the normal sequence of a running program, one function calls an-
other, which in turn calls another. The calling order proceeds according to the pro-
gram’s design. Programs use the stack to keep track of this flow.

5: MACINTOSH MEMORY MANAGEMENT

The Stack

Figure 5-8.
Data objects are pushed onto a stack and popped off a stack in last-on,
first-off order.

A quick note on terminology: If function foo() calls function bar(), function foo() is
the “caller” and function bar() is the “called function,” as shown in Figure 5-9.

foo ()
{

bar (argl, arg2):;

}
void
bar (short argl, arg?2)

{
short varl, var?2;

Figure 5-9.
Anotber foo() bar() example.

The stack is used to store the data for each function call. To illustrate this, we’ll use
the foo() bar() code fragment. Let’s say that bar() is about to be called from foo().
Just before bar() is called, the parameters argl and arg2 are pushed onto the stack.

C and Pascal Calling Conventions

C compilers push parameters in last-to-first order (arg2 before arg] in
our example), and Pascal compilers push their parameters first-to-last. The
calling conventions of the two languages have other differences. Look up

“calling conventions” in the index of the THINK C user’s manual to find out;
more.

97

MACINTOSH C PROGRAMMING BY EXAMPLE

Next foo() calls bar() with a JMP instruction, which pushes the return address in
JSoo(). When it’s finished, bar() uses this return address to return to foo(). Then
bar() allocates space on the stack for its local variables with a LINK instruction.
Figure 5-10 illustrates the stack before and after a function call.

The collection of stack objects—the function’s parameters, the return address, and
the automatic variable space—is called the current “stack frame.” Register A6 points
to the stack frame, so it’s called the “frame pointer.” All of the function’s local vari-
ables are accessed as offsets from A6.

Stack after function call

Stack before function call High memory
|

l— A7

arg2

argl

return address

old AG value &« AG
varl
var2 k— A7
|
Low memory

Figure 5-10.
The stack before and after a function call.

Just before the function returns, it calls UNLK, an assembly language instruction
which sees that the frame pointer’s value reverts to its previous value. At this point,
all references to local variables are gone; the value of A6 no longer points to a func-
tion’s locals. This is why local variables have a scope limited to their function’s
lifetime: The stack frame in which they reside disappears after the function returns.

The Heap

The stack mechanism is rigidly structured, and the stack’s contents are limited to
function-call-related data. The heap contains a varied collection of data objects.
The Mac actually has at least two heap zones, one for the system and the other for an
application. The system heap is hands-off as far as your application is concerned. It
contains the Operating System code, fonts, DAs, INITs, device management data,
and other esoteric matters important to the health of your Macintosh environment.

5: MACINTOSH MEMORY MANAGEMENT

The application heap is yours to use as you need to, but step lightly: This heap con-
tains your application resources, including the code segments of your applications.
Many a bomb alert box appears as the result of writing over a CODE resource in the
heap. We'll refer to the application heap zone simply as “the heap,” but remember
that multiple heap zones can reside in RAM, especially if you have loaded more than
one application. The following discussion can apply to any one of the application
heap zones.

A heap consists of blocks—groups of contiguous memory locations—that are ac-
cessible to your program indirectly, through the Macintosh Memory Manager. Heaps
come in three types: “free,” “nonrelocatable,” and “relocatable.” You must “allocate”
a block of memory in the heap before you can use it, in a process analogous to rent-
ing a locker at the bus station: Only one application at a time can use a particular
block. Likewise, you deallocate a block when you've finished with it so that another
part of your program can use that block of memory.

A free block is a block that isn’t in use. When an application starts to run, most
blocks in the heap fall into this category. The pool of free blocks makes up the free
space reported by the Memory Manager function FreeMem.

You allocate the free blocks to your application using the Memory Manager function
NewPir or NewHandle. Either function accepts a parameter that specifies the size, in
bytes, of the block you need. When your application is finished with the block, you
call either DisposPtr or DisposHandle to free the block. (Apple left the “e” off
“dispose,” by the way—that’s not a typo.) Using either DisposPtr or DisposHandle
returns the block of memory in RAM to the free pool.

A nonrelocatable block is allocated in the heap at a location that never changes. You
allocate one of these blocks with NewPtr, which returns a pointer to the block. If you
are familiar with the library function malloc(), you will recognize its similarity to
NewPtr. Nonrelocatable blocks are undesirable. The Macintosh Memory Manager
must sometimes allocate a large block of memory in the heap, and nonrelocatable
blocks can get in the way.

Relocatable blocks are preferable. You allocate one of these blocks with NewHandle,
which returns a handle to the block. A handle is a pointer to a master pointer, a
char* data type in C. A relocatable block can move around in the heap. Unlike a
sedentary nonrelocatable block, a relocatable block is moved by the Memory Man-
ager when the Macintosh is trying to allocate a large block of memory in the heap.
Don’t misunderstand: Blocks in the heap aren’t moved around for the fun of it. The
Memory Manager moves blocks around only when it needs to in order to allocate a
large block of memory.

When a program calls NewHandle, the Memory Manager looks for a run of contig-
uous free blocks until it has enough memory to meet the request. Sometimes it needs
to move blocks out of the way in order to find the space it needs. The problem with

nonrelocatable blocks is that they cause a logjam in the heap—the Memory Manager
can’t move them and has to restart its search for free blocks on the other side of the log-
jam. Figure 5-11 on the next page illustrates this problem, called “heap fragmentation,”

MACINTOSH C PROGRAMMING BY EXAMPLE

which limits the possible size of a block. The potential size of a block is limited to
the size of a free block run in the heap. In a fragmented heap, this size can be much
smaller than the total available memory. Relocatable objects help the Memory Man-
ager avoid the problem because the Memory Manager can move them out of
the middle of long runs of free blocks. Use NewHandle instead of NewPtr when-
ever possible.

Before heap compaction After heap compaction

Maximum
block size

Nonrelocatable block

Relocatable block
:’ Free block

Figure 5-11.

The beap before and after compaction by the Memory Manager. Because of the
nonrelocatable blocks in this beap, the maximum block size is limited to only
balf the amount of free memory.

Avciding Heap Frcgmeniclion

Nonrelocatable blocks aren’t bad in and of themselves; their role in fra -
ting the heap is what makes them undesirable. The descriptlon of Nethr in
Inside Macintosh, Volume 1I, tells us that NewPtr tries to allocate a non-
relocatable block to the lowest possible location in the heap. If you can

_ preallocate all of your application’s nonrelocatable blocks be_fore._albcatmgfx‘
any relocatable blocks, the nonrelocatable blocks will be at the bottom of the |
heap, where they can't possibly fragment the heap. Preallocate your. apph&-»
tion’s nonrelocatable blocks in its initialization routine. '

5: MACINTOSH MEMORY MANAGEMENT

The heap during program initialization

AR
s,

Note the large
amount of free
|~ space available
in the heap.

Nonrelocatable blocks
allocated at the
bottom of the heap

Nonrelocatable block

Relocatable block
[]

Free block

Figure 5-12.
Preallocating the nonrelocatable blocks.

A pointer to data in the heap won't always be valid if the data is in a relocatable
block. How does an application reference the data in a relocatable block? Apple’s so-
lution involves a pointer to a pointer to the block. The Operating System maintains a
bank of “master pointers” in the heap. Every time your application requests a reloca-
table block, the Memory Manager assigns the address of the block to one of these
master pointers and returns the address of the master pointer to your application by
means of the return value of NewHandle. A variable that holds the address of a mas-
ter pointer is called a “handle.” You saw the data type declaration for the Handle
type in Chapter 3, but we’ll repeat it here:

typedef char * Ptr;
typedef Ptr * Handle;

The Memory Manager keeps the master pointers in a nonrelocatable block and they
therefore never move, so that the handle returned by NewHandle is always valid. If
the Memory Manager needs to move the block, it changes the value of the master
pointer to point to the block’s new location. Figure 5-13 on the next page illustrates
how the links are maintained.

MACINTOSH C PROGRAMMING BY EXAMPLE

The heap before compaction The heap after compaction
Master pointer
blocks allocated —
with MoreMasters
Master pointer TR Tt Master pointer RIS IR e
ControlRec B AP0
@ Ox1086ba -u-u-n-_--—“i“l*“*'"’?"‘?°""*1'-‘;“‘¢
theHdl — Ox124428 theHdl = Ox124428
ControlRec
ControlRec o _Mmovement -
@ OxO15644 ~ Eagssriwivaiys
Figure 5-13.

The beap before and after compaction. In this example, theHdl always points
to the master pointer, which stays at its location, 0x1244a8, and points to the
changing location of ControlRec, first at 0x01564d and then at Ox1086ba.

An application can find its data with a “double dereference” of the handle. Let’s look
at an example of a double dereference.

In the example shown in Figure 5-14, we create a list structure of four ListElm ele-
ments. Note the double dereference of the handle to assign the value 4 to the count

Computerese 101

Computers have certainly enriched the English language. Take the term
“double dereference.” Remember the phrase “passing by reference” from
Chapter 4? Recall that you pass an object by reference when you pass its ad-
dress as an argument to a function czll Referencing a data object produces
its address.

What is a “dereference,” then? As its name 1mplies, a dereference | reverses ,
the reference. Given an address of a data object, a dereference produces the
data object—its value. A pointer holds the address of an object. Dereferenc-
ing the pointer produces the value of the pointed-to object. It should follow,
then, that a double dereference of a handle would produce the data object’s
value because a handle contains a pointer to a pointer to the data object.

102

5: MACINTOSH MEMORY MANAGEMENT

member of the List structure. No matter where the block ends up in the heap, we
can always get to the contents with a double dereference.

typedef struct List

{
short count;
ListElm elm;

} List, #ListPtr, =xListHdl;

ListHandle thelist;
Size listSize;

listSize = sizeof (List) + 3 * sizeof (ListElm);

/* allocate a 1ist of four elements */
if (thelist = NewHandle (listSize)) : :
(*+thelList).count = 4; // here's the 1istSize double dereference
else
doMemError ();

Figure 5-14.
An example of a double dereference.

|
Calling MoreMasfers '
The Memory Manager routine MoreMasters creates master pointers in a
- nonrelocatable block, so it’s a good idea to create enough master pointers for
your application’s use early on in the program, when you’re ensuring that
your nonrelocatable blocks will reside at the bottom of the heap. (See the
sidebar “Avoiding Heap Fragmentation.”) You need to estimate the number

of handles that your application is going to use and preallocate the master
pointers in your application’s initialization routine.

How many master pointers should you create? Inside Macintosh tells us that a
call to MoreMasters creates 64 master pointers in the application. Generic
App, which we introduce in the next chapter, calls MoreMasters four times,
which allocates 256 master pointers. Because Generic App doesn't allocate
much memory, these 256 master pointers should be plenty for the user inter-
face needs of the application, such as pulling down menus and opemng .
dlalog boxes. .

Our commercial application Tycho Table Maker, on the other hand, uses
many relocatable blocks—at least two for each table cell—so Tycho Table
Maker calls MoreMasters 64 times in its initialization routine, for a total of
- 4096 master pointers.

103

MACINTOSH C PROGRAMMING BY EXAMPLE

But the double dereference is a flaw in the memory management scheme. Think as if
you were a machine for a moment, in order to realize what the CPU has to go
through to get at the data in a relocatable block. Before your application can read or
write any data from the block, the CPU needs to fetch the address of the master
pointer from the handle variable and then fetch the address of the block from the
pointer. The extra dereference every time a program accesses data on the heap can
degrade an application’s performance.

The code shown in Figure 5-15 allocates memory for a TextEdit record and initializes
the fields of the record. This kind of code is common in Macintosh applications—
creation of a data structure in the heap, followed by the initialization of the fields of
the structure. With every access to the structure, the handle is dereferenced.

TERecord *tep,

**teh;
Rect aRect;
Handle textHdl;

teh = TENew (&aRect, &aRect); // allocate the TERecord (IM-I)

textHd1 = NewHandle (120L);

(*teh)->hText = textHdl; // notice the double dereference
(*teh)->just = tedustleft; /1 in every line
(*teh)->selStart = 0; // while the TERecord structure
(*teh)->selEnd = 0; /1 is initialized

(*teh)->teLength = 120;

Figure 5-15.
Allocation and initialization of a beap data structure— in this case,
a TERecord.

You can improve the performance of a handle-intensive application by dereferenc-
ing the handle and putting the master pointer’s value into a register variable. The
code in Figure 5-16 demonstrates this technique. Immediately after the TERecord,
teb, is allocated by means of TENew, the handle is dereferenced into the pointer, Zep,
and the pointer is used to initialize the structure.

TEHandle teh;
register TEPtr tep;

Figure 5-16. (continued)
Using a register pointer to the structure speeds up access to the beap.

104

5: MACINTOSH MEMORY MANAGEMENT

Figure 5-16. continued

teh = TENew (&aRect, &aRect);
tep = *teh; '

textHdl = NewHandle (120L);
tep->hText = textHdl;
tep->just = tedustleft;
tep->selStart = 0;
tep->selEnd = 0;

Pitfalls in Using Heap Objects

We've hidden a problem in Figure 5-16 to illustrate a common hitch in this kind of
optimization. The call to NewHandle could potentially rearrange the heap. Reloca-
tion of heap objects is the source of a wide variety of bugs: A program calculates the
address of an object, calls a function or Toolbox routine that moves the object, and
then attempts to use the original address, which is no longer valid.

In response to calls to the Toolbox in a user interface intensive Macintosh applica-
tion, objects can be relocated within the heap without your knowledge. Display of a
dialog box is a good example. Although your application might have called Get-
NewDialog and ModalDialog to display a dialog box, the various Toolbox Managers
involved in creating, displaying, and tracking user events for the dialog box are call-
ing NewHandle behind the scenes. If memory is tight, the heap is rearranged. Figure
5-17 illustrates the problem that can result, a “dangling pointer.”

Before heap object relocation After heap object relocation
Master pointer Master pointer
@ Ox124426 —>|__Ox015644 @ Ox124458 ~—P|__Ox120280
D R R DTS
ControlRec P

@ Ox120280 ~ K

theHd = Ox124428 theHdl = 0Ox124428

AR e thePtr —| 2222
ControlRec
@ Ox015644

Figure 5-17.
Before and after beap object relocation. A dangling pointer.

MACINTOSH C PROGRAMMING BY EXAMPLE

In the first diagram in Figure 5-17, things are fine, as long as ControlRec, the relocata-
ble object, doesn't relocate. In the second diagram, the worst has happened: Con-
trolRec has moved in response to a Toolbox call. Note that thePtr still points to
address 0x01564d, where who-knows-what now resides.

Not all Toolbox calls have the potential for relocating heap objects. Certain Toolbox
routines—such as OffsetRect, SetPort, FixMul, and InfoScrap— perform operations
that really have no reason to move relocatable objects. Another class of Toolbox rou-
tines—such as NewRgn, GrowWindow, and TESetText—indirectly create heap ob-
jects. How do you know which routines might move an object and which routines
won't? Inside Macintosh lists all the Toolbox routines that have a potential for
reorganizing the heap. They’re listed as “Routines that may move or purge memory,”
which is actually a misnomer because memory doesn't really go anywhere—the
objects in the heap memory are relocated. This information is available in other
sources, such as Bernard Gallet’s Inside Mac DA or Thom’s The Programmer’s Apple
Mac Sourcebook (Microsoft Press, 1989). It’s a good idea to check your code against
these lists if you're going to use dereferenced pointers to relocatable heap objects.

Another instance in which relocatable blocks might move is during an intersegment
function call. Remember that your application’s code resides in the heap along with
your data. The Segment Loader sees to it that code is in RAM when it needs to be.
The process of loading a CODE resource might move some relocatable objects in the
heap to make room for the new code segment.

How do you avoid the dangling pointer problem? You can live with the inefficiency
of double dereferencing and always access the data in the relocatable object, as in
Figure 5-18.

(#+teh).hText = textHdl;
(*#*+teh).just = tedustlLeft;
(#*teh).selStart = 0;
(#*teh).selEnd = 0;

Figure 5-18.
Better safe than sorry? You could choose always to use the bandle to access the
beap elements.

Or you can use a smarter approach: Don’t do anything that moves objects in the
heap while you're using the dereferenced pointer. Figure 5-19 demonstrates the safe
way to access a relocatable object.

register TERecord * tep;
. TEHandle teh; ‘

Figure 5-19. (continued)
All allocation is done before the bandle is dereferenced and the pointer is used.

5: MACINTOSH MEMORY MANAGEMENT

Figure 53-19. continued

teh = TENew (%aRect, &aRect);
textHdl = NewHandle (120L);

tep = *teh; // dereference after NewHandle
tep->hText = textHdl;

tep->just = tedustleft;

tep->selStart = 0;

tep->selEnd = 0;

Another class of bugs results from the interaction of the Macintosh memory manage-
ment scheme with C’s storied portability. Because of the way the compiler is imple-
mented, C can’t guarantee when it will perform an address calculation. Let’s look at
this problem in detail because it bites every Macintosh C programmer at some time.

The bug occurs during an assignment from the return value of a Toolbox routine that
can move a block in memory and is illustrated by Figure 5-20.

TEHandle teh;
teh = TENew (&aRect, &aRect):
(*teh)->hText = NewHandle (120L);

Figure 5-20.
The TERecord is created in the beap and is assigned the result of NewHandle
directly in the object.

It might appear that everything is correct: The handle is double dereferenced, and
there is therefore no dangling pointer. But a bug occurs if the compiler generates
code that calculates the heap address of the hText member before the call to
NewHandle. Figure 5-21 on the next page illustrates the steps that the compiler could
take; one produces the bomb alert box.

A compiler does have an occasxonal bug, especially soon after ‘
release. If you have questions about THINK C or if you think you ve ound a -
problem with the compiler or one of its libraries, you can contact Symantec

on the CompuServe information service. You'll get a quick answ
either Symantec or another forum member. Just type GO THINK at
prompt, and leave a message describing your problem or comment Check

back later in the day, and you’ll probabl have your answer

107

MACINTOSH C PROGRAMMING BY EXAMPLE

Before heap object relocation After heap object relocation
Master pointer Master pointer
@ Ox124428 ~»|__Ox015644d @ Ox124428 —P__Ox1202860
I S T ST
TERecord [isimicom i
@0x120280 ~
Handle created [
with NewHandle =
teh —» Ox124428 teh —» Ox1244a8

("teh)->hText (*teh)->hText —»| 7722
\ TERecord

@0x015644

Figure 5-21.

If the compiler computes the address after the function call, there’s no bug.
But if it computes the address before the function call, the address could be
incorrect if NewHandle moves the TERecord.

Is this a bug or a feature? The compiler doesn't guarantee the order of address calcu-
lation during an assignment. The language designers left this choice up to whoever
implements the compiler. The Symantec compiler usually calculates the address
before the function call. If you contact Symantec to report this as a bug, they’ll
justify their implementation by telling you what we’ve just told you.

Another manifestation of this premature address-calculation problem, one that has
nothing to do with the compiler implementation, is demonstrated in Figure 5-22.

Meanandle theMenu;

theMenu = GetMenu (kMenulD);
GetIndString ((*theMenu)->menuData, kMenuStrID, kMenuStrl);

e

Figure 5-22.

Here’s another potential bomb alert box. The address of menuData in the beap
is pushed onto the stack. GetlndString then relocates objects in the beap, and
the address is invalid.

Detecting the problem in Figure 5-22 requires a knowledge of the data structure
you're working with. GetMenu returns a handle to some menu template data from

5: MACINTOSH MEMORY MANAGEMENT

the application’s resource file. (We’ll get to menus in the next chapter.) At the end of
the data structure referenced by this handle is a string, menuData, which holds the
menu’s item strings. Because it’s a string, menuData is passed by reference. The
Resource Manager routine, GetlndString, reads a string from the application’s
resource file and loads the string into the location specified by the first argument to
GetIndString. If GetIndString rearranges the heap, the address is wrong and Get-
IndString overwrites some undefined location in the heap.

You might use a temporary stack variable as a workaround for this problem. Stack
objects aren’t moved around the way heap objects are, so you can be sure that their
addresses are stable and therefore always valid. We’ve used a temporary string in the
code in Figure 5-23 to solve this problem.

MenuHandle theMenu;
Str255 aString;

theMenu = GetMenu (kMenulD); z
GetIndString (aString, kMenuStrID, kMenuStrl);
BlockMove (aString, (*theMenu)- >menuData. (long)(aString [0] + 1));

Figure 5-23.
A temporary variable, aString, is used with GetIndString and BlockMove. Inside
Macintosh says that BlockMove doesn’t move objects in the beap.

BlockMove, which copies the string from the temporary variable to the heap object,
is a general-purpose, memory-to-memory copy routine. Although this code will run
without incident, it’s not very efficient to make a double copy of the string simply to
work around the Memory Manager’s tendency to shuffle the deck. There is a way to
pass the address of a relocatable object when the object might move. The easiest so-
lution is to use the Memory Manager routine HLock to lock the object in the heap.
This has the effect of turning a relocatable object into a nonrelocatable one. The
code in Figure 5-24 demonstrates the process.

theMenu = GetMenu (kMenulD);

MoveHHi (theMenu);
HLock (theMenu);

GetIndString ((xtheMenu)->menuData, kMenuStrID, kMenuStrl);
HUnlock (theMenu); ‘

Figure 5-24.
Locking (and then unlocking) the handle.

MACINTOSH C PROGRAMMING BY EXAMPLE

You can pass the address of a relocatable object to a Toolbox call that will move a
block in memory if you first lock the handle. But remember to unlock the handle
with HUnlock as soon as possible.

You can use this technique of locking a block to avoid the problem of premature ad-
dress calculation, as shown in the code in Figure 5-25.

TEHandle teh;
teh = TENew (&aRect, &aRect);

MoveHHi (teh);

HLock (teh);

(*teh)->hText = NewHandle (120L);
HUnlock (teh);

Figure 5-25.
Locking the block before the address to a relocatable block is calculated.

Note the call to MoveHH: in Figures 5-24 and 5-25. When you create a temporary
nonrelocatable object by locking the block, you’ll open the door to heap fragmenta-
tion unless you first move the object out of the center to the top of the heap before
you lock it. That’s what MoveHH: does. It moves the block as high in the heap as
possible. Figure 5-26 illustrates the action of MoveHHj,

Before heap object relocation After MoveHHi
Maximum AR
. . ‘ControlRes:
ob_:ct thePtr —>» @Pxi20280.
1Zze R T
. Contr‘o)Rca . Maximum
. @Ox015644: - object
REAAR T et
Figure 5-26.
MoveHHi.

Of course, you don’'t want to keep a block locked any longer than you need to. You
use the Memory Manager routine HUnlock to unlock the block; otherwise, you
thwart the very purpose of using relocatable blocks.

5: MACINTOSH MEMORY MANAGEMENT

Locking a handle is no panacea. You want to lock the block only when necessary.
We’ve summarized the cases in which it’s necessary to lock a relocatable block:

B You run the risk of a dangling pointer.

B You assign the value of an intersegment function call to a relocatable
heap object.

B You assign to a relocatable heap object the value of a Toolbox routine that has
the potential to rearrange the heap.

B You pass the address of a relocatable object as an argument to an intersegment
function call.

B You pass the address of a relocatable object as an argument to a Toolbox rou-
tine that has the potential to rearrange the heap.

Now you know the circumstances under which the heap is rearranged. You don't
need to lock a block every time you assign oneé of its fields. You probably won't be
returning pointers to local variables anymore, either.

We hope that you haven’t misunderstood this chapter’s message. We're not advocat-
ing assembly language programming. Rather, we're out to make you a more effective
C programmer. An awareness of what’s going on “under the hood” will not only im-
prove your coding sessions but will reduce your debugging time as well.

But that’s enough poking around at the underside of a program. Let’s create a real
program so that we can see these problems and solutions in practice.

6

INTRODUCTION
TO THE GENERIC
APPLICATION

Whether it’s pasta or prescription drugs, nearly every product seems to come in a
generic version these days. This chapter introduces the Generic Application—
Generic App for short—a complete, stand-alone application that provides a basis for
just about any Macintosh program.

Generic App is an application shell that performs the fundamental Macintosh pro-
gram tasks: initializing the Macintosh interface, monitoring user input, and managing
multiple documents. It’s generic because it can be used as a starting point for almost
any programming project.

We'll take up this generic Macintosh application in three stages. In this chapter, we’ll
look at the first phase, which we call miniGeneric—the simplest application. We’'ll
use miniGeneric to describe the Macintosh’s event-driven operating system, to in-
troduce Macintosh resources, and to examine how an application reads menu
selections.

In Chapter 7, we’'ll explore Macintosh window management with a multiwindow ap-
plication we call multiGeneric. Finally, in Chapter 8, we’ll extend the shell to demon-
strate how an application window can display and scroll text and graphics.

Before we leap into the details of Generic App, let’s take a look at how Macintosh
software is organized. This overview will help you organize your programs.

113

MACINTOSH C PROGRAMMING BY EXAMPLE

Stratified Software

Macintosh software is organized in levels, like Dante’s Inferno. This layering of soft-
ware, shown in Figure 6-1, brings order to the chaos of a large application.

Word processor, spreadsheet
program, drawing program, etc.

Application layer

Application shell Generic App

The system software managers

User interface Toolbox documented in Inside Macintosh

ROM

Macintosh Operating System

Mac Plus, Mac |l,

Macintosh hardware printers, disks, etc.

Figure 6-1.
The Macintosh software bierarchy.

At the very bottom of the software hierarchy, the Macintosh Operating System (OS)
mediates the boundary between hardware and software—managing memory,
supervising input and output, and processing interrupts. Above the OS sits the User
Interface Toolbox, which provides the routines for standard Macintosh interface ob-
jects such as windows and menus. Together, these two levels make up the ROM, or
system software.

The two layers of ROM are further divided into managers that group the system rou-
tines according to function. Within these managers lie the procedures that are called
from an application to do Macintosh-specific chores such as opening a file or a win-
dow and reading a control or a menu.

The application resides in levels above the ROM software. Good application soft-
ware is usually organized into two levels—one for the application shell and one for
the application proper.

ROM Software

The two layers of ROM software deserve a closer look because one good way to ap-
proach a new programming environment is to examine the features that it supports.
The Macintosh segmentation of system utilities into managers provides for an orderly
tour of the features supported by the Mac.

User interface Toolbox managers

The user interface Toolbox is the most interesting layer of the system software.
QuickDraw, TextEdit, the Window Manager, the Dialog Manager, and the Toolbox
Event Manager are all on this level. Every time your application opens a window,

114

6: INTRODUCTION TO THE GENERIC APPLICATION

puts up a dialog box, or reads a menu, it is calling at least one of these manager
routines, and as you become more experienced in programming the Macintosh,
you'll begin to learn the routines by heart. Figure 6-2 diagrams the relationships
among several managers at the user interface Toolbox level and their relationship to
the File Manager at the Operating System level.

Standard File
Package

Dialog
Manager

A ~ N
TextEdit Control Window
Manager Manager

, ™ N N

Font QuickDraw Toolbox Event
Manager Manager Manager

User interface
Toolbox layer

05 layer

il L
.- Mahager - |

Figure 6-2.
Important managers of the user interface Toolbox level.

Operating System managers

The Operating System level routines are a bit more esoteric. A typical OS manager is
the Device Manager. It provides access to standard devices such as a printer or a disk
drive through a structure called a device control entry or DCE. Other OS managers
include the Memory Manager, the System Error Handler, and the OS Event Manager.
Figure 6-3 on the next page diagrams the interaction of several OS managers with
the Macintosh hardware.

If you do system programming, you'll become familiar with the routines and data
structures peculiar to some of the OS managers. If you write a disk driver, for in-
stance, you'll become expert with the File Manager, the Device Manager, and the
Disk Driver but will probably learn little about the Serial Driver.

An application programmer needs to know about the Memory Manager and certain
OS utilities but usually ignores the details of the OS level. Indeed, that’s why the
software hierarchy is in place: The details of the technology are localized to the
level.

MACINTOSH C PROGRAMMING BY EXAMPLE

§
4

el Segment
H Loader

1 TR,

0S Event
Manager

File
M Manager

el Device
q Manager

RN

fSystem Error|

Handler

Memory
Manager

Figure 6-3.
Operating System software interacting with the Macintosh hardware.

The Shell Level

Above the ROM software level, the application programmer is in charge of the layer-
ing. We chose the next layer of our hierarchy to be the application “shell.” A shell is
the supporting structure of an application, supplying the application’s event process-
ing and window management.

Whatever your programming background and focus, your first task as a Macintosh
novitiate is building the shell. Once you've built the shell, you can use it over and
over again—for every application that you write in your long and illustrious career
as a Macintosh programmer. It’s been said that each programmer really writes only
one program in his or her career. Generic App is the foundation for that program.

The application proper actually begins in the next higher level—at the level we've
called the application layer. In a word processing program, the application layer con-
tains the modules that process text. The interface, which consists of windows, scroll
bars, and facilities for mouse and keyboard input, is supplied in the shell layer.

We're borrowing the shell concept from object-oriented programming (OOP) texts,
where the idea is more formalized. In OOP, programs are made up of objects that
encapsulate data and code. In the pure light of OOP thinking, the shell and the ap-
plication are separate objects, each with its own independent set of data and code.
As we add application-like features to Generic App in Chapters 7 and 8, and later in
the chapter on Browser, you'll get a better feel for how the shell code differs from the
application feature set that we add to it.

Let’s look at miniGeneric, the simple phase of our shell.

6: INTRODUCTION TO THE GENERIC APPLICATION

What Does miniGeneric Do?

Functionally, miniGeneric is very simple: It manages the Apple, File, and Edit menus,
and it supports two windows. The main window contains text, and the secondary
window is for the About box, where the program’s logo and version information are
displayed. The About box can overlap the main window. When the About box is
closed, the main window needs to be refreshed.

Figure 6-4 shows the miniGeneric screen, with the About box in front of the main
window. The Apple and File menus are fully functional, but the Edit menu is present
only to support any Desk Accessories that might need it, in accordance with Apple’s
User Interface Guidelines.

Figure 6-4. (ICH File Edit (D &
The miniGeneric
screen.

miniGeneric App

VENER[C APP

Copyright © 1991 Kurt WW.G. Matthies

IE K Avallable Mermary

_ Hello, Userl Hello Userl Hellu Userl Hellu Userl HeHo Userl Hello, User!
Hello, User! Hello, User! Hello, User! Hello, User! Hello, User! Hello, User!

tello, Userl Hello, User! Hello, User! Hello, User! Hello, Userl Hello, Userls:

Our shell meets all the requirements for a minimum application: The user can open
and close the main window and the About box and quit the application, all by using
menu selections.

A user’s selection reaches the application as an event. Selecting a menu item with
the mouse causes an event of one kind to be generated at the system level. Using a
command-key equivalent causes another kind of event to be generated.

Macintosh programs are event-driven. Most of the time, a Macintosh program is idle,
waiting for a new event to process. Events are the result of real-world occurrences
such as a keypress or a disk insertion. The OS layer processes the interrupts associ-
ated with the real-world occurrences, bundles up all the information about the event
into an EventRecord structure, and makes the event available to the application.

When the application receives the event, the program’s logic switches control to a
function that deals with that type of event. We call this processing “event parsing.”

117

MACINTOSH C PROGRAMMING BY EXAMPLE

Consider the diagram in Figure 6-5. The miniGeneric application, limited to its shell
duties, is interested in only mouse and keyboard events. These real-world occur-
rences translate into the Macintosh events mouse-down, key-down, activate, and
update. When miniGeneric gets an event of interest, it passes control to the corre-
sponding routine— doMouseDown, doKeyDown, doActivateEvent, or doUpdateEvent.

| Initialize application

Event
\ available?

yes

w ho

doKeyDown

doActivateEvent

doUpdateEvent

Figure 6-5.
miniGeneric’s main event loop.

6: INTRODUCTION TO THE GENERIC APPLICATION

When the user selects a menu item or selects the command-key equivalent for the
item, the application reacts. Figure 6-6 shows the top of the Apple menu, which in-
vokes the About box, and miniGeneric’s File menu, which contains three items.

Figure 6-6. m
The About

miniGeneric item About miniGeneric... File...
in the Apple menu |

and the Close
miniGeneric File

menu. Quit

Figure 6-7 shows what miniGeneric needs to do to process menu selections.

Menvu Item Action Action Function
Apple About Display the About box doAboutBox
File Open Open the window doOpen

File Close Close the window doClose

File Quit Quit the application doQuit

Figure 6-7.

Processing miniGeneric menu selections.

The first step in application building is designing the framework to manage each
event and its origin.

A Roadmap of Generic App

The complete source code for miniGeneric is in the folder miniGenApp f, found on
the disk that comes with this book. The folder contains a project file, the folder
miniGenApp Src with 10 source files, the folder miniGenApp Hdr containing the
project’s header files, and the project resource file, miniGenAppm.rsrc. The files that
make up miniGeneric are shown in Figure 6-8.

File Name Location Purpose

miniGenAppn Project folder Project file

miniGenAppr.rsrc Project folder Project resource file

Shell.c Src folder Main entry point, event parsing

Figure 6-8. (continued)

The miniGeneric source files.

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 6-8. continued

File Name Location Purpose

Applnit.c Src folder Application initialization routines
MenuUtil.c Src folder Menu utilities

WindowUtil.c Src folder Window sizing, movement, scrolling
DialogUtil.c Src folder Dialog box hook procedures
AboutBox.c Src folder About box rendering

MiscUtil.c Src folder A catch-all file

DocUtil.c Src folder Document management

FileUtil.c Src folder File I/0 utilities

Display.c Src folder Drawing functions for application
xxxxPr.h Hdr folder Prototypes—one for each .c file
AppConstants.h Hdr folder Application constants (#defines)
AppGlobals.h Hdr folder Application global declarations
AppTypes.h Hdr folder Application type definitions
MenuConstants.h Hdr folder Menu constant definitions
Version.h Hdr folder Compiler environment definition

The miniGeneric application is a much larger project than our Hello Mac! example
was. The C source code for Hello Mac! was in one file; the code for miniGeneric is
organized into 10 source files and 15 header files. Why is the program split up? Here

are the main reasons:

B To isolate independent “modules” within the program. A module is simply a

source file in which functions are defined. Modules should be aptly named.
The module DialogUtil.c, for example, contains dialog box management
utilities. WindowUtil.c contains windowing routines.

To organize the program code logically. Shell.c contains the main event loop
and utilities. When the user chooses a menu item, program control passes to
one of the routines in the file MenuUtil.c. Therefore, if you wanted to add an-
other menu, MenuUtil.c would be the logical place to do it. If you added to the
program helter-skelter, the program would become what is colorfully de-
scribed as “spaghetti code” because it would snake and tangle all over the disk.
The key to organizing modules is to create a file structure and be faithful to it.
miniGeneric’s file organization is appropriate for small applications and is
adaptable to programs of up to 100,000 lines.

To keep to a minimum the amount of code that must be recompiled and
relinked when making the frequent small changes and adjustments that are
part of the development cycle. Minimizing the amount of code that must be
recompiled and relinked saves time during the development cycle and makes
the code amenable to the use of source code control techniques, a topic we'll
examine in passing in the next chapter.

6: INTRODUCTION TO THE GENERIC APPLICATION

® To retain control over the program’s code segmentation. The code of all exe-
cutable programs is segmented. A code segment is an atomic unit of code,
loaded into RAM automatically when one of the functions in the segment is
called during program execution. In THINK C, we have control over which
modules are in €ach segment. Using a segmentation strategy is important when
you're trying to fit a large program into a small space.

There’s an art to distributing the functions among the source files, and many factors
come into play. Routines usually group naturally. The trick is knowing where to
draw the line. For example, an application draws its window contents in response to
an update event. We put dolUpdateEvent(), the function that responds to an update
event, in the file Shell.c, but put drawDocContents(), the function that does the ac-
tual drawing, in the file Display.c. In this case, the line is drawn when the applica-
tion does the actual drawing. Sometimes, when the dividing line is not so distinct,
you'll use other criteria to determine where a function fits in your modular
organization.

Another consideration when creating code modules is the “scope” of a function,
which defines where the function can be called. In C, the scope of a “static function”
is limited to the source file in which it’s defined. A static function can be called only
from the routines defined in its own module. Declaring a function as static isolates
the function from other, non-similar, functions. Thoughtful use of static functions
can therefore facilitate a layered approach to software design.

A “static variable” serves to hide data from external modules. A static variable is ac-
cessible from everywhere in the module in which it’s defined—any function in the
module can use it. But a static variable is hidden from external functions. So when
deciding the location of a function, consider whether it needs to access a static vari-
able. If it does, you need to put the function in the static variable’s module.

—
Static Functions

A static function is created by putting the static keyword before the function
name in the function’s body definition. Let’s look at two function prototypes
for Generic’s functions doMenu() and doFileMenu(), both defined in the file
MenuUtil.c. The first function, doMenu(), is declared without the static key-
word, and rightfully so—it’s called from the functions doMouseDown() and
doKeyDown(), both in another module, in the file Shell.c.

void doMenu (long menuResult);

The second function, doFileMenu(), is a static function. It’s called only from
doMenu(), which resides in the same file, in MenuUtil.c.

static void doFileMenu (short itemNumber);

121

MACINTOSH C PROGRAMMING BY EXAMPLE

Static Variables

Here’s a small code fragment from the mythical file Foo.c that demonstrates
static variable syntax:

static TEHandle sCurTextHdl1; /* static variable */

/* createText--this is a sample function */
void
createText (Rect targetRect)
{
sCurTextHd1 = TENew (&targetRect, &targetRect);

Because sCurTextHdl is a static variable, any function in Foo.c can access it, as
the function createText() does in the example. Functions in other modules are
unaware of the existence of sCurTextHdl, and the compiler will generate an
undefined symbol message if you try to reference sCurTextHd! from another
module.

Now that you have an idea of how and why functions are distributed in the 10 source
modules, we'll take a look at what’s in Generic App and at the event mechanism—
how Generic App processes events.

The Main Event

Without input, a computer is a useless hunk of hardware. A computer application
needs to know when its user is pawing the keyboard or twiddling the mouse button.
The Event mechanism of the OS layer translates these real-world occurrences initi-
ated by the user into a data structure available to the application—into the
EventRecord data structure whose declaration we show in Figure 6-9.

typedef struct EventRecord

{
int what;
Tong message;
long when;
Point where;
int modifiers;

}EventRecord;

Figure 6-9.

The EventRecord data structure.

122

6: INTRODUCTION TO THE GENERIC APPLICATION

An EventRecord is created for each mouse-down, keypress, disk insertion, Appletalk
message received, or other occurrence. The table in Figure 6-10 shows the possible
Macintosh event types.

Event Type Description

Nothing happening. A null event
No events | nullEvent is what you get when there is no
other event available.

mouseDown Mouse button down.

Mouse events Mouse button was released. Cannot
mouseUp happen without a mouse-down.
keyDown A key was pressed.

Keyboard events | keyUp A key was released.
autoKey A key is being held down.
The window has a nonempty
updateEvt update region. Part of the

Window Manager events window needs refreshing.

A window has come to the front or

activateEvt has just left there.
diskEvt A disk was inserted.
External device events networkEvt An AppleTalk message was received.
driverEvt This depends on the driver and is
rarely used by applications.
applEvt User defined.
app2Evt User defined.
Application-defined events app3Evt User defined.
MultiFinder suspend/resume. A task
app4Evt was switched from foreground to

background, or vice versa.

Figure 6-10.
Macintosh event types.

When the computer detects a real-world occurrence, the OS Event Manager creates
an EventRecord using the interrupt data and links the record to the application’s
event queue. This queue, maintained by the OS, is where unprocessed events reside
in chronological order. Generic App doesn't access the queue directly. Instead, it
calls WaitNextEvent, the Event Manager routine that returns the data for the next
event and removes it from the queue.

When the application receives the event, it examines the event type and passes flow
of control to its function that handles that particular kind of event. Figure 6-11 on the
* next page illustrates the process.

123

MACINTOSH C PROGRAMMING BY EXAMPLE

Event Parsing

The event queue—unprocessed
events in order of occurrence

,

Generic has called Event
Manager's WaitNextEvent

Generic's

main event loop

Event types

mouse-down key-down activate update

doMouscDown H doKeyDown \ IdoActivateEvent\ IdoUpdateEvcnt\

Associated functions

Figure 6-11.
Parsing a real-world occurrence.

Event parsing goes on in Generic’s main event loop, shown in Figure 6-12. The entire
loop is in the function main(), which is found in Shell.c. Note the four event types
that Generic is interested in: mouse-down, key-down, activate, and update.

EventRecord event;
long sleepTicks;
Boolean result;

sleepTicks = 10L;

/* infinite Toop */
while (1)

{ . = B
result = WaitNextEvent (everyEvent, &event, sleepTicks, OL);

if (result) :

{ v
switch (event.what) /+ parse event type #/
{ i
Figure 6-12. (continued)

Generic App’s main event loop.

124

6: INTRODUCTION TO THE GENERIC APPLICATION

Figure 6-12. continued

case mouseDown:
doMouseDown (&event);
break;

case keyDown:
doKeyDown (&event);
break;

case activateEvt:
doActivateEvent (&event);
break;

case updateEvt:
doUpdateEvent (&event);
break;

WaitNextEvent

WaitNextEvent reads the event queue and returns an event record structure. Unfor-
tunately, WaitNextEvent is not documented in the standard reference, Inside Mac-
intosh, but is covered in an obscure document called Programmer’s Guide to
MultiFinder. You can glean a little more information about it from a few of the Mac-
intosh Technical Notes. The Apple Programmers and Developers Association
(APDA) makes both the Guide to MultiFinder and the tech notes available to
programmers.

We don't expect you to have a copy of Programmer’s Guide to MultiFinder lying
around, so we'll take a look at WaitNextEvent. Here are its arguments:

short WaitNextEvent (short eventMask, EventRecord * event,
long sleepTicks, RgnHandle mouseRgn);

B eventMask masks “interesting” events. The masks are enumerated in the
header file Events.h supplied with the THINK C package. The Generic applica-
tion uses the everyEvent mask and then parses the interesting ones with the
switch construct.

B event is the event record returned by WaitNextEvent.

B sleepTicks is the sleep variable, in ticks (Yeoths of a second). The value of sleep-
Ticks approximates the amount of time the foreground application allows
background tasks to run.

B mouseRgn, if specified, limits the area in which a mouse-down (or mouse-up)
event will be reported. If you limit this region to a 10-pixel by 10-pixel square,

MACINTOSH C PROGRAMMING BY EXAMPLE

your user must move the mouse at least 5 pixels from the last mouse-down po-
sition before an event will be reported. We don't specify a value for mouseRgn
in Generic, but because you might have use for it elsewhere, we demonstrate
using it in Figure 6-13.

EventRecord
long
Boolean
RgnHandle
Rect

Point

event;
sleepTicks;
result;
mouseRgn;
rgnRect;
mousePoint;

sleepTicks = 10L;

mouseRgn = NewRgn (); /* initialize the region */
SetRectRgn (mouseRgn, 0, @, @, 0);

/* infinite loop */

while (1)
{

result = WaitNextEvent (everyEvent, &event, sleepTicks, mouseRgn);

if (result)

{

switch (event.what) /* parse event type */

{

case mouseDown:

/* get the point where the mouse was clicked
from the event record */

mousePt.h = LOWORD (event.where);

mousePt.v = HIWORD (event.where);

/* build the rectangle that bounds the point by
five pixels =/

rgnRect.left = mousePt.h - 5;

rgnRect.right = mousePt.h + 5;

rgnRect.top = mousePt.v - 5;

rgnRect.bottom = mousePt.v + 5;

/* set up the new region */
RectRgn (mouseRgn, &rgnRect);

doMouseDown (&event);
break;

Use of WaitNextEvent’s mouseRgn parameter.

6: INTRODUCTION TO THE GENERIC APPLICATION

MultiFinder and WaitNextEvent

Once upon a time, under Finder, only one application at a time could be loaded into
the Macintosh memory. An application called two functions in its event loop: Get-
NextEvent, which pulled the next event off the event queue; and SystemTask, which
gave Desk Accessories a cycle or two. Then came MultiFinder.

MultiFinder has made the Macintosh a cooperative, multitasking system. A new sys-
tem routine, WaitNextEvent, has been added to allow applications to coexist in
RAM. Because multiple applications are allowed, two new concepts have been in-
troduced: the foreground task and the background task.

The foreground task is the application that receives most of the computer’s
resources. There is only one foreground task at any time. All of the other loaded ap-
plications are relegated to the background.

A background task gets very little of the system resources. In truth, it’s at the mercy
of the foreground task’s giving it any time to run at all. This is where WaitNextEvent
comes in.

Every time it's called, WaitNextEvent gives background tasks a little CPU time. The
amount of time that’s allocated to the background is controlled through the value of
the WaitNextEvent routine’s sleepTime parameter. If you want to be downright un-
neighborly and not allow background tasks any CPU time, set sleepTime to O (ac-
tually OL because sleepTime is of type long). A more generous and reasonable value
to start with is 20. If you find that your foreground application is not getting enough
cycles, decrease the sleepTime value. Note that Generic uses a variable for sleepTicks
instead of a hard-wired constant. This approach lets you change the value from the
debugger while the program is running, so that you can see how the value affects
the program’s responsiveness.

The System Clock g

The sleepTime parameter of WaitNextEvent is specified in units of the Mac-
intosh system clock, called the “tick counter,” which ticks 60 times a second.
The value of this counter is at the location named by the global variable Tick
(at address 0x0164) and contains the number of ¥%oths of a second that have

gone by since the system was booted. Here’s a simple function to read the“.,]
Tick value: o

Tong

readTicks ()

{ : :
- return (*((1ong *)0x016A));

}

The value 0x016A is cast to a pomter to long and dereferenced to return the"{‘ ;
4-byte value at location 16A. :

127

MACINTOSH C PROGRAMMING BY EXAMPLE

The miniGeneric shell, like virtually all Macintosh programs, spends most of its time
in the main event laop. Each time through the loop, it checks to see whether a new
event has occurred by testing the return value of WaitNextEvent.

The miniGeneric shell is interested in only a fresh EventRecord—one that is
received when WaitNextEvent returns a nonzero value. The EventRecord contains
the what, when, and where associated with the event. The contents of the record
vary according to the kind of event, which is returned in the what field of the record.
A consolidated list of the possible EventRecord values, based on event type, is shown
in Figure 6-14.

Message When Where Modifiers
. . Mouse
nullEvent Ticks since location at
startup event
Mouse | mouseDown " " button
events mouseUp " " state
Keyboard | keyDown | character " " Option, Shift,
events | keyUp code " n Command
autoKey key code " " keys
Window | updateEvt rer t " "
Manager) poinzer to " " Activate/
events | activateEvt | window Deactivate
. drive number " "
diskEvt result code
handle to " "
networkEvt | parameter
block
driverEvt varies " "
Application- | applEvt ? " "
defined appZEv[? " "
events app3Evt ? " "
" " MultiFinder
app4Evt suspend/
resume
Figure 6-14.

EventRecord contents by event code. Events are grouped by type on the left, and
the fields of the event record appear along the top. If a cell is blank, the value of
the field is undefined for that type of event and can be ignored.

The Macintosh OS and the user interface Toolbox are constantly evolving. Just be-
cause an EventRecord value is undefined now doesn’t mean it will always be un-
defined. For example, before MultiFinder, the app4Euvt event type was not assigned
and was free to be used by developers as they wanted to use it. MultiFinder came

6: INTRODUCTION TO THE GENERIC APPLICATION

along and used this event to signal applications that are switching in and out of the
foreground. Apple is very good about warning programmers (by means of the tech
notes) when they anticipate a change that might affect existing programs, but
they’re not perfect.

Macintosh Technical Notes

Macintosh Technical Notes are Apple’s way of providing supplemental, timely
information on the state of the art in hardware and software. They’re written
by folks at Apple’s Developer Technical Support group and contain informa-
tion ranging from tips and tricks (as in note #007 on some great debugging
techniques) to a totally new way of doing things (as in note #158 that deals
with MultiFinder and WaitNextEven?). There are hundreds of these gems.
We'd be lost without them, and if you’re a serious developer, you need them
too. You can get them from Apple’s APDA, or you can download them from
AppleLink. Apple Associates ($500 per year) get them from Developer Tech
Support as a part of the service. Apple has released a HyperCard Tech Note
stack, and this is great for quick lookups, but the notes come out faster than
Apple seems to be able to keep the stack updated. (And you’ll need a lot of
hard disk space unless you buy the CD-ROM version.) For $25 a year, APDA
will mail you each release—about six sets per year. Write to this address:

Apple Programmers and Developers Association
Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G

Cupertino, CA 95014-6299

The phone number is (800) 282-APDA, or you can try AppleLink: APDA.

Adding Menus to an Application

Events are only half the story. Once an event is detected, the application needs to re-
spond to it. Generic is interested in four types of events. Two of them, activate and
update events, are products of window selection and display. (We will discuss these
two types of events in the next chapter.) The other two, key-down and mouse-down
events, involve a menu selection. But before a menu can be used, it must be created.
Let’s look at what it takes to create menus for an application.

Menus are created from menu description templates, or “resources,” stored in the ap-
plication’s resource fork. Most commercial applications define their menus by means
of templates in the resource fork. Menus can also be compiled into the program—
hard coded, as programmers say—but we discourage this practice. The advantage
of using a resource to create menus is that you can change a menu’s items without
modifying the source code. This approach is often taken as part of the effort to
“localize” a commercial application—that is, to give it foreign-language menus,

MACINTOSH C PROGRAMMING BY EXAMPLE

dialog boxes, and message strings. With resource-based menus, sophisticated users
have been known to add keyboard shortcuts to menus by using the resource editor
ResEdit.

We use ResEdit to create all of our resources, including menus. There are other ways
to create templates (and we describe them here in a sidebar), but ResEdit uses a Mac-
like user interface and is probably your best bet for creating resource templates.

Use ResEdit to look at the existing menu templates in the project’s resource file,
miniGenAppz.rsrc on the source disk for this book. Resources, as we'll see through-
out the book, are a great way to organize an application’s interface features.

A resource is identified by its “resource specification,” made up of a four-character
key called the resource type, and a resource number, as in MENU #1. We'll use the
hash mark to identify the resource number. Here, we're interested in the MENU
resources.

In miniGeneric, the Apple Menu is MENU #1, the File Menu is MENU #2, and the Edit
Menu is MENU #3. Of course, the #3 refers to resource 3.

Menus contain menu items, one per line, which are numbered from 1 to #, top to
bottom. Figure 6-15 shows a sample menu with item numbers.

In the Apple menu, Item 1 is the About item, and the rest of the items are the Desk
Accessories, added to the menu with a special call.

Macintosh Resources and Menus

Resources are vital to any Macintosh program. Indeed, a correctly designed
program should define in the application’s resource fork all menus, dialog
boxes, alert boxes, icons, pictures, and text strings that the application will
display. That way, any changes you need to make, such as developing a
Spanish version of your program, are confined to the resources and don’t
affect the program code.

The problem with resources is that Apple has given us two not-quite-finished
ways of dealing with them. The traditional method, the one we use in this
chapter to create menus, is to use ResEdit, a funky little what-you-see-is-
almost-what-you-get editor that lets you manipulate the resources in a file di-
rectly (even after the program has been compiled). You can create some
resource items directly, seeing them as the user will see them, and then drag
them to the appropriate places. You create other resources by painfully fill-
ing in a series of TextEdit boxes. If you make one mistake (and you probably
won’t see it because there’s no visual feedback that shows you how your fin-
ished object will look), you’re liable to mess up your program to the extent
that it crashes. Using ResEdit to add command keys, hierarchical menus, and

130

6: INTRODUCTION TO THE GENERIC APPLICATION

Figure 6-15.
A generic menu. m—

Notice that item 4 is Item 1
a dotted line. Item 2
Item 3
Item 5

The File menu, shown in Figure 6-16, has five items, three of which are selectable—
the Open, Close, and Quit items. The two dotted lines are Items 2 and 4, but they
are disabled and therefore not selectable.

Figure 6-16. m
The File menu.

File...

Close

Quit

other options is a real pain. The latest version of ResEdit, 2.1, has better editors
for many of the resources.

Apple’s second method is to use Rez, one of the tools in the Macintosh Pro-
grammer’s Workshop and in Think C 5.0. Rez lets you create resources by
describing them in a structured text file. In some ways, this is the preferred
method because you get maintainable source code for the resources that can
easily be passed along to others, either on paper or as a file.

Next best in our opinion is Prototyper from Now Software. Forget Prototyper as
a creator of generic application code, but it’s a real help as a resource maker. In
its menu section, though, adding new selections to the end of a menu is not a
particularly intuitive process, and cut and paste functions simply aren’t avail-
able—you'll have to move things manually, one at a time, if you change your
mind about where to put them. Prototyper’s interface could use some improve-
ment. It doesn't always work exactly as you might expect. (Try tabbing be-
tween TextEdit boxes.) Nevertheless, Prototyper is well worth the effort you'll
invest in learning to use it, especially if you're interested in seeing what the
menu and dialog features of your program will look like before you commit
them to code.

MACINTOSH C PROGRAMMING BY EXAMPLE

The Edit menu isn't used in miniGeneric, but we supply it for the Desk Accessories
that need it. The menu is standard, with an Undo item separated by a dotted line
from the Clipboard items Cut, Copy, Paste, and Clear.

Creating the File Menu Template
We'll use ResEdit 2.1 to create the File menu. If you are new to ResEdit, follow along
step-by-step.
1. Start up ResEdit 2.1.
2. Move through ResEdit to get to your miniGenApp f.

3. Create a new file: Press Command-N and enter the name miniGenAppr.rsrc.
(You enter the = by pressing Option-P.)

4. Create a new MENU resource: Choose Create New Resource from the

Resource menu (or press Command-K), and choose MENU from the list that
appears.

5. Create the menu title: Type File in the edit box, and press Return.

6. Create the first menu item: Type New in the edit box, and then add a keyboard
equivalent for this item. Select the edit box Cmd-Key, and type N. Press Return.

7. Create the second menu item, a dotted line: Click the button labeled separator
line, and press Return.

8. Create the third menu item: Type Close in the edit box. Now add a keyboard
equivalent for this item. Select the edit box Cmd-Key, and type W, Press Return.

9. Create the fourth menu item, a dotted line: Click the button labeled separator

line, and press Return.

10. Create the fifth menu item: Type Quit in the edit box. Now add a keyboard
equivalent for this item. Select the edit box Cmd-Key, and type Q. Press Return.

11. Renumber the menu as 2: Select Edit Menu & MDEF ID from the MENU menu.
Enter 2 in the edit box marked Menu ID, and then close this dialog box.

12. Close all windows by clicking in their close boxes. To save your work, click
Yes in the dialog box that appears, and then quit ResEdit.

You've just completed a 12-step program for creating the File menu. Of course, we've
created all the other menus in miniGeneric’s resource file, which you’ll find on the
" accompanying source code disk.

As most applications do, miniGeneric installs its menus at initialization and treats
them as static structures throughout the life of the program. In Applnit.c, the func-
tion setUpMenus() initializes and installs the menus. The setUpMenus() code is
shown in Figure 6-17.

132

6: INTRODUCTION TO THE GENERIC APPLICATION

/* setUpMenus--sets up the application menus */
setUpMenus () :
{
/* create Apple Menu */
gDeskMenu = GetMenu (kAppleMenulD);
AddResMenu (deskMenu, °‘DRVR’);
InsertMenu (deskMenu, 0);

/* create File menu */
gFileMenu = GetMenu (kFileMenulD);
InsertMenu (fileMenu, 0);

/* create Edit menu */
gEditMenu = GetMenu (kEditMenulD);
InsertMenu (editMenu, 0);

DrawMenuBar();

} /+ setUpMenus */

Figure 6-17.
Menu initialization code.

The menu template data is stored in the resource file. GetMenu reads the template
and returns a MenuHandle to the menu data, now in memory.

All of an application’s menu handles are maintained in an internal data structure, the
MenuBar, which makes them available to the user by means of the Menu Manager
routine MenuSelect. Usually, you’ll never directly change the MenuBar in your appli-
cation. Instead, you’ll use Menu Manager utilities to add and subtract menus from the
MenuBar. The routine InsertMenu adds menus to the MenuBar, and its comple-
ment, DeleteMenu, removes them.

miniGeneric’s MenuHandle variables are global, and all globals in our programs
begin with a lowercase g to remind us that they’re globals and should be treated
with respect. The gDeskMenu variable is the Apple menu handle, gFileMenu is the
File menu handle, and gEditMenu is the Edit menu handle.

In setUpMenus(), GetMenu reads the template of the specified menu and creates an
in-RAM menu data structure for the menu in the application heap. GetMenu returns
a handle to the structure. The constants kAppleMenulD, kFileMenulD, and kEdit-
MenulD are defined as 1, 2, and 3, respectively, in the file AppConstants.h. They
define the resource numbers for these templates. Creating the File and Edit menus is
easily understood, but creating the Apple menu requires a small trick because this
menu will contain a list of the currently installed Desk Accessories.

The good news is that we don't need to know the details of currently installed Desk
Accessories to add them to the Apple menu. Note the call to AddResMenu when

MACINTOSH C PROGRAMMING BY EXAMPLE

creating the Apple menu. This routine asks the system to look for currently installed
Desk Accessories and adds their names to the menu. AddResMenu does this by col-
lecting all resources of a particular type (in this case, DRVR), sorting them by name,
and placing them in the menu in question. The only detail that you need to remem-
ber in this case is that Desk Accessories are DRVR type resources.

When the application detects a mouse-down event in the menu bar, MenuSelect
automatically takes care of all the menu display and selection chores associated with
a menu selection. When MenuSelect completes the update of the display, it returns
with the menu and item number selected as a long word made up of a high word and
a low word—more about that in a moment. We call this “reading” the menu.

The doMenu() code in Figure 6-18 demonstrates how to choose an action based on a
menu selection. The doMenu() function is called, with the result returned by
MenusSelect. The high word of this argument—the top 16 bits—contains the menu
ID of the selected menu. If this value is 7, the Apple menu has been selected; if it is
2, the File menu has been selected; if it is 3, the Edit menu has been selected. The
bottom word passed to doMenu()—the lower 16 bits—contains the selected item
number in the selected menu. The doMenu() function uses the Toolbox macros
HiWord and LoWord to extract these high and low words from the long word.

/* doMenu--handles menu selections */
void doMenu (long menuResult);
{

short menulD, itemNumber;

menulD = HiWord (menuResult); /* menu number in high word #*/
itemNumber = LoWord (menuResult); /* item number in Tow word */

switch (menulD) /* which menu is it? #/
{
case kAppleMenulD:
doAppleMenu (itemNumber);
break;

case kFileMenulD:
doFileMenu (itemNumber);
break;

case kEditMenulID:

doEditMenu (itemNumber);
break;

Figure 6-18. (continued)
Menu selection parsing.

134

6: INTRODUCTION TO THE GENERIC APPLICATION

Figure 6-18. continued
} /# end switch */

HiliteMenu (0);
} /* doMenu */

The menu selection parser is a two-stage switch. The first stage determines which
menu was selected from the menulID variable and passes the itemNumber to the
selected function for that menu. The second stage, illustrated by doFileMenu() in
Figure 6-19, determines the item number selected and calls the action procedure for
that selection.

/* doFileMenu--switches menu choice to appropriate function call */
void
doFileMenu (short theltem)
{
switch (theltem)
{
case kNewltem:
doOpenDoc. ();
break;

case kCloseltem:
doCloseDoc (FrontWindow ());
break;

case kQuitItem:
cleanExit (true);
break;
}

} /# doFﬂeMenu */

Figure 6-19.
Menu item selection parsing.

Generic detects the keyboard equivalent for a menu selection by calling the routine
MenuKey from doKeyDown(). Called whenever a key is pressed, MenuKey returns a
long word, equivalent to the long word returned from MenusSelect. If the key was not
a keyboard equivalent, MenuKey returns OL, which signals that the application
should process the keystroke as input. The Generic application has no use for key-
board input that is not a menu selection, but a word processing application, for ex-
ample, would add the character to the text stream.

135

MACINTOSH C PROGRAMMING BY EXAMPLE

Give Me a Break

Notice the break statement terminating each branch of the switches in
Figures 6-18 and 6-19. Without a break, the flow of control would “fall
through” and execute the next case. For an example, take a look at this varia-
tion on an excerpt from doFileMenu():

switch (theltem)
{
case kNewltem:
doOpenDoc ();
/* <--- we forgot the break! */
case kCloseltem:
doCloseDoc (FrontWindow ());

When the user selects New from the File menu, control flows to doOpenDoc(),
but because we forgot the break, when doOpenDoc() returns, doCloseDoc() is
called. The bug manifests itself as the window opens and then immediately
closes. Leaving the break out of a switch branch is a common mistake of both
beginning and experienced coders. You've been warned.

Putting It All Together

If you've already compiled and run the application, you know that you've written yet
another Hello World. Is this déja vu? Sure, but you now have a genuine event pro-
cessing platform. Check it out. While running miniGeneric, open a Desk Accessory
and drag it in front of your main window. Now close it. Notice how the application
automatically updates the window. What you've got there is a real Macintosh update
engine. With a few changes, it’ll be ready to support multiple documents. In the next
chapter, we’'ll talk about this update mechanism and create some real document
windows that respond to all sorts of variations in size and location. In the process,
we'll transform miniGeneric into multiGeneric, a multidocument application shell.

136

/

A SHELL

THAT MANAGES
MULTIPLE
DOCUMENTS

In Chapter 6, we saw how our miniGeneric application—or any Macintosh applica-
tion—uses events to detect user-initiated, real-world occurrences. The application
parses events in its main event loop and passes control to the action routine appro-
priate for the event type contained in the what part of the EventRecord. Because
good programming practice dictates putting related functions into modules, we
began in miniGeneric to split our application into source code modules.

In this chapter, we’ll develop a more complex application by giving miniGeneric the
ability to control multiple document windows. To keep our projects straight, we’ll
call this chapter’s project multiGeneric. For the most part, miniGeneric will change
very little in its evolution into multiGeneric, although two of the modules—
DocUtil.c and WindowUtil.c—will change dramatically. Most of the information we
present in this chapter will result in a rewrite of an affected module or in additional
functions within an existing module. This is one of the joys of modular program-
ming around a generic base: You rarely have to make changes to all the existing
code in the generic base; instead, most of your programming is limited to rewriting
an existing module to change its features or capabilities or adding new functions to
the existing modules.

That’s the good news. As we get deeper into the subtleties of the Macintosh system
software, we’ll run into some bad news as well. For example, Apple didn't make
handling multiple documents—and the memory management tasks associated with
handling multiple documents—easy for first-timers, and it's only fair to warn you

137

MACINTOSH C PROGRAMMING BY EXAMPLE

that there are some very technical passages in this chapter. We can’t do much about
that—windowing is a complex topic. Remember, though, that we’re building a
generic application base that you can reuse—you need to write this code only once.
For subsequent applications, you can reuse the concepts and the windowing code
that we’ll work through here. That’s what the “generic” principle is all about.

The multiGeneric Application

The origins of our ultimate Generic App are in miniGeneric. We organized the proj-
ect into modules and then fleshed out those modules to perform the duties of a
minimum application. The next step will be to add multiple-document manage-
ment—hence, the name multiGeneric. A final step, one we'll take in the next chap-
ter, will be to concentrate on how a document’s contents require changes in the
shell.

By the time you reach the end of this chapter, you’ll have two Generic Apps: one
with single-document window ability and one with multiple-document window
ability. By the time you reach the end of the next chapter, you'll have three. Which
application should you use as the universal application starting point? Both
miniGeneric and the scrolling Generic we present in the next chapter are teaching
tools. You're unlikely to use either as a base for future projects. The real, universal
Generic is multiGeneric, the application shell we describe in this chapter as we
unravel the mysteries of multiple documents and windows in a single application.

Source Code Control

The code for multiGeneric contains the same source modules that miniGeneric used.
This new version of our generic application requires changes that affect windowing
and document management, so we modify the files WindowUtil.c and DocUtil.c ex-
tensively. Other modules are changed more subtly, and some require no changes. In-
stead of isolating the code permutations that migrating from miniGeneric to
multiGeneric would call for, we've opted for the purposes of this book to replace the
project in its entirety. On the disk that accompanies this book, you’ll find a folder
containing all the source code modules for multiGeneric. If you have a utility like
DocuComp (or the file comparison utility that ships with THINK C), you might want
to run a comparison on the source code modules of miniGeneric and multiGeneric.

Although the three projects in the three chapters provide a vehicle for teaching the
basics of Macintosh application building, we can also use the evolution of Generic to
shed light on an important aspect of the development process: source code control.
Before we get into the windowing mechanism, let’s address this important topic.

If you've made your own enhancements to miniGeneric, you'll probably want them
to be included in multiGeneric. How do you integrate the code for the two versions?
Managing multiple versions of a product that uses the same set of source modules is
a common programming task.

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

What the programming world needs is a good source code control system (SCCS), a
set of utilities that manage the various versions of a file within a project. Such pro-
grams keep track of changes made to a source file, maintain the previous versions,
and log when and where changes are made. We’ve used some of these programs in
UNIX and VMS environments, and others are commercially available for micro-
computer development platforms, including MPW. We've yet to see an SCCS that is
easy to use and that meets more than merely basic needs.

Team development efforts cause most complications in source code management.
More than one programmer might need to work on the same file at the same time,
sometimes within the same function. Unless the SCCS is flexible enough to allow
multiuser access, bottlenecks occur and productivity drops. We’ve yet to see an SCCS
that doesn’t limit productivity.

That is why source code is usually controlled without the use of a fancy SCCS. Com-
mon sense, organization, and working discipline are used to the same end. Keep an
audit trail of what changes are made and by whom. Use a file comparison program
to isolate changes in two source files during integration. Such simple techniques
supply all the utility that’s needed to manage the most complex job. After all, the hu-
man brain is the best source code control system available.

Source code control could serve as the topic for another complete book, so we won't
spend much more time on it here. During the development of Tycho Table Maker,
our three-person development group used the simple system for marking changes to
the source code that we’ll summarize shortly. We suggest that you adopt a similar
strategy now, before you have thousands of lines of code to keep track of. Our
method is not particularly elegant and doesn't represent the last word on manage-
ment of source code changes, but it’s a start. It kept us from making a few disastrous
missteps along the way to commercial release of our product.

A System for Tracking Changes to Source Code

When you integrate changes into an existing project such as miniGeneric, your job is
easier if you know where the changes are. The why and what of the change is often
obvious from the change itself, especially if you're liberal with comments, but
merely finding the change is sometimes a problem. The trick is to meticulously mark
changes as you make them. Always. With no lapses. This is a rigorous undertaking
requiring great discipline and a little more time, but it’s well worth the effort.

Most commercial developers will recognize the technique we use, which looks
something like this in practice:

/% {HHE kwgm 11.20.90--change made to fix bug in frammis loop */
#if o
/* old frammis loop here */
felse
/* new, bug-free code here */
fendif
/% {HHE kwgm 11.20.90 =/

139

MACINTOSH C PROGRAMMING BY EXAMPLE

We delimit the change with two comment strings. Use a string that makes the
change easy to search for. We use a triple hash mark, ###, in the opening and closing
comment strings. Choose a string that is not a commonly used code construct.

The opening change comment contains the date the change was made (and the time
if you frequently find yourself in marathon programming sessions), the initials of the
person making the change (important if you're working in a group), and a note of
any length describing the change and the reason for it.

The entire change consists of these elements:

® The opening comment string

B An #if O statement to remove the old code from the compilation stream
B The old code

B An #else statement at the end of the old code

B The new code

B An #endif statement to terminate the conditional compilation

B A balancing closing comment string to mark the end of the change

It’s important to leave in the entire old code passage. This gives you something to
return to if your change doesn'’t test out and also provides a reference for integration.
Indeed, using the style we show here, you can easily substitute a variable in the #if 0
statement, define it at the beginning of your program, and have your program com-
pile using the old code. You need to be able to return to your old code, especially if
you make a batch of changes at once. After you've tested the new code, you can de-
lete the old code from the working file, but you should always keep a backup copy.
Leaving the old code in the source file takes up room on your disk, but it doesn’t add
any size to your program if you follow our suggestions. The old code is ignored dur-
ing compilation.

If you use this system, you can integrate changes from a working copy of a source
file into your archive copy with the help of the search command in the editor. Here’s
the process:

1. Open both copies of the source file (the changed file and the archive file), find
the change delimiter string (###) in the changed file, and select the old section
of code, not including the #if 0. Then use Command-E to add the old code
selection to the search string.

2. Next, select both the old block of code and the new block of code and copy it
to the Clipboard by using Command-C. This block contains the opening com-
ment string, the old code, the new code, and the closing comment string.

3. Now select the archive document, use Command-F to search for the original
code block, and note that the entire block is selected.

4. Finally, use Command-V to paste the changed code into the archive file.

Every time you or someone else on your team adds new code to an existing source
file—even so-called bug-fixing code—you increase the likelihood of installing

140

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

more bugs in the program. That’s right—fixing bugs often adds more bugs. And
there will inevitably be times when you’ll wish you had heeded the old adage, “If it
ain’t broke, don't fix it!” You'll want to rip out a new block of code, replace it with the
old, and start again. It's for those times that you keep backups.

Disks are cheap. Take advantage of that. And buy a good backup program. Back up
the entire project folder at the end of a development session, even if you've changed
only a few lines. This might sound ‘wasteful, but it's not. If a catastrophe should
befall your primary version, you can be up and running with the old code in the
time that it takes to restore the project folder.

This organized approach to tracking changes to the source code is actually a
mindset you should adopt for all your development efforts. It’s a “divide and con-
quer” point of view. A computer program rapidly grows into a complex piece of
work. The trick to getting your mind around it all is to keep it divided into small,
digestible pieces. If you understand the pieces and how they’re put together, you’ll
be able to understand the whole.

Windows and Documents

Let’s return to the matter at hand: multiGeneric. The task of managing multiple win-
dows can quickly become overwhelmingly complex. Before you begin to pound out
the C code, you need to consider how the application will keep track of its windows
and their related data. This is a function of document organization. A document is an
abstraction that encompasses the complete collection of data associated with a win-
dow, including the data’s display and file information and the in-memory structures
associated with processing the data. A document therefore encompasses more than
merely the window’s data.

The two words, window and document, are often used synonymously by developers
when they refer to windows. This is a confusion of terms that arises from use of the
desktop metaphor to describe the objects on the Macintosh screen. One of the on-
screen objects is called a window and is described by a WindowRecord data struc-
ture. A window is manipulated by calls to the Macintosh Window Manager.

The definition of a multiGeneric Doc data structure, which we've excerpted from
the file AppTypes.h, is shown in Figure 7-1:

typedef struct Doc

{
WindowRecord theWindow; /* window data structure */
/* document management #*/ :
ushort type, /* document type */
attributes; /* document attributes */
short index; /* index of open window Tist */
Figure 7-1. (continued)

The Doc data structure.
141

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 7-1. continued

/* display management */

Point curScroll, /* current scroll position */
maxScroll, /* maximum scroll position */
docExtent; /* size of contents */

/* file linkage */

short volRefNum, /* volume reference number of
open file */
openFileRefNum; /* file reference number of
open file */
char fileName [33]; /* file name #/

/* contents */
Handle contentHdl; /* document data */

} Doc, *DocPtr;

Windows and documents have a one-to-one relationship in an application. You
won't find one without the other. The Doc structure in Figure 7-1 contains five differ-
ent kinds of information:

B The WindowRecord of the associated window.

B The document type and the document attribute flags that serve to classify a
document. The purpose of this information will become evident when the
document contains data.

B Display management information. The variables associated with display man-
agement contain data used to maintain the scrolled position of the document’s
contents.

B The associated file system data.
B A handle to the document’s contents.

We deliberately chose a WindowRecord as the first element of the document so that
we could pass the address of a document structure, a DocPtr, to the Window Man-
ager routines this way:

DocPtr theDoc;

SelectWindow (theDoc);

Most of the Window Manager routines, such as SelectWindow(), require the address
of a WindowRecord—that is, a WindowPtr argument. Because the WindowRecord is
the first member of the Doc structure, a pointer to a Doc looks exactly like a pointer
to a WindowRecord, at least for sizeof WindowRecord bytes, which are all the Win-
dow Manager routines are interested in.

142

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

This provides for a convenient syntactical shortcut, and, although it would make a
strict Pascal programmer shudder, it is acceptable to pass a DocPtr to a system rou-
tine that expects a WindowPtr as an argument. This kind of organization eliminates
the need to use a variant record mechanism, called a “union” in C, or having to ex-
plicitly cast a DocPtr to a WindowPtr. The pointer is already in the correct format.
The alternative would be to pass the WindowPtr explicitly, this way:

DocPtr theDoc;

SelectWindow (&(theDoc->theWindow));

Because the addresses are identical, however, there’s no need for the computer to
perform the extra address calculation.

Opening New Windows

A window and its document are created when a mouse-down is detected on the
New command of the File menu. multiGeneric’s flow of control passes from
doMenu() to doFileMenu() to createNewDoc(), found in the file DocUtil.c. This flow
of control is illustrated in Figure 7-2.

File Shell.c

New #N

Close %W
Quit 380

doMenu()
{ ...}

y
doFileMenu()
{ ...}

createNewDoc()
{...} =

Figure 7-2.
Control flow for creation of a new document.

The routine createNewDoc() does the actual window and document linkage. It per-
forms four basic tasks.

143

MACINTOSH C PROGRAMMING BY EXAMPLE

First, createNewDoc() calls the function allocDoc(), which allocates memory for the
document structure. The document is created on the application heap as a
nonrelocatable object. The decision to use a nonrelocatable block, one created with
NewPtr, instead of a relocatable block created with NewHandle, was a tradeoff to
simplify the relationship between documents and windows. All the Window Man-
ager routines accept WindowPtr arguments. Because the WindowRecord is the first
element of the Doc data structure, multiGeneric can pass the DocPtr to the Window
Manager routines. You can see from the multiGeneric code on the disk that accom-
panies this book that this approach simplifies the code whenever multiGeneric calls
a Window Manager routine.

The alternative would have been to create the Doc as a relocatable object. In that
case, the program would have had to maintain a handle to a Doc structure (DocHdl)
instead of using DocPtr. Then, whenever the program called a Window Manager
routine that moved a block in memory, it would first need to lock the handle and
dereference it to extract the DocPtr:

DocHandle theDoc;

/* make a window manager call */
HLock (theDoc);

SelectWindow (*theDoc);

HUnlock (theDoc);

]
Opening the document is inhibited if memory cannot be allocated for the document
or if the number of open windows exceeds a predefined maximum.

After memory for the document structure has been allocated, createNewDoc() calcu-
lates the new window rectangle so that the new window will be staggered over the
existing top window, with an offset. The algorithm is something like this: If there’s a
top document and if that document is one created by multiGeneric, use that docu-
ment’s window rectangle as a starting point for the new document’s window rect-
angle. Otherwise, use the default rectangle for the new document’s window
rectangle. Figure 7-3 demonstrates how multiGeneric gets the new rectangle.

After multiGeneric creates the window rectangle for the new document, it is free to
create the window itself with NewWindow, passing it the DocPtr that was allocated
at the beginning of the function. multiGeneric uses the documentProc + 8 window
type, a standard document window with a zoom box.

After the window is created, createNewDoc() adds the scroll bars. The scroll bars are
not automatically a part of the window but are controls you must add explicitly with
NewControl. The windows for multiGeneric have the usual two scroll bars: a vertical
scroll bar and a horizontal scroll bar. To keep track of which is which, we tag them
with the tokens kVScroliTag and kHScrollTag, which we attach to the Control
Record’s refCon field. '

Finally, createNewDoc() titles the window, initializes the document data structures
for the document, adds the document to the open document list, and makes the win-
dow visible and active.

144

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

Window Offeet

Window Offset —>»>

Figure 7-3.

Creating the new document’s window rectangle.

Window Types and Their Origins

The Macintosh Window Manager contains a default window definition pro-
cedure (WDEF) that’s responsible for several tasks, including drawmg a win-
dow. WDEF supports six standard windows and a few variations on those
standard themes. The fifth argument to NewWindow controls what kmd of
window is drawn. The six basic wmdow types and the name of the constant
that represents each one are shown below. The constants are mcluded w1th
the development system in the file \deowMgr h.

Macintosh window types,

[EC= Title ECT= Title E0E]
= = \s J

documentProc noGrowDocFProc
dBoxProc plainDBox altDBoxFProc

MACINTOSH C PROGRAMMING BY EXAMPLE

multiGeneric uses two global variables to keep track of the number of open docu-
ments. The variables are initialized in Applnit.c and managed in DocUtil.c.
multiGeneric uses the global variable gNumOpenDocs to keep track of the total
number of open documents in the application at any one time. The variable’s value
is incremented in createNewDoc() every time a document is opened, and its value is
decremented in doCloseDoc() each time one is closed.

multiGeneric uses the other variable, gNextWindow, to automatically name succes-
sive new documents with consecutive values (Untitledl, Untitled2, Untitled3, and so
on). When all documents have been closed, gNextWindow is reset to 1 in
createNewDoc().

—
refCon Fields |

The refCon fields in various Toolbox data structures, such as the Win-
dowRecord, ControlRecord, and ListRec structures, are for programmer use.
The fields are defined as long, but, because a long is the same size as a
pointer or a handle, you can store a reference to any size data object you
want. Apple engineers put the refCon field into the Toolbox structures so
that programmers could attach related data to the structures. multiGeneric
stores a token in the ControlRecord refCon, contrirfCon, by passing the
values as the last argument to NewControl.

The Open Document Table

The multiGeneric application uses the “open document table” to keep track of all
documents that are opened in the application. multiGeneric uses the open document
table to cycle through the documents, as it does in the close all documents opera-
tion, or to activate a document when the name of that document is selected from the
Window menu.

The Window menu gives your user an alternate way to choose which window will
be the active window, and therefore which document will be worked in. This fea-
ture is handy when the window the user wants is completely covered by other win-
dows. The Window menu also supports Command-key equivalents for the first nine
open documents.

The source file WindowTbl.c contains the routines that manage the open document
table and the menu. In fact, the table and the menu are closely related.

The table itself is contained in the static variable sDocTbiHdI, a handle to a structure
of type DocTbl. This document table consists of an array of DocInfo structures and a
count of the elements in the array. Each open document is represented by an ele-
ment in the array. The Doclnfo data structure contains the document pointer, the
document’s menu item number, and the document’s Command-key equivalent, if
any, called the “slot number.”

146

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

Finding Global Symbols in a THINK C Project

The THINK C programming environment has a nice feature that we use all
the time. If you double-click on a global variable in a source file, the environ-
ment will open the source file in which the variable is declared and move the
text cursor to the first instance of the variable in the file. In multiGeneric, the
file Shell.c, in which main() is defined, will be opened if you double-click
on a global variable name anywhere in the project sources. This is because
we include the file AppGlobals.h, in which the project globals are defined, at
the top of Shell.c.

This feature also works with nonstatic function names. If you double-click
on a function call, THINK C will open the source file in which the function
is defined and find the first instance of the symbol. This is useful when you
are following a new program’s flow of control.

Adding to the Open Document Table

When the application successfully creates a new document, createNewWindow()
calls the function addToDocTbl(), which is in WindowTbl.c. The addToDocTbl()
function first assigns a Command-key equivalent to the document, if one is available.
A bitmap of which Command-key slots have been used is maintained in the static in-
teger sSlotBitmap. multiGeneric uses the least-significant 9 bits of this short integer
to hold the slot information. If a bit is set, the slot it corresponds to is taken.

For example, if the 1, 4, 5, 6, and 7 keys are being used in combination with the Com-
mand key, the value of sSlotBitmap is 0x0079, or 0000 0000 0111 1001 in binary.
Figure 7-4 illustrates this value. The algorithm in addToDocTbl() searches for the
next available slot in sSlotBitmap and assigns it to the new document.

Window

Untitledl 381
Untitled2 384
Untitled3d 385
Untitled4 %6
UntitledS 387

X9 X8 X7 Ho X5 x4 #> K2 X1

o o o o o 1 1 1 1 o o 1

Bit11 Bit10 Bit9 Bit& Bit7 Bit6é BitS Bit4 Bit3 Bit2 Bit1 BitO

Figure 7-4.
Keys 1, 4, 5, 6, and 7 are being used in combination with the Command key.
The value of sSlotBitmap is 0x0079.

147

MACINTOSH C PROGRAMMING BY EXAMPLE

After it assigns a Command-key equivalent to the document, addToDocTbl() calls
buildMenultemStr() to create the menu string from the window’s title and the docu-
ment’s slot number.

Note the special processing of the file name in buildMenultemStr() to avoid adding
any of the Menu Manager’s special token characters to the menu item string. If the
character A were in the string, for example, the Menu Manager would interpret the
next character as an ICON resource number, which would not be included as part of
the menu item string. A complete list of the special Menu Manager tokens is found in
Inside Macintosh, Volume 1. The buildMenultemStr() function filters out any of
these special characters and substitutes the empty character.

After the menu string has been built, addToDocTbI() calls InsMenultem to add the
string to the bottom of the Window menu. The new menu item is then explicitly
enabled with Enableltem. Explicit enabling might not always be necessary, but
we've discovered that a new item is not always created in the enabled state, so we
recommend that you always take this extra step.

The next step is to add the new DocInfo record to the document table. To conserve
space in RAM, the program makes the size of the document table only large enough to
hold the number of entries. For example, if three documents are open, the table con-
sists of a count plus three DocInforecords. The count is a shortinteger, and a DocInfo
record consists of 8 bytes, so the entire table is 2 + (3 « 8) bytes, or 26 bytes. If another
document is opened, the table needs to be 34 bytes to accommodate the new record.

The addToDocTbl() function expands the table by the size of a DoclInfo record
before it assigns the new DocInfo data to the table. Because the table is stored in a
relocatable block, addToDocTbl() uses the Memory Manager routine SetHandleSize
to resize the table. This is informally known as “growing the handle.” Growing the
handle doesn’t change the handle; it simply allocates more memory to the structure
that the handle refers to. This process is illustrated in Figure 7-5.

Doclnfolist with two Doclnfolist with three
Doclinfo records Doclnfo records
count =2 count =3
Doclnfo record 1 Doclnfo record 1
Doclnfo record 2 Doclnfo record 2

Doclinfo record 3

Figure 7-5.
Growth of the DocInfoList table structure.

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

After the table has been expanded, the new Doclnfo record is initialized with its slot
number, DocPtr, and the menu item number of the document.

The Doclnfo record and the document are doubly linked with data: The DocInfo
record contains the DocPtr, and the Doc structure contains the array index number
of the Doclnfo record. This double link is necessary so that multiGeneric can get to
the data starting with either structure. For example, when the document is chosen
from the Window menu, the DocPtr (WindowPtr) is extracted from the DocInfo
structure and passed to SelectWindow. The code for this approach to the data is in
the function doWindowMenu(), found in WindowTbl.c. And when the window is
closed, as we’'ll see in a moment, multiGeneric needs to delete the DocInfo structure
from the document list and therefore needs to know where the DocInfo structure is
in the array. The index member of the Doc structure contains the window’s index
into the open document table.

Deleting from the Open Document Table

To delete a document from the open document table, you reverse the addition pro-
cedure. The multiGeneric application calls removeFromDocList() with the DocPtr
when a document is closed. The removeFromDocList() function accesses the corre-
sponding open document table entry by using the index value stored in the docu-
ment. The removeFromDocList() function removes the menu item for the document
from the Window menu by using DelMenultem and clears the document’s slot bit in
sSlotBitmap, if applicable.

The last step is to remove the DoclInfo data from the open document table. Remem-
ber that this table is stored as a contiguous array, and, if you remove an array ele-
ment, you need to compact the array to remove any gaps in the table. The only array
elements that have to be moved during compaction are the ones with index numbers
greater than the index number of the deleted document. Figure 7-6 on the next page
illustrates the process. The removeFromDocList() function uses BlockMove to com-
pact the array.

Deletion of a menu item and its DocInfo record causes some data misalignment.
Each DocInfo record contains a menu item number for a corresponding menu item.
When removeFromDoclList deletes a menu item, the menu item values of some of the
DocInfo records—the ones with index numbers greater than the index number of
the deleted record—must be decreased by one. Likewise, because removeFrom-
DocList() removes an array element, the index numbers stored in documents that
refer to elements of the DocInfo array above the deleted element also need to be
decremented. The removeFromDocList() function performs this fix in its for loop.

Closing Windows

We've talked of closing open documents, but we haven'’t looked in detail at how to
close an open window. Closing a window consists of disposing of all data associated
with the document and deleting the window data structure. The doCloseDoc() func-
tion, found in DocUtil.c, manages this operation.

149

MACINTOSH C PROGRAMMING BY EXAMPLE

Doclnfolist with four Doclnfolist with three
Doclnfo records Doclnfo records after
before deletion deletion and compaction

count = 4 count =3
Doclnfo record 1 Doclnfo record 1
S ~»"- { This document
Rocinforecord 2 "+ | g Jeleted. bocnfo record 3
Doclinfo record 3 Doclnfo record 4

The array is resized
Docinfo record 4 to fit the data.

Figure 7-6.

Compacting the document table. When the user closes the document associated
with Doclnfo record 2, removeFromDocList() moves records 3 and 4 and
resizes the relocatable block down to the new table size. Note that record 1

does not bave to be moved.

The doCloseDoc() function first checks the validity of the document pointer.
Although the document pointer wouldn't ordinarily be null, it could be if the open
document list had become corrupted. Some might argue that this sort of defensive
programming slows an application down, but that’s a price well paid for ensuring
that your user will avoid the bomb alert box.

Closing the window is a matter of disposing of the window’s scroll bars with
DisposeControl, closing the window with CloseWindow, disposing of the Doc struc-
ture with DisposPtr, and updating the multiGeneric internal window management
variables and the open document table.

Screen Management with Multiple Windows

The main advantage of multiGeneric over miniGeneric is that multiGeneric manages
multiple windows. Having more than one window on the screen at a time creates in-
teresting demands on your application. It must provide for the user’s selecting an ac-
tive window—the one in which he or she is currently working. And it must redraw
the screen when the user selects a new window or moves the windows around on
the desktop. Depending on the positions of the windows before and after the up-
date, usually only certain parts of the screen will need to be redrawn. Figure 7-7 il-
lustrates these two aspects of multiple window management.

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

Figure 7-7. EO=—— Users f =——7F]
Selecttng a new 7 items 155MBindisk 22.8 MB availd
active window and D

redrawing the prereaii v Ay ‘
screen. Users fis the i I‘:I
active window. The o
user clicks in the MacUser Cols COTY Ine. I ce
title bar of the other |
window, making
the second window
active and Users f
inactive.

27.
MB in disk 22.8 MB available

Users f
7 items 15S5MBindisk 22.8 MB avail]

E=— Book 11.22.30 =—n
m | 8 items 15.5 MB in disk 22.8 MB available

Sy e
MacUser Cols coT D c3 D c4

c?

Activating a Window

When an application has multiple windows open, the user has a choice of windows
to work in but is limited to working in only one window at a time—the “active”
window. The user indicates which window is active by pointing and clicking or by
selecting the window from the Window menu.

The active window is visually distinct from the other windows on the screen. The
title bar, title controls, scroll bars, and other controls are highlighted. The activation
routine is responsible for maintaining this visual difference from the other windows
on the screen.

A window is activated in response to the user’s selecting a new active window. The
user’s selection generates two events: an activate event and a deactivate event. The
activate event is targeted at the new active window, and the deactivate event is
targeted at the old active window.

MACINTOSH C PROGRAMMING BY EXAMPLE

The behavior of controls in a window must conform to the Macintosh user interface
guidelines on the appearance of activated and deactivated controls. Figure 7-8
shows activated and deactivated scroll bars.

EO=——= Users { ==—=—U5 Users f

Figure 7-8.

Active and inactive
scroll bars. When
an inactive
window is
activated, the areas

7 items

15.5 MB in disk

22.8 MB availd

7 items

15.5MBindisk 22.8 MB availg

]

Jason

MacUser Cols

Household

NAD

COTY Inc.

[]

Jason

[}

MacUser Cols

1 O]

Household NAD

COT¥ Inc.

that should be
shaded need to be
redrawn.

The user selects the new active window with a mouse-down somewhere in the win-
dow. The event-parsing mechanism passes the mouse-down event data to
doMouseDown(), the multiGeneric routine that processes mouse-down events.

When doMouseDown() is called by the event data, it in turn calls SelectWindow, the
Window Manager routine that posts the appropriate activate and deactivate events
for both the new and the old active windows.

Calling SelectWindow causes the Window Manager to redraw the new active win-
dow’s title bar. As a result, the new active window’s title area is highlighted—that is,
the title bar is redrawn with distinctive stripes, and the close box and the zoom box
appear. Figure 7-9 illustrates the effect of calling SelectWindow.

Figure 7-9. Users § Em Users | BT
Tbe Uisuﬂl eﬂect 7 items 15.5 MB in disk 22.8 MB avail3 7 items 15.5 MB in disk 22.8 MB avail3
of calling E] D

SeleCtWindOW, Jason Household NAD Jason Household NAD

showing an

]

MacUser Cols

inactive window
and an active
window with the
close box and the
zoom box.

COTY Inc. MacUser Cols COTY Inc.

SelectWindow changes the Macintosh’s current grafPort to the one associated with
the new active window. As Chapter 4’s discussion pointed out, all QuickDraw calls
are performed in the current grafPort.

Calling SelectWindow also posts two events to the event queue: the deactivate event
for the old active window and the activate event for the new active window. The
application will process these events in the main event loop.

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

When the main event loop detects an activate event or a deactivate event, it calls the
doActivateEvent() routine—found in Shell.c—by using a pointer to the Event-
Record. Actually, both activate and deactivate events come with the same token in
the EventRecord’s what field: activateEvt. The doActivateEvent() function processes
both activate and deactivate events, distinguishing between the two kinds of events
by testing a bit in the modifiers field of the EventRecord to determine whether the
window is to be activated or deactivated:

doActivateEvent (EventRecord *e)
{
if (e->modifiers & activeFlag)
/* do activate stuff =*/
else
/* do deactivate stuff */

The doActivateEvent() function is responsible for maintaining the appearance of the
window’s scroll bars. The Window Manager maintains a linked list of all controls
associated with each window. A handle to the head of the Window Manager’s list is
in the controllist field of the WindowRecord. The doActivateEvent function
traverses the list, calling the Control Manager routines ShowControl and HideControl
as appropriate:

ControlHandle controlHdl;

controlHdl = ((WindowPeek)theWindow)->controllist;
while (controlHdl)
{
if (e->modifiers & activeFlag)
ShowControl (controlHdl);
else
HideControl (controlHdl);

controlHdl = (*controlList)->nextControl;
}

Calling ShowControl or HideControl alone doesn’'t show or hide a window’s scroll
bars. The scroll bars not only need to be activated or deactivated, but they also need
to be redrawn in the highlighted or unhighlighted state. The multiGeneric applica-
tion uses a routine called invalScroliBars() to “invalidate” the scroll bars so that
they’ll be redrawn during the next update event. We’ll discuss invalidation at length
a little later in this chapter.

If you look at the complete source code for doActivateEvent() on the disk that ac-
companies this book, you’ll notice that the routine calls HidePen before doing
anything visual like calling ShowControl. HidePen is a QuickDraw routine that in-
hibits all drawing. The doActivateEvent() function calls HidePen to ensure that
drawing occurs only inside an update event, eliminating the chance that the scroll
bars will be drawn twice.

153

MACINTOSH C PROGRAMMING BY EXAMPLE

Without HidePen, the calls to ShowControl and HideControl would cause an im-
mediate redrawing of the scroll bars. If the controls were then to be completely
redrawn during the next update event, they would be drawn twice, causing an effect
that is aesthetically unpleasing and computationally inefficient. In a Macintosh pro-
gram, you put off all drawing for as long as possible. This rule of thumb we call the
mariana principle.

Note that the call to HidePen is balanced with a call to ShowPen at the end of the
routine. Without the balancing ShowPen call, nothing further would appear on the
screen.

We’ve mentioned invalidation, update events, and the ma7iana principle. Now it’s
time to examine how, when, and why the window contents are drawn. In the next
section, you'll see how the processing of update events, in which redrawing is
localized, is handled. But first, you'll need to know about window regions.

Window Regions

A “region” is a QuickDraw data structure that describes any arbitrary shape,
although for our purposes a region is usually rectangular or made up of rectangular
components. Regions are important in the discussion of windows because of their
relationship to window update events.

A window formally has three regions:

B The “structure region” contains the title bar, which contains the close box and
the zoom box; and the window frame, which is the black rectangle that
outlines the window. The Window Manager draws these elements automati-
cally when your program calls SelectWindow. Generally, you can ignore what
happens in the structure region.

B The “content region” is where the application draws—below the title bar and
inside the frame. The scroll bars are included in the content region, making it
the application’s responsibility to draw them.

B The “update region” is a dynamically changing subregion of the content
region. It contains all the accumulated window area that needs to be redrawn.
Figure 7-10 shows the structure region and the content region.

Drawing and the Update Process

The multiGeneric application is structured so that drawing in a window is limited to
the window’s update region. Area is added to or subtracted from the update region
in one of two ways: Window Manager routines automatically add window space to
the region (to the area under a top window that has just been closed, for instance);
or other system routines allow the application to add area to or subtract area from
the update region. Figure 7-11 shows the update region left behind by a recently
closed About box.

154

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

Structure region: Content region: drawn
drawn by Window Manager and updated by program
gm— Users f %EEI 7 items 15.5 MB in disk 22.8 MB avail:
C[056 bOX Title bar Jason Household NAD
Zoom box

MacUser Cols COTY Inc.
— Window frame

Scroll
The window bar

E(I==—= Users § —=——=DT5|
7 items 15.5 MB in disk 22.8 MB availd

Jason Household NAD

MacUser Cols COTY Inc.

Figure 7-10.
Window regions include the structure region and the content region, which
make up the window.

Figure 7-11.
The update region Hello, User! HR1ln Ilserl HRlln llserl Helln liserl Halln |iser! Hello, User!
ello, User ello, User!
left by a closed Hello, User ello, Userl
About box. Hello, Uset ello, User!
Hello, User ello, User!
Hello, User ello, User!
Hello, Uset ello, User!
Hello, User 8110~User!
Hello, Uset ello, User!
Hello, User ello, User!
Hello, User ello, User!
Hello, User ello, User!
Hello, User: Hell0, User! Hello, usert Hello, user! Hello, user! Hello, User!
Hello, User! Hello, User! Hello, User! Hello, User! Hello, User! Hello, User!
Hello, User! Hello, User! Hello, User! Hello, User! Hello, User! Hello, User!
ello, User! Hello, User! Hello, User! Hello, User! Hello, User! Hello, Userl/

The application’s need to redraw some of the screen is determined by the status of
the update region. When this region is nonempty in one or more of an application’s
windows, the Window Manager posts an update event for the application.

MACINTOSH C PROGRAMMING BY EXAMPLE

When multiGeneric detects an update event in the main event loop, it calls the rou-
tine doUpdateEvent(), found in Shell.c, which causes drawing in the necessary parts
of the window.

When the main event loop receives the update event, it passes the EventRecord
received from WaitNextFvent by reference to doUpdateEvent(). The EventRecord
contains all data necessary to respond to the update event.

An update event is specific to a window. The application might receive an update
event for each open window that has a nonempty update region. The Window Man-
ager passes a pointer to the window of interest in the message field of the
EventRecord.

If a Desk Accessory is open in front of the application, the application gets the up-
date event for the DA. This is important: Your application is responsible for passing
the update event on to the DA. The application must therefore determine whether
the event is targeted at one of its windows or at the DA.

To this end, an application checks the windowKind field of the WindowRecord to
determine whether the event is for one of the application’s windows. If the value in
this field is greater than or equal to 1, the window is an application window and the
event should be handled by the application. If the value of the windowKind field is
less than 0, the window is a Desk Accessory window and updates should be handled
by the DA.

After doUpdateEvent() determines that the event is for one of the application’s win-
dows, the routine saves the old grafPort and then sets the current port to the one
associated with this window. This step is necessary because an update event can be
generated for an inactive window. Remember, all drawing occurs in the current
grafPort.

The heart of the update process begins with a call to BeginUpdate. BeginUpdate
takes advantage of the fact that QuickDraw, which is responsible for rendering
everything on the screen, limits its drawing to the visible region of the current
grafPort. BeginUpdate changes the visible region of the window’s grafPort to match
that of the update region of the window. Thus, when the application draws, its draw-
ing is limited to the update region.

Before drawing the window contents, doUpdateEvent() erases the window’s update
region, by means of the grafPort’s visible region, to clear any extraneous screen ele-
ments that might be in the region.

Finally, doUpdateEvent() makes the calls that draw the window’s scroll bars and
contents. When drawing is complete, the call to EndUpdate restores the port’s
visRgn and clears the window’s update region. Figure 7-12 illustrates the entire up-
date process.

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

Figure 7-12. EO=—= Users f =T

The M(lCintOSb 7 items 155 MB indisk 22.8 MB availi

update process. An T
MB in disk 22.8 MB available

update event is
posted for the new D
Sfront window. The El c2
update routine MacUser Cols COTH El
calls BeginUpdate =
and erases the
update region. The
update routine
then draws the new
update region,
shown in the
beayy-bordered

Jason Household

]

4

Q

rectangle. Users f
7 items 15.5 MB in disk 22.8 MB availd
ook 1§27.%0 HIE
C 8 items 15.8 MB in disk 22.8 MB available
Jason Househd

1 <] =]
MacUser Cols L0 El c3 E’ c4
T O

c7

As we've mentioned before and will mention again because it's so important, all
drawing is done inside this update routine. Limiting drawing to the confines of an
update routine ensures that only the window’s update region is redrawn and that
double drawing doesn’t occur.

By now you should understand that you shouldn’t redraw parts of the screen as soon
as they need it. And you've seen that the update region is where you keep track of
the areas of the screen that need to be redrawn. But you've not yet seen how to add
areas to a window’s update region by means of the invalidation process.

Iinvalidation and the Mahiana Principle

In Macspeak, an invalid area of a window is a region that needs updating or refresh-
ing. Conversely, a valid area of the screen doesn't require a redraw. Regions of the
screen destined for redrawing are invalidated by the application, making them eli-
gible for drawing during the next update event. Invalidation of a region can be done
anytime, but drawing is always deferred until an update event.

157

MACINTOSH C PROGRAMMING BY EXAMPLE

This is the fundamental canon of the ma#iana principle of Macintosh screen man-
agement: Whenever possible, put off drawing until the update process.

The Window Manager supports two pairs of routines that validate or invalidate an
area of a particular window. ValidRect() and ValidRgn() both subtract area from a
window’s update region—that is, they validate an area; InvalRect() and InvalRgn()
add area to the update region and are therefore used for invalidation. Use
ValidRect() and InvalRect() when your bounding area is rectangular; use ValidRgn()
and InvalRgn() when your area is more complex or when you already have a
RgnHandle to the area.

The mariana principle has implications for the way in which you design an applica-
tion. If you're writing a graphics program, for example, you'll need to know the
bounding rectangle or region of your on-screen objects in order to invalidate them
when they need to be redrawn. Figure 7-13 demonstrates the principle of invalidat-
ing an object’s bounding box, or extent. Three shapes—a circle, a diamond, and a
triangle—appear in a drawing program’s window. If the user moves the triangle
shape, both the old and the new triangle bounding boxes need to be invalidated. The
old extent needs invalidation so that the area will be clear of the object and so that
any object that was underneath the triangle will be redrawn. The new extent needs
invalidation so that the object can be redrawn at its new location.

tymeeaYoanaa

- -\

——~—0ld bounding box
N\

i— New bounding box

Figure 7-13.

A screen object needs a bounding box so that it can be invalidated. Bounding
boxes, shown bere as beavy dashed lines, are not visible on the screen. When
the user drags the triangle to a new location, the program invalidates the old
bounding box for the triangle and draws the new bounding box for the
triangle.

Using the mariana principle to postpone drawing improves the look and the perfor-
mance of your application because all drawing is done at the same time. Commercial
applications take this one step further and draw to an off-screen grafPort. Then the
entire contents of the grafPort, bounded by the update region, are blasted to the cur-
rent screen. This buffering of the drawing gives the user the impression that the ap-
plication is faster than it really is because all the window contents show up at the

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

same time. This speedup is actually an optical illusion: The process is slower than it
would be if the window were redrawn directly, because of the overhead involved in
managing the off-screen port and transferring the screen contents to the on-screen
window.

You don't need to adhere to the mariana principle strictly. You can make an excep-
tion, for example, when a user holds the mouse button down in a scroll bar (a topic
we'll cover in the next chapter). But, in general, when you limit drawing to the up-
date routine, you give your application that slickness that is the hallmark of Mac-
intosh applications.

Supporting the Standard
Window Manipulations

Window activation and invalidation are important features of any Macintosh applica-
tion. But because multiGeneric is a multiple-window application shell, it needs to
support the other window operations that are typically found in a Macintosh applica-
tion. And we’ve added a couple of nonstandard features that will allow any applica-
tion created with multiGeneric to stand out in a crowd.

The standard window manipulations—resize, zoom, and drag—are the results of
mouse-down events. When multiGeneric detects a mouse-down event in its main
event loop, it passes control to the doMouseDown() function, which determines
where the event occurred and acts accordingly.

The routine does this by translating the wbere coordinate value returned in the
EventRecord into a token representing the zone in which the mouse click occurred.
The mapping of the zone is achieved with a call to the Window Manager routine
FindWindow, which returns the token. The tokens, described in Figure 7-14, are de-
fined in the THINK C #include file Windows.h.

inDesk Returned when mouse is on desktop
inMenuBar Returned when mouse is in menu bar
inSysWindow Returned when mouse is in DA
inContent Returned when mouse is in content region of window
inDrag Returned when mouse is in structure region of
window

inGrow Returned when mouse is in size box
inZoomlIn Returned when mouse is in zoom box
inZoomOut Returned when mouse is in zoom box
inGoAway Returned when mouse is in close box

Figure 7-14.

Result codes returned by FindWindow.

MACINTOSH C PROGRAMMING BY EXAMPLE

multiGeneric’s mouse-down parsing function, doMouseDown(), switches control ac-
cording to the location of the mouse-down event returned by the call to
FindWindow:

FindWindow returned inMenubar. The mouse-down was in the menu bar. The
doMouseDown() function calls doMenu(), in MenuUtil.c, which parses the menu
selection.

FindWindow returned inSysWindow. The mouse-down was in 2 DA window. The
doMouseDown() function calls SystemClick, which passes events to the DA. No fur-
ther processing is necessary.

FindWindow returned inContent. The mouse-down was in the content region of a
window. When the mouse is in the content region, the application first needs to
detect whether the window is already the current window. The test compares the
value of the window pointer returned by WaitNextEvent with that returned by
FrontWindow—a pointer to the current window. If the window is not the current
window—that is, if the pointers don’t match—the window is activated with Select-
Window. If it is the current window, other processing might be necessary, depending
on your application. We've included the function doInContent() to demonstrate
where to direct this kind of processing.

FindWindow returned inDrag. The mouse-down was in the window’s title area
but not in the close box or the zoom box. multiGeneric reacts to this occurrence in
one of two ways. If the user double-clicked in the drag area, multiGeneric calls
clickZoomWindow(), which zooms or unzooms the window. (This feature is com-
mon to both Microsoft Word and our own Tycho Table Maker.) Otherwise, the docu-
ment is selected with SelectWindow and the mouse position is tracked for dragging
with DragWindow.

FindWindow returned inGrow. The mouse-down was in the size box, which ap-
pears in the lower right corner of the window. multiGeneric calls doGrowWindow()
to track the resize process.

FindWindow returned inZoomin or inZoomOut. The mouse-down was in the
zoom box. The application zooms or unzooms the window as appropriate.

FindWindow returned inGoAway. The mouse-down was in the close box of the
window. The application closes the current window. If, however, the user has
pressed the Option key while clicking in the close box, the application closes all of
the documents that are currently open.

As you can see by this list, the range of standard window manipulations is actually
quite extensive. Once doMouseDown() determines the zone in which a click oc-
curred, control is switched to a supporting routine that carries out the action. Now
we’'ll take a look in detail at how the actions are implemented in code.

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS

Resizing a Window

From a user’s perspective, the window resizes when he or she presses the mouse
button in the size box—in the lower right corner of a sizeable document window—
and drags a gray outline of the window to a new size. When the user releases the
mouse button, the window reappears in the new size. The window’s contents shift
accordingly.

Resizing the window is a two-part process: The first part is tracking the user’s mouse
movements and sketching the gray outline of the window border in response to the
mouse movements; the second part is redisplaying the window and its contents.

The Window Manager routine GrowWindow performs all the tracking and sketch-
ing and, when the user releases the mouse button, returns a result that becomes the
input of the Window Manager routine SizeWindow. SizeWindow changes the actual
WindowRecord data structures to fit the new size information.

In multiGeneric, the mouse-down event is directed to the routine doGrowWindow()
in WindowUtil.c, which manages the resize procedure. The doGrowWindow() func-
tion first invalidates the old scroll bar areas so that they will be erased and redrawn
when the document is updated. The function then creates a bounding rectangle that
limits the window to a minimum size of 48 by 48 pixels because the scroll bars start
to look quite silly when the window gets smaller than that. (Without limits, windows
can disappear on the desktop.)

The doGrowWindow() function then calls GrowWindow and SizeWindow for the
resizing. After the window is resized, doGrowWindow() relocates the scroll bars to
the right and bottom corners of the window by calling moveScroliBars() and then
re-invalidates the scroll bars at this new location so that they’ll be redrawn in the up-
date process.

Zooming a Window

Zooming a window is much like resizing a window. The Window Manager routine
ZoomWindow makes the actual change in window size. It’s up to the application to
adjust the window contents accordingly.

When multiGeneric detects a mouse-down in the zoom box, it calls doZoomBox() in
WindowUtil.c. doZoomBox() calls ZoomWindow and then relocates the scroll bars
by calling moveScrollBars(. Finally, this routine invalidates the entire window so
that it will be redrawn in the update process.

In addition to zooming when a mouse-down is in the zoom box, multiGeneric also
zooms the window when there is a double-click in the window’s title area. This ac-
tion is performed by the function clickZoomWindow(), also found in WindowUtil.c.

An examination of clickZoomWindow() reveals that the window structure contains
a handle to a data structure of type WStateData. The WStateData data structure

MACINTOSH C PROGRAMMING BY EXAMPLE

contains the two rectangles that the window will zoom or unzoom to. clickZoom-
Window() compares the userState rectangle of this structure to the port rectangle of
the window’s grafPort and calls doZoomBox() to do the window zooming based on
the comparison of these two rectangles. If the userState rectangle equals the port
rectangle, the window is zoomed,; otherwise, the window is unzoomed.

Dragging a Window

Dragging a window—that is, dragging a gray outline representing a window—
is also controlled by a Window Manager routine. One call, to DragWindow, does it
all. In fact, DragWindow is so simple to use that it is called right in doMouseDoun(),
without the need for an intermediate function. multiGeneric’s organization puts all
Window Manager—related utilities in WindowUrtil.c, but the drag process is so simple
that we felt it a waste of time to call DragWindow in an intermediate function.

DragWindow does all sketching (responding to movements of the user’s mouse) and
then moves the window to the location the user specifies. Because the dimensions of
the window never change in this operation, we don’t need to change the scroll bar
locations in the window or to invalidate the contents of the window. Invalidation of
the background is handled by the Window Manager.

The third argument to DragWindow is a constraint rectangle that limits the drag
area. multiGeneric limits the drag area to the gGrayRgnRect, which is initialized in
Applnit.c. The gray region is the combined area of all video devices attached to your
Mac. If you use multiple monitors, the gray region encompasses all screens. If the
gray region is the limit rectangle, the window can be dragged even across monitors.

What's Ahead

You'll find the code for multiGeneric on the source disk that accompanies this book.
If you use multiGeneric as a basis for your applications and if you add more func-
tionality to the shell, remember to comment any modifications to the source code
with a search string as we recommended earlier in this chapter. In the chapters up
ahead, we’ll add to multiGeneric, hooking up the scroll bars in the next chapter and
hooking Generic App into the file system in the last chapters, turning this shell into a
bona fide application.

SCROLLING
WINDOWS

Whether your application displays text or graphics, its document data will soon
outgrow the window bounds, and you're going to have to confront the scrolling
issue, as a colleague of ours did. He called to ask what Toolbox routine he could use
to add scroll bars to his application’s window. His assumption was that once the win-
dow had scroll bars, scrolling followed. If only it were that simple.

Scrolling a Macintosh document is truly a black art. The way a Macintosh document
scrolls depends on the document contents. Text documents scroll a line at a time.
Figure 8-1 illustrates this kind of scrolling.

Figure 8-1. E[J=———— 2.1 - Using THINK C.2 =02
A Microsoft Word

document scrolls
one line at a time.

development environments, where you have to keep track ﬂ

.obj files that the compiler creates as a result of compilatio

Likewise, linking the code, the final step in creating a r

==———= (2.1 - Using THINK C.2

.obj files that the compiler creates as.a.result of. compilation=

Likewise, linking the code, the final step in creating a r
source code, is automatic in THINK C: it proceed:

application. The objects are hidden, so there’s no needto

Page 1

Graphical documents scroll an arbitrary number of pixels at a time, as in the floor
plan shown in Figure 8-2 at the top of the next page.

163

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 8-2.

A graphical
document scrollsn
(some arbitrary
number of) pixels
at a time.

S(I==——— Floor Plan/Layer-1/1" = 10'

N—] Floor Plan
EC=————— Floor Plan/Layer-1/1" = 10' ——oo=——UF|
T ; ; ; [
s ; (] L4
: E: : Cot
b I]
Bil Mary
NnF—] Floor Plan [1x Ka[]

Another application, Kurt and Thom’s Tycho Table Maker, for instance, might scroll ‘
one row of cells at a time, as in Figure 8-3.

Tycho Table Maker

scrolls one row of
cells at a time.

164

Mattresses

ress that's right for you. Look for comf o)
LN+ d c onstruction. Be aknowledgeable s

8: SCROLLING WINDOWS

Hybrid documents made up of text and graphics—Ilike spreadsheets or table edi-
tors—scroll based on either the text or the graphical model. Some programs—
Microsoft Word is one—change their scrolling strategy mid-document when
graphics or tables are encountered in the midst of text.

In this chapter, we’ll develop a scrolling technique that works with both text and
graphical documents. We’ll modify multiGeneric into nonGeneric, an application that
puts up either a text window or a graphical window, and then we’ll add the scroll
bars and scrolling routines to it. Again, we’ll make most of our modifications to
DocUtil.c and WindowUtil.c, and we’ll mark the modifications in the source code
with the #ifdef O change marks we described in Chapter 7.

Scrolling

Figure 8-4 illustrates the concept of scrolling and hints at the origin of the term. An
imaginary papyrus scroll containing data moves behind a stationary window frame.
Figure 8-4 shows scrolling in a single dimension—up and down. Assuming that the
underlying document is larger than the window frame in both directions, most Mac-
intosh applications let you scroll a document in both the horizontal and the vertical
directions. A few Macintosh applications, most notably databases, which don’t have
any page orientation, restrict scrolling to one direction. Many desk accessories and
utilities go even further and don't allow any scrolling at all. But most Macintosh pro-
grams provide for the creation of documents larger than the current window size
and then let the user view parts of the documents by means of scrolling controls.

o0, oxqoriokcos, hp aho
s niokhifichs ik ahetgah.”
'yhiaho sciokmelhenho ¢

Figure 8-4.
A papyrus scroll.

MACINTOSH C PROGRAMMING BY EXAMPLE

Scrolling papyrus involves “rolling” the paper at one end or the other in a con-
tinuous motion. Scrolling Macintosh documents is an illusion created by offsetting
the document contents from the window origin and then redrawing the contents. It’s
as if you physically picked up the window and placed it at a different location on the
underlying document. Figure 8-5 shows a graphical document drawn at an offset.

Document origin

| SR
Document o O d
I og¢
offset E
A | Emm szal
E(J==== Floor Plan/Layer-1/1" = 10' ====015
LI | 2
Window origin
4 Mary
N}—] Floor Plan

Window frame

Figure 8-5.
Drawing a document offset from the origin.

Figure 8-5 shows the relative “movement” of the document contents within the
frame after a scroll. An important aspect of scrolling is just how you display the
document area of interest within the window frame.

In Figure 8-5, we've shown the document’s extent and the window frame, which are
described in terms of the window’s local coordinate system. The extent defines the
size of the document’s contents. The window frame defines where the document
contents get displayed. You can see from the figure that simulating a papyrus scroll
is a matter of drawing the document contents in the window at an offset relative to
the document’s origin.

In nonGeneric, we engineer scrolling in three steps:

1. The application detects a mouse-down in the scroll bar or on the scroll arrow
and calculates the scroll parameters: how many pixels and in which direction
the user wants the document to be moved.

8: SCROLLING WINDOWS

2. By calling the QuickDraw routine ScrollRect, the application “shifts” the con-
tents of the window by the pixel amount. As you can see in Figure 8-5,
ScrollRect scrolls the image in the window by the specified amount and leaves
an empty area in the window.

3. The application shifts the document’s origin by the scroll amount and invali-
dates the region left empty by the shifting action.

In step 3, the empty area of the window is invalidated—the update routine will
redraw the invalidated section of the window during the next pass through the event
loop. Figure 8-6 illustrates these three steps in vertical scrolling.

Mattresses

—— User clicks on down arrow.

ScrollRect scrolls window

ward.
Update region is caused contents upward

by window contents

scrolling upward.

Document offset is changed
to new position.

Update region is drawn
at new offset.

Figure 8-6.
Three-step scrolling.

167

MACINTOSH C PROGRAMMING BY EXAMPLE

Of course we’ve handled only one discontinuous “jump” here. The user’s holding
down the mouse button while the pointer is in the scroll bar would call for a con-
tinuous scroll of the document. A continuous scroll is actually made up of a series of
the individual scroll jumps we've just looked at.

The Document and Its Contents

We can't really demonstrate scrolling without putting some data in a document, so
we've given nonGeneric its own, built-in data for this demonstration: nonGeneric
reads its data from either a TEXT or a PICT resource in its resource file.

The project resource file on the disk that comes with this book contains the TEXT
and PICT resources. If you didn’t have the disk, you could add your own resources to
your Generic App resource file using ResEdit. (See the sidebars on creating TEXT
and PICT resources.) For an effective demonstration of scrolling, your TEXT
resource would need to have at least 10,000 characters, and your PICT resource pic-
ture would need to be larger than a window.

nonGeneric creates two types of windows: text and graphical. Using the text win-
dow type, we’ll demonstrate how to scroll text (from a TEXT resource). We’'ll use the
graphical window type to demonstrate scrolling a Macintosh picture (from a PICT
resource). nonGeneric uses the type field of the document structure to identify a
document as text or a picture. A text document is tagged

theDoc->type |= kDocTypeText;
and a picture document is tagged
theDoc->type |= kDocTypePICT;

Note that we use OR in the #ype field so that the other bits of the type field aren’t
disturbed.

—
Creating a TEXT Resovrce

To create a TEXT resource, you'll first need a block of text, preferably be-
tween 10,000 and 20,000 characters. Copy the text to the Clipboard. Immedi-
ately open your project resource file with ResEdit, and create a new TEXT
resource by selecting Create New Resource from the Resource menu (or by
using the keyboard shortcut, Command-K). Paste the text from the Clipboard
into the new resource. Next, you'll need to change the resource ID to 256.
Close the TEXT window, select Get Resource Info from the Resource menu
(or use the keyboard shortcut, Command-I), and set the resource ID to 256.
~Close your resource file and save it. :

168

8: SCROLLING WINDOWS

Generic App uses a macro, ISPICTDOC, to determine the document type and then
acts accordingly in various strategic places in the code—namely, during document
creation, deletion, and rendering. The macro tests a bit in the document’s zype field
and returns true if the document is a picture document, false if the document is a
text document.

The File menu’s New command now leads to a submenu with an item for a text
document and an item for a picture document. The newly hierarchical menu is
shown in Figure 8-7.

Figure 8-7.
The File-New
submenu.

................................. Test
Quit PICT

When the user selects either Text or PICT from the New submenu, nonGeneric’s
menu event parser passes control to the routine doNewDoc(), found in DocUtil.c. We
used doNewDoc() in Chapter 7’'s multiGeneric to create documents; in this chapter’s
version, doNewDoc() is passed an integer token that represents the document type.
Using that type, doNewDoc() reads the appropriate TEXT or PICT resource from the
resource file and adds its data to the document structure.

The reference to the document’s data is stored in the contentHd! field of the Doc
structure. This is where the document keeps, depending on the document type,
either the TEHandle, which is a handle to the TextEdit record for the text document,
or the PicHandle, a handle to the picture data for the picture document. The docu-
ment’s type field determines the kind of data stored in the contentHdl.

Creating a PICT Resource :

Creating a PICT resource is simple. You'll need a picture that’s larger thana
window. You can create the picture in MacDraw, MacPaint, or any other
graphics program. Copy the picture to the Clipboard and paste it into your
Scrapbook. Oplen your project resource file with ResEdit and create a new
PICT resource by selecting Create New Resource from the Resource menu (or_ !
by using the keyboard shortcut, Command-K). Open the Scrapbook Py
the picture, and paste it into the new resource. The picture’s resour e
should be 256, so select Get Resource Info from the Resource menu (or use
the keyboard shortcut, Command-I), and set the resource ID to 256 Close
your resource file and save it. : : :

MACINTOSH C PROGRAMMING BY EXAMPLE

QuickDraw Piclures

A QuickDraw picture is a recording of a series of QuickDraw drawing com-
mands that can be played back at any time to draw the picture. QuickDraw
creates the drawing, so the drawing is position mdependent——lt can be
redrawn anywhere in any grafPort.

An application creates a picture by recording all drawing commands be-
tween calls to the QuickDraw routines OpenPicture and ClosePicture. In
RAM, a picture resides in the heap in a relocatable block, so an application
would therefore keep a picture handle to reference the picture. On disk, an
application stores the picture in a PICT resource.

A picture’s data structure is simple, consisting of a bounding rectangle that
encompasses all the drawn objects and a list of the drawing commands. The
codes used in pictures are published in the back of the Color QuickDraw
chapter of Inside Macintosh, Volume V, making PICT a well-documented
graphics file exchange format.

Reading PICT Data

If the document is a picture document, doNewDoc() uses the QuickDraw routine
GetPicture to load the resource into RAM. GetPicture reads the picture and returns a
handle to the data structure, as in this example:

picHdl = GetPicture (kDocPictID); // kDocPictID is PICT resource ID
if (err = ResError())

{
memErrorStr (theString, err);
pDebugStr (theString);
theDoc->contentHdl = OL; // no content
}
else
{

theDoc->contentHdl = picHdl; // assign handle to doc

Note the call to ResError after the call to GetPicture. Routines that call the Resource
Manager report an error internally to the Resource Manager. ResError returns that
value to your application.

If ResError returns noErr, which corresponds to the value 0, the PicHandle gets as-
signed to the document structure. If ResErrorreturns a nonzero value, which means
that an error occurred during the call to GetPicture, the error is converted to a string
and reported with pDebugStr. Notice also that we set the document’s content handle
to O, signifying that there’s no data associated with the document.

170

8: SCROLLING WINDOWS

Reading TEXT Data

If the document is a text document, doNewDoc() reads the TEXT resource into RAM
using GetResource, the general purpose Resource Manager routine for reading
resources. GetResource reads the text resource and returns a handle to the data as in

dataHdl = GetResource ('TEXT', kDocTextID);

If nonGeneric was successful in reading the resource, it uses TextEdit routines to
create the TERec and to load the text from the resource data on the heap into the
TERec structure. Here’s an excerpt from this section of doNewDoc():

SetPort (theDoc);
/* set text attributes */

TextFont (1); // application font
TextSize (12); // 12 point
TextFace (0); // plain text

/* create TERec */
if (docText = TENew (&frameRect, &frameRect))

{
TESetJust (tedustLeft, docText);

/* copy text data from heap to TERec */

/*
We need to lock the handle to the resource while assigning
to the TERec. Note that we unlock the handle as soon
as possible to avoid heap fragmentation.

*/

HLock (dataHdl);
TESetText (+dataHdl, GetHandleSize (dataHdl), docText);
HUnTock (dataHdl);

DisposHandle (dataHdl);
(*theDoc)->contentHd] = docText;

Using TextEdit requires a little background. A TERec structure, which is fundamen-
tal to using TextEdit, appears in Figure 8-8 on the next page.

As you can see in Figure 8-8, a TERec structure contains a great deal of data. Some
of this data deals with how to display the text, as we’ll soon see. Some of the data
comes into play as the user types text, something that’s not allowed in nonGeneric.
The text itself is stored in the hText field.

171

MACINTOSH C PROGRAMMING BY EXAMPLE

typedef
{

Rect
Rect
Rect
int

int
Point
int

int

int
ProcPtr.
ProcPtr

Tong
int
Tong
int
int

int
Handle
int
int
int
int

int
char
int

int
GrafPtr
ProcPtr
ProcPtr
int

int

TextEdit’'s TERec structure.

172

struct

destRect;
viewRect;
selRect;
TineHeight;

fontAscent;

selPoint;
selStart;

selknd;

active;
wordBreak;
clikLoop;

clickTime;
clickLoc;
caretTime;
caretState;
just;

telength;
hText;
recalBack;
recallines;
clikStuff;
crOnly;

txFont;
txFace;
txMode;
txSize;
inPort;
highHook;
caretHook;
nLines;

lineStarts[1: // the offsets of the Tines in the text
} TERec, *TEPtr, *«xTEHandle;

/! the text target rectangle
// the displayable part of the text
// the selection rectangle
// the current font's line height
// the current font's ascent
// the position of the selection caret
/1 the offset to the first character of the
selection range
/! the offset to the last character of the
selection range
// nonzero if this record is active
// pointer to word break routine
// pointer to mouse-down routine
(for selection)
// timing for mouse double-click
/! character location of mouse-down
// timing for caret blinking
// on or off state for caret blinking
// text justification, whether left, center,
or right
// length of text
// handle to text data
// used internally when calculation 11ne starts
// used internally when calculation line starts
// used internally during selection -
// text wrap at destRect boundary
(-1 for no wrap)
/! the current font
// the current style
// the transfer mode
/] the current text size e
// the grafPort associated ‘with this TERec
// pointer to the highlight routine
// pointer to the caret routine
// the number of lines in the text

8: SCROLLING WINDOWS

The focus of this chapter is on scrolling, not on TextEdit, so when we use TextEdit,
we'll describe the TextEdit routines you'll find in nonGeneric. For example, non-
Generic uses the TextEdit routine TENew to create a TERec structure. TENew ac-
cepts two arguments: a pointer to a view rectangle and a pointer to a destination
rectangle, which TextEdit stores in the viewRect and destRect fields of the TERec.
Both of these rectangles define how the text will appear.

The view rectangle defines what will be displayed on the screen. The destination
rectangle defines the rectangle that the text will flow into and therefore determines
the text wrap. Figure 8-9 shows these two rectangles. nonGeneric initializes both
rectangles to match the document’s frame rectangle, which is the window rectangle
framed by the scroll bars.

The days lit flickering fires
over their bare heads and
nights like chilling waters
coursed along their backs;
young girls grew pale and

destRect viewRect

The days lit

over their ba
nights like ¢
coursed alon
young girls g

viewRect destRect

The days lit flickering fires
over their bare heads and
nights like chilling waters
coursed along their backs;
young girls grew pale and

destRect and viewRect
are coincident.

Figure 8-9.
TERec view and destination rectangles.

The TERec will take on the text attributes of the document’s grafPort. This is why
doNewDoc() sets the text font, size, and face just before the call to TENew. TextEdit
sets the lineHeight and fontAscent fields of the TERec from the font information
derived from these text attributes. We’ll use the value stored in the lineHeight field
when we scroll the text document a line at a time.

TESetText adds text to the TERec and therefore expects a pointer to the text. Because
nonGeneric has the text data in the form of a relocatable block, that is, in the handle
returned by GetResource, we need to dereference the handle and pass the master
pointer to TESetText. Because TESetText can move memory in the heap, we have to

173

MACINTOSH C PROGRAMMING BY EXAMPLE

lock the handle before the call to TESetText. (See Chapter 5’s discussion of routines
that reorganize the heap.) Note that we unlock the handle right after the call to
TESetText.

After we've copied the text to the TERec, we have no further need for the text data in
the heap object, so we therefore dispose of the handle with DisposHandle (Apple’s
spelling, as we noted in an earlier chapter). doNewDoc() assigns the TEHandle to
the document’s content field, and the document creation is complete.

Generic App’s rendering functions reside in the module Display.c. nonGeneric has
both text and picture display routines: drawDocText() and drawDocPICT().
drawDocText() uses the TextEdit routine TEUpdate to draw the text in a specified
rectangle. drawDocPICT() uses the QuickDraw routine DrawPicture, which “plays
back” the picture in a specified rectangle.

When the document is in the unscrolled position, this display rectangle corresponds
to the window frame—the content region of the window minus the scroll bars. The
frame rectangle is illustrated in Figure 8-10.

Mattresses

Window frame
rectangle

Figure 8-10.
The window content region is an unscrolled document’s content rectangle.

When the document is in a scrolled position, nonGeneric offsets the TextEdit desti-
nation rectangle by the scroll amount, and, as a result, TextEdit draws the text in the
correct position.

A picture document gets drawn in a similar way. drawDocPICT() offsets the pic-
ture’s picRect by the scroll amount before it calls DrawPicture, which then draws the
picture in the correct position.

nonGeneric uses a combination of offsetting and clipping the drawing to render the
scrolled document. The offset is measured from the window origin—its upper left

174

8: SCROLLING WINDOWS

corner below the title area. The rendering routines offset the drawing by a built-in
document value, the current scroll position. As the current scroll position increases,
the application reveals new parts of the document in the window.

“Clipping” is a computer graphics term you might not be familiar with, but if you've
ever used masking tape while painting, you're familiar with the process. Clipping
limits drawing to a particular area. Clipping to a rectangle limits the output to the
confines of the rectangle. Figure 8-11 illustrates clipping.

Figure 8-11.
Offsetting and clipping the document contents.

nonGeneric’s rendering routines clip the output to the window’s frame. Clipping en-
sures that the document contents won’t overwrite the scroll bars, which also lie in
the content region, that is, the drawable region, of the window.

Scrolling and the Current Scroll Value

The scroll bars are the user interface for scrolling. When the user clicks the mouse in
a scroll bar, the scroll bar responds with a defined behavior. That behavior depends
on where in the scroll bar the mouse click is detected, that is, on what part code the
Control Manager returns, and on the current offset or scroll position of the
document.

A scroll bar is made up of the five parts shown in Figure 8-12 on the next page.
These parts correspond to five part codes, one of which is returned by the Control
Manager when the user clicks in the scroll bar.

The document scrolls depending on where in the scroll bar the mouse click occurs.

An application manages a document’s current scroll value in response to a mouse
click in one of the scroll bar parts. At this point, you might want to move over to
your Mac and open a document in a word processor. Open a document that’s large
enough to scroll, and follow along as we discuss the current scroll value.

175

MACINTOSH C PROGRAMMING BY EXAMPLE

— Up arrow

Page up area

Thumb
(scroll box)

o
L
=
-
-

Unscrolled Maximum scrolled

Page down area

— Down arrow

Figure 8-12.
The five areas of a scroll bar and unscrolled and maximum scrolled positions.

When the document is in its unscrolled position, its offset is 0. Now click the page
down area, and notice that the document appears to scroll up one page’s worth.
When the document is in this position, we say that it has a negative offset because
the upper left corner of the document is above the window origin. Although it ap-
pears that the document is scrolling “forward,” the offset is actually a negative
amount. Clicking in the page down area causes subtraction from the offset value. A
click in the page up area restores the document to its unscrolled position, and the
offset value is again 0. The page up area of the scroll bar reverses the negative offset
value; that is, it adds to the offset.

Also note that a mouse click in the scroll bar’s page up area when a document is in
the unscrolled position has no effect: You can't scroll backward past the beginning
of the document. Likewise, if you were to move the thumb (scroll box) so that you
were looking at the end of the document, you wouldn't be able to scroll forward past
the end of the document. These boundary constraints are built into the scroll bar
management routines.

Keeping Track of Scrolling

The offset value, which we’ll see is kept as what we call the “current scroll value,” is
an important variable in the management of scrolling, and other values come into
play too. As we’'ll see, nonGeneric stores the scroll management values in the docu-
ment structure, although some values—those for the window frame, for instance—
are calculated directly from the window structure.

nonGeneric uses the function makeFrameRect() in WindowUtil.c to calculate the
window frame rectangle that corresponds to the document’s content rectangle when
it’s needed. The algorithm is simple: makeFrameRect() uses the window’s port rect-
angle and subtracts the width and height of the scroll bars from the right and bottom
sides of the rectangle.

176

8: SCROLLING WINDOWS

Another dimension important to scrolling is the maximum number, in scroll units,
required to display the document’s contents. We call this the document “extent,” and
the value is stored in the document field docExtent. nonGeneric uses pixels for its
scroll units, and all of its scroll values are therefore expressed as numbers of pixels.
A document has extent in both the horizontal and the vertical directions, so we use a
Point structure to hold the extent values.

In some cases, the document extent values are known or can be calculated, as in a
PICT document; in others—in large text files, for instance—the best you can get
without processing the entire file is an estimate. In either kind of case, you need the
horizontal and vertical extent values for your document in order to set the control
maximum and the thumb (scroll box) position of the scroll bar. Figure 8-13 illustrates
the values in relation to each other in an unscrolled document.

600,0 200,0

bisod ago

ksl Mok hold alad sho mig
orgokdihoro il

v id s

fiv i
sz B et conte 1ea
tl’@n wgn

fhend

mosh \L
bisod ogok obs
HAeiokoo enliy of
doviso himo thd wo

v __| 900,1000

&,\L‘U\ih Hiovi
Fahul cho mak
L wo weid ho el

sy add Bo aho hodiom Bichorkd

0,1000

Figure 8-13.
An unscrolled document showing window frame and document extent
coordinates.

177

MACINTOSH C PROGRAMMING BY EXAMPLE

nonGeneric relies on the picture frame, a rectangle that defines the extent of the
PICT document and that is part of the picHdl data structure, for the document extent
values of a PICT type document. nonGeneric accesses the extent values this way:

if (picHd1 = GetResource (kDocPICTID))
{
extent.h
extent.v

(*picHd1)->picFrame.right - (*picHd1)->picFrame.left;
(*picHd1)->picFrame.bottom - (*picHd1)->picFrame.top;

}

nonGeneric’s technique for calculating the extent of a text document takes advantage
of what goes on inside the TextEdit structure. First of all, TextEdit wraps text, so
there’s no reason for nonGeneric to scroll in the horizontal direction—we don't care
about the horizontal extent value. The vertical extent is a different matter. non-
Generic uses two values in the TERec to calculate a text document’s vertical extent.
The lineHeight field contains the height, in pixels, of each line. Multiplying this
value by the number of lines, stored in the #nLines field, nonGeneric calculates the to-
tal height, in pixels, of the document:

extent.v = (xdocText)->1ineHeight * (xdocText)->nLines;

The third value of interest in scrolling is related to the document’s offset, which
we've already discussed. This value is for the current scroll position, which is the in-
verse pixel offset of the document after scrolling. Because of its horizontal and verti-
cal components, nonGeneric stores this value in a Point structure in the document’s
curScroll field.

Both the horizontal and vertical current scroll values range from 0 through the maxi-
mum scroll amount in both directions. That’s right—no negative numbers. The off-
set values range into the negative, but the current scroll values, as illustrated in

Scroll Bar Size

A vertical scroll bar is 16 pixels wide; a horizontal scroll bar 16 pmels hxgh ;
Although no system constant defines these dimensions, you'll find them (af-
ter some digging) in the Window Manager chapter of Inside Macintosh, Vol- |
ume I. We don't expect this value to change with subsequent system releases,
so we've defined our own constant, la?crollBarSzze, which nonGenenc uses |
for the scroll bar width and height. ; ¢

It's always a good idea to use defined constants instead of raw numbers
Then if a value ever does change, you need to change it in only one place in
your source code. And using defined constants makes your code more read-
able—almost “self-documenting.” Years later, long after you've forgott
why the number 16 is subtracted from ﬁameRea boitom, a defmed cons, :
will refresh your memory.

178

8: SCROLLING WINDOWS

Figure 8-14, are positive numbers. It’s these current scroll values that nonGeneric ad-
justs when it detects a mouse-down or a mouse click in a scroll bar. Note the impor-
tant conceptual difference between offset values and scroll values. The offset values
govern what part of the document’s contents are drawn in the window, and the cur-
rent scroll values are reflected by the position of the scroll bar’s thumb (scroll box)
relative to the maximum scroll position.

g by sin 600 500
N b ik
0,300 [+ ot ey Nl oy :
EEANNE 1o aink objoch ueldiokdNgho of
0,700
O u; T _6-
fobivhinhe
ohcloninkl I? E
kst Mich wlciokee enho obe
lm‘;m]nn” ik w
0,1000 Li Horking, 900,1000
Figure 8-14.

The relative scroll values are 0, 300.
The maximum scroll values are the total travel distances required to view the entire
document. Figure 8-15 illustrates the maximum scroll values.

nonGeneric stores the maximum scroll values for each document in the maxScroll
fields of the document. The maximum scroll values are calculated this way:

docExtent.h - frameWidth;
docExtent.v - frameHeight;

maxScroll.h
maxScroll.v

frameWidth and frameHeight are simply the width and height of the frame
rectangle.

179

MACINTOSH C PROGRAMMING BY EXAMPLE

Piepbo o “
o« IPecument; cantente gre ..
it slarger than.windowi

YO DDy

YT N N s g

indow frame ig.at..5, -~ 1

i

HANERY

0,1000 900,10

<l >

Figure 8-15.
The masximum scroll values are 400, 600.

The maximum scroll values depend on the dimensions of the frame rectangle, so
this rectangle has to be recalculated every time the user resizes the window. non-
Generic contains the routine setDocMaxScroll(), found in DocUtil.c, to do the calcu-
lations. setDocMaxScroll() is called from the resize routines we discussed in Chapter
7, growWindow() and zoomWindow().

The final value associated with scrolling, the scroll value, is the number of pixels to
scroll for each click on the scroll arrow. This value defines the granularity of the
scroll. nonGeneric stores the scroll value in the document field scrollVal. For a PICT
document, we set this value to 1 to achieve a very smooth scroll. You might prefer a
value of 8 or 10, which still gives you a smooth scroll but gets through the document
a little more quickly. For a text document, the scroll value is simply the height of the
new line of text that will be brought into view, that is, the line height:

scrollVal.v = (*docText)->1ineHeight

8: SCROLLING WINDOWS

A text document doesn’t scroll in the horizontal direction, so we don't need to set the
scroll value in this direction.

Because scroll bars are controls, Macintosh applications manipulate scroll bars by
means of Control Manager routines.

The Control Manager routines accept a ControlHandle argument, which the applica-
tion extracts from the window structure. The Window Manager keeps all the con-
trols associated with a window in a linked list. The head of this list of controls is
found in the controlList member of the WindowRecord.

You can get the control handle for each scroll bar by walking the list, as in

ControlHandle theControl;

/* get the head of the list */
theControl = ((WindowPeek)theDoc)->controllist;

while (theControl) /* while the handle is nonzero */

{
/* you do something here to process theControl, like */
ShowControl (theControl);
/* get the next control handle */
theControl = (*theControl)->nextControl;
}

Although we added scroll bars to multiGeneric’s windows in Chapter 7, we left them
inoperable and inactive. Now we'll activate them by changing their highlight state.
Highlighted controls are active and visibly so. An active scroll bar has a gray pattern
in the page areas, and the thumb control (scroll box) is visible.

You use the Control Manager routine, HiliteControl, to change a control’s highlight
state. HiliteControl requires a control handle, which you get from walking the list,
and a state value. The state value 255 makes the control inactive; the value 0 makes
the control active. Figure 8-16 illustrates the effect of calling HiliteControl with the
state value 255.

Kal)

Sometimes an inactive scroll

L L= par is drawn without the arrows.

Figure 8-16.
An inactive scroll bar: HiliteControl (theControl, 255);

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 8-17 illustrates the effect of calling HiliteControl with the state value O.

Flgun 8-17.] W
An active scroll

bar: HiliteControl
(theControl, 0);

Maintaining the correct highlight state of the scroll bars is a function of window ac-
tivation. Because nonGeneric draws only during the update event, it manages the ac-
tive or inactive appearance of the scroll bars when it draws them, in its scroll bar
drawing routine, drawScroliBars(from WindowUtil.c.

Whether a window gets an activate or an inactivate event, the activation routine
doActivateEvent() invalidates the scroll bars, forcing an update event, which insures
that they’ll be drawn in during that event. nonGeneric calls drawScroliBars() from
the update event handler, doUpdateEvent().

According to the Macintosh user interface guidelines, the appearance of a scroll bar
depends on the window’s status (active or inactive) and on whether the document’s
contents are larger than the window. If the window is active, its scroll bars should
appear highlighted. But if the document is not scrollable, that is, if all the document
data fits in the window, the scroll bar in the particular dimension should not be
highlighted.

The little truth table in Figure 8-18 lays out the rules for scroll bar highlighting. The
window must be active and the document’s extents larger than the window if your
application is to highlight the window’s scroll bars.

Contents Larger
Active Window? Than Window? Highlight?
no no no
no yes no
yes no no
yes yes yes

Figure 8-18.
When to bighlight a scroll bar.

When an application determines that a scroll bar is indeed to be drawn in the high-
lighted state, it also needs to set the thumb position to reflect the relative scroll value
of the document. The position of the thumb tells the user where he or she is in the
document. If the user is looking at the middle of a text document, the vertical scroll
bar’s thumb position should reflect that fact.

A scroll bar has a minimum value, a maximum value, and a current value. Because
these control values are short integers, all three can range from 1 through 32767.

8: SCROLLING WINDOWS

A scroll bar’s minimum value defines the base of an unscrolled document and should
be set to 0.

A scroll bar’s maximum value corresponds to the maximum scroll value to which a
document can travel. It is the basis of the thumb’s “domain,” that is, of how far the
thumb moves with each increment. You set the scroll bar’s maximum value with the
Control Manager routine SetCtiMax. If a 1000-line document scrolls one line at a
time, the scroll bar’s maximum value ideally should be 7000.

The scroll bar’s current value is reflected by the position of the thumb and describes
the relative scroll position of the document. You set the scroll bar’s current value
with the Control Manager routine SetCt/Value. The thumb position appears relative
to the scroll bar’s maximum value and this current value. If the maximum value is
1000 and the current value is 500, the thumb will appear at the halfway point of the
scroll bar.

Rendering the Scroll Bars

Drawing all the parts of a scroll bar is a tricky affair. Inside Macintosb tells us to use
the Control Manager routine DrawControls when there’s an update event for a win-
dow that contains controls, but we’ve discovered that simply calling DrawControls
isn’t always enough for an appropriate rendering of the scroll bars.

We've also experienced HiliteControl’s behaving differently depending on whether
the scroll bars are going from active to inactive or inactive to active. For example,
when the controls are going from unhighlighted to highlighted, HiliteControl will
“fill-in” the page areas of the scroll bars with the gray pattern. But when the docu-
ment is being deactivated, we can’t get HiliteControl alone to draw the empty scroll
bars accordingly.

Through trial and error, we’ve come up with a technique that we’re sure will draw
the scroll bars correctly in all cases. We use this three-step technique in
drawScrollBars():

1. Set the highlight state for each scroll bar with HiliteControl.
2. Call ShowControl for each scroll bar.
3. Draw all the controls with DrawControls.

We'll confess to you: We don't know why drawScrollBars() needs to call Show-
Control every time. nonGeneric does create the scroll bars in createNewDoc() in the
invisible state, and ShowControl should be called at least the first time that the scroll
bar is displayed to make the control visible, but why it must be called subsequently is
one of those sweet mysteries of Macintosh programming. Indeed, you'll find other
such examples of slightly inconsistent behavior, many of which are described in the
Apple technical notes and others of which are left for you to discover on your own.

183

MACINTOSH C PROGRAMMING BY EXAMPLE

The Control Manager supports peek-a-boo controls: A visible flag in the control
structure allows controls to be visible or invisible. ShowControl makes an invisible
control visible again, and HideControl makes a visible control invisible. We think
that all ShowControl has to do is toggle this bit, but ShowControl seems to perform
some other magic that we just don't understand— drawScroliBars() doesn’'t work
right all the time without it. Try commenting out the calls to ShowControl in
drawScrollBars() to see what we mean.

drawScrollBars(), excerpted here in Figure 8-19, loops through each scroll bar and
sets the highlight state based on the rules in Figure 8-18. We've split the routine to
handle the window both active and inactive. If the window is active, the routine sets
the thumb position with SetCt/Value. The routine calls ShowControl at the bottom of
the loop. At the end of the routine, drawScroliBars calls DrawControls.

/* drawScrol1Bars--draw the window's scroll bars
6/1/90kwgm */

void
drawScrol1Bars (theDoc, activate)
DocPtr theDoc;
Boolean activate;
{
ControlHandle theControl;
long ref;
short value;
Point curScroll, maxScroll, docExtent, frameSize;
Rect frameRect;

if (!theDoc)
return;

setPortClip (theDoc); /* clip out to port */
DrawGrowIcon (theDoc);

/* get head of control Tist */
theControl = ((WindowPeek)theDoc)->controilist;
if ((theDoc == FrontWindow ()) && activate)

{
/* get frame size #*/
makeFrameRect (theDoc, &frameRect);
frameSize.h = frameRect.right - frameRect.left;
frameSize.v = frameRect.bottom - frameRect.top;
Figure 8-19. (continued)

The drawScrollBars() routine.

8: SCROLLING WINDOWS

Figure 8-19. continued

/* use temp variables */

maxScroll = theDoc->maxScroll;
curScroll = theDoc->curScroll;
docExtent = theDoc->docExtent;
/%

*/

Controls are kept as a linked list. Run the 1ist, calculating
the proper thumb positions if the control is a scroll bar,
highlighting or unhighlighting the control based on the
activate parameter.

/* draw each scroll bar and thumb at proper value #*/
while (theControl)

{

ref = GetCRefCon (theControl);// scroll bar tag kept here
if (ref == kVScrollTag)
{
/* get vertical thumb value */
if (curScroll.v < maxScroll.v)
value = curScroll.v;
else
value = maxScroll.v;
HiliteControl (theControl, (docExtent.v >
frameSize.v) ? @ : 255);
SetCt1Value (theControl, value);
SetCt1Max (theControl, maxScroll.v);
1
else if (ref == kHScrollTag)
{ :
/* get horizontal thumb value */
if (curScroll.h < maxScroll.h)
value = curScroll.h;
else
value = maxScroll.h;
HiliteControl (theControl, (docExtent.h >
frameSize.h) ? @ : 255);
SetCt1Value (theControl, value);
SetCt1Max (theControl, maxScroll.h);
}
else
HiliteControl (theControl, @);

(continued)

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 8-19. continued

ShowControl (theControl);
theControl = (*theControl)->nextControl;

}
}
else // draw unhighlighted scroll bars
{
while (theControl)
{
HiliteControl (theControl, 255);
ShowControl (theControl);
theControl = (+theControl)->nextControl;
}
}

DrawControls (theDoc); // Draw all controls in the window

} /* drawScroliBars */

Tracking the User Selection in a Scroll Bar

nonGeneric parses mouse-down events just as its predecessors do, in the
doMouseDown() routine. After doMouseDown() determines that a mouse click was
in the content region of the window—remember, the scroll bars are in the content
region—it calls doInContent(), which in turn calls the Control Manager routine
FindControl. If the mouse was clicked in a scroll bar, FindControl returns true and
supplies the control handle and part code for the part of the scroll bar in which the
mouse click occurred. dolnContent() passes this information to mouselnScroli() in
WindowUtil.c.

Based on the part code, mouseInScroll() directs the action to scrollDoc(). Let’s look
at the behaviors of the document for mouse clicks in each part of the scroll bar.

Arrows

If the mouse click occurred in one of the arrows, mouselnScroll() calls Track-
Control, the Control Manager routine that supports arrow selection. TrackControl
handles all the highlighting that occurs when the user selects an arrow.

TrackControl requires a pointer to an “action function,” which does the actual
scrolling. nonGeneric’s scroll routine is scrollDoc(), also found in WindowUtil.c,
which we’ll discuss in detail shortly. Because TrackControl can't call scroliDoc() di-
rectly (the arguments to the two functions are different), we use an intermediate
function, scroliWinProc(), whose only purpose in life is to format the call to
scroliDoc().

186

8: SCROLLING WINDOWS

Page areas
If the mouse click occurs in one of the page areas of the scroll bar, mouselnScroll()
calls scrollDoc() directly.

Thumb

If the mouse-down occurs in the thumb, mouselnScroll calls TrackControl without
an action function, and it slides the thumb in response to the user’s mouse move-
ment. When TrackControl returns the thumb position value, mouseInScroll() calls
scrollDoc() based on the new thumb value.

The Scrolling Rovutine, scrollDoc()

nonGeneric’s scrolling is encapsulated within scrollDoc(), which is passed the con-
trol handle, a code for the part of the scroll bar in which the mouse-down occurred,
and the scroll value multiplier. scrollDoc() is excerpted in Figure 8-20.

/* scrollDoc--the quintessential scrolling routine, scrollDoc is called
for all document scrolling, from the scrollWinProc, or
directly for the thumb and page scrolls */

static void '
scrollDoc (theDoc, theControl, partCode, value)

DocPtr theDoc;
ControlHandle theControl;
short partCode, value;
{
register short hScroll, vScroll;
Rect frameRect;
long ref;
RgnHandle updateRgn;
/* we need to know which scroll bar, horizontal or vertical,
we're dealing with */
ref = GetCRefCon (theControl);
/» assign scroll pixel value to appropriate scroll variable */
hScroll = (ref == kHScrol1Tag) ? (value * theDoc->scrollvVal.h) : 0;
vScroll = (ref == kVScrol1Tag) ? (value * theDoc->scrollVal.v) : @;
/+ we'll need this region in ScrollRect */
if (!(updateRgn = NewRgn()))
return;
Figure 8-20. (continued)

The scrollDoc() routine.

187

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 8-20. continued

/* we loop here while the mouse stays down */
do
{
setFrameClip (theDoc, &frameRect); /# clip to doc contents */

switch (partCode)
{
case inPageUp:
case inUpButton:
/# adjust scroll value at the top (or left) boundary */
if (vScroll && theDoc->curScroll.v - vScroll < @)
vScroll = theDoc->curScroll.v;
else if (hScroll && theDoc->curScroll.h - hScroll < 9)
hScroll = theDoc->curScroll.h;

/+* if we have a scroll value */
if (vScroll Il hScroll)

{
/% scroll the document */
Scrol1Rect (&frameRect, hScroll, vScroll, updateRgn);
/* adjust document's current scroll */
if (hScroll)
theDoc->curScroll.h -= hScroll;
else if (vScroll)
theDoc->curScroll.v -= vScroll;
}
break;

case inPageDown:
case inDownButton:
/* adjust the scroll value at the bottom
(or right) boundary */
if (vScroll && (vScroll + theDoc->curScroll. v) >
theDoc->maxScroll.v) .
vScroll = theDoc->maxScroll.v - theDoc->curScroll.v;
else if (hScroll && (hScroll + theDoc- >curScrol1 h) >
theDoc->maxScroll.h) ;
hScroll = theDoc->maxScroll.h - theDoc- >cur$cr011 h
if (vScroll |l hScroll)
{f

ScroliRect (&frameRect, -hScroll,

- vScroll, updateRgn);

if (hScroll) ' ;
theDoc->curScroll.h += hScroll;

(continued)

8: SCROLLING WINDOWS

Figure 8-20. continued

else if (vScroll)
theDoc->curScroll.v += vScroll;

}
break; -
}
if (lEmptyRgn (updateRgn)) /+* we scrolled */
{
InvalRgn (updateRgn);
BeginUpdate (theDoc);
drawDocContents (theDoc); /* note: mini-update process #/
EndUpdate (theDoc);
SetRectRgn (updateRgn, @, @, @, 8); /* clear out region #/
}

setPortCl1ip (theDoc); /+ widen clip to include scroll bars */

/* adjust scroll bar appearance */

SetCt1Value (theControl, hScroll ? theDoc->curScroll.h :
theDoc->curScroll.v);

SetCt1Max (theControl, hScroll ? theDoc->maxScroll.h :
theDoc->maxScroll.v);

} while (StillDown());

~if (updateRgn)
DisposeRgn (updateRgn);

} /# scrollDoc */

The first lines of scroliDoc() find out whether the mouse-down occurred in the hori-
zontal or the vertical scroll bar and set the local variables bScroll and vScroll to pixel
values to be scrolled to—according to the part code, the document’s scrollVal, and
the scroll value multiplier passed to scrollDoc(). After this initialization phase,
scrollDoc() enters a scrolling loop.

Inside the loop, the routine first sets the window’s clipping region to the window
frame, so that the scroll bars don't scroll with the document contents. Next, the rou-
tine scrolls the document by the amount of the bScroll and vScroll pixel values.
scroliDoc() then calls a mini-update handler, complete with calls to BeginUpdate,
drawDocContents(), and EndUpdate. At the bottom of the scrolling loop, the routine
resets the window’s clipping region to the port rectangle so that the scroll bars can
be redrawn with the new, correct values.

MACINTOSH C PROGRAMMING BY EXAMl';'I.E

scrollDoc() loops as long as the mouse is down, scrolling and redrawing the update
area each time through the loop. Scrolling occurs inside the switch statement. Here
scrollDoc() loads bScroll and vScroll, according to the part code and the current
scroll position, obeying the boundary conditions regarding the unscrolled and maxi-
mum scrolled positions. The culmination of the routine is the call to ScrollRect,
which does the visual scrolling and returns the area exposed by the scroll in that
region handle that you allocated earlier on. It’s ScrollRect, along with the embedded
update process, that gives the smooth scrolling appearance to Macintosh applica-
tions. Note how to set up the two parameters that specify how many pixels to scroll:
Negative values scroll up; positive values scroll down. After the call to ScrollRect,
scrollDoc() updates the document’s curScroll value and draws the update region in
the mini-update handler. The routine exits when the user releases the mouse button.

That’s scrolling. We suggest that you use the THINK C debugger to trace through a
scroll operation and see the thread of what happens and where in Generic App’s
particular solution to the problem of scrolling.

The solution to the scrolling problem has no fixed answer. We could have saved a
few lines of code in scrollDoc()—for the curious, by moving ScrollRect and the new
curScroll calculations outside the switch and arithmetically negating the values of
bScroll and vScroll in one of the cases. But we feel that this kind of optimization
sacrifices clarity for the sake of economy.

Generic App is your program—remember, “the only one you'll ever need”—and
you are encouraged to refine it. We have always wanted it to serve as both generic
shell and teaching tool, and no teaching is ever effective without the student’s ex-
ploration and experimentation. Never lose sight of the concept of the development
process as a cycle—thoroughly test any changes you make to your working code.
Design, implement, test—don't forget to test. Testing reveals bugs and throws you
back to where you started, at the design phase. A saying among programmers
reflects this dynamic characteristic of software development: “The software’s never
finished 'til the money runs out.” This little bit of wisdom speaks to the cyclical na-
ture of software development. But, while you’re burning the midnight oil, pushing
back the envelope of new technology, we recommend that you temper your efforts
with our favorite older adage: “If it ain’t broke, don't fix it.”

?

LOSER: A LESSON
IN PROGRAM
DESIGN

Chapter 8's scrolling application is only a demo. It doesn't interact with the file sys-
tem. Without this ability, an application isn't really complete.

In this chapter, we’ll look at Loser, a simple application that can set or clear a file’s
invisible attribute-bit. When the bit is set, Finder pretends that the file isn't there. It
won't draw the file’s icon on the desktop or report its name in a directory listing. As
Figure 9-1 shows, as far as the desktop is concerned, the file is lost or just not there.
Loser can, of course, make the file visible again by clearing the invisible attribute-bit.

The approach through the invisible attribute-bit isn’t foolproof. Some specialized
programs that read and display directory information—ResEdit and the Norton
Utilities, for example—ignore the invisible attribute-bit and will reveal a hidden
file’s existence. But Loser will provide you with a first line of defense against your av-
erage snooper.

Figure 9-1. MacUser Cols MacUser Cols
Now you see it. Now 9 items 42.8 MB in disk 34 MB 8 items 42.8 MB in disk 34MB
you don’t. Loser Ic:l 2
makes a file’s icon e conApp § Bt Genhpp f
invisible in the Sovmor Browser
Finder'’s desktop. o D Mo ord e Hella Warld

D Ghost Fonts Ghost Fonts

Loser verify Loser

Um@ﬂoed Under the Hood

MACINTOSH C PROGRAMMING BY EXAMPLE

Loser’s simplicity in the software application layer, where it merely sets or clears one
bit, makes it an ideal vehicle for examining the user interface mechanics we’ll use in
a later chapter for interacting with the Macintosh file system. In this chapter, we’ll go
into the Standard File Package, take a look at adding controls to dialog boxes, and
see how a Macintosh application takes advantage of call-back routines, the so-called
“hook procs.” But we’'ll begin with an exploration of Loser’s origins, which will shed
some light on design dynamics.

There’s More

Loser is one-third of the utility application MacUser’s Security. Kurt’s soft-
ware engineering firm, Code of the West, developed the full utility for
MacUser magazine. Security also contains Shredder, which permanently de-
letes files by shredding them literally to bits, and Scrambler, which password-
encrypts files by means of the same DES encryption algorithm that’s used to
protect our national secrets. (Wow!) You can get a copy of MacUser’s Security
by logging onto the ZMac forum on CompuServe and looking through the
Download section. Type

help download

to get full instructions.

Designing Software for Fun and Profit

Program design will usually move through three phases. You’ll see that one phase
leads naturally into another.

The Requirements Phase

In a perfect world, software design doesn’t begin before all the requirements are
known. When Code of the West contracted with MacUser to write some security
utilities, we were presented with an informal “program requirements document.” A
paragraph described what each utility should do. Informality is OK. The essential
characteristic of a requirements document is that it be complete.

Of course, MacUser asked for the moon—features that would take a year to develop.
Most clients do. The problem was that MacUser didn’t want to pay for a year’s worth
of work. After all, this program was to be a giveaway to promote their new online
service, ZMac. The expression “Champagne taste on a beer budget” aptly describes
most software clients.

In a requirements document, your client might ask for the moon—and if you'’re not
careful you might have to deliver it. Usually, as was the case with MacUser, you'll
negotiate with the client over what can be delivered within both the project’s time
frame and the client’s price range. The requirements document is the platform for
that negotiation.

192

9: LOSER: A LESSON IN PROGRAM DESIGN

The Functional Specification Phase

It all comes down to time and money—how long and how much—so both you and
the client need to be sure of what you're getting into. It's easy to underestimate the
time and money a software project will take.

In the normal flow of events, a requirements document begets a “functional specifi-
cation document” that describes the whats and hows of the project. The purpose of
the functional specification is twofold. This document describes the finished pro-
gram’s user interface and major features, and it enables you and the client to come to
a mutual understanding of what comprises the deliverables.

The Preliminary Design Phase

But of even greater significance to your mental health, the functional specification
provides you with a first opportunity to think about implementation details. As a
direct outgrowth of the functional spec, you'll do a preliminary design. In the design
phase you consider alternative strategies for meeting the program requirements—
before you sit down to write a line of code—and you discover the answers to these
very important questions: Can it be done? How long will it take? What will it cost?

You work out the program’s structure during the design phase, as well as a rough cut
of fundamental algorithms. Any device you choose for this structuring is OK—
pseudocode, flowcharts, data-flow diagrams, Buhr diagrams—whatever makes
sense for you and the particular project. The important thing is that you write it
down. Taking the time to think the details through before committing them to code
and writing them down so that you'll stay on track saves you time overall.

Reality Check

In our less than perfect world, requirements documents, functional specs,
and preliminary designs are elegant figments of a software engineer’s imagi-
nation. Most software is specified and designed in haste, on a blackboard or
the back of a napkin.

Designing the Loser Interface

When we designed the Loser component of MacUser’s Security utility, we began
with the bottom line. Essentially, Loser had to hide a file from the user. In program-
ming terms, Loser needed to toggle the file’s status between two states: visible and
invisible.

How do you make a file invisible? Anything to do with the file system should lead
you to the Inside Macintosh chapters on the File Manager. The first appears in Vol-
ume II and deals with the MFS (Macintosh file system), the so-called flat file system
of the early Macintosh 128 and 512. The chapter with greater relevance to our
modern Mac, on the HFS (hierarchical file system), is in Volume IV.

MACINTOSH C PROGRAMMING BY EXAMPLE

No matter which of these two chapters you consult, you’ll discover that an “invisible
bit” is associated with every file. It’s a bit maintained by the File Manager, existing in
the file’s “Finder information block” and controlling whether Finder displays the
file’s icon or name in the desktop. You get access to this bit from the fdFlags field of
the Finder information block.

We won't get into all the exact details of this stuff—nothing in the File Manager
is simple, as we’ll learn in the next chapter! What’s important to know here is that
GetFInfo and SetFInfo, a pair of routines in the File Manager, allow an application to
read and set a file’s Finder information block. Here’s some sample code that shows
how to get the value of the fdFlags field:

fdefine kInvisible 0x4000
FInfo finfo;
Boolean invis;

GetFInfo (fileName, volumeRefNumber, &fInfo);
invis = fInfo.fdFlags & kInvisible;

GetFInfo makes use of a file specification that consists of a file name and a volume
reference number. As we'll see a little later in this chapter, Loser’s user interface sup-
plies the file specification.

Making a file invisible is simple: Get the Finder information block, set the invisible
attribute-bit, and write the data structure back into the file system. Here’s the code
that makes a file, specified by fileName and volumeRefNumber, invisible:

FInfo flnfo;
Boolean invis;

GetFInfo (fileName, volumeRefNumber, &fInfo);
fInfo.fdFlags |= kInvisible;
SetFInfo (fileName, volumeRefNumber, &fInfo);

Notice the fragment ORs in the invisible bit defined as the token klnvisible. This
code fragment is, in essence, the entire application layer for Loser. Loser’s applica-
tion layer is so simple that the outstanding design issue is the user interface: How
does the user select the file for losing or finding?

Our first impulse was to use Finder for file selection—Mac users are familiar with
the point and click selection techniques of the desktop. We thought, Wouldn't it be
neat to use Finder for file selection and then hide the selected files?

It turned out that this wasn’t such a neat idea after all. Finder doesn't have a pro-
gramming interface yet, which means that there are no system calls a program can
make to get the list of selected desktop files. Finder desktop selections are local to

194

9: LOSER: A LESSON IN PROGRAM DESIGN

Finder, and it doesn’t share that data with the outside world. How does our applica-
tion find out what those files are?

We were aware of another application, a utility that extends Finder’s capability
called Aladdin’s Magic Menu, that actually uses the desktop’s selected files. When we
talked with Aladdin about their technology, hoping to get an insight into how they
did it, they told us that the Aladdin engineer who discovered their technique did so
only after many hours of rummaging around in RAM and arduous debugging—a
grim prospect. Magic Menu reads the selected desktop files by reading Finder’s in-
ternal data structures.

The problem with hacking in undocumented areas of the system is that your soft-
ware then has to react to changes in each subsequent release of the system software,
with little or no help from Apple. Aladdin’s slick interface has the potential to be-
come a maintenance nightmare.

There was another problem associated with using Finder as Loser’s interface: It
made sense only half the time. One of Loser’s requirements was that it be able to
make invisible files visible again. How would the application find invisible files?

When you’re backed into a corner, the best thing to do is to keep the solution simple.
Included with the system software is the Standard File Package, which presents and
manages the dialog box that the user normally uses to select a file for opening.
Figure 9-2 shows this familiar file selection dialog box, named the SFGetFile dialog
box after the routine that invokes it.

Figure 9-2, Open Document
The SFGetFile
.
dialog box. -
[Help Folder = MyMac
D Sample Settings
0 sample Tables ([open]

The other half of the Standard File Package is the SFPutFile dialog box, shown in
Figure 9-3 on the next page. It's the dialog box the user sees when he or she chooses
the Save As command in a File menu.

The best thing about using the Standard File Package is that its routines are already
written and debugged and therefore could save you weeks of coding and debugging
an interface to the file system. When you’re designing software for a fixed price, time
is money.

But if we were to use the Standard File Package for Loser’s interface, how was that
interface to be managed? Loser was to have two modes: It needed to hide (“lose™)

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 9-3. save Document
Zi"be; SFI;uthle
14108 DOX. D Help Folder
) BeadMe

[Sample Settings
0O Sample Tables
“ Tycho™ 1.1.6

Save the Table RAs:

visible files and to find lost ones. If we added two radio buttons, named “Lose File”
and “Find File,” to the bottom of the standard Open dialog box, we’d make it pos-
sible for the user to view either all visible or all invisible files in a folder. To emphas-
ize the mode selection aspect of opening a file, we decided to have Loser retitle
what would normally be called the Open button as “Lose” when the user had chosen
Lose mode and as “Find” when the user had chosen Find mode. Figure 9-4 shows the
Loser dialog box.

Whether we could use the SFGetFile dialog box for the Loser interface hinged on two
issues: Could we get the Standard File Package to display either all visible files or all

’I’ure 9-4. — ;;x m i
i § £y
The Loser interface.) H agUser’s
i Securit
i | it
Sloserf v

0O Loser Hdr
0 Loser Src

D Leserm.rsrc
D Readme

| fject i

@ Lose File QO Find File

Macintosh Packages

A Macintosh package like the Standard File Package is a collection of rou-
tines that extend the Toolbox and the Operating System. These routines
reside on disk in a PACK resource. They’re brought into RAM only when
they’re needed. Examples of other Macintosh packages are the Disk Initial-
ization Package, which provides you with an interface for naming and ini-
tializing disks, and the Binary-Decimal Conversion Package, whxch you use |
for converting integers to strings, and vice versa. o

9: LOSER: A LESSON IN PROGRAM DESIGN

invisible files in its list of file names? And could we add radio buttons to the SFGetFile
dialog box?

The answer to both questions was yes—thanks to hooks. The Standard File Package
provides a place, called a “hook,” where you can install two “hook procs.” (“Proc,”
of course, is short for “procedure.”) Hook procs are also called “call-back routines,”
referring to the ability of a system procedure to call an application-defined function
at certain times during its operation. Call-back essentially allows you to extend the
features of system routines. Installing a hook proc is as simple as passing a function
pointer as an argument to a system routine.

The Standard File Package will support two hook procs:

B The package calls the file filter hook proc whenever it adds a file name to its
list box. This filter proc is actually a feature of the Dialog Manager (which
you'll see in a moment) that the package uses to implement its dialog box
interface. The Dialog Manager calls this hook proc whenever the package
receives an event. The file filter proc returns a value that the package uses to
determine whether to display the file name in its list box. The file filter proc
therefore controls the display of the dialog box, based on the value of the file’s
invisible attribute-bit.

B The package calls the dialog hook proc when it receives a mouse-down event
in the dialog box. Loser takes advantage of the dialog proc to manage the radio
buttons. Because the package calls the dialog hook proc whenever it receives a
mouse-down event in the dialog box, Loser can respond appropriately when
the user chooses the Lose File or Find File button in that box.

With all our design issues addressed, we can move on to the details of Loser’s
implementation.

Hook Procs

Understanding hook procs is one of the keys to understanding how to get the
Macintosh to do your bidding. The Toolbox provides a number of hooks that
let you use call-back routines to get the most out of your application. For ex-
ample, TextEdit (in System 6.0 and later) provides hooks to call your routines
when it

B draws a line of text

B measures the caret’s position

B calculates the end of a line

B gets a mouse-down in the text area

We’'ll venture to say that hooks are responsible for the overwhelming success
of Macintosh software. Without hook procs, Mac programs would still look like
MacPaint and MacWrite 1.0.

197

MACINTOSH C PROGRAMMING BY EXAMPLE

Using the Standard File Package

The Standard File Package simplifies much of the coding job. Its set of routines frees
us from the burden of putting up a dialog box by means of the Dialog Manager rou-
tines or of having to navigate the file system.

We saw in Figure 9-4 on page 196 that Loser uses the SFGetFile dialog box, which ap-
pears when the application calls the SFGetFile routine. Normally, an application calls
SFGetFile after a user has selected Open from the File menu. SFGetFile displays the
dialog box and the list box that contains file names; interacts with the user, calling
routines in the Dialog Manager directly; and returns all necessary information about
the selected file. One call does it all.

The SFGefFile Dialog Box

When SFGetFile returns control to your application, the user has either selected a file
or canceled the Open operation. The routine communicates with Loser by means of
the SFReply record. The application passes the address of the SFReply record to
SFGetFile, and SFGetFile fills in the values before it returns. Here’s the definition of
the SFReply record:

typedef struct SFReply

{

char good;

char copy:

long fType;

int vRefNum;

int version;

unsigned char fName[64];
} SFReply:

When SFGetFile returns, the good field of the record is true (the value 1) if the user
has selected the Open button, or false (the value 0) if the user has selected Cancel. If
good is true, vRefNum specifies the volume reference number of the file and fName
contains the file name. The other fields of the SFReply record can be ignored. With a
volume reference number and a file name, SFGetFile has enough information to
open or, in our case, access the Finder information for a file.

Loser has those two radio buttons, so it can’t use the standard SFGetFile dialog box or
the SFGetFile procedure that invokes the dialog box. We have to create another dia-
log box, similar to the SFGetFile dialog box but with the addition of the Lose File and
Find File radio buttons.

SFGetFile uses a dialog box template, the DLOG -4000 resource from the System file.
This template contains the information that describes the dialog box. Now, you don’t
want to modify the dialog box in the System file—unless you want every other ap-
plication on your disk to have Lose File and Find File radio buttons appended to their
SFGetFile dialog boxes. The technique for appending items to a standard system dia-
log box calls for copying the dialog box template to your application’s resource file

9: LOSER: A LESSON IN PROGRAM DESIGN

and then modifying the copy. ResEdit is the best tool for this job. If you're interested
in how it’'s done, see the sidebar “Creating the Loser Dialog Box” at the end of this
chapter.

Now, how do we get the SFGetFile routine to use our new dialog box instead of
DLOG -4000 from the System file? The answer is that we don't use SFGetFile, but
rather a similar routine, SFPGetFile.

SFPGetFile (the P is for “Programmer”) provides all the utility of SFGetFile but ac-
cepts an alternative dialog resource ID number. SFPGetFile accepts nine parameters,
one of which is the ID number for our new dialog resource. Three of its parameters
are pointers to our hook procs, defined as type ProcPtr. Here’s the prototype for
SFPGetFile:

void SFPGetFile (Point where, StringPtr prompt, ProcPtr fileFilter,
short numTypes, SFTypelList typelist, ProcPtr dlgHook,
SFReply #*reply, short d1gID, ProcPtr filterProc);

The first argument, where, defines the coordinates of the point at which the upper
left corner of the dialog box will appear. We use the prompt argument to print a
prompt string in the dialog box. Loser passes a pointer to the file filter hook proc in
the third argument. The next two arguments, numTypes and typeList, define which
files will appear in the dialog box’s list box. You would normally specify the file
types of the files that you're interested in, but Loser is supplying its own file filter
function by means of the file filter hook proc, so SFPGetFile won't use these argu-
ments. We therefore pass 0 to numTypes. Loser passes a pointer to the dialog hook
proc in the digHook argument. The reply argument we've already mentioned—
this is where Loser passes the address of an SFReply record. Loser passes the new ID
number of its SFGetFile dialog resource in the digID argument. Finally, Loser passes
the address of its filter proc to the last argument, filterProc.

Toolbox calls, and that includes packaged routines, use Pascal calling conventions,
and C and Pascal are different in their conventions. We can write a hook proc in C,
but we must declare it by using the pascal keyword, as in

pascal void
foo (char a, char *b)
{

}

The pascal keyword is a unique feature of the THINK C environment and provides
the “glue” required to manipulate the stack when calling C functions from Pascal. All
of Loser’s hook proc C functions are declared using this keyword.

Passing a pointer to a function is as simple as typing its name. If foo() is our hook
proc and bar() accepts a ProcPtr argument, we pass the address of foo()to bar() in
this way:

bar (foo);

MACINTOSH C PROGRAMMING BY EXAMPLE

The File Filter Call-back Routine

Loser uses the file filter call-back routine to select the file names that will be dis-
played in the dialog box’s list box. As SFPGetFile reads through the file names in the
current folder, it calls the file filter routine for each file. If the routine returns 0,
SFPGetFile displays the file name in its list box. If the routine returns 1, SFPGetFile
won't display the file. The file filter call-back routine is shown in Figure 9-5.

static pascal uchar
loserGetFileFilterProc (FileParam =*paramB1kPtr)
{

Boolean invis;

pBoolean result;

// test the invisible bit
invis = (paramB1kPtr->ioF1FndrInfo.fdFlags & fInvisible) ?
true : false;

if (sLoseMode) /* in lose mode, show visible files */
result = invis // display visible files;
else
result = invis ? false : true; // display invisible files

return (result);

Figure 9-5. :
The loserGetFileFilterProc() routine is Loser'’s file filter proc function.

The calling convention for this routine is described by this prototype:

pascal unsigned char
fileFilter (FileParam *fileParams);

Notice that the return type of the file filter procedure is an unsigned char, an 8-bit
data type. This means that when the function returns 7, it must return an 8-bit value,
0Ox0I1—not 0x0001.

SFPGetFile passes the file filter routine a pointer to a File Manager data structure, a
file parameter block, for each file it finds in the current folder. This is where we get
the file’s invisible attribute-bit, in the ioFIFndrInfo.fdFlags field of this structure. The
loserGetFileFilterProc() routine uses the invisible bit to figure out whether the file is
visible and returns an appropriate value based on the current Loser state.

The Loser state depends on the user’s selection—either the Lose File button or the
Find File button. The static variable sLoseMode maintains the value of this state in the
program. As we'll see when we look at Loser’s button processing, if the user has
selected the Lose File button, sLoseMode is true; otherwise, sLoseMode is false.

9: LOSER: A LESSON IN PROGRAM DESIGN

If Loser is in Lose File mode, which means that it is to hide files, it should display the
file names that are candidates for invisibility, that is, the visible files. The function
loserGetFileFilterProc() therefore returns 0x00 if a file is visible, and 0xO01 if the file
is invisible, when Loser is in the Lose File state. If Loser is in Find File mode, it should
display those files that are candidates for visibility, that is, the invisible files. The file
filter proc therefore returns 0x00 if a file is invisible, and 0x01 if the file is visible,
when Loser is in the Find File state. Figure 9-6 illustrates this logic.

Loser Mode? File Visible? Display File Name?
Lose File no no

Lose File yes yes

Find File no yes

Find File yes no

Figure 9-6.

The file filter proc truth table.

Dialog Item Lists

Before we look at the dialog box hook procedure that manages the radio buttons, we
need to understand how the Dialog Manager associates items with a dialog box win-
dow. The Standard File Package routines use the Dialog Manager to display the Loser
dialog box, so we’ll need to know something about the dialog box item list in order
to understand how Loser manages the dialog box’s two radio buttons, Lose File and
Find File.

The definition of a dialog box includes two parts: a dialog box template that de-
scribes the dialog box’s window; and a dependent item list that contains information
about the buttons, check boxes, radio buttons, text items, ICONs, PICTs, and user-
defined items that will appear in the dialog box. Resource creation programs like
ResEdit store the window template information in a DLOG resource and the item list
data in a DITL resource. When an application creates a dialog box on the screen, the
Dialog Manager creates a window based on the DLOG resource, finds the corre-
sponding DITL information, and loads the items in the item list, allocating space in
the heap for the items—controls, ICONSs, PICTs, user items.

Each item in the DITL has a reference number, its list index. Indexes begin at 1. In
your program, you use an index to specify a particular item in a list. When you
create a dialog box and its item list using ResEdit, you have to keep note of an item’s
item number so that you'll have the correct index in your program to access it. Con-
vention dictates that you define a symbolic constant for each item in your source
code, usually in a header file. If you follow the directions in the sidebar “Creating
the Loser Dialog Box” at the end of this chapter, your Lose File button will be item

MACINTOSH C PROGRAMMING BY EXAMPLE

#12, and your Find File button will be item #13. We've defined these constants ac-
cordingly in LoserConstants.h and repeat the definitions here for your edification.

fdefine kLoserLoseButton 12
fdefine kLoserFindButton 13

Because Loser changes the text string in what would normally be the Open button to
Lose or Find, depending on the Loser mode, you’ll need the index number for this
button as well. The Open button is always item #1.

A note about the item list indexes of Standard File Package items, or those of any
other system resource, for that matter: The SFPGetFile routine expects the Open but-
ton to be item #1, the Cancel button to be item #3, the list box user item to be item
#7, and so on. Don't mess with these numbers. The Standard File Package expects
these items in their proper sequence. Always add items to the end of an item list,
never to the middle.

The Open button index defined by the Standard File Package is 1, so Loser defines a
constant for it as

fdefine kSetButtonID 1

An item list data structure is designed to be versatile enough to account for a variety
of potential item types. The structure contains a pointer, a bounding rectangle, a
type declaration byte, and an array of additional data for the item. This structure is
not defined in Inside Macintosh, but taking a hint from the DITL resource format, we
can say that it might look something like this:

struct ditlItem
{
Ptr ptr;
Rect bounds;
char type,
length,
data [255];
}

The type field identifies the kind of item an element is—button, check box, static
text, and so on—and the content of the data field depends on this type. For
resource-based controls, ICONSs, or PICTs, the data field contains the resource ID of
the item. For text items, the data field contains the text. For buttons, check boxes,
and radio buttons like those used in Loser, the data field contains the control’s title.

Because this data structure is considered internal to the workings of the Dialog Man-
ager, we never access any of its fields directly. When the Dialog Manager creates the
dialog box, it uses the resource item to create a control, an ICON, or whatever the
template describes, in the heap. You therefore access these heap objects with a Dia-
log Manager routine, GetDItem, which returns the bounding box, item type, and
handle to the heap object. We're interested in controls for Loser right now, which are
managed by the Control Manager.

202

9: LOSER: A LESSON IN PROGRAM DESIGN

Managing Loser’s Radio Buttons

The Control Manager allocates heap space for each control and returns the control’s
handle to the application. You access the control, set its value, show or hide it, or
whatever, using this handle. When a control is embedded in a dialog box, the Dialog
Manager makes all the Control Manager calls to create the control, but the applica-
tion must read and set the control’s value.

If you know the control’s item number, you can get the control handle with the Dia-
log Manager routine GetDItem. GetDItem accepts a dialog pointer to the dialog box
and item number and returns the control handle, bounding rectangle, and item type.
Here’s an example, a call to GetDItem that gets the Lose File button’s control handle:

DialogPtr theDialog;
short itemType;
ControlHandle 1loseButtonHdl;
Rect box;

GetDItem (theDialog, kLoserLoseButton, &itemType, &loseButtonHdl, &box);

The Lose File and Find File buttons are managed in Loser’s dialog hook call-back
routine, loserGetFileDigHook(), which is shown in Figure 9-7. The Standard File
Package makes it easy to manage radio buttons in the SFPGetFile dialog box. Once
you've installed loserGetFileDigHook() as the hook proc, the Standard File Package
calls the proc with the dialog pointer and the number of the item in which a mouse-
down occurred. It’s therefore up to the hook proc loserGetFileDigHook() to toggle
the radio buttons and set the sLoseMode value according to the button selection.

static pascal int
loserGetFileD1gHook (DialogPtr dialogPtr, short item)

{
short itemType;
Rect box;
ControlHandle loseButton, findButton, okButton, h;
/* get the control handles */
GetDItem (dialogPtr, kLoserLoseButton, &itemType, &loseButton, &box);
GetDItem (dialogPtr, kLoserFindButton, &itemType, &findButton, &box);
GetDItem (dialogPtr, 1, &itemType, &okButton, &box);
switch (item) {
case getOpen: // the standard items
case getCancel:
Figure 9-7. (continued)

Loser’s dialog book call-back routine, loserGetFileDigHook().

203

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 9-7. continued

case getEject:
case getDrive:
case getNmList:
case getScroll:
break;

case -1: // initialization
SetCt1Value (loseButton, sLoseMode ? true : false);
SetCt1Value (findButton, sLoseMode ? false : true);

/* install graphics items for auto-refresh */

GetDItem (dialogPtr, kGetFileSeplLine, &itemType, &h, &box);

SetDItem (dialogPtr, kGetFileSepLine, itemType,
sepLineProc, &box);

GetDItem (dialogPtr, kGetFileOutline, &itemType, &h, &box);
SetDItem (dialogPtr, kGetFileOutline, itemType,
buttonProc, &box);

break;

case kLoserLoseButton: /] my items
if (GetCt1Value (findButton))
{

SetCTitle (okButton, "\pLose");
SetCt1Value (loseButton, 1);
SetCt1Value (findButton, 0);
sLoseMode = true;
item = 101; // reread the directory
}
break;

case kLoserFindButton:
if (GetCt1Value (loseButton))

{
SetCTitle (okButton, "\pFind");
SetCt1Value (loseButton, 0);
SetCt1Value (findButton, 1);
sLoseMode = false;
item = 101; // reread the directory
}
break;

}
return (item);

} /* loserGetFileD1gHook */

204

9: LOSER: A LESSON IN PROGRAM DESIGN

Loser needs to process only those events that occur in either of its two radio but-
tons—those events tagged with the item number of either kLoserFindButton or
kLoserLoseButton. When the user mouses in a file system navigation control,
loserGetFileDigHook() simply returns the item number to the Standard File Package
so that it can process the event.

When the user clicks the mouse in either of the radio buttons, loserGetFileDigHook()
sets that control’s value to 7 and sets the value of the other radio button to 0, using
the Control Manager routine SetCt/Value. (See the sidebar “Managing Radio But-
tons.”) loserGetFileDigHook() also changes the Loser state stored in sLoseMode,
changes the Open button so that its text reflects the state, and returns the magic
number 101, which tells SFPGetFile to reread and redisplay the file list. Of course,
when SFPGetFile rereads the list, the file filter proc will use the new Loser state to
display the correct set of files, based on the new Loser file mode.

The Standard File Package also calls loserGetFileDigHook() when the dialog box is
initialized, just before it draws the dialog box. This gives Loser a chance to initialize
the radio buttons before the dialog box appears.

At initialization, the package sends -1 for the item number. None of the dialog box
items can have a negative number, so —1 is therefore a safe value that uniquely flags
the initialization phase and allows the hook proc to do its initialization stuff.

loserGetFileDIigHook() performs two initialization tasks. As we've already men-
tioned, it sets the radio button values to reflect the correct Loser state. Its other task
is to install proc pointers for user items. Most commercial Macintosh applications use
this technique to support automatic refreshing of dialog box items.

You're no doubt familiar with the button outline that indicates the default selection
in a dialog box. Figure 9-8 shows a button with the “default” outline.

Figure 9-8.
A 3-point outline around a dialog box button tells the user that pressing Return
yields the same result as a mouse click in that button.

Inside Macintosb tells us how to draw this outline. Given the item number and the
dialog pointer, here’s how you draw the outline for the default button:

GetDItem (theDialog, theltem, &itemType, &itemHdl, &itemBounds);
PenSize (3, 3);

InsetRect (&box, -4, -4);

FrameRoundRect (&box, 16, 16);

Of greater interest is when you draw the outline. Inside Macintosh only hints at that,
so you're on your own. Your first choice might be to simply draw the button when
the program initializes the dialog box. This technique works fine—until a screen

MACINTOSH C PROGRAMMING BY EXAMPLE

Radio buttons-were named after the push-buttons usually found on older car
radios. The salient feature of car radio buttons is that only one button can be
selected at a time, and each new button selection clears the previous selec-
tion. It’s a one-of-many switch, and your application must perform this but-
ton logic. SetCtlValue is the Control Manager routine you use to change the
appearance of the buttons, and it requires a control handle and a value. The
control value 7 selects the button. The control value O clears it.

The key to implementing radio button logic is in clearing the value of the
other buttons when the user makes a selection. You therefore need to have
all the radio button handles in a group so that you can set all the button
values. Here’s some sample code that manages the radio buttons A, B, and C.

selectRadioButtons (DialogPtr theDialog, short theltem)

{

ControlHandle buttonA, buttonB, buttonC;

Rect box;

short itemType;

/* get all the group handles */

GetDItem (theDialog, kButtonA, &itemType, &buttonA, &box);
GetDItem (theDialog, kButtonB, &itemType, &buttonB, &box):
GetDItem (theDialog, kButtonC, &itemType, &buttonC, &box);

switch (theltem)
{
case kButtonA:
SetCt1Value
SetCt1value
SetCt1Value
break;

case kButtonB:
SetCtivalue
SetCt1Value
SetCtivalue
break;

case kButtonC:
SetCt1Value
SetCt1value
SetCt1value
break;

(buttonA,
(buttonB,
(buttonC,

(buttonA,
(buttonB,
(buttonC,

(buttonA,
(buttonB,
(buttonC,

1);
0);
0);

0);
1);
0);

0);
0);
1);

9: LOSER: A LESSON IN PROGRAM DESIGN

saver utility like Pyro blanks the screen. When the screen is eventually redrawn, the
Dialog Manager draws everything in the dialog box except the outline. Figure 9-9
illustrates the problem.

Figure 9-9.

The dialog box

looks fine when it’s 4

first drawn. After a

screen saver utility S Loser Rar 5] ©MyMac
erases the screen O Loser Src .
and redraws it, DL (_Lose]
the default button D Readme
outline and the i —
line between the
Cancel and Desktop o fect
buttons are @ Lose File QFind File

missing.

0 Loser Hdr = MyMac

O Loser Src

D Loserw.rsrc

D Readme
o (e)

@ Lose File QO Find File

A better solution is to draw the outline whenever there’s an update event, and, if you
read between the lines in the Dialog Manager chapter of Inside Macintosh, you’'ll
figure out that the Dialog Manager supports a method of doing just this. If a dialog
box item is a special type of item, called a user item, and if you install a pointer to a
function as the item handle, the Dialog Manager will call the function when it
receives an update event. If you therefore install a pointer to a function that draws
the button outline, Voila/The outline will be drawn when the dialog box gets an up-
date event.

There’s a trick to using this technique with the button outline. You can' install a
function pointer in the button item—you’d lose the Control Manager information for

207

MACINTOSH C PROGRAMMING BY EXAMPLE

the button, and it would cease to be a button. The trick is in creating the user item
on top of the default button.

You use the Dialog Manager routine SetDItem to install a function pointer in a dialog
box’s item handle. This doesn’t affect the DITL resource—only the in-RAM repre-
sentation of the dialog box item. Normally, a user item has a nuil handle. If the
handle’s value is non-null, the Dialog Manager assumes that the value is a function
pointer.

Loser’s outline drawing function, which is yet another hook proc and declared with
the pascal keyword, appears in Figure 9-10. Note that although Loser uses this rou-
tine to update the user item, which is the outline, it uses the button’s bounding rect-
angle, not the user item’s. That way, we’re sure that the outline will be centered on
the button.

pascal void
buttonProc (DialogPtr theDialog,
short theltem) // outline the dialog button

{
short type;
Rect box;
Handle itemHd1;

GetDItem (theDialog, kSetButtonID, &type, &itemHd1, &box);

PenSize (3, 3);

InsetRect (&box, -4, -4);
FrameRoundRect (&box, 16, 16);
PenNormal ();

} /% buttonProc */

Figure 9-10.
The buttonProc() routine outlines a dialog box’s default button.

We've included another user item in the Loser dialog box. A dotted line is drawn be-
tween the Cancel and the Desktop buttons to separate their button “groups.”

You'll find the code for drawing and redrawing the dotted-line user item in the .
source file DialogUtil.c.

The filter hook proc

The filterProc routine is the last of the three SFGetFile hook procs and is actually a
Dialog Manager hook that responds to dialog box events that occur within the Dialog
Manager routine ModalDialog. Loser uses this hook proc to detect a press of the

9: LOSER: A LESSON IN PROGRAM DESIGN

Return key or of the Command-period key combination. Users are accustomed to
having the Return or the Enter key select a dialog box’s default button, and to having
the Command-period combination cancel the dialog box. The filter proc supports
these actions.

You'll find the code for the filter proc in DLOGfilterProc1() in DialogUtil.c. The rou-
tine gets the actual event record from the Dialog Manager and manipulates the what
and where fields of the event record to fool the Dialog Manager into thinking that a
button press has occurred in either the Find/Lose button or the Cancel button.

Manipulating the Invisible Bit

We shouldn’t become so deeply involved in managing the dialog box that we lose
sight of Loser’s prime directive: to set or clear a file’s invisible bit. In theory, we
already know what to do, but let’s look in detail at what's required.

Figure 9-11 shows the essence of the program. The doLoserGetFile() routine is essen-
tially the Loser user interface. When doLoserGetFile() returns with a mode and a
selected file, Loser calls the File Manager routine GetFInfo to fill the FInfo record
with current data for the specified file. Hiding or displaying the file is simply a matter
of setting or clearing the bit in the fdFlags field of this structure, based on the value
of the static variable sLoseMode. Loser then calls SetFInfo, which rewrites the entire
record back to the file system.

if (doLoserGetFile (&docParams))

{
fileName = docParams.fileParams.fileName;
volRefNum = docParams.fileParams.volRefNum;

if (err = GetFInfo (fileName, volRefNum, &fndriInfo))
doFileCantAlert (fileName, kRead, err, "\pGetFInfo");
else
{
if (sLoseMode)
fndrinfo.fdFlags |= fInvisible;
else
fndrinfo.fdFlags &= ~fInvisible;

if (err = SetFInfo (fileName, volRefNum, &fndrInfo))
doFileCantAlert (fileName, kWrite, err, "\pSetFInfo");

Figure 9-11.
The beart of a Loser.

MACINTOSH C PROGRAMMING BY EXAMPLE

Loser is a small application; unlike Generic App, it has no use for window and docu-
ment management utilities and therefore doesn’'t need routines for them. The source
code for Loser resides in five source files: DialogUtil.c, FileUtil.c, Loser.c, MiscUtil.c,
and WindowUtil.c. You'll find that these files contain a very few routines, with the
exception of Loser.c, which contains the bulk of the code.

Creating the Loser Dialog Box

The Standard File Package’s SFGetFile dialog box contains buttons, a list box,
and other controls for file system navigation—and its procedures expect
these items to appear in the proper order. You can customize this dialog box
by adding new items to the end of the list of dialog box items. Loser’s dialog
box needs five additional items: a title, the two radio buttons, and two user
items.

Although the modified DLOG -4000 resource is included with the complete
source code for Loser, available on the disk that accompanies this book, you
might be interested in learning how to modify this resource yourself.

Using ResEdit 2.1, open the System file and read the warning.

A Editing the System or ResEdit is not
recommended. Please edit a copy of
the file instead. If you must edit this
file, be careful not to edit resources
that are already in use.

The warning you see when you open the System file in ResEdit.

Treadjlightly in here. This is the currently running system, after all, and if you
mess up, you mess up permanently.

In the System window, you'll see the resource icons, as shown at the top of the
next page.

Find the resource named DLOG, and double-click on it. This reveals all the
dialog templates contained in the System file, as shown on the next page.

Find template -4000, select it with a single click, and choose Copy from the
Edit menu. This places a copy of the template on the Clipboard.

Now Open the Loser resource file by pulling down the Open submenu and
navigating to your Loser resource file, Loser.rsrc. Select the Loser resource file
by clicking in its window, and paste the DLOG -4000 template into it.

210

9: LOSER: A LESSON IN PROGRAM DESIGN

Despite its size, Loser is an excellent teaching tool that contains many examples of
using the Standard File Package and the Dialog Manager. We'll use this knowledge in
Chapter 11's Browser, the final application in this book. But before we can write
Browser, we'll need Chapter 10’s background information on the File Manager.

Sy‘sktem

o1011101
anou 1a1 00101001
o110 1010
00011110
01000000

AINI

o101 1101
00101001 anou LAY
o1101010

o101 1101
90101001
o1 o
00

01000000

ctb

o101 1101
001

0001 1110
01000000

enet

RESERUED
FRSY

01000000

dbex

@]

FKEY
o101 1101

01000000

fwst

o101 1101
00

anou 1,a1
ISR <hO)
cnp ol,2
BNE S
RS

CDEF
anou 1w
JER CRO)
<P oIL2
BNE 3
RTS
demp
=
=]
=]
fld*
oloritol
20101001
1900000

hdig

o101 1101
00101001

detb
o101 1101
1000000

flst
olortiol
0010 1001
91000000

hmnu

o101 1101
00101901

boot

o1et 1101
00101001
o1

anov a1
JSR <A0)
<P D12
BNE S

FMTR

Q-

System

otot 1101
00101001

o101 1101
00101001

T

otot 1101
00101001
010

DLOGs from System

Size

Name

RESERUED
FRSY

0001 1110
01000000

fwst

001
01000000

hdlg

o
11110
01000000

audt

detb
01011101
9010 1601
bt
01000000

fmap
@

hmnu icl4

cmtb

4]

DLOG

anou 1a1
ISR €A0)
<P o1,z
BNE &
RTS

FMTR

@

MACINTOSH C PROGRAMMING BY EXAMPLE

You now have a copy of the resource template in the Loser resource file. Next,
you need to copy the item list. Repeat this process for DITL -4000, copying the
template from the System file and pasting it into the application’s resource file.

You now have all the necessary resources in Loser’s resource file, so close the
System file by using the close box in the upper left corner of the appropriate
windows. Don’t save any changes in the System file. If you have madvertently
modified the System file, perhaps by choosing Cut instead of Copy, you'll see
the Are you sure that you don’t want to save? message when you close the Sys-
tem window. The purpose of this exercise is 70t to modify the System file, so
don’t save changes in the System file. You could do some serious damage.

You should be working exclusively with the Loser resource file now. Renumber
the new DLOG and DITL resources so that their numbers match their numbers
in the Loser source files. Navigate to the new DLOG, and renumber it 65. You
do this by finding it, selecting it (again, with a single click), and using Get
Resource Info in the Resource menu. You are then presented with a dialog box
that allows you to change the ID number of the resource. If you already have
this resource in your file—because you are working on the source disk’s Loser
resource file—ResEdit won't let you set this number to 65. Don't worry. Use 66

in that event. Next, renumber the DITL resource the same way, using either 65
or GG, so that its ID number matches the DLOG’s ID number.

Then you'll need to link the DITL to the DLOG. Open the DLOG (65 or 66
depending on what you just did). In the dialog box, change the value of the
field DITL ID to the number you've just assigned to the DITL. -

Next, you need to expand the window to make room at the bottom for the con-
trols. You could do this in one of two ways, but you're already looking at the :
text representation of the DLOG, so it’s easiest to enter the numbers into the
edit boxes. The values for Loser’s window are Top: 32, Left: 41, Height: 282,
Width: 342, While you're in there, select Set 'DLOG' Characteristics from the
DLOG menu and make sure that the procID field value is 1 This
defines the window type that the Window Manager will draw for the dialog
box. The complete contents of the editing window are shown at the top of the
next page.

A miniature representation of the dialog window on a Macintosh screen is
shown in the DLOG editing window. Double-click on this window, and the
DITL contents should zoom into a full-size window for editing. All the 'items?;in u
this particular DITL have to be in the list and in the right order. If they aren't,
the Standard File Package won't know what’s what. There are even a couple of
items that you don't see, off-screen. '

Every item in a DITL has an item number, which is how you access it in your -
application. Try double-clicking the Cancel button. You will see ResEdit’s DITL

212

9: LOSER: A LESSON IN PROGRAM DESIGN

DLOG ID = 65 from Losern.arsit Ser———
& Flis Edll Besource Window Co'or: @ﬂefauli
QO Custom

DITL 1D:

[Initially visible

Top:[32 | Heignt: [zsz]

Close box
Left: |41 Width: (342 =

DITL ID = 65 from Loserm.rsrc m [

§:D Edit DITL item #3 from Loserw.rsrc
Teut:

[Enabled Top: Bottom:
Right:

Top: ’32 | Height: I202 I [Initially visible

[JClose box

Laﬂ:|41 |midtn:|3447

MACINTOSH C PROGRAMMING BY EXAMPLE

Loserﬂ.rsrc
DLOG “Loser GetFile” ID = 65 from Loserw.rsrc
’ ECIE DITL “Loser GetFile” ID = 65 from Loserw.r &=

_ |lLoser loses found

files, and finds lost
ones. or

2

Button

X Check Box
@ Radio Button
@ contral

T: Static Text

Creaﬁﬁg the title.

Next, create the radlo buttons, one at
~ button) from the DITL toolbox to the D

214

9: LOSER: A LESSON IN PROGRAM DESIGN

openy the Edit window, and nar
have to size and place the items

Loserm.rsrc e
DLOG “Loser GetFile” ID = 65 from Loser.rsrc
[ECIE pITL “Loser GetFile” 1D = 65 from Losern.r =
|[Loser loses found

files, and finds lost
ones.

Button
Check Box
Radio Button
Control
Static Text
Edit Text |

Icon

Picture

User Item

10

THE MACINTOSH
FILE SYSTEM

The Macintosh file system combines disk drives, system software, and data to give
you long-term data storage. In this chapter, we’ll discuss the major features of the file
system and describe how an application uses File Manager routines to access data.

File System Etiquette

The Macintosh file system has a great deal of flexibility. The number of files and
folders in the system is limited only by the size of the hard disk. Files can grow and
shrink and can be copied, moved from one folder to another, or deleted from the
system. If they are in different folders, they can even share common names.

To keep things straight, the File Manager maintains a complex, cross-referenced set
of data structures on disk and in memory. These data structures impose some for-
mality on your dealing with files. If your application needs to read from a file, for ex-
ample, it must first set up the operation by opening the file. Other operations, like
deleting a file or moving a file from one folder to another, can be done only when the
file is closed.

The first step in getting at a file’s data is to open the file. Opening the file sets up an
“access path” to the file. An open file can be read, written to, locked, or unlocked.
Opening a file yields a file reference number, an integer used by an application for
file access during the time the file is open.

Your application can perform three kinds of operations on an open file: reading,
writing to, and controlling. Reading a file is retrieving the file’s data. Reading trans-
fers a specified number of bytes from the file to a local buffer, which must be large
enough to hold the requested data. Writing to is adding to or changing a file’s data.
Writing transfers data from a local buffer to the file. Locking is a way of arranging ex-
clusive access to a piece of a file in a multiuser environment, and unlocking reverses
the process. Locking and unlocking are both file “control” operations.

217

MACINTOSH C PROGRAMMING BY EXAMPLE

Closing a file writes all pending data (that might be in an internal file system buffer)
to the file—a process called “flushing”—and frees the access path structures. The
file reference number is not valid after the file is closed, and further reading or writ-
ing using the access path will produce an error.

File System Hardware

Before we go into the details of the File Manager, let’s look at the hardware level. The
file system is based on a collection of drives and their contents. Drives can be
“fixed,” the way a Winchester hard disk drive is, or “removable,” the way a 3.5-inch
microfloppy disk is. (We're limiting our discussion here to traditional magnetic
storage media, although we certainly acknowledge the newer optical technologies,
such as the magneto-optical and CD-ROM drives.)

In strict hardware hacker terminology, the “disk” contains the recording medium.
The “drive” contains the motors, the spindle, and the heads that spin the disk and
read or write the data. The “controller” is the electronic device that tells the drive
what to read and write. And the “disk drive” is all these things in a package.

Disk Drive Nomenclature

We define basic hard disk terms for our discussion, but different people call
parts of the drives by different names. Some find “disk drive” too formal and
say “drive,” but they call the motors, spindle, and heads the “drive,” too. If
you don’t know what part of the disk drive someone’s talking about, ask.

A recording medium, which on floppies and hard disks is a coating of electromag-
netically sensitive material, covers the platter surface. On this surface, the File Man-
ager stores the bits and bytes that make up your file. Most fixed drives have more
than one platter, increasing the available surface area and therefore increasing the
storage capacity of the drive. Both sides of a platter are used to store data. A read/
write head services a single side of a platter, so the number of heads indicates the
number of platter sides in a disk drive. Figure 10-1 shows the inside of a hard disk
drive that has four platters.

A low-level format divides each platter into “tracks,” which run in concentric rings
around the surface of the disk, and “sectors,” which are formed from the intersection
of pie-slice shaped divisions of the disk’s surface and the track boundaries. A sector
contains 512 bytes of data, and a track generally has 16 or more sectors around the
circumference of the platter, although these numbers are determined by the soft-
ware that formats the drive and can differ for each drive and, indeed, even within a
drive. On a multiple-platter drive, corresponding tracks make up a cylinder. The
number of tracks each cylinder has is another way to express the number of read/
write heads that a drive has. Figure 10-2 illustrates this physical organization of disk
real estate.

218

10: THE MACINTOSH FILE SYSTEM

Cylinder

Fn

Spindle \) I Read/write heads:
I
|

™ For platter 1, side O

Platter 1 For platter 1, side 1
For platter 2, side O
Platter 2
For platter 2, side 1
& For platter 3, side O
Platter 3
For platter 3, side 1
tter 4, side O
Platter 4 ey
For platter 4, side 1
|
|
! -
N bl e
Figure 10-1.

A physical bard disk with four platters and eight beads.

Track 4

! v
Ny
N\ =

Figure 10-2.
Tracks and sectors.

Sector &

After the low-level format, the disk is ready for a Macintosh file system, written dur-
ing a high-level format by the Mac’s Disk Initialization Package. The high-level for-
mat writes a “volume record” on the disk that describes its size, holds references to
files, and organizes the remaining disk sectors in a list of “free blocks.” Figure 10-3
on the next page shows the volume information block in relation to other disk
blocks and the kinds of information it contains.

MACINTOSH C PROGRAMMING BY EXAMPLE

Block O, 1: Boot block
(Startup information)

Block 2: Yolume information

HFS volume
Block 3 through n: Volume bitmap information
(Records, one bit for each allocation
block, whether each block is used or Y

unused. The size of the bitmap

depends on volume size.) drSigWord: signature word

drCrDate: creation date

drLsMod: last modification date
drAtrb: volume attributes

drNmFls: number of files in directory
drVBMSt: first block volume bitmap
drAllocPtr: internal field
drNmAIBlke: allocation block count
drAlBlkSiz: allocation block size
drClpSiz: clump size

drAlBISt: first block in volume bitmap
drNxtCNID: next file number
drFreeBks: free block count

drVN: volume name

drVolBkUp: last backup date
drvSeqNum: internal field

drWCnt: volume write count
drXTClpSiz: extents tree clump size
drCTClpSiz: catalog tree clump size
drNmRtDirs: number of directories in root
drFilCnt: file count

drDirCnt: directory count
drFndrinfo: Finder information
drVCSize, drVCBMSize, drCtiCSize:
drXTFKSize: extent tree size
drXTExtRec: first extent record
drCTFISize: catalog tree length
drCTExtRec: first catalog record

Block n + 1: Allocation blocks
(File data, free blocks)

Figure 10-3.
The volume layer.

A block is a logical sector. Although a physical sector is 512 bytes of data, a logical
sector can contain 512, 1024, 1536 bytes, and so on—any multiple of the 512-byte
sector size. A block is the smallest unit of data available on the drive. The disk’s
driver always reads an entire block into RAM, even if you have requested only 1 byte
of the file, which is why it’s always more efficient to do program I/O in a multiple of
the block size. Blocks are numbered sequentially from 0 through # and cover the
entire disk.

220

10: THE MACINTOSH FILE SYSTEM

The Macintosh file system and the File Manager routines use blocks to hold file and
folder data. Finder, the user interface to the Mac OS, uses File Manager routines to
support the desktop metaphor. When you drag a file from a hard disk folder onto a
microfloppy disk’s icon, Finder calls File Manager routines that in turn call the disk
drivers to read a list of blocks on the source disk while at the same time allocating
blocks on the microdisk for the destination file. The whir of the disk drive and the
clicks from the read/write arm stepper motors are the acoustic evidence that all is
working on the physical level.

Volumes

The file system considers each drive in the system a volume. In the Macintosh file
system, each volume has an icon that the System places in the desktop when the disk
is mounted. Each volume in the file system has a volume reference number that you
use to access the volume or a file located in the volume. Generally, we'’re not in-
terested in the volume per se except as a container for a file. In fact, a volume refer-
ence number and a file name are all you need to specify a file.

A volume must be both mounted and online before you can access any data on it.
The File Manager automatically mounts removable volumes, like floppy disks, when
they're inserted in the drive and mounts fixed drives at boot time. When the File
Manager mounts a drive, it creates a volume-control block data structure and allo-
cates space for volume buffers in the system heap. The File Manager uses the vol-
ume-control block in its management of the volume while the volume is online and
uses the volume buffers for the transfer of data to and from the volume.

The File Manager has routines to unmount a volume (UnmountVol) and to place a
volume offline (PBOffLine) that you might use to free up system heap space. When
a volume is unmounted, no trace of it remains in the heap. Of course, you have to
mount the volume again before you can get at any of its files. When a volume is
offline, its buffers are free, but the volume-control block stays in the heap.

Bad Blocks

Most platters have a few small defects—areas of the platter where the record-
ing medium isn’t regular or thick enough to reliably hold data. Low-level for-
matting tests the quality of the recording medium by writing a patternjtofa -
sector and reading it back. If what’s read doesn’t match what was written, the
sector is marked “bad.” The disk’s driver routines keep a list of these “bad
blocks” in a table and will spare these sectors from file system use. i

MACINTOSH C PROGRAMMING BY EXAMPLE

Filling Up the System Heap

In Chapter 5, we described the system heap as the area in which the Operat-
ing System code as well as the code for any CDEVs or INITs that are loaded is
stored, and as the place in which other system-wide data—fonts and
resource templates used by active desk accessories, for example—resides.
Needless to say, the system heap is a very busy area of memory and tends to
fill up when a lot is going on. .

If you're a hardware hound like Thom, who has at least five or six assorted
volumes of hard drive, Bernoulli drive, and CD-ROM drive mounted on his
Mac at all times, you'll find yourself running out of system heap space—ap-
parently without warning. Indiscriminate use of volume partitions results in
the same problem because the OS perceives partitions as separate volumes.
The symptoms Thom has experienced range from unexpected system
crashes to missing characters when he printed documents in certain fonts.
(See “The Expert’s Edge,” MacUser, March 1990.)

The Hierarchical File System (HFS)

Directories and subdirectories are the internal structures that correspond to folders
in your desktop. The File Manager uses directories and subdirectories to group files.
Old-timers whose experience reaches back to the early Macs might remember that
only one level of directory was allowed back then—the early Macs used the so-
called “flat file system.” At the advent of the 128K ROMs in the Mac Plus, folders
within folders were supported, for the UNIX-like hierarchical file system (called HFS
for short) of today’s Mac software. Figure 10-4 illustrates such a system.

10

1990 exp

1990 xcl

Figure 10-4.

A bierarchical file system of folders and files. Folder X contains three files (IRS,
1990 exp, and 1990 xcl) and a folder, Y. Folder Y contains one folder, Z, and
no files. Folder Z contains three files (10.1, 10.2, and 10.3).

222

10: THE MACINTOSH FILE SYSTEM

This radical change in the structure of the file system occasioned a rewrite of the File
Manager documentation, so the File Manager documentation in Volume II of Inside
Macintosh is superseded by the information in Volume IV.

In order to maintain compatibility of the new hierarchical file system with the old flat
file system, Apple borrowed a concept from UNIX: the “working directory.” The
working directory provides an alternate means of accessing files in a folder. A work-
ing directory reference number is associated with each folder in a volume. The
working directory’s number is that of the current folder when a program is launched
from the Finder. In the hierarchical file system, File Manager routines return a work-
ing directory reference number instead of a volume reference number, so the two
terms have become synonymous.

In the hierarchical file system, a directory is a logical volume. Each subdirectory or
folder is considered a subvolume, so File Manager routines that once accepted a vol-
ume reference number as an argument under the old Macintosh (flat) file system
(MFS) accept a working directory reference number under the hierarchical file sys-
tem (HFS).

Specifying files

We saw in Chapter 9 how to use the Standard File Package to select a file. Most appli-
cations use the SFGetFile interface routine to let the user specify the file to open.
Two values returned by SFGetFile in the SFReply structure, vRefNum and fName,
fully specify a file in either the MFS or the HFS. Here’s the SFReply structure:

typedef struct SFReply
{

char good;
char copy;
long fType; // array[l..4] of char;
int vRefNum;
int version;
unsigned char fName[64];
} SFReply;

The fName field contains a “partial pathname” for a file. This is a fancy term that
simply refers to the file name without its hierarchical information. Consider the file Z
in Figure 10-4. Z is the partial pathname (the file name) of this file, whose full
pathname is X:Y:Z.

In the MFS, SFGetFile returns the file’s volume reference number in the vRefNum
field of the SFReply structure. This value and the file name are all that’s needed to
specify a file. The MFS has no directories: That folders seem to be offshoots of the
volume’s root directory is sleight of hand, mere trickery perpetrated by the File
Manager.

223

MACINTOSH C PROGRAMMING BY EXAMPLE

In the HFS, SFGetFile returns the file’s working directory reference number in the
vRefNum field. This value is analogous to the volume reference number but refers to
the directory that contains the file, not to the entire volume. Figure 10-5 illustrates
the working directory concept.

Y

a4
I e .
bt

[} exp

1990 xel

Figure 10-5.
A working directory. Using a working directory is like using a logical volume.
In this case, Z is the working directory.

Files

A little icon in the desktop represents the collection of blocks of raw information
known as a file. A Macintosh file is really two files in one: It has two “forks,” the
resource fork and the data fork. The file’s resource fork is a collection of resources
that are accessed by means of Resource Manager routines. The data fork is generally
used to hold application data. Its contents are application specific.

If you've done any programming before, you're probably familiar with the concept
of a file’s data fork. In environments like UNIX or MS-DOS, the data fork is the file: It
holds application-specific data in an application-specific format. Unique to the Mac-
intosh is the resource fork. It contains resources—font bitmap data, dialog box tem-
plates, window templates, conversion tables, strings, and, if the file happens to be an
application, the application’s code segments—in an Apple-specified format.

The Resource Manager is actually a small database manager, so the format of a
resource file is designed to facilitate speedy access of a resource. This quick access is
what helps the Mac achieve its responsive user interface.

The Resource Manager provides a structured programming interface to a resource
fork. Using its routines, the Resource Manager can retrieve an individual resource
with its “resource specification”: a four-character key, called the “resource type,” and
a resource number. The resource number is a signed integer that uniquely identifies
resources of the same type and also has an intrinsic meaning. A resource number in

224

10: THE MACINTOSH FILE SYSTEM

the range —16384 through 127 indicates that the resource is a system resource; a
resource number greater than 127 indicates that the resource is an application
resource.

The resource type is defined as a packed array of four characters, and in THINK C is
specified as a string between single quotes, as in 'ALRT'. Common Macintosh
resource types are shown in Figure 10-6.

Type Description

'ALRT' Alert box template
'BNDL' Finder bundle
'CNTL' Control template
'CODE' Code segment
'DITL Dialog box item list
'DLOG' Dialog box template
'DRVR' Desk accessory
'FOND' Font family

'FONT' Font data

'ICN# Icon list

'ICON' Icon

'MBAR' Menu bar

'MENU' Menu template
'PICT Picture

'STR#' String list

‘vers' Version data
"WIND' Window template
Figure 10-6.

Common Macintosh resource types.

Data fork and resource fork, a file is an ordered list of bytes with a beginning and an
end, and therefore the data contained in the file has a size, in bytes. Each byte in a
file is addressable as an offset from the beginning of the file.

Macintosh documentation calls this offset the file’s “mark.” If the mark is at offset 0,
a read operation will begin with the first byte in the file. When the mark is at the last
byte in the file, it is the end-of-file (eof) mark. A write operation will append char-
acters to the file and therefore expand the file size. The eof mark follows the last
byte of the file. Figure 10-7 on the next page illustrates the concept of a file as an or-
dered stream of bytes.

225

MACINTOSH C PROGRAMMING BY EXAMPLE

Beginning of file:
Offeet O OffsletB
Llalvlel [ylofuf fefv]e]r]

End of file

I
v o inleliITIelxltIEIdliItl-il'l

Offset 2890 Offeet 5899

Figure 10-7.
A file as a stream of bytes. Each byte is addressable as an offset from the
beginning of the file.

File Formats

The format of a file’s data fork is defmed by the apphcanons developers
Some file formats are matters of public record, like Excel’s Sylk file format,
but most file formats are closely guarded secrets. Why are so many ftle for-
mats kept secret?

Market share. Think of it from the software pubhsher s pomt of view. Say that'
your company sells the leading wazoo processing program with an mstaHed'
base of one million users, all busy creating files in your proprietary format.
What if your main competitor comes up with a better product? What’s to pre-
vent those million users from jumping ship to your competitor’s product,
before you have the chance to sell them your new and improved version?

The answer is those hundreds of files they’ve already created in your secret
format. The competition’s product can’t read those files, and people can't
walk away from their old data any more easily than they can walk away from
their computers. How many disks do you have in your possession that can’t
be read by the computers you now own?

It’s probably safe to say that every new application that hits the shelves m
your local software store has a umque data format. ,

Of course, a smart company that’s not in a market leading posmon will
discover that it’s wise to publish its program’s file format. The adoption of
that format by others (even if only to read in information) will lead to- wxder
recognition and support for the product.

226

10: THE MACINTOSH FILE SYSTEM

Although you can think of a file as a stream, its data is really held in “allocation
blocks,” which on a floppy disk are fixed-sized multiples of 512 bytes. As a file
grows, more 512-byte blocks are allocated to it. Depending on the file’s length, there
can be unused bytes in a file’s last block, after the eof mark. If a hypothetical file foo
contained exactly 3900 bytes of data, the file would actually take up 4096 bytes, or
eight allocation blocks, on disk. The file’s size would cause the waste of 196 bytes in
the file’s last allocation block. If you checked the Get Info dialog box for the file, it
would report the file’s size along these lines: “3900 bytes used, 4K on disk.”

To reconcile this difference, Inside Macintosb differentiates between the logical end
of file, which is at byte 3900 in our example, and the physical end of file, which is the
number of bytes occupied by the blocks allocated to the file—4096 in our example.
Figure 10-8 illustrates such a file’s allocation. When we refer to the eof, we mean the
logical eof because it tells us the actual size of the file.

al|n|d dli|s|p|!l|al|y a t le[x |t
flijlfel|’]s clo|n|t|e|ln|t]s uls
i |n |g T le |x |t |E [d[i |t
|
Logical Phyiical
end of file end of file
Figure 10-8.

The last block of a file is usually only partially filled.

The File Manager

The File Manager, responsible for this file and folder hocus-pocus, is probably the
most powerful of all collections in the Toolbox. But this power comes at a high cost.
The File Manager documentation is confusing, contradictory, and voluminous—four
ways to specify a file, three variants of the standard I/O parameter block, two levels
of using the Manager, and more information than one person would want to know
about any file system. A user might find navigating through the file system itself a
breeze. A programmer can find working his or her way through the File Manager
documentation a real ordeal.

For a novice programmer, the worst choice is the low-level interface to the File Man-
ager. These routines are distinguished from the high-level routines by the prefix PB,
as in PBRead, PBWrite, and PBGetEOF. The PBreminds us that we’re using a variant
of the Device Manager parameter block to pass data in and out of the routines.

To add to the confusion, when the new hierarchical file system was introduced, each
primary routine had its matching hierarchical routine. So, we have a PBOpen and a
PBHOpen; we have a PBGetFInfo and a PBHGetFInfo. The H, of course, stands for
“hierarchical.”

227

MACINTOSH C PROGRAMMING BY EXAMPLE

The interface to these routines is based on the concept of a variant record parameter
block, implemented with a union in C. You use one of three variants of the parame-
ter block, your selection depending on which File Manager routine you're calling.
The input requirements are different for each routine.

The parameter block contains everything you want to know about a volume, file, or
access path, depending on the variant. Each PB routine has its own set of input and
output parameters of interest, so you can’t work with these routines without a copy
of Inside Macintosh open on your desk. Even then, you're in deep muck.

Figure 10-9 is an excerpt from the documentation for the call PBHGetFInfo, which
returns file system information about a file in the hierarchical file system. It should
give you a feel for the low-level documentation.

OSErr PBHGetFInfo (HParamBlkPtr paramBlock, Boolean asynch);
Parameter Block

--> 12 ioCompletion pointer
<-- 16 ioResult word
<-> 18 ijoNamePtr pointer
--> 22 ioVRefNum word
<-- 24 ioFRefNum word
--> 28 ioFDirlIndex word
<-- 30 ioFlAttrib byte
<-- 32 ioF1FndrInfo 16 bytes

<-> 48 ioDirID Tong word
<-- 52 ioF1StB1k word

<-- 54 ioFlLglen long word
<-- 58 ioF1Pylen - long word
<-- 62 1ioFIRStB1k word

<-- 64 1ioFllLglen long word
<-- 68 ioFIRPyLen Tong word
{-- 72 ioFiCrDat long word
<-- 76 ioFIMdDat long word

Figure 10-9.

PBHGetFInfo documentation excerpted from Inside Macintosh.
Note the arrows. The ones that point east (——>) specify inputs to the routine. The

ones that point west (<) specify outputs. The ones that point both ways (<->)
specify data that passes in and out of the routine, whatever that means.

228

10: THE MACINTOSH FILE SYSTEM

Which variant of the parameter block do you use? Notice the F/ in the names of the
fields ioFlAttrib, ioFILgLen, ioFICrDat, and so on. This F, and the fact that you're get-
ting file information, is the tip-off that you use the fileParam variant. The other two
variants are ioParam to access open files and wvolParam to return volume
information.

Look at the numbers column’s 12, 16, 18.... These numbers are offsets of the fields
from the beginning of the structure, which should tip you off—these calls are for
assembly language programmers. If you're going to do your work down here, you'd
better know what you’re doing.

PBHGetFInfo returns a hodgepodge of data about the file: the open file’s number
and its directory number, data about the file’s Finder Information in the ioFIFndrInfo
field, the file’s data and resource fork sizes and logical and physical end-of-file marks,
and the file’s creation and modification times.

Our problem with this low-level File Manager interface is that it’s really a Device
Manager interface, and, as proponents of layered design, we believe that applica-
tions should not be mucking around with devices.

Fortunately, there is an alternative: the high-level interface to the File Manager. For
most applications, the high-level interface routines are sufficient, and they’re easier
to use. These are the routines that don’t begin with PB. Some begin with the prefix
FS, as in FSOpen, FSRead, and FSWrite. Others are named according to their actions,
as in Create, GetEOF, and SetVol.

The high-level interface provides 75 percent of the functionality of the low-level
interface, and its procedures are easier to understand. The routines are more specific
and therefore more modular—you won'’t be getting a lot of data that you won't use.
For example, GetFInfo, which returns the Finder information data in the FInfo data
structure and whose declaration is shown in Figure 10-10, returns the same data
found in the ioFIFndrinfo field of the ioParamBik.

0SErr GetFInfo (Str255 filename, int volRefNum, FInfo fndrInfo);

typedef struct FInf

{)
0SType fdType,
fdCreator;
int fdFlags;
Point fdLocation;
Figure 10-10.
GetFInfo declaration.

MACINTOSH C PROGRAMMING BY EXAMPLE

Finding the Free Space in a Volume

Sometimes you have to use the low-level File Manager. If your application
needs to know the amount of available space on a disk, it has to get at
volume information. The volume record, which resides on block 2 of the
disk, contains information such as the volume name, the number of files in
the volume, the block size of the volume, and the number of blocks in the
volume. Access to this data is by means of the PBHGetVInfo routine, which is
a low-level File Manager routine. PBHGetVInfo returns data in a hierarchical
volume information parameter block. The fields ioVFrBlk and ioVAIBIkSiz in
the parameter block contain the number of free blocks and the block size.
You multiply these values to get the total number of free bytes in a volume.
This code fragment shows how to get the available bytes:

unsigned long sizeAvail, b1kSize, freeBlks;
HParamBlockRec blk;
0SErr err;

/* initialize parameter block */
b1k.volumeParam.ioCompletion = OL;
blk.volumeParam.ioNamePtr = OL;
b1k.volumeParam.ioVRefNum = volRefNum;
blk.volumeParam.ioVolIndex = 0;

err =_PBHGetVInfo (&b1k, false); // get the volume information
/* do everything as long arithmetic */

sizeAvail = OL;
if (err == noErr)

{
freeBlks = blk.volumeParam.ioVFrBlk;
b1kSize = blk.volumeParam.ioVAIB1kSiz;
sizeAvail = freeBlks * blkSize;

}

The initialization of the parameter block determines where PBHGetVInfo
searches for the data. If the value of the joVolIndex field is O, as it is in the ex-
ample we show here, PBHGetVInfo uses the volume reference number, passed
in ioVRefNum, to access the volume.

Users of most applications will want to create a file, write some data in it, and close
the file. Later the user will want to read the data in the file. In Figures 10-12 and 10-13,
we’ll show code that performs the basic File Manager routines using the high-level
interface and the low-level interface.

230

10: THE MACINTOSH FILE SYSTEM

When the user creates a new file, the application still needs to open it in order to
write the data. In Figure 10-11, createFileFS(uses the high-level interface to the File
Manager to create a file, open it, and return a file reference number. The file creator
is 'KWGM, and the file type is 'TEXT".

Notice that createFileFS() always checks the return values of the File Manager rou-
tines, which are placed in the local variable err. This error checking is important.
Many things can go wrong with File Manager calls that create files or that otherwise
modify data in a volume: The disk could be locked, the volume could be locked, the
directory could be full, the disk could be full, and so on. We'll present a general pur-
pose File Manager error handler in the next chapter.

/*
createFileFS--uses high-level File Manager routines to
create a file specified by fileName and volRefNum,
open the file, and return a file reference number:
Returns -1 if failed.
*/
short
createFileFS (StringPtr fileName, short volRefNum)
{
short fileRefNum;
OSErr err;
fileRefNum = -1; e
if (err = Create (fileName, volRefNum, 'KWGM', 'TEXT'))
{ * p
/% process error */
1
else
{ e : ~
if (err = FSOpen (fileName, volRefNum, &fileRefNum))
{
/% process error */
}
}
return (fileRefNum);
} %
Figure 10-11.

createFileFS uses the bigh-level interface to the File Manager routines to
create a file.

In Figure 10-12 on the next page, createFilePB() uses the low-level interface to the

File Manager, which calls for much more code. The parameter block has to be initial-
ized with the file name and the volume reference number that were passed to the

231

MACINTOSH C PROGRAMMING BY EXAMPLE

function as parameters. We also have to set the function pointer ioCompletion to
null. If this value were nonzero, the File Manager would treat the value as a function
pointer and try to execute at this location.

When we use the low-level interface, we have to explicitly set the file signature data,
but, before we can set the information, we must get the existing information with
PBGetFInfo. This initializes the parameter block so that all values are correct when
we write it back with PBSetFInfo.

/*
createFilePB--uses low-level File Manager routines to
create a file specified by fileName and volRefNum,
open the file, and return a file reference number.
Returns -1 if failed.
*/
short
createFilePB (StringPtr fileName, short volRefNum)
{
short fileRefNum;
0SErr err;
ParamBlockRec filePB;

fileRefNum = -1;

filePB.ioParam.ioCompletion = OL;
filePB.ioParam.ioNamePtr = fileName;
filePB.ioParam.ioVRefNum = volRefNum;
filePB.ioParam.ioVersNum = 0;

if (err = PBCreate (&filePB, false)) // create the file
{
/* process error */
return (err);
}
else
{
filePB.ioParam.ioNamePtr = fileName;
filePB.ioParam.ioVRefNum = volRefNum;
filePB.ioParam.ioVersNum = 0; .
filePB.ioParam.ioCompletion = OL;
filePB.ioParam.ioPermssn = fsWrPerm;
filePB.ioParam.ioMisc = OL;

Figure 10-12. (continued)
createFilePB uses the low-level (parameter block) interface to the File
Manager routines to create a file.

232

10: THE MACINTOSH FILE SYSTEM

Figure 10-12. continued

if (err = PBOpen (&filePB, false))
{

/* process error */

return (err);

}

/+* set up fcb for Finder Info */
filePB.fileParam.ioFVersNum = 0;
filePB.fileParam.ioFDirlIndex = 0;

if (err = PBGetFInfo (&filePB, false))
{

/* process error */

return (err);
}

/* set file type and creator #*/
filePB.fileParam.ioF1Fndrinfo.fdType = 'TEXT';
filePB.fileParam.ioF1Fndrinfo.fdCreator = 'KWGM';
filePB.fileParam.ioF1FndrInfo.fdFlags = 0;

if (err = PBSetFInfo (&filePB, false))
{

/* process error #/

return (err);
}

return (fileRefNum);

Writing the file is simply a matter of calling FSWrite or PBWrite using the open file’s
reference number. Figure 10-13 shows how to write the file using the high-level
interface.

/*
writeFileFS--uses high-level File Manager routines to
write the size in bytes from the buffer to the file
referred to by fileRefNum. Returns the number of =
" characters written if 0K; error if not OK.
*/
Figure 10-13. (continued)

Writing data to a file using the bigh-level interface to the File Manager routines.

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 10-13. continued

short
writeFileFS (short fileRefNum, Ptr buffer, long size)
{

0SErr err;

Tong nw;

nw = size;

err = FSWrite (fileRefNum, &nw, buffer);
if (nw != size || err)
{
/* process error */
nw = err;
}

return (nw);

Figure 10-14 shows you how to write the file using the low-level interface.

/*
writeFilePB--uses low-level File Manager routines to
write the size in bytes from the buffer to the file
referred to by fileRefNum. Returns the number of
characters written if 0K; error if not OK.
*/
short
writeFilePB (short fileRefNum, Ptr buffer, long size)
{
0SErr err;
long nw;
ParamBlockRec filePB;
filePB.ioParam.ioCompletion = 0OL;
filePB.ioParam.ioRefNum = fileRefNum;
filePB.ioParam.ioBuffer = buffer;
filePB.ioParam.ioReqCount = size;
filePB.ioParam.ioPosMode = fsFromMark;
filePB.ioParam.ioPosOffset = OL;
Figure 10-14. (continued)

Writing data to a file using the low-level interface to the File Manager routines.

234

10: THE MACINTOSH FILE SYSTEM

Figure 10-14. continued
err = PBWrite (&filePB, false);

if (filePB.ioParam.ioReqCount != size || err)
{

/* process error */

nW = err;
}

return (nw);

There is a third, THINK C, alternative to the low-level interface. The THINK C com-
piler supports the full ANSI C stdio library. This library has more functions than the
high-level routines and is handy if you want your I/O modules to maintain com-
patibility with non-Mac systems. These are the routines based on the standard file
streams. THINK C provides the same interface routines you'd find in a UNIX or MS-
DOS environment, along with source code. Studying the source code is a great way
to learn about the low-level File Manager interface.

In the next chapter, we'll look at Browser, a file browser that uses the File Manager
routines to read files on disk. You'll see examples of how to read both the data fork
and the resource fork.

235

11

BROWSER: OUR
CULMINATING
APPLICATION

In the last chapter, we saw how the File Manager interacts with the hardware at one
end and with programs at the other to create the illusion of the Macintosh’s hier-
archical file system. Because of the volume of File Manager information, Chapter 10
had to have a theoretical slant. In this chapter, we’ll put theory into practice, using
the File Manager to support the foundation of our handy file viewing utility, Browser.

Browser can open any file in the desktop—even those files represented by the
generic desktop icon. Browser can open files in two modes: In the text mode, it
opens ASCII files and displays them using TextEdit; in the binary mode, it opens any
file, either its data fork or its resource fork, and has a debuggerlike interface.

Browser is based on the multiple window generic application multiGeneric of Chap-
ter 7 but also uses the scroll bars of Chapter 8 and the Standard File Package de-
scribed in Chapter 9. Browser is the “thesis” application of this book—it combines
all the skills we've discussed so far into a single application.

In the beginning of this chapter, we’ll revisit the Standard File Package to see how to
limit SFGetFile's file list to text-only files. Then we’ll see how to use the File Manager
routines in an application. Finally, we’ll look at Browser’s implementation of the two
display modes, text and binary.

237

MACINTOSH C PROGRAMMING BY EXAMPLE

Inside Browser
Browser’s main task is to display a file’s contents. In order to do that, it needs to
B put up SFGetFile for file selection
B open the selected file
B read some of the file data into a document buffer
=

set up a document according to viewing mode and display it in response to an
update event

In text mode display, the file’s data has no format and appears as it would in any edi-
tor. Figure 11-1 shows text mode output.

Figure 11-1. Em] AboutBox.c ==
), 7%

Browser’s text . FILE: A&boutBox.c

mode dz‘splay- DESCRIPTION: AboutBox utilities

AUTHOR: Kurt W.G. Matthies

Copyright @ 1990 by Kurt W.G. Matthies, All Rights Reserved.

Revision History:

Spring 1991 - TVersion 1.0

el

Browser’s binary mode display is evolved from a long line of file dump utilities:
UNIX’s od, CP/M’s DUMP, and MS-DOS’s DEBUG. Browser displays 256 bytes, 16
lines of three columns each, of the file at a time. Figure 11-2 shows an example of
Browser’s binary mode output.

Browser’s binary Browser 2.0

mode dlsplay 00000 2F 24 20 2A 2A 2A 2A 23 23 2A 2A 2A 24 24 2A 24 1k Abdkdddkhhddddk
00010 23 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 24 2A 2a *hhhbbddddddihhd
00020 23 2A 24 2A 2A 2A 2A 24 2A 2A 2A 2A 2A 2A 2A 23 dhhhbhddddhhiddd
00030 24 2A 24 2& 24 2A 2A 2A 24 2A 2A 2A 2A 2A 2A 2A Fhkdbbkbhhhhhhis
00040 2A 2A 2A 24 23 2A 24 23 2A 2A 2A 2A 2A 24 24 23 dhkkbbdbdhhddhdd
00050 0D 09 46 49 4C 45 3A 20 09 09 09 41 62 6F 75 74 ..FILE: ...About
00060 42 6F 78 2E 63 0D 09 0D 09 44 45 53 43 52 49 S0 Box.c....DESCRIP
00070 54 49 4F 4E 34 20 09 41 62 6F 75 74 42 6F 78 20 TION: .AboutBox
00080 75 74 69 6C 69 74 69 65 73 0D 0D 09 41 55 54 48 utilities.. AUTH
00090 4F 52 34 09 09 09 4B 75 72 74 20 57 2E 47 2E 20 OR:...Kurt W.G.

AboutBonc Be—a——————|
Data fork 3824 bytes

000A0 4D 61 74 74 68 69 65 73 0D 09 09 0D 09 43 6F 70 Matthies..... Cop
000BO 79 72 69 67 68 74 20 A9 20 31 39 39 30 20 62 79 yright . 1990 by
000C0 20 4B 75 72 74 20 S7 2E 47 2F 20 4D 61 74 74 68 Kurt ¥.G. tatth
000D0 69 65 73 2C 20 41 6C 6C 20 52 69 67 68 74 73 20 ies, A1l Rights

000E0 S2 65 73 65 72 76 65 64 2E 0D 0D 09 0D 09 52 65 Reserved...... Re

000F0 76 69 73 69 6F 6E 20 48 69 73 74 6F 72 79 34 0D vision History:.

238

11: BROWSER: OUR CULMINATING APPLICATION

In the far left column in the window, Browser displays the current file offset relative
to the beginning of the file. To the right of the offset, the file’s data is displayed
twice: In the center column, Browser displays the bytes in hexadecimal format, 16
characters to a line; on the far right, Browser repeats the line in ASCII form, display-
ing nonprintable characters as dots.

The underlying scroll engine differs for the two display modes. In text mode,
Browser scrolls a line at a time, so Browser’s curScroll tracks the line number and
maxScroll contains the total lines of text. In binary mode, Browser scrolls one page
at a time. Browser’s curScroll value therefore tracks the page number, and max-
Scroll contains the total pages.

Data buffering also differs in the two modes. In text mode, Browser reads all of the
file’s data into a TextEdit structure and stores the corresponding TEHandle in the
contentHd] field of the Doc structure.

Using TextEdit for display has a built-in limitation. According to Inside Macintosh, a
TextEdit structure has a 32,000-character limit. Browser’s text mode simply accepts
this limit: It truncates the file to 32,000 bytes, ignoring any file data that’s over the
limit. Use of Browser’s text mode for editing is of course limited to files of the size
Browser can view in text mode. We'll leave it to you readers to figure out how to ex-
tend the text editing capabilities of Browser. (Hint: Arbitrarily split files into smaller
chunks, and make separate TextEdit structures for each chunk. Manage the chunks
so that the seams between them are invisible to the user. Alternatively, rewrite
Browser’s binary mode code so that it uses TextEdit to display a file, a page at a
time.)

Browser’s binary mode has no such character limit. In binary mode, Browser buffers
a screen of characters—256 at a time. When the user scrolls the document forward,
Browser reads the next 256 characters according to the scrolled document’s position.
As the user scrolls the document backward, Browser reads the previous 256 charac-
ters. The buffering process is quick, and, because the buffer is small, the binary
mode requires only a little space for each open document.

Selecting File Types: File Signatures

In binary mode, Browser can open either fork of any file. In text mode, Browser
opens only the data fork of an ASCII file.

The file system maintains file identification data—called the file signature—for
each file in a directory. The data consists of the file’s creator and the file’s type. The
file creator value identifies the application that created the file; the file type value
identifies the kind of data the file contains. This information binds an icon to the file.
Finder keeps the information for every file in the desktop. In System 7.0, the informa-
tion is kept in the “desktop database.”

239

MACINTOSH C PROGRAMMING BY EXAMPLE

The signature data is of type OSType, which is 4 characters packed into two words,
defined in THINK C as a long. An OSType string of characters does not have a count
byte, as do Pascal formed strings, nor is it null terminated, as C strings are (called
ASCIIZ strings in MS-DOS documentation). You can define an OSType token string
with the THINK C compiler by using the single quotation mark ("), as in

'KWGM'

which the compiler translates into the 32-bit hexadecimal long word
0x4B57474D

You would declare a null-terminated C string with double quotation marks, as in
"KWGM"

This string translates into the 5-byte, nu/l-terminated hexadecimal sequence

0x4B
0x57
0x47
0x4D
0x00

Registering File Signatures

An application developer must register his or her application’s file creator
and type with Apple, who makes sure that no two applications share the
same combination of file creator and type. You can express these values in all
uppercase characters or in a combination of uppercase and lowercase char-
acters. File signatures expressed in all lowercase characters are reserved for
Apple’s use. Examples of some standard file types and signatures are shown
in the table below.

Application File Creator File Type
System MACS ZSYS
Finder MACS FNDR
MacWrite MACA APPL
MacPaint MPNT APPL
MS Word MSWD APPL
PageMaker+ ALD3 APPL
Tycho Table Maker Tyco APPL

«Version 3.0 and later
Common file signatures.

240

11: BROWSER: OUR CULMINATING APPLICATION

You declare a Pascal string with double quotation marks and the \p token, as in
"\pKWGM"
and this string translates into the 5-byte sequence

0x04
0x48B
0x57
0x47
0x4D

When it’s in text mode, Browser is interested in files of type 'TEXT'—text or ASCII
files. Browser doesn't care who the creator of the file is. The file creator value simply
identifies the application that created and therefore “owns” the file. The Finder uses
the file creator value to launch a file’s associated application when you double-click
on a data file'’s icon.

Selecting a File—Revisited

In Chapter 9, we used the Standard File Package to put up the familiar Open dialog
box that enables the user to navigate the file system and select a file. Browser also
uses the SFGetFile dialog box, which appears as a result of the SFGetFile routine.

Chapter 9's Loser required some modifications in the SFGetFile dialog box for its two
radio buttons. Browser will use the same modified radio buttons for the user’s selec-
tion of its text and binary display modes. Browser will use the result of the button
mode selection to filter the file names that will appear in the dialog box’s list box.

In text mode, Browser is interested only in 'TEXT' files and therefore displays only
'TEXT files in its list box. This file filtering behavior is typical of all Macintosh appli-
cations. Our Tycho Table Maker application is interested only in its native table file
type, 'Tabl' files; Microsoft Word can open its native file type (type "WDBN"), Mac-
Write files (type '"WORD"), and MacPaint files (type 'PNTG").

The SFGetFile routine supports file filtering by type through its #ypeList argument.
You tell the SFGetFile routine which file types you're interested in, and the Standard
File Package displays file names of only that type in the SFGetFile list box. Here’s
how it’s done:

SFTypelList typelist;
short numTypes;

typeList [0] = 'TEXT'; // TEXT type
numTypes = 1; // one type only (can be up to 4)

SFGetFile (aPt, promptStr, OL, numTypes, typelist, ..

Browser therefore has no need of the file filter hook proc, as Loser did in Chapter 9.

241

MACINTOSH C PROGRAMMING BY EXAMPLE

Opening a File

Once the user has selected a file in the Browser SFGetFile dialog box, Browser’s next
step is to use the File Manager to get the file’s data, or “read” the file. But remember
from Chapter 10’s discussion of the File Manager that, before you can read a file’s
data, you must first open the file, which sets up an access path to the file.

When the user selects the Open button in the SFGetFile dialog box, SFGetFile fills an
SFReply record with the name and the volume reference number of the selected file.
Browser uses this information to open the file.

Regardless of whether you're using the MFS (unlikely, but it’s always a good idea to
support the widest user base possible) or the HFS, the values returned in the SFReply
record are all that the application needs to open the file. We've mentioned this
before, in Chapter 10, but it’s important enough to repeat: In the MFS, the volume ref-
erence number is a true volume reference number; in the HFS, the volume reference
number is a working directory reference number. Both kinds of references, when
used with the partial pathname returned in the fName field of the SFReply structure,
specify a file in a volume.

Browser uses the function openFile() in the source file FileUtil.c to open either file
fork—the resource fork or the data fork—for reading. Called from the Open menu
command, openFile() is passed a pointer to a FileParams structure.

Browser uses the FileParams structure to pass information into and out of the File
Manager utility routines such as openFile(). On entry to openFile(), FileParams con-
tains the partial pathname and volume reference number that were acquired from
the SFReply structure. On exit, FileParams contains the open file reference number
and the file length.

openFile() performs three standard file system tasks:

1. First, it opens either the resource fork or the data fork of the file. Browser’s
user interface routine, doGetFile(), sets a bit in the attributes field of the Doc-
Params, based on the user selection. openFile() checks this bit and calls either
FSOpen, which opens the file’s data fork, or OpenRF, which opens the file’s
resource fork.

2. Once the access path is established, openFile() gets the file’s size with GetEOF
and stores the size in the FileParams structure. GetEOF is a File Manager rou-
tine that returns the logical end-of-file position.

3. Finally, openFile() sets the file mark to the beginning of the file with FSSetFPos,
the File Manager routine that changes the position of the file mark. Figure 11-3
shows the code for openFile().

242

11: BROWSER: OUR CULMINATING APPLICATION

/%
openFile--opens a file, gets the file size, seeks to the
beginning of the file, and returns the file
reference number 6.20.90kwgm
*/
0SErr
openFile (DocParamsPtr docParams)
{
0SErr err;
long ‘ fSize;
short vRefNum;
Str64 volName;
FileParams *fileParams;
fileParams = &docParams->fileParams;
/* open the file */
if (docParams->attributes & kDocDataFork)
{
if (err = FSOpen (fileParams->fileName, fileParams->volRefNum,
&fileParams->openFileRefNum))
{
doFileCantAlert (fileParams->fileName, kOpen, err,
kNulPascalStr);
return (err);
}
1
else /1 resource fork
{
if (err = OpenRF (fileParams->fileName, fileParams->volRefNum,
&fileParams->openFileRefNum))
{
doFileCantAlert (fileParams->fileName, kOpen, err,
kNulPascalStr);
return (err);
}
}
/* get the file size */
if (err = GetEOF (fileParams->fileRefNum,
&fileParams->fileSize))
{
doFileCantAlert (fileParams->fileName, kOpen, err,
kNulPascalStr);.
Figure 11-3. (continued)

openFile() from FileUtil.c.

243

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 11-3. continued

FSClose (fileParams->fileRefNum);
return (err);
}

/* set the mark to the beginning of the file */
if (err = SetFPos (fileParams->fileRefNum, fsFromStart, OL))

{
doFileCantAlert (fileParams->fileName, kOpen, err,
kNulPascalStr);
FSClose (fileParams->fileRefNum);
return (err);
}

return (nokrr);

} /% openFile */

We hope that you noticed the calls to doFileCantAlert(), which openFile() calls
whenever it detects a File Manager error—that is, whenever the return value of a
File Manager routine is nonzero. Checking the return value of File Manager routines
is good, defensive programming—so many things can and do go wrong.

File errors during a file open come in various kinds: damaged medium errors, bad
directories, too many files open, errors in name or number, and a host of other prob-
lems. If you ignore these errors, you'll create a chain of bugs that will eventually
cause your program to crash. If you program defensively by checking the result code
of each File Manager routine, your program can notify the user of the error and back
out of the problem gracefully.

The functions of the File Manager return an OSErr value, which is typed as a short
integer. This numeric value is a token that represents a file system error. The File
Manager returns noErr, which is equal to 0, at the successful completion of a rou-
tine, but a host of negative values are possible when things go bad. Symantec ships
the OSErr tokens as values in the header file Files.h. Figure 11-4 shows some errors
an application could encounter during an open operation.

We've developed a set of routines that deal with file system errors. You'll find them
in the source file FileErr.c. The function doFileCantAlert() is the programming inter-
face to these utility routines. They work in conjunction with a string list resource
(STR# 104) in the application’s resource file. getIOErrStr() in FileErr.c translates a File
Manager error number to one of these strings. doFileCantAlert() calls getIOErrStr()
to map the error value returned by a File Manager routine into a string.

244

11: BROWSER: OUR CULMINATING APPLICATION

Token Valve Description

dirFulErr -33 Directory is full
dskFulErr -34 Disk is full

nsvErr -35 No such volume

ioErr -36 Miscellaneous 1/O error
tmfoErr -42 Too many files are open
WPrErr -44 Disk is write protected
fLckdErr -45 File is locked

vLckdErr -46 Volume is locked
volOffLinErr -53 Volume is offline
permErr -54 No permission to open
Figure 11-4.

File Manager OSErr token values and their meanings.

Using the doFileCantAlert() interface involves calling a single function that accepts
four arguments:

1. You pass the name of the file in which the error occurred as the first argument.

2. You pass a token that describes what operation was attempted as the second
argument. The tokens, defined in the header file StrRsrcDefs.h, come from the
list kOpen, kClose, kRead, kWrite, and kControl.

3. You pass the error token returned by the File Manager routine as the third
argument.

4. You pass a pointer to any additional string that you want to display to the user
as the fourth argument. You might put the name of the calling function in this
argument as a way of tracing program flow, for example. If you don’t want to
use this argument, pass the empty pascal string pointer, “\p”. Be advised: This
is not the null pointer, OL, but a string whose first element is equal to 0.

The doFileCantAlert() routine translates the four arguments into the four ParamText
values:

AQO The operation string gets displayed. doFileCantAlert() translates its second argu-
ment into a string that describes the operation.

A1 The first argument, fileName, gets displayed.

A2 The error string gets displayed. doFileCantAlert() calls getIOErrStr(), which digs
a string out of the STR# 104 resource that describes the File Manager error value.

A3 Your discretionary string gets displayed.
Figure 11-5 on page 247 shows the code for doFileCantAlert().

245

MACINTOSH C PROGRAMMING BY EXAMPLE

Using ParamText in a Dialog Box

The doF11eCantAlert() dialog box takes advantage of the Dialog Manager’s
parameter-text substitution utility. In a process similar to the one UNIX shell
programmers know as “parameter substitution,” this feature of the Dialog
Manager allows your program to change the usually static text strings in a
dialog box. You mmahze the strmgs w1th th] ‘ ‘

ParamText works this way If any of a dialog box’s text items contains the
string A0, AL, A2, or A3, the Dialog Manager replaces that string with one
specified by ParamText. The order of the arguments to ParamText defines
how the strings are substituted: The Dialog Manager substitutes ParamText’s
first argument in place of the A0 stnng, its second argument in place of the A1
string, its third argument in place of the A2 string, and its fourth argument in
place of the A3 string. This substitution is shown below.

EC= DITL “10 Err” 1D = 1001 from Browsern.

f Can't "0 the file:
1

Reason:
*2°3

DITL “10 Err” 1D = 1001 from Browserm.

C Can't Open the file:
Foo

Reason:

File not found.
openfFile

|

Parameter substztutwn with ParamT ext.
The second screen is derlved from the ﬁrst after your program calls

ParamText ("\pOpen". "\pFoo". "\pFﬂe not found", "\popenFﬂe") ; :

246

11: BROWSER: OUR CULMINATING APPLICATION

/*
doFileCantAlert--puts up the can't open/close/read advisory; prints
other relevant information if supplied; passes null
pstrings for fileName; -infoStr if not used
5.28.90kwgm ‘
*/
void

doFileCantAlert (fileName, whatOp, reason, infoStr)
. StringPtr fileName, infoStr;

short whatOp, reason;
{
DialogPtr theDialog;
Str25s | errStr, whatStr;
short theltem, id, itemType;
GrafPtr savePort;
Handle buttonHdl;
Rect box;

GetPort:(&savePort):

/* get the operation string */
GetIndString (whatStr, kIOMsgStrID, whatOp);

if (theDialog = GetNewDialog (kIOErrDLOG, OL, -1L))

(;
SysBeep (1);
GetDItem (theDialog, kOutlineButton, &itemType, &buttonHdl, &box);
SetDItem (theDialog, kOutlineButton, itemType, buttonProc, &box);.

/* build error string */
getIOErrStr (errStr, reason);
ParamText (whatStr, fileName, errStr, infoStr);
centerWindow (theDialog);
ShowHide (theDialog, true);
‘ModalDialog (@L, &theltem);

DisposDialog (theDialog);
}

SetPort (savePort);

} /% doFileCantAlert */

Figure 11-5.
doFileCantAlert() is called when a File Manager error is detected.

247

MACINTOSH C PROGRAMMING BY EXAMPLE

Mapping the File Manager error to a string

JSmErr2AppReason() contains the switch statement that performs the mapping of a
File Manager error to a string defined in the STR# 104 resource in Browser’s resource
file. getIOStr() calls this routine whenever doFileCantAlert() requests a File Manager
error value translation and formats the string.

A string list resource of type STR# contains an indexed list of strings. Each string can
be as many as 255 characters long. Using a STR# resource is a great way to organize
strings in a Macintosh application. Then you don't have to mess with defining a static
array of strings in your program; and, because the strings are in a resource, your pro-
gram is easier to “localize” into another language.

You access each string by its resource ID and index, using the Resource Manager
routine GetlndString, which returns a pascal string from the contents of the
resource. Here’s an example of how to access the third string in the STR# 104
resource:

Str255 buf;
GetIndString (buf, 104, 3);

You create the strings in ResEdit, in a window similar to the one in Figure 11-6.

Figure 11-6. ECI== sTR# “10 Msgs” 1D = 104 from Browser.rsrc =
" . » 5
ResEdit’s STR# edit NunStrings 32
window open on 1) wanan
3,
B-rowsers resource The string IOpen I
ﬁle' 2) AKkKkXK
The string [Elosing J
3) KRk

The string Iiead I
4) *AKRK

The string Eaue |
5) *xkkk

In order to illustrate how the doFileCantAlert() set of routines works, we’ll modify
Browser so that it recognizes a new File Manager error code, volOffLineErr. This
means that we’ll also have to add a new string to the STR# 104 resource in Browser’s
resource file. Using ResEdit, adding a string to the resource is as simple as scrolling
to the bottom of the window, selecting the last s+ marker, and selecting Insert New
Field(s) from the Resource menu (or using the keyboard shortcut, Command-K). A
new edit box opens in the dialog box so that we can type in the string, as shown in
Figure 11-7.

11: BROWSER: OUR CULMINATING APPLICATION

Figure 11-7. ECJ= STR¥ “10 Msgs” 1D = 104 from Browser7.rsrc
Addinga new The string Cannot initialize because of the
. fol lowi
string to a STR# AL
3]) KKKk K
resource, using
ResEdit. The string [gélect a file to brouse
32) kkkx

The string The system can't open another
file. Try closing some
documents.

33) okkkk

The string Uolume is off line. Insert disk.l

34) KKERK

After we've added the new string to the resource file, we need to modify the pro-
gram source code so that it recognizes the new error value. First, we'll need to define
a new index constant for the new string. ResEdit tells us, as you can see in Figure
11-7, that the string’s index is 33. Now, in THINK C, we’ll open Browser’s header file,
StrRsrcDefs.h, and define a new constant, kVolOffline, with the value 33. We'll put
this definition right after the definition of kTooManyOpenFiles, which is index 32.

The last step is to map the File Manager value volOffLinErr to the string index
kVolOffline in the switch statement in fmErr2AppReason(). (For the curious:
volOffLinErr corresponds to —53. We don't need to know this—the value is defined
in Files.h, a THINK C header file.)

case tmfoErr:
reason = kTooManyOpenFiles;
break;

/* {HHF kwgm--added new File Manager error code */
case volOffLinErr:
reason = kVol0ffline;
break;
/% {HHE kwgm */

default:
Error handling is a vital part of using the File Manager. Whether you use our set of
utilities to report errors to your users or simply beep at them when an error occurs,

it’s always important to have your application check for errors and take appropriate
action when it receives notification of one.

249

MACINTOSH C PROGRAMMING BY EXAMPLE

Reading the file is a matter of transferring some of the file to a local buffer. Browser
uses the high-level File Manager routine FSRead to this end. Reading a file mini-
mally requires three items of data:

1. from where—the file reference number
2. how much—a byte count
3. to where—the buffer address

FSRead accepts this data in three arguments—the file reference number, a pointer
to a Jong word that contains the number of bytes to read, and a pointer to the buffer
in which the read will place those bytes:

FSRead (short fileRefNumber, long * byteCount, Ptr buffer);

FSRead returns the number of bytes read in the same Jong word that held the re-
quested number of bytes. FSRead generally returns the number of bytes you re-
quested, but when your program reaches the end of the file, the number of bytes
read will be fewer than the number requested. This is not an error condition but a
natural result of reading data into a buffer, so the application has to handle this case
gracefully. The readBuf function shown in Figure 11-8 illustrates this type of pro-
cessing. It reads the file and detects an end-of-file mark. If the error is a real File
Manager error, readBuf() returns the error number. If the “error” detected is reach-
ing the end of the file before the requested number of bytes has been read, read-
Buf() returns noErr.

/*
readBuf--reads from file to local buffer
7.20.90kwgm

*/

readBuf (short fileRef, long *1en, char *buf)

{
long nRead;
nRead = *len;
if (err = FSRead (fileRef, len, buffer)) /1 read the file
{

if (err == eofErr)
err = nokrr; // not an error at eof
}
return (result);
3
Figure 11-8.

Reading the file and checking the result.

250

11: BROWSER: OUR CULMINATING APPLICATION

One outstanding issue in Browser remains: how much of the file to read at a time,
which dictates the buffer size. We could deal with the answer simplistically, reading
the entire file at one time. Of course, if the file the user is interested in is 10
megabytes and only 512K is left in the heap, he or she would be out of luck. The
function in Figure 11-9 demonstrates this infinite memory approach.

/* , :
readFile--reads an entire file into a file buffer; returns handle to
buffer in data argument; returns true if successful
*/
Boolean
readFife (FileParamsPtr fpp, Handle *data)
{

Handle dataHdl;
Tong dataSize;
Boolean result;

result = false;

+data = OL;
if ((err = openFile (fpp)) == nokrr)
{
dataSize = fpp->filelen;
/* allocate memory to fit file data */
if (dataHdl = NewHandle (dataSize))
{
HLock (dataHdl);
if (err = readBuf (fpp->fileRefNum, &dataSize, *dataHdl))
{
/* read failed: Notify user, close file,
dispose of handle */
doFileCantAlert (fpp->fileName, kRead, err, "\p")
FSClose (fpp->fileRefNum);
- disposeHdl (dataHdl);
}
else
{ .
/* read succeeded; set up for return of data */
HUnlock (*dataHdl);
*data = dataHdl;
result = true;
}
]
}
Figure 11-9. (continued)

Allocating a buffer for the entire file.

MACINTOSH C PROGRAMMING BY EXAMPLE

Figure 11-9. continued

else
doFileCantAlert (fpp->fileName, kOpen, err, "\p");

return (result);

}/* readFile */

doFileCantAlert() is called if either the open or the read fails. Also note from this ex-
ample that the buffer is a relocatable object and that because readBuf(), which calls
FSRead, has the potential to move objects around in the heap, we lock the object
before passing the master pointer to readBuf(). (And don’t forget to unlock it after
the read.)

Notice the order of operations in Figure 11-9:
1. open file

2. allocate buffer

3. read file

This order flows naturally from the requirements: There’s no need to allocate the
buffer unless you can first open the file, and you have to allocate the memory before
you try to read the file into it.

In text mode, Browser buffers the entire file in the TextEdit structure. In text mode,
Browser therefore respects the 32,000-byte limit of the TextEdit structure. In binary
mode, Browser reads one screenful of data (256 bytes) at a time.

Text Mode

Browser’s text mode uses TextEdit for its display mechanism. We had a brief encoun-
ter with TextEdit in Chapter 8: Generic App used TextEdit to display the contents of a
TEXT resource. Browser uses a similar technique.

TextEdit revolves around the TERecord, the TextEdit data structure that contains all
necessary text data. You create an empty TERecord structure with the TextEdit rou-
tine TENew. Browser encapsulates TENew in the makeTERec() function excerpted
here in Figure 11-10. The makeTERec() function creates a TERecord that encom-
passes an entire window by calling makeFrameRect() and returns a handle to the
structure.

252

11: BROWSER: OUR CULMINATING APPLICATION

TEHandle
makeTERec (DocPtr theDoc)
{
TEHandle teh;
Rect viewRect, destRect;

makeFrameRect (theDoc, &viewRect);
destRect = viewRect;

return (teh = TENew (&destRect, &viewRect));

Figure 11-10. N
Creating the TERecord with TENew.

Displaying the text in Browser’s text mode is identical to what we did in Chapter 8's
Generic App. Browser’s drawDocText() routine offsets the TERecord structure’s
destination rectangle by the current scroll value before calling TEUpdate. Look at
the discussion in Chapter 8 if you need a refresher on how to manage scrolling using
TextEdit.

Binary Mode

Browser’s text mode is limited to 32,000-byte files. Its binary mode is memory effi-
cient and can handle any file size because, in this mode, Browser reads only one
screenful of data, 256 bytes, of the file at a time and stores this data on the heap in a
relocatable object. The handle to the data is in the contentHd! field of the document
structure.

Buffer management in binary mode is surprisingly simple. Browser keeps track of
which 256 bytes of the file it’s displaying by managing the file offset, which it stores
in the fileOffset field of the document structure. When Browser opens a document in
binary mode, it reads the first 256 bytes of the file and sets fileOffset to O. For each
screen forward that the user scrolls, Browser bumps fileOffset by 256, seeks to that
new file offset, and reads the next 256 characters. If the user scrolls backward,
Browser subtracts 256 from fileOffSet and reads at that new offset. After each scroll,
Browser invalidates the current window, which invokes the update mechanism.

Browser’s binary mode display routine, drawBytelF(), is excerpted here in Figure
11-11. It displays the 256-byte buffer as 16 lines of 16 characters each, constructing
each line of the display in the three parts we've shown in Figure 11-2 on page 238: an
offset, the data in hexadecimal format, and the data in ASCII format.

253

MACINTOSH C PROGRAMMING BY EXAMPLE

/*

*/

drawBytelF--draws a 256-byte screen at the current scroll

9.20.90kwgm

static void
drawBytelIF (theDoc)
DocPtr theDoc;

{

register char xp;
register short v, line, i, C;
short lineHeight, hOffset, hHex, hAscii;

Size
char

fileOffset, fileSize;
offsetbuf [16], hexbuf [64],
asciibuf [64], tmpbuf [24];

FontInfo finfo;
Handle fileBufHdl;

fileOffset = theDoc->file0ffset;
fileSize = theDoc->fileSize;

if (fileBufHdl = theDoc->contentHdl)

{

HLock (fileBufHd1); // we will move memory here
p = *fileBufHdl; // pointer to file data

printBrowserHdr (theDoc); // print a file header

GetFontInfo (&fInfo);
lineHeight = fInfo.ascent + fInfo.descent + fInfo.leading;

v = lineHeight * 3; // leave a space at top,of_screen*{f,;ﬂf -

/* print the file data one line at a time #/
for (line = 1; line <= 16; linet++)

{ ‘ .
/* build file offset string and increment */
sprintf (offsetbuf, "%051X", fileOffset);
fileOffset += 16;

/* build hex and ASCII strings, one character at a time
hexbuf [0] = 0x00;

asciibuf [0] = 0x00;

for (1 =0 ;1 €16 ; i44)

Figure 11-11. (continued)
Browser’s binary mode display routine, drawBytelF().

254

11: BROWSER: OUR CULMINATING APPLICATION

Figure 11-11. continued

{
if (i + fileOffset < fileSize)
¢ = *p+ & Ox00FF; // mask upper byte
else
¢ = 255; // print box char after eof
/* hex format */
sprintf (tmpbuf, "%02X “, c);
strcat (hexbuf, tmpbuf); // add to hex string
/* ASCII format =/
sprintf (tmpbuf, "%c", isprint (¢) 2 c: '.");
strcat (asciibuf, tmpbuf); // add to ASCII string
}
fdefine kLeftMargin 10 // left screen margin

/* draw a line */

MoveTo (kLeftMargin + theDoc->curScroll.h, v);
CtoPstr (offsetbuf);

DrawString (offsetbuf);

Move (fInfo.widMax << 1, 0);
CtoPstr (hexbuf);
DrawString (hexbuf);

Move (fInfo.widMax << 1, 0);
CtoPstr (asciibuf);
DrawString (asciibuf);

/* double-space for next line */
v += lineHeight + fInfo.leading * 2;
}

HUnlock (fileBufHd1);

} /# drawBytelF */

drawBytelFO loops through each line, creating the three parts of the display and
drawing them at the bottom of the loop. At the heart of the routine are the three
buffers— offsetbuf, bexbuf, and asciibuf—that hold the corresponding strings
derived from the data for each line. drawBytelF() uses the C function library utility
sprintf() to format the three buffers.

MACINTOSH C PROGRAMMING BY EXAMPLE

The routine creates the contents of oj]’setbuf from a local copy of the file offset.
drawByteIF() computes the offset value for each displayed line from the initial file
offset of the buffer and bumps this offset by 16 for each line.

drawBytelF() creates the hex and ASCII buffers on a character-by-character basis.
Within this inner character loop, drawBytelF() formats each character as both a
hexadecimal string and an ASCII string and concatenates the resulting string to bex-
buf and asciibuf with the C function library routine, strcat(). It does some addi-
tional processing for the ASCII string: If the character fails the isprint(test, which
checks that the character falls within the range of printable ASCII characters,
drawBytel F() substitutes a dot for the character.

drawBytel F() manipulates these line buffers as C strings, so it converts them to pas-
cal strings with CtoPstr just before displaying them with DrawString (which re-
quires a pascal string).

The Complete Browser

That’s Browser. If you've come this far and aren’t completely baffled, congratula-
tions! You're a Macintosh programmer! If you've made it this far and are still
stumped, our apologies—perhaps we were unclear about something or you didn't
catch some of the points we made in passing. For these folks (not many, we hope),
we have a few suggestions:

B Check to be sure that you've used the examples we've presented and that
youwve compiled them. Try changing pieces of the examples—string names,
starting and ending values, and so on—recompile, and see what the new
results are.

B Use the debugger to single-step through the programs. Note in particular the
initialization that must be done before the actual program actions start, that
the program keeps returning to an event processing loop through which all
control is passed to subsections of the program, and how ROM Toolbox calls
are used.

B Check out the aids available to Macintosh programmers: Read magazines like
MacTutor and APDALog; try out programs that build applications automati-
cally, like Prototyper and AppMaker; study code others have written by down-
loading examples from CompuServe or Genie.

If you've made it through Browser and want to do more, we have a few suggestions
for you:

B Become a certified Apple developer. You'll receive Apple’s Developer Notes,
CD-ROMs containing example code, HyperCard help stacks, and access to
much, much more.

11: BROWSER: OUR CULMINATING APPLICATION

B Get active in the CompuServe MAUG programmer’s forum, where you’ll meet
other Macintosh programmers and have a chance to ask and answer questions
interactively. Type

go macdev

at any ! prompt. Be sure to download code examples and study them carefully.
Again, compiling and running new code through the debugger is an excellent
way to get a feel for how an application is managing itself.

B Check out your local bookstore. Besides the Apple-sponsored books, you'll
find other exceptional books that will expand your knowledge of Macintosh
programming, including such classics as Scott Knaster’s How to Write Mac-
intosh Software (1986).

m Subscribe to MacTutor, and consider getting the CD-ROM version of the back
issues, which contains all the text and code examples from previous years (five
years to date) and makes it easy to search by concepts or by individual routine
names.

B Look carefully at how popular Macintosh programs implement the user inter-
face, and try to guess what they have to do to provide the kinds of options they
do. Many programs use palettes or option bars, for example, which are, in es-
sence, custom controls. How do you think they were created? Try program-
ming one of your own.

Finally, support programming in general. Let others know what you’re up to and let
the Macintosh magazines and book publishers know that you're interested in learn-
ing more. Buy good programming products, and let the companies that made them
know what you did and didn’t like about them so that future versions will be better.

257

Appendix

SYSTEM 7.0
COMPATIBILITY

The release of Apple’s System version 7.0 has created a lot of excitement. This new
version of the Macintosh OS, touted as a giant leap for Mac-kind, promises to revolu-
tionize the way we compute.

Even if you're not running System 7.0 yet, you're probably aware of its new features
from press reports: interapplication communication, virtual memory, outline fonts,
and an improved Finder interface. As a reader with a technical bent, you probably
also know about the more esoteric details of this release, such as built-in database
support, Balloon help, and 1-gigabyte addressing. This is great stuff, but at the same
time, we programmers are apprehensive about such a major change in system soft-
ware. Precedents in the PC world fuel our insecurity.

As a PC application developer, you have to target MS-DOS, Windows, or OS/2 as
your host operating system or environment and then adjust your application to ac-
commodate the special characteristics of that environment. Only a handful of high-
end developers can afford the overhead of coding and maintaining three separate
versions so that programs will run under all systems. As a result, the user can be
forced to choose an application on the basis of which operating system or environ-
ment it runs under.

We don’t want to see Macintosh applications go the way of PC applications. For the
next few years, until System 7.0 and its offspring gain widespread acceptance, we
envision a user population made up of both version 6.0 and version 7.0 users. If you
want your application to be available to all Mac users, running in either environment,
you’ll have to ensure that the code you write is compatible with both versions.

In your zeal to make your application System 7.0 compatible, don’t make it System
7.0 dependent. The dependent program needs System 7.0 to run and crashes under
System 6.0. The dependent program is poorly conceived because it assumes too
much about the running environment. Compatible programs reflect the best of both
worlds: They support features of the new system, but they don’t necessarily rely on
those features in order to operate.

MACINTOSH C PROGRAMMING BY EXAMPLE

Sounding for 7.0

Your first step to compatibility is discovering which system version your application
is running under. Apple tells us to call the routine SysEnvirons to determine the sys-
tem version. SysEnvirons returns assorted pieces of information about the machine
as well, such as whether it supports color or has a floating point coprocessor. Figure
A-1 demonstrates how to use SysEnvirons to get the system version number. System
7.0 supports SysEnvirons, so you can use this method to figure out whether an appli-
cation is running with the new system.

short

getSystemVersion ()

{
SysEnvRec sysEnv;
short version;

version = 0;
if (1SysEnvirons (1, &sysEnv))
version = sysEnv.systemVersion >> 8;

return (version);
L]

Figure A-1.
Testing for the system version. The function returns the system version number
as a short integer.

The Gestalt Manager, a more powerful utility for testing for specific environmental
features, shipped in later releases of System 6 (6.0.4 and later) and is available in Sys-
tem 7.0. We anticipate that the Gestalt routine will eventually supplant the less infor-
mative SysEnvirons, but to maintain compatibility with most machines out there
now, we recommend that you continue to use SysEnvirons to find the system type.
In System 7.0, SysEnvirons calls the Gestalt routine.

You use the Gestalt routine to query the system about environment attributes by
passing it a selector token that tells the routine what information you’re interested in.
The Gestalt routine returns the requested information in a long value, which you
pass by reference to the routine. For example, say you have a multimedia application
and you’re interested in the sound and video capabilities supported by your hard-
ware. Here are the appropriate calls to Gestait:

Boolean gestaltAvail,
has32bitVideo, hasStereo;

-0SErr err;

Tong result;

260

APPENDIX: SYSTEM 7.0 COMPATIBILITY

gestaltAvail = TrapAvailable ($A1AD); // check for Gestalt
has32bitVideo = false;
if (gestaltAvail)
{
if (!(err = Gestalt (gestaltQuickdrawVersion, &result)))
has32bitVideo = result & gestalt32BitQD;
else
; // do error stuff

hasStereo = false; :
if (!(err = Gestalt (gestaltSoundAttr, &result)))
hasStereo = result & gestaltStereoMixing;
else
H // do error stuff
}

You'll find the documentation for Gestalt, its selectors, and its result codes in Inside
Macintosh, Volume VI.

Paradigm Lost

“32-bit clean” is the watchword for System 7.0 compatibility. (What we say here also
applies to getting your Macintosh programs to run with A/UX, Apple’s implementa-
tion of UNIX.) This “cleanliness” is nothing more than an application’s regard for all
32 bits of an address. In earlier versions of the system, only the lower 24 bits of a 32-
bit address are significant. In System 7.0, a new 32-bit Memory Manager can take ad-
vantage of a full 32-bit address.

Why did the earlier Mac Operating Systems use only 75 percent of the available ad-
dress bits? After all, 24 out of 32 bits is only a fraction of the total addressable range.
To understand this parsimony, we need to look to the 1980s computer engineering
paradigm, in which 24 bits were more than enough for any microcomputer address.

At the core of the early Macs is the Motorola 68000. This processor, although
possessing a 32-bit program counter register (the register responsible for pointing to
the next machine level instruction), is internally limited to a 24-bit address space: It
ignores the upper 8 bits of an address. Starting to sound familiar?

In 1980, a 24-bit address space, which maps to a 16-megabyte addressable range of
memory, seemed huge, almost infinite, to system designers. This addressable range
was as large as an IBM 370 mainframe’s.

As technology advanced, the 24-bit limit went away—the 68020 and 68030 have
true 32-bit addressing—but the damage was done: The Macintosh team had de-
signed the 68000 addressing limitation smack-dab in the middle of the Mac’s
Memory Manager.

Even so, restricting an address to 24 bits would have had little effect on our applica-
tions today if not for another decision made so long ago. Someone in the Apple sys-
tem’s group got a bright idea about reusing the high bytes of each address.

MACINTOSH C PROGRAMMING BY EXAMPLE

You have to understand the plight of systems programmers, the engineers who make
their living writing operating system software. This miserly group of coders are
forever space constrained. Their code has to fit in some small area of ROM, with
little or no room for overrun. No wonder they tend to be bit-stingy.

In their never-ending efforts to write “tight” code, systems programmers like to take
clever advantage of free bits here and there as flags and placeholders or for tempo-
rary data storage. That’s what happened in the Memory Manager—someone in the
Apple OS group chose to take advantage of the unused high byte in a handle. In the
24-bit Memory Manager, the high byte in every handle contains the corresponding
relocatable block’s status information. We've illustrated the layout of an old-style 32-
bit handle in Figure A-2.

These bits are used to
flag block status. These bits are used as the 24-bit address.

31 25 0

U

Flags conflict with true
32-bit address.

Figure A-2.
The format of a 32-bit handle in the 24-bit Memory Manager. In the old
Memory Manager, bandles are inberently 32-bit dirty.

In the light of a reasonable speculation that Apple surely had plans at the time to
someday support 32-bit addressing, you might call this a gutsy decision. Remember
that in a 128K Mac, every byte saved in the System software could be used for an ap-
plication. The saving grace is that, as a hedge against future enhancement, Apple
supplied a set of Memory Manager routines for setting and clearing the high byte’s
status bits: HLock, HUnlock, HPurge, and HNoPurge. And Apple always told devel-
opers to use System routines to change values in System data structures if at all pos-
sible. To maintain compatibility with future systems, you should always follow this
fundamental principle. The two code fragments that follow are an example of what

"~ we mean. Both code fragments return the refCor field of a WindowRec structure.
There’s a Toolbox routine to return the value of this structure member, so the right
way to get its value is to use the routine. The wrong way is to access the member
directly.

The right way:

Handle refCon;
WindowPeek theWindow;

262

APPENDIX: SYSTEM 7.0 COMPATIBILITY

refCon = GetWRefCon (theWindow);

The wrong way:

Handle refCon;
WindowPeek theWindow;

refCon = theWindow->refCon;

Most developers got the message and had the good sense to use HLock to lock a
handle, instead of directly bit-twiddling the upper byte of a handle. But a few devel-
opers saw the opportunity to save a few processor cycles by eliminating the over-
head of a system call and set or cleared the handle’s status bits directly. Their
applications are not 32-bit clean and will crash when run under System 7.0.

Here’s the bottom line on 32-bit cleanliness: If you already use the Memory Manager
routines as Apple recommends, you're home free; if, on the other hand, you've gone
out of your way to save a few machine cycles by setting or clearing these bits di-
rectly, you've got your work cut out for you.

Don’t Forget the CDEF and the WDEF

Using HLock is not the last word in 32-bit Memory Manager compatibility. A similar
problem exists in the interface to custom definition procedures. If your application
contains either a control definition function (a code resource of type CDEF) or a
window definition function (a code resource of type WDEF), you've got a few more
minor modifications to make.

Before System 7.0, there was really no way for a CDEF to be 32-bit clean. The Con-
trol Manager expects your CDEF to clear the high byte of a region handle when the
CDEF receives the calcCRgns message from the Control Manager. Under 32-bit
Memory Manager rules, you can't clear the upper byte of an address without corrupt-
ing that address. You're damned if you do, and damned if you don't. Even if you've
followed Apple’s rules to the letter, your application still isn’t 32-bit clean.

The problem with the WDEF arises from the fact that the Window Manager uses the
high byte of the WDEF handle to store the window variant code in the older system
software. This situation is remedied in System 7.0.

Making the WDEF compatible with System 7.0 is trivial. First, you have a problem
only if your WDEF supports variations. If it does, remember that the variant isn’t
stored in the handle anymore. Don’t worry about where it’s stored—the System rou-
tine GetWVariant will return the value. By the way, GetWVariant has been around
since System 5.0.

MACINTOSH C PROGRAMMING BY EXAMPLE

Fixing the CDEF requires a little more from you because you have to support two
new messages, calcCntlRgn and calcThumbRgn. Here’s where you have to ensure
that you’re System 7.0 compatible, not dependent. Your CDEF still needs to support
the old calcCRgns message. System 7.0 won't send this message—only System 6.0
and its predecessors will—so your CDEF is still free to clear the upper byte of the
handle when it receives calcCRgns. When System 7.0 is running in 32-bit mode, it
will send either of the two new messages, calcCntlRgn or calcThumbRgn. You still
calculate the appropriate regions for these new messages, but you don't clear the up-
per byte of the handle when you return it.

StripTease

What if you're running in 24-bit mode and you want to compare the values of two
master pointers? In 24-bit mode, the Memory Manager changes flags in the upper
byte of a master pointer, so your program should use only the lower 24 bits of the
pointers during the comparison. But in 32-bit mode, all of the address bits are signifi-
cant, so you'll want to compare all 32 bits.

The answer is to call the Memory Manager routine StripAddress on the pointers
before comparing them. StripAddress returns a pointer’s significant value, based on
the current Memory Manager mode. Passed a pointer when the Mac is in 24-bit
mode, for example, StripAddress will mask the upper byte in the returned address;
but in 32-bit mode, StripAddress will return the address unchanged.

You'll rarely find the need to use StripAddress. Don't call it every time you use an ad-
dress—that would choke your application. Use it only when you need to compare
two master pointers (a practice of questionable merit) or in the rare event that your
application switches the machine from 24-bit mode to 32-bit mode.

Virtual Memory Compatibility

After all you've read about what has to be done to support the new 32-bit
Memory Manager, the good news is that you don’t have to change a thing in
order to support virtual memory. But you might encounter a situation in
which you’ll need to be wary of the virtual environment. Remember how vir-
tual memory works: Unbeknownst to your application, some of your code or
data might be out on the hard disk instead of in RAM. The system brings the
code or data back into RAM just before your program needs it. Now, hard
disk access is approximately 1000 times slower than RAM access. If your pro-
gram is executing certain time-critical operations, such as the animation of
graphical images, your users can experience a perceptible delay if some of
that data first needs to be brought from disk into RAM. To ensure for these
time-critical operations that your data is in RAM, you can use the new System
7.0 routines that lock data into physical memory. See the chapter on the
Memory Manager in Inside Macintosh, Volume VI, for details on these
routines.

264

APPENDIX: SYSTEM 7.0 COMPATIBILITY

If you follow the techniques we've talked about so far, you've met System 7.0 half-
way. Your application might not support any of the features unique to the new
release, but it won’t embarrass you by displaying the ubiquitous bomb alert box to
your users. You can call your application “System 7.0 friendly.”

The final step, bringing your application from friendly to compatible, is to support
the features that are the hallmarks of System 7.0. Two of the most important features
exclusive to the new system are outline fonts and high-level events.

One of the most visible changes in System 7.0—outline fonts—involves the Font
Manager. Outline fonts produce an effect similar to Adobe Type Manager’s:
QuickDraw displays text drawn in an outline font, using the maximum available
resolution of the output device. Outline fonts can be displayed at any point size
without the jagged appearance typical of a bitmap font.

Bitmap fonts, also called screen fonts, have been around since the Mac’s inception.
You're probably familiar with the way they’re organized: A bitmap font matches the
resolution of the screen (72 pixels per inch) because the font designer carefully
places each pixel for each character in a bitmap and defines the bitmaps in multiple
sizes. This accounts for the fact that when you use a font in a defined size, you get
high-quality output. But, when you select a font size that’s not defined in the bit-
maps, the output appears jagged and distorted.

Font publishers ship a number of point sizes so that their users can do high-quality
work. Thom ships his Palo Alto font in point sizes 9, 10, 12, 14, 18, 24, 36, 48, and 72,
for example.

Of course, the more point sizes a bitmap font contains, the more disk space it con-
sumes. In Thom’s Palo Alto font, bitmap information for each character is repeated
nine times, once for each point size set in the font. The larger point sizes take up
the most space: Palo Alto 10-point is described in 2420 bytes; Palo Alto 72 uses up
30,516 bytes.

Outline fonts take advantage of a classic trade-off in computer science: trading
storage space for computational time. If you’re willing to put in some computational
effort, you can generally reduce the storage space requirements of a program.

With outline fonts, the information kept for each character is not a bitmap but a de-
scription the Font Manager uses to calculate each character’s image. The font
designer creates a description (an “outline”) for each character, at a 1-point size,
which the Font Manager can scale to any size. Because the images can be created
“on the fly,” at any point size, from the 1-point outline, only that one representation
per character is needed in an outline font. This saves space: A typical outline font
uses up 40K. And you get a high-quality rendering of each character, no matter what
the point size. The font size restriction of 127 points is lifted with outline fonts.

265

MACINTOSH C PROGRAMMING BY EXAMPLE

Because System 7.0 implements outline font support on the Font Manager layer, your
application can take advantage of outline fonts without modification. But bitmap
fonts have not gone away. System 7.0 supports both outline fonts and bitmap fonts,
and there will be cases in which a system will contain both an outline font and a bit-
map font for a particular family. The system default will be the bitmap font. In these
cases, you must explicitly tell the system to use the outline font by calling
SetOutlinePreferred, the new Font Manager routine that changes the default mode
from bitmap to outline.

WARNING: If you use the SetOutlinePreferred routine, your application
bad better be running under System 7.0. System 6.0 doesn’t bave a
SetOutlinePreferred call, and calling SetOutlinePreferred under System 6.0
treats your user to the bomb alert box— something your user would gladly
Jorgo. Always check the system version (with SysEnvirons or Gestalt) before
issuing a call to system-dependent code.

Because the Font Manager produces outline font images in any size, you need an
Other item on your font menu. The Other command should produce a dialog box
that provides your user with an opportunity to enter any positive font size value.

An Event-full Software Release

Although the outline fonts are probably the most visible evidence of software
changes in System 7.0, the most extensive changes in the new system involve event
processing. The Event Manager has been revamped in System 7.0 to accommodate
interapplication communication (IAC).

Rest assured: Your application will still receive an event when the user paws the key-
board or twiddles the mouse button—System 7.0 won't affect those parts of your
existing application’s source code. But IAC brings a new kind of event—the high-
level event—to the system’s repertoire.

High-level events enable communication among multiple applications.

If you've had any experience with a message-based operating system (MBOS) like
RSX-11 or CTOS, you should be familiar with the theory behind interapplication
communication on the Mac. In MBOS lingo, a communication between two applica-
tions is a “message,” and, on the Mac, an application sends a message by posting a
high-level event destined for another application running concurrently on the same
system.

” &« ”

Four terms—“client,” “server,” “request,” and “response”—make up the MBOS vo-
cabulary. The application initiating a communication is called the client; the one
targeted to receive the communication is called the server. Messages are classified
into requests, which are initiated by the client, and responses, which the server
posts in response to requests.

APPENDIX: SYSTEM 7.0 COMPATIBILITY

Receiving High-Level Events

Your application will receive high-level events just as it receives mouse-down or
key-down events: by means of the main event loop. Recall that a Macintosh applica-
tion receives events by calling WaitNextEvent in its main event loop. When Wait-
NextEvent returns a valid EventRecord, the event code in the EventRecord’s what
field identifies the event type. In System 7.0, the what field value is 23 when the ap-
plication receives a high-level event.

The Event Manager encodes information that identifies the message in the
EventRecord. The message field of the EventRecord specifies the message class, and
the where field contains the message ID. Both of these EventRecord fields are long
integers, which the Event Manager uses to pass an OSType value, so message class
and ID values are similar to application file signatures.

The message class in the EventRecord’s message field defines the message origin,
uniquely identifying the sender of the message in the message field. If your applica-
tion is going to send messages, it’s probably a good idea to use the application file
signature for this value. The message ID in the where field defines the type of mes-
sage within its message class.

Because of EventRecord size limits, all the data associated with a high-level event
might not be completely contained in the EventRecord. If your application intends to
process the high-level event, it should call the new Event Manager routine, Accept-
HigblLevelEvent, which retrieves the extra data associated with the event.

How do you know what extra data, if any, will be sent along with the high-level
event? If interapplication communication is to live up to its potential, applications—
and application developers—must cooperate. After all, if an application doesn’t un-
derstand a message format, it can’t take advantage of the data the message contains.
As IAC evolves, more and more message classes with their associated message for-
mats will be defined.

But don't look for a world in which message formats are shared freely among applica-
tions—at least not immediately. We expect that the major software vendors will
keep their message formats to themselves. In its early stages, IAC will probably con-
sist of private transactions among a vendor’s applications. Currently, the only IAC
message format standards come from Apple, and the specification is for what’s called
an AppleEvent.

AppleEvents

AppleEvents and their format are described in detail in Inside Macintosh, Volume VI,
and eventually will provide the framework for a scripting interface to both applica-
tions and the Finder. The minimal set of AppleEvents an application should support
if it is to be “System 7.0 savvy” is shown in Figure A-3 on the next page.

267

MACINTOSH C PROGRAMMING BY EXAMPLE

Event Action

Open Application Open an application

Open Document Open each specified document
Print Print each specified document
Quit Quit the application

Setup Update the menu items

Get Return a specific property
Figure A-3.

Essential AppleEvents if an application is to be “System 7.0 savvy.”

Although the details of supporting AppleEvents are beyond the scope of this book,
you can do something now that will aid your effort to support AppleEvents. Apple
calls it “factoring your code.”

Isolating User Interface Code

The need to factor your code, that is, to isolate those lines of code that manage the
user interface from those lines that perform the actions, arises from the way Apple-
Events and the eventual command-line interface to Finder will work.

An example will illustrate what we mean. When the system sends your application
an Open Document AppleEvent, it will also send the list of documents to be opened.
(Your application gets the list by calling AcceptHighLevelEvent.) Your application
doesn't need to put up the SFGetFile dialog box to get file information from the
user—the system sends the information that your application needs to open the
documents. You therefore don't want to have the call to SFGetFile (which puts up
the Open dialog box) in your application’s document-opening routine.

If your application is to support an AppleEvent interface, you'll need to isolate the
user interface code from the action routines. An action routine is the code that ac-
tually performs an operation. In this example, the action routine is the code that
opens a document.

If you've been writing modular code all along, you're probably already isolating user
interface code from action routines. But, if you've been calling user interface code in
the middle of your action routines, you've got some work to do.

The document-opening action routine is particularly instructive because our
Generic App already supports the factoring concept. Most existing applications can
open a document in response to either a File menu Open command or the user’s
double-clicking on a document’s icon in Finder. If you've written your document-
opening action routine to be called from either of these places in your code, you've
already factored out the user interface code.

APPENDIX: SYSTEM 7.0 COMPATIBILITY

You can begin factoring your code right now, without the AppleEvent specification.
Factor out the Open, Print, and Save action routines. When you have the specifica-
tion, just plug in the code that parses the message data and you’ll be off and running
in System 7.0.

Note that we recommend that you factor out your Save action procedure, even
though that isn’t required in System 7.0. Just because Apple hasn't told us to do that
now doesn’t mean that Apple won’t demand just that in the future. You might as well
get in the habit of writing factored code now. Try to figure out which other opera-
tions in your code can be factored out from the user interface code.

Factoring is the logical result of modular programming and leads to the best way to
implement Undo/Redo in your application. All the action routines in our commercial
application, Tycho Table Maker, are factored. The input to Tycho’s action routines is
a parameter block that can be built from either the user interface subsection or the
Redo subsection. But that’s a topic for another book....

INDEX

References to figures and illustrations are in italics.

Special Characters

" * (header file search path operator) 14
$ (grep operator) 24

& (address operator) 57

' ' (token string delimiter) 240

() (casting operator) 52

() (function notation) 36, 65

() (precedence operator) 51

+ (grep operator) 24

+ (pointer operator) 56

- (grep operator) 24

-> (structure member operator) 57

. (grep operator) 23

. (structure member notation) 55

/* (comment operator) 37

// (comment operator) 38

; (statement closure operator) 38

<> (header file search path operator) 14
= (assignment operator) 46

? (ternary operator) 50-51

(] (array dimensions notation) 54

[1 (grep operator) 24

\ (grep operator) 23

\ (octal constant notation) 45

\ p (Pascal string operator) 241

A (grep operator) 24-25

{} (compound statement operator) 20, 59, 61
0x (hexadecimal constant notation) 46
24-bit and 32-bit memory addresses 261-63

A

AcceptHighLevelEvent routine 268

addressing, memory 261-63

address registers 92-94

ampersand (&) 57

angled brackets (<>) 14

ANSI library 13, 35

ANSI-small library 13

APDALog magazine 256

Apple-defined variable types 42-43, 44

AppleEvents 267-68

Apple Macintosh Developer Technical Support
facility 3

Apple Programmers and Developers Association
(APDA) 125,129

Apple’s Developer Technical Support group 129

270

applications
communications between 266-69
compatibility (see System 7.0 compatibility)
creating 71-73 (see also THINK C)
debugging (see Debugger, THINK C)
designing 192-93
dialog boxes (see dialog boxes)
error handling 24449
events 128 (see also event processing)
file-viewing utility (see Browser application)
graphics (see graphics)
Hello World and Hello Mac! examples 69-71
initialization of Toolbox managers 8485
memory management (see memory)
passing parameters to Toolbox routines 76-78
setting and clearing invisible attribute-bits of files
(see Loser application)
shells (see miniGeneric application; multiGeneric
application; nonGeneric application)
source code (see source files)
suggestions 25657
user interfaces (see user interfaces)
windows (see grafPorts; multiGeneric application;
windows)
APPMaker program 256
arguments, function 65-67
array variables 54
arrow, current statement 31
arrow, scroll 186
arrow keys 19
arrow operator 57
ASCII files 241
Assembly language 5
assignment operators 46—47, 48—49
asterisk (*) 24, 56
attribute-bits, invisible 209-11
automatic variables 52-53
auto-mode, debugger 32

B

backslash (\) 23

backslash-p (\p) 241

bad blocks 221

Basic language 4

binary file-viewing mode 253-56
binary operators 48—49

bitmap fonts 265-66

BlockMove routine 109
blocks, disk 219-21
blocks, memory 98-105
braces, curly ({}) 20, 59, 61
braces, square ([]) 24, 55
branching statement(s)
alternative branch 59
compound 59-60
multiway 60-62
test and branch 58-59
ternary operator as 50-51
breakpoints
setting, in other modules 31
setting and clearing 31
setting temporary 32
break statement 62, 64, 136
Browser application
binary mode viewing 253-56
error handling 244-49
file signatures 239-41
opening files 242, 24344
overview 237, 238-39
parameter substitution in dialog boxes 246
reading files 250-52
selecting files 241
text mode viewing 252-53
buttons, radio 203-9

C
.c suffix 17
C language. See also THINK C
advantages of 5-6
arrays 54
branching 58-62
breaking and continuing execution 64
calling conventions 98, 199
case sensitivity 36
comments 37-38
data structures 55-56
evolution 35-36
functions 64-67
language elements 36
loops 62-63
multiway branching 60-62
operators 46, 47-51
Pascal vs. 77, 79, 98, 199, 241
pointers (see pointers)
statements and expressions 38-39
strings (see strings)
variables (see variables)
white space 36-37
call-back routines 197
calling conventions 98, 199
call stack 30
case sensitivity 36
casting 51-52

INDEX

CDEF resources 263-64
characters. See also fonts
case sensitivity and 36
constants and 45-46
escape 23
grep 23-25
nonprinting 36-37, 45-46
character variables 40, 41
char variable type 40, 41
circumflex (A) 24-25
classes, variable 52-54
client (JAC) 266
clipping 175
clock, system 127
ClosePicture routine 169
CNFG #0 resource 19
code. See object code; source files
Command-period shortcut 207-9
comments 37-38
compatibility. See System 7.0 compatibility
compiler, THINK C
code configuration for 25-27
compiling with 27-28
MacHeaders option 15
compound statements 59-60
CompuServe forums 107, 192, 256-57
console routines 70
constants 44—46
content region of windows 154
continue statement 64
control definition functions (CDEF) 263-64
Control Manager 26364
control operations 217
control statements
compound statements 59-60, 61
branching (see branching statement(s))
breaking and continuing execution 64
functions 64—67 (see also functions)
looping 62-63
coordinate systems 73-75
C Programming Language, The (Kernighan and
Ritchie) 5, 8
curly braces ({}) 20, 59, 61
custom definition procedures 263—64
custom MacHeaders 15

D
data forks 224-27
data in memory 91-94
data-link escape character (DLE) 23
data structures 55-56
data window of Debugger 33-34
Debugger, THINK C
auto-mode 32
data window 33-34
in development cycle 7

2n

MACINTOSH C PROGRAMMING BY EXAMPLE

Debugger, THINK C, continued
editing source file while debugging 32
halting execution 32-33
requirements 28-29
setting breakpoints in other modules 31
setting conditional breakpoints 33
setting temporary breakpoints 32
source code window 29-33
decrement operators 50
default radio buttons 207-9
#define directive 45
dereferencing 102
Desk Accessories, adding, to menus 133-34
development cycle 6-7, 8
development environments 6. See also THINK C
development folder 9-10, 17
dialog boxes
creating 210-15
hook procs 197, 207-9
item lists 201-2
resources 198-202, 210-15
selecting and opening files 198-202
text parameter substitution 246
Dialog Manager 197
diamonds 31
directives 14, 37-38, 45
directories 222-23
disks 218-21
DisposeWindow routine 84
DisposPtr and DisposHandle routines 99
DITL resources 201-2, 210-15
DLE character 23
DLOG resources 198-99, 210-15
Doclnfo structure 147-49
documents
adding, to open document table 147-49
creating contents with resources 168-74
creating new 143-46
deleting, from open document table 149
managing multiple (see multiGeneric application)
open document table 146
rendering scrolled 174-90
scrolling text and graphical 163—68 (see also
nonGeneric application)
windows and 141-43 (see also windows)
dollar sign ($) 24
dot () 23, 55
double dereferencing 102-3
double variable type 40, 41-42
do-while loops 63
dragging windows 162
DragWindow routine 162
DrawControls routine 183
drawing
deferring until updates 157-59
in grafPorts 80-82
graphic entities 83

272

drawing, continued
pictures 169
scroll bars 183-86, 184-86
scrolling documents 174-90
windows 154-57
DrawPicture routine 174
DrawsString routine 81
drives, disk 218-21

E
editor, THINK C
changing default font 19
editing source files 18-20
searching for expressions 22-25
searching for text strings 2022
empty statements 38—39
Encyclopedia Mac ROM (Mathews and Friedland) 4
end-of-file 225-27
Enter key 20, 207-9
environments, development 6. See also THINK C
equals sign (=) 46
error handling 244-49
escape character 23
escape sequences 46
escape term origination 23
Event Manager 266-69
event processing
event parsing and 117, 123-24, 125
event types 122-23
multitasking and 127-29
overview 83-84
System 7.0 changes 266—69
waiting for events 84, 125-29
EventRecord structure 83, 122-23, 128, 267
expressions
C language 38-39
searching for 22-25
extensions, filename 12, 13, 17, 18
extern keyword 54

F
factoring code 268-69
file filter hook proc 197, 200-201
File Manager
error tokens 244—45, 245
mapping errors to string resources 248—49
routines 227-30
using 230-35
files
attribute-bits 209-11
forks 224-27
formats 226
header (see header files)
high-level and low-level manipulation (see File
Manager)
installing THINK C 9-10, 17

files, continued
naming conventions 12, 13, 17, 18
opening 198-202, 242-49, 244
operations on 217-18
organization of (see file system; folders)
project 16-17
reading 25052
resource (see resource files)
selecting 198—202, 241
signatures 25, 239-41
source (see source files)
specifying 223-24
viewing binary 253-56
viewing text 252-53
viewing utility (see Browser application)
file system. See also folders
bad blocks on disks 221
disk drive nomenclature 218
etiquette 217-18
File Manager routines 227-30
File Manager usage 230-35
hardware 218-21
volume structure 221-27
FindControl routine 186
Finder 28-29, 194-95
Finder information block 194
FindWindow routine 159-60
FInfo structure 229
fixed point variables 4243
Fixed variable type 42—43
flat file system 193
floating point variables 40, 41-43
float variable type 40, 41

flow control statements. See control statements

flushing files 218
folders
development 9-10, 17

hierarchical file system (HFS) and 222-23

project 16-18
Font Manager
initialization 84-85
System 7.0 265-66
fonts. See also characters
changing 82
changing default 19, 266
outline 265-66
forks, file 224-27
Jfor loops 63
formats, disk 218-20, 220
formats, file 226
forums, CompuServe 107, 192, 256-57
fragmentation, heap 100
frame pointer 97
free blocks 99
free space, finding 230
FS (File Manager routine prefix) 229

INDEX

FSRead routine 250
functional specification phase of design 193
functions
call stack 30, 96-98
declaring 64-67
global 22, 147
intersegment calls 91
libraries 11-13, 27, 35, 70, 72-73
prototypes 67
static 121
void 66

Generic Application. See miniGeneric application;
multiGeneric application; nonGeneric
application

Gestalt Manager 260-61

Gestalt routine 260-61

GetDItem routine 203

GetFInfo routine 194

GetIndString routine 248

GetMenu routine 133

GetNextEvent routine 83

GetPicture routine 170 .

GetResource routine 171

GetWVariant routine 263

global coordinate system 75

global functions 22, 147

GlobalToLocal routine 75

global variables 22, 53-54, 147

grafPorts

creating 75-76
locating drawing action 8082 (see also drawing)
setting current 80
windows and 73-75 (see also windows)
GrafPort structure 81
graphics. See also QuickDraw
documents and scrolling 163-65
entities 83
resources 168-70
grep search facility 22-25
GrowWindow routine 161

H
.h (suffix) 12, 13
halting program execution 32-33
handles 57, 99, 101
hardware, file system 218-21
header files
precompiled 15
in project folder 17-18
THINK C 13-15
viewing names of 20
heap, application
fragmentation 100
problems with using 105-11

273

MACINTOSH C PROGRAMMING BY EXAMPLE

heap, application, continued
using 98-105

heap, system 89, 222

Hello Mac! application example 71

Hello World application example 69-70

hexadecimal constants 46

HideControl routine 153-54

HidePen routine 153-54

hierarchical file system (HFS) 193. See also file system
Macintosh file system (MFS) vs. 193, 223
physical and logical organization of 222-27
volume information 219-21

high-level events 267

high-level formats 219-21, 220

highlighting scroll bars 181-83

HiliteControl routine 181

HLock routine 109

hook procs 197

How to Write Macintosh Software (Knaster) 257

HUnlock routine 109

HyperTalk language 4

|

#if 0 directive 37-38

#include directive 14

IAC (interapplications communication) 26669
if-else if-else statement 60—62

if-else statement 59

if statement 58-59

include files. See header files

increment operators 50

initializing Toolbox managers 84—85

insert mode 19

Inside Mac DA (Gallet) 106

Inside Mac Desk Accessory shareware utility 4
Inside Macintosh 3—4

integer variables 40, 41

interapplication communication (IAC) 266—-69
interfaces. See user interfaces

int variable type 40, 41

invalidation 157-59

invisible attribute-bits 209-11

isolating user interface code 268-69

J

jump table 91

K

k (constant name prefix) 45

keyboard events 128

keyboard shortcuts
Command-key shortcuts 19, 20, 21, 22, 27, 31, 33
Option-key shortcuts 19, 20, 22
Shift-key shortcuts 19, 20

274

L
languages, programming 4—6. See also C language;
THINK C

libraries 11-13, 27, 35, 70, 72-73

Lineto routine 83

linking 9

LoadSeg routine 91

local coordinate system 75

LocalToGlobal routine 75

local variables 52-53

locking files 217

locking memory blocks 109-11

logical end-of-file 227

long variable type 40, 41

loops 62-63

Loser application
creating dialog box by modifying dialog resource

file 210-15

designing user interface 193-97
hook procs 197
Macintosh packages 196
managing radio buttons 2039
manipulating the invisible bit 209-11
overview 191-92
as part of MacUser’s Security utility 192
program design phases and 192-93
using Standard File Package 198—202

lowercase 36

low-level formats 218-19

MacHeaders 15
Macintosh file system (MFS) 193, 223. See also file
system
Macintosh Human Interface Guidelines, The 3
Macintosh packages 196
Macintosh Programmer’s Workshop C (MPW C) 6
Macintosh Technical Notes 129
MacTraps library 13, 27, 72-73, 85
MacTutor magazine 256, 257
MacUser magazine 192
main() function 29-30, 69
make facility and makefiles 16-17, 29
managers, operating system 3-4, 115, 116
managers, Toolbox. See Toolbox managers
mariana principle 157-59
master file. See project file
master pointers 99, 101, 103, 264-65
math library 13
MAUG programmer'’s forum 257
memory
allocation for applications 25-26
allocation for windows 78
application heap 98-105
application heap problems 105-11
application stack 96-98

memory, continued
managing 24-bit and 32-bit addressing 261-63
map 88-89
overview 87
program code in 89-91
program data in 91-94
scope of variables and 94-111
system heap 89, 222
virtual 264
Memory Manager 261-63
menus
creating, with resources 129-32
initializing 132-34
reading selections 134-36
MenusSelect routine 134
message-based operating systems (MBOS) 266
metacharacters, grep 23-25
miniGeneric application
adding menus 129-32
event processing 122—-29
as event-processing shell 113, 117-19, 136
files 119-29
initializing menus 132-34
reading menu selections 134-36
software levels and 114-16
minus sign (=) 24
modules
adding and deleting 26-27
defined 27
getting size of 26
MoreMasters routine 103
MultiFinder 125, 127-29
multiGeneric application
miniGeneric origins of 138
overview 137-38
screen management with multiple windows
150-59
source code control and 138—41
supporting standard window manipulations
159-62
windows and documents 141-50
multitasking 127-29

naming conventions
files 12,13, 17,18
functions 36
symbolic constants 45—46
variables 36, 39—-40
NewPtr and NewHandle routines 99
NewWindow routine 78
nonGeneric application
concept of scrolling 165-68
creating document contents with resources 168—74
managing scroll bars 181-83
managing scrolling 176-81

INDEX

nonGeneric application, continued
overview 163-65
rendering scroll bars 183-84, 186
rendering scrolled documents 174-90
scroll bars and scroll values 175-76
scroll bar size 178
scrolling routine 187-90
scrolling text vs. graphical documents 163-65
user selection in scroll bars 186-87
nonprintable characters
symbolic constants and 45-46
white space and 36-37
nonrelocatable blocks 98-105
null pointers 78
null statements 38-39
null terminators 79

o
object code 17, 89-91
octal constants 45
open document table

adding to 147-49

deleting from 149

described 146
OpenPicture routine 169
OpenResFile routine 18
operating systems. See System software; UNIX

operating system

operations, file 217-18
operators, C language

assignment 48-49

binary 48—49

increment and decrement 50

precedence 51

ternary 50-51

unary 49-50
operators, grep 23-25
Option-key shortcuts 19, 20, 22
origins, coordinate systems 74
OSErr token values 244—45, 245
OSType file signature data 240
outline fonts 265-66
overstrike mode 19

\p (Pascal string) 241
packages, Macintosh 196. See also Standard File
Package
PACK resources 196
panic button 33
parameter block 228
parameters
defined 12
passing, to Toolbox routines 7678
substitution 246
variable 77

275

MACINTOSH C PROGRAMMING BY EXAMPLE

parentheses () 36, 51, 52, 65
parsing events 123-24, 134-35
partition size 25-26
Pascal language
calling conventions 98, 199
C language vs. 77, 79, 98, 199, 241
disadvantages of 5
environments 34
string declaration 241
pascal keyword 199
PB (File Manager routine prefix) 227
PBH (File Manager routine prefix) 227
PBHGetFInfo routine 228
PBHGetVInfo routine 230
PBOffLine routine 221
pen, grafPort 8082
period () 23, 55
physical end-of-file 227
PICT resources 168-70
pictures 168-70
pixels 74
pointers
declaring 56-57
frame 97
handles to structures 58
master 99, 101, 103, 264—65
null 78
to pointers (handles) 57, 99, 101
to structures 57-58
portability 35. See also System 7.0 compatibility
ports. See grafPorts
precedence, operator 51
precompiled headers 15
preliminary design phase 193
printf funtion 70
Programmer's Apple Mac Sourcebook, The 106
Programmer’s Guide to MultiFinder 125
Programmer’s Introduction to the Macintosh, The 3
programmer’s switch 85
programming
applications (see applications)
development cycle 6-7, 8
development environment 6 (see also THINK C)
forums 107, 192, 256-57
interfaces 2-3 (see also user interfaces)
languages 4-6 (see also C language)
organization of this book on 2
preparation 8
reasons 1
reference information 34, 5-6, 8, 12-13, 125,
256-57
requirements 2
programs. See applications
project file 16-17
project folders
header files 17-18
project file 16-17

276

project folders, continued
resource file 18
source files 17
types of projects 25
Prototyper resource maker 130, 256
prototypes, function 67

Q

QuickDraw. See also drawing
creating windows 79-82
graphic entities 83
hiding and unhiding pens 153-54
initialization 84-85
pictures 169
setting current grafPort 80
quotation marks
double (") 14
single (" ') 240

radio buttons 203-9
real variables 40, 41-43
refCon fields 146
reference, passing parameters by 76
references, programming 3-4, 5-6, 8, 12-13
referencing 102
registering file signatures 240
register keyword 53
registers 53, 92-94
relocatable blocks 98-105
replacing text 20-22
request (IAC) 266
requirements phase of design 192-93
ResEdit resource editor 18, 130
ResError routine 170
resizing windows 161
resource files
creating and modifying dialog boxes with 198-202,
210-15
creating menus with 129-32
creating text and graphics with 168-70
default fonts and 19
definition procedures 145, 263-64
file resource forks and 224-27
mapping errors to string 248—49
project 18
reading graphics 170
reading text 171-74
types 226
resource forks 224-27
Resource Manager 224-27
response (IAC) 266
Return key detection 207-9
return statement 65
return values 12
Rez resource editor 130

ROM software 114-16
.rsre (suffix) 18
running projects 25-28

saving files 19
scope, variable 5254, 94111
screen management
activating windows 151-54
drawing and the update process 154-57
invalidation and the ma#iana principle 157-59
multiple windows and 150-54, 1517
window regions 154
scroll arrows selection 186
scroll bars
managing 181-83
parts of 175-76
rendering 183-84, 184-86
scroll values and 17681
size 178
user selection in 186-87
scrolling 163-68. See also nonGeneric application
scroll page area selection 187
scroll position values 176-81
scroll thumb selection 187
ScrollRect routine 167
searching source files
for regular expressions 22-25
for text strings 20-22
sectors, disk 218-21, 219
Security application 192
segmenting code 26, 90-91
Segment Loader 90
selections
files 198-202, 241
menus 134-36
scroll bars 18687
text 19
SelectWindow routine 152
semicolon (;) 38
server (IAC) 266
SetCtiMax routine 183
SetCtiValue routine 208
SetDItem routine 207
SetFInfo routine 194
SetOutlinePreferred routine 266
SetPort routine 80
SetRect routine 79-80
SFGetFile routine 195, 198-202, 241
SFPGetFile routine 199
SFPutFile routine 195
SFReply structure 223
shell, applications. See miniGeneric application;
multiGeneric application; nonGeneric
application
shell software level 116
Shift-key combinations 19-20

INDEX

shortcuts, keyboard. See keyboard shortcuts
short double variable type 40, 41
short variable type 40, 41
ShowControl routine 153-54
ShowPen routine 153-54
signatures, file 239-41
single stepping 30
SizeWindow routine 161
slash-asterisk (/*) 37
slash-slash (//) 38
software
applications (see applications)
levels 114-16
system (see System 7.0 compatibility; System
software)
source code control systems (SCCS) 138-43
source files
checking syntax of 27
compiling 25-28
debugging (see Debugger, THINK C)
editing (see editor, THINK C)
editing, while debugging 32
factoring 268-69

modules and code segmentation 26-27, 90-91

in project folder 17
tracking changes to 139-43
source window of Debugger 29-33
space, white 36-37
sprintf() routine 255
square braces ([1) 24, 54
stack, application 96-98
Standard File Package 198-202
Standard Libraries Reference manual 12-13
star operator (*) 56
statement markers 31
statements, C language 38-39. See also control
statements
static functions 121
static keyword 53-54, 121
static variables 53-54, 122
stdio library 70
STR# resources 248—49
strcat() routine 256
strings
C vs. Pascal 79
packages 196
parameter substitution in dialog boxes 246
resources 26, 248—49
searching for text 20-22
StripAddress routine 264—65
struct keyword 55
structure region of windows 154
structures, data 55-56
subdirectories 222-23
subscripting, array 54
suffixes, filename 12, 13, 17, 18
suggestions 25657

277

MACINTOSH C PROGRAMMING BY EXAMPLE

switch, programmer’s 85
switch statement 62
Symantex, contacting 107
symbolic constants 45-46
symbolic debugger. See Debugger, THINK C
syntax
checking source file 27
THINK C functions 12
SysEnvirons routine 260
System 7.0 compatibility
AppleEvents 267-68
comparing master pointers 264-65
custom definition procedures 263-64
event processing 266-69
Finder 28-29
high-level events 267
memory addressing and 261-63
outline fonts 265-66
overview 259
testing for system version 260-61
virtual memory compatibility 264
system clock 127
system globals 89
system heap 89, 222
System software
compatibility (see System 7.0 compatibility)
managers 3—4, 115, 116
System 6.0 debugging 28
testing for version of 26061

T

table, open document 146, 147-49

TENew routine 173, 252

TERec structure 171-74, 252

ternary operator 5051

TESetText routine 173-74

text. See also characters; fonts; strings
documents, scrolling 163-65
editing 18-20
files, viewing 25253
parameter substitution in dialog boxes 246
searching 20-25

TextEdit routines 171-74

TextFont routine 8

TEXT resources 168-70, 171-74

THINK C
compiling and running projects 25-28
CompuServe forum 107
creating and editing projects (see editor, THINK

C; source files)

debugging projects (see Debugger, THINK C)
development cycle and 7
development folder installation 9-12, 11
features 9
header files 13-15

278

THINK C, continued
libraries 11-13, 27, 35, 70, 72-73
MPW Cvs. 6
project folder and files 16-18
tick counter 127
Toolbox managers
initializing 84-85
MacTraps library and 85
passing parameters to routines 76-78
refCon fields 146
routines 3—4
routines that relocate heap objects 106
software level of 114-15
tracing 31
TrackControl routine 186-87
tracks, disk 218, 219
two’s complement number storage 43
typedef keyword 44, 55-56
types, variable
automatic conversion 47
data structure 55-56
defining variables and 40-44
memory usage of 94
temporary conversion 51-52

unary operators 49-50
unix library 13
UNIX operating system
converting applications from, to Macintosh 13
makefiles 29
utility names 22
UnloadSeg routine 91
unlocking files 217
UnmountVol routine 221
unsigned keyword 43
unsigned variables 43
update process 154-57
update region of windows 154
uppercase 36
user-defined variable types 42—43, 44
user interfaces
application shells (see miniGeneric application;
multiGeneric application; nonGeneric
application)
console routines 70
conventions 2-3
designing 193-97
dialog boxes (see dialog boxes)
isolating code for compatibility 268-69
packages 198-202
resources for (see resource files)
scroll bars as 175 (see also scroll bars)
Toolbox managers 114-15
windows (see grafPorts; windows)

v

value, passing parameters by 76
variables
array 54
assignment of values to 46—47
automatic (local) 52-53
automatic type conversion 47
constants 44—46
data structures and 55-56
finding global 22
names 39-40
parameters 77
scope 52-54
scope and memory usage 94-111
static (global) 53-54, 122
temporary stack 109
temporary type conversion 51-52
types and defining 40—44
types and memory usage 94
variant record parameter block 228
VAR modifier 77-78
virtual memory compatibility 264
void functions 66
volumes, disk
file system 222-27
finding free space 230
formatting 219-21
mounting and unmounting 221-22

w

waiting for events 84, 125-29
WaitNextEvent routine 84, 125-29
watchpoints 33

WDEF resources 145, 263—64
while loops 63

INDEX

white space 3637
window definition functions (WDEF) 145, 26364
Window Manager
events 128
initialization 84-85
System 7.0 26364
WindowRecord structure 76
windows
activating 151-54
closing 149-50
creating 7576, 79-82
definition procedures 145, 263—64
documents and 141-50 (see also documents)
disposing of 84
dragging 162
grafPorts and 7375 (see also grafPorts)
invalidating 157-59
managing multiple (see multiGeneric application)
opening new 143-46
regions 154
resizing 161
resources 145, 263-64
screen management with multiple 150-59
scrolling (see nonGeneric application)
standard manipulations 159-62
types 145
updating 154-57
zooming 161-62
WMgrPort 74-75

ZMac forum on CompuServe 192
zooming windows 161-62
ZoomWindow routine 161-62

279

About the Avthors .

Kurt W. G. Matthies and Thom Hogan are microcomputer veterans. Kurt is an inter-
nationally known writer, lecturer, and software developer. He is a former contribut-
ing editor to MacUser magazine, for whom he and Thom cowrote the popular Power
Programming column. As a software developer, Kurt has collaborated on many
Macintosh, MS-DOS, and UNIX programs. He has lectured internationally on C pro-
gramming and on operating systems and holds a degree in engineering from San
Francisco State University. Kurt lives in Boulder, Colorado, where he runs his own
software consulting company. This is his first book for Microsoft Press.

Thom Hogan is a software developer, programmer, technical writer, and lecturer. He
is the author of several books, including The Programmer’s PC Sourcebook (now in
its second edition) and The Programmer's Apple Mac Sourcebook (both from
Microsoft Press) and the bestselling CP/M User’s Guide. Thom has been a regular
columnist for MacWorld and MacUser magazines and a frequent contributor to other
computer magazines. He is currently an evangelist for GO Corporation.

The manuscript for this book was prepared and submitted to Microsoft Press in elec-
tronic form. Text files were processed and formatted using Microsoft Word.

Principal editorial compositor: Debbie Kem

Principal proofreader: Deborah Long

Principal typographer: Carolyn Magruder

Interior text designer: Darcie Furlan

Principal illustrator: Lisa Sandburg

Cover designer: Studio MD

Cover color separator:-Color Services, Inc.

Text composition by Microsoft Press in Garamond Light with display type in Futura

Extra Bold, using the Magna composition system and a Linotronic 300 laser
imagesetter.

Printed on recycled paper stock.

Code Disk for
Macintosh*C
Programming by Example

Mk:msaﬂ

MACINTOSH C
PROGRAM MIN©
BY EXAMPLE

Now Mac® users with little or no C language programming experience can learn to develop their own

programs in THINK C;" Symantec’s full-featured language ?or Mac programming. From the authors of the

Ezpulur “Power Programming” column in MacUser, this example-packed introduction is an ideal entry into
th the Macintosh and the THINK C programming environments.

MACINTOSH C PROGRAMMING BY EXAMPLE starts with the basics—an introduction to the THINK C program-
ming environment (including the debugger), a look ot the C language itself, an overview of Mac application
I‘unt?umentols, and an explanation of how the Mac manages memory. Then Matthies and Hogan move to
the step-by-step development of Generic App, a full-blown application shell that contains all the menu,
dialog box, event, and window handling functions essential to every Mac program—you’ll use it as a basis
for application development again and again! To further demonstrate these essentials, the accompanying
disk contains six sample applications, each of which includes the C language source, header, and resource
files and the THINK C project file.

Knowing when to put theory to work and when to be pragmatic, Matthies and Hogan have filled the book
with practical tips. Source code examples you'll want to use in your own programming illustrate:

® Layered software design u The file system and how files are
m Event handling selected for opening and then read

4 1 m How the contents of any file can be
= ‘Wincow handhing displayed in either text or binary mode
® Data structures and algorithms for a Usechthe Toolhex

managing the document list -
® Drawing and updating text and graphics u. System 7.0 faciures
ONE 3.5" Package Contains System Requirements

'/ One 800K 3.5" disk Apple Macintosh with 1 MB RAM and a hard disk

THINK C versions 2.13 through 5.0
DISK INCLUDED

[SBN 1-55615-357-0
S000C
U.S.A. $34.95
U.K. £29.95 [VAT included) .
Canada $44.95 The Authorized

| Recommended) Editions

