
!ill ACINTOSH® PROGRAMMING SERIES 

A Step-by-Step 

Guide to 

Developing 

Programs with 

THINK C™ 

KURT W. G. MAnHIES 
THOM HOGAN 

DISK INCLUDED 





KURT W. G. MATIHIES 
THOM HOGAN 



PUBLISHED BY 
Microsoft Press 
A Division of Microsoft Corporation 
One Microsoft Way 
Redmond, Washington 98052-6399 

Copyright© 1991 by Kurt W.G. Matthies 

All rights reserved. No part of the contents of this book 
may be reproduced or transmitted in any form or by any means 
without the written permission of the publisher. 

Library of Congress Cataloging-in-Publication Data 
Matthies, Kurt W.G., 1954-

Macintosh C programming by example : a step by step guide to 
developing programs with Think CI Kurt W.G. Matthies, Thom Hogan. 

p. cm. 
Includes index. 
ISBN 1-55615-357-0: $34.95 ($44.95 Can.) 
1. Macintosh (Computer)--Programming. 2. C (Computer program 

language) I. Hogan, Thom, 1952- II. Title. 
QA76.8.M3M37648 1991 
005.265--dc20 91-37506 

CIP 

Printed and bound in the United States of America. 

123456789 MLML 654321 

Distributed to the book trade in Canada by Macmillan of Canada, a division of 
Canada Publishing Corporation. 

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd. 

Penguin Books Ltd., Harmondsworth, Middlesex, England 
Penguin Books Australia Ltd., Ringwood, Victoria, Australia 
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand 

British Cataloging-in-Publication Data available. 

Apple~ Mac~ and Macintosh® are registered trademarks of Apple Computer, Inc. Macreations "': Tycho "': and 
Tycho Table Maker™ are trademarks of Macreations Publishing Corp. Symantec® and THINK C® are 
registered trademarks of Symantec Corporation. 

Acquisitions Editor: Matjorie Schlaikjer 
Project Editor: Erin O'Connor 
Technical Editor: Jeff Carey 



CONTENTS 

PREFACE vii 

I. PROGRAMMING THE MACINTOSH WITH THINK C I 

2. USING THINK C 9 

3. ACPRIMER 35 

4. MACINTOSH APPLICATION FUNDAMENTALS 69 

5. MACINTOSH MEMORY MANAGEMENT 87 

6. INTRODUCTION TO THE GENERIC APPLICATION 113 

7. A SHELL THAT MANAGES MULTIPLE DOCUMENTS 137 

8. SCROLLING WINDOWS 163 

9. LOSER: A LESSON IN PROGRAM DESIGN 191 

10. THE MACINTOSH FILE SYSTEM 217 

II. BROWSER: OUR CULMINATING APPLICATION 237 

APPENDIX: SYSTEM 7.0 COMPATIBILITY 259 

INDEX 270 



PRIFACI 

Why anyone would want to do what I do for a living-sit day and night in front of a 
stolid, one-eyed deity and wrestle with abstract bits of mind-fluff-continues to be a 
source of wonder-to me and to my long-suffering family. Is it for the long hours, the 
backaches, the spreading middle, the chronic tic of eye strain? For all this and more. 

Sarcastic reflections aside, if you have the right temperament, programming the 
Macintosh can be one of the most rewarding preoccupations in this wide world. 
Granted, it can turn ugly as fast as the weather changes here in Colorado's Front 
Range. To paraphrase Robert Pirsig in Zen and the Art of Motorcycle Maintenance, 
writing a Macintosh application requires "great peace of mind." One thing is for 
sure: A Macintosh application's ease-of-use is directly proportional to the effort the 
programmer puts into writing it. Creating a Macintosh applicaton is tricky under the 
best conditions, and learning to write a maintainable application that's relatively free 
of errors takes years of experience. We've written this book to reduce the time it 
takes you to become an effective Macintosh programmer. 

You already know how to program? So did we. I came to Macintosh programming in 
1986 with a strong background in the UNIX environment, and Thom had spent years 
in CP/M and MS-DOS programming. In spite of our combined experience, we 
weren't prepared for the Macintosh's totally different software development require­
ments. And, unfortunately for us, back then there weren't many Macintosh applica­
tion examples around to teach us Mac ways. 

I've always found that I learn programming techniques best by example. If I can find 
a code example that does the kind of thing I want to do, I use that code as a founda­
tion and work a "variation on a theme" to solve my particular programming prob­
lem. This book provides the foundation common to almost all Macintosh application 
programming. 

The book came out of a relationship between Thom and me that's spanned several 
years and several ventures. Early in 1990, we started up a series of columns for 
MacUser magazine. The Power Programming series ran from February 1990, 
through June 1991. Each column focused on skills in a particular area of Macintosh 
programming: windows, menus, dialog boxes, text files, graphics, file-handling, and 
so on. What was unique in our approach was that we always demonstrated the spe­
cialized skill in the context of whole applications. 

Writing programs for the Macintosh requires much more than knowing how to use 
the various Macintosh Toolbox software managers-the utility routines embedded 
in the Macintosh read-only memory chips that display windows, report the mouse 
location, and read menu selections. Effective Macintosh application programming 
also requires that you engineer your program code so that your application uses 
memory and the Toolbox routines efficiently. 

vii 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The approach we used in the Mac User columns got a lot of positive feedback from 
readers. Experienced programmers said, "I wish I'd had this when I was learning to 
write for the Mac." Beginners expressed their gratitude and enthusiastically de­
manded more. 

Last year, Microsoft Press gave us the opportunity to publish the particulars of our 
approach in book form, a boon that has allowed us to rethink the columns without 
the magazine's 2500-word limit hanging over our heads. We've rethought, expanded, 
and rewritten the Power Programming columns. Now you'll find three full applica­
tions-Generic Application, Loser, and Browser-each of which describes a Mac­
intosh programming paradigm. We develop the applications over the course of the 
book's chapters, and you'll find fully finished copies on the disk that accompanies 
the book. And we've added a chapter on the C language that makes a point of going 
into aspects of the language that require special attention in the Macintosh program­
ming context. 

We thank everyone at Microsoft Press for helping this book come into being espe­
cially Marjorie Schlaikjer, the acquisitions editor whose superhuman stamina saw the 
writing of this book through to completion; our technical editor Jeff Carey, who kept 
us honest; and our manuscript editor Erin O'Connor, who provided an antidote to 20 
years of bad writing habits. Principal proofreader Deborah Long made many valu­
able suggestions, and text processors Debbie Kem and Barb Runyan prepared the 
manuscript for typesetter Carolyn Magruder's ministrations. Kim Eggleston, Lisa 
Sandburg, and Peggy Herman collaborated on the design, art, and layout. 

While we're at it, we want to thank Paul Somerson, Jim Bradbury, and Rhoda Sim­
mons at MacUser. Their work with us on the Power Programming series was 
invaluable. 

I'd like to make special acknowledgment of the best software design~r I ever met, 
Dennis K. Ward, whose thinking permeates the code examples in this book. Dennis 
and I have worked so closely together on Macintosh projects that it's no longer clear 
where his ideas about Macintosh applications end and mine begin. I also want to 
thank my good friend David J. Hall, who introduced me to the Macintosh way back 
when. And eternal love and kisses to Debby, Jason, Adam, and Jamie, who let me 
hang around the house all day in my pajamas. 

I sincerely hope this book helps you become a better Macintosh programmer. With 
the new, low-priced Macintoshes, System 7.0's interapplication communications fa­
cilities, and the latest agreement between Apple and IBM, the Macintosh seems here 
to stay. The need for Macintosh software is greater than ever, and the opportunities 
available to Macintosh programmers have never been better. Even if programming is 
a pain in the neck, it sure beats working for a living. 

viii 

Kurt W.G. Matthies 
Boulder, Colorado 
September 13, 1991 



1 

PROGRAMMING 
THE MACINTOSH 
WITHTHINKC 

Why would anyone want to become a Macintosh programmer? The answer is more 
complex than you might think. Several circumstances make a familiarity with pro­
gramming the Macintosh helpful if not downright necessary. 

• Mac users are becoming more sophisticated and are demanding more from 
their machines. Many state-of-the-art application programs allow user pro­
gramming through either macros or a built-in control language such as Basic. 

• Apple has privately indicated that a scripting language might eventually 
become part of the Macintosh operating system. 

• HyperCard and SuperCard give Mac users a taste of programming but lead 
them on. To accomplish meaningful work, HyperTalk and SuperTalk scripts 
usually have to resort to external commands (XCMDs) written in a traditional 
programming language such as C or Pascal. 

• The way programs are built dictates the way programs are used. A user famil­
iar with Mac programming restrictions won't be surprised by the behavior of a 
Mac application. 

• Corporate Mac use inevitably leads to custom applications and the need to tie 
the Macintosh into existing database and entry applications running on other 
machines. 

But more to the point, we've seen over time that virtually all Mac users eventually 
express an interest in learning how the Mac does what it does. Apple's documenta­
tion doesn't always explain underlying concepts, and the curious Mac user conse­
quently senses a wall between him or her and the inner confines of the Toolbox 
built into the Mac ROM. We've written this book to help you break through that wall. 

I 



MACINTOSH C PROGRAMMING BY EXAMPLE 

No Degree Necessary 
You won't need a degree in computer science to become a Mac programmer, but you 
will need some preparation. We know that the main hurdle in writing a first Mac ap­
plication is the volume of code it takes to put up a single window. That's where we 
can help. Our charter for this book is to help the casual programmer explore the 
wealth of system software that comes with the Mac. 

How This Book Will Proceed 
Before we get down to writing applications, we'll take care of a few important 
preliminaries. We'll introduce you to the THINK C compiler in Chapter 2, and in 
Chapter 3, we'll take a look at C language fundamentals. 

Then in Chapter 4, we'll develop a simple application. We'll step back in Chapter 5 to 
see how the Mac manages memory, and then in Chapters 6 through 8 we'll develop a 
generic application that will form the basis of all your future programming projects. 
In later chapters, we'll use this generic application to create applications that explore 
the file system, that demonstrate the graphics capabilities of the Mac, and that show 
how the Mac handles text. We'll look at a host of other examples of using the Mac's 
Toolbox. Every project will be a complete working application. 

If You're New to C 
For the projects in this book we'll use the C programming language. If you're new to 
C, look at the short C primer in Chapter 3. It's only a primer. It is not an introduction 
to programming. We assume that you already know about fundamental program­
ming concepts such as variables, subroutines, and assignments. We don't expect you 
to know C itself. 

Know Thy Mac Interface 
You do need to be familiar with the conventions of the Mac interface. We'll assume 
that you know what a menu, a dialog box, a button, and a window are, and we'll 
focus on how to put them together in an application program. 

If you study a Macintosh application carefully, you'll notice how the menus lead to 
dialog boxes, how button and command names refer to actions that the user takes, 
and how well-organized dialog boxes lead the user from the most significant choices 
to the less important ones. Compare two similar applications-two word processors, 
say-and notice which elements of the user interface are the same in both programs 
and which differ. Which interface do you like better? Why? If you can answer these 
questions, you're well on your way to understanding how to design a user interface 
for your programs. 

One advantage of programming the Mac over programming other machines is that 
much of the Mac's user interface is well defined and directly supported by the 

2 



1: PROGRAMMING THE MACINTOSH WITH THINK C 

operating system. You don't have to invent a window, a menu, a scroll bar, or any of 
the other features of the Macintosh interface. 

The small price you pay for having a standard interface is conformity. All Mac appli­
cations have an Apple, a File, and an Edit menu, and these menus have standard sets 
of basic commands and standard command-key equivalents for their menu com­
mands. That's because Mac programmers have agreed to cooperate with Apple and 
make their applications conform to the Macintosh user interface guidelines. This set 
of "suggestions" about what a Macintosh application should look like helps users 
know where things are when they first sit down to use a program. 

Your application designs should follow the guidelines-unless, of course, you have 
discovered a much better way of doing things; that's progress, after all. If your modi­
fications to the standard interface don't work, if they don't feel right, your users will 
let you know about it. One of the first applications for the Macintosh was a document 
outliner very Mac-like in all respects but one: The way the user scrolled text differed 
from Apple's specification. Users complained directly to the company, in letters to 
the editor in Macintosh magazines, in online comments on services like Compu­
Serve, and in many other ways. The program was redesigned, and later versions 
worked according to the guidelines. 

The sample applications in this book follow Apple's guidelines, and if you've used 
your Mac for some time, you probably have a pretty good idea of how a Macintosh 
application should look and feel. If you need information about a particular interface 
issue, you'll find the complete user interface guidelines in two books: The Program­
mer's Introduction to the Macintosh and The Macintosh Human Interface Guide­
lines, both published by Addison-Wesley. As a casual programmer, you're not likely 
to need these books, but they do deserve a browse. A professional programmer 
should have both. 

Know Thy Toolbox 
You also need to know something about how Apple divided the Macintosh's resident 
software into Toolboxes and Managers-roughly, Toolbox routines for the interface 
goodies and Manager routines for operating system chores like file handling. The 
six-volume Inside Macintosh, also from Addison-Wesley, is the definitive source for 
Macintosh programming information. Known tersely as IM by those of us who fre­
quent the Apple Macintosh Developer Technical Support electronic mail facility, In­
side Macintosh is the basic reference for system routine call syntax and for data 
structures. You don't need to rush out and buy all six volumes-the whole set repre­
sents a sizable investment. Start by buying Volume I. As you progress, you'll know 
when it's time to get the other books. 

Volumes I and II contain the original Macintosh programming information. Volume I 
focuses on the user interface, and Volume II on the behind-the-scenes operating sys­
tem activity. You'll use Volume I a lot and Volume II hardly at all. Volume III 
describes the Macintosh hardware and fills the reader in on changes to the Toolbox 
and Manager routines between the initial Mac (128K) and the Lisa XL. Volume IV 

3 



MACINTOSH C PROGRAMMING BY EXAMPLE 

covers changes that resulted from the introduction of the Plus and 512E models. Vol­
ume V describes changes that resulted from the addition of color and other hardware 
innovations with the Mac II. Volume VI describes changes that accompanied the ad­
ditional Mac models introduced in late 1990 and System 7.0, the new Mac operating 
system introduced in 1991. 

You might think of the volumes after I and II as "delta documents," documents that 
describe only changes or additions but that do not recap the original information. 
This makes IM somewhat hard to use. For casual programming, we recommend that 
you try a third party reference. A professional programmer will need all the IM vol­
umes at some point in his or her career because their detailed information will even­
tually come in handy for troubleshooting. 

A good third party resource is Encyclopedia Mac ROM, by Mathews and Friedland, 
from Brady Books. A software utility Kurt finds useful is the Inside Mac Desk Ac­
cessory, a shareware utility written by Bernard Gallet. This DA, available directly 
from its author, is first-rate-better than anything available from commercial pub­
lishers. It contains a database of the Toolbox calls and the data structures found in 
IM It really helps to have the information online and quickly accessible. A commer­
cial product of this type is available from Addison-Wesley, but we find the shareware 
utility much more useful. 

Know Thy Programming Language 
Picking a programming language is an emotionally charged decision. Everyone has 
his or her own ideas about which one is best. For the Mac, five general choices were 
available to us: HyperTalk, Basic, Pascal, C, and assembly language. 

We ruled out HyperTalk for many reasons. Although it comes free with every Mac, it 
simply doesn't have the power to control all aspects of the Macintosh by itself. 
XCMDs are available, but they must be programmed in one of the other languages. 
Moreover, the disjointed nature of HyperTalk scripts, scattered as they are within 
HyperCard stacks, makes it difficult to present finished solutions. HyperTalk also 
brings along a large overhead because it is interpreted by HyperCard, which eats up 
a lion's share of the available memory in a 1-megabyte Mac. Finally, HyperCard is 
mostly object oriented, which we feel makes it less suited for procedural operations 
such as scientific calculations or for carefully controlled sequences of events. 

Basic has many appealing features. You can run it interactively, so you don't have to 
wait until compile time to see whether a statement is going to execute the way you 
think it will. Basic is easy to understand. It's inexpensive and readily available. Un­
fortunately, Basic belongs to the old sequential world of computing, in which instruc­
tions are always executed in a particular order. (In the original Basic, that order was 
dictated by line numbers.) The event-driven Mac interface isn't well suited to this 
sequential control. Moreover, the Macintosh ROM expects to deal with special 
groupings of data called data structures, and Basic has no way of dealing with data 
structures directly, which means that Mac programs would have to be more compli­
cated than they might otherwise have to be. 

4 



1: PROGRAMMING THE MACINTOSH WITH THINK C 

Pascal has a reputation as a fine teaching language. Better still for our purposes, it 
was the language of choice internally at Apple as the Macintosh was developed. The 
data structures that the Toolbox and the operating system expect to deal with are 
forms Pascal directly understands. Two problems made us avoid Pascal: Coding 
pointers and handles-two basic types of Macintosh data-is somewhat cumber­
some in Pascal; and accessing low-level data such as individual bits is possible only 
through Toolbox macros. 

Assembly language, of course, lets you access the bits and bytes in memory, but we 
ruled it out because creating data and control structures tends to become quite com­
plex. Assembly language has no data structures or structured loops, leaving you to 
invent them yourself. And good assembly language code is difficult to read quickly. 

That left us with C, the language we have used for most of our programming projects 
in the last five years. We feel strongly that C does a better job of showing the control 
and manipulation of data structures for Mac programming than any other language 
does. The only real drawback to using C is that the Macintosh's native language is 
Pascal, and C data types and calling conventions differ from their Pascal counter­
parts. Another drawback is that C lets you do some very stupid things. C is a laissez­
faire language: It usually lets you do what you want to do as far as assignments and 
pointer arithmetic are concerned, but, because it's so lenient about checking for 
compatible data types across assignment operations, it will let you do nonsensical 
things in your code without much warning or complaint from the compiler. 

C assumes that you know what you're doing. This is the Pascal aficionado's major 
complaint against C, but it 's a feature that we enjoy. Be forewarned, though, that 
novice C programmers are virtually guaranteed to fall into one of C's traps at some 
point early in their careers. Guard against C's traps by double-checking every 
change you make to a program and by constantly double-checking your data types. 

As a prospective Mac C programmer, you need to be familiar with the syntax and se­
mantics of the C programming language. Sure, we'll supply you with working code, 
but you 'll need to understand the language if you want to write your own code and 
get the most benefit from this book. You'll need to learn the fundamentals of C­
variable declarations, assignments, function definitions, function calls. Don't worry 
if you don't have any experience with the language-we'll meet you halfway. Chap­
ter 3 is a brief C primer you can use as a reference. We do suggest that you pick up a 
copy of Kernighan and Ritchie's The C Programming Language, published by Pren­
tice Hall, if you're serious about learning C. This classic, known by the blue Con its 
cover, was the first book on the language. Recently revised, K&R is still our favorite, 
despite competition from dozens of other introductory books on C. 

Although the Kernighan and Ritchie book is excellent for learning how to use C, it 
doesn't teach you a thing about programming the Mac. As you read along in this 
book, we'll alert you to common pitfalls that await the new C programmer of the 
Mac, and we'll beef up our efforts when we get to more advanced topics like data 
structures, pointers, and dynamic memory allocation-and their relationship to the 
Mac. Of course, we think the best way to learn a language is by example. In each 

5 



MACINTOSH C PROGRAMMING BY EXAMPLE 

chapter, study the examples and re~d the code. We can't emphasize that enough. The 
code will teach you more about how to put a Macintosh application together than 
any description can. 

If you are a C programmer experienced in other development environments, forget 
everything you've learned about console-based systems. You'll find that all the basic 
stdio library routines for console input and output-routines such as getch, scanf, 
and the ubiquitous printf-are provided with the THINK C environment, but you'll 
be hard-pressed to find any real use for them in a Mac application. The good news is 
that you already know a lot about C that you can put to immediate use on the Mac. 

Know Thy Development Environment 
But why Symantec's THINK C? Why not Apple's own Macintosh Programmer 's 
Workshop C (MPW C)? That's an easy question to answer. MPW C is definitely a big­
league compiler, but with roots in UNIX, it isn't exactly the interactive, event-driven 
product Mac users are used to. MPW C comes with all kinds of special tools, but 
they're all invoked with cryptic command-line instructions or macros. The THINK 
C environment follows the Mac Interface Guidelines; it 's easy to learn; it's as full­
featured as MPW C; it produces code that is as small , reliable, and fast as MPW C 
code; and it costs less. 

We're not the only ones who think so, either. Some of the largest development 
houses in the industry, companies like Aldus (PageMaker, Freehand, and Persuasion), 
Claris (MacWrite and others), and Quark (XPress), have selected THINK C as their 
primary development environment. Indeed, we would guess that if you were to poll 
all applications developers, you'd find that more commercial programs had been de­
veloped with THINK C than with any alternative. 

Although THINK C is one of the easiest development environments to use, the next 
chapter is geared toward those who have little or no experience with THINK C. We 
might even have a thing or two to teach THINK C veterans. 

The Programming Process 
All of this brings us to the actual act of writing a program for the Mac. We'll start with 
an oversimplification. A program usually starts with your idea for a computer-based 
tool, which you then break into smaller, logically oriented pieces. Until you've 
figured out what it is you 're trying to accomplish, you shouldn't start to code. The 
first steps often take the form of notes, diagrams, samples of screens, or printouts. 
The more you refine your ideas before you sit down to code, the more likely you are 
to produce a useful program. 

A case in point: We spent two man-years sketching out our ideas and designing 
before we started the programming that eventually became Tycho Table Maker, our 
commercial table-editing program. We spent much of that time looking at examples 

6 



1: PROGRAMMING THE MACINTOSH WITH THINK C 

of tables and extrapolating the basic concepts our program had to treat. And we 
looked at how to put information into Tycho. (It doesn't make any sense to retype 
something that alreadyJexists, does it?) 

Our ruminations resulted in several paper designs for specific pieces of Tycho. In 
particular, we spent a great deal of time designing the underlying database the pro­
gram uses. But we wouldn't have even realized that a table editor needs an underly­
ing database if we hadn't done the preplanning. Had we simply jumped in and 
started to program, we probably would have spent a great deal of time inventing a 
database by trial and error-which, as you might suspect, is not the most efficient 
way to design software. 

When you fully understand the product you want to create, it's time to start pro­
gramming. You take your ideas and your paper design, and you begin to type source 
code into an editor. Source code is a sequence of computer-specific instructions for 
performing the process that carries out your program idea. All a computer does is 
process a sequence of instructions in a tightly controlled fashion. The real key to 
successful programming, therefore, is to identify the right process to encode, to 
think of all potential exceptions to the process that your program might encounter, 
and to keep the sequence of execution correct. 

A good computer language helps in these tasks. C is a structured language-which 
lets us create data structures and control structures that imitate the real-life ele­
ments we try to model in programs. C also provides the low-level access to data ob­
jects, such as pointers or the bits of a data word, that we need for writing efficient 
programs. 

THINK C has an adequate editor for typing in and organizing your source code. It 
also has a compiler and a linker and a debugger for examining your program in 
detail as it executes. Until this point in the programming process, you have used 
only the editor as you typed in your first-pass source code. Next in our programming 
sequence, you use the compiler to parse the source code instructions you typed into 
machine code, usually called object code, that the computer can understand di­
rectly. On the Mac, that object code must be linked into a file that the operating sys­
tem can understand and execute. Figure 1-1 on the next page illustrates the process. 

Finally, you've got a runnable application. Of course, if you didn't do a good job of 
designing it or if you put in illogical or nonsensical instructions, it might not run too 
well. Then you use the Debugger to explore your code. Rarely does the first pass at a 
program come even close to working. (You'll have an advantage with the examples 
in this book, though, because we'll provide source code listings that we know will 
work.) In real life, you often find yourself back at step 2 (entering and modifying 
source code) or even at step 1 (isolating and designing key modules of the program 
on paper). And so it goes. You edit, compile, link, and run your program, find the er­
rors, and go back through the sequence again. 

., 



MACINTOSH C PROGRAMMING BY EXAMPLE 

main() 
{ Text ed itor 

} 

no Compiler 

no All code 
Linker 

Run it . 

Figure 1-1. 
The programming cycle. 

What to Do Next 
To get yourself ready: 

• If you're a newcomer to programming, get some exposure to programming 
concepts and terms. We'll explain advanced concepts, but you need to know 
what a bit, a byte, an assignment, a loop, and a conditional expression are. 

• Get familiar with the C language. Chapter 3 is a helpful introduction, but we 
also recommend that you read The C Programming Language, Second Edi­
tion, by Brian Kernighan and Dennis Ritchie. 

• Know why you want to program the Mac. Are you merely curious about what it 
takes? Do you have specific needs that aren't met by existing programs? Are 
you looking for shortcuts? Do you want to be the next Andy Hertzfeld? If you 
understand why you want to know about programming, you'll get more from 
this book. 

So start up your editor. You're about to tackle your first Macintosh program. 

8 



2 

USING THINK C 
THINK C is one of the best-integrated programming environments to come along in 
years. You edit, compile, link, and run your program without leaving the environ­
ment. And, under MultiFinder with at least 2 megabytes of memory, you can use the 
THINK C Debugger to trace the execution of your program, stepping statement by 
statement through your source code. 

The editor in THINK C behaves as any Macintosh text editor or word processor you 
might be accustomed to does. As in most programming editors, text doesn't wrap at 
the end of a line as it does in a word processor and the editor supports automatic in­
dentation of subsequent lines, which is handy for writing structured code. You can 
cut and paste text, find and replace text strings, and take advantage of other features 
that are useful for programmers, such as the ability to find curly brace pairs. 

THINK C's built-in compiler converts your source code into machine readable in­
structions and stores this object code in the project file. You might be accustomed to 
development environments in which you have to keep track of the object files, the .o 
or .obj files that the compiler creates as a result of compilation. You won't have to do 
that in THINK C. 

Likewise, linking the code, the final step in creating a runnable application out of 
source code, is automatic in THINK C. Linkage proceeds as a result of running the ap­
plication. Because the objects are maintained and kept hidden by THINK C, there's no 
need for a script to control linkage. 

The Development Folder 
If you haven't installed THINK C on your hard disk yet, now's your chance. You'll 
find that THINK C works better if you follow the file system organization scheme we 
describe in this chapter. 

Keep all your development projects and the compiler in subfolders within one main 
folder, the Development folder. (We usually put this folder at the top of the file sys­
tem hierarchy, although you can put it anywhere.) Inside the Development folder is a 
folder named THINK C, in which the compiler, the debugger, and associated files 
will reside. Each programming project folder will reside at this level. 

9 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The most important files on the THINK C distribution disks are the THINK C inte­
grated programming environment file and the THINK C symbolic debugger file. Put 
these two application files, named THINK C and THINK C Debugger, in the THINK 
C folder. You'll also need ResEdit, the Apple resource editor, if you're to follow some 
of the examples in this book, so copy ResEdit from the THINK C distribution disks 
into the THINK C folder. 

Along with the compiler environment and the debugger come programming librar­
ies, header files, the precompiled headers file, library sources, and the class library. 
Minimally, you'll need to put the programming libraries and the header files in the 
THINK C folder. Put the file MacHeaders, the Mac #includes folder, the Mac Libraries 
folder, and the C Libraries folder in the THINK C folder. 

Although we don't use the class library for any of our programming projects in this 
book, you might want to play with some of the THINK C object-oriented program­
ming (OOP) examples, so you might as well install those files now. Add the oops Li­
braries folder and the THINK C Class Library folder to your THINK C folder. 

If you have a lot of disk space, copy the programming examples from the THINK C 
distribution disks. The best way to learn programming is to study actual programs 
that work. The more code you have access to, the more approaches you'll have to 
your particular programming problems. Some of the example projects are good for 
starting small applications as well as Control Panel utilities (CDEV) and desk ac­
cessories (DA). Instead of putting these code example folders in the THINK C folder, 
put them in the Development folder, at the same level as the THINK C folder in the 
file system organization. 

Another likely candidate for copying onto your hard disk is the C Library sources 
folder. This folder contains all source code for the THINK C programming libraries. 
(We'll talk about these in detail in a moment.) Again, put this folder in the Develop­
ment folder, at the same level as the THINK C folder. The other file folders at this 
level can be independent projects, other programming libraries, or other devel­
oper's tools. 

Finally, put all the project folders from the source code disk for this book into your 
Development folder. Figure 2-1 illustrates a typical layout of the Development folder. 

With all these files in the Development folder, you might wonder how THINK C 
finds a particular file. It makes use of two hierarchies: the THINK C tree and the 
project tree. The THINK C tree encompasses every folder and file in the THINK C 
folder; the project tree encompasses every file in a project folder. This is why we ad­
vised you to put project folders at the same level as the THINK C folder. If you put 
the project files in the THINK C folder, THINK C would search all your project files 
every time it looked for a file, and it would run into trouble if you had multiple source 
files of the same name. 

10 



2: USING THINK C 

[i] ~ CJ THINK C 5.0 CJTHINK C DolJunor 5.LJ oops Ltbrarits 

CJ Moc Libraries CJ C Libraries CJ . 
Mac "inoluclos CJ odev stuff ~INK Cius LibranJ 1.1 

DA stuff DAsheTI 

CJ ~ [!I ~ 
Rtz Utilities compare oConv Prototypo Htlptr 

CJ 
CJ 

sample odev 
CJ 

Mim'Edit Foldtr 
CJ 

BuUstlJt Folder CJ 
HtK Dump DA OOPDornos 

TCL 1.1 Demos CJ 
CJ 

odev stuff 
CJ CJ 

ArtClassFolder CJ StartorFolder CJ 
NtwClassDemo Folder TfnyEdtt Folder DA stuff 

~ i 
heTio mac .c HoTio Projtot 

iDCJCJ 
GenApp'1 OonApp'Jf rsro GonApp Sro GonApp Hdr 

~ ~ ~ 
alloo.o arith.o asHrt.o 

Fl9ure2•1. 
Layout and organization of a generic development folder. The THINK C folder, 
Utilities folder, Demos folders, C Library Sources folder, and project folders are 
all at the same level. 

Pro9ra11111111in9 Lillraries 
The header files that come with THINK C and the programming libraries take up 
the bulk of the THINK C distribution disks. You can't write a Macintosh application 
without the Macintosh header files and the Macintosh libraries. The Macintosh 
headers contain definitions of the Macintosh data structures, and the libraries con­
tain the hooks into the Macintosh's programming Toolbox, which includes the rou­
tines to display a window, read a menu selection, and get a mouse click. 

A programming library is an organized collection of program pieces. These pieces, 
called functions, can be used by any program that connects, or links, the library 
with the program. The THINK C environment has a built-in linker for this purpose. 

,, 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Library functions provide a software toolbox for your program. Included in the 
many libraries that are shipped with THINK C are routines to process strings, format 
numeric values, search a list, sort a table, and perform file VO (input and output), 
along with a wealth of other routines. 

The functions in a library are in compiled, or machine readable, form. The human 
readable source code for a library is not usually available or, in the case of a com­
mercial library, is available only for a price. This is not the case with THINK C, 
whose library sources are included on the distribution disks. We salute Symantec for 
including these sources with the library functions. 

Library code is (usually) thoroughly debugged. When you modify proven source 
code, you run the risk of introducing new bugs into the code. You can't modify li­
brary code directly in binary format, so the use of compiled libraries can contribute 
to software reliability. This impenetrability of library code means, though, that each 
library function needs complete, descriptive documentation of its name, action, in­
puts, and outputs. The inputs to a function are called "parameters," or, informally, 
"arguments." The output of a function is known as its "return value." 

The Standard &l•rarie• Reference 
The THINK C library functions are documented in the Sta'Yl:fiard Libraries Reference 
manual that comes with THINK C. Symantec has borrowed the style for the entries 
in this book from the old UNIX Programmer's Manual, the original source of C func­
tion library documentation. The entries appear one function per page, with four 
main sections for each entry. At the top of the page, the function name appears, fol­
lowed by a one-line description of the function's action. The syntax, or usage, sec­
tion follows. Here's an example, the syntax for the function toupper(): 

#include <stdio.h> 
int toupper (char c); 

The first line tells us that we need to include stdio.h in order to use this function. The 
.h indicates that stdio is a header file. (We'll go into header files later in this chapter.) 
The second line tells us that toupper()accepts a character argument and returns an in­
teger. This gives us enough information to use toupper() in an application: 

#include <stdio.h> 

myFunction() 
{ 

int upperC: 
char c: 

I• placed at top of source file •/ 

/• declared inside function •/ 

upperC = toupper Cc); /*converts the character*/ 

The most important section of a library reference entry is the description, which 
tells you what the function does. The description for toupper() says that it returns 

12 



2: USING THINK C 

the uppercase equivalent character of a lowercase letter c ... ," so you know that 
toupper() converts lowercase letters to uppercase. 

If the function returns a value, the return value section of the entry describes the 
range of data values or the error value you can expect when the function returns. 
The function toupper() returns the uppercase equivalent of a lowercase letter. (The 
manual doesn't tell you what toupper() returns if the original character wasn't in the 
lowercase letter range-you have to find that out for yourself.) 

The reference manual is organized by library. The names of the several libraries that 
come with THINK C differ depending on the version of the compiler you are using 
(version 3.0; version 4.0; or version 5.0, the new System 7.0 compatible compiler). 
Here are some of the important THINK C libraries: 

Maclraps This is the most important library that comes with THINK C because it 
contains all references for the Macintosh Toolbox routines. Any program that uses a 
Toolbox function needs to link with the MacTraps library. In other words, virtually 
any program you write needs to link with MacTraps. 

ANSI The ANSI (American National Standards Institute) committee concerned with 
C has been active for years in an attempt to standardize the language. The functions 
in THINK C's ANSI library support the new standard. The library contains all of the 
1/0 functions, including print/(), file stream utilities, and character 1/0 primitives. It 
also contains floating point support. If your application includes floating point (non­
integer) calculations, you need to use the ANSI library. 

ANSI-small This library is similar to the ANSI library, but it doesn't include the 
floating point routines. Use this library if your application does not use floating 
point calculations and you want to save some space. 

math If you plan to use the C math functions, such as the square root, trig­
onometric, or logarithmic functions, you need to use the math library. 

unix The unix library is provided to help you convert UNIX applications to Mac­
intosh applications. Some of the unix library functions don't do anything-setpid(), 
for instance, is provided simply for compatibility. We've never needed to use this li­
brary when programming the Macintosh, and unless you're coming from the UNIX 
world, you won't either. 

Header Files 
THINK C comes with scores of header files, whose names characteristically end 
with the .h extension. The contents of these files are organized along the lines of In­
side Macintosh, by Toolbox manager. The names of the files differ depending on 
which version of THINK C you're using. If you're using anything other than THINK 
C 5.0, for example, Event Manager constants and structures are defined in the file 
EventMgr.h, QuickDraw stuff in QuickDraw.h, and Window Manager structures in 
WindowMgr.h. In THINK C 5.0, the file names conform with those used in MPW C: 
Events.h, QuickDraw.h, and Windows.h. 

13 



MACINTOSH C PROGRAMMING BY EXAMPLE 

C programmers use header files to define constants, macros, data types and struc­
tures, variables, and function prototypes. In programming, one header file is usually 
included by multiple source files, so the header file serves to fix a constant or data 
structure definition for all files in a project. Defining something, like a constant's 
value, in one place is organizational good sense: If you need to change the value, you 
need to do it only once. As your programs become larger and more complex­
perhaps encompassing dozens of source code files-the proper maintenance of 
header files becomes very important. 

Header files are sometimes called "include" files because their contents are included 
in the compilation stream with the contents of other files. In a C source file, you in­
clude the contents of one file in the compilation stream of another by using the 
#include directive. Consider the following source file, in which we've used #include 
to include two header files: 

#include "AppConstants.h" 
#include "FileUtil.h" 

main () 
{ 

In Figure 2-2, you see a diagram of the result. The compiler reads the contents of 
AppConstants.h and FileUtil.h before it looks at the source file code. 

Contents of 
THINK C editor 

~maln.c 
main<> 
{ 

Fl9ure2•2. 

{ { 

} } 

FileUtil.h AppCone;tante;.h Compiler 

The compilation stream using the #include directive. The compiler sees 
AppConstants.h, then FileUtil.h, and then the main() code. 

A note about the syntax of #include statements: When the compiler sees double 
quotes around the header file's name, as in 

#include "constants.h" 

it searches the current project folder tree, looking for the file constants.h. Converse­
ly, when the compiler finds angled brackets, as in 

#include <OuickDraw.h> 

14 



2: USING THINK C 

it looks for the header file in the THINK C folder tree. The angled brackets signify 
that the file is a compiler-supplied header file that resides in the THINK C hierarchy. 
If you've set up your Development folder as we've recommended, you must use the 
angled bracket form for THINK C header files. 

MacHeaclers 
Inside Macintosh is the standard guide to which header files you'll need to include in 
a particular source file. If you are using the Window Manager and accessing a 
WindowRecord data structure, you'll need somewhere in your source file the 
statement 

#include <Windows.h> 

if you're using THINK C 5.b or 

#include <WindowMgr.h> 

if you're using an earlier version of THINK C. Your program needs to know about 
the Window Manager data structures. (If you don't know what a data structure 
definition is now, don't worry-we discuss this in the next chapter.) 

The problem with this organizational convention is that you need Inside Macintosh 
to get started. The number of files that you'll need to include for most applications 
runs high. Beginners find that the compiler's syntax-checking error messages can get 
to be pretty annoying before they come up with a combination of header files that 
includes all the structure definitions. 

One solution to this problem is to use our Generic application, discussed in Chapters 
6, 7, and 8, which already includes the necessary header files. 

Beginning with THINK C version 3.0, Symantec came up with an elegant solution to 
this problem: precompiled headers. MacHeaders, the precompiled header file sup­
plied with THINK C, contains definitions for most of the commonly used managers. 
The file loads more quickly during compilation because it is in binary form, unlike 
conventional text header files. And you never need to load a manager include file be­
cause the compiler includes the MacHeaders file automatically if you set the 
MacHeaders compiler option. (You'll find compiler options in the THINK C editor's 
Edit-Options dialog box.) 

Custo• MacHeaders File 
If you really know what you're doing with header files, you can build your 
own MacHeaders from the text file Mac #includes.c, using the Precompile 
command on THINK C's Source menu. Just modify Mac #includes.c so that it 
will include the files you're interested in, and precompile it. If THINK C is to 
recognize the new file, you have to name it MacHeaders, so you might want 
to rename the original MacHeaders to avoid duplication. 

15 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The Proiect Folder 
A project folder holds all a project's files. Each of your programming projects should 
be in its own folder. A typical project folder contains four types of files: 

• The project file 

• C language source files , called ".c files," usually kept in a subfolder 

• C language header files, usually kept in a subfolder 

• The project resource file 

The Proiect File 
The project file is the master file for the project. Each programming project centers 
around the project file, which contains everything THINK C needs to construct the 
application from your source files. All project management is done from this file . 
When you open the project file in THINK C's integrated environment, a list of the 
source files appears in the project window, as shown in our example in Figure 2-3. 
To open an individual source file , double-click on its name in this window. You can 
use the arrow keys to move the selection bar up and down in the window. If you 
type the first few letters of a file 's name while this window is active, the selection 
cursor jumps to that file 's name. If there are multiple files with similar names (for ex­
ample, FileBuf.c, FileMgr.c, and FileUtil.c), the Tab key will move you to the next file 
name that contains the matching first few letters. 

Figure 2-3. 
The project file 
window for 
miniGenApjJit from 
Chapter 6. The file 
names are listed in 
this window with 
the file sizes. 

The Full Titles option (from the Windows menu) is useful when you have more than 
one version of the source code on disk. It displays the file 's path in the window title. 

For building programs, THINK Coffers a built-in, UNIX-like make facility. (When 
we say UNIX-like, we mean in essence, but certainly, we hasten to add, not in 

16 



2: USING THINK C 

appearance.) This facility keeps track of compilation dates and dependency infor­
mation for your source files and stores the data in the project file. In UNIX and MS­
DOS terms, this means there's no makefile. When you make a change to a file, the 
date and time are noted internally. When you try to run your program, THINK C re­
minds you that the project needs to be brought up to date. You can also configure 
the environment to automatically make the program before you run it, again with 
the Edit-Options dialog box. 

There are no .o files with THINK C. The project file holds the object code (machine 
language instructions) that is compiled from the source files. The project file also 
contains debugging data and linking data, such as symbol and line numbers, and 
code resource segmentation data. As a result, the project file can grow to be very 
large. Using the Precompiled Headers option can help reduce the size of your proj­
ect file, but you won't have to worry about the projects in this book taking up too 
much space. 

C Source Files 
The C language source files constitute your program code and end with the .c suffix. 
Generally, you'll have more than one source file to a project. To minimize the num­
ber of files in the project folder so that it doesn't become cluttered, put all your 
source files in a subfolder of the project folder. We organize all of our more extensive 
projects this way. For example, if the project file name is miniGenApp, we name the 
source subfolder miniGenApp Src. 

C Header Files 
Header files end with the .h suffix. They contain constants and the definitions of 
data types and structures, variables, and function prototypes. Again, you'll usually 

Source Fiie Suffixes 
The .c or .h suffix in these file names is a holdover from command-line sys­
tem days. Because the Macintosh system software designers chose a free­
form file naming convention, we don't have to suffer with an abbreviated 
name such as ACCNTS09.DBF, as our MS-DOS counterparts do. The free­
form convention means that file names can be more descriptive. We can 
change ACCNTS09.DBF to Sept. Accounts. (Periods can appear anywhere fu 
the name.) On the Mac, there's really no need for a file name "extension" to 
classify the file. The Finder notes the file's origin internally, so we don't need 
the .DBF extension to tell us that this is a dBASE file; the icon tells us that. 

Source file names in THINK C are a different story. C source file names mu'st 
end with .c. That's how THINK C recognizes them as C language source files. 
Likewise, by convention, header file names always end with .b. It's a thr~­
back, admittedly, but for now, that's the way it is. 

17 



MACINTOSH C PROGRAMMING BY EXAMPLE 

have more than one of these files in a project. We like to collect them in their own 
subfolder, under the project folder. 

The Proiect Resource File 
The final item you might put in the project folder is the project resource file. This 
file contains the program's resources-menu descriptions, dialog box item lists, 
PICTs, control definition functions, or other resources the application needs at run­
time. We build all our resource files with Apple's ResEdit, one of the so-called 
resource editors. Symantec ships ResEdit with THINK C. 

If you come from a different programming environment, the resource file concept is 
probably new to you. The principle behind resource files is that it's advisable to split 
program code from the user interface items, that any messages that a program dis­
plays to the user belong in the resource file, not in the source code. The idea is that if 
an application's interface items, such as strings, dialog box contents, menu titles, and 
other items of text within a program, are accessible from an outside source, the pro­
gram can be easily converted to another language system. 

This principle works pretty well, and we follow it in our examples. Anything a user 
sees in a program we place in the program's resource file. Each of our example pro­
grams has a resource file (except our first example, Hello Mac!, which doesn't really 
count as a full-fledged application). 

In a stand-alone application, the program's resources are built into the program file, 
in its resource fork (a topic we'll cover in Chapters 10 and 11). But in the THINK C 
environment, the application has to have access to the resource file. There are two 
ways to set this up. 

If you name the resource file correctly, THINK C automatically opens the resource 
file when you run your program. You should name the resource file after the project 
file name and give it an .rsrc extension. If the project name were GenericApp1t, for 
example, the resource file should be named GenericApp1t.rsrc. The resource file has 
to be in the same folder as the project file. 

The alternative is to use the OpenResFile call in your program. For example, the call 

OpenResFile ("GenericAppn.rsrc"l; 

will open the resource file for your program's use. You must make this call before 
your program accesses any resources. A program will eventually bomb if it doesn't 
have access to the resource file. There is no warning or safeguard against this in 
THINK C, and there shouldn't be. C programmers are masters of their own destinies. 

Working with THINK C 
Application development centers on the project file, and the THINK C environment 
won't operate unless a project file is open. So, the best way to begin a THINK C ses­
sion is by double-clicking on the project file name. If you open THINK C without a 

18 



2: USING THINK C 

project file, the environment will ask for one by presenting the Open Project dialog 
box. You must either select a project file to open or create a new project file. 

You're going to become very familiar with the features and commands in the 
THINK C environment as you spend hours and hours getting your programs up and 
running. You might spend most of your time in the editor. The multiwindow editor 
supports just about everything you'll need to edit your program's code. It is fast, it is 
highly functional, and it works as most Macintosh editor applications do. 

After the project file is open, you open the source code files by double-clicking on 
their names in the project file window or by choosing Open from the File menu. 
THINK C's Windows menu is handy for managing these files-it lists each open file. 
You bring an open window to the top by selecting it. The first nine open files get 
Command-key equivalents, Command-1 through Command-9, which you can use to 
bring a window to the top. Command-0 selects the project window. 

You save a file by using the File menu's Save command. Save As works a little differ­
ently than you might expect. Save As not only creates a new file with a new name, 
but it also changes the file name stored in the project file. If you want to save a file 
with another file name without changing the name in the project file, use Save A 
Copy As. 

You edit text in a THINK C editor window as you would in a Macintosh word pro­
cessor. Text does not wrap in the editor; you must use the Return key to start a new 
line. The editor automatically indents (autoindents) each line of text, which means 
that the next line begins under the first character of the previous line. 

You use the mouse to select text ranges. A double-click selects a word; a triple-click 
selects a line. There's no overstrike mode as there is in WordStar-like editors. The 
editor is always in insert mode. You overstrike text by selecting it and then typing 
the replacement text. Typed text always replaces any selected text on the Mac. 

You can use the arrow keys to move the text cursor around the screen. Alone, the ar­
row keys move the cursor character by character horizontally and line by line ver­
tically. The Option-arrow key combinations move the cursor as far as it can go in a 
particular direction: Option-up moves the cursor to the top of the file; Option-down 
to the bottom of the file; Option-left to the beginning of the current line; Option­
right to the end of the current line. The Shift-arrow key combinations extend the 

Cllan9ln9 .. Default Font 
The THINK C editor uses a 9-point Monaco font as its default font. Some 
people don't like this font for one reason or another. The default font number, 
size, and tab size reside in the second, third, and fourth words of the THINK 
C CNFG #() resource. You can change these values with a little ResEdit-styl~ 
surgery on your THINK C application. Remember to enter these values in 
their hexadecimal equivalents. 

19 



MACINTOSH C PROGRAMMING BY EXAMPLE 

selection range. These are nice features if you like to work without taking your 
hands from the keyboard. Pressing the Enter key scrolls the window contents so that 
the text cursor is in the middle of the window, which is handy for finding your place 
after scrolling around. 

The editor's Edit menu supports full cut, copy, and paste operations, which are all 
supported by their conventional keyboard shortcuts (Command-X, Command-C, 
and Command-V). You can shift blocks of text left or right by using the Shift Left and 
Shift Right commands on the Edit menu or by using the keyboard shortcuts 
Command-[ and Command-]. This feature is illustrated in Figure 2-4. The Balance 
command (Command-B) on the Edit menu is useful for finding syntax errors caused 
by your forgetting to close a block with a curly brace. 

Flgure2-4. 
Shifting text right. 
To use the Shift 
Right command, 
select the lines you 
want to shift, as 
shown on the top 
screen, and then 
press Command-}. 
The text shifts 
right, as shown on 
the bottom screen . 

Rpplnit.c 
I* -------------------------------------------------------------------

setUpMenus;: - set up the application men...is 
3 . 30 . 90kwgm 

se tupMenus ( ) 
{ 

0 

gOeskMenu = GetMenu <kAppleHenulO >; 
AddAesMenu < gOeskMenu, ' ORUA ' ) ; 
lnsertMenu <gDeskMenu , O>; 

gEd i tMenu = GetMenu ( kEd i lHenu ID >; 
lnsertMenu <gEdi tMenu , O>; 

Rpplnit.c 

1• -------------------------------------------------------------------
se tupMenus - set up the opp! ication menus 
3 . 30 . 90kwgm 

setupMenus < > 
{ 

gOeskMenu = Ge tMenu ( kApp I eMenu I 0 ) ; 
AddResMenu ( gOeskMenu, ' DRUR ' ) ; 
l nsertMenu <gDeskMenu, O>; 

JF1 l-ll··r1'l"' 1,o::tl1-r111 ~Fr to:.11.-.r,•ll(• • 
I ,,_ .... r tr1-r1•1 JF 1 1.-tJ.,,r 1 I 

gEdi tMenu = GelMenu <kEdi tMenulD >; 
lnsertMenu <gEdi tMenu, O>; 

If you hold down the Option key or the Command key and hold down the mouse 
button while the cursor is in an editor window title bar, THINK C displays a pop-up 
menu that lists the names of the header files included by the project file. If you then 
select one of the header file names, THINK C opens that file in the editor. This fea­
ture uses some internal project file information, so the source file must be part of a 
project and must have already been compiled for this feature to work. 

Searching for Text Strings 
The Search menu supports full text search and replace capability. You can search for 
text strings in single or multiple files. The search mechanism finds strings that match 
the search string and can replace them with the replace string. 

20 



2: USING THINK C 

You enter the search and replace information into the Find dialog box shown in 
Figure 2-5, which appears when you choose Find from the Search menu (or use the 
keyboard equivalent, Command-F). 

Flgure2•5. 
The Find dialog 
box. Note the check 
box options in the 
lower left corner. 

Search for: Replace with: 

~'g-W-in_d_ow~~~~~~~' '~~~~~~~~~~ 
D Whole Words Only 

~ Wrap Rround 

~Ignore Case 

D Grep D Multi-File Search 

Find )J( Don't Find ) ( Cancel ) 

After you specify a search string, you can find each occurrence of the string by using 
Find Again (or Command-A). You can replace the occurrence of the search string 
with the replace string by using Replace (Command-P) or Replace and Find Again 
(Command-W), which replaces the current selection and moves the cursor to the 
next occurrence of the string. 

Say, for example, that you want to change the name of the global variable gKill to the 
more descriptive gDeleteRefs. A global variable can occur in any file, so you'll have to 
search the entire project. Here is how you go about this in a project: 

1. Find the first occurrence of gKill. 

2. Select the word by double-clicking on it. 

3. Choose Enter Selection from the Search menu (or press Command-E). This sets 
the string for the search to the selected text, gKill. 

4. Type gDeleteRefs. Because gKill was selected, the typing replaces this string. 

5. Double-dick on gDeleteRefs to select the word. 

6. Choose Copy from the Edit menu (or press Command-C) to copy this word to 
the Clipboard. 

7. Choose Find from the Search menu (or press Command-F). Select the Replace 
With edit box, and press Command-V to paste the Clipboard contents into the 
dialog box. This sets the replace string to gDeleteRefs. 

The Find dialog box reflects the search and replace options shown in 
Figure 2-6. If you were replacing the search text in this source file only, you'd 
be ready to go. But because you're looking for all the instances of a global vari­
able, you need to set up the search so that THINK C will scan all source files. 

Flgure2•6. 
The Find dialog 
box. gKill is the 
search string and 
gDeleteRefs is the 
replace string. 

Search for: 

lgKill 

D Whole Words Only 

~ Wrap Rround 

~Ignore Case 

Replace with: 

I gDeleteRefs 

D Grep ~Multi-File Search 

([ Find m Don't Find ] ( Cancel ) 

21 



MACINTOSH C PROGRAMMING BY EXAMPLE 

8. Click on the Multi-File Search check box. You're presented with a dialog box 
that looks something like the one shown in Figure 2-7. Click the Check All but­
ton, and click OK. 

Flgure2-7. 
The Multi-File 
Search dialog box. 

40 l'lle Edit Sean h Pro je<t Source Windows 

Source files to search: 1 o 

Include files to search: o 
n OK 

[ Check RH I 
[ Che<k Rn ·"W 
[ Check RH .h I 
[ Check None I 

... - .. _ .. _ .. .. _ .. .. 
"Afl'lllHA ............. 
... T .... .. 
cc.tro ...... > ................ 

Whole Words Only Multl-Flle search 
D Wrap Around "'I _n_nd_..,.... __ _, 
181 Ignore Case • 

Cancel 

You are ready to start the search. You can replace occurrences of gKill one at a time 
with Replace and Find Again (Command-W) or replace all occurrences in a file at 
once with Replace All (no keyboard equivalent). When you're ready for the next file, 
choose Find In Next File from the Search menu (Command-T). 

To find function and global variable definitions, hold down the Option key or the 
Command key and double-click on the function name or the variable name. THINK 
C will open the source file in which the function or variable is defined and find the 
first instance of the string. If you include all your global variables in a header file, 
THINK C will open the source file containing the definition of main(). 

Using the grep Option 
The search routine has a built-in grep facility that lets you use a regular expression 
instead of a literal string as your match string. Unlike a literal string, which Specifies 

grep 
THINK C's grep feature is derived from a UNIX utility program of the same 
name. The name grep is an acronym that stands for (g)lobal (r~ 
(e)xpression and (p)rint. When it comes to esoterica, UNIX excels. The 
names of its five string-processing utilities-awk, grep, sed, lex, and yacc­
are classic examples of the jargon that permeates the computer sciences. The 
name awkis made up of the first letters of its authors' names: (A)ho, CW)ein;,; 
berg, and (K)emighan. The name sed is for a (s)tream (ed)itor. The lex utility 
builds (lex)ical analyzers, and the name yacc is an acronym for (y)et' · 
(a)nother (c)ompiler (c)ompiler, which isn't an entirely accurate name be­
cause it's only a parser generator. That's some computer programming 
folklore. We just thought you'd like to know. 

22 



2: USING THINK C 

only one string to match, a regular expression specifies a set of strings to match. A 
regular expression contains both alphanumeric characters and operator characters, 
called "metacharacters," that control comparisons, repetitions, and other features of 
the expression-matching facility. Some examples will illustrate what we mean. 

Any single character matches itself. For example, 

a 

matches a. You can freely concatenate expressions, just as you concatenate letters to 
make words. Any string as a regular expression therefore matches itself. Thus, the 
regular expression 

hello 

matches any occurrence of the string hello in the source text. The dot (period char­
acter) matches any single character. Therefore, the regular expression 

matches a, 1, K, . (the period itself), or any other single character. By itself, the dot is 
useless-it matches everything. But used with other characters, it becomes very 
handy. The expression 

c.t 

matches cat, cot, cut, cmt, c_t, and any similar string. If you want to find the dot and 
only the dot, however, you need to tell grep to treat the dot as a dot, not as a 
metacharacter. You do this by "escaping" the metacharacter with the backslash. For 
example, if you wanted to find all periods, you'd enter 

\. 

The expression that matches the backslash itself is 

\\ 

DLI 
The origin of the term "escape,'' which means to remove any special context 
of a character, comes from data communications, in which programs send 
special control characters in a data streiun to control communications. For 
example, in certain protocols, the end-of-text character (ETX) signals the 
end of a data block and the beginning ofa checksum value. If binary data is 
being transmitted, however, it is likely that the ETX character (which has a 
value of 3J is part of the data. The transmitting software therefore prefixes 
any control character with the data-link. escape character (DLE). The receiv­
ing program understands that any charaqter following the escape is data, not 
control, and therefore places the ETX in its data buffer. 

-'-

23 



MACINTOSH C PROGRAMMING BY EXAMPLE 

If you wanted to find a word with an embedded blank, you'd escape the blank, as in 

hello\ world 

The " operator specifies the beginning of a line. Therefore, the expression 

matches the word cat if it occurs at the beginning of a line, but not the second syl­
lable of the word concatenate. The operator $ matches the end of a line. The regular 
expression 

A,.,$ 

matches all lines that contain a single three-character word. 

The • operator specifies zero or more occurrences of an expression. The expression 

Ca*t 

matches cat, caaaaaaaaat, or ct. 

You specify a "character class" between square braces. A character class is a set of 
characters for grep to match against. The expression 

[bchm] 

matches a single character from the set b, c, h, or m. Again, this match might not be 
useful by itself, but its value becomes evident when you concatenate character class 
expressions, such as 

[bchm]at 

This expression matches the words bat, cat, bat, and mat. 

You use the - operator in a character class to specify a range of characters. For 
example, 

[a-z] 

matches any lowercase character, and 

[A-Za-z]* 

matches all text words. If you know C language syntax, you can use regular expres­
sions to find text words. (If you don't know C syntax, you'll learn about it in the next 
chapter.) For example, the expression 

A[A-Z_a-z][0-9A-Z_a-z]*[ ]*()[ ]*$ 

works pretty well for finding your function declarations, and 

A[A-Z_a-z][0-9A-Z_a-z][ ]*=[ ]*A[A-Z_a-z][0-9A-Z_a-z][ ]*;$ 

finds most assignment statements. 

24 



2: USING THINK C 

Within the bounds of a character class, the " operator matches all characters except 
the one that follows. For example, 

["a] 

matches all characters except a, and 

[ 11A-Za-z] 

matches any character that is not a letter. Note that, inside a character class, the cir­
cumflex does not match the beginning of a line. An expression such as 

11 [ 11A-Za-z] 

therefore matches any nonletter, but only at the beginning of a line. We apologize for 
this apparent contradiction in meaning, but regular expressions are inherently con­
text dependent. Using grep takes a special mindset. Although grep might offer a 
little more power than you think you'll ever need, it's nice to know it's there. THINK 
C's grep supports other operators, and we refer you to the well-written THINK C 
user's manual for more detail. 

Running with THINK. C 
After you've created your application's source code, you'll probably want to run it. 
THINK C's Project and Source menus control compilation, code generation, and 
program execution. 

The Set Project Type command from the Project menu brings up a dialog box similar 
to the one shown in Figure 2-8. 

Flgure2-8. 
The Set Project 
Type dialog box. 

@ Application 

O Desk Accessory 

0 Deulce Drluer 

O Code Resource 

Partition (K) ~ 

SIZE Flags Ii!) 14800 I 

FlleType ~ 

Creator l!ilfnll'll 

OFarCODE 
0Far DATA 

D Separate STAS 

(( OK J) Cancel 

Notice the radio buttons in the upper left corner of the dialog box in Figure 2-8. The 
Macintosh system software has different code configuration requirements for appli­
cations, desk accessories, and CDEVs. THINK C can create any kind of executable 
code on the Macintosh and therefore can create four types of projects: applications, 
desk accessories, device drivers, and code segments. All the examples in this book 
use the Application option. 

25 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Each application has a file signature that consists of the file type and the creator. An 
application is always of type APPL. The creator defines how Finder 

• Maps an icon to an application 

• Associates an application's documents with the application 

The partition size defines how much memory MultiFinder will allocate to the appli­
cation when it starts up. This is all the memory your application will get for both 
code and data, so it has to be enough. But it should not be so much that it hogs all the 
space on the user's machine-your user might want to run a concurrent application. 

You arrive at a reasonable value for the partition size by some initial guessing and 
trial and error. If you find that your application is running out of memory, you can 
bump up the value. It's a good idea to run an application in the smallest partition 
possible and in the partition that maximizes the number of applications your user 
can open. Our sample applications all use small partitions, but larger applications re­
quire more memory. 

To learn the size of your modules, use the Get Info command from the Source menu. 
Its dialog box displays the code size, data size, STR size, and jump table size for each 
module and segment and for the entire project. Code size is the size, in bytes, of the 
object code. The Macintosh system software requires that object code be grouped in 
segments {taken care of by the compiler's "back end" code generator), and each seg­
ment is limited to 32K. The code size value gives you an idea of how large your seg­
ments are getting. See the sidebar on segmenting your code for more information on 
how to keep your code segments under the 32K limit. 

There are other limits on Macintosh applications: 32K on data size and 32K on jump 
table size. If your data size is growing too large, which should occur only in some 
large projects, or if you've allocated memory for some large arrays on the stack, 
check the Separate STRS option in the Set Project Type dialog box to move your 
program's string constants into a resource and free up some space. The jump table 
limit won't be reached, again, except in large programs. If you're careful about 
keeping your code modular and using static functions, you shouldn't have any prob­
lem with the jump table size. But a vigilant programmer pays attention to organiza­
tion. Just because you don't need the space in small applications doesn't mean that 
you can be careless with space. We discuss techniques for managing jump table size 
in Chapters 3 and 5. 

Ses••ntlng Your Cocle 
If one of your code segments grows larger than 32K, you'll observe some 
strange behavior. When a segment grows too large, you have to move one or 
more modules to another segment. The segments are separated visually in 
the project window with a dotted line. It's easy to resegment your project by 
dragging a module name in the project window to another segment. 

26 



2: USING THINK C 

You add new source modules to the project file with either of two Add commands 
from the Source menu. You can't compile a source file until it belongs to a project file 
because THINK C writes the resulting object code into the project file. The Add 
command without the ellipsis adds the file associated with the current editor win­
dow to the project file. The Add command with the ellipsis opens a standard file dia­
log box and lets you select files to add to the project file. This dialog box stays open, 
letting you add multiple files with a single command, until you select the Cancel but­
ton. You remove a module from the project file by selecting the module name in the 
project window and choosing Remove from the Source menu. 

For most applications, you will need to add the MacTraps library to the project file. 
You do that by selecting Add (with the ellipsis) from the Source menu, navigating to 
the THINK C folder, selecting MacTraps, and clicking the Add button. THINK C will 
load the MacTraps library contents into the project file either automatically, when 
you run the program, or when you select the library name in the project window 
and choose Load Library from THINK C's Source menu. 

Compile and Make 
To run a program, THINK C first compiles the source code into machine-readable 
object code. The combination of a source file and its associated object code is called 
a "module." Whenever you change a file's source code, you need to regenerate the 
file's object code by compiling it. A source file needs compilation when 

• You first create it 

• You modify it 

• You modify another file that it includes 

Compilation occurs on a file-by-file basis. In THINK C, the source file name must 
end with the .c extension, and the compiler will not compile a file that doesn't 
belong to a project. You manually invoke compilation of a particular source file by 
choosing Compile from the Source menu (Command-K) to compile either the file 
displayed in the currently open source file window of the editor or the file selected 
in the project window if no source file window is open. 

If you're accustomed to other C compilers-say UNIX's cc, the Microsoft Optimizing 
compiler for MS-DOS, or the MPW C compiler-you're in for a pleasant surprise. 

Checking Syntax 
You can check a source file's syntax without invoking the compiler's code 
generator by choosing the Check Syntax command from the Source menu 
(Command-Y). Because the code generator is not run, you can use this 
method to check the syntax of a nonproject file or a file that doesn't end in .c. 
And because it doesn't generate code, this feature proves to be slightly faster 
than using Compile from the Source menu (Command-K). 

27 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The THINK C compiler is very fast. (Early versions of THINK C were called 
Lightspeed C.) Because THINK C's compiler is so fast, some developers use the 
compiler to check their code's syntax. The compiler stops when it finds a syntax er­
ror, opens a window into the file containing the error, puts the text cursor on the of­
fending line, and opens a message window that describes the error. 

In a working environment, most programmers let THINK C's built-in make facility 
take care of remembering which source files need recompilation. There are no 
makefiles to create and maintain in THINK C, which uses the project file informa­
tion and derives the dependency information directly from the source files. 

Choosing Run from the Project menu (Command-R) executes the program from 
within the THINK C environment. The make facility is automatically invoked when 
you run the program, so you never need to worry about whether your program is in 
phase with the source code. You can set an environment option to run the program 
either by beginning the recompilation process automatically or by putting up a dia­
log box that gives you the choice of compiling or of running the program without 
changing the object code. You can also invoke the compilation process by choosing 
Bring Up To Date from the Project menu (Command-U). If the project is already up 
to date, the environment simply runs the program. 

THINK C's make facility is almost always right about which files need compilation. 
When it's wrong, that's either because you've moved files into the project folder from 
backup disks and the modification times therefore don't apply to the current project 
or because you've manually manipulated the flags signaling that a file needs to be 
recompiled. 

Choosing the Make command from the Source menu brings up the dialog box shown 
in Figure 2-9. You easily turn recompilation on or off by clicking next to the module 
name. There are also buttons to force compilation of all modules or none. When the 
make facility becomes confused, it is best to click the Use Disk button and turn off 
the Quick Scan option by clicking its check box. Then THINK C will reset the make 
flags according to the results of its search through each header and source file for de­
pendency information and each file's time of modification. 

Flgure2•9. 
The make dialog Source flies to compile: 1 

Check RH 
box. Click on Libraries to load: 0 

( Check RH .c l 
module name MoutBox.o !! 

.,,..Applntt.o [ Check None ) to compile that Dtalogllttl.o 

module. Selection is Dlsplag.o H--·M-H--MHMO 

DooUtil.o ( Use Disk l indicated by check FfleUttl.o 

mark. Click on 
ttena11tn.o 1:81 Quick Scan 
HfsoUtil.o 

name a second t J) time to clear mark. Make ( Don't Make ) Cancel 

28 



2: USING THINK C 

The Debugger 
The symbolic debugger completes the THINK C development package. The debug­
ger is a separate application that runs concurrently with the THINK C environment. 
You must therefore have enough memory to run both the environment and the 
debugger, and, in System 6, you must be running MultiFinder. (The System 7.0 
Finder incorporates the concurrency features of MultiFinder.) You need only 2 
megabytes for small projects like the examples in this book. But if you're serious 
about developing average-size applications, you'll need more memory-about 4 
megabytes minimum. 

You'll find a second monitor useful when you start to work with the debugger. You 
can use your primary screen for your program display and configure the THINK C 
Debugger to run on the second monitor. In our opinion, this is the only way to 
debug glitches in user-interface software. When we developed our Tycho Table 
Maker application, we ran into problems with our user interface modules when the 
debugger windows interacted with the Tycho windows they overlapped. As soon as 
we moved the debugger to a second screen, the problems disappeared. 

To run your program with the THINK C Debugger, choose Debug from the Project 
menu. If you created your project without the debugging option, you'll need to 
recompile all your source code so that the symbol information gets generated. Don't 
worry-THINK C knows this and does it for you automatically the first time you try 
to run the program with the symbolic debugger. 

When you have the THINK C Debugger up and running with your program, you 
have three applications running: the THINK C environment, the THINK C Debug­
ger, and your program. This can get quite confusing, especially if you use keyboard 
shortcuts and consequently don't look at the menu bar to see which application is ac­
tually in the foreground. 

The THINK C Debugger has two main windows: the source window and the data 
window shown in Figure 2-10 on the next page. If you have a two-monitor system, 
the source and data windows appear on the second screen. On a single-monitor sys­
tem, these windows appear on the lower third of the screen. 

make and makefiles 
The make facility in THINK C is based on a UNIX program that drove com­
pilation. In its day, make was a technological wonder, using a combination of 
file dependency data and times of file modification data to determine which 
files in a programming project needed recompilation. The project adminis­
trator or a programmer defined the dependency information in a text file 
called the "makefile." The makefile also contained information about how to 
generate the object code, how to. link the object code, and what program­
ming libraries to include to create the stand-alone program. 

29 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 2·10. 
The debugger 
windows. 

The Source Window 

miniGenRpp'Jf-115.0 
obj siz• 

Data 

370 -0 
414 
316 
280 
308 
110 
444 

The source window's name is that of the currently active source module (Shell.c in 
Figure 2-10). When the debugger starts up, the module in the window will be the 
one that contains the function main(). Execution will be at a halt at the first state­
ment in your main() function. This statement might be an assignment statement. At 
the bottom left of the window you'll see the current function's name-when you 
first start the debugger, main. As you continue to run your program within the 
debugger source window, the name changes to that of the current function. If you 
hold down the mouse button when the pointer is in this region, a pop-up menu ap­
pears that contains the names in the chain of calls that got you to that function. This 
chain is sometimes called the "call stack." (If the program burrows deeply into func­
tion after function , it might take longer than you expect to create this menu. Hang in 
there-it will show up.) This menu is a live menu: When you select one of the func­
tion names, the debugger source window displays that function's source code. 

The six buttons at the top of the source window correspond to the first six menu 
commands in the Debug menu. If you click one of the buttons or choose the corre­
sponding command from the Debug menu, the button appears to be pressed, as 
shown in Figure 2-11. You can figure out where you are in the debugging process at 
any time by looking at these buttons. 

Figure 2· 1 1. 
The Go button is 
highlighted when 
you click it. 

30 

• main 



2: USING THINK C 

The Go button begins execution of your program and continues execution until a 
breakpoint or an error occurs. 

The Step button executes a single statement and returns control to the debugger. In 
C, a statement can contain multiple function calls, so if the line contains any function 
calls, the functions are run as a single statement. 

The Trace button works the way the Step button does in that it executes a single 
statement. But if the current statement is a function call, Trace traces control flow 
into the function and control stops at the first statement of the function. 

The In button also steps into a function, but it executes any number of statements up 
to the first statement of the next function in the statement stream. 

The Out button steps out of the current function. Like In, it executes any number of 
statements, but it stops at the statement after the current function returns. 

The Stop button stops your program regardless of the part that is executing. You can 
use the Command-period equivalent for Stop. 

NOTE: Be careful when using Out around the main event loop. If you're in 
the outermost level of your main() function and you select Out, the debugger 
will never return! You'll have to quit and restart your debugging session. 

The arrow on the left side of the source window (visible in Figure 2-10) points to the 
current statement. The little diamonds to the left of this arrow, called statement 
markers, correspond to statements in your source file. Each statement marker is a 
potential "breakpoint" at which the debugger will stop your program, letting you ex­
amine variables and other elements. 

To set a breakpoint at a particular statement, click on its statement marker. The dia­
mond will turn black to indicate that the breakpoint is set. When you press the Go 
button and execution reaches the statement, the debugger will stop the program and 
place the current statement arrow at that line. To clear a breakpoint, click on its 
darkened statement marker or select the line in the source window and choose Clear 
Breakpoint from the debugger's Source menu. You can remove all of a program's 
breakpoints at the same time by choosing Clear All Breakpoints from the debugger's 
Source menu. 

Setting a breakpoint in another module 
The source window displays the source module associated with the current state­
ment, and you can set breakpoints only in this module. The THINK C environment 
and debugger were designed to work together, however, and you can set a break­
point in another module: 

1. Switch out to THINK C by clicking in the project file window or selecting the 
project window from the debugger's Window menu. 

31 



MACINTOSH C PROGRAMMING BY EXAMPLE 

2. Open the file that contains the module in which you want to set the 
breakpoint. 

3. Choose Debug from THINK C's Source menu (Command-G). 

The source code for the new module will appear in the debugger's source window, 
so that you can set the new breakpoint by clicking on the appropriate statement's 
diamond. 

Editing a source Ille whlle clellu99ln9 
The linkage between the THINK C environment and the debugger works both 
ways: You can invoke the THINK C editor on the source file displayed in the debug­
ger window by choosing Edit from the debugger's Source menu (Command-E). This 
is a handy feature when you discover a problem and want to make a quick fix in the 
source code without quitting your program (the program you're debugging, not 
THINK C or the THINK C Debugger). 

SeHlng a temporary breakpoint 
You set a temporary breakpoint in your program by holding down the Command 
key or the Option key while you click on a statement marker. After you release the 
mouse button, the debugger will run your program up to that breakpoint and then 
clear the breakpoint. Two other commands from the Debug menu, Go Until Here 
and Skip Until Here, create something like temporary breakpoints. Both work with 
selections in the source window. After you select a statement (by double-clicking on 
the corresponding line in the source window), choosing Go Until Here (Command­
H) will cause your program to execute. up to the selected statement. 

The Skip Until Here command "jumps" the current statement arrow to a statement 
selection without executing the code between the arrow's old location and its new 
location. This feature can be useful for skipping over code that you know has bugs, 
when you want to test the various cases of a determinant expression, or even when 
you want to jump backward to re-execute some statements. But be smart about how 

Stuck In Aulo·Mocle 
The debugger has what the documentation calls its "auto-mode." A more 
descriptive name might be "sticky mode." If you hold down the Option key 
or the Command key when you click on one of the buttons at the top of the 
debugger's source window (Go, Step, In, Out, Trace, or Stop), the debugger 
will loop on each command as if the button were stuck. For example, if 
you're in auto-Step mode, the debugger will execute the next instruction, 
stop, update the source and data windows, and then step again, as if you had 
clicked the Step button again. The auto-mode is useful when you would like 
to watch a variable's value change as the program executes. You cancel auto­
mode by pressing Command-Shift-Period. 

32 



2: USING THINK C 

you use Skip Until Here. Don't skip over allocations and then try to use that memory, 
for example. And don't skip from one stack frame to another; you'll mess up the pro­
gram stack. 

Coming to a screaming halt 
Sometimes programmers inadvertently create infinite loops in their code. If your 
program is running but isn't responding to commands or if a breakpoint you set 
hasn't been reached in a reasonable amount of time, you can halt program execution 
by pressing Command-Shift-Period-what Symantec calls "the panic button." This 
key combination stops your program, invokes the debugger, and places the current 
statement arrow wherever the program was when you pressed the keys. The key 
combination works when the program itself is running in the foreground, but it 
won't work if your program intercepts the panic button (Command-Shift-Period). 

SeHlng a condltlonal breakpoint 
The THINK C Debugger also supports conditional breakpoints, called "watch­
points" in some debuggers. A conditional breakpoint halts execution only when a 
condition fails. To set up a conditional breakpoint: 

1. Click on the statement marker in the source window. 

2. Double-click on the statement line to select the statement. 

3. Click on an expression in the data window. 

4. Choose Attach Condition from the debugger's Source menu. 

The statement marker turns gray to signify a conditional breakpoint. 

You clear a conditional breakpoint just as you would a regular breakpoint-by 
clicking on the corresponding statement marker or by selecting the statement and 
choosing Clear Breakpoint from the Source menu. 

If you want to check the condition associated with a conditional breakpoint, select 
the statement and choose Show Condition from the Source menu. 

The Data Window 
The condition governing a conditional breakpoint depends on an expression in the 
debugger's data window. In the data window, you can examine the contents of your 
program's variables. The data window has three parts. The upper part is an edit box 
in which you can enter variable names or C language expressions. Below the edit 
box are two columns: The left column contains the names of data objects; the right 
column contains the values of the objects. (Objects in this discussion have nothing 
to do with object-oriented programming. They're basically variables, but they could 
be constants or enumeration types.) 

To display a variable, either enter its name in the edit box at the top of the data win­
dow or double-click on the variable name in the source window to select it and then 
choose Copy To Data from the debugger's Edit menu (Command-D). 

33 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The data window supports many of the fundamental C data types. The types it 
supports are listed in the debugger's Data menu. When a data object's value is dis­
played in the right column of the data window, you can format the value by selecting 
it and then choosing the appropriate format type from the Data menu. To change an 
object's value, select the value in the right column to place the value in the edit box, 
enter the new value in the edit text box, and press Return or Enter. The value must 
be consistent with the object's type and with the rules of the C language. You can't 
reassign a constant value, for example. 

If the data value is a pointer or a handle, double-clicking on it in the right column 
will create a new dereferenced value in the data window. This feature is handy for 
tracking through memory to look at objects on the heap. If the data object is a 
pointer to a structure, a subsequent double-click on the data object's value will open 
a window on the structure values. The data window automatically uses data struc­
ture information from the project file and the header files, so formatting and field in­
formation in the data window match the source code in its (the source code's) 
window. 

Each data object in the data window has a specific context in which its value is valid. 
The rules that govern the validity of data object values in contexts follow the scope 
rules of the C language. (See Chapter 3 for more information on the scope of data ob­
jects in C.) For example, a local variable's value is valid only within the context of the 
function in which the variable is defined. You can therefore have three local vari­
ables named i in the data window, each with a different context. And, because you'll 
probably forget the context of a value, especially if you have three i's in your data 
window, you can see the context of a data window's data object by selecting the 
data object's name in the left column of the data window and choosing Show Con­
text from the Data menu. The source window will show the function in the source 
file in which the object is defined. 

Using the THINK C environment with the THINK C Debugger is like using any 
tool-it takes practice. Some of the features will become second nature to you. 
Others you'll never get used to. All in all, we're sure that you'll find THINK C as 
comfortable a development environment as we do. As the product has evolved, Sym­
antec has delivered more features, compatibility with new systems, and com­
patibility with other development environments, including their popular THINK 
Pascal and Apple's MPW Pascal. If you use THINK C as your primary development 
environment, you can rest assured that your investment will be protected. This prod­
uct is here to stay. 

In this chapter, we've made a few assumptions about your knowledge of C. In the 
next chapter, we'll survey the C programming language as it applies to the Mac­
intosh. If you're already pretty good with C, you might want to catch up with us in 
Chapter 4. Otherwise, turn the page. 

34 



3 

AC PRIMER 
Developed at Bell Laboratories in the early 1970s by UNIX pioneer Dennis Ritchie, C 
is today the most popular professional programming language in the world. De­
scribed by its author as a "low-level language," Chas operators for bit manipulation 
and pointer arithmetic yet supports most of the functionality of a high-level language 
with data structures and typing and a wide variety of operators and program control 
semantics. C is based on ALGOL (short for ALGOrithmic Language), a language of 
the 1950s and 1960s that has its roots in the work of the computer science pioneers 
E. Dijkstra, C.A.E. Hoare, and P. Naur. You can trace the ancestry of all the structured 
languages-Pascal and PL/I as well as C-back to ALGOL. Their common ancestry 
explains why Pascal and C have similar language constructs, and why we can grate­
fully program the Mac in C now, instead of Pascal. 

C is a primitive language. It has none of the built-in features for input and output, 
string manipulation, and higher mathematics that you find in many languages. C's 
features come in function libraries, which makes C an ideal language to implement 
in a variety of programming environments. The function libraries can contain most 
of the environmental dependencies. Thanks to this arrangement, C programs tend to 
be "portable," that is, easily moved from one machine environment to another. 

The strategy has been a success: More code is written in C than in any other lan­
guage. Engineers have ported the C language to dozens of computing environments. 
Today, you'll find a C compiler for every major computer on the market. 

Of course, being all things to all environments has involved trade-offs. As every en­
vironment got its C compiler, it became harder to port a C program from one envi­
ronment to another, primarily because of variations in the function libraries. To 
standardize the language, the American National Standards Institute (ANSI) con­
vened the X3Jll Committee on C. As a result of their work, we now have an ANSI 
standard for the C function libraries. THINK C's ANSI library supports the standard, 
and version 5.0 supports the standard's language extensions. 

35 



MACINTOSH C PROGRAMMING BY EXAMPLE 

C Language Funcla1111entals 
Now that you know something about the history and evolution of the C language, 
we'd like to turn your attention to the language itself. Any section of a C program is 
likely to contain these language elements: 

• Variables. Created by you, the programmer. Used for data storage and expres­
sion operands. 

• Function calls. Created by you or provided with the compiler in function li­
braries. Used to direct a program to execute collateral pieces of code, called 
functions, and then return and pick up program execution in the instruction 
stream immediately following the function call. 

• Operators. Built into the language. Used for assignment, arithmetic, com­
parison, and so on. 

• Control statements. Built into the language. Used to control the order in which 
functions and other statements are executed. 

If we were to compare C to a natural language such as English, the variables, func­
tion calls, and operators would be the parts of speech. 

Case and Spaces 
C, like English, is a case-sensitive language-you can use either uppercase or lower­
case letters for variable and function names, but an uppercase letter will be treated 
distinctly from a lowercase one. In the following example, the newWindow variable 
and the NewWindowfunction are different objects: 

WindowPtr newWindow: 

newWindow = NewWindow C0L. &winRect, "\p", 0, 0, -IL, l, 0L); 

How do you know which is which? The clues are in the code. The position of the 
element newWindowon the left side of an assignment operator signifies that the ele­
ments on the right side of the equals sign will be assigned to newWindow. An ele­
ment that is assigned to is a variable, so we know that new Window is a variable. 

On the right side of the equals sign, NewWindow is followed by an argument list 
enclosed in parentheses-a tip-off that NewWindow is a function. (It is, in fact, a 
Macintosh-defined routine.) 

Of course, you could eliminate any potential confusion of the variable with the func­
tion by calling the variable new Window something else-say, myWindow. But that's 
not necessary because C is case sensitive. You can create names that read the same 
but that are treated differently by the C compiler. 

The C compiler is sensitive to case but oblivious to white space (spaces, tabs, extra 
lines, and other nonprinting characters). You can use white space in your programs to 
make them more readable, but the compiler doesn't care. Nor does a C compiler care 
about line and column numbers in a C source file the way compilers of other program­
ming languages, notably Basic and FORTRAN, do. You can write an assignment as 

36 



3:AC PRIMER 

= 1; 

or as 

i=l: 

or as 

1; 

The three statements look the same to a C compiler. 

Co11111111ents 
There's no such thing as self-documenting code! Comments in a program help you 
remember why you did what you did. In C, one way to treat comments is to put them 
between/• and•/, as in 

f* this is a comment */ 

A comment can span multiple lines, but you can't "nest" comments. After you open a 
comment with/•, the comment is closed at the first•/. Watch what happens in this 
example: 

/* comment out the following code: 
if (ISDIRTY(theDoc)) 

*' 
SelectWindow (theDoc); /* bring to front and highlight */ 

if (doCloseDoc (theDoc) == kSaveChangeCancel) 
{ 

result = false: 
break: 

I* user canceled */ 

You'll get a syntax error at the first •/, right after the word highltght, because of the 
nested comment after SelectWindow. It's a good idea to use comments to describe 
single lines of source code only. One easy way to avoid nested comment problems is 
to comment on a whole section of source code using the #if 0 directive, as in this 
example: 

flif 0 
if (ISDIRTY(theDoc)) 

SelectWindow (theDoc); 
flendif 

/* bring to front and highlight */ 

if (doCloseDoc (theDoc) == kSaveChangeCancel) 
{ 

result= false; 
break; 

I* user canceled */ 

37 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The #if 0 directive tells the compiler to ignore everything between the #if 0 and the 
#endif in the compilation stream. Of course, you still need to be careful not to nest 
#if 0 directives, but along the left edge of the code they're easier to spot than a com­
ment usually is. 

ANSI C offers another way to indicate comments, and the THINK C 5.0 compiler 
supports the new commenting style. The double slash,//, "comments out" an entire 
line, as in 

II this is a comment 

The comment ends with the source line. Double slash comments don't span multiple 
lines: 

II this is a comment 

this is not! 

We'll use all three kinds of comment notation in this book. Now, we'll take up the C 
language elements. 

Statements ancl Expressions 
If variables, function calls, and operators are the words of the language, statements 
are the complete sentences. (The compiler, by the way, will flag an incomplete state­
ment as a syntax error.) A statement is closed with a semicolon. Here are some ex­
amples of statements: 

i = 6: 

theDoc->type I= docParams->attributes & kDocTypeMask: 

SFGetFile CaPt, promptStr, 0L, 0, 0L, 0L, &reply): 

Although C has no line numbers, programmers continue to use "line of code" as a 
unit of measurement that helps them quantify the source size of a program, as in 
"This program has 100,000 lines of code." Old habits die hard. The number of state­
ments would yield more information about the size of a program, but you'll never 
hear a C programmer say, "This program has 75,000 statements." 

A statement can span multiple lines, as in 

if CtheHandle) 
DisposHandle CtheHandlel: 

II if theHandle is nonzero, 
II dispose of it 

The example is one statement. To satisfy ourselves that it is, we could rewrite the 
code: 

if CtheHandle) DisposHandle CtheHandle): 

We prefer the first form because the indentation of the second line illustrates its de­
pendency on the first. 

38 



3: AC PRIMER 

By the way, an empty statement is perfectly legal: 

Using an empty, or null, statement is a logical thing to do in some contexts, as in the 
branch of a conditional: 

if (!theDoc) 

else 

II if theDoc is equal to 0, 
II do nothing 

return (theDoc->type); II otherwise, return its type field 

In this example, if theDoc is equal to 0, no action is required; otherwise, the frag­
ment returns the value of the document's type field. (We'll explain why in detail as 
we go on.) 

With a little rethinking of the problem, you can usually structure a portion of code 
so that you don't need the null statement: 

if CtheDoc) 
return (theDoc->type); 

This statement says, "If the value of theDoc is nonzero, return the document's type 
field." The two example statements are equivalent, but the second requires less code 
and is therefore more efficient. In programming, efficiency counts. 

In both statements, theDoc is an "expression," a fragment of code that yields a value. 
In our example, the value is simply the value of the variable, theDoc. Expressions are 
used all the time in C and are usually the results of assignments or function calls. 
The following three expressions 

; = 6 
; == 6 
getchar (filePtrl 

all yield values. The first is simply the value of i-in this case, 6. The second com­
pares i to the constant 6. If the value of i is actually 6, the value of this expression is 
1, which stands for true. If the value of i isn't 6, the value of the expression is 0, or 
false. The final expression is a function call, getchar(), that returns the next charac­
ter from some input stream of characters. The value of that expression is the value 
returned from the function, a character value. 

Variables 
Variables store data-numbers, characters, strings, pointers, handles, or data struc­
tures-the value of which can vary. The data is stored somewhere in RAM. Think of 
a variable as having two parts: a name and a value. 

The name is your access to the variable-for storing a value in the variable or 
retrieving the value stored in the variable. You can use any of the uppercase or 
lowercase alphabetic characters in a variable name, as well as the numeric characters 
and the underscore (_). A variable name cannot begin with a number. 

39 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In this book we use a mixed uppercase and lowercase convention in naming our 
variables. We begin with a lowercase letter and then begin each syllable or word in 
the name with an uppercase letter. This is a common practice among C program­
mers in general, and particularly among Macintosh C programmers. 

You can create long variable names, as in 

theDocumentPrintRecordHandle 

The length of a variable name is up to you. You can use any number of characters in 
a variable name, although it's usually a good idea to limit the length of a variable 
name to 32 characters. 

The kind of data you store in a variable depends on its use. You might have charac­
ter data in your variable if the variable will store a person's name. You might need to 
store fractional numerical data with great precision in your variable. The format of 
the data determines the variable's type. 

A character is small-8 bits. You can store one character per byte in RAM. A frac­
tional numeric value, called a floating point or real number, is 10 times as large as a 
character-SO bits. It takes 10 bytes to store a floating point number. 

The variable's type tells the compiler how many bytes to allocate for a particular 
variable. The variable's type also lets the compiler know how to operate on the data. 
Multiplying two real numbers requires different steps than multiplying two whole 
numbers (called "integers"). The type of the variable operands on either side of the 
multiplication operator determines what instructions the compiler generates to per­
form the operation. 

The six built-in variable types in C are shown in the following table by their declara­
tors (type names), their sizes, and the kinds of data they can store. Notice that two of 
the six C variable types aren't used in C programs for the Mac. 

JYpeName 
(Declarator} rHINKCSize Used For 

char 8 bits character data 

int 16 bits, signed whole numbers (not used on the Mac) 

short 16 bits whole numbers ( < 32768) 

long 32 bits whole numbers (> 32767) 

float 32 bits real numbers (not used on the Mac) 

short double 64 bits real numbers 

double 80 bits real numbers 

Defining a Variable 
You must define a variable in your program before you can use it. When you define 
the variable, the compiler creates space for it in RAM and maps its name to that 

40 



3: AC PRIMER 

memory location. Because you specify a type for the variable when you define it, the 
compiler knows how much space to create for the variable. The syntax for a single 
variable definition is 

typename varname; 

You can define a series of variables of the same type in a single statement, as in 

typename varl, var2, var3; 

Character varlallles-cllar 
As our table indicates, the smallest data type, a 1-byte variable, is the char. A com­
mon name for a charvariable is c, as in this variable definition: 

char c; 

Integer varlallles-•llort ancl long 
An integer variable is a simple numeric variable. A common name for an int variable 
is i, as in this variable definition: 

int i; 

Symantec chose to use a 2-byte int for THINK C versions 1.0 through 4.0 (to coin­
cide with the size of their Pascal integer type), and Apple chose to use a 4-byte int 
for MPW C (to match the register size of the 68000 processor). 

CAUTION: Don't use the int type on the Mac. 

In THINK C 5.0, you can configure the compiler to use either a 2-byte or a 4-byte 
int. Even so, when you define an integer in THINK C, it's a good idea not to use int; 
use the short or long type name instead. The short type takes up 16 bits. The long 
type takes up 32 bits. If you use short or long instead of int, you'll know what you're 
getting, no matter where your code ends up being compiled. Explicitly type your in­
teger variable as either short or long. Common names for short and long integer vari­
ables appear in these variable definitions: 

short 
long 

i • j; 
1 ; 

f* 2 bytes *' 
f* 4 bytes *' 

How do you know whether to use short or long for your data type? Consider the size 
of any number the variable might be required to hold. If the number will always be 
less than 32,768, define your variable as a short type. If the number will be greater 
than 32,767 but less than 2,147,483,648, define your variable as a long type. If the 
number will be larger than 2,147,483,647, define your variable as a double type. 

Real varlallles-floaf, •llort dou61e, ancl dou6fe 
In THINK C, real variables come in three types. The smallest THINK C real variable 
takes up 4 bytes and is declared with the keyword float. The next largest takes up 8 
bytes and is declared with short double. The largest takes up 10 bytes and is declared 
with the keyword double. 

41 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Which do you use? Unless you're really under a space constraint, we recommend 
that you use 10-byte double variables. These largest real variables follow the 
IEEE-488 standard for real numbers and are supported by SANE, the Macintosh's 
built-in floating point routine library, so processing values of this type is faster than 
processing values of either of the shorter real variables. 

NOTE: Floating point arithmetic is inherently slow. Avoid it unless it's ab­
solutely rzecessary. (And it rarely isl) 

The fixed point alternative Using fixed point real variables is an efficient alterna­
tive to using floating point real variables. While not supported with a built-in 
declarator as the "native" C types are, fixed point variables are supported by the 
Macintosh Toolbox. Fixed point values give your application precision approaching 
that of floating point values, and simple operations on them, like addition and sub­
traction, are as fast as operations on long integer values. 

That's because fixed point addition and subtraction are essentially the same opera­
tions as long integer addition and subtraction. A fixed point variable is 32 bits wide, 
the same size as a long. You declare a fixed variable using the Fixed type: 

Fixed fsin, fcos: 

The format of the number allows it to contain a fractional part as well as an integer 
part. Figure 3-1 illustrates how Fixed numbers work. 

Upper 16 bits (integer part) Lower 16 bits (fractional part) 

0 0 0 0 0 0 

Flgure3-I. 
A Fixed value. The value shown, 0x00018000L, represents 1.5. 

The upper 16 bits contain the integer part of the value, so a Fixed variable is like a 
short integer variable in that a variable of Fixed type can range from -32768 through 
+32767. The lower 16 bits hold the fractional part of the value. Because a Fixed value 
is simply a long integer, addition of Fixed values is a simple matter of long addition. 
Figure 3-2 illustrates the addition operation with Fixed numbers. The Toolbox con­
tains routines for performing more complex operations on Fixed numbers­
multiplication, division, and conversion of fixed point values to floating point values. 
Fixed multiplication and division are of course more complex than integer 
multiplication and division and are therefore a bit slower. But they are much faster 
operations than their floating point counterparts. 

A Fixed type is a user-defined type-one not native to C that is created by a user. In 
the case of the Fixed type, the user was Apple, and the THINK C compiler supports 

42 



3: AC PRIMER 

Apple's Fixed type. The user can also define derived data types in C. We'll get into 
greater detail about user-defined types in a moment. 

Upper 16 bite; (integer part) Lower 16 bite; (fractional part) 

0 0 0 8 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 

Flgure3•2. 
The addition of two Fixed numbers (l.5 + 1.5 = 3.0). 

Unsl9necl varlalales 
Normally, integer variables are "signed," meaning that they can store either positive 
or negative numbers. A signed short integer can hold values in the range -32768 
through +32767. If you're not interested in negative values, you can use the unsigned 
keyword to force the compiler to interpret the contents of the variable in the range 0 
through 65535. (See the sidebar on two's complement storage to see how the com­
puter stores signed and unsigned numbers.) 

Here are some examples of unsigned variable definitions: 

unsigned char c: 

unsigned short i: 

unsigned long l: 

··~-·~···---..•· <Totma~s~ the.·uns;~ ~ord~1signifi~ei··youneed.~··un~~~:;. 
that a·~om~er stores positive and negative numbers differently. Th~'~,n;-t 

. til~~ .. ~~,,~~,j>Osi~ n~ers ~ p~~·;bi~ n~ber~t;For ~~~) i~~t.? 
·store<:fas oOol, 2 iS stored as 0002, 3 as 0003; etc. But the contputer ~;:' 
.g · n.unlbers it.l twQ~s complewM.t fol'm; -lis s~ as fFFJii·h2 ~:~,,; 
:{tF:P ~.im>. and ~'on. •1'•. ; :·~f ... , . . ; {. . 'it .. ·. ~!~~\'~ . \('~~ 

43 



MACINTOSH C PROGRAMMING BY EXAMPLE 

User-cleflnecl types 
The types of the variables you use in a program aren't limited to the types native to 
C. Using the typedef keyword, you can declare your own, user-defined, types. 
Here's an example declaration for a type named ushort: 

typedef unsigned short us ho rt: 

After this declaration, you define your own variable as 

ushort i; 

The Mac System software has many of its own user-defined types. Here are the dec­
larations for a few of them. 

typedef unsigned short OSErr: 

typedef unsigned char Byte: 

typedef char * Ptr; 

typedef char ** Handle: 

typedef short (*ProcPtr)(); 

typedef long Fixed, Fract; 

typedef long Size; 

typedef enum { false, true. FALSE= 0, TRUE } Boolean; 

typedef unsigned char Str255[256]; 

You should get used to using these Apple-defined types as you program. 

Constants 
Now that you know how to create variables, you'll probably want to assign values to 
them and use constant values for those assignments. Here are some native and user­
defined variable types and examples of appropriate constant values for them. 

Variable Type Sample Constant Comment 

decimal short 1 Integers are base-10 numbers. 
integer 

decimal long 16L Notice the "L" after the number. 
integer 

octal integer \7 The backslash signifies base 8. 

hexadecimal OxFFFF The leading "Ox" signifies base 16. 
integer 

real 1.44 The decimal point signifies a real 
number. 

character 'x' Notice the single quotation marks. 

string "Now is the time for all good men" Notice the double quotation marks. 

44 



3: AC PRIMER 

Symbollc constants 
A symbolic constant is a constant value shown by a name, not by the value. Using 
symbolic constants, assigning names to your constant values, gives meaning to your 
code. Rather than simply having a naked 15 in your code, as in this expression, 

right - left - 15; 

you can help describe what's going on in your code by changing the 15 in the ex­
pression to a symbolic constant that has a meaning, as in 

right - left - kScrollBarWidth; 

You define symbolic constants with the #define preprocessor directive: 

/fdefi ne 
/fdefi ne 
/fdefi ne 
/fdefi ne 
/fdefi ne 
/fdefi ne 

true 
false 
kScroll BarWidth 
pi 
kErrMsg 
kBytesPerlnt 

Naming symbollc constants 

1 
0 
15 
3.141592654 
"Warning: Ca 11 tech sup po rt" 
2 

If you've looked at any of the old-time, traditional C books, you've probably noticed 
that in most of them, the authors put their symbolic constant names in all capital let­
ters. Indeed, when Kurt wrote UNIX-based programs, he too used all capital letters 
in his symbolic constant names, as did just about everyone else. It used to be that the 
preprocessor, the part of the compiler that processes #define directives, was not case 
sensitive and therefore couldn't distinguish among words like ERRMSG, errMsg, and 
errmsg. C programmers therefore chose to adopt the convention of defining con­
stant names using all capitals, in order to foster a means by which a constant could 
readily be identified in a block of code. The prominence of constant names helped 
programmers avoid duplicating constant names. 

The modern preprocessor is case sensitive, so the name ERRMSG is different from 
the name errMsg, and both are different from the name errmsg. We think that mix­
ing uppercase and lowercase characters in any constant name helps to break the 
word up into syllables (and that words that consist entirely of capital letters are ugly!) 
and therefore like to name our constants as we name our variables, with mixed up­
percase and lowercase letters. To distinguish most symbolic constants from variables, 
though, we begin the name of a constant with a lowercase k, for "konstant." 

Sometimes you need to define symbolic constants for nonprintable characters such 
as tab, backspace, linefeed, carriage return, and formfeed and for serial control char­
acters such as XON and XOFF. You represent these characters with octal or hexadeci­
mal constants. You construct octal constants from the character set 0 .. 7(because they 
are base-8 numbers) and begin them with a backslash. Here are some examples of oc­
tal constants: 

/fdefi ne 
/fdefi ne 

kBell 
kFormFeed 

\7 
\14 /* octal constants */ 

45 



MACINTOSH C PROGRAMMING BY EXAMPLE 

If you prefer to work in base-16 numbers, you construct hexadecimal constants from 
the character set 0 .. 9 and a.for A .. F, beginning with the prefix Ox (zero-x). Here 
are some examples of hexadecimal constants: 

f/defi ne 
f/defi ne 
lldefi ne 
l/defi ne 

kBackSpace 
kTab 
klineFeed 
kReturn 

0x08 
0x09 
0x0A 
0x0D f* hexadecimal constants */ 

C defines special "escape sequences" for some of these characters. Although escape 
sequences are remnants of terminal-based implementations of C, they're supported 
in THINKC: 

lldefi ne 
l/defi ne 
l/defi ne 
lldefi ne 

kBackSpace 
kTab 
kli neFeed 
kReturn 

Assignment 

I \b I 
I \t I 
I \n I 

I \r I f* special C char constants •/ 

You assign a value to a variable with the equals sign ( = ). Here are some integer type 
definitions followed by examples of integer assignment: 

short x, y; 
1 ong z; 

X=0; 
y = 4; 
z = 12; 

f* C ignores white space *f 
f* both are valid assignments *f 

Here is a floating point type definition followed by some floating point assignments: 

double sinx, cosy; 

sinx = 0.707106781; 
cosy = 0.866025403; 

Here is a character assignment: 

c = 'K'; 

Here is a user-defined type definition followed by some assignments: 

Point pt; 

pt. h = 40; 
pt.v = 10; 

You can also assign a value to a variable when you define the variable, as in 

short i = 0, j = 10; 

46 



3: AC PRIMER 

Multiple assignments in one statement are also allowed, as long as the assignment 
doesn't occur during definition. Assignment is performed from right to left. 

short 1, j, k: 

i = j = k = 0: 

This kind of assignment is more efficient than assigning each variable a value sepa­
rately, as in 

i = 0: 
j = 0: 
k = 0: 

But note that in multiple assignments, values are assigned from right to left. Thus, 
first k = 0, then j = k (which is 0), and then i = j The more complex your assign­
ments, the more likely that multiple assignments might get you into trouble. 

Auto•atlc Type Conversion 
At assignment, the compiler automatically converts the types of values. The 
definition 

double x = 1: 

defines a variable x of type double and assigns it a value of exactly 1.0, even though 
the constant 1 is an integer. 

If you're not careful, you can be surprised by the outcome of a type conversion at 
assignment, as in this example: 

short x: 
double y, z: 

y = x = 2.5: 
z = x + y: /• what is the answer? •/ 

Surprisingly, z is 4.0. That's because the assignment x = 2.5 doesn't work the way 
you might expect it to. The variable x is a short, so it can store integers only. The 
compiler therefore automatically reduces 2.5 to 2.0. The variable y gets its value 
from x, so it will be assigned 2.0 as well. And 2 + 2 = 4. 

In the similar example, 

short y: 
double x, z: 

y = x = 2.5: 
z = x + y: /• what is the answer? •/ 

47 



MACINTOSH C PROGRAMMING BY EXAMPLE 

z is 4.5. The difference between the two examples lies in their variable definitions. 
Although the source code is identical in both fragments, the value of z depends on 
the variable type. In the second example, 2.5 is assigned to the x variable now of 
type double and thus retains its full fractional value. But y, of the short type, is an 
integer and is therefore assigned the value 2.0. The value of z is therefore 2.5 + 2.0. 

Operators 
You haven't learned all you need to know about variables yet-we'll get back to 
them soon. But data storage is only one aspect of the C language. You need to know 
something about the operators you use to affect the data. C supports a wealth of 
built-in operators to manipulate the data held in a variable. 

Binary Operators 
A binary operator requires two operands. If a and bare operands-variables, con­
stants, or expressions-expressions using the binary operators take the form 

aopb 

where op is one of these operators: 

48 

I 
% 

Multiply 

Divide 

Modulus 

Assign 

Subtract 

+ Add 

» Bit shift right 

« Bit shift left 

> Greater than 

< Less than 

<= Less than or equal to 

>= Greater than or equal to 

Equal to 

!= Not equal to 

& Bitwise AND 

" Bitwise XOR (exclusive OR) 

Bitwise OR 

&& Logical AND 

I I Logical OR 



3:AC PRIMER 

The operands can be variables, constants, or the results of other expressions. Here 
are some example expressions: 

i == 12 I• is the value of i equal to 12? •/ 

c & 0x00FF I• yields the lower 8 bits of c •/ 

x « 1 I* shift x left by 1 bit •/ 

(count > 0) && theDoc I* two conditions: 

Assl9nn1ent operators 

count is greater than 0 and 
theDoc is nonzero •/ 

In addition to the simple equals sign ( = ), C has a wealth of assignment operators. 
Any expression of the form 

a=aopb 

can be rewritten using an assignment operator. For example, the expression 

a=a+b; 

is rewritten, using the += assignment operator, as 

a+=b; 

These are binary assignment operators because they take the binary form 

aopb 

The variable on the left side of the operator gets the assignment. Here is a table that 
shows the binary assignment operators, their uses, and their effects. 

Operator Usage Result in a After Operation 

a=b b 
+= a+=b a plus b 

a-=b a minus b 

•= a•=b a times b 

/= a/=b a divided by b 

%= ao/o=b amodulusb 

>>= a>>=b a shifted right by b bits 

<<= a<<=b a shifted left by b bits 

&= a&=b a ANDed with b 
/\= a A= b a exclusive ORed with b 

I= al=b aORedwith b 

49 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Unary Operators 
A unary operator, as you might expect, affects only one operand, and the operand 
appears to the right of the operator in the instruction stream. Here's the syntax for a 
unary operator: 

op a 

where op is the operation and a is the operand. Here are the unary operators: 

& 

++ 

sizeof 

Pointer 
dereference 
Address 
Negate value 
Logical NOT 
Bitwise NOT 
Increment 
Decrement 
Size in bytes 

Pointer dereference and address operators return the result of an address calcula­
tion. We'll cover more of pointers and addresses later in this chapter. 

Increment and decrement operators 
C provides two unary operators for incrementing and decrementing integer 
variables: 

++and--

A shorthand means of applying an assignment, the increment and decrement opera­
tors were designed to take advantage of special register instructions. The ++ or -­
operator means that a variable is assigned itself plus or minus 1: 

i++ is the same as i = i + 1 

i-- is the same as i = i - 1 

You can use the increment and decrement operators as either postfix or prefix op­
erators, but the results can be different. Consider these two examples: 

x = 5; 
Y = x++; I* y equals 5, and x = 6 */ 

and 

x = 5; 
Y = ++x; /* y and x equal 6 */ 

In the first example, x++ is a postfix-increment operation, so the assignment occurs 
first, and then the value of x increases. Thus, after the statement executes, y is 5 and 
x has become 6. In the second example, ++xis a prefix-increment operation, so the 
value of x gets "bumped" before the assignment takes place. After the statement 
executes, both x and y equal 6. 

50 



3: AC PRIMER 

You would typically use an increment or a decrement operator to manipulate a loop 
variable, as in a for loop: 

for Ci = 0 ; i < someMax ; i++l 

We'll talk more about for loops in a moment. 

The Ternary Operator 
C's ternary operator has three parts: 

?, :, and some operator like -- or++ 

You use the ternary operator when you could otherwise use an if-then-else state­
ment, as in 

if (!cl 
return; 

else 
c--; 

According to this statement, if c is 0, execution returns to the caller; otherwise, c is 
decremented. We can rewrite this statement, using the ternary operator: 

le? return : c--; 

No wonder C has a reputation for being terse! The syntax for using this operator is 

expression ? true part: untrue part 

C's evaluation of an expression involving a ternary operator is If the expression is 
true, do the true part; otherwise, do the untrue part. 

Operator Precedence 
Operator precedence determines the order in which expressions will be evaluated. 
A simple expression like 

x•y+z 

can have two different results, depending on whether the multiplication is per­
formed before or after the addition. 

C's built-in sequence of operator precedence, highest precedence to lowest prece­
dence, is shown in this list: 

0 D ->. 
! - ++ - - - (cast) • & sizeof 
•I% 
+ -
<< >> 
< <+ > >+ 

!= 

& 

A 

&& 
II 
?: 

+= -= /= •= etc. 

51 



MACINTOSH C PROGRAMMING BY EXAMPLE 

To force evaluation in some other sequence, you can use parentheses. Normally, the 
expression 

x. y + z 

would add z to the product of x and y because the • operator has a higher prece­
dence than the + operator. If you wanted to multiply x by the sum of y and z, you 
would write 

x • (y + z) 

Expressions that appear within parentheses are evaluated first. 

Casting 
Now that you're familiar with the operators in C, let's continue our discussion of data 
and storage. Sometimes (usually when assigning pointers) you need to explicitly 
change the type of a variable. You perform temporary type conversion with a "cast." 
Casting forces a type conversion for the duration of one statement-the one in 
which the type cast variable is used. You put the new type name in parentheses, 
before the variable whose type you want to cast. In the next example, we'll cast x to 
a short so that the fractional number will be truncated to a whole number: 

double x = 3.141592654, 
y; 

y = (short) x; 

The value of xis temporarily cast to short. The resulting value of y is 3.0. 

You can also use casting to round to the nearest integer, as in this example: 

double x, y; 

x = 4.67; 
y =(short) (x + 0.5); 

x = 4.45; 
y =(short) (x + 0.5); 

In the example, when xis greater than 4.5, x + 0.5 is greater than 5, and with trun­
cation caused by the cast to short, y equals 5.0. When x is less than 4.5, x + 0.5 is 
less than 5, and the truncation results in a return of the integer part, 4: y equals 4.0. 

Storage Classes ancl Scope 
In some languages, Basic, for instance, you can use a variable anywhere in a pro­
gram. In C, the places in which you can use a variable-the "scope" of the vari­
able-are governed by the variable's storage class. A variable's storage class 
determines where in RAM the compiler will put the variable. The two storage 
classes are "automatic" and "static." 

52 



3: AC PRIMER 

Automatic Varlallles 
An automatic variable resides on the stack. If you don't know what a stack is, don't 
worry about it-you don't have to know anything about the stack to create an auto­
matic variable. You define an automatic variable inside a function definition. The 
compiler automatically creates the variable (on the stack) when the function begins 
to execute and destroys the variable when the function returns. (We'll get to more 
about functions in a moment.) Here's an example of an automatic variable definition: 

someFunction() 
{ 

short i, j; 

. 

You can reference an automatic variable only inside the function in which it's de­
fined. An automatic variable is also called a "local variable" because it is "local to the 
function" -available only within the function in which it's defined. 

Programmers use local variables for values a program needs for only a short time. It's 
a good idea to make a loop counter automatic, for example-once the program is 
finished with the loop, it doesn't need the counter variable. 

Static Varlallles 
A program usually needs to keep some variables around much longer-maybe for 
the life of the program. That's where the static variable storage class comes into play. 

Unlike an automatic variable, which resides on the stack, a static variable resides 
somewhere else in RAM. Where a static variable resides depends on both the par­
ticular operating system and the particular implementation of the compiler. In 
THINK C on the Mac, statics reside. in a place in RAM called "the application 
globals." 

You define a static variable outside a function definition. What's important about a 
static variable is that it sticks around for the life of the program. You can store a value 
in a static and have it survive over many function calls. Because of this persistence, 
statics are also called "global variables"-they can be accessed globally by all rou­
tines in a program. In this example, gHasColorQD is defined as a static variable out­
side any function, and i and j are automatics defined within a function: 

Boolean gHasColorQD; 

someFunction() 
{ 

short i, j; 

The register and ...,,c modifiers 
You can use the two keywords register and static to modify automatic and static 
storage classes. The register directive, when used in an automatic variable defini­
tion, will direct the compiler to use a CPU register for the variable instead of the 

S3 



MACINTOSH C PROGRAMMING BY EXAMPLE 

stack if the registers are not otherwise occupied. In THINK C, four data and three 
address registers are available to your application. With judicious use of the register 
modifier for automatic storage classes, you can really speed up your application. 
(You don't want to assign the register modifier to 50 variables-you'll run out of 
registers!) The scope of a register automatic class variable is limited to the function 
in which it's defined, and you can't define a pointer to a register variable. 

You can use the static keyword with either an automatic or a static variable. If the 
variable is an automatic, the static keyword limits the variable's scope to the function 
in which the variable is defined-you can't access the value of the static automatic 
variable outside the function. But the compiler will create the variable in the global 
variable space of RAM, not on the stack. The static automatic variable's value there­
fore persists across function calls. 

When you declare a static variable explicitly with the static keyword (as opposed to 
merely defining the variable outside any function), the variable's scope is limited to 
the· source file in which it is defined. Most programmers modularize their code into 
separate source files-we're no exception. A judicious use of the static static vari­
able can sometimes solve a difficult programming problem. 

The extern mo•lfler 
When you want to use a variable in a source file other than the one in which it's de­
fined, you declare it with the extern keyword, as in 

extern short count: 

Of course, if you don't have a proper definition of the variable 

short count: 

in the proper place in another of the project's source files, you'll get a link error. 

Arrays 
Data often presents itself in array form. You declare an array with its number of ele­
ments in square brackets, as in these examples: 

char filename [33]; 

double x [3], y [3]: 

unsigned short range [100]: 

You can specify any number of dimensions for an array, as in this two-dimensional 
definition: 

char symbolTbl [12][48]: 

or this four-dimensional definition: 

short bigArray [4][4][4][4]: 

54 



3:AC PRIMER 

but an array is limited to a total of 32K. On the Mac, it's better to allocate memory for 
an array on the heap, not the stack, and we'll show you how to do this in Chapter 7. 

Array subscripting always starts at index 0, which means that the last valid index is 
the size of the array less 1. For example, if the array is declared as 

char a [10]: 

it has 10 elements, and the names of these elements are a[O}, a,f 1}, through a[9}. a[lO] 
would not be a valid element for this 10-element array. 

C does no bounds checking for you on the index, so if you index off the end of the 
array, you'll be reading from or writing to something other than the array. Reading 
from something other than the array is usually nonfatal-you'll just end up with 
digital junk in your variable. But writing beyond the array bounds is always a fatal 
programming error. You've been warned. 

An array is stored as contiguous bytes-the array elements are stored next to each 
other. You can speed up array access by taking advantage of this fact, by using a 
pointer. We'll talk more about pointers in a moment. 

Other Data Structures 
Any data structure collects one or more simple types into a composite group. You 
structure data definitions to fit data needs. For example, to model a calendar date, 
you would need to store information about the month, the day, and the year. 

You create a data structure with the struct type keyword. Here's the definition for a 
structure for the calendar date: 

struct date 
{ 

} : 

short month, 
day, 
year: 

The structure's "tag," a name for the structure, is date. The structure's "members" 
are month, day, and year. Now we'll create a variable called today that uses the date 
structure: 

struct date today; 

You access the members of a structure with the dot operator (a period). For example, 

today.month = 12: 
today.day = 23: 
today.year = 1980: 

initializes the structure with the date December 23, 1980. 

55 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Structures can be embedded in structures. Here's a structure for a personnel record: 

struct 
{ 

char 

person 

struct date 

} : 
struct person 

name [128], 
ssnum [12]: 
birthDate, 
hireDate; 

aPerson; 

Notice the embedded structure date in the definition for person. We've defined 
aPerson to be a person structure variable. You also access the members of an em­
bedded structure with the dot operator, which has left-to-right precedence: 

aPerson.birthDate.day = 13: 
aPerson.birthDate.month = 9: 

Structure Types 
In Macintosh applications, the convention is to type data structures and then use 
those types to define variables. Here's an example, our personnel record recast as a 
typedef 

typedef struct 
{ 

char 

struct date 

Person: 

person 

name [128]. 
ssnum [12]: 
birthDate. 
hireDate: 

Notice the change in syntax. We can now declare a variable of type Person: 

Person employee; 

employee.hireDate = todaysDate: 

Pointers 
A pointer is used to hold the address of something in memory. You declare a pointer 
with the star operator(•). The declaration 

char *P: 

declares a character pointer, p. The type declaration is important. The following ex­
ample demonstrates why. Let's declare a pointer to index through an array. 

56 



short values [12]; 
register short *pvalues; 

pvalues =values; 

The statement 

pvalues = values; 

f* the array */ 
f* the pointer */ 

3: AC PRIMER 

assigns the address of the first element of the array to the pointer. Now, assuming 
that we want to copy the several elements of the array into separate variables, we 
would use the pointer to step through the array, as in 

valuel = *pvalue; 
value2 = *(pvalue + 1); 
value3 = *(pvalue + 2); 

value12 = *(pvalue + 11); 

This code yields the same result that using the index would: 

valuel =values [0]; 
value2 =values [l]; 
value3 =values [2]; 

value12 = values [11]; 

except that with pointer use, the code is more efficient. Note the use of parentheses. 
The star operator (•) has a higher precedence than the plus operator, so to do 
pointer arithmetic (as this is called), we need to perform the address calculation, by 
adding 1 to the address, before the star operator uses that address to access the value. 

Pointers to Pointers-Handles 
Because of the way the Macintosh manages memory, we need to take this pointer 
concept one step further, to the idea of a "handle." A handle is a pointer to a pointer; 
that is, a handle is a variable that holds the address of a pointer. It's defined this way: 

char ** 
Why would you use a handle? We'll see why shortly. 

Pointers to Structures 
Just as you can have a pointer to a simple data type, you can create a variable that 
points to a structure. One of the most basic Macintosh types is the rectangle, named 
Rect. A Rect structure is defined this way: 

typedef struct Rect 
{ 

short top, left, bottom, right; 
} Rect; 

57 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In the next example, we define a Rect and a Rect pointer. We then use the pointer to 
zero the structure: 

Rect r. 
*P: 

p = &r: 

p->top = p->left = p->bottom = p->right = 0: 

We've used the ampersand operator (&) to return the address of the rectangle r, 
which we then assign to the pointer p. Then we use the -> operator (created with 
the - and > characters) to access the members of the structure. If the pointer is a 
register variable, this section of code is highly efficient. 

You could also access the members of the rectangle this way, using the dot operator: 

(*pl.top= (*pl.left= (*pl.bottom= (*pl.right= 0: 

Again, notice the use of parentheses around the •p. The dot operator has a higher 
precedence than the star operator, and in this example, we want the compiler to 
calculate the address of the data structure first, before it adds the offset of the struc­
ture's member to this address. When you're dealing with pointers and structures, 
you have to stop and think about what you want to happen first. 

Figure 3-3 illustrates the relationship between a pointer and the data it points to. 

: .. · .· .,· .. · ...... 

Flgure3-3. 
A pointer. 

58 

·.·.· ... · .. 
·· ... ·· 

·. . : ~. ':·. · .. · .... ·. 



3:AC PRIMER 

Handles to Structures 
More often than not in Macintosh programming, you'll have a handle to a structure 
and will need to access one of the members of the structure. Given a handle h to a 
Rect structure (Rect **h;), you would access the members this way: 

C*h)->top = 0: 

or 

C **h) . top = 0: 

The constructs are equivalent. We prefer the first, although the second offers a 
singular advantage: If you ever need to find all the handle references in your pro­
gram, you can search globally for .. , which is usually unique to handle accesses. 

Figure 3-4 illustrates the relationship of a handle ( ControlHandle) to its associated 
structure ( Contrt>lRecord) in RAM. 

Progra• Flow Control 
The C language supports a wealth of program flow control constructs. The simplest 
is the test and branch, performed by means of the if statement. Here's the syntax for 
an if statement: 

if (expression) 
statement 

.. 
.·:.-·-:··.·:.·•···. ..... ··:.' 

Control Handle 

Fl9ure3•4. 
A handle. 

59 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In this example, statement will execute if expression results in a nonzero value. In 
the next example, DebugStr will be called if the variable gDevel is nonzero: 

if (gDevel) 
DebugStr (string); 

The if-else statement provides an alternative branch to be taken when the expression 
under scrutiny is 0: 

if (expression) 
statement 1 

else 
statement 2 

If expression is true, statement 1 is executed; otherwise, statement 2 is executed. In 
the next example, if the gDevel flag is on, the debugger is entered with the call to 
DebugStr. (We'll get to that call in a later chapter.) Otherwise, the program takes the 
second branch and puts up a dialog box on the screen with the call to errorDialog(): 

if (gDevell 
DebugStr (string); 

else 
errorDialog (string); 

Two or more statements are called a "compound statement." You create a compound 
statement inside curly braces, { and }. In the next example, the else part of the if-else 
statement consists of a compound statement: 

60 

if (gDevell 
DebugStr (string); 

else 

SysBeep Cll: 
GetPort C&savePortl; 

if C!CtheDialog = GetNewDialog CkDebugStrAlert, 0L, -lllll 
return Cl l: 

ParamText (0L, string, 0L, 0Ll: 

ModalDialog CDLOGfilterProcl, &itemNumberl: 
DisposDialog CtheDialog); 

SetPort CsavePortl: 



3:AC PRIMER 

A compound statement actually defines a code block, for which a stack "frame" is 
generated. (You'll find an extensive discussion of stack frames in Chapter 7.) This 
means that you can define variables within the block, as in 

if ( ! gDeve ll 
{ 

Graf Ptr savePort; 

GetPort (&savePort); 

/* local to block */ 

if (!(theDialog = GetNewDialog (kDebugStrAlert. 0L, -ll))) 
return (1); 

ParamText (0L, string, 0L, 0L); 

ModalDialog CDLOGfilterProcl, &itemNumber); 
DisposDialog CtheDialog); 

SetPort (savePort); 

The local savePort isn't used outside the if statement. If you try to reference savePort 
outside the statement, the compiler will generate an error. 

Multiway Branching 
A one-out-of-many choice, called a "multiway branch," is a common programming 
construct. The if-else if-else statement is the most flexible implementation of a multi­
way branch: 

if (expression 1) 
statement 

else if (expression 2) 
statement 

else 
statement 

You use the if-else if-else construct when the test expression changes for each 
branch, as in the next example: 

if (!listHdl) /*not found*/ 
return (0L); 

else if (prevListHdl == listHdl) /*head of list*/ 
(*objectHdl)->ref = (*listHdl >->next; 

else 
(*prevlistHdl)->next = (*listHdl)->next; /*link last to next *f 

61 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In other instances of the multiway branch, an expression is compared to a variety of 
constants. In the next example, objectType is compared to a number of constants: 

if CobjectType == kSquare) 
doSquare CtheObject); 

else if CobjectType == kCircle) 
doCircle CtheObject); 

else if (objectType == kRoundRect) 
doRoundRect (theObject); 

else 
doError CkUnknownTypeErr); 

Placement of Curly Braces 
Three widely acknowledged styles regarding the placement of curly braces 
for compound statements are in use today. The standard style is adopted 
from the practice of Thomas Plum, a well-known authority on C program- ' 
ming and the author of many books on the language. The bnices appear on;• 
lines of their own, beneath the tab stop of the controlling keyword: · 

if Cexpr) 
{ 

statements 

The Whitesmith style, from an organization influential in the development of C 
language standards, puts the braces on lines of their own but indented one tab 
stop from the controlling keyword's tab stop: 

if Cexpr) 
{ 

statements 
} 

The Kernighan and Ritchie style puts the opening curly brace at the end of the 
line containing the controlling keyword and the closing curly brae~ on. a:~ine · 
of its own beneath the tab stop of the controlling keyword: · 

if Cexpr) { 
statements 

} 

We choose to use the standard Plum style. You can .use whicn~(#l~fy~B~f 
like, as long as you stick to it. .. ··•.·:;~;,~ .i;,i!i· 

62 



3: AC PRIMER 

A more efficient way to achieve a multiway branch is to use a switch statement based 
on a value that can take on a set of constant values. Here's the syntax for a switch 
statement: 

switch (value) 
{ 

case constantl: 
statement 
break; 

case constant2: 
statement 2 
break; 

default: 
statement n 
break; 

Here's the previous multiway branch example, recoded as a switch statement: 

switch (objectType) 
{ 

case kSquare: 
doSquare (theObject); 
break; 

case kCircle: 
doCircle (theObject); 
break; 

case kRoundRect: 
doRoundRect (theObject); 
break; 

default: 
doError (kUnknownTypeErr); 
break; 

Notice how the cases are enumerated. If no case matches the expression, the op­
tional default case is executed. The break statement at the end of each case causes 
control to jump to the bottom of the switch statement. If the break were left out, con­
trol would continue through the remaining cases. 

Loops 
Use a loop when you want to repeatedly execute a statement. The loop loops as long 
as a controlling expression is true. You specify a loop in one of three ways: in a 
while statement, in a do-while statement, or in a for statement. 

63 



MACINTOSH C PROGRAMMING BY EXAMPLE 

wltlle loops 
Use a while loop when you want to test the expression before the loop is entered. 
Here's the syntax for the while construct: 

while (expression) 
statement 

The statement executes as long as expression is true. Here's a typical example of a 
while construct: 

while ((*listHdl)->next) 
listHdl = (*listHdl)->next: 

In this example, execution loops through a null-terminated linked list of objects 
stored in the heap. Execution exits the loop when the handle to the next element of 
the list is null (has a 0 value). 

do-wltlle loops 
The do-while loop is similar to the while loop, except that the test of expression is 
made at the bottom of the loop-you are assured that the body of the loop will exe­
cute at least once. Here's the syntax for a do-while loop: 

do 
statement 

while (expression); 

for loops 
Use a for loop when you know how many iterations are necessary. Here's the syntax 
for a for loop: 

for ( initial expression : test : increment ) 

Notice that there are three expressions inside the parentheses of a for loop. The first 
expression initializes the loop counter variable. The second is the test expression. 
The loop loops as long as this expression is true. The third increments the loop vari­
able. The next example illustrates the initialization of an array: 

short i, c [MAX]: 

for (i = 0 ; i < MAX ; i++) 
c [i] = 0; 

This is a simple initialization loop in which i takes on all integer values from 0 
through MAX-1. You can set up your loop variable to take on only even values, or 
only multiples of 5, or whatever you want it to take on, by selecting an appropriate 
expression for the incrementing expression of the for s~tement, as in 

64 

for (i = 5 ; i < SOMEVALUE ; i += 5) 
doSomething (i); 



3:AC PRIMER 

8realcs ancl Continues 
You've already seen break in the switch statement. A break causes execution to jump 
to the bottom of a switch or a loop. Here's an example: 

while Cl) 
{ 

c [i] = 0; 
i f ( i ++ > MAX ) 

break; 

Whenever i is greater than MAX, the loop execution exits. Of course, smart C pro­
grammers will recognize that this loop could be rewritten as 

while (i < MAX> 
c [i++J = 0; 

The continue statement causes execution to jump to the top of a loop. Here's an 
example: 

while (count--) 
{ 

if (fileType != kOurType) 
continue; I* jump to top of while loop */ 

fileParams = getNextFileName(); 
if (doOpenFile (&fileParams)) 

loadDoc (&fileParams); 

numOpenDocs++; 

if (msg == doPrint) 
printFile (&fileParams); 

This example, and the preceding one, could be rewritten without the use of either a 
break or a continue. Proponents of structured programming would argue that break 
and continue aren't actually essential (as far as loops are concerned- break is nec­
essary in a switch statement). We occupy the middle ground on this question: If you 
need break and continue, use them. We don't frown upon their use, although we do 
realize that most C code can be structured so that they are not necessary. Use them 
sparingly. 

Functions 
We do recommend the use of functions to divide a program into small, logically dis­
tinct parts that are reusable: You can call functions from various points in a program, 
reducing your code size. If you publish the functions in a library, other programmers 
can use them too, and you'll have reduced their need to "reinvent the wheel." 

65 



MACINTOSH C PROGRAMMING BY EXAMPLE 

When your program calls a function, control is passed to the function, and execu­
tion continues until the function ends or a return statement is encountered. Figure 
3-5 illustrates the control process. 

Program 6tream for module 1. 
61, 62, etc. are statements. 

s1 
s2 
63 
s4 
65 Function call 
66 

--) s7 
68 

The function execu 
--'" - ,. 

s1 
s2 
s3 
s4 
s5 
s6 
... 

Function return 

Flgure3-5. 

ti on 

A/unction call, execution, and return to the next program statement. 

You call a function with its name and a parenthesized argument list, as in 

disposeDocContents CtheDocl: 

Here, the function is called with one argument: theDoc. You call a function without 
an argument with its name and empty parentheses: 

Pen Normal () ; 

A function can return a value on the stack. You receive the value as the result of an 
expression that contains the function, as in 

theWindow = FrontWindow (); 

Here, the return value of the function FrontWindow() gets assigned to theWindow 
when the function returns. 

All of the Macintosh Toolbox routines are accessible to your THINK C program 
through a function call if you add the MacTraps library to your project. (We'll discuss 
this in the next chapter.) The FrontWindow function in the previous example is a 
Macintosh Toolbox Window Manager routine. 

66 



3: AC PRIMER 

You can define your own functions. Here's the syntax for a function definition: 

return-type 
name (argument list) 
{ 

declarations 

statements 

You have several options for defining functions. You can define a function to return 
a value by using the return statement. In the next example, the function returns a 
DocPtr value. 

static DocPtr 
all ocDoc () 

f* return type *f 
/* function name *I 

{ 

DocPtr newDoc; /* variable definition */ 

newDoc = 0L; I* function body */ 

if (gNumOpenDocs < kMaxOpenDocs) 
newDoc = newClearPtr ((Size)sizeof (Doc)); 

return (newDoc); I* return value */ 

I* allocDoc *' 
A function that doesn't return a value is declared as void. Here's an example: 

void 
getRGBColor (RGBColor *theColorl 
{ 

GetForeColor (theColor); 

There is no return statement in getRGBColor. 

In the early versions of the C language, a function's arguments were declared as 
automatic variables would be, outside the parentheses, as in 

short 
openFile (fileParams, copy) 

FileParamsPtr fileParams; 
Boo 1 ean copy; 

67 



MACINTOSH C PROGRAMMING BY EXAMPLE 

When you define a function according to the ANSI C standard, the function's argu­
ment list appears in the parentheses. 

short 
openFile (FileParamsPtr fileParams, Boolean copy) 
{ 

Function prototypes 
The advantage of the new ANSI standard function definition syntax is that you can 
use the definition itself as a function prototype-as a model of the function's name, 
argument types, and return value. The prototypes for the three functions we've 
looked at so far in this section are 

DocPtr 
void 
short 

allocDoc ( void ); 
getRGBColor ( RGBColor *theColor ); 
openFile ( FileParamsPtr fileParams, Boolean copy ); 

A prototype is a statement, so it needs to be followed by a semicolon. Prototypes 
keep you from making mistakes when calling functions. When you've selected 
Check Prototypes from the THINK C environment's Preferences menu, the compiler 
will check all your function calls for 

• the correct number of arguments 

• the correct type for each argument 

• the correct type for the function return value 

This prototype checking keeps your code free of nasty bugs. Prototype definitions 
have to appear before the function is either defined or used. 

To manage function prototypes, we create a separate include file (with the exten­
sion .h) for each source file in a project. The include file contains the prototypes for 
the source file. We use a Pr suffix with the include file's name to flag the include file 
as a prototype file. For example, if the source file is named DocUtil.c, we name the 
prototype file DocUti!Pr.h. We then include DocUti!Pr.h in DocUtil.c and in any other 
source file that uses a routine from DocUtil.c. 

68 



4 

MACINTOSH 
APPLICATION 
FUNDAMENTALS 

In this chapter, we'll create our version of every programmer's first, the program 
Hello World. We'll modify the program, call it Hello Mac!, and use it to address some 
fundamental concerns common to all Macintosh application development-screen 
organization, Macintosh events, and Toolbox Manager initialization. 

Macintosh programs have a characteristic interface: Overlapping windows and pull­
down menus, the point-and-click metaphor, and the visual file system are standard 
features in every application. They give your programs an edge over those with line­
oriented interfaces. 

The Hello World Example 
Every C programmer's first exposure to a complete program is Hello World. Here's 
the THINK C user's manual version of Hello World in its entirety: 

#include <stdio.h> 

main () 
{ 

printf ("hello, world\n"l: 

This trivial first program illustrates the fact that every program has to have a main() 
function, the program entry point. 

69 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Hello World is a complete C program. If you wanted to run it, you would type it into 
a source file, create a new project, and add the source file and the ANSI library to 
the project. When you ran the program, your screen would look something like the 
screen in Figure 4-1. 

Figure 4-1. 
The Hello World 
example program 
in THINKC. 

press «return» to eHlt 

he:l lo, world 
I 

Unfortunately, this example program doesn't look or function the way a Macintosh 
program should. The window on the screen in Figure 4-1 is a product of the THINK 
C stdio library. This window, titled "press <<return>> to exit," is created for you 
when you issue a call to the library function prinif. When prinif returns, the appli­
cation beeps at you until you press Return. You'd be hard-pressed to call this an ex­
ample of a stand-alone application. 

To create a stand-alone Hello World that works the way you expect a Macintosh pro­
gram to work, you need to use the Macintosh Toolbox in place of the stdio calls. 

THINK C's stcllo Library 
THINK C's console routines, provided in the stdio library, are the source of 
the primitive window management routines used in the Hello World ex­
ample. These routines open a single window that emulates a character termi­
nal's screen. Console I/ 0 is based on the character streams stdin and stdout. 
UNIX aficionados will appreciate that stdio functions like prinifwork in this 
screen. Using THINK C's stdio is easy: Add the library to the project (by 
using the Add command from the Source menu), and include the header file 
stdio.h in your source file . The THINK C user's manual contains a tutorial on 
using this library. 

70 



4: MACINTOSH APPLICATION FUNDAMENTALS 

Before your Mac can say "hello," it needs a window and an associated grafPort in 
which to put the greeting. And before you can create a window, you need to initial­
ize the application's QuickDraw globals. Here's the Macintosh way to say "hello": 

main () 
{ 

WindowPtr theWindow: 
Rect windowRect: 
EventRecord eventRec: 

II initialize managers 
InitGraf C&thePort); 
InitWindows (): 
InitFonts (): 
InitCursor (): 

FlushEvents (everyEvent, 0); 

II create window 
SetRect C&windowRect, 40, 40, 340, 240); 
if (theWindow = NewWindow (0L, &windowRect,"\p", 

true, dBoxProc, -IL. false, 0L)) 

SetPort (theWindow); 
MoveTo (20, 30); II move pen 

TextFont (l); II text attributes 
TextSi ze (12): 
Text Face (0): 
Drawstring ("\pHello. Mac!"); II why we're here 

II wait for mouse-down 
while (!GetNextEvent CmDownMask, &eventRec)); 

DisposeWindow CtheWindow); II kill window 

ExitToShell (); 

I* main *I 

This is a program you'll actually want to enter and run, so start up THINK C. 

Creating the Program 
When you start up THINK C without naming a project, a dialog box prompts you to 
open a project. When you click the New Project button in this dialog box, you see 
the dialog box shown in Figure 4-2 on the next page. 

71 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Flgure4-2. 
THINK C's New 
Project dialog box. 

O GenRpp I 
o Hello I 
0 Moc C Primer 
O TCL 1.1 Demos 
0 THINK c 5.D Demos 
0 THINK c 5.D Folder 

ii! =MyMoc 

[ E:jei:1 

'llli!: [ Desktop J 

0 

Type the name Hello Project in this dialog box, and click the Create button. THINK 
C creates a window that looks like the one in Figure 4-3. 

Flgure4-3. 
The empty project 
window. 

Now open a new document by choosing New from the File menu, and type in the 
source code shown on page 71. 

When you've finished typing in the source code, choose Save As from the File menu 
and type Hello Mac.c as the file name. 

Choose Add from the Source menu. When THINK C finishes this operation, the 
project window should look like the one in Figure 4-4. 

Next, you need to add the MacTraps library to the project file . Choose Add from the 
Source menu, and navigate to the MacLibraries folder in your THINK C folder, where 
you should find the file MacTraps. (If you followed our installation instructions in 

72 



Flgure4•4. 
The project window 
after adding the 
Hello Mac.c file. 

4: MACINTOSH APPLICATION FUNDAMENTALS 

Chapter 2, you'll find MacTraps in this folder. If not, you might need to look else­
where or reinstall THINK C.) 

That's all you need to do to set up the project. Bring it up to date, which should load 
the library and compile the source file. (Fix any syntax errors you entered while typ­
ing in the source file.) 

Run the program. 

As you can see from looking at the source file, doing things the Macintosh way adds 
to the overhead of creating an application. This additional overhead is what makes 
programming the Mac both interesting and hard to learn. Even experienced C pro­
grammers will have a lot to learn-we doubt they'll recognize any of the function 
calls in Hello Mac! unless they 've already cracked open Inside Macintosh and done 
some reading. 

Most of the programming overhead in our simple example comes from creating the 
window in which to draw the text. On the Mac, characters are drawn by QuickDraw, 
the drawing part of the Mac Toolbox, which treats characters just as it does any other 
graphics entities (lines, circles, and so on). Drawing is possible only inside a 
grafFort. But before you can use a grafFort, you'll need to know a little more about 
the Mac's screen organization. 

GrafPorts and Windows 
A grafFort is a Macintosh construct that provides a "world" for a program to draw in. 
The coordinates of the grafFort world are defined within an imaginary grid, starting 
at the upper left corner of the Macintosh screen and extending in all directions from 
that point. 

73 



MACINTOSH C PROGRAMMING BY EXAMPLE 

A location in this grid, the Macintosh coordinate system, is described by Point, 
which has a horizontal and a vertical component. A data structure of type Point is 
defined this way: 

typedef struct Point 
{ 

short v, h; 
Point: 

The origin of the Macintosh coordinate system is at location (O,O). The first value is 
the horizontal component, and the second value is the vertical component. Values 
increase as a point moves down the screen and to the right. For example, the point 
(10, 20) is 10 points to the right and 20 points below the origin. 

A pixel is a screen unit that corresponds to a point. The grid values range from 
-32,767 pixels through +32,767 pixels in either direction, so you can imagine that 
there are more pixel locations off the screen than on it. The Mac Classic displays 352 
horizontal pixels by 512 vertical pixels, which is only a small fraction of the area ref­
erenced by a grafPort; the standard 14-inch Apple color monitor has a resolution of 
640 by 480 pixels, or 640x480 in tech-speak, still only a small part of the area you 
can reference with QuickDraw. Figure 4-5 illustrates the grid behind the Macintosh 
screen. The grafPort associated with this coordinate system is called the WMgrPort. 
Applications don't draw in the WMgrPort, which is the domain of Finder; rather, they 
use a grafPort associated with one of their windows. 

Each open window has its own grafPort and might be said to "own" the grafPort. 
The grafPort's origin is below the upper left corner of the window, immediately 

-32767, -32767 32767, -32767 

-i---r---t---t--t---i--+-+--1--1--1i--i--r•oo+--+--+--+--+'~'H--+-+-+-+-+--1-

-t---t---t---t--t---t--t-t--t--l--tt--t--~b,,35v(~-+-+-+-~~12350--t--+--+---t--+-

-32767,32767 

Flgure4•S. 

~ ~ 

The Macintosh WMgrPort coordinate system. 

74 

32767, 32767 



4: MACINTOSH APPLICATION FUNDAMENTALS 

below the title bar. The grafPort has its own coordinate system, and values in its sys­
tem also increase to the right and down from the origin point. We call this a "local 
coordinate system" to differentiate it from the WMgrPort 's "global coordinate sys­
tem. " Figure 4-6 illustrates the relationship between these two systems. 

Global 
0,460 

Global 60, 100 

Flgure4•6. 
The two coordinate systems of the Macintosh screen. 

The Toolbox routine LocalToGlobal converts point values in the local coordinate sys­
tem of a window to those of the global space. The companion routine Globa!Tolocal 
works conversely, converting point values in the global system to local point values. 

These conversion routines accept the address of a Point structure. Here's an ex­
ample of their use: 

Point p; 

GlobalToLocal (&pl: 
LocalToGlobal C&pl; 

Notice that the points are passed by reference-that is, their addresses are taken 
with the ampersand. This is done so that the Toolbox routines can change the actual 
values of the passed variables. 

Creating a Window ancl a Graf Port 
Where there's a window, there's a grafPort (often called a "port," in programmer's 
slang). GrafPorts are rarely created by themselves-usually they're created auto­
matically when a window is created. We show the definition of a WindowRecord, 
the foundation of a window, on the next page. 

75 



MACINTOSH C PROGRAMMING BY EXAMPLE 

typedef struct WindowRecord 
{ 

Graf Port port; 
int wi ndowKi nd; 
char visible; 
char hilited; 
char goAwayFlag; 
char spareFl ag; 
RgnHandle strucRgn; 
RgnHandle contRgn; 
RgnHandle updateRgn; 
Handle windowDefProc; 
Handle dataHandle; 
StringHandle titleHandle; 
int titleWidth; 
struct ControlRecord ** controllist; 
struct WindowRecord * nextWindow: 
PicHandle windowPic; 
long refCon; 

WindowRecord, •WindowPeek ; 

Notice that the first member of the WindowRecord, port, is a grafl>ort. 

The Window Manager is the part of the Macintosh Toolbox that contains the routines 
that create and work with Macintosh windows. We'll use the Window Manager call 
NewWindow to create a window, which creates a WindowRecord. By referencing 
port, we can reference the grafl>ort we'll be drawing in. 

Passing Parameters to 
Toolbox Routines in THINK C 

One common concern in using a language such as C on the Pascal-based Mac is how 
to match the Pascal function-calling convention. In languages such as C and Pascal 
that maintain a stack-based parameter-passing mechanism, there are two methods 
of passing function parameters, or variables. Passing a variable "by value" means that 
a copy of the variable's contents is passed to the called function. Because it is passed 
a copy, the called function is free to change the value of the variable without conse­
quence in the caller. Passing by value gets expensive, both in time and iri memory, 
when the variable is a large data structure. A Pascal compiler consequently tries to 
optimize time and memory by passing all parameters that are more than 4 bytes in 
size "by reference." When a variable is passed by reference, the variable's address is 
placed on the stack, and no copy of the data is made. In C, because the called func­
tion gets the address of the variable in the caller, any changes made will be reflected 
in the value of the variable when the function returns (in Conly-Pascal safeguards 
against this "side effect"). 

Fortunately, the compiler manages the stack for you, but it's your job to get the types 
of the parameters correct. Here's a rule of thumb that usually works: If the size of the 

76 



4: MACINTOSH APPLICATION FUNDAMENTALS 

parameter is more than 4 bytes, pass it by reference. In other words, pass its address. 
The rationale behind this thinking is that if an address is 4 bytes, passing by refer­
ence limits the maximum size of a stack parameter. This approach places a burden 
on you, the programmer, because you need to know something about the data struc­
tures of the parameters of the Toolbox routines that you use. 

Of course, every rule has an exception, and here's the exception to our rule of 
thumb: Whenever you find a Toolbox procedure-definition parameter that has a VAR 
in front of it, pass the address of the variable. Do this because some functions are de­
signed to modify the contents of the variables passed to them. Pascal has a mecha­
nism called a "variable parameter" specifically for this purpose, and the modifier 
VAR is placed before the name of the variable in the definition of the function to 
signify that the parameters are modifiable. 

A point is 4 bytes, so normally you'd pass it by value, as in 

Point mouseloc; 

if (PtlnRect (mouseloc, &portRect)) 

Notice that the point mouseLoc is passed by value, and that the rectangle portRect is 
passed by reference-that is, we pass its address. The point is passed by value be­
cause it is 4 bytes, but a Rect structure is larger than 4 bytes and is therefore passed 
by reference. Now consider the Event Manager routine GetMouse, defined this way: 

Procedure GetMouse CVAR mouseloc: Point); 

This changes the way you'd pass a Point: 

Point mouseloc; 

GetMouse C&mouseloc); 
if CABS(mouseloc.h - oldMouseloc.h) >= kMouselimit) 

C ancl Pascal 
The Macintosh Toolbox routines are designed to be called from a Pascal pro­
gram, and Inside Macintosh documents all the routines as if you were using 
Pascal, not C. Experienced C programmers probably adjust quickly to the dif­
ferences, but beginning C programmers might think that, just as they've . 
begun to learn one language, they need to learn another. 

C and Pascal are very similar because they share a common ancestry. They 
have similar data types: integers,. reals, and characters. They share the ability 
to structure data: Pascal data structures (called records) can be and a.re 
mimicked by C data structures. And the two languages have similar control 
structures, so a C program can be ported to a Pascal program, and vice versa. 

77 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In the case of GetMouse, the VAR modifier calls for passing by reference. GetMouse 
returns the current mouse position in this variable and therefore needs the address 
to which it will write this information. 

C has a built-in feature, called function prototyping, whereby the compiler will 
check a function's parameter types. To use prototypes, you must first tell the com­
piler to check for them. You'll find the option in the Compiler Flags section. You also 
need to declare prototypes for each of your functions, but you don't need to write 
prototypes for the Toolbox routines that you use in your program-they're built into 
THINK C. All of our projects use prototypes. For the small amount of up-front effort 
required to use them, they really pay off in time otherwise spent finding parameter 
type errors. We strongly recommend that you use them. 

Here's the prototype declaration of NewWindow, which describes how you would 
call it from an application: 

WindowPtr NewWindow CPtr wStorage, Rect *boundsRect, Str255 title, 
Boolean visible, short proclD, WindowPtr behind, 
Boolean goAwayFlag, long refCon); 

You might first notice that this function has eight parameters. Each one is important. 
You can get the complete story on each parameter from Inside Macintosh. All the 
Toolbox calls used in this chapter are described in Volume I. We don't have the 
space to describe each Toolbox call in this book, but we'll make a few comments 
about NewWindow that apply to using Toolbox calls. 

Who Allocates the Storage? 
The first NewWindow function parameter, wStorage, is a pointer to some memory 
to be used for the WindowRecord, the data structure associated with the window. 
We're given the opportunity to allocate this memory ourselves for reasons that are 
not worth going into here-we'll discuss the heap and fragmentation in Chapter 5. 
But Inside Macintosh tells us that if we pass a null pointer (the value OxOOOOOOOOL) 
for this parameter, the Window Manager will allocate the memory for us. 

This is a common convention in the Window Manager, the Dialog Manager, and 
other parts of the Toolbox: You pass either the address of some allocated memory or 
a null pointer. In our simple example, it will suffice to let the Window Manager allo­
cate the memory for us. 

Passing by Reference 
The second argument to NewWindow is a rectangle that specifies where to place the 
window in global space. Because of Pascal parameter-passing conventions, you must 
pass this rectangle by reference, as was mentioned earlier. 

78 



4: MACINTOSH APPLICATION FUNDAMENTALS 

Pascal Strings vs. C Strings 
The title field is defined as a Str255type, also known as a Pascal string. NewWindow 
expects a string pointer in this argument, but Pascal and C differ in their string for­
mats. The first byte of a Pascal formatted string contains the length of the string and 
is followed by the string of characters. A traditional C string, like those described by 
Kernighan and Ritchie, consists of the characters followed by a terminating 0. These 
two formats are illustrated in Figure 4-7. 

Count byte (the 
length of the 

;ring) Pa6cal Eitring: \pHello World 

11 I H I e 0 I w 

Index 

(j 2 3 4 5 6 7 

C Eitring: Hello World 

H w 

Figure 4•7. 
The formats of Pascal strings and C strings. 

I 0 r I 

8 9 

d 

10 11 

)f 
Null 

terminator 

The designers of THINK C were considerate in that they invented a notation for 
quickly specifying Pascal string constants: A string that begins with the token \p is 
created as a Pascal string. For example, \pUntitled is compiled into the Pascal string 
that NewWindow will interpret as the Pascal format of the string. A traditional C 
string is defined between double quotes-" Untitled" for example. 

Creating a Window 
We've excerpted the code from Hello Mac! that creates the window. The first call, to 
SetRect, initializes the Rect structure that defines the window's rectangle. A Rect 
structure is defined this way: 

typedef struct Rect 
{ 

short top, left, bottom, right; 
Rect; 

79 



MACINTOSH C PROGRAMMING BY EXAMPLE 

This window rectangle is specified in global coordinate space, so it will be 40 pixels 
from the top and 40 pixels from the left edge of the screen, and it will be 300 pixels 
wide by 200 pixels high. 

SetRect C&windowRect, 40, 40, 340, 240); 
if CtheWindow = NewWindow (0L; &windowRect,"\p", true, dBoxProc, -lL. 

false, 0L)) 

Again, a rectangle is larger than 4 bytes, and to follow Pascal calling conventions, we 
therefore have to pass windowRect's address. 

After the call to SetRect, we've placed the call to NewWindow, within an if state­
ment's conditional expression. NewWindowwill return a nonzero window pointer if 
it was successful in creating the window, and we can draw in the grafPort only if the 
window was created, which is why the program tests the pointer value. 

Notice the programming style here. The Macintosh programming world has adopted 
a convention in which a Mac construct begins with a capital letter and has a capital 
letter at the beginning of each important consonant sound ( WindowPtr, SetRect, 
NewWindow, and so forth). For clarity, we'll always begin the function names and 
variable names that we write with lowercase letters so that you'll know at a glance 
which functions are Toolbox calls and which ones are defined in the source code. 

Which Graf Port to Draw In? 
All drawing in a window is specified in the local coordinate system. But, because 
multiple grafPorts can be open on the screen, where does the drawing appear? 

QuickDraw draws to the current grafPort. The QuickDraw routine SetPort assigns 
the current grafPort. You pass SetPort a pointer to the window that you want to be 
current, as in 

SetPort CtheWindow); 

The Pen ancl the Port Rectangle 
Each grafPort has a "pen," which is actually an abstract concept that defines where 
the next drawing action will appear in the port. Before you can draw text, the pro­
gram has to locate the pen at an appropriate place in the window. You use the 
MoveTo routine to set the pen to an absolute position in the grafPort. The statement 

MoveTo (20, 30) 

moves the pen to point (20, 30). Remember, this refers to the point in the window, in 
the local coordinate system, not to the screen point. 

The GrajPort data structure contains information that QuickDraw uses to control 
drawing. We repeat the definition of a GrafPort on the next page, with short de­
scriptions of its many fields. 

80 



typedef struct Graf Port 
{ 

} ; 

int device; 
BitMap portBits; 
Rect portRect; 
RgnHandle visRgn; 
RgnHandle clipRgn; 
Pattern bkPat; 
Pattern fillPat; 
Point pnloc; 
Point pnSize: 
int pnMode; 
Pattern pnPat: 
int pnVis; 
int txFont; 
Style txFace: 
int txMode; 
int txSize; 
Fixed spExtra; 
long fgColor; 
long bkColor; 
int colrBit; 
int patStretch; 
Handle picSave; 
Handle rgnSave; 
Handle polySave; 
QDProcsPtr grafProcs; 

4: MACINTOSH APPLICATION FUNDAMENTALS 

II 0 if on screen 
II RAM used for this port 
II portRect 
II visible region 
II clipping region 
II background 
II pattern used for fills 
II current pen location 
II current pen size 
II current pen transfer mode 
II current pen pattern 
II current pen visibility state 
II current font number 
II current font style 
II current font transfer mode 
II current font point size 
II amount to add to every text space 
II foreground color Cpen color) 
II background color 
II used internally 
II used internally 
II used internally 
II used internally 
II used internally 
II grafProcs 

A member of the GrajPort structure named portRect describes the port's rectangle 
in local coordinates. You can get the width and height of the grafPort from these 
coordinate values. 

Recall from earlier in the chapter that the first member of the WindowRecord is a 
GrajPort, and, in fact, on the Mac a WindowPtr is actually defined as a pointer to a 
GrajPort, so you can get the port rectangle this way: 

Rect portRect; 

portRect = theWindow->portRect; 

Let's say that you want to draw the string in the middle of the window. You could use 
the portRect and the string width of your string to calculate the starting pen position 
for the Drawstring, which draws the text at the current pen position. The Quick­
Draw function StrtngWidtb returns the pixel width of a string. 

The function sayHey(), shown on the next page, calculates the point at which it will 
draw an arbitrary string centered in a window and then draws it. 

81 



MACINTOSH C PROGRAMMING BY EXAMPLE 

sayHey CWindowPtr theWindow, StringPtr theString) 
{ 

Re ct 
Point 

windowRect: 
penloc: 

I* get the center of the window *I 

II first, point to our window 
windowRect = theWindow->portRect: 

II next, calculate the horizontal center 
penloc.h = CwindowRect.left + windowRect.right) I 2; 

II now calculate the vertical center 
penloc.v = CwindowRect.top + windowRect.bottom) I 2; 

I* offset the pen's horizontal location by one-half 
the string width *I 

penloc.h -= StringWidth CtheString) I 2; 

MoveTo Cpenloc.h, penloc.vl: 

Drawstring CtheString); 

I* sayHey *I 

Changing the Font 
What if you wanted to write "Hello" and "Mac!" in different fonts? A GrajPort main­
tains values for the current font, font size, and face. Drawstring always draws text 
using these current values. To draw each word of the string Hello, Mac! in a different 
font, you'd have to split the string in half, changing fonts with TextFont after draw­
ing the first word. The code would look something like this: 

TextFont Cll: II font 1 is the application font (Geneva) 
MoveTo Cpenloc.h, penloc.v); 

Drawstring ("Hello, "l: 

Text Font ( 0): II font 0 is the system font (Chicago) 

Drawstring C"Mac!"l: 

You might wonder why MoveTo was called only once in this last example. Don't you 
need to relocate the pen before drawing the second word? Actually, Drawstring 
moves the pen for you. When it draws a string, it moves the pen to a location follow­
ing the last character. In other words, the pen always has a location at which it will 

82 



4: MACINTOSH APPLICATION FUNDAMENTALS 

perform its next action; you need to move the pen only when you want it to draw in 
a different location. 

Exploring Other QuickDraw Graphics Entities 
Now that you have a window and you know something about a gratPort, you can 
modify Hello Mac! to draw any QuickDraw entity you like. 

Lines are the simplest objects to draw. LineTo draws a line from the current pen 
location to a specified point. LineTo moves the pen to the specified point after it 
draws the line. The following statements draw a SOxSO-pixel square: 

MoveTo (10, 10); 
LineTo (10, 60); 
LineTo (60, 60); 
LineTo (60, 10); 
LineTo (10, 10); 

In addition to lines, QuickDraw supports six other kinds of graphics "primitives": 
rectangles, rounded rectangles, arcs, ovals (circles), regions, and polygons. It also 
supports five "grafVerbs," Apple's word for operations that you can perform on 
these primitives: Frame, Invert, Erase, Fill, and Paint. For example, you can have an 
oval that is painted, a region that is filled, or a rectangle that is inverted. 

You create the name of the QuickDraw routines that draw the primitives by matching 
a grafVerb with a primitive, as in FrameRect, InvertArc, ErasePoly, FillOval, PaintRgn. 

The routine paramenters differ, depending on the primitive you're using. Refer to In­
side Macintosh, Volume I, Chapter 6, for more detail. 

Events, or When to Go Away 
You've seen what it takes to create the window and draw the string. The last part of 
Hello Mac! terminates the program. You might have read that the Macintosh uses an 
event-driven operating system. This means that when a user clicks with the mouse, 
types a character, inserts a disk, or generates some other "event," somehow the pro­
gram is notified with a data structure for that event and reacts to it. 

The Macintosh understands many events-each corresponds to a real-world hap­
pening. Hello Mac! looks for one kind of event-a mouse click-before returning 
control to the Finder. 

Events are "posted" to the event queue by the Macintosh operating system. We're not 
concerned with the event queue mechanism-applications should always detect 
new events by using the routines of the Event Manager. 

Hello Mac! calls the Event Manager procedure GetNextEvent in a loop to see whether 
a new event has been posted. (See the sidebar "The Correct Way to Wait for an 
Event.") GetNextEvent accepts two arguments: an event mask and the address of an 
EventRecord structure. The event mask tells GetNextEvent which events you're 

83 



MACINTOSH C PROGRAMMING BY EXAMPLE 

interested in. If GetNextEvent returns a nonzero value, an event of interest is avail­
able and the routine fills an EventRecord structure with data describing the event. 
The code we're talking about is 

while C!GetNextEvent CmDownMask, &eventRecJJ; 

If you want to know about all events that occur while the application is running, you 
pass the mask everyEvent. Because Hello Mac! waits for a mouse click (mouse­
down), you pass the mask mDownMask. 

The Correct Way to Walt for an Event 
The correct way to wait for an event is to call WattNextEvent. This procedure 
lets your application work with MultiFinder. Because we're not concerned 
with MultiFinder context switching during Hello Mac! and because it's 

. simpler to use, we use the lower-level function GetNextEvent. We'll discuss 
WaitNextEvent in detail in Chapter 6. 

Disposing of the WindowRecord 
After the program receives a mouse-down, it can return control to the Finder. But 
before a well-mannered Macintosh application terminates, it "cleans up after itself." 

When Hello Mac! created its window, it had the Window Manager allocate space for 
the window's WindowRecord This structure is kept in memory in the application 
heap, and because the program is finished with the window, it should free the 
memory that has been used by the window. The Window Manager provides the rou­
tine DisposeWindow expressly for this purpose. 

Note that you never call DisposeWindow with a null pointer, and you never call it 
twice with the same WindowPtr. If you do, you'll see the dreaded bomb alert box. 
This gives us an opportunity to introduce some formal computerese. We can say that 
the program is structured to be "well-behaved" (it doesn't crash) in the event of an 
"exception" (something goes wrong). If Hello Mac! can't get a nonzero WindowPtr 
from NewWindow, it exits. Drawing occurs only if the program opens the window 
successfully. Drawing in an unspecified port will also cause unpredictable results. 

Hello Mac!'s last call is to ExitToSbell, which returns control to the Finder. This call is 
actually unnecessary. A THINK C application calls ExitToSbell automatically when it 
terminates. We include it in our programs to remind you that execution of the pro­
gram will halt when ExitToSbell is reached. 

lnltlallzlng the Program 
Before any program can run, you need to set up the Toolbox managers that the pro­
gram will use. Hello Mac! requires initialization of QuickDraw and the Window and 
Font managers as shown on the next page. 

84 



4: MACINTOSH APPLICATION FUNDAMENTALS 

II initialize managers 
InitGraf C&thePortl; 
InitWi ndows (); 
Ini tFonts (): 
Ini tCursor (); 

The program initializes QuickDraw with this call: 

InitGraf C&thePortl; 

The variable tbePort is actually an external variable declared in the THINK C file 
QuickDraw.h this way: 

Graf Ptr the Port; 

It is defined in the MacTraps library. This variable is a QuickDraw global, part of the 
application's Macintosh environment. We'll talk more about QuickDraw globals in 
the next chapter, but for now you should know that you can use this variable any­
where in your application, whenever you need to get at the current grafl>ort, as in 

currentWindowRect = thePort->portRect; 

That's your first Mac application. We recommend that you use it to play with 
QuickDraw. Consult Inside Macintosh, Volume I, Chapter 6. Then try to use some of 
the graphics described in the chapter. Discover how simple it is to be a graphics pro­
grammer when you have a good platform to work on. 

When you've had enough of Hello Mac!, go to the next chapter to find out how a 
Macintosh program should use memory. 

'111• ...._"8••~•Swltch 
Remember that little plastic bar that came with your Mac and looked. like 
some kind of high-tech p::tper clip? It's.called the programmer's switch. We 
recommend that you install it. Think ofit as a panic button. Actually, ithas 
two buttons. The one farthest from you switches control to the built-in ROM 
debuggef or to the TMON or Macsbug debuggers if they've beertin~~~lled,. 
The button closest to you reboots your system. New programmers sometimes 
experience strange Mac behavior, such as the video's going wild or the Mac's 

. emitting "machine gun" sounds. Suchbehavior occurs because the program 
is writing'.t() memory that shouldn't be written to, most likely with an err~tor 
u~itijl~~~.point.er. 'fhe video and sound phenomen~ ()Ccur b5cause · 

... · program.··e~l.\~ns nonsensical inforD:ljl~i()n Jn the . V'~~eo ot s()un . 
memory. Ifdiis happens tqyou, don'tb<et~.concernegaoout damag~yQur 
Mac; simply.use the progranimer's switc;J:i_to stop theprocess. Of cours~ if 

···you smell$D:lOke, you canalways pull ~plug. ,:•:~. 

85 



5 

MACINTOSH 
MEMORY 
MANAGEMENT 

Now that you've seen how an application is put together, let's step back and examine 
how the Macintosh manages memory. Memory is the prime commodity of a com­
puter. Programs need memory to store their instructions as well as data. Memory 
makes the Mac go 'round: You can't run a program without it. 

And memory is a shared resource. The System, INITs, CDEVs, DAs, and other appli­
cations can all run at the same time as your foreground application. These programs 
all need RAM to hold their code and data. To get these programs to work together, 
your computer uses the Macintosh Memory Manager. And to get these programs to 
work together properly, your application program needs to follow some common­
sense rules. 

Application programmers aren't ordinarily concerned with the goings-on in 
memory. Usually, you can ignore the details of low-level actions such as the alloca­
tion of automatic variables on the stack. But when the dreaded bomb alert box ap­
pears and the source code doesn't readily reveal the cause of its appearance, your 
only recourse is to dig in at the machine level to see what's happening in memory. 
Knowing how your code and data look in RAM at runtime is the most important 
aspect of the black art of debugging. 

In this chapter, we'll take a look at how a Macintosh application uses memory. We'll 
explore the stack and the heap as they relate to C programming, keeping an eye out 
for the pitfalls of working with data objects. 

87 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Memory Map 
When you launch a program from the desktop, the Operating System allocates some 
of RAM to your program and organizes this RAM as shown in Figure 5-1. 

Application 
space 

System 
space 

Figure s-1. 

Macintosh Memory Map 

High memory 
I 

- Video and sound area 

;~~·i'!' - Jump table 
- Application globals 

•• - Qu1ckDraw globals 

- Application stack 

- Application heap 

- System heap 

- System globals 

L....:.....:..:..__...-.:.............._. ....... ....,_IC....::l.__.:w:.:m..__ .... • ... • - Interrupt vectors 

Low memory 

The Macintosh Memory Map. 

88 



5: MACINTOSH MEMORY MANAGEMENT 

The "system globals" make up the lowest memory addresses. These locations hold 
information used by the Operating System. Programmers should use these locations 
sparingly, never within an application and only during program debugging. As the 
Macintosh OS develops, Apple often decides to change the meanings of some system 
globals. If your application relies on any of these changing variables, it becomes in­
stantly obsolete with the release of a new system. 

Above the system globals is the "system heap," where the OS and other critical data 
reside. Avoid using this section of memory completely. Imagine what would happen 
if some of the Operating System's code were overwritten by an errant pointer in your 
program. 

Above the system space sits the application space, which includes the application 
heap, the application stack, the QuickDraw globals, your application's globals, and 
the jump table. We'll discuss the contents of each in a moment. 

In MultiFinder and under System 7.0, you can open multiple applications. The 
memory map for a multiple application configuration has multiple application 
spaces, as illustrated in Figure 5-2 on the next page. 

The lines between the system, the applications, and their components are abstract. 
Right now applications don't run in a protected, private area of RAM. (You'll have to 
wait for System 8.0 for that.) As a result, if one of the programs loaded and running 
in RAM has a bug, it can clobber the code of any of the other applications. 

Pro9ra111 Cocle In Memory 
We've already seen that source code consists of text files written in a high-level lan­
guage. In memory, code consists of long lists of machine language instructions 
derived from source code and created by the compiler and built-in assembler. Each 
machine language instruction is a 16-bit, binary word that tells the machine to do 
something simple such as loading a value into a register, moving data from one 
memory location to another, or adding the contents of two data objects. We've 
known programmers who could read and edit machine code, poking bits here and 
there in RAM to fix a problem, but most people think of machine language instruc­
tions in terms of their mnemonic equivalents. The set of mnemonics for a processor 
is its "assembly language." A machine-level debugger such as TMON or MacNosy 
contains a "disassembler," which converts the binary form of an instruction to its 
mnemonic form, making the code more understandable. Although you can view the 
assembly language generated by THINK C 5.0 by selecting Disassemble from the 
Source menu, using a debugger is the only practical way to view machine code. 

The THINK C compiler generates the machine code from your source code and 
places it in your project file in CODE resources. Each resource corresponds to a code 
segment that you define in the project window of the compiler. Each code segment 
is limited to 32K, so a standard-size program of lOOK or so must consist of multiple 
code segments. The Getlnfo menu selection in the THINK C environment reports 
the sizes of your code segments. 

89 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Application 1 

Application 2 

Application 3 

Figure S·2. 

Macintoah Memory Map 

QuickOraw glob.a le/ Application 

1--...,,------.,....,.-~.,....,----:-.,......../ glob.ale/Jump table 

- Application heap 

QuickOraw glob.ale/ Application 

1--~----~~--.,...-.1 / globale/Jump table 

- Application heap 

QuickDraw globale/ Application 
i-,..--.....,---,.....-..,,---.,..---~ / globale/Jump table 

- Application heap 

- Syetem heap 

- Syetem globale 

The Macintosh Memory Map with three applications loaded. 

Why is code segmentation necessary? Machine code must be in RAM while it is exe­
cuting, but an entire application's code need not be resident for the program to run. 
With good planning, you can divide a program into multiple code segments and 
have it run in a limited space. Large applications manage memory by controlling 
which code segments are in RAM at a given time. This is how a program with 720K 
in code segments can run in a MultiFinder partition of 512K: Some code segments 
are removed from RAM when others are moved in. 

Segment loading is automatic at runtime. The system moves segments in from the 
disk as they are needed, so you never need to worry about whether code that needs 
to execute is in RAM. The part of the system that manages this task is called the Seg­
ment Loader. 

90 



5: MACINTOSH MEMORY MANAGEMENT 

To save RAM, however, you might want to unload a code segment when you've fin­
ished with it, so you'll need to help the Segment Loader. The Toolbox call UnloadSeg 
marks a CODE resource as "purgeable," making it a likely candidate for replacement 
when another resource is brought into RAM. Some applications call UnloadSeg on a 
set of program segments each time through the event loop. Another strategy is to 
call UnloadSeg before trying to save a document. Our Generic App, presented in 
Chapters 6 through 8, never calls UnloadSeg-small applications usually don't. If 
you do use Generic App to create a large program, you'll want to review the infor­
mation here and in Inside Macintosh regarding the handling of code segments. 

The Jump Table 
You might wonder how the Segment Loader knows to load a segment when it's 
needed. Whenever your program makes an intersegment function call, it does so 
through a structure called the "jump table." The jump table is set up by the linker 
during compilation and is loaded into the application's memory with the program. 
(The jump table information is kept in CODE #(), which is the first segment to be 
loaded when a program is launched. If you want more than our simple description, 
see Inside Macintosh, Volume II.) 

The linker creates a jump table entry for each external function in your program. A 
Macintosh program never directly calls an external function. Instead, it makes a call 
to the last 6 bytes of the function's jump table entry. The contents of these 6 bytes 
differ depending on whether the segment has been loaded. If the segment for that 
function has been loaded, these bytes contain the address of the function in RAM 
and program control continues from there. If the segment has not been loaded, these 
bytes contain a call to LoadSeg, the Segment Loader routine that loads the segment 
and initializes all of the jump table entries for that segment before control is passed 
to the function. 

All intersegment function calls involve the overhead of passing through the jump 
table, but this is a small price to pay for the efficiency of a segmented code map. 
Nevertheless, careful organization of applications larger than 32K can result in sig­
nificant performance improvements. You wouldn't want to have two related func­
tions that are always called in sequence separated in two different program 
segments, for example. 

Because CODE #(), where the jump table resides, is a segment, your program's jump 
table is limited to 32K. In a large program with a lot of functions, you might find 
yourself approaching this limit if you don't make use of static functions. These func­
tions, declared with the static keyword, are called only from the module and there­
fore from the segment in which they're defined, so they don't need a jump table 
entry. Use static functions to save jump table space. 

Program Data in Memory 
Code has to share memory with data. The data of a running program is a dynamic 
collection of values kept in known locations of RAM. The program reads and writes 

91 



MACINTOSH C PROGRAMMING BY EXAMPLE 

to a memory location by means of an address. To access a value in RAM, the pro­
gram loads the contents of a 32-bit address register with an address and uses an in­
struction to fetch or to store the value. 

An addressing mode defines how a particular processor uses a combination of its 
registers and their values to access RAM. The 68000 family of processors support 
more than a dozen addressing modes. The ins and outs of these addressing modes 
are primarily of interest to assembly language programmers, but if you plan to do 
any serious development, you are eventually going to need to get down and use a 
low-level debugger. Understanding what's going on at the machine level is critical to 
getting at the heart of a problem. Although the ultimate authority on 68000 machine 
organization is Prentice Hall's reprints of the Motorola MC68000 family user manuals, 
we can go into a few basic facts about these processors here. 

Machine Organization 
The Macintosh processors have eight 32-bit address registers, named AO through A7, 
and eight 32-bit data registers, named DO through D7. The address registers, shown 
in Figure 5-3, are used for address calculations aP.d for access to values in RAM. The 
data registers, also shown in Figure 5-3, are used as scratch space for arithmetic cal­
culations. Register access is faster than RAM access, and clever use of register vari­
ables in your C program can dramatically speed up a sluggish application. 

Some of the registers have special purposes on the Mac. Address register A7, for in­
stance, is used as the stack pointer, and A6 as the frame pointer. We'll look more 
closely at those two registers in a moment. Register AS points to your application's 
global variables. OS routines use register DO and sometimes Dl to return values. 

Memory is organized with its beginning at address 0 and its maximum possible ad­
dress at 4,294,967,295, which corresponds to the value 232 - 1. Addresses are usually 
specified in hexadecimal notation, so the "address space" of a 32-bit machine is 
OxOOOOOOOO through OxFFFFFFFF. Note that until System 7.0, the Macintosh used 
only the least-significant 24 bits of an address, limiting the Macintosh's address space 
to 16 megabytes. 

A variable begins at an address and occupies 1 or more of the bytes that follow. The 
number of bytes that a data object occupies depends on its type. All types other than 
char and unsigned char are aligned on even-numbered addressing boundaries. 
Structures and unions can be larger than you might think because they can be pad­
ded (have additional bytes added) so that the next data object begins on an even­
numbered addressing boundary. If you're looking at data objects in RAM, you'll see 
that there are no visible boundaries between consecutive variables. To know where 
one object ends and another begins, you need to know the sizes of the basic types. 
We've shown some of the sizes in Chapter 3; Figure 5-4 on page 94 contains a com­
plete list. You need to know the data type sii:es as well as you know the multiplica­
tion tables or the alphabet. 

92 



5: MACINTOSH MEMORY MANAGEMENT 

AO 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

68000 family addreeH:; regi9ter9 

I This register is used by the compiler 
_ - for address calculations and 

.___ __________ _, certain addressing modes. 

These registers are available for 
application use - in C, through the 
register declarator. 

The Macintosh OS uses these registers. 

This register is used for global 
_ reference in nonapplication programs 

such as DA, INIT, XCMD, etc. 
This register is used for global 

.___ __________ _, -- reference for applications. 

- Frame pointer 

- Stack pointer 

.. oll(._---32 bits------'l)o~ 

68000 family data regi9ter9 

These registers are reserved for use by Macintosh OS and compiler. 

DO I This register is used for 
.___ __________ _,-OS routine return value. 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

Figure 5·3. 

These registers are available for 
application use - in C, through the 
register declarator. 

The 68000 family address and data registers. 

93 



MACINTOSH C PROGRAMMING BY EXAMPLE 

CType Mac (Pascal} Type Size in Bytes 

unsigned char Byte 1 

int Integer 2 or4 

short Integer 2 

long Longint 4 

float 4 

double Extended 10 

Size Size 4 

Fixed Fixed 4 

char* Ptr 4 

char** Handle 4 

char [256) Str255 256 

unsigned char Boolean1 1 

Booleanz Integer 2 or4 

1Pascal language defined (Toolbox) 2C language defined (application) 

Figure 5·4. 
Sizes of fundamental C and Macintosh data types. 

Scope of Variables 
Some variables are long-lived; others last for only the duration of a function call. The 
"scope" of the variable is the length of time it contains valid data. A global variable 
persists: It is initialized when the program is loaded, and space for it is reserved in 
the application heap until the program is exited. A variable declared inside a func­
tion- a local variable-exists for only the life of that function. A local variable is not 
initialized when it is created; its value is unknown. You must initialize a local vari­
able before using it. Not doing so is the source of a common C bug. 

Another programming bug arises from using a variable outside its scope. The Joo() 
function , shown in Figure 5-5, copies a null-terminated string of characters (a string 
ending with a byte whose content is null or O) and returns a pointer to the copy. 

char * 
foo (char * sourceStr ) 
{ 

register char *P: 
char destStr [BUFSIZ]; 

p = destStr; 
while (*p++ = *SOurceStr++); 

return (destStr); 

Figure 5-5. 
The foo() function is a string copy utility. 

94 



5: MACINTOSH ME.MORY MANAGEMENT 

foolJUndertllelttl•_,._.pe 
The Joo() function (a typbt, ·unenlightening name for a generic ~@ 
has a simple job: When it is passed a pOinter to a null-terminated ~!li•< 
string, it copies the string arid return~ a pointer to the copy. To this en&;/DoQ · 
uses two local variabley: p, a Character pointer; and destStr, the 4 · · · ·· · 
buffer declared to. be l:JllFSIZ bytes long. We've direct~. flt~.; ·· 
through the use of tile ~~t teywqn;l• to use one of th~ ~· 
680XO address regist~(~1i;~.th~if'.t(Y:~ignthe add~ of:~·~ 
Take a look at th~.~~~~··:U .T y; · · · · . .· .. · <:'s;' 

p = destStr: · . ' < ~.·~· ·;: • .. ;' · · 

In C, the name of an ~y~~~t{th~ addresti ofits first chii1'*i{•:; 
don't use square braces in the e)CpressiQn, If you don't choose to ·· •.. ..... . . • 
this shortcut, another \vay·to .get me ad.dress of the first character is !fltti~~· 
assignment: 

p = &destStr[8]: 

Using this form, you can point to the ·rfh item in an array, as in 

short n: 

p = &destStr[n]: 
. . . 

But don't forget to initialize n Sc:> tl:Utt you don't point off into w.hO~-: 
where and come up with.~e; · .. · · .i;t~·;:;i(:,, •·· 
The copying of th~ s~ · '~;dle WIJtle statemen~. ~.a( 
(O) is assigned to~ b~ ':· ;f~ ~the loop exit& Th~ · 
pletes exectltion by r · · ·.· ·• ·~~~ the ~ charact(!t_._:: 
the name ofthe buffer.··· ···tile··~ braces. 

Notice that we use a regist~:~e· rc;the t>ointer. This is ~pJt: < 
things up. The copying lo6P ex~es about four times ~et thanlt:. 
we didn't use the register pointer; Md llotice the use of~ ~ .:. 
(p++) to step through the two ~ .. The semicok>n after the white •. ···.··•·· .... ,. 7 
means that the loop has no IOQ~body; all execution is performed: in.Sid~'thif 
while test clause. The brevity of this Usignm.ent exemplifies tigJ:if C ~;;~,:, :, 

•p++ = •sourceStr-t+ 

The •sourceStr++ getsf:he~~erJtQm the stringandth~!A 
the pointer, and the, 1Jf+ · ·· ·· :,th~ ~ter to. the d¢stinatj.Qri 
then increments the·cf • ' ' ·;. · 

We can't ta,ke credit;:t9.P~ 
Origin 9f this 

95 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The Joo() function has a serious flaw: The destination buffer is defined inside the 
function, as a local variable. The function returns a pointer to a buffer that ceases to 
exist as soon as Joo() returns. This function really needs to be passed a pointer to 
the destination buffer, which is declared in the caller. We show the fix in Figure 5-6. 
And while we're at it, let's callfooO by its real name. 

char * 
strcpy char * destStr, 

char * sourceStr 
{ 

} 

register char •p; 

p = destStr; 
while C•p++ = •sourceStr++); 

return CdestStr); 

Figure 5·6. 
The strcpy() function is passed a pointer to the destination string. 

Notice that strcpy() returns a pointer to one of its arguments; it therefore knows the 
address of this string. You might ask, "Why would a function return a pointer to a 
variable that was passed to it as a parameter?" The answer is, "So that you can write 
one-statement programs that look like LISP programs," as in Figure 5-7. 

prfntf C"Ss", strcat Cstrcpy CaStr, "Hello"), 
strcat CstrcpyCbStr, ","), strcpy CcStr, "World")))); 

Figure 5.7. 
Hello World redux. 

The Stack 
Automatic variables come into and go out of existence with a function because 
they're created on the application stack. A stack, sometimes called a push-down list, 
is a LIFO, meaning Last In, First Out-the way it receives and gets rid of data. The 
stack grows and shrinks as data objects are pushed onto and popped off it. Access to 
the objects is from the top of the stack. The stack mechanism is often represented 
by the child's toy shown in Figure 5-8. 

The top of the stack is maintained in register A7. The stack base starts in high 
memory and grows downward, so register A7's value decreases as items are added 
to the stack. In the normal sequence of a running program, one function calls an­
other, which in turn calls another. The calling order proceeds according to the pro­
gram's design. Programs use the stack to keep track of this flow. 

96 



5: MACINTOSH MEMORY MANAGEMENT 

The Stack 

4 

Figure 5-8. 
Data objects are pushed onto a stack and popped off a stack in last-on, 
first-off order. 

A quick note on terminology: If function Joo() calls function bar(), function Joo() is 
the "caller" and function bar() is the "called function," as shown in Figure 5-9. 

foo () 
{ 

bar Cargl, arg2); 

void 
bar (short argl, arg2) 
( 

short varl, var2; 

Figure 5-9. 
Another foo() bar() example. 

The stack is used to store the data for each function call. To illustrate this, we'll use 
the Joo() bar() code fragment. Let's say that bar() is about to be called from Joo(). 
Just before bar() is called, the parameters argl and arg2 are pushed onto the stack. 

C and Pascal Calllng Conventions 
C compilers push parameters in last-to-first order (arg2 before argl in 
our example), and Pascal compilers push their parameters first-to-last. The 
calling conventions of the two languages have other differences. Look up 
"calling conventions" in the index of the THINK C user's manual to find out 
more. 

97 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Next Joo() calls bar() with a JMP instruction, which pushes the return address in 
Joo(). When it's finished, bar() uses this return address to return to Joo(). Then 
bar() allocates space on the stack for its local variables with a LINK instruction. 
Figure 5-10 illustrates the stack before and after a function call. 

The collection of stack objects-the function's parameters, the return address, and 
the automatic variable space-is called the current "stack frame." Register A6 points 
to the stack frame, so it's called the "frame pointer." All of the function's local vari­
ables are accessed as offsets from A6. 

Stack after function call 

Stack before function call 

~---~f.-A7 

Figure 5·10. 
The stack before and after a function call. 

High memory 
I 

arg2 

arg1 

return address 

old A6value 

var1 

var2 

Low memory 

i.-

i.-

A6 

A7 

Just before the function returns, it calls UNLK, an assembly language instruction 
which sees that the frame pointer's value reverts to its previous value. At this point, 
all references to local variables are gone; the value of A6 no longer points to a func­
tion's locals. This is why local variables have a scope limited to their function's 
lifetime: The stack frame in which they reside disappears after the function returns. 

The Heap 
The stack mechanism is rigidly structured, and the stack's contents are limited to 
function-call-related data. The heap contains a varied collection of data objects. 
The Mac actually has at least two heap zones, one for the system and the other for an 
application. The system heap is hands-off as far as your application is concerned. It 
contains the Operating System code, fonts, DAs, INITs, device management data, 
and other esoteric matters important to the health of your Macintosh environment. 

98 



5: MACINTOSH MEMORY MANAGEMENT 

The application heap is yours to use as you need to, but step lightly: This heap con­
tains your application resources, including the code segments of your applications. 
Many a bomb alert box appears as the result of writing over a CODE resource in the 
heap. We'll refer to the application heap zone simply as "the heap," but remember 
that multiple heap zones can reside in RAM, especially if you have loaded more than 
one application. The following discussion can apply to any one of the application 
heap zones. 

A heap consists of blocks-groups of contiguous memory locations-that are ac­
cessible to your program indirectly, through the Macintosh Memory Manager. Heaps 
come in three types: "free," "nonrelocatable," and "relocatable." You must "allocate" 
a block of memory in the heap before you can use it, in a process analogous to rent­
ing a locker at the bus station: Only one application at a time can use a particular 
block. Likewise, you deallocate a block when you've finished with it so that another 
part of your program can use that block of memory. 

A free block is a block that isn't in use. When an application starts to run, most 
blocks in the heap fall into this category. The pool of free blocks makes up the free 
space reported by the Memory Manager function FreeMem. 

You allocate the free blocks to your application using the Memory Manager function 
NewPtr or NewHandle. Either function accepts a parameter that specifies the size, in 

. bytes, of the block you need. When your application is finished with the block, you 
call either DisposPtr or DisposHandle to free the block. (Apple left the "e" off 
"dispose," by the way-that's not a typo.) Using either DisposPtr or DisposHandle 
returns the block of memory in RAM to the free pool. 

A nonrelocatable block is allocated in the heap at a location that never changes. You 
allocate one of these blocks with NewPtr, which returns a pointer to the block. If you 
are familiar with the library function malloc(), you will recognize its similarity to 
NewPtr. Nonrelocatable blocks are undesirable. The Macintosh Memory Manager 
must sometimes allocate a large block of memory in the heap, and nonrelocatable 
blocks can get in the way. 

Relocatable blocks are preferable. You allocate one of these blocks with NewHandle, 
which returns a handle to the block. A handle is a pointer to a master pointer, a 
char• data type in C. A relocatable block can move around in the heap. Unlike a 
sedentary nonrelocatable block, a relocatable block is moved by the Memory Man­
ager when the Macintosh is trying to allocate a large block of memory in the heap. 
Don't misunderstand: Blocks in the heap aren't moved around for the fun of it. The 
Memory Manager moves blocks around only when it needs to in order to allocate a 
large block of memory. 

When a program calls NewHandle, the Memory Manager looks for a run of contig­
uous free blocks until it has enough memory to meet the request. Sometimes it needs 
to move blocks out of the way in order to find the space it needs. The problem with 
nonrelocatable blocks is that they cause a logjam in the heap-the Memory Manager 
can't move them and has to restart its search for free blocks on the other side of the log­
jam. Figure 5-11 on the next page illustrates this problem, called "heap fragmentation," 

99 



MACINTOSH C PROGRAMMING BY EXAMPLE 

which limits the possible size of a block. The potential size of a block is limited to 
the size of a free block run in the heap. In a fragmented heap, this size can be much 
smaller than the total available memory. Relocatable objects help the Memory Man­
ager avoid the problem because the Memory Manager can move them out of 
the middle of long runs of free blocks. Use NewHandle instead of NewPtr when­
ever possible. 

Before heap compaction 

Nonre:locatable block 

Relocatable block 

Free block 

Figure 5· 11. 

After heap compaction 

} 
Maximum 

1-----------1 block aize 
..._ ______ __, 

The heap before and after compaction by the Memory Manager. Because of the 
nonrelocatable blocks in this heap, the maximum block size is limited to only 
half the amount of free memory. 

100 



5: MACINTOSH MEMORY MANAGEMENT 

Nonrelocatable blocks 
allocated at the 

bottom of the heap 

Figure 5· 12. 

The heap during program initialization 

Note the large 
amount of free 
space available 
in the heap. 

Nonrelocatable block 

Relocatable block 

Free block 

Preallocating the nonrelocatable blocks. 

A pointer to data in the heap won't always be valid if the data is in a relocatable 
block. How does an application reference the data in a relocatable block? Apple's so­
lution involves a pointer to a pointer to the block. The Operating System maintains a 
bank of "master pointers" in the heap. Every time your application requests a reloca­
table block, the Memory Manager assigns the address of the block to one of these 
master pointers and returns the address of the master pointer to your application by 
means of the return value of NewHandle. A variable that holds the address of a mas­
ter pointer is called a "handle." You saw the data type declaration for the Handle 
type in Chapter 3, but we'll repeat it here: 

typedef char * Ptr; 
typedef Ptr * Handle; 

The Memory Manager keeps the master pointers in a nonrelocatable block and they 
therefore never move, so that the handle returned by NewHandle is always valid. If 
the Memory Manager needs to move the block, it changes the value of the master 
pointer to point to the block's new location. Figure 5-13 on the next page illustrates 
how the links are maintained. 

101 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The heap before compaction 

Master pointer 
blocks allocated -

with MoreMasters 

Master pointer 
@Ox1244a8 

theHdf 

Figure 5-13. 

dx01564d. 

Ox1244a8 

The heap after compaction 

Master pointer 
@Ox1244a8 

theHdf Ox1244a8 

Control Rec 
movement 

The heap before and after compaction. In this example, theHdl always points 
to the master pointer, which stays at its location, Ox1244a8, and points to the 
changing location of ControlRec,first at Ox01564d and then at Ox1086ba. 

An application can find its data with a "double dereference" of the handle. Let's look 
at an example of a double dereference. 

In the example shown in Figure 5-14, we create a list structure of four ListElm ele­
ments. Note the double dereference of the handle to assign the value 4 to the count 

Co•puterese 101 
Computers have certainly enriched the English language. Take Jhe. term 
"double dereference." Remember the phrase "passing by reference" from 
Chapter 4? Recall that you pass an object by reference when you pass its ad­
dress as an argument to a function call. Referencing a data object· produces 
its address. 

What is a "dereference," then? As its name implies, a derefer~r\~tt:f:eve~ses 
the reference. Given an address of a data object, a dereference proil\lces the 
data object-its value. A pointer holds the address of an object. Det'eferenc­
ing the pointer produces the value of the pointed-to object. It should follow, 
then, that a double dereference of a handle would produce the data object's 
value because a handle contains a pointer to a pointer to the data ()l)j,ect. . ·. 

··•···•· .· - _._ .• •. ;;::i ·.·.. < 

102 



5: MACINTOSH ME.MORY MANAGEMENT 

member of the List structure. No matter where the block ends up in the heap, we 
can always get to the contents with a double dereference. 

typedef struct List 
{ 

short count; 
ListElm elm; 

} List, *ListPtr, **ListHdl; 

ListHandle theList; 
Size listSize: 

listSize = sizeof (List) + 3 * sizeof (ListElm); 

/* allocate a list of four elements *I 
if (theList = NewHandle (listSize)) 

(**the Li st). count = 4: II here's the l i stSize double dereference 
else 

doMemError (); 

Figure 5·14. 
An example of a double dereference. 

Calling MoreMCl5fers 
The Memory Manager routine MoreMasters creates master pointers in a 
nonrelocatable block, so it's a good idea to create enough master pointers for 
your application's use early on in the program, when you're ensuring that 
your nonrelocatable blocks will reside at the bottom of the heap. (See the 
sidebar "Avoiding Heap Fragmentation.") You need to estimate the number 
of handles that your application is going to use and preallocate the master 
pointers in your application's initialization routine. 

How many master pointers should you create? Instde Macintosh tells us that a 
call to MoreMasters creates 64 master pointers in the application. Generic 
App, which we introduce in the next chapter, calls MoreMasters four times, 
which allocates 256 master pointers. Because Generic App doesn't allocate 
much memory, these 256 master pointers should be plenty for the user inter., 
face needs of the application, such as pulling down menus anc;l qpening 
dialog boxes. · · · 

Our commercial application Tycho Table Maker, on the other hand, uses 
many relocatable blocks-at least two for each table cell-so Tycho Table 
Maker calls MoreMasters 64 times in its initialization routine, for a total of 
4096 master pointers. 

103 



MACINTOSH C PROGRAMMING BY EXAMPLE 

But the double dereference is a flaw in the memory management scheme. Think as if 
you were a machine for a moment, in order to realize what the CPU has to go 
through to get at the data in a relocatable block. Before your application can read or 
write any data from the block, the CPU needs to fetch the address of the master 
pointer from the handle variable and then fetch the address of the block from the 
pointer. The extra dereference every time a program accesses data on the heap can 
degrade an application's performance. 

The code shown in Figure 5-15 allocates memory for a TextEdit record and initializes 
the fields of the record. This kind of code is common in Macintosh applications­
creation of a data structure in the heap, followed by the initialization of the fields of 
the structure. With every access to the structure, the handle is dereferenced. 

TERecord 

Re ct 
Handle 

*tep, 
••teh; 
aRect: 
textHdl: 

teh = TENew C&aRect, &aRect): II allocate the TERecord CIM~I> 

textHdl = NewHandle C120L): 

C•teh)->hText = textHdl: 
C•teh)->just = teJustleft: 
(•teh>->selStart = 0: 
C•teh>->selEnd = 0: 
C•teh)->teLength = 120: 

Figure 5·15. 

fl notice the doubJ~ dereference 
II in every line ·· ·· · 
II while the TERecord structure 
II is in1tial1zed 

Allocation and initialization of a heap data structure- in this case, 
aTERecord. 

You can improve the performance of a handle-intensive application by dereferenc­
ing the handle and putting the master pointer's value into a register variable. The 
code in Figure 5-16 demonstrates this technique. Immediately after the TERecord, 
teh, is allocated by means of TENew, the handle is dereferenced into the pointer, tep, 
and the pointer is used to initialize the structure. 

TEHandle teh: 
reg1 ster TEPt.r tep: 

Figure 5·16. (continued) 
Usin8 a register pointer to the structure speeds up access to the heap. 

104 



5: MACINTOSH MEMORY MANAGEMENT 

Figure 5·16. continued 

teb = TENew C&aRect, &aRect): 
tep = •teh: ' · 

textHdl = NewHandle (120L): 
tep->hText = textHdl: 
tep->just = teJustleft: 
tep->selStart = 0: 
tep->.selEnd = 0: 

Pltfalls In Using Heap Oblects 
We've hidden a problem in Figure 5-16 to illustrate a common hitch in this kind of 
optimization. The call to NewHandle could potentially rearrange the heap. Reloca­
tion of heap objects is the source of a wide variety of bugs: A program calculates the 
address of an object, calls a function or Toolbox routine that moves the object, and 
then attempts to use the original address, which is no longer valid. 

In response to calls to the Toolbox in a user interface intensive Macintosh applica­
tion, objects can be relocated within the heap without your knowledge. Display of a 
dialog box is a good example. Although your application might have called Get­
NewDialog and ModalDialog to display a dialog box, the various Toolbox Managers 
involved in creating, displaying, and tracking user events for the dialog box are call­
ing NewHandle behind the scenes. If memory is tight, the heap is rearranged. Figure 
5-17 illustrates the problem that can result, a "dangling pointer." 

Before heap object relocation After heap object relocation 

Ma6ttJr pointer 
@Ox1244a8 

theHdl 

thePtr 

Figure 5·17. 

Ox01564d 

Ox1244a8 

Ma6ttJr pointer 
@Ox1244a8 

Control Rec 
@Ox120280 

theHdl 

thePtr 
"'- Contro/Rec 

@Ox01564d 

Before and after heap object relocation. A dangling pointer. 

Ox1244a8 

105 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In the first diagram in Figure 5-17, things are fine, as long as ControlRec, the relocata­
ble object, doesn't relocate. In the second diagram, the worst has happened: Con­
trolRec has moved in response to a Toolbox call. Note that thePtr still points to 
address Ox01564d, where who-knows-what now resides. 

Not all Toolbox calls have the potential for relocating heap objects. Certain Toolbox 
routines-such as OffsetRect, SetPort, FixMul, and InfoScrap-perform operations 
that really have no reason to move relocatable objects, Another class of Toolbox rou­
tines-such as NewRgn, GrowWindow, and TESetText-indirectly create heap ob­
jects. How do you know which routines might move an object and which routines 
won't? Inside Macintosh lists all the Toolbox routines that have a potential for 
reorganizing the heap. They're listed as "Routines that may move or purge memory," 
which is actually a misnomer because memory doesn't really go anywhere-the 
objects in the heap memory are relocated. This information is available in other 
sources, such as Bernard Gallet's Inside Mac DA or Thom's The Programmer's Apple 
Mac Sourcebook (Microsoft Press, 1989). It's a good idea to check your code against 
these lists if you're going to use dereferenced pointers to relocatable heap objects. 

Another instance in which relocatable blocks might move is during an intersegment 
function call. Remember that your application's code resides in the heap along with 
your data. The Segment Loader sees to it that code is in RAM when it needs to be. 
The process of loading a CODE resource might move some relocatable objects in the 
heap to make room for the new code segment. 

How do you avoid the dangling pointer problem? You can live with the inefficiency 
of double dereferencing and always access the data in the relocatable object, as in 
Figure 5-18. 

{**teh).hText = textHdl: 
C••teh).jus:t = teJus:tleft: 
C••teh).selStart = 0: 
{**teh) •. S:e1End = 0: 

Flgure5·18. 
Better safe than sorry? You could choose always to use the handle to access the 
heap elements. 

Or you can use a smarter approach: Don't do anything that moves objects in the 
heap while you're using the dereferenced pointer. Figure 5-19 demonstrates the safe 
way to access a relocatable object. 

register l'.E8ecord ·• tep; ·. 
TEHan~ltt.f:', ·· teh~ 

Figure 5·19. (continu.ed) 
All allocation is done before the handle is dereferenced and the pointer is used. 

106 



5: MACINTOSH MEMORY MANAGEMENT 

Rgure 5·19. continued 

teh = TENew.C&:aRe.ct •• &aRect>: 
textHdl = NewHandl e cl20L): 

tep = *teh; II dereference after NewHandle 
tep->hText = textHdl; 
tep->just = teJustleft: 
tep->selStart = 0; 
tep->selEnd = 0: 

Another class of bugs results from the interaction of the Macintosh memory manage­
ment scheme with C's storied portability. Because of the way the compiler is imple­
mented, C can't guarantee when it will perform an address calculation. Let's look at 
this problem in detail because it bites every Macintosh C programmer at some time. 

The bug occurs during an assignment from the return value of a Toolbox routine that 
can move a block in memory and is illustrated by Figure 5-20. 

TEHandle teh: 

teh = TENew C&aRect, &aRect): 

(*teh)->hText = NewHandle C120L): 

Figure 5·20. 
The TERecord is created in the heap and is assigned the result of NewHandle 
directly in the object. 

It might appear that everything is correct: The handle is double dereferenced, and 
there is therefore no dangling pointer. But a bug occurs if the compiler generates 
code that calculates the heap address of the hText member before the call to 
NewHandle. Figure 5-21 on the next page illustrates the steps that the compiler could 
take; one produces the bomb alert box. 

••~ngSymantec 
.A(~ompild.does have an oc~asional · ~g, especially soon after .~·· 
release. If you· have questions about THI~ C or ify()u thirik you've 
problem wi~~ the compiler or gne ofit$ ' ries, y~~ can. <::o~ct .~ 
911 the CotnpuServe information•servi > ·.. 'll get.a quick an . 
either Symantec or another forum melll.lX'!r. Just type GO THl 
prompt, ancl leave a message describing.your problem or comment. 
ffitck later in .the day, and you'llprobab 

:- - '---,- ,_ ' '·.. - ' ,' '.·_-_,.'/,' ,. ·', 

107 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Before heap object relocation A~er heap object relocation 

Mai;ter pointer 
@Ox1244a8 

teh 

Fl9ure 5·21. 

Ox01564d 

Ox1244a8 

Mai;ter pointer 
@Ox1244a8 

Handle created 
with NewHandle 

teh 

("teh)->hText 

"TERecord 
@Ox01564d 

If the compiler computes the address after the function call, there's no bug. 
But if it computes the address before the function call, the address could be 
incorrect if NewHandle moves the TERecord. 

Is this a bug or a feature? The compiler doesn't guarantee the order of address calcu­
lation during an assignment. The language designers left this choice up to whoever 
implements the compiler. The Symantec compiler usually calculates the address 
before the function call. If you contact Symantec to report this as a bug, they'll 
justify their implementation by telling you what we've just told you. 

Another manifestation of this premature address-calculation problem, one that has 
nothing to do with the compiler implementation, is demonstrated in Figure 5-22. 

MenuHandle theMenu: 

theMenu = GetMenu CkMenulD): 
GetlndString <<•theMenu>->menuData, kMenuStrID, kMenuStrl>: 

Fl9ure 5·22. 
Here's another potential bomb alert box. The address of menuData in the heap 
is pushed onto the stack. GetlndString then relocates objects in the heap, and 
the address is invalid. 

Detecting the problem in Figure 5-22 requires a knowledge of the data structure 
you're working with. GetMenu returns a handle to some menu template data from 

108 



5: MACINTOSH MEMORY MANAGEMENT 

the application's resource file. (We'll get to menus in the next chapter.) At the end of 
the data structure referenced by this handle is a string, menuData, which holds the 
menu's item strings. Because it's a string, menuData is passed by reference. The 
Resource Manager routine, Get!ndString, reads a string from the application's 
resource file and loads the string into the location specified by the first argument to 
GetlndString. If GetlndString rearranges the heap, the address is wrong and Get­
IndString overwrites some undefined location in the heap. 

You might use a temporary stack variable as a workaround for this problem. Stack 
objects aren't moved around the way heap objects are, so you can be sure that their 
addresses are stable and therefore always valid. We've used a temporary string in the 
code in Figure 5-23 to solve this problem. 

MenuHandle theMenu; 
Str255 aStri ng; 

theMenu: GetMenu CkMenuID); 
GetlndString CaString, kMenuStrID, kMenuStrl); 
Bl ockMove CaStri ng, C *theMenu)->menuData, Cl ong)(aStri ng [0] + 1)); 

Figure 5-23. 
A temporary variable, aString, is used with GetlndString and BlockMove. Inside 
Macintosh says that BlockMove doesn't move objects in the heap. 

BlockMove, which copies the string from the temporary variable to the heap object, 
is a general-purpose, memory-to-memory copy routine. Although this code will run 
without incident, it's not very efficient to make a double copy of the string simply to 
work around the Memory Manager's tendency to shuffle the deck. There is a way to 
pass the address of a relocatable object when the object might move. The easiest so­
lution is to use the Memory Manager routine HLock to lock the object in the heap. 
This has the effect of turning a relocatable object into a nonrelocatable one. The 
code in Figure 5-24 demonstrates the process. 

theMenu = GetMenu CkMenulD); 

MoveHHf CtheMenu); 
HLock CtheMenu); 

Getlndstri ng (( *theMenu >- >menuData. kMenuStrID. kMenuStrl}; 

HUnlock CtheMenu); 

Figure 5·24. 
Locking (and then unlocking) the handle. 

109 



MACINTOSH C PROGRAMMING BY EXAMPLE 

You can pass the address of a relocatable object to a Toolbox call that will move a 
block in memory if you first lock the handle. But remember to unlock the handle 
with HUnlock as soon as possible. 

You can use this technique of locking a block to avoid the problem of premature ad­
dress calculation, as shown in the code in Figure 5-25. 

TEHandle teh: 

teh = TENew C&aRect, &aRect): 

MoveHHi Cteh>: 
Hlock Cteh): 
(•teh)->hText = NewHandle Cl20L): 
HUnlock Cteh); 

Figure 5·25. 
Locking the block before the address to a relocatable block is calculated. 

Note the call to MoveHHi in Figures 5-24 and 5-25. When you create a temporary 
nonrelocatable object by locking the block, you'll open the door to heap fragmenta­
tion unless you first move the object out of the center to the top of the heap before 
you lock it. That's what MoveHHi does. It moves the block as high in the heap as 
possible. Figure 5-26 illustrates the action of MoveHHi. 

Before heap object relocation 

Ma~~~~{ 
size 

1---------1 

)~~d._'. 

Figure 5·26. 
MoveHHi. 

After MoveHHi 

Ma~~~:{ 
size 

.__ ___ __, 

Of course, you don't want to keep a block locked any longer than you need to. You 
use the Memory Manager routine HUnlock to unlock the block; otherwise, you 
thwart the very purpose of using relocatable blocks. 

110 



5: MACINTOSH MEMORY MANAGEMENT 

Locking a handle is no panacea. You want to lock the block only when necessary. 
We've summarized the cases in which it's necessary to lock a relocatable block: 

• You run the risk of a dangling pointer. 
• You assign the value of an intersegment function call to a relocatable 

heap object. 

• You assign to a relocatable heap object the value of a Toolbox routine that has 
the potential to rearrange the heap. 

• You pass the address of a relocatable object as an argument to an intersegment 
function call. 

• You pass the address of a relocatable object as an argument to a Toolbox rou-
tine that has the potential to rearrange the heap. 

Now you know the circumstances under which the heap is rearranged. You don't 
need to lock a block every time you assign one of its fields. You probably won't be 
returning pointers to local variables anymore, either. 

We hope that you haven't misunderstood this chapter's message. We're not advocat­
ing assembly language programming. Rather, we're out to make you a more effective 
C programmer. An awareness of what's going on "under the hood" will not only im­
prove your coding sessions but will reduce your debugging time as well. 

But that's enough poking around at the underside of a program. Let's create a real 
program so that we can see these problems and solutions in practice. 

111 



6 

INTRODUCTION 
TO THE GENERIC 
APPLICATION 

Whether it's pasta or prescription drugs, nearly every product seems to come in a 
generic version these days. This chapter introduces the Generic Application­
Generic App for short-a complete, stand-alone application that provides a basis for 
just about any Macintosh program. 

Generic App is an application shell that performs the fundamental Macintosh pro­
gram tasks: initializing the Macintosh interface, monitoring user input, and managing 
multiple documents. It's generic because it can be used as a starting point for almost 
any programming project. 

We'll take up this generic Macintosh application in three stages. In this chapter, we'll 
look at the first phase, which we call miniGeneric-the simplest application. We'll 
use miniGeneric to describe the Macintosh's event-driven operating system, to in­
troduce Macintosh resources, and to examine how an application reads menu 
selections. 

In Chapter 7, we'll explore Macintosh window management with a multiwindow ap­
plication we call multiGeneric. Finally, in Chapter 8, we'll extend the shell to demon­
strate how an application window can display and scroll text and graphics. 

Before we leap into the details of Generic App, let's take a look at how Macintosh 
software is organized. This overview will help you organize your programs. 

113 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Stratified Software 
Macintosh software is organized in levels, like Dante's Inferno. This layering of soft­
ware, shown in Figure 6-1, brings order to the chaos of a large application. 

Application layer 

Application i:;hell 

ROM_f~..--U-i:;_er_i_nte_rr_a_ce_To_o_lb_o_x_-r-~ 
L Macintoi:;h Operating Syi:;tflm 

Macintoi:;h hardware 

Fl9ure6•1. 
The Macintosh software hierarchy. 

Word procei:;i:;or, 6preadi:;heflt 
program, drawing program, fltc. 

Generic App 

The i:;yi:;tflm i:;oft;ware manageri:; 
documented in Inside Macintosh 

Mac Plui:;, Mac II, 
printflri:;, dii:;ks, fltc. 

At the very bottom of the software hierarchy, the Macintosh Operating System (OS) 
mediates the boundary between hardware and software-managing memory, 
supervising input and output, and processing interrupts. Above the OS sits the User 
Interface Toolbox, which provides the routines for standard Macintosh interface ob­
jects such as windows and menus. Together, these two levels make up the ROM, or 
system software. 

The two layers of ROM are further divided into managers that group the system rou­
tines according to function. Within these managers lie the procedures that are called 
from an application to do Macintosh-specific chores such as opening a file or a win­
dow and reading a control or a menu. 

The application resides in levels above the ROM software. Good application soft­
ware is usually organized into two levels-one for the application shell and one for 
the application proper. 

ROM Software 
The two layers of ROM software deserve a closer look because one good way to ap­
proach a new programming environment is to examine the features that it supports. 
The Macintosh segmentation of system utilities into managers provides for an orderly 
tour of the features supported by the Mac. 

User Interface Toollto:x managers 
The user interface Toolbox is the most interesting layer of the system software. 
QuickDraw, TextEdit, the Window Manager, the Dialog Manager, and the Toolbox 
Event Manager are all on this level. Every time your application opens a window, 

114 



6: INTRODUCTION TO THE GENERIC APPLICATION 

puts up a dialog box, or reads a menu, it is calling at least one of these manager 
routines, and as you become more experienced in programming the Macintosh, 
you'll begin to learn the routines by heart. Figure 6-2 diagrams the relationships 
among several managers at the user interface Toolbox level and their relationship to 
the File Manager at the Operating System level. 

Standard File 
Package 

Dialog 
Manager 

TextEdit 
Control Window 

Manager Manager 

I 
Ree;ource Font 

QuickDraw 
Toolbox Event 

Manager Manager Manager 

. . : •. .Fife .. ·.:•·.· ·. :M~m9ty .• : . 
CJ Ue;er interface 

Toolbox layer 
.· ~~nag~r .·. ~~nag~r .. 

LJoslayer .. 

Flgure6-2. 
Important managers of the user interface Toolbox level. 

Operating System managers 
The Operating System level routines are a bit more esoteric. A typical OS manager is 
the Device Manager. It provides access to standard devices such as a printer or a disk 
drive through a structure called a device control entry or DCE. Other OS managers 
include the Memory Manager, the System Error Handler, and the OS Event Manager. 
Figure 6-3 on the next page diagrams the interaction of several OS managers with 
the Macintosh hardware. 

If you do system programming, you'll become familiar with the routines and data 
structures peculiar to some of the OS managers. If you write a disk driver, for in­
stance, you'll become expert with the File Manager, the Device Manager, and the 
Disk Driver but will probably learn little about the Serial Driver. 

An application programmer needs to know about the Memory Manager and certain 
OS utilities but usually ignores the details of the OS level. Indeed, that's why the 
software hierarchy is in place: The details of the technology are localized to the 
level. 

, 15 



MACINTOSH C PROGRAMMING BY EXAMPLE 

File 
Mana0er 

Device 
Mana0er 

Se0ment 
Loader 

Memory 
Mana0er 

05 Event 
Mana0er 

System Error 
Handler 

Superdrive Hard drive RAM/MMU Mouse Keyboard 

Flgure6·3. 
Operating System software interacting with the Macintosh hardware. 

The Shell Level 
Above the ROM software level, the application programmer is in charge of the layer­
ing. We chose the next layer of our hierarchy to be the application "shell." A shell is 
the supporting structure of an application, supplying the application's event process­
ing and window management. 

Whatever your programming background and focus, your first task as a Macintosh 
novitiate is building the shell. Once you've built the shell, you can use it over and 
over again-for every application that you write in your long and illustrious career 
as a Macintosh programmer. It's been said that each programmer really writes only 
one program in his or her career. Generic App is the foundation for that program. 

The application proper actually begins in the next higher level-at the level we've 
called the application layer. In a word processing program, the application layer con­
tains the modules that process text. The interface, which consists of windows, scroll 
bars, and facilities for mouse and keyboard input, is supplied in the shell layer. 

We're borrowing the shell concept from object-oriented programming (OOP) texts, 
where the idea is more formalized. In OOP, programs are made up of objects that 
encapsulate data and code. In the pure light of OOP thinking, the shell and the ap­
plication are separate objects, each with its own independent set of data and code. 
As we add application-like features to Generic App in Chapters 7 and 8, and later in 
the chapter on Browser, you'll get a better feel for how the shell code differs from the 
application feature set that we add to it. 

Let's look at miniGeneric, the simple phase of our shell. 

116 



6: INTRODUCTION TO THE GENERIC APPLICATION 

What Does miniGeneric Do? 
Functionally, miniGeneric is very simple: It manages the Apple, File, and Edit menus, 
and it supports two windows. The main window contains text, and the secondary 
window is for the About box, where the program's logo and version information are 
displayed. The About box can overlap the main window. When the About box is 
closed, the main window needs to be refreshed. 

Figure 6-4 shows the miniGeneric screen, with the About box in front of the main 
window. The Apple and File menus are fully functional , but the Edit menu is present 
only to support any Desk Accessories that might need it, in accordance with Apple's 
User Interface Guidelines. 

Flgure6·4. 
The miniGeneric 
screen. 

Our shell meets all the requirements for a minimum application: The user can open 
and close the main window and the About box and quit the application, all by using 
menu selections. 

A user's selection reaches the application as an event. Selecting a menu item with 
the mouse causes an event of one kind to be generated at the system level. Using a 
command-key equivalent causes another kind of event to be generated. 

Macintosh programs are event-driven. Most of the time, a Macintosh program is idle, 
waiting for a new event to process. Events are the result of real-world occurrences 
such as a keypress or a disk insertion. The OS layer processes the interrupts associ­
ated with the real-world occurrences, bundles up all the information about the event 
into an EventRecord structure, and makes the event available to the application. 

When the application receives the event, the program's logic switches control to a 
function that deals with that type of event. We call this processing "event parsing. " 

, 17 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Consider the diagram in Figure 6-5. The miniGeneric application, limited to its shell 
duties, is interested in only mouse and keyboard events. These· real-world occur­
rences translate into the Macintosh events mouse-down, key-down, activate, and 
update. When miniGeneric gets an event of interest, it passes control to the corre­
sponding routine-doMouseDown, doKeyDown, doActivateEvent, or doUpdateEvent. 

doMouseDown 

doKeyDown 

doActivateEvent 

doUpd.ateEvent 

Flgure6·5. 
miniGeneric's main event loop. 

, 18 



6: INTRODUCTION TO THE GENERIC APPLICATION 

When the user selects a menu item or selects the command-key equivalent for the 
item, the application reacts. Figure 6-6 shows the top of the Apple menu, which in­
vokes the About box, and miniGeneric's File menu, which contains three items. 

Flgure6-6. 
The About 
miniGeneric item 
in the Apple menu 
andthe 
miniGeneric File 
menu. 

Rb out miniGeneric ... File •.• 

Close 

Quit 

Figure 6-7 shows what miniGeneric needs to do to process menu selections. 

Menu Item Action Action Function 

Apple About Display the About box doAboutBox 

File Open Open the window doOpen 

File Close Close the window doClose 

File Quit Quit the application doQutt 

Flgure6•7. 
Processing miniGeneric menu selections. 

The first step in application building is designing the framework to manage each 
event and its origin. 

A Roacl•ap of Generic App 
The complete source code for miniGeneric is in the folder miniGenApp f, found on 
the disk that comes with this book. The folder contains a project file, the folder 
miniGenApp Src with 10 source files, the folder miniGenApp Hdr containing the 
project's header files, and the project resource file, miniGenAppn.rsrc. The files that 
make up miniGeneric are shown in Figure 6-8. 

File Name 

miniGenApp7t 

miniGenApp7t.rsrc 

Shell.c 

Flgure6-8. 

Location 

Project folder 

Project folder 

Src folder 

The miniGeneric source files. 

Purpose 

Project file 

Project resource file 

Main entry point, event parsing 

(continued) 

119 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 6-8. continued 

File Name Location 

Applnit.c Src folder 

MenuUtil.c Src folder 

WindowUtil.c Src folder 

DialogUtil.c Src folder 

AboutBox.c Src folder 
MiscUtil.c Src folder 
DocUtil.c Src folder 

FileUtil.c Src folder 

Display.c Src folder 

xxxxPr.h Hdr folder 

AppConstants.h Hdrfolder 

AppGlobals.h Hdr folder 

AppTypes.h Hdrfolder 

MenuConstants.h Hdrfolder 

Version.h Hdrfolder 

Purpose 

Application initialization routines 

Menu utilities 

Window sizing, movement, scrolling 

Dialog box hook procedures 

About box rendering 

A catch-all file 

Document management 

File VO utilities 

Drawing functions for application 

Prototypes-one for each .c file 

Application constants (#de.fines) 

Application global declarations 

Application type definitions 

Menu constant definitions 

Compiler environment definition 

The miniGeneric application is a much larger project than our Hello Mac! example 
was. The C source code for Hello Mac! was in one file; the code for miniGeneric is 
organized into 10 source files and 15 header files. Why is the program split up? Here 
are the main reasons: 

• To isolate independent "modules" within the program. A module is simply a 
source file in which functions are defined. Modules should be aptly named. 
The module DialogUtil.c, for example, contains dialog box management 
utilities. WindowUtil.c contains windowing routines. 

• To organize the program code logically. Shell.c contains the main event loop 
and utilities. When the user chooses a menu item, program control passes to 
one of the routines in the file MenuUtil.c. Therefore, if you wanted to add an­
other menu, MenuUtil.c would be the logical place to do it. If you added to the 
program helter-skelter, the program would become what is colorfully de­
scribed as "spaghetti code" because it would snake and tangle all over the disk. 
The key to organizing modules is to create a file structure and be faithful to it. 
miniGeneric's file organization is appropriate for small applications and is 
adaptable to programs of up to 100,000 lines. 

• To keep to a minimum the amount of code that must be recompiled and 
relinked when making the frequent small changes and adjustments that are 
part of the development cycle. Minimizing the amount of code that must be 
recompiled and relinked saves time during the development cycle and makes 
the code amenable to the use of source code control techniques, a topic we'll 
examine in passing in the next chapter. 

120 



6: INTRODUCTION TO THE GENERIC APPLICATION 

• To retain control over the program's code segmentation. The code of all exe­
cutable programs is segmented. A code segment is an atomic unit of code, 
loaded into RAM automatically when one of the functions in the segment is 
called during program execution. In THINK C, we have control over which 
modules are in each segment. Using a segmentation strategy is important when 
you're trying to fit a large program into a small space. 

There's an art to distributing the functions among the source files, and many factors 
come_ into play. Routines usually group naturally. The trick is knowing where to 
draw the line. For example, an application draws its window contents in response to 
an update event. We put doUpdateEvent(), the function that responds to an update 
event, in the file Shell.c, but put drawDocContents(), the function that does the ac­
tual drawing, in the file Display.c. In this case, the line is drawn when the applica­
tion does the actual drawing. Sometimes, when the dividing line is not so distinct, 
you'll use other criteria to determine where a function fits in your modular 
organization. 

Another consideration when creating code modules is the "scope" of a function, 
which defines where the function can be called. In C, the scope of a "static function" 
is limited to the source file in which it's defined. A static function can be called only 
from the routines defined in its own module. Declaring a function as static isolates 
the function from other, non-similar, functions. Thoughtful use of static functions 
can therefore facilitate a layered approach to software design. 

A "static variable" serves to hide data from external modules. A static variable is ac­
cessible from everywhere in the module in which it's defined-any function in the 
module can use it. But a static variable is hidden from external functions. So when 
deciding the location of a function, consider whether it needs to access a static vari­
able. If it does, you need to put the function in the static variable's module. 

StatlcF••ctlo• 
A static function is created by putting the stattc keyword before the function 
name in the function's body definition. Let's look at two function protocyp~ 
for Generic's functions doMenu(}and doFileMenu(), both defined in the"(il~f· 
MenuUtil.c. The first function, doMenu(), is declared without the stattc ker­
word, and rightfully so-it's called from the functions doMouseDoum() ;md 
doKeyDoum(), both in another module, in the file Shell.c. 

_void doMenu C long menuResult ); 

The second function, doFileMenu(), is a static function. It's called only 
doMenu(), which resides in the same file, in MenuUtil.c. 

static void doFileMenu ( short itemNumber >: 

121 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Static Varlaltles 
Here's a small code fragment from the mythical file Foo.c that demonstrates 
static variable syntax: 

static TEHandle sCurTextHdl: /* static variable */ 

I* createText--this is a sample function */ 
void 

createText CRect targetRect) 
{ 

sCurTextHdl = TENew C&targetRect, &targetRect): 

Because sCuffextHdl is a static variable, any function in Foo.c can access it, as 
the function createText() does in the example. Functions in other modules are 
unaware of the existence of sCuffextHdl, and the compiler will generate an 
undefined symbol message if you try to reference sCuffextHdl from another 
module. 

Now that you have an idea of how and why functions are distributed in the 10 source 
modules, we'll take a look at what's in Generic App and at the event mechanism­
how Generic App processes events. 

The Main Event 
Without input, a computer is a useless hunk of hardware. A computer application 
needs to know when its user is pawing the keyboard or twiddling the mouse button. 
The Event mechanism of the OS layer translates these real-world occurrences initi­
ated by the user into a data structure available to the application-into the 
EventRecord data structure whose declaration we show in Figure 6-9. 

typedef struct EventRecord 
{ 

int 
long 
long 
Point 
int 

}EventRecord: 

Flgure6·9. 

what: 
message: 
when: 
where: 
modifiers: 

The EventRecord data structure. 

122 



6: INTRODUCTION TO THE GENERIC APPLICATION 

An EventRecord is created for each mouse-down, keypress, disk insertion, Appletalk 
message received, or other occurrence. The table in Figure 6-10 shows the possible 
Macintosh event types. 

No events 

Mouse events 

Keyboard events 

Window Manager events 

External device events 

Application-defined events 

Figure 6·10. . 
Macintosh event types. 

Event JYpe 

nulIEvent 

mouseDown 

mouse Up 

k~Down 

keyUp 

autoKey 

updateEvt 

activateEvt 

diskEvt 
networkEvt 

driverEvt 

applEvt 

app2Evt 

app3Evt 

app4Evt 

Description 

Nothing happening. A null event 
is what you get when there is no 
other event available. 

Mouse button down. 
Mouse button was released. Cannot 
happen without a mouse-down. 

A key was pressed. 
A key was released. 

A key is being held down. 

The window has a nonempty 
update region. Part of the 
window needs refreshing. 

A window has come to the front or 
has just left there. 

A disk was inserted. 

An AppleTalk message was received. 

This depends on the driver and is 
rarely used by applications. 

User defined. 

User defined. 

User defined. 

MultiFinder suspend/resume. A task 
was switched from foreground to 
background, or vice versa. 

When the computer detects a real-world occurrence, the OS Event Manager creates 
an EventRecord using the interrupt data and links the record to the application's 
event queue. This queue, maintained by the OS, is where unprocessed events reside 
in chronological order. Generic App doesn't access the queue directly. Instead, it 
calls WaitNextEvent, the Event Manager routine that returns the data for the next 
event and removes it from the queue. 

When the application receives the event, it examines the event type and passes flow 
of control to its function that handles that particular kind of event. Figure 6-11 on the 
next page illustrates the process. 

123 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The even-c queue--unprocessed 
events in order of occurrence 

0 

Event types 

Event Pan~ing 

Generic has called Even-c 
Manager's WaitNextEvent 

Generic's 
main event loop 

mouse-down key-down activau upda-ce 

doMouseDown I .o,;Do>n I doActivauEvent doUpdateEvent 

Associa"Ced functions 

Figure 6·11. 
Parsing a real-world occurrence. 

Event parsing goes on in Generic's main event loop, shown in Figure 6-12. The entire 
loop is in the function main(), which is found in Shell.c. Note the four event types 
that Generic is interested in: mouse-down, key-down, activate, and update. 

EventRecord 
long 
Boolean 

sleepTicks = 18L: 

I• infinite ·1oop •/ 

event: 
sleepTfcks: 
result: 

while (1) 
{····· 

res.ult = WaitNextEvent. <~veryEverlt:.l.&event, 
if (result) 
{ 

switch {event.what) '* parse e:!ent .type 
{ .+}'• .. 

Figure 6·12. 
Generic App's main event loop. 

124 

(continued) 



6: INTRODUCTION TO THE GENERIC APPLICATION 

Figure 6·12. continued 

} 

case mouseDown: 
doMouseDown (&event): 
break: 

case keyDown: 
doKeyDown C&event>: 
break: 

case activateEvt: 
doActivateEvent (&event): 
break: 

case updateEvt: 
doUpdateEvent (&event>: 
break: 

WaitNextEvent 
WaitNextEvent reads the event queue and returns an event record structure. Unfor­
tunately, WaitNextEvent is not documented in the standard reference, Inside Mac­
intosh, but is covered in an obscure document called Programmer's Guide to 
MultiFinder. You can glean a little more information about it from a few of the Mac­
intosh Technical Notes. The Apple Programmers and Developers Association 
(APDA) makes both the Guide to MultiFinder and the tech notes available to 
programmers. 

We don't expect you to have a copy of Programmer's Guide to MultiFinder lying 
around, so we'll take a look at WaitNextEvent. Here are its arguments: 

short WaitNextEvent ( short eventMask, EventRecord * event, 
long sleepTicks, RgnHandle mouseRgn >: 

• eventMask masks "interesting" events. The masks are enumerated in the 
header file Events.h supplied with the THINK C package. The Generic applica­
tion uses the everyEvent mask and then parses the interesting ones with the 
switch construct. 

• event is the event record returned by WaitNextEvent. 

• sleepTicks i:> the sleep variable, in ticks (%oths of a second). The value of sleep­
Ticks approximates the amount of time the foreground application allows 
background tasks to run. 

• mouseRgn, if specified, limits the area in which a mouse-down (or mouse-up) 
event will be reported. If you limit this region to a 10-pixel by 10-pixel square, 

125 



MACINTOSH C PROGRAMMING BY EXAMPLE 

your user must move the mouse at least 5 pixels from the last mouse-down po­
sition before an event will be reported. We don't specify a value for mouseRgn 
in Generic, but because you might have use for it elsewhere, we demonstrate 
using it in Figure 6-13. 

EventRecord 
long 
Boolean 
RgnHandle 
Re ct 
Point 

event: 
s 1 eepT1 cks: 
result: 
mouseRgn: 
rgnRect: 
mousePoint: 

sleepTicks = 10L: 

mouseRgn = NewRgn <>: /• initialize the region •/ 
SetRectRgn CmouseRgn, 0, 0, 0, 0): 

I• infinite loop •/ 
while Cl) 
{ 

result= WaitNextEvent CeveryEvent, &event, sleepTicks, mouseRgn): 
i.f <result) 
{ 

switch (event.what) 
{ 

case mouseDown: 

I• parse event type •/ 

I• get the point where the mouse was clicked 
from the event record •/ 
mousePt.h = LOWORD (event.where>: 
mousePt.v = HIWORD (event.where>: 

I• build the rectangle that bounds the point by 
five pixels •/ 
rgnRect.left = mousePt.h - 5: 
rgnRect.right = mousePt.h + 5: 
rgnRect.top = mousePt.v - 5: 
rgnRect.bottom = mousePt.v + 5: 

I• set up the new region •/ 
RectRgn CmouseRgn, &rgnRect): 

doMouseDown C&event>: 
break: 

Figure 6·13. 
Use of WaitNextEvent ~ mouseRgn parameter. 

126 



6: INTRODUCTION TO THE GENERIC APPLICATION 

MultiFincler ancl WaitNe:xtlvent 
Once upon a time, under Finder, only one application at a time could be loaded into 
the Macintosh memory. An application called two functions in its event loop: Get­
NextEvent, which pulled the next event off the event queue; and SystemTask, which 
gave Desk Accessories a cycle or two. Then came MultiFinder. 

MultiFinder has made the Macintosh a cooperative, multitasking system. A new sys­
tem routine, WaitNextEvent, has been added to allow applications to coexist in 
RAM. Because multiple applications are allowed, two new concepts have been in­
troduced: the foreground task and the background task. 

The foreground task is the application that receives most of the computer's· 
resources. There is only one foreground task at any time. All of the other loaded ap­
plications are relegated to the background. 

A background task gets very little of the system resources. In truth, it's at the mercy 
of the foreground task's giving it any time to run at all. This is where WaitNextEvent 
comes in. 

Every time it's called, WaitNextEvent gives background tasks a little CPU time. The 
amount of time that's allocated to the background is controlled through the value of 
the WaitNextEvent routine's sleepTime parameter. If you want to be downright un­
neighborly and not allow background tasks any CPU time, set sleepTime to 0 (ac­
tually OL because sleepTime is of type long). A more generous and reasonable value 
to start with is 20. If you find that your foreground application is not getting enough 
cycles, decrease the sleepTime value. Note that Generic uses a variable for sleepTicks 
instead of a hard-wired constant. This approach lets you change the value from the 
debugger while the program is running, so that you can see how the value affects 
the program's responsiveness. 

'Ille System Clock 
The sleep Time parameter qf WaitNextEvent is specified in ~nJts,,qf ttle Mac~ >' 

intosh system clock, called the "tick col.inter," .which tick~ 60 t~s ~ second: .·· 
The value of this counter is at the location named by the global ~riable Tick 
(at address Ox016A) and contains the number of Y6oths of a second that have 
gone by since the system was booted. Here's a simple function to read the 
Tick value: · · · 

long 
· +eadT1 cks () 

{ 

return (•((long •)0x016A)); 
} 

The value 0x016A is cast to a pointer tO k>,ng and dereferenC:edtc.lt:ettml the. 
4-byte value at location 16A. . · · : · 

127 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The miniGeneric shell, like virtually all Macintosh programs, spends most of its time 
in the main event loop. Each time through the loop, it checks to see whether a new 
event has occurred by testing the return value of WaitNextEvent. 

The miniGeneric shell is interested in only a fresh EventRecord-one that is 
received when WaitNextEvent returns a nonzero value. The EventRecord contains 
the what, when, and where associated with the event. The contents of the record 
vary according to the kind of event, which is returned in the what field of the record. 
A consolidated list of the possible EventRecord values, based on event type, is shown 
in Figure 6-14. 

Message When Where Modifiers 

Ticks since Mouse 
nul!Event location at startup event 

Mouse mouse Down II button 
events mouse~ II state 

Keyboard key Down character II Option, Shift, 
events keyUp code II Command 

autoKey key code II keys 

Window updateEvt II 

Manager pointer to 
II Activate/ 

events activateEvt window 
Deactivate 

drive number II II 

diskEvt result code 

handle to II II 

networkEvt parameter 
block 

driverEvt varies II II 

Application- applEvt ? II II 

defined app2Evt ? II II 

events app3Evt ? II II 

II II MultiFinder 
app4Evt suspend/ 

resume 

Figure 6·14. 
EventRecord contents by event code. Events are grouped by type on the left, and 
the fields of the event record appear along the top. If a cell is blank, the value of 
the field is undefined for that type of event and can be ignored. 

The Macintosh OS and the user interface Toolbox are constantly evolving. Just be­
cause an EventRecord value is undefined now doesn't mean it will always be un­
defined. For example, before MultiFinder, the app4Evt event type was not assigned 
and was free to be used by developers as they wanted to use it. MultiFinder came 

128 



6: INTRODUCTION TO THE GENERIC APPLICATION 

along and used this event to signal applications that are switching in and out of the 
foreground. Apple is very good about warning programmers (by means of the tech 
notes) when they anticipate a change that might affect existing programs, but 
they're not perfect. 

Macintosh Technlcal Notes 
Macintosh Technical Notes are Apple's way of providing supplemental, timely 
information on the state of the art in hardware and software. They're written 
by folks at Apple's Developer Technical Support group and contain informa­
tion ranging from tips and tricks (as in note #007 on some great debugging 
techniques) to a totally new way of doing things (as in note #158 that deals 
with MultiFinder and WaitNextEvent). There are hundreds of these gems. 
We'd be lost without them, and if you're a serious developer, you need them 
too. You can get them from Apple's APDA, or you can download them from 
AppleLink. Apple Associates ($500 per year) get them from Developer Tech 
Support as a part of the service. Apple has released a HyperCard Tech Note 
stack, and this is great for quick lookups, but the notes come out faster than 
Apple seems to be able to keep the stack updated. (And you'll need a lot of 
hard disk space unless you buy the CD-ROM version.) For $25 a year, APDA 
will mail you each release-about six sets per year. Write to this address: 

Apple Programmers and Developers Association 
Apple Computer, Inc. 
20525 Mariani Avenue, WS 33-G 
Cupertino, CA 95014-6299 

The phone number is (800) 282-APDA, or you can try AppleLink: APDA. 

Aclcllng Menus to an Appllcatlon 
Events are only half the story. Once an event is detected, the application needs to re­
spond to it. Generic is interested in four types of events. Two of them, activate and 
update events, are products of window selection and display. (We will discuss these 
two types of events in the next chapter.) The other two, key-down and mouse-down 
events, involve a menu selection. But before a menu can be used, it must be created. 
Let's look at what it takes to create menus for an application. 

Menus are created from menu description templates, or "resources," stored in the ap­
plication's resource fork. Most commercial applications define their menus by means 
of templates in the resource fork. Menus can also be compiled into the program­
hard coded, as programmers say-but we discourage this practice. The advantage 
of using a resource to create menus is that you can change a menu's items without 
modifying the source code. This approach is often taken as part of the effort to 
"localize" a commercial application-that is, to give it foreign-language menus, 

129 



MACINTOSH C PROGRAMMING BY EXAMPLE 

dialog boxes, and message strings. With resource-based menus, sophisticated users 
have been known to add keyboard shortcuts to menus by using the resource editor 
ResEdit. 

We use ResEdit to create all of our resources, including menus. There are other ways 
to create templates (and we describe them here in a sidebar), but ResEdit uses a Mac­
like user interface and is probably your best bet for creating resource templates. 

Use ResEdit to look at the existing menu templates in the project's resource file, 
miniGenAppn:rsrc on the source disk for this book. Resources, as we'll see through­
out the book, are a great way to organize an application's interface features. 

A resource is identified by its "resource specification," made up of a four-character 
key called the resource type, and a resource number, as in MENU #1. We'll use the 
hash mark to identify the resource number. Here, we're interested in the MENU 
resources. 

In miniGeneric, the Apple Menu is MENU #l, the File Menu is MENU #2, and the Edit 
Menu is MENU #3. Of course, the #3 refers to resource 3. 

Menus contain menu items, one per line, which are numbered from 1 to n, top to 
bottom. Figure 6-15 shows a sample menu with item numbers. 

In the Apple menu, Item 1 is the About item, and the rest of the items are the Desk 
Accessories, added to the menu with a special call. 

M•lntosh Resources ••cl•-• 
Resources are vital to any Macintosh program. Indeed, a correctly designed 
program should define in the application's resource fork all menus, dialog 
boxes, alert boxes, icons, pictures, and text strings that the application will 
display. That way, any changes you need to make, such as developing a 
Spanish version of your program, are confined to the resources and don't 
affect the program code. 

The problem with resources is that Apple ~s given us two not-quite-finished 
ways of dealing with them. The traditional method, the one we use in this 
chapter to create menus, is to use ResEdit, a funky little what-you-see-is­
almost-what-you-get editor that lets you manipulate the resources in a file di­
rectly (even after the program has been compiled). You can create some 
resource items directly, seeing them as the user will see them, and then drag 
them to the appropriate places. You create other resources by painfully fill­
ing in a series of TextEdit boxes. If you make one mistake (and you probably 
won't see it because there's no visual feedback that shows you how your fin­
ished object will look), you're liable to mess up your program to the extent 
that it crashes. Using ResEdit to add command keys, hierarchical menus, and 

130 



Figure 6·1 s. 
A generic menu. 
Notice that item 4 is 
a dotted line. 

Item 1 
Item 2 
Item 3 

Item 5 

6: INTRODUCTION TO THE GENERIC APPLICATION 

The File menu, shown in Figure 6-16, has five items, three of which are selectable­
the Open, Close, and Quit items. The two dotted lines are Items 2 and 4, but they 
are disabled and therefore not selectable. 

Figure 6·16. 
The File menu. 

File ... 

Close 

Quit 

other options is a real pain. The latest version of ResEdit, 2.1, has better editors 
for many of the resources. 

Apple's second method is to use Rez, one of the tools in the Macintosh Pro­
grammer's Workshop and in Think C 5.0. Rez lets you create resources by 
describing them in a structured text file. In some ways, this is the preferred 
method because you get maintainable source code for the resources that can 
easily be passed along to others, either on paper or as a file. 

Next best in our opinion is Prototyper from Now Software. Forget Prototyper as 
a creator of generic application code, but it's a real help as a resource maker. In 
its menu section, though, adding new selections to the end of a menu is not a 
particularly intuitive process, and cut and paste functions simply aren't avail­
able-you'll have to move things manually, one at a ti.Ine, if you change your 
mind about where to put them. Prototyper's interface could use some improve­
ment. It doesn't always work exactly as you might expect. (Try tabbing be­
tween TextEdit boxes.) Nevertheless, Prototyper is well worth the effort you'll 
invest in learning to use it, especially if you're interested in seeing what the 
menu and dialog features of your program will look like. before you commit 
them to code. 

131 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The Edit menu isn't used in miniGeneric, but we supply it for the Desk Accessories 
that need it. The menu is standard, with an Undo item separated by a dotted line 
from the Clipboard items Cut, Copy, Paste, and Clear. 

Creating the File Menu Template 
We'll use ResEdit 2.1 to create the File menu. If you are new to ResEdit, follow along 
step-by-step. 

1. Start up ResEdit 2.1. 

2. Move through ResEdit to get to your miniGenApp f. 

3. Create a new file: Press Command-N and enter the name miniGptA.pprc.rsrc. 
(You enter the 1t by pressing Option-P.) 

4. Create a new MENU resource: Choose Create New Resource from the 
Resource menu (or press Command-K), and choose MENU from the list that 
appears. 

5. Create the menu title: Type File in the edit box, and press Return. 

6. Create the first menu item: Type New in the edit box, and then add a keyboard 
equivalent for this item. Select the edit box Cmd-Key, and type N. Press Return. 

7. Create the second menu item, a dotted line: Click the button labeled separator 
line, and press Return. 

8. Create the third menu item: Type Close in the edit box. Now add a keyboard 
equivalent for this item. Select the edit box Cmd-Key, and type W. Press Return. 

9. Create the fourth menu item, a dotted line: Click the button labeled separator 
line, and press Return. 

10. Create the fifth menu item: Type Quit in the edit box. Now add a keyboard 
equivalent for this item. Select the edit box Cmd-Key, and type Q. Press Return. 

11. Renumber the menu as 2: Select Edit Menu & MDEF ID from the MENU menu. 
Enter 2 in the edit box marked Menu ID, and then close this dialog box. 

12. Close all windows by clicking in their close boxes. To save your work, click 
Yes in the dialog box that appears, and then quit ResEdit. 

You've just completed a 12-step program for creating the File menu. Of course, we've 
created all the other menus in miniGeneric's resource file, which you'll find on the 

· accompanying source code disk. 

Initializing the Menu 
As most applications do, miniGeneric installs its menus at initialization and treats 
them as static structures throughout the life of the program. In Appinit.c, the func­
tion setUpMenus() initializes and installs the menus. The setUpMenus() code is 
shown in Figure 6-17. 

132 



6: INTRODUCTION TO THE GENERIC APPLICATION 

f* setUpMenus--sets up the application menus */ 
setUpMenus () 
{ 

f* create Apple Menu */ 
gDeskMenu = GetMenu CkAppleMenuID): 
AddResMenu CdeskMenu, 'DRVR'); 
InsertMenu CdeskMenu, 0); 

f* create File menu */ 
gFileMenu = GetMenu CkFileMenuID): 
InsertMenu CfileMenu, 0): 

f* create Edit menu *' 
gEditMenu = GetMenu CkEditMenuID); 
InsertMenu CeditMenu. 0): 

DrawMenuBar(); 

f* setUpMenus */ 

Figure 6· 1 7. 
Menu initialization code. 

The menu template data is stored in the resource file. GetMenu reads the template 
and returns a MenuHandle to the menu data, now in memory. 

All of an application's menu handles are maintained in an internal data structure, the 
MenuBar, which makes them available to the user by means of the Menu Manager 
routine MenuSelect. Usually, you'll never directly change the MenuBar in your appli­
cation. Instead, you'll use Menu Manager utilities to add and subtract menus from the 
MenuBar. The routine /nsertMenu adds menus to the MenuBar, and its comple­
ment, DeleteMenu, removes them. 

miniGeneric's MenuHandle variables are global, and all globals in our programs 
begin with a lowercase g to remind us that they're globals and should be treated 
with respect. The gDeskMenu variable is the Apple menu handle, gFileMenu is the 
File menu handle, and gEditMenu is the Edit menu handle. 

In setUpMenus(), GetMenu reads the template of the specified menu and creates an 
in-RAM menu data structure for the menu in the application heap. GetMenu returns 
a handle to the structure. The constants kAppleMenu/D, kFileMenu/D, and kEdit­
MenuID are defined as 1, 2, and 3, respectively, in the file AppConstants.h. They 
define the resource numbers for these templates. Creating the File and Edit menus is 
easily understood, but creating the Apple menu requires a small trick because this 
menu will contain a list of the currently installed Desk Accessories. 

The good news is that we don't need to know the details of currently installed Desk 
Accessories to add them to the Apple menu. Note the call to AddResMenu when 

133 



MACINTOSH C PROGRAMMING BY EXAMPLE 

creating the Apple menu. This routine asks the system to look for currently installed 
Desk Accessories and adds their names to the menu. AddResMenu does this by col­
lecting all resources of a particular type (in this case, DRVR), sorting them by name, 
and placing them in the menu in question. The only detail that you need to remem­
ber in this case is that Desk Accessories are DRVR type resources. 

Reading the Menu Selection 
When the application detects a mouse-down event in the menu bar, MenuSelect 
automatically takes care of all the menu display and selection chores associated with 
a menu selection. When MenuSelect completes the update of the display, it returns 
with the menu and item number selected as a long word made up of a high word and 
a low word-more about that in a moment. We call this "reading" the menu. 

The doMenu() code in Figure 6-18 demonstrates how to choose an action based on a 
menu selection. The doMenu() function is called, with the result returned by 
MenuSelect. The high word of this argument-the top 16 bits-contains the menu 
ID of the selected menu. If this value is 1, the Apple menu has been selected; if it is 
2, the File menu has been selected; if it is 3, the Edit menu has been selected. The 
bottom word passed to doMenu()-the lower 16 bits-contains the selected item 
number in the selected menu. The doMenu() function uses the Toolbox macros 
HiWord and Lo Word to extract these high and low words from the long word. 

I• doMen.u--handles menu selections •/ 
void doMenu (long menuResult): 
{ 

short menuID. itemNumber: 

menuID = HiWord CmenuResult); 
itemNumber = LoWord CmenuResult): 

I• menu number in high word •/ 
I• item number in low word •/ 

switch CmenulD) 
{ 

I• which menu is it? •/ 

case kAppleMenuID: 
doAppleMenu CitemNumber): 
break: 

case kFileMenuID: 
doFileMenu CitemNumber): 
break: 

case kEditMenuID: 
doEditMenu CitemNumber>: 
break: 

Fl9ure6-l8. 
Menu selection pa.rsing. 

134 

(continued) 



6: INTRODUCTION TO THE GENERIC APPLICATION 

Figure 6·18. continued 

} /* end switch */ 

HiliteMenu (0): 
} /* doMenu */ 

The menu selection parser is a two-stage switch. The first stage determines which 
menu was selected from the menu/D variable and passes the itemNumber to the 
selected function for that menu. The second stage, illustrated by doFileMenu() in 
Figure 6-19, determines the item number selected and calls the action procedure for 
that selection. 

I* doFileMenu--switches menu choice to appropriate function call */ 
void 
doFileMenu (short theltem) 
{ 

switch (theltem) 
{ 

} 

case kNewltem: 
doOpenDoc,(); 
break: 

case kCloseltem: 
doCloseDoc (FrontWindow <>>: 
break: 

case kQui tltem: 
cleanExit (true); 
break: 

} /* doFileMenu */ 

Flgure6·19. 
Menu item selection parsing. 

Generic detects the keyboard equivalent for a menu selection by calling the routine 
MenuKey from doKeyDown(). Called whenever a key is pressed, MenuKey returns a 
long word, equivalent to the long word returned from MenuSelect. If the key was not 
a keyboard equivalent, MenuKey returns OL, which signals that the application 
should process the keystroke as input. The Generic application has no use for key­
board input that is not a menu selection, but a word processing application, for ex­
ample, would add the character to the text stream. 

135 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Give Me a Break 
Notice the break statement terminating each branch of the switches in 
Figures 6-18 and 6-19. Without a break, the flow of control would "fall 
through" and execute the next case. For an example, take a look at this varia­
tion on an excerpt from doFileMenu(): 

switch Ctheltem) 
{ 

case kNewltem: 
doOpenDoc (); 

I• <--- we forgot the break! •/ 
case kCloseltem: 

doCloseDoc CFrontWindow ()); 

When the user selects New from the File menu, control flows to doOpenDoc(), 
but because we forgot the break, when doOpenDoc() returns, doCloseDoc() is 
called. The bug manifests itself as the window opens and then immediately 
closes. Leaving the break out of a switch branch is a common mistake of both 
beginning and experienced coders. You've been warned. 

Putting It All Together 
If you've already compiled and run the application, you know that you've written yet 
another Hello World. Is this deja vu? Sure, but you now have a genuine event pro­
cessing platform. Check it out. While running miniGeneric, open a Desk Accessory 
and drag it in front of your main window. Now close it. Notice how the application 
automatically updates the window. What you've got there is a real Macintosh update 
engine. With a few changes, it'll be ready to support multiple documents. In the next 
chapter, we'll talk about this update mechanism and create some real document 
windows that respond to all sorts of variations in size and location. In the process, 
we'll transform miniGeneric into multiGeneric, a multidocument application shell. 

136 



7 

A SHELL 
THAT MANAGES 
MULTIPLE 
DOCUMENTS 

In Chapter 6, we saw how our miniGeneric application-or any Macintosh applica­
tion-uses events to detect user-initiated, real-world occurrences. The application 
parses events in its main event loop and passes control to the action routine appro­
priate for the event type contained in the what part of the EventRecord. Because 
good programming practice dictates putting related functions into modules, we 
began in miniGeneric to split our application into source code modules. 

In this chapter, we'll develop a more complex application by giving miniGeneric the 
ability to control multiple document windows. To keep our projects straight, we'll 
call this chapter's project multiGeneric. For the most part, miniGeneric will change 
very little in its evolution into multiGeneric, although two of the modules­
DocUtil.c and WindowUtil.c-will change dramatically. Most of the information we 
present in this chapter will result in a rewrite of an affected module or in additional 
functions within an existing module. This is one of the joys of modular program­
ming around a generic base: You rarely have to make changes to all the existing 
code in the generic base; instead, most of your programming is limited to rewriting 
an existing module to change its features or capabilities or adding new functions to 
the existing modules. 

That's the good news. As we get deeper into the subtleties of the Macintosh system 
software, we'll run into some bad news as well. For example, Apple didn't make 
handling multiple documents-and the memory management tasks associated with 
handling multiple documents-easy for first-timers, and it's only fair to warn you 

137 



MACINTOSH C PROGRAMMING BY EXAMPLE 

that there are some very technical passages in this chapter. We can't do much about 
that-windowing is a complex topic. Remember, though, that we're building a 
generic application base that you can reuse-you need to write this code only once. 
For subsequent applications, you can reuse the concepts and the windowing code 
that we'll work through here. That's what the "generic" principle is all about. 

The •ultiGeneric Application 
The origins of our ultimate Generic App are in miniGeneric. We organized the proj­
ect into modules and then fleshed out those modules to perform the duties of a 
minimum application. The next step will be to add multiple-document manage­
ment-hence, the name multiGeneric. A final step, one we'll take in the next chap­
ter, will be to concentrate on how a document's contents require changes in the 
shell. 

By the time you reach the end of this chapter, you'll have two Generic Apps: one 
with single-document window ability and one with multiple-document window 
ability. By the time you reach the end of the next chapter, you'll have three. Which 
application should you use as the universal application starting point? Both 
miniGeneric and the scrolling Generic we present in the next chapter are teaching 
tools. You're unlikely to use either as a base for future projects. The real, universal 
Generic is multiGeneric, the application shell we describe in this chapter as we 
unravel the mysteries of multiple documents and windows in a single application. 

Source C•de Control 
The code for multiGeneric contains the same source modules that miniGeneric used. 
This new version of our generic application requires changes that affect windowing 
and document management, so we modify the files WindowUtil.c and DocUtil.c ex­
tensively. Other modules are changed more subtly, and some require no changes. In­
stead of isolating the code permutations that migrating from miniGeneric to 
multiGeneric would call for, we've opted for the purposes of this book to replace the 
project in its entirety. On the disk that accompanies this book, you'll find a folder 
containing all the source code modules for multiGeneric. If you have a utility like 
DocuComp (or the file comparison utility that ships with THINK C), you might want 
to run a comparison on the source code modules of miniGeneric and multiGeneric. 

Although the three projects in the three chapters provide a vehicle for teaching the 
basics of Macintosh application building, we can also use the evolution of Generic to 
shed light on an important aspect of the development process: source code control. 
Before we get into the windowing mechanism, let's address this important topic. 

If you've made your own enhancements to miniGeneric, you'll probably want them 
to be included in multiGeneric. How do you integrate the code for the two versions? 
Managing multiple versions of a product that uses the same set of source modules is 
a common programming task. 

138 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

What the programming world needs is a good source code control system (SCCS), a 
set of utilities that manage the various versions of a file within a project. Such pro­
grams keep track of changes made to a source file, maintain the previous versions, 
and log when and where changes are made. We've used some of these programs in 
UNIX and VMS environments, and others are commercially available for micro­
computer development platforms, including MPW. We've yet to see an SCCS that is 
easy to use and that meets more than merely basic needs. 

Team development efforts cause most complications in source code management. 
More than one programmer might need to work on the same file at the same time, 
sometimes within the same function. Unless the SCCS is flexible enough to allow 
multiuser access, bottlenecks occur and productivity drops. We've yet to see an SCCS 
that doesn't limit productivity. 

That is why source code is usually controlled without the use of a fancy SCCS. Com­
mon sense, organization, and working discipline are used to the same end. Keep an 
audit trail of what changes are made and by whom. Use a file comparison program 
to isolate changes in two source files during integration. Such simple techniques 
supply all the utility that's needed to manage the most complex job. After all, the hu­
man brain is the best source code control system available. 

Source code control could serve as the topic for another complete book, so we won't 
spend much more time on it here. During the development of Tycho Table Maker, 
our three-person development group used the simple system for marking changes to 
the source code that we'll summarize shortly. We suggest that you adopt a similar 
strategy now, before you have thousands of lines of code to keep track of. Our 
method is not particularly elegant and doesn't represent the last word on manage­
ment of source code changes, but it's a start. It kept us from making a few disastrous 
missteps along the way to commercial release of our product. 

A System for Tracking Changes to Source Code 
When you integrate changes into an existing project such as miniGeneric, your job is 
easier if you know where the changes are. The why and what of the change is often 
obvious from the change itself, especially if you're liberal with comments, but 
merely finding the change is sometimes a problem. The trick is to meticulously mark 
changes as you make them. Always. With no lapses. This is a rigorous undertaking 
requiring great discipline and a little more time, but it's well worth the effort. 

Most commercial developers will recognize the technique we use, which looks 
something like this in practice: 

I*### kwgm 11.20.90--change made to fix bug in frammis loop *' 
/Ii f 0 

/* old frammis loop here *I 
//else 

I* new, bug-free code here */ 
//endi f 
I* ### kwgm 11.20.90 */ 

139 



MACINTOSH C PROGRAMMING BY EXAMPLE 

We delimit the change with two comment strings. Use a string that makes the 
change easy to search for. We use a triple hash mark,###, in the opening and closing 
comment strings. Choose a string that is not a commonly used code construct. 

The opening change comment contains the date the change was made (and the time 
if you frequently find yourself in marathon programming sessions), the initials of the 
person making the change (important if you're working in a group), and a note of 
any length describing the change and the reason for it. 

The entire change consists of these elements: 

• The opening comment string 

• An #if 0 statement to remove the old code from the compilation stream 

• The old code 

• An #else statement at the end of the old code 

• The new code 

• An #endif statement to terminate the conditional compilation 

• A balancing closing comment string to mark the end of the change 

It's important to leave in the entire old code passage. This gives you something to 
return to if your change doesn't test out and also provides a reference for integration. 
Indeed, using the style we show here, you can easily substitute a variable in the #if 0 
statement, define it at the beginning of your program, and have your program com­
pile using the old code. You need to be able to return to your old code, especially if 
you make a batch of changes at once. After you've tested the new code, you can de­
lete the old code from the working file, but you should always keep a backup copy. 
Leaving the old code in the source file takes up room on your disk, but it doesn't add 
any size to your program if you follow our suggestions. The old code is ignored dur­
ing compilation. 

If you use this system, you can integrate changes from a working copy of a source 
file into your archive copy with the help of the search command in the editor. Here's 
the process: 

1. Open both copies of the source file (the changed file and the archive file), find 
the change delimiter string(###) in the changed file, and select the old section 
of code, not including the #if 0. Then use Command-E to add the old code 
selection to the search string. 

2. Next, select both the old block of code and the new block of code and copy it 
to the Clipboard by using Command-C. This block contains the opening com­
ment string, the old code, the new code, and the closing comment string. 

3. Now select the archive document, use Command-F to search for the original 
code block, and note that the entire block is selected. 

4. Finally, use Command-V to paste the changed code into the archive file. 

Every time you or someone else on your team adds new code to an existing source 
file-even so-called bug-fixing code-you increase the likelihood of installing 

140 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

more bugs in the program. That's right-fixing bugs often adds more bugs. And 
there will inevitably be times when you'll wish you had heeded the old adage, "If it 
ain't broke, don't fix it!" You'll want to rip out a new block of code, replace it with the 
old, and start again. It's for those times that you keep backups. 

Disks are cheap. Take advantage of that. And buy a good backup program. Back up 
the entire project fold~r at the end of a development session, even if you've changed 
only a few lines. This might sound wasteful, but it's not. If a catastrophe should 
befall your primary version, you can be up and running with the old code in the 
time that it takes to restore the project folder. 

This organized approach to tracking changes to the source code is actually a 
mindset you should adopt for all your development efforts. It's a "divide and con­
quer" point of view. A computer program rapidly grows into a complex piece of 
work. The trick to getting your mind around it all is to keep it divided into small, 
digestible pieces. If you understand the pieces and how they're put together, you'll 
be able to understand the whole. 

Winclows ancl Documents 
Let's return to the matter at hand: multiGeneric. The task of managing multiple win­
dows can quickly become overwhelmingly complex. Before you begin to pound out 
the C code, you need to consider how the application will keep track of its windows 
and their related data. This is a function of document organization. A document is an 
abstraction that encompasses the complete collection of data associated with a win­
dow, including the data's display and file information and the in-memory structures 
associated with processing the data. A document therefore encompasses more than 
merely the window's data. 

The two words, window and document, are often used synonymously by developers 
when they refer to windows. This is a confusion of terms that arises from use of the 
desktop metaphor to describe the objects on the Macintosh screen. One of the on­
screen objects is called a window and is described by a WindowRecord data struc­
ture. A window is manipulated by calls to the Macintosh Window Manager. 

The definition of a multiGeneric Doc data structure, which we've excerpted from 
the file AppTypes.h, is shown in Figure 7-1: 

typedef struct Doc 
{ 

WindowRecord theWindow: 

I* document management */ 
ushort type. 

attributes: 
short index: 

Figure 7•1. 
The Doc data structure. 

/* window data structure *' 
/* document type *' 
I* document attributes */ 
I* index of open window list */ 

(continued) 

141 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 7•1. continued 

I• display management •/ 
Point curScroll, 

maxScroll, 
docExtent: 

I• file linkage •/ 
short volRefNum, 

open Fil eRefNum: 

char fileName [33]: 

I• contents •/ 
Handle contentHdl: 

} Doc, •DocPtr: 

I• current scroll position •/ 
I• maximum SCf'.011 position •/ 
I• size of contents •/ 

I• volume refert'1ce.numb.er of 
open. file ~i: 

I• file reference number of 
open file •/ 

I• file name •/ 

I• document data •/ 

Windows and documents have a one-to-one relationship in an application. You 
won't find one without the other. The Doc structure in Figure 7-1 contains five differ­
ent kinds of information: 

• The WindowRecord of the associated window. 

• The document type and the document attribute flags that serve to classify a 
document. The purpose of this information will become evident when the 
document contains data. 

• Display management information. The variables associated with display man­
agement contain data used to maintain the scrolled position of the document's 
contents. 

• The associated file system data. 

• A handle to the document's contents. 

We deliberately chose a WindowRecord as the first element of the document so that 
we could pass the address of a document structure, a DocPtr, to the Window Man­
ager routines this way: 

DocPtr theDoc: 

SelectWindow CtheDoc): 

Most of the Window Manager routines, such as SelectWindow(), require the address 
of a WindowRecord-that is, a WindowPtr argument. Because the WindowRecord is 
the first member of the Doc structure, a pointer to a Doc looks exactly like a pointer 
to a WtndowRecord, at least for sizeof WindowRecord bytes, which are all the Win­
dow Manager routines are interested in. 

142 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

This provides for a convenient syntactical shortcut, and, although it would make a 
strict Pascal programmer shudder, it is acceptable to pass a DocPtr to a system rou­
tine that expects a WindowPtr as an argument. This kind of organization eliminates 
the need to use a variant record mechanism, called a "union" in C, or having to ex­
plicitly cast a DocPtr to a WindowPtr. The pointer is already in the correct format. 
The alternative would be to pass the WindowPtr explicitly, this way: 

DocPtr theDoc: 

SelectWindow C&CtheDoc->theWindow>>: 

Because the addresses are identical, however, there's no need for the computer to 
perform the extra address calculation. 

Openln9 New Windows 
A window and its document are created when a mouse-down is detected on the 
New command of the File menu. multiGeneric's flow of control passes from 
doMenu() to doFileMenu() to createNewDoc(), found in the file DocUtil.c. This flow 
of control is illustrated in Figure 7-2. 

Flgure7•2. 

Shel l.c 

doMenuO 
{ ... } 

doFfl eMenuO 
{ ... } 

DocUtil. c 

createNewDoc() 
{ ... } . 

Control flow for creation of a new document. 

The routine createNewDoc() does the actual window and document linkage. It per­
forms four basic tasks. 

143 



MACINTOSH C PROGRAMMING BY EXAMPLE 

First, createNewDoc() calls the function allocDoc(), which allocates memory for the 
document structure. The document is created on the application heap as a 
nonrelocatable object. The decision to use a nonrelocatable block, one created with 
NewPtr, instead of a relocatable block created with NewHandle, was a tradeoff to 
simplify the relationship between documents and windows. All the Window Man­
ager routines accept WindowPtr arguments. Because the WindowRecord is the first 
element of the Doc data structure, multiGeneric can pass the DocPtr to the Window 
Manager routines. You can see from the multiGeneric code on the disk that accom­
panies this book that this approach simplifies the code whenever multiGeneric calls 
a Window Manager routine. 

The alternative would have been to create the Doc as a relocatable object. In that 
case, the program would have had to maintain a handle to a Doc structure (DocHdl) 
instead of using DocPtr. Then, whenever the program called a Window Manager 
routine that moved a block in memory, it would first need to lock the handle and 
dereference it to extract the DocPtr: 

DocHandle theDoc: 

f* make a window manager call •/ 
Hlock CtheDocl: 
SelectWindow (*theDocl: 
HUnlock CtheDocl: 

Opening the document is inhibited if memory cannot be allocated for the document 
or if the number of open windows exceeds a predefined maximum. 

After memory for the document structure has been allocated, createNewDoc() calcu­
lates the new window rectangle so that the new window will be staggered over the 
existing top window, with an offset. The algorithm is something like this: If there's a 
top document and if that document is one created by multiGeneric, use that docu­
ment's window rectangle as a starting point for the new document's window rect­
angle. Otherwise, use the default rectangle for the new document's window 
rectangle. Figure 7-3 demonstrates how multiGeneric gets the new rectangle. 

After multiGeneric creates the window rectangle for the new document, it is free to 
create the window itself with New Window, passing it the DocPtr that was allocated 
at the beginning of the function. multiGeneric uses the documentProc + 8 window 
type, a standard document window with a zoom box. 

After the window is created, createNewDoc() adds the scroll bars. The scroll bars are 
not automatically a part of the window but are controls you must add explicitly with 
NewControl. The windows for multiGeneric have the usual two scroll bars: a vertical 
scroll bar and a horizontal scroll bar. To keep track of which is which, we tag them 
with the tokens k VScrollTag and kHScrollTag, which we attach to the Control 
Record's re/Con field. 

Finally, createNewDoc() titles the window, initializes the document data structures 
for the document, adds the document to the open document list, and makes the win­
dow visible and active. 

'144 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

Window Offset 

_i 

Figure 7-3. 
Creating the new document's window rectangle. 

Window Types and Their Origins 
The Macintosh Window Manager contains a default window definition pro­
cedure (WDEF) that's responsible for several tasks, including drawing a win­
dow. WDEF supports six standard windows and a few variations on those 
standard themes. The fifth argument to NewWindow controls what kind of 
window is dra~n. The six basic window types and the name of the constant 
that represents each one are shown below. The constants are included with 
the development system in the file WindowMgr.h. 

ODD 
documentProc noGrowDocProc rDocProc 

DD 
dBoxProc plainDBox altDBoxProc 

Macintosh window types. 

145 



MACINTOSH C PROGRAMMING BY EXAMPLE 

multiGeneric uses two global variables to keep track of the number of open docu­
ments. The variables are initialized in Applnit.c and managed in DocUtil.c. 
multiGeneric uses the global variable gNumOpenDocs to keep track of the total 
number of open documents in the application at any one time. The variable's value 
is incremented in createNewDoc() every time a document is opened, and its value is 
decremented in doCloseDoc() each time one is closed. 

multiGeneric uses the other variable, gNextWindow, to automatically name succes­
sive new documents with consecutive values (Untitled!, Untitled2, Untitled3, and so 
on). When all documents have been closed, gNextWindow is reset to 1 in 
createNewDoc(). 

relColl ...... . 
The re/Con fields in various Toolbox data structures, such as the Win­
dowRecord, ControlRecord, and ListRee structures, are for programmer use. 
The fields are defined as long, but, because a long is the same. sizf ~. a 
pointer or a handle, you can store a reference to any ~~e data .ob,)~;~\. 
want. Apple engineers put the re/Con field into the Toolbox struCt~~~ · 
that programmers could attach related data to the structures. multi~c · 
stores a token in the ControlRecord re/Con, contrlifCon, by passing the 
values as the last argument to NewControl 

The Open Docu•ent Tallle 
The multiGeneric application uses the "open document table" to keep track of all 
documents that are opened in the application. multiGeneric uses the open document 
table to cycle through the documents, as it does in the close all documents opera­
tion, or to activate a document when the name of that document is selected from the 
Window menu. 

The Window menu gives your user an alternate way to choose which window will 
be the active window, and therefore which document will be worked in. This fea­
ture is handy when the window the user wants is completely covered by other win­
dows. The Window menu also supports Command-key equivalents for the first nine 
open documents. 

The source file WindowTbl.c contains the routines that manage the open document 
table and the menu. In fact, the table and the menu are closely related. 

The table itself is contained in the static variable sDocTblHdl, a handle to a structure 
of type DocTbl. This document table consists of an array of Doclnfo structures and a 
count of the elements in the array. Each open document is represented by an ele­
ment in the array. The Doclnfo data structure contains the document pointer, the 
document's menu item number, and the document's Command-key equivalent, if 
any, called the "slot number." 

146 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

Finding GloMI Symbols In a THINK C Prolect 
The THINK C programming environment has a nice feature that we use all 
the time. If you double-click on a global variable in a source file, the environ­
ment will open the source file in which the variable is declared and move the 
text cursor to the first instance of the variable in the file. In multiGeneric, the 
file Shell.c, in which main() is defined, will be opened if you double-click 
on a global variable name anywhere in the project sources. This is because 
we include the file AppGlobals.h, in which the project globals are defined, at 
the top of Shell.c. 

This feature also works with nonstatic function names. If you double-click 
on a function call, THINK C will open the source file in which the function 
is defined and find the first instance of the symbol. This is useful when you 
are following a new program's flow of control. 

Adding to the Open Document Table 
When the application successfully creates a new document, createNewWindow() 
calls the function addToDoc1bl(), which is in WindowTbl.c. The addToDoc1bl() 
function first assigns a Command-key equivalent to the document, if one is available. 
A bitmap of which Command-key slots have been used is maintained in the static in­
teger sSlotBitmap. multiGeneric uses the least-significant 9 bits of this short integer 
to hold the slot information. If a bit is set, the slot it corresponds to is taken. 

For example, if the 1, 4, 5, 6, and 7 keys are being used in combination with the Com­
mand key, the value of sSlotBitmap is Ox0079, or 0000 0000 0111 1001 in binary. 
Figure 7-4 illustrates this value. The algorithm in addToDoc1bl() searches for the 
next available slot in sSlotBitmap and assigns it to the new document. 

Window 

Untitled I X1 
Untitled2 X4 
Untitled3 XS 
Untitled4 X6 
Untitled5 X7 

3t9 3t8 3t7 3t6 3'5 3'4 3t3 3t2 :JC 1 

0 0 0 0 0 0 0 

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

F1gure7-4. 
Keys 1, 4, 5, 6, and 7 are being used in combination with the Command key. 
The value of sSlotBitmap is Ox0079. 

147 



MACINTOSH C PROGRAMMING BY EXAMPLE 

After it assigns a Command-key equivalent to the document, addToDocTbl() calls 
buildMenultemStr() to create the menu string from the window's title and the docu­
ment's slot number. 

Note the special processing of the file name in buildMenultemStr() to avoid adding 
any of the Menu Manager's special token characters to the menu item string. If the 
character " were in the string, for example, the Menu Manager would interpret the 
next character as an ICON resource number, which would not be included as part of 
the menu item string. A complete list of the special Menu Manager tokens is found in 
Inside Macintosh, Volume I. The buildMenultemStr() function filters out any of 
these special characters and substitutes the empty character. 

After the menu string has been built, addToDocTbl() calls lnsMenultem to add the 
string to the bottom of the Window menu. The new menu item is then explicitly 
enabled with Enable/tern. Explicit enabling might not always be necessary, but 
we've discovered that a new item is not always created in the enabled state, so we 
recommend that you always take this extra step. 

The next step is to add the new Doclnfo record to the document table. To conserve 
space in RAM, the program makes the size of the document table only large enough to 
hold the number of entries. For example, if three documents are open, the table con­
sists of a count plus three Doclnfo records. The count is a short integer, and a Doclnfo 
record consists of 8 bytes, so the entire table is 2 + (3 • 8) bytes, or 26 bytes. If another 
document is opened, the table needs to be 34 bytes to accommodate the new record. 

The addToDocTbl() function expands the table by the size of a Doclnfo record 
before it assigns the new Doclnfo data to the table. Because the table is stored in a 
relocatable block, addToDocTbl() uses the Memory Manager routine SetHandleSize 
to resize the table. This is informally known as "growing the handle." Growing the 
handle doesn't change the handle; it simply allocates more memory to the structure 
that the handle refers to. This process is illustrated in Figure 7-5. 

DoclnfoLit'it with two 
Doclnfo record6 

count= 2 

Doclnfo record 1 

Doclnfo record 2 

Figure 7-5. 

DoclnfoLit'it with three 
Doclnfo record6 

count= 3 

Doclnfo record 1 

Doclnfo record 2 

Doclnfo record 3 

Growth of the DoclnfoList table structure. 

148 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

After the table has been expanded, the new Doclnfo record is initialized with its slot 
number, DocPtr, and the menu item number of the document. 

The Doclnfo record and the document are doubly linked with data: The Doc/nfo 
record contains the DocPtr, and the Doc structure contains the array index number 
of the Doclnfo record. This double link is necessary so that multiGeneric can get to 
the data starting with either structure. For example, when the document is chosen 
from the Window menu, the DocPtr (WindowPtr) is extracted from the Doclnfo 
structure and passed to SelectWindow. The code for this approach to the data is in 
the function do WindowMenu(), found in Window'Ibl.c. And when the window is 
closed, as we'll see in a moment, multiGeneric needs to delete the Doclnfo structure 
from the document list and therefore needs to·know where the Doc/nfo structure is 
in the array. The index member of the Doc structure contains the window's index 
into the open document table. 

Deletln9 fro• the Open Docu•ent Tallle 
To delete a document from the open document table, you reverse the addition pro­
cedure. The multiGeneric application calls removeFromDoclist() with the DocPtr 
when a document is closed. The removeFromDoclist() function accesses the corre­
sponding open document table entry by using the index value stored in the docu­
ment. The removeFromDoclist() function removes the menu item for the document 
from the Window menu by using DelMenultem and clears the document's slot bit in 
sSlotBitmap, if applicable. 

The last step is to remove the Doc/nfo data from the open document table. Remem­
ber that this table is stored as a contiguous array, and, if you remove an array ele­
ment, you need to compact the array to remove any gaps in the table. The only array 
elements that have to be moved during compaction are the ones with index numbers 
greater than the index number of the deleted document. Figure 7-6 on the next page 
illustrates the process. The removeFromDoclist() function uses BlockMove to com­
pact the array. 

Deletion of a menu item and its Doclnfo record causes some data misalignment. 
Each Doclnfo record contains a menu item number for a corresponding menu item. 
When removeFromDoclist deletes a menu item, the menu item values of some of the 
Doc/nfo records-the ones with index numbers greater than the index number of 
the deleted record-must be decreased by one. Likewise, because removeFrom­
Doclist() removes an array element, the index numbers stored in documents that 
refer to elements of the Doclnfo array above the deleted element also need to be 
decremented. The removeFromDocList() function performs this fix in its for loop. 

Closln9 Windows 
We've talked of closing open documents, but we haven't looked in detail at how to 
close an open window. Closing a window consists of disposing of all data associated 
with the document and deleting the window data structure. The doCloseDoc() func­
tion, found in DocUtil.c, manages this operation. 

149 



MACINTOSH C PROGRAMMING BY EXAMPLE 

DoclnfoLie;t with four 
Doc/nfo recorde; 
before deletion 

count= 4 

Doclnfo record 1 

Doc/nfo record 3 

Doc/nfo record 4 

Flgure7•6. 

DoclnfoLie;t with three 
Doclnfo recorde; after 

deletion and compaction 

count= 3 

Doclnfo record 1 

Doc/nfo record 3 

Doclnfo record 4 

The array Is resized 
to fit the data. 

Compacting the document table. When the user closes the document associated 
with Doclnfo record 2, removeFromDocListO moves records 3 and 4 and 
resizes the relocatable block down to the new table size. Note that record 1 
does not have to be moved. 

The doCloseDoc() function first checks the validity of the document pointer. 
Although the document pointer wouldn't ordinarily be null, it could be if the open 
document list had become corrupted. Some might argue that this sort of defensive 
programming slows an application down, but that's a price well paid for ensuring 
that your user will avoid the bomb alert box. 

Closing the window is a matter of disposing of the window's scroll bars with 
DisposeControl, closing the window with CloseWindow, disposing of the Doc struc­
ture with DisposPtr, and updating the multiGeneric internal window management 
variables and the open document table. 

Screen Manage•ent with Multiple Windows 
The main advantage of multiGeneric over miniGeneric is that multiGeneric manages 
multiple windows. Having more than one window on the screen at a time creates in­
teresting demands on your application. It must provide for the user's selecting an ac­
tive window-the one in which he or she is currently working. And it must redraw 
the screen when the user selects a new window or moves the windows around on 
the desktop. Depending on the positions of the windows before and after the up­
date, usually only certain parts of the screen will need to be redrawn. Figure 7-7 il­
lustrates these two aspects of multiple window management. 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

Fl9ure7•7. 
Selecting a new 
active window and 
redrawing the 
screen. Users f is the 
active window. The 
user clicks in the 
title bar of the other 
window, making 
the second window 
active and Users f 
inactive. 

l!:IL Users f 
7items 15.5 MB fn disk 22.BMBav~ 

LJ 
~ 27Al1._ 

LJ LJ MB In disk 

Jason Household NAD 

LJ 
LJ LJ C2 

MocUser Cols cont 1nc. I LJ I 

I C7 

<> 
::u -nii i~" : . ·= i 

Users f J 
7ttoms 15.5 MB fn disk 22.8 MB avaij) 

l 
W~ Book 11.27.:.l@. 

LJ 8 items 15.5 MB fn disk 

Jason Househo 

LJ LJ 
LJ ~ 

Cl LJ C2 

MacUserCols LJ 
C3 LJ 

C5 

LJ 
C7 

C6 

~ .. · irnami ™ 

Activating a Window 

22.8 MB •vailable 

LJ 
C4 

~Iii'! 

22.8 MB available 

~ 
LJ 

C4 ; 

;1 

I~~ 
1· 
<> 

ti;: l'2 

When an application has multiple windows open, the user has a choice of windows 
to work in but is limited to working in only one window at a time-the "active" 
window. The user indicates which window is active by pointing and clicking or by 
selecting the window from the Window menu. 

The active window is visually distinct from the other windows on the screen. The 
title bar, title controls, scroll bars, and other controls are highlighted. The activation 
routine is responsible for maintaining this visual difference from the other windows 
on the screen. 

A window is activated in response to the user's selecting a new active window. The 
user's selection generates two events: an activate eve11.t and a deactivate event. The 
activate event is targeted at the new active window, and the deactivate event is 
targeted at the old active window. 

151 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The behavior of controls in a windmy must conform to the Macintosh user interface 
guidelines on the appearance of activated and deactivated controls. Figure 7-8 
shows activated and deactivated scroll bars. 

Figure 7·8. 
Active and inactive 
scroll bars. When 
an inactive 
window is 
activated, the areas 
that should be 
shaded need to be 
redrawn. 

:o 
71tems 

LJ 
Jason 

LJ 
MacUser Cols 

Users f 0~ 
15 .5 MB in disk 22.8 MB avail 

LJ LJ 
Household NAO 

LJ 
COT'W' Inc. 

Users f 
7 items 15.5 MB in disk 22.8 MB ava11 

LJ LJ LJ 
Jason Household NAO 

LJ LJ 
MacUser Co ls COH/ Inc . 

The user selects the new active window with a mouse-down somewhere in the win­
dow. The event-parsing mechanism passes the mouse-down event data to 
doMouseDown(), the multiGeneric routine that processes mouse-down events. 

When doMouseDown() is called by the event data , it in turn calls SelectWindow, the 
Window Manager routine that posts the appropriate activate and deactivate events 
for both the new and the old active windows. 

Calling SelectWindow causes the Window Manager to redraw the new active win­
dow's title bar. As a result, the new active window's title area is highlighted-that is, 
the title bar is redrawn with distinctive stripes, and the close box and the zoom box 
appear. Figure 7-9 illustrates the effect of calling SelectWindow. 

Figure 7-9. 
The visual effect 
of calling 
Select Window, 
showing an 
inactive window 
and an active 
window with the 
close box and the 
zoom box. 

7 items 

LJ 
Jason 

LJ 
MacUser Co ls 

Users f 
15.5 MB in disk 22 .8 MB av ail 

LJ LJ 
Hounhold NAO 

LJ 
COTW Inc . 

Im Users f e:Ji! 
7 items 15.5 MB in disk 22.8 MB anil 

LJ LJ LJ 
Jason Household NAO 

LJ LJ 
MacUser Cols COTW Inc . 

SelectWindow changes the Macintosh's current grafPort to the one associated with 
the new active window. As Chapter 4's discussion pointed out, all QuickDraw calls 
are performed in the current grafPort. 

Calling SelectWindow also posts two events to the event queue: the deactivate event 
for the old active window and the activate event for the new active window. The 
application will process these events in the main event loop. 

152 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

When the main event loop detects an activate event or a deactivate event, it calls the 
doActivateEvent() routine-found in Shell.c-by using a pointer to the Event­
Record. Actually, both activate and deactivate events come with the same token in 
the EventRecord's what field: activateEvt. The doActivateEvent() function processes 
both activate and deactivate events, distinguishing between the two kinds of events 
by testing a bit in the modifiers field of the EventRecord to determine whether the 
window is to be activated or deactivated: 

doActivateEvent (EventRecord *e) 
{ 

if (e->modifiers & activeFlag) 
f* do activate stuff */ 

else 
f* do deactivate stuff */ 

The doActivateEvent() function is responsible for maintaining the appearance of the 
window's scroll bars. The Window Manager maintains a linked list of all controls 
associated with each window. A handle to the head of the Window Manager's list is 
in the controllist field of the WindowRecord. The doActivateEvent function 
traverses the list, calling the Control Manager routines SbowControl and HideControl 
as appropriate: 

Control Handle controlHdl; 

controlHdl = ((WindowPeek)theWindow)->controlList; 
while (controlHdl) 
{ 

if (e->modifiers & activeFlag) 
ShowControl (control Hdl); 

else 
HideControl (controlHdl); 

controlHdl = (*COntrolList)->nextControl; 

Calling SbowControl or HideControl alone doesn't show or hide a window's scroll 
bars. The scroll bars not only need to be activated or deactivated, but they also need 
to be redrawn in the highlighted or unhighlighted state. The multiGeneric applica­
tion uses a routine called invalScrollBars() to "invalidate" the scroll bars so that 
they'll be redrawn during the next update event. We'll discuss invalidation at length 
a little later in this chapter. 

If you look at the complete source code for doActivateEvent() on the disk that ac­
companies this book, you'll notice that the routine calls HidePen before doing 
anything visual like calling SbowControl. HidePen is a QuickDraw routine that in­
hibits all drawing. The doActivateEvent() function calls HidePen to ensure that 
drawing occurs only inside an update event, eliminating the chance that the scroll 
bars will be drawn twice. 

153 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Without HidePen, the calls to ShowControl and HideControl would cause an im­
mediate redrawing of the scroll bars. If the controls were then to be completely 
redrawn during the next update event, they would be drawn twice, causing an effect 
that is aesthetically unpleasing and computationally inefficient. In a Macintosh pro­
gram, you put off all drawing for as long as possible. This rule of thumb we call the 
maiiana principle. 

Note that the call to HidePen is balanced with a call to SbowPen at the end of the 
routine. Without the balancing ShowPen call, nothing further would appear on the 
screen. 

We've mentioned invalidation, update events, and the maiiana principle. Now it's 
time to examine how, when, and why the window contents are drawn. In the next 
section, you'll see how the processing of update events, in which redrawing is 
localized, is handled. But first, you'll need to know about window regions. 

Window Regions 
A "region" is a QuickDraw data structure that describes any arbitrary shape, 
although for our purposes a region is usually rectangular or made up of rectangular 
components. Regions are important in the discussion of windows because of their 
relationship to window update events. 

A window formally has three regions: 

• The "structure region" contains the title bar, which contains the close box and 
the zoom box; and the window frame, which is the black rectangle that 
outlines the window. The Window Manager draws these elements automati­
cally when your program calls SelectWindow. Generally, you can ignore what 
happens in the structure region. 

• The "content region" is where the application draws-below the title bar and 
inside the frame. The scroll bars are included in the content region, making it 
the application's responsibility to draw them. 

• The "update region" is a dynamically changing subregion of the content 
region. It contains all the accumulated window area that needs to be redrawn. 
Figure 7-10 shows the structure region and the content region. 

Drawing and the Update Process 
The multiGeneric application is structured so that drawing in a window is limited to 
the window's update region. Area is added to or subtracted from the update region 
in one of two ways: Window Manager routines automatically add window space to 
the region (to the area under a top window that has just been closed, for instance); 
or other system routines allow the application to add area to or subtract area from 
the update region. Figure 7-11 shows the update region left behind by a recently 
closed About box. 

154 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

Structure region: 
drawn by Window Manager 

Content region: drawn 
and updated by program 

Users f ?items 15.5 MB in disk 22.B MB availc 

Close box Title bar LJ 
Jason 

LJ 
Household 

LJ 
NAD 

Zoom box 

LJ LJ 
Window frame 

.. o 
7 items 

LJ 
Juon 

MacUser Cols 

Figure 7·10. 

MacUser Cols COTW Inc . 

The window 

Users f 011 
15.5 MB tn disk 22.8 MB avatl 

LJ LJ 
Household NAO 

LJ 
COT'w' Inc . 

{!. 

im:rllli 

. 

iili . 
HHi 

!l!ii 
:i!!!i 
mm 1' -0-

bar 

Window regions include the structure region and the content region, which 
make up the window. 

Figure 7·11 • 
The update region 
left by a closed 
About box. 

~ rn1111f,p1u•r I( npp 

Hello , Userl HAlln ll~Arl HP.lln ll~Arl HP.lln ll~•rl HAlln I l~Arl Hello, User! 
ello , User ello, User! 

Hello , User ello, User! 
Hello , User ello, User! 
Hello, User ello, User! 
Hello, User ello, User! 
Hello , Use1 ello, User! 
Hello , Use1 ell o ~User! 
Hello , User ello, i.Jserl 
Hello , User ello, User! 
Hello , User ello, User! 
Hello , User ello, User! 
Hello , Usen Heiro, usen He110, usen He110, usen He110 , usen Hello, User! 
Hello , User! Hello, User! Hello, User! Hello, User! Hello, User! Hello, User! 
Hello , Us er! Hello, User! Hello, User! Hello, User! Hello , Us er! Hello, User! 

ello User! Hello User! Hello User! Hello User! Hello User! Hello Us er1 

The application's need to redraw some of the screen is determined by the status of 
the update region. When this region is nonempty in one or more of an application's 
windows, the Window Manager posts an update event for the application. 

155 



MACINTOSH C PROGRAMMING BY EXAMPLE 

When multiGeneric detects an update event in the main event loop, it calls the rou­
tine doUpdateEvent(), found in Shell.c, which causes drawing in the necessary parts 
of the window. 

When the main event loop receives the update event, it passes the EventRecord 
received from WaitNextEvent by reference to doUpdateEvent(). The EventRecord 
contains all data necessary to respond to the update event. 

An update event is specific to a window. The application might receive an update 
event for each open window that has a nonempty update region. The Window Man­
ager passes a pointer to the window of interest in the message field of the 
EventRecord. 

If a Desk Accessory is open in front of the application, the application gets the up­
date event for the DA. This is important: Your application is responsible for passing 
the update event on to the DA. The application must therefore determine whether 
the event is targeted at one of its windows or at the DA. 

To this end, an application checks the windowKind field of the WindowRecord to 
determine whether the event is for one of the application's windows. If the value in 
this field is greater than or equal to 1, the window is an application window and the 
event should be handled by the application. If the value of the windowKind field is 
less than 0, the window is a Desk Accessory window and updates should be handled 
by the DA. 

After doUpdateEvent() determines that the event is for one of the application's win­
dows, the routine saves the old grafPort and then sets the current port to the one 
associated with this window. This step is necessary because an update event can be 
generated for an inactive window. Remember, all drawing occurs in the current 
grafPort. 

The heart of the update process begins with a call to BeginUpdate. BeginUpdate 
takes advantage of the fact that QuickDraw, which is responsible for rendering 
everything on the screen, limits its drawing to the visible region of the current 
grafPort. BeginUpdate changes the visible region of the window's grafPort to match 
that of the update region of the window. Thus, when the application draws, its draw­
ing is limited to the update region. 

Before drawing the window contents, doUpdateEvent() erases the window's update 
region, by means of the grafPort's visible region, to clear any extraneous screen ele­
ments that might be in the region. 

Finally, doUpdateEvent() makes the calls that draw the window's scroll bars and 
contents. When drawing is complete, the call to EndUpdate restores the port's 
visRgn and clears the window's update region. Figure 7-12 illustrates the entire up­
date process. 

156 



Figure 7•12. 
The Macintosh 
update process. An 
update event is 
posted for the new 
front window. The 
update routine 
calls Begin Update 
and erases the 
update region. The 
update routine 
then draws the new 
update region, 
shown in the 
heavy-bordered 
rectangle. 

0 
7 items 

CJ 
Jason 

CJ 
MaeUser Co ls 

7 items 

Jason 

CJ 
MaeUser Co ls 

7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

Users f 0~ 
15 .5 MB in disk 22.8 MB ava~ 

CJ 
27.'.le 
MB in disk 22.8 MB available 

Househol~ CJ 
c~ 

C2 

CJ 
CJ 

C4 

C7 

Users f 

22.8 MB available 

CJ 
CJ C2 CJ 

C4 C3 CJ 
C7 

.co 
CJ 

C5 

CJ 
C6 

As we've mentioned before and will mention again because it 's so important, all 
drawing is done inside this update routine. Limiting drawing to the confines of an 
update routine ensures that only the window's update region is redrawn and that 
double drawing doesn't occur. 

By now you should understand that you shouldn't redraw parts of the screen as soon 
as they need it. And you've seen that the update region is where you keep track of 
the areas of the screen that need to be redrawn. But you've not yet seen how to add 
areas to a window's update region by means of the invalidation process. 

Invalidation and the Maiiana Principle 
In Macspeak, an invalid area of a window is a region that needs updating or refresh­
ing. Conversely, a valid area of the screen doesn't require a redraw. Regions of the 
screen destined for redrawing are invalidated by the application, making them eli­
gible for drawing during the next update event. Invalidation of a region can be done 
anytime, but drawing is always deferred until an update event. 

157 



MACINTOSH C PROGRAMMING BY EXAMPLE 

This is the fundamental canon of the mafiana principle of Macintosh screen man­
agement: Whenever possible, put off drawing until the update process. 

The Window Manager supports two pairs of routines that validate or invalidate an 
area of a particular window. ValidRect() and ValidRgn() both subtract area from a 
window's update region-that is, they validate an area; InvalRect() and InvalRgn() 
add area to the update region and are therefore used for invalidation. Use 
ValidRect() and InvalRect() when your bounding area is rectangular; use ValidRgn() 
and InvalRgn() when your area is more complex or when you already have a 
RgnHandle to the area. 

The mafiana principle has implications for the way in which you design an applica­
tion. If you're writing a graphics program, for example, you'll need to know the 
bounding rectangle or region of your on-screen objects in order to invalidate them 
when they need to be redrawn. Figure 7-13 demonstrates the principle of invalidat­
ing an object's bounding box, or extent. Three shapes-a circle, a diamond, and a 
triangle-appear in a drawing program's window. If the user moves the triangle 
shape, both the old and the new triangle bounding boxes need to be invalidated. The 
old extent needs invalidation so that the area will be clear of the object and so that 
any object that was underneath the triangle will be redrawn. The new extent needs 
invalidation so that the object can be redrawn at its new location. 

Figure 7·13. 

' ' :- New boundine box 

A screen object needs a bounding box so that it can be invalidated. Bounding 
boxes, shown here as heavy dashed lines, are not visible on the screen. When 
the user drags the triangle to a new location, the program invalidates the old 
bounding box/or the triangle and draws the new bounding box/or the 
triangle. 

Using the mafiana principle to postpone drawing improves the look and the perfor­
mance of your application because all drawing is done at the same time. Commercial 
applications take this one step further and draw to an off-screen graiPort. Then the 
entire contents of the graiPort, bounded by the update region, are blasted to the cur­
rent screen. This buffering of the drawing gives the user the impression that the ap­
plication is faster than it really is because all the window contents show up at the 

158 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

same time. This speedup is actually an optical illusion: The process is slower than it 
would be if the window were redrawn directly, because of the overhead involved in 
managing the off-screen port and transferring the screen contents to the on-screen 
window. 

You don't need to adhere to the maiiana principle strictly. You can make an excep­
tion, for example, when a user holds the mouse button down in a scroll bar (a topic 
we'll cover in the next chapter). But, in general, when you limit drawing to the up­
date routine, you give your application that slickness that is the hallmark of Mac­
intosh applications. 

Supporting the Stanclarcl 
Window Manipulations 

Window activation and invalidation are important features of any Macintosh applica­
tion. But because multiGeneric is a multiple-window application shell, it needs to 
support the other window operations that are typically found in a Macintosh applica­
tion. And we've added a couple of nonstandard features that will allow any applica­
tion created with multiGeneric to stand out in a crowd. 

The standard window manipulations-resize, zoom, and drag-are the results of 
mouse-down events. When multiGeneric detects a mouse-down event in its main 
event loop, it passes control to the doMouseDown() function, which determines 
where the event occurred and acts accordingly. 

The routine does this by translating the where coordinate value returned in the 
EventRecord into a token representing the zone in which the mouse click occurred. 
The mapping of the zone is achieved with a call to the Window Manager routine 
FindWindow, which returns the token. The tokens, described in Figure 7-14, are de­
fined in the THINK C #include file Windows.h. 

in Desk 

inMenuBar 

inSysWindow 

in Content 

in Drag 

in Grow 

inZoomln 

inZoomOut 

inGoAway 

Figure 7·14. 

Returned when mouse is on desktop 

Returned when mouse is in menu bar 

Returned when mouse is in DA 

Returned when mouse is in content region of window 

Returned when mouse is in structure region of 
window 

Returned when mouse is in size box 

Returned when mouse is in zoom box 

Returned when mouse is in zoom box 

Returned when mouse is in close box 

Result codes returned by FindWindow. 

159 



MACINTOSH C PROGRAMMING BY EXAMPLE 

multiGeneric's mouse-down parsing function, doMouseDown(), switches control ac­
cording to the location of the mouse-down event returned by the call to 
FindWindow: 

FinclWinclow returned inMenu&ar. The mouse-down was in the menu bar. The 
doMouseDown() function calls doMenu(), in MenuUtil.c, which parses the menu 
selection. 

FinclWinclow returned inSysWinclow. The mouse-down was in a DA window. The 
doMouseDown() function calls SystemClick, which passes events to the DA. No fur­
ther processing is necessary. 

FinclWinclow returned inContent. The mouse-down was in the content region of a 
window. When the mouse is in the content region, the application first needs to 
detect whether the window is already the current window. The test compares the 
value of the window pointer returned by WaitNextEvent with that returned by 
FrontWindow-a pointer to the current window. If the window is not the current 
window-that is, if the pointers don't match-the window is activated with Select­
Window. If it is the current window, other processing might be necessary, depending 
on your application. We've included the function do/nContent() to demonstrate 
where to direct this kind of processing. 

FinclWinclow returned inDrag. The mouse-down was in the window's title area 
but not in the close box or the zoom box. multiGeneric reacts to this occurrence in 
one of two ways. If the user double-clicked in the drag area, multiGeneric calls 
clickZoomWindou(), which zooms or unzooms the window. (This feature is com­
mon to both Microsoft Word and our own Tycho Table Maker.) Otherwise, the docu­
ment is selected with SelectWindow and the mouse position is tracked for dragging 
with Drag Window. 

FinclWinclow returned inGrow. The mouse-down was in the size box, which ap­
pears in the lower right comer of the window. multiGeneric calls doGrowWindow() 
to track the resize process. 

FinclWinclow returned inZoomln or inZoomOut. The mouse-down was in the 
zoom box. The application zooms or unzooms the window as appropriate. 

FinclWinclow returned inGoAway. The mouse-down was in the close box of the 
window. The application closes the current window. If, however, the user has 
pressed the Option key while clicking in the close box, the application closes all of 
the documents that are currently open. 

As you can see by this list, the range of standard window manipulations is actually 
quite extensive. Once doMouseDown() determines the zone in which a click oc­
curred, control is switched to a supporting routine that carries out the action. Now 
we'll take a look in detail at how the actions are implemented in code. 

160 



7: A SHELL THAT MANAGES MULTIPLE DOCUMENTS 

Resizing a Window 
From a user's perspective, the window resizes when he or she presses the mouse 
button in the size box-in the lower right corner of a sizeable document window­
and drags a gray outline of the window to a new size. When the user releases the 
mouse button, the window reappears in the new size. The window's contents shift 
accordingly. 

Resizing the window is a two-part process: The first part is tracking the user's mouse 
movements and sketching the gray outline of the window border in response to the 
mouse movements; the second part is redisplaying the window and its contents. 

The Window Manager routine GrowWindow performs all the tracking and sketch­
ing and, when the user releases the mouse button, returns a result that becomes the 
input of the Window Manager routine SizeWindow. SizeWindow changes the actual 
WindowRecord data structures to fit the new size information. 

In multiGeneric, the mouse-down event is directed to the routine doGrowWindow() 
in WindowUtil.c, which manages the resize procedure. The doGrowWindow() func­
tion first invalidates the old scroll bar areas so that they will be erased and redrawn 
when the document is updated. The function then creates a bounding rectangle that 
limits the window to a minimum size of 48 by 48 pixels because the scroll bars start 
to look quite silly when the window gets smaller than that. (Without limits, windows 
can disappear on the desktop.) 

The doGrowWindow() function then calls GrowWindow and SizeWindow for the 
resizing. After the window is resized, doGrowWindow() relocates the scroll bars to 
the right and bottom corners of the window by calling moveScrol/Bars() and then 
re-invalidates the scroll bars at this new location so that they'll be redrawn in the up­
date process . 

.Zooming a Window 
Zooming a window is much like resizing a window. The Window Manager routine 
Zoom Window makes the actual change in window size. It's up to the application to 
adjust the window contents accordingly. 

When multiGeneric detects a mouse-down in the zoom box, it calls doZoomBox() in 
WindowUtil.c. doZoomBox() calls Zoom Window and then relocates the scroll bars 
by calling moveScrollBars(). Finally, this routine invalidates the entire window so 
that it will be redrawn in the update process. 

In addition to zooming when a mouse-down is in the zoom box, multiGeneric also 
zooms the window when there is a double-click in the window's title area. This ac­
tion is performed by the function clickZoomWindow(), also found in WindowUtil.c. 

An examination of clickZoom Window() reveals that the window structure contains 
a handle to a data structure of type WStateData. The WStateData data structure 

161 



MACINTOSH C PROGRAMMING BY EXAMPLE 

contains the two rectangles that the window will zoom or unzoom to. clickZoom­
Window() compares the userState rectangle of this structure to the port rectangle of 
the window's grafPort and calls doZoomBox() to do the window zooming based on 
the comparison of these two rectangles. If the userState rectangle equals the port 
rectangle, the window is zoomed; otherwise, the window is unzoomed. 

Dragging a Window 
Dragging a window-that is, dragging a gray outline representing a window­
is also controlled by a Window Manager routine. One call, to DragWindow, does it 
all. In fact, DragWindowis so simple to use that it is called right in doMouseDown(), 
without the need for an intermediate function. multiGeneric's organization puts all 
Window Manager-related utilities in WindowUtil.c, but the drag process is so simple 
that we felt it a waste of time to call Drag Window in an intermediate function. 

Drag Window does all sketching (responding to movements of the user's mouse) and 
then moves the window to the location the user specifies. Because the dimensions of 
the window never change in this operation, we don't need to change the scroll bar 
locations in the window or to invalidate the contents of the window. Invalidation of 
the background is handled by the Window Manager. 

The third argument to Drag Window is a constraint rectangle that limits the drag 
area. multiGeneric limits the drag area to the gGrayRgnRect, which is initialized in 
Appinit.c. The gray region is the combined area of all video devices attached to your 
Mac. If you use multiple monitors, the gray region encompasses all screens. If the 
gray region is the limit rectangle, the window can be dragged even across monitors. 

What's Ahead 
You'll find the code for multiGeneric on the source disk that accompanies this book. 
If you use multiGeneric as a basis for your applications and if you add more func­
tionality to the shell, remember to comment any modifications to the source code 
with a search string as we recommended earlier in this chapter. In the chapters up 
ahead, we'll add to multiGeneric, hooking up the scroll bars in the next chapter and 
hooking Generic App into the file system in the last chapters, turning this shell into a 
bona fide application. 

162 



8 

SCROLLING 
WINDOWS 

Whether your application displays text or graphics, its document data will soon 
outgrow the window bounds, and you're going to have to confront the scrolling 
issue, as a colleague of ours did. He called to ask what Toolbox routine he could use 
to add scroll bars to his application's window. His assumption was that once the win­
dow had scroll bars, scrolling followed. If only it were that simple. 

Scrolling a Macintosh document is truly a black art. The way a Macintosh document 
scrolls depends on the document contents. Text documents scroll a line at a time. 
Figure 8-1 illustrates this kind of scrolling. 

Figure 8·1. 
A Microsoft Word 
document scrolls 
one line at a time. 

D C2.I - Using THINK C.2 

development environmenls, where you have to keep track 

.obj files that the compiler creates as a res u ltof com pi latio ;;,,.; 

Likewise, linking the code, the final step in creating a r j:!!'.! 

source code, is automatic in THINK C: it proceeds n:.; 
Page I 

:o C2.I - Using THINK C.2 

.obj files that the compiler creates as.a.resultof.compilatio 

Likewise, linking the code, the final step in creating a r :;:!:: 

source code, is automatic in THINK C: .it proceeds:;:::: 

application. The objecls are hidden, so there·s no need to ;!\ 
Page I 

Graphical documents scroll an arbitrary number of pixels at a time, as in the floor 
plan shown in Figure 8-2 ~t the top of the next page. 

163 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 8·2. 
A graphical 
document scrolls n 
(some arbitrary 
number of) pixels 
ata time. 

~D 

Floor Pion/Lo er-I I I " = IO' 

I 

+ ~ 
· · · UIIIJ 

~urn 

Floor Plan 1 x 

Floor Pion/Loyer-I / I"= IO' 

Bill Mnry 

Floor Plan 1 x 

Another application, Kurt and Thom's Tycho Table Maker, for instance, might scroll 
one row of cells at a time, as in Figure 8-3. 

Figure 8-3. 
Tycho Table Maker 
scrolls one row of 
cells at a time. 

164 



8: SCROLLING WINDOWS 

Hybrid docwnents made up of text and graphics-like spreadsheets or table edi­
tors-scroll based on either the text or the graphical model. Some programs­
Microsoft Word is one-change their scrolling strategy mid-document when 
graphics or tables are encountered in the midst of text. 

In this chapter, we'll develop a scrolling technique that works with both text and 
graphical docwnents. We'll modify multiGeneric into nonGeneric, an application that 
puts up either a text window or a graphical window, and then we'll add the scroll 
bars and scrolling routines to it. Again, we'll make most of our modifications to 
DocUtil.c and WindowUtil.c, and we'll mark the modifications in the source code 
with the #if def 0 change marks we described in Chapter 7. 

Scrolling 
Figure 8-4 illustrates the concept of scrolling and hints at the origin of the term. An 
imaginary papyrus scroll containing data moves behind a stationary window frame. 
Figure 8-4 shows scrolling in a single dimension-up and down. Assuming that the 
underlying document is larger than the window frame in both directions, most Mac­
intosh applications let you scroll a document in both the horizontal and the vertical 
directions. A few Macintosh applications, most notably databases, which don't have 
any page orientation, restrict scrolling to one direction. Many desk accessories and 
utilities go even further and don't allow any scrolling at all. But most Macintosh pro­
grams provide for the creation of documents larger than the current window size 
and then let the user view parts of the documents by means of scrolling controls. 

'", e I 
o, oxqoriokcos, hp aho 
hiokhifichs ik ahetgah. " 
· 'hiaho sciokmelhenho 

Flgure8•4. 
A papyrus scroll. 

165 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Scrolling papyrus involves "rolling" the paper at one end or the other in a con­
tinuous motion. Scrolling Macintosh documents is an illusion created by offsetting 
the document contents from the window origin and then redrawing the contents. It's 
as if you physically picked up the window and placed it at a different location on the 
underlying document. Figure 8-5 shows a graphical document drawn at an offset. 

Document origin 

Document 
offset 

Window origin 

Window frame 

Figure 8-5. 

N Floor Plan 

Drawing a document offset from the origin. 

l x 

<>o<> 
oQo 
<>o<> 

~ 

Mary 

Figure 8-5 shows the relative "movement" of the document contents within the 
frame after a scroll. An important aspect of scrolling is just how you display the 
document area of interest within the window frame. 

In Figure 8-5, we've shown the document's extent and the window frame, which are 
described in terms of the window's local coordinate system. The extent defines the 
size of the document's contents. The window frame defines where the document 
contents get displayed. You can see from the figure that simulating a papyrus scroll 
is a matter of drawing the document contents in the window at an offset relative to 
the document's origin. 

In nonGeneric, we engineer scrolling in three steps: 

1. The application detects a mouse-down in the scroll bar or on the scroll arrow 
and calculates the scroll parameters: how many pixels and in which direction 
the user wants the document to be moved. 

166 



8: SCROLLING WINDOWS 

2. By calling the QuickDraw routine ScrollRect, the application "shifts" the con­
tents of the window by the pixel amount. As you can see in Figure 8-5, 
ScrollRect scrolls the image in the window by the specified amount and leaves 
an empty area in the window. 

3. The application shifts the document's origin by the scroll amount and invali-
dates the region left empty by the shifting action. 

In step 3, the empty area of the window is invalidated-the update routine will 
redraw the invalidated section of the window during the next pass through the event 
loop. Figure 8-6 illustrates these three steps in vertical scrolling. 

!!O Mattresses BJ~ 

0 

I 

Figure 8-6. 
Three-step scrolling. 

- User clicks on down arrow. 

t s,ro//Rect ""'"' •'"'°" 
contents upward. 

Document offset is changed 
to new position. 

} 

Update region is drawn 
at new offset. 

167 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Of course we've handled only one discontinuous "jump" here. The user's holding 
down the mouse button while the pointer is in the scroll bar would call for a con­
tinuous scroll of the document. A continuous scroll is actually made up of a series of 
the individual scroll jumps we've just looked at. 

The Document and Its Contents 
We can't really demonstrate scrolling without putting some data in a document, so 
we've given nonGeneric its own, built-in data for this demonstration: nonGeneric 
reads its data from either a TEXT or a PICT resource in its resource file. 

The project resource file on the disk that comes with this book contains the TEXT 
and PICT resources. If you didn't have the disk, you could add your own resources to 
your Generic App resource file using ResEdit. (See the sidebars on creating TEXT 
and PICT resources.) For an effective demonstration of scrolling, your TEXT 
resource would need to have at least 10,000 characters, and your PICT resource pic­
ture would need to be larger than a window. 

nonGeneric creates two types of windows: text and graphical. Using the text win­
dow type, we'll demonstrate how to scroll text (from a TEXT resource). We'll use the 
graphical window type to demonstrate scrolling a Macintosh picture (from a PICT 
resource). nonGeneric uses the type field of the document structure to identify a 
document as text or a picture. A text document is tagged 

theDoc->type I= kDocTypeText; 

and a picture document is tagged 

theDoc->type I= kDocTypePICT; 

Note that we use OR in the type field so that the other bits of the type field aren't 
disturbed. 

Creating a TEXT Resource 
To create a TEXT resource, you'll first need a block of text, prefet:ably be­
tween 10,000 and 20,000 characters. Copy the textto the Clipboard. lmmedi­
ately open your project resource file with ResEd:lt, and create a new TEXT 
resource by selecting Create New Resource from the Resource menu (or by 
using the keyboard shortcut, Command-K). Paste the text from the Clipboard 
into the new resource. Next, you'll need to change the resource ID to 256. 
Close the TEXT window, select Get Resource Info from the Resource menu 
(or use the keyboard shortcut, Command-I), and set the resource ID to 256. 
Close your resource file and save it. 

168 



8: SCROLLING WINDOWS 

Generic App uses a macro, ISPICIDOC, to determine the document type and then 
acts accordingly in various strategic places in the code-namely, during document 
creation, deletion, and rendering. The macro tests a bit in the document's type field 
and returns true if the document is a picture document, false if the document is a 
text document. 

The File menu's New command now leads to a submenu with an item for a text 
document and an item for a picture document. The newly hierarchical menu is 
shown in Figure 8-7. 

Figure 8•7. 
The File-New 
submenu. 

Te Ht 
PICT 

When the user selects either Text or PICT from the New submenu, nonGeneric's 
menu event parser passes control to the routine doNewDoc(), found in DocUtil.c. We 
used doNewDoc() in Chapter 7's multiGeneric to create documents; in this chapter's 
version, doNewDoc() is passed an integer token that represents the document type. 
Using that type, doNewDoc() reads the appropriate TEXT or PICT resource from the 
resource file and adds its data to the document structure. 

The reference to the document's data is stored in the contentHdl field of the Doc 
structure. This is where the document keeps, depending on the document type, 
either the TEHandle, which is a handle to the TextEdit record for the text document, 
or the PicHandle, a handle to the picture data for the picture document. The docu­
ment's type field determines the kind of data stored in the contentHdl. 

Creating a PICT Resource 
Creating a PICT resource is simple. You'll need a picture that's larger thllh a 
window. You can create the picture in MacDraw, MacPaint, or any''o~~t · 
graphics program. Copy the picture to the Clipboard and paste it into 'j)\lf:•:• · 
Scrapbook. Op~n your project resource file with ResEdit and create a I)~ 
PICT resource by selecting Create New Resource from the Resource m ,,. ····· · 
by using the keyboard shortcut, Command.-K). Open the ~rapboo 
the. picture, and paste it into the new resource. The picture's reso 
should··be.256, so select Get Resource Info from the Resource menu 
the keyboard shortcut, Command-I), and set. the resource ID to 256. 
your resource file and save it. 

169 



MACINTOSH C PROGRAMMING BY EXAMPLE 

QulCkDraw Pldl.res 
A QuickDraw picture is a recording of a series of QuickDraw drawing com­
mands that can be played back at any time to draw the picture. QuickDraw 
creates. the drawing, so the drawing is position independent-it can be 
redrawn anywhere in any grafPort. · 

An application creates· a picture by recording all drawing commands be­
tween calls to the QuickDraw routines Open.Picture and ClosePicture. In 
RAM, a picture resides in the heap in a relocatable block, so an application 
would therefore keep a picture handle to referenc~ the picture . .gn disk, an .. · 
appli~ion stores the picture in a PICT resource. · · 

A picture's data structure is simple, consisting of a bounding rectangle that 
encompasses all the drawn objects and a list of the drawing commands. The 
codes used in pictures are published in the back of the Color QuickDraw 
chapter. of Inside Macintosh, Volume V, making PICT a well·dix:.umented 
graphics file exchange format. 

Reading PICT Data 
If the document is a picture document, doNewDoc() uses the QuickDraw routine 
GetPicture to load the resource into RAM. GetPicture reads the picture and returns a 
handle to the data structure, as in this example: 

picHdl = GetPicture (kDocPictID); // kDocPictID is PICT resource ID 
if (err= ResError()) 
{ 

} 

else 
{ 

memErrorStr (theString, err): 
pDebugStr (theString); 
theDoc->contentHdl = 0L: // no content 

theDoc->contentHdl = picHdl: //assign handle to doc 

Note the call to ResError after the call to GetPicture. Routines that call the Resource 
Manager report an error internally to the Resource Manager. ResError returns that 
value to your application. 

If ResError returns noErr, which corresponds to the value 0, the PicHandle gets as­
signed to the document structure. If ResErrorreturns a nonzero value, which means 
that an error occurred during the call to GetPicture, the error is converted to a string 
and reported with pDebugStr. Notice also that we set the document's content handle 
to 0, signifying that there's no data associated with the document. 

170 



8: SCROLLING WINDOWS 

Reading TEXT Data 
If the document is a text document, doNewDoc() reads the TEXT resource into RAM 
using GetResource, the general purpose Resource Manager routine for reading 
resources. GetResource reads the text resource and returns a handle to the data as in 

dataHdl = GetResource ('TEXT'. kDocTextID); 

If nonGeneric was successful in reading the resource, it uses TextEdit routines to 
create the TERec and to load the text from the resource data on the heap into the 
TERec structure. Here's an excerpt from this section of doNewDoc(): 

SetPort CtheDoc); 
I* set text attributes *I 
TextFont Cl); II application font 
TextSize (12); II 12 point 
TextFace (0); II plain text 

I* create TERec *I 
if CdocText = TENew C&frameRect, &frameRect)) 
{ 

TESetJust CteJustleft, docText); 

I* copy text data from heap to TERec *I 
I* 

*I 

We need to lock the handle to the resource while assigning 
to the TERec. Note that we unlock the handle as soon 
as possible to avoid heap fragmentation. 

Hlock CdataHdl); 
TESetText (*dataHdl, GetHandleSize CdataHdl), docText); 
HUnlock CdataHdl); 

DisposHandle CdataHdl); 
(*theDoc>->contentHdl = docText: 

Using TextEdit requires a little background. A TERec structure, which is fundamen­
tal to using TextEdit, appears in Figure 8-8 on the next page. 

As you can see in Figure 8-8, a TERec structure contains a great deal of data. Some 
of this data deals with how to display the text, as we'll soon see. Some of the data 
comes into play as the user types text, something that's not allowed in nonGeneric. 
The text itself is stored in the bText field. 

171 



MACINTOSH C PROGRAMMING BY EXAMPLE 

typedef struct 
{ 

Re ct destRect: II the text target rectangle 
Re ct viewRect: II the displayable part of the text 
Re ct selRect: II the selection rectangle 
int lineHeight: II the current font's line h~ight 
int fontAscent: II the current font's ascent ' 
Point selPoint: II the position of the selection caret 
int selStart: II the offset to the first character of the 

selection range 
int selEnd: II the offset to the 1 ast character of the 

selection range 
int active: II nonzero if this record is active 
ProcPtr wordBreak: II pointer to word break routine 
ProcPtr clikloop: II pointer to mouse-down routine 

(for selection) 
long cl i ckTime: II timing for mouse double~click 
int clickloc: II character location of mouse-down 
long caretTime: II timing for caret blinking 
int caretState: II on or off state for caret blinking 
int just: II text justification, whether left, center. 

or right 
int telength: II length of text 
Handle hText: II handle to text data 
int recalBack: ll used internally when calculation line stafts 
int rec al L1 nes : II used internally when calculation line starts 
int clikStuff: II used internally during selection 
int crOnly; II text wrap at destRect boundary 

C-1 for no wrap) 
int txFont: II the current font 
char txFace: II the current style 
int txMode: II the transfer mode 
int txSize: II the current text size 
GrafPtr in Port: II the grafPort associated.with this TERee 
ProcPtr highHook: II pointer to the highlight routine 
ProcPtr caretHook; II pointer to the caret routine 
int nlines: II the number· of.lines in the text 
int lineStarts[]; II the .offsets of the Jines in the text 
} TERec, *TEPtr, **TEHandl e: 

Figure a-a. 
TextEdit's TERec structure. 

172 



8: SCROLLING WINDOWS 

The focus of this chapter is on scrolling, not on TextEdit, so when we use TextEdit, 
we'll describe the TextEdit routines you'll find in nonGeneric. For example, non­
Generic uses the TextEdit routine TENew to create a TERec structure. TENew ac­
cepts two arguments: a pointer to a view rectangle and a pointer to a destination 
rectangle, which TextEdit stores in the viewRect and destRect fields of the TERec. 
Both of these rectangles define how the text will appear. 

The view rectangle defines what will be displayed on the screen. The destination 
rectangle defines the rectangle that the text will flow into and therefore determines 
the text wrap. Figure 8-9 shows these two rectangles. nonGeneric initializes both 
rectangles to match the document's frame rectangle, which is the window rectangle 
framed by the scroll bars . 

..................................................... -----------. 
§ The days lit flickering fires 
§ over their bare heads and 
§ nights like chilling waters 
§ coursed along their backs; 
§ young girls grew vale and 
"1111111111111111111111111111111111J111111111111111110-----------' 

destRect viewRect 

Figure 8·9. 

The days lit ~ ........................ ] 

over their ba § 
nights like c~ i 
coursed alon~ § 
young girls g § 

-----•111111111111111111111111r 

viewRect destRect 

The days lit flickering fires 
over their bare heads and 
nights like chilling waters 
coursed along their backs; 
young girls grew pale and 

destRect and viewRect 
are coincident. 

TERec view and destination rectangles. 

The TERec will take on the text attributes of the document's grafPort. This is why 
doNewDoc() sets the text font, size, and face just before the call to TENew. TextEdit 
sets the lineHeight and fontAscent fields of the TERec from the font information 
derived from these text attributes. We'll use the value stored in the lineHeight field 
when we scroll the text document a line at a time. 

TESetText adds text to the TERec and therefore expects a pointer to the text. Because 
nonGeneric has the text data in the form of a relocatable block, that is, in the handle 
returned by GetResource, we need to dereference the handle and pass the master 
pointer to TESetText. Because TESetText can move memory in the heap, we have to 

173 



MACINTOSH C PROGRAMMING BY EXAMPLE 

lock the handle before the call to TESetText. (See Chapter S's discussion of routines 
that reorganize the heap.) Note that we unlock the handle right after the call to 
TESetText. 

After we've copied the text to the TERec, we have no further need for the text data in 
the heap object, so we therefore dispose of the handle with DisposHandle (Apple's 
spelling, as we noted in an earlier chapter). doNewDoc() assigns the TEHandle to 
the document's content field, and the document creation is complete. 

Rendering the Scrolled Document 
Generic App's rendering functions reside in the module Display.c. nonGeneric has 
both text and picture display routines: drawDocText() and drawDocPJCT(). 
drawDocText() uses the TextEdit routine TEUpdate to draw the text in a specified 
rectangle. drawDocPICT() uses the QuickDraw routine DrawPicture, which "plays 
back" the picture in a specified rectangle. 

When the document is in the unscrolled position, this display rectangle corresponds 
to the window frame-the content region of the window minus the scroll bars. The 
frame rectangle is illustrated in Figure 8-10. 

Figure 8·10. 

Window frame 
rectangle 

The window content region is an unscrolled document 's content rectangle. 

When the document is in a scrolled position, nonGeneric offsets the TextEdit desti­
nation rectangle by the scroll amount, and, as a result, TextEdit draws the text in the 
correct position. 

A picture document gets drawn in a similar way. drawDocPICT() offsets the pic­
ture's picRect by the scroll amount before it calls DrawPicture, which then draws the 
picture in the correct position. 

nonGeneric uses a combination of offsetting and clipping the drawing to render the 
scrolled document. The offset is measured from the window origin-its upper left 

174 



8: SCROLLING WINDOWS 

corner below the title area. The rendering routines offset the drawing by a built-in 
document value, the current scroll position. As the current scroll position increases, 
the application reveals new parts of the document in the window. 

"Clipping" is a computer graphics term you might not be familiar with, but if you've 
ever used masking tape while painting, you're familiar with the process. Clipping 
limits drawing to a particular area. Clipping to a rectangle limits the output to the 
confines of the rectangle. Figure 8-11 illustrates clipping. 

Flgurea-11. 
Offietting and clipping the document contents. 

nonGeneric's rendering routines clip the output to the window's frame. Clipping en­
sures that the document contents won't overwrite the scroll bars, which also lie in 
the content region, that is, the drawable region, of the window. 

Scrolling ancl the Current Scroll Value 
The scroll bars are the user interface for scrolling. When the user clicks the mouse in 
a scroll bar, the scroll bar responds with a defined behavior. That behavior depends 
on where in the scroll bar the mouse click is detected, that is, on what part code the 
Control Manager returns, and on the current offset or scroll position of the 
document. 

A scroll bar is made up of the five parts shown in Figure 8-12 on the next page. 
These parts correspond to five part codes, one of which is returned by the Control 
Manager when the user clicks in the scroll bar. 

The document scrolls depending on where in the scroll bar the mouse click occurs. 

An application manages a document's current scroll value in response to a mouse 
click in one of the scroll bar parts. At this point, you might want to move over to 
your Mac and open a document in a word processor. Open a document that's large 
enough to scroll, and follow along as we discuss the current scroll value. 

175 



MACINTOSH C PROGRAMMING BY EXAMPLE 

. -Uparrow 

Page up area 

Thumb 
(e;croll box) 

Page down area 

- Down arrow 

Figure 8·12. 

Une;crolled Maximum e;crolled 

The five areas of a scroll bar and unscrolled and maximum scrolled positions. 

When the document is in its unscrolled position, its offset is 0. Now click the page 
down area, and notice that the document appears to scroll up one page's worth. 
When the document is in this position, we say that it has a negative offset because 
the upper left corner of the document is above the window origin. Although it ap­
pears that the document is scrolling "forward," the offset is actually a negative 
amount. Clicking in the page down area causes subtraction from the offset value. A 
click in the page up area restores the document to its unscrolled position, and the 
offset value is again 0. The page up area of the scroll bar reverses the negative offset 
value; that is, it adds to the offset. 

Also note that a mouse click in the scroll bar's page up area when a document is in 
the unscrolled position has no effect: You can't scroll backward past the beginning 
of the document. Likewise, if you were to move the thumb (scroll box) so that you 
were looking at the end of the document, you wouldn't be able to scroll forward past 
the end of the document. These boundary constraints are built into the scroll bar 
management routines. 

Keeping Track of Scrolling 
The offset value, which we'll see is kept as what we call the "current scroll value," is 
an important variable in the management of scrolling, and other values come into 
play too. As we'll see, nonGeneric stores the scroll management values in the docu­
ment structure, although some values-those for the window frame, for instance­
are calculated directly from the window structure. 

nonGeneric uses the function makeFrameRect() in WindowUtil.c to calculate the 
window frame rectangle that corresponds to the document's content rectangle when 
it's needed. The algorithm is simple: makeFrameRect() uses the window's port rect­
angle and subtracts the width and height of the scroll bars from the right and bottom 
sides of the rectangle. 

176 



8: SCROLLING WINDOWS 

Another dimension important to scrolling is the maximum number, in scroll units, 
required to display the document's contents. We call this the document "extent," and 
the value is stored in the document field docExtent. nonGeneric uses pixels for its 
scroll units, and all of its scroll values are therefore expressed as numbers of pixels. 
A document has extent in both the horizontal and the vertical directions, so we use a 
Point structure to hold the extent values. 

In some cases, the document extent values are known or can be calculated, as in a 
PICT document; in others-in large text files, for instance-the best you can get 
without processing the entire file is an estimate. In either kind of case, you need the 
horizontal and vertical extent values for your document in order to set the control 
maximum and the thumb (scroll box) position of the scroll bar. Figure 8-13 illustrates 
the values in relation to each other in an unscrolled document. 

0,0 

0,400 

600,0 900,0 

1·(,i.~.')'·k1h>-- \\:t.Jb> :-~!.LIP l•.'ikhirndr Li.l!I\' h~~.ih.vill:h],~: 

""' '''). "' ,[,,y,?1Ym,~~,~,f9~Jjnf.1,~r~) ,1odilc>k:1ifah~ 
Jn!~1,·h1nh\ <.;;;;.,~r@:rf;l~,~~~\~~~:ti'~~·in1t:it>'-'h. nld!>.h dir,~>,;:-i nh):k.,! .d1 l\v!L 

(~kcloo..iok-:.... ikc ni) o\~:hido JI;\)\ i<..'.(i:u:<• \'.1m h'.:-:od <.)~.ink ihi,::, 
,:!)U Cll<1'' Phjq;,,·L :1~\ . .'k 'Pk~·c~ ~':!!.~) ~~'.'"' '~dh.! ;dii' d<-k< 

900,1000 

Figure 8·13. 
An unscrolled document showing window frame and document extent 
coordinates. 

177 



MACINTOSH C PROGRAMMING BY EXAMPLE 

nonGeneric relies on the picture frame, a rectangle that defines the extent of the 
PICT document and that is part of the ptcHdl data structure, for the document extent 
values of a PICT type document. nonGeneric accesses the extent values this way: 

if CpicHdl = GetResource CkDocPICTID)) 
{ 

extent.h = (*picHdl)->picFrame.right - (*picHdl)->picFrame.left: 
extent.v = (*picHdl)->picFrame.bottom - (*picHdl)->picFrame.top; 

nonGeneric's technique for calculating the extent of a text document takes advantage 
of what goes on inside the TextEdit structure. First of all, TextEdit wraps text, so 
there's no reason for nonGeneric to scroll in the horizontal direction-we don't care 
about the horizontal extent value. The vertical extent is a different matter. non­
Generic uses two values in the TERec to calculate a text document's vertical extent. 
The lineHetght field contains the height, in pixels, of each line. Multiplying this 
value by the number of lines, stored in the nlines field, nonGeneric calculates the to­
tal height, in pixels, of the document: 

extent.v = (*docText)->lineHeight * (*docText>->nLines: 

The third value of interest in scrolling is related to the document's offset, which 
we've already discussed. This value is for the current scroll position, which is the in­
verse pixel offset of the document after scrolling. Because of its horizontal and verti­
cal components, nonGeneric stores this value in a Point structure in the document's 
curScroll field. 

Both the horizontal and vertical current scroll values range from 0 through the maxi­
mum scroll amount in both directions. That's right-no negative numbers. The off­
set values range into the negative, but the current scroll values, as illustrated in 

._...Baria.a. · .. · ... : ... 
A~Jflcii scroll ~:is 16 pixels.~de. a ~8crotl 1; .. 

Although no system constant defmes these di#i~ions, . .• > . . .• 

ter $01Ue digging) in the Window Manager ~of 1~~10#, 
Ull1e I.We don't ~ect. this valuef;Q change ... · $Ul:>seq\J · ·· · · · · 
so .w¢'ve defined .cfur. own co · ;JeScroJ, ·. · · · · 'JN. • 
foifil~isaoll ~~th and het ., . . • ' .. ' 

178 



8: SCROLLING WINDOWS 

Figure 8-14, are positive numbers. It's these current scroll values that nonGeneric ad­
justs when it detects a mouse-down or a mouse click in a scroll bar. Note the impor­
tant conceptual qifference between offset values and scroll values. The off set values 
govern what part of the document's contents are drawn in the window, and the cur­
rent scroll values are reflected by the position of the scroll bar's thumb (scroll box) 
relative to the maximum scroll position. 

0,0 

0,300 

l\ ,,. d "{)''': lbiJ~u:~~tit~'nt~ntfj ~~~,, rn:1'.;":ii'ii . ", '· 
'·1 ''"'.' la'n.tjr'¥1l1n'Xin~ow:·' ""' , .. ,.i. · ... , "k' 

, -.,\n qi~<;~;' ,i;-lt; l~c.L1im'.<.ir h;1;"i.y h~~ d,\1•:,l'·K2 

!-,_,~~:·; drn.ti~i~~:id:c(...; 

dovit...d lllitl~: iLI 

'hJ 

900,0 

II 
dr1i\J: 

il d(lJ~' 
:.i:i1q ;:hn okf,,( 

0,1000 L-"-'--""'-''-'--~""-.:.=......:.c=.:.;;.;..""'--'-'-il'~J,~iJ<~l'~ll~li~il~'l~IP~l\~i~'l~'·~~~~~~--' 900,1000 

Figure 8·14. 
The relative scroll values are 0, 300. 

The maximum scroll values are the total travel distances required to view the entire 
document. Figure 8-15 illustrates the maximum scroll values. 

nonGeneric stores the maximum scroll values for each document in the maxScroll 
fields of the document. The maximum scroll values are calculated this way: 

maxScroll .h 
maxScroll .v 

docExtent.h - frameWidth; 
docExtent.v - frameHeight; 

frameWidth and frameHeight are simply the width and height of the frame 
rectangle. 

17'9 



MACINTOSH C PROGRAMMING BY EXAMPLE 

900,0 

0,0 f\.:lkh :1qid Jh!i1 :th~ :LiJk ,~.';\, .. ii n;~:lz:iub.__:c; ~:dhu q'.)\ 1;ii11.1 Jh.1 ,~i,; .. nc\ 

Y\q()kcjjh(,xi ;·Ji!iti!!db.: :.::Wi;.',l:Jl S\ 'Si) \;.,·()f0 im:rJ1)rh1] v.() '·Xt.::c ;~n 

•1iHlt.i ikd \\Ork :-.ivik~t 1;·h)::h1>d~ -..i.,,·p ,.tbJ)- \.\·ct)d ok!y i:..k h) ,t;~u l";:;,lJ.n: 

:1it)h1.xkiliyJ \VP qi) "ui ;.i.!~q 11,:ihiliLinr h; !il1:--- hp :k\ okhik!:! ~-ciot.. ... '(1. U\-.; q 
:oqHc~:i. tir ..:.1vd. n.>:..q<)J'loi,'."·)·'· iT dhu roq10 d.-i..;!1iohb1(icL:-:. il, (th°)p,i'!lt'' f 
1ohiyh~ah,·) (;;~·i('<k1~h:' ;~ wr+n , i,.,~ aho ;,;n H .. J io:-.1 l. ni()~;h diruch n~i! L \;h ;dri\~·; 1 

:oki"''":.,, ik(' h« •)\,·IP.~1;111111;:ntl,qQl'.l~~!p.~.r.@ •>q<>k ,J>):">n iliic•i,. 
or!.. <1 M !ch 11.::ii ;ihih Jar0¢iir:t-™'.!11Wil14PWi(l;(C,,; 1·iw <>f,, i;1i:o :chn okL, 
J\qi..iL.iib~::) :1il11>n:1L 1:'.1cl,7~;1!ll '.I:; \\1...1 \\i_irn irnrn:v-hi; v:t' \.\'Vl!.. :">u · 
-li\HU ik\~ \\n:i, ..... i\ 1'.H1.olli:j' ,;i~-_;.'!)J!iny \\\.'ti;,! <:•k'.\ idd he; <1:;u h«:di:· 

1':'.i,\~;:,<:::,:,~: ;::~:~~!' ·:,',''! ·, •' '· I ',',,':,:·:.~:::,~;:,·,~'~::;:~;,::::::,I:~: ',L,;:l,,·,\;::'~qq 600 
·pkdo;;i;,,,, i',:. 40@,:@DG: 
E1L~h \:i:d: h;ld :,Li!" 

1~qok.liiLV(' q(}1'.ff1k ;;!L:~:u. l 

:1l~1l!pr~iil:-.! \V{; c(:· lP! ah,) r ~'lLhii:·h1l" l ilihy lip i1-..vi..ikliiL~:: :---.-J\,)~·:t:1), Jii.•, q 

roqlvo, ry Ci\(\. U'-<l""'""'"·h i:11 ;i'10 ""' '"' ,1Wtlfl<:IQW!f.t:aim~i~:~:'i:;:h." Tl 
1.)111,.111<J1u '"'o1·""'':h:"h'"' ""'.'" 'H'" 1".,:1~r.QJl:valU<!i:1 '400.raaio,;i, 
:()kdosic;lc-;; i:-..d ho,':-::~+),!<) i I ovidoL .. :c dt)h hi~,od Pqo}; (i:·i:--;{ 1r\·ih1d<. 

Erko..,h i'vb,:ll h·U :ilii!"- :'lif1 ni i)bj•.),;i; n,~;U!J!v,:o '":nht) nh'-.-!dh) :J;p ()k!..t 
.,.vq \H)1\i iHBlH'f'·1il \-.n \\ ~ ! n ;;:di..,!~ L _ dP\ i'-)P h~ino iLd \'.t 1:h -si\·iL~: ·1~: 

0, 1000 ikz»l il'h•\· wet Id 

Fl9ure8·IS. 
The maximum scroll values are400, 600. 

The maximum scroll values depend on the dimensions of the frame rectangle, so 
this rectangle has to be recalculated every time the user resizes the window. non­
Generic contains the routine setDocMaxScroll(), found in DocUtil.c, to do the calcu­
lations. setDocMaxScroll() is called from the resize routines we discussed in Chapter 
7, growWindow() and zoom Window(). 

The final value associated with scrolling, the scroll value, is the number of pixels to 
scroll for each click on the scroll arrow. This value defines the granularity of the 
scroll. nonGeneric stores the scroll value in the document field scrollVal. For a PICT 
document, we set this value to 1 to achieve a very smooth scroll. You might prefer a 
value of 8 or 10, which still gives you a smooth scroll but gets through the document 
a little more quickly. For a text document, the scroll value is simply the height of the 
new line of text that will be brought into view, that is, the line height: 

scrollVal.v = C•docText)->lineHeight 

180 



8: SCROLLING WINDOWS 

A text document doesn't scroll in the horizontal direction, so we don't need to set the 
scroll value in this direction. 

Managing the Scroll Bars 
Because scroll bars are controls, Macintosh applications manipulate scroll bars by 
means of Control Manager routines. 

The Control Manager routines accept a Contra/Handle argument, which the applica­
tion extracts from the window structure. The Window Manager keeps all the con­
trols associated with a window in a linked list. The head of this list of controls is 
found in the controllist member of the WindowRecord. 

You can get the control handle for each scroll bar by walking the list, as in 

Control Handle theControl; 

f* get the head of the list */ 
theControl = ((WindowPeekltheOoc)->controllist; 

while (theControl) /*while the handle is nonzero*/ 
{ 

f* you do something here to process theControl, like*/ 
ShowControl (theControl); 

f* get the next control handle */ 
theControl = (*theControl)->nextControl; 

Although we added scroll bars to multiGeneric's windows in Chapter 7, we left them 
inoperable and inactive. Now we'll activate them by changing their highlight state. 
Highlighted controls are active and visibly so. An active scroll bar has a gray pattern 
in the page areas, and the thumb control (scroll box) is visible. 

You use the Control Manager routine, HiliteControl, to change a control's highlight 
state. HiliteControl requires a control handle, which you get from walking the list, 
and a state value. The state value 255 makes the control inactive; the value 0 makes 
the control active. Figure 8-16 illustrates the effect of calling HiliteControl with the 
state value 255. 

Figure 8·16. 

Sometime6 an inactive 6croll 
bar i6 drawn without the arrow6. 

An inactive scroll bar: HiliteControl (theControl, 255); 

181 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 8-17 illustrates the effect of calling HiliteControl with the state value 0. 

Fl9ure 8·17. 
An active scroll 
bar: HiliteControl 
(theControl, O); 

~J •111111111111111mm11!!llu1lllll!llilll~rnrnm11iu11m1mmmm1ru111~ 

Maintaining the correct highlight state of the scroll bars is a function of window ac­
tivation. Because nonGeneric draws only during the update event, it manages the ac­
tive or inactive appearance of the scroll bars when it draws them, in its scroll bar 
drawing routine, drawScrollBars() from WindowUtil.c. 

Whether a window gets an activate or an inactivate event, the activation routine 
doActivateEvent() invalidates the scroll bars, forcing an update event, which insures 
that they'll be drawn in during that event. nonGeneric calls drawScrollBars() from 
the update event handler, doUpdateEvent(). 

According to the Macintosh user interface guidelines, the appearance of a scroll bar 
depends on the window's status (active or inactive) and on whether the document's 
contents are larger than the window. If the window is active, its scroll bars should 
appear highlighted. But if the document is not scrollable, that is, if all the document 
data fits in the window, the scroll bar in the particular dimension should not be 
highlighted. 

The little truth table in Figure 8-18 lays out the rules for scroll bar highlighting. The 
window must be active and the document's extents larger than the window if your 
application is to highlight the window's scroll bars. 

Active Window? 

no 
no 
yes 
yes 

Fl9ure 8·18. 

Contents Larger 
Than Window? 

no 
yes 
no 
yes 

When to highlight a scroll bar. 

Highlight? 

no 
no 
no 
yes 

When an application determines that a scroll bar is indeed to be drawn in the high­
lighted state, it also needs to set the thumb position to reflect the relative scroll value 
of the document. The position of the thumb tells the user where he or she is in the 
document. If the user is looking at the middle of a text document, the vertical scroll 
bar's thumb position should reflect that fact. 

A scroll bar has a minimum value, a maximum value, and a current value. Because 
these control values are short integers, all three can range from 1 through 32767. 

182 



8: SCROLLING WINDOWS 

A scroll bar's minimum value defines the base of an unscrolled document and should 
be set to 0. 

A scroll bar's maximum value corresponds to the maximum scroll value to which a 
document can travel. It is the basis of the thumb's "domain," that is, of how far the 
thumb moves with each increment. You set the scroll bar's maximum value with the 
Control Manager routine SetCtlMax. If a 1000-line document scrolls one line at a 
time, the scroll bar's maximum value ideally should be 1000. 

The scroll bar's current value is reflected by the position of the thumb and describes 
the relative scroll position of the document. You set the scroll bar's current value 
with the Control Manager routine SetCtlValue. The thumb position appears relative 
to the scroll bar's maximum value and this current value. If the maximum value is 
1000 and the current value is 500, the thumb will appear at the halfway point of the 
scroll bar. 

Rendering the Scroll Bars 
Drawing all the parts of a scroll bar is a tricky affair. Inside Macintosh tells us to use 
the Control Manager routine DrawControls when there's an update event for a win­
dow that contains controls, but we've discovered that simply calling DrawControls 
isn't always enough for an appropriate rendering of the scroll bars. 

We've also experienced HiliteControl's behaving differently depending on whether 
the scroll bars are going from active to inactive or inactive to active. For example, 
when the controls are going from unhighlighted to highlighted, HiliteControl will 
"fill-in" the page areas of the scroll bars with the gray pattern. But when the docu­
ment is being deactivated, we can't get HiliteControl alone to draw the empty scroll 
bars accordingly. 

Through trial and error, we've come up with a technique that we're sure will draw 
the scroll bars correctly in all cases. We use this three-step technique in 
drawScrollBars(): 

1. Set the highlight state for each scroll bar with HiliteControl. 

2. Call ShowControl for each scroll bar. 

3. Draw all the controls with DrawControls. 

We'll confess to you: We don't know why drawScrollBars() needs to call Show­
Control every time. nonGeneric does create the scroll bars in createNewDoc() in the 
invisible state, and ShowControl should be called at least the first time that the scroll 
bar is displayed to make the control visible, but why it must be called subsequently is 
one of those sweet mysteries of Macintosh programming. Indeed, you'll find other 
such examples of slightly inconsistent behavior, many of which are described in the 
Apple technical notes and others of which are left for you to discover on your own. 

183 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The Control Manager supports peek.:a-boo controls: A visible flag in the control 
structure allows controls to be visible or invisible. ShowControl makes an invisible 
control visible again, and HideControl makes a visible control invisible. We think 
that all ShowControl has to do is toggle this bit, but ShowControl seems to perform 
some other magic that we just don't understand-drawScrollBars() doesn't work 
right all the time without it. Try commenting out the calls to ShowControl in 
drawScrollBars() to see what we mean. 

drawScrollBars(), excerpted here in Figure 8-19, loops through each scroll bar and 
sets the highlight state based on the rules in Figure 8-18. We've split the routine to 
handle the window both active and inactive. If the window is active, the routine sets 
the thumb position with SetCtlValue. The routine calls ShowControl at the bottom of 
the loop. At the end of the routine, drawScrollBars calls DrawControls. 

f* drawScrollBars--draw the window's scroll bars 
6/1/90kwgm */ 

void 
drawScrollBars (theDoc, activate) 

{ 

DocPtr theDoc: 
Boolean 

Control Handle 
1 ong 
short 

activate: 

theControl: 
ref: 
value; 

Point 
Re ct 

curScro 11 , maxScrol l , docExtent. frameSi ze: 
frameRect: 

if C!theDoc) 
return: 

setPortClip (theDoc): 
DrawGrowicon CtheDoc): 

l* clip out to port */ 

f* get head of control list *' 
theContro l = (( Wi ndowPeek )theDoc) ·>control List: 
if ((theDoc == FrontWindow ()) && activate) 
{ 

f* get frame size *' 
makeFrameRect CtheDoc, &frameRect); 
frameSize.h = frameRect.rigljt>• frameRect •. left: 
frameStze.v = frameRect.bottom - frameRect.top: 

Flgure8·19. 
The drawScrollBars() routine. 

184 

(continued) 



8: SCROLLING WINDOWS 

Figure 8·19. continued 

f* use temp variables *f 
maxScroll = theDoc ->maxScroll; 
curScroll = theDoc->curScroll: 
docExtent = theDoc->docExtent; 

Controls are kept as a linked list. Run the list, calculati ng 
the proper thumb positions if the control is a scroll bar. 
highlighting or unhighlighting the control based on the 
activate parameter. 

f* draw each scroll bar and thumb at proper value */ 
whi le (theControl) 
{ 

ref= GetCRefCon (theControl);// scroll bar tag kept here 
if ( ref == kVScrollTag ) 
{ 

f* get vertical thumb value */ 
if~ (curScrol l. v < maxScrol l. v) 

va l ue= curScroll.v; 
else 

value= maxScroll.v; 
HiliteControl (theControl. (docExtent.v > 

frameSize.v) ? 0 : 255); 
SetCtlValue (theControl, value) ; 
SetCtlMax (theControl. maxScroll.v); 

else i f ( ref== kHScrollTag ) 
{ 

else 

f* get horizontal thumb value */ 
if (curScroll .h < maxScroll . h) 

value= curScroll.h; 
else 

value= maxScroll.h; 
HiliteControl (theControl. (docExtent.h > 

frameSize.h) ? 0 : 255); 
SetCtlValue (theControl . value); 
SetCtlMax (theControl, maxScrol l .h); 

HiliteControl (theControl, 0); 

(continued) 

185 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 8·19. continued 

else 
{ 

ShowControl CtheControl): 
theControl = (*theControl)->nextControl: 

} 

II draw unhighlighted scroll bars 

while (theControl) 
{ 

HiliteControl CtheControl, 255); 
ShowControl (theControl): 
theControl = (*theControl)->nextControl: 

OrawControls (theOoc): II Draw all controls in the window 

} I* drawScrollBars *I 

Tracking the User Selection in a Scroll Bar 
nonGeneric parses mouse-down events just as its predecessors do, in the 
doMouseDown() routine. After doMouseDown() determines that a mouse click was 
in the content region of the window-remember, the scroll bars are in the content 
region-it calls dolnContent(), which in turn calls the Control Manager routine 
FindControl. If the mouse was clicked in a scroll bar, FindControl returns true and 
supplies the control handle and part code for the part of the scroll bar in which the 
mouse click occurred. dolnContent() passes this information to mouselnScroll() in 
WindowUtil.c. 

Based on the part code, mouse/nScroll() directs the action to scrol/Doc(). Let's look 
at the behaviors of the document for mouse clicks in each part of the scroll bar. 

Arrows 
If the mouse click occurred in one of the arrows, mouse/nScroll() calls Track­
Control, the Control Manager routine that supports arrow selection. TrackControl 
handles all the highlighting that occurs when the user selects an arrow. 

TrackControl requires a pointer to an "action function," which does the actual 
scrolling. nonGeneric's scroll routine is scrol/Doc(), also found in WindowUtil.c, 
which we'll discuss in detail shortly. Because TrackControl can't call scrollDoc() di­
rectly (the arguments to the two functions are different), we use an intermediate 
function, scrol/WinProc(), whose only purpose in life is to format the call to 
scrol/Doc(). 

186 



8: SCROLLING WINDOWS 

Page areas 
If the mouse click occurs in one of the page areas of the scroll bar, mouselnScroll() 
calls scrol!Doc() directly. 

Thumb 
If the mouse-down occurs in the thumb, mouselnScroll calls TrackControl without 
an action function, and it slides the thumb in response to the user's mouse move­
ment. When TrackControl returns the thumb position value, mouse/nScroll() calls 
scrol/Doc() based on the new thumb value. 

The Scrolllng Routine, scrollOoclJ 
nonGeneric's scrolling is encapsulated within scrol!Doc(), which is passed the con­
trol handle, a code for the part of the scroll bar in which the mouse-down occurred, 
and the scroll value multiplier. scrol!Doc() is excerpted in Figure 8-20. 

/* scrollDoc--the quintessential scrolling routine, scrollDoc is called 
for all document scrolling, from the scrollWinProc, or 
directly for the thumb and page scrolls */ 

static void 
scrollDoc CtheDoc, 

DocPtr 
theControl. partCode, 

theDoc: 
theControl: 
partCode, value: 

value) 

{ 

Control Handle 
short 

register short 
Re ct 
long 
RgnHand1e 

hScroll, vScroll; 
frameRect; 
ref: 
updateRgn: 

I* we need to know which scroll bar, horizontal or vertical, 
we're dealing with */ 
ref= GetCRefCon CtheControl): 

I• assign scroll pixel value to appropriate scroll variable *' 
hScroll =(ref= kHScrollTag) ? (value* theDoc->scrollVal.h) 0: 
vScroll = (ref= kVScrollTag) ? (value * theDoc->scrollVal .v) 0: 

I• we'll need this region in ScrollRect */ 
if (!(updateRgn = NewRgn())) 

retµrn: 

Figure 8·20. (continued) 

The scrollDoc() routine. 

187 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 8-20. continued 

188 

I• we loop here while the mouse stays down •/ 
do 
{ 

setFrameClip CtheOoc, &frameRect): /• clip to doc contents •/ 

switch CpartCode) 
{ 

case inPageUp: 
case inUpButton: 

I• adjust scroll value at the top Cor left) boundary •/ 
if CvScroll && theDqc->curScroll.v - vScroll < 0) 

vscroll = theDoc->curScroll.v: 
else if ChScroll && theDoc->curScroll.h - hScroll ( 0) 

hScroll = theDoc->curScroll.h; 

I• if we have a scroll value •/ 
if CvScroll II hScroll) 
{ 

I• scroll the document •/ 
Scroll Rect C&frameRect, hScroll, vScroll, updateRgn); 

} 

I* adjust document's current scroll *' 
if ChScroll) 

theDoc->curScroll .h -= hScroll; 
else if CvScroll) 

theDoc->curScroll .v -= vScroll: 

break: 

case inPageDown: 
case inDownButton: 

I• adjust the scroll value at the bottom 
Cor right) boundary •/ 
if cvscr~Jl && cvscro11.+ theDoc~>c.urScroll .v) > 

theDoc->maxScroll • v > < 

vScroll = theDoc->maxScroll .v " theDoc->curs~roll.v; 
else if ChScroll &.& ChScroll + theDoc->curScroll~~t> ··· 

theDoc• >maxScro 11.11) ..... . . . . :'.' 
hScrol l = theDoc->maxScrol 1.11 - tl1eDoc->curS<!rol 1.11; 

if CvScroll II hScr:-oll) 
{ 

ScrollRect C&frameRect, -hScroll, 
- vScroll, updateRgn); 
if fhScroll > •··. . .. ·•· 

tl1eDoc->curScroll. h += 11Scr:-o11: 

(continued) 



8: SCROLLING WINDOWS 

Figure 8·20. continued 

} 

else if (vScroll) 
theDoc->curScroll.v +.: vScroll; 

} 

break: 

if ( !EmptyRgn (updateRgn)) /* we scrolled */ 
{ 

} 

InvalRgn (updateRgn); 

BeginUpdate CtheDoc); 
drawDocContents (theDoc); I* note: mini-update process */ 
EndUpdate (theDoc): 

SetRectRgn CupdateRgn, 0. 0, 0, 0); /*clear out region *l 

setPortClip (theDoc); /•widen clip to include scroll bars *f 

I* adjust scroll bar appearance */ 
SetCtlValue (theControl, hScroll ? theDoc->curScroll .h 

theDoc->curScroll .vl: 
SetCtlMax CtheControl, hScroll 1 theDoc->maxScroll.h : 

theDoc->maxScroll.vl: 

} while ( Sti llDownO l: 

if CupdateRgnl 
DisposeRgn (updateRgn); 

} /' scrollDoc */ 

The first lines of scrollDoc() find out whether the mouse-down occurred in the hori­
zontal or the vertical scroll bar and set the local variables hScroll and vScroll to pixel 
values to be scrolled to-according to the part code, the document's scrol!Val, and 
the scroll value multiplier passed to scrol/Doc(). After this initialization phase, 
scrollDoc() enters a scrolling loop. 

Inside the loop, the routine first sets the window's clipping region to the window 
frame, so that the scroll bars don't scroll with the document contents. Next, the rou­
tine scrolls the document by the amount of the hScroll and vScroll pixel values. 
scrol/Doc() then calls a mini-update handler, complete with calls to BeginUpdate, 
drawDocContents(), and EndUpdate. At the bottom of the scrolling loop, the routine 
resets the window's clipping region to the port rectangle so that the scroll bars can 
be redrawn with the new, correct values. 

189 



MACINTOSH C PROGRAMMING BY EXAMPLE 

scrollDoc() loops as long as the mouse is down, scrolling and redrawing the update 
area each time through the loop. Scrolling occurs inside the switch statement. Here 
scrollDoc() loads bScroll and vScroll, according to the part code and the current 
scroll position, obeying the boundary conditions regarding the unscrolled and maxi­
mum scrolled positions. The culmination of the routine is the call to ScrollRect, 
which does the visual scrolling and returns the area exposed by the scroll in that 
region handle that you allocated earlier on. It's Scrol/Rect, along with the embedded 
update process, that gives the smooth scrolling appearance to Macintosh applica­
tions. Note how to set up the two parameters that specify how many pixels to scroll: 
Negative values scroll up; positive values scroll down. After the call to Scrol/Rect, 
scrollDoc() updates the document's curScroll value and draws the update region in 
the mini-update handler. The routine exits when the user releases the mouse button. 

That's scrolling. We suggest that you use the THINK C debugger to trace through a 
scroll operation and see the thread of what happens and where in Generic App's 
particular solution to the problem of scrolling. 

The solution to the scrolling problem has no fixed answer. We could have saved a 
few lines of code in scrollDoc()-for the curious, by moving ScrollRect and the new 
curScroll calculations outside the switch and arithmetically negating the values of 
bScroll and vScroll in one of the cases. But we feel that this kind of optimization 
sacrifices clarity for the sake of economy. 

Generic App is your program-remember, "the only one you'll ever need"-and 
you are encouraged to refine it. We have always wanted it to serve as both generic 
shell and teaching tool, and no teaching is ever effective without the student's ex­
ploration and experimentation. Never lose sight of the concept of the development 
process as a cycle-thoroughly test any changes you make to your working code. 
Design, implement, test-don't forget to test. Testing reveals bugs and throws you 
back to where you started, at the design phase. A saying among programmers 
reflects this dynamic characteristic of software development: "The software's never 
finished 'til the money runs out." This little bit of wisdom speaks to the cyclical na­
ture of software development. But, while you're burning the midnight oil, pushing 
back the envelope of new technology, we recommend that you temper your efforts 
with our favorite older adage: "If it ain't broke, don't fix it." 

190 



9 

LOSER: A LESSON 
IN PROGRAM 
DESIGN 

Chapter S's scrolling application is only a demo. It doesn't interact with the file sys­
tem. Without this ability, an application isn't really complete. 

In this chapter, we'll look at Loser, a simple application that can set or clear a file's 
invisible attribute-bit. When the bit is set, Finder pretends that the file isn't there. It 
won't draw the file's icon on the desktop or report its name in a directory listing. As 
Figure 9-1 shows, as far as the desktop is concerned, the file is lost or just not there. 
Loser can, of course, make the file visible again by clearing the invisible attribute-bit. 

The approach through the invisible attribute-bit isn't foolproof. Some specialized 
programs that read and display directory information-ResEdit and the Norton 
Utilities, for example-ignore the invisible attribute-bit and will reveal a hidden 
file's existence. But Loser will provide you with a first line of defense against your av­
erage snooper. 

Fl9ure9•1. 
Now you see it. Now 
you don't. Loser 
makes a files icon 
invisible in the 
Finders desktop. 

L9items 

LJ 
Bits 

LJ 
Get with ti 

LJ 
Loser 

¢1 

MacUser Cols E!l 
42.8MBindisk 34MB°'I 

LJ 12 

LJ GonApp f 

Browstr LJ 
LJ Hello .,,.orld 

Ghost Fonts ~ 
LJ verify 

Under the Hood Q 

MacUser Cols 
8items 42.8 MB in disk 34MBa 

LJ LJ ~ 

Btts LJ o.n,o,pp I 

LJ Browstr LJ 
Get wflh It LJ H•llo 'w'orld 

CJ Ghost Fonts 

Loser LJ 
Undtr tht Hood !<> 

IO 

191 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Loser's simplicity in the software application layer, where it merely sets or clears one 
bit, makes it an ideal vehicle for examining the user interface mechanics we'll use in 
a later chapter for interacting with the Macintosh file system. In this chapter, we'll go 
into the Standard File Package, take a look at adding controls to dialog boxes, and 
see how a Macintosh application takes advantage of call-back routines, the so-called 
"hook procs." But we'll begin with an exploration of Loser's origins, which will shed 
some light on design dynamics. 

There's More 
Loser is one-third of the utility application MacUser's Security. Kurt's soft­
ware engineering firm, Code of the West, developed the full . utility for 
MacUser magazine. Security also contains Shredder, which permanently de­
letes files by shredding them literally to bits, and Scrambler, which password­
encrypts files by means of the same DES encryption algorithm that's used to 
protect our national secrets. (Wow!) You can get a copy of MacUser's Security 
by logging onto the ZMac forum on CompuServe and looking through the 
Download section. Type 

help download 

to get full instructions. 

Designing Software for Fun ancl Profit 
Program design will usually move through three phases. You'll see that one phase 
leads naturally into another. 

The Requirements Phase 
In a perfect world, software design doesn't begin before all the requirements are 
known. When Code of the West contracted with MacUser to write some security 
utilities, we were presented with an informal "program requirements document." A 
paragraph described what each utility should do. Informality is OK. The essential 
characteristic of a requirements document is that it be complete. 

Of course, MacUserasked for the moon-features that would take a year to develop. 
Most clients do. The problem was that MacUserdidn't want to pay for a year's worth 
of work. After all, this program was to be a giveaway to promote their new online 
service, ZMac. The expression "Champagne taste on a beer budget" aptly describes 
most software clients. 

In a requirements document, your client might ask for the moon-and if you're not 
careful you might have to deliver it. Usually, as was the case with MacUser, you'll 
negotiate with the client over what can be delivered within both the project's time 
frame and the client's price range. The requirements document is the platform for 
that negotiation. 

192 



9: LOSER: A LESSON IN PROGRAM DESIGN 

The Functional Specification Phase 
It all comes down to time and money-how long and how much-so both you and 
the client need to be sure of what you're getting into. It's easy to underestimate the 
time and money a software project will take. 

In the normal flow of events, a requirements document begets a "functional specifi­
cation document" that describes the whats and hows of the project. The purpose of 
the functional specification is twofold. This document describes the finished pro­
gram's user interface and major features, and it enables you and the client to come to 
a mutual understanding of what comprises the deliverables. 

The Preliminary Design Phase 
But of even greater significance to your mental health, the functional specification 
provides you with a first opportunity to think about implementation details. As a 
direct outgrowth of the functional spec, you'll do a preliminary design. In the design 
phase you consider alternative strategies for meeting the program requirements­
before you sit down to write a line of code-and you discover the answers to these 
very important questions: Can it be done? How long will it take? What will it cost? 

You work out the program's structure during the design phase, as well as a rough cut 
of fundamental algorithms. Any device you choose for this structuring is OK­
pseudocode, flowcharts, data-flow diagrams, Buhr diagrams-whatever makes 
sense for you and the particular project. The important thing is that you write it 
down. Taking the time to think the details through before committing them to code 
and writing them down so that you'll stay on track saves you time overall. 

R-li~Check 
In our less than perfect world, requirements documents, functional specs, 
and preliminary designs are elegant figments of a software engineer's imagi­
nation. Most software is specified and designed in haste, on a blackboard or 
the back of a napkin. 

Designing the Loser Interface 
When we designed the Loser component of MacUser's Security utility, we began 
with the bottom line. Essentially, Loser had to hide a file from the user. In program­
ming terms, Loser needed to toggle the file's status between two states: visible and 
invisible. 

How do you make a file invisible? Anything to do with the file system should lead 
you to the Inside Macintosh chapters on the File Manager. The first appears in Vol­
ume II and deals with the MFS (Macintosh file system), the so-called flat file system 
of the early Macintosh 128 and 512. The chapter with greater relevance to our 
modern Mac, on the HFS (hierarchical file system), is in Volume IV. 

193 



MACINTOSH C PROGRAMMING BY EXAMPLE 

No matter which of these two chapters you consult, you'll discover that an "invisible 
bit" is associated with every file. It's a bit maintained by the File Manager, existing in 
the file's "Finder information block"· and controlling whether Finder displays the 
file's icon or name in the desktop. You get access to this bit frovi the fdFlags field of 
the Finder information block. 

We won't get into all the exact details of this stuff-nothing in the File Manager 
is simple, as we'll learn in the next chapter! What's important to know here is that 
GetFinfo and SetFinfo, a pair of routines in the File Manager, allow an application to 
read and set a file's Finder information block. Here's some sample code that shows 
how to get the value of the fdFlags field: 

#define kinvisible 0x4000 

Finfo 
Boolean 

flnfo; 
invis; 

GetFinfo (fileName, volumeRefNumber, &flnfo); 
invis = finfo.fdFlags & kinvisible; 

GetFinfo makes use of a file specification that consists of a file name and a volume 
reference number. As we'll see a little later in this chapter, Loser's user interface sup­
plies the file specification. 

Making a file invisible is simple: Get the Finder information block, set the invisible 
attribute-bit, and write the data structure back into the file system. Here's the code 
that makes a file, specified by fileName and volumeRejNumber, invisible: 

Finfo 
Boolean 

flnfo; 
invis; 

GetFinfo (fileName, volumeRefNumber, &flnfo); 
finfo.fdFlags I= kinvisible: 
SetFinfo (fileName, volumeRefNumber, &flnfo); 

Notice the fragment ORs in the invisible bit defined as the token klnvisible. This 
code fragment is, in essence, the entire application layer for Loser. Loser's applica­
tion layer is so simple that the outstanding design issue is the user interface: How 
does the user select the file for losing or finding? 

Our first impulse was to use Finder for file selection-Mac users are familiar with 
the point and click selection techniques of the desktop. We thought, Wouldn't it be 
neat to use Finder for file selection and then hide the selected files? 

It turned out that this wasn't such a neat idea after all. Finder doesn't have a pro­
gramming interface yet, which means that there are no system calls a program can 
make to get the list of selected desktop files. Finder desktop selections are local to 

194 



9: LOSER: A LESSON IN PROGRAM DESIGN 

Finder, and it doesn't share that data with the outside world. How does our applica­
tion find out what those files are? 

We were aware of another application, a utility that extends Finder's capability 
called Aladdin's Magic Menu, that actually uses the desktop's selected files. When we 
talked with Aladdin about their technology, hoping to get an insight into how they 
did it, they told us that the Aladdin engineer who discovered their technique did so 
only after many hours of rummaging around in RAM and arduous debugging-a 
grim prospect. Magic Menu reads the selected desktop files by reading Finder's in­
ternal data structures. 

The problem with hacking in undocumented areas of the system is that your soft­
ware then has to react to changes in each subsequent release of the system software, 
with little or no help from Apple. Aladdin's slick interface has the potential to be­
come a maintenance nightmare. 

There was another problem associated with using Finder as Loser's interface: It 
made sense only half the time. One of Loser's requirements was that it be able to 
make invisible files visible again. How would the application find invisible files? 

When you're backed into a corner, the best thing to do is to keep the solution simple. 
Included with the system software is the Standard File Package, which presents and 
manages the dialog box that the user normally uses to select a file for opening. 
Figure 9-2 shows this familiar file selection dialog box, named the SFGetFile dialog 
box after the routine that invokes it. 

Flgure9·2. 
The SFGetFile 
dialog box. 

Open Document 

I a Tycho • I 
D Help Folder m 
Cl Sample Settings 
Cl Sample Tables 

=My Mac 

([ Open D 
{ Cancel J 

(Desktop) 

'-----------~'°'~ E:j!'t:l 

The other half of the Standard File Package is the SFPutFile dialog box, shown in 
Figure 9-3 on the next page. It's the dialog box the user sees when he or she chooses 
the Save As command in a File menu. 

The best thing about using the Standard File Package is that its routines are already 
written and debugged and therefore could save you weeks of coding and debugging 
an interface to the file system. When you're designing software for a fixed price, time 
is money. 

But if we were to use the Standard File Package for Loser's interface, how was that 
interface to be managed? Loser was to have two modes: It needed to hide ("lose") 

195 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Flgure9-3. 
The SFPutFile 
dialog box. 

Saue Document 

lenycno • I 
Cl Help Folder 
f:.) H<rnd~<l 
Cl Sample Settings 
Cl Sample Tables 
•• T!J<ho"' LL6 

Saue the Table Rs: 

~ 

~ 

=My Mac 

n Saue l) 
( Cancel ) 

-·---
(Desktop) 

Ejecl 

visible files and to find lost ones. If we added two radio buttons, named "Lose File" 
and "Find File," to the bottom of the standard Open dialog box, we'd make it pos­
sible for the user to view either all visible or all invisible files in a folder. To emphas­
ize the mode selection aspect of opening a file, we decided to have Loser retitle 
what would normally be called the Open button as "Lose" when the user had chosen 
Lose mode and as "Find" when the user had chosen Find mode. Figure 9-4 shows the 
Loser dialog box. 

Whether we could use the SFGetFile dialog box for the Loser interface hinged on two 
issues: Could we get the Standard File Package to display either all visible files or all 

Flgure9-4. 
The Loser interface. 

lei Loser f •I 
Cl Loser Hdr IQ =My Mac 
Cl Loser Src J illlm••••• ([ Lose B Cl LosenJ.rsrc ~ 

Cl Readme ( Cancel ) 

[Desktop) 

izy Ejc< t 
'--~~~~~~~~ 

@ Lose Fiie O Find Fiie 

Macintosh Packages 
A Macintosh package like the Standard File Package is a collection of rou­
tines that extend the Toolbox and the Operating System. These roo.tin.es. 
reside on disk in a PACK resource. They're brought into RAM only when 
they're needed. Examples of other Macintosh packages are the Disk Initial­
ization Package, which provides you with an interface for naming and ini­
tializing disks, and the Binary-Decimal Conversion Package, which you use 
for converting integers to strings, and vice versa. . .. 

196 



9: LOSER: A LESSON IN PROGRAM DESIGN 

invisible files in its list of file names? And could we add radio buttons to the SFGetFile 
dialog box? 

The answer to both questions was yes-thanks to hooks. The Standard File Package 
provides a place, called a "hook," where you can install two "hook procs." ("Proc," 
of course, is short for "procedure.") Hook procs are also called "call-back routines," 
referring to the ability of a system procedure to call an application-defined function 
at certain times during its operation. Call-back essentially allows you to extend the 
features of system routines. Installing a hook proc is as simple as passing a function 
pointer as an argument to a system routine. 

The Standard File Package will support two hook procs: 

• The package calls the file filter hook proc whenever it adds a file name to its 
list box. This filter proc is actually a feature of the Dialog Manager (which 
you'll see in a moment) that the package uses to implement its dialog box 
interface. The Dialog Manager calls this hook proc whenever the package 
receives an event. The file filter proc returns a value that the package uses to 
determine whether to display the file name in its list box. The file filter proc 
therefore controls the display of the dialog box, based on the value of the file's 
invisible attribute-bit. 

• The package calls the dialog hook proc when it receives a mouse-down event 
in the dialog box. Loser takes advantage of the dialog proc to manage the radio 
buttons. Because the package calls the dialog hook proc whenever it receives a 
mouse-down event in the dialog box, Loser can respond appropriately when 
the user chooses the Lose File or Find File button in that box. 

With all our design issues addressed, we can move on to the details of Loser's 
implementation. 

HookProcs 
Understanding hook procs is one of the keys to understanding how to get the 
Macintosh to do your bidding. The Toolbox provides a number of hooks that 
let you use call-back routines to get the most out of your application. For ex­
ample, TextEdit (in System 6.0 and later) provides hooks to call your routines 
when it 

• draws a line of text 

• measures the caret's position 

• calculates the end of a line 

• gets a mouse-down in the text area 

We'll venture to say that hooks are responsible for the overwhelming success 
of Macintosh software. Without hook procs, Mac programs would still look like 
MacPaint and MacWrite 1.0. 

197 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Using the Standard File Package 
The Standard File Package simplifies much of the coding job. Its set of routines frees 
us from the burden of putting up a dialog box by means of the Dialog Manager rou­
tines or of having to navigate the file system. 

We saw in Figure 9-4 on page 196 that Loser uses the SFGetFile dialog box, which ap­
pears when the application calls the SFGetFile routine. Normally, an application calls 
SFGetFile after a user has selected Open from the File menu. SFGetFile displays the 
dialog box and the list box that contains file names; interacts with the user, calling 
routines in the Dialog Manager directly; and returns all necessary information about 
the selected file. One call does it all. 

The SFGetFile Dialog Box 
When SFGetFile returns control to your application, the user has either selected a file 
or canceled the Open operation. The routine communicates with Loser by means of 
the SFReply record. The application passes the address of the SFReply record to 
SFGetFile, and SFGetFile fills in the values before it returns. Here's the definition of 
the SFReply record: 

typedef struct SFReply 
{ 

char good; 
char copy: 
1 ong fType; 
int v RefNum: 
int version; 
unsigned char fName[64]; 

SFReply; 

When SFGetFile returns, the good field of the record is true (the value 1) if the user 
has selected the Open button, or false (the value O) if the user has selected Cancel. If 
good is true, vRefNum specifies the volume reference number of the file and fName 
contains the file name. The other fields of the SFReply record can be ignored. With a 
volume reference number and a file name, SFGetFile has enough information to 
open or, in our case, access the Finder information for a file. 

Loser has those two radio buttons, so it can't use the standard SFGetFile dialog box or 
the SFGetFile procedure that invokes the dialog box. We have to create another dia­
log box, similar to the SFGetFile dialog box but with the addition of the Lose File and 
Find File radio buttons. 

SFGetFile uses a dialog box template, the DLOG -4000 resource from the System file. 
This template contains the information that describes the dialog box. Now, you don't 
want to modify the dialog box in the System file-unless you want every other ap­
plication on your disk to have Lose File and Find File radio buttons appended to their 
SFGetFile dialog boxes. The technique for appending items to a standard system dia­
log box calls for copying the dialog box template to your application's resource file 

198 



9: LOSER: A LESSON IN PROGRAM DESIGN 

and then modifying the copy. ResEdit is the best tool for this job. If you're interested 
in how it's done, see the sidebar "Creating the Loser Dialog Box" at the end of this 
chapter. 

Now, how do we get the SFGetFile routine to use our new dialog box instead of 
DLOG -4000 from the System file? The answer is that we don't use SFGetFile, but 
rather a similar routine, SFPGetFile. 

SFPGetFile (the P is for "Programmer") provides all the utility of SFGetFile but ac­
cepts an alternative dialog resource ID number. SFPGetFile accepts nine parameters, 
one of which is the ID number for our new dialog resource. Three of its parameters 
are pointers to our hook procs, defined as type ProcPtr. Here's the prototype for 
SFPGetFile: 

void SFPGetFile (Point where. StringPtr prompt, ProcPtr fileFilter, 
short numTypes, SFTypelist typelist, ProcPtr dlgHook, 
SFReply *reply, short dlgID, ProcPtr filterProc); 

The first argument, where, defines the coordinates of the point at which the upper 
left corner of the dialog box will appear. We use the prompt argument to print a 
prompt string in the dialog box. Loser passes a pointer to the file filter hook proc in 
the third argument. The next two arguments, numTypes and typelist, define which 
files will appear in the dialog box's list box. You would normally specify the file 
types of the files that you're interested in, but Loser is supplying its own file filter 
function by means of the file filter hook proc, so SFPGetFile won't use these argu­
ments. We therefore pass 0 to numTypes. Loser passes a pointer to the dialog hook 
proc in the dlgHook argument. The reply argument we've already mentioned­
this is where Loser passes the address of an SFReply record. Loser passes the new ID 
number of its SFGetFile dialog resource in the dlg/D argument. Finally, Loser passes 
the address of its filter proc to the last argument, .filterProc. 

Toolbox calls, and that includes packaged routines, use Pascal calling conventions, 
and C and Pascal are different in their conventions. We can write a hook proc in C, 
but we must declare it by using the pascal keyword, as in 

pascal void 
foo (char a, char *b) 
{ 

The pascal keyword is a unique feature of the THINK C environment and provides 
the "glue" required to manipulate the stack when calling C functions from Pascal. All 
of Loser's hook proc C functions are declared using this keyword. 

Passing a pointer to a function is as simple as typing its name. If Joo() is our hook 
proc and bar() accepts a ProcPtr argument, we pass the address of Joo() to bar() in 
this way: 

bar (fool: 

199 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The Fiie Fiiter Call·llack Routine 
Loser uses the file filter call-back routine to select the file names that will be dis­
played in the dialog box's list box. As SFPGetFile reads through the file names in the 
current folder, it calls the file filter routine for each file. If the routine returns 0, 
SFPGetFile displays the file name in its list box. If the routine returns 1, SFPGetFile 
won't display the file. The file filter call-back routine is shown in Figure 9-5. 

static pascal uchar 
loserGetF1leF1lterProc CFileParam •paramBlkPtr) 
{ 

} 

Boolean 
pBoolean 

invis: 
result: 

II test the invisible bit 
inv1s = CparamBlkPtr->ioFlFndrlnfo.fdFlags & flnvisible) 1 

true : false: 

if CsloseMode) 
result = invis 

else 
result = invis 

return (result): 

I• in lose mode, show visible files •I 
II display visible files: 

? false true: II display invisible files 

Flgure9-S. 
The loserGetFileFilterProc() routine is Loser's file filter proc function. 

The calling convention for this routine is described by this prototype: 

pascal unsigned char 
fileFilter CFileParam •fileParams): 

Notice that the return type of the file filter procedure is an unsigned char, an 8-bit 
data type. This means that when the function returns 1, it must return an 8-bit value, 
OxOl-not Ox0001. 

SFPGetFile passes the file filter routine a pointer to a File Manager data structure, a 
file parameter block, for each file it finds in the current folder. This is where we get 
the file's invisible attribute-bit, in the ioFIFndrlnfofdFlags field of this structure. The 
loserGetFileFtlterProc() routine uses the invisible bit to figure out whether the file is 
visible and returns an appropriate value based on the current Loser state. 

The Loser state depends on the user's selection-either the Lose File button or the 
Find File button. The static variable sloseMode maintains the value of this state in the 
program. As we'll see when we look at Loser's button processing, if the user has 
selected the Lose File button, sloseMode is true; otherwise, sloseMode is false. 

200 



9: LOSER: A LESSON IN PROGRAM DESIGN 

If Loser is in Lose File mode, which means that it is to hide files, it should display the 
file names that are candidates for invisibility, that is, the visible files. The function 
loserGetFileFilterProc() therefore returns OxOO if a file is visible, and OxOl if the file 
is invisible, when Loser is in the Lose File state. If Loser is in Find File mode, it should 
display those files that are candidates for visibility, that is, the invisible files. The file 
filter proc therefore returns OxOO if a file is invisible, and OxOl if the file is visible, 
when Loser is in the Find File state. Figure 9-6 illustrates this logic. 

Loser Mode? File Visi&le? Display File Name? 

Lose File no no 

Lose File yes yes 

Find File no yes 

Find File yes no 

Flgure9•6. 
The file filter proc truth table. 

Dialog Item Lists 
Before we look at the dialog box hook procedure that manages the radio buttons, we 
need to understand how the Dialog Manager associates items with a dialog box win­
dow. The Standard File Package routines use the Dialog Manager to display the Loser 
dialog box, so we'll need to know sorp.ething about the dialog box item list in order 
to understand how Loser manages the dialog box's two radio buttons, Lose File and 
Find File. 

The definition of a dialog box includes two parts: a dialog box template that de­
scribes the dialog box's window; and a dependent item list that contains information 
about the buttons, check boxes, radio buttons, text items, ICONs, PICTs, and user­
defined items that will appear in the dialog box. Resource creation programs like 
ResEdit store the window template information in a DLOG resource and the item list 
data in a DITL resource. When an application creates a dialog box on the screen, the 
Dialog Manager creates a window based on the DLOG resource, finds the corre­
sponding DITL information, and loads the items in the item list, allocating space in 
the heap for the items-controls, ICONs, PICTs, user items. 

Each item in the DITL has a reference number, its list index. Indexes begin at 1. In 
your program, you use an index to specify a particular item in a list. When you 
create a dialog box and its item list using ResEdit, you have to keep note of an item's 
item number so that you'll have the correct index in your program to access it. Con­
vention dictates that you define a symbolic constant for each item in your source 
code, usually in a header file. If you follow the directions in the sidebar "Creating 
the Loser Dialog Box" at the end of this chapter, your Lose File button will be item 

201 



MACINTOSH C PROGRAMMING BY EXAMPLE 

#12, and your Find File button will be item #13. We've defined these constants ac­
cordingly in LoserConstants.h and repeat the definitions here for your edification. 

#define kloserloseButton 12 
#define kloserFindButton 13 

Because Loser changes the text string in what would normally be the Open button to 
Lose or Find, depending on the Loser mode, you'll need the index number for this 
button as well. The Open button is always item #l. 

A note about the item list indexes of Standard File Package items, or those of any 
other system resource, for that matter: The SFPGetFile routine expects the Open but­
ton to be item #l, the Cancel button to be item #3, the list box user item to be item 
#7, and so on. Don't mess with these numbers. The Standard File Package expects 
these items in their proper sequence. Always add items to the end of an item list, 
never to the middle. 

The Open button index defined by the Standard File Package is 1, so Loser defines a 
constant for it as 

#define kSetButtonID 

An item list data structure is designed to be versatile enough to account for a variety 
of potential item types. The structure contains a pointer, a bounding rectangle, a 
type declaration byte, and an array of additional data for the item. This structure is 
not defined in Inside Macintosh, but taking a hint from the DITL resource format, we 
can say that it might look something like this: 

struct ditl Item 
{ 

Ptr ptr; 
Rect bounds; 
char type, 

length, 
data [255]; 

The type field identifies the kind of item an element is-button, check box, static 
text, and so on-and the content of the data field depends on this type. For 
resource-based controls, ICONs, or PICTs, the data field contains the resource ID of 
the item. For text items, the data field contains the text. For buttons, check boxes, 
and radio buttons like those used in Loser, the data field contains the control's title. 

Because this data structure is considered internal to the workings of the Dialog Man­
ager, we never access any of its fields directly. When the Dialog Manager creates the 
dialog box, it uses the resource item to create a control, an ICON, or whatever the 
template describes, in the heap. You therefore access these heap objects with a Dia­
log Manager routine, GetD/tem, which returns the bounding box, item type, and 
handle to the heap object. We're interested in controls for Loser right now, which are 
managed by the Control Manager. 

202 



9: LOSER: A LESSON IN PROGRAM DESIGN 

Managing Loser's Raclio Buttons 
The Control Manager allocates heap space for each control and returns the control's 
handle to the application. You access the control, set its value, show or hide it, or 
whatever, using this handle. When a control is embedded in a dialog box, the Dialog 
Manager makes all the Control Manager calls to create the control, but the applica­
tion must read and set the control's value. 

If you know the control's item number, you can get the control handle with the Dia­
log Manager routine GetDltem. GetDltem accepts a dialog pointer to the dialog box 
and item number and returns the control handle, bounding rectangle, and item type. 
Here's an example, a call to GetDltem that gets the Lose File button's control handle: 

DialogPtr theDialog; 
short itemType; 
ControlHandle loseButtonHdl: 
Re ct box; 

GetDitem (theDialog, kloserLoseButton, &itemType, &loseButtonHdl, &box>: 

The Lose File and Find File buttons are managed in Loser's dialog hook call-back 
routine, loserGetFileDlgHook(), which is shown in Figure 9-7. The Standard File 
Package makes it easy to manage radio buttons in the SFPGetFile dialog box. Once 
you've installed loserGetFileDlgHook() as the hook proc, the Standard File Package 
calls the proc with the dialog pointer and the number of the item in which a mouse­
down occurred. It's therefore up to the hook proc loserGetFileDlgHook() to toggle 
the radio buttons and set the sLoseMode value according to the button selection. 

static pascal int 
loserGetFileDlgHook (DialogPtr dialogPtr, short item> 
{ 

short 
Re ct 
Control Handle 

itemType; 
box: 
loseButton, findButton, okButton, h: 

I* get the control handles */ 
GetDitem (dialogPtr, kLoserLoseButton, &itemType, &loseButton, &box>: 
GetDitem (dialogPtr, kloserFindButton, &itemType. &findButton, &box): 
GetDitem CdialogPtr, l, &itemType, &okButton, &box>: 

switch {item) { 

case getOpen: 
case getCancel: 

Flgure9-7. 

II the standard items 

Loser's dialog hook call-back routine, loserGetFileDlgHook(). 
(continued) 

203 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 9•7. continued 

case getEject: 
case getDrive: 
case get Nm Li st: 
case getScroll: 

break; 

case -1: II initialization 
SetCtlValue (loseButton, sloseMode 1 true : false); 
SetCtlValue (findButton, sloseMode 1 false : true); 

I• install graphics items for auto-refresh •I 
GetDitem (dialogPtr, kGetFileSepline, &itemType, &h, &box); 
SetDitem (dialogPtr, kGetFileSepline, itemType, 

seplineProc, &box); 

GetDitem CdialogPtr, kGetFileOutline, &itemType, &h, &box); 
SetDitem (dialogPtr, kGetFileOutline, itemType, 

buttonProc, &box); 
break; 

case kloserloseButton: II my items 
if (GetCtlValue (findButton)) 
{ 

SetCTitle CokButton, "\plose"); 
SetCtlValue (loseButton, 1); 
SetCtlValue (findButton, 0); 
sloseMode = true; 
item= 101; II reread the directory 

break; 

case kloserFindButton: 
if (GetCtlValue CloseButton)) 
{ 

} 

SetCTitle (okButton, "\pFind"); 
SetCtlValue (loseButton, 0); 
SetCtlValue (findButton, 1); 
sloseMode =false; 
item= 101; II reread the directory 

break; 

return (item); 

} /• loserGetFileDlgHook •I 

204 



9: LOSER: A LESSON IN PROGRAM DESIGN 

Loser needs to process only those events that occur in either of its two radio but­
tons-those events tagged with the item number of either kLoserFindButton or 
kloserloseButton. When the user mouses in a file system navigation control, 
loserGetFileDlgHook() simply returns the item number to the Standard File Package 
so that it can process the event. 

When the user clicks the mouse in either of the radio buttons, loserGetFileDlgHook() 
sets that control's value to 1 and sets the value of the other radio button to 0, using 
the Control Manager routine SetCtlValue. (See the sidebar "Managing Radio But­
tons.") loserGetFi/eDlgHook() also changes the Loser state stored in sLoseMode, 
changes the Open button so that its text reflects the state, and returns the magic 
number 101, which tells SFPGetFile to reread and redisplay the file list. Of course, 
when SFPGetFile rereads the list, the file filter proc will use the new Loser state to 
display the correct set of files, based on the new Loser file mode. 

The Standard File Package also calls loserGetFileDlgHook() when the dialog box is 
initialized, just before it draws the dialog box. This gives Loser a chance to initialize 
the radio buttons before the dialog box appears. 

At initialization, the package sends -1 for the item number. None of the dialog box 
items can have a negative number, so -1 is therefore a safe value that uniquely flags 
the initialization phase and allows the hook proc to do its initialization stuff. 

loserGetFileDlgHook() performs two initialization tasks. As we've already men­
tioned, it sets the radio button values to reflect the correct Loser state. Its other task 
is to install proc pointers for user items. Most commercial Macintosh applications use 
this technique to support automatic refreshing of dialog box items. 

You're no doubt familiar with the button outline that indicates the default selection 
in a dialog box. Figure 9-8 shows a button with the "default" outline. 

([ Lose )J 

Flgure9·8. 
A 3-point outline around a dialog box button tells the user that pressing Return 
yields the same result as a mouse click in that button. 

Inside Macintosh tells us how to draw this outline. Given the item number and the 
dialog pointer, here's how you draw the outline for the default button: 

GetDitem CtheDialog, theltem, &itemType, &itemHdl. &itemBounds); 
PenSize (3, 3); 
InsetRect (&box, -4, -4); 
FrameRoundRect (&box, 16, 16); 

Of greater interest is when you draw the outline. Inside Macintosh only hints at that, 
so you're on your own. Your first choice might be to simply draw the button when 
the program initializes the dialog box. This technique works fine-until a screen 

205 



MACINTOSH C PROGRAMMING BY EXAMPLE 

·-···· ........... .. 
Radio buttons·were named after the push-buttons usually found on older car 
radios. The salient feature of car radio buttons is that only one button can be 
selected at a time, and each new button selection clears the previous selec­
tion. It's a one-of-many switch, and your application must perform this but­
ton logic. SetCtlValue is the Control Manager routine you use to change the 
appearance of the buttons, and it requires a control handle and a value. The 
control value 1 selects the button. The control value 0 clears it. 

The key to implementing radio button logic is in clearing the value of the 
other buttons when the user makes a selection. You therefore need to have 
all the radio button handles in a group so that you can set all the button 
values. Here's some sample code that manages the radio buttons A, B, and C. 

206 

s.electRadioSuttons CDialogPtr theDialog, short theltem> 
{ 

} 

ControlHandle buttonA, buttons. buttonC: 
Rect box: 
short itemType: 

I• get all the group handles •/ 
GetDitem CtheDialog, kSuttonA, &itemType, &buttonA, &box>: 
GetDitem CtheDialog, kSuttonS, &itemType, &buttons, &box>: 
GetDitem CtheDialog, kSuttonC, &itemType, &buttonC, &box>: 

switch Ctheltem) 
{ 

} 

case kSuttonA: 
SetCtlValue CbuttonA, 1): 
SetCtlValue (buttons. 0): 
SetCtlValue (buttonc. 0): 
break: 

case kSuttonS: 
SetCtlValue CbuttonA, 0): 
SetCtlValue (buttons, 1); 
SetCtlValue Cbuttonc. 0); 
break: 

case kSuttonC: 
SetCtlValue CbuttonA, 0): 
SetCtlValue (buttons, 0): 
SetCtlValue CbuttonC, 1): 
break: 



9:.LOSER: A LESSON IN PROGRAM DESIGN 

saver utility like Pyro blanks the screen. When the screen is eventually redrawn, the 
Dialog Manager draws everything in the dialog box except the outline. Figure 9-9 
illustrates the problem. 

Flgure9-9. 
The dialog box 
looks fine when it's 
first drawn. After a 
screen saver utility 
erases the screen 
and redraws it, 
the default button 
outline and the 
line between the 
Cancel and Desktop 
buttons are 
missing. 

~ !,! 
!!i 

I eillosert • I 
D Loser Hdr lQ] =My Mlle 
D Loser Src J I ••1111••••• n Lose I Cl Loserrr .rsrc ~ • 
Cl Re11dme [ C11ncel ) 

[Desktop) 

~ t:j<l<t 
'---------L~ 

® Lose Fiie O Find Fiie 

~1 II v 
lei Loser f •I 

D Loser Hdr IQ =My Mlle 
D Loser Src J 
•••••••• [Lose 

Cl Losenr .rsrc 
Cl Re11dme [ C11ncel ) 

[Desktop) 

L..,_ ______ ---1.{)><J t:j<H t 

® Lose File O Find File 

A better solution is to draw the outline whenever there's an update event, and, if you 
read between the lines in the Dialog Manager chapter of Inside Macintosh, you'll 
figure out that the Dialog Manager supports a method of doing just this. If a dialog 
box item is a special type of item, called a user item, and if you install a pointer to a 
function as the item handle, the Dialog Manager will call the function when it 
receives an update event. If you therefore install a pointer to a function that draws 
the button outline, Voilalfhe outline will be drawn when the dialog box gets an up­
date event. 

There's a trick to using this technique with the button outline. You can't install a 
function pointer in the button item-you'd lose the Control Manager information for 

207 



MACINTOSH C PROGRAMMING BY EXAMPLE 

the button, and it would cease to be a button. The trick is in creating the user item 
on top of the default button. 

You use the Dialog Manager routine SetD/tem to install a function pointer in a dialog 
box's item handle. This doesn't affect the DITL resource-only the in-RAM repre­
sentation of the dialog box item. Normally, a user item has a null handle. If the 
handle's value is non-null, the Dialog Manager assumes that the value is a function 
pointer. 

Loser's outline drawing function, which is yet another hook proc and declared with 
the pascal keyword, appears in Figure 9-10. Note that although Loser uses this rou­
tine to update the user item, which is the outline, it uses the button's bounding rect­
angle, not the user item's. That way, we're sure that the outline will be centered on 
the button. 

pascal void 
buttonProc (DialogPtr theDialog, 

short theltem) // outline the dialog button 

short 
Re ct 
Handle 

type; 
box; 
itemHdl; 

GetDitem (theDialog, kSetButtonID, &type, &itemHdl, &box); 

PenSize (3, 3); 
InsetRect (&box, -4, -4); 
FrameRoundRect C&box, 16, 16); 
Pen Normal C ) : 

I* buttonProc */ 

Figure 9· 1 O. 
The buttonProcO routine outlines a dialog box's default button. 

We've included another user item in the Loser dialog box. A dotted line is drawn be­
tween the Cancel and the Desktop buttons to separate their button "groups." 

You'll find the code for drawing and redrawing the dotted-line user item in the . 
source file DialogUtil.c. 

The filter hook proc 
The filterProc routine is the last of the three SFGetFile hook procs and is actually a 
Dialog Manager hook that responds to dialog box events that occur within the Dialog 
Manager routine Moda/Dialog. Loser uses this hook proc to detect a press of the 

208 



9: LOSER: A LESSON IN PROGRAM DESIGN 

Return key or of the Command-period key combination. Users are accustomed to 
having the Return or the Enter key select a dialog box's default button, and to having 
the Command-period combination cancel the dialog box. The filter proc supports 
these actions. 

You'll find the code for the filter proc in DLOG.filterProcl() in DialogUtil.c. The rou­
tine gets the actual event record from the Dialog Manager and manipulates the what 
and where fields of the event record to fool the Dialog Manager into thinking that a 
button press has occurred in either the Find/Lose button or the Cancel button. 

Manipulating the lnvisillle Bit 
We shouldn't become so deeply involved in managing the dialog box that we lose 
sight of Loser's prime directive: to set or clear a file's invisible bit. In theory, we 
already know what to do, but let's look in detail at what's required. 

Figure 9-11 shows the essence of the program. The doloserGetFile() routine is essen­
tially the Loser user interface. When doLoserGetFile() returns with a mode and a 
selected file, Loser calls the File Manager routine GetF!nfo to fill the Flnfo record 
with current data for the specified file. Hiding or displaying the file is simply a matter 
of setting or clearing the bit in the fdFlags field of this structure, based on the value 
of the static variable sloseMode. Loser then calls SetF!nfo, which rewrites the entire 
record back to the file system. 

if CdoloserGetFile C&docParams)) 
{ 

} 

fileName = docParams.fileParams.fileName: 
volRefNum = docParams.fileParams.volRefNum: 

if {err= GetFinfo (fileName, volRefNum, &fndrinfo)) 

else 
{ 

do Fi 1eCantA1 ert C fil eName, kRead, err, "\pGetFinfo"): 

if CsloseModel 
fndrinfo.fdFlags I= flnvisible; 

else 
fndrinfo.fdFlags &= -flnvisible: 

if (err = SetFinfo CfileName, volRefNum, &fndrinfo)) 
doFileCantAlert (fileName. kWrite, err, "\pSetFinfo"l: 

Figure 9·11. 
The heart of a Loser. 

209 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Loser is a small application; unlike Generic App, it has no use for window and docu­
ment management utilities and therefore doesn't need routines for them. The source 
code for Loser resides in five source files: DialogUtil.c, FileUtil.c, Loser.c, MiscUtil.c, 
and WindowUtil.c. You'll find that these files contain a very few routines, with the 
exception of Loser.c, which contains the bulk of the code. 

Creating the Loser Dlalog Box 
The Standard File Package's SFGetFile dialog box contains buttons, a list box, 
and other controls for file system navigation-and its procedures expect 
these items to appear in the proper order. You can customize this dialog box 
by adding new items to the end of the list of dialog box items. Loser 's dialog 
box needs five additional items: a title, the two radio buttons, and two user 
items. 

Although the modified DLOG -4000 resource is included with the complete 
source code for Loser, available on the disk that accompanies this book, you 
might be interested in learning how to modify this resource yourself. 

Using ResEdit 2.1, open the System file and read the warning. 

Editing the System or ResEdlt Is not 
recommended. Please edit a copy of 
the file lnste11d. If you must edit this 
file, be c11reful not to edit resources 
th11t are 111rendy In use. 

( l:11ncel J ([ OK B 

The warning you see when you open the System file in ResEdit. 

Tread lightly in here. This is the currently running system, after all, and if you 
mess up, you mess up permanently. 

In the System window, you'll see the resource icons, as shown at the top of the 
next page. 

Find the resource named DLOG, and double-click on it. This reveals all the 
dialog templates contained in the System file, as shown on the next page. 

Find template -4000, select it with a single click, and choose Copy from the 
Edit menu. This places a copy of the template on the Clipboard. 

Now open the Loser resource file by pulling down the Open submenu and 
navigating to your Loser resource file, Losern.rsrc. Select the Loser resource file 
by clicking in its window, and paste the DLOG -4000 template into it. 

210 



9: LOSER: A LESSON IN PROGRAM DESIGN 

Despite its size, Loser is an excellent teaching tool that contains many examples of 
using the Standard File Package and the Dialog Manager. We'll use this knowledge in 
Chapter ll's Browser, the final application in this book. But before we can write 
Browser, we'll need Chapter lO's background information on the File Manager. 

Im System E!]!! 

·~:: :111~,) 
010 11 10 1 tlOlllOI 

rim 
01011101 01011101 

~~ 
01011101 ~ 001010 1 tO I O I OOI 

0 11 0 1010 
........ OOIOIOOI 

OllOUIO 0 11 0 1010 0 11 0 1010 01101010 :;i:'-2 00 • 11 110 00.01 111 0 ffOll ll O tOOl lllO 000 11110 

I Ol tOOtoO OIOOOOff 0 1000000 ., ...... ID . ....... 
ADBS AINI alls ALRT atlk audt BNDL boot 

01011101 0 10 111 0 1 

~~ ~ 
0 1011101 

00101001 ·~:: ::-"o\ H IOIOOI ·~:: :·.~1, ill 00 101001 

lillii 
01101010 01101010 0 1101 0 10 
OH llll O :;i:'·2 Off llll O :;i:'·J 000 1111 0 ........ OIOOHOO ¢$ . ........ 

:11111 

bst• CACH card cctb CDEF cicn clut cmtb 

~= 
0 10 111 01 0 1011101 

·~:::.·~, rf!l [ij] 00 101001 e I OOU I OO I 

~ ~181 OllOIO I O OI UIO IO :;i:l,J ;=i· OOOllllt HOll ll O 

-
¢¢ OIHOOOO f 010••••• : . ~ ! ; 

CNTL ctb CURS dbex dcmp dctb DITL 111111 
OIOlllO I OIO ll lOI 01011101 

·~=~ ~:."o\ LiJJ 
.. I O I OOI ···~ Ot l O I OOt 00 10 100 1 
O ll OIO I O ··E!;l 0110 1010 0 11 0 10 10 

k,q._11 mo l 
.. 01 111 0 ~ ··e:J ttO llll O 000 1111 0 :;i :1,2 0 1000000 ·-E:J 0 1000000 01000000 

DRVR DSAT enet FKEY fld• fist fmap FMTR 

01011101 0 10 111 0 1 01011101 
;:• 

~ ~~ 00 10 100 1 OO IOIO OI to l O I OOI litllillil lillilllillil A 011010 10 0 11 01010 O llOIOIO 
00011 11 0 000 1111 0 000 1111 0 ~·· · ~ ID lllSllllllD 0 100 .. 00 o 100 0000 OIOtO .. O .. 

FOND FREF FRSV f w-st hdlg hmnu ic14 iclS 
F.;' 

~ '21 

ResEdit Window after System is opened, showing the resource icons. 

System 

01011101 0101 11 01 

~~ 
0 1011101 

0010 1001 00101001 • 00 10 1001 00101001 00 10 1001 

~D DLOGs from System 0~ i!l!H 01101010 0 11 0 1010 
0 .. 11110 IDID 000 1111 0 
01000000 01000000 

!Q. Site Name tlk audt BNDL boot 

-5656 24 
-5792 24 ~ ill 

0101 11 0 1 
00 10100 1 
0 11 0 1010 

-5791 24 000 11110 
0 1000000 

-5790 24 cicn clut cmtb 
-5769 24 
-5766 24 

~ !!) [l2ii1I -5767 24 -
-5766 24 dctb DITL DLOG 
-5760 24 
-5696 30 • 10 11101 01011101 

·~=~ ~--~) tolO I OO I 00 101001 
f llOIOI O 0 11 010 10 
f OOllllO 000 11110 :;i:'·2 flOOOO OO 01000000 

-3999 24 
fist fmap FMTR 

I 24 
0 1011101 

~ ~~ 00 10 100 1 .. IOIO OI lit![] lillill[] 
A 01 10 10 10 fl l O I O IO 

IDID 0001 111 0 f OOllllO ~·· ~ ·· lllSlllUID 01000000 0000000 

FDND FREF FRSV fwst hdlg hmnu ic14 ic18 

The System DLOG templates. DLOG -4000 is for the SFGetFile dialog box. 

211 



MACINTOSH C PROGRAMMING BY EXAMPLE 

You now have all the necessary resources in Loser's resource fl:le1 so"'"'""'·•·"'"' 
System file by using the dose box in the upper left corner of the <>Nnrr•nri<> 

windows. Don't sav('lanyshanges in the System file. If you ha'\l;e in"'""''"'rti"ritlv 

modified the System file, perhaps by choosing Cut instead of Copy, 
the Are you sure thatyou don't u;ant to save? message when Y'91;.ldost"the ~¥s- .. "'7"2:,,r'i•.•:•·· •.·• 

tern window. The purpose of this exercise is. not to modify the System file,· so 
don't save changes in the System file. You could dqsome§erious damage. 

You should be working exclusively with the Loser resource file now. Renumber 
t~e new DLOG and DITLresources so that their n~~ersµtatch their numbers 
in the Loser source files. Navigate to the new DLOG, and renumber it 65. You 
do thisby fil}c:J.ingit, selecting it (again, with a single click)~ ~d~~i{ls~r 
Resource Info in the Resource menu. You are then presented with 3. d~og BQ:X: 
that allows yoy to ~hange the ID number of the resource. If yoy. tllr~~c:lY' 
this resource•ln your file-because you are working on the sourcedislt's' 
resource file-ResEdit won't let you set this number to 65. Don'tworry.UselS.6 
iri that;event..r-;Next, renumber the DITt resource the same way, using:either65 
or 66, so that its ID number matches the DLOG's ID number. 

Then y6l.l•U 1l~ed to link the DITL to the DLOG. Openthe DLOG (65 oi''66 
d~penc:J,ifls 011 what you just did). In ~he ditllog box, ch~mge the value of ~Jie 
field DI·TL ID.to the number you've just assigned to the DITL. 

Next, you nee-c:J,to e;x:pand the window to make room at the bott<,>n;i f<>FWt" s~~'­
trols. You could do this in one of two ways, but you're already looking 3.t't!ie 

~~~ ~~;;;e;~~i~~1J!st~~r ~~~~·~ ~i:;o:;s:;t;~P~n~~ ~~t;4[~;f~h~;o~f1· . ":~j~· ,f~*•' •···• '~·¥•Z 
~idth: 342. While you're in there, select Set 'DLqG' Characteristics from the 
DLOG menu and make sure that the procll) field value is 1. This 
defines the window type that the Window Manager will draw for the dialog 
oox;. The complete contents of the editing window>are shown at the top of the 
next page. 

A·· miniature representation of the dialog window on a Maeiritdsh 
shown in the DLOG editing window. Double-dick on this window, and the 
DITL contents should zoorn intoa full-size window for editing. ;All 
this particular DITL have to be in the list and in the right order. If they 
th.e Standard.File Packagewon't 'know what's what. There are even 
items that you don't see, off-screen. · 

E.\/eryitem in a DITL has an item number, which how· you access it in your 
application. Try double-dicking the Cancel button. You will see ResEclit's DITL 

212 



9: LOSER: A LESSON IN PROGRAM DESIGN 

~D DLDG ID = 65 from Losem.rsrc 

Top: EJ Height:~ 
Left: EJ Width:~ 

The DLOG editing window. 

Color: @Default 
QCustom 

Dill 10: 165 
--~ 

D Initially uisible 

D Close boH 

item editing box, like the one shown below. The title of this window is Edit 
DITL item #3 from Losem.rsrc because the Cancel button is the third item in 
_the DITL list. Don't change the order of the controls. When you've finished 
looking, close the window with the close box in the upper left corner. 

DLOG ID = 65 from Losern.rsrc 

Dill ID = 65 from Losern.rsrc 

Edit Dill item #3 from Losern.rsrc 

TeHt: 

Button ... ) 

~Enabled 

Top: EJ Height: ~ 

Left: EJ Width: ~ 

Top:~ 

Left: ~ 

Bottom: §:::=J 
Right:~ 

D Initially uisible 

D Close boH 

The DITL item editing dialog box, with the third item, which is 
the Cancel button, selected. 

Now comes the painful process of moving all the existing items down in the 
window to make room for Loser's title. Select each item, on~ by one (use a 
single click on the item), and drag it south about 60 pixels or so (three-quarters 
of an inch). A selected item has a highlighted "handle" at its lower right corner. 
Don't try to use this handle to drag the item-it resizes the item-bu_t rather, 

213 



MACINTOSH C PROGRAMMING BY EXAMPLE 

drag the item from its center. Try to move all items to the same locations rela­
tive to one another. For finer tuning, you can double-...click on an item and enter 
its new local coordinates in the DITL edit window. 

This ResEdit DITL edit window is the interface you use for both creating new 
items and editing existing items. Items are assigned numbers sequentially. The 
next free item in the GetFile dialog box is #ll, so Loser will use items #ll, #12, 
and #13 for the dialog box title, the Lose File button, and the Find File button 
and items #14 and #15 for the user items. We've included a PICT resource in our 
resource file for the Loser title item, but, for the purposes of this example, we'll 
ask you to create a Static Text item. 

After you've moved SFGetFile's existing items out of the way, you'll create the 
new it('O!ms. To create a new Static Text title item, drag the Static Text icon from 
the DITL toolbox to the DITL window. 

Double-click the new item to open the DITL edit window. Now type 

Loser loses found files, and finds lost ones. 

or any title of your choice in the edit box. This is the text that will go in your 
title. Click in the close box to close the Edit window. The new title should ap­
pear, smack-dab in the middle of the window. Drag the item to the top of the 
window, and resize the bounding rectangle with the small gray handle in the 
lower right corner. The text will flow into the allotted space, as shown below. 

Loser1T .rsrc 

~D!!! Dill "Loser lietFile" ID= 65 from Loser1T.r ~ ~ 1--:-11--:-1 
Loser loses found : LJ L.'.._J L.'.._J 
files, and finds lost : 
ones. 

-·-·-· ··· -----·· ···-··-·- -···· ······ · 

Lose 

( Cancel J 

Driue 

Eject 

Creating the title. 

,,.,,,, .............. ;;;=, 

or (9 Button 
........................................... 

C8:i Check Box ........................................... 
@ Rodio Button 

!;) Control .................................... 
T: Stotic Text 

....... ld.Ei~t.:ii.~t.: 
6 

& Icon 

c;;;;;~~~ . 
ly "ji;;;·;~ -j;~;;; 

bOH 

Next, create the radio buttons, one at a time. Again, drag the new item (radio 
button) from the DITL toolbox to the DITL window. Double-click the item to 

214 



9: LOSER: A LESSON IN PROGRAM DESIGN 

open the Edit window, and name it "Lose File" or "Find File." Again, you'll 
have to size and place the items in the larger dialog window, as sh<;>wn below. 

LoserTT.rsrc 

:Dl! Dill "Loser 6etFile" ID= 65 from Losem.r ~ 1--:-1 1--:-11--:-1 
Loser loses found LJ LJ LJ 
files, and finds lost 
ones. 

Creating the radio buttons. 

Lose 

[ Cancel J 

Driue 

Eject 

181 Check Box 

® Radio Button 

Ii) Control 

T: Static Text 
·a· ·[;;;1·r;~1···· ···· 

........ &i~~~ 
6 .......................................... . 

I. Picture 

ly tllij ;;;~;,;~~ 

bOH 

Finally, you'll create the user items. Drag the user item from the toolbox to the 
DITL window. Position the user item so that it overlaps the Lose button. 

The last user item will be for the dotted lihe between the Lose and Cancel but­
tons and the Drive and Eject buttons. Using the same procedure, drag the user 
item to the area between the buttons. The item should be approximately 80 
pixels wide and 3 or 4 pixels high. Center the rectangle between the two 
groups of buttons as shown below. 

Cancel 

The user item over 
the top of the 
button, offoet by 4 
pixels on each side 

c:cccce1==-=cce1=="' The user item for 
separating the 
buttons Driue 

Eject 

Creating the button outline and button separator user items. 

Once you have added all the new items, do your final adjustments to the items 
in the dialog window so that it all looks nice and neat, and then save your 
changes and choose Quit. 

215 



10 

THE MACINTOSH 
FILE SYSTEM 

The Macintosh file system combines disk drives, system software, and data to give 
you long-term data storage. In this chapter, we'll discuss the major features of the file 
system and describe how an application uses File Manager routines to access data. 

File Syste1111 Etiquette 
The Macintosh file system has a great deal of flexibility. The number of files and 
folders in the system is limited only by the size of the hard disk. Files can grow and 
shrink and can be copied, moved from one folder to another, or deleted from the 
system. If they are in different folders, they can even share common names. 

To keep things straight, the File Manager maintains a complex, cross-referenced set 
of data structures on disk and in memory. These data structures impose some for­
mality on your dealing with files. If your application needs to read from a file, for ex­
ample, it must first set up the operation by opening the file. Other operations, like 
deleting a file or moving a file from one folder to another, can be done only when the 
file is closed. 

The first step in getting at a file's data is to open the file. Opening the file sets up an 
"access path" to the file. An open file can be read, written to, locked, or unlocked. 
Opening a file yields a file reference number, an integer used by an application for 
file access during the time the file is open. 

Your application can perform three kinds of operations on an open file: reading, 
writing to, and controlling. Reading a file is retrieving the file's data. Reading trans­
fers a specified number of bytes from the file to a local buffer, which must be large 
enough to hold the requested data. Writing to is adding to or changing a file's data. 
Writing transfers data from a local buffer to the file. Locking is a way of arranging ex­
clusive access to a piece of a file in a multiuser environment, and unlocking reverses 
the process. Locking and unlocking are both file "control" operations. 

217 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Closing a file writes all pending data (that might be in an internal file system buffer) 
to the file-a process called "flushing" -and frees the access path structures. The 
file reference number is not valid after the file is closed, and further reading or writ­
ing using the access path will produce an error. 

File Syste111 Hardware 
Before we go into the details of the File Manager, let's look at the hardware level. The 
file system is based on a collection of drives and their contents. Drives can be 
"fixed," the way a Winchester hard disk drive is, or "removable," the way a 3.5-inch 
microfloppy disk is. (We're limiting our discussion here to traditional magnetic 
storage media, although we certainly acknowledge the newer optical technologies, 
such as the magneto-optical and CD-ROM drives.) 

In strict hardware hacker terminology, the "disk" contains the recording medium. 
The "drive" contains the motors, the spindle, and the heads that spin the disk and 
read or write the data. The "controller" is the electronic device that tells the drive 
what to read and write. And the "disk drive" is all these things in a package. 

·Disk Drive Nomenclature 
We define basic hard disk terms for our discussion, but different p~ple ~11 
parts of the drives by different names. Some find "disk drive" too f6rmal ahd 
say "drive," but they call the motors, spindle, and heads the "drive," too. If 
you dou't know what part of the disk drive someone's talking abo)lt; ask. 

A recording medium, which on floppies and hard disks is a coating of electromag­
netically sensitive material, covers the platter surface. On this surface, the File Man­
ager stores the bits and bytes that make up your file. Most fixed drives have more 
than one platter, increasing the available surface area and therefore increasing the 
storage capacity of the drive. Both sides of a platter are used to store data. A read/ 
write head services a single side of a platter, so the number of heads indicates the 
number of platter sides in a disk drive. Figure 10-1 shows the inside of a hard disk 
drive that has four platters. 

A low-level format divides each platter into "tracks," which run in concentric rings 
around the surface of the disk, and "sectors," which are formed from the intersection 
of pie-slice shaped divisions of the disk's surface and the track boundaries. A sector 
contains 512 bytes of data, and a track generally has 16 or more sectors around the 
circumference of the platter, although these numbers are determined by the soft­
ware that formats the drive and can differ for each drive and, indeed, even within a 
drive. On a multiple-platter drive, corresponding tracks make up a cylinder. The 
number of tracks each cylinder has is another way to express the number of read/ 
write heads that a drive has. Figure 10-2 illustrates this physical organization of disk 
real estate. 

218 



Platter 1 

Platter 2 

Platter 3 

Platter 4 

( 

" 

Figure 10·1. 

10: THE MACINTOSH FILE SYSTEM 

Cylinder 

) 

- ~I 

- - -- - - - -

A physical hard disk with four platters and eight heads. 

Sector 8 

Figure 10-2. 
Tracks and sectors. 

After the low-level format, the disk is ready for a Macintosh file system, written dur­
ing a high-level format by the Mac's Disk Initialization Package. The high-level for­
mat writes a "volume record" on the disk that describes its size, holds references to 
files , and organizes the remaining disk sectors in a list of "free blocks. " Figure 10-3 
on the next page shows the volume information block in relation to other disk 
blocks and the kinds of information it contains. 

219 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Block 0, 1 : Boot block 
..J?tartup information) _ 

Block 2: Volume information 

Block 3 through n: Volume bitmap 
(Record6, one bit for each allocation 
block, whether each block 16 U6ed or 
unu6ed. The 6ize of the bitmap 
depend6 on volume 6ize.) 

Block n + 1: Allocation block6 
(File data, free block6) 

Fl9ure 10·3. 
The volume layer. 

HFS volume 
Information 

drSigWord: 6ignature word 
drCrDate: creation date 
drL6Mod: la6t modification date 
drAtrb: volume attribute6 
drNmFl6: number of file6 in directory 
drVBMSt: fir6t block volume bitmap 
drAllocPtr: internal field 
drNmAIBlk6: allocation block count 
drAIBlkSiz: allocation block 6ize 
drClpSiz: clump 6ize 
drAIBISt: firat block in volume bitmap 
drNxtCNID: next file number 
drFreeBk6: free block count 
drVN: volume name 
drVolBkUp: la6t backup date 
drVSeqNum: internal field 
drWCnt: volume write count 
drXTClpSiz: extent6 tree clump 6lze 
drCTClpSiz: catalog tree clump 6ize 
drNmRtDira: number of directorie6 in root 
drFllCnt: file count 
drDirCnt: directory count 
drFndrlnfo: Finder information 
drVCSize, drVCBMSize, drCtlCSize: 
drXTFKSize: extent tree 6ize 
drXTExtRec: firat extent record 
drCTFISize: catalog tree length 
drCTExtRec: firat catalog record 

A block is a logical sector. Although a physical sector is 512 bytes of data, a logical 
sector can contain 512, 1024, 1536 bytes, and so on-any multiple of the 512-byte 
sector size. A block is the smallest unit of data available on the drive. The disk's 
driver always reads an entire block into RAM, even if you have requested only 1 byte 
of the file, which is why it's always more efficient to do program 1/0 in a multiple of 
the block size. Blocks are numbered sequentially from 0 through n and cover the 
entire disk. 

220 



10: THE MACINTOSH FILE SYSTEM 

The Macintosh file system and the File Manager routines use blocks to hold file and 
folder data. Finder, the user interface to the Mac OS, uses File Manager routines to 
support the desktop metaphor. When you drag a file from a hard disk folder onto a 
microfloppy disk's icon, Finder calls File Manager routines that in turn call the disk 
drivers to read a list of blocks on the source disk while at the same time allocating 
blocks on the microdisk for the destination file. The whir of the disk drive and the 
clicks from the read/write arm stepper motors are the acoustic evidence that all is 
working on the physical level. 

Volumes 
The file system considers each drive in the system a volume. In the Macintosh file 
system, each volume has an icon that the System places in the desktop when the disk 
is mounted. Each volume in the file system has a volume reference number that you 
use to access the volume or a file located in the volume. Generally, we're not in­
terested in the volume per se except as a container for a file. In fact, a volume refer­
ence number and a file name are all you need to specify a file. 

A volume must be both mounted and online before you can access any data on it. 
The File Manager automatically mounts removable volumes, like floppy disks, when 
they're inserted in the drive and mounts fixed drives at boot time. When the File 
Manager mounts a drive, it creates a volume-control block data structure and allo­
cates space for volume buffers in the system heap. The File Manager uses the vol­
ume-control block in its management of the volume while the volume is online and 
uses the volume buffers for the transfer of data to and from the volume. 

The File Manager has routines to unmount a volume (Unmount Vol) and to place a 
volume offline (PBO.ffLine) that you might use to free up system heap space. When 
a volume is unmounted, no trace of it remains in the heap. Of course, you have to 
mount the volume again before you can get at any of its files. When a volume is 
offline, its buffers are free, but the volume-control block stays in the heap. 

Bad Blocks 
Most platters have a few small defects-areas of the platter where the record­
ing medium isn't regular or thick enough to reliably hold. qata. Low-level for­
matting tests the quality of the recording medium by wfiting a pattern to a 
sector and reading it back. If what's read doesn't match what was written, tiie 
sector is marked "bad." The disk's driver routines keep a list of these "bad 
blocks" in a table and will spare these sectors from file system use. · · 

221 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Fllllag Up the System H-p 
In Chapter 5, we described the system heap as the area in which the Operat­
ing System code as well as the code for any CDEVs or INITs that are loaded is 
stored, and as the place in which other system-wide data-fonts ~d 
resource templates used by active desk accessories, for example-re5i~s: 
Needless to say, the system heap is a very busy area of memory and tends to 
fill up when a lot is going on. 

If you're a hardware hound like Thom, who has at least five or six assorted 
volumes of hard drive, Bernoulli drive, and CD-ROM drive mounted on his 
Mac at all times, you'll find yourself running out of system heap space,..;ap­
parently Without warning. Indiscriminate use of volume partitions resul~ in 
the same problem because the OS perceives partitions as separate volumes. 
The symptoms Thom has experienced range from unexpected system 
crashes to missing characters when he printed documents in certain fonts. 
(See "The Expert's Edge," MacUser, March 1990.) 

The Hlerarchlcal Fiie System fHFS) 
Directories and subdirectories are the internal structures that correspond to folders 
in your desktop. The File Manager uses directories and subdirectories to group files. 
Old-timers whose experience reaches back to the early Macs might remember that 
only one level of directory was allowed back then-the early Macs used the so­
called "flat file system." At the advent of the 128K ROMs in the Mac Plus, folders 
within folders were supported, for the UNIX-like hierarchical file system (called HFS 
for short) of today's Mac software. Figure 10-4 illustrates such a system. 

1990 xol 

Figure 10·4. 
A hierarchical file system of folders and files. Folder X contains three files (IRS, 
1990 exp, and 1990 xcl) and a folder, Y. Folder Y contains one folder, Z, and 
no files. Folder Z contains three files (10.1, 10.2, and 10.3). 

222 



10: THE MACINTOSH FILE SYSTEM 

This radical change in the structure of the file system occasioned a rewrite of the File 
Manager documentation, so the File Manager documentation in Volume II of Inside 
Macintosh is superseded by the information in Volume IV. 

In order to maintain compatibility of the new hierarchical file system with the old flat 
file system, Apple borrowed a concept from UNIX: the "working directory." The 
working directory provides an alternate means of accessing files in a folder. A work­
ing directory reference number is associated with each folder in a volume. The 
working directory's number is that of the current folder when a program is launched 
from the Finder. In the hierarchical file system, File Manager routines return a work­
ing directory reference number instead of a volume reference number, so the two 
terms have become synonymous. 

In the hierarchical file system, a directory is a logical volume. Each subdirectory or 
folder is considered a subvolume, so File Manager routines that once accepted a vol­
ume reference number as an argument under the old Macintosh (flat) file system 
(MPS) accept a working directory reference number under the hierarchical file sys­
tem (HFS). 

Specifying Illes 
We saw in Chapter 9 how to use the Standard File Package to select a file. Most appli­
cations use the SFGetFile interface routine to let the user specify the file to open. 
Two values returned by SFGetFile in the SFReply structure, vRefNum and fName, 
fully specify a file in either the MPS or the HFS. Here's the SFReply structure: 

typedef struct SFReply 
{ 

char good; 
char copy: 
long fType; // array[l .. 4] of char: 
int vRefNum; 
int version; 
unsigned char fName[64]; 

SFReply; 

The fName field contains a "partial pathname" for a file. This is a fancy term that 
simply refers to the file name without its hierarchical information. Consider the file Z 
in Figure 10-4. Z is the partial pathname (the file name) of this file, whose full 
pathname is X:Y:Z. 

In the MPS, SFGetFile returns the file's volume reference number in the vRefNum 
field of the SFReply structure. This value and the file name are all that's needed to 
specify a file. The MPS has no directories: That folders seem to be offshoots of the 
volume's root directory is sleight of hand, mere trickery perpetrated by the File 
Manager. 

223 



MACINTOSH C PROGRAMMING BY EXAMPLE 

In the HFS, SFGetFile returns the file's working directory reference number in the 
vRefNum field. This value is analogous to the volume reference number but refers to 
the directory that contains the file, not to the entire volume. Figure 10-5 illustrates 
the working directory concept. 

-------
/ ~ ,- - - - - - - - - --

,,----------"\ 
-------

l"°xcl 

Figure 10-s. 
A working directory. Using a working directory is like using a logical volume. 
In this case, Z is the working directory. 

Flies 
A little icon in the desktop represents the collection of blocks of raw information 
known as a file. A Macintosh file is really two files in one: It has two "forks," the 
resource fork and the data fork. The file's resource fork is a collection of resources 
that are accessed by means of Resource Manager routines. The data fork is generally 
used to hold application data. Its contents are application specific. 

If you've done any programming before, you're probably familiar with the concept 
of a file's data fork. In environments like UNIX or MS-DOS, the data fork is the file: It 
holds application-specific data in an application-specific format. Unique to the Mac­
intosh is the resource fork. It contains resources-font bitmap data, dialog box tem­
plates, window templates, conversion tables, strings, and, if the file happens to be an 
application, the application's code segments-in an Apple-specified format. 

The Resource Manager is actually a small database manager, so the format of a 
resource file is designed to facilitate speedy access of a resource. This quick access is 
what helps the Mac achieve its responsive user interface. 

The Resource Manager provides a structured programming interface to a resource 
fork. Using its routines, the Resource Manager can retrieve an individual resource 
with its "resource specification": a four-character key, called the "resource type," and 
a resource number. The resource number is a signed integer that uniquely identifies 
resources of the same type and also has an intrinsic meaning. A resource number in 

224 



10: THE MACINTOSH FILE SYSTEM 

the range -16384 through 127 indicates that the resource is a system resource; a 
resource number greater than 127 indicates that the resource is an application 
resource. 

The resource type is defined as a packed array of four characters, and in THINK C is 
specified as a string between single quotes, as in 'ALRT'. Common Macintosh 
resource types are shown in Figure 10-6. 

Type Description 

'ALRT' Alert box template 

'BNDL' Finder bundle 

'CNTL' Control template 

'CODE' Code segment 

'DITL' Dialog box item list 

'DLOG' Dialog box template 

'DRVR' Desk accessory 

'FOND' Font family 

'FONT' Font data 

'ICN#' Icon list 

'ICON' Icon 

'MBAR' Menu bar 

'MENU' Menu template 

'PICT' Picture 

'STR#' String list 

'vers' Version data 

'WIND' Window template 

Figure 10·6. 
Common Macintosh resource types. 

Data fork and resource fork, a file is an ordered list of bytes with a beginning and an 
end, and therefore the data contained in the file has a size, in bytes. Each byte in a 
file is addressable as an offset from the beginning of the file. 

Macintosh documentation calls this offset the file's "mark." If the mark is at offset 0, 
a read operation will begin with the first byte in the file. When the mark is at the last 
byte in the file, it is the end-of-file (eof) mark. A write operation will append char­
acters to the file and therefore expand the file size. The eof mark follows the last 
byte of the file. Figure 10-7 on the next page illustrates the concept of a file as an or­
dered stream of bytes. 

225 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Beginning of file: 
OffsetO Offset8 

I I 

End of file 

us ilnlgl 1 lrlelxlt1Eldl It 1. 111 
I 

Offset3890 Offset3899 

Figure 10·7. 
A file as a stream of bytes. Each byte is addressable as an offtet from the 
beginning of the file . 

............ 
The format of a file's data fork is defined by the applkation's d .. ers, ·· 
Some file formats are matters of public record, like Excel's Sylk file f9nn,at, 
but most file formats are closely guarded secrets. Why ~e so many~Jor,.. 

mats kept secret? . ·.•.. .• . .•··· .·> ... •. > . ·· " 

Market share. Th.ink of it from the softwatep).l!llisher's.~lt)i:.ofv.l~ .. ·. ··~··· .·· .. 
your company sells the leading wazoo processing prog~ with an~Ied 
base of one million users, all busy creating files in your'proprietary•.~ttilat. 
What if your main competitor comes up with~ better p~ Wiia · 
vent those million users from jumping sh!p to your j~p~it<>l'.~~ 
before you have the chance to sell them yotit new and improved v • 

The answer is those hundreds of files they've already created in your. secret 
format. The competition's product can't read those files, and pe • · · · 't 
walk away from their old data any more e~ly than. they~~ walk j:ntj ·· .. 
their computers. How many disks do you have in youll>ossession •t!jli•¢iilri'f • 
be read by the computers you now own? · · ·· 

It's probably safe to say that every new application that ltjts the sJ::i.'4:~ ii) 
your local software store has a unique data format. · •Ji;;: : 

Of course, a smart company that's not in .a market l~ing· pa~.. 'Mit 
discover that it's wise to publish its progf!Ull'S file format. The adO(>ji.00. of 
that format by others (even if only to read in information) will lead·~i\iidel:' 
recognition and support for the product. · · ;•(;f • • 

,, ~,;::;~~·~~1'.:J%;1.:: ,' ' 

226 



10: THE MACINTOSH FILE SYSTEM 

Although you can think of a file as a stream, its data is really held in "allocation 
blocks," which on a floppy disk are fixed-sized multiples of 512 bytes. As a file 
grows, more 512-byte blocks are allocated to it. Depending on the file's length, there 
can be unused bytes in a file's last block, after the eof mark. If a hypothetical file foo 
contained exactly 3900 bytes of data, the file would actually take up 4096 bytes, or 
eight allocation blocks, on disk. The file's size would cause the waste of 196 bytes in 
the file's last allocation block. If you checked the Get Info dialog box for the file, it 
would report the file's size along these lines: "3900 bytes used, 4K on disk." 

To reconcile this difference, Inside Macintosh differentiates between the logtcal end 
of file, which is at byte 3900 in our example, and the phystcal end of file, which is the 
number of bytes occupied by the blocks allocated to the file-4096 in our example. 
Figure 10-8 illustrates such a file's allocation. When we. refer to the eof, we mean the 
logical eof because it tells us the actual size of the file. 

a n d d i 5 

f i I e ' 5 

i n g T e x 

Figure 10·8. 

p I a 

c 0 n 

t E d 

y 

t e 

i t 

a t 

n t 5 

Logical 
end of file 

The last block of a file is usually only partially filled. 

The File Manager 

e x t 

u 5 

1 
T 

Phye;lcal 
end of file 

The File Manager, responsible for this file and folder hocus-pocus, is probably the 
most powerful of all collections in the Toolbox. But this power comes at a high cost. 
The File Manager documentation is confusing, contradictory, and voluminous-four 
ways to specify a file, three variants of the standard 1/0 parameter block, two levels 
of using the Manager, and more information than one person would want to know 
about any file system. A user might find navigating through the file system itself a 
breeze. A programmer can find working his or her way through the File Manager 
documentation a real ordeal. 

For a novice programmer, the worst choice is the low-level interface to the File Man­
ager. These routines are distinguished from the high-level routines by the prefix PB, 
as in PBRead, PBWrite, and PBGetEOF. The PB reminds us that we're using a variant 
of the Device Manager parameter block to pass data in and out of the routines. 

To add to the confusion, when the new hierarchical file system was introduced, each 
primary routine had its matching hierarchical routine. So, we have a PBOpen and a 
PBHOpen; we have a PBGetFinfo and a PBHGetFinfo. The H, of course, stands for 
"hierarchical." 

227 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The interface to these routines is based on the concept of a variant record parameter 
block, implemented with a union in C. You use one of three variants of the parame­
ter block, your selection depending on which File Manager routine you're calling. 
The input requirements are different for each routine. 

The parameter block contains everything you want to know about a volume, file, or 
access path, depending on the variant. Each PB routine has its own set of input and 
output parameters of interest, so you can't work with these routines without a copy 
of Inside Macintosh open on your desk. Even then, you're in deep muck. 

Figure 10-9 is an excerpt from the documentation for the call PBHGetF!nfo, which 
returns file system information about a file in the hierarchical file system. It should 
give you a feel for the low-level documentation. 

OSErr PBHGetFinfo C HParamBlkPtr paramBlock, Boolean asynch ); 

Parameter Block 

--> 12 ioCompletion pointer 
<-- 16 ioResult word 
<-> 18 ioNamePtr pointer 
--> 22 ioVRH~um word 
<-- 24 ioFRefNum word 
--> 28 ioFDirlndex word 
<-- 30 ·. ioFlAUrib byte 
<·- 32 i oFl Fndrlnfo 16 bytes 
<-> 48 i oDi rlD long word 
<-- 52 ioFl StBl k word 
<-- 54 i oFlL!}J:,en long word 
<-- 58 ioFlPyLen 1 ong word 
<-- 62 ioFl RStBl k word 
<-- 64 ioFlLgLen long word 
<-- 68 ioFlRPyLen long word 
<-- n 1 oFl CrDat long word 
<-- 76 1oF1MdDat long word 

Figure 10·9. 
PBHGetFinfo documentation excerpted from Inside Macintosh. 

Note the arrows. The ones that point east(-->) specify inputs to the routine. The 
ones that point west (<--) specify outputs. The ones that point both ways (<->) 
specify data that passes in and out of the routine, whatever that means. 

228 



10: THE MACINTOSH FILE SYSTEM 

Which variant of the parameter block do you use? Notice the Fl in the names of the 
fields ioFIAttrib, ioFlLgLen, ioFlCrDat, and so on. This Fl, and the fact that you're get­
ting file information, is the tip-off that you use the fileParam variant. The other two 
variants are ioParam to access open files and volParam to return volume 
information. 

Look at the numbers column's 12, 16, 18 .... These numbers are offsets of the fields 
from the beginning of the structure, which should tip you off-these calls are for 
assembly language programmers. If you're going to do your work down here, you'd 
better know what you're doing. 

PBHGetF/nfo returns a hodgepodge of data about the file: the open file's number 
and its directory number, data about the file's Finder Information in the ioFlFndrlnfo 
field, the file's data and resource fork sizes and logical and physical end-of-file marks, 
and the file's creation and modification times. 

Our problem with this low-level File Manager interface is that it's really a Device 
Manager interface, and, as proponents of layered design, we believe that applica­
tions should not be mucking around with devices. 

Fortunately, there is an alternative: the high-level interface to the File Manager. For 
most applications, the high-level interface routines are sufficient, and they're easier 
to use. These are the routines that don't begin with PB. Some begin with the prefix 
FS, as in FSOpen, FSRead, and FSWrite. Others are named according to their actions, 
as in Create, GetEOF, and SetVol. 

The high-level interface provides 75 percent of the functionality of the low-level 
interface, and its procedures are easier to understand. The routines are more specific 
and therefore more modular-you won't be getting a lot of data that you won't use. 
For example, GetFinfo, which returns the Finder information data in the Flnfo data 
structure and whose declaration is shown in Figure 10-10, returns the same data 
found in the ioFIFndr!nfo field of the ioParamBlk. 

OSErr GetFinfo < Str255 filename, int volRefNum •. 

typedef struct Flnfo 
{ 

OSType fdtype, 
fdCreator; 

int fdlqags: 
Point fdlocatfon: 

Figure 10·10. 
GetFinfo declaration. 

229 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Flndl119 the Free Space 111 • YoJ••• 
Sometimes you have to use the low-level File Manager. If your application 
needs to know the amount of available space on a disk, it has tg get ~ 
volume information. The volume record; which resides on block 2 of die 
disk, contains information such as the volume name, the number of files in 
the volume, the block size of the volume, and the number of block$ in ~ 
volume. Access to this data is by means of the PBHGetVIn/o routine, which is 
a low-level File Manager routine. PBHGetVIn/o returns data in a hierarchiQll 
volume information parameter block. The fields ioVFrBlkand ioVAlBlkStzlb. 
the parameter block contain the number of free blocks and the block size. 
You multiply these values to get the total number of free bytes in a volume:~ 
This code fragment shows how to get the available bytes: 

unsigneq long 
HParamBlockRec 
OS Err 

sizeAvail, blkSize, freeBlks: 
bl k: 
err: 

I• initialize parameter block •/ 
blk.volumeParam.ioCompletion = 0L: 
blk.volumeParam.ioNamePtr = 0l: 
blk.volumeParam.ioVRefNum = volRefNum: 
blk.volumeParam.ioVollndex = 0: 

err= PBHGetVInfo C&blk, false): // get the volume information 

I• do everything as long arithmetic •/ 
sizeAvail = 0L: 
if (err == noErr) 
{ 

freeBlks = blk.volumeParam.ioVFrBlk: 
blkSize = blk.volumeParam.ioVA1BlkSiz: 

sizeAvail = freeBlks * blkSize; 

The initialization of the parameter block determines where PBH~tVIn.frl, 
searches for the data. If the value of the toVollndex field is 0, as .it is ttitbe ··~· 
ample we show here, PBHGetVIn/o uses the volume reference number, passec,l 
in io VRefNum, to access the volume. 

Using the File Manager 
Users of most applications will want to create a file, write some data in it, and close 
the file. Later the user will want to read the data in the file. In Figures 10-12 and 10-13, 
we'll show code that performs the basic File Manager routines using the high-level 
interface and the low-level interface. 

230 



10: THE MACINTOSH FILE SYSTEM 

When the user creates a new file, the application still needs to open it in order to 
write the data. In Figure 10-11, createFileFS() uses the high-level interface to the File 
Manager to create a file, open it, and return a file reference number. The file creator 
is 'KWGM', and the file type is 'TEXT'. 

Notice that createFileFS() always checks the return values of the File Manager rou­
tines, which are placed in the local variable err. This error checking is important. 
Many things can go wrong with File Manager calls that create files or that otherwise 
modify data in a volume: The disk could be locked, the volume could be locked, the 
directory could be full, the disk could be full, and so on. We'll present a general pur­
pose File Manager error handler in the next chapter. 

createfileFS--uses high-level File Manager routines to 
create a file specified by fileName and volRefNum, 
open the file, and return a file reference number. 
Returns -1 if failed. 

*' short 
createFileFS (StringPtr fileName, short volRefNum) 
{ 

} 

short fileRefNum: 
OS Err err: 

fileRefNum = -1: 
if (err= Create CffleName, volRefNum, 'KWGM', 'TEXT')) 
{ 

/* process error */ 
} 

else 
{ 

} 

if <err = FSOpen (fileName, volRefNunt, &fHeRefNum)) 
{ 

/* process error *' 
} 

return (fileRefNum); 

Figure IO· 11. 
createFileFS uses the high-level interface to the File Manager routines to 
create a file. 

In Figure 10-12 on the next page, createFilePB() uses the low-level interface to the 
File Manager, which calls for much more code. The parameter block has to be initial­
ized with the file name and the volume reference number that were passed to the 

231 



MACINTOSH C PROGRAMMING BY EXAMPLE 

function as parameters. We also have to set the function pointer ioCompletion to 
null. If this value were nonzero, the File Manager would treat the value as a function 
pointer and try to execute at this location. 

When we use the low-level interface, we have to explicitly set the file signature data, 
but, before we can set the information, we must get the existing information with 
PBGetF!nfo. This initializes the parameter block so that all values are correct when 
we write it back with PBSetF/nfo. 

createFilePB--uses low-level File Manager routines to 
create a file specified by fileName and volRefNum, 
open the file, and return a file reference number. 
Returns -1 if failed. 

*f 
short 
createFilePB (StringPtr fileName, short volRefNum) 
{ 

short fileRefNum: 
OSErr err: 
ParamBlockRec filePB; 

fileRefNum = -1; 

filePB.ioParam.ioCompletion = 0L: 
filePB.ioParam.ioNamePtr = fileName; 
filePB.ioParam.ioVRefNum = volRefNum: 
filePB.ioParam;ioVersNum = 0:· 

if (err = PBCreate (&filePB, false)) // create the file 
{ 

else 
{ 

f* process error *f 
return (err); 

filePB. ioParam. ioNamePtr = fileName: 
filePB.ioParam.ioVRefNum = volR~fNum: 
filePB.ioParam.ioVersNum = 0: 
filePB.ioParam.ioCompletion = 0l; 
filePB.ioParam.ioPermssn = fsWrPerm; 
filePB.ioParam.ioMisc = 0L; 

Figure 10·12. (continued) 
createFilePB uses the low-level (parameter block) interface to the File 
Manager routines to create a file. 

232 



10: THE MACINTOSH FILE SYSTEM 

Figure 10·12. continued 

} 

if (err = PBOpen (&filePB, false)) 
{ 

/* process error */ 
return (err); 

I* set up fcb for Finder Info *' 
filePB.fileParam.ioFVersNum = 0: 
filePB.fileParam.ioFDirlndex = 0: 

if (err = PBGetFinfo C&filePB, false)) 
{ 

/* process error */ 
return (err); 

/* set file type and creator */ 
filePB.fileParam.foFlFndrlnfo.fdType = 'TEXT': 
filePB.fileParam.ioFlFndrlnfo.fdCreator = 'KWGM': 
filePB.fileParam.ioFlFndrlnfo.fdFlags = 0: 

if (err = PBSetFinfo C&filePB. false)) 
{ 

} 

I* process error *I 
return Cerr); 

return (fileRefNum>: 

Writing the file is simply a matter of calling PS Write or PB Write using the open file's 
reference number. Figure 10-13 shows how to write the file using the high-level 
i.nterface. 

'* 

*' 

writeFileFS--uses high-level File Manager routines to 
write the size in bytes from the buffer to the file 
referred to by fi 1 eRefNum •. Retu.rns t.he•>number of · 
characters written if OK; eFror if not OK. 

Figure 10·13. (continued) 
Writing data to a file using the high-level interface to the File Manager routines. 

233 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 10·13. continued 

short 
writeFileFS (short fileRefNum, Ptr buffer, long size) 
{ 

OS Err err: 
1 ong nw: 

nw = size: 

err= FSWrite (fileRefNum, &nw, buffer): 
if Cnw != size II err) 
{ 

I* process error *I 
nw = err: 

return Cnw>: 

Figure 10-14 shows you how to write the file using the low-level interface. 

I* 
writeFilePB--uses low-level File Manager routines to 

write the size in bytes from the buffer to the file 
referred to by fileRefNum. Returns the number of 
characters written if OK: error if not OK. 

*I 
short 
writeFilePB (short fileRefNum, Ptr buffer, long size) 
{ 

OSErr err: 
long nw: 
ParamBlockRec filePB: 

filePB.ioParam.ioCompletion = 0L: 
filePB.ioParam.ioRefNum = fileRefNum: 
filePB.ioParam.ioBuffer =buffer; 
filePB.ioParam.ioReqCount =size: 
filePB.ioParam.ioPosMode = fsFromMark: 
filePB.ioParam.ioPosOffset = 0L: 

Figure 10·14. (continued) 
Writing data to a file using the low-level interface to the File Manager routines. 

234 



10: THE MACINTOSH FILE SYSTEM 

Figure 10·14. continued 

} 

err = PBWrite C&filePB, false): 

if Cfi1ePB.1oParam. ioReqCount I= size II err> 
{ 

} 

I* process error *I 
nw = err: 

return Cnw>: 

There is a third, THINK C, alternative to the low-level interface. The THINK C com­
piler supports the full ANSI C stdio library. This library has more functions than the 
high-level routines and is handy if you want your I/0 modules to maintain com­
patibility with non-Mac systems. These are the routines based on the standard file 
streams. THINK C provides the same interface routines you'd find in a UNIX or MS­
DOS environment, along with source code. Studying the source code is a great way 
to learn about the low-level File Manager interface. 

In the next chapter, we'll look at Browser, a file browser that uses the File Manager 
routines to read files on disk. You'll see examples of how to read both the data fork 
and the resource fork. 

235 



11 

BROWSER: OUR 
CULMINATING 
APPLICATION 

In the last chapter, we saw how the File Manager interacts with the hardware at one 
end and with programs at the other to create the illusion of the Macintosh's hier­
archical file system. Because of the volume of File Manager information, Chapter 10 
had to have a theoretical slant. In this chapter, we'll put theory into practice, using 
the File Manager to support the foundation of our handy file viewing utility, Browser. 

Browser can open any file in the desktop-even those files represented by the 
generic desktop icon. Browser can open files in two modes: In the text mode, it 
opens ASCII files and displays them using TextEdit; in the binary mode, it opens any 
file, either its data fork or its resource fork, and has a debuggerlike interface. 

Browser is based on the multiple window generic application multiGeneric of Chap­
ter 7 but also uses the scroll bars of Chapter 8 and the Standard File Package de­
scribed in Chapter 9. Browser is the "thesis" application of this book-it combines 
all the skills we've discussed so far into a single application. 

In the beginning of this chapter, we'll revisit the Standard File Package to see how to 
limit SFGetFile's file list to text-only files. Then we'll see how to use the File Manager 
routines in an application. Finally, we'll look at Browser's implementation of the two 
display modes, text and binary. 

237 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Inside Browser 
Browser 's main task is to display a file's contents. In order to do that, it needs to 

• put up SFGetFile for file selection 

• open the selected file 

• read some of the file data into a document buffer 

• set up a document according to viewing mode and display it in response to an 
update event 

In text mode display, the file's data has no format and appears as it would in any edi­
tor. Figure 11-1 shows text mode output. 

Figure 11-1. 
Browser's text 
mode display. 

D RboutBOH.C 
I* *************************************•*************************************** 
FILE : AboutBox . c 

DESCRIPTION : AboutBox utilities 

AUTHOR : Kurt W. G. t1attbies 

Copyright © 1990 by Kurt W.G. t1atthies, All Rights Reserved. 

Revision History : 

Spring 1991 - Version 1 . O 

¢J 

E!ll 

Browser 's binary mode display is evolved from a long line of file dump utilities: 
UNIX's od, CP/M's DUMP, and MS-DOS's DEBUG. Browser displays 256 bytes, 16 
lines of three columns each, of the file at a time. Figure 11-2 shows an example of 
Browser's binary mode output. 

Figure 11 ·2. 
Browser's binary 
mode display. 

238 

D RboutBoH.C 
Browser 2 . o Data .fork 3824 bytes 

00000 2F 2A 20 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A I* ************* 
00010 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A ****'*'*********** 
00020 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A **************** 
00030 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A ****"'*********** 
00040 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A **************** 
00050 OD 09 46 49 4C 45 3A 20 09 09 09 41 62 6F 75 74 .. FILE: .. . About 
00060 42 6F 78 2E 63 OD 09 OD 09 44 45 53 43 52 49 50 Box.c. ... DESCRIP 
00070 54 49 4F 4E 3A 20 09 41 62 6F 75 74 42 6F 78 20 TIOll : .About.Box 

00080 75 74 69 6C 69 74 69 65 73 OD OD 09 41 55 54 48 utilities . .. la.tl'l'}( 

00090 4F 52 3A 09 09 09 4B 75 72 74 20 57 2E 47 2E 20 OR: .. . Kurt W. G. 
OOOAO 4D 61 74 74 68 69 65 73 OD 09 09 OD 09 43 6F 70 tfe.tthies. . .. . Cop 
OOOBO 79 72 69 67 68 74 20 A9 20 31 39 39 30 20 62 79 yright 1990 by 
oooco 20 4B 75 72 74 20 57 2E 47 2E 20 4D 61 74 74 68 Kurt W.G. tt.tth 

OOODO 69 65 73 2C 20 41 6C 6C 20 52 69 67 68 74 73 20 ieos , All Rights 
OOOEO 52 65 73 65 72 76 65 64 2E OD OD 09 OD 09 52 65 Res•rved. ..... Re 

OOOFO 76 69 73 69 6F 6E 20 48 69 73 74 6F 72 79 3A OD vision History : . 

=·l 

'"" 
!1':1:m1'1:1' 
,, 
!:; 



11: BROWSER: OUR CULMINATING APPLICATION 

In the far left column in the window, Browser displays the current file offset relative 
to the beginning of the file. To the right of the offset, the file's data is displayed 
twice: In the center column, Browser displays the bytes in hexadecimal format, 16 
characters to a line; on the far right, Browser repeats the line in ASCII form, display­
ing nonprintable characters as dots. 

The underlying scroll engine differs for the two display modes. In text mode, 
Browser scrolls a line at a time, so Browser's curScroll tracks the line number and 
maxScroll contains the total lines of text. In binary mode, Browser scrolls one page 
at a time. Browser's curScroll value therefore tracks the page number, and max­
Scroll contains the total pages. 

Data buffering also differs in the two modes. In text mode, Browser reads all of the 
file's data into a TextEdit structure and stores the corresponding TEHandle in the 
contentHdl field of the Doc structure. 

Using TextEdit for display has a built-in limitation. According to Inside Macintosh, a 
TextEdit structure has a 32,000-character limit. Browser's text mode simply accepts 
this limit: It truncates the file to 32,000 bytes, ignoring any file data that's over the 
limit. Use of Browser's text mode for editing is of course limited to files of the size 
Browser can view in text mode. We'll leave it to you readers to figure out how to ex­
tend the text editing capabilities of Browser. (Hint: Arbitrarily split files into smaller 
chunks, and make separate TextEdit structures for each chunk. Manage the chunks 
so that the seams between them are invisible to the user. Alternatively, rewrite 
Browser's binary mode code so that it uses TextEdit to display a file, a page at a 
time.) 

Browser's binary mode has no such character limit. In binary mode, Browser buffers 
a screen of characters-256 at a time. When the user scrolls the document forward, 
Browser reads the next 256 characters according to the scrolled document's position. 
As the user scrolls the document backward, Browser reads the previous 256 charac­
ters. The buffering process is quick, and, because the buffer is small, the binary 
mode requires only a little space for each open document. 

Selecting File Types: File Signatures 
In binary mode, Browser can open either fork of any file. In text mode, Browser 
opens only the data fork of an ASCII file. 

The file system maintains file identification data-called the file signature-for 
each file in a directory. The data consists of the file's creator and the file's type. The 
file creator value identifies the application that created the file; the file type value 
identifies the kind of data the file contains. This information binds an icon to the file. 
Finder keeps the information for every file in the desktop. In System 7.0, the informa­
tion is kept in the "desktop database." 

239 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The signature data is of type OSType, which is 4 characters packed into two words, 
defined in THINK C as a long. An OSType string of characters does not have a count 
byte, as do Pascal formed strings, nor is it null terminated, as C strings are (called 
ASCIIZ strings in MS-DOS documentation). You can define an OSType token string 
with the THINK C compiler by using the single quotation mark('), as in 

'KWGM' 

which the compiler translates into the 32-bit hexadecimal long word 

0x4B57474D 

You would declare a null-terminated C string with double quotation marks, as in 

"KWGM" 

This string translates into the 5-byte, null-terminated hexadecimal sequence 

0x4B 
0x57 
0x47 
0x4D 
0x00 

Reglsterln9 Fiie Sl9natures 
An application developer must register his or her application's file creat()t 
and type with Apple, who makes sure that no two applications share the 
same combination of file creator and type. You can express these values in all 
uppercase characters or in a combination of uppercase and lowercase chat., 
acters. File signatures expressed in all lowercase characters are reserved for 
Apple's use. Examples of some standard file types and signatures are shown 
in the table below. 

Application file Creator fileJYpe 

System MACS ZSYS 
Finder MACS FNDR 
MacWrite MACA APPL 
MacPaint MPNT 
MS Word MSWD 
PageMakeP AID3 
Tycho T~ble Maker Tyco 

and later 

Common file signatures. 

240 



11: BROWSER: OUR CULMINATING APPLICATION 

You declare a Pascal string with double quotation marks and the \ p token, as in 

"\pKWGM" 

and this string translates into the 5-byte sequence 

0x04 
0x4B 
0x57 
0x47 
0x4D 

When it's in text mode, Browser is interested in files of type 'TEXT'-text or ASCII 
files. Browser doesn't care who the creator of the file is. The file creator value simply 
identifies the application that created and therefore "owns" the file. The Finder uses 
the file creator value to launch a file's associated application when you double-click 
on a data file's icon. 

Selecting a File-Revisitecl 
In Chapter 9, we used the Standard File Package to put up the familiar Open dialog 
box that enables the user to navigate the file system and select a file. Browser also 
uses the SFGetFile dialog box, which appears as a result of the SFGetFile routine. 

Chapter 9's Loser required some modifications in the SFGetFile dialog box for its two 
radio buttons. Browser will use the same modified radio buttons for the user's selec­
tion of its text and binary display modes. Browser will use the result of the button 
mode selection to filter the file names that will appear in the dialog box's list box. 

In text mode, Browser is interested only in 'TEXT' files and therefore displays only 
'TEXT' files in its list box. This file filtering behavior is typical of all Macintosh appli­
cations. Our Tycho Table Maker application is interested only in its native table file 
type, 'Tabl' files; Microsoft Word can open its native file type (type 'WDBN'), Mac­
Write files (type 'WORD'), and MacPaint files (type 'PNTG'). 

The SFGetFile routine supports file filtering by type through its typelist argument. 
You tell the SFGetFile routine which file types you're interested in, and the Standard 
File Package displays file names of only that type in the SFGetFile list box. Here's 
how it's done: 

SFTypelist 
short 

typelist; 
numTypes: 

typelist [0] = 'TEXT'; II TEXT type 
numTypes = 1: II one type only (can be up to 4) 

SFGetFile CaPt, promptStr, 0L, numTypes, typelist, ... 

Browser therefore has no need of the file filter hook proc, as Loser did in Chapter 9. 

241 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Opening a Fiie 
Once the user has selected a file in the Browser SFGetFile dialog box, Browser's next 
step is to use the File Manager to get the file's data, or "read" the file. But remember 
from Chapter lO's discussion of the File Manager that, before you can read a file's 
data, you must first open the file, which sets up an access path to the file. 

When the user selects the Open button in the SFGetFile dialog box, SFGetFile fills an 
SFReply record with the name and the volume reference number of the selected file. 
Browser uses this information to open the file. 

Regardless of whether you're using the MFS (unlikely, but it's always a good idea to 
support the widest user base possible) or the HFS, the values returned in the SFReply 
record are all that the application needs to open the file. We've mentioned this 
before, in Chapter 10, but it's important enough to repeat: In the MFS, the volume ref­
erence number is a true volume reference number; in the HFS, the volume reference 
number is a working directory reference number. Both kinds of references, when 
used with the partial pathname returned in the fName field of the SFReply structure, 
specify a file in a volume. 

Browser uses the function openFile() in the source file FileUtil.c to open either file 
fork-the resource fork or the data fork-for reading. Called from the Open menu 
command, openFtle() is passed a pointer to a FileParams structure. 

Browser uses the FileParams structure to pass information into and out of the File 
Manager utility routines such as openFile(). On entry to openFtle(), FileParams con­
tains the partial pathname and volume reference number that were acquired from 
the SFReply structure. On exit, FileParams contains the open file reference number 
and the file length. 

openFile() performs three standard file system tasks: 

1. First, it opens either the resource fork or the data fork of the file. Browser's 
user interface routine, doGetFile(), sets a bit in the attributes field of the Doc­
Params, based on the user selection. openFile() checks this bit and calls either 
FSOpen, which opens the file's data fork, or OpenRF, which opens the file's 
resource fork. 

2. Once the access path is established, openFile() gets the file's size with GetEOF 
and stores the size in the FtleParams structure. GetEOF is a File Manager rou­
tine that returns the logical end-of-file position. 

3. Finally, openFile() sets the file mark to the beginning of the file with FSSetFPos, 
the File Manager routine that changes the position of the file mark. Figure 11-3 
shows the code for openFile(). 

242 



11: BROWSER: OUR CULMINATING APPLICATION 

*' 

openFile--opens a file, gets the file size, seeks to the 
beginning of the file, and return1 the file 
reference number 6.20.90kwgm 

OS Err 
openFile CDocParamsPtr docParams) 
{ 

OS Err 
long 
short 
Str64 

err: 
fSize: 
vRefNum; 
vol Name: 

Fi 1 eParams 'l<fi 1 eParams: 

fileParams = &docParams->fileParams: 

I* open the file *f 
if (docParams->attributes & kDocDataFork) 
{ 

} 

if (err = FSOpen (fileParams->fileName, fileParams->volRefNum, 
&fileParams->openFileRefNum)) 

doFileCantAlert (fileParams->fileName, kOpen, err, 
kNulPascalStr>: 

return (err>: 

else II resource fork 
{ 

} 

if (err= OpenRF (fileParams->fileName, fileParams->volRefNum, 
&fileParams- >open Fi 1 eRefNum)) 

do Fil eCantA 1 ert ( fil eParams->fileName, kOpen, err, 
kNulPascalStr): 

return {err): 

I• get the file size *' 
if (err = GetEOF (fileParams->fileRefNum, 

&fileParams->fileSize)) 
{ 

doFileCantAlert (fileParams->fileName, kOpen, err, 
kNul PascalStr): 

Figure 1 1 .3. (continued) 
openFile() from FileUtil.c. 

243 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 11 ·3. continued 

FSClose CfileParams->fileRefNum): 
return Cerrl: 

/* set the mark to the beginning of the file */ 
if (err = SetFPos CfileParams->fileRefNum, fsFromStart, 0L)) 
{ 

} 

doFileCantAlert (fileParams->fileName, kOpen, err, 
kNulPascalStrl: 

FSClose (fileParams->fileRefNuml: 
return (errl: 

return (noErrl: 

I* openFile */ 

Error Handling 
We hope that you noticed the calls to doFileCantAlert(), which openFile() calls 
whenever it detects a File Manager error-that is, whenever the return value of a 
File Manager routine is nonzero. Checking the return value of File Manager routines 
is good, defensive programming-so many things can and do go wrong. 

File errors during a file open come in various kinds: damaged medium errors, bad 
directories, too many files open, errors in name or number, and a host of other prob­
lems. If you ignore these errors, you'll create a chain of bugs that will eventually 
cause your program to crash. If you program defensively by checking the result code 
of each File Manager routine, your program can notify the user of the error and back 
out of the problem gracefully. 

The functions of the File Manager return an OSErr value, which is typed as a short 
integer. This numeric value is a token that represents a file system error. The File 
Manager returns noErr, which is equal to 0, at the successful completion of a rou­
tine, but a host of negative values are possible when things go bad. Symantec ships 
the OSErr tokens as values in the header file Files.h. Figure 11-4 shows some errors 
an application could encounter during an open operation. 

We've developed a set of routines that deal with file system errors. You'll find them 
in the source file FileErr.c. The function doFileCantAlert() is the programming inter­
face to these utility routines. They work in conjunction with a string list resource 
(STR# 104) in the application's resource file. get/OErrStr() in FileErr.c translates a File 
Manager error number to one of these strings. doFileCantAlert() calls get!OErrStr() 
to map the error value returned by a File Manager routine into a string. 

244 



11: BROWSER: OUR CULMINATING APPLICATION 

Tole en 

dirFulErr 

dskFulErr 

nsvErr 

ioErr 

tmfoErr 

wPrErr 

tLckdErr 

vLckdErr 

volOftLinErr 

permErr 

Figure 11·4. 

Value 

-33 
-34 
-35 
-36 
-42 

-44 
-45 
-46 
-53 
-54 

Description 

Directory is full 

Disk is full 

No such volume 

Miscellaneous I/0 error 

Too many files are open 

Disk is write protected 

File is locked 

Volume is locked 

Volume is offline 

No permission to open 

File Manager OSErr token values and their meanings. 

Using the doFileCantAlertO interface involves calling a single function that accepts 
four arguments: 

1. You pass the name of the file in which the error occurred as the first argument. 

2. You pass a token that describes what operation was attempted as the second 
argument. The tokens, defined in the header file StrRsrcDefs.h, come from the 
list kOpen, kClose, kRead, kWrite, and kControl. 

3. You pass the error token returned by the File Manager routine as the third 
argument. 

4. You pass a pointer to any additional string that you want to display to the user 
as the fourth argument. You might put the name of the calling function in this 
argument as a way of tracing program flow, for example. If you don't want to 
use this argument, pass the empty pascal string pointer, "\p". Be advised: This 
is not the null pointer, OL, but a string whose first element is equal to 0. 

The doFileCantAlert() routine translates the four arguments into the four ParamText 
values: 

AO The operation string gets displayed. doFileCantAlert() translates its second argu­
ment into a string that describes the operation. 

AJ The first argument,.fileName, gets displayed. 

/\2 The error string gets displayed. doFileCantAlert() calls get/OErrStr(), which digs 
a string out of the STR# 104 resource that describes the File Manager error value. 

/\ 3 Your discretionary string gets displayed. 

Figure 11-5 on page 247 shows the code for doFileCantAlert(). 

245 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Using Paraml'ext in a Dialog Box 
The doFileCantAlert() dialog box takes advantage of the Dialog Manager 's 
parameter-text substitution utility. In a process similar to the one UNIX shell 
programmers know as "parameter substitution," this feature of the Dialog 
Manager allows your program to change the usually static text strings in a 
dialog box. You initialize the strings with the routine ParamText. 

ParamText works this way: If any of a dialog box's text items contains the 
string AO, Al, /\2, or "3, the Dialog Manager replaces that string with one 
specified by ParamText. The order of the arguments to ParamText defines 
how the strings are substituted: The Dialog Manager substitutes ParamText's 
first argument in place of the AO string, its second argument in place of the "l 
string, its third argument in place of the /\2 string, and its fourth argument in 
place of the "3 string. This substitution is shown below. 

i§D;; Dill "10 Eff" ID= 1001 from Browsenr. -

A\. Can't ' O the file: 

ill ' 1 

Reason: 

' 2 ' 3 

• 

;;O;; Dill "ID Err" ID= 1001 from Browsern. ==== 
A\. Can't Open the file: 

ill Foo 

Reason: 

File not found. 
openFile 

Parameter substitution with ParamText. 

The second screen is derived from the first after your program calls 

ParamText ("\pOpen", "\pFoo", "\pFile not found", "\popenFile"l; 

246 



11: BROWSER: OUR CULMINATING APPLICATION 

< */ 
void 

dofileCantAlert--puts up the can't open/close/readadvisory: prints 
other relevant information if supplied: passes null 
pstri ngs for fi 1 eName: i nfoStr if n.ot used 

5.28.90kwgm 

doF1leCantAlert CfileName, whatOp, reason, infoStr) 
StringPtr fileName, infoStr: 

{ 
short whatOp, reason: 

DialogPtr 
Str255 
short 
Graf Ptr 
Handle 
Re ct 

theDialog: 
errStr, whatStr: 
theltem, id, itemType: 
savePort: 
buttonHdl: 
box: 

GetPort C&savePort): 

I* get the operation string •/ 
GetlndString CwhatStr, kIOMsgStrID. whatOp); 

if (theDialog = GetNewDialog CkIOErrDLOG, 0L, -ll)) 
{ 

Sys Beep C 1): 
GetDitem Cthe01alog, kOutl1neButton, &1temType, &buttonHdl, &box): 
SetDitem Cthe01alog, kOut11neButton, 1temType, buttonProc, &box);. 

} 

I• build error string •/ 
getIOErrStr (errStr, reason): 
ParamText CwhatStr. fileName. errStr, 1nfoStr): 
centerWindow CtheDialog): 
ShowHide CtheDialog, true): 

· Moda1D1alog C0L, &theltem): 

DisposDialog CtheD1alog): 

SetPort{savePort>: 

I• doFileCantAlert •/ 

Figure n-s. 
doFileCantAlertO is called when a File Manager error is detected. 

247 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Mapping the Fiie Manager error to a string 
fmErr2AppReason() contains the switch statement that performs the mapping of a 
File Manager error to a string defined in the STR# 104 resource in Browser's resource 
file. getIOStr() calls this routine whenever doFileCantAlert() requests a File Manager 
error value translation and formats the string. 

A string list resource of type STR# contains an indexed list of strings. Each string can 
be as many as 255 characters long. Using a STR# resource is a great way to organize 
strings in a Macintosh application. Then you don't have to mess with defining a static 
array of strings in your program; and, because the strings are in a resource, your pro­
gram is easier to "localize" into another language. 

You access each string by its resource ID and index, using the Resource Manager 
routine GetlndString, which returns a pascal string from the contents of the 
resource. Here's an example of how to access the third string in the STR# 104 
resource: 

Str255 buf; 
GetlndString (buf, 104, 3); 

You create the strings in ResEdit, in a window similar to the one in Figure 11-6. 

Figure 11 ·6. 
ResEdit's STR# edit 
window open on 
Browser's resource 
file. 

I[~ sm# "10 Msgs" ID; 104 from Browser11.rsrc ~~ 

HumStrings 32 ~ 

1) ***** 11 .mu 
The string I open I l!ih1 ,h11 

rl'i! 2) ***** ilil!i 
The string jcioslng I il1!1 

I.I.I 

3) ***** :11111 

The string jRead I i~I' 4) ***** ,1.1 
m!il 

The string jsaue I ~ 5) ***** 

In order to illustrate how the doFileCantAlert() set of routines works, we'll modify 
Browser so that it recognizes a new File Manager error code, volO.fflineErr. This 
means that we'll also have to add a new string to the STR# 104 resource in Browser's 
resource file. Using ResEdit, adding a string to the resource is as simple as scrolling 
to the bottom of the window, selecting the last ••••• marker, and selecting Insert New 
Field(s) from the Resource menu (or using the keyboard shortcut, Command-K). A 
new edit box opens in the dialog box so that we can type in the string, as shown in 
Figure 11-7. 

248 



11: BROWSER: OUR CULMINATING APPLICATION 

Figure 11·7. 
Addinga new 
string to a STR# 
resource, using 
ResEdit. 

;;o~ STR# "ID Msgs" ID= 104 from BrowsenJ.rsrc ~ 

The string [Cannot initial lze because of thej ~' 
fo I I ow Ing : •·•·•· 

il!i! 
31) ***** 
The string 

32) ***** 
The string 

33) ***** 
The string 

34) ***** 

I select a file to browse 

[
The system can't open another 
file. Try closing some 
documents. ] 
I Uo I ume is off I i ne. I nsert disk. I 

111111 

~ 
'O 
~ 

After we've added the new string to the resource file, we need to modify the pro­
gram source code so that it recognizes the new error value. First, we'll need to define 
a new index constant for the new string. ResEdit tells us, as you can see in Figure 
11-7, that the string's index is 33. Now, in THINK C, we'll open Browser's header file, 
StrRsrcDefs.h, and define a new constant, kVolO!fline, with the value 33. We'll put 
this definition right after the definition of kTooManyOpenFiles, which is index 32. 

The last step is to map the File Manager value volO.ffLinErr to the string index 
kVolO.ffline in the switch statement in fmErr2AppReason(). (For the curious: 
volO.fjLinErrcorresponds to -53. We don't need to know this-the value is defined 
in Files.h, a THINK C header file.) 

case tmfoErr: 
reason = kTooManyOpenFiles; 
break; 

I* 111111 kwgm- -added new File Manager error code */ 
case volOfflinErr: 

reason = kVolOffline: 
break; 

I* 111111 kwgm *I 

default: 

Error handling is a vital part of using the File Manager. Whether you use our set of 
utilities to report errors to your users or simply beep at them when an error occurs, 
it's always important to have your application check for errors and take appropriate 
action when it receives notification of one. 

249 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Reading the File 
Reading the file is a matter of transferring some of the file to a local buffer. Browser 
uses the high-level File Manager routine FSRead to this end. Reading a file mini­
mally requires three items of data: 

1. from where-the file reference number 

2. how much-a byte count 

3. to where-the buffer address 

FSRead accepts this data in three arguments-the file reference number, a pointer 
to a long word that contains the number of bytes to read, and a pointer to the buffer 
in which the read will place those bytes: 

FSRead (short fileRefNumber, long* byteCount. Ptr buffer); 

FSRead returns the number of bytes read in the same long word that held the re­
quested number of bytes. FSRead generally returns the number of bytes you re­
quested, but when your program reaches the end of the file, the number of bytes 
read will be fewer than the number requested. This is not an error condition but a 
natural result of reading data into a buffer, so the application has to handle this case 
gracefully. The readBuf function shown in Figure 11-8 illustrates this type of pro­
cessing. It reads the file and detects an end-of-file mark. If the error is a real File 
Manager error, readBuf() returns the error number. If the "error" detected is reach­
ing the end of the file before the requested number of bytes has been read, read­
Buf() returns noErr. 

'* 
*' 

readBuf--reads from file to local buffer 
7.20.90kwgm 

readBuf (short fileRef, long *len. char •buf) 
{ 

1 ong nRead: 

nRead = •len; 
if (err = FSRead (fileRef, len, buffer)) 
{ 

II read the file 

if (err == eofErr) 
err = noErr; II not an error at eof 

} 

return (result); 
} 

Figure 11·8. 
Reading the file and checking the result. 

250 



11: BROWSER: OUR CULMINATING APPLICATION 

One outstanding issue in Browser remains: how much of the file to read at a time, 
which dictates the buffer size. We could deal with the answer simplistically, reading 
the entire file at one time. Of course, if the file the user is interested in is 10 
megabytes and only 512K is left in the heap, he or she would be out of luck. The 
function in Figure 11-9 demonstrates this infinite memory approach. 

readFile--reads an entire file into a file buffer: returns handle to 
buffer in data argument; returns true if successful 

Boolean 
readFi1e (FileParamsPtr fpp, Handle lfldata) 
{ 

Handle 
long 
Boolean 

dataHdl: 
dataSize; 
result: 

result = false: 
"'data "' 0L; 

if ((err= openFile (fpp)) == noErr) 
{ 

dataSize = fpp->fflelen; .. 
'"' allocate memory to fit file' data •/ 
if (dataHdl = NewHandle (dataSize)) 
{ 

Hlock (dataHdl); 
if (err = readBuf (fppc>fjleRefNum, &dataSize. •dataHdl)) 
{ 

else 
{ 

I• read failed: Notify user, close file, 
dispose of handle •/ 
doFileCantAlert {fpp->fileName, kRead, err, "\p"); 
FSClose (fpp->fileRef~um); 
di sposeHdl (dataHdl); 

I• read succeeded: set up for return of data •/ 
HUnlock (•dataHdlJ; 
•data= dataHdl: 
result = true; 

Figure 11 ·9. (continued) 
Allocating a buffer for the entire file. 

251 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Figure 11 -9. continued 

else 
dofileCantAlert Cfpp->fileName, kOpen, err, "\p"): 

return (result): 

} /* read File */ 

doFileCantAlert() is called if either the open or the read fails. Also note from this ex­
ample that the buffer is a relocatable object and that because readBuf(), ~hich calls 
FSRead, has the potential to move objects around in the heap, we lock the object 
before passing the master pointer to readBuf(). (And don't forget to unlock it after 
the read.) 

Notice the order of operations in Figure 11-9: 

1. open file 

2. allocate buffer 

3. read file 

This order flows naturally from the requirements: There's no need to allocate the 
buffer unless you can first open the file, and you have to allocate the memory before 
you try to read the file into it. 

In text mode, Browser buffers the entire file in the TextEdit structure. In text mode, 
Browser therefore respects the 32,000-byte limit of the TextEdit structure. In binary 
mode, Browser reads one screenful of data (256 bytes) at a time. 

Text Mode 
Browser's text mode uses TextEdit for its display mechanism. We had a brief encoun­
ter with TextEdit in Chapter 8: Generic App used TextEdit to display the contents of a 
TEXT resource. Browser uses a similar technique. 

TextEdit revolves around the TERecord, the TextEdit data structure that contains all 
necessary text data. You create an empty TERecord structure with the TextEdit rou­
tine TENew. Browser encapsulates TENew in the makeTERec() function excerpted 
here in Figure 11-10. The makeTERec() function creates a TERecord that encom­
passes an entire window by calling makeFrameRect() and returns a handle to the 
structure. 

252 



11: BROWSER: OUR CULMINATING APPLICATION 

TEHandle 
makeTERec.(OocPtr theDoc) 
{ 

} 

TEHandle teh: 
Rect viewRect, destRect; 

makeFrameRect (theDoc, &v.iewRect>: 
destRect = viewRect: 

return (teh = TENew (&destRect, &vi ewJlectJ>: 

Fl9ure 11·10. , 
Creating the TERecord with TENew. 

Displaying the text in Browser's text mode is identical to what we did in Chapter 8's 
Generic App. Browser's drawDocText() routine offsets the TERecord structure's 
destination rectangle by the current scroll value before calling TEUpdate. Look at 
the discussion in Chapter 8 if you need a refresher on how to manage scrolling using 
TextEdit. 

Binary Mocle 
Browser's text mode is limited to 32,000-byte files. Its binary mode is memory effi­
cient and can handle any file size because, in this mode, Browser reads only one 
screenful of data, 256 bytes, of the file at a time and stores this data on the heap in a 
relocatable object. The handle to the data is in the contentHdl field of the document 
structure. 

Buffer management in binary mode is surprisingly simple. Browser keeps track of 
which 256 bytes of the file it's displaying by managing the file offset, which it stores 
in the .fileO!Jset field of the document structure. When Browser opens a document in 
binary mode, it reads the first 256 bytes of the file and sets .fi/eO!fset to 0. For each 
screen forward that the user scrolls, Browser bumps fileO!fset by 256, seeks to that 
new file off set, and reads the next 256 characters. If the user scrolls backward, 
Browser subtracts 256 from .fileO!fset and reads at that new offset. After each scroll, 
Browser invalidates the current window, which invokes the update mechanism. 

Browser's binary mode display routine, drawByteIF(), is excerpted here in Figure 
11-11. It displays the 256-byte buffer as 16 lines of 16 characters each, constructing 
each line of the display in the three parts we've shown in Figure 11-2 on page 238: an 
offset, the data in hexadecimal format, and the data in ASCII format. 

253 



MACINTOSH C PROGRAMMING BY EXAMPLE 

*I 

drawByteIF- -draws a 256-byte screen at the current scroll 
9.20.90kwgm 

static void 
drawByteIF CtheDoc) 

DocPtr theDoc; 

register char *P: 
register short v. line, i, c; 
short lineHeight, hOffset, hHex, hAscii; 
Si ze fileOffset , fileSize; 
char offsetbuf [16], hexbuf [64), 

asci i buf [64). tmpbuf [24): 
Font Info finfo; 
Handle fileBufHdl; 

fileOffset = theDoc->fileOffset: 
fileSize = theDoc->fileSize; 

if (fileBufHdl = theDoc->contentHd l ) 
{ 

Hlock (fileBufHdl); 
p = *fileBufHdl: 

printBrowserHdr (theDoc); 

GetFontinfo C&finfo); 

II we will move memory here 
II pointer to file data 

II print a file header 

lineHeight = finfo.ascent + finfo.descent + flnfo.leading; 

v = lineHeight * 3: II leave a space at top of screen 

I* print the file data one line at a t ime */ 
for (line= 1; line <= 16 ; line++) 
{ 

I* build file offset string and increment *I 
sprintf (offsetbuf. "%051X", fileOffset); 
fileOffset += 16; 

I* build hex and ASCII strings, one character at a time *! 
hexbuf [0] = 0x00; 
asciibuf [0] = 0x00: 
for Ci = 0 : i < 16 ; i++) 

Figure 11•11. (continued) 
Browser's binary mode display routine, drawByteIF(). 

254 



11: BROWSER: OUR CULMINATING APPLICATION 

Figure 11·11. continued 

{ 

if Ci + fileOffset < fileSize> 
c = *P++ & 0x00FF: // mask upper byte 

else 
c = 255: II print box char after eof 

I* hex format *I 
sprintf (tmpbuf, "%02X ", c): 
strcat Chexbuf, tmpbuf); // add to hex. string 

I* ASCII format *I 
spri ntf ( tmpbuf, "%c", i sprint ( c) ? c : ' . '): 
strcat (asciibuf, tmpbuf); II add to ASCII string 

#define kleftMargin 10 II left screen margin 

} 

} 

I* draw a line *I 
MoveTo CkleftMargin + theDoc->curScroll.h, v); 
CtoPst~ (offsetbuf); 
Drawstring Coffsetbuf): 

Move Cfinfo.widMax << 1, 0); 
CtoPstr (hexbuf); 
Drawstring Chexbuf): 

Move (flnfo.widMax << l, 0): 
CtoPstr {asciibuf): 
Drawstring (asciibuf): 

I* double-space for next line *' 
v += lineHeight + flnfo.leading * 2: 

HUn 1 ock CfiTeBufHdl): 

} /* drawBytelF *I 

drawByteJF() loops through each line, creating the three parts of the display and 
drawing them at the bottom of the loop. At the heart of the routine are the three 
buffers-ofjsetbuf, bexbuf, and asciibuf-that hold the corresponding strings 
derived from the data for each line. drawByteJF() uses the C function library utility 
sprint/() to format the three buffers. 

255 



MACINTOSH C PROGRAMMING BY EXAMPLE 

The routine creates the contents of offsetbuf from a local copy of the file offset. 
drawByteJF() computes the offset value for each displayed line from the initial file 
offset of the buffer and bumps this offset by 16 for each line. 

drawByte!F() creates the hex and ASCII buffers on a character-by-character basis. 
Within this inner character loop, drawByte!F() formats each character as both a 
hexadecimal string and an ASCII string and concatenates the resulting string to bex­
buf and asciibuf with the C function library routine, strcat(). It does some addi­
tional processing for the ASCII string: If the character fails the isprint() test, which 
checks that the character falls within the range of printable ASCII characters, 
drawByteJF() substitutes a dot for the character. 

drawByteJF() manipulates these line buffers as C strings, so it converts them to pas­
cal strings with CtoPstr just before displaying them with Drawstring (which re­
quires a pascal string). 

The Complete Browser 
That's Browser. If you've come this far and aren't completely baffled, congratula­
tions! You're a Macintosh programmer! If you've made it this far and are still 
stumped, our apologies-perhaps we were unclear about something or you didn't 
catch some of the points we made in passing. For these folks (not many, we hope), 
we have a few suggestions: 

• Check to be sure that you've used the examples we've presented and that 
you've compiled them. Try changing pieces of the examples-string names, 
starting and ending values, and so on-recompile, and see what the new 
results are. 

• Use the debugger to single-step through the programs. Note in particular the 
initialization that must be done before the actual program actions start, that 
the program keeps returning to an event processing loop through which all 
control is passed to subsections of the program, and how ROM Toolbox calls 
are used. 

• Check out the aids available to Macintosh programmers: Read magazines like 
MacTutor and APDALog; try out programs that build applications automati­
cally, like Prototyper and AppMaker; study code others have written by down­
loading examples from CompuServe or Genie. 

If you've made it through Browser and want to do more, we have a few suggestions 
for you: 

• Become a certified Apple developer. You'll receive Apple's Developer Notes, 
CD-ROMs containing example code, HyperCard help stacks, and access to 
much, much more. 

256 



11: BROWSER: OUR CULMINATING APPLICATION 

• Get active in the CompuServe MAUG programmer's forum, where you'll meet 
other Macintosh programmers and have a chance to ask and answer questions 
interactively. Type 

go macdev 

at any ! prompt. Be sure to download code examples and study them carefully. 
Again, compiling and running new code through the debugger is an excellent 
way to get a feel for how an application is managing itself. 

• Check out your local bookstore. Besides the Apple-sponsored books, you'll 
find other exceptional books that will expand your knowledge of Macintosh 
programming, including such classics as Scott Knaster's How to Write Mac­
intosh Software (1986). 

• Subscribe to MacTutor, and consider getting the CD-ROM version of the back 
issues, which contains all the text and code examples from previous years (five 
years to date) and makes it easy to search by concepts or by individual routine 
names. 

• Look carefully at how popular Macintosh programs implement the user inter­
face, and try to guess what they have to do to provide the kinds of options they 
do. Many programs use palettes or option bars, for example, which are, in es­
sence, custom controls. How do you think they were created? Try program­
ming one of your own. 

Finally, support programming in general. Let others know what you're up to and let 
the Macintosh magazines and book publishers know that you're interested in learn­
ing more. Buy good programming products, and let the companies that made them 
know what you did and didn't like about them so that future versions will be better. 

257 



Appendix 

SYSTEM7.0 
COMPATIBILITY 

The release of Apple's System version 7.0 has created a lot of excitement. This new 
version of the Macintosh OS, touted as a giant leap for Mac-kind, promises to revolu­
tionize the way we compute. 

Even if you're not running System 7.0 yet, you're probably aware of its new features 
from press reports: interapplication communication, virtual memory, outline fonts, 
and an improved Finder interface. As a reader with a technical bent, you probably 
also know about the more esoteric details of this release, such as built-in database 
support, Balloon help, and 1-gigabyte addressing. This is great stuff, but at the same 
time, we programmers are apprehensive about such a major change in system soft­
ware. Precedents in the PC world fuel our insecurity. 

As a PC application developer, you have to target MS-DOS, Windows, or OS/2 as 
your host operating system or environment and then adjust your application to ac­
commodate the special characteristics of that environment. Only a handful of high­
end developers can afford the overhead of coding and maintaining three separate 
versions so that programs will run under all systems. As a result, the user can be 
forced to choose an application on the basis of which operating system or environ­
ment it runs under. 

We don't want to see Macintosh applications go the way of PC applications. For the 
next few years, until System 7.0 and its offspring gain widespread acceptance, we 
envision a user population made up of both version 6.0 and version 7.0 users. If you 
want your application to be available to all Mac users, running in either environment, 
you'll have to ensure that the code you write is compatible with both versions. 

In your zeal to make your application System 7.0 compatible, don't make it System 
7.0 dependent. The dependent program needs System 7.0 to run and crashes under 
System 6.0. The dependent program is poorly conceived because it assumes too 
much about the running environment. Compatible programs reflect the best of both 
worlds: They support features of the new system, but they don't necessarily rely on 
those features in order to operate. 

259 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Sounding for 7.0 
Your first step to compatibility is discovering which system version your application 
is running under. Apple tells us to call the routine SysEnvirons to determine the sys­
tem version. SysEnvirons returns assorted pieces of information about the machine 
as well, such as whether it supports color or has a floating point coprocessor. Figure 
A-1 demonstrates how to use SysEnvirons to get the system version number. System 
7.0 supports SysEnvirons, so you can use this method to figure out whether an appli­
cation is running with the new system. 

short 
getSystemVersion () 
{ 

} 

SysEnvRec 
short 

version = 0: 

sysEnv; 
version: 

if ( !SysEnvirons (1, &sysEnv)) 
version = sysEnv.systemVersion » 8: 

return (version>: 

Fl9ureA•1. 
Testing for the system version. The function returns the system version number 
as a short integer. 

The Gestalt Manager, a more powerful utility for testing for specific environmental 
features, shipped in later releases of System 6 (6.0.4 and later) and is available in Sys­
tem 7.0. We anticipate that the Gestalt routine will eventually supplant the less infor­
mative SysEnvirons, but to maintain compatibility with most machines out there 
now, we recommend that you continue to use SysEnvirons to find the system type. 
In System 7.0, SysEnvirons calls the Gestalt routine. 

You use the Gestalt routine to query the system about environment attributes by 
passing it a selector token that tells the routine what information you're interested in. 
The Gestalt routine returns the requested information in a long value, which you 
pass by reference to the routine. For example, say you have a multimedia application 
and you're interested in the sound and video capabilities supported by your hard­
ware. Here are the appropriate calls to Gestalt: 

Boolean 

OS Err 
1 ong 

260 

gestaltAvail, 
has32bitVideo, hasStereo; 
err; 
result; 



APPENDIX: SYSTEM 7.0 COMPATIBILITY 

gestaltAvail = TrapAvailable ($AlAD); 
has32bitVideo =false; 

II check for Gestalt 

if (gestaltAvail) 
{ 

if (!(err= Gestalt (gestaltQuickdrawVersion, &result))) 
has32bitVideo = result & gestalt32BitQD; 

else 
II do error stuff 

hasStereo =false; 
if (!(err= Gestalt (gestaltSoundAttr, &result))) 

hasStereo = result & gestaltStereoMixing; 
else 

II do error stuff 

You'll find the documentation for Gestalt, its selectors, and its result codes in Inside 
Macintosh, Volume VI. 

Paraclig1111 Lost 
"32-bit clean" is the watchword for System 7.0 compatibility. (What we say here also 
applies to getting your Macintosh programs to run with A/UX, Apple's implementa­
tion of UNIX.) This "cleanliness" is nothing more than an application's regard for all 
32 bits of an address. In earlier versions of the system, only the lower 24 bits of a 32-
bit address are significant. In System 7.0, a new 32-bit Memory Manager can take ad­
vantage of a full 32-bit address. 

Why did the earlier Mac Operating Systems use only 75 percent of the available ad­
dress bits? After all, 24 out of 32 bits is only a fraction of the total addressable range. 
To understand this parsimony, we need to look to the 1980s computer engineering 
paradigm, in which 24 bits were more than enough for any microcomputer address. 

At the core of the early Macs is the Motorola 68000. This processor, although 
possessing a 32-bit program counter register (the register responsible for pointing to 
the next machine level instruction), is internally limited to a 24-bit address space: It 
ignores the upper 8 bits of an address. Starting to sound familiar? 

In 1980, a 24-bit address space, which maps to a 16-megabyte addressable range of 
memory, seemed huge, almost infinite, to system designers. This addressable range 
was as large as an IBM 370 mainframe's. 

As technology advanced, the 24-bit limit went away-the 68020 and 68030 have 
true 32-bit addressing-but the damage was done: The Macintosh team had de­
signed the 68000 addressing limitation smack-dab in the middle of the Mac's 
Memory Manager. 

Even so, restricting an address to 24 bits would have had little effect on our applica­
tions today if not for another decision made so long ago. Someone in the Apple sys­
tem's group got a bright idea about reusing the high bytes of each address. 

261 



MACINTOSH C PROGRAMMING BY EXAMPLE 

You have to understand the plight of systems programmers, the engineers who make 
their living writing operating system software. This miserly group of coders are 
forever space constrained. Their code has to fit in some small area of ROM, with 
little or no room for overrun. No wonder they tend to be bit-stingy. 

In their never-ending efforts to write "tight" code, systems programmers like to take 
clever advantage of free bits here and there as flags and placeholders or for tempo­
rary data storage. That's what happened in the Memory Manager-someone in the 
Apple OS group chose to take advantage of the unused high byte in a handle. In the 
24-bit Memory Manager, the high byte in every handle contains the corresponding 
relocatable block's status information. We've illustrated the layout of an old-style 32-
bit handle in Figure A-2. 

These bits are used to 
flag block status. 

31 23 

111111111 

Flags conflict with true 
32-bit address. 

FlgureA·2. 

These bits are used as the 24-bit address. 

0 

I 

The format of a 32-bit handle in the 24-bit Memory Manager. In the old 
Memory Manager, handles are inherently 32-bit dirty. · 

In the light of a reasonable speculation that Apple surely had plans at the time to 
someday support 32-bit addressing, you might call this a gutsy decision. Remember 
that in a 128K Mac, every byte saved in the System software could be used for an ap­
plication. The saving grace is that, as a hedge against future enhancement, Apple 
supplied a set of Memory Manager routines for setting and clearing the high byte's 
status bits: HLock, HUnlock, HPurge, and HNoPurge. And Apple always told devel­
opers to use System routines to change values in System data structures if at all pos­
sible. To maintain compatibility with future systems, you should always follow this 
fundamental principle. The two code fragments that follow are an example of what 
we mean. Both code fragments return the re/Con field of a WindowRec structure. 
There's a Toolbox routine to return the value of this structure member, so the right 
way to get its value is to use the routine. The wrong way is to access the member 
directly. 

The right way: 

Handle refCon; 
WindowPeek theWindow; 

262 



APPENDIX: SYSTEM 7.0 COMPATIBILITY 

refCon = GetWRefCon (theWindow); 

The wrong way: 

Handle refCon; 
WindowPeek theWindow; 

refCon = theWindow->refCon; 

Most developers got the message and had the good sense to use HLock to lock a 
handle, instead of directly bit-twiddling the upper byte of a handle. But a few devel­
opers saw the opportunity to save a few processor cycles by eliminating the over­
head of a system call and set or cleared the handle's status bits directly. Their 
applications are not 32-bit clean and will crash when run under System 7.0. 

Here's the bottom line on 32-bit cleanliness: If you already use the Memory Manager 
routines as Apple recommends, you're home free; if, on the other hand, you've gone 
out of your way to save a few machine cycles by setting or clearing these bits di­
rectly, you've got your work cut out for you. 

Don't Forget the CD/EF ancl the WD/EF 
Using HLock is not the last word in 32-bit Memory Manager compatibility. A similar 
problem exists in the interface to custom definition procedures. If your application 
contains either a control definition function (a code resource of type CDEF) or a 
window definition function (a code resource of type WDEF), you've got a few more 
minor modifications to make. 

Before System 7.0, there was really no way for a CDEF to be 32-bit clean. The Con­
trol Manager expects your CDEF to clear the high byte of a region handle when the 
CDEF receives the calcCRgns message from the Control Manager. Under 32-bit 
Memory Manager rules, you can't clear the upper byte of an address without corrupt­
ing that address. You're damned if you do, and damned if you don't. Even if you've 
followed Apple's rules to the letter, your application still isn't 32-bit clean. 

The problem with the WDEF arises from the fact that the Window Manager uses the 
high byte of the WDEF handle to store the window variant code in the older system 
software. This situation is remedied in System 7.0. 

Making the WDEF compatible with System 7.0 is trivial. First, you have a problem 
only if your WDEF supports variations. If it does, remember that the variant isn't 
stored in the handle anymore. Don't worry about where it's stored-the System rou­
tine GetWVariant will return the value. By the way, GetWVariant has been around 
since System 5.0. 

263 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Fixing the CDEF requires a little more from you because you have to support two 
new messages, calcCntlRgn and calcThumbRgn. Here's where you have to ensure 
that you're System 7.0 compatible, not dependent. Your CDEF still needs to support 
the old calcCRgns message. System 7.0 won't send this message-only System 6.0 
and its predecessors will-so your CDEF is still free to clear the upper byte of the 
handle when it receives calcCRgns. When System 7.0 is running in 32-bit mode, it 
will send either of the two new messages, calcCntlRgn or calcThumbRgn. You still 
calculate the appropriate regions for these new messages, but you don't clear the up­
per byte of the handle when you return it. 

StripTease 
What if you're running in 24-bit mode and you want to compare the values of two 
master pointers? In 24-bit mode, the Memory Manager changes flags in the upper 
byte of a master pointer, so your program should use only the lower 24 bits of the 
pointers during the comparison. But in 32-bit mode, all of the address bits are signifi­
cant, so you'll want to compare all 32 bits. 

The answer is to call the Memory Manager routine StripAddress on the pointers 
before comparing them. StripAddress returns a pointer's significant value, based on 
the current Memory Manager mode. Passed a pointer when the Mac is in 24·bit 
mode, for example, StripAddress will mask the upper byte in the returned address; 
but in 32-bit mode, StripAddress will return the address unchanged. 

You'll rarely find the need to use StripAddress. Don't call it every time you use an ad­
dress-that would choke your application. Use it only when you need to compare 
two master pointers (a practice of questionable merit) or in the rare event that your 
application switches the machine from 24-bit mode to 32-bit mode. 

Vlrtual Memory Compatllllllty 
After all you've read about what has to be done to support the new 32-bit 
Memory Manager, the good news is that you don't have to change a thing in 
order to support virtual memory. But you might encounter a situation in 
which you'll need to be wary of the virtual environment. Remember how vir­
tual memory works: Unbeknownst to your application, some of your code or 
data might be out on the hard disk instead of in RAM. The system brings the 
code or data back into RAM just before your progr~needs it, ,Now, hard 
disk access is approximately 1000 times slow~rthan RAM access:·Ifyour pro­
gram is executing certain time-critical operations, such as the· animation of 
graphical images, your users can experience a· perceptible delay if some of 
that data first needs to be broughtfrom dislfinto RA.M .. To ensµrefor th¢se 
time.:critical operations that your data is in RAM, you can use the new System 
7.0 routines that lock data into physical memory. See the chapter onthe 
Memory Manager in Inside Maci'ritosh, Vol';lme VI, for detail~ on th~e 
routines. 

-

264 



APPENDIX: SYSTEM 7.0 COMPATIBILITY 

If you follow the techniques we've talked about so far, you've met System 7.0 half­
way. Your application might not support any of the features unique to the new 
release, but it won't embarrass you by displaying the ubiquitous bomb alert box to 
your users. You can call your application "System 7.0 friendly." 

The final step, bringing your application from friendly to compatible, is to support 
the features that are the hallmarks of System 7.0. Two of the most important features 
exclusive to the new system are outline fonts and high-level events. 

Outline Fonts 
One of the most visible changes in System 7.0-outline fonts-involves the Font 
Manager. Outline fonts produce an effect similar to Adobe Type Manager's: 
QuickDraw displays text drawn in an outline font, using the maximum available 
resolution of the output device. Outline fonts can be displayed at any point size 
without the jagged appearance typical of a bitmap font. 

Bitmap fonts, also called screen fonts, have been around since the Mac's inception. 
You're probably familiar with the way they're organized: A bitmap font matches the 
resolution of the screen (72 pixels per inch) because the font designer carefully 
places each pixel for each character in a bitmap and defines the bitmaps in multiple 
sizes. This accounts for the fact that when you use a font in a defined size, you get 
high-quality output. But, when you select a font size that's not defined in the bit­
maps, the output appears jagged and distorted. 

Font publishers ship a number of point sizes so that their users can do high-quality 
work. Thom ships his Palo Alto font in point sizes 9, 10, 12, 14, 18, 24, 36, 48, and 72, 
for example. 

Of course, the more point sizes a bitmap font contains, the more disk space it con­
sumes. In Thom's Palo Alto font, bitmap information for each character is repeated 
nine times, once for each point size set in the font. The larger point sizes take up 
the most space: Palo Alto 10-point is described in 2420 bytes; Palo Alto 72 uses up 
30,516 bytes. 

Outline fonts take advantage of a classic trade-off in computer science: trading 
storage space for computational time. If you're willing to put in some computational 
effort, you can generally reduce the storage space requirements of a progrp.m. 

With outline fonts, the information kept for each character is not a bitmap but a de­
scription the Font Manager uses to calculate each character's image. The font 
designer creates a description (an "outline") for each character, at a 1-point size, 
which the Font Manager can scale to any size. Because the images can be created 
"on the fly," at any point size, from the 1-point outline, only that one representation 
per character is needed in an outline font. This saves space: A typical outline font 
uses up 40K. And you get a high-quality rendering of each character, no matter what 
the point size. The font size restriction of 127 points is lifted with outline fonts. 

265 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Supporting Outline Fonts 
Because System 7.0 implements outline font support on the Font Manager layer, your 
application can take advantage of outline fonts without modification. But bitmap 
fonts have not gone away. System 7.0 supports both outline fonts and bitmap fonts, 
and there will be cases in which a system will contain both an outline font and a bit­
map font for a particular family. The system default will be the bitmap font. In these 
cases, you must explicitly tell the system to use the outline font by calling 
SetOutlinePreferred, the new Font Manager routine that changes the default mode 
from bitmap to outline. 

WARNING: If you use the SetOutlinePreferred routine, your application 
had better be running under System 7.0. System 6.0 doesn't have a 
SetOutlinePreferred call, and calling SetOutlinePreferred under System 6.0 
treats your user to the bomb alert box-something your user would gladly 
forgo. Always check the system version (with SysEnvirons or Gestalt) before 
issuing a call to system-dependent code. 

Because the Font Manager produces outline font images in any size, you need an 
Other item on your font menu. The Other command should produce a dialog box 
that provides your user with an opportunity to enter any positive font size value. 

An Event-full Software Release 
Although the outline fonts are probably the most visible evidence of software 
changes in System 7.0, the most extensive changes in the new system involve event 
processing. The Event Manager has been revamped in System 7.0 to accommodate 
interapplication communication (IAC). 

Rest assured: Your application will still receive an event when the user paws the key­
board or twiddles the mouse button-System 7.0 won't affect those parts of your 
existing application's source code. But IAC brings a new kind of event-the high­
level event-to the system's repertoire. 

High-level events enable communication among multiple applications. 

If you've had any experience with a message-based operating system (MBOS) like 
RSX-11 or CTOS, you should be familiar with the theory behind interapplication 
communication on the Mac. In MBOS lingo, a communication between two applica­
tions is a "message," and, on the Mac, an application sends a message by posting a 
high-level event destined for another application running concurrently on the same 
system. 

Four terms-"client," "server," "request," and "response"-make up the MBOS vo­
cabulary. The application initiating a communication is called the client; the one 
targeted to receive the communication is called the server. Messages are classified 
into requests, which are initiated by the client, and responses, which the server 
posts in response to requests. 

266 



APPENDIX: SYSTEM 7.0 COMPATIBILITY 

Receiving High-Level Events 
Your application will receive high-level events just as it receives mouse-down or 
key-down events: by means of the main event loop. Recall that a Macintosh applica­
tion receives events by calling WaitNextEvent in its main event loop. When Wait­
NextEvent returns a valid EventRecord, the event code in the EventRecord 's what 
field identifies the event type. In System 7.0, the what field value is 23 when the ap­
plication receives a high-level event. 

The Event Manager encodes information that identifies the message in the 
EventRecord. The message field of the EventRecord specifies the message class, and 
the where field contains the message ID. Both of these EventRecord fields are long 
integers, which the Event Manager uses to pass an OSType value, so message class 
and ID values are similar to application file signatures. 

The message class in the EventRecord 's message field defines the message origin, 
uniquely identifying the sender of the message in the message field. If your applica­
tion is going to send messages, it's probably a good idea to use the application file 
signature for this value. The message ID in the where field defines the type of mes­
sage within its message class. 

Because of EventRecord size limits, all the data associated with a high-level event 
might not be completely contained in the EventRecord. If your application intends to 
process the high-level event, it should call the new Event Manager routine, Accept­
HighlevelEvent, which retrieves the extra data associated with the event. 

How do you know what extra data, if any, will be sent along with the high-level 
event? If interapplication communication is to live up to its potential, applications­
and application developers-must cooperate. After all, if an application doesn't un­
derstand a message format, it can't take advantage of the data the message contains. 
As IAC evolves, more and more message classes with their associated message for­
mats will be defined. 

But don't look for a world in which message formats are shared freely among applica­
tions-at least not immediately. We expect that the major software vendors will 
keep their message formats to themselves. In its early stages, IAC will probably con­
sist of private transactions among a vendor's applications. Currently; the only IAC 
message format standards come from Apple, and the specification is for what's called 
an AppleEvent. 

AppleEvents 
AppleEvents and their format are described in detail in Inside Macintosh, Volume VI, 
and eventually will provide the framework for a scripting interface to both applica­
tions and the Finder. The minimal set of AppleEvents an application should support 
if it is to be "System 7.0 savvy" is shown in Figure A-3 o~ the next page. 

267 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Event 

Open Application 

Open Document 

Print 

Quit 

Setup 

Get 

FlgureA-3. 

Action 

Open an application 

Open each specified document 

Print each specified document 

Quit the application 

Update the menu items 

Return a specific property 

Essential AppleEvents if an application is to be "System 7.0 savvy." 

Although the details of supporting AppleEvents are beyond the scope of this book, 
you can do something now that will aid your effort to support AppleEvents. Apple 
calls it "factoring your code." 

Isolating User Interface Code 
The need to factor your code, that is, to isolate those lines of code that manage the 
user interface from those lines that perform the actions, arises from the way Apple­
Events and the eventual command-line interface to Finder will work. 

An example will illustrate what we mean. When the system sends your application 
an Open Document AppleEvent, it will also send the list of documents to be opened. 
(Your application gets the list by calling AcceptHigbleve/Event.) Your application 
doesn't need to put up the SFGetFile dialog box to get file information from the 
user-the system sends the information that your application needs to open the 
documents. You therefore don't want to have the call to SFGetFile (which puts up 
the Open dialog box) in your application's document-opening routine. 

If your application is to support an AppleEvent interface, you'll need to isolate the 
user interface code from the action routines. An action routine is the code that ac­
tually performs an operation. In this example, the action routine is the code that 
opens a document. 

If you've been writing modular code all along, you're probably already isolating user 
interface code from action routines. But, if you've been calling user interface code in 
the middle of your action routines, you've got some work to do. 

The document-opening action routine is particularly instructive because our 
Generic App already supports the factoring concept. Most existing applications can 
open a document in response to either a File menu Open command or the user's 
double-clicking on a document's icon in Finder. If you've written your document­
opening action routine to be called from either of these places in your code, you've 
already factored out the user interface code. 

268 



APPENDIX: SYSTEM 7.0 COMPATIBILITY 

You can begin factoring your code right now, without the AppleEvent specification. 
Factor out the Open, Print, and Save action routines. When you have the specifica­
tion, just plug in the code that parses the message data and you'll be off and running 
in System 7.0. 

Note that we recommend that you factor out your Save action procedure, even 
though that isn't required in System 7.0. Just because Apple hasn't told us to do that 
now doesn't mean that Apple won't demand just that in the future. You might as well 
get in the habit of writing factored code now. Try to figure out which other opera­
tions in your code can be factored out from the user interface code. 

Factoring is the logical result of modular programming and leads to the best way to 
implement Undo/Redo in your application. All the action routines in our commercial 
application, Tycho Table Maker, are factored. The input to Tycho's action routines is 
a parameter block that can be built from either the user interface subsection or the 
Redo subsection. But that's a topic for another book .... 

269 



INDEX 

References to .figures and illustrations are in italics. 

Speclal Characters 
11 11 (header file search path operator) 14 
$ (grep operator) 24 
& (address operator) 57 
' ' (token string delimiter) 240 
()(casting operator) 52 
() (function notation) 36, 65 
() (precedence operator) 51 
• (grep operator) 24 
• (pointer operator) 56 
- (grep operator) 24 
-> (structure member operator) 57 
. (grep operator) 23 
. (structure member notation) 55 
1• (comment operator) 37 
11 (comment operator) 38 
; (statement closure operator) 38 
<>(header file search path operator) 14 
= (assignment operator) 46 
? (ternary operator) 50-51 
[) (array dimensions notation) 54 
[) (grep operator) 24 
\ (grep operator) 23 
\ (octal constant notation) 45 
\ p (Pascal string operator) 241 
" (grep operator) 24-25 
I} (compound statement operator) 20, 59, 61 
Ox (hexadecimal constant notation) 46 
24-bit and 32-bit memory addresses 261-63 

A 
AcceptHigblevelEvent routine 268 
addressing, memory 261-63 
address registers 92-94 
ampersand (&) 57 
angled brackets (< >) 14 
ANSI library 13, 35 
ANSI-small library 13 
APDALog magazine 256 
Apple-defined variable types 42-43, 44 
AppleEvents 267-68 
Apple Macintosh Developer Technical Support 

facility 3 
Apple Programmers and Developers Association 

(APDA) 125, 129 
Apple's Developer Technical Support group 129 

270 

applications 
communications between 266-69 
compatibility (see System 7.0 compatibility) 
creating 71-73 (see also THINK C) 
debugging (see Debugger, THINK C) 
designing 192-93 
dialog boxes (see dialog boxes) 
error handling 244-49 
events 128 (see also event processing) 
file-viewing utility (see Browser application) 
graphics (see graphics) 
Hello World and Hello Mac! examples 69-71 
initialization of Toolbox managers 84-85 
memory management (see memory) 
passing parameters to Toolbox routines 76-78 
setting and clearing invisible attribute-bits of files 

(see Loser application) 
shells (see miniGeneric application; multiGeneric 

application; nonGeneric application) 
source code (see source files) 
suggestions 256-57 
user interfaces (see user interfaces) 
windows (see grafi>orts; multiGeneric application; 

windows) 
APPMaker program 256 
arguments, function 65-67 
array variables 54 
arrow, current statement 31 
arrow, scroll 186 
arrow keys 19 
arrow operator 57 
ASCII files 241 
Assembly language 5 
assignment operators 46-47, 48-49 
asterisk (") 24, 56 
attribute-bits, invisible 209-11 
automatic variables 52-53 
auto-mode, debugger 32 

a 
backslash ( \) 23 
backslash-p ( \ p) 241 
bad blocks 221 
Basic language 4 
binary file-viewing mode 253-56 
binary operators 48-49 
bitmap fonts 265-66 



BlockMove routine 109 
blocks, disk 219-21 
blocks, memory 98-105 
braces, curly({}) 20, 59, 61 
braces, square ( []) 24, 55 
branching statement(s) 

alternative branch 59 
compound 59-60 
multiway 60-62 
test and branch 58-59 
ternary operator as 50-51 

breakpoints 
setting, in other modules 31 
setting and clearing 31 
setting temporary 32 

break statement 62, 64, 136 
Browser application 

binary mode viewing 253-56 
error handling 244-49 
file signatures 239-41 
opening files 242, 243-44 
overview 237, 238-39 
parameter substitution in dialog boxes 246 
reading files 250-52 
selecting files 241 
text mode viewing 252-53 

buttons, radio 203-9 

c 
.c suffix 17 
C language. See also THINK C 

advantages of 5-6 
arrays 54 
branching 58--62 
breaking and continuing execution 64 
calling conventions 98, 199 
case sensitivity 36 
comments 37-38 
data structures 55-56 
evolution 35-36 
functions 64-67 
language elements 36 
loops62-63 
multiway branching 60-62 
operators 46, 47-51 
Pascal vs. 77, 79, 98, 199, 241 
pointers (see pointers) 
statements and expressions 38-39 
strings (see strings) 
variables (see variables) 
white space 36-37 

call-back routines 197 
calling conventions 98, 199 
call stack 30 
case sensitivity 36 
casting 51-52 

CDEF resources 263-64 
characters. See also fonts 

case sensitivity and 36 
constants and 45-46 
escape 23 
grep 23-25 
nonprinting 36-37, 45-46 

character variables 40, 41 
char variable type 40, 41 
circumflex (I\) 24-25 
classes, variable 52-54 
client (IAC) 266 
clipping 175 
clock, system 127 
ClosePicture routine 169 
CNFG #() resource 19 
code. See object code; source files 
Command-period shortcut 207-9 
comments 37-38 
compatibility. See System 7.0 compatibility 
compiler, THINK C 

code configuration for 25-27 
compiling with 27-28 
MacHeaders option 15 

compound statements 59-60 
CompuServe forums 107, 192, 256-57 
console routines 70 
constants 44-46 
content region of windows 154 
continue statement 64 
control definition functions (CDEF) 263-64 
Control Manager 263-64 
control operations 217 
control statements 

compound statements 59-60, 61 
branching (see branching statement(s)) 
breaking and continuing execution 64 
functions 64-67 (see also functions) 
looping 62-63 

coordinate systems 73-75 

INDEX 

C Programming Language, The (Kernighan and 
Ritchie) 5, 8 

curly braces ({}) 20, 59, 61 
custom definition procedures 263-64 
custom MacHeaders 15 

D 
data forks 224-27 
data in memory 91-94 
data-link escape character (DLE) 23 
data structures 55-56 
data window of Debugger 33-34 
Debugger, THINK C 

auto-mode 32 
data window 33-34 
in development cycle 7 

271 



MACINTOSH C PROGRAMMING BY EXAMPLE 

Debugger, THINK C, continued 
editing source file while debugging 32 
halting execution 32-33 
requirements 28-29 
setting breakpoints in other modules 31 
setting conditional breakpoints 33 
setting temporary breakpoints 32 
source code window 29-33 

decrement operators 50 
default radio buttons 207-9 
#define directive 45 
dereferencing 102 
Desk Accessories, adding, to menus 133-34 
development cycle 6- 7, 8 
development environments 6. See also THINK C 
development folder 9-10, 11 
dialog boxes 

creating 210-15 
hook procs 197, 207-9 
item lists 201-2 
resources 198-202, 210-15 
selecting and opening files 198-202 
text parameter substitution 246 

Dialog Manager 197 
diamonds31 
directives 14, 37-38, 45 
directories 222-23 
disks 218-21 
DisposeWindow routine 84 
DisposPtr and DisposHandle routines 99 
DITL resources 201-2, 210-15 
DLE character 23 
DLOG resources 198-99, 210-15 
Doclnfo structure 147-49 
documents 

adding, to open document table 147-49 
creating contents with resources 168-74 
creating new 143-46 
deleting, from open document table 149 
managing multiple (see multiGeneric application) 
open document table 146 
rendering scrolled 174-90 
scrolling text and graphical 163-68 (see also 

nonGeneric application) 
windows and 141-43 (see also windows) 

dollar sign($) 24 
dot (.) 23, 55 
double dereferencing 102-3 
double variable type 40, 41-42 
do-while loops 63 
dragging windows 162 
Drag Window routine 162 
DrawControls routine 183 
drawing 

deferring until updates 157-59 
in grafi>orts 80-82 
graphic entities 83 

272 

drawing, continued 
pictures 169 
scroll bars 183-86, 184-86 
scrolling documents 174-90 
windows 154-57 

DrawPicture routine 174 
Drawstring routine 81 
drives, disk 218-21 

E 
editor, THINK C 

changing default font 19 
editing source files 18-20 
searching for expressions 22-25 
searching for text strings 20-22 

empty statements 38-39 
Encyclopedia Mac ROM (Mathews and Friedland) 4 
end-of-file 225-27 
Enter key 20, 207-9 
environments, development 6. See also THINK C 
equals sign(=) 46 
error handling 244-49 
escape character 23 
escape sequences 46 
escape term origination 23 
EventManager266-69 
event processing 

event parsing and 117, 123-24, 125 
event types 122-23 
multitasking and 127-29 
overview 83-84 
System 7.0 changes 266-69 
waiting for events 84, 125-29 

EventRecord structure 83, 122-23, 128, 267 
expressions 

C language 38-39 
searching for 22-25 

extensions, filename 12, 13, 17, 18 
extern keyword 54 

F 
factoring code 268-69 
file filter hook proc 197, 200-201 
File Manager 

error tokens 244-45, 245 
mapping errors to string resources 248-49 
routines 227-30 
using 230-35 

files 
attribute-bits 209-11 
forks 224-27 
formats 226 
header (see header files) 
high-level and low-level manipulation (see File 

Manager) 
installing THINK C 9-10, 11 



files, continued 
naming conventions 12, 13, 17, 18 
opening 198-202, 242-49, 244 
operations on 217-18 
organization of (see file system; folders) 
project 16-17 
reading 250-52 
resource (see resource files) 
selecting 198-202, 241 
signatures 25, 239-41 
source (see source files) 
specifying 223-24 
viewing binary 253-56 
viewing text 252-53 
viewing utility (see Browser application) 

file system. See also folders 
bad blocks on disks 221 
disk drive nomenclature 218 
etiquette 217-18 
File Manager routines 227-30 
File Manager usage 230-35 
hardware 218-21 
volume structure 221-27 

FindControl routine 186 
Finder 28-29, 194-95 
Finder information block 194 
FindWindow routine 159-60 
Flnfo structure 229 
fixed point variables 42-43 
Fixed variable type 42-43 
flat file system 193 
floating point variables 40, 41-43 
float variable type 40, 41 
flow control statements. See control statements 
flushing files 218 
folders 

development 9-10, 11 
hierarchical file system (HFS) and 222-23 
project 16-18 

Font Manager 
initialization 84-85 
System 7.0 265-66 

fonts. See also characters 
changing82 
changing default 19, 266 
outline 265-66 

forks, file 224-27 
/orloops63 
formats, disk 218-20, 220 
formats, file 226 
forums, CompuServe 107, 192, 256-57 
fragmentation, heap 100 
frame pointer 97 
free blocks 99 
free space, finding 230 
PS (File Manager routine prefix) 229 

FSRead routine 250 
functional specification phase of design 193 
functions 

call stack 30, 96-98 
declaring 64-67 
global 22, 147 
intersegment calls 91 
libraries 11-13, 27, 35, 70, 72-73 
prototypes 67 
static 121 
void66 

G 

INDEX 

Generic Application. See miniGeneric application; 
multiGeneric application; nonGeneric 
application 

Gestalt Manager 260-61 
Gestalt routine 260-61 
GetDltem routine 203 
GetFinfo routine 194 
GetlndString routine 248 
GetMenu routine 133 
GetNextEvent routine 83 
GetPicture routine 170. 
GetResource routine 171 
GetWVariant routine 263 
global coordinate system 75 
global functions 22, 147 
GlobalTolocal routine 75 
global variables 22, 53-54, 147 
grafPorts 

creating 75-76 
locating drawing action 80-82 (see also drawing) 
setting current 80 
windows and 73-75 (see also windows) 

GrajPort structure 81 
graphics. See also QuickDraw 

documents and scrolling 163-65 
entities 83 
resources 168-70 

grep search facility 22-25 
GrowWindow routine 161 

H 
.h (suffix) 12, 13 
halting program execution 32-33 
handles 57, 99, 101 
hardware, file system 218-21 
header files 

precompiled 15 
in project folder 17-18 
THINK C 13-15 
viewing names of 20 

heap, application 
fragmentation 100 
problems with using 105-11 

273 



MACINTOSH C PROGRAMMING BY EXAMPLE 

heap, application, continued 
using 98-105 

heap, system 89, 222 
Hello Mac! application example 71 
Hello World application example 69-70 
hexadecimal constants 46 
HideControl routine 153-54 
HidePen routine 153-54 
hierarchical file system (HFS) 193. See also file system 

Macintosh file system (MFS) vs. 193, 223 
physical and logical organization of 222-27 
volume information 219-21 

high-level events 267 
high-level formats 219-21, 220 
highlighting scroll bars 181-83 
HiliteControl routine 181 
Hlock routine 109 
hook procs 197 
How to Write Macintosh Software (Knaster) 257 
HUnlock routine 109 
HyperTalk language 4 

I 
#if 0 directive 37-38 
#include directive 14 
!AC (interapplications communication) 266-69 
if-else if-else statement 60-62 
if-else statement 59 
if statement 58-59 
include files. See header files 
increment operators 50 
initializing Toolbox managers 84-85 
insert mode 19 
Inside Mac DA (Gallet) lo6 
Inside Mac Desk Accessory shareware utility 4 
Inside Macintosh 3-4 
integer variables 40, 41 
interapplication communication (!AC) 266-69 
interfaces. See user interfaces 
int variable type 40, 41 
invalidation 157-59 
invisible attribute-bits 209-11 
isolating user interface code 268-69 

J 
jump table 91 

K 
k (constant name prefix) 45 
keyboard events 128 
keyboard shortcuts 

Command-key shortcuts 19, 20, 21, 22, 27, 31, 33 
Option-key shortcuts 19, 20, 22 
Shift-key shortcuts 19, 20 

274 

L 
languages, programming 4-6. See also C language; 

THINKC 
libraries 11-13, 27, 35, 70, 72-73 
Lineto routine 83 
linking 9 
LoadSeg routine 91 
local coordinate system 75 
Loca/ToGlobal routine 75 
local variables 52-53 
locking files 217 
locking memory blocks 109-11 
logical end-of-file 227 
long variable type 40, 41 
loops62-63 
Loser application 

creating dialog box by modifying dialog resource 
file 210-15 

designing user interface 193-97 
hook procs 197 
Macintosh packages 196 
managing radio buttons 203-9 
manipulating the invisible bit 209-11 
overview 191-92 
as part of MacUser's Security utility 192 
program design phases and 192-93 
using Standard File Package 198-202 

lowercase 36 
low-level formats 218-19 

M 
MacHeaders 15 
Macintosh file system (MFS) 193, 223. See also file 

system 
Macintosh Human Interface Guidelines, The 3 
Macintosh packages 196 
Macintosh Programmer's Workshop C (MPW C) 6 
Macintosh Technical Notes 129 
MacTraps library 13, 27, 72-73, 85 
MacTutor magazine 256, 257 
MacUser magazine 192 
main() function 29-30, 69 
make facility and makefiles 16-17, 29 
managers, operating system 3-4, 115, 116 
managers, Toolbox. See Toolbox managers 
mafiana principle 157-59 
master file. See project file 
master pointers 99, 101, 103, 264-65 
math library 13 
MAUG programmer's forum 257 
memory 

allocation for applications 25-26 
allocation for windows 78 
application heap 98-105 
application heap problems 105-11 
application stack 96-98 



memory, continued 
managing 24-bit and 32-bit addressing 261-63 
map88-89 
overview87 
program code in 89-91 
program data in 91-94 
scope of variables and 94-111 
system heap 89, 222 
virtual 264 

Memory Manager 261-63 
menus 

creating, with resources 129-32 
initializing 132-34 
reading selections 134-36 

MenuSelect routine 134 
message-based operating systems (MBOS) 266 
metacharacters, grep 23-25 
miniGeneric application 

adding menus 129-32 
event processing 122-29 
as event-processing shell 113, 117-19, 136 
files 119-29 
initializing menus 132-34 
reading menu selections 134-36 
software levels and 114-16 

minus sign (-) 24 
modules 

adding and deleting 26-27 
defined 27 
getting size of 26 

MoreMasters routine 103 
MultiFinder 125, 127-29 
multiGeneric application 

miniGeneric origins of 138 
overview 137-38 
screen management with multiple windows 

150-59 
. source code control and 138-41 
supporting standard window manipulations 

159-62 
windows and documents 141-50 

multitasking 127-29 

N 
naming conventions 

files 12, 13, 17, 18 
functions 36 
symbolic constants 45-46 
variables 36, 39-40 

NewPtr and NewHandle routines 99 
NewWindow routine 78 
nonGeneric application 

concept of scrolling 165-68 
creating document contents with resources 168-74 
managing scroll bars 181-83 
managing scrolling 176-81 

nonGeneric application, continued 
overview 163-65 
rendering scroll bars 183-84, 186 
rendering scrolled documents 174-90 
scroll bars and scroll values 175-76 
scroll bar size 178 
scrolling routine 187-90 

INDEX 

scrolling text vs. graphical documents 163-65 
user selection in scroll bars 186-87 

nonprintable characters 
symbolic constants and 45-46 
white space and 36-37 

nonrelocatable blocks 98-105 
null pointers 78 
null statements 38-39 
null terminators 79 

0 
object code 17, 89-91 
octal constants 45 
open document table 

adding to 147-49 
deleting from 149 
described 146 

OpenPicture routine 169 
OpenResFile routine 18 
operating systems. See System software; UNIX 

operating system 
operations, file 217 -18 
operators, C language 

assignment 48-49 
binary 48-49 
increment and decrement 50 
precedence 51 
ternary 50-51 
unary49-50 

operators, grep 23-25 
Option-key shortcuts 19, 20, 22 
origins, coordinate systems 74 
OSErr token values 244-45, 245 
OSType file signature data 240 
outline fonts 265-66 
overstrike mode 19 

p 
\ p (Pascal string) 241 
packages, Macintosh 196. See also Standard File 

Package 
PACK resources 196 
panic button 33 
parameter block 228 
parameters 

defined 12 
passing, to Toolbox routines 76-78 
substitution 246 
variable77 

275 



MACINTOSH C PROGRAMMING BY EXAMPLE 

parentheses () 36, 51, 52, 65 
parsing events 123-24, 134-35 
partition size 25-26 
Pascal language 

calling conventions 98, 199 
C language vs. 77, 79, 98, 199, 241 
disadvantages of 5 
environments 34 
string declaration 241 

pascal keyword 199 
PB (File Manager routine prefix) 227 
PBH (File Manager routine prefix) 227 
PBHGetFinfo routine 228 
PBHGetV/nfo routine 230 
PBO.f/Line routine 221 
pen, grafFort 80-82 
period (.) 23, 55 
physical end-of-file 227 
PICT resources 168-70 
pictures 168-70 
pixels 74 
pointers 

declaring 56-57 
frame97 
handles to structures 58 
master 99, 101, 103, 264-65 
null 78 
to pointers (handles) 57, 99, 101 
to structures 57-58 

portability 35. See also System 7.0 compatibility 
ports. See grafForts 
precedence, operator 51 
precompiled headers 15 
preliminary design phase 193 
prinif funtion 70 
Programmer's Apple Mac Sourcebook, The 1o6 
Programmer's Guide to MultiFinder 125 
Programmer's Introduction to the Macintosh, The 3 
programmer's switch 85 
programming 

applications (see applications) 
development cycle 6-7, 8 
development environment 6 (see also THINK C) 
forums 107, 192, 256-57 
interfaces 2-3 (see also user interfaces) 
languages 4-6 (see also C language) 
organization of this book on 2 
preparation 8 
reasons 1 
reference information 3-4, 5-6, 8, 12-13, 125, 

256-57 
requirements 2 

programs. See applications 
project file 16-17 
project folders 

header files 17 -18 
project file 16-17 

276 

project folders, continued 
resource file 18 
source files 17 
types of projects 25 

Prototyper resource maker 130, 256 
prototypes, function 67 

Q 
QuickDraw. See also drawing 

creating windows 79-82 
graphic entities 83 
hiding and unhiding pens 153-54 
initialization 84-85 
pictures 169 
setting current grafFort 80 

quotation marks 
double(" ") 14 
single(' ') 240 

R 
radio buttons 203-9 
real variables 40, 41-43 
re/Con fields 146 
reference, passing parameters by 76 
references, programming 3-4, 5-6, 8, 12-13 
referencing 102 
registering file signatures 240 
register keyword 53 
registers 53, 92-94 
relocatable blocks 98-105 
replacing text 20-22 
request (IAC) 266 
requirements phase of design 192-93 
ResEdit resource editor 18, 130 
ResError routine 170 
resizing windows 161 
resource files 

creating and modifying dialog boxes with 198-202, 
210-15 

creating menus with 129-32 
creating text and graphics with 168-70 
default fonts and 19 
definition procedures 145, 263-64 
file resource forks and 224-27 
mapping errors to string 248-49 
project 18 
reading graphics 170 
reading text 171-74 
types 226 

resource forks 224-27 
Resource Manager 224-27 
response (IAC) 266 
Return key detection 207-9 
return statement 65 
return values 12 
Rez resource editor 130 



ROM software 114-16 
.rsrc (suffix) 18 
running projects 25-28 

s 
saving files 19 
scope, variable 52-54, 94-111 
screen management 

activating windows 151-54 
drawing and the update process 154-57 
invalidation and the mafiana principle 157-59 
multiple windows and 150-54, 151 
window regions 154 

scroll arrows selection 186 
scroll bars 

managing 181-83 
parts of175-76 
rendering 183-84, 184-86 
scroll values and 176-81 
size 178 
user selection in 186-87 

scrolling 163-68. See also nonGeneric application 
scroll page area selection 187 
scroll position values 176-81 
scroll thumb selection 187 
Scrol/Rect routine 167 
searching source files 

for regular expressions 22-25 
for text strings 20-22 

sectors, disk 218-21, 219 
Security application 192 
segmenting code 26, 90-91 
Segment Loader 90 
selections 

files 198-202, 241 
menus 134-36 
scroll bars 186-87 
text 19 

Select Window routine 152 
semicolon (;) 38 
server (IAC) 266 
SetCtlMax routine 183 
SetCtlValue routine 208 
SetDltem routine 207 
SetFlnfo routine 194 
SetOutlinePreferred routine 266 
SetPort routine 80 
SetRect routine 79-80 
SFGetFile routine 195, 198-202, 241 
SFPGetFile routine 199 
SFPutFtle routine 195 
SFReply structure 223 
shell, applications. See miniGeneric application; 

multiGeneric application; nonGeneric 
application 

shell software level 116 
Shift-key combinations 19-20 

INDEX 

shortcuts, keyboard. See keyboard shortcuts 
short double variable type 40, 41 
short variable type 40, 41 
ShowControl routine 153-54 
ShowPen routine 153-54 
signatures, file 239-41 
single stepping 30 
SizeWindow routine 161 
slash-asterisk (!•) 37 
slash-slash (/ /) 38 
software 

applications (see applications) 
levels 114-16 
system (see System 7.0 compatibility; System 

software) 
source code control systems (SCCS) 138-43 
source files 

checking syntax of 27 
compiling 25-28 
debugging (see Debugger, THINK C) 
editing (see editor, THINK C) 
editing, while debugging 32 
factoring 268-69 
modules and code segmentation 26-27, 90-91 
in project folder 17 
tracking changes to 139-43 

source window of Debugger 29-33 
space, white 36-37 
sprtnif() routine 255 
square braces([]) 24, 54 
stack, application 96-98 
Standard File Package 198-202 
Standard Libraries Reference manual 12-13 
star operator (•) ~ 
statement markers 31 
statements, C language 38-39. See also control 

statements 
static functions 121 
static keyword 53-54, 121 
static variables 53-54, 122 
stdio library 70 
STR# resources 248-49 
strcat() routine 256 
strings 

c vs. Pascal 79 
packages196 
parameter substitution in dialog boxes 246 
resources 26, 248-49 
searching for text 20-22 

StripAddress routine 264-65 
struct keyword 55 
structure region of windows 154 
structures, data 55-56 
subdirectories 222-23 
subscripting, array 54 
suffixes, filename 12, 13, 17, 18 
suggestions 256-57 

277 



MACINTOSH C PROGRAMMING BY EXAMPLE 

switch, programmer's 85 
switch statement 62 
Symantex, contacting 107 
symbolic constants 45-46 
symbolic debugger. See Debugger, THINK C 
syntax 

checking source file 27 
THINK C functions 12 

SysEnvirons routine 26o 
System 7.0 compatibility 

AppleEvents 267--68 
comparing master pointers 264-65 
custom definition procedures 263-64 
event processing 266-69 
Finder 28-29 
high-level events 267 
memory addressing and 261-63 
outline fonts 265-66 
overview 259 
testing for system version 260-61 
virtual memory compatibility 264 

system clock 127 
system globals 89 
system heap 89, 222 
System software 

T 

compatibility (see System 7.0 compatibility) 
managers 3-4, 115, 116 
System 6.0 debugging 28 
testing for version of 26o-61 

table, open document 146, 147-49 
TENew routine 173, 252 
TERec structure 171-74, 252 
ternary operator 50-51 
TESetText routine 173-74 
text. See also characters; fonts; strings 

documents, scrolling 163-65 
editing 18-20 
files, viewing 252-53 
parameter substitution in dialog boxes 246 
searching 20-25 

TextEdit routines 171-74 
TextFont routine 8 
TEXT resources 168-70, 171-74 
THINKC 

compiling and running projects 25-28 
CompuServe forum 107 
creating and editing projects (see editor, THINK 

C; source files) 
debugging projects (see Debugger, THINK C) 
development cycle and 7 
development folder installation 9-12, 11 
features 9 
header files 13-15 

278 

THINK C, continued 
libraries 11-13, 27, 35, 70, 72-73 
MPWCvs. 6 
project folder and files 16-18 

tick counter 127 
Toolbox managers 

initializing 84-85 
MacTraps library and 85 
passing parameters to routines 76-78 
re/Con fields 146 
routines 3-4 
routines that relocate heap objects 106 
software level of114-15 

tracing 31 
TrackControl routine 186-87 
tracks, disk 218, 219 
two's complement number storage 43 
typedef keyword 44, 55-56 
types, variable 

u 

automatic conversion 47 
data structure 55-56 
defining variables and 40-44 
memory usage of 94 
temporary conversion 51-52 

unary operators 49-50 
unix library 13 
UNIX operating system 

converting applications from, to Macintosh 13 
makefiles 29 
utility names 22 

UnloadSeg routine 91 
unlocking files 217 
UnmountVol routine 221 
unsigned keyword 43 
unsigned variables 43 
update process 154-57 
update region of windows 154 
uppercase 36 
user-defined variable types 42-43, 44 
user interfaces 

application shells (see miniGeneric application; 
multiGeneric application; nonGeneric 
application) 

console routines 70 
conventions 2-3 
designing 193-97 
dialog boxes (see dialog boxes) 
isolating code for compatibility 268-69 
packages 198-202 
resources for (see resource files) 
scroll bars as i75 (see also scroll bars) 
Toolbox managers 114-15 
windows (see grafl>orts; windows) 



v 
value, passing parameters by 76 
variables 

array 54 
assignment of values to 46-47 
automatic (local) 52-53 
automatic type conversion 47 
constants 44-46 
data structures and 55-56 
finding global 22 
names39-40 
parameters 77 
scope 52-54 
scope and memory usage 94-111 
static (global) 53-54, 122 
temporary stack 109 
temporary type conversion 51-52 
types and defining 40-44 
types and memory usage 94 

variant record parameter block 228 
VAR modifier 77-78 
virtual memory compatibility 264 
void functions 66 
volumes, disk 

file system 222-27 
finding free space 230 
formatting 219-21 
mounting and unmounting 221-22 

w 
waiting for events 84, 125-29 
WaitNextEvent routine 84, 125-29 
watchpoints 33 
WDEF resources 145, 263-64 
while loops 63 

INDEX 

white space 36-37 
window definition functions (WDEF) 145, 263-64 
Window Manager 

events 128 
initialization 84-85 
System 7.0 263-64 

WindowRecord structure 76 
windows 

activating 151-54 
closing 149-50 
creating 75-76, 79-82 
definition procedures 145, 263-64 
documents and 141-50 (see also documents) 
disposing of 84 
dragging 162 
grafl>orts and 73-75 (see also graf'Ports) 
invalidating 157-59 
managing multiple (see multiGeneric application) 
opening new 143-46 
regions 154 
resizing 161 
resources 145, 263-64 
screen management with multiple 150-59 
scrolling (see nonGeneric application) 
standard manipulations 159-62 
types 145 
updating 154-57 
zooming 161-62 

WMgrPort 74-75 

z 
ZMac forum on CompuServe 192 
zooming windows 161-62 
Zoom Window routine 161-62 

279 



About the Authors 
Kurt W. G. Matthies and Thom Hogan are microcomputer veterans. Kurt is an inter­
nationally known writer, lecturer, and software developer. He is a former contribut­
ing editor to MacUsermagazine, for whom he and Thom cowrote the popular Power 
Programming column. As a software developer, Kurt has collaborated on many 
Macintosh, MS-DOS, and UNIX programs. He has lectured internationally on C pro­
gramming and on operating systems and holds a degree in engineering from San 
Francisco State University. Kurt lives in Boulder, Colorado, where he runs his own 
software consulting company. This is his first book for Microsoft Press. 

Thom Hogan is a software developer, programmer, technical writer, and lecturer. He 
is the author of several books, including The Programmer's PC Sourcebook (now in 
its second edition) and The Programmer's Apple Mac Sourcebook (both from 
Microsoft Press) and the bestselling CP!M User's Guide. Thom has been a regular 
columnist for MacWorld and MacUser magazines and a frequent contributor to other 
computer magazines. He is currently an evangelist for GO Corporation. 

The manuscript for this book was prepared and submitted to Microsoft Press in elec­
tronic form. Text files were processed and formatted using Microsoft Word. 

Principal editorial compositor: Debbie Kem 

Principal proofreader: Deborah Long 

Principal typographer: Carolyn Magruder 

Interior text designer: Darcie Furlan 

Principal illustrator: Lisa Sandburg 

Cover designer: Studio MD 

Cover color separator:·Color Services, Inc. 

Text composition by Microsoft Press in Garamond Light with display type in Futura 
Extra Bold, using the Magna composition system and a Linotronic 300 laser 
imagesetter. 

Printed on recycled paper stock. 



Code Disk for 

Macintosh~c 

Programming by Example 

Copyngh1 C 1991 by 
Kurt W.O Maohocs and Thom Hogan 

Fulfill Assy. 097-000-608 
Part I 091-000-609 

• 



Microsoft -- ~ -

Now Mac® users with little or no C language programming experience can learn to develop their own 
programs in THINK c:"' Symantec's full-featured language for Mac programming. From the authors of the 
popular "Power Programming" column in MacUser, this example-packed introduction is an ideal entry into 
both the Macintosh and the THINK C programming environments. 

MACINTOSH C PROGRAMMING BY EXAMPLE starts with the basics-an introduction to the THINK C program· 
ming environment (including the debugger), a look at the C language itself, an overview of Mac application 
fundamentals, and an explanation of how the Mac manages memory. Then Matthies and Hogan move to 
the step-by-step development of Generic App, a full -blown application shell that contains all the menu, 
dialog box, event, and window handling functions essential to every Mac program-you' ll use it as a basis 
for application development again and again! To further demonstrate these essentials, the accompanying 
disk contains six sample applications, each of which includes the C language source, header, and resource 
files and the THINK C project file. 

Knowing when to put theory to work and when to be pragmatic, Matthies and Hogan have filled the book 
with practical tips . Source code examples you' ll want to use in your own programming illustrate: 

• Layered software design 

• Event handling 

• Window handling 

• Data structures and algorithms for 
managing the document list 

• Drawing and updating text and graphics 

• The file system and how files are 
selected for opening and then read 

• How the contents of any file can be 
displayed in either text or binary mode 

• Use of the Toolbox 

• System 7.0 features 

System Requirements Package Contains 
One BOOK 3.5" disk Apple Macintosh with 1 MB RAM and a hard d isk 

DISK INCLUDED 

U.S.A. 
U.K. 
Canada 

$34.95 
£29.95 IVAT included] 

$44.95 
[Reco111111e11detll 

THINK C versions 2.13 through 5.0 

,. 
The Awlwri:ed 

Editions 

ISBN 1-55615-357-0 

9 781556 15357C 

• 

90000 


