
11 Basics and
Figure Out ti e -:nd in No Time! start Programmi.96

A Reference for
the Rest of Us!'
by Dan Parks Sydow

The Fun and Easy Way"'
to Create New Mac
Pro/lrams -
Your First Aid Kit' for
Compiling Soutce Cade
with COt/eWamor Ute -
Complexities Of C -
Explained in Plain English

Mac® l'roframminf For Dummies;
3rtl Edition

C Lan9ua9e Data TlJ.pes
Use Data Type Example

Smallwholenumber short short days = 3 ;

Big whole number 1 ong l ong populati on = 5600200 ;

Decimal numbers f 1 oat float secon ds = 42 . 53 ;

Event record Event Record EventRecord theEvent ;

Window WindowPtr WindowP t r t heWi ndow ;

Rectangle Re ct Rect smallSquare ;

C Lan9ua9e Math
In the following examples, assume that all variables are declared to be of type short.

Operation Symbol Example

Add~on + newAge = cu rr en tAge + l;

Subtraction 1 os s = tot a 1 damaged ;

Multiplication * days = weeks * 7 ;

Division I years a months I 12 ;

lncrementbyl ++ loopCounter++ ;

Important Toolbox Functions
In the following examples, assume that the example va riables are declared as follows: t he Event is of
type Event Re co rd, thew i ndow is of type W i ndowP tr, and the Rec t is of type Re c t .

Task Toolbox Function

Get event information WaitNextEvent

Open a window GetNewWindow

Ready window for drawing Set Port

Location to start drawing Move To

Draw a line of text Drawstring

Draw a line Line

Set up a rectang le SetRect

Draw a rectangle Fr ameRect

Beeping the speaker Sys Beep

Exampl e

WaitNextEvent(everyEvent .
&theEvent . OL . OL) ;

GetNewWi ndow (128 . ni 1 •
(WindowPtr)-lL):

SetPort(theWindow) ;

MoveTo(20 . 50) ;

DrawString("\pThis i s a test. ") ;

Line(l00 . 0) :

SetRect(&theRect . 10 . 10 . 60 , 80) ;

FrameRect(&theRect) ;

SysBeep(l) ;

... For Dummies®: 8estsellin9 Book Series for 8e9inners

~ .. Mac® l'roframminf For Dummies;
3rd Edition

C Lan9ua9e Basics
In the following examples, assume thatthe variable count is declared to be of type short .

Task Syntax Example

Comment /* *I /* this i s a comment */
Loop while whil e (count < 5)

count++

Branch switch switch C count

case 1 :
DrawString(" \pYou have l .") ;
break ;

Branch if if count < 2 l

Dra wSt ring(" \pLess t han 2 .") ;

Creatin9 a New Pro9ram Usin9 CodeWarrior
Task
Create a CodeWarrior project file

Create a resource file

Add resource fi le to project

Remove resource placeholder

Create new source code file

Save source code file

Add source code file to project
Remove source code placeholder

How to Carry Out

Choose New Project from File menu

Choose New from ResEdit's File menu

Choose Add Files from Project menu

Click the placeholder file and then choose Remove Files from
Project menu

Choose New from File menu

Choose Save As from File menu

Choose Add Window from Project menu
Click the placeholder file and then choose Remove Fi les from
Project menu

That's up to you!

Choose Run from the Project menu

• Copyright © 1999 IDG Books Worldwide, Inc.

IDG
BOOKS
WORl.D\\'IDf

All rights reserved.
Cheat Sheet S2.95 value. Item 0544·0.

For more information about IDG Books,
call 1·800·762-2974.

... For Dummies®: Bestsellin9 Book Series for Be9inners

BESTSELLING
BOOK SERIES

TM

References for the
Rest of Us!®
Are you intimidated and confused by computers? Do you find ·
that traditional manuals are overloaded with technical details
you'll never use? Do your friends and family always call you to
fix simple problems on their PCs? Then the .. . For Dummies®
computer book series from IDG Books Worldwide is for you .

. • • For Dummies books are written for those frustrated computer users who know they
aren't really dumb but find that PC hardware, software, and indeed the unique vocabulary of
computing make them feel helpless ..• • For Dummies books use a lighthearted approach,
a down-to-earth style, and even cartoons and humorous icons to dispel computer novices'
fears and build.their confidence. Lighthearted but not lightweight, these books are a perfect
suivival guide for: anyone forced to use a computer.

11

/ like my copy so much I told
friends; now they bought copies. 11

- Irene C., Orwell, Ohio
UD.llick, concise, nontechnical,
and humorous. 11

-Jay A., Elburn, Illinois
'7hanks, I needed this book. Now I
can sleep at night 11

- Robin E, British Columbia, Canada

1/99

Already, millions of satisfied readers agree. They have
made .••• For Du111mies books the #1 introductory level
computer book series and have written asking for more.
So, if you're looking for the most fun and easy way to
learn about computers, look to •• • For Dummies books to
give you a helping hand.

_ ~-®

IDG-
BooKS
WORLDWIDE

NtAC®
PROGRA!VtMING

FOR
DUNJ.MIEO®

3RD EDITION

NiAC®
PROGRANiMING

FOR

DU!V\MIEO®
3RD EDITION

by Dan Parks Sydow

®

IDG
BOOKS
WORLDWIDE

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA • Chicago, IL • Indianapolis, IN • New York, NY

Mac® Programming For Dummie8¥> 3rd Edition
Published by
IDG Books Worldwide, Inc.
An International Data Group Company
919 E. Hillsdale Blvd.
Suite 400
Foster City, CA 94404
www. i dgbooks. com (IDG Books Worldwide Web site)
www. dummies. com (Dummies Press Web site)

Copyright© 1999 IDG Books Worldwide, Inc. All rights reserved. No part of this book, including interior design, cover
design, and icons, may be reproduced or transmitted In any form, by any means (electronic, photocopying, recording,
or otherwise) without the prior written permission of the publisher.
Library of Congress Catalog Card No.: 99-61115
ISBN: 0-7645-0544-0

Printed In the United States of America
10987654321

30/RW /QT /ZZ/IN
Distributed in the United States by IDG Books Worldwide, Inc.
Distributed by COG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG
Norge Books for Norway; by IDG Sweden Books for Sweden; by Woodslane Pty. Ltd. for Australia; by Woodslane (NZ)
Ltd. for New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong;
by ICG Muse, Inc. for Japan; by Norma Comunicaciones S.A. for Colombia; by lntersoft for South Africa; by Le Monde
en Tique for France; by International Thomson Publishing for Germany, Austria and Switzerland; by Dlstrlbuidora
Cuspide for Argentina; by Llvrarla Cultura for Brazil; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Phlllppines; by Contemporanea de Ediclones for Venezuela; by Express Computer
Distributors for the Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Grupo
Editorial Norma S.A. for Guatemala; by Chips Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama
S.A. for Panama; by American Bookshops for Finland. Authorized Sales Agent: Anthony Rudkin Associates for the
Middle East and North Africa.

For general information on IDG Books Worldwide's books In the U.S., please call our Consumer Customer Service
department at 800-762-2974. For reseller information, including discounts and premium sales, please call our Reseller
Customer Service department at 800-434-3422.
For information on where to purchase IDG Books Worldwide's books outside the U.S., please contact our International
Sales department at 317-596-5530 or fax 317-596-5692.
For consumer information on foreign language translations, please contact our Customer Service department at
1-800-434-3422, fax 317-596-5692, or e-mail rights@idgbooks.com.

For information on licensing foreign or domestic rights, please phone + 1-650-655-3109.

For sales inquiries and special prices for bulk quantities, please contact our Sales department at 650-655-3200 or write
to the address above.

For information on using IDG Books Worldwide's books In the classroom or for ordering examination copies, please
contact our Educational Sales department at 800-434-2086 or fax 317-596-5499.
For press review copies, author interviews, or other publicity information, please contact our Public Relations
department at 650-655-3000 or fax 650-655-3299.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

YMIT OF IJABILJTYIDiscLAIMER Of WARRANTY: THE PUBLISHER AND AUTHOR HA VE USED THEIR BFST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRFSENTATIONSORW ARRANTIFS
WITH RFSPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPEClflCAll Y
DISCLAIM ANY IMPLIED WARRANTIFS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE
ARE NO WARRANTIFS WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO
WARRANTY MAY BE CREA TED OR EXTENDED BY SALES REPRFSENT ATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN
ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RFSULTS, AND THE ADVICE AND
STRA TEGIFS CONTAINED HEREIN MAY NOT BE SUIT ABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR
AUTHOR SHAU BE IJABLE FOR ANY LOSS Of PROFIT OR ANY OTHER COMMERCIAL DAMAGFS, INCLUDING BUT
NOT LIMITED TO SPECIAL, INCIDENT AL, CONSEQUENTIAL, OR OTHER DAMAGFS. FULFillMENT OF EACH
COUPON OFFER IS THE RFSPONSIBIUlY OF THE OFFEROR.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks, or
registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or vendor
mentioned in this book.

~~§~ is a registered trademark or trademark under

IDG
exclusive license to IDG Books Worldwide, Inc.
from International Data Group, Inc.

BOOKS in the United States and/or other countries.
WORLDWIDE

About the Author
Dan Parks Sydow is a graduate of Milwaukee School of Engineering, with a
degree in Computer Engineering. He has worked on software in several
diverse areas, including the display of images of the heart for medical
purposes. Because Dan can't stand the sight of blood - even electronic
blood - he quit his nine-to-five job as a software engineer to become
a freelance writer.

Dan got hooked on Macintosh programming a decade and a half ago when
the Macintosh was first introduced. Since then, he has spared no effort in
avoiding all other types of computers. He enjoys shedding light on
topics that people have been led to believe were beyond their reach, and
he has written over a dozen Macintosh programming books.

ABOUT IDG BOOKS WOltLDWIDE
Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc .• Is a subsidiary of International Data Group, the world's largest publisher of
computer-related infonnation and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick]. Mc.Govern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publitations in over 75 countries. More than 90 million
people read one or more COG publications each month.

launched in 1,9-90, IDG Books Worldwide is today the # l publisher of best-selling computer bool>s in the
United States. We are proud to have received eight awards from rhe Computer Press Association in recognition
of editorial excellence and three from Computer Currents' First Annual Readers' Choice Awards. Our best­
selling ... for Dummies* series h as more than 50 million copies in print \virh translations in 31 languages. lDG
Books Worldwide, through a joint venture with IDG's Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People's Republic of China. In record time, !DG Books WorldWide has become
the first choice for millions of readers around the world who want LO learn how to better manage their
businesses.
Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are wrinen by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and joumalism­
experience we use to produce books to carry us into the new millennium. In shon, we care abouc books, so
we attract the best people. We devote special attention to details such as audience, interior design. use of'
icons, and illustralions. And because we use an efficient process of authoring, editing, and desktop publish ing
our books electronically, we can spend more time ensuring superior content and less tlme on the technicalilles
of making books.

You am count on our commitment ro deliver high-quality: l:iooks at competitive prices on topics you want
to read aoout. At mG Books Worldwide, we continue in che 1DG trndition of delivering quality for more than
30 years. You'll find no better book on a subject than one from IDG Books Worlclwlde.

Elthl Annua
Coinputrr Prtn
Awczrds~/991

(J,t.._.,.Q~ ... <4-
7 /0ohn Kilcullen <- -

Chaim1an and CEO
lDG Books Worldwide, Inc.

~
WINNER

Nintlt Annual
Olmp11ttr Prnt
Ait"Grd.f~/99J

J~n&f9
President and Publisher
IDG Books Worldwide, Inc.

~
WINNE R

TtmhAnnual
Cam.pultr h tu
Awonls~/99J

EJ,-iymh nnual
CumpulrrPnn
AwOJ'ds~/ 995

IDG is the world's leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG's diverse product and services ponfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research , education and training, and
global marketing services. More than 90 million people read one or more of IDG's 290 magazines and newspapers, including
lDG's leading global brands - Computerworld , PC World, Network World, Macworld and the Channe World family of
publicat ions. IDG Books World,vide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The " ... For Dummies~" series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specifi c Web sites around the world through IDG.ncl (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (JDC) is the world's
largest provider of information technology data, analysis and consulting, with research centers in over 4 1 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet , Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG's training subsidiary, ExecuTrain, is the world's
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG's prim. online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1124/99

Dedication
To my wife, Nadine.

Author's Acknou1led9ments
Many thanks to Carole McClendon and Steven Hayes for making this book
happen; to Colleen Esterline for the suggestions, comments, and
corrections that made my writing suitable to print; to Kelley Baker for
her work on getting CodeWarrior Lite on the CD-ROM; and to Dennis Cohen
for another helpful technical edit.

Publisher's Acknowledgments
We're proud of this book; please register your comments through our IDG Books Worldwide
Online Registration Form located at http: I /my2cents. dummies. com.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Colleen Esterline
(Previous Edition: Mary Goodwin)

Acquisitions Editor: Steven H. Hayes

Technical Editor: Dennis Cohen

Media Development Editor: Marita Ellixson

Associate Permissions Editor:
Carmen Krikorian

Media Development Coordinator:
Megan Roney

Editorial Manager: Mary C. Corder

Media Development Manager:
Heather Heath Dismore

Editorial Assistants: Paul Kuzmic, Beth Parlon,
Alison Walthall

General and Administrative

Production

Project Coordinators: Valery Bourke,
Regina Snyder

Layout and Graphics: Linda M. Boyer,
J. Tyler Connor, Angela F. Hunckler,
Anna Rohrer, Brent Savage, Brian Torwelle

Proofreaders: Kelli Botta, Jennifer Mahern,
Arielle Carole Mennelle, Nancy Price,
Ethel M. Winslow, Janet M. Withers

Indexer: Ty Koontz

Special Help

David Mehring

IDG Books Worldwide, Inc.: John Kilcullen, CEO; Steven Berkowitz, President and Publisher

IDG Books Technology Publishing: Brenda McLaughlin, Senior Vice President and
Group Publisher

Dummies Technology Press and Dummies Editorial: Diane Graves Steele, Vice President and
Associate Publisher; Mary Bednarek, Director of Acquisitions and Product Development;
Kristin A. Cocks, Editorial Director

Dummies Trade Press: Kathleen A. Welton, Vice President and Publisher; Kevin Thornton,
Acquisitions Manager

IDG Books Production for Dummies Press: Michael R. Britton, Vice President of Production
and Creative Services; Cindy L. Phipps, Manager of Project Coordination, Production Proof­
reading, and Indexing; Kathie S. Schutte, Supervisor of Page Layout; Shelley Lea, Supervisor
of Graphics and Design; Debbie J. Gates, Production Systems Specialist; Robert Springer,
Supervisor of Proofreading; Debbie Stailey, Special Projects Coordinator; Tony Augsburger,
Supervisor of Reprints and Bluelines

Dummies Packaging and Book Design: Patty Page, Manager, Promotions Marketing

•
The publisher would like to give special thanks to Patrick J. McGovern,

without whom this book would not have been possible .

•

Contents at a Glance
o o o o o a o o o o o o o o o o o c o

Introduction 1

Part I: lntroducin9 the Macintosh Basics 9
Chapter 1: Windows, Menus, and a Mouse - That's the Mac 11
Chapter 2: What Makes Macintosh Programming So Different? 21
Chapter 3 : Using and Programming the iMac 33
Chapter 4: Removing the Fear, Part I: Don't Let Mac Programmers Scare You! 37
Chapter 5: Removing the Fear, Part II: The One-Minute Program49

Part II: Resources: This is Pro9rammin9J 59
Chapter 6: What Are Resources? ... 61
Chapter 7: ResEdit, the Resource Editor .. 67
Chapter 8: Two Types of Resources: 'MBAR' and 'WIND' 85

Part 111: Usin9 a Compiler 103
Chapter 9: Getting to Know You: The CodeWarrior Compiler 105
Chapter 10: Creating Source Code Isn't Hard, Honest! 121
Chapter 11: Compiling and Running Your Source Code 131

Part If/: Learnin9 the C Lan9ua9e 145
Chapter 12: Choosing Cover Other Languages 147
Chapter 13: Keeping Track of Things in C: Data Types and Variables 151
Chapter 14: Learning the Language - Just the Basics of C 161
Chapter 15: To Build a Program, You Need a Toolbox 181
Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw? 189

Part fl: The Moment of Truth: Writin9 a Pro9ram! 203
Chapter 17: Examining a Simple Mac Program 205
Chapter 18: Menus That Drop and Windows That Move 231
Chapter 19: Writing a Very Mac-Like Program -Part I 255
Chapter 20: Writing a Very Mac-Like Program - Part II 269
Chapter 21: Where Do You Go from Here? 287

Xi j Mac Programming For Dummies, 3rd Edition

Part VI: The Part of Tens .•.•.....•••........•... • 315
Chapter 22: Ten Steps to Creating a Mac Program 317
Chapter 23: Ten Toolbox Functions You Can't Live Without 323
Chapter 24: The Ten Most Common Mac Programming Mistakes 329

Part VII: GlossarlJ. and AppendiNes ..•...•.••..••••• . 335
Appendix A: C Language Reference ... 337
Appendix B: Toolbox Reference .. 345
Appendix C: If Something Should Go Wrong 353
Appendix D: Glossary ... 361
Appendix E: iMac Programming and Movie Playing 365
Appendix F: What's on the CD-ROM? .. 373

lndeN•...•....•..•....•..•..•.••. . 379

IDG Books Worldwide End-User License Afreement 404

Installation Instructions•................... 406

Book Re9istration Information••..•.. . Back of Book

paqe 59

Cartoons at a Glance

paqe 145

81J Rich Tennant

The 5th Wave 8 Rich Tennant
~

~··.al 'Pto'uam·mer&•
'Rut ~""'""" i- tl'Cubls
Ql~hom\iu!.ol~

- "6ka:I, .,...,., ~ """"?" .

Fax: 978-546-7747 •E-mail: theSwave@t i ac. net

Table of Contents
o o o o o o o o o o o o o o o e o o o o • o o o o o o o o o o o a o o o o o o o o o o e o o o o o

Introduction 1
Why Program on the Mac? 1
Who Are You? ... 2
What You Need .. 2
What's on the CD .. 3
About This Book ... 4
How to Use This Book .. 5
It's Time to Establish Some Conventions 5
How This Book Is Organized 6

Part I: Introducing the Macintosh Basics 6
Part II: Resources: This Is Programming? 6
Part III: Using a Compiler 7
Part IV: Learning the C Language 7
Part V: The Moment of Truth: Writing a Program! 7
Part VI: The Part of Tens 7
Part VII: Glossary and Appendixes 8

Icons Used in This Book .. 8
What's Next? .. 8

Part I: lntroducinlJ. the Macintosh Basics 9

Chapter 1: Windows, Menus, and a Mouse -That's the Mac 11
The Graphical User Interface 11
The Interface Parts ... 13

Working on your desk 13
Looking at itty-bitty pictures 14
Peeking through windows 14
Using the mouse ... 14
Ordering from the menu 15
Speaking of dialogs 16
Wrapping up the interface 17

The Parts You Need ... 18
Menus and windows can do the job 18
So, you think you're getting shortchanged, huh? 19

Mac Programming For Dummies, 3rd Edition

Chapter 2: What Makes Macintosh Programming So Different? .. . 21
The Interface - That's the Difference 21
Secret Agents Aren't the Only Ones Using Code! 22

Learning the language 23
Different languages 23
All programs were once source code 24

Programs Inside and Outside 24
Easier Doesn't Mean Better 26
Mac Programs - Interesting, Fun, Exciting! 27

Giving information 28
Getting information 29
Working with windows 30
Menus mean choices 31

Chapter 3 : Using and Programming the iMac 33
iMac Features .. 33

Processing power .. 34
More stuff that makes it fast 34
Looks nice, sounds nice 35

Programming the PowerPC 36

Chapter 4: Removing the Fear, Part I: Don't Let Mac Programmers
Scare You! 37

Demystifying Source Code 38
Playing by the rules of the game 39
Decoding some source code terminology42
Getting a grip on source code organization42

Eliminating Anxiety over Saving and Compiling Your Code43
Source code is nothing but text43
Completing the picture with compiling45

Chapter 5: Removing the Fear, Part II: The One-Minute Program .. . 49
Remembering Those Conventions49
That's It? That's a Mac Program? 50

Unveiling the program 50
Naming the program 51
Examining the code, but not too closely 52
Getting it ready, cause here you come 52
Opening a window 53
Writing to a window 54
Ending the program 55
Ending at the beginning and the end 56

That's It ... But Don't Forget the Toolbox! 57
Imagining the glory of the Toolbox 57
Calling the Toolbox 57
Feeling like you're not alone 58

_________________ Table of Contents Xt/ii

Part II: Resources: This Is l'ro9rammin9) 59

Chapter 6: What Are Resources? 61
Defining What Resources Define 61
Look, Ma, No Programming! 63

Hypothetically speaking about resources 64
Realistically speaking about resources 64
The resource/source code connection 65

But How Do You Create a Resource? 66

Chapter 7: ResEdit, the Resource Editor 67
Editing - It's Not Just for Text Anymore 67

Forget that text! ... 67
ResEdit: One mighty resource editor 68

What's in a Name? .. 69
Don't quote me on this 69
A MENU is not a menu 69

Resource IDs ... 70
Using ResEdit .. 71

Creating a resource file 71
Discerning the different ResEdit windows 73
Creating your very first resource 75
Adding to a resource 78
Previewing a MENU resource 82
Editing an existing resource 82
Sorry, not now ... 83

Chapter 8: Two Types of Resources: 'MBAR' and 'WIND' 85
Discovering the 'MBAR' Resource 85

Creating an 'MBAR' resource 86
Adding an 'MBAR' to a resource file 87
Adding a 'MENU' to an 'MBAR' 88
Menus come to order! 91
Summing up the 'MENU' and 'MBAR' connection 92

Knowing that 'WIND' Is for Window 93
Opening a resource file ... again 94
Breezing through a 'WIND' resource 94
Changing a window's size and location 96
Changing the look of a window 98
Moving on ... 100

Proving that Resources Are Valuable to Source Code 101

Xfl iii Mac Programming For Dummies, 3rd Edition

Part Ill: Usin9 a Compiler 103

Chapter 9: Getting to Know You: The CodeWarrior Compiler 105
Comparing CodeWarrior Professional and CodeWarrior Lite 105
Choosing CodeWarrior 106

CodeWarrior has everything you need 106
Apple isn't the best (for once) 107
You can join the CodeWarrior support club 107

Creating a Project .. 108
Creating a project folder 108
Creating a new project 109

Working Together .. 113
Launching ResEdit 114
Creating the new resource file 115
Adding a 'WIND' resource 116

Adding a File to a Project 116
Removing a File from a Project 119

Chapter 10: Creating Source Code Isn't Hard, Honest! 121
Opening an Existing Project 121
Working with a Source Code File 122

Creating a source code file 122
Saving the source code file 123
Adding the source code file to the project 125

Reviewing the Creation of a CodeWarrior Project 128
Entering the Source Code 129

Opening a source code file 129
Typing in the code 130

Chapter 11: Compiling and Running Your Source Code 131
Compiling Your Code ... 131

What happened? .. 133
Can you type? The compiler lets you know 135

Running and Building Sounds Like Quite a Workout! 137
Running Code within CodeWarrior 138

Running the code 138
Running it again. And again, and again... 141

Checking Out the New Program 142

Part If/: Learnin9 the C Lan9ua9e 145
Chapter 12: Choosing Cover Other Languages 147

Why Use Con the Mac? 147
Everybody's using C 148
Other reasons for using C 148

Those Other Languages 149

____________________ Table of Contents • XIX

Chapter 13 : Keeping Track of Things in C:
Data Types and Variables 151

Data Types and Variables: Different, but Related 151
Predetermined C symbols: Data types 152
Do-it-yourself symbols: Variables 152

Every Variable Has a Type 154
Every Variable Has a Value 154
Order Is Everything .. 155
Common Data Types ... 156

Data types for whole numbers 156
A data type for fractional numbers 158

Common Variables ... 159
A Few Examples of Variables 159

Declaring variables 159
Assigning values to variables 160

Chapter 14: Learning the Language-Just the Basics of C 161
Care to Comment on That? 161
Variable Names .. 162
Operating without a License 163
Minimal Math ... 164

The addition operator 164
The subtraction operator 166
The multiplication operator 167
The division operator 167
Operators work together 168
Operators work with floats, too 168

Repeating Yourself by Looping 169
The need to loop 169
The while loop ... 170

Changing Directions by Branching 17 4
The need to branch 175
The switch branch 176
The if branch ... 179

That's All There Is to C? 180

Chapter 15: To Build a Program, You Need a Toolbox 181
Why Have a Toolbox? .. 181
Miniprograms by Any Other Name 182
The Toolbox Gives and Receives 182

Function parameters 182
Functions return values 184

Sampling the Toolbox .. 186

Chapter 16: Drawing with C: Why Have a Mac
If You Can't Draw? 189

Quick on the Draw ... 189
The Coordinate System 190

XX Mac Programming For Dummies, 3rd Edition

Let's Draw! .. 193
Drawing a line .. 193
Drawing a rectangle 195

Drawing to a Port .. 198
Why have ports? .. 198
WindowPtrs and Ports 199

Part V: The Moment of Truth: WritinlJ. a l'ro9ram! 203

Chapter 17: Examining a Simple Mac Program 205
The MyProgram Program Source Code 205
Functions Aren't Just for the Toolbox 206
Initializing the Toolbox 208
Working with a Window 210

Opening a window 210
Writing to a window 210
Planning an addition to the window 211
More planning for the addition 213
Solving problems with your box 216

Making MyProgram More Eventful 217
Introducing events 218
Looking at the MyProgram event loop 218
Holding onto an event 220
Improving the MyProgram event loop 223

Examining an Even More Eventful Program 226
Looking directly into the source code 226
Extending a friendly reminder 227
Examining the basic stuff 227
Examining the event loop 228

Chapter 18: Menus That Drop and Windows That Move 231
Bringing a Window to Life' 232

Dissecting the parts of a window 232
Clicking different parts of a window 233
Working with windows can be a drag 235
Closing a window' 238
Working windows and breaking out of the loop 239

Dropping That Menu ... 240
Running through the menu resources 240
Displaying the menu bar 242
Pulling down a menu 243
Making the menu usable 245
Handling a menu selection 249
Examining a program with a menu that drops 251

Chapter 19: Writing a Very Mac-Like Program- Part I 255
Regarding the Animator Program 256
Assembling the Folders Needed to Create Animator 257
Starting the CodeWarrior Project 259
Creating Animator's Resource File 260

Creating the resource file 261
Adding the Window resource 262
Adding the Menu resources 264
Adding the resource file to the project 267

Creating Animator's Source Code File 267
Is That It? ... 268

Chapter 20: Writing a Very Mac-Like Program - Part II 269
Introducing the Animator Source Code 269

Viewing the glory of the Animator code 270
Knowing What's Going On in the Code 273

Finding out about 128 273
Declaring variables 27 4
Initializing the Toolbox 275
Displaying menus and windows 276
Establishing the event loop 276
Handling a mouseDown event 276
Handling a click in the menu bar 277
Adding the Beep Me! item 279
Nurturing the Grow Square item 279
Dodging the Move Square item 282
Finishing up with the Quit item 283

Compiling and Running the Animator Program 283
Naming the Application 284

Stating your preference 284
Checking out the new name 286

Congratulations!? .. 286

Chapter 21: Where Do You Go from Here? 287
Experimenting .. 288

Changing the timing of an animation 288
Changing the loop 289
More ideas, please! 289

Adding the Apple Menu 289
Understanding why you want to add the Apple
to your menu ... 290
Understanding Apple menu resources 291
Dealing with Apple menu source code 296
Viewing the Animator Apple source code listing 303

Introducing a More Advanced Program: SightAndSound 303
Understanding what SightAndSound does 304
Pictures and sounds are resources 305

XXi i Mac Programming For Dummies, 3rd Edition

Workin' with the same ol' kind of project 307
Glancing at the SightAndSound source code listing 307
Looking at function prototypes 310
Getting another dose of functions 311

That Wasn't Too Bad; How Do I Learn More? 313
And Now a Few Words about CodeWarrior Professional 313

Part VI: The Part of Tens 315

Chapter 22: Ten Steps to Creating a Mac Program 317
Creating a CodeWarrior Project File 318
Creating a Resource File 318
Adding the Resource File to Your Project 319
Removing the Resource File Placeholder 320
Creating a New Source Code File 320
Saving the Source Code File 321
Adding the Source Code File to the Project 321
Removing the Source Code File Placeholder 321
Writing the Source Code 322
Compiling the Source Code 322
Running the Code .. 322

Chapter 23: Ten Toolbox Functions You Can't Live Without 323
Using the Toolbox Initialization Functions 323
Displaying a Window ... 324
Preparing a Window For Drawing 324
Displaying a Menu Bar .. 325
Capturing Events .. 325
Locating a Mouse Click 325
Working with Windows 326
Managing Menus .. 326
Drawing Text .. 327
Drawing Shapes ... 327

Chapter 24: The Ten Most Common Mac
Programming Mistakes 329

Having Trouble with the Resource File 329
Not Pairing Braces ... 330
Adding an Extra Semicolon 330
Using Incorrect Case ... 331
Forgetting the \pin Drawstring 332
Forgetting the & with a Parameter 332
Forgetting to Increment a Loop Counter 333
Forgetting to Give a Variable an Initial Value 333
Forgetting a Break in a Switch Statement 334

____________________ Table of Contents •••
Jf}flll

Part f/11: GlossarlJ and AppendiJtes 335
Appendix A: C Language Reference 337

Variables ... 337
Declaring a variable 337
Giving a variable a name 337
Assigning a variable a value 338

Data Types ... 338
Number types .. 338
Window types .. 338
Menu types .. 339

Operators .. 339
Math operators ... 339
Comparative operators 340
Assignment operators 341

Looping Statements .. 341
The while statement 341

Branching Statements .. 342
The switch statement 342
The if statement .. 343

Toolbox Functions ... 344

Appendix B: Toolbox Reference 345
Initialization .. 345
Events ... 345
Windows ... 346

Opening and displaying a window 346
Closing a window 346
Moving a window 34 7

Responding to the Mouse Button 34 7
Menus ... 348

Displaying menus and the menu bar 348
Responding to a mouse click in the menu bar 348
Determining which menu item is selected 349

QuickDraw .. 350
Setting up ports .. 350
Moving to a location 350
Drawing a line .. 350
Drawing a shape .. 351
Drawing text ... 352

Appendix C: If Something Should Go Wrong 353
Errors While Trying to Compile Your Code 353

The Compile menu item is dim 353
Declaration syntax error 354
Expression syntax error 354

XXi (/ Mac Programming For Dummies, 3rd Edition

Function call does not match prototype error 355
Cannot convert error 355

Errors While Trying to Run Your Code 356
First off, are you in the right section? 356
Nothing seems to happen 356
A flickering alert and a frozen Mac 357
The program runs and then quits immediately 357
Link failed error .. 358

Errors While Running Your Code 358
Things aren't getting drawn in the window 359
A rectangle that should be there just ain't there 359

Errors Not Addressed in This Appendix 359

Appendix D: Glossary 361

Appendix E: iMac Programming and Movie Playing 365
Playing Movies .. 365

The Movie Toolbox 366
A QuickTime movie-playing example 368

Appendix F: What's on the CD-ROM? 373
CodeWarrior Professional or CodeWarrior Lite? 373
Installing CodeWarrior Lite 374

Running the installers 37 4
Checking to see if the installation worked 377

Installing Other Files from the CD-ROM 377
Copying ResEdit to your hard drive 377
Copying the ... For Dummies Examples folder 378

You're All Set .. 378

lnde~ 379

IDG Books Worldwide End-User License Afreement . . . t,Ot,

Installation linstructions t,06

Book Re9istration Information Back of Book

Introduction
OQ0080Q000000000$000Q00000000GOCOeGOOOQOOOOOOOQ&O

Macintosh computers are easy and fun to use. Even people who have
never used a computer before find that within just a couple of hours

they feel comfortable using a Mac to type a letter or draw a simple picture.
But what about programming a Macintosh - is that also easy and fun? Not
always. Don't worry though; programming a Mac doesn't have to be nearly as
painful as you may have been led to believe.

You picked up this book for one of several reasons. Maybe you've pro­
grammed a computer, but not a Macintosh. Or you've never programmed, but
are curious enough to try your hand at it. Or you just happen to be the type
that enjoys the thought of pain. Now, now - I want to end that fallacy right
here. Contrary to popular belief, no ordinance or law exists that states that
the words programming and fate-worse-than-death must always appear
together.

Why is programming thought of as aggravating, time-consuming, detail-ori­
ented, and difficult? Because it can be - as it is practiced by professional
software engineers. What about people who, instead of aspiring to become
professional programmers, just happen to enjoy a good challenge? If you are
one of those people, then I have good news. And this book is it.

Programming can be fun, interesting, and rewarding, and it doesn't have to be
difficult. Just learning the very basics of Macintosh programming enables you
to write a program that uses windows, menus, and graphics. You don't need a
degree in computer engineering or a technical reference book the size of the
New York City telephone directory to write a basic Mac program. Instead, you
need a book that skips the technical details and theory. You need a book that
presents you with just the essentials necessary to write a program that runs
on a Macintosh. You need a book with a bright yellow cover and a title along
the lines of Mac Programming For Dummies, 3rd Edition.

Wh1J. Pro9ram on the Mac}
Professional programmers get paid to write computer code. So why should
you do it for free? Because you picked up this book, I have a feeling you may
already know why you want to try your hand at programming the Mac. If it
was simple curiosity that led you to this point, however, you may need a little

2 Mac Programming For Dummies, 3rd Edition ___________ _

convincing that you should want to take on this endeavor. The following list
should contain at least one or two items that persuade you. You may want to
learn to program the Mac so that you can:

111'1' Take on - and conquer - a challenge.

111'1' Understand what the heck your programmer and engineer friends and
coworkers are always talking about.

111'1' Gain an insight into how real programs, such as word processors or
drawing programs, work.

111'1' Write a simple game tailored specifically for your children.

111'1' Take the first step to making a living as a computer programmer.

111'1' Make a quick transition to Mac programming if you already know how to
program other systems, such as Windows or UNIX.

111'1' Learn about programming with graphics, menus, and windows if you
already know how to write simple text-only programs.

111'1' Add a new task under the Skills heading of your resume!

Who Are YouJ
If you have this book in your hand, you probably fit into one of the following
three categories:

~
111'1' You never programmed a computer before.

111'1' You programmed a computer, but never a Macintosh.

111'1' You tried programming a Mac, but were frustrated in your attempts.

If one of the above applies to you, this book is for you. If you have prior pro­
gramming experience, that's great. But this book never assumes that you
have programmed anything before. The explanations and programming
examples in Mac Programming For Dummies, 3rd Edition, make no assump­
tions about your programming knowledge - everything starts at step one.

What You Need
Surprise! You need a Macintosh or Mac-compatible computer if you want to
create a Macintosh program. Sure, you can just read this book and think
you've learned how to program a Mac. But to really be sure that you know
what you're doing, you have to try out the book's examples. What kind of
Macintosh do you need? Just about any model will do. A Mac II, LC, Centris,
Quadra, Performa, Power Macintosh - even the PowerBook - are all

_______________________ ,Introduction 3

suitable. If you're one of the hundreds of thousands of people who bought an
iMac, you contributed to Apple's 1998 comeback and 1999 success. You also
bought a good machine for developing programs. In short, if you own a Mac,
you're probably all ready to go. If you don't own a Mac, find someone who
does and use it as often as you can. (I'm assuming, of course, that you know
this person.)

Whichever model Macintosh you want to program on, it needs to be
equipped with the following three things:

1
1""' 24MB or more of RAM memory

1""' System 7.5 or higher Mac operating system

1""' A CD-ROM drive

If you aren't sure how much memory or what operating system your Mac has,
follow these steps to find out:

1. Move the cursor so that it is over the desktop and click the mouse.

(I'm assuming you're at your Mac and it's turned on, of course.)

2. Choose the first menu item under the Apple menu, which is the About
This Computer item.

3. Look for the words Built-in Memory in the dialog box that opens.

If the value listed is at least 24MB, then you have the required amount
of RAM.

4. Look in the upper-right corner in the About This Computer
dialog box.

If the number to the right of the Mac OS logo is 7.5 or higher (numbers
such as 7.5, 7.6, 8.0, 8.1, and 8.5 are some of the numbers that qualify),
then your system is just fine for programming.

What's on the CD
Along with a Macintosh, you need a program called a compiler. A compiler
turns words that are readable by you, the person, into words readable by the
Macintosh, the computer. Because you '11 be anxious to try out the program­
ming skills you're about to acquire, IDG Books Worldwide, Inc., and a
software company named Metrowerks have seen to it that a compiler - the
Metrowerks Code Warrior Lite compiler - appears on the CD-ROM that
accompanies this book. And to save you a little (and sometimes a lot of)
typing, all of the programming examples in this book also appear in files on
the CD-ROM.

Mac Programming For Dummies, 3rd Edition ___________ _

About This Book
Many books about computers are reference books. Only when you need help
with a problem do you ref er to the book. As such, that type of book isn't
meant to be read from cover to cover. If you're a flat-out beginner, this isn't
one of those books.

You may have read computer books that teach you how to use an existing
program on your computer. Books like that show you how to do certain
things with a certain program. An example may be learning how to format
text using WordPerfect. This isn't one of those books either.

Very good - now you know what kind of book this isn't. What then, is this
book? It's a book that teaches you how to actually write a brand-new, never­
before-seen-by-another-person Macintosh program. If you've never written a
computer program, this may sound like an insurmountable task. If you have
programmed, but not on a Macintosh, this may sound like an insurmountable
task. It isn't.

Now, I know that on the bookstore shelf, just inches away from where this
book was sitting, there were Macintosh programming books twice as thick as
this one. Books with enough techno mumbo-jumbo and four-syllable words to
make a rocket scientist scratch his head in wonderment. How can I make the
claim that anyone can learn, with minimal effort, to write a Macintosh pro­
gram just by reading this much-smaller-than-a-breadbox-sized book? It's
possible because I:

1"" Spare you unnecessary technical details.

1"" Make no attempt to address advanced Mac programming techniques.

1"" Spare you unnecessary technical details.

1"" Make no attempt to cover every facet of Macintosh programming.

1"" Spare you unnecessary technical details.

1"" Avoid assumptions about what you already know about programming.

If you want to delve into the deepest, darkest inner workings of Mac program­
ming, don't buy this book. If you want to learn fundamental programming
concepts that allow you to create a Macintosh program that opens a window,
draws and writes to that window, and displays menus, do buy this book.

Because Mac Programming For Dummies, 3rd Edition, concerns itself with
writing programs, not with using them, it's important that you know just how
to use this book. Which leads to the very next topic

_______________________ Introduction 5

How to Use This Book
The fact that you bought, or are considering buying, a programming book
with the word Dummies in the title tells me that you're probably new to pro­
gramming (or at least new to programming the Macintosh). Learning to
program is an incremental process. And you should learn each increment, or
step, in a specific order. As your experience in writing Macintosh programs
grows, you'll be able to take liberties and try out ideas of your own. At that
time, you may find yourself using this book as a refresher or reference, skip­
ping around between chapters and using the book's headings to locate just
the information you need. But for now, I strongly recommend that you start,
as they say, at the beginning. I won't give any exotic examples or pull any fast
ones, but each programming example builds on material presented in previ­
ous chapters. So do read the book from cover to cover - front cover to back
cover, that is!

It's Time to Establish Some Conflentions
You'll find source code scattered throughout the chapters in this book. If you
weren't familiar with the term before you read this introduction, you now
know that source code refers to the code that programmers use to write com­
puter programs. To help you quickly identify what is source code and what is
regular text, all code that is mixed in with text on a page appears in a font
that differs from that used for normal text:

Code words within a sentence appear in code font.

! !
Earlier you saw that variable trucks is an i n t, or

In other places in this book, you see blocks of code - a section of source
code that appears in its own paragraph, isolated from the rest of the text on a
page. Those cases use the special code font as well:

~ ~i ~~~~~s; J
Entire section appears in the code font.

trucks = 5;
cars = 12;

6 Mac Programming For Dummies, 3rd Edition ___________ _

Hou/ This Book Is Or9anized
This book contains seven major parts. Each part is composed of three or
more chapters, which makes the material easy to digest. But please remem­
ber to chew 30 times before swallowing.

Just a bit earlier I recommended reading this book in order, without skipping
material. Let me elaborate a little. I don't want to scare you into thinking you
must read at a snail's pace, avoiding at all cost the skipping of even a single
word. Before and after I list any source code - that stuff that lets the com­
puter understand what you want it to do - I quickly review the concepts the
source code covers. So if you do skip every once in a while, you won't be
totally lost when you see new source code.

If you've programmed before, but not on a Macintosh, I hereby grant you per­
mission to skim - and perhaps even skip - a chapter or two that pertain to
the most basic of programming concepts. In particular, you may be familiar
with much of the material in Chapters 12 through 15. For the rest of you,
don't skip -you'll be quizzed at the end!

Part I: lntroducin9 the Macintosh Basics
What makes the Macintosh different from other computers? What makes pro­
gramming the Mac different from programming other computers? I give up,
what? Just kidding. Part I shows you why you need a book devoted entirely to
the Macintosh. You are also convinced that programming need not be such a
scary endeavor - honest!

Part II: Resources: This Is Pro9rammin9?
Text is boring. Windows, menus, icons, and pictures are exciting. The
Macintosh is fun because programs that run on it contain some or all of these
neat elements. They make Mac programs fun to look at and fun to use. All this
talk about fun is fine, but what about adding all of these cool items to a pro­
gram you're creating? Is that process fun, too? As a matter of fact, it is! And
things called resources have a lot to do with making it fun. Resources help
you create neat features, such as windows and menus, with - hold on to
your hat - absolutely no programming on your part! In this part of the book,
you learn exactly what resources are and how you can easily create them.

______________________ Introduction 7

Part Ill: Usin9 a Compiler
To write a program, you type in a series of commands - commonly referred
to as source code. A computer can't, however, understand the words you type
into it. The words have to be translated into numbers (computers love num­
bers). Turning words into numbers sounds like a tedious and ugly task.
Fortunately, you'll never know for sure because you'll never have to do it.
Instead, you just run a program that does all that work for you. The program
that performs this translation is called a compiler. In Part III, I talk about what
a compiler is and how to use it. In particular, I talk about the compiler that's
included on this book's CD-ROM - the Metrowerks CodeWarrior Lite
compiler.

Part IV: Learnin9 the C Lan9ua9e
While it would make things easy if your Macintosh could understand English
language statements such as, "Place a window on the screen and draw in it,"
things haven't quite progressed to that point -yet. Instead, you need to be a
little more formal when you tell the Mac to do something. Thaf s what a com­
puter language is for. When you write a computer program, you write it in a
computer language. There are several computer languages you could use.
This book uses the C language in all its examples-it's the most popular pro­
gramming language. Part IV describes computer languages in general and the
C language in particular.

Part fl: The Moment of Truth:
Writin9 a Pro9ram !
With the preliminaries out of the way, it's time to create a Macintosh program -
a real one. A program with a window and a menu. You provide a little flair to
the program by adding animation to it. This section describes a very simple
technique that allows you to bring your program to life. And isn't that what
the Macintosh is all about?

Part VI: The Part of Tens
Ten things to do in order to make a program, and ten things you don't want
to do. And ten indispensable functions, aids that make writing a program
with menus and windows easy.

8 Mac Programming For Dummies, 3rd Edition ___________ _

Part VII: GlossarlJ and AppendiKes
You won't remember everything that you read in this book. So I provide a few
appendixes for those occasions when you get stuck: Appendix A is a refer­
ence for the C language; Appendix B is a reference for the Toolbox; Appendix
C helps you if something goes wrong with your program; Appendix D is a
glossary; Appendix E holds a few tips for iMac owners; and Appendix F lists
what's on the CD-ROM included with this book.

Icons Used in This Book
~
~~

Optional reading - while not technically intense, these explanations may not
be suitable for small children!

Don't worry, you can't wreck your Mac. But you can wreck the work you're
doing on it - I point out the areas where this could happen.

Programmers are crazy about optimizing their efforts. Just about everything
has a shortcut. I note the more worthwhile ones.

Programming is shrouded in secrecy. Knowing a little Mac psychology goes
a long way to understanding why some seemingly obscure terminology
needn't be.

Points out places in the text where you need to use stuff on the CD-ROM that
comes with this book.

What's Next?
Why, reading the book, of course. The introduction is over, and it's time to
program. And - dare I say it - to actually have a little fun!

Part I

Introducing the
Macintosh Basics

In this part ...

Line up a few different types of computers in a row, and
by looking at the screens of each, try to pick out the

Macintosh. It's not too hard to do, right? That's because the
Mac has a look all its own. Even the much-heralded arrival of
Windows 95 and Windows 98 didn't change that fact. The
Macintosh seems to stand out - even when compared to
other systems that use menus, windows, and icons. Because
the Mac is different from other computers, it probably won't
come as much of a surprise to learn that the way the Mac is
programmed is a little different, too.

Different is often equated with difficult. Well, that's not
always the case. And programming the Mac is one example.
To prove it, this part presents the code for an actual, honest­
to-goodness Macintosh program - code that takes up less
than a single page in this book!

Chapter 1

Windows, Menus, and a Mouse
- That's the Mac

ooooooooaooooooooooooeoeooooooooooooe0ooooooooomo

In This Chapter
I> Introducing the graphical user interface

""' Examining different parts of the interface

1£>- Picking out the parts of the interface that you need for programming

ooooooeoooooooooooooomoooeoooo•oooaooeoooocooooao

During the telecast of the Super Bowl in January 1984, a commercial­
one that would air only a single time - told of the emergence of a new

computer. This computer, the commercial claimed, would change the way
people thought of computing. The computer was, of course, the Macintosh.
While it may not have revolutionized computing overnight, since the Mac was
introduced, it has lived up to its promise of changing how people interact
with computers.

The Graphical User Inter(ace
What was it about the Macintosh that, over a decade ago, set it apart from
almost all other personal computers? It was the Mac graphical user interface.
The graphical user interface, or GUI (pronounced gooey), is made up of
icons, menus, and windows. (Graphical user interface is a mouthful, and GUI
is just too darned ugly a word. So from here on, I usually just refer to the GUI
as the interface.)

In the mid-1980s, most computers didn't have an interface like the Mac.
Instead of a screen filled with graphics, computer users looked at a screen
filled with text and numbers. Many of the computers that displayed this text­
based interface were run by an operating system named DOS (which stands
for disk operating system). People working on a DOS computer see a lot of
words on their screens, not pictures. They tend to type keyboard commands
to get things done. DOS users generally don't use a mouse. Some poor souls

12 Part I: Introducing the Macintosh Basics ____________ _

still use DOS (usually MS-DOS, a particular brand of DOS made by Microsoft
to run on PCs). And while they have the somewhat graphical DOS shell as an
optional add-on to DOS, these users are still behind the times.

Macintosh programmers don't care much for DOS programmers. It's nothing
personal, though. It's just that Mac programmers feel they're riding the wave
into the 21st century, while they see DOS programmers still floundering
about in the Stone Age.

Here's what a typical DOS user sees on the screen:

• Fiie Edit Utew Label , .

Colculotor Cleon Up Window
!A R\I

1 3.1411

Empty Trosh ... ~ Herd D13k

GJt:lrzlB Eject Disk 8CE
Erase Disk ...

~g :IUill -i, laa- Hlll'd Disk] Restart ~Q I 8 tlem3 174.5 MB tn di3k Shut Down

~ ~ I 3:56:04 RM I cru D i:! I ~ Svstem f ol der MvStuff ~
~ 1£1!1 Tr33h

Pretty exciting stuff, huh? Compare the DOS screen with a typical Macintosh
screen with its windows, menus, and icons:

.i Fiie Edit Ulew , · • Help

C11lcul11tor
Empty Trosh •••

Eject ICE ~
Erose Disk ...

______ Chapter 1: Windows, Menus, and a Mouse -That's the Mac 13
Looking at these two figures, it's quite apparent why many people prefer to
do their work on a Macintosh computer. The screen of a Mac provides a
much friendlier environment, or atmosphere, to work in.

By the way, DOS is pronounced doss, not dooze or dose. You may already
know that, but I just wanted to be sure. That's to prevent you from being on
the receiving end of a scornful look or comment from an established Mac or
DOS programmer. That brings us to another bit of Mac psychology (really,
computer programmer psychology in general). Some programmers like to
make themselves look better by making others look worse. Jumping all over
someone who incorrectly pronounces a computer-related term is a favorite
tactic of this type of programmer. I help you weather this storm by providing
the pronunciation of words whose pronunciation may not be intuitive.

The Macintosh computer isn't the only one with a GUI. A PC (for personal
computer, and pronounced pee-cee) can run DOS, but it almost always comes
equipped with a version of Microsoft Windows (such as Windows 95 or
Windows 98). Most would agree that the Macintosh, however, is the standard
by which other graphical user interfaces are judged. You can confirm this by
listening to Windows 98 users say things like "With Windows 98, I can do that
task just the same as on a Mac."

The lnterf ace Parts
Users of Macintosh programs become familiar with the various parts of the
interface, such as menus and icons, so that they can make better use of the
computer. As a soon-to-be Macintosh programmer, you need to become famil­
iar with these same interface components, but from the behind-the-scenes
perspective of a programmer.

Workin9 on IJ.OUr desk
The interface begins at the ever-present background screen. Apple calls this
screen the desktop, which is that area that covers most of your Macintosh
monitor. The desktop is often a light gray color, but it doesn't have to be. The
desktop analogy is, of course, that you organize electronic files and folders
on the desktop as you would real ones on a real desk. Just what a trash can is
doing on top of the desk is anyone's guess. Oh well, no analogy is perfect. Still,
desktop is a catchy name that's deeply embedded in the history of the Mac.

1 fl Part I: Introducing the Macintosh Basics ____________ _

Lookin9 at ittu.-bittlJ pictures
An icon is a picture. Not just any picture, though. It is a small graphic symbol
that is a representation of something. If an icon is well designed, its represen­
tation is obvious. Icons are small, usually about a half-inch square or less.
Here are a few of the icons that you find on the Macintosh desktop:

After you write your very own Macintosh program, it will have its very own
icon. And where will this icon be? Somewhere on the desktop. Why some­
where on the desktop? Won't you know exactly where your new program icon
will be? Yes, you will know where it is until you turn your program over to
another user. Because like the icon of any program, the user will be free to
drag your program's icon to any folder anywhere on the desktop of his or her
computer.

Peekin9 throu9h windows
Windows are an important part of any graphical user interface. Windows are
so important that Microsoft has named its own GUI operating system after
them. For users of PCs, Microsoft Windows has all but replaced DOS. That
gives you a hint at how much people enjoy working with a graphical user
interface.

Unlike a DOS program that writes text directly to the screen, a program
designed for a computer with a GUI writes text to a window. The same applies
to graphics. Because just about everything on a Mac is done in a window, the
creation of a window should be one of the first programming tasks you tackle.
Throughout the early chapters of this book, you see hints and references to
creating a window, and in Chapter 17 you get the specifics.

Usin9 the mouse
The mouse is used to make menu choices, move windows, and double-click
on icons. In general, the mouse is the user's means of interacting with the
computer. Or, if you want to go toe-to-toe with Mac programmers, you can
say that the mouse is the standard input device for communicating with the
computer.

______ Chapter 1: Windows, Menus, and a Mouse -·That's the Mac 15
As a Macintosh programmer, you can write programs that discern exactly
what the user is doing with the mouse. Well, not exactly what the user is
doing with it. Your program can't know, for instance, if the user is holding the
mouse by the cord and spinning it over his head. But your program can
notice (and respond) if the user clicks on the mouse button while the cursor
is over one of your program's menus. And that, of course, is a much more
important thing to be able to recognize!

When certain events (such as a click of the mouse button) occur during the
running of the program, the computer code for that program is able to recog­
nize what happened. What's the tricky techno-terminology Mac programmers
use for the occurrence of such an event? They call it, well, an event. There,
that wasn't so technical after alll You can read all about events in Chapter 17.

Orderin9 from the menu
Older computers performed an action in response to a command that the
user typed in. On a Macintosh, you don't have to type orders. Instead, you
can order your desired commands from a menu - sometimes referred to as a
pull-down menu. To issue a command, you move, or drag, the mouse until the
cursor on the screen is positioned over a menu. You then click the mouse and
then make a selection from the list of commands that drops down. Because a
menu does in fact drop down, rather than pull down, you may think that a
better name would be drop-down menu. That may be true, but it's a little late
in the game to make a change in the terminology Apple has selected.

Menus are one of the most powerful features of the Macintosh interface.
Having all the available commands spelled out before you as menu items
means that you don't have to memorize or look up the names of commands.
And even if a command is easy to remember, most people find selecting a
menu item quicker than typing in a command. As an example, consider the
following figure which shows how to duplicate a file in DOS and on a Mac:

-,~_CbPV_DOCl.WP -tioc2.wP·

·::~Mats nnas '.' -

llN •o

, ijd_~ 1'a; ~llUDrltelJ
Putflway .RY

"find... RF
: ~haw !Jrle•n.111 HR
:Paga Setup ...

· · P:rtni lieslctap ...

16 Part I: Introducing the Macintosh Basics -------------

Speakin9 of dialo9s
Windows generally display information. How does a program receive informa­
tion from the user? Usually it's through a dialog box. What do dialog boxes
look like? Here are a couple examples of dialog boxes:

I!) 2'Z ·· 222'. · ZD--#± ·

Enter score:~
Find ltemsl an lacel disks I ~I whose

[I DK II 1 I n_e_m_e ___ I o_J I contains 1~111_ ---'I
f More Choices I I Fewer Choices J [I Find· JJ

You can see that a dialog box may or may not look like a window. And it may
or may not behave like one. How can you tell the difference between a
window and a dialog box? If you are the programmer who designed the pro­
gram, you already know. If you're just someone using the program, you may
not be able to tell the difference. Here's a scientific, highly technical test you
can apply to determine if the thing you're looking at on the screen is a
window or a dialog box: If it has a bunch of stuff in it that you can click on,
it's probably a dialog box.

Speaking of stuff in a dialog box, here's a quick look at most of the different
types of items you may find in a dialog box:

,) v Push buttons: Clicking the mouse button while the cursor is positioned
over a push button causes some action to take place immediately.
The OK or Done button found in just about every dialog box are prime
examples.

v Radio buttons: These allow you to select from a number of options. This
type of button travels in packs - never alone. Only one member of the
group is ever selected at any given time.

' v Check boxes: Some options listed in a dialog box can be turned on or
off. A check box lets you do that.

v Text boxes: If you ever typed a number or word into a rectangle, you
worked with a text box. If a program needs information, whether it be
your bowling score or your date of birth, this item allows you to type it
in for the Mac to use. A text box is also called an edit box sometimes,
just to confuse you.

Here's a figure that shows each of the dialog items I just mentioned:

_______ Chapter 1: Windows, Menus, and a Mouse -That's the Mac

Check box

Score Info

Enter score:

Print score

Print titles In:
~English

Spanish

Radio buttons

OK Push button

Wrappin<J up the inter(ace
That's just about it for the interface, except for one more figure. I created the
following figure for two purposes. First, I want to summarize many of the
parts of the Mac interface in one figure. Second, I want to test the capabilities
of IDG Books' layout department; could they accurately reduce the size of
what started out as a very large figure? Success!

A single menu in the menu bar

til File Edit Uiew • · • Help
Empty Trash ...

Eject IBE ~
Erase Disk •.•

Sleep
Restart
Shut Down

Dialog box with dialog items in it

Menu bar Icon

contains 1 Item. It uses 281 K of
e. Are you sure you want to

... permanently?

~-~~~~~~tlf (Cancel J n OK J

Window The entire background is the desktop. Icon

17

18 Part I: Introducing the Macintosh Basics -------------

The Parts You Need
The list of things that a programmer can do with the parts of the interface is
just about endless. I obviously can't produce this list in its entirety. But here
are a few common tasks Mac programmers can perform:

v Build a functioning pull-down menu into a program.

v Add a movable window to display graphics, text, or animation.

v Create a dialog box with radio buttons, check boxes, text boxes, and
push buttons.

v Add sound-playing capabilities to any program.

v Allow a program to open, save, and print files.

v Design a unique icon.

The list goes on and on. This wealth of programming options really gets a
seasoned programmer excited. It also can scare the living daylights out of
someone who hasn't programmed! Many programmers believe the more the
merrier, but you should keep one very important point in mind: You don't
have to include everything from the preceding list for a program to run on a
Macintosh. In fact, when you first start programming the Mac, it's best to
stick with the basics. That's why I concentrate on the first two items in the
list, menus and windows, in this book.

While I do concentrate on menus and windows, I also throw in a little infor­
mation - and a little code - about a couple of other program parts. Chapter
22 discusses where to go to get more Mac programming help after you con­
quer the basics. Chapter 22 also provides you with an example of what you
can add to your own programs once you feel the beginner programmer label
no longer pertains to you.

Menus and windows can do the job
After you know how to create a program that uses windows and menus, you
then know many of the Mac basic programming techniques. What can you do
with just menus and windows? Take a look at menus first.

Want to give a user of your program the ability to open a window? Add a
menu item called Open that does just that. Want to let the user draw a circle?
Create a menu item called Draw Circle. Any option you want to provide for
the user can be added by creating a menu item in your program.

_______ Chapter 1: Windows, Menus, and a Mouse -That's the Mac 19
What about displaying text or graphics? A window can contain either words
or drawings, or both. What if you want to create an animated effect, a moving
picture? Because a window can hold graphics, it can also hold moving graphics.

The following figure shows you why a program with but a single menu and a
single window is a true Macintosh program.

A menu item can be created for each option you want to give the user.

Moue Square

Grow Square
Grow Circle
Quit

A window can be moved or closed.

E!l8

A window can
Mouing the circle .•• --------contain text.

A window can hold graphics or even moving graphics-animation.

So, IJ.OU think 1J.Ou1re 9ettin9
shortchan9ed, huh J
If you can write a program with a menu and a window, you can write a pro­
gram that does just about anything you want it to do. Menus and windows,
windows and menus - that's it? That's it as far as what the user of one of your
programs is concerned. You, the programmer, have to be wiser about far more
than that. But don't worry; in covering these two parts of the interface, you
pick up knowledge and experience in all of the following programming areas:

v Menus: How to make, display, and work with them.

v Windows: How to display, move, and draw in them.

v Text: How to write words, in different sizes and styles, to a window.

v Graphics: How to draw lines and shapes to create pictures.

v Animation: How to make graphics that appear to move.

v Events: How to see just what the user is doing.

20 Part I: Introducing the Macintosh Basics -------------

That last point sounds particularly interesting - and possibly illegal!
Macintosh programs, more than many other types of programs, are interac­
tive. A user does something, and the program somehow knows what the
reader is doing and responds. Macintosh users enjoy the resulting feeling of
control. And Macintosh programmers enjoy creating programs that satisfy
users.

After you read this book and follow its examples, you may find yourself
hooked on Macintosh programming. What do you do after that? Remember
those other programming books you saw in the bookstore, the ones on the
shelf right by this one? Those very fat, wordy, intimidating ones? They won't
look so intimidating anymore. After you master the techniques presented in
this book, you may be ready to move on to any one of the host of intermedi­
ate-level programming books on the market. But don't worry about all that
just now; and don't forget that Chapter 22 provides the information you need
to move on to the next level of Mac programming.

Chapter2

What Makes Macintosh
Programming So Different?

o <> o e • o e o o o o a o o o o o o o o o o o o a o o o o 0 o o o & o o o o o o o o I) o o ca o o o

In This Chapter
n>- Talcing the Mac interface challenge

la>- Seeing how source code makes Mac programming different

&> Picking out differences in the insides and exteriors of Mac programs

t> Finding out that easier (DOS programs) isn't always better (Mac programs)

e>- Using windows and menus makes Mac programming more fun

oooooooooooooooooooooooooooooooooocoooooooooooooo

Ti.e programming skills and techniques needed to write a Mac program are I different from those necessary to write a program designed to run on
other computers. In this chapter, I cover the basic differences between Mac
programming and programming for other machines. This chapter may be
especially useful if you programmed before, but never on a Mac. If you never
programmed before, this chapter helps you get acquainted with some issues
you face when you program the Mac.

The Inter(ace - That's the Difference
Why are Mac programs easy to use? Because the programmer puts extra
effort into the interface to make it that way. If you intend to construct a
graphical user interface rather than a text-based interface (such as DOS),
you, the programmer, are responsible for more things. For example, program­
mers who write programs for DOS computers write lines of text to the screen.
They don't have to worry about how to display a window, or create a pull­
down menu, or any of that other fun, typical Mac stuff.

22 Part I: Introducing the Macintosh Basics -------------

Versions of Microsoft Windows, such as Windows 95 and Windows 98, rely on
a graphical user interface. While there are many similarities between the
Macintosh GUI and the Windows GUI, there are also a number of differences.
Knowing about one graphical user interface doesn't guarantee that you'll
automatically know all about a different GUI.

So it's the interface that's the key difference between using, and program­
ming, a Macintosh and other computers. With that said, should I wrap up this
chapter right here and now? Sorry, you don't get off the hook quite that
easily. The rest of this chapter elaborates on the differences between Mac
programming and non-Macintosh programming. If you have any non­
Macintosh programming experience, this information should help you make
the transition to programming the Mac. If you've never programmed at all,
the following pages are still of great use - they're loaded with basic Mac pro­
gramming concepts and terminology.

If you haven't done much programming, or any programming for that matter,
you may a~tually have an advantage over programmers with years of experi­
ence on DOS computers. No, I'm not just saying that to make you feel better!
It's true. Those programmers have to unlearn many of their old ways of doing
things. You get to start with a fresh, clean slate. By the way, if you find a slate,
let me know. I haven't seen one around for years!

Secret Afents Aren't the
OnllJ. Ones Usin9 Code!

Before delving into the differences between Macintosh programming and
other types of programming, I have one more digression. Programming - any
programming - relies on source code. That's the stuff that lets you tell a cpm­
puter just what to do. Since you read quite a bit about source code in the rest
of this book, let me say a bit about source code right here and now.

A programmer creates a program; a user simply uses that program. The pro­
grammer writes source code to create the program; the user doesn't know or
doesn't give a hoot about source code. Before this book is over, you, the pro­
grammer, will be on intimate terms with this thing called source code.

Like a relationship with a person, your relationship with source code may be
both very satisfying and very frustrating. Just when you think you have
things all figured out, along comes a new twist or turn that throws you com­
pletely off course.

______ Chapter 2: What Makes Macintosh Programming So Different?

I know many of the pitfalls that most new Mac programmers encounter, so I
can help you bypass them. I've programmed the Mac for a decade and a half;
I can aid you in your relationship with source code - I'm an expert at rela­
tionships. Of course, my six ex-wives may not agree.

Learnin9 the lan9ua9e
Computers, while exceedingly powerful, lack one important capability that
people possess, which is the ability to interpret. For example, you and I know
the difference between two uses of a word such as lead. If I were to say, "You
can lead a horse to water" or "Lead is a heavy, soft, malleable metal," you
could recognize these two very different uses of the word. From the context
in which a word is used, people can interpret its meaning. That's a skill that a
computer doesn't have.

How do you then get a computer, which has no interpretive power, to under­
stand and do what you want it to do? By issuing commands to it. But not just
any old commands. You can use only commands that are defined by a rigid
set of rules. By using only these established commands, the computer does­
n't have to interpret anything, which is the way the computer likes it. That's
what a computer language is all about.

Like a spoken language, such as English or German, a computer language has
a limited vocabulary. Fortunately, the number of words a computer language
allows you to use is very limited. That means learning a computer language is
much easier than learning a spoken language. Thank goodness! Gott Sei Dank!

Different lan9ua9es
Just as there are different spoken languages, there are different computer lan­
guages. Wouldn't just one be enough? Again, like spoken languages, one
would be enough if you could get everyone in the world to agree to use the
same one! Over time, different people, different universities, and different
companies have all created what they felt was the best computer language.
And over time, as computers changed, computer languages have changed.

BASIC, Pascal, C, C++, and Java are the names of five common computer lan­
guages. In this book, I use the C language for all of the programming examples.
What criteria did I use to make this choice? I studied, experimented, and
worked with each. Then I accepted the $100 bribe that Dennis Ritchie, the
creator of the C language, offered me. Seriously, I selected the C language
because it is currently the language of choice of Macintosh programmers.

23

24 Part I: Introducing the Macintosh Basics -------------

Computer programmers battle ceaselessly about which language is the best
one to use. Like debates about politics or religion, no one ever wins one of
these arguments. Should you be in the vicinity of one of these discussions,
my best advice is to head for cover!

I devote the five chapters of Part IV to the C language, so please look there
for more detailed information on the C language.

All pro9rams u/ere once source code
The rough draft of this book, whether I write it in English, German, or Sanskrit,
is called a manuscript. The same concept applies to computer languages.
Regardless of which language you use, you get the same result: source code.
Whether you use C, C++, Pascal, or Java, the product of your work is a page,
or perhaps tens or hundreds of pages, of commands (source code).

How does source code differ from the program itself? Source code is trans­
formed into programs by something called a compiler. A compiler performs
this amazing feat in just a couple of seconds. The CD-ROM that's bundled
with this book includes a Lite version of the Metrowerks CodeWarrior com­
piler, a software program that turns source code into a Macintosh program.
Lite means that some of the functionality of the full-featured version has been
removed. Don't scowl as you read that - what did you expect for practically
free! The Lite compiler lets you compile the C language examples from this
book. The full-featured version, available from Metrowerks, lets you write
source code in your choice of four computer languages: C, C++, Pascal, or
Java. More on compilers in Part III.

If you've seen programs that run on a Macintosh and programs that run on
other types of computers, you may have noticed that they don't resemble
one another very closely. The exteriors of the two types of programs are very
different. Does that mean that the source code from which the programs
evolved also looks different? Clever you - indeed it does! This is, of course,
another one of the major reasons that Mac programming is so different from
other types of programming.

I won't show you any source code now. I do, however, want to explain how
the different look of two programs means that different programming efforts
were put into each. In fact, I go into that right now.

Pro9rams Inside and Outside
Source code can be thought of as the basis for the interior of a program.
A compiler turns source code into still a different type of code - object
code. It's this object code that is actually the program itself. So code is the

______ Chapter 2: What Makes Macintosh Programming So Different?

programmer's tool for planning out and implementing a program, and code
actually makes up the final program. Code is something the user of a program
doesn't see or work directly with. What the user does see - menus, win­
dows, graphics - can be thought of as the exterior of a program.

Many people believe that a program that runs on a Macintosh computer is
easier to use than a DOS program. (You probably think that, too, because
you're reading this book.) A Mac program is easier to use because its exterior
(what the user sees) contains useful features, such as windows and menus.
But what about its interior- its code? Is the code for a Macintosh program
easier to write than the code for a DOS program? The short answer is no;
writing code for a Mac is harder than writing code for a DOS program. The
long answer involves a story about cars. Sure, it's a bother not to settle for
the quick answer, but I promise that this short story is helpful.

Imagine a car built in the 1970s. On a cold day, you start the car by pumping
the gas pedal several times with your platform shoe, and perhaps then hold­
ing the pedal to the floor as you turn the ignition over, trying not to get the
keys caught in your love beads. To stop the car on a wet or icy road, you
pump the brake pedal.

Now imagine yourself in a car of the 1990s (and a better haircut). With fuel
injection, you simply turn the key and start the car, regardless of the temper­
ature outside. With anti-lock brakes you simply press down on the brake
pedal, regardless of road conditions. The car of the 1990s is easier to use and
works better than the car of the 1970s. But to simplify the parts of the car
that the driver uses, the parts on the inside became more complicated. If you
peek under the hood of the 1990s car, you see much more machinery than is
under the hood of the 1970s car. That's true with many things that are
affected by technology. A smooth, sleek, easy-to-use exterior masks a com­
plex, highly refined interior.

But wait! This isn't Chi/tons Auto Guide. This is a book on programming the
Mac. So how does all of the above pertain to programming? A Macintosh pro­
gram is like the car of the 1990s, while its DOS counterpart is like the car of
the 1970s. While the user of the Mac program finds it is easier to use and
more intuitive than a DOS program, the programmer who writes the
Macintosh program deals with much more complex code than the program­
mer of the DOS program.

What about that other GUI, Windows? Is the Mac programmer responsible for
more, or different, things than a Windows programmer? More, no. Different,
yes. Although Mac programs and Windows programs may look alike in some
ways, the programmers responsible for writing the source code for each do
things in a different way. If you know someone in the unenviable role of
having to learn programming for Windows, you should tell them about two
titles: Windows 95 Programming For Dummies, by Stephen Davis, and Windows
98 Programming For Dummies, by Stephen Davis and Richard Simon (both
from IDG Books Worldwide, Inc.).

25

26 Part I: Introducing the Macintosh Basics -------------

Easier Doesn't Mean Better
It's easier for a programmer to write a DOS program because the programmer
is responsible for less. Just what is meant by responsible for? Read on to find
out. As you read, refer to the following figure. It shows part of a screen dis­
playing a DOS program that acts as a very simple calculator:

Write text.

Write numbers. Read numbers that the user enters.

The person who programmed this calculator was responsible for a number of
things: writing text to the screen, writing the on-screen menu that lets a user
select an arithmetic operation, writing code so that the program reads num­
bers typed in by the user, and writing code that performs a calculation and
then displays a number to the screen.

Data is a general computerese term for letters, words, or numbers. When a
computer program displays words or numbers on the screen for the user to
view, it is writing data to the screen. When a computer program receives
words or numbers from the user, it is reading data. The most common means
of entering data for the program to read is by typing on the keyboard. There
is another means, but it's usually not available in DOS programs. Macintosh
programs sometimes allow you to use the mouse to enter data.

The number of things that the DOS programmer is responsible for doesn't
sound overwhelming, and it's not. Because a DOS program doesn't contain
windows, icons, or menus, a DOS program is easier to write than a Macintosh
program.

To someone who hasn't programmed before, or has programmed very little,
easier surely sounds better than harder. But there is a price one pays to write
a simple program - you end up with a simple program! A simple program,
like the DOS calculator program, doesn't look very interesting and doesn't do
a whole heck of a lot.

______ Chapter 2: What Makes Macintosh Programming So Different?

Mac Pro9rQms - lnterestin9,
Fun, f!fcitin9!

Why has the Macintosh become so popular over the last several years? You
already know the answer: Mac programs are easy to use, fun to work with,
and interesting to look at. Remember how the DOS calculator program
looked? The figure that follows shows a Macintosh calculator program. It's a
free program that Apple includes with all Macintosh computers.

In the previous section, you saw the job a DOS programmer has if he decides
to write a calculator program. Now take a look at what a Macintosh program­
mer would be responsible for if she were to write a spiffy calculator program
like the one just pictured:

Display a menu.
Determine when the user makes a menu selection, and which menu item was selected.

Display a window.
Determine when the user moves it.

Write numbers in a specific area
of a window.

Display objects in a window.
-----~Determine when the user clicks the

mouse on an object.

27

28 Part I: Introducing the Macintosh Basics -------------

Now you've seen the kinds of jobs that DOS and Mac programmers face when
they want to complete the same task, which is building a calculator program.
Comparison is inevitable - plus I've got to tie this conversation to the chap­
ter title at some point!

Git1in9 information
The preceding example shows that the Mac programmer, like the DOS pro­
grammer, writes data and reads data. But the Mac programmer does both a
little differently. Take a look at writing data first. Remember where the calcu­
lated result was written to in the DOS calculator? In a DOS program, data is
written at the current location of the cursor:

'OAdct
• 2ts1J1>trept

. ' l) ft!!1Uply
; 4> Qtvtd~: ·

~fto~~e arFop~f8t:f:on: .. 1 •..
·~··Entel"'.:11...st. r&un!~&r.::~.tM
• · Eni~r s~corid nurrib#f. 2.
~Aomr is::

Cursor appears after the last
text written to the screen.

, ,1)Add, ··.
·:21.sub.trect.. · ·

· 3)rtultfplg
4).Dtvtd.~.'

Choos~:artopenittpn: 1
,£nfef::tkst. J'.IUmbar:: 3 .. t 4J

:.Ellt8:t:~econ~ nuntbef: :2
An.sw~r4s: ~;2a2 .

The next data that is written to the screen
appears atthe location of the cursor.

In a Mac program, data can be written anywhere in a window. In the
Macintosh calculator program, the user clicks the mouse on a number or
symbol button, and the corresponding number or symbol is written in the
white box at the top of the calculator. As a digit is entered, it always appears
at the far right of the white box. Here the 3, ., and the 1 are entered one after
another:

Not only can text and numbers be written anywhere in a Macintosh window, they
can even be made to overlap other text. And the style - the appearance - of
data can be altered:

_______ Chapter 2: What Makes Macintosh Programming So Different?

~- Mee Window I • "" ll!l 8

Macintosh text Macintosh text

lOOm&i!mn@"lb~sh text

Macintosh text

The ability to control the appearance and placement of data is an important
feature that separates the Macintosh from many other computers. Another
difference is how the user of a program enters data into the Mac.

Gettin9 information
Programs written for DOS computers read data by pausing and waiting for
the user to type in words or numbers. Pressing the Enter or Return key sig­
nals the program to read the typed value and then continue. Once again, the
calculator example:

1) Add
2) SUbtrect
3) Multiply
4) Otvtde

Choose en operetton: • ,.

A DOS program waits for
the user to enter a number.

1) Add
2) Subtrect
3) Multiply
4) Olvtde

Choose en operetlon: 3 ,.

The program will not continue until the user
types a number and presses the Enter key.

Ready for one of the most central concepts of Macintosh psychology? Ready
or not, here it is: The user is the boss. People like using the Macintosh
because they feel that they are in control. A good Macintosh program seldom
freezes the screen, forcing the user to do something before continuing. Where
have you seen this type of unfriendly forceful behavior? In the preceding
example of the DOS calculator program that won't continue until the user
enters a number.

29

30 Part I: Introducing the Macintosh Basics -------------

A Macintosh program can read data in a variety of ways. Like DOS programs,
a Mac program can be designed so that a user types in a number:

Enter
percentage: ~

ffiiCiiiJ [1 · . DK II

Note in the preceding example the presence of both a Cancel button and an
OK button in the dialog box. That gives the user the option of changing his or
her mind, which is another excellent example of the Macintosh philosophy
that the user is the boss.

If a Mac programmer wants the user to make use of the mouse rather than
the keyboard, the programmer can use radio buttons or a scale with a slider
to read in a value. Here are examples of each of these methods:

Percentage 1
•a"' ---------­
Q 25"'

Q 58"'
Q 75"'
Q IBB"'

Slide scale ta a percentage

50 IOO

@iijiJ II DK II

Writing text to the screen and reading data from the user are the two primary
responsibilities of a non-Mac programmer. You, the challenge-loving individ­
ual that you are, have additional duties. Adding a window to your program is
one of them.

Workin9 with windows
Programs written for a DOS computer simply display text and numbers on
the screen. On a Mac, everything is displayed in a window. A program that
uses a window makes you, the programmer, responsible for the following:

I Y' Opening, or displaying, the window.

Y' Drawing or writing to the window.

______ Chapter 2: What Makes Macintosh Programming So Different?

rn 1"' Making it possible to move the window on the screen.

~ 1"' Closing the window.

Macintosh provides the user with a myriad of options. Are you starting to get
the impression that there's just too much for a Mac programmer to learn? Are
you getting nervous about all of this talk about responsibility? You aren't?
Good. Then skip the rest of this note. But for those of you considering giving
up, I'll let the cat out of the bag and mention a topic that may provide a ray of
hope - the Toolbox. Apple has written a ton of code for you already, code
that simplifies such things as creating and moving windows and creating and
displaying menus. Because these functions are used by programmers as tools
to build Mac programs, Apple got cute and named the entire collection of
them the Toolbox. You learn more about the Toolbox in Chapter 15.

Opening a window and writing text to it is a simple process. I know, I know -
you've heard claims like this before. But in Chapter 4, I prove it. There you
see the code for a Mac program that uses a window. And best of all, the code
for the program fits on less than half a page! Better still, I've gone ahead and
typed in all the code and put it on the CD-ROM that comes with this book.
That way, as you follow along, you don't even have to type in any source
code!

Menus mean choices
Another major difference between Macintosh programs and those written for
older computers is the idea of pull-down menus. Mac users like to feel that
they are in control of a program, rather than at the mercy of what a program
allows or forces them to do. Macintosh menus enhance that feeling of con­
trol. A program that doesn't have pull-down menus may still offer some form
of menu, but it's not the same. The menu choices are listed on the screen,
and the user must choose one before the program continues, which isn't
really much of a choice:

A selection must
be made from
this window.

I) Add
2)Subtract
3) Multtply
4) Divide

Choose en operatton: 3

No other action can take place
until a menu option is typed.

31

32 Part I: Introducing the Macintosh Basics ____________ _

As you can see, this kind of menu is a stark contrast to the Macintosh way of
doing things. With Macintosh menus, the user has a choice of making several,
perhaps dozens, of choices. And if the user decides not to make a selection
from one particular menu, she can still perform other actions. The screen
doesn't freeze up and force the user to make a decision. A different menu can
be selected, or a window can be moved:

Other menus can be used.

Rnswer~B

(3.141) • (2) • 6.282

Windows can be moved.

When compared to the DOS brand of menus, Macintosh pull-down menus
offer a seemingly infinite variety of choices to the user. With this vast
improvement, you may think that the menus represent a comparable
increase in work for the Mac programmer. Think again! Macintosh menus are
easy to implement and involve only a minor amount of extra work for the
programmer.

Menus and windows are two of the most distinguishing features of a
Macintosh program. You know they're cool because they were two of the first
Macintosh features that Microsoft "borrowed" when creating Windows, its
own graphical user interface. Because menus and windows are so important
to Mac programs, they are also the two topics I spend the most time explain­
ing in the remainder of this book. By the time you complete this book, you'll
be able to include menus and windows in each and every Macintosh program
you write. And you'll also be convinced that although Mac programming is
very different (and sometimes harder) than any programming you may have
done before, the resulting programs are well worth the effort.

Chapter3

Using and Programming the iMac
Jn This Chapter
ll> Checking out what makes an iMac special

I>- Why the iMac's features appeal to programmers

I> Learning about the processors, or CPUs, that inhabit Macintosh models

t> Programming for the PowerPC processor

c o o o o o o o o o 9 o o o 0 o o o o o o o o o o o o G a o o o o o a @ o o o o 6 o o o o o o o o

C:hapter 2 discusses some of the key differences between Macs and PCs -
but there are also differences between Macs and iMacs. That is, one

model of Macintosh differs from another model. The explanation of how each
Macintosh model differs from the others could generate enough material to
fill an entire book - so why single out the iMac? Because the iMac represents
not just a change for Apple, but also a trend. Apple broke all its previous
sales records when it introduced the iMac in mid-1998, and now in 1999 there
is no sign of a slow down. Not only will the iMac be enhanced and, perhaps,
spawn new versions, but new Macintosh models seemingly unrelated to the
iMac will share some of the iMac features. If you're lucky enough to own an
iMac, this chapter will help you see how your computer fits into the scheme
of programming the Mac. And if you don't own an iMac, this chapter won't be
a waste - it provides a few pointers on how you should keep the iMac in
mind as you write your Macintosh programs.

iMac Features
The translucent Bondi blue (that's a blue-green to those who don't think in
the same cool terms as Apple) case that encloses the iMac is innovative and
interesting. But there's more to the iMac's magic than just good looks. Here
are a few of the features standard with each iMac:

~
1" 233 MHz or 266 MHz PowerPC G3 processor

1" 66 MHz system bus

1" 512K of backside Level 2 cache

Part I: Introducing the Macintosh Basics ____________ _

I V" 15-inch (13.8-inch viewable) high quality display

V" Built-in stereo speakers with SRS sound

An impressive list - even (or perhaps, especially) if you don't know what
half of the terms mean! Here's a quick look at what the preceding points refer
to - and how they might affect someone who writes programs that will run
on a Macintosh computer.

Processin9 power
A computer's microprocessor (or central processing unit, or CPU, or processor)
is a microchip that essentially runs the computer. A program - any program -
consists of code. Code is nothing more than a set of instructions that tells the
computer what to do: start running, open a window, add some numbers, and
so forth. These instructions are handled, or processed, by the computer's
microprocessor.

In this book you're going to learn all about code. Fortunately, you'll be able to
learn about it from a human's perspective-as opposed to a microproces­
sor's perspective. Don't worry- you won't have to know the details of how a
microprocessor does its thing.

As you might imagine, the faster a microprocessor works, the faster things
happen. That's why a geek spends so much time boasting about the speed of
the processor in his computer. Processor speed is stated in megahertz (MHz).
Computer manufacturers are in constant competition to up the speed of their
computers, so if you follow the computer ads, you'll notice that this number
is going up and up. A couple of years back a computer with a 100 MHz
processor would have been considered pretty fast. Now, 100 MHz is consid­
ered kid's stuff. The original iMac computers shipped with a 233 MHz
processor, and the second "wave" of iMac's came with an even faster 266
MHz processor. That's pretty fast for an inexpensive machine.

Hundreds of thousands (and, perhaps soon, millions) of iMac users have a
fast computer. What does that mean to a computer programmer? It means a
big market is out there that's guaranteed to be able to run programs that
depend on speed. So, for instance, a person or company designing a complex,
high-speed game that's to run on Macintosh computers knows for a fact that
there's a big potential audience for their game. No matter how many big,
galactic-crossing, giant space ships are to go careening across the screen at
incredible speeds, the iMac will be able to keep up with the action.

More stuff that makes it fast
The 233 MHz or 266 MHz processor driving the iMac is the chief reason the
iMac is a fast computer. But there are a couple of other reasons, too.

____________ Chapter 3: Using and Programming the iMac

A computer's processor is the workhorse of the computer, but it doesn't
work alone. One of the other components the processor deals with is
memory. The time it takes to transfer information from the processor to
memory and back again can slow down a computer. So computer manufactur­
ers have come up with an extremely fast type of memory called cache
(pronounced cash) memory. Another component that aids in speeding up the
transfer of information is the speed at which the system bus operates. In
short, the system bus is the pathway that information travels as it goes from
the processor to memory and vice versa.

Okay, that all sounds like very heady stuff. You probably don't want any more
details (which is good, because I don't know any more) -you probably would
rather just know what it all boils down to. Here it is. The iMac has 512K (one
half of one megabyte) of cache memory and a 66 MHz system bus. Boiled
down further (is it getting hot in here, or is that just me?), that amount of
cache memory is good and that system bus speed is good. Together with the
fast processor that you just read about, the iMac is one wickedly fast
machine. And again, that's something that programmers like to hear. They
want to know that fast machines are on the market so that their programs
will be running to their full potential.

Looks nice, sounds nice
Remember a few years back when the term multimedia was all the rage? The
use of that word has faded a bit of late. Multimedia - the convergence of dif­
ferent types of media such as text, graphics, sound, and animation - itself is
still big, though. So why isn't the word itself so big anymore? Probably
because computers that are adept at working with different types of media
aren't a rarity anymore. Anyone who buys a computer today fully expects
that computer to display sharp images, play video clips, and blast sound out
of built-in speakers. And someone who buys an iMac won't be let down.

The iMac's built-in 15-inch monitor is a high-quality display with minimal
flicker and clear-focus. Its resolution - the number of pixels, or dots that
cover the screen - can be set to as high as 1024 pixels horizontally and 768
pixels vertically. If my math is correct (you can double-check and then grade
me by multiplying 1024 by 768), that means there are over three-quarters of a
million little dots on the screen of one iMac. Having so many dots, or pixels,
on a monitor means that the monitor can display a lot of detail. And that
means text, pictures, animation, and video all look good. If you write a pro­
gram that will run on an iMac, you know that the user will see just what you
intend that person to see.

Chapter 16 discusses graphics and Mac programming. Chapter 21 shows you
how to include a digitized photo in your own Mac program.

35

36 Part I: Introducing the Macintosh Basics ____________ _

Just about every computer sold today comes with speakers. But that doesn't
mean every computer sounds good. The iMac does sound good. The iMac has
two speakers built into the front of the computer. As important as the quality
of the speakers is the "behind-the-scenes" technology that allows a Mac pro­
gram to get quality sound from the program to the speakers. On the iMac,
that technology is Sound Retrieval System (SRS) stereo sound. SRS, which is
licensed from SRS Labs, is a technology that manipulates sound to bring it
into the three-dimensional zone that is akin to the sounds we hear when actu­
ally listening to "live" sounds. When you write a Mac program that includes
sound, you know that iMac users will hear the sound just as you programmed
it to play.

I'll let the cat out of the bag (or perhaps I should say, I'll let the cow out of the
barn) here by mentioning that Chapter 21 shows you how to include a digi­
tized sound in your own Mac program.

Pro9rammin9 the PowerPC
If your car's engine goes kaput, you could replace the entire engine. But not
with just any motor. Automobile engines aren't interchangeable. The same is
true of a computer's processor. Like a car's engine, a computer's processor is
the "main" component of the machine. Several years back, all Macintosh
computers had a processor made by Motorola. Different Motorola processor
models were available, but their names all started with "68," as in the
Motorola 68000, the Motorola 68030, and the Motorola 68040. Besides all
starting with "68," each model number was five digits, so each was said to be
in the 68-thousand family of processors. Because in the computer world, K is
often used to denote thousand, the Macintosh was said to use the 68K family
of processors. About five years ago, that changed.

In 1994, Apple released the first Macintosh computer not based on a 68K
processor. Instead, this new Mac came equipped with a processor from a dif­
ferent family of Motorola processors - the PowerPC family. In the last five
years Apple has been making a transition from the 68K family to the PowerPC
family. Now, all new Macs are based on processors from the PowerPC family.

Fortunately for us Mac programmers, very little of our programming efforts
are spent on trying to determine whether the Macs our programs will be run­
ning on sport a processor from the 68K family or the PowerPC family. In fact,
for the relatively simple programs described in this book, you need to know
nothing about the processors that run the Macs on which your program
might run. Only after you move out of the realm of the easy stuff does this
become a concern. So why mention it at all? Because the concern is suffi­
ciently large enough that you should be forewarned. As you make the leap
from beginner to intermediate programmer, this business of which type of
processor a Mac has does become important. If you complete this book and
are considering getting a more advanced Mac programming book, look for a
PowerPC chapter or appendix in that book.

Chapter4

Removing the Fear, Part I: Don't Let
Mac Programmers Scare You!

oooooooooooooooooooooooooooooooGooooooooooooooooo

In This Chapter
r>- How some programmers get their jollies from scaring newbies, and how you can get

your knees to stop shaking

~ How source code is used to create a program

~Why you need to know the rules of the C language

£> How source code terminology isn't that scary

I> How compiling turns source code into a program

o o o o o o o o o o o o e o o o o o li> o 0 o o o o o o o o o o o ~ Q o e u o o o o o o o o o o o o

Many Macintosh programmers, the majority, in fact, are helpful and
considerate when they recognize a newcomer in their midst. Others,

well ... let's just say they aren't quite as friendly. You're the new kid on the
block, and they're going to make sure you know it.

Some programmers enjoy the almost god-like status they hold over mere
mortals, those lowly nonprogrammers. Why wouldn't they want to keep that
power? Using an incredibly complex vocabulary is one way of locking the
door that separates them from the nonprogrammers. In this chapter, I unlock
some of those doors by defining some programming terms in words that you
can relate to. Terms like source code, function, compiler, and a few others.
Removing the pomp from these words should put you at ease and keep your
knees from shaking every time you hear a Mac programmer talking around
the water cooler at lunch time.

38 Part I: Introducing the Macintosh Basics -------------

Dem1J.stif1J.in9 Source Code

(@
In Chapter 2, you were introduced to code. As you'll see a little later, there are
different types of code. When code is mentioned, though, it's source code that
is usually the type of code being referred to. Source code is a general term for
one or more commands in a computer language - any language. Does source
code still sound a little scary? Let me further demystify this treacherous­
sounding term. The most intimidating thing about source code may be the
last half of its name, the ominous-sounding code. The word generally implies
secrets, symbols, top-level intelligence officials, charges of treason, and your
subsequent execution. So why wouldn't the word intimidate you? To lessen
your fear, try thinking about code more along the lines of the definition given
in Websters New World Dictionary. Webster says a code is a system of sym­
bols in which letters, figures, and so on are given certain meanings. Now
that's not so bad, is it?

I could talk about source code in general terms until I am blue in the face, but
you need something concrete to grab on to. Something to do with Mac pro­
gramming. Take a look at a piece of real-life Mac source code: the int. Recall
from this book's introduction that source code, such as the word int,
appears in its own typeface that makes it easy to differentiate from the rest of
the words in a paragraph.

In the field of mathematics, the numbers used in counting are called whole
numbers. These are numbers such as 0, 1, 2, 3, and so on. Whole numbers
never have a decimal point. You may already be aware that whole numbers
can also be called integers.

Many people, programmers in particular, prefer integer to the words whole
number. Now, the word integer isn't a terribly long word, is it? So you may
think that there is no need to abbreviate it. Wrong. While programmers even­
tually become pretty good typists, they prefer to spend their time doing
other things (like thinking about what to type next). As a result, in the pro­
gramming world, abbreviations are everywhere. It turns out that the word
integer is shortened to int. So now when you see i n t in Mac source code,
you'll know what it means and that it stands for something.

While the use of int for integer may seem like just an abbreviation to you, it
can be thought of as something else. int stands for something - it symbol­
izes the word integer. Now recall Mr. Webster's words regarding the definition
of the word code. A code is a system of symbols that have certain established
meanings. So there you pretty much have it - source code is a set of abbre­
viations. There's nothing sneaky or devious about it.

__ Chapter 4: Removing the Fear, Part I: Don't Let Mac Programming Scare You!

Years ago, when programming languages were being developed, computer
memory and computer disk space were both expensive. Back then, program­
mers were very concerned about these factors. Some computer languages
initially allowed for a symbol to be very limited in size - that's why you find
many C symbols that are a few characters in length, such as the symbol int.

l'lauin9 bu the rules of the 9ame
Only one of the following four sentences is grammatically correct. See if you
can guess which one it is:

The man is tall. ©
The man are tall.®

The man tall is. ®

Tall the man is. ®

The first one - very good! And without a hint, yet! Now, why aren't the other
three sentences correct? Because the English language has a set of rules that
guides you on how to create sentences, and the last three sentences violate
one or more of these rules.

A computer language is similar to a spoken and written language such as
English in that it too has rules. It has fixed rules that regulate how you can
piece together the symbols that make up the language. Take the source code
i n t that you learned about in the previous section. When writing source
code, you can't just take i n t and haphazardly scatter it about. It is used only
in certain well-defined instances. (I cover those instances in future chapters
when I discuss the C language in detail. Chapters 13 and 14 in particular
address the proper use of int.)

39

Part I: Introducing the Macintosh Basics -------------

Now back to this rules business. The English language has plenty of rules. To
get the following example, I first waited until my family was asleep. Then I
peeked at my son's eighth-grade grammar book and found this:

Subject Active Verb Direct Object

+ + +
The company offers a comprehensive medical plan.

Why did I wait until everyone was asleep? So I'd be spared the embarrass­
ment of getting grilled about why I even needed to look in an eighth-grader's
book to find an example! That's right. I don't remember the rules of grammar!
The book said that the above example has something to do with subject-verb
agreement, in case you 're wondering.

Source code, like the English language, has several rules. To make this per­
fectly clear, I want to move away from theory and on to a real example.

Say you're writing a program for a car dealership, and the dealer wants to
keep track of the number of trucks he has on the lot. You can create a symbol
that helps your program keep track of the number of trucks. What should you
call the symbol? Perhaps simply trucks. Not incredibly clever, but it does
the trick.

Now further suppose that the dealership has five trucks. You want to some­
how relate the number 5 to the symbol trucks. You do so using the following
rule:

Symbol name Value

+ + trucks = 5 ;

t t
Equal sign Semicolon

This figure tells you that to give a symbol a value, you first list the symbol's
name, followed by the equal sign. After that, you list the value that is to be
associated with the symbol. Finally, you end it all with a semicolon.

Up to now I've been using the word symbol to describe trucks. That's pretty
descriptive, because the word trucks is being used to symbolize real trucks.
In programmer parlance, though, such a symbol is called a variable. For now,
it's enough to know that such a symbol is called a variable because its value
can vary, or be changed. Chapter 13 gives you the low-down on variables.

__ Chapter 4: Removing the Fear, Part I: Don't Let Mac Programming Scare You!

To further compare the rules of the English language and the rules of pro­
gramming source code, I offer another figure. Remember the figure with the
tall man that started off this section? It's time to play again. Which of the four
bits of source code associates the number five with the symbol trucks?

trucks = 5; ~

trucks is 5; ®
trucks equals 5; ®
5 = trucks; ®

Whether or not the preceding bit of source code makes perfect sense to you
isn't the issue here. If you've ever looked at a computer programming book,
with its pages and pages of source code, you've probably felt overwhelmed.
Try as you might, you couldn't understand a bit of it. Stop and think for a
moment. Were your expectations realistic? Just because many of the individ­
ual words in the source code looked English-like, did you really think you
should be able to understand it? Especially when you didn't know any of the
rules?

Once you know the rules of the game, the game becomes much easier to play.
Do I feel strongly about that statement? You be the judge:

••••••••••••••••• • • • Once you know the rules of the game... •
the game becomes much easier to play. • • •••••••••••••••••

41

Part I: Introducing the Macintosh Basics -------------

Right now, you don't know all, or perhaps any, of the rules. The chapters in
Part IV lay out the rules for you by examining and explaining the C language.
If you read and understand the words on this page, you are fully capable of
understanding how to write source code. Stop doubting yourself! And stop
letting those few nasty Mac programmers scare you about source code!

Decoding some source code terminologlJ.
While I'm on the subject of source code, I want to mention some of the many
words used to describe it so that they too will seem a little less frightening.

The following little gem of source code is from the previous section:

trucks .. 5:

This line contains a single command. It tells the program to assign the
number 5 to the symbol named trucks. In programming, a single command
such as this is called an instruction, or statement. While statement is the pre­
ferred term, you can use the two words interchangeably.

Getting a grip on source code organization
Each single statement usually appears on a single line. But it doesn't have to.
It's done this way for clarity. Placing two statements on two separate lines
makes it clear that two separate commands are taking place. And it's another
way of making source code a little less imposing.

Though source code may look about as organized as the contents of a bowl
of alphabet soup, this isn't the case. Statements are written to carry out spe­
cific tasks. The instructions necessary to display a window on the screen
provide a good example. Rather than scatter these instructions all about, the
programmer places them together. When a number of instructions that per­
form a single task are grouped together, the result is called a routine. Because
a routine has a single purpose, or function, it is sometimes called just that -
a function. Routines, or functions, keep source code looking nice and tidy (to
the eyes of the programmer, anyway!). The following figure, while sparing you
the details of the code itself, gives you an idea of how source code can be
divided into functions:

__ Chapter 4: Removing the Fear, Part I: Don't Let Mac Programming Scare You!

Function to display
a window

Function to write
a message
in the window

Function to close
the window

-·­·--
• N~O
11111.tlllllM.,f'M~ ... llJI.
MlfNfl llOtllll ..
•• 1111'1
..... w. .. ,"
•N MM ..
ltlO:t

When several functions are grouped together, the result is a program. A pro­
gram can consist of just a few functions, or hundreds. Don't worry. The
programs in this book contain just a single function.

Eliminatin9 AnxietlJ. of/er Saf!in9
and Compilin9 Your Code

Besides source code, another subject that may send a shiver down your
spine is compiling. As is often the case, the word itself is much scarier than
actually doing it. Read on to learn why some elements of compiling source
code may already be familiar to you.

Source code is nothin9 but text
In the previous section , you typed several commands (statements) to create
source code. You save your source code work exactly as you save anything
else you type - by saving it to a text file. If saving something to a text file
sounds familiar, it should. This is the same type of file that all word proces­
sors can create. Word processors, like Microsoft Word, provide a menu of file
formats. Part of that menu is shown here:

0 New CJ J
Seue Current Document es:
r.::~~:;=;;;;;;;;;===w==="=;;=;=fti! D Meke Beckup
l~n~tl~tl~ed~==========il D l' u~t S111•e
S1iue File es Type-------------~

1
1--Te_H_t _on_.1.._ _______ __._ --t D Default for File

Normal
TeHt Only

Word processors give you a menu
of formats to which you can save a file.

Part I: Introducing the Macintosh Basics

Normally, a word processor saves a file in its own special format that saves
all of the text along with all the formatting, such as italics, bold, or multiple
fonts:

F'. - -- -==- MS word Fornu1t

Word proO!!ssors allow you to add Jbrm•ttingto a docum~nt.

You can add diff~r~nt fonts, styles, and sizes of text to the fit~.

um. oc orm11

When you save a document as a text file, only the text itself is saved. If you
underlined words, or made any other style changes, this information is lost .

TeHI Fiie Format

Word processors 11lso allow you to save e document 11s e text file .
The words In e text fi le 1111 11ppear In the seme font, style. and size.

orm11 ¢

You may ask yourself what ordinary text files have to do with programming
your Mac. Patience, patience! You know exactly what a text file is, and that
word processors can create them. You also know that source code is saved
as a text file. Here's the payoff: This tells you that you can create a source
code file using a word processor. Say you created a source code file using
Apple's popular SimpleText program, which is a text editor that Apple distrib­
utes freely. When you quit SimpleText, you see the icon for SimpleText and
any other programs you have visible on your desktop, plus a brand-new icon
for the source code file. Your desktop may look a little like this:

;II Rppllcntlons Iii
16 ftemo 136.9 MB in disk 64.1 MB available

~
.,

~ 6
ClarlsDrw Microsoft Word Simple Text source file

Program icons Text file icon

__ Chapter 4: Removing the Fear, Part I: Don't Let Mac Programming Scare You!

Every program has an icon; it's what you double-click to run the program.
Every file, such as a text file, has an icon, too. Double-clicking a program icon
runs that program. Double-clicking a text file runs the word processor that
created the text file. So what happens when you double-click the source code
file? The word processor that created it runs, and a window containing the
contents of the source code file opens. If you were hoping that the code you
typed would run like a program runs, you must be disappointed. Don't get
too downhearted, though. The solution is just around the corner.

Completin9 the picture with compilin9
Your source code file is nothing more than a text file with words in it. Even
though it contains source code written in a programming language, the
Macintosh views it as nothing more than a normal text file. You want your
source code to become a program, and so something is obviously missing:

El ------+ ?
Source F11e •

------+ ~
Pr09rem

How do you get your typed-in source code saved in a text file to become an
actual program? After creating the source code, you need to compile it. It's
the compiler that turns the source code words into numbers. The compiler is
to source code what the phone booth is to Superman - your text file may
enter the compiler an ordinary text file, but it comes out a mighty, crime­
fighting, superhero of a program.

Words mean nothing to your Mac, but numbers it loves. The hundreds, thou­
sands, or in some cases even millions of numbers that the compiler generates
are what make up a program. Before going on, I want to complete the picture:

El ---+ ~ ---+ ~
Source file Compiler Progrem

How on earth does the compiler know what numbers to create? Who cares!
Whether it's using complex mathematical formulas or voodoo, it's obviously
doing something very right. Why question it? What you do need to know is
how to go about compiling your source code.

If you've programmed before, you may be familiar with linking. If you haven't
programmed before, let me explain. On some computers, you have two steps
involved in converting source code into a program. First you compile the
source code, and then you link it. It's that way on a Macintosh, too. But Mac
compilers combine these steps so the part about linking seems invisible to you.

45

Part I: Introducing the Macintosh Basics -------------

After source code is typed into a file, you compile the file to turn it into a pro­
gram. I use the CodeWarrior compiler in this book, so to compile my file, I
choose the Compile menu item from CodeWarrior's Project menu. Don't
worry about not knowing what a Project menu is. The important thing is to
know that compiling your source code is a one-step process. That's all there
is to it. Here's a look at the CodeWarrior Project menu:

••
Compile :1::t: I
DIUIWl&•la

llllla0pfDaata ..
MID SM
.......... rml9,.,.,mu
..... ..,...lfdrlPdst
lpCfftldla Mldltlcat&la a.ta

Sorry about blurring that figure, but I did it because I don't want you to get
worried about the host of other items in the menu. It's just as well if you
don't even know what they are; you won't need these other items while
you're learning the basics of Mac programming. The Project menu contains
several items, but Compile is the item you use the most. In fact, even when I
cover the CodeWarrior compiler in depth in Part Ill, I only mention a few of
the other items in this menu. That's how simple compiling really is.

The Compile menu item compiles a source code file, but even after compiling
it, the source code file still isn't a true, ready-to-use program. So why do it?
To make sure that your source code is all correct. You and I never make mis­
takes, of course, but some people do. When the compiler encounters a line of
source code that it doesn't think is right, it lets you know. After you correct
the offending bit of code, you compile the source code file again. After every­
thing's fine with the source code, you can make a program out of it.

A software program is often called an application. If you're creating your own
program, or application, you can say that you're making it. In fact, that's
exactly what you say. If you look in the Project menu of CodeWarrior, you see
that CodeWarrior provides a menu item called Make - the next figure shows
that menu item. I won't repeat my cheap theatrical stunt of blurring the menu
here. Instead, I trust that you won't become engrossed in, or intimidated by,
the other menu items in the Project menu:

__ Chapter 4: Removing the Fear, Part I: Don't Let Mac Programming Scare You!

' I •

Rdd Window
Rdd Files •••
Create New 6roup ...
Remoue Selected Items •@
theck SyntaH •;
Preprocess
Precomplle ...
Compile XK
Disassemble

Brtn_g_ Up To Date XU

Remoue Object Cade
··~ ·-Re-search for Flies

Reset Project Entry Paths
Synchronize Modification Dates

1--·------
Enable Debugger
Run XR

-----------1
Set Default Project ~
Set tu"ent Ter:11.et ~

The Make item sneaks a little code of its own into your code. It does this so
that when you quit the compiler, a brand-new icon representing your pro­
gram appears on the desktop. If you haven't yet compiled your source code
file when you choose the Make menu item, Make first completes that task. H
you have compiled your source code, Make jumps right to the part about
adding its own code.

Different compilers give you:some options
Different software companies make different C . source code and. compile that code into a pro­
language compilers. For instance, Apple makes gram. Because of this, in the five years or so that
one called MPW, which stands for Macintosh ·codeWarriorhas been available, it has become
Programmers Workshop. MPW is a product farand away the leading compiler among Mac
d~signed specifically for professional· programmers.· Forthese reasons, IDG Books
Macintosh software developers. Another colJl- ··. -~fldldecided upon CodeWarrior as the com­
pany, Metrowerks, makes a Mac compiler pilertc) use for this book's examples. You'll find
called Metrowerks Code Warrior Professional, · a'.fi_mited ve.rsion of the compiler oil the CD~ROM
or stmp'y Code Warrior for short CodeWarriori~ :· J1la,t<:,9meswith,th'S book. I .cover C9d~Warrior·
used bymaily professional programmers-- but . ·.in ~~tail .inP.art Ill. For now, I'll continue demys~

•... it'~,;alsQ u~ed by almost all peopl~ new; to .pro- . /~_ifyingtt,le: PJ()C~ss of compiling by-,giving you. a
gramming .. t~e Mac. That's .becaus~ . :v.efy.g~icKlook at the CodeWarrior.compilerin.

· CodeWarrior has a very friendly interfac.e: ~· .. 't.his:sectio,n: ·
CodeWarrior makes it easy to type in your

47

Part I: Introducing the Macintosh Basics -------------

The Compile menu item compiles source code, but it doesn't turn the results
into a program. The Make menu item both compiles source code and turns
the compiled results into a program. So why would you ever want to use the
Compile option when the Make option obviously does more? Despite the best
planning, writing source code is a trial-and-error process. You'll write code,
compile it, and then, if you've made any mistakes, you'll correct them and
compile again. During this process, there's no need to turn the compiled code
into a program. That process, which takes a little more time than simply com­
piling, can wait until you 're sure that you have things right.

The menu I just showed has about a dozen items in it. I said that you only use
a few of the items from this menu. That, of course, begs the obvious question:
What are all those other menu items doing there? Remember, I didn't say no
one would ever use these items. I just said that you don't need to use them.
More experienced programmers take advantage of some or all of the features
these items provide.

One last point about compilers, and this is a really neat point. The compiler
features a built-in text editor. A text editor is like a word processor, except
that it offers limited text formatting options. For instance, with a text editor
you can't display a fancy ruler at the top of the window that allows you to
change the indentation of different paragraphs. The primary purpose of a
text editor is to - you guessed it - save text to a file. If you want to write a
fancy report and include figures and headings and the like in it, then a text
editor isn't for you. If you want to write source code, then a text editor is for
you. A text editor is perfect for writing source code because text is all that a
compiler understands- it doesn't give a hoot about the fancy formatting
writers of other stuff include in their manuscripts, papers, and reports.

What's so neat about having a built-in text editor? It makes creating a pro­
gram that much easier (and that much less frightening). With the built-in text
editor, here are the steps you perform to create a Mac program:

1. Run the compiler program (CodeWarrlor in this case).

2. Type your source code using the built-in text editor.

3. Choose Run from the Project menu.

4. Quit the compiler program.

5. Brag to all your friends that you just created a Macintosh program.

Well, maybe it won't go quite that smoothly, but that's a pretty darned good
assessment. In any case, it's plain to see that creating a Macintosh program
isn't nearly the nightmare-of-an-experience that some people may have led
you to believe!

Chapter5

Removing the Fear, Part II:
The One-Minute Program

0 0 0 0 0 G G 0 0 0 0 0 0 0 0 0 G 0 Q 0 0 0 0 0 0

In This Chapter
i>- Looking at source code for an honest-to-goodness Mac program

Li> Discovering how a program opens a window

j;l>- Finding out how a program writes words to a window

~ Using the Toolbox (free code from Apple)

OOOOOOOOQOOOOOOOOOGOOOOOOOOOOGOOOOOOOOOOOOOOOOOOO

Jn Chapter 4, you saw a little code (very little). In this chapter, you see just
a little more - about a dozen lines. Source code is often intimidating

because you usually see pages and pages of it. Would it remove some of the
fear if I told you that the few lines of code in this chapter comprise an entire
Macintosh program? It's true. As you can well imagine, Macintosh programs
get much larger. But isn't it nice to know that the first one you'll be exposed
to practically fits in the palm of your hand?

Rememherin9 Those Comlentions
Because you 're about to look at some source code for a real-life Mac pro­
gram, let me take just a moment to remind you about the conventions used in
this book. Any source code that appears on the pages of this book looks dif­
ferent from the rest of the text. To help you quickly identify what is source
code and what is regular text, all code that is mixed in with text appears in a
special font:

A code word within a sentence appears in the code font.

i
The C language word i n t is a type of data used to hold an integer.

50 Part I: Introducing the Macintosh Basics -------------

Other times you see a block of code. Some examples work best when you
view several lines of code listed together:

int trucks =
int i ;

for Ci=l; i<lO;
trucks++;

. Entire section appears in the code font. O; J
i++)

A block of code is called a code snippet. That's because it isn't an entire pro­
gram; it's just a part snipped from a complete program.

That's It] That's a Mac l'ro9ram 1
I can write a Mac program in 15 lines of code or less. Sounds kind of like
Name That Tune doesn't it? It's true, though. I won't explain all of the code in
detail; exactly how the code works isn't important here. What is important is
that you realize these few unimposing lines of text are capable of opening a
window and writing words into it. It runs on a Mac; it opens a window; it uses
the window. Why, I believe that qualifies as a Macintosh program! Granted,
it's a simple program. Still, this brief look at Mac source code should do
much to eliminate any anxiety you may have about writing code.

Unt1eilin9 the pro9ram
Here, in its entirety, is the source code for the much-heralded example:

vo1d main(void >
{

WindowPtr theWindow;

InftGrafC &qd.thePort. J:
InitFonts();
InitWfndowsC>:

theWindow D GetNewWindowC 128, nil. (WindowPtr)-ll);
SetPort(theWindow >:

Movelo(30, 50 >:
Drawstring("\pHello, World!•);

while C !Button())

_____ _ _ Chapter 5: Removing the Fear, Part II: The One-Minute Program

What incredible things does the program do? After you compile the code, it
displays a window and writes the words Hello, World! in it. When you click
the mouse, the window disappears and the program ends. Here's what you
see when you run the program:

Untitled

Hello, World!

Namin<J the pro9ram
Notice that it appears that the program has no name. That's because a Mac
program is named after it has been compiled. In fact, you can even change
the name of a program after it's all done and sitting on your desktop. Simply
click the program's name and type in a new one. For example, I made a copy
of a program that appears in Chapter 18, MenuDrop, and then renamed it
SuperMenuDrop. The result is shown here:

Fm Rppllcatlons - -
17Hems 137.Blndisk 63.2 MB available

g

~ ~ ~ ~ ~
Simple Text ClerbOrw MenuOrop SuperMenuOrop

~
Ql:MI• ~ 19 81

Software companies don't think it's funny if users copy and rename pro­
grams. After all, the software companies spend a great deal of time and
money to develop their programs. And companies would see even less
humor in such antics if attempts were then made to distribute these newly
named programs. If you tried this, not only would you have the dreaded
Software Police after you, you'd also probably have federal authorities knock­
ing on your door. With that said, why was it okay for me to rename the
MenuDrop program to SuperMenuDrop a little earlier? Because I wrote that
program, and I can give my own programs any name I want!

51

52 Part I: Introducing the Macintosh Basics -------------

It's tedious and impersonal to keep calling my example program my example
program shown near the start of this chapter. Even though it's just a simple
Mac program, it still deserves a name of its own. Macintosh programmers
take a lot of pride in their work and thus put a lot of time and effort into
thinking of catchy, original names for their programs. With that in mind, I'll
call my program ExampleOne.

Examinin9 the code, hut not too closellJ
If you're interested in ripping ExampleOne apart line by line, you have to wait
until Chapter 17. In this chapter, I cover some of the statements in the
ExampleOne program, but only at a superficial level, again just to get you
acquainted with code.

Because you're probably not familiar with the C language, I won't mention
too many specifics of the program in this chapter. But even without a knowl­
edge of the particulars of C, you can still get a lot out of ExampleOne. Here's
what you can learn from a brief look at a very short program:

1

,,- Source code really does have structure and organization.

1"' At first glance, source code appears to be quite cryptic, but it really
isn't.

1"' Everyone is capable of writing a simple Mac program.

Gettin9 it readu., cause here u.ou come
When you write a Mac program, some of the commands you write are very
short and simple. Yet they appear to make a lot of things happen. If you're
like most people, the idea of producing a heap of results with a minimal
amount of work sounds pretty good.

You get a lot of work out of these short commands because you aren't going
at it alone. Before you start looking over your shoulder, let me explain. Apple
has written a ton of source code for you already that's buried deep inside
your computer. Some of the instructions you write activate this code and
make it available for your program. I'll have more to say about how this
process works throughout the book, including later in this chapter (see
"That's It ... But Don't Forget the Toolbox!").

One of the first things you do when you write a Mac program is let the Apple­
written code that dwells in your Mac know that you are going to make use of
it. Think of it as telling the Macintosh to get ready, 'cause here you come.

_______ Chapter 5: Removing the Fear, Part II: The One-Minute Program

This process is called initialization. The ExampleOne program uses three sep­
arate statements to initialize the Mac:

InitGrafC &qd . thePort) ;
Initfonts() :
I ni tWi ndows () :

ExampleOne writes text to a window. On a Macintosh, the typeface in which a
text is written is called a font. The I ni tFont s instruction warns the Mac that
this program writes to a window, and thus uses a font. The Macintosh then
does some internal hocus-pocus that gets itself all prepared to write text .

From the preceding paragraph, you can see that when a command starts with
I n i t , the I n i t means initialize. The second half of the word tells what gets
initialized. Pretty intuitive, isn't it? I n it Fonts initializes fonts. I n i t Wi ndows
initializes windows. I ni tGra f initializes ... well, maybe that's not quite so
intuitive. More on I ni tGra f later in Chapter 17.

Every Macintosh program has at least a few of these instructions that begin
with In i t . so you are doing well to get acquainted with them now.

Openin<J. a window
The ExampleOne program displays a window. This line of code prepares the
Macintosh to do that:

WindowPt r theWindow:

That's a little bit like the initialization 1 just talked about in the previous sec­
tion, but not exactly. Similar, but different. Now isn't that helpful? Let me try
again. This line of code lets the Mac know that a window is going to be cre­
ated and displayed at some point in the program. Knowing that, the Mac
makes sure there's a little space reserved somewhere in memory to hold
information about this soon-to-arrive window.

What kind of information about a window does the Mac have to keep track
of? For one, the type of the window that opens. Remember, windows don't all
look the same:

i
ii'

<Oil 191!1

53

54 Part I: Introducing the Macintosh Basics -------------

Now that you've got the Mac all excited about the idea of a new window
coming into existence, you certainly don't want to let it down. The following
line of code actually creates a window:

theWindow .. GetNewWindow(128, nil, CWindowPtr)-ll J:

The GetNewWi ndow part of that last line sounds straightforward enough. But
where is the program getting the new window? And what's all that business
between the parentheses that follows GetNewWi ndow? Not so fast! Remember,
this is an overview. I don't have to tell you everything right here and now!

Notice the return of theWi ndow. A moment ago, I said that theWi ndow would
be used to hold information about a window. Take another look at this line of
code:

theWindow a GetNewWindowC 128, nil, CWindowPtr)-lL >:

It serves two purposes. First, it displays a new window. Second, it gives
theWi ndow the information it needs about the new window. Actually, this
single line of code encompasses about four or five separate programming
topics. I think I better stop right now before l get in too deep! Don't worry,
you hear more about theWi ndow later in this book.

Writin9 to a window
After displaying a window on the screen, ExampleOne writes a few words in
it. The line of code that writes these words is:

Drawstring(•\pHello. World!" >:

While you may not know what a string is, you certainly know what the word
draw means. The Macintosh, being the very graphical kind of computer that
it is, doesn't simply write text. No, the Mac considers writing a very dull
sport. It much prefers to draw things. Not just lines and shapes, but even
words.

By the way, a string is a group of characters - letters, digits, and so on. Thus
the word dog, the sentence "Hey, you!" and the nonsense Ab123&%* are all
strings. You get a more formal definition of strings in Part V.

You're probably also wondering about that funky-looking \ p that precedes
the words Hello, World! Those two characters always precede the text, or
string, in DrawStri ng, but they don't show up when the string is written in
the window. As usual, more on this in Chapter 17.

______ Chapter 5: Removing the Fear, Part II: The One-Minute Program

What about those two lines of code that precede the DrawStri ng line? Here
they are:

SetPortC theW1ndow >:
MoveTo(30, 50 >:

Imagine that ExampleOne displayed three windows at the same time. What
do you think would happen if you write - excuse me, draw - some words
using Draw St r i n g? Which of the three windows would the text appear in?
That's a real dilemma! It's a good thing that the command Set Port solves it. I
won't tell you here how it solves it, but I will tell you that it involves your old
friend, theWi ndow.

The idea of which window to draw text in brings up a second problem -
where in the proper window should the text be drawn? If you tell the Mac to
draw some words in a window, where do they end up?

Text could end up here ...

¥=& Untitled

Halo, \l\brld!

Halo, Wlrld!

Heflo, V\brldl

Helo, 11\b'ld!

Heilo, Wlrld!

Heilo, Wlrld!

... or perhaps here ...

... or maybe here I

The line that contains Move To handles where text should be drawn in a
window:

MoveToC 30, 50 >:

The two numbers that follow Move To, 30 and 50, tell the Mac exactly where in
the window to draw any text you want. Chapter 16 discusses exactly how
those two numbers tell the Mac where to draw.

Endin9 the pro9ram
Button, button, who's got the button? The mouse has the button, and clicking
it ends the ExampleOne program. Here are the two lines of code that address
that task:

whi 1 e C I Button() >

55

56 Part I: Introducing the Macintosh Basics -------------

If these two lines of code were translated into poetry, they would read as:

While the mouse button is not clicked down, The program should stick
around.

Shakespeare it's not, but you get the idea. When the mouse button is clicked,
the program ends and the user finds himself or herself back at the desktop.
A Mac program usually doesn't end when the user clicks the mouse. But I
thought a simple ending would be very appropriate for this simple example.

Ending at the he9innin9 and the end
I still haven't covered three lines of code, not to mention several blank lines.
Take a look at the three lines with the two braces, { } , and ma i n () .

Code can be grouped together in what are called functions. Most programs
have several functions; ExampleOne has just a single function named main.
How can you tell where a function begins and ends? By the braces - they
mark the beginning and end of a function:

The function name ______.ma i n () {> A bunch of code goes
between these braces.

}

How much code goes between the braces? What does the code here do? That
all depends on what the function is supposed to do. In ExampleOne, the func­
tion initializes things, opens a window, and draws some text to the window.
To accomplish that, I wrote ten lines of code between the braces (not count­
ing the empty lines). Other functions do other things and could have more or
fewer lines of code.

When it comes to Mac programming, blank lines don't count. In source code,
you can stick a blank line anywhere and it doesn't upset things. Blank lines
are also known as white space. Why insert a blank line if it doesn't do any­
thing? To add clarity to your source code. Rather than have line after line of
uninterrupted code, you can throw an empty line in to break things up.
Notice that I used blank lines to group together related lines of code. An
example is the three lines of code that handle initializations:

1nitGraf(&qd.thePort);
InitFonts< >:
InitWindows< >:

______ Chapter 5: Removing the Fear, Part II: The One-Minute Program

If you look at the code for the complete program, you see that I have a blank
line before and after these three lines.

That's It . .. But Don't
For9et the Toolbox!

I sure hope that this rudimentary explanation for each line of code in the
ExampleOne program has assuaged some of your programming fears. If not,
don't worry - there's still time to get the hang of it. The chapter is complete,
right? Come on, you know better. As long as I have the source code right in
front of you, I may as well cover a couple of general topics that apply to it.

Source code and compiling (which I discuss briefly in Chapter 4) are two of
the most scary topics any new programmer can encounter. Because Mac pro­
grams are so different from programs written for other types of computers,
you may have guessed that there are some semi-frightening programming
topics that pertain only to the Mac. How right you are! I devote the remainder
of this chapter to one of the biggest and baddest of them: the Toolbox.

lma9inin9 the 9lor1J. of the Toolbox
Imagine this: A computer company hires top-notch, professional program­
mers to write thousands of small, efficient programs. Miniprograms, if you
will. Each miniprogram can do something exciting, useful, or both. Like put a
window on the screen. Or draw a circle in a window. Or move a window.

But wait, there's more. Then this company devises a way that you, a novice
programmer, can access any one of these miniprograms just by typing a
single line of source code. And then - and here's the clincher - the com­
pany gives all these miniprograms away, free! Okay, you can stop imagining
now. This is one of those dreams that really does come true: Apple stuffs
scores of these miniprograms into a file on each Mac's hard drive (the System
file in the System Folder, if you must know) and into computer chips that are
then soldered right inside every single Macintosh. Not only did they do all
this; they also came up with a clever name for this collection of minipro­
grams - the Toolbox.

Callin9 the Toolbox
The miniprograms that make up the Toolbox are the tools you use to build
your programs. To make use of a Toolbox miniprogram, you call it:

57

58 Part I: Introducing the Macintosh Basics

Hey, Toolbox!

No, not like that! When I say you call a Toolbox miniprogram, I mean it a little
more figuratively. Your source code calls on a miniprogram to perform a task.
You probably weren't aware of it, but you've already come in contact with
several Toolbox calls. The ExampleOne program uses eight of them! Look
again at the ExampleOne source code. I place all the calls to Toolbox
miniprograms in boldface type so that they are easier to spot:

void main(void)
{

.I

WindowPtr theWindow;

in1tGrafC&qd.thePort);
In1tFont~O:
InttWindows.(>:

theWi ndow .. GetNewW1 ndow< 128. nil • CWindowPtr > dl >;
SetPort(theWindow);

MoveTo(30, so >:
Drawstring(•\pHell o, World!· >:

whfle C !Button<))

Feelin9 like u.ou1re not alone
You can surmise that the Toolbox is a very important part of Macintosh pro­
gramming. In this section, I tell you just a little bit about what the Toolbox is.
This small taste may have prompted even more questions. How can you tell
what source code is a Toolbox call? How do you know when to use a Toolbox
call? How do you know the names of all the Toolbox calls? Patience, patience
my friend. I discuss the Toolbox in Chapter 15.

If you aren't expected to know everything about the Toolbox from this
section, what should you know? That you are not alone in your program­
ming endeavors. Apple support is right there beside you. In front of you,
actually - right inside your Mac. The invisible code that Apple has tucked
away in your Macintosh does all sorts of helpful and wonderful things for
you. And, best of all, you never have to know how it works! You learn a lot
more about the Toolbox in this book, but you never have to learn how each
Toolbox miniprogram, or function, works. You only have to know that
Toolbox functions do, in fact, work very well.

PartH

Resources: This Is
Programming?

The 5th Wa~e Rich Tennant

Re'ill Prdesm.m·m.ers
@~ r---------i

Rm1 Pro0~ammers hate deca{fe1nctt
V'' COffee~

In this part ...
Tiie Macintosh is a fun computer to use. Now, if only it
I ~ere a fun computer to program. But wait ... it is!

Though writing programs for many other kinds of computers
consists only of typing in line after line of mind-numbing text
and numbers, programming the Mac involves working with
neat pictures that represent the windows and menus that are
to appear in your program. Well, yes, it also includes a little
bit of that mind-numbing business - but you won't see any
of that in this part of the book. So don't worry about it just
yet. Instead, enjoy the three chapters in this part. They deal
with resources - the fun part of programming.

Chapter&

What Are Resources?
000

Jn This Chapter
~ Defining the Mac's resources

fl>- Creating resources without programming skills

e> Keeping resources in a file

t> Observing how resources and source code interact

o o o o o o o o o o o e o o o o o o o o o o o Cl> o o o o e o o o o " o o o o e o o o o o o o o o o

1 may sound like a Boy or Girl Scout leader, but I've got to tell you that it's
time to get resourceful. No, this isn't the chapter where you learn how to

make a shelter out of fallen branches and stones. In this chapter, and the two
following it, you learn about a topic very important to Macintosh program­
ming - resources.

Definin9 What Resources Define
Different resources have different purposes, but for the most part resources
are used to define what the different parts of the GUI (graphical user inter­
face) look like. What parts of the Mac interface are defined by resources?
Take a look:

62 Part II: Resources: This Is Programming?

Resource Resource

Resource Resource

Resource

Find:
Resource --- '--------t

(More Choices J

Resource ~
System fotder

Eject Disk 3CE
Erase Disk ...

Restart
Shut Down

m;'l'.iC!l411H- Resource
Hard Olak

·--- Resource
Treah

Okay then, what parts of the interface aren't defined by resources? Take
another look:

I!

Wow! Resources are a big responsibility for the Mac programmer. Yes,
resources are a key part of Mac programming. But here's some good news:
Resources are also the fun part of programming. Hey, I heard that snicker! It's
true though. Resources are fun because they're freebies - they involve
absolutely no programming. You don't have to use source code or a compiler
to create a resource.

Those last two figures should make it quite clear that resources are crucial to
a Mac program. Without them, a Mac program would look much like a pro­
gram written for another type of computer. It would consist of nothing more

_______________ __ Chapter 6: What Are Resources?

than words on the screen. But what do I mean when I say a resource defines a
part of the interface? That depends on the part of the interface in question. If
you were writing a Macintosh program with menus, you'd use resources to
define each menu by specifying the menu's name and the names of the items
that appear in the menu. Here's a typical Edit menu:

Undo

Cut
Copy
Poste

Using words, you'd define the preceding menu something like this:

Menu Memo

i;
John: ~
To straighten out the confusion about that menu you questi
I'd put its definition into writing. Here it is:

Mero~: Edit

1st menu iem: Undo

200 menu tern: (doshed line }

3rd menu item: Cut
4th t'Mnu item: Copy

sth menu item: Poste
tzy

INum. Loclc J!i.orm11I IQl.ifil_ 121!1

With resources, though, you don't have to type in quite as many words to
define a menu. (Which is another good reason to like resources.) And when
you use resources to define a menu, you get to see exactly what it looks like
while you're creating the menu.

Look, Ma, No Pro9rammin9!
Resources define what different parts of the interface look like. One resource
may define what menu items are in a menu. A different resource may define
what a certain window looks like. In any case, the act of creating the resource
doesn't involve programming. How can that be, you ask? Take a gander at the
following hypothetical example that shows how resources go about shaping
the interface.

63

Part II: Resources: This Is Programming? ____________ _

H1Jpotheticall1J speakin9 about resources
Say I want to create a window. I run my graphics program and draw exactly
what it should look like. Here I am in my paint program, in the middle of
drawing a window:

Untitled-I

normol
Tools My Window

When I have my window just how I want it to look, I choose Save from the File
menu and then quit the graphics program. There - I just defined a window.
And without a bit of programming.

What can I do with this window? I can make use of it anytime, anywhere, by
calling the window in my source code. Kind of like this:

void main(voi d)
(

Display My Window

No, that isn't really how it's done in a real Mac program. Dirty trick? Maybe.
But I did warn you beforehand that the example was going to be hypothetical.
Anyway, what I'm trying to do is give you an idea of how something created
without programming can be used in a program. While resources aren't cre­
ated in a graphics program, they are created in a separate program that's as
easy to use as a graphics program. And, like my teaser hypothetical example,
you then make use of your window (or whatever else you've created) in your
source code.

RealisticalllJ speakin9 about resources
Resources don't involve programming, but that's only partly true. Now wait a
minute. Before you think that I lied about that no programming business,
read on. Creating resources involves absolutely no programming, but getting
your program to recognize and make use of resources does involve program­
ming. So you can see that I wasn't entirely dishonest with you!

___________ ______ Chapter 6: What Are Resources?

Resources are created and saved in their own special file - just like source
code. Here's a folder that contains both a source code file and a resource file:

~ Proiect Iii]
6 Hems 136.9 MB in disk 64.1

~
EJ ~ ~ .

Source Code file ~urce file
~

~l!!.L ~Ill

The source code file sports the familiar text file icon. What's that icon on the
resource file? You have to read Chapter 7 to see why the resource file has
such an interesting icon. Separating the resource file from the source code
file allows you to create the resources independently from the source code.
Just as I promised, creating resources does not depend on knowing or using
any source code. Someone who has never programmed a line of code can
create a file that holds resources.

The resource/source code connection
You need source code for a program to make use of resources. Because the
source code and the resources exist in two separate files, something must
bind them and let them work together:

~ ... ~
Resource file

That's a little dramatic, but it does emphasize what must take place. The con­
tents of the resource file and the contents of the source code file do, in fact,
get bound together to form a program:

Q
D

Source me -~ Progrom

65

66 Part II: Resources: This Is Programming? -------------

Yes, it's the mysterious question mark. You need something to turn source
code into a program. Do you know what that something is? Here's the
answer:

E1 ---+ ~ ---+ ~
Source file Compiler Pr09ram

That's right - the compiler. It's now time to give the faithful compiler a big
round of applause. Why? Because the compiler performs not one, but two
really important Mac programming functions. Its first task is to turn your
human-readable source code into the numbers that your computer can
understand. Its second task is to merge this modified source code and the
resources. The result? A Macintosh program - one with GUI components,
such as menus and windows. With this new bit of knowledge, you should
understand this update to the previous figure:

But How Do You Create a Resource?
In this chapter, I provide an overview of resources. This overview will be of
help throughout this book, because you need to know what resources are in
order to know when to use one to accomplish a particular programming task.
In this chapter, I also manage to fill about a half dozen pages discussing
resources. Yet I never exactly say how you create them. What can you con­
clude from this? That I get paid by the page, and I'm padding the book? A nice
guess, but that's not the case. It's important to understand how resources fit
into the grand scheme of a Mac program. That way, when you do see how to
create a resource, you'll know why it's being made and how it's used.

So how do you go about creating a resource? Why, by reading the next chap­
ter, of course.

Chapter7

ResEdit, the Resource Editor
• 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 G 0 0 Q 0 0 0 0 0 0 O Q 0 O O O 0 0 0 0

Jn This Chapter
ti>- Creating a resource

n>- Naming a resource

l.l> Identifying a resource

~ Using ResEdit

t> Making a resource file

tr>- Creating and editing a menu resource

o o o o o o o o o o o o c o o o o o o o o o o o o o o o " o o o o o e 11> o ~ o o e G o o o o o o o

i.::ough chatting about resources - it's time for you to make one! This
f;, ~hapter shows you how to do that. You go on an in-depth tour of the
process of creating a resource that can be used as a menu in any Mac pro­
gram you make. And once you see how to make one resource, you 'II have a
pretty good idea of how to make others.

Etlitin9 - It's Not Just for Tert An1Jmore
What does the word edit mean to you? According to Websters New World
Dictionary, to edit is to "revise and make ready a manuscript for publication."
What does Webster know? Heck, he died over 150 years ago, back when a
computer was a guy with a pencil and paper! In the modern Macintosh world,
editing has absolutely nothing to do with manuscripts, or even words.

For9et that text!
When you see the word editing in a few of this chapter's headings, you may
get excited. Finally, terms that sound familiar: edit, editing, editor. An editor
is for editing text, right? A text editor is for editing text. There are other types
of editors. For example, a sound editor shows a sound as a sound wave and
lets you edit it, like what I'm doing right here:

68 Part II: Resources: This Is Programming? ______ ______ _

Phone rfn
_.,, _ _..__ _ _ _.. __ ~10_:0_1 - •---A---"----'

88its / 11 kHz + I l J I EE:) Bi

~00[[]~

What does editing sounds have to do with resources? Absolutely nothing. But
it's such a cool topic, I just had to sneak it into the book somewhere. On the
other hand, maybe showing a sound editor isn't so frivolous ... it does
demonst rate that text isn't the only thing you can edit.

ResEdit: One mi9ht1J. resource editor
You may have already surmised that, like text and sounds, resources can be
edited. And like text and sounds, you use a software program to edit
resources. Apple makes a resource editor called ResEdit that does just that.

To avoid the ridicule of seasoned Mac programmers, be sure to pronounce
ResEdit correctly. You say it rez-ed-it .

I use ResEdit for all the example programs in this book, but it isn't the only
resource editor on the block. What criteria did I use to select it? Glad you asked:

Y" It's by far the most popular resource editor among Mac programmers.

Y" It's a straightforward, easy-to-use program.

Y" It's made by Apple, so it has to be pretty good!

Y" You already have it - there's a copy of ResEdit on this book's CD-ROM!
To learn how to copy ResEdit from the CD-ROM to your hard drive, see
AppendixE.

I thought you'd like that last point!

ResEdit isn't the only resource editor for the Mac. A company named
Mathemaesthetics sells one named Resorcerer. But why pay for a resource
editor when Apple gives theirs away free? As a beginning Mac programmer,
there isn't any reason to. But as you get more serious about programming, it
may be worth your while to invest in a resource editor that has extra features
not found in ResEdit.

_____________ Chapter 7: ResEdit, the Resource Editor

What's in a Name?
Resources come in different types. One type describes a menu. Another type
describes a window. Each resource type has a name, of course. When you
work with ResEdit, you get up close and personal with resource names, and
so it's wise to spend a moment setting some ground rules for naming
resources.

Don't quote me on this
Most programmers enclose a resource type in single quotation marks. That
means that a window resource, a 'WIND' resource, is written as you see it
here in this sentence. Another commonly used resource, the resource for a
menu, is written as 'MENU'.

For any resource type, the quotations themselves are not part of the name.
Why include them, then? Two reasons. First, it makes it easy to spot a
resource type when it's mentioned in a body of text. Second, a resource type
is always four characters. But in some resources, the fourth character is a
blank space. So a sound resource, which is written as the letters s, n, d, fol­
lowed by a space, is written as 'snd'. Using the single quotation mark reminds
you that a space is included as part of the name.

A MENU is not a menu
If I write the word dog as DOG, you still recognize it as meaning a four-legged,
barking pet. You may wonder why I capitalized all the letters in the word, but
you still understand what it means. To you, dog and DOG mean the same
thing. When naming resources, this same freedom to capitalize or not capital­
ize a word does not apply.

For example, note that each of the four characters in 'MENU' is an uppercase
letter. That's important. When the Mac sees 'MENU', it knows you're talking
about a menu resource. If it sees 'menu', it has no idea what you're talking
about. If you ever see the menu resource written as 'menu', it's the typeset­
ter's fault - not mine!

When the proper use of uppercase and lowercase in a word is important, that
word is said to be case-sensitive. It turns out that all resource names are case­
sensitive, not just the 'MENU' resource. Can you skip the talk about
case-sensitive and just remember to always use uppercase when writing the
name of a resource? I'd like to say it's as easy as that, but it's not. Some
resource names do appear in lowercase characters, such as the 'snd' resource.

69

70 Part II: Resources: This Is Programming? ____________ _

As an aside, the C language - which you'll be reading all about in Part IV - is
also case-sensitive. In Chapter 5 you had a little taste of the C language. There
you read about the int. If you tried to instead use I NT in a C language source
code file, you'd run into problems.

Resource IDs
Each and every resource has an identifying number - an ID. Why? Because
resource editing with ResEdit is getting just too darned simple - it's time to
toss around a few numbers just to remind you that you're programming a
computer! But, of course, you know better than that. There is a very logical
reason for giving each resource an identifying number.

Resources and source code work hand-in-hand to comprise a program. In
your source code, you need to call and work with the resources that you
want to include in the program; you call on individual resources such as a
'MENU'. When you do, you call the resource using its ID number. You can't
just write source code that says, "Display the 'MENU' resource in the menu
bar." There may be more than one 'MENU' resource in your resource file, and
the program wouldn't know which one to use.

Here's how you can find out the ID of each 'MENU' resource in a resource file:

Sample 2 Fiie - -

- =
liiiiiii--·-···----·---,

I
. I

Open... I
! Saue... i
I I I Quit i
I !
I !
l~--------'

128

'MENU' resource
with ID of 128

1-=~
I
I ,

1

1
Cut

-=~---J 129

'MENU' resource
with ID of 129

'°' s

When a new resource is created, ResEdit assigns it an ID number. For most
(but not all) resource types, ResEdit gives the first resource an ID of 128.
After that, ResEdit starts numbering the resources of the same type consecu­
tively, so the second resource of a type would be 129, the third would be 130,
and so on. Don't bother wondering why - you never need to know. If you
want further proof, just take a look at the preceding figure. The two 'MENU'
resources are numbered 128 and 129. I rest my case.

_____________ Chapter 7: ResEdit, the Resource Editor 7 7
Using the same number for two resource types can lead to real confusion for
many new programmers. It's easy to see why many programmers mistakenly
go to great lengths to ensure that there's no ID duplication in a resource file;
they don't want the computer to use the wrong resource. Don't worry- it
won't. That's because you never write source code that says something like
use resource 128. Instead, your source code has a more explicit meaning more
like use window resource 128. The Mac knows the difference between a
'MENU' resource with an ID of 128 and a 'WIND' resource with an ID of 128. So
it's okay to have both in the same file ..

What about accidentally giving two resources of the same type the same ID -
such as creating two 'MENU' resources, both with an ID of 128? Again, there's
no reason to worry. ResEdit won't ever assign the same ID to two resources
of the same type.

Usin9 ResEdit
The more you program the Mac, the more you use ResEdit. Because
resources are such an important part of creating a Macintosh program, using
a resource editor is important, too. That makes the decision to devote an
entire chapter to exploring ResEdit a very practical one.

Every Macintosh program has both a resource file and a source code file.
Many programmers start a new program by creating the resource file, so
that's where you should start, too. Hey, you're a Mac Programmer now -
you'd better start acting like one!

Creatin9 a resource file
To access the ResEdit program, double-click the ResEdit icon. You come face­
to-face with the ResEdit Jack-in-the-Mac introductory screen:

ResEditTM 2.1.3

cor~ e 1984-1994
Anlt CoDt11ltr, IV.

All rf;Ms rucrwl

72 Part II: Resources: This Is Programming? _____________ _

After staring at the introductory dialog box for a while, click the mouse to
continue. ResEdit automatically displays a dialog box that gives you the
option of opening an existing resource file or creating a new one. Because I'm
giving the feature-length tour here, 1 assume you don't have a resource file to
open. You should therefore click the New button:

I esi ResEdit 2. I. I ... I =Hord Disk
....,,.-----============-----.~
1
fl Rbout ResEdlt 2.1.1 O Eject
~ ResEdlt

Desktop

Concel

M§§ll •

.__ ________ _._lo' ([Open JI

O Use Riies instead of original

A second dialog box appears asking you to name the new file you are creat­
ing. All Mac files have names, and a resource file is no exception. Type in
something clever like My Resource File and then click the New button.

After clicking the New button, a brand new, empty window opens. Note that
the window's title is the name I gave to the resource file:

"!lL Resource File

This window, which is called the type picker, eventually holds the names of
the types of the different resources you create. Before proceeding, let me
digress for a moment to explain the differences between the type picker
window and the other two kinds of windows used by ResEdit. My digression
allows me to stall on my explanation of how to actually add a resource to the
file, thereby building the suspense to a nearly unbearable level.

_ ________ _____ Chapter 7: ResEdit, the Resource Editor 7 3

Discernin9 the different ResEdit windows
The type picker doesn't display each resource in a resource file. Instead, it
displays each type of resource in the file. (You remember the different
resource types such as 'WIND' and 'MENU'.) If a resource file has one 'WIND'
resource and one 'MENU' resource, its type picker window looks like this:

~M
~ b!I
MENU \{INO

Semple 1 File

Now, look at the type picker for a resource file that has two 'MENU' resources
and one 'WIND' resource:

~™ A.a Semple 2 Fiie

No, you didn't overlook anything, and it's not a misprint. The two type pick­
ers look the same. That's because each of the examples has the same types of
resources, which is all that the type picker shows. To list each individual
resource of a single type in a file, double-click an icon in the type picker. Here
I double-click the 'MENU' icon in the first resource file, the one with one
'MENU' resource:

;)ii !llii:i.i!! Semple 1 Fiie ~ 21~

~
!l!i MENUs from Semple I Fiie =..,..,-...,f;!l"_!

l
~ - 11111!1 l"£MJ

Open .••
Close
Seue ••. I

Quit

I

_J 'o
128 IRi

7~ Part II: Resources: This Is Programming? _____ ________ _

When you double-dick the 'MENU' icon, the window that opens is called a
resource picker. The resource picker lists all of the resource files of a certain
resource type. Here's the resource picker for the second resource file, the
one with two 'MENU' resources:

j f3 S11mple 2 Fiie

~
llliJ MENUS from S11mple 2 File li!If

0 -

l
MENU

Open ••• Undo
S11ue •••

Cut
Quit Copy

Poste

_J
-0

128 129
ei

Aha! Now you're getting somewhere. This resource file has two 'MENU'
resources, and the 'MENU' resource picker shows two menus. You're not
through yet, though. You know that the type picker displays the different
resource types, and that the resource pickers display the different resources
in each type. But ResEdit is a resource editor - so how do you edit one of
these resources? Just double-click the name of a resource in the resource
picker. For example, I double-click the dashed box that surrounds the File
'MENU' resource in the Sample 2 File. Here's the new window I see:

l!li'*&#& S11mple 2 File

~
MENUS from Sample 2 Fiie liit l

- MENU ID - 128 from S11mple 2 File I .;.;.;.=
MENU m I Entire Menu: C8I En11bled

Open ••. ~ JI Soue ••• Title: ® lu1e

Quit 0 s (Apple menu)

Color

nue= l•I
'- Item TeHt Def11u1t: •

I
try I Menu B11ckground: D

______________ Chapter 7: ResEdit, the Resource Editor

This window is an editor, which is the third and final window type ResEdit
uses. An editor allows you to make changes to a single resource. There's a dif­
ferent editor for each type of resource. If you'd like to find out about using
different editors for different resources, stay tuned - a little later in this
chapter I cover the 'MENU' editor.

Beware of menu overload! You see menu written as 'MENU', MENU, and menu.
How do they differ? A quick list may shed some light:

"" 'MENU': Refers to a menu resource. By convention, most Mac program­
mers and most Mac programming books put resource names between
single quotes. That makes it obvious when a resource is being referred to.

"" MENU: Also refers to a menu resource. This is the exact same resource
as 'MENU'. ResEdit works with nothing but resources, so every four­
character word you see in the resource editor refers to a resource.
Because of this, Apple doesn't bother to surround each in quotes in its
screen displays. That's simply the Apple and ResEdit way of doing things.

"" menu: Refers to the actual menu in a program, not the resource.

CreatiniJ. lJOUr l/erlJ. first resource
After creating a resource file and naming it something extraordinary, such as
My Resource File, you have a window that looks like this:

iiH "!Jl. Resource File F 4 +&Iii]

This window is the type picker for the My Resource File resource file, but the
type picker doesn't have any types in it. To add a resource, choose Create
New Resource from the Resource menu:

Open Pickers
Open Using Template ...
Open Picker by I D

Revert Resource Types

Get Resource I nfo :lll l

75

76 Part II: Resources: This Is Programming? -------- -----

You see the Select New Type dialog box, shown here:

Select New Type

ectb

~ ecur
RLRT
APPL
BNDL ((OK ll
cctb
clcn rzy (Cencel)

You use the scrollable list in the dialog box to choose which type of resource
to create. Try scrolling through this list once. Pretty imposing, huh? This list
has over 100 resource types. That's the bad news. Don't worry, though - the
good news far outweighs the bad. A lot of these types create obscure
resources that you never have to worry about. The 'itlk' type, for example, is
defined by Apple as the "Remappings of certain key combinations before
KeyTrans function is called for the corresponding 'KCHR' resource." Say
again? I've programmed the Mac since it first came out over a decade ago,
and I've yet to use that one. As a matter of fact, I've yet to hear of anyone
using that one.

Some of the other resource types aren't as obscure, but I won't focus on them
in this book. Even if I only cover a few resource types, I think I can manage to
keep you well occupied.

To create a resource, scroll through the list until you find the type you're
interested in. To make a 'MENU' resource, scroll until the word MENU
appears in the list. Next, click the resource type to highlight it. When you do,
the resource type is displayed in the previously empty edit box. With the
type selected, click the OK button:

Clicking once here ...

Select New Type

IMl:NUll+-11-- ... displays the
selected type here. --(Cencel J

______________ Chapter 7: ResEdit, the Resource Editor

After you click the OK button in the Select New Type dialog box, strange and
wonderful things occur. A tiny picture of a menu appears in the type picker, a
resource picker is created, and an editor opens. Here are the three windows
that you see:

MENU type picker

MENU

MENU resource picker

Color

Tiiie: lllJ
I tern TeHt Default: ill
Menu Background: D

Choosing Create New Resource from the Resource menu does just that - it
creates a new resource. The 'MENU' resource you create this way could serve
as a menu in a program's menu bar. The menu's title is, generically enough,
Title. It has no items in it:

@ MENU ID • t2B from M_y_Resource Fiie

Menu title ~ I Entire Menu: 181 Enabled

~ JI nue: @Im!.!!:
Menu items ~ 0 a (Apple menu)

Color

I Title:ll!!ll

Item TeHt Default:.

tzy Menu Background: D

77

78 Part II: Resources: This Is Programming? -------------

Programs use resources. A program that makes use of my 'MENU' resource
would look like this:

Stop and give yourself a pat on the back for creating a resource. But don't pat
too long - you still have work to do. Besides, if I were to pat myself on the
back too long, my wife would think I was choking and attempt to administer
the Heimlich maneuver!

Addin9 to a resource
Each resource type has its own editor. That's because different resources
require different methods of editing. A menu editor needs to edit words,
including the menu's name and the names of the items that appear in the
menu. A different resource type, such as a window, has different editing
needs. For a window, you want to edit the size of the window and its general
look, including whether or not it has a title bar along its top. I've discussed
the 'MENU' resource, so I'll continue using that resource type in the remain­
ing ResEdit examples in this chapter.

A programmer can perform several tricks with menus, but you should focus
on the basics for now. A program's menu consists of a title - the name that
appears in the menu bar that holds the menu - and a list of items, or com­
mands, that appears when the menu is dropped down. To test ResEdit, you
can create an Edit menu, a menu found in just about every Mac program. If
you're following along, here's how to change the menu's title:

... causes itto also show up here.

Typing a title here ...

1:81 Enabled

0 s (Apple menu)

Color

Title:lilJ

I tern TeHt Default: Ill)
Menu Boclcground: D

_____________ Chapter 7: ResEdit, the Resource Editor

Now add an item to the 'MENU' resource. To do that, choose Create New Item
from the Resource menu:

Reuert This Resource

6et Resource Info XI

To create the 'MENU' resource, you choose the first item in the Resource
menu, which is Create New Resource. To add an item to a 'MENU', you
choose the first item in the Resource menu. This time, however, the item is
Create New Item. ResEdit is no slouch of a program. It knows what you're
doing, and it changes some menu commands to commands that are appropriate
to the resource being edited. Here are the two faces of the Resource menu:

Resource menu before
creating a resource

Reuert Resource Types

6et Resource Info 001

Resource menu after
creating a resource

Reuert This Resource

6et Resource Info 8el

After choosing Create New Item, ResEdit inverts a section of the 'MENU'
editor. Now type in the name of the first item you want to appear in the Edit
menu. As you type, the characters appear in two places in the 'MENU' editor,
the text box and under the menu's title:

79

80 Part II: Resources: This Is Programming? ----------- - ,----

Typing a menu item name here ...

~ MENU ID - I 28 from MJL Res l>_urce File

~ i Selected It m: 18) Enabled
Undo 0 ,

TeHt: @!Undo I
0 - (separator line)

Color

! 0 has Submenu TeHt: .

Cmd-Key:D•

'o Mark: I None ""11111

... causes it to also show up here.

That's it for adding a menu item. Well, that's almost it. That's it for adding a
menu item that consists of text. There's also a menu item that isn't much of
an item at all - the separator line. Separator lines allow you to group related
menu items, like so:

I

Clean Up Desktop
Empty Trash ••• Cleaning tasks -.

Disk tasks _. Eject Disk 38E
Erase Disk ..•

.,.___Separator line

Restart
Shut Down

.,.___Separator line
Power tasks -.

To add a separator line to a 'MENU' resource, choose Create New Item from
the Resource menu just as you d id for the first menu item. Now, instead of
typing in a name for the item, click the radio button labeled (separator line).
The new menu item displays a dashed line:

________ ______ Chapter 7: ResEdit, the Resource Editor

Click this radio button ...

L
l!t::i MENU ID • 128 from MJLResource_l!je E

[@_ lQ ! Selected lte..i. OEnebled
Undo

Te11t: O[Z
T

J
® - (separator llne)

Color

0 has Submenu Te11t:.

c:mti·K111J: O •

tzy Mllrk: j N ml<l ·lllJ

... to create a separator line.

To get a little practice, and to convince yourself that using ResEdit is a
breeze, complete the Edit menu by adding three more items. Here's how to
add Cut, Copy, and Paste commands to the menu:

1. Choose Create New Item from the Resource menu.

2. Type Cut.

3. Choose Create New Item from the Resource menu.

4. Type Copy.

5. Choose Create New Item from the Resource menu.

6. Type Paste.

Simple, isn't it? After those six steps the 'MENU' editor looks like this:

! El MENU ID • 128 from My Resource Fiie

111111 Entire Menu: @Enabled
Undo ~

Title: ®I Cdlt I
Cut
Copy 0 s (Rpple menu)

Paste
Color

Title:.

Item TeHt Defoult: l•I

<> Menu Background: 0

81

82 Part II: Resources: This Is Programming? ____________ _

Preflieulin<J. a MENU resource
ResEdit allows you to preview a menu at any stage in its development. If you
look at the last menu in ResEdit's menu bar, you see a menu with the same
title as the one you're creating. Click the menu's title and it drops down to
show the items you've added to your 'MENU' resource:

• File Edit Resource Window MENU Style l!illl
Undo

lfil MENU ID • 128 from MJI.. Resour -
D!BI j Entire Menu: Cut l8l Enabled

Copy
Undo ~ !

----·····-----· I Title: @ ~ Paste l
Cut I l
Copy I 0 IS (Rpple m~nu)
Paste !

i Color
i

Tltle:l•I i

I I tem eHt Default: l•I

~ -ol Menu ~ackground: D

~
Additions and changes here. are reflected here in the test menu.

Editin<J. an eJfistin<J. resource
When you edit an existing resource, you ResEdit work in one of the ResEdit
editors. Since you're familiar with the 'MENU' editor, modifying an existing
'MENU' resource will be a task that's right up your alley.

To make a change to one of the items in a 'MENU' resource, click the item
once to highlight it. Then type in the new i tem name:

~Ill~ ' MENU ID • 128 from My Resource Fiie . ~- ·-

~ I Entire Menu: 181 Enabled
Undo

]QI
1

Title: ®I Copy I
Cut I 0 ~Rpple menu) . I

""'~ I Color

Tltle:lllJ I
I

Item TeHt Oef11ult: l•I

~ I Menu Background: D
'\

Clicking the item to Type the new
edit highlights that item. item name here.

_____________ Chapter 7: ResEdit, the Resource Editor

The same procedure works for changing a menu's title. Click the title, such as
Edit in the menu example, and then type in a new name.

ResEdit also allows you to use its own Edit menu to make changes to a
resource. To use the Edit menu, click once on the resource item, then make a
selection, such as Cut Item or Copy Item, from ResEdit's Edit menu.

When you've completed your additions and changes to a resource file, save
it. That's as easy as choosing Save from the File menu. The program doesn't
ask you to name the file because you did that when you first started the
ResEdit program.

SorrlJ., not now
I'm sure you noticed a few things in the 'MENU' editor window that I
neglected to cover. The number of topics in computer programming is almost
endless, and so I have to draw the line somewhere. Please forgive me if I stick
to only the most basic concepts; otherwise I may never get to tell you all the
really important things you need to know to get a simple Mac program up
and running. But because you did inquire, though, I have to at least tell you
what those other parts of the 'MENU' editor are for. As is my custom, I make
use of a figure. Take a look at a portion of the 'MENU' editor window:

Add a submenu
to a menu.

Enable or disable a menu.

from M Resource Fiie

I Selected Item: Enabled
I
l TeHt: ®I Undo I 0 '---(s-e-pa_r_at_o_r _lln_e_) __ __.

I Color

1
0 has Submenu TeHt: lllJ

Cmd-Key:Di!!IJ

M rk:l None ..-1[1!1]

Give a menu item a Command-key equivalent.

Add color to
parts of a menu.

83

Part II: Resources: This Is Programming? _____ _______ _

To clarify this figure, I present yet another figure. Here's an example of each
of those 'MENU' editor features:

Disabled menu

i Color background

i
Marked item-+ •Undo 3€ 2 Undo 31:2 Undo 88Z

Cut X H Cut :lllH Cut SH
Copy x c Copy S'JC: Copy 88C
Poste X U Pos l e llCU Paste 88U

Submenu
Undo 3€ 2 3€2 /
Cut
Copy ~ Cut TeHt

Poste ~ Cut Picture
Cut Moule

Command-key equivalent

Sure, you could accuse me of being a tease. I point out all the wonderful
things that the 'MENU' editor can do, and then I tell you that I only cover a
couple of them. Remember though, creating the resource is only half the
battle. To implement a menu in a program, you need to write source code.
And the more options you tack onto a menu, the more code you need to write.

So why did I bother to show you all of these neat things ResEdit can do? To
show you all the neat things ResEdit can do! This book may be just the start
of your programming endeavors. Should you survive its hundreds of pages
(and I'm betting that you will), you may just want to go on to bigger and
better things. Now you know that ResEdit is the primary tool for doing just that.

Chapters

Two Types of Resources:
'MBAR' and WIND'

oooeooooooooooooooooooooeoooooooooooooo0000000000

Jn This Chapter
&> Assigning every resource an ID

i>'- Spotting menus in their natural habitat, the menu bar

!> Opening an existing resource file

~Working with the menu bar resource

fl> Creating and editing a window resource

r> Previewing how source code uses a resource

0 0 0 0 0 Q 0 0 0 0 0 0 O 0 0 0 0 0 Q 0 0 0 0 Q 0 Cil CD 0 G 0

Resources are a good news/bad news kind of thing. The bad news is that
there are over 100 different types of resources. The good news is, who

cares? You only need a few types to get a Mac program up and running! I dis­
cussed the 'MENU' type in Chapter 7 as an example of creating a resource. A
'MENU' resource represents a single menu. Now I address the other two types
of resources used in this book - 'MBAR' and 'WIND'. These types of
resources allow you to add a menu bar ('MBAR') and a window ('WIND') to
your Mac programs.

Discot1erin9 the 'MBAR' Resource
You sometimes hear people casually refer to that white horizontal bar along
the top of the Macintosh screen as the menu. In fact, this is actually the menu
bar. The menu bar holds one or more menus. Here's a menu bar with six
menus in it (the S counts as a menu):

86 Part II: Resources: This Is Programming? _____________ _

s Fiie Edit Ulew Label

Menu

Cleon Up Window
Empty Trash ...

Eject Dlslc 88£
Er11se Disk ...

Restart
Shut Down

Menu bar

I

I don't mean to nitpick, but the distinction between the menu bar and the
menus is important, and you're about to find out why. In Chapter 7, you see
how to create and edit 'MENU' resources. To give your Mac program a com­
plete menu bar, one other menu-related resource type needs to be created -
the 'MBAR' resource. 'MENU' resources are individual entities that are not
bound to one another in any way. Not, that is, until you specify which 'MENU's
are to be a part of your menu bar. The 'MBAR' resource takes care of that.

Creatin9 an 'MBAR' resource
When you open ResEdit, the first dialog box you see lets you create a new
resource file or open an exist ing one. As in Chapter 7, you click New to create
a file. I name mine My Resource File. After you create a resource file, you
don't need to make a new one. To open the resource file, click once on its
name and then click the Open button:

I ei Rpplicotlons ...,. I
D Rbout ResEdlt 2.1.3 Kl
D ~Resource File
~ ResEdlt

'{}!

0 Use Alles Instead of original

=HardDislc

Eject

Desktop

Cancel

New

After opening an existing file, the type picker for the file is displayed. If I open
My Resource File, its type picker looks like this:

________ Chapter 8: Two Types of Resources: ·MBAR• and WIND'

The Resource file

MBRR ID 128 from The Resource lie

a of 111enus 2
I) *****
nenu res ID

12> *****
Menu res ID

3) *****

File

I 128

129

l The menu bar that will eventually
result from this 'MBAR' resource

Undo

Cut
Copy
Paste

Opening an existing resource file is a common practice. It's rare for a pro­
grammer to create a brand-new resource file, create resources in it, and then
never edit that same file. As they work on a program, programmers usually
think of new features to add, such as a new menu option for one of the menus.

Addin9 an 1MBAR1 to a resource file
Adding a new resource to a resource file involves the following steps (if the
steps seem familiar, it's because they are the same steps you use to create a
'MENU' or any other resource, for that matter):

1. With ResEdit running, choose Create New Resource from the
Resource menu.

2. Select the resource type, which is 'MBAR', from the Select New Type
dialog box that appears and then click the OK button.

87

88 Part II: Resources: This Is Programming? --- -----------

Select New Type

~

~
(Cencel J

If you chose MENU from the Select New Type d ialog box, a 'MENU' resource
picker and a 'MENU' editor open. If you select MBAR, you again see a
resource picker and an editor. This t ime an 'MBAR' resource picker and an
'MBAR' editor open:

My Resource File J
~ ~ ll

MBRRs from MJI. Reiourte Fiie J
t ~ !±[J~ MORR ID • I 28 from MJI. Resource Fiie

I IQ • of menus 0

1) **'"**

'--

,____
to
~

If you've read even just one book on computers, you've read a warning about
saving your work - every computer book includes at least one. I'm not one
to be left out of things, and so here's mine. Save your work, and save it often.
In ResEdit, like most programs, to save your work, you choose Save from the
File menu. Or just press the 3€ key and the S key as a shortcut. Then if your
Mac freezes up or the power cord gets pulled from the wall (accidentally, or
intentionally by an irate spouse), you won't lose your work. It will still be
there once you restart your computer.

________ Chapter 8: Two Types of Resources: 'MBAR' and 'WIND'

Addin9 a 'MENU' to an 1MBAR1

The purpose of the 'MBAR' resource is to list the individual 'MENU' resources
that should be in a menu bar. If you want to include a particular 'MENU' in the
list, what do you use to refer to it? Use its resource ID -that's a topic I cov­
ered in Chapter 7 in "Resource IDs". Before you start wildly paging back
through the book, just look at the figure below. It shows the 'MENU' resource
picker and the one 'MENU' it holds for My Resource File.

My Resource Hie

1-
1 Undo
1------­
l Cut

I ~=:~.
L------------1

128

'MENU' resource
with ID of 128

Resource File _:::_c·.

At any time, you can view the resource picker for any resource type in a file.
Simply double-click its icon in the file's type picker:

Double-click here to see all of
the 'MENU' resources in this file.

Double-click here to ---l~=m
see all of the 'MBAR'
resources in this file.

MBAR M£NIJ

89

90 Part II: Resources: This Is Programming? -------------

To add the one 'MENU' resource in My Resource File to this 'MBAR' resource,
click once on the row of five stars in the 'MBAR' editor. After you click on the
stars, you see a rectangle around the stars, like this:

§IEl~-.,4 MBAR ID• 128 from M_y_Resource Fiie

11 of menu~ 0

~ I "' ... causes this

Cl
. k' rectangle to be drawn.
1c mg once

on these stars ...

Next, choose Insert New Field(s) from the Resource menu. Here's that menu,
with Insert New Field(s) selected:

Reuert This Resource

Get Resource Info XI

Once again the Resource menu shows its chameleon-like nature by changing
the name of the first item in it. For an 'MBAR', you're adding a new field - a
new placeholder for the entry of a 'MENU' resource number. After selecting
Insert New Field(s), here's what you see:

~E3Bil MBAR ID a 128 from M_y_Resource Fiie

ll of QOnus

11) ***** I
Menu res ID I.----.....
2) *****

_________ Chapter 8: Two Types of Resources: 'MBAR' and 'WIND'

The new edit box is where you type in the resource ID number of a 'MENU'
resource that you want in the 'MBAR' list. Click the mouse in the edit box and
then type in the number 128. This resource file has just one 'MENU' resource
in it, and that resource has an ID of 128. The 'MBAR' editor now looks like the
one shown here:

~- MBRR ID • 128 from My Resource Fiie

• of •enus

Ii) *****
nenu res ID

2) *****

I
~11-28 __ _

If you have more 'MENU' resources in your resource file, you add each of
them in the same manner by following these steps:

1. Click on the row of five stars In the 'MBAR' editor.

2. Choose Insert New Field(s) from the Resource menu.

3. Click the mouse in the new edit box.

4. Type in the resource ID number of the 'MENU' resource you want
to add.

Menus come to order!
What determines the order in which each menu appears within a menu bar?
In just about every Mac program, the File menu comes before the Edit menu
(assuming, of course, you read from left to right). How does the programmer
guarantee that the menus appear in this order? The 'MBAR' resource takes
care of this awesome task. The first 'MENU' listed in the 'MBAR' is the first
menu on the left in the program's menu bar. The second 'MENU' appears
next, and so on. Here's a figure that shows the relationship between an 'MBAR'
with three 'MENU' resources in it and the menu bar that results from it:

91

92 Part II: Resources: This Is Programming? -------------

~ MBRR ID ... 128 from The Resource Fiie

11 of Qenua 3

1) *****
Menu res ID 1126
2) *****
Menu rea ID I 129

3) *****
Menu res ID I 130

Fiie Edit MyMenu

Hey, where's the Apple? In the preceding figure, no S appears in the menu
bar. Even though just about every Mac program uses the Apple menu, I don't
show you how to include it in this chapter because implementing the Apple
menu in a program requires a few techniques that are a little complicated.
Don't worry, though. If you want this menu to appear in your programs, you'll
find out how to add it in Chapter 21.

Summing up the 'MENU' and
'MBAR1 connection
You may be happy to see that I end this long talk of menus with a killer of a
figure that sums up the whole business of combining several 'MENU'
resources into an 'MBAR'. Here's the interrelationship between a resource file
with two 'MENU' resources listed in one 'MBAR' and the menu bar that would
result:

________ Chapter 8: Two Types of Resources: ·MBAR. and WIND'

The Resource File l ,
lltid~ MENUs from The Resource Fiie ~~ -=----··1 -------1 [Q

II ~:::··· I Undo !
1

saue... 1 !
• t 1 Cut !

Quit I I Copy !
I I Paste I

_____________ _J L_ ______ _J '<>
128 129 'W

IDB~ MBRR ID • 128 from The Resource lie

ii of menus 2

I)*****
Menu res ID

12> ***** I
nenu res ID

3) *****

File

• I 12e

[129

I The menu bar that will eventually
• result from this 'MBAR' resource

Undo

Cut
Copy
Paste

KnouJin9 that 'WIND' Is for Window
I played a really cheap trick back in Chapter 6 when I showed a window being
drawn in a graphics program. I now want to take this opportunity to formally
apologize for that. I'm sure you'll forgive me if you understand that I had to
think of some way to illustrate creating a window without mentioning ResEdit
(because you didn't know anything about ResEdit at that point). Now it's
time to see how a window resource is really created the ResEdit way.

93

Part II: Resources: This Is Programming? --------------=--

Openin9 a resource file ... a9ain
Begin by opening your resource file. Run ResEdit and then click once on the
name of the resource file you want to open. Then click the Open button:

le;i Rppllcetlons •I
D About ResEdit 2.1.3 '° 0 "1Q. Resoun:e.flle
~ ResEdlt

IQ
D Use Alles Ins teed of orlglnel

=>Herd Disk

Eject

Desktop

Cencel

New

l•.i.ig,fJ

What do you see before you except the resource file's type picker. Mine now
has two resource types listed - one for the 'MENU' resource created in
Chapter 7 and one for the 'MBAR' resource that 1 just added a few pages back.
If you're following along at home, your resource picker looks like this:

M_y_ Resource Fiie

MBAR MENU

8reezin9 throu9h a 'WIND' resource
You need to add a 'WIND' resource to My Resource File. If you've already read
the material in Chapter 7 about creating a 'MENU' and the section in this
chapter about creating an 'MBAR', then this process may sound familiar. If
you've been skipping around, this is all new. Don't worry. Here's what to do:

_________ Chapter 8: Two Types of Resources: 'MBAR' and WIND'

I. With ResEdit open, choose Create New Resource from the Resource
menu.

The Select New Type dialog box opens.

2. Scroll down to WIND and then click it once. Click the OK button:

Selec t New Type

TEHT ~
TMPL
TOOL
uers
w ctb
WI~
wstr Q
~
(Concel J

A resource picker and a resource editor open. Here's a peek at the 'WIND'
editor:

UllNOs from My Resource Fiie

-j WI ND ID • 128 from M Resource Fiie

I 111uc:cuoouo [][]
• , .. l ,.

............. t••

Top:~ Height : ~

left:~ Width:~

Color: @ Defoult
o custom

181 lnltiolly ulslble

181 Close boH

The 'WIND' editor provides you with an approximation of what your 'WIND'
looks like as a window in a program. It shows a reduced view of a window on
a Mac screen. Apple calls this feature of ResEdit the MiniScreen:

95

96 Part II: Resources: This Is Programming? --------------

The MiniScreen

WINO ID • 128 from M Reso

Top:~ Height:~

Left:~ Width:~

At this point, you could save your file and quit ResEdit -you've created a
'WlND' resource. But, hey, that would be too easy. You've come this far, so
why not explore just a little bit? Besides, the longer you play around in
ResEdit, the longer you can put off learning how to write source code!

Chan9in9 a window's size and location
You can change the size of a window by entering different numbers in the
four edit boxes of the ResEdit MiniScreen. Click the mouse in a box, or press
the Tab key until you're in the box whose number you wish to change. The
Tab key highlights, in turn, each of the four edit boxes.

In a Mac program, the user can usually move a window to any location on the
screen. In many programs, the user can also resize the window. But when it
first appears on the screen, how does the window know where it should be
and what size it should be? That information is included in the 'WIND'
resource of the window. It's found in the four numbers that appear along the
bottom of the 'WlND' editor:

_________ Chapter 8: Two Types of Resources: 'MBAR' and WIND'

[IEI WIND ID • 128 from M~Reso

11uccuoou
I•
I•

....

Top:~ Height:~

left:~ Width:~
.1 l.1 :.i
~--.T _ __.J L I J

Top and Left Height and Width
control a control a
window's window's size.
placement.

It's simple enough that by setting the location of the window's top and left
sides, and then adjusting the window's height and width, you can place a
window anywhere on the screen. What may not be intuitive is just what the
numbers refer to. They're part of the Mac's coordinate system. Every point on
the screen is numbered so that the Macintosh can keep track of where things
are located on its screen. Computers are very ordered creatures, so of course
there is a strict protocol for numbering points on the screen. You get the
details about this numbering system in Chapter 16. For now, you just need to
know this much:

Bigger
numbers

0
Bigger numbers

97

98 Part II: Resources: This Is Programming? ____________ _

This figure shows you that the top left corner of the screen is considered the
screen's vertical and horizontal zero point. So if I typed in 0 for the Top and 0
for the Left, here's how the change would be reflected in ResEdit's
MiniScreen:

13 WIND ID - 128 from M Reso

11ur:cuoou ., ~

Top: EJ Height: ~

left: [QI Width: §0

Try experimenting with the window's size and placement on the MiniScreen
by typing different numbers in all four edit boxes. In Chapter 16, I describe all
the particulars about these points that make up a Mac screen.

For you anxious types, I'll clue you in right here. Each point on the monitor is
called a pixel. No, don't worry about getting glitter dust thrown in your eyes -
these are pixels, not pixies! But pixels do have one thing in common w ith
pixies - they're small. Very small. A line just one inch long is made up of
over 70 pixels. But that's all I'm going to tell you. Now be patient until
Chapter 16.

Chan9in9 the look of a window
You can also use the editor to change a window's look. Along the top of the
'WIND' editor is a row of eleven icons, each representing a different window
type. When you create a new 'WIND' resource, ResEdit assigns it the look of
the first icon on the left. You know that this window type has been assigned
because its icon appears in reverse video:

_________ Chapter 8: Two Types of Resources: 'MBAR' and WIND'

Highlighted icon when editor of a new 'WIND' opens

l
::: WIND ID • 128 from M_y_Resource file

lll L:J [duDDuD~DD ,,.
l

Color. @ Defoult
0 Custom

Try clicking a different icon in the row. In the figure below, I click the fifth icon
from the right. Notice that the small window in the MiniScreen has changed
its look to reflect the look of the selected window type.

~Iii "55 WIND ID - 128 from M Resource Fiie

• f lll U ll aMH l'Uo DIMlllf
-= -=

Ii
.JI

Top:~ Height: ~

Left: ~ Width: §:=J

~1

Color: @ Defoult
o custom

181 1 nltl11lly ulslble

181 Close boH

Here's how this window type would look once brought to the screen via
source code:

0 Ulindou•

99

100 Part 11: Resources: This Is Programming? ___ _________ _

Now click the second icon from the left. That's the icon I use for all the
'WIND' resources that I create in this book.

The window type I use in this book

l
~ WIND ID • 128 from "!!!Resource File

~llCCuDDuDoDD
l

Color: @ Defeult
o custom

Why do I like this window type so much? Because it features a close box that
allows the user to close the window. The window also has a title bar that lets
the user move the window around on the screen. Here's what this window
type looks like once brought to the screen with the help of some source code:

Close box Title bar

l
Window 'EFE

Mo(lin9 on
I've covered the major topics concerning the 'WIND' resource, so it's t ime to
save my file and quit ResEdit. Before I do, take a look at the type picker for
My Resource File:

+a MJI.. Resource Fiie i¥§ &?+!~ii

if ~-·=- CJ ·--­- ·-·
MBAR MENU 'riff>

_________ Chapter 8: Two Types of Resources: 'MBAR' and 'WIND'

Of the 100-plus resource types available to you, these are the only three you
need to get a real live Macintosh program up and running.

Pro'1in9 that Resources Are
Valuable to Source Code

Every resource has an ID number that helps to identify it. Identify it to what,
though? In some cases, the ID helps one resource identify other resources,
like when I listed 'MENU' resource ID numbers in an 'MBAR' resource. That
let the menu bar 'MBAR' resource know which 'MENU' resources would be in
its list of menus. In other instances, a resource ID helps source code find the
resources it wants. Here's a line of source code from Chapter S's ExampleOne
program to show you what I mean:

theWindow = GetNewWindowC 128, nil, CWindowPtr)-ll);

This line of code displays a window on the screen. But there are almost a
dozen different types of windows, and a window can take on just about any
size or screen location. How does GetNewWi ndow obtain this kind of detailed
information about a window? Yes, yes, I hear you. From a 'WIND' resource, of
course. What if the resource file contains more than one 'WIND' resource -
which one does GetNewWi ndow use? GetNewWi ndow uses the resource whose
number appears in the first parameter (parameters give information to a
function) between the parentheses:

theWindow

Resource ID of the 'WIND' resource
that holds information for this window

i
GetNewWindow(128, nil, (WindowPtr) -ll) ;

Hopefully this figure proves that all your efforts creating resources with
ResEdit are not without purpose. Resources really are important, and they
are really useful when you write your own source code.

101

1 0 2 Part 11: Resources: This Is Programming? -------------

Part Ill
Using a Compiler

The 5th Wave B Rich Tennant

In this part ...
I lour Mac isn't nearly as smart as it appears to be. You ¥ ~ee, it doesn't understand a single word you type. When

you create a source code file by typing in C language
commands, the Mac needs the help of a software program to
translate your source code into numbers the computer can
understand. That very helpful program is called a compiler.
This book uses the CodeWarrior compiler by Metrowerks for
its examples. As you've probably already noticed, this book's
CD-ROM even supplies you with a trimmed-down version of
this same compiler.

To save you the trouble of wading through the hundreds and
hundreds of pages that make up the CodeWarrior user's
guide, I condense it all down to just a few chapters. Now, the
fact that I ignored most of what's in my CodeWarrior manual
may seem like a slap in the face to the technical writers over
at Metrowerks. Hold on a minute, though. I'm not saying that
their work is in vain. The entire Metrowerks CodeWarrior
user's guide is very important to more advanced Mac pro­
grammers. For the rest of us, the very basics will do just fine.
You'll find the basics of compiling with the CodeWarrior com­
piler in this part.

Chapter9

Getting to Know You: The
CodeWarrior Compiler

0 0 0 0 0 GI ID 0 0 0 0 Q 0 6 0 0 G • 0 0 0 0 0 0 Q 0 0 0 0 0 0 Q 0 0 0 0 O O 0 0 O O Q 0 0 0 O O O

In This Chapter
~ Understanding the differences between CodeWarrior Professional and CodeWarrior Lite

l'>- Choosing CodeWarrior over other compilers

D>- Organizing files in a CodeWarrior project

l>- Creating and naming a project

~ Adding libraries to a project

£> Adding a file to and removing a file from a project

o o o o o o o o o o o o o 0 o c o e o o a o o o o o o o o o

Tiie topic of compilers often intimidates new programmers. But compilers I ~eally aren't such frightening beasts. A compiler does nothing more than
turn your human-readable source code into a computer-readable program. In
this chapter, and in the remainder of Part III, you discover the specifics of
using the CodeWarrior compiler.

Comparin9 CodeWarrior Professional
and CodeWarrior Lite

CodeWarrior Professional is the Macintosh compiler developed by a com­
pany named Metrowerks. CodeWarrior Lite is that same compiler, but with a
few of its features disabled. You obtain CodeWarrior Professional by purchas­
ing it from Metrowerks; you obtain CodeWarrior Lite by purchasing this book.

CodeWarrior Professional exists to provide the Macintosh programming com­
munity with a very powerful, easy-to-use means of developing Macintosh
applications. CodeWarrior Lite exists to give a person like yourself the oppor­
tunity to see if programming is really your cup of tea before spending your
hard-earned money on the full-featured version of CodeWarrior.

J 06 Part Ill: Using a Compiler

I said CodeWarrior Lite has some features disabled. So, is this version of the
compiler of any use to you? Look at the following list of things you can do
with the CodeWarrior Lite program that comes with this book, and then you
can be the judge. CodeWarrior Lite allows you to:

1' Open all of the example files on the CD-ROM that comes with this book.

1' Examine all of the source code in all of the files you open.

-: 1' Compile all of the source code in all of the files you open.

_ 1' Create a standalone, double-clickable Mac application for each example.

1' Modify the source code in existing examples.

1' Compile and test the changes you've made to any of the examples.

Not bad. What can't you do with CodeWarrior Lite? You can't start from
scratch and create a new project and build your own complete Macintosh
application. To do that, you need to do two things:

1. Buy the full-featured version of CodeWarrior.

2. Read this book!

A few of the tasks discussed in this book apply only to readers who own
CodeWarrior Professional, or Discover Programming (the Metrowerks
version of CodeWarrior that provides programmers with an intermediate
step between CodeWarrior Lite and CodeWarrior Professional). Those discus­
sions are clearly marked as such, so don't worry about wasting your time if
you don't own CodeWarrior Professional. Even if you're working with the Lite
version of CodeWarrior, though, you may still want to read along to see how
things are done in the real world of Mac programming. If you ever do decide
to move from CodeWarrior Lite to CodeWarrior Professional, you may appre­
ciate having the information under your belt.

Choosin9 CodeWarrior
Different software companies make compilers - so why did I select the
CodeWarrior compiler by Metrowerks as the one to write about? For several
reasons - as you're about to see.

CodeWarrior has et1er1J.thin9 IJ.OU need
Code Warrior is more than just a compiler; it's an integrated development envi­
ronment, or IDE. That fancy phrase simply means that CodeWarrior includes
several programming tools all rolled into what appears to be a single applica­
tion. That means CodeWarrior gives you easy access to a text editor that
creates source code, a compiler that compiles the code, and a debugger that
hunts down mistakes in the code.

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

So you could say that CodeWarrior is loaded with features that make Mac
programmers drool. I say, let them drool. As someone just starting out, you're
looking for simplicity, and CodeWarrior offers that, too. While CodeWarrior is
actually much more than just a compiler, it's still easy to use. It has a clean
interface, as they say. As a beginner, you may only be interested in a handful
of the many CodeWarrior menu options. And being the user friendly IDE that
it is, CodeWarrior allows you to develop your own programs using only this
handful of menu items. While the name CodeWarrior can refer to the pro­
gram's entire IDE, the word is often used more loosely. Most programmers are
just referring to the program's compiler when they talk about Code Warrior,
and I do the same.

Apple isn't the best (for once)
Apple makes a compiler, too. And while Apple products are quality products,
their Macintosh Programming Workshop (MPW) isn't your best choice as far
as compilers are concerned. That's because MPW was created for seasoned
programming professionals. So while I normally wholeheartedly recommend
Apple products, I refrain from that practice in this one case.

Vou can join the CodeWarrior support club
Sometimes it's good to be different- sometimes it's not. I didn't choose
CodeWarrior just to part of the in crowd. I chose it because of support. If you
ever have a question about the compiler, you can turn to just about any
Macintosh programmer for help. Chances are just about any programmer
that you talk to uses, or is familiar with, CodeWarrior.

Yes, some evil programmers love to see newcomers sweat. But the majority
of Mac enthusiasts enjoy extending a hand to someone struggling with a pro­
gramming problem - they've been down that road, too. As a matter of fact, if
you have Internet access (either from an online service such as America
Online or CompuServe, or through an Internet service provider), you can
post your Mac programming questions to more experienced programmers.
You usually get a response that very same day. If you can access Internet
newsgroups, add comp. sys. mac. programmer. codewarri or and
comp. sys. mac.help to the list of newsgroups you subscribe to.

Source code is held in a text file, and all versions of CodeWarrior have a built­
in text editor that allows you to write source code and save it to a text file.
The advantage of this approach is that you don't have to run both a text edit­
ing program (like SimpleText) and a compiler. That means you only need one
application running rather than two. And, because the text editor is an inte­
gral part of CodeWarrior, the compiler can work with the editor. An example

107

1 O 8 Part Ill: Using a Compiler

• •

of the two working together is when you make an error in typing your source
code. When that happens, the compiler automatically marks the error in the
text editor. So that you know a text file was created by CodeWarrior, the com­
piler gives the file its own special icon:

Now turn your attention to the program icon that replaced the generic com­
piler icon. It looks like this:

The CodeWarrior program serves as your command center for writing and
compiling source code, and for making and testing Mac programs. In short,
you '11 be using this one program to manage the files that will be turned into a
program.

Creatin9 a Project
Whether you want to write a program that simply opens a window and writes
Hello, World! or one that does inventory and accounting for a multimillion­
dollar business, you start each program in exactly the same way: by creating
a Code Warrior project. What's a project? A very important part of the
CodeWarrior way of doing things.

The source code of a program is held in a text file. Sometimes, when there's a
lot of source code, a programmer divides it up into several text files. When it
comes time to compile the source code, CodeWarrior is smart enough to
know how to combine the source code from different files into one program.
It does need a little help, though. The compiler needs to be told which files to
use. A project groups multiple files together so that Code Warrior knows
which ones to use when it combines files into a program.

Every Macintosh program you create using CodeWarrior starts as a project.
You create a new project, give it a name, and then add files to it to build and
shape your program. Most of the files - the libraries - already exist.
(Several libraries are included on the CD-ROM that holds CodeWarrior.) The
other files - the text file holding your source code and the resource file hold­
ing your resources - have to be created by you.

Creatin9 a project folder
Of course, before you can explore creating a project, you have to install
CodeWarrior Lite on your hard drive. If you haven't done so already, read
Appendix F to see how that task is accomplished. The CodeWarrior environ­
ment - that is, the folders and files that make up the CodeWarrior package -
reside in a single main folder. If you installed CodeWarrior Lite from the
CD-ROM that comes with this book, that folder is named CodeWarrior Lite. If
you purchased CodeWarrior Professional, this folder has a different name,

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

most likely something like CodeWarrior Pro 4, or something similar.
Regardless of the name, it was the installation process that created this
folder and its contents for you. If you're a neat, tidy person, you want to
create a new folder to hold your new project. If you're not neat and tidy,
create one anyway! Double-click this main CodeWarrior folder to open it and
then choose New Folder from the File menu. Give the folder an appropriate
name, such as MyProgram, as I do here:

t:rrIE& CodeWorrlor Ute ==~
?Homs 677 .6 MB t n dtsk tSl.2 MB

~
Iii D ~

Metrwerks CodeWorrior MyPr09rom

~
~ l ¢e:i

Creatin9 a new project
In the main CodeWarrior folder, alongside your newly created MyProgram
folder, is a folder titled Metrowerks CodeWarrior. This folder holds the
CodeWarrior application. Double-click the Metrowerks CodeWarrior folder to
open it, and then double-click the CodeWarrior icon to start up the program.
Your Mac's desktop looks the same, but its menu bar has changed. You see a
menu bar that looks like this:

~ File Edit Senrch Project Tools Window

To create a new project, choose New Project from the File menu. If you're
us ing the version of CodeWarrior that comes from the CD-ROM included with
this book, you see a dialog box like this one:

This feature Is un11u11lloble In CodeW11rrtor
Ute.
l o 14>91"odo lo ll>t full v.,..lon ofCodoW.rrlor , plo- oall
800-377~16 or visit...- 'o'tb silo •I
http://...,,,.,,...mttrovertcs.oom

109

11 Q Part Ill: Using a Compiler

Dirty trick? Not at a ll. The limited version of CodeWarrior that is included
with this book allows you to open all of the example projects that 1 created
for this book. It doesn't allow you to create new projects. If it did, you'd have
little reason to buy the full-featured version of CodeWarrior. Since
CodeWarrior is about the only thing that Metrowerks sells, they wouldn't stay
in business too long if they gave their product away for free, right?

If you happen to already own Code Warrior Professional, choosing New
Project from the File menu results in the display of the dialog box shown
below. If you're using this book's Lite vers ion of CodeWarrior, just follow
along with me so that you know what to expect should you decide to upgrade
to the real thing:

rEt - ' New Project~

Select pr:oject stationery:

C....C++
MocOS Too I ~ox

Ma!:OSTqof!$ 68
MacOS Toolbox Multi-Target
MacOS Toolbox PPC

Stendard console

[) Creete folder

I Cancel) I!: DK I

Before clicking the OK button in this dialog box, do two things. First, click on
the Create Folder check box to uncheck it. You already created a folder to
hold what will be the new project. Now, choose a project stationery from the
dialog box list. CodeWarrior allows you to create different types of projects.
You can create a project that is used to hold files that are written in C lan­
guage source code, or instead create a project that will hold fi les written in a
different language, such as Java. There are other types of projects too. In this
book I'll always use the same type of project stationery - it's the one high­
lighted in the above figure. If you're us ing CodeWarrior Professional and are
at this dialog box, select this stationery by clicking on the appropriate little
arrow icons in the list. First, click on the arrow to the left of MacOS. Then
click on the arrow by C_C++. Finally, click on the arrow by MacOS Toolbox.
Now click once on the stationery named MacOS Toolbox 68K. That's a lot of
clicking, but it only takes a few moments to do. Now, click the OK button to
finally select the stationery. Doing that brings up a new dialog box:

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

-~~Name new project 111:

! ~)

Name: I MyProgram.mc~ Newi::l

Fonnat: I CodeWarrlor project 1 ~1

Im Cancel 111 Saue I

In this dialog box, navigate your way into the project folder you created -
the one I named MyProgram. Use the pop-up menu located at the top of the
new project dialog box to backtrack out of the Metrowerks CodeWarrior
folder and into the main CodeWarrior folder. Then double-click the
MyProgram folder in the scrolling list beneath the pop-up menu. You should
be in the MyProgram folder, as shown above.

Note that the MyProgram folder is empty, and it should be. There won't be
anything in it until I click the Save button to create a new project. First,
though, I type in a name for the project. Of course, I remember to use the
proper project-naming convention (see the "Naming a project" sidebar in this
chapter). Assuming my program's name is MyProgram, I name the project
MyProgram.mcp. Again, refer to the previous figure. After clicking the Save
button, the dialog box disappears and a CodeWarrior project window opens:

Data
~ <fl l!lSowus 0

~ <fl etRu-cu 0 0 • 6
~ <fl Ill H1<1 Llbnrlu 0 0 . 6
~ <fl Cl AllSI lll>nrlu 0 0 • 6

8 flies 0 0

111

112 Part Ill: Using a Compiler

Click on the little arrow icons along the left side of the project window to
reveal the names of the files that are grouped under each heading (such as
Sources, Resources, and so forth):

D ____ MyProgram.mcp __ ~E!IB
--- . -- -- - ~ --

If ..
S~ts T • .i'<;: .. tj'.

I~ 68K DtbuQ MooOs Toolbox ...llJilll~l~l~OO
[~ ni.]! c..]I Data lwr•
v 'II ClSourcts 0 0 . • (3

~
'fl • Slllys.lls.o 0 0 • • El

v • Cl Resourc~s 0 0 . (3

'fl f5l. SllJys. lls.rsro nl• nl• . El
v 'II Cl Hoc llbnrlu 0 0 . El

'fl 1:1 HSI. Runtmt68KU> 0 0 • (3

'fl l:IMKOS.llb 0 0 • (3

'fl 1:1 M>U>l.il>68K (20.Lib 0 0 • (3

V 'fl Cl ANSI Libr&r"IH 0 0 • 8
'fl 1:1 MSl C.68K (21).Lib 0 0 • El
'fl 1:1 MSL C++ _68K (20.Lib 0 0 + (3

'fl 1:1 MSL SIOUX.6SK.Llb 0 0 • (3
!-;-

8 fli.s 0 0 ~

Naming a project
When you start a new project, CodeWarrior
asks you to give it a name. Just about any name
should work. CodeWarrior would recognize
all of the following examples: My Program,
MyProgram, SuperGame, Dan's C Program.

A project holds the files used to create a single
program. The project usually has the same
name as the program will eventually have. Thus,
if you're developing a game that will be named
SuperGame, you should name the project
SuperGame. That's not a steadfast rule, but it is
the way things are typically done. A project is a
Macintosh file, so its name can consist of up to
32 characters - just like any other Mac file.

While all of the preceding names would work,
it's important that you add a little something to

the end of your project's name - no matter
what the name. Pick a name and then type
a period followed by the letters mcp. These
letters stand for Metrowerks Codewarrior
Professional, by the way. If I added this ending
to each of the above examples, the project
names would now look like this: My
Program.mcp, MyProgram.mcp, SuperGame
.mcp, Dan's C Program.mcp

Using the .mcp ending in a project name has
become a CodeWarrior convention. That is to
say, anyone who uses CodeWarrior immediately
recognizes a file name ending in this way as a
CodeWarrior project

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

.~

Libraries: The hidden additive in every proiect
All of the examples included in this book are
small enough to frt: easily in one text file. But all
projects contain more than this one file. One of
the project files is the source code text file that
you create. Another file that appears in each
project is a resource file. The other files found
in. each project are called libraries. A library
contains source code that is already compiled
and is ready to be combined with your own

I

source code~ Who wrote the code in the library?
In this case, the folks at Metrowerks and Apple
are responsible.

Exactly who wrote the code and how they
turned it into a library aren't important details.
What is important is that the code works in con ..
junction with your own code -with almost no
effort on your part.

If you're using CodeWarrior Lite, you can't create the new project pictured
above. But if you'd like to see such a file, look inside the ... For Dummies
Examples folder that you copied from this book's CD-ROM to your hard drive.
In that folder you find a folder titled C09 MyProgram. Look in there for the
MyProgram.mcp project. To open this project, just double-click its icon (see
Chapter 10 for more information on opening projects). While you can't use
CodeWarrior Lite to create this project from scratch, you can view the one I
created with my full-featured version of CodeWarrior.

In the previous figure, you can see that CodeWarrior is kind enough to add
several files to a new project. Most of these files are libraries that hold code
that gets used in conjunction with the source code you write yourself.
Fortunately, you never have to worry about the code that's in these files - so
don't worry about them (and don't worry if your project has library files with
names that differ from the ones shown in this book's figures). If you just want
to have something to worry about, though, see the sidebar "Libraries: The
hidden additive in every project" in this chapter.

What about those files that have the words SillyBalls in their names? It turns
out that these files aren't of much interest to you. So why did CodeWarrior
place them in the new project? Mostly to serve as placeholders of a sort.
They're in the project to remind you that you need to add your own source
code file (in place of the SillyBalls.c file) and resource file (in place of the
SillyBalls.rsrc file). You'll see how that's done a little later in this chapter. But
first, it's time for a ResEdit flashback.

Workin9 To9ether
One of the two files you need to add to any new project is the resource file. Of
course, you have to create such a file before you can add it to a project. (Part II
of this book provides information on creating a resource file.) In the next few

113

114 Part Ill: Using a Compiler

pages, I show you how CodeWarrior works with ResEdit to create a resource
file. I also recap how to create a resource fi le by providing the steps you'd
take to create a resource file that can be used with the MyProgram.mcp project.

Launchin9 ResEdit
In Macintosh terminology, launching an application means double-clicking the
program's icon to start up the program. Because you edit resources just
about any time you create a new project, CodeWarrior provides a neat way of
launching ResEdit to make it easier to do. Rather than have CodeWarrior
search through folders for the ResEdit program, you can simply double-click
the fi le named SillyBalls.rsrc in the project window. When you do that, ResEdit
starts right up. U you already have ResEdit running at the time you double-click
the SillyBalls.rsrc file, that's okay. In either case, the ResEdit program opens
and an empty resource file named SillyBalls .rsrc appears. Kind of like this:

MyProgram.mcp

1fl 68K Dtl>UQ MooOS T oolbo>< ---;i 1~ 1 1'}fil¢J[!J
fl~ Cod• Data ..,

<II Cl SCMll"COS 0 0 • • El

"' II Slllylhlls.c 0 0 • • El
<II ClR.,curcos 0 0 • El

"' a Slllyll•lls.rsro n/• nll • El
I> <II Cl H~ llbr..-i.s 0 0 • El
I> <II Cl ANSI LU...arlos 0 0 • El

8 fllos 0 0

SlllyBnlls.rsrc § E!liS

This method of firing up ResEdit works in both the Lite version and the full­
featured version of Code Warrior. If you haven't already done so, open the
MyProgram.mcp project found in the C09 MyProgram folder and give it a try!

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

Creatin9 the neul resource file
The name SillyBalls.rsrc isn't the ideal name for a resource file because it
doesn't provide any hint as to what the file is to be used for. ResEdit doesn't
allow you to rename the SillyBalls.rsrc file, but it does allow you to easily
create a new file - just choose New from the File menu.

You want to keep the new resource file right alongside the project that will
use it. To move to the folder that holds your new project , use the pop-up
menu at the top of the dialog box that appears after choosing the New menu
item. Now type in a name for the new resource file. You want your project's
resource file to have a name similar to the name of the program it will
become a part of (resources and code are merged to form a program). The
simple thing to do is give the resource file the name of the program, with a
period and the letters rsrc following. For the program that is to be named
MyProgram, a resource file named MyProgram.rsrc is quite appropriate. After
entering the name, click the New button:

lei MyProgram ... I
!ni MyProgrnm. u 1'.!!;

c:i Hard Drlue

[Jett

Desktop

Con eel

,__ ________ _..to""' Ml§i!Ml
New Fiie Name:

I MyProgram.rsrc

Now you have a second empty resource file on your screen. This new one is
named MyProgram.rsrc:

~ = M Pro ram.rsrc 5 1!1

115

116 Part Ill: Using a Compiler

Addin9 a 1WIND 1 resource
The program that you create using the MyProgram.mcp project is very
simple; the only resource this program needs is a single 'WIND' resource. To
add a resource to the open MyProgram.rsrc file, follow these steps:

I. Choose Create New Resource from the Resource menu.

2. Use the scroll bar in the dialog box that appears to scroll down to the
WIND item and click it.

3. Click the OK button.

That's all you need to do to create the MyProgram.rsrc resource file. Choose
Save from the File menu to save your work. You can quit ResEdit if you want,
or, if you think you may be t inkering around with resources in the near future,
you can just close the MyProgram.rsrc file and leave ResEdit running. Return
to CodeWarrior Professional or CodeWarrior Lite by either clicking the
MyProgram.mcp project window that should be visible on your desktop, or
by selecting the compiler 's name from the menu that appears at the far r ight
of the menu bar.

Addin9 a File to a Project
After you create a resource file, you can add it to your project. You can direct
CodeWarrior to place a newly added file in any area of the project w indow
where you want the file to go. Move the cursor over any file in the area you
want the file to end up, and click the mouse button once. 1 want to add a
resource file to the project, so I want the file to end up in the area that
CodeWarrior has labeled Resources. In this next figure, I click the
SillyBalls.rsrc file name in the project window .

.....
V • Cl Sourcos 0 0 . . 8•

• II S ll'>'l!•lls.c 0 0 . . e
v tlJI Cl Resou,.ces 0 0 . e I

• a Sllll/BaTtirnc n/• nl• . e
: v '<fl Cl H~o Ubrarl•s 0 0 . e I

• ~ MSl Runl im<68K.lib 0 0 . e
'II ~M..OS.lib 0 0 . e
'II ~ M•lhllb68K (20.llb 0 0 . e

v • Cl ""51 Lll>nr los 0 0 . e
<I ~ MSI. C.68K (21).lib 0 0 . e
• ~ MSl C++ .6SK (21).Lib 0 0 . e ., ~ MSL SIOUX.68K.lib 0 0 . e

8 fll.s 0 0 ~

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

You only need to use some of the dozens of menu items available in
CodeWarrior. Here's the first menu item you use:

·~

Add Window
Ill.!'
Create New Group ••• -If
Remoue Selected Items a&®

Check syntaH ae;
Preprocess
Precomplle •..
Compile •K
Disassemble

Bring Up To Date • U
Make • M
Remoue Object Code ·-Re-search for Flies
Reset Project Entry Paths
Synchronize Modification Dates

Enable Debugger
Run 3CR

Set Default Proj~t ~
Set Current TalJlel ~

The Add Files menu item in the Project menu allows you to - ready for this? -
add files to your project. Here I add the MyProgram.rsrc resource file to the
MyProgram.mcp project. After you select Add Files, you see this dialog box if
you are using CodeWarrior Lite:

This feature Is unauallable In CodeWarrlor
Lite.

To IWodt to tho IUll ,,.,..Ion of Codt'l'..-lor, pit- oall
900-377·'5416 or visit....- wll> sttt at
http ://"""" .mttro.,,...ks.oorn

DK I

Darn! Foiled again by the limited version of CodeWarrior. Like creating a new
project, adding files to a project is a no-no in the Lite version of CodeWarrior.
Being able to add your own resource and source code files to an existing pro­
ject would allow you to develop any program you want, and it would be a
sneaky way of avoiding buying a real, completely functional compiler.

Here's what you see when you choose Add Files from the Project menu in the
full-featured CodeWarrior:

117

118 Part Ill: Using a Compiler

..... ...,.Rdd Flies to uMyProgram.mcp"

Otte Modified .A

Today

4/15/96

Cancel J ~ Rdd I

You use the pop-up menu at the top of this dialog box to move into the folder
that holds the file to add to the project. In the figure above, you can see that
I'm in the folder that holds the MyProgram.rsrc file. Recall that this is the
MyProgram folder I created earlier in this chapter. To select a file to add to
the project, click the file's name in the top list and then click the Add button.

You may notice that the MyProgram.mcp project file isn't named in the top
list in the above figure even though the pop-up menu shows that I'm in the
MyProgram folder. Don't worry- that project file is still in the MyProgram
folder. CodeWarrior uses a filter to allow only certain types of files to be dis­
played in this dialog box. Only files such as libraries, resource files, and
source code files (files that you'd want to add to a CodeWarrior project) are
displayed. When you click the Add button, you'll most likely see a dialog box
like the one shown here:

= Rdd Flies£:c.

Md files to t1rgets:

I ~ts
(i! 68K DebUlj l10C(JS Toolbox ~ Ii! 68K Fine! l10C(JS Toolbox

Ii
Ii 11

~

I Cancel)
11

DK I

_______ Chapter 9: Getting to Know You: The CodeWarrior Compiler

CodeWarrior Professional allows you to create different programs from the
same project. Often a programmer wi ll create a test version of a program first
(known as a debug version - a version that is helpful in getting all the bugs,
or errors, out of the code) and then later creates a final version of the pro­
gram. You and I won't need to worry about any of this version business in
this book. If you ever see this dialog box, go ahead and click the OK button to
let CodeWarrior add your selected fi le to the project as it sees fit.

After clicking the OK button, the resource file is added to the project. Here's
how the window of the MyProgram.mcp project looks after I add the
MyProgram.rsrc file to it:

Fie Coff Data

"1 Cl SourcH D D . • El ..

• (I SlllyBolls.c D 0 . . e
v • 1:1 R.sourcos 0 0 . e
• a ~09:"i!J>rsr.o n/• n/• . e
¥ Ii, SlllyB•llsrsrc n/• n/• . e

v • Ill H•c lll>rorlos 0 0 . e
• II!! MSl Runt im968K.Llb 0 0 . El

• ID Mo<OS.1ib 0 0 . e
• II!! M•tlllib6SK (20.LO 0 0 . e

v "1 Cl AllSI lil>nrl .. 0 0 . e
• II!! MSL C.681< (21) U 0 0 . e
ff ID MSL C++.681< (20.Lib 0 0 . e

"' II!! MSL SIOUX.681<.Lil> 0 0 . 8 •
9 files 0 0 ~

Remot1in9 a File from a Project
After adding MyProgram.rsrc, the newly added resource file joins the
SillyBalls.rsrc file in the Resources section of the project window. Remember,
the file ended up in this particular spot because I specified the location by
clicking the SillyBalls.rsrc file name before choosing Add Files from the
Project menu. Now that the MyProgram.rsrc file is added to the project, I can
remove the SillyBalls.rsrc placeholder fi le. This file serves as nothing more
than a reminder to add your own resource file - it doesn't hold anything of
use to your project.

I begin by fi rst clicking once on the SillyBalls.rsrc name to highlight it, and
then 1 choose Remove Selected Items from the Project menu. I say I'll do this
because you won't be able to do this if you are using the Code Warrior Lite
version of the software. Removing files from a project, even placeholder files,
is something that CodeWarrior Lite can't do.

119

12 O Part Ill: Using a Compiler

Clicking a file name in the project window and then choosing Remove
Selected Items from the Project menu is a technique that can be used to
remove any file from a project. But you don't want to just go about haphaz­
ardly removing files, now do you? In particular, you want to make sure all of
the library files that CodeWarrior placed in the project remain in the project.

That takes care of adding and removing a file to a CodeWarrior project. In
Chapter 10, I show you how to create a source code file and add it to the pro­
ject. Don't worry if you don't know anything about the C language. You can
still create a source code file and add it to a project without any knowledge of C.

Chapter 10

Creating Source Code
Isn't Hard, Honest!

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 Cl 0 0 0 0 0 It 0 0 0 0 0 0 0 0 0 t!1 Q 0 Q e 0 0

In This Chapter
&>- Opening an existing CodeWarrior project

!!>- Creating a source code file (finally!)

.,._ Adding a source code file to a CodeWarrior project

~ Typing in the source code

ooooooooooooooooooooeoooooooooooooooeoe$000000ooe

11 ~iting source code involves two steps. First, you have to be familiar W ~ith the basics: How to create a source code text file, how to make
that file part of your project, and how to correctly type in the code. The
second step is to know what to type in. In this chapter, I show you how to deal
with the basics, and I tell you what to type in. At the end of the chapter, you
should be comfortable with working with source code, and you'll have a
source code file that you can find out how to compile in Chapter 11.

Openin9 an Existin9 Project
Unless you're a programming wizard, it's pretty unlikely that you'll ever create
a new project, write all the source code for it, and turn it into a program in
one sitting. So opening projects is something you want to get used to doing.

If you are running the CodeWarrior program, exit it by choosing Quit from the
File menu.

In Chapter 9, you start CodeWarrior by double-clicking its icon. Now I'm
going to show you a second way to run CodeWarrior. You can launch, or
start, CodeWarrior directly from the icon of any project created with
CodeWarrior. Double-clicking the icon of a project launches CodeWarrior and
opens that project.

12 2 Part Ill: Using a Compiler

To launch a program means to run it. Then why not just say run the program?
For the same reason the Macintosh interface consists of icons and windows,
not just text - Mac users like a little fun and novelty in their computers. And
the terminology surrounding the Macintosh sometimes reflects this mood.

If you're using CodeWarrior Professional, you know where to find the
MyProgram.mcp project you created in Chapter 9; it should be in the
MyProgram folder you created along with the project. If you're using the Lite
version of CodeWarrior that comes with this book, you can find a version of
the MyProgram.mcp project in the C 10 My Program folder in the .. . For
Dummies Examples folder that you copied from the CD-ROM to your hard
drive. In either case, the MyProgram.mcp project icon looks like this:

D
MyProgram.mcp

t
You can launch CodeWarrior and open the MyProgram.mcp project in one
shot by double-clicking the icon of this project. Go ahead and do that now.

If CodeWarrior is already up and running, you can also open an existing pro­
ject by using the Open menu item found in the File menu. If a project window
is open, first click its close box to close it. (There, now you just found out
how to close an open project, too!) CodeWarrior Lite also allows you to open
a project this way, so feel free to experiment with this menu item.

Now that you know the shortcut for opening a project, it's time to move on to
something more productive, such as creating and adding a source code file to
a CodeWarrior project.

Workin9 With a Source Code File
Are you ready to get a feel for working with source code files? In Part IV, I fill
you in on the details of discovering what source code to type in. In this sec­
tion, l show you how to create and work with a source code file.

Creatin9 a source code file
A source code file is a text file. It shouldn't be surprising that the process of
creating a source code file is not unlike that of creating a text file. Just as you'd
create a new text file in a text editor (such as SimpleText), in CodeWarrior,
you choose New from the File menu to create a new source code file.

__________ Chapter 10: Creating Source Code Isn't Hard, Honest!

If you attempt to open a new file in the Lite version of Code Warrior, you see a
nasty dialog box that tells you CodeWarrior Lite won't allow that action to
take place. I've got a way around that (sort of) that I tell you about just ahead.

If you choose New from the File menu of the full-featured version of
CodeWarrior, an empty window like this one opens:

· E£ =·=~unlltled~ ---- -

l'io: I

Looks just like a window in a Macintosh text editor or word processor, doesn't
it? And if you start typing, it behaves like one, too:

~ untitled ~!!!I ·

~m~~~Ptth : r ~ ~
~ :

This ts ~<>Ming? ll isn' l "'Ile ~ I plcl..-ed I l. D
~
H

r.
Line: 1][• k ~=-,··~ ~ ~

Just as I promised you several times, a source code file is nothing more than
a text file.

Saf/in9 the source code file
You probably already guessed that the words I typed in the window in the
preceding figure don't qualify as source code. I can remedy that. But first I
want to save the file and then add the file to the project - creating a new text
file with the New command does not automatically place the file in your project.

123

12 fl Part Ill: Using a Compiler

You should add the new file to your project right away so that you don't
forget to do it. You don't have to type in all your source code before saving a
file or adding it to your project. After the file is added to the project , you can
edit it at any time.

You're familiar with the Save and Save As commands in the File menu - they
work identically to those found in any Mac text editor or word processor. The
Save command saves a file, and you should use it periodically to save
changes and additions to your source code. The Save As command saves a
file, but first it allows you to name it. CodeWarrior Professional users create a
new file with the New command and then choose Save As to name the file.
Doing that brings up a dialog box like the one shown below. Again, you read­
ers using CodeWarrior Lite can follow along here in the book, but you won't
be able to do this with your version of the program:

11) MyProgram

Cl MyProgram ~Ill
~ MyProgram.mep

~ MyProgram rorc

¥#!1Saue As

Name: I MyProgram.c

Format: I CodeWarrlor teKt file

117/ 99

I
1 ~ 1

Cancel I [!

New Cl,

Saue B
;a

To keep things organized, save the source code file to the same folder where
you keep your project and resource file. Use the menu at the top of the Save
As dialog box to move to the folder containing the project. When the folder
name is shown at the top of the dialog box (as it is in the preceding figure),
you can type in a file name.

Give your source code fi le any name you want, but make sure it ends with a
period followed by the letter c. That ending to the file name is important.
When you add a file to a project, CodeWarrior only allows you to add certain
types of files. That makes sense, because you can't expect CodeWarrior to
know what to do with, say, a letter to your Aunt Millie, right? One of the types
of files CodeWarrior is happy to work with is, of course, a file that holds C lan­
guage source code. The period and the letter c at the end of a file's name tells
CodeWarrior that the file contains C language code. After typing in the name,
click the Save button.

__________ Chapter 10: Creating Source Code Isn't Hard, Honest!

This point is worth repeating. A source code file is a text file. But
CodeWarrior doesn't want to work with just any old text file - it wants
source code. Without the.c at the end of the file name, you won't be able to
add the file to the project. In fact, when it comes time to add the file to the
project , a C language source code file with no .cat the end of its name won't
even appear in the scrollable list of files to add. It will have seemingly disap­
peared! What happens then? You panic. You think your hours of typing
once-in-a-lifetime ideas are wasted, gone forever. You end it all by jumping out
of your window. 1 can't have that on my conscience - that 's why I've devoted
all this space to naming files.

The following figure shows how the MyProgram folder looks with a project
file, a resource file, and a source code file all saved in it. If you're following
along with the Chapter 10 folder that came on this book's CD-ROM, then the
folder is named C 10 MyProgram.

Q= = Cl Myl!rogrem_.... # & §E!la·
~

I 4 ltemo, 25.6 MB avelleble

D D ~ ll
A

I

HyPr09ram.mcp HyPr09rem.c HyPr09rem.r"c MyPr09ram Date

I 1-;1

41 - -
_l~ ~

·-

Take a close look at the figure above. Every Mac program you create has this
configuration - a folder that holds a project data folder, a project file, a
source code file, and a resource file.

All Macintosh programs have names, and all yours will , too. While it makes
sense to give your program the same name as the source code file that holds
the code used to create it, its name can be different. But don't spend a whole
lot of time thinking of a clever, catchy name right now- you've got work
to do!

Addin9 the source code file to the project
If your source code file is named and saved, you can add it to the project.
Here's some really good news. You readers using CodeWarrior Lite should be
pleased to hear that this is absolutely the last task in this book for which the
full-featured version of CodeWarrior is required. Everything else that I do in
this book, such as compiling, testing, saving, running code, and making a
standalone Mac program, can be done with the Lite version of Code Warrior.

125

12 6 Part Ill: Using a Compiler

Using CodeWarrior Professional to add a source code file to a project is a
simple task. First, click once on the SillyBalls.c name in the project window.
This name serves as a placeholder that shows you a good spot in the project
window to add your own source code file. Next, click once anywhere on the
window that holds the source code. (That's to make sure that it is the active,
or frontmost, window.) Then choose the first menu item in the Project menu,
which is the Add Window item:

Create New Group ...
Remoue Selected Items 88®

Check SyntaH 88;
Preprocess
Precompile ...
Compile 88K
Disassemble

Bring Up To Oa1e 88U
Make 88M
Remoue Object Code 88-
Re-search for Files
Reset Project Entry Paths
Synchronize Modification Oates

Enable Debugger
Run X R

Set Default Project ~

Set Current Ta et ~

When you choose Add Window, CodeWarrior adds the open source code file
to the project window right by the SillyBalls.c placeholder name:

D --- MyProgram.mcp ~ E!l 8
- - - -· - -·

!
...

~rntnts f.j";i'tS .. -

l!!:68K Dfl>u9 MlcOS Toolbox ... 11~1.-1~J¢l[fil
l[W_ Fiie J.:: ~Jr Doto\Bli.
jv <fl Cl SoarcH 0 0 . . e H ., ·~"1).0 0 0 . . e

<fl II SlllyS.lls .o 0 0 . • e
V ., ClRH...,.CH 0 0 . e

<fl 8. Myl'r09">1n.NrC n/• n/• . e
v <¥ Q. M•o Llbr~rles 0 0 . (i) ., l!I MSI. Rlltllimo68K.Lib 0 0 . e ., l!I M>cOS.lib 0 0 . e ., l!I M>lhl.ib68K (2i).Lib 0 0 . El
V <fl Cl MISI LibnrlH 0 0 • (i)

<fl l!I MSI. C.681< (20.Lib 0 0 . El ., l!I MSI. C++.68K (2i) •.. 0 0 . (i)

<fl l!I HSl SIOUX.68K.Lib 0 0 • (i)~

9 files 0 0 ~ ...

__________ Chapter 10: Creating Source Code Isn't Hard, Honest!

Depending on which version of CodeWarrior Professional you're using,
choosing Add Window may result in the display of an Add Files dialog box. If
you see such a dialog box, go ahead and click its OK button. Chapter 9 men­
tions that this dialog box gives you the option of adding a file to only specific
targets, or versions of the program you'll be creating. You're safe in adding
files to all the targets.

Now you can remove the placeholder from the project window by clicking on
the SillyBalls.c name in the project window and then choosing Remove Files
from the Project menu. After you owners of CodeWarrior Professional do that
for the SillyBalls.c placeholder, the MyProgram.mcp project window looks
like this:

Fl .. CMe
'fl ClS.....oes 0 0 . • (3 .

"' I MyPro9r om.o 0 0 . • El
v 'fl Cl Resour~s 0 0 . 13

• ~ Myl'ro91 .. mrsrc n/• n/• . El
v 'fl Cl H~ lillr•rlos 0 0 . El

'fl D MSl Runtime68K.Lib 0 0 . El
'fl D MocOS.1ib 0 0 . El
<II D Motli.ib6SK (20.Lib 0 0 . El

..,, 41 "ANSI llbnrlos 0 0 . El
41 D HSI. C.68K (21).Lib 0 0 . El
41 D HSI. C++.68K (21) • .. 0 0 . El
'fl ~ MSl SIOUX.681<.Lib 0 0 . El

9 fllots 0 0 ~

Now your project is all set up, and you are ready to enter some source code.

ReflieuJin9 the Creation of a
CodeWarrior Project

You've come a long way! Just to make sure you have all this CodeWarrior
project stuff down pat, here's a quick review of the steps for creating a
CodeWarrior Professional project to be used as the bas is of a new Macintosh
program:

I. Run CodeWarrior Professional, of course!

2. Create a new project by choosing New from the File menu.

127

12 8 Part Ill: Using a Compiler

3. Launch ResEdit by double-clicking the SillyBalls.rsrc placeholder in
the project window.

4. Create a new resource file and add the appropriate resources to it.

5. Add the new resource file to the project by returning to CodeWarrior,
clicking on the SillyBalls.rsrc name in the project window, and choos­
ing Add Flies from the Project menu.

6. Remove the resource file placeholder by clicking the SillyBalls.rsrc
placeholder lo the project window and then choosing Remove Flies
from the Project menu.

7. Create a new, empty source code file by choosing New from the File
menu.

8. Name and save the new source code file by choosing Save As from the
File menu.

9. Add the new source code file to the project by clicking once on the
SillyBalls.c placeholder in the project window, clicking once on the
source code window, and, finally, by choosing Add Window from the
Project menu.

10. Remove the source code file placeholder by clicking the SillyBalls.c
placeholder in the project window and then choosing Remove Files
from the Project menu.

Following these ten steps results in a project that's just about ready to be
turned into a Macintosh program. Of course, a couple of trivial steps remain,
like writing the source code for the program and compiling it. Never fear. I
cover both of these topics in the remainder of Part III.

Enterin9 the Source Code
In Chapter 5, I introduce a very short Macintosh program that I call
ExampleOne. Because I like to stick with familiar territory whenever possible,
I use that very same source code in this chapter's example.

Openin9 a source code file
When a source code file is open, the source code appears in a standard
window that has a close box in the title bar. You can close a source code file
anytime. Once the file has become part of a project through the use of the
Add Window menu option, it remains part of that project even if you close
the file. Try closing an open file by clicking in its close box, or "go-away box,"
as some people call it.

__________ Chapter 10: Creating Source Code Isn't Hard, Honest!

To reopen a source code file that's part of a project, double-click the file's
name in the project window.

While feverishly writing this chapter, I closed the MyProgram.c file so that it
wouldn't be in my way on the screen. I used the technique of double-clicking
its name in the project window to reopen it. When I opened it, I was back to
where I left off:

p~ - --~MyProgram.c "" -- - ·-- El]IS

. ~li!!Jlg)~~ Pith: j111rdOrlvt:Codo .. rom:Myf>ro<jrom.o <>
This ts pr0t7C111111lng? I l lsn" l qvl \ e how I plc\ured \l.J Q

F1 ,..
H

'
1-;1

ll, lint: I][• --=- =-].• ~ -

Recall that earlier in this chapter I stated that CodeWarrior Lite users can still
view and add source code to an empty source code file - even though
CodeWarrior Lite doesn't allow you to create new files. How do you perform
this mysterious feat? If you haven't done so already, open the
MyProgram.mcp project found in the ClO MyProgram folder (you can simply
double-click its icon to open the folder). Now open the source code file by
double-clicking the MyProgram.c name in the project window. I intentionally
left this file empty so that you could experiment with it and then type in and
save your own code.

If your window looks something like mine, or you have some other gibberish
typed in it, get rid of the text now. Use any of the standard editing techniques
you're familiar with to get rid of the text: You can click the mouse button,
drag over all of the text to highlight it, and then release the mouse button and
choose Cut from the File menu. Or, after highlighting the text, you can just
press the Delete key. If you have a little time to kill, you can click the mouse
at the very end of the text and just backspace over all of it. Whatever works
for you is fine with me. Just make sure that you have an absolutely clean
slate.

T1J.pin9 in the code
The trick to becoming a programmer isn't becoming an accomplished typist -
it's knowing what to type. In Part IV, I cover what to type when you create
source code and what it means. But even without knowing quite what the source
code means, you can still get a good feel for the process of writing code.

129

13 Q Part Ill: Using a Compiler

Click the mouse in the MyProgram.c window and type in the following sample
source code. I show the code in a window so that you can compare it to your
own window:

mJI
- - ··""= MyPragram.c ~ """'~ me

! ~~~~~ P•lh: [Hard Ol'"IVt:Codo,:MyProgr.m.o <>
votd main(votd > Q I
(F

Utndooll'tr thelHndool; i lnt\Graf(&qd . lh<IPorl l;
Int tFonls(>; I
lni U.Hndon< >; i
thellindow = OotNawUindool< 128, ntl, <Ulndo•Ptr >- 1L >; ' SetPOt"'t< the~tndow >;

MoveTo< 30, :SO >;
OrawStrlnt,1(''\pHel\o, Uorldl" >;

white < IButlon< > > I ;
) ~ I

' Lint : 17 JlI•~ ~"·~ '...'c ~ ~·~

As you type in the source code, you may have a few questions about what's
important and what isn't. While some rules about writing source code are
written in stone, other factors are left to the whim of the programmer. Now
then, what should you be concerned with as you enter the code? Keep these
points in mind:

I
V' Most lines, but not all, end with a semicolon.

v Each parenthesis is crucial.

v Each brace is crucial.

v Proper use of uppercase and lowercase is essential in all words.

Relax. Not everything is critical when typing in source code. For example,
you don't have to worry about:

v The number of spaces or tabs between words.

V' The number of spaces or tabs used to indent lines.

V' Whether or not blank lines are used occasionally.

V' Whether or not spaces are between words that lie within parentheses .

v The font or the s ize of text used to display the source code.

If you've typed all the code, choose Save from the File menu to save it - you
don't want your efforts to go for naught if your Mac unexpectedly crashes!
After your code is all typed in, the next step is to compile it. I've talked about
compiling several times already; it's about time you actually got to try it! I
walk you through compiling some code in Chapter 11.

Chapter 11

Compiling and Running Your
Source Code

0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ell 0

In This Chapter
~ Compiling a source code file

~Solving the problem if compiling doesn't work

!>- Testing a program by running it

~ Turning source code into a program

0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 G 0 0 0 C 0 0 0 0 0 0 El 0 0 0 0 0 0 0 0 0 G 0 0 Q 0 0 0 0 0 0

f /ou know what a compiler is, how to create a project, how to make a
¥._L~ource code file, and how to enter the source code. (If you don't know

these things, it's time to go back and read some important sections of this
book.) You're only a few steps away from being face-to-face with a brand-new
Macintosh program that you can call your own.

Compilin9 Your Code
Begin by opening your MyProgram.mcp project (you can read about opening
a project at the start of Chapter 10). If you're using the full-featured version of
CodeWarrior and you've created your own project, go ahead and open it now.
If you're using the CodeWarrior Lite that comes with this book, open the
Chapter 11 version of the MyProgram.mcp project, which you find in the C 11
MyProgram folder.

13 2 Part Ill: Using a Compiler

Compiling is incredibly easy. After you open the MyProgram.mcp project, just
tell the compiler which source code file to compile and then choose Compile
from the Project menu:

'~~- 1fflfd;Wlndliw -
; - Rdd ·FHei •• ~ · . . : _

r; i'-~:T:~!!-l;~~=~~~i~m·• -
1-.'r~h,~~~~!it'.i~'":
•· ·· .Pl'B~race11··
.--._ Prrec:Omplle •• p

Brfng .,p Jp·~J.IJB ·
:_,Makii : .·t''.: ·-· ____ .

t~;;r: ; . '
'-'~;·-·~·=

. liefuape .alaja1;' Cade
lh!~~J!ari:h (ar·FU@•:.·

;;: . ~eset'Pro.i~c1 En,tt:U Paths,,
sync'~rilnJza Miufltf~atlasi o~tes

How do you tell CodeWarrior which source code file to compile? You can give
CodeWarrior the signal in one of two ways. With your source code file open
on the screen, make sure it's the frontmost file by clicking it. CodeWarrior
then enables the Compile menu item so that you can compile the active
source code file whenever you 're ready. The second way to tell CodeWarrior
which file you want to compile is to highlight the file's name in the project
window. You can do that by clicking once on the name.

If the Compile option appears dim, you can't choose it. CodeWarrior won't
enable this menu - that is, make it active - until you tell it what to compile.
Makes sense, right?

Try to compile the MyProgram.c file. Use either of the techniques I describe
in the preceding paragraph to make sure that CodeWarrior knows this is the
file you want to compile.

_________ Chapter 11: Compiling and Running Your Source Code

Before you choose Compile, take a look at the numbers in the MyProgram.c
row of the project window. They should both be zero:

Fiii
<¥ l!iSourc.s Note that the numbers
• I Myf'r09f•n>.c 0 in the MyProgram.c row
• fll Resources 0 0 • El are zeros.
• !!a, MyPr09f om r src n/• n/• • El

I
41 fll 11.0 Lillrorles 0 0 . El

• I! HSI. Runtint68K.L ib 0 0 • El ., l!MocOS.lib 0 0 • El

• I! M•thlib68K (20.Lib 0 0 • El
V '¥ Cl AllSI Lllworles 0 0 • El

• I! HSI. C.68K (2 i).Llb 0 0 • El

• I! MSl C++ .68K (2i).Lib 0 0 • El

• I! HSI. SIOUX.68K.L lb 0 0 • El

B(llK 0 Q

If the numbers in your project window aren't zeros, don't panic! It simply
means that you or someone else already compiled some or all of the files in
the project. That's okay - it just means you're a little bit ahead of me. Go
ahead and choose Compile from the Project menu.

What happened?
If you made a mistake when you typed the source code, CodeWarrior
responds by displaying a window titled Errors & Warnings. If you see that
window, you should refer to the section "Can you type? The compiler lets you
know" in this chapter. If you don't see that error message window, then
things certainly didn't seem very dramatic, did they? If you typed all the code
in correctly (or if you used the MyProgram.mcp project from the Cl 1
MyProgram folder, which includes a MyProgram.c file with the code typed
in), it may seem like not much at all happened, but the compiler really did do
some work. Look at the project window. Some of the numbers change:

133

J 3 !, Part Ill: Using a Compiler

l!l SourcH Note that the numbers
• l:'.!iftoon111.o 76 14 in the MyProgram.c row

'11 Cl R•sourc•s 0 0 • El are no longer zeros.
'fl 8, MyPr09r.,.. rsre n/• n/ 1 • El

v 'fl l!l H•c llbr orlH 0 0 • El
'fl lb HSl Runl lmo68K.LI> 0 0 • El
ofl lb MlCOS.111 0 0 • El
'fl lb M1thl.ib68K (2i).Lib 0 0 . El

v ofl l!l ANSI lll>rarlu 0 0 . El
'fl lb HSl C.681< (2i) .Lib 0 0 • El
ofl lb MSL CH .68K (2i).Lib 0 0 • El
ofl lb MSL S IOOX.681<.Lib 0 0 • El

8fllH 76 14 r; -

So what did happen? CodeWarrior turned the source code in the
MyProgram.c file into object code, which is code that the computer under­
stands. If you have the MyProgram.c file open, though, you notice that the
source code is still sitting in the file right there on the screen, unchanged and
very readable. That's because the compiler does its work behind the scenes.
It made a copy of your source code file and worked with that. How can you be
sure it really did that? Look at the columns of numbers in the project window.
The number in the row with MyProgram.c changed. The new numbers reflect
the size of the code that is created from the source code file.

Don't waste your time keeping track of the exact numbers in the project
window! I only point out these numbers to prove to you that compiling the
MyProgram.c file really does produce a result. Understanding exactly what
the values in the Code and Data columns mean only becomes important far,
far down the programming road.

Compiling code doesn't actually execute - or run - the code. For example,
the source code in the MyProgram.c file is supposed to put up a window and
write a line of text to it. But it doesn't do that during the compiling stage. To
get the code to run, you need to turn the code into a Macintosh program that
shows up on your hard drive after you quit CodeWarrior. To see how to per­
form this feat, see "Running and Building Sounds Like Quite a Workout!" later
in this chapter.

So that's it for compiling? Yup, that 's it. Unless you make a typo - a mistake
in typing the source code. Then you need to do some problem solving.

_________ Chapter 11: Compiling and Running Your Source Code

Can IJOU tlJpel The compiler lets IJOU know
After choosing Compile from the Project menu, a window with a message in it
may pop open on your screen. This is not good. But it also isn't the end of the
world. This window only appears if you make one or more mistakes when
typing your source code. When the compiler comes across a mistake, it
makes a note of it in this window. The window looks like this, though the mes­
sage (or messages) in it may be different depending on the error:

&li - Emirs & warnings m ~a -

11r- mro::- jErrors Mid ,..,.,,fnci..r 'MyProgram.mop •
" _±'._ - I&] EJEJ

ee:rr.or : f"""ti°" has no prololVP'\~
~.c line 1 ~< 11>1111 >; A 1

H .
~1 J_•

h ~ ~:_-~--~ ..:;:. rd-- -

If you made a mistake entering source code, the Errors & Warnings window
gives you a hint as to what went wrong. To get the above message, I pur­
posely typed in Set port rather than Set Port. That is, I used a lowercase p
rather than an uppercase P. And you thought I was being picky when I said
that you had to be careful about upper- and lowercase!

The Errors & Warnings window tells you the file name and the line number at
which the error occurred. My error is in the file MyProgram.c, at line 10. If I
count down ten lines from the top of the source code file (including blank
lines) I should come across the error. Take a look to see whether that's true:

1
2
3
4
5
6
7
8
9

10

Name of the file with the error.

llOld lllQ\n(void >
{

ll lndoolP\r \helllndow;

lnllGraf < &qd. \hePar\ >;
In\ \Fonts<>;
I ni UHndoft< >;

\hellindow • Ge\Hnlllnda•< 128, nl 1, (11\ndowPtr >- IL >;
kt~< \helli ndaw >;

Here at line 10 is the letter p that the compiler finds offensive!

135

13 6 Part Ill: Using a Compiler

In Chapter 10, I say that blank lines don't count, yet in the preceding figure
you can see that the compiler and I include two of them in the line count. Let
me clarify. Blank lines don't count for anything when writing source code ­
you can put them anywhere and CodeWarrior won't complain. CodeWarrior
only keeps track of the blank lines when reporting an error to you, which is
very handy, because counting the blanks gives you a much more direct indi­
cation as to where the error took place.

As the preceding figure shows, the error is in fact on line 10. The compiler is
hoping to see Setport, but instead, it finds Setport. A trivial difference to us
humans, but not to a computer.

Counting lines of code is tedious, especially if the error occurs well past line
10. I counted lines earlier just to demonstrate that I can in fact count to ten -
contrary to what people are saying about me. Really, though, I want you to
realize that the compiler keeps track of your code by lines. What if an error
occurs on line 103, and you just don't have the time or the patience to count
all those lines? Or even worse - you start counting, but you get distracted at
line 98 and have to start over? Don't worry. CodeWarrior provides an easier
way to reach the problematic line of code. Just double-click anywhere on the
highlighted section of the Errors & Warnings window. CodeWarrior scrolls
your source code file right to the offensive line of code. CodeWarrior also
adds an arrow and some highlighting to the line in which you made the mis­
take just to really rub it in your face:

Double-clicking
anywhere on the
highlighted area ...

... highlights
the line with
the error.

Errors & Warnings

DJ¥ ~ a MyProgram.c -

lholllndotl • G<t\NewWlndotlC 128, nil , <Wl n<lowf> t r >-IL >;
S.i:iXii'(< \holllndow >;

MoveTo< 30, :50 >;
OrowStrlng< ·\pHe\ lo, World! . >;

: Lint : 10

_________ Chapter 11: Compiling and Running Your Source Code

Yes, programmers really say things like offensive and offending when referring
to a line with an error. Hey, don't shake your head at me - I didn't invent the
terminology!

If you're reading this section because you encountered the Errors & Warnings
window while compiling MyProgram.c, you now know exactly how to find
your mistake. Feel free to go the error in your source code file and correct it.
You can compare your source code to the figure near the end of Chapter 10,
which is the figure that you used to initially type in this source code, to find
out what you erroneously typed. If more than one error is listed in the Errors
& Warnings window, correct each one.

After correcting your mistake (or mistakes), you need to recompile the source
code file. Recompile is just the fancy word for saying compile it again. You
can compile the same source code file as many times as you want.
Code Warrior only saves the result - the object code - of your most recent
attempt. If you've corrected your mistake, choose Compile from the Project
menu to recompile the source code file.

Running and Building Sounds
Like Ouite a Workout!

After you successfully compile your source code, the computer can under­
stand it. Now you want the computer to run the source code so that you can
see that you really have created a program. You can use two methods to get
the compiler to run your code: You can run your code from within
Code Warrior, or you can run the program that Code Warrior builds for you.

In Chapter 9, I explained that CodeWarrior is actually a programming environ­
ment, which means that CodeWarrior is capable of doing more than just
compiling source code. It also allows you to add files to projects and to edit
and save those files. It's actually a project manager, an editor, and a compiler
all rolled into one program.

Besides all of the aforementioned tasks, CodeWarrior can perform one other
trick you'll find very useful. It can run your compiled code right from within
the CodeWarrior environment. That is, while CodeWarrior can take your code
and create a standalone application that you can run at any time, it also lets
you run your code without forcing you to go to your Mac's desktop to double­
click the icon of the application it creates. On the surface, this may not seem
like such a big deal, but it is. And that's due to the nature of programming.

137

13 8 Part Ill: Using a Compiler

It would be nice to sit down at your computer, type in all the source code for
a program, compile it once, and be done with the whole business. But that's
seldom, if ever, the way it works. When you compile and run your program
for the first time, you're bound to see something you don't like. Here are a
few possibilities:

~
1""' A window is the wrong size.

1""' A menu doesn't do what you thought it would.

1""' The words you wrote into a window don't look quite right.

The list goes on and on. So what do you do when something isn't quite right?
Start over? Of course not. You make a change to the source code, recompile
it, and then run it again and see how things look this time around.

What about building a program? So far in this section, I've talked about let­
ting CodeWarrior run your code. What about having CodeWarrior turn your
code into a standalone, double-clickable application? In other words, when
should CodeWarrior take your compiled code and build a program from it?
You don't have to worry about that. Every time you run your code from
within Code Warrior, Code Warrior builds, or makes, a new version of your pro­
gram. Does that mean that if you run your code 20 times, you find 20 copies
of your program sitting on your Mac's desktop? Not at all. Each time you run
your code, CodeWarrior deletes the existing version of your program and
replaces it with a new version. That way the program you find on your desk­
top is always the most recent version.

Runnin9 Code Within CodeWarrior
Knowing why you want to run source code is one thing, but actually doing it
is another. You may also want to see an example of why you'd run, then
rerun, your code. Your wish is my command.

Runnin9 the code
How to run your code? That's an easy one. Just choose Run from the
Project menu:

_________ Chapter 11: Compiling and Running Your Source Code

Ill• ·

RdifIDlndOw
Add Flies ...
Create New 6ruup •••
Remoue Selected Items X<lll .
Check syntaH •;
Preprucess
Precomplle •••
Compile XK
Disassemble

-= -=-
Bring Up To Date aeu
Make KM
Remoue Object Code ·-Re-sean:h for Flies
Reset Project Entry Paths
synchronize Modification Dates

Enable Debu!L!!_er

Set Default Project
. It"

~
Set Current Target ~

When you make this selection, you probably notice some activity in the pro­
ject window. Here's why. To build a program (which is one of the tasks of the
Run menu item), all source code files in a project must be compiled, and all
compiled source code, library code, and resources must be linked together.
So while your project's window may start out with a bunch of zeros in its two
columns of numbers, it finishes with all sorts of numbers in these columns
after you choose Run from the Project menu:

v
'

fli.
(lSourcos . ~, 76 14 .
ClRosouroos 0 0 .

8, MyProg-.m.rsro n/• n/• .
Cl Hae lilir•rles 76K 31(.

113 HSI. R\Jlltirno68K.lib 9572 1669 .
I;! M.eOS.lib 30974 a .
I;! MatN.ib68K (20.Lib 37522 2160 .

Qt. AllS I llbnr l•s lllK 21K .
I;! MSL C.68K (20.Llb ,8666 12469 .
113 HSI. C+• .68K (21).lib 42908 8327 .
I;! HSI. SIOUX.68KJ.i> 879 .
8 flltt

After selecting Run, these two columns
have a variety of values in them.

139

1 fl O Part Ill: Using a Compiler

l~~~T&~.1 ~ .
... ~fr

Building a program is also referred to as making a program. And you may
have even noticed, and guessed at the purpose of, the Make item that
appears in the Project menu. This item does just what it says - it makes a
standalone application from your source code. But the Run menu item
already does that. So why choose the Make item? You probably won't, but
there are a few cases when programmers choose to take this route. For exam­
ple, if you write a program that does something so complicated that running
it always takes several minutes, then you wouldn't want to choose the Run
item if your intention is only to build the program. Why spend the time wait­
ing while CodeWarrior builds the program and gives it a test run? While you
probably won't have a need to compile your code and turn it into an applica­
tion without running it from within CodeWarrior, the Make item does
the trick.

After you choose Run from the Project menu, subsequent selections of Run
have little impact on the values displayed in the project window. If you make
changes to your source code, though, the numbers in the MyProgram.c row
of the project window may change. That's because any time you make a
change to the source code file, that file needs to be recompiled by
CodeWarrior the next time you choose Run. Changes to your source code
may affect the size of the compiled code, and thus the values in the project
window may change.

What about all those libraries listed in the project window? If a library con­
sists of precompiled code, why do the two numbers in the row of a library file
start as zeros, and then change to other values when Run is selected - just
as if the library is also being compiled. Very observant! You're correct in your
thinking that a library doesn't need to be compiled by CodeWarrior. It does,
however, need to be loaded. That just means that the project needs to figure
out what's in the library and set up conditions so that it can access the code
that's in the library. Once a library is loaded, CodeWarrior won't have to load
it again.

Enough talk about zeros and other numbers. You must be scratching at the
walls to run the code! Shortly after you choose Run from the project menu,
your code runs. Why doesn't it run immediately? Because CodeWarrior has to
compile your source code. Don't worry, though-CodeWarrior is fast. Your
wait won't be long at all. For the MyProgram.mcp project, running the code
means that a window opens and a couple of words are drawn to it, like this:

_________ Chapter 11: Compiling and Running Your Source Code

New Window 8

Hello, World!

Mac programs really should contain a menu bar. The example program
doesn't. If you're still running the program, you can verify this by looking at
the blank menu bar on the screen . To read about adding menu bars to your
programs, see Chapter 20. For now, I want to keep things really simple.
Because no menu contains a Quit command, 1 designed the source code in
such a way that the user simply clicks the mouse button to quit the program.
If you are running the program, click the mouse to end the program.

When you quit the program that you' re running from within CodeWarrior (or
CodeWarrior Lite), you return to the compiler. The Hello, World! window dis­
appears, and the menu bar returns to that of the compiler. You then get to pat
yourself on the back - you successfully ran your first program!

Runnin9 it a9ain. And a9ain1 and a9ain ...
The Run command is of most use while you are developing or making
changes to your program. You should try making a simple change to the pro­
gram and rerunning it.

If the MyProgram.c source code file isn't open, reopen it now. Then go to the
DrawStri ng line and change the text that appears between the quotes. As
tempting as it is to remove the funny-looking \ p character, don't. But change
any of the other text, as I do here:

rr:~~ MyPrognim.c w-==a- ~

lij~~[!:J~ P•lh: jiwd Drlv• :codol(~lo ... yPrognm "'¥"09'""1\.C ~
D

thet.Hndow • GetNew~indow< 128, nl I, (lolind.,.,P\r)-IL >; I§
S.lPort < \h<t~lndow >; i i MoveTo< 30, ~ >;
OroWSt,..tnQ(M\pOoodbye, Cf'uel Uol"'ld!")"

: Llno: l3][• . ~
··-

Leave the \p I ... change the Hello, World .

141

J fl 2 Part Ill: Using a Compiler

Choose Save from the File menu to save the change. Then choose Run from
the Project menu. Because the source code has changed, CodeWarrior needs
to recompile it. After just a moment, you see a window with the new text in it:

~~'2\!New Window "" lei

Goodbye, cruel world!

Again, click the mouse to end the program and return to CodeWarrior. That
brief example should give you a feel for the power and usefulness of the Run
command. It allows you to change and test source code over and over again -
and very quickly.

Checkin9 Out the New Pro9ram
When you choose Run from the Project menu, CodeWarrior creates a stand­
alone version of your program - a double-clickable application. CodeWarrior
places this program in the same folder as the project from which it was cre­
ated. In the case of the MyProgram.mcp project, that would be the Cl 1
MyProgram folder. Go ahead and look for the program in the Cl I MyProgram
folder.

There it is! A program just like any you'd buy. Well, not just like any you'd buy.
It doesn't do quite as much. But hey, if you can get someone to pay a few
bucks for it, more power to you. Really, though. Does it behave as any other
Mac program? Prove it to yourself by double-clicking its icon to run it. Then,
after clicking the mouse to end the program, try copying the program to a
disk. Or move the program out of the folder and try running it again. You see
that your newly created program doesn't need the project, source code,
resource file, or CodeWarrior to run. It is truly a stand-alone application.

_________ Chapter 11: Compiling and Running Your Source Code

W
~ST(J~.

~ "" ..
.... !, j

.::/

You may notice a second new icon in your project folder, an icon with the
same name as your project, followed by a .SYM ending. CodeWarrior creates
this file when it compiles your source code. CodeWarrior uses it when the
debugger is running. Because you don't use the CodeWarrior debugger in this
book, you don't have to worry about this file; you can leave it in the folder or
throw it in the trash. Don't be surprised to see it again, though. CodeWarrior
creates a new version of this file every time you compile the MyProgram.c
source code file.

That's it. In this chapter, you write source code, compile it, correct errors in
the code, and build an application. I guess you don't need me anymore. Well,
you can't get rid of me quite that easily. You're probably getting comfortable
with the idea of using a compiler. But I bet you don't feel the same way about
writing source code. After all, just blindly typing in what I tell you is much dif­
ferent than actually understanding what you're typing. After you get to know
what those strange-looking combinations of characters in source code mean,
you'll have this business of programming just about li'Cked.

143

1 !, !, Part Ill: Using a Compiler

Part IV
Learning the C

Language

It Rich Tennant

In this part ...
ff you thought learning a computer language was a lot like I ~earning a foreign language like, say, French or Japanese,

you may have been a little intimidated. I don't blame you.
I've never been good at foreign languages myself. Heck, the
only thing I can say is Eat my shorts! in German. Obviously, a
programming language can't be as complicated as a spoken
language. It isn't, and here's why: A computer language usu­
ally consists of less than a hundred words. And to write a
simple program, you only need to know a fraction of them.

In programming, it isn't how many words you know, it's how
you use the words you do know. In this part, I describe sev­
eral of the words in a computer language called C. And of
course, I discuss how to use these elements of the C lan­
guage. I also talk about the collection of miniprograms called
the Toolbox. An easy-to-use Toolbox miniprogram, or func­
tion, turns a complex task, such as displaying a window, into
a very easy one. The C language can be used to write pro­
grams for a number of operating systems (such as
Macintosh, Windows 98, and so on). The Toolbox is used in
conjunction with a language such as C to write programs
exclusively for the Macintosh. While you could write a Mac
program based only on the C language, mixing in the Toolbox
allows you to write a Mac program that exhibits all the cool
graphical elements (like windows, menus, and pictures)
you'd expect to find in a Mac program.

Chapter 12

Choosing C over Other Languages
0 c 0 0 0 0 0 ~ 0 0

In This Chapter
~ C is a good choice for Mac programmers

a>- C is called C for a reason

I> C isn't the only programming language around

0000000000000000000000000000000~0000000oooooooeoe

Many programmers know several computer languages. They may learn
one language while in school, and another after they start working. Or

they may learn different languages while working at different jobs.

You don't have to worry about any of that. Unless you're a professional pro­
grammer, one language is enough, and I think that C is the best one for you.
So why pick the C language to do your Mac programming? And while I'm on
the topic of languages, why is it called C? This chapter answers these ques­
tions and more.

Wh1J. Use C on the Mac]
Which is the absolute, one-and-only language to learn for programming the
Mac? That depends on who you ask. Different programmers have different
thoughts on that, and all of them are able (and willing) to provide valid argu­
ments for their preference. In this book I use the C language, and in this
section I explain why.

Arguing about a programming language with a programmer is a little like
arguing about politics or religion - you make little headway, and you cer­
tainly can't win. If you must argue about it, my advice is to do so over the
phone. That way you can cradle the phone on your shoulder, keeping both
hands free, which allows you to ignore what the other person is saying and
keep typing away at the C program on your Mac.

1 !, 8 Part IV: Learning the C Language

Et1erv.hodv.1s usin9 C
When the Mac came out a decade and a half ago, almost everyone pro­
grammed it using the Pascal language. Then, about a dozen years ago or so,
many programmers switched to C. Most of them thought it was a little more
powerful than Pascal, meaning that programmers thought they could get
their programs to do more by using C.

If you decide to program in C, and if you need a little help at some point,
you'll find a wealth of Mac programmers who can give you a hand. That's
because just about all programmers know C. If you access the Internet, add
comp.sys.mac.programmer.codewarriorandcomp.sys.mac
. programmer . he l p to your list of subscribed newsgroups. Post a Mac­
related C programming question in either of these two newsgroups, and
you're almost guaranteed to get a response or two within a day. The support
you can ·garner from all these other C programmers may be enough reason to
use it.

That's a good one! I just realized I said,'' ... if you need a little help at some
point " Using the word if means you may, and then again, may not, need
help. You will need help. I'm not criticizing you personally; it's just a fact.
Programming can be a little tricky at times, and we all need to ask others for
advice. 1 need to, and do, just about every day. One of the most important
lessons you can learn about programming is to cast aside your fear of being
ridiculed and ask for help whenever you don't understand something.

So, is it a sound practice to select a computer language just because every­
one else is using it? Do you really want to be thought of as nothing more than
a lemming heading for the sea? Of course not. Selecting C because the major­
ity of programmers use it is only one of the reasons for choosing it - there
are several other convincing reasons for using C

Other reasons for usin9 C
To satisfy your curiosity, here are a few more reasons why you 're being asked
to learn C:

1"" It can be used to produce both mammoth, amazingly complex programs
and short, extremely simple ones. This may not be important to you now,
but if you stick with programming, you'll be happy that C is so versatile.

, 1"" The best-selling Macintosh compilers on the market allow you to pro­
gram in C. The CodeWarrior compiler you're now familiar with is one.

i 1"" Because C is the current favorite, compiler vendors like Metrowerks
update their C compilers sooner than they do compilers for other
languages.

____________ Chapter 12: Choosing Cover Other Languages

'

I'd like to cle~r up .~·question that m~y have ·: bac~.in 1972. Mr. Ritchie didn't, howev~r, creC1te
b~e11 nagging you ever since you heard atiout · · ~itentirely ,on his own. He based it on the B Ian­
the c langpage-why is it callad C? BecauseA . gu~g,e ,d~~eloped by Kf}n T~Omp~on, an
and B were already taken I Very funny, right? But associate ,of his. So when Mr. Ritchie finished
hold on -this time I'm serious~ The C language his ~aw l~i1gu~ge, itw~s only natural to call it c ..
was designed by· Dennis Ritchie· of Bell Labs

: ~ It's a highly structured language, meaning that it follows certain set rules.
Learn the rules, and the rest falls into place. Thaf s good for beginners.

: ~ It is not as complicated a language as the next most popular Mac pro-
, gramming languages, the C++ and Java languages.

~ All of the examples in this book - and on the book's CD-ROM - are in C.

~ The single-letter name, C, sounds rather cryptic and mysterious, and so
it impresses friends and coworkers when you inform them that you've
mastered it.

Who could ask for more persuasion than all of the above? Hopefully you
accept the notion that C is a good choice for Mac programmers. You can find
out how to use C by reading the rest of the chapters in Part IY.

Those Other Lan9ua9es
Pascal, C++, Java, FORTRAN, BASIC, and COBOL: you may have heard of
them. They're all programming languages, just like C. Why so many different
ones? There are a number of reasons.

Some languages are created with a specific use in mind. FORTRAN, for
example, is used mainly by scientists and engineers who need a language that
is geared heavily toward math. FORTRAN has a large number of code libraries
that allow scientists to work easily with topics such as trigonometry and cal­
culus. You can be thankful that you don't have to deal with FORTRAN when
you're just starting to delve into Mac programming.

149

15 0 Part IV: Learning the C Language

A library is a collection of code written by others. The code is placed in a
library so it can easily be incorporated into your own programs.

Another reason for the proliferation of computer languages is time. Over
time, computers have changed. So it makes sense that the languages used on
computers would change, too. If the change to a computer is great, it is more
practical to devise an entirely new language for it than to attempt to modify
an outdated language.

One other reason for the existence of different computer languages reminds
me of spoken languages. Computer languages, like spoken languages, are
developed independently from one another by people living around the
world in totally different environments. The English language and the
Japanese language both exist because people in different parts of the world
with different ideas developed them independently. Programming languages
are no different. People developed different programming languages to suit
their particular programming needs and circumstances.

As a Mac programmer, you can use just about any language you want. That's
because a programming environment like CodeWarrior Professional actually
includes a number of compilers - one compiler per language. So while I
think you'll be quite content with the C language, I don't want to mislead you
into thinking you have no choice in the matter.

When choosing a language, keep in mind that source code written in one lan­
guage may look very different from source code written in another. That
means that examples written in a language other than the one you choose
probably won't be understandable to you. Because viewing example source
code is a great way to learn about programming, you'll want to pick a lan­
guage that has an abundance of sample code available. And that brings you
right back to C. Because C is so popular, you'll have no problem finding books
filled with C language examples (such as this one). And when people post
example source code listings on the Internet (such as in the
a 1 t . sources . mac newsgroup), those listings are most often in C.

Chapter 13

Keeping Track of Things in C:
Data Types and Variables

000

In This Chapter
t> What a data type is

t> What a variable is

I> How data types and variables differ from one another

~ Which C data types are most common

!>- How to keep track of whole numbers and fractional numbers

I> How to give a variable a value

G o o o o o a o e e e o o o • o o o o o o o e o o o o o o Cil o o o o o o o u o o G o o o o o o o o

A computer program wouldn't be very useful if it didn't keep careful track
of things. After all, that's primarily what a computer is used for -

remembering things, calculating things, and ordering things. That's a lot of
things for a computer to keep organized. Even a computer needs a system so
that it can keep things straight.

In the last paragraph, I specifically used the word things instead of numbers
because a computer works with much more than numbers. Many people
think a computer only works with numbers, but it also works with words,
pictures, sounds, movies, and more. And in the case of a computer with a GUI
(graphical user interface), the computer also works with objects such as
windows and menus. In this chapter, I take a look at the two primary
programming tools a computer uses to keep track of all these things -
data types and variables.

Data T1Jpes and Variables:
Different, but Related

In Chapter 4, you get a peek at data types and variables. There, in my intro­
duction to source code (see "Source Code"), I mention the int. The int is a C

15 2 Part IV: Learning the C Language

language abbreviation that stands for an integer (a whole number). The int
is a symbol for an integer.

Besides these predetermined symbols, C allows you to make up your own
symbols. In Chapter 4, I give the example of trucks as a made-up symbol.
What I didn't say in Chapter 4 is that these two kinds of symbols - the pre­
determined C symbols and the symbols you make up yourself - are very
different from one another, and that each type of symbol has its own special
name.

Predetermined C SIJmhols: Data t1Jpes
Data is information, and information is what you're keeping track of when
you program. Different types of data exist - numbers, words, pictures, and
so on. So a computer language has different types of data to keep track of.
Thus the phrase data types.

Just about everything can be divided into types. We're all people, but we can
be divided into types by sex: the male sex, the female sex, and insects. Oops,
let me start over: the male sex and the female sex. The same is true with num­
bers. Numbers without decimal points (whole numbers) are called integers.
Because integer is such an incredibly long word, the C language refers to an
integer as an i n t. Numbers with decimal points are called floating-point
numbers. In C, a floating-point number is called-you guessed it- a fl oat.

C language data types are predefined for you. By predefined, I mean that there
are a set number of them you can use. The int and the fl oat are just two of
the dozens of types that exist. Don't worry, though; you only need to know
about ten of the types in order to write some pretty interesting programs.

Do-it·IJOUrself SIJmhols: Variables
C lets you make up symbols of your own. I use trucks as an example back in
Chapter 4. You create a symbol for the purpose of keeping track of something.

Say that you know an auto dealer, and you want to keep track of the number
of trucks he has on his lot. You can make up a symbol like trucks. A made­
up symbol like trucks is called a variable.

A variable always has a name; your auto dealer friend's variable is called
trucks. A variable also always holds a value. Suppose the auto dealer you
know has five trucks on his lot. You give the variable trucks a value of 5:

trucks = 5;

_____ Chapter 13: Keeping Track of Things in C: Data Types and Variables

I describe how to assign a value to a variable in "Every Variable has a Value"
later in this chapter. For now, take a look at a figure that shows the two parts
of a variable - its name and its value:

Variable name ____. ~

Variable value ----. l....:...J

The trucks variable has a value of 5. From my talks about numbers, you
know that the number 5 is a whole number (an integer). Many of the vari­
ables you create hold integers, but a variable doesn't have to hold an integer
value. In the figure below, I create two more variables. One is called
theWords, and it holds, not surprisingly, some words. The second variable is
named dogPi cture. It holds a picture of a dog (at least, it's supposed to be a
dog). Here they are:

the Words dog Picture

Hello, World!

You know that trucks, theWords, and dog Picture are all variables (well,
variable names, actually). I said every variable has a value associated with it.
In general terms, here are the values of each variable:

8 the Words dog Picture

Hello, World! ®l . ,.

l l
...,

t
Value is an integer. Value is the words Value is a picture.

in a sentence.

I draw different-sized boxes to hold each of the three variables. I had to
because the things that the boxes hold are different sizes. That brings up an
interesting point. How does the CodeWarrior compiler know how big this

153

15 !, Part IV: Learning the C Language

thing is that you are creating and holding in a variable? And how does it know
what you're storing there? The answer is that you must tell the compiler what
you're storing in a variable. That's where data types come in.

EflerlJ. Variable Has a TIJ.pe
Every variable has a value, but not just any kind of value. You must let the
compiler know what type of information (what kind of data) a variable holds.
If you want a variable to hold an integer value, you tell the compiler:

int. trucks:

This line of code does two things. It creates a variable named trucks, and it
tells the compiler that trucks holds an integer - a value that is of the i n t
data type. A line of code like the one above is called a declaration. You are
declaring that a variable named trucks is being created, and you are declar­
ing that it holds data of the i n t type.

Amazingly, sometimes computer terminology actually makes sense. When
you come across a new term like declare, you may think of the normal defini­
tion of the word. Not the computer-related meaning, but one you use in
everyday conversation. The dictionary says that to declare is to make clearly
known, to state, or to announce openly. That definition fits squarely with the
computer-related use of the word, which is to make a variable and its data
type clearly and openly known to the compiler.

Here's the format you follow every time you declare a variable:

Data type Variable name Semicolon

\t trL /
As you can see, to declare a variable, you first state the data type that the
variable holds, then you name the variable, and then you end it all with a
semicolon.

Et1er1J. Variable Has a Value
Every variable has both a name and a value. In "Every Variable Has a
Type," you see that the value of a variable must be of a particular type.

_____ Chapter 13: Keeping Track of Things in C: Data Types and Variables

The declaration creates the variable and lets the compiler know what type of
value the variable holds, but the declaration doesn't give the variable a value.
That's done with an assignment statement like the following:

trucks •.5:

An assignment statement gives a variable a value. It assigns a value to the
variable. But then, you may already know that - I stole the preceding line of
code, and the following figure, straight out of Chapter 4:

Symbol Equal
name sign Value Semicolon

\ \!I
trucks = 5 ;

This figure tells you that to give a variable a value, you first list the variable's
name, followed by the equal sign, the value, and then you end the line with a
semicolon.

Order Is Et1eruthin9
Now for today's quiz. Does the following source code look right to you?

trucks .. 5:
int truciks:

You probably answered no. And you probably answered that way because
you know by now that if I ask a question, I'm probably up to something. The
answer is indeed no, and here's why. Before you can assign a variable a value,
you must first declare it. When you compile your source code, the compiler
looks at each line of source code in order, from top to bottom. So in the above
example, the first thing the compiler would see is:

trucks 0 5:

Because the compiler hasn't read the declaration on the second line yet, it
doesn't know what the heck trucks is. Even if it is clever enough to assume
that trucks is a variable, it doesn't know what type of data trucks holds.
The compiler becomes so frustrated, in fact, that it stops compiling and pops
open its Errors & Warnings window with a message like this:

155

15 6 Part IV: Learning the C Language

Erron I> W11mlng1

Why can't the compiler peek ahead somehow and see that trucks is
declared on the very next line? Because you're dealing with software and
computers, my friend . And with software and computers, order is everything.
So the moral of this story is to declare your variables before using them. That
is, before assigning them values. To remedy the offending code, simply
switch the two lines around, like so:

int trucks ;
trucks a 5;

This simple change makes the compiler very happy, and it will perform its
compiling duties with no further complaints.

Common Data Tv.pes
I said that Chas dozens of data types. I also said that you'd only need a hand­
ful of them to create a Macintosh program. In the following sections, I
mention a few of the most common data types. You encounter other data
types throughout the book, but don't worry- I explain each data type when
it comes up.

Data t1J.pes for whole numbers
The three most common number data types are int, short, and l ong.

An int variable holds an integer, but not just any integer. The biggest number
you can store in a variable of type int is 32,767. 1 know, I know. It would sim­
plify things if an int held a number up to, say, 10,000 or 100,000. But it
doesn't. You just have to use an in t for your integer needs up to 32,767. That
means that if you use an in t to keep track of cars at an auto dealership, and
car number 32, 768 rolls onto the lot, you have to switch to another data type.

_____ Chapter 13: Keeping Track of Things in C: Data Types and Variables

Why have any restrictions at all on how big a number you can store in a vari­
able of a certain data type? Because a variable is held in computer memory.
One variable occupies a certain number of bytes of memory. An i n t variable
is stored in two bytes. In the system of math used by the computer, 32, 767 is
the biggest number that can fit in two bytes of memory.

A short variable is very similar to an int. Variables of either type hold whole
numbers, and both hold numbers up to 32,767. So why have two data types
that are essentially the same? Because there is a subtle difference between
the two:

A short can never hold a whole number greater than 32, 767.

An int can sometimes hold a whole number greater than 32,767.

Okay, okay. I know I said that an i n t can only hold whole numbers up to
32,767, but wait. The clever programmer can get variables of type int to hold
numbers greater than 32, 767; and the Code Warrior compiler can be used to
accomplish this magical feat. But such tomfoolery is a bit advanced for this
book, and so for all practical purposes, you can consider the short and the
i n t one and the same. Which one should you use? After looking at a lot of
source code written by programmers at Apple, I realized that they seem to go
bonkers about the short type. So that's the type I use in the remainder of
this book.

If you want to create a variable that holds numbers larger than 32,767, use
the 1 ong data type. A variable that is declared to be of type 1 ong can hold a
number larger than two billion. That should definitely handle all your whole
number needs.

I bet you just thought of something: If the 1 ong type can hold such a huge
number, as well as much smaller numbers, why not just play it safe and
always use a 1 ong? Why ever bother with the short type? That's a good
observation, but there is a reason why both types exist - memory manage­
ment. In order to hold such a large number, a 1 ong reserves much more
memory than a short.

You still aren't sure whether to use a short or a 1 ong? You just have to think
a little bit about what you want your program to count. If your program is
keeping track of, say, the number of children a day care center takes care of,
use a short - it's pretty unlikely the day care center will ever have more
than 32, 767 kids, right? On the other hand, if you're writing a program that
keeps track of the number of people living in your state, use a 1 on g.

157

15 8 Part IV: Learning the C Language

A data t1J.pe for fractional numbers
You may find that the short data type and the 1 ong data type, both of which
hold only whole numbers, are useful for most of your programming needs.
After all, that auto dealership you're writing a program for won't be selling
fractions of a truck. Regardless of how shady the salesman appears, he proba­
bly can't get away with that.

But if you were writing a program to track the dealership's inventory of auto­
mobiles, you would want to include the price of each car, and that involves
fractions. More specifically, keeping track of prices involves decimals. If a
number includes a decimal point, neither a 1 ong or as ho rt cuts it.

A number that contains a decimal point is called a floating-point number. A
number with a decimal point isn't required to have a certain number of digits
before or after the decimal point. The position of the decimal point moves
about - thus the term floating-point. For example:

42.7654

/' Two digits before
the decimal point

9.95

Four digits after
the decimal point

/' One digit before
the decimal point

Two digits after
the decimal point

Just as integers are represented by a C data type, floating-points are also rep­
resented by a C data type called the fl oat. A variable that is of type fl oat
can hold a value much smaller than 1, such as 0.00000005. It can also hold an
incredibly huge number, such as 5,000,000,000,000,000,000,000. And no, I
don't know how to say that last number out loud, either!

You use the f 1 oat data type for:

I
~ Keeping track of things that don't come neatly packaged in whole numbers

~ Keeping track of less than one thing - a fraction of something

~Keeping track of things that exceed the limit of a 1 ong type (which is
just over 2 billion)

_____ Chapter 13: Keeping Track of Things in C: Data Types and Variables

Common Variables
In the previous section, I showed you some common C data types. So it
would make sense if I now showed you a few of the commonly used variables,
right? Wrong! Data types are an established part of the C language. There are
a limited number of data types, and each data type is spelled a specific way
and used a specific way. Variables, on the other hand, aren't predefined for
you. You make up variables according to your programming needs. Because
of this fact, I can't give examples of variables that every programmer uses.

A Feul Examples of Variables
In this chapter, I give you a head start on learning the C language by introduc­
ing two concepts very important to a programming language - declarations
and assignments of variables. I assume that those two programming ideas
made a little sense to you. If they did, here are a few examples.

Declarin9 flariables
The declaration of a variable informs the compiler that you've just created a
new variable. It also lets the compiler know what type of information the vari­
able holds. Here are a few examples of variable declarations:

short bookstores;
1 ong books;
fl oat price;

Most programs use more than one variable. For example, the three variables
that I just declared could all appear in a single program that keeps track of
books sales for this ... For Dummies book. The short variable bookstores
holds the number of bookstores that carry the book. The 1 ong variable
books holds the number of copies of the book sold. The fl oat variable
pr i c e holds the cost of the book.

I made a couple of assumptions when I chose the data types for my variables.
Variable bookstores is a short. Because the largest value a short can have
is 32,767, I'm assuming that fewer than 32,767 bookstores will carry my book.
For the books variable, I selected the 1 on g data type. If this book sells more
than 32, 767 copies, my program will still be able to keep track of sales. What
about the price variable? Did I have a choice in what data type I would use?
Not really. Book prices are often a dollar amount plus 95 cents, such as
$29.95. This means two things:

~
J;' Because the number has a decimal point, I must use the float data type.

J;' You were tricked into thinking you paid less than you really did for the
book.

159

16 0 Part IV: Learning the C Language

The line of source code that declares a variable is called a declaration state­
ment. You see this term in many computer programming books. I prefer to
use the slightly less techno mumbo-jumbo phrase declaring a variable.

Assi9nin9 flalues to flariahles
You may already know what I'm about to say, but it's an important point, so
please bear with me. You must declare a variable before you use it - that is,
before you give it a value. Once declared, you give a variable a value by
assigning it one. As an example, I want to declare some variables that pertain
to my records for this book:

float price;
short bookstores:
long books:

After 1 declare the variables, 1 can give any or all of them values:

price .. 29.95:
bookstores .. 295:
books .. 4.0521:

Variable price is a fl oat, so I can feel free to include a decimal point in its
value. Variable bookstores is a short, so its value must be less than 32,767-
and it is. The l on g variable books can, but doesn't have to be, greater than
32,767. (Of course, I'm happy that the long variable is larger than 32,767.)

Notice that the value I gave books doesn't include a comma- like 40,521.
Although the CodeWarrior compiler may let you get away with including a
comma, your results won't be as expected. For example, if you try to assign
books the value 40,521 (with the comma included), the resulting program
would end up storing a value of 40 in variable books. Also notice I don't write:

price .. $29. 95:

The variable price was declared as a fl oat, which is a number with a deci­
mal. A symbol like a dollar sign isn't a part of a number; it's a label that
precedes a number. Adding extra information, such as labels, causes the
CodeWarrior compiler to complain. If you include a symbol like the dollar
sign, CodeWarrior sends an error message when you compile your program.

The line of source code that assigns a variable a value is called an assignment
statement. Like the term declaration statement, you see this phrase in some
computer programming books. I just say that I'm assigning a value to a vari­
able or I'm giving a variable a value.

In this chapter, I talk about data types, variables, declarations, and assign­
ments - and you haven't even read the chapter on learning C. You 're in way
too deep to back out.

Chapter 14

Learning the Language -
Just the Basics of C

Gooooooooooooooooooooooeoooooooosooooooocoooooooo

In This Chapter
&> Adding comments to source code

~ Naming variables

C> Using arithmetic with variables

f>. Looping to repeat source code

I> Branching to allow choices

oooooooooooooooooooocoooooooooooooooooooooeoooooo

~e entire C language can't be covered in a single chapter of a single book.
But then, who needs the entire language? You just want to know enough

to get a Mac program going, right? You're in luck- that much I can cover
here and now.

Care to Comment on Thatl
Sometimes source code looks confusing - I grant you that. You and I aren't
the only ones who feel that way, though. Many, many people are befuddled by
code, and so the people who make compilers came up with a way to help.
Compilers let you add comments to your source code. These comments, or
explanations, appear within your source code, but the comments aren't
source code themselves. A comment is text that is readable by you, but is
ignored by the compiler when it compiles the source code. Take this line of
code for example:

short tickets:

16 2 Part IV: Learning the C Language

What do you think the variable ti ck et s is used for? You may have a few
ideas, and one of them may even be right. But if I wrote the source code, and
you're looking at it, you won't know for sure what tickets is unless you're a
mind reader. Now look at the same line of code; this time I added a comment
to it:

short tickets.: /* the number of conce~t tickets ·sold */

Much clearer, right? And when you compile this line, CodeWarrior doesn't
return an error message, even though the words that follow the semicolon
obviously aren't valid C code. How does the compiler know the difference
between code and comments? Glad you asked. Here's the answer:

The compiler ignores the slashes, asterisks,
and the words that appear between them.

/ ~
short tickets: /* the number of concert tickets sold */

A slash, immediately followed by an asterisk, signals the start of a comment.
An asterisk, immediately followed by a slash, marks the comment's end. As
an example, I add comments to a few lines of code I use in Chapter 14:

short bookstores :f* numb~r of ;stores carrying. my book *I
long books: . /* number Of books soltL*/ .
float price: /* price of .a single. copy of my book */

Sure, it takes a little extra time to add comments to your source code. But the
clarity they add is well worth the effort.

Variable Names
Your code may contain several types of variables. It's therefore time for the
lowdown on variable names. (If you aren't sure what I mean by several types
of variables, it's time for you to read Chapter 13.) Here are some guidelines
for naming a variable:

1

1""' Use any combination of upper- and lowercase letters, digits, and
underscores.

1""' Use a letter for the first character in the name.

1""' Keep in mind that C is case-sensitive.

_______ Chapter 14: Learning the Language - Just the Basics of C

According to these guidelines, books, testScore, Total Score,
fi nal_result, and total 2 are all valid variable names.

Here's a look at a few invalid names and why they're illegal:

2total

f
First character must be
a letter, not a number.

the$value

f
No characters allowed
except letters, digits,
and underscores.

grandfotal

No characters allowed
except letters, digits,
and underscores.

When picking a name for a variable, make it descriptive of what the variable
represents. If a variable holds the total number of days you worked, name it
tot a 1 Days rather than something obscure like theNumber. It makes it easier
for someone else to figure out what your code is supposed to be doing. And,
should you set unfinished code aside for a while and then return to it at a
later date, using descriptive names makes things easier for you, too.

Operatin9 Without a License
Computers work with numbers, and the programs you write certainly do the
same. A computer is a whiz at working with numbers, but you have to help it
along by telling it what to do. That's what operators are all about. Take this
simple case as an example:

trucks ... 5:

To give a variable a value, you must operate on it. The word operate may
sound a little pretentious for the simple act of assigning a variable a value,
but it's not meant to. Here, operate just means to work with. A machine opera­
tor works with a machine, and a telephone operator works with telephone
numbers, and no one thinks that they are pretentious. In C, certain symbols,
such as the equal sign, are called operators.

In the previous line of code, the equal sign works with the variable trucks
and the number 5. The equal sign is responsible for placing the number 5 in
the variable trucks. Without it, the variable would not receive a value.

In C, the equal sign is called the assignment operator. The equal sign assigns a
value to a variable. While the equal sign is by far the most commonly used C
operator, you should know about some other types of operators, which I
describe in the following sections.

163

16 fl Part IV: Learning the C Language

Minimal Math
It's quiz time! In your Macintosh programming endeavors, which of the fol­
lowing objectives do you hope to accomplish:

A. Write a program that uses a menu and a window.

B. Write a program that disproves Einstein's Theory of Relativity.

If you chose answer A, then the C language and this book are for you. If you
chose answer B, then the C language may still be for you, but this book ain't.
I stick to minimal math in this book; although C offers several operators that
allow you to include a wealth of mathematical tricks and techniques in your
programs, I only cover four of them in this book. Those four, however, should
meet just about all your arithmetic needs while you are mastering the basics
of Mac programming.

The addition operator
In programming, the act of addition is just as you'd expect it to be. You
simply place the plus sign between two numbers to add them together. The
result of the addition, the sum of the two numbers, is stored in a variable:

trucks a 5 + 10;

The above line of code performs two tasks. First, it adds the numbers 5 and
10. Second, it saves the result in the variable named trucks. Because two
tasks, or operations, are performed in the line of code, two operators appear:

The assignment operator

!
trucks 5 + 10;

l
The addition operator

The addition operator is used to add two numbers together. That being the
case, try to determine why this following snippet (group of code) is actual,
real-live, functioning C code:

_______ Chapter 14: Learning the Language - Just the Basics of C

short pickups:
short flatbeds;
short trucks:

pickups "' 5:
flatbeds - 10:
trucks a pickups+ flatbeds:

Let me interrupt myself here to point out that blank line between the variable
declarations and the assignment statements in the preceding code. While not
required, many programmers use white space in this manner. They feel that
separating sections of code in this way achieves a little more clarity.

The last line in the preceding code appears to add two variables together,
rather than add two numbers together. Keep in mind that a variable has a
name and a value. The computer is more interested in the value of the vari­
able. When you add two variables together, the values of the variables get
added. Take a look at the source code up to, but not including, the line that
adds the variables:

short pickups:
s.hort flatbeds;
short trucks;
pickups "" 5:
flatbeds "' 10:

Here's a figure that represents the variables:

trucks flatbeds

??? 10

I put question marks as the value of trucks because I don't know what the
value of trucks is - I haven't assigned it a value at this point. Now, the addi­
tion line:

trucks a pickups + flatbeds:

Watch what happens to the variables now:

trucks pickups flatbeds

= 10

165

16 6 Part IV: Learning the C Language

What exactly is the purpose of using variables rather than just using num­
bers? The computer is great at keeping track of values, but people are better
at keeping track of names:

Five of what?

l
trucks = 5 +

Ten of what?

pickups = 5;
flatbeds = 10:
trucks = pic~ps + fla~eds;

Ah hal Five pickups and ten flatbeds!

Now that you know that the compiler views a variable by the value it holds,
you shouldn't be surprised to hear that all four of the following truck assign­
ments give trucks a value of 15:

pickups .. 5;
flatbeds .. 10:
trucks = 5 + 10:
trucks = pickups·+ flatbeds;
trucks .. pickups + 10:
trucks = 5 + flatbeds:

The subtraction operator
As with the addition operator, the other three basic math operators are also a
snap. To subtract one value from another and assign the result to a variable,
use the minus sign, which is called the subtraction operator:

trucks Q 10 - 5:

The subtraction operator works with variables just as the addition operator
does. In the following examples, I add comments to provide you with the
result of each subtraction operation:

pickups .. 5:
flatbeds .. 10:
trucks • flatbeds - pickups:
trucks - flatbeds - 5:
trucks .. 10 - pickups;
trucks " 10 - 5:

I* The res~lt of each of*/
I* these four lines of code?*/
J* Varfable trucks will*/
:/* have a value.·of 5 */ ·

_______ Chapter 14: Learning the Language - Just the Basics of C

The multiplication operator
In C, multiplication is performed by placing the multiplication operator- an
asterisk - between the two numbers:

totalDays • 7 * 10; I* totalOays value will be 70 */

Take a look at a few examples using variables:

short daysPerWeek ;
short weeks;
short totalDays;
daysPerWeek • 7;
weeks • 10 ;
totalDays • 7 * 10 ;
totalDays • daysPerWeek * weeks;
totalDays • daysPerWeek * 10;
totalDays • 7 * weeks ;

The diflision operator
The division operator - a slash - is used to perform division in C. This oper­
ator divides the first number by the second:

dozens ~ 48 I 12; /* dozens will have a value of 4 */

Like all the other operators, the division operator works on numbers, vari­
ables, or combinations of both:

short tot a 1 Dozen ;
short eggs;
short oneOozen;

eggs • 48 ;
oneDozen • 12;
totalOozen - 48 I 12;
totalOozen • eggs I oneDozen ;
totalDozen • eggs I 12 ;
tota lDozen • 48 I oneDozen ;

Notice in the preceding examples the result is a whole number - one that
has no decimal, or fractional, part to it. That is, 12 divides into 48 exactly 4
times. What do you suppose the value of tot a 1 Dozen would be if eggs had a
value of 51 and oneDozen still had a value of 12? Like this:

eggs - 51 :
oneDozen • 12;
totalDozen • eggs I oneOozen :

167

16 8 Part IV: Learning the C Language

~
~St(!~.

~ ..., ..
I- !.

,;

My calculator tells me that 51 divided by 12 is 4.25. But total Dozen, which is
defined to be a variable of type short, can only hold whole numbers. The
result of such an "uneven" division is that the fractional part is simply
ignored, or forgotten. That means that total Dozen would still have a value
of 4 - the .25 part would be ignored.

Operators work to9ether
You don't have to restrict your use of math operators to one per line. You can
use them just as you would if you were figuring something out on paper:

short grandTotal:
short .score!;
short score2:
short penalty:
score! = 75:
score2 = 90:
penalty "' 10.:
grandTotal .. score! + score2 - penalty;

If your program is to include tricky, complicated operations that involve sev­
eral of the operators, you need to know about operator precedence. That is,
you need to know which operators the compiler looks at first as it performs a
calculation. For example, does 5 + 2 * 3 equal 21 (5 plus 2 is 7, times 3 is 21),
or 11 (2 times 3 is 6, plus 5 is 11)? Perhaps surprisingly, the answer is 11.
Most intermediate-level programming books discuss operator precedence in
detail. But I won't go in to it here.

All right, you caught me. What the heck do scorel and score2 refer to? And
what kind of penalty does the pen a 1 ty variable represent? I said it's a good
idea to use descriptive words when choosing variable names. If the above
code is for a game I'm programming, perhaps I should follow my own advice
and select better variable names. Variable names such as scoreGamel,
scoreGame2, and tooMuchTi me Pena 1 ty would probably be better choices.

Operators work with floats, too
Though I haven't shown it, each of the four math operators works with
floating-point numbers as well as with whole numbers. Here are a few examples:

float halllength: /*entrance hallway length, in feet*/
float hallWidth: /* entrance nallway width. in feet */
float hallArea: /*entrance hallway floor area *l
halllength 0 6A2:
hallWidth D 4.0: . .
hallArea - halllength * hallWidth: /*area ts 24.8 */

_______ Chapter 14: Learning the Language - Just the Basics of C

Repeatin9 Yourself blJ Loopin9
One of the greatest powers of a computer is its capability to do repetitious
work, and do it at incredible speed. Computer programs perform this feat
by running the same lines of code repeatedly - that is, by looping through
the lines.

The need to loop
You know that DrawStri ng is the command you use to draw some text into a
window. Say you want to write the word Again three times in a row in a
window. Don't ask me why you want to do this - just humor me. To write the
word Again three times in a row, you could use this code:

DrawString("\pAgain Again Again ");

A second way to achieve the same result would be to use the DrawStri ng
command three times, like this:

DrawString(" \pAgain ');
OrawStr1ng("\pAgain ') ;
OrawString("\pAgain ');

Either of the above methods results in text that looks something like this:

Window

Again Again Again

That's all well and good. But what if you wanted to write the word Again ten
times, or a hundred times? You could fill pages of source code with the
DrawStri ng command. A better method would be to have a line of code that
tells the program to repeat the line or lines that follow, something like this:

Repeat the code between the following braces 10 times
I

OrawString("\pAgain ") ;

169

1] 0 Part IV: Learning the C Language

~
~sr11~.

8 "' v l ,,. .

You probably have figured out that the above example isn't real C source
code. But if you replaced the first line (the one written out in English) with
some C code that did what those words say, you'd be able to write Again as
many times as you wanted without writing page after page of source code.
You'd also have the technique of looping all figured out.

The while loop
Looping is an important part of any programming language, and most lan­
guages allow you to easily add looping capability to your source code. The
powerful C language is no exception. To create a loop in C, you use a w hi l e
statement.

Words that are part of C, like short, fl oat, and while, are called keywords.
The keywords make up the language itself. Because each keyword has a spe­
cific use and purpose, you can't use these words for other purposes. For
example, you can't create a variable named w hi l e. If you try to, the source
code won't compile -you just get an error message. The Metrowerks
CodeWarrior documentation includes a complete list of the C language key­
words to help you avoid such errors.

In noncomputer terms, here's what awhile loop does:

while something is true .••
{
.•• run the code that is between the braces
I

The word something is a little vague for a computer, so you won't be sur­
prised to hear that instead of something, the w h i l e loop performs a test.
Grades for this test don't range from A to F. Instead, the test is scored by
either a pass or fail.

In C, a pair of braces defines the start and end of a block of code. A block of
code is also referred to as a compound statement. The braces tell the compiler
that the code nested between the braces all belongs together. In the case of a
wh i l e loop, the code between the braces all belongs to the wh i l e loop.

In C, if a test passes, you say that the test is true. If the test fails, you say it is
false. Take another look at - again, in noncomputer terms - how the wh i l e
loop is shaping up:

while test is true ...
l
.~.run the code that fs between the braces
}

_______ Chapter 14: Learning the Language - Just the Basics of C

Now for the main event: Take a gander at an actual whi 1 e loop. Before I write
the loop, I need to declare a variable that will be used in the loop test. In the
following example, the variable count serves this purpose. I then assign this
variable a value. Why do that? So the loop has predictable results. If I don't
know the value of the variable used in the wh i 1 e test, I won't know how many
times the w hi 1 e loop will execute. In this next example, I assign variable count
a value of 0. The explanation that follows makes it clear why I choose 0.

short: count:.
count:'R 1)':

Now for the loop. Just take a look; I explain what's going on afterward:

whi.1 e (coµnt < 10 > (. . ·- '

OrawS~ringC•\pAgain • >:
count++:
J

You're looking for the test, right? The test in the loop lies between the paren­
theses after wh i 1 e -you always find the test after the wh i 1 e statement. If
the test is true, the code following the test runs:

While this test is true ...

while (count < 10)

{ DrawSt ring (11 \pAgain 11

) :] ••• run this code.
count++;

}

I
"" The less than operator (<) tests true if the left side is less than the

right side.

"" The greater than operator (>) tests true if the left side is greater than
the right side.

That figure helps, but it may not be descriptive enough. Take a closer look at
what's going on in the test. You should recognize the < symbol. It, along with
the > symbol, are called comparative operators. Like the basic math opera­
tors, comparative operators may look familiar to you. You discovered them
early in school, though they probably weren't referred to as comparative
operators at that time. The comparative operators in the while loop perform
the following test:

171

1 7 2 Part IV: Learning the C Language

The wh i 1 e statement in the example is read, while count is less than JO.
While count is less than 10, do what? The answer is: Run the code that fol­
lows the test. Is the value of variable count less than 1 O? Yes, it is; I assigned
it a value of 0, remember?

·short count:
count "' O;

Because count has a value of 0, the test passes. That is, it evaluates to true.
That means the program runs the code within the braces. The word Again is
written to the screen, and the variable count will increment by one.

Slow down, you say! What's this about incrementing a variable, and what's
with the ++ symbol? You know that you can assign a variable a value:

/

Write the word Again.
while (count < 10)
{

DrawString("\pAgain"):
count++:

} ' Add one to the value of variable count .

count .. O;

But did I mention that later in your source code, you can assign that very
same variable a different value? Just think about the meaning of the word vari­
able. As is my habit, I quote Mr. Webster: "apt or likely to change or vary;
changeable, fluctuating." Didn't I tell you that programming terminology actu­
ally makes sense sometimes?

Yes, a variable can take on different values during the running of a program.
That's what's happening in my while loop-the variable count is being
assigned a new value. To assign a new value to a variable, I use the increment
operator, which is the two plus signs in a row. It's fine to breathe a sigh of
relief; that's the last operator you need to know about to work with this book.
Of course, this is a pretty big book, and so there may be one or two operators
I haven't thought of yet. If there are, I explain them wherever they show up.
Regardless, you can take comfort in the idea that you don't need to remem­
ber a whole lot of operators.

Now for a short review. Before the while loop, variable count has a value of 0.
When the program compares count to the number 10, it is indeed less than
10. That means that the test passes and the code between the braces runs.
When that code runs, the word Again is written to a window. Additionally, the

_______ Chapter 14: Learning the Language - Just the Basics of C

variable count takes on a new value; its old value of 0 incremented by one.
After one test, count has a value of 1.

So where's the loop? After the code between the braces runs, the program
makes a U-turn and heads back up to the wh i l e statement. Code normally
doesn't do that. When a loop isn't present, code runs one line after another:

I
short bookstores;
long books;
float price;

price = 19.95;
bookstores = 295;
books - 40521:

With a loop, the program keeps ending up back at the while statement:

short count;

count 0:

....---+--~ .. while count < 10)
{

DrawString("\pAgain");
count++;

Back at the while statement for the second time, the same test is performed
again. This time, however, variable count has a value of 1, not 0. count is
incremented in the loop body. The body is the code between the braces. Is
count still less than 10? Yes. So the program runs through the body of the
loop again. The very same two lines of code run. The word Again is written,
and the variable count is incremented again-this time from 1to2. Then it's
back up to the while statement for still another test.

When does a loop end? When the test fails. After the tenth running of the
loop body, variable count has a value of 10. When the program loops back up
to the while statement, the test fails. Variable count, with a value of 10, is
compared to the number I 0. Is 10 less than 1 O? No. The test evaluates to
false, and the body of the loop is skipped.

173

1 7 !, Part IV: Learning the C Language

What happens if you forget to increment the variable that serves as the loop
counter? For example, what would the following code do?

short count:
count = 0:
while l cotirit < 10)
I

OrawString(•\pAgain ·>:

This loop is called an infinite loop. It runs forever, or at least until you shut
the computer off. That's because the variable count is first given a value of 0,
and then it is never assigned a new value. The test, count < 10, is always
true, and the loop body always runs. If you compile and then run one of your
programs, and it just seems to sit there waiting, check your source code for
infinite loops.

Loops are one way of changing the flow of a program as it runs. Without a
loop, the program runs one line after another. With a loop, that even flow is
broken up. Some lines of code - the ones in the loop body- run more than
one time. The example in this chapter - repeating code to draw a line of text
several times - was helpful but not particularly practical. Here are a few
examples of when you may want to include a loop in a program. You can use
a loop to:

1 1"" Flash words or a picture on and off, as in the display of a blinking red
light or stop sign to get the user's attention.

'
. 1"" Create animated effects, such as a shape or picture moving across a
\ window (you see an example of this use in Chapters 18 and 19).

, 1"" Perform certain mathematical operations, such as cubing a number
' (multiplying a number to itself twice, as in 4 times 4 times 4).

ChantJintJ Directions hlJ. BranchintJ
Computers are thought of as decision-making machines. Your Mac can't actu­
ally think for itself, of course. But you can write source code that makes it
seem like a program running on the Mac is actually making a decision. In
order to accomplish this amazing feat of magic, you need to know what
branching is and how it works.

_______ Chapter 14: Learning the Language - Just the Basics of C

The need to branch
Imagine you've written a program that has a single menu in the menu bar.
The menu has just two items in it:

Animate a Square
Animate a Circle

If the user chooses the first menu item, the program draws a square, and the
square races across the window from left to right. If the user chooses the
second menu item, the program draws a circle, which then moves across the
window. What draws the square and moves it? Your source code. What draws
the circle and moves it? Again, your source code - but different source code:

__ ..,. __ _
--:-.::,.
•M-
:-:~·· ... ·-· -.
1•1> JIHtA __ ..,. __,_ ..
·-· -·-............
•-DMtti ...

When the user makes a menu selection, how does the program know which
source code to run? It determines that from the menu item that was selected.
Somehow the program has a way to follow the instructions given from the
menu choice and to run certain parts of code based on that choice. The pro­
gram uses some technique to branch down different source code paths.

By the way, by the time you finish this book, you 'II be able to write a program
that has a menu similar to the one shown above. Not only that, your program
will be able to move an object across the screen. This should be solid proof
that programming the Mac is not such a hard thing to do after all.

175

1 7 6 Part IV: Learning the C Language

The switch branch
Handling a menu selection is a very practical application of a branching state­
ment, and so I'll continue to use a menu selection to illustrate how branching
works. Rather than talk about animation as I did in "The need to branch," I
want to start very simply. Assume that I have a menu in my program with
these two menu items in it:

Menu Item 1
Menu Item 2

When the user chooses the first item, the program writes the words Item I! to
a window. When the second item is selected, the program writes the words
Item 2! to the same window:

Menu Item 1
Menu Item 2

~ Window

Item 11

~ Window

Item 21

From the user's perspective, that's all that happens with this program. From
the programmer's viewpoint, a lot more action takes place. If the user
chooses the second menu item, the program assigns a variable the value of 2.
In the source code for this program, I called the variable theMenu I tern:

---.. theMenu I tern - 2 ;

If the user chooses Menu Item 1, then the program assigns theMenultern a
value of 1. If you ever wondered why you need to be able to assign different
values to a variable, this is a good example of why it's important. In Chapter
17, 1 discuss menus in detail , and there I demonstrate how a program assigns
different values to the same variable. For now, it's just important that you see
that it does.

_______ Chapter 14: Learning the Language - Just the Basics of C

Next, the code takes care of whatever needs to be done in response to the
selection of the second menu item. Not by accident, I picked an example
where not much has to be done after the menu selection. The program
simply writes Item 2! to a window. (Please take a blind leap of faith with me
and assume that this window was created earlier in the program.)

Here's where the decision-making comes in. You know that the program
writes to the window regardless of which menu item the user picks. But
which words should it write? Somehow the program must decide whether to
write Item 1 ! or Item 2! What should the program base the decision on?
Answer: The value of variable theMenultem, which holds the number of the
menu item. In plain English, the source code needs to do something like this:

what is the value of theMenultem?
{

in case its value is 1:
OrawString("\pltem l!"J;

in case its value is 2:
DrawString(•\pltem 21·>:

Once again, you probably realize that the preceding words aren't actual code.
Here's the real source code for making a decision:

switch (theMenultem)
{

case 1:
Drawstring("\pltem 1! "):
break;

case 2:
DrawStrin9(0 \pltem 2!"):
break;

Hey, what's that s w i t ch stuff doing there? The s w i t ch statement is the C lan­
guage way of selecting one group of source code to run from a collection of
two or more groupings. The program doesn't always run the same group of
code; it switches, depending on the circumstances at the time the program
meets the s w i t ch statement. To write a s w i t ch branch, first write the C key­
word switch followed by a variable name between parentheses:

switch { theMenultem >

The variable should be an int, along, or a short. Following the switch line
comes a pair of braces. In between the braces are two or more case labels. In
my example, I use two labels, case 1 : and case 2 : . Each label is followed
by one or more lines of code, and each label ends with a break statement.
Like switch and case, break is a C keyword, a word defined to be a part of
the C language.

177

1 7 8 Part IV: Learning the C Language

A s w i t ch statement works by comparing the value of the variable between
the parentheses on the s w i t ch line to each of the values associated with the
case labels:

The value of this variable ...

!
switch (theMenultem
{

... is compared----.. case 1:
tothevalues DrawString(11 \pltem l!");
of each number break;
that follows a
case label. ----.. case 2:

DrawString(11 \pltem 2! 11
);

break;

Say the user of my program chooses the second menu item. My code then
encounters an assignment statement like this:

theMenultem g 2:

Then comes the switch statement. The value of theMenultem, 2, is com­
pared to the values listed in each case label. When a label with the same
value as theMenu I tern is found, the code under that label runs:

theMenultem = 2;

switch (theMenultem
{

case 1:
DrawString("\pltem 1!");
break;

DrawSt ring (11

\ p I tern 2 ! 11

) : follows the matching
case 2: J Only the code that

break: case label will run.

It's important to realize that not all of the code between the braces runs
during a pass through the switch. Only the code that follows one label runs.
After the program starts running some of the code, what signals the program
that it's time to leave the switch? That's where the break statement comes
in. No matter what case label code is running, when the program reaches a
break statement, the switch ends. That is, the program jumps out from the
braces and moves on to the line of code that follows the switch. So it's impor­
tant that every group of code that follows a case label ends with a break:

_______ Chapter 14: Learning the Language -Just the Basics of C

switch (theMenuitem)
{

case 1:
DrawString("\pitem l!");
break:

case 2:

When the program reaches
a b re a k statement, the rest

DrawString("\pltem 2!");
break;

of the switch code is skipped.

Don't forget the break statements! If you do, the code under more than one
case label can run. If I didn't include break statements in my menu example,
and theMenultem had a value of 1, both Item 1! and Item 2!would get drawn
to the window. Without the break after the first Draw St r i n g, there would be
nothing to tell the switch statement that it is time to bail out of the switch.

The if branch
The switch branch is very useful when you want your program to choose
from several possibilities. But many situations arise when you only want your
program either to run a section of code or not run it. Although the s w i t ch
branch can be used for such occasions, a different type of branch is more
practical-the if branch. If you've mastered the switch, the if branch may
look very simple. Here's an example:

short vaca.t ion Days:

if (jac~tionDays > 0)
(

Mov~Jo(20. 30):
Drawstring(•\pYou' ve got vacation: comingJ• l: ·

An i f branch uses a test condition to determine whether the code under the
i f should run or not run. In the preceding example, the i f examines the
value of the variable vacation Days to see whether it is greater than 0. If it is,
the two lines of code between the braces run. If vacati onDays isn't greater
than 0, the program skips the code between the braces lines, and no message
is written.

179

18 0 Part IV: Learning the C Language

The i f branch is used to handle situations that have two possible outcomes.
In the preceding example, vacation Days is either greater than 0 or it's not.
For one of the outcomes (vacation Days greater than 0), the example draws
a message. What if I wanted to draw a message regardless of the outcome? If
you want the i f branch to respond to both possible outcomes, you can use
an e 1 s e in conjunction with the i f. I'll expand upon the vacation example to
provide a demonstration of what's referred to as an i f - e 1 s e branch:

short vacationDays:

if (vacationDays > 0)
{ .

Movelo(20. 30 >:
Drawstring(•\pYou've got vacation com1og!• >:

I
else
I

Movelo(20~ 30 >: .
Drawstring{ "Sorry, no vacation' days left.• >:

Like the code that makes up the body of the i f section, the code that is to be
used in the e 1 s e section is defined by opening and closing braces. Unlike the
i f part of the i f - e 1 s e, following the e 1 s e here is no pair of parentheses
with a test between. Thee 1 se doesn't need any kind of test - the code
under the e 1 s e runs every time the test following the i f fails.

That's All There Is to Cl
No, there's plenty more. If that was it, there wouldn't be much need for soft­
ware engineers like myself. I know with that line I'm setting myself up for
some rude comments from you, but show a little mercy.

Although this chapter doesn't cover all the C there is, it does cover the
basics. The remaining bits and pieces that you need in order to write a
Macintosh program are doled out throughout the remainder of the book. And
if you have any quick questions about C, you can always refer to the C lan­
guage reference in Appendix A. There I list several important elements of the
C language along with examples of each, which may give you some ideas on
how to construct or modify your own programs.

Chapter 15

To Build a Program, You Need
a Toolbox

o o Q e o o o o o o Q o o o o o o o o o o a o o o o 0 o o o o c o o o e @ o o o o o o o o o o t) o

In This Chapter
~ Becoming good friends with the Toolbox

Ila> Finding the Toolbox

~ Sampling the Toolbox

ooooooooooooooooooooeooeooooooooooooooooooooooooo

Jf every Mac programmer had to write every program completely from
scratch, they'd all be in a world of hurt. It would just be too big a job. Long

ago, Apple realized that programmers need some help, and so they kindly did
something about it. Many of the strange and wonderful things that are done in
Mac programs can now be achieved by Macintosh programmers with just a few
lines of code. They, you, and I all have the Macintosh Toolbox to thank for that.

Whq Halle a Toolbox J
In Chapter 5, I give you a brief introduction to the Macintosh Toolbox. There I
say that the Toolbox is a collection of miniprograms that you can incorporate
into your own programs. You've surely heard the expression about reinvent­
ing the wheel. Now, I'm not usually really big on cliches, but this one does
work perfectly when describing the Macintosh Toolbox.

Many of the things you want to accomplish as a Macintosh programmer are
the very same things every other programmer wants to accomplish. All Mac
programmers want to create and move windows, draw to them, and display
menus, to name just a few common tasks. If you, I, and every other program­
mer want to do these things, we all must write the code to do it. Sounds like a
lot of repetition, doesn't it? Apple thought so, too.

Apple programmers anticipated everyone trying to figure the same things out
and writing the same code once they did. So Apple went ahead and wrote
much of the code for you.

18 2 Part IV: Learning the C Language

You may not have been aware of this thing called the Toolbox when you
bought your Mac, but for some people it's a big selling point. Why is Apple so
generous with the free programs in the Toolbox? Programmers like to pro­
gram, of course, but they don't like to do a whole lot of the work involved in
programming the mundane tasks - things such as making a menu drop down
when the user clicks the menu bar, or closing a window when the user clicks
the mouse in the window's close box. Programmers just want to type in a
single command for these commonplace things to happen. A Mac program­
mer can then devote his time to matters of more importance, such as making
his programs reverberate the Mac's speaker to scare the dog.

Minipro9rams hlJ. AnlJ. Other Name
How about a dose of some correct terminology? Each of these things I've
been calling a miniprogram is actually called a function. A function is a collec­
tion of instructions that generally serve a single purpose. I say generally
because it is possible to write a function that does all sorts of not-necessarily­
related things, although that's not the preferred way of doing it.

GetNewWi ndow, Move To, DrawSt ring, and any other part of the Toolbox are
each functions. Sometimes programmers refer to functions as routines. Yes,
the terms routines, functions, and miniprograms mean one and the same and
are interchangeable. I use the word function in the remainder of this book.

The Toolbox Gilles and Receitles
Using the Toolbox functions that were written by Apple is an essential part of
programming the Mac. Toolbox functions are very useful and very powerful.
Those Apple engineers are a pretty clever bunch, so I bet you think there's no
way you could contribute to their efforts - right? Wrongl A Toolbox function
carries out a task almost as if it were a small program; hence my reasoning
for calling them miniprograms in other parts of the book. But just calling a
Toolbox function usually isn't enough to get the function to do its work.
That's where you get to contribute: You must supply the function with some
additional information to help it do its work.

Function parameters
To use a Toolbox function in your program's code, you write its name and
follow the name with a pair of parentheses. Between the parentheses lie the
function parameters. The parameters provide the Toolbox with information it
needs in order to properly run the Toolbox function. For example, the

_________ Chapter 15: To Build a Program, You Need a Toolbox

Toolbox function DrawStri ng needs to know what words to write to a
window. You give it that information in the form of a single parameter.
Without it, the Toolbox wouldn't know what to write. Here's a call to
DrawStri ng:

DrawString("\pTest1ng 1 2 3•);

Even though several separate words appear between the parentheses, they
are considered a single parameter. The DrawStri ng function always requires
just a single parameter:

One parameter

I
DrawString("\pTesting 1 2 3");

The word is pronounced pah-ram-ah-ter. I thought I'd mention that for you
British readers, who may be tempted to say para-meter, as in centimeter!

The dictionary says that in math, a parameter is a quantity whose value
varies with the circumstances of its application. That's about the same defini­
tion that's used in computer programming. Function parameters vary,
depending on the circumstances. At the start of a program, a parameter to
DrawStri ng may be:

:DrawStr·ing< "\pWel c.ome! 11
):

However, the parameter to DrawStri ng may be:

OrawS~rin~J("\pGoodbye! "):

at the end of a program.

Some Toolbox functions need more than one parameter. To let the Toolbox
know where one parameter ends and the next begins, you separate param­
eters with a comma. Take the MoveTo function as an example. This Toolbox
function specifies where in a window the next line of text should be drawn.
I describe Move To in the next chapter in great detail. For now, here's a
glimpse of the Move To function that you may recognize as a snippet from
Chapter S's ExampleOne:

Moveto(30. 50).;
Draw~tl"tri9("\pHello. World!~)£

183

18 !, Part IV: Learning the C Language

The next figure shows the two parameters of Move To. It also gives you a hint
at what they tell the Toolbox to do.

First parameter Second parameter

~/
Move To(30, 50);

/' Lets the Toolbox
know how far to move
across the window to
start the next line of text.

Lets the Toolbox
know how far to move
down the window to
start the next line of text.

Some Toolbox functions don't require any parameters. Functions that don't
need additional information can perform only one, unvarying task. Here are a
couple of lines of code I lifted from the ExampleOne program of Chapter 5:

InftFontsO:
InttWihdows{);

The preceding two calls to Toolbox functions don't have parameters, but
they still include the parentheses. In the C language, calls to functions always
end with a pair of parentheses regardless of the number of parameters.
Because these two functions don't need parameters, you know that they
always do the same thing. I n i t Fonts always initializes the fonts so that your
program can make proper use of fonts. I n i t W i n d ow s always initializes things
in the Toolbox so that it can work properly with windows.

By the way, another name for parameter is argument. You may find that some
programming books use one, the other, or both terms. In this book, I use the
term parameter- it's a little less abrasive-sounding, don't you think?

Functions return flalues
Because you're kind enough to help out the Toolbox by giving it parameters,
the Toolbox occasionally reciprocates by giving something back to you. Well,
back to your program, actually. Some Toolbox functions do this by providing
your program with a return value. A value returned by the Toolbox can be of
any data type - it all depends on the Toolbox call being used.

_________ Chapter 15: To Build a Program, You Need a Toolbox

If a function doesn't have an equal sign (the assignment operator) in a call to
it, it doesn't have a return value. For example, a call to MoveTo doesn't return
a value:

MoveTo< 30, 50 >:

If a call to a function does include the assignment operator, then it does
return a value:

Return value I Assignrent operator

theWindow = GetNewWindow(128, nil. CWindowPtr)-lL >:

To see how the preceding line of code works, take a look at the assignment
operator from a different angle. To give a value to a variable, you first declare
it, and then you assign it a value:

short books;
books .. 300;

Those are the same steps you take when writing the code for a function that
has a return value:

WindowPtr theWf ndow: .
theWi~do'" .. GetNewwtndow~ 128. nil. CWindowPtr>-lL J:

The first line is the declaration of a variable called theWi ndow. Its data type is
Wi ndowPtr. The second line is the assignment statement. The variable
theWi ndow is assigned a value.

Data types such as the int, short, and the fl oat are always numbers. There
are plenty of other data types, and many of them don't represent numbers.
The W i n d ow Pt r is one such type. A variable that is a W i n d ow Pt r represents a
window. You create a different variable of the W i n d ow Pt r type for each
window you create. This way, when you want to do something to a window,
such as write text in it, you have a means of specifying which window to use:

185

18 6 Part IV: Learning the C Language

DrawSt ring draws a line of text ... but where?

A
~Wlndowl~

Window 2

Hello, World!
Hello, World!

L

In Chapter 16, I go into all the sordid details of how your program chooses
which window to draw to by using a Wi ndowPt r. For now, you should be
aware that a Wi ndowPtr variable gets its value when a window is created.

When you decide to give a short variable a value, you simply assign it one:

books .. 300:

It's not quite that easy to do when the value of the variable isn't a number.
That's when the Toolbox takes over and does the assignment for you in the
form of a return value. Now the call to the Toolbox function GetNewWi ndow
should be making a little more sense to you:

WindowPtr theW1n'dow:
theWindow 0 GetNe~Wfndow< 128, nil, CWindowPtr)-ll >:

theWi ndow is a variable. It gets its value when the Toolbox function
Get N ewW i n d ow returns it right after the function creates the window. Now,
what about the parameters of GetNewWi ndow? Sorry, this section deals with
return values, not parameters. But if you keep reading, you'll find out all
about the parameters for GetNewWi ndow.

Samplin9 the ToolboJr
There are several thousand functions in the Toolbox, so I'm sure you'll for­
give me if I don't cover them all. I do want to, however, cover one call in
detail here, which is GetNewWi ndow, an important Toolbox function used in
just about every Mac program.

Some Toolbox functions have no parameters, others have one, and still
others have more than one. To make matters worse, functions require all dif­
ferent types of parameters. DrawStri ng requires one or more words as its
one parameter. Move To requires two numbers for its two parameters. How on

_________ Chapter 15: To Build a Program, You Need a Toolbox

earth can one person memorize which functions require which parameters?
It's another one of those good news/bad news situations. The bad news is,
there is no possible way you can memorize all the parameter types. The good
news is you aren't expected to!

Macintosh programming books tell you what parameters to use. For example,
in the next chapter, I list several commonly used Toolbox functions along
with a brief description of what each function is used for. I also list the para­
meters for each. I provide that same information for several other Toolbox
functions in Appendix B. So, how did I memorize all of this information so
that I could pass it on to you? Feel free to tell people that I'm incredibly bril­
liant and was blessed with a photographic memory. But the truth of the
matter is that I just looked them up in reference material supplied by Apple.

But hold on - I need to get back to the GetNewWi ndow function.
GetNewWi ndow creates a new window for your program to use. The window
has the characteristics, such as size and location on the screen, that you
specify in a 'WIND' resource. A call to GetNewWi ndow returns a Wi ndowPtr to
your program. That is, the function assigns a Wi ndowPtr value to the variable
on the left side of the assignment operator. Here's a declaration of a
Wi ndowPt r variable and a typical call to GetNewWi ndow:

WindowPtr theWindow;
theWindow "' GetNewWindowC 128. nil. (Windo~Ptr)~lL >:

You've had some pretty heavy exposure to GetNewWi ndow in this book. But I
never did describe the mumb~jumbo that's tucked in between the parenthe­
ses. You may have guessed that the stuff between the parentheses are
parameters. GetNewWi ndow requires three of them:

Third parameter
First parameter Second parameter /

~ i I I
theWindow GetNewWindow(128, nil. (WindowPtr)-lL) ;

The first parameter to GetNewWi ndow is the ID of the 'WIND' resource for the
window you want to create. In Chapter 8, I show you how to create a 'WIND'
resource using ResEdit. When you make a resource in ResEdit, the program
gives it an ID. ResEdit usually gives the first resource of each type an ID of
128-that's why you see the number 128 scattered about Macintosh source
code. If you want to double-check on a resource ID1 run ResEdit and open the
resource file. I did that to verify that my 'WIND' resource did indeed have an
ID of 128:

187

18 8 Part IV: Learning the C Language

The ID of a resource can be found using ResEdit.

Color: ® Oef11ull
O Custom

The second parameter to GetNew~J i ndow is used to reserve memory for the
window. Reserving memory is a tricky business, so it's good that you have
the option of letting the Mac do it for you. If this second parameter has a
value of n i 1 , the Toolbox figures out where the new window should be
stored. You can think of n i 1 as your means of getting out of the business of
supplying a particular parameter and allowing the Mac to handle the task.
Obviously, not all parameters give you that option - if that were the case,
we'd write ni 1 just about everywhere! The ni 1 value is used mostly for para­
meters that have something to do with memory. You don't have to determine
when it's okay to use n i 1 - I'll let you know.

The third and final parameter to GetNe wW i nd ow specifies whether the new
window should open in front of any other open windows or behind them. I'm
not exactly sure why you would ever want a new window to be hidden by
other windows on the screen, but I guess it's nice to know you have the
option to do so. If you want your window to open up in front, as I always do,
always use (Wi ndowPt r) - 1 L for this parameter.

No, I'm not going to explain what the heck (Wi ndowPt r) - 1 L means. Trust me.
You don't want to know! Just make sure to type it correctly. Include the
parentheses , a minus sign, the number one, and an uppercase letter l.

Let me say two things: Reserving memory for a window is a very advanced
programming technique. It's very unlikely that you'll ever do it. And in any
program I've ever worked with, a new window always opens up on top of any
existing windows. Yours should , too.

What do the preceding two points mean to you? You can essentially forget
about what the second and third parameters to Get NewW i ndow are all about.
If you always use n i 1 for the second parameter and (W i n d ow Pt r) - 1 L for the
third, you're safe. That means you only have to remember what the first para­
meter stands for - the ID of the 'WIND' resource of the window you want to
open.

In this chapter, I concentrate on explaining the Ge tN ew\~ i ndow function. That
makes sense, because every Mac program displays at least one window. But
the Toolbox is capable of much more than making windows - as you see in
Chapter 16.

Chapter 16

Drawing with C: Why Have a
Mac If You Can't Draw?

o o o o e o • o o o o o o o

In This Chapter
t> Finding QuickDraw in the Toolbox

l1i>- Specifying the window location to draw to

ll> Drawing lines

fl> Drawing rectangles

I>- Specifying which window to draw to

oooooooeooooooooooooooooooooeooooooooooooooeooooo

Tiie Macintosh is best known for its GUI (graphical user interface). Note I ~he word graphical in that phrase. Graphics may not be the most serious
side of programming, but then, who wants to always be so serious? If you
can't play around on the Mac by drawing a few lines and shapes now and
then, why have one? Besides, you can have fun drawing with the Mac and still
learn some important programming and C language concepts. So stop feeling
guilty.

Quick on the Draw
The Macintosh Toolbox is divided into separate areas. One area holds func­
tions that work with windows - that area is called the Window Manager.
Another area holds functions that work with menus - that's the Menu
Manager. And still another area contains functions used for drawing. Stop
right there! That's the one you 're interested in - at least in this chapter. As
you've just seen, these different parts of the Toolbox have names, and the
part that holds the drawing functions is called QuickDraw.

19 0 Part IV: Learning the C Language

Remember, the Toolbox is nothing more than a huge collection of functions.
So each part of the Toolbox is simply a set of functions. When you refer to
QuickDraw, you 're referring to one or more of the functions that are used to
draw in a window.

The Coordinate Sv.stem
Before I get down to the business of drawing, there's one issue I have to clear
up. I mention it several times in different parts of the book: When you tell the
Mac to draw something to a window, how does it know where to draw that
something? You know that you use the Toolbox function Move To before you
use DrawStri ng, right?

MoveTo(30 •. 50 J;
Drawstring("\pHello, World!" J:

But that only hints at what's happening. What do the numbers that lie in the
parentheses of the call to Move To mean? For the answer to that question, you
must return to your grade school days ...

Remember the number line? In school, you used it to count and to prove to
yourself that numbers lined up in order. I don't know about your grade
school, but in mine it looked something like this:

t I I I I I I I •
1 2 3 4 5 6 7

You felt pretty good after you mastered the number line. That is, until a few
years later when you were introduced to the coordinate grid. Math teachers
loved the ol' number line so much, they stuck two of them together to form
something like this:

7

6
5
4
3

2

1234567

______ Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw?

Math teachers had to next think up something to do with all their coordinate
grids. So they had you plot points, remember? In the figure below, I plot the
point (5, 2). That notation means that I move five places along the horizontal
line and two places up the vertical line.

7
6
5
4
3

2

15, 2)

·····················r /

1234567

By now you're surely wondering whether I introduced this subject just for the
sheer fun of it, or for the sake of nostalgia. Neither. It applies directly to the
topic at hand, which is how the Mac draws things in a window. Don't believe
me? Let me make the connection and wrap things up. Imagine flipping the
coordinate grid and placing it in a window. It would look like this figure:

0

2
3
4

5

6
7

01234567

Now, if you want to move to a particular point in a window, you use Move To
just like you did on the coordinate grid in school. Here I've moved to the
point (5, 2):

After a call to Move To , I call DrawStri ng. Where does the text start? Right
where I moved to:

191

19 2 Part IV: Learning the C Language

01234567
Window

~ ... T T T T T T T -....

21--····················-~Hello, World I

3t--

4t-
5t-

5t-

7t--

~

The preceding figure is very close to the truth, but not quite. You see, I used a
number line and coordinate grid with nice big numbers and a nice wide spac­
ing between numbers. That was for your benefit so that everything would
look nice and clear. On a Mac, the coordinate grid is much, much smaller. The
distance between points on the grid of the Mac is so small that I can't draw it
accurately in a figure. Instead, I only label every 30 points:

0 30 60 90 120 150 180 210

0
m Window

I I I ~I I I I ..-

30 t-

60 t-

90 t-

120 t--

150 t-

180 t-

210 t-,
The small grid size is good because it gives you more freedom to pick and
choose just where you draw things. If I want to write text in the upper-left
corner of a window, I write this code:

MoveTo(15, 30) ;
OrawStr ing(' \pCorner Text') ;

If I want text to start near the center of the window, I use this code:

Hove To(150. 120 l ;
OrawString('\pCenter Text');

______ Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw?

Take a look at the result of both of these DrawStri ng calls:

0 30 60 90 120 150 180 210
Window i:

0 :rTTTI 11..-

30 f- Corner Text

60 t-

90 t-

120 f-

150 f-

180 t-

210 t-
r

Center Text

The preceding figure is now accurate except for one obvious point. The coor­
dinate grid you see superimposed on the window doesn't appear on a real
window. You have to do a little guesswork to determine just where to place
the text. It should help, however, if you realize there are 72 grid marks per
inch of window.

The screen is composed of thousands of individual dots that can be turned
on and off, and each one of these dots is called a pixel. Just now when I told
you that there are 72 grid marks per inch of window, I was referring to pixels.
So pixels are very small. If you touch your nose to your monitor, you may be
able to see the individual pixels.

Let's Draw!
I didn't make you do your number line schoolwork as a punishment. The idea
of a coordinate grid, or coordinate system as some call it, is very important
when it comes to drawing on the Mac. That's because the QuickDraw func­
tions rely on it.

Drawin9 a line
1 always like to start simple, so let me begin the discussion of shape drawing
by using the simplest shape I can think of - a line. Is a line really a shape?
I'm not sure, but a few of them together make up a shape, and that's good
enough for me.

193

19 fl Part IV: Learning the C Language

To draw a line, you move to the window location where the line should start,
and then you call the Toolbox function Line. You have the freedom to draw a
line of any length and in any direction. To let the Toolbox know what your
line is to look like, you give the Line function two parameters. The first tells
the horizontal length of the line and the second tells the vertical length of the
line. Here's an example:

MoveTo(60 . 100) ;
Line< 200 , 0) :

The preceding call to Line would result in a line that is 200 pixels in length in
the horizontal direction, and 0 pixels in length in the vertical direction. The
next figure shows where the line is eventually drawn. I clutter up the window
with a few extra arrows and numbers, but they're only in the figure to help
point out what's going on. The only thing that would actually appear in the
window is the one solid, horizontal line.

CJ Window

100

·· · 60 ···~ :

: ... ················ 200 ·················~

To draw a horizontal line, as I do above, set the second parameter of Line
to 0. That tells QuickDraw to go zero pixels in the vertical direction.

How about a vertical line? To draw a vertical line, set the first parameter of
Line to 0. That tells QuickDraw to draw zero pixels in the horizontal direction:

MoveTo(30 , 30) ;
line< O, 100 l ;

The previous code first uses MoveTo to move 30 pixels in from the left and 30
pixels down from the top. Then Line draws a line 0 pixels in the horizontal
direction and 100 pixels in the vertical direction:

______ Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw?

Window

A line doesn't have to be vertical or horizontal. It can be drawn at just about
any angle. For example, if you type this code:

MoveTo(30 . 30 l :
Line (250 . 60) :

You get a line that looks like this:

Window

Drautin9 a rectan9/e
Drawing a rectangle, like drawing a line, requires knowledge of the Mac's
coordinate system. It also requires that you be familiar with a data type you
haven't seen yet, which is the Re ct. The Re ct holds information about a
single rectangle. It's an interesting data type in that it holds four different
numbers at the same time.

A variable that is of the Re ct type holds the four coordinates of a rectangle.
Any rectangle can be defined by using the coordinate system to specify the
left, top, right, and bottom of the rectangle. Say you want to draw a rectangle
that looks like this:

195

196 Part IV: Learning the C Language

Window

If you want to define the above rectangle using the numbers of the coordinate
system, you could say something like this:

v The left side of the rectangle is 100 pixels in from the left of the window.

v The top side of the rectangle is 50 pixels down from the top of the
window (the window's title bar doesn't count).

v The right side of the rectangle is 300 pixels in from the left of the window.

v The bottom of the rectangle is 150 pixels down from the top of the
window.

In the following figure, I add a few dashed lines to the window to illustrate
where these numbers are coming from:

Window

50

·························· 300 ························•

The Toolbox exists to make your life easier, and Set Re c t is one example of
how that's true. The Set Re ct function performs four separate assignments,
all in one call. Here's how 1 would assign the four coordinates of the preced­
ing rectangle to a Rec t variable named theRect:

Rect theRect ;

SetRectC &theRect . 100 , 50 . 300, 150 I:

______ Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw?

Order is important! If you switch numbers around, the result will not be what
you wanted. Think of Set Re ct like this:

SetRect(&theRect, left . top . right, bottom) ;

Here's another way to remember the order: litterbug. The word litterbug
has the first letter of left, top, right, and bottom in the correct order -
LITIERBUG.

Notice the & symbol that precedes theRect in the SetRect function call.
That symbol is important. How important? This important:

Without including that innocent-looking & symbol in the SetRect, you get an
error message when you try to compile the program. SetRect and several
other QuickDraw functions require it - so keep an eye open for it as you
type in source code.

After calling SetRect, here's what my window looks like:

Window E

Misprint? Nope. SetRect doesn't draw a thing. But then, it's not supposed to.
All SetRect does is assign a Rect variable the coordinates of a rectangle. An
assignment statement just gives a variable a value; it doesn't draw anything.

To do the drawing, you use another Toolbox function, which is called
FrameRect . It's possible to have more than one Rect variable in your pro­
gram, so you need to help FrameRect out by telling it which rectangle you
want to draw, or frame. Here's how you draw a rectangle, from start to finish:

Rect theRect ;

SetRect< &theRect. 100. 50 , 300 . 150) ;
FrameRect(&theRect l ;

197

19 8 Part IV: Learning the C Language

And here's the result of my efforts:

Window

Lines and rectangles are just a small sampling of the drawing capabilities of
QuickDraw, but they should be enough to give you an idea of how drawing
works. Make sure to check out Appendix B for a description of several other
QuickDraw drawing functions that you can easily incorporate into your own
programs.

DrauJin9 to a Port
In Chapter 15, I promised that I would go into the details of the Wi ndowPt r
data type and how it's used to select different windows. Hoping I forgot, huh?
No such luck.

Wh1J hacle ports?
Here's the dilemma: Your program opens two windows, and you want your
program to write to one of them. You could write code like this:

MoveTo(50. 50);
OrawStringC"\pHello, Wo rld! ");

But which window is the text drawn to?

The solution to the problem comes in the form of ports. Every window has
one port. It's a kind of identifier that makes each window unique and allows
you to pick and choose among open windows.

_____ Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw?

Normal people (people who don't program computers) think of a port, or
portal, as a gateway or a place of entry. That definition fits in pretty well with
the programmer's use of the word. A window's port allows you to draw in the
window and move it around on the screen. Without a window's port, you're
locked out. By the way, the word port also is the name of a sweet, dark-red
wine, but I don't think Apple was referring to that when they selected the word.

Before you write or draw to a window, you tell the Mac which port you want
to work with. Only one port can be set at any given time, which prevents writ­
ing or drawing from taking place in two windows at once. Before writing a line
of text to a window, you want to write something a little like this:

S~t ·the ·port,· to. the· port.belonging• tci Window 1
MoveTo(50, 50 b
DrawString("\pHe1lo, worldl"f:.

You may have already figured out that the first of the above three lines isn't
valid C code. But it does give you an idea of what you're shooting for. To find
out exactly how you do it, read on.

Windowl'trs and Ports
In Chapter 15, you see that some Toolbox functions return a value. You also
see that GetNewWi ndow is one such function. It assigns a value to the
Wi ndowPtr variable that appears in the same line of code as GetNewWi ndow.
Before the call, variable theWi ndow had no value. After the call, it does. What
value isn't important- be content to know that the value is a collection of
information about the window that just opened.

Imagine a program that opens two windows. This program would have two
Wi ndowPt r variables declared; I cleverly call these windows wi ndowl and
window2:

WindowPtr windowl:
WindowPtr window2:

First, one window is created and displayed:

windowl Q GetNewWindow(128, nil, CWindowPtr)-ll >:

Notice that I used the name of one of the Wi ndowPt r variables, wi ndowl, in
the preceding line. After the call is complete, w i n d ow I points to the newly
opened window. It serves as a reference to it:

199

2 00 Part IV: Learning the C Language

windowl

!

Next, I open and display the second window. Here I use the other Wi ndowPtr
variable, wi ndow2:

wi ndow2 .. GetNewWindowC 129. n 11 , CWindowPtr) • ll) :

The new window opens up in front of the old window, and the variable
wi ndow2 points to the new window:

window2

!
~Wlndow2~

Window 1

1

Now the program has two windows and two separate pointers, each pointer
referencing one window:

window2

!
windowl

~Wlndow2~ !
Window I

1

_____ Chapter 16: Drawing with C: Why Have a Mac If You Can't Draw? 2 O 1

Now the setup is over. It's time to write to one of the windows. Which one?
That's up to me because now that I have a Wi ndowPtr for each, I have the
means to pick the window I want to use. You tell the Mac which window you
want to work with by calling the Toolbox function SetPort. This function is
simple to use; just pass it the W i n d ow Pt r variable for the window you want to
draw to. Here's an example that sets the port to the port of the second
window I opened and then draws to it:

SetP.ort(.window2) :

MoveToC 50, 50 >:
Oraw$tring(•\pHello, World!•>:

Just to reinforce things a little, here's a more comprehensive example. In the
following code, I open two windows, just as I did above. Then I write one line
of text to one window and a different line of text to the other window. After
the code is a figure that shows what the windows should look like .

. WiridowPtr .wi ndowl.:
\ffn~o.wPtr wi ndow2·:

witld()wi = GetNewW1ndow(128. nil. <Wlndd~PtrFIL);
window2 A 6etNewW1ndowC 129, nil, cwindowP'trJ;·u):

SetPorU .wfridowl .. };
Movetnt 50, 5ll) :
DrawString(•\pWindow One•>:
Set Port< wi ndow2) :
Move Toe 10, 20 >:
Drawst·i:ingC •\pWi ndow Two•>:

window2

!
~Wlndow2~

Window Two

1

windowl

!
Window 1

Window One

What if your program only uses one window? Sorry, you still have to call
Set Port before drawing or writing to it. Sure, it may seem ridiculous to tell
the Mac to set the port to your window when that's the only window on the
screen. But the Macintosh is a computer, and computers never do things
without some kind of reason. In this case, there's a pretty darned good one. It

2 0 2 Part IV: Learning the C Language

turns out that the entire screen of your Macintosh also has a port, just as
each window on the screen has one. So if you don't call Set Port when your
one window is on the screen, subsequent drawing may miss your window
and take place right on the screen! Think about the ExampleOne program
from Chapter 5; I use Set Port even though the program opens a single
window. Here's that entire short program again, just in case you don't have
the memory of an elephant. By the way, this code shows why comments are
really important. You don't have to remember the functions and meanings of
each line of code from ExampleOne because my comments tell you exactly
what's going on:

void main(~oid)
{

WindowPtr theWindow: /* the window */

lnitGrafC &qd.thePort); /*standard i~ittalizations */
InitFontsC):
InitWindowsO: /* next line: opens a window */

theWindow .. GetNewWindowC 128, nil, CWindowP~rH~ l:
SetPortC tneWindow J: /* ·.$et<the ;drawing port */,

MoveToC 30, 50•}: . I* sef:the d~~wl~g position ~/
Drawstring(•\pHello, World!• >: /* draw some words */

while (!Button(} J I* do nothing· unt.i 1 *I
I* button fs clicRed */

I think I have already said this 100 times, but the point is worth repeating.
Even if your program uses only one window, you should still call Set Port
before writing text or drawing shapes in it. If you don't, what was supposed
to be drawn may not get drawn, and you may spend a lot of time trying to
figure out why.

That concludes Part IV, which means it's on to bigger and better things,
including the creation of your first program that includes both a window and
a menu.

PartV

The Moment of
Truth: Writing a

Program!

The 5th Wa~e B Rich Tennant
RC(l{yl[-Km.YPALOO\ Ef1Wf5A Real -P~ramrner
~I

GIVE IT UP, KQ:K! ! n\IS V!i;ti5
IS 1CO 10J;f.\ 10 a<AQ:: ! Ya..J
eEfN v-.t:RKiN' AT 11~ LO\IG

1 YaJR. 00 1-{A\€ 9NOUEN ~UT .

In this part ...

w.at do I mean by the moment of truth? Heck, you see
a Mac program way back in Chapter 5. True enough.

But you haven't seen the source code for a real Mac pro­
gram. One that has a menu that allows the user to make
choices. That's what Mac programs are all about - giving
the user the power to decide what to do.

The program that's covered in the chapters of this part has a
functional menu and a movable window - two important
program features not covered up to this point. It also demon­
strates how to effectively use the part of the Toolbox that
draws shapes in windows - QuickDraw. And, as if that
weren't enough, this part shows you exactly how to turn
your source code into an honest-to-gosh application, a pro­
gram that you can save on your hard drive or copy to a
floppy disk.

Finally, this part ends with a few pointers on what to do next.
That is, what's in store for you if you care to carry on with
your Mac programming endeavors.

Chapter17

Examining a Simple Mac Program
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 (It 0 0 0 0 0 0 0 Q 0 0 c 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 0

In This Chapter
t>- Looking at the source code for MyProgram

fr> Functions - with and without the Toolbox

~ Initializing the Toolbox

ti>- Events - how a program responds to the mouse

~ Getting closer to writing a real Macintosh program

OOOOOOOOOOOOOGOGQOOOOCOGOOQ000000000000000BOOOOOO

Jn this chapter, I give you a detailed look at the MyProgram program - a
program I've described in the last few chapters. If you've read the previ­

ous few chapters, you know that MyProgram contains many of the elements
that are key to writing a Macintosh program. A good hard look at each line of
the program may crystallize your thoughts about those programming ele­
ments. But I won't be content to simply rehash things you've already worked
on, though. In this chapter, I'll also add a few new lines of code to
MyProgram. And of course, I'll describe exactly what this new code does.

It is important to keep in mind that while the MyProgram program demon­
strates several of the important concepts of Macintosh programming, it isn't
a program to really brag about. It's not exactly the fanciest Mac program in
town. In this chapter, I also rectify that situation by adding elements to the
source code to get a little bit closer to what a Macintosh program is really
all about. You have to read the chapter to find out what these new elements
look like!

The M1JPro9ram l'ro9ram Source Code
Because I discuss the MyProgram program in this chapter, it may be helpful
to see it in its entirety, which I show you in the following code. If you've been
reading the book sequentially, you've already seen this listing.

2 06 Part V: The Moment of Truth: Writing a Program!

After you read this chapter, you may think that MyProgram is a thing of the
past, a done deal. Or is it? You see, almost each line of code that makes up
MyProgram is used in every Macintosh program you write. So bits and pieces
of the infamous MyProgram live on to be seen again. And now, without fur­
ther ado, MyProgram:

void main(void)
{

WindowPtr theWindow;

InitGraf(&qd.thePort);
InitFonts();
InitWindowsC);

theWindow • GetNewWindow(128. nil. (WindowPtr)-ll);
SetPort(theWindow);

MoveTo(30, 50);
Drawstring< •\pHello, World!•);

while (!Button())

If you look in the ... For Dummies Examples folder, you see a few folders with
names that begin with C 17. The C 17 MyProgram folder holds a copy of the
MyProgram project from Chapter 11. If you open the MyProgram.c file that is
a part of the Chapter 17 project, you find that the source code in that file
matches the code I just showed you here.

In the next few sections, I discuss some modifications you can make to the
source code in this file. Go ahead and give these changes a try. If you're afraid
of messing things up, don't be. I'm sure you 'II be able to follow along just fine.
If you should get hopelessly lost though, open the BoxedText.mcp project in
the C 17 BoxedText folder. The BoxedText.c file in this project contains the
changes to the MyProgram source code detailed in this chapter.

Functions Aren't Just for the ToolhoN
Every miniprogram in the Toolbox is a function. But the Toolbox isn't the
only place you find functions. They also exist in the source code of every C
program, and that includes the programs you write. The MyProgram program
has a single function, and its name is main. (For more information on func­
tions, see Chapters 5 and 15.)

If the Toolbox has functions, why does your program also have to have them?
Keep in mind that the primary purpose of a function is to group source code
together in an attempt to better organize it. Apple has done that with its own
source code and then placed the source code in the Toolbox. Now you have
to do the same with your own source code within your source code file.

___________ Chapter 17: Examining a Simple Mac Program 2 O 7
You can approach functions in a couple of different ways. If your program
consists of more than a page full of code, you may want to divvy it up into
separate functions. You then have to learn about calling your own functions
just as you call Toolbox functions. You also have to learn a lot more about
parameters, which are those variables and numbers that appear between the
parentheses of a function name. The second approach - used if your pro­
gram doesn't consist of a whole lot of code - is to just pack all your code
into one function and forget about function calling and parameters. Which
way sounds easier to you?

All right, one function per program it is! Here's how you do that. All programs
written in C must have a function named main. That's not just a whim or a
preference of mine - it's The Law. So, if your program is going to have just
one function, and all C programs must have a function named main, guess
what the name of your function is? You guessed it: main. Your prize is that
you get to create a function named main.

How do you learn more about writing functions and the parameters that are
passed to your own functions? Chapter 21 provides an introduction and a few
examples. Chapter 21 also provides a couple of references to Mac program­
ming books that are a little more advanced than this one.

Before creating ma i n • look at the form that all functions take. On the first line
are all of the following:

J;tt' A return type

J;tt' The function name

J;tt' An open parentheses

,, J;tt' One or more parameters

J;tt' A close parentheses

A function is said to run, or execute. When it's finished running, it can return
information to the program. If it does return information, then the return type
is the C data type of the returned value. If the function doesn't return a value,
then the return type is listed as void (as in "the function is void, or without,
a return value''). In this book's examples, I'm only writing a single function,
and it never returns a value. So until you progress to writing more complex
programs, you don't really need to know much more about function return
values.

The function name is just that - the name you've elected to give your func­
tion. Programs can consist of many functions, though mine just includes one.
All programs must include a main function, so in my example I really didn't
have much of a choice in selecting a name for my function.

2 0 8 Part V: The Moment of Truth: Writing a Program!

The opening and closing braces are used to mark the beginning and end of a
list of parameters. Previous chapters mention parameters as used in Toolbox
functions. Your own functions can also optionally include parameters. A para­
meter is a value that the function can make use of. You can write a function
that includes any number of parameters, but my ma i n function doesn't
include any parameters. Once again the word void is used to specify that
nothing is here. In this case the function is void, or without, any parameters.

All the source code that follows the first line of the function is nested
between a pair of braces. Straight out of Chapter 5 comes this figure showing
the basic layout of the function:

The function name --+void main (void)

A bunch of code goes ')
} between these braces.

Look back at the source code for the MyProgram program. Does it follow this
format? Yes. It has a single function named ma i n. Between the braces that sig­
nify the start and end of the function you find ten lines of code that initialize
the Toolbox, open a window, and write some text to the window. Yes, it's true:
Functions aren't just for the Toolbox.

lnitializin9 the Toolbox
You know what the MyProgram program does, but you probably aren't
exactly sure how it does it. The next several sections of this chapter sum up
the inner workings of the MyProgram program, starting with the initialization
of the Toolbox.

A Mac program starts to run when the user double-clicks its icon. During the
running of a program, the program communicates with the Toolbox. And the
Toolbox, in turn, communicates with the program. As with humans, before
any serious communication can take place, the program and the Toolbox
have to get to know each other. That's what the initialization process is all
about. Calls to the Toolbox that begin with In i t get this communication
under way. MyProgram carries out its initialization with this code:

InitGraf(&qd.thePort >:
InitFontsO;
InitWindows(>;

___________ Chapter 17: Examining a Simple Mac Program 2 09
MyProgram uses three initialization calls, but others exist. For example, to
prepare your program to work with menus, you call the Toolbox function
named Ini tMenus. For using dialog boxes, you have Ini tDi al ogs. If your
program does fancy things with the cursor, you call I n i t Cursor. And if your
program has text editing capabilities, you call TE I n i t.

Most programs also call a Toolbox function named Fl us h Events.
Fl us hEvents doesn't have I nit in its name, but it is still a part of the pro­
gram initialization process. I cover events in detail later in this chapter in the
section "Making MyProgram More Eventful." For now, realize that events
linger in the computer's memory from one running of a program to the next.
When a program starts, you want it free of old events - so you flush them.
Please don't make me explain this concept with an analogy.

A program with windows, menus, dialog boxes, and all that other fancy stuff
I mentioned in the last paragraph has initialization source code that looks
like this:

InitGraf(&qd~thePort >: /*.~tandard tn1t1al1zations */
Ini tFonts (>:
InitWindowsO:
InitMenus():
TEii1it1):
InltOlalogsC nil >:
Fl ushEvents< everyEvent, O >;
InitCursorC>:

That seems like a lot of initializations, doesn't it? Are they all really necessary
for every program you write, even a simple one like MyProgram? That's an
easy one - you should include these eight initializations in every Mac pro­
gram you write. You can't overdo it. If an initialization is unnecessary, it won't
hurt your program, and it won't hurt your Mac. What about unnecessary
code? You may have heard somewhere that source code should be efficient
so that a program runs quickly. That's true. But a call to a Toolbox function
such as I n i t W i n d ow s takes only microseconds to run - that's fast. No one,
even your computer, would ever notice.

No matter what your program does, always start it off with these eight lines:

InitGrafC &qd.thePort >: /*standard initialization*/
InitFontsc >:
InitWindows():
InitMenusC>:
TEinitO:
InitDialogs(nil) :
FlushEvents(everyEvent, 0 >:
InitCursorO:

21 0 Part V: The Moment of Truth: Writing a Program! _________ _

When programmers talk about efficient code, they often talk about time-con­
suming programming tasks, such as redrawing all of the graphics that appear
in a window. An issue like that is important in programs that work with large,
complex graphics. If you're working with a program that displays photos, for
example, you don't want to wait minutes for the Mac to redraw a picture that
you just rotated.

Workin9 With a Window
I cover opening a window and the GetNewWi ndow Toolbox function several
times in this book - so I just summarize things for you here. But even if you
think you've got this window business licked, read on. Over the course of the
next few pages, I'm going to add a little new code to MyProgram regarding
windows.

Openin9 a window
To open a window you first create a 'WIND' resource in your program's
resource file. Then, in your source code, you declare a W i n d ow Pt r variable.
Finally, you call the Toolbox function GetNewWi ndow to open and display the
window. The code for opening a window looks like this:

WindowPtr theWindow:

theWindow Q GetNewWindowC 128, nil, CWindowPtr)-ll);

Writin9 to a window
Once a window is on the screen, feel free to work with it. But first, don't
forget to let the Mac know that you want to write to the new window:

SetPortC th~Window);

After you clue in the Mac about which window you'd like to write to, you tell
the Mac to move to the desired location in the window by calling Move To. You
then type the following code:

MoveTo(30, 50 >:
Drawstring(•\pHello, World!");

___________ Chapter 17: Examining a Simple Mac Program 211
What about that \ p that always precedes the words you want to write? The
\ p code has to do with strings, which are the computer's way of keeping track
of several characters - letters, digits, and symbols - in one grouping. In the
beginning (about 15 years ago), programmers almost exclusively used the
Pascal language to program the Mac. To this day, the Mac still looks for
strings in a Pascal format. So the \ p before the start of a string tells the Mac,
"Here comes a string from the C language, but feel free to put it into the
Pascal format you are more familiar with."

Plannin9 an addition to the window
Mac programs contain graphics, and so I want to add a graphic to MyProgram.
How about drawing a rectangle to the window that MyProgram opens?

Programming requires planning. Sometimes a little, sometimes a lot. Adding a
rectangle is easy, but still, I want to take a moment to plan the rectangle -
how it looks, and where it appears on the screen.

To add a rectangle, I need a Re ct variable and the use of two QuickDraw func­
tions, which I create with the following code:

Rect theRect:

SetRect(&theRect. 100 , 50. 300 . 150 l :
FrameRect(&theRect) ;

In MyProgram, I want to have a box around Hello, World! to draw the user's
attention to it. I want to draw my rectangle in such a way that it frames the
text that's written with DrawStri ng.

As you saw in the "Writing to a window" section of this chapter, the following
source code moves to a location and then draws a line of text:

MoveTo(30, 50) ;
Drawstring('\pHello, World!');

The result is shown in the following figure. I mark the starting point of the
text:

Untitled

Aiello, World!

(30, 50)

212 Part V: The Moment of Truth: Writing a Program! __________ _

My job is to determine the coordinates for a rectangle that surrounds the
Hello World! text. I use my knowledge of the Mac's coordinate system and do
a little calculating to come up with where the rectangle should be placed.
(For more on the Mac's coordinate system, see "The Coordinate System" in
Chapter 16.) Whenever Jethro of The Beverly Hillbillies needed to do a little
math he commenced to ciphering. I do the same. I use the following reasoning
to come up with the rectangle's coordinates:

1

1"' The top must be less than 50 - I choose 30.

I"" The bottom must be greater than 50 - I choose 60.

"""' The left side must be less than 30 - I choose 20.

"""' The right side must extend beyond the end of the text - I choose 120.

Why must the top be less than 50? Because the second parameter in the call
to DrawStri ng has a value of 50. Recall that the second parameter to
DrawStri ng tells the Mac how many pixels down from the top of a window
drawing should start. Because drawing will begin 50 pixels from the top of
the window, I certainly want the top of the framing box to start at a pixel
value less than, or higher up in the window than, this value. The same logic
applies to the bottom of the framing rectangle, which should start at a pixel
value greater than 50 - a pixel value below the bottom of the text.

The same reasoning also applies for choosing the top and bottom values,
which explains why I select 20 for the left side of the framing rectangle and
120 for the right s ide. The call to DrawStri ng starts the text 30 pixels from
the left of the window, so the left edge of the framing rectangle must start to
the left of that value. Any number less than 30 would suffice. As for the right
side of the framing rectangle, I admit that was a bit of a guess. But I will give
you a little more information about that guess in just a bit.

A rectangle of the dimensions I've discussed looks like this:

lli3 Untitled
:30 :

.... ..t :so
20 1 Hello, World! J i
........... iiii"············· ..

Here's what my Set Re ct call looks like, using the previous coordinates:

SetRect(&theRect . 20. 30 , 120, 60 l :

___________ Chapter 17: Examining a Simple Mac Program 213

Don't forget the order that SetRect expects those four coordinates to appear
in - left, top, right, bottom.

For years, I thought that Jethro was just incorrectly using a word when he
said he had do some ciphering. I just found out that cipher means to solve
arithmetical problems. I have to admit it's more than a little humbling to real­
ize a hillbilly who barely gradjeated the third grade knows things I don't!

More plannin9 for the addition
Now I want to incorporate the rectangle-drawing code into my program.
Programmers list a program's variables right near the top of their programs
so that the compiler is sure to find them first. In Chapter 5, I do this with the
Wi ndowPtr variable named theWi ndow:

void main(void)
f

WindowPtr theWindow:

lnitGrafC &qd~thePort >:
InitFonts(>:
I* r~St of the code here */

I add the Rect variable up front, right by the Wi ndowPtr variable. By the way,
the order in which the two variables appear doesn't matter. So it isn't impor­
tant which of the two variables I list first. Because Wi ndowPtr was there first,
I put Rect right underneath it:

·void ,main< vo1d >
{

WindowPtr theW1ndow:
Rect theRect:

InitGraf(&qd.thePort);
InitFontsC >:
/*rest of the code here *I

Next, I look for the appropriate place to add the SetRect and FrameRect
calls. Because I'm drawing to a window, I want to keep a couple of things in
mind as I determine where to add the new code:

~
J;tt' Have I opened a window?

J;tt' Have I told the computer that I want to draw to the newly opened
window?

214 Part V: The Moment of Truth: Writing a Program! __________ _

The preceding two points mean that my new code should go after the call to
GetNewWi ndow and after the call to SetPort, as shown in the following code.
If I placed the new code before the call to GetNewWi ndow, there'd be no
window to draw to. And if I placed this same new code after the call to
GetNewWi ndow, but before the call to Set Port, I wouldn't be guaranteed that
the drawing would end up in the new window. It may, in fact, appear on the
screen outside of the window! The following code also adds the remaining
Toolbox initializations, as I recommended (several times) earlier in this chapter.

void main(void l
{

WindowPtr theWindow;
Rect theRect :

Ini tGraf(&qd . thePort);
I nit Fonts () ;
I nit Iii ndows () ;
I nitMenus () :
TE!ni tO:
InitDialogs(nil l:
FlushEvents(everyEvent , 0) :
Ini tCursor(l ;

theWindow • GetNewWindowC 128. nil . CWindowPtr)-ll) :
SetPort(theWindow);

HoveTo(30 , 50) :
Drawstring("\pHello. Worl d!" l:

SetRect(&theRect. 20. 30 , 120, 60) :
FrameRectC &theRect):

while (!Button())

After compiling and running the preceding code, a window just like this
appears:

Untitled

I Hello, World! I

Fabulous! This is just what I wanted, and on the first try, too. But, as you may
already know, the best made plans of mice and programmers sometimes go
astray. Sometimes things don't go right on the first try, and then what do you
do? Read the next section, of course!

___________ Chapter 17: Examining a Simple Mac Program 215
In the code listed previously, I only called SetPort once even though I draw
to the window twice. That's because I'm not doing anything between the
drawing of the text and the drawing of the rectangle. What if I opened a
new, second window (which I call theWi ndow2) between these two drawing
operations:

theWindow .. GetNewWindow(128, nil, CWindowPtr)-lL);
SetPortC theWindow);

MoveToC 30, 50);
Drawstring(•\pHello. World!•);

theWindow2 .. GetNewWindow(129, nil. CWindowPtrHL >:

SetRectC &theRect, 20, 30, 120, 60) :
FrameRectC &theRect);

Don't get nervous: It's quiz time. Which window, theWi ndow or theWi ndow2,
would the rectangle be drawn to?

The answer is theWi ndow. Why? Because its port is the current, or active,
port. Recall that each window has a port - that's what the Mac is actually
drawing to. Why is the port belonging to theWi ndow the active port? Because
the most recent call to Set Port specified that theWi ndow is the current port.
Now, part two of the quiz. How would you modify the preceding code to have
the rectangle drawn to theWi ndow2? The answer is shown here:

theWindow .. GetNewWindowC 128, nil, CWindowPtr)-lL);
SetPort(theWindow):

HoveTo(30, 50);
Drawstring(•\pHello, World!" >:

theWindow2 .. GetNewWindow(129, nil, CWindowPtr)-ll);
SetPortC theWindow2);

SetRectC &theRect, 20, 30, 120, 60):
FrameRect(&theRect):

Add another call to Set Port, this time specifying that theWi ndow2 is the cur­
rent port.

Solt1in9 problems with IJ.OUr box
What if I run MyProgram and the window looks like the one in the following
figure, rather than the one you see at the end of the section "More planning
for the addition"?

2 16 Part V: The Moment of Truth: Writing a Program!

Untitled

I Hello, world!

That would mean that I guessed wrong about the size of the rectangle. I
based the size of the rectangle on the fact that there are about 72 pixels to an
inch. How did I know there are 72 pixels in an inch? I've been programming
the Mac for 10 years; I just know s tuff like that. How would you know there
are about 72 pixels to an inch? You may have read about it in Chapter 16
where I mentioned this fact. Otherwise, don't feel bad - there's really no
other way you could know that.

Looking at the words Hello, World!, I see that they're about an inch long.
That's 72 pixels. I then add a little clearance to each side, making the total
length of my rectangle 100 pixels. Take a peek at the following figure to
double-check the math.

left top right bottom

\ ! ! I
Se tRec t (&theRect , 20, 30 , 120 , 60);

The left side of the rectangle is 20 pixels in from the left side of the window.
The right side of the rectangle is 120 pixels in from the left side of the
window. Jethro could quickly tell us that 120 minus 20 is 100. Now, back to
my original question: What would it mean if I run the program and the
window looks like this?

Untitled

I Hello, Worjd!

___________ Chapter 17: Examining a Simple Mac Program 2 17
It would mean that my rectangle wasn't big enough. How can I fix this tight
fit? I can make the rectangle bigger by setting it bigger during the call to
SetRect. Here's the rectangle's current code:

SetRect(&theRect. 20, 30, 120, 60 >:
FrameRectC &theRect >:

To make the rectangle larger, I make it 130 pixels in length by changing the
right side to 150 pixels in from the left side of the window rather than 120.
The code for this ground-breaking change looks like this:

SetRect(&theRect, 20. 30, 150, 60 >:
FrameRectC &theRect >:

And now you can bet that the rectangle frames the Hello World! text nicely.
Go ahead and run the new code if you're not sure. I bet you'll be pleasantly
surprised!

Makin9 MuPro9ram More Etlentf ul
I keep telling you that MyProgram is a real Mac program, but it certainly isn't
the most exciting program around. I tried to improve things a little bit by
adding some more drawing code - the code that draws a rectangle around
the program's text. But that really isn't enough. In this section, I show you
how to add a few simple lines to MyProgram so that it becomes a more event­
ful program.

Introducing et/ents
Through some mystical process, your Macintosh is aware of everything you
do. Well, everything that involves the Macintosh. Whether you move the
mouse, click the mouse button, press a key, or insert a disk, the Mac knows.
This power to spy on you, in the hands of an evil computer, could be disas­
trous. Fortunately, the Mac is a user friendly computer. Because it's friendly,
it's willing to share its powers with you. So when the Mac notices that a user
has taken some action - like pressing the mouse button - it passes this
information on to whatever program is currently running. And if that program
happens to be yours? Well then, you can have your program make note of
this fact and respond accordingly.

In Macintosh lingo, an action such as a mouse click is called an event. Events
are the heart and soul of a Macintosh program; events make a Macintosh pro­
gram run. For example, if the Mac wasn't aware of events, it would never

2 18 Part V: The Moment of Truth: Writing a Program!

know when the user clicked the mouse on a menu item. It would never know
when a key was pressed. It would never ... well, you get the picture. The Mac
would not be the Mac. Events drive a program to do certain things. Not sur­
prisingly, Macintosh programs are called event-driven programs.

Lookin9 at the MuPro9ram eflent loop
All Macintosh programs have an event loop. The purpose of a program's
event loop is to repeatedly look for and process events until the user quits
the program. At each pass through the loop, the program checks to see if an
event has occurred. If an event did occur, the program usually responds in
some way. If an event didn't occur, nothing happens. In either case, a moment
later, the program is back looking to see if another event has occurred. (For
more information on loops, see Chapter 15.)

Two lines of code in the MyProgram program have not yet been discussed in
this chapter. They just happen to represent the event loop of the MyProgram
program:

while C !Button())

f ~.T~~.) The code beneath a wh i l e loop is usually enclosed in braces, like this:

~; while < booksSold < 100 >

I
MoveTo(10, 30):
DrawString(•\pPoor sales! Pick a new line of work!"):

There is an exception to this, however. If one and only one line of code
appears beneath the wh i l e statement, then the braces are optional. I omit
the braces in MyProgram for this reason. I can write the MyProgram wh i l e
loop this way:

while (!Button())
I

and the code still has the same effect.

Why did I try to pawn off a second-rate event loop on you? I used it because
the MyProgram program is the simplest of programs, and the two-line event
loop I used is the simplest of event loops. Even if the event loop in MyProgram
isn't highly complex, it's still enough for me to use to explain how event
loops work and where it fits in the framework of MyProgram.

___________ Chapter 17: Examining a Simple Mac Program 219
The event loop of a program is generally the last piece of source code in the
program's main function. Once the event loop is reached, that's where the
program remains until the user quits the program. In MyProgram, you may
think of the flow of the program this way:

void main(void)
{

WindowPtr the Window;

InitGraf{ &qd.thePort);
InitFonts();
InitWindows():

theWindow = GetNewWindow< 128, nil. (WindowPtr)-lL)
SetPort(theWindow);

MoveTo(30, 50);
Drawstring("\pHello, World!"):

----while (!Button())

Just like any loop, the event loop checks the condition between the parenthe­
ses to determine if it's true. In this case, the odd-looking text between the
parentheses is a call to a Toolbox function called Button. Any time it's called,
Button tells your program whether or not the mouse button was just clicked
by the user.

If the mouse isn't clicked, the loop runs. Here the exclamation point in front
of the word Button assists in the operation. Yes, I know that's an evasive
explanation of how the loop works, but trust me - you don't want all the
details. What happens when the loop runs? This line of code runs:

What does a semicolon, all alone, do? Absolutely nothing. And for this simple
program, that's all I want to happen: nothing. Once MyProgram places a
window on the screen and writes to it, the program doesn't do anything at all.
It just loops continuously, waiting for the user to click the mouse button.
What happens when the user finally clicks the mouse button? If not clicking
the mouse causes the loop test to pass and the loop to run, then clicking the
mouse must cause the loop test to fail and end the loop. And that's exactly
what happens. Where does the program go after a loop ends? To the next line
of code that follows the loop, the closing brace:

2 2 0 Part V: The Moment of Truth: Writing a Program! _________ _

MoveTo(30, 50);
Drawstring("\pHello, World!");

while (!Button())

/
} ..

The last line ofthe program

As long as the mouse button isn't clicked, the wh i le loop continues to cycle.
Once the button is clicked, the w hi l e test condition fails and the line follow­
ing the loop code is run. That line is the closing brace of the program. There's
nothing left to run, so the program quits.

The MyProgram event loop isn't nearly as powerful as the full-fledged event
loop you see later in this chapter. But you can learn a couple of important
points about event loops from the MyProgram event loop:

n ,,,, An event loop is usually based on a c w hi 1 e loop.

LI J;t' Once the event loop is reached, it repeats itself until the program ends.

Holdin9 onto an eflent
The event loop of MyProgram only looks for a click of the mouse button. But
a mouse click isn't the only kind of event the Mac recognizes. The computer
also notices when the user presses a key, inserts a disk, and several other
actions. As a programmer, you aren't only interested in if an event occurred,
you want to know what event has occurred. Why? You want your program to
react in different ways to events, depending on the type of event. For exam­
ple, if the user clicks the mouse button in the menu bar, you want your
program to drop down a menu. If the user inserts a disk in the Mac, that's
also an event, but you won't want a menu to drop down for this event.

Obviously, you need some means of storing information about an event. If
you were a Mac, you might choose to log information about events like this:

~ J;t' The event is a mouse click in the menu bar.

W J;t' The event is a key press that doesn't involve the mouse

I got tired of listing event types and quit after just two. Fortunately, the Mac
doesn't get tired; it stores all the information I show above, and a lot more. It
doesn't use a table, of course. Instead, it uses a C data type called the

___________ Chapter 17: Examining a Simple Mac Program 2 21
Event Record. When you declare a variable to be of the Event Record type,
you then have the means to hold all sorts of information about one event.

In the next line of code, I declare an Event Record variable named theEvent:

EventRecord theEvent:

An Event Record variable holds lots of information about an event, but the
most important bits of info are the two I list in my chart: the event type and
where the event took place.

With some data types, the clever C language allows you to dig two or more
separate bits of information out of one single variable. The EventRecord is
one such data type. How do you get information about what the event is? You
follow the variable name with a period and the word what as I do here:

theEvent.what

EventRecord theEvent: ~Declare an Event Record variable

Variable name A period The word what

" i / theEvent . what

How do you suppose you go about finding out where an event took place?
Use the same method as above, but instead of the word what, use where:

theEvent.where

Now you know how to get information out of an EventRecord variable, but
how does the information get in the variable in the first place? As with most
tasks on the Mac, a call to a Toolbox function does the trick. In this case, the
appropriate Toolbox call is called Wai tNextEvent. The following is a typical
call to Wai tNextEvent:

WaitNextEvent(everyEvent, &theEvent, 7. nil >:

When your program calls Wa i t Next Event • the Mac performs its spy work to
see if the user is up to anything. If an event has just occurred,
Wai tNextEvent gathers all the important information about the event and
stores it in the variable named the Event. Here's what's going on:

2 2 2 Part V: The Moment of Truth: Writing a Program!

Before Wai tNextEvent.
the Event holds no information.

__J
Wai tNextEvent(every Event. &theEvent. 7. ni 1) :

I
AfterWaitNextEvent.
the Event is full of information.

As long as you declare an Event Record variable named theEvent, you can
use the same four parameters that I did whenever you call W a i t Next Event.
Recall that the parameters are the items between the parentheses of a call to
a function. You don't have to know anything about the other three parame­
ters, but if you're feeling adventurous you can examine this next figure:

Before Wai tNext Event.
theEvent holds no information.

__J
WaitNextEvent(everyEvent. &theEvent. 7, nil>:

I
AfterWa i tNextEvent.
the Event is full of information.

Don't forget to type in the & character before the Event Record variable
name in the call to Wai tNext Event. CodeWarrior won't like it if you forget! If
you do forget, CodeWarrior opens up the dreaded Message Window with an
error message in it when you attempt to compile the code.

A call to Wai tNextEvent informs the Toolbox that it should grab hold of
the next event it sees and tuck all event-related information into the
EventRecord variable. But that only takes care of one single event. In a
Mac program, events could be happening all the time. If the user clicks the
mouse twice, that's more than one event. To make sure that your program
doesn't miss events as they happen, it would make good sense to call
Wai tNextEvent over and over again. In fact, that is exactly what your
program should do. Here's what you need to accomplish:

___________ Chapter 17: Examining a Simple Mac Program 2 2 3
A J"6 Get information about events.

rn J"6 Loop through code that calls Wai tNextEvent over and over.

In the next section, I show you how to get the job done.

lmproflin9 the M1JPro9ram eflent loop
About the only thing my new-and-improved event loop can't do is fight stains.
Where does my new event loop get all its amazing new powers? From good
use of the EventRecord data type and the Wai tNextEvent function, as you
soon see.

Imagine that I've written a program that initializes the Toolbox and then
opens a window just as MyProgram does. So that I can concentrate on just
the new event loop, I just show the new loop in the following code:

all Done ... O:
while (allDone < 1 >
{

Wa itNextEvent (every Event, &theEvent, 7, nil) :
switch C theEvent.what)
{

case keyDown:
MoveTo(10, 20 >:
Drawstring(•\pKey pressed• >:
break:

case mouseDown:
all Done .. 1:
break:

The new event loop is much larger than the old one, but don't be shocked­
some of its elements may seem familiar to you. Take a close look at what the
new event loop is doing. First the loop test. I use a short variable called
a 11 Done and compare it to the value 1. Is a 11 Done less than 1? Of course - I
assign it a value of 0 just before the wh i 1 e statement. When does the loop
stop looping? When a 11 Done has a value of 1 or greater. Near the end of the
loop is a line that assigns a 11 Done a value of l, and that takes care of ending
the loop. More on ending the loop later in this chapter.

The first thing that happens inside the loop is a call to Wai tNextEvent.
(Notice that the four parameters of this function are just as I described in the
preceding section.) After the call to W a i t Next Event is complete, the variable
the Event holds information about whatever event just occurred.

2 2 fl Part V: The Moment of Truth: Writing a Program!

The primary purpose of a program's event loop is to recognize an event and
handle it. That means it should take some action appropriate to the type of
event that has occurred. That's the purpose of the switch statement. A
switch statement is a branching statement that allows the program to run
only one section of two or more groups of code (for more on switch state­
ments, see Chapter 14). The switch statement begins with the word switch
followed by a variable name in parentheses.

For the switch statement in the new event loop, I use the Event Record vari­
able the Event, but not the whole variable. At this point, I'm only interested
in what type of event occurred (I can wait until later to get any additional
info on the event). So naturally I want to examine the what part of the vari­
able, which I can do in the following line of code:

switch C theEvent.what)

After the code determines what type of event has occurred, it's on to the
case labels. (If case labels seem unfamiliar, see Chapter 14.) Where did the
words key Down and mouseDown come from, and what are they? Both are part
of the Toolbox, and can be used in your C source code; they give program­
mers a way to ref er to different event types, and each event has its own
name. You can use these names in the case sections of the switch statement
by using this code:

The value of theEvent. what ...

~
switch (theEvent.what
{

--~•case keyDown:
... may be
one of these
two values.

MoveTo(10. 20);
Drawstring("\pKey Pressed.");
break;

--•• case mouseDown:
a 1 lDone = 1:
break:

In this figure, I say that the variable the Event . what may have a value that
matches one of the two case values. But what if it doesn't? The two case
labels only account for two types of events-a key being pressed (keyOown)
and the mouse button being clicked (mouseDown). What if the user inserts a

___________ Chapter 17: Examining a Simple Mac Program 2 2 5
disk? (That's called ad is kEvt.) My switch statement doesn't look for an
event of this type; if the user performs any other event besides key Down or
mouseDown, nothing happens:

switch (theEvent.what)
{

case keyDown:
MoveTo(10. 20);
Drawstring("\pKey pressed") ;
break;

case mouseDown:
a 11 Done = 1;
break:

If the event doesn't match any of the event types listed in the case labels, the
program returns to the top of the loop to see if it should run the loop again.
Will it? Let me answer that question with another question. Did the value of
a 11 Done change? No. It is still 0. Because 0 is less than 1, the loop runs again,
and once again Wai tNextEvent is called to capture another event.

Assume that the user presses a key on the keyboard. That constitutes a
key Down event. The call to Wai tNextEvent picks up on that and sets
the Event. what equal to key Down. When the switch statement is reached,
the key Down case runs. Assuming a window is open, the words Key pressed
are then written to it:

If the Event . w h at
is a key Down event ...

"" switch (theEvent.what
{

case keyDown: J
MoveTo(10. 20); ... thenonlythis
Drawstring("\pKey pressed"); coderuns.
break;

case mouseDown:
allDone = l;
break;

2 2 6 Part V: The Moment of Truth: Writing a Program!

What happens if instead of pressing a key, the user clicks the mouse button?
The event type is then mouseDown. In my example, when a mouseDown event
occurs, a 11 Done assumes a value of 1. Now, what happens when the program
returns to the top of the loop statement and makes its test? a 11 Done has a
value of 1, which is not less than 1, and the test fails. The entire w hi l e loop is
skipped, and the program ends.

E~aminin9 an Erlen More
Erlentf ul Pro9ram

There's no better way to really understand some code than to see it placed in
a complete program. In this section, I show you code for a program that fea­
tures a new-and-improved event loop like the one I discussed in the previous
section, but with a twist.

Looking direct/I}. into the source code
Because I'm creating a new program, I need to think of a new program name.
The purpose of the program is to demonstrate that the Mac knows about
events, and so I aptly call it EventTest. Hold on to your hats: I'm about to show
you the complete source code listing for the program. In the sections that
follow, I break the code down and describe the functions of its various parts.

void main(void)
{

WindowPtr theWindow; /* A window to write to */
EventRecord theEvent: /* Hold info about one event */
short allDone: /* Tell the program when to end */
Rect whiteRect; /* A rectangle to cover text */
long count; /* A loop counter */

InitGraf(&qd.thePort):
InitfontsC):
InitWindowsC>:
InitMenusC);
TEI nit():
InitDialogsC nil >:
FlushEventsC everyEvent, 0);
Ini tCursor();

theWindow a GetNewWindow< 128, nil, (W1ndowPtr)-ll >:
SetPort(theWindow);

allDone a 0:
while C allDone < 1
{

___________ Chapter 17: Examining a Simple Mac Program 2 2 7

WaitNextEventC everyEvent. &theEvent, 7, nil):
switch (theEvent~what l
{

case keyDown:
MoveToC 10, 20 >:
Drawstring(•\pKey pressed• >:
count .. 0:
while (count < 2000000 >

count++:
SetRectC &whiteRect, 10, 10, 100, 25 >:
FillRect(&whiteRect, &qd.white);
break:

case mouseOown:
all Done .. 1:
break;

Extendin9 a friendlu reminder
You can find the source code for the EventTest program in the EventTest.c
file in the Cl 7 EventTest folder. If you're using CodeWarrior Lite, open the
EventTest.mcp project so that you can take a look at the code.

If you own the full-featured version of CodeWarrior, now is as good a time as
any to try your hand at creating a Mac program from scratch. If you don't
recall just how that's done, go back and review a few chapters. EventTest
uses one window, and so it needs a resource file with a single 'WIND'
resource. If you don't remember the exact steps to creating a resource file,
you can refer to Chapter 7. Chapter 8 discusses the 'WIND' resource in detail.
A CodeWarrior program starts out as a project. Creating a project is covered
in Chapter 9. If this all sounds too confusing, read Chapter 19 before tackling
the task of creating a new project. In Chapter 19, I fully describe creating a
complete Macintosh program from start to finish. That includes the basics -
from conjuring the resource file to making the source code file.

Examinin9 the basic stuff
Like all programs, EventTest starts with the declaration of variables. Here I
comment on all of the variables, and I describe each variable as I get to the
code that uses it:

WindowPtr theWindow; /*-A window to write to */
EventRecord theEvent: /* Hold info about one event *l
short allOone; /* End of program */
Rect whiteRect: /* Used to cover text */
long count: /* A loop counter */

2 2 8 Part V: The Moment of Truth: Writing a Program!

After the variable declarations come the Toolbox initializations. These eight
lines are lifted directly from another program I wrote. Remember, I advise that
you use these same eight Toolbox initializations in every program you write:

lnitGraf(&qd.thePort l ;
lnitFonts() ;
IniUlindows() ;
Ini tMenus() ;
TEI nit() ;
InitOialogs(nil l ;
FlushEvents(eve ryEvent, 0);
InitCursor();

The last bit of code for the basic stuff is for the opening of a window. Calling
GetNewW i ndow provides my program with a Wi ndowPt r that can be used in
other Toolbox calls, like Set Po rt. These two lines take care of that job:

theWindow • GetNewWindow(128 . nil . (WindowPt rl-ll);
SetPort(theWindow) ;

Examinin9 the etlent loop
The event loop of EventTest should be a welcome sight to you. It is the very
same event loop I showed you earlier in this chapter - with just five extra
lines added to it:

allOone • O;
while (allDone < 1
{

WaitNextEvent(everyEvent . &theEvent . 7, nil l :
switch (theEvent .what l
{

case keyDown :
MoveTo(10 . 20 l :
Drawstring("\pKey pressed'):
count • O;
while (count< 2000000 l

count++ :
SetRect(&whiteRect, 10 , 10 . 100 , 25 l :
FillRect(&whiteRect . &qd .white l :
break ;

case mouseOown :
allOone • l ;
break :

The new lines appear under the key Down case of the switch statement.
Here's how the old key Down section looked:

____________ Chapter 17: Examining a Simple Mac Program 2 29

case keyDown :
MoveTo(10 , 20 l :
Drawstring("\pKey pressed" l :
break :

In the old key Down code, pressing a key caused the program to write to the
window like this:

003- New Window ~·

Key pressed

All fine and dandy, you say. But what happens if the user again presses a key?
The same code runs, and the same words write to the window in the exact
same spot. After the first press of a key, the window goes from one that is
blank to one that has words written in it. But after that, the user has no way
of knowing that words are being written. The solution? Erase the words soon
after displaying them. A key press then results in the words Key pressed flash­
ing on and off. Take a look at how EventTest does that.

After writing the words Key pressed to the window, the variable count
assumes a value of 0. Then the program goes into a very simple loop:

case key Down :
MoveTo(10 . 20);
Drawstring("\pKey pressed" J;
count - 0;
while (count < 2000000

count++;

The loop doesn't appear to be doing much except counting. Variable count
starts with a value of 0, and increases by a value of 1 each time through the
loop. The++ symbol is the increment operator, and when it appears next to a
variable name, the variable is incremented by one. So, what good is a loop
that does nothing but count from 1 to 2,000,000? Not much, unless you want
to kill some time. That's exactly what the loop is doing. While the Mac is busy
counting up to two million, it doesn't do anything else. That means the loop
is delaying the rest of the program from running. So what's really important is
what follows the loop, that is, what code is being delayed.

2 J 0 Part V: The Moment of Truth: Writing a Program! _________ _

The loop has the extra benefit of showing just how fast a Mac runs. The loop
runs 2,000,000 times and takes a few seconds to run on an older Mac II model.
It takes only about a quarter of a second on a much newer Power Macintosh.
In either case, that's a pretty fast way to count to 2,000,000!

The two lines of code that follow the loop are calls to the Toolbox functions
SetRect and Fi 11 Rect. SetRect establishes the coordinates of a rectangle,
but doesn't draw it (for more on SetRect. see Chapter 16). The coordinates I
select create a rectangle that surrounds the words Key pressed. But I don't
want to place a frame around these words as the Toolbox function
Frame Re ct would. Rather, I want to fill this rectangle with the same color of
the window. The window is white with black text. If I draw a white rectangle
over the black text I effectively obscure the text - it will be erased. I use
Fi 11 Rect to do this.

The Fi 11 Rect function draws a solid rectangle with no frame. You give
Fi 11 Rect two parameters, which are the Rect variable that should be filled
and the shade to fill it with. Here's the code that sets up a rectangle and then
fills it with white:

SetRectC &whiteRect, 10, 10, 100, 25);
Fm Rect(&whiteRect. &qd. white) :

The second parameter to Fi 11 Rect, the shading for the rectangle, must be
preceded by an ampersand(&), the letters qd, and a period. Failure to do so
results in an error when you attempt to compile the source code!

By the way, you can use a few other shades with Fi 11 Rect. The Fi 11 Re ct
Toolbox function allows you to fill a rectangle with white, light gray, gray,
dark gray, or black. Here's an example of each. If you use any of these shades,
make sure to use the same combination of uppercase and lowercase charac­
ters as shown here:

FillRectC &theRect. &qd.white):
FillRect(&theRect, &qd.ltGray);
FillRect(&theRect, &qd.gray):
FillRect(&theRect. &qd.dkGray);
FillRect(&theRect, &qd.black);

Events and the event loop are two of the most important and powerful con­
cepts in Macintosh programming, which is why this chapter is one of the
longest in the book. The event loop gives a Mac program the ability to react
differently in different circumstances. One of those circumstances is a mouse
click in the menu bar.

Now that you've gained knowledge about the event loop, it's time to go on to
Chapter 18 where you look at a sample program that includes a menu.

Chapter 18

Menus That Drop and
Windows That Move

ooeeooeoooooeooeeoooooooeo0oooeoooeo0Goeee000~000

In This Chapter
I> Dissecting the different parts of a window and the screen

r> Dragging a window around on the screen

&> Closing a window

~ Examining a program with a movable, closable window

e> Displaying a menu bar

l)>- Displaying a pull-down menu

~ Handling a user's menu selection

~ Examining a program with a functioning menu

QOGOGG$00000GOOOOOOOOGOOOOOOGOOGOG~OQOOOOOOOOOQ~O

~metimes a chapter in a book ends with a review. Just to be different, I'm
~~tarting a chapter with one. Here's a review of what you can make your
Mac programs do:

1

1"' Initialize the Toolbox.

1"' Open a window.

1"' Draw text and graphics in a window.

1"' Respond to user actions, such as mouse clicks.

The points I just listed are very important topics in Macintosh programming.
But there are a still a couple of topics you need to have under your belt in
order for your programs to have the true look and feel of a Mac program.

2 J 2 Part V: The Moment of Truth: Writing a Program! _________ _

The first missing feature deals with windows. Yes, you can open a window.
But it sits lifeless on the screen as if it were frozen. The user can't move it or
close it. In fact, if the user tries to do anything with the window by clicking
the mouse on it, the program ends. The second missing feature is a biggie -
menus. To avoid the scorn and ridicule of other Mac programmers, your pro­
grams need to feature menus. I address both of these issues in this chapter.

Brin9in9 a Window to Life
A true Mac program doesn't just display a window, it also lets the user work
with the window. A user expects to be able to drag, or move, a window. And
when done with the window, the user wants to be able to close that same
window. Those are the two topics 1 cover in the next few sections.

Dissectin9 the parts of a window
Each of the different event types has a name, such as mouseDown and
key Down. Knowing that, it may not come as a surprise to you to discover that
the different parts of the screen, and windows on the screen, also have names.

When the user clicks the mouse button, a mouseDown event is reported to
your program. What should your program do next? In programs in other
chapters, I simply use a mouse click as a signal to quit the program. A better
response would be for the program to determine where the mouse click took
place and then act accordingly. If the mouse click took place in the menu bar,
the program should drop a menu. If it took place in the close box of a
window, the program should close that window. And if the mouse click took
place in the title bar (the drag bar) of a window, my program should start
dragging the window.

The Mac screen and any window on it has several different parts. The follow­
ing list details the names of the three most common parts:

1
1"' i nMenuBa r is anywhere in the menu bar.

1"' i nGoAway is the go-away, or close box, of a window.

1"' i n Drag is the drag bar, or title bar, of a window.

Notice that the part names begin with in. That gives you a hint as to how these
part names are used by your program. If the mouse is clicked in the menu bar,
drop a menu. If the mouse is clicked in a window's close box, close the window.
Here's a figure that emphasizes where the three main parts are located:

________ Chapter 18: Menus That Drop and Windows That Move 2 J J
A mouse click anywhere in the
menu bar is called i nMenuBa r.

A mouse click
in a close box
is called
inGoAway.

/
ii File Edit L

;;i~ New Window

~D
A mouse click
in a title bar
is called
inDrag.

Clickin9 different parts of a window
Knowing where a mouse click took place is very useful information that your
program can and does take advantage of. But for some mouse clicks, still
more information is needed. When the user clicks the mouse anywhere in a
window, your program wants to know not only where the click took place,
but also in which window it occurred.

Take a look at the case of a program that has two windows open. For two win­
dows to open, you have to write the following code:

WindowPtr theWindowl:
WfndowPtr theWf ndow2:

theWindowl .. GetNewWindow(128. nil. CWfndowPtr>-lL >:
theWindow2 .. GetNewWi.ndowC 129. riil, CWindowPtrHl >:

To drag one of the windows, a user clicks the mouse on the window's drag
bar. In the figure below, you can see that the cursor is over the drag bar of
theWi ndow2.

theWindow2

A click in the drag !
bar of theWi ndow2

Window Two

theWindowl

l
Window 1

Window One

2 3 fl Part V: The Moment of Truth: Writing a Program!

A click in the drag bar of theWi ndow2 tells the program that an i nDrag part
has been clicked. Your program then wants to start dragging the window as
the user moves the mouse. But one important bit of information is missing -
which window should be dragged? You know it's the window that
theWi ndow2 is pointing to because you've looked at the previous figure. But
the program isn't reading this book, so it doesn't know. But, just like a good
international spy, it has ways of finding out.

The program needs several things in this situation: a way to determine what
part is clicked on, and, if a window is involved, the window in which the click
took place. Naturally, the Toolbox offers the answer.

The Toolbox function Fi ndWi ndow gives your program the mouse click infor­
mation it needs. Fi ndWi ndow isn't psychic, though; you need to help the
function by supplying the location of the mouse click. Thankfully, coming up
with this location requires no effort on your part. The Event Record data
type and a call to Wai tNextEvent fill Fi ndWi ndow with information about an
event. One bit of information is the type of event that occurred. Another
piece of information filled in for you is where the cursor is when the event
occurs. That where information is of high value to you at this time. The fol­
lowing code shows a typical call to Fi ndWi ndow. For clarity, the code also
shows the declarations of the variables that it uses.

Event Record
WindowPtr
short

theEvent;
whichWindow;
thePart:

thePart Q FindWindow(theEvent.where, &whichWindow):

After the call to Fi ndWi ndow, the short variable thePa rt holds the name of
the part that was clicked. That is, the Pa rt has a value such as i nDrag or
i nMenuBa r. The last parameter to Fi ndWi ndow also takes on a value it didn't
have before the function call. Before calling Fi ndWi ndow. you declare a new
Wi ndowPtr variable, but you don't open a window. Instead, you use this val­
ueless variable as the second parameter to Fi ndWi ndow. If Fi ndWi ndow
determines that the mouse click occurred in a window, it gives this variable a
value. The value is a pointer to the clicked-in window, a Wi ndowPt r. Here's a
breakdown of the call to Fi ndWi ndow:

When Fi ndWi ndow is
complete, this variable
holds the name of
the clicked part.

i

You tell Fi ndWi ndow
the screen coordinates
of the mouse click.

" thePart FindWindow(theEvent.where.

When Fi ndWi ndow is
complete, this variable
holds a pointer to the
clicked window.

i
&whichWindow);

________ Chapter 18: Menus That Drop and Windows That Move 235
How can as ho rt variable (which is a number) end up having a value that is
a name? That seems to be the case when the Pa rt is declared to be a short,
and is then given a value such as i nDra g by the Fi ndWi ndow function. The
answer lies in the way the Mac keeps track of some names, like i nDrag,
i nGoAway, and i nMenuBa r. While you see these names as words, the Mac
associates a number with each name. So when the Part gets a value of
i n Drag, the Mac is secretly doing something like this:

thePart "" 4: I* The Mac views inOrag as the number 4 */

Tricky, no? The thing to remember is that the Mac does all this converting of
names to numbers behind closed doors. You don't see it, and you don't have
to worry about it. Now that's reason to celebrate.

After a call to Fi ndWi ndow, your program knows

I
J;tt' Which part of the screen, or window, is clicked.

J;tt' Whether a window is clicked.

J;tt' Which window, if any, is clicked.

Variable the Pa rt holds the first two pieces of information. If the Part has a
value that pertains to a window, such as i nDrag, your program knows that a
window was clicked and where in that window the click took place. The third
piece of information is held in variable w hi ch W i n d ow. If the mouse click was
in a window, Fi ndWi ndow gives this variable a value, a pointer that tells the
Mac which window received the mouse click.

That does it for the theory behind the determination of where a mouse click
took place. It's time to put the theory into practice.

Workin9 with windows can be a dra9
Wait! Wait a second. Before you jump right into the code for dragging a
window, you need to figure out where the code should go. You don't have a
clue as to where it should go? Well here's a hint: A look at the code for the
event loop may come in handy very quickly:

while t allOone < 1 >
{

WaitttextEventC everyEvent, &theEvent.- f .. ni 1) :
swftch (theEvent.what)
{

case keyDown:
I* do something */
break:

case rnouseOown:
/* do something */
break:

2 J 6 Part V: The Moment of Truth: Writing a Program!

Instead of actually doing anything when a key or the mouse button is
pressed, I've just stuck a comment in the code. That doesn't make the code
very useful, but it makes it nice and short and easy to look at.

A window gets dragged when the user clicks the mouse button on the drag
bar of the window. That tells you the code is going to go under the case label
mouseDown. I insert the appropriate code under the case label in the follow­
ing listing of code. Take a look at it, scratch your head if you need to, and
then move on to the explanation.

while C allDone < 1)
(

WaHNextEvent< ·eveq~vent. &theEverit, }, nil l:
switih C theE~ent.what ~ ·
(

case keyDown:
I* do something */
break:

case mouseDown:
thePart .. FindWindowC theEvent.where, &whichWindowl;
switch (thePart >
(

cas.e. inDrag: ·

}
break:

OragWi.ndowc ~hi chWi ndow •.. theEvent ~where ..
· · &qd·. s~~eenBi ts, ~ound~ >:

break:

The first line of new code is the call to Fi n d W i n d ow. This Toolbox function
returns the part of the screen or window that was clicked, along with a
pointer to the window that was clicked, if any. The only other code I add is a
switch statement. The switch examines the value of the Pa rt. It has a value
such as i nDrag, i nGoAway, or i nMenuBa r. At this time, I'm only demonstrat­
ing how to respond to a click in the drag region, so that's the only ca s e label
I put in the switch. A mouse click anywhere else is simply ignored by the
program.

The following figure shows what goes on in the event loop when the user
clicks the mouse on the drag bar of a window. I don't like working in cramped
quarters, so I've taken the liberty of inserting a few blank lines that give me
room to add those arrows I like to draw:

________ Chapter 18: Menus That Drop and Windows That Move 2 3 7
Program ends up here if

/

the mouse button is clicked.

Determine at what part of the

/

screen or window the click took place.
case rnouseDown:

thePart R FindWindowC theEvent.where, &whichWindow >:
switch c the Pa rt) ..,____Compare the part of the screen (or window)
I with the case label (or labels) that appear below.

case ; nDrag: ..,____ If thePart has a value of i nDrag,
the program ends up here.

DragWindow(whichWindow. theEvent.where, &qd.screenBits.bounds);

break: "

Drag (move) the window in response
to the user moving the mouse.

When it comes right down to it, only one line of code actually drags a
window. The one important line contains the call to the Toolbox function
DragWi ndow. When a user moves a window on the screen, it is DragWi ndow
that's doing all the work.

DragWi ndow needs three parameters in order to work. The first, the one I
called whi chWi ndow, is the window that is to be dragged. Remember,
whi chWi ndow isn't a window that you opened using GetNewWi ndow. It's a
Wi ndowPtr variable that you declared with the express purpose of using it in
the call to Fi n d W i n d ow. When the user clicks on a window, whether there are
one, two, or ten windows on the screen, the Fi ndWi ndow function figures out
which one received the mouse click and puts a pointer to it in the
whi chWi ndow variable. Now is the time, when a window is being dragged, to
use this Wi ndowPt r variable.

The second parameter of DragWi ndow is the screen coordinates of the mouse
click. That helps DragWi ndow get started as it moves the window. The last
parameter is a strange-looking one called & q d . s c re en Bi ts • bounds. The pur­
pose of this parameter is to tell DragWi ndow just how far a window can be
dragged. When you set this parameter to &qd. screenBi ts. bounds, you're
telling the Toolbox that it can feel free to move the window anywhere on the
screen - the entire area of the screen is available.

When you call a Toolbox function, the function typically runs in a blink of the
eye. For example, when a program calls FrameRect to draw a rectangle, the
rectangle is drawn almost immediately. Dr a gW ind ow is an interesting
function in that it stays running for as long as the user holds the mouse
down on a window's drag bar. When the user starts moving a window around
the screen, it's the DragWi ndow function that's doing the work. If you were to

2 J 8 Part V: The Moment of Truth: Writing a Program! _________ _

drag a window around the screen for 10 seconds, that's how long the
DragWi ndow function would take to run.

Closing a window
After you know the procedure for dragging a window, closing one is a breeze.
A window gets closed when the user clicks the mouse on the window's close
box (or go-away box to some). That means your program must first determine
whether a mouse Down event occurs. You know how to get your program to do
that. Next, a call to Fi ndWi ndow is in order to see whether the mouse click
happened in GoAway (in the go-away box of the window). That you know how
to do. Next, a case label is needed inside a s w i t ch statement. That you know
how to do. Last, code has to be added to actually close the window. That you
don't know how to do. But after looking at this one line, you will know:

DisposeWindowC whichWindow >:

Adding this one line of code does the trick. The Toolbox function
Di sposeWi ndow closes a window. All you have to do is tell Di sposeWi ndow
which window to close. And that information you already have from the call
to Fi ndWi ndow. I add a case label i nGoAway to the very code I used when I
demonstrated how to drag a window. I put the new code in bold type so that
you can see it better. You can thank me later:

wh11e (allDone < 1 >
{

WaitNextEventC everyEvent. &theEvent. 7. nil >:
switch (theEvent.what)
(

case mouseDown:
thePart a FindWindowC theEvent.where. &whichWindow>:
switch (thePart >
(.

case 1nDrag:
DragWi n~ow< whi chWindow. tneEvent. where. ·
&qd. screens its. bourids· .) :
break:

case 1nGoAway:

I
break:

Di sposeWi ndowc. · whi chWi ndow. >:
break;

_________ Chapter 18: Menus That Drop and Windows That Move 2 J 9

Workin9 windows and breakin9
out of the loop
I'm sure that you now have a pretty good idea of how to drag and close a
window. Just to reinforce the concepts, here's a complete listing of the code
for a program that does everything I talk about in this chapter.

This program, which I call WindowWorks, has only one point that may need
to be explained. In order to write a program that doesn't run forever, you
must always add a line of code somewhere that breaks the program out of
the event loop. In my programs, that line always looks like this:

all Done .. 1:

Where you put that line depends on the program you're writing. It makes
most sense to use it when the user selects Quit from a menu, but my program
doesn't have a menu. So I elect to place this line right after the call to
Di sposeWi ndow. That means that when the user clicks the window's close
box, the window closes and the program ends.

void main(void) f .,.

WindowPtr theWindow;
EventRecord theEvent;
short all Done;
WindowPtr whichWindow:
short thePart:

InitGraf(&qd.thePort >:
InitFonts< >:
lni tWi ndows ():
InitMenus():
TEinit():
lnitOialogs(nil):
FlushEvents(everyEvent, 0 >:
InitCursor();

theWindow a GetNewWindow(128, nil, (WindowPtr)-ll);
SetPort(theWindow >:

allOone .. O;
while < allOone < 1)
I

WaitNextEvent(everyEvent; &theEvent, 7, nil);
switch (theEvent.what J
I

case mouseoown:
thePart .. FindWindowC theEvent.where, &whichWindow):
switch (thePart)
I

case inOrag:

(continued)

2 fl 0 Part V: The Moment of Truth: Writing a Program!

(continued)

OragWindowC whfchWindow;·theEVent.where.
&qd.screenBits~bounds >:

break;
case inGoAway:

I
break:

DfsposeWi ndow(whi chWi ndow) :
allDone .. 1:
break:

It's often said that simplicity is beautiful. But there are certainly other impor­
tant features that you need to be able to add to your programs to make them
look and act like real, for-certain Mac programs. Adding menus has to be at
the top of your list at this point.

Droppin9 That Menu
A person can write tons of source code to show off many Macintosh program­
ming concepts without ever including the code for a menu. I know this
because I have accomplished this amazing task after writing 17 chapters of
this book. Now, it's finally time to create a program that's much closer to
being a real Mac application. That's right: It's finally time to belly up to the
menu bar for some menus.

Running through the menu resources
The program that I show you at the end of this chapter is called MenuDrop.
Before looking at code for a menu, I want to give you a quick peek at the
resources that the program uses.

The first thing you may notice about the resource file shown below is that
there is no 'WIND' resource. My MenuDrop program doesn't use one because
it only displays a single menu in the menu bar.

~13~ MenuDrop.nrc ==;!i!Jj

w ~ ~
.

M8AR MEN.I

~
~

_________ Chapter 18: Menus That Drop and Windows That Move 2 fl 1
Clicking the MENU icon once shows the 'MENU' resources in this resource
file. You find only one:

MENUs from MenuDrop.rsrc 11!1

128

Double-clicking the menu in the previous figure opens the 'MENU' editor.
Here's what the one 'MENU' in MenuDrop looks like:

lif MENU ID • I 2B from Menuorop.rsrc ~

!II I Entire Menu: 181 En11bled
Beep Mel ~ I Quit I Title: ®I MyMenu I

I 0 s (Apple menu)

I Color I
Title:.

Item TeHt Oef11u!t: 11!!11

lo: l Menu Background: 0

Whether your program has one menu or ten, it should have an 'MBAR'
resource that lists each one. Here's the 'MBAR' for MenuDrop:

liJSI- MORR ID • 12B from MenuOrop.rsrc &¥¥

• of •enus

I)*****

Menu res 10 1126
~--~

2) *****

2 fl 2 Part V: The Moment of Truth: Writing a Program! _________ _

Displau.in9 the menu bar
To get a Mac program to display a window, you use two steps:

1. Create a 'WIND' resource in a resource file.

2. Call the GetNewWi ndow Toolbox function to use the information in the
resource and display the window.

Getting a Mac program to display a menu bar with menus requires two simi­
lar steps:

1. Create 'MENU' and 'MBAR' resources in a resource file.

2. Call the GetNewMBa r Toolbox function to use the information in the
resources and display the menu bar.

Here's a call to GetNewMBa r, which is the Toolbox function that takes infor­
mation from an 'MBAR' resource and uses it to display a menu:

Handle menuBarHandle~

menuBarHandle • GetNewMBarC 121);

Take note of the variable declaration. Variable menu Bar Hand l e is a Hand l e
type, a type that may be new to you. To explain Handle, you may recall that a
lot of things get stored in the memory of a computer. When that happens,
your program needs a way of keeping track of where something is stored in
memory. The data type Handle does just that. Thankfully, how it keeps track
of memory isn't important to you. The bottom line is that the Mac keeps
track of things like menu bars by using a Handle.

GetNewMBa r accepts a single parameter-the resource ID of the 'MBAR' that
holds information about the menus that are to appear in the menu bar. If you
create one 'MBAR' resource (as is usually the case), ResEdit automatically
assigns it an ID of 128. That's why I've used 128 as the parameter to
GetNewMBa r in my example.

After a call to GetNewMBa r, the variable menuBa rHa nd le has a value. That
value is used in a second Toolbox call, which is SetMenuBa r:

SetMenuBar(menuBarHandle >:

When you call GetNewMBa r from the Toolbox, it does a lot of fancy things to
get all the information from both the 'MENU' resource and the 'MBAR'
resource located in your program's resource file. Though it holds on to all
this information, it doesn't really do much with it. The call to SetMenuBa r is
the thing that establishes that yes, this information should and will be used
for the menu bar for this program.

________ Chapter 18: Menus That Drop and Windows That Move 21,3
After GetNewMBa rand SetMenuBa r. you'd think that the menu bar would be
there on your screen. Not quite. True, everything is safely stored in memory
and ready, but the Toolbox still wants you to call DrawMenuBa r in order to
display the menu bar at the top of the Mac's screen. Here's the call to
Dr a wMe nu Bar, along with the other two Toolbox calls necessary for display­
ing a menu bar:

Handle menuBarHandle:

menuBarHandle .. GetNe~MBar< 128);
SetMen.uBar(menu.B.arHandle };
PrawMem.1Bar< >: ·

If I use this code along with the 'MENU' and 'MBAR' resources I created sev­
eral pages back, I get a menu bar that looks like this:

MyMenu

You know that my 'MBAR' holds the ID of one 'MENU' resource. That 'MENU'
is for a menu that has two items - one called Beep Me! and the other called

.. · Quit. You may be wondering why I didn't show MyMenu dropped down to
display these two items. I could have included that in my figure, of course.
Heck, I can draw a menu bar and menu in my graphics program any way I
want! But I wanted to be realistic. The code that I show in this section only
displays a menu bar and the names of the menus in that bar. It doesn't do
anything to make the menu bar functional. That is, if you include the code I
just showed you in a program, you'd see a menu bar, but you wouldn't be
able to use it. You know what's about to happen: You need to add code to
make the menu usable.

l'ullin9 down a menu
You know about the parts of the screen and the parts of the windows on the
screen such as i nDrag, i nGoAway, and i nMenuBa r. You also know that
through the use of the Toolbox function Fi ndWi ndow, you can find out in
which of these parts a mouse click occurs. You also know that because the
moving and closing of a window both involve a click of the mouse, the code
that is used to carry out these actions is added to the event loop under the
case label mouseDown. (If any of this sounds unfamiliar, refer to the sections
at the beginning of this chapter.) All this knowledge serves you well when
you want to understand how menus work.

The only time your program pulls down a menu is when the user clicks the
mouse in the menu bar. So it's important that your program be aware of when
the user clicks the mouse. To clue your program in on mouse clicks, you call

2 !/, !/, Part V: The Moment of Truth: Writing a Program!

Fi ndWi ndow from the Toolbox when working with a window. The code below
should look familiar because it's from this chapter. I've added a case label for
i nMenuBa r, but I haven't added any menu-handling code just yet.

while (al 10one < 1)
[

WaitNextEvent(everyEvent . &theEvent. 7. ni l) :
switch (theEvent.what l
(

case mouseOown :
thePart • FindWindow(theEvent .where, &whichWindowl :
switch < thePart l
(

case inOrag :
OragWindow(whichWindow . theEvent .where .

&qd.screenBits. bounds) :
break ;

case i nMenuBa r :

I
break :

I* handle a click in the menu*/
break :

If there's a click in the menu bar, Fi nd Wi ndow assigns variable the Pa rt a
value of i nMen u Bar. Because no window is involved in a menu bar click, vari­
able wh i chWi ndow is left without a value.

What happens when a mouse click turns out to be in the menu bar? The
code under i nMen uBa r runs. I show you most of the code for running
i nMenu Bar here:

case inMenuBar :
menuAndltem • MenuSelect(theEvent .where) ;
if (menuAnd l tem > 0)
[

theMenu • HiWord(menuAndltem) :
theMenu ltem • LoWord{ menuAndltem);
switch (theMenu)
(

I* handle each menu item here */
)
Hil iteMenu C 0) :

J
brea k:

You may notice in the preceding code that rather than address the selection
of each menu item, I simply insert a comment. How's that for getting off easy?
Actually, I have my reasons for omitting some code. First, I want to keep the
code minimal so it's easier to look at and easier to explain. Second, each pro­
gram handles menu items differently. That is, code for a menu item is
dependent on what that menu item is supposed to do. But don't feel like
you're being cheated. I show you the code for my two menu items, Beep Me!
and Quit, a little later in this chapter.

________ Chapter 18: Menus That Drop and Windows That Move 2 f,5

On to the explanation of the i nMenuBa r code. After a click in the menu bar is
detected, the code calls the Toolbox function MenuSel ect. This is one of
those Toolbox functions Mac programmers go ga-ga over. Why? Because it's
one of those functions that does a lot, and thus saves you a lot of work. Once
called, the astonishingly functional Menu Se 1 ect does the following:

~ Follows the mouse as it moves about in the menu bar.

~ Shows and hides menus as the mouse moves over them.

~ Flashes a selected menu item a few times.

~ Highlights the name of the menu that's been selected in the menu bar.

~ Tells your program which menu item has been selected - and from
which menu.

Wow! Hopefully the Toolbox pays Menu Select at least time and a half! The
only things Menu Se 1 ect needs in order to do all this work are the screen
coordinates at which the mouse button was clicked. Just pass
theEvent. where as the parameter and Menu Se 1 ect does the rest.

After dragging the mouse here and there across the menu bar, the user even­
tually settles on a menu item and selects it. At that time, Menu Se 1 e ct
considers its work done. As the Toolbox function ends, it returns a number to
your program. This number is a code that represents both the selected menu
item and the menu from which the item was selected. Save the number as a
1 ong variable - I name mine menuAnd I tern. Here's the call to Menu Se 1 ect,
along with a reminder of how to declare a 1 on g variable:

long menuAndltem:

menuAndltem a MenuSelect{ theEvent.where >;

Remember, a 1 ong is a whole number that can have a value larger than
32,767. And as a further reminder, a short and an int are two other C data
types that hold whole numbers.

Makin9 the menu usable
If I stopped writing code right now, my program would appear to behave
much as any Mac program should. If the user clicked on the one menu in my
program's menu bar, the menu would drop down. The user could select
either item and the menu item would flash a few times and the menu would
disappear back into the menu bar. All thanks to a call to MenuSel ect. What
would happen next? Nothing. That's because I haven't written any code to
handle the menu item selection.

2 (/, 6 Part V: The Moment of Truth: Writing a Program!

Any of a thousand different things can happen when a user of a program
makes a menu selection - but you decide what, not the Mac. That implies
that your program has to become aware of which menu item was selected so
that it can respond accordingly. Your program does have that information -
kind of. It was returned to variable men uAnd I t ern by Men uSe l ect . But the two
values, the menu and the menu item, are both bundled into this one number.
To break the code and separate them you use two Toolbox functions -
Hi Word and LoWo r d. Here's how these two functions are used:

short theMenu;
short theMenultem ;

theMenu • HiWord(menuAndltem l ;
theMenultem ~ LoWord(menuAndltem) ;

You pass both Hi Wor d and Lo~lo rd the variable that holds the combined
menu/menu item value - men uAnd Item. As each function ends, it returns a
new number to your program. Hi Word returns a number that represents the
menu selected, LoWord returns a number that represents the menu item
selected. I use the 'MENU' resource I developed earlier as an example of what
these numbers mean. Here's that resource:

MENUs from MenuDrop.rsrc

Menu item #2

128

Menu #128

The Mac views a menu by the resource ID of its 'MENU' resource. It gives
each item in a menu a number associated with its order in the menu. The first
menu item is 1, the second is 2, and so forth. If a user selected Quit from my
example menu, here's what would happen:

_________ Chapter 18: Menus That Drop and Windows That Move 2 fl 7

Secret, highly
complex number!

MenuSelect ..,__m_en_u_A_n_d_I_te_m __ -t

LoWord

theMenu ..
128

theMenultem ..
2

The previous figure shows that MenuSe l ect spits out menuAnd I tern, a
number in a form far too complicated for mere mortals to understand.
menuAndltem is then passed to both Hi Word and LoWord. Hi Word returns the
resource ID of the selected menu, which is 128 for my example. LoWord
returns the number of the selected menu item, which is the second item, or
number 2 for my example.

I didn't get the Official Menu Spy Decoder Ring with my Mac, so I'm not
exactly sure how Hi Word and LoWord manage to extract both the menu and
the menu item from this one number. But from my experience with program­
ming the Mac, they always seem to get it right.

Let's take another look at the case i n Menu Ba r, and then cover the sections
of it that haven't yet been discussed:

case inMenuBar:
menuAndltem .. MenuSelect(theEvent~where).;
if C menuAndltem > O) ·
I

theMenu D HiWord< menuAndltem >:
theMenultem = LoWord(menuAndltem l;
s.wi tch (theMenu) · { ..

/* handle each menu item here*/
}
HiliteMenuC o J:

}
break;

Did you ever start to make a menu selection in a program and then change
your mind? When a user does that, Menu Select returns a value of 0 to the
program; it sets menuAnd Item to 0. That tells the program that, yes, menus
were dropped and looked at, but no selection was made. In a case such as
this, a program won't want to go through the work of deciphering
menuAnd I tern with Hi Word and LoWord - no menu or menu item numbers

2 fl 8 Part V: The Moment of Truth: Writing a Program! _________ _

are embedded in this variable. In fact, because the user decided not to do
anything, the program won't want to do anything either. That's the reason for
the if statement after Menu Se 1 ect.

If no menu choice is made, menuAnd Item is 0 and that if statement test fails
because men uAnd I tern is not greater than 0. That means all the code that
handles a menu selection is skipped:

case inMenuBar:
menuAndltem =

If no menu selection is
made, Menu Se 1 ect sets

/ menuAnd I tern equal to O.

MenuSelect(TheEvent.where);

if (menuAndltem > 0)
{

theMenu = HiWord(menuAndltem);
theMenultem = LoWord(menuAndltem);
switch (theMenu)
{

/* handle each menu item here */
}
HiliteMenu (0);

}
break;

The preceding figure shows what happens when the user clicks in the menu
bar but doesn't end up making a menu selection. What happens if the user
does make a choice? The program enters the if loop. Hi Word and LoWord are
called to determine the menu and menu item selected. Then a switch state­
ment is entered. The code inside the switch (which I haven't yet shown)
handles whatever tasks are expected of each menu item. Bear with me - I'll
cover all that soon enough.

After the switch handles the menu selection, Hi 1 i teMenu is called. When
a menu selection is made, Menu Se 1 ect highlights the name of the menu in
the menu bar. The name stays highlighted even after the user releases the
mouse button:

r Mil§r"'

_________ Chapter 18: Menus That Drop and Windows That Move 2 !, 9
After the code that handles a menu selection is complete, the menu name
returns to its normal condition. Hi l i teMenu is the Toolbox function that
does this. Always pass Hi l i teMenu a value of 0 as its one parameter.

Handlin'}. a menu selection
In the previous section, I show how a menu is made to drop down and how a
program can get the number of both the menu item selected and the number
of the menu that holds that item. But I stopped short of showing you the
details of handling the menu selection. Now I want to fill in the missing code
that should be under the switch statement. I've put the switch in bold type
so that you can see just where I'm about to add code:

case inMenuBar:
menuAndltem = MenuSelectC theEvent.where l:
if C menuAndltem > O >
(

theMenu = HiWordC menuAndltem >:
theMenultem = LoWordC menuAndltem);

switch (theMenu)
{

I* handle each menu item here *I
}

HiliteMenu(0 >:
}
break:

If I had a program with two menus (one with a 'MENU' resource ID of 128 and
one with a 'MENU' resource ID of 129), I'd add a case label under the switch
statement for each of them. Under each ca s e label I would add more code
that handled the tasks necessary for any item selection from that menu. Say
that the 'MENU' resources for a program I'm writing look like this:

ml@-: .. ·-"-~£± MENUs from Test.rsrc

~
----------····-·1

~I

l ___ J
128

1-·-L-.--------1
I Copy

1
1

j Paste

I J
129

<>
QJ

2 5 Q Part V: The Moment of Truth: Writing a Program!

Then my code would look something like this:

switch (theMenu l
{

case 128:
I* handle item 1, Quit .

case 129:
I* handle item 1. Cut,
/*handl e item 2. Copy ,
/* handle item 3. Paste ,

from menu 128 */

from menu 129 *I
from menu 129 */
from menu 129 */

Fortunately, and not by any accident, I may add, the example program I've
been working on in this chapter is even easier! Here's the 'MENU' resource for
the example program:

MENUs from MenuDrop.rsrc

--------···----1
128

0
lli

So the switch statement for it (in general terms) looks like this:

switch (theMenu)
I

case 128:
I* handle item 1, Beep Me!, from menu 128 */
I* handle item 2. Quit, from menu 128 */

Now it's time get rid of the comments and add the real code. Whenever deci­
s ions need to be made, such as which one of several menu items are to be
handled, expect to see a switch statement. So here once again a switch
is used.

switch (theMenu >
I

case 128:
switch (theMenultem >
{

case 1:
SysBeep(1 l:
break :

________ Chapter 18: Menus That Drop and Windows That Move 2 51

case 2:

}
break:

all Done .. 1:
break:

The first switch uses theMenu to narrow down which menu was selected. In
this example, there is only one- menu 128. The second switch uses
theMenultem to narrow down which menu item was selected. My example
has two items, which are item 1 and item 2. Take a look at how each item is
handled.

When the user selects the first item, Beep Me!, the code under the first ca s e
label runs:

case 1~
Sys Beep(1 >:
break;

All this menu item does is sound the Mac's built-in speakers. Usually that
means that the speaker emits a single beep, but other things could happen. If
the user uses a control panel to change the system alert sound to something
other than a beep, whatever sound they choose plays once. Or, if the user
has the speaker volume set to 0, the menu bar flashes instead. Sys Beep is the
Toolbox function that does the beeping. Just pass Sys Beep the number 1 and
it gives the speaker a beep. While this menu option doesn't do anything terri­
bly exciting, it does at least provide you with verification that the code is
working. Every time the user selects this item, the speaker should beep.

Now look at how the second menu item, Quit, is handled. Even without the
use of menus, you know how to end the running of a program. Just set vari­
able a 11 Done to a value of 1, and the event loop ends. That's exactly what I
do here:

case 2:
allDone .. 1:
break:

Examinin9 a pro9ram with a
menu that drops
In this section I show the code for a short program that demonstrates how all
the menu handling code fits together. The program, which I call MenuDrop,
uses all of the menu code that you see in this chapter, including the 'MBAR'
and 'MENU' resources. A user who runs the program doesn't see a window,
but instead sees one menu in the menu bar:

2 5 2 Part V: The Moment of Truth: Writing a Program!

@j
®

r =r4"'"' Beep Me!.

So, where's the Apple menu? Including the Apple menu in the menu bar of a
program is a little extra work. But not so much work that I don't think you'll
eventually be up to the challenge. Chapter 22 demonstrates how to add the
Apple menu.

As described earlier, the first menu item beeps the Mac's speaker and the
second menu item ends the program. Here's the complete source code listing
for MenuDrop. You'll find the CodeWarrior project, source code file, and
resource file for MenuDrop in the Cl8 MenuDrop folder in the ... For Dummies
Examples folder on this book's CD-ROM.

void main(void)
I

Event Record
short
WindowPtr
short
Handle
long
short

theEvent:
allOone:
whichWindow:
thePart ;
menuBarHandle ;
menuAndltem:
theMenultem:

InitGraf(&qd . thePort);
InitFonts() :
lnitWindows();
InitMenus();
TE!ni tO :
InitOialogs(nil):
FlushEvents(everyEvent, 0);
JnitCursor() ;

menuBarHandle • GetNewMBar(128 >:
SetMenuBar(menuBarHandle l :
OrawMenuBarC l:

allOone • 0:
while (allOone < 1)
I

WaitNextEvent(everyEvent. &theEvent , 7, nil);

switch (theEvent .what)
I

case mouseOown :
thePart - FindWindow(theEvent .where . &whichWindow);
switch (thePart)
I

case inMenuBar :
menuAndltem ~ MenuSelect(theEvent.where) :
if (menuAndltem > 0 l

_________ Chapter 18: Menus That Drop and Windows That Move 2 5 J

theMenu • HiWord(menuAndltem);
theMenultem • LoWord(menuAndltem) ;
switch (theMenu)
I

l

case 128:
swi tch (theMenul tem l
I

case I :
SysBeep (1 l :
break ;

case 2:

l
break :

allOone = l;
break ;

Hil iteMenu(Ol ;
J
break ;

l
break ;

The source code for MenuDrop contains no surprises - you've seen it all
before. As a matter of fact, you've seen all the code you need in order to write
a complete Macintosh program. And while you've done that here with
MenuDrop, the result has been a program that doesn't let the user do any­
thing except beep the Mac's speakers. In the next two chapters, you use
CodeWarrior Professional or CodeWarrior Lite to use what you've learned
here and apply it to the development of a still more advanced program.

2 5 (/, Part V: The Moment of Truth: Writing a Program! --------'-------

Chapter 19

Writing a Very Mac-Like
Program - Part I

o o o o o o o o o e o o o o o o o o o o o o o o a o o o o o o o o o o o o G Q o o o o o o o o o o

In This Chapter
ts>- Looking at Animator, a sample program

f> Creating a resource file for Animator

f> Adding resources to Animator's resource file

ll> Creating the CodeWarrior project for Animator

fi»- Adding Animator's source code file to the project file

o o o o o o o o o o o o o o o o e o o o C> o o o o o o o o o • o o o o o o o o & o G o o a o a o o

Jn the next two chapters, I create a Macintosh program from start to finish -
without skipping a step. Developing a Mac program involves some steps

that aren't source-code related and some steps that are. In this chapter, I
cover the steps that don't involve writing code. Here I use Code Warrior to
create a new project to hold the source code file, resource file, and libraries
used to create the program. Then I create the resource file to hold the pro­
gram's resources. After creating the resource file, I use ResEdit to create the
three different resource types used in the program. Finally, I create a new,
empty source code file and add it to the project. After that, it's time for a
short break. After a couple cans of diet soda, it's on to Chapter 20, where I
take care of the steps that involve the source code itself. In Chapter 20, I type
in the source code for the new program and explain just what the code does.
Then I compile the source code and run it to make sure that it works. When I
test-drive the code, CodeWarrior is kind enough to turn the code into a final
program. That is, it builds the code and resources into a Mac application
that I, or anyone I give it to, can run. After that, Animator is a fully functional
program.

Now that you know what's in store, it's time to get started writing a very Mac­
like program - the ever-popular Animator program.

2 5 6 Part V: The Moment of Truth: Writing a Program!

In this chapter and the next, I develop a program I call Animator. You find all
the files for this program in the Cl9 Animator and C20 Animator folders -
both of which are housed in the ... For Dummies Examples folder on this
book's CD-ROM. As you read this chapter, feel free to create your own project
if you own CodeWarrior (I show you how in this chapter), or open the
included Animator.mcp project in the C19 Animator folder if you're using
CodeWarrior Lite.

While Animator won't win the Most Useful, Exciting, and Intricate Piece of
Mac Software award this year, I think you may find it's just right for you, the
new Mac programmer, because in less than I 00 lines of code, Animator does
several of the things you want many of your own Mac programs to do.
Animator, in all its glory, does all of the following:

~ Initializes the Toolbox.

~ Opens a window.

· ~ Allows the user to drag the window.

~ Allows the user to close the window.

~ Displays a menu bar with one functional menu.

~ Draws a moving shape in the window.

Running the Animator program displays an empty window and menu bar with
one menu in it. If you click the menu, you see four items in it:

Beep Mel
Grow Square
Moue Square
Quit

The first menu item simply sounds the Mac's speakers once. You've seen that
trick before. The second menu item, Grow Square, draws a very tiny solid
black square in the center of the window and then quickly enlarges it to fill
most of the window. While this trick won't rival the special effects of Star
Wars, it does give you an introduction to simple animation. I captured the
square as it starts to grow-here's a look at it now:

_________ Chapter 19: Writing a Very Mac-Like Program - Part I 2 5]

New Window

The third menu item, Move Square, creates a small framed square in the
upper-left corner of the window. The square immediately and quickly slides
diagonally down the window, leaving a path of squares as it goes. Here's what
the window looks like after the journey of the square is completed:

The fourth and final menu item, Quit, does just what you'd think it would do.

Assemblin9 the Folders Needed
to Create Animator

Just about every Mac program consists of a resource file, project file, and
source code file. Animator is no exception. In this chapter, I use ResEdit to
create the resource file, and CodeWarrior to make the project file and source
code file. In the next chapter, I again use CodeWarrior to make a fourth file -
the Animator application itself.

2 5 8 Part V: The Moment of Truth: Writing a Program! _________ _

As always, I store all the files associated with my program in one folder. Next,
I create a new folder somewhere in the main CodeWarrior folder on my hard
disk for this purpose. Because this example accompanies Chapter 19, I name
my folder Cl9 Animator. As I create the files needed for my Animator pro­
gram, I make sure that they end up in this folder.

Keeping a program's files together is important. That's because CodeWarrior
looks for the source code file and resource file so that they can be included in
the project file you're working with. If you don't keep the files together in one
folder, CodeWarrior may not be able to find them. Keeping all the files related
to one program together also makes it easier for you to keep things orga­
nized, and to be able to refer back to these files if you want to make changes
to your program in the future.

If you're using the full-featured vers ion of CodeWarrior, you can create your
own versions of the project, resource, and source code files. To do this, just
follow along in the book and do as I do. If you're us ing the CodeWarrior Lite
program that comes with this book, refer to the already completed versions
of these three files in the Cl9 Animator folder. (You find the Cl9 Animator
folder in the ... For Dummies Examples folder on this book's CD-ROM.)

To start things off, double-dick the main CodeWarrior folder on your hard
drive and then choose New Folder from the File menu. That creates a new,
untitled folder. If you give the folder the name Cl9 Animator, then all of your
work will match the figures I use in this and the next chapter.

After you create the new folder, it won't match mine because the previous
figure is a peek at what lies ahead. Instead, your folder will be empty, but not
for long.

At some point in your programming, you may notice that one of the fi les for
your program appears to be miss ing from the folder where you thought it
should be. Don't panic! When you initially saved the file, you probably saved
it into the wrong folder. That means it's on your hard drive somewhere. To
find a missing file, choose Find from the File menu at the desktop. A dialog
box opens up. If you're Mac is running the Mac OS 8.5 or later operating
system, the dialog box looks like the one shown below. Enter part or all of the
file's name and then click the Find button:

== I Sherlock~! , :=c- - "' ¥¥

V Find Fiie\[__ Find by Conten0.£ Search lntemetl

find ltemsl on local disks l ~ J whose

I ~ J I contains J ~ 11 Rnlmato~ 11
I More Choices) I Fewer Choices J Find I ,

________ Chapter 19: Writing a Very Mac-Like Program - Part I 2 5 9
In my example, the Mac searches for any file names that contain the word
Animator. Notice that I have the Find window's top pop-up menu set to "on
local disks." That tells the Mac to search any and all drives for the file. After
searching all the drives, a list of all matching files appears. I can then double­
click any file name in the list and the Mac displays that file on the desktop.

Startin9 the CotleWarrior Project
Every program starts as a project. So, of course, the Animator program
does too.

If you don't have CodeWarrior running, double-click its icon to start it up. To
create a new project, choose New Project from the File menu. If you're using
the version of CodeWarrior that came from the CD-ROM included with this
book, you have to be content with reading about what happens -
CodeWarrior Ute's New Project menu item is disabled. If you own the full­
featured CodeWarrior, choosing New Project from the File menu results in the
display of a dialog box that allows you to choose a project stationery to be
used with the new project (project stationery is described in Chapter 9).

Before clicking the OK button in this dialog box, choose a project stationery
from the dialog box list. As I discuss in Chapter 9, CodeWarrior allows you to
create different types of projects. For example, one type of project is used to
create a program capable of running on both older and newer Macs. Another
type of project is used to create a program that runs only on newer Power
Macs. All the projects found on this book's CD-ROM use a project stationery
that creates programs that run on both older and newer Macs. In other
words, I played it safe. If you own the full-featured CodeWarrior and choose
New Project from the File menu and then monkey around with the project sta­
tionery choices, you may end up with a project type that isn't right for what
you're trying to do. If you dig yourself into that hole, don't click the OK
button. Instead, click on the appropriate small arrow icons in the dialog box
list to locate the stationery shown in the previous figure. If you've got a ver­
sion of CodeWarrior that doesn't have this exact stationery type as an option,
choose the option with the closest match - one with "68K" in its name.

The reason that "68K" is in the name of one of the project stationeries has to
do with the processor found in older Macs - they each use a processor that
is in the Motorola 68000 family. Chapter 3 has a little bit more to say about
Macintosh processors. The reason I've decided to use a 68K stationery is
because the program that results from it (that gets created from it) can run
on older 68K Macs and on newer Power Macs. Conversely, a PPC stationery
results in a program that can run only on newer Power Macs (which have a
PowerPC processor).

260 PartV: The Moment of Truth: Writing a Program!

With the appropriate stationery selected (clicking once on its name selects
it), click the OK button. The dialog box disappears and a new dialog box
appears. This one allows you to enter a name for the soon-to-be-created pro­
ject. As expected, the dialog box list is empty- there won't be anything in
the folder until you click the Save button to create a new project. First,
though, 1 type in a name for the project. In Chapter 9, you discover that a
typical project name is the name that will be given to the program, followed
by a period and the letters mcp. 1 follow this naming convention by typing in
Animator.mcp as my project 's name. A click on the Save button dismisses
this dialog box and brings on a new CodeWarrior project window:

-· Rnlmetor.mcp _

I~ 68K Dtllu9 MooOS Toolbox : ... lll\J~~ l~l~][[I
Fli. c.M Data

v ii tlS.W-cts 0 0 . • El ...
ii II Slllyll>lls.• 0 0 . . s

v ., Ill Ro .. urcH 0 0 . s ., !i). Sillyll>llsrsrc nl• nl• . 13
v ., 1:1 Hao l ll•nr i.s 0 0 . 8 ., Cl HSI. Rwllirnf68K.lib 0 0 . s ., Ll!H..OS.lib 0 0 . s ., Cl H•lhlib68K (20 .Lib 0 0 . s
v 'fl 1:1 ANSI Llbnries 0 0 . s ., Cl HSL C.68K (20.Lib 0 0 . s

'fl Ll! HSL C++.68K (2il-.. 0 0 . s

"' Cl HSL SIOUX.68K.lib 0 0 . s

8 flks 0 0 ~

The file names SillyBalls.c and SillyBalls.rsrc serve as placeholders. The
order in which you replace these files isn't important. Because I'm in the
habit of creating my project's resource file before I create its source code file,
I replace the SillyBalls.rsrc placeholder firs t.

Creatin9 Animator's Resource File
I can create the resource file before my other files because I have a pretty
good idea of the resources I need for the Animator program. Of course I do -
I completed and tested the program long before I wrote this chapter! Even if I
really was creating the program for the first time right here and now, I'd have
a good idea of what resources I need. Why is that? Because when you set out
to develop a program, you first plan out what that program is going to do. For
the Animator program, I did that by making out a list of the things I wanted
Animator to be able to do. Here 's what I came up with:

_________ Chapter 19: Writing a Very Mac-Like Program - Part I 2 6 1
1. Display a menu bar with a single menu in it.

2. Allow the user to beep the speakers of his or her Mac.

3. Allow the user to draw a growing square in a window.

4. Allow the user to draw a moving square in a window.

5. Allow the user to quit the program.

Looking over my list, I came to the conclusion that I need three resources.
For the first point, I need an 'MBAR' resource. For points 2 through 5, I need a
single 'MENU' resource - each of these points could be handled by a menu
item within one menu. Additionally, points 3 and 4 require a window to be on
the screen, so I also need a 'WIND' resource.

Creatin9 the resource file
Begin by running ResEdit. If you're using CodeWarrior and your own project,
feel free to double-click the SillyBalls.rsrc placeholder in the CodeWarrior
project window to open ResEdit. If you're using CodeWarrior Lite and my own
Animator.mcp project from the Chapter 19 folder of the CD-ROM, you can't
use this trick. That's because I already created the resource file and added it
to the project for you! If you're using CodeWarrior Lite but you still want the
practice of creating a resource file, please do so. You can run ResEdit by
double-clicking the icon of the ResEdit program or by double-clicking on the
Animator.rsrc name in the project window.

In ResEdit, choose New from the File menu to create your new resource file. If
you're using CodeWarrior Lite, consider this a practice file (CodeWarrior Lite
won't let you add the file to the project). Give the file any old name you want.
Because this is just practice, and you won't be adding the file to a project, it
doesn't matter what you name the file or where it ends up on your hard drive!
If you are just creating a practice resource file, go ahead and click the New
button now.

If you're using the full-featured version of CodeWarrior rather than
CodeWarrior Lite, you can consider this file the real McCoy - the resource
file you'll eventually be adding to your own project. If that's the case, move to
the folder that holds the project file (if you haven't created your project file
yet, see the previous section). Use the pop-up menu that appears above the
scrollable list to move about from folder to folder. Now, type in the resource
file name. In the previous section, I created a CodeWarrior project and named
it Animator.mcp. If I want to go with the naming convention used by most Mac
programmers, I should name the resource file Animator.rsrc. If you're following
along with me, type in the resource file name and then click the New button.

2 6 2 Part V: The Moment of Truth: Writing a Program! _________ _

Whether you're a CodeWarrior Lite user who's going to work on a practice
resource file or a CodeWarrior user who wants to create a resource file to add
to your own project, you're now at the same point. After clicking the New
button, the dialog box disappears and a new, empty type picker appears. The
resource file is created, and it's ready for the addition of some resources.

I went through that pretty fast. Just in case you missed something, here's a
quick summary of the steps for creating a new resource file:

1. Run ResEdit using one of the previously mentioned techniques (such
as by double-clicking the SillyBalls.rsrc placeholder in the project
window of a new project, or by double-cllcldng the Animator.nrc
name in the project window of the CD-ROM's Animator project, or by
double-clicking the ResEdit icon from the Mac desktop).

2. Cilek the mouse to dismiss the ResEdit Jack-in-the-Mac introductory
screen (if it appears).

3. Choose New from the File menu.

4. In the dialog box that appears, move to Animator's project folder.

5. Type in the resource file's name.

6. Cilek the New button.

Addin9 the Window resource
The Animator program opens a window, so you know a 'WIND' resource is
needed. Choose Create New Resource from ResEdit's Resource menu. The
Select New Type dialog box opens. Scroll down to WIND and then click it
once. Then click the OK button:

_________ Chapter 19: Writing a Very Mac-Like Program - Part I 2 6 3

Select New Type

TEHT ~
TMPL
TOOL
uers
wctb
WIND l;J
w str '°' -(cancel J

Dismissing the Select New Type dialog box opens a 'WIND' editor, as shown
in the following figure. Because the 'WIND' editor initially displays a rather
small window, I change the size of my 'WIND' by typing in the numbers shown
here in the lower left of the screen:

WINO ID a 128 from Anlmotor.rsrc

bllllbluDDuDi!1DD
j H•'"4UW

Top:~ Height: ~

Left:~ Width:~

•

Color: @ Default
ocustom

1&11nltlally ulslble

l&1 Close bott

The only other change I make here is to the window type. I give the second
icon from the left a click in the row of window icons at the top of the editor.
That sets up my 'WIND' for a window that has a title bar and a close box, but
no grow box in the lower-right corner. (If you aren't familiar with the term
grow box, I don't want to hold you in suspense: A grow box is the small box
that appears in the lower-right corner of any window that can be resized.)
When I click the close box of the 'WIND' editor, here's what I see:

2 6 fl Part V: The Moment of Truth: Writing a Program! ----------

" ~ Rnlmator.rsrc ~

'w'IND

Addin9 the Menu resources
From my description of the Animator program at the beginning of this chap­
ter, you should have a pretty good idea about what other resources are
needed to create Animator. The Animator has one menu, and so it needs one
'MENU' resource. The menu appears, of course, in the menu bar, indicating
that I also need an 'MBAR' resource for that. First comes the 'MENU'
resource.

Choose Create New Resource from the Resource menu. Scroll down to MENU
in the Select New Type dialog box, and then click once on it. Follow that click
with a click on the OK button.

When the 'MENU' editor opens, type in the menu's title. I called the menu
MyMenu. Next, add the four menu items. Choose Create New Item from the
Resource menu and then begin typing. For the first item, type in the words
Beep Me! Repeat the process of choosing Create New Item and then typing in
a menu item name for each of the remaining menu items. When you 're done,
your 'MENU' should look like mine:

---AG MENU ID "" 128 from Rnlmator.rsrc

MyMenuJ
Beep Mel ~
Grow Square
Moue Squore

ttull

tzy

Selected Item: 181 Enabled

TeHt: ® IQ_u_lt ______ _

0 -··- (sepnrotor line)

Color

D hos Submenu TeHt: ll!!!!IJ
Cmd-Key: D l!!!!IJ

Mork: I None .,..11•1

________ Chapter 19: Writing a Very Mac-Like Program - Part I 2 6 5
Close the 'MENU' editor. When you do that, you see another view of the
'MENU' resource. This view gives you a pretty good idea of how the menu
looks once it's added to the Animator program.

After you're done admiring the new 'MENU' resource, click the window's
close box to bring the type picker to the front. Now two different resource
types appear in the type picker:

~ = Rnlmator.rsrc ~

'°'

Now you have one last resource to create. Again, choose Create New
Resource from the Resource menu. Scroll down to MBAR, click once on it,
and then click the OK button.

Eventually, you want the Animator program to display a single menu, and so
the resource file for Animator has a single 'MENU' resource. Now is the time
to add it to the list of 'MENU' resources that the 'MBAR' keeps. I've added it
in the following figure:

~ MBRR ID .. 128 from Rnlmator.rsrc

ii of menus

1) *****
nenu res Io I 1_2a __ __

2) *****

Do you know how to add a 'MENU' to the 'MBAR' resource? If not, a few tips
on the subject may come in handy. To add a 'MENU' to the 'MBAR' resource,
first click once on the row of five stars in the 'MBAR' editor. A rectangle
appears around the stars, like this:

2 66 Part V: The Moment of Truth: Writing a Program!

MBRR ID "' 128 from Rnlmator.rsrc

11 of menus 0

11) *****

Next, choose Insert New Field(s) from the Resource menu. Here's what you see:

~ MBRR ID .. 128 from Rnlmator.rsrc

11 of menus

11 > ***** I
Menu res I 0 I ----.
2) *****

Type the resource ID of the 'MENU' resource into the edit box that's been
added to the 'MBAR'. This resource file has only one 'MENU' resource in it
(remember that resource numbers start at 128), and so the 'MBAR' is com­
plete. Here's how it looks:

&118~ MBAR ID a 128 from Rnlmator.rsrc

11 of menus

It> ***** I
Menu res ID 1..-1-28-----.

2) *****

Click the close box of the 'MBAR' editor, and you see that the type picker now
looks like this:

uui;:.1~ Rnlmator.nrc - ·-

________ Chapter 19: Writing a Very Mac-Like Program - Part I 2 6 7
The resource file for the Animator program is now complete. Choose Save
from the File menu and then choose Quit from the File menu to quit ResEdit.

Addin9 the resource file to the project
After you complete the Animator.rsrc resource file, it's time for you to add it
to the Animator.mcp project. (Chapter 9 shows this to be a simple task.) If
you're using CodeWarrior Lite, you can look at the Animator.mcp project on
this book's CD-ROM to see that this has been done for you. If you're using the
full-featured CodeWarrior, follow these steps to do it yourself:

1. Cilek the Anim.ator.mcp project window to make ResEdit inactive and
CodeWarrior active.

2. Click once on the SlllyBalls.rsrc name in the project window.

3. Choose Add Flies from the Project menu.

4. If the upper list in the dialog box isn't displaying the contents of your
project folder, use the pop-up menu at the top of the dialog box to
move into that folder.

5. Click once on the Animator.rsrc file name in the top list.

6. Click the Add button.

7. Click the Done button.

After performing these steps, the Animator.rsrc file name appears in the pro­
ject window right beneath the SillyBalls.rsrc placeholder. Now it's time to get
rid of that placeholder. To do that, first click once on its name to highlight it.
Then choose Remove Files from the Project menu.

Your Animator.mcp project is shaping up quite nicely. Now it's on to the
source code file.

Creatin9 Animator's Source Code File
Animator requires a second file - the source code file. If you're following
along in the Animator.mcp project that I supply on the CD-ROM that comes
with this book, you can see that this file has been added to the project. If
you're working with the full-featured version of CodeWarrior and working
from your own project, then you know that it doesn't exist yet. To create it,
choose New from the File menu of CodeWarrior. When you do, an empty
window opens. Before working on the code, choose Save As from the File
menu. When prompted to enter a name, type in Animator.c, but don't save
the file just yet.

2 6 8 Part V: The Moment of Truth: Writing a Program!

You want to make sure the source code file gets saved to the same folder that
holds your Animator.mcp project. If the pop-up menu at the top of the dialog
box isn't displaying the name of that folder, use that pop-up menu to move to
the correct folder. Then and only then should you click the Save button to
save the file.

Though you can give your source code file any name you want, it makes
sense to give it a name that associates it with the program you're creating. I
name my source code file Animator.c. Any name is all right, but make sure it
ends with a period followed by the letter c.

You don't need to type in all the source code before adding the file to your
project. In fact, it makes sense to add the file to the project right away so that
you don't forget to do it. Here are the steps you take to add this file to your
project:

1. Click once on the SillyBalls.c name in the project window.

2. Click once on the new source code file window to make it active (to
make it the frontmost window on your screen).

3. Choose Add Window from the Project menu.

After performing these steps, the Animator.c file name appears in the project
window. Now, remove the SillyBalls.c placeholder. First click once on its name
to highlight it. Then choose Remove Files from the Project menu.

Is That It?
Now you're just about done. That is, except for that little part about writing
the source code! I've saved that for the next chapter.

Chapter20

Writing a Very Mac-Like
Program - Part II

ooooooooooooooooooooooooooooooooooooocooooeooooeG

In This Chapter
Ds>- Viewing the complete source code for the Animator program

I?> Getting a description of all the major elements of the program

~ Creating simple animated effects

~ Compiling and running source code

~ Naming your new application

o o o o o o o o o o o o o o o e o e o o o o Q o o e o o c o o c o o o e \l e o o o o o o o o e o o

l n Chapter 19, I - and hopefully you - created a resource file, a project
file, and a source code file for a program I call the Animator. In this chap­

ter, you get a look at what the source code for Animator does. After hearing
about what the program should do, you see for yourself by compiling and
running the code. When you do that, CodeWarrior creates a standalone pro­
gram for you. That is, CodeWarrior turns your code into a Mac application
that you, I, or anyone else can run.

lntroducin9 the Animator Source Code
For the next few pages, I present the complete source code listing for the
Animator program. Just under 100 lines of code make up the listing.
Personally, I don't consider that a lot of code. But then, I just read that the
software that would run the Star Wars defense system proposed by former
President Ronald Reagan would have required 100 million lines of code. That
should make you feel better about the 100 lines you're about to view. If it
doesn't, take a look at this breakdown of the 100 lines of code. It may take
away any apprehensions you have.

2 7 0 Part V: The Moment of Truth: Writing a Program! ----------

1"" About 20 of those lines are just braces - that leaves about 80 lines.

1"" About 10 lines are variable declarations - that leaves about 70 lines.

1"" A little less than 10 lines make up the standard Toolbox initialization
code that appears in every program - that leaves about 60 lines.

1"" You know that switch statements group code together and separate
those groups with case labels and break statements. A few s w i t ch
statements have a total of close to 10 case labels and 10 b re a k state­
ments - one break to end each case. That's over 20 lines of code,
which leaves about 40 lines.

1"" In Chapter 18, you saw how to display a menu bar and how to figure out
which menu was clicked. You also saw how to work with a window.
There are about 15 lines of code devoted to these two tasks. That leaves
about 25 lines.

Twenty-five lines of code? No problem! That's right-after discounting the
lines of code that you've had plenty of experience with, there are only about
25 lines of code that can't be neatly pegged into a basic programming cate­
gory. The Animator source code contains very little new code - it mostly
demonstrates how to tie together all the topics I've already covered. Don't let
the fact that there's not a lot of new stuff fool you into thinking that this chap­
ter isn't important, though. Turning all the bits and pieces into a unified
program will prove to be a mighty accomplishment!

fliewin9 the 9lor1J of the Animator code
I list all the source code for the Animator program in this section in a nice,
easy-to-look-at, uninterrupted form. Then I devote the next section of this
chapter to an in-depth description of what's going on in the code.

If you're using the full-featured version of CodeWarrior, carry on with the pro­
ject you started in Chapter 19. You can try your hand at typing in all of the
code listed below, or you can take the easy way out and copy the code from
the Animator.c file found in the C20 Animator folder on the CD-ROM and
paste it in your own empty Animator.c file. If you're using CodeWarrior Lite,
you can simply open the C20 Animator folder and double-click the
Animator.mcp project. The Animator.c file that is a part of this project has all
the code typed in for you.

vof d main(void)
I

WindowPtr
Event Record
short
WindowPtr
short
Handle
long

theWf ndow:
theEv.ent:
al 1 Done:
whichWindow:
thePartj
menoBarHandle:
menuMdltem:

I* declare the variables */
I* the window */
I* event record */
I* are we :done yet? o .. no, I0 yes *I
/* for use by FindWindow */
1~ part code for Ff ndWindow */
I* u.sed duri.ng menu bar set up *l
I* holds selected menu and item */

_ ________ Chapter 20: Writing a Very Mac-Like Program - Part 11 2 71

short theMenu:
short theMenultem:
Rect theRect ;
short count :
unsigned long thelong:

lnitGraf(&qd.thePort l:
lni tFonts() :
lnitWlndows():
Ini tMenus< l:
TE!nft<l:
lnitOlalogs(nil):
FlushEvents(everyEvent. 0):
lnitCursor():

I* holds just the selected menu */
I* holds just the selected i:em */
I* used to draw some squares */
I* loop counter */
/* used when delaying drawing */

menuBarHandle • GetNewMBar(126):
SetHenuBar(menuBarHandle l:
OrawMenuBar(l:

theWindow • GetNewWindow(128, nil. (WindowPtrl-ll) :
SetPort(theWindow):

a 11 Done • 0:
while (allOone < I l
I

Wai tffextEvent(everyEvent . &theEvent . 7. nil) :
switch (theEvent.what)
I

case mouseOown:
thePart • FindWindow(theEvent .where , &whichWindow):
switch (thePart)
I

case inOrag :
OragWindow(whichWindow . theEvent .where ,

&qd . screenBits .bounds l:
break:

case inGoAway:
OisposeWindow(whichWindow l :
all Done - 1:
break :

case inMenuBar:
menuAndltem • MenuSelect(theEvent.where l :
if (menuAndltem > 0 l
I

theMenu - HiWord(menuAndltcm l:
theMenultem • LoWord(menuAndltem l :
switch (theMenu)
(

case 128:
switch (theMenultem l
I

case 1:
SysBeep(1 l :
break:

case 2:
SetRect(&theRect , O. O. 400, 280 >:
EraseRect(&theRect l :

(continued)

2 7 2 Part V: The Moment of Truth: Writing a Program!

(continued)

l

SetRectC &theRect. 200 . 135, 200 , 135 l :
count • 0:
while (count < 120 l
[

FillRect(&theRect, &qd.black l ;
InsetRectC &theRect, -1. -1 l ;
count++:
Delay(2. &thelong l ;

l
break:

case 3:
SetRectC &theRect . 0. 0, 400, 280 l ;
EraseRect(&theRect J:
SetRect(&theRect , 10. 10 . 60, 60 l :
count • 0:
#hile < count < 140 l
{

FrameRectC &theRect) :
OffsetRect(&theRect, 2. 2 l ;
count++:
Delay(2, &thelong l:

l
break :

case 4:
al lOone • 1:
break;

J
break ;

Hil iteMenu(0 l :
l
break ;

l
break ;

Does much of this code look familiar? It should. You've seen some of it in
example programs throughout this book - programs such as MyProgram,
WindowWorks, and MenuDrop. You didn't really think that every time some­
one wrote a program they started completely from scratch, did you? Most
programmers do like a good challenge, but they don't like repetitively typing
in the same code.

When using CodeWarr ior Professional, you don't have to start your source
code completely from scratch for each new project. Instead, you can first
create a new, empty source code file and add it to your new project - just as
you've seen done in this book. Then you can choose the Open command
from the CodeWarrior File menu and open an existing source code file - one
that has at least some code similar to code you plan on writing. Copy any or
all of the code from the older fi le and paste it into the newer, empty source
code file of your new project - and then modify it . If you've typed in the
example programs presented in this book, I hereby grant you permission to

________ Chapter 20: Writing a Very Mac-Like Program - Part 11 2] 3
copy any of them and modify them. Heck, I didn't invent most of the code
anyway. It's similar to Macintosh source code that thousands of other
programmers are using!

KnouJin9 What's Goin9 On in the Code
The Animator program ties together all the individual concepts covered in
this book - and that makes it worthy of a good long look. Ready? Here goes!

Finding out about 128
It would make the most sense if I describe the code starting at the first line
and work my way to the end, don't you agree? That's what I'll do - after a
very short diversion.

If you look over the source code for the Animator, you notice that it contains
the number 128 in three separate locations. I plucked that code out of the list­
ing, and here it is:

·theWindow .. GetNewWindow< 128. ni.1, CWindowPtr)-lL >:
menuBarHandle ·= GE!tNewMBar(128);

switch (theMenu J f . .
case 128.:

Why the number 128? As a reminder of the importance of this number, I ran
ResEdit and opened the editor for each of the program's three resources. In
the following figure I show the title bar from each. Note the ID listed in each
title bar.

WIND ID .. 128 from ftnlmator.rsrc

rdJilbCLJDDLJD

MyMenu
Beep Mel

• of menus

I) *****

MENU ID a 128 from ftnimator.rsrc

Selected Item:

MBRR ID "" 128 from Rnlmator.rsrc

2 7 !, Part V: The Moment of Truth: Writing a Program! _________ _

Each resource has an ID of 128. Coincidence? Not at all. When ResEdit creates
a new resource, it usually gives it an ID of 128. This isn't true of all resource
types, but it is for 'WIND', 'MENU', and 'MBAR' resources. After the first
resource of a type is created, the next resource of that same type is given the
number 129. If I added a second 'MENU' to my program, ResEdit would give it
an ID of 129.

Why the number 128? Why doesn't ResEdit start with number 1? Apple has
reserved the numbers up to 127 for its own use. The Macintosh has a set of
resources hidden from your view that it uses to display things like the trash
can icon and the menu bar you see when you're at the desktop. It is possible
to renumber a resource of yours to give it a number less than 128, but Apple
strongly suggests that you don't.

Declarin9 tlariahles
All Mac programs written in C begin with void main (void) and an open­
ing brace. They end with a closing brace. What does that have to do with
variable declarations? Nothing. Because there's not a whole lot of explaining
to accompany the fact that all programs have amain function, I didn't think
that this concept needed its own section. Now, on to the declarations.

Animator uses 12 variables, which I briefly describe here. (I give more infor­
mation about each variable as I encounter it later in the code.) Here are the
declarations followed by the promised descriptions:

WindowPtr theWindow:
EventRecord theEvent:
short all Done:
WindowPtr whichWfodow:
short thePart;
Handle menuBarHandle:
long menuAndltem:
short theMenu:
short theMenultem:
Rect _ theRect:
short count:
unsigned long thelong;

I* the window */
I* event record */
I* are we done yet? O•no, 1 .. yes */
I* for use . by Fi ndW1 ndow *I
I* part code for FindWindow */
I* used during menu bar set up */
I* holds selected menu and item */
I* holds just the selected menu *l
/* holds Just the selected item */
I* used to .draw so.me squares */
I* loop counter */
I* used when delaying drawing *I

Animator opens a single window. To keep track of that single window, I
declare a Wi ndowPtr variable called theWi ndow. Like any good Mac program,
Animator takes note of events and responds to them. The variable theEvent
holds information about the most recent event. Animator is a great program,
but users of it will probably want to quit at some point. The variable a 11 Done
helps out there.

________ Chapter 20: Writing a Very Mac-Like Program - Part II 2] 5
A click of the mouse button constitutes an event. When that happens, the
Animator wants more information about the event. The variable thePa rt
holds the part of the screen at which the mouse click occurred. If the click
occurred in a window, variable wh i c hWi ndow holds a Wi ndowPt r to that
window - useful information later in the program.

The Animator has one menu. The variable menu Ba r Hand 1 e is used in the
setup of the menu bar that holds this menu. When the user makes a menu
selection, variable menu And I t em holds the key to which menu item was
selected. As a combined value of menu and menu item, men uAnd I tern is of
limited use. So variables theMenu and theMenu I tern hold the individual infor­
mation that is found in a combined form in men uAnd I tern.

What's the Mac without a little bit of drawing going on - right? The Animator
uses a Rect variable called theRect to hold the screen coordinates of a rec­
tangle. That same rectangle variable is used twice - once to make the
rectangle grow and a second time to slide it across the window. Moving
things in a window involves looping, and a loop requires a variable to keep
track of when the loop should end. That's the purpose of the short variable
called count. Because the Mac is no slouch of a computer, it runs through
the code that makes up a loop pretty darn fast. Too fast, sometimes. The
Toolbox provides an easy means of slowing down a loop. You see how that's
done, and how the variable the Long plays a part in this delay, a little later in
this chapter.

So much for declaring variables. Now it's on to initializing the Toolbox.

lnitializin9 the Toolbox
You may have seen the Toolbox initialization code so many times that you
never want to see it again. But for the sake of completeness, here it is:

InitGraf(&qd. thePort) : /* standard ·init.ial izations */
lnitfonts();
InitWindows'C):
InitHenusO: .
TEinitO:
InitOialogsC nil >:
FlushEvents(everyEvent, O >:
InitCursorC):

I said it before, and I say it again: To avoid serious problems in your program,
include these eight lines of code right after your variable declarations in
every program you write. You, and the Toolbox, will be glad that you did.

2 7 6 Part V: The Moment of Truth: Writing a Program! _________ _

Displau.in9 menus and windows
Working with menus and windows is fun - but first you have to get them on
the screen. These five lines display a menu bar and one window:

menuBarHandle a GetNewMBar(128):
SetMenuBarC menuBarHandle >:
DrawMenuBarC>:
theWindow a GetNewWindow< 128, nil. CWindowPtr)-ll) :
SetPortC theWindow >:

The first three lines make the Mac aware of a new menu bar and then display
it. The fourth and fifth lines open a new window and tell the Mac that subse­
quent drawings should take place in it.

Establishin9 the ef/ent loop
The remainder of the program is the event loop. The variable a 11 Done is set
to 0, and then the while statement that begins the loop appears. a 11 Done is
obviously less than 1, so the code under the whi 1 e statement runs. A call to
Wai tNextEvent asks the Toolbox to place information about the most recent
event into theEvent. Next, a switch statement watches to see whether the
event is worthy of a response. Animator only cares about one type of event -
a click of the mouse button. By excluding all other event types from the
switch statement, the program effectively filters them out. That is, other
events, such as a press of a key, are simply ignored. Here's the event loop
code-without the numerous lines that fall under the case mouseDown. I
cover those lines in separate sections of this chapter.

allDone "' O;
while (allDone < 1)
I

Wa1tNextEventC everyEvent, &the Event. 1, nil) :
switch C theEvent.what)
(

case mouseOown:
I* a bunch of mouse click code here! */
break:

Handlin9 a mouseDown ef/ent
If the user clicks the mouse button, Wai tNextEvent places a value of
mouseDown in the Event. what. The very next line, the switch statement,
then matches the value of the Event. what to the case mouseDown label, and
the code under the case runs.

________ Chapter 20: Writing a Very Mac-Like Program - Part 11 2 7 7
Fi ndWi ndow determines just where the mouse click occurred. It places a value
in variable the Pa rt - a value that represents the part of the screen at which
the click took place. A s w i t ch statement then examines variable the Pa rt
and determines which set of code should run to handle the mouse click.

A click in the drag bar of the window results in a call to Drag W i n d ow. This
Toolbox function takes control and handles window movement for you.

A click in the close box of the window brings about a call to Di s pose W i n d ow.
This function disposes of the window - that is, it removes it from the screen.
Variable a 11 Done is then set to a value of 1. When the program returns to the
top of the event loop, this value of a 11 Done signals the program to end.

Most programs don't end when the user closes a window. But for the simple
Animator program, it wouldn't make much sense to continue if the user
closes the window. After all, where would drawing then take place?

A click in the menu bar causes the code under case i n Menu Ba r to run. I omit
that code here because it represents a significant portion of the program. As
such, it gets several pages devoted to it later in the chapter.

switch C theEvent. what J ·
{

case mouseOown:
thePart"' FindWindow< theEvent.where, &whichWindow);
switch { thePart J ·
(

)
break:

case i nOr~g: • · . . :
OragWi nqow(whi chWi ndow. theEvent.:where~

&qd. sc.reenBits ~bounds. >;
break;

case inGoAway:
OisposeWindowC whichWindow);
all Done = 1;
break;

case inMenuBar: ··
I* a bunc~ of menu-handling ~Qdei~~re1 */
break: · · ·· · ·· ··· ··. ·

Handlin9 a click in the menu bar
A mouse click in the menu bar is what causes the real action to take place.
When that all-important mouse click happens, the Toolbox function
MenuSe l ect is called to handle the display of the program's one menu. If a

2 7 8 Part V: The Moment of Truth: Writing a Program!

menu selection is made, Menu Se 1 ect places a value in variable
rnenuAnd I t ern - a value that represents the menu number and the menu
item number. A menu selection always gives rnenuAnd I t ern a value greater
than 0. That nonzero value is what sends the code into the i f branch that
follows the call to Menu Se 1 ec t.

The Toolbox functions Hi ~l o r d and LoWo r d do the grunt work of separating
both the menu number and the menu item number from variable
rnenuAnd Item. That first bit of information -the menu number - is then
used in a swi t ch statement to determine which menu to work with. Animator
only has one menu - the 'MENU' resource with ID 128 - but many programs
have more than one.

Knowing the menu that houses the selected menu item isn't enough informa­
tion to determine how to respond to the selection. The program also needs to
know which menu item within that menu is selected. The s witc h statement
that uses variable theMenu I tern handles that. In the next several pages, I
describe how each menu item is handled. In the next batch of code, I replace
the code for the menu items with comments in order to give you the overall
feel for what's going on.

case inMenuBar:
menuAndltem • MenuSelect(theEvent.where l :
if (menuAndltem > 0 l
[

theMenu - Hi WordC menuAndltem) :
theMenu ltem • LoWordC menuAndltem l:
switch (theMenu)
[

I

case 128:
switch C theMenultem)
[

case 1:
I* handle Beep He! item */
break:

case 2:
/* handle Grow Square item */
break:

case 3:
/* handle Move Square item*/
break :

case 4:

I
break :

I* handle Quit item */
break:

HiliteMenuC 0):
I
break :

After the menu selection is handled, Hi 1 i teMenu is called to return the menu
name to its original state. (The menu name is highlighted - and left that
way- when a menu item is selected.)

________ Chapter 20: Writing a Very Mac-Like Program - Part 11 2 7 9

Addin9 the Beep Me! item
I devote a separate section of this chapter to the code that handles each of
the four menu items - no matter how few lines of code are necessary to do
it! The first menu item, Beep Me!, simply uses the Toolbox function Sys Beep
to play the system alert sound.

switch (theMenultem >
(

case 1:
SysBeep(1);
break:

I* other case section,:go h~re *I

Nurturing the Grow St{uare item
You know about a couple of the Toolbox functions that work with rectangles.
In this chapter, you're about to see a few more.

The second menu item, Grow Square, uses a wh i 1 e loop to repeatedly draw a
square. That wouldn't have the effect of growing the square unless I first
enlarged the square a little bit each time the loop ran. That's exactly what the
Toolbox function I nsetRect does. You tell I nsetRect the rectangle you
want to shrink or expand, and by how much, and Inset Rec t does the work.
If you pass I nsetRect positive numbers, the rectangle gets smaller. Negative
numbers make the rectangle get larger. Consider this example, which isn't
from the Animator program:

SetRect(&theRect, 150, 50,' 200, lOO);
.frameRectC &theRect) : .
·1nsetRectC &theRect, · ;.60, -30 l:
frameRectC .&theRect >:

While I describe what the preceding code does, you should follow along in
the next figure. First, a rectangle 50 pixels wide and 50 pixels high is set and
then framed. That's the smaller rectangle in the center of the window in the
figure. Next, a call to Ins et Re ct is made. The value of -60 means the rectan­
gle should become 60 pixels larger in each of the horizontal directions. The
value of -30 means the rectangle should become 30 pixels larger in each of
the vertical directions. I nsetRect changes the size of a rectangle, but, like
SetRect, it doesn't draw it. So I follow the call to I nsetRect with another
call to FrameRect. The result is the larger of the two rectangles in the figure.

If it seems odd that negative numbers make the rectangle bigger rather than
smaller, think of the name of the Toolbox function - I nsetRect. I nsetRect
is normally used to inset a rectangle - to make a rectangle smaller so that it
fits inside another. The parameters to InsetRect tell the Toolbox how much
smaller to make the rectangle. Because I want the opposite effect, I use nega­
tive numbers.

2 8 Q Part V: The Moment of Truth: Writing a Program! _________ _

Window

··~)····· t
····························o

+----- ---+-

! ~
. .
!-so--!

Now, back to the whi 1 e loop. Actually, let me back up a little further still. The
first thing that happens under the case is a call to Set Re ct and Er ase Re ct.
Er a seRec t is a Toolbox function that does pretty much what its name
implies. Pass Era seRect a rectangle variable and this function clears every­
thing that's drawn anywhere in that rectangle.

Now, take note of the s ize of the rectangle I pass to Er a seRect . If you com­
pare the size of this rectangle (400 pixels wide by 280 pixels high) to the
window size as defined in the 'WIND' resource, you see that the two just
happen to match. Mere coincidence? Of course not! By making the rectangle
the same size as the window, I'm using EraseRect to white out, or erase, any­
thing that was in the window. Why take this step at the start of the code for
handling this menu selection? The user may have already made this menu
selection, or another drawing selection, beforehand. I'm getting rid of any
leftover drawing that may still be in the window.

Make a note of this technique for clearing a window:

SetRect(&theRect . O. 0. 400 . 280); /*Size of the window*/
EraseRect(&theRect); /* White it out */

Now for the drawing. After whiting out the window, 1 again call SetRect.
This time I create a rectangle that is almost centered in the window. But
notice its size:

SetRect(&theRect, 200, 135. 200 , 135) ; /*tiny! */

The left and right s ides have the same value (200). And so do the top and
bottom sides (135). That means that the rectangle won't even show up when I
draw it, but that will soon chan~e. Next comes the whi le loop. I've set vari­
able count to a value of 0, and wh i 1 e to count < 120, so my loop runs 120
times. Each time through the loop, the rectangle is fi lled in with black, then
made larger by one pixel in each direction. The result? A solid black rectangle
appears to grow from nothing to a size that almost fi lls the window. Here's
the code that makes it all happen:

_________ Chapter 20: Writing a Very Mac-Like Program - Part II 2 81

switch C theMenu l tem l
{

/* other case section goes here */
case 2:

SetRectC &theRect . O. O. 400 . 280 l :
EraseRectC &t heRect. &white l :
SetRectC &theRect . 200 . 135 . 200 . 135);
count • 0:
while (count < 120)
(

Fi l lRectC &theRect . &qd .bl ack l :
JnsetRect(&theRect . -1. -1 >:
count++:
Delay(2. &theLong l :

I
break ;

I* other case sect ions go here */

The preceding code snippet contains one line that hasn't been discussed -
the one that includes the call to a function named De l ay. Del ay is a Toolbox
function that you can use to add a delay, or pause, of just about any length to
your program. The first of the two parameters is the length of the delay. Your
first guess may be that this number is the number of seconds to hold things
up, but this isn't the case. Sometimes you want to delay things for a time
much less than a second, so the Delay function gives you that option. It
turns out that the first parameter in Del ay is the number of sixtieths of a
second to delay things. That means it requires a value of 60 here to delay
things a full second. The following code displays several examples of the use
of delay, along with comments that describe the delay that results from each:

Delay(1, &thelong l ;
Delay(2. &thelong l;
Delay(30 . &theLong) ;
Delay(60 , &thelong l ;
Delay(300 , &thelong);

I* pause l/60th of a second */
I* pause 2/60t h of a second */
/* pause one half of a second */
/* pause one second */
I* pause five seconds */

From the preceding code, you can see that in Animator, I'm using De l ay to
generate a delay that is 36o of a second - at each pass through the whi l e
loop. That 's not a very long time, but it does visibly slow down the growing of
the rectangle.

Now, what about that second parameter? At the start of the Animator source
code listing, I declared a variable named the Long that was of type l ong:

long thelong :

Here's where that variable gets used. The second parameter to Delay is an
unsigned long variable, preceded by an ampersand. I won't go into the ugly
details of what this parameter is used for, but I will say this: Its value is
unimportant. You don't have to understand just what an unsigned long is

2 8 2 Part V: The Moment of Truth: Writing a Program!

(in essence it's a data type used to hold very large numbers), and you don't
have to assign t he l ong any value- just use it as I've done in the preceding
examples. The Toolbox knows what to do in these situations.

Dod9in9 the Mo"e St{uare item
The third menu item, Move Square, works in a manner very similar to the
growing square. First the window is cleared - just in case the big black
rectangle from a selection of the Grow Square menu item is sitting in it.
Next, a 50-x-50 pixel square is set up in the upper-left corner of the window.
Then a whi 1 e loop runs 140 times. And for the grand finale, take a look at
what the whi 1 e loop does.

In each pass through the loop the rectangle is drawn and then offset. Careful -
offset is different than inset. The Toolbox function OffsetRect does n't
change the size of a rectangle; it moves it. The amount the rectangle gets
moved, or offset from its current position, is specified in the last two parame­
ters. A positive value for the second parameter moves the rectangle to the
right; a negative value moves it to the left. A positive value for the third para­
meter moves the rectangle down, a negative value moves it up. My call to
OffsetRect moves the rectangle right 2 pixels and down 2 pixels. The result­
ing window looks like this after three passes through the loop:

New Window ~

D

You can see from the preceding figure that the square continues to move to
the right and down until it goes off the bottom of the window. The following
code moves the square:

switch (theMenul tem)
I

I* other case sections go here */

________ Chapter 20: Writing a Very Mac-Like Program - Part II 2 8 3

case 3:
SetRect(&theRect, 0, 0, 400, 280 };
EraseRectC &theRect);
SetRectC &theRect, 10, 10, 60, 60 >;
count ':" 0: . .. · ·
whi 1 e < ·count ('140 >
(

FrameRectC &theRect). ; .
OffsetRect{ &theRect. 2 •. 2 J;
count++; · ·
Delay(2. &thelong J:

}
break;

I* other case sections go here */

Finishin9 up with the Quit item
Here's another simple menu item - the Quit item. Choosing this fourth menu
item simply sets variable a 11 Done to a value of 1. When the program reaches
the top of the event loop, the w hi 1 e test fails and the program ends.

switch { theMenultem)
{

I* other case sections go here
case 4:

all Done = l;
break:

Compilin9 and Runnin9
the Animator Pro9ram

If you've opted to type in all the Animator source code yourself, make sure to
choose Save from the File menu. Then it's time to compile the code. Choose
Compile from the Project menu.

Remember, if the Compile option appears dim, open the source code file -
Animator.c - by double-clicking on its name in the project window.

If the Errors & Warnings window opens and reports an error (or errors), make
the necessary corrections and try again. If you can't figure out what an error
message means, try referring to Appendix C, where I list possible solutions
for problems that you may encounter while compiling a program.

2 8 fl Part V: The Moment of Truth: Writing a Program!

When your source code compiles successfully, it's time to give it a test run.
Choose Run from the Project menu.

Remember, you can skip the Compile menu item altogether by simply choos­
ing Run from the Project menu. The Run menu item compiles the code if it
needs to be compiled.

Running the code without the resource file or with an incomplete resource
file either causes the program to start and then quickly quit, or, worse yet,
crash the Mac. If your Mac crashes, you then have to restart your computer
and restart CodeWarrior. So don't forget to make the resource file and add it
to the project. Without it, and the 'WIND', 'MENU', and 'MBAR' resources it
holds, the program can't run.

If everything is going according to plan, Animator should be off and running.
Try each of the first three menu items a few times to verify that everything's
working. When you're satisfied that the program works, choose the fourth
menu item, Quit.

Namin9 the Application
Choosing Run from the Project menu allows you to test out the Animator pro­
gram. It also tells CodeWarrior to turn the source code into an application.
When it does that, what name does CodeWarrior assign to your program?
Here's a bit of good news -you're in control of that option.

Statin91J.our preference
CodeWarrior is configurable. That is, CodeWarrior provides you with a host of
settings that you can adjust to match your programming preferences. If you
click on the Edit menu in CodeWarrior, you see a menu item named
Preferences. That sounds like it might be the choice to make, but for setting
the program name it's not. Instead, choose the item directly beneath the
Preferences item - it should have a name something like 68K Debug MacOS
Toolbox Settings. When you do that, you see a dialog box like this one:

_________ Chapter 20: Writing a Very Mac-Like Program - Part II 2 8 5

[JI~ = HK Debug MecDs ToolboH settings ! - El

i:Terwet••~ !Lait T_. '.Z 2
19 Tarvet ...

Target Seltl1'19' r Project (Appflcollon l :.)
~Pettis

File Heme I Anlmetor I Build Extres
File Mapplfl9S

"SIZE" Fi.ts:igj Creator~ 68K Target
19 lallQ- Selti ...

CIC++ la119uage stut•p I Stti\Gerd j ;) Type~
CIC++ Warn I "9• Ii
Ru 11 Preferred Heep Size (k) ~

19 Code Generotlon
68K Processor Minimum Heep Size (k) ~
68K Dlsa>sembler I•
Globe I Opll mlzallons

Iv linker
68K linker
CFM6BK

Iv Editor
Custom K~rds I 19 Dehtger ...
n.•·-..r..Stll•~·

I Ii FactD!Jj Setting•) I Reuert Panel I I saue)

Don't be alarmed if you make this menu selection and the dialog box you're
faced with doesn't look at all like the one I've shown. Metrowerks wanted to
pack as much information as they could in a single dialog box, so they came
up with something they call panels. See the list on the left side of the dialog
box? Clicking on any one of the items in this list changes the contents of the
dialog box. Each list entry on the left side of the dialog box displays a differ­
ent panel of information on the right side. To set the name of a program, you
want to click the words 68K Target- as I've done in the preceding figure.

After you click the 68K Target entry in the list , you can type in any name you
want in the File Name edit box that appears in the dialog box panel. I chose
the name Animator, but you won't hurt my feelings if you give your version of
the program a different name. After typing the name, click the Save button. If
you change the name of the program, then you may see this alert:

Target MfiBK Debug MacDS ToolboH" must
be rellnkl!d.

C11an9ts to tht ult~ of 1-1 "661(Oot>ug MooOS Too-•
roqur• U..1 11""'1boIH<td090n. Do you v111t lo conlbio?

I Cancel J ff, DK J

2 8 6 Part V: The Moment of Truth: Writing a Program! ----------

What CodeWarrior is telling you here is that in order for the change you
made to go into effect, you need to again choose Run from the Project menu.
To use the new program name you've selected, CodeWarrior isn't going to
search your hard drive for an existing version of Animator and rename it.
Instead, CodeWarrior asks you to let it make a new version of the program,
while saving the old version. That sounds good to you, so click the OK
button. Now click the close box located in the upper-left corner of the dialog
box to dismiss the dialog box. Finally, to create a new version of the Animator
program - one that actually bears the name Animator - choose Run from
the Project menu to let CodeWarrior do its thing.

Checking out the new name
If you didn't change the name of the program, go ahead and do so now. While
you may be happy with the name I chose (Animator), you still want to get a
feel for the process of setting a name for your own programs. After setting
the new name, choose Run from the Project menu to build a new version of
the program.

CodeWarrior leaves the original version of the program - the one named
Animator - alone. It then makes a new version of the program - the one
with the new name - and places it in the same folder as my Animator.mcp
project.

Con9ratulations!1
At this point, congratulations are certainly in order. You just created a Mac
program that has a movable window, a menu bar, a functioning menu, and
animation!

While Mac programs are capable of doing much more than this, you should
certainly feel a sense of accomplishment. Being the clever, curious sort that
you are, though, you may already be wondering how you go about reaching
the next rung of the Macintosh programming ladder. The next chapter pro­
vides you with that information.

Chapter21

Where Do You Go from Here?
0 0 0 0 0 4> 0 Q Q 0 D 0 0 0 0 0 0 0 I!> 0 0 0 0 0 0 0 0 0 0

In This Chapter
ll> Programming after this ... For Dummies book

f> Experimenting with existing source code

I> Adding the Apple menu to a program

C> Peeking at the source code for a more advanced Mac program

&> Getting some information about the full-featured version of CodeWarrior

ooooe0000000000Qoooooeooooooooooooooocooooooooooo

1 / '1iat's next? That depends ... did you enjoy programming the Mac? If W ;ou did, make sure to read the rest of this book. The next part, The
Part of Tens, lists several tips of note to all Mac owners who may want to
follow in future programming endeavors. The appendixes also are full of pro­
gramming code and tips that make your programs more interesting. If you
own one of Apple's extremely popular iMac computers, make sure to look
over Appendix E to read about some special programming considerations for
iMac owners.

You've seen that programming is fraught with challenges, and some of them
are quite aggravating. But Mac programming isn't without its rewards. The
satisfaction of overcoming what at first appears to be an insurmountable
problem can be a reward in itself.

Now that you've gone to the effort of finding out how to program the Mac,
what can you do with what you've discovered? You could create a simple
game for kids - one that displays faces by drawing shapes. Or you could
write a program that draws graphs and charts. Most important, you can use
the knowledge gained in this book to move on to bigger and better program­
ming concepts that help you create bigger and better programs.

You are no longer a bewildered novice programmer - you've got a solid
foundation in some of the most basic Macintosh programming principles.
From here on in, your programs can only get more interesting. In this chapter,
you get a couple of final tips on improving your programs. You also take a
look at the source code for a program that's a little more sophisticated than

2 8 8 Part V: The Moment of Truth: Writing a Program! _________ _

the ones you've been working on. (That should prove to be an incentive to
buy a Mac programming book aimed at intermediate-level programmers.) I
close this chapter with a sneak preview of Code Warrior Professional - the
programming environment you want to consider getting if you're going to
continue with Mac programming.

Experimentin9
The best way to learn about programming is by experimenting with source
code. Now that you have the source code listing for Animator - a real pro­
gram with a menu and window - start experimenting! You can try changing
any of the source code you want, but I want to make a couple of suggestions
to get you started.

In your experimenting, you may end up in a predicament that you're unable
to extract yourself from. For example, an attempt to compile Animator.c may
result in an error message that doesn't make any sense to you. Or the Errors
& Warnings window may display just too darn many error messages. Don't
fret if you get to this point. Instead, simply drag the whole C20 Animator
folder from your hard drive to the Trash can. Then throw this book's CD-ROM
in your CD-ROM drive, go to the ... For Dummies Examples folder on the
CD-ROM, and locate the C20 Animator folder. Now drag this folder to your
hard drive so that you can start over with a fresh copy of the Animator.mcp
project.

Chan9in9 the timin9 of an animation
The Grow Square and Move Square menu items both use the Toolbox func­
tion De 1 ay to set the speed at which graphics change in the Animator
window. To change the speed at which drawing takes place, try changing the
value of the De 1 ay function's first parameter. Here's how the function call
made in the Move Square code looks now:

Delay(2, &thelong >:

What would happen if you changed it to match the following?

Oel~y(10, &thelong):

Take a guess before you run the code with this change. After you witness
what happens, decide whether the number 500 would be a good choice!
(Hint: Get ready to take a snack break if you change the code to such a value
and then choose Run from the Project menu!)

_____________ Chapter 21: Where Do You Go from Here? 2 8 9

Chan9in9 the loop
Both the Grow Square and Move Square menu items use a loop to perform
their animated effects. Changing what goes on within the body of one of
these loops can produce all sorts of interesting results. As it stands now, the
Grow Square menu item uses a loop with a counter that stops at 120. You can
make changes in the body of this loop that affect only certain iterations, or
times through, the loop. The following shows one such change. Using the fol­
lowing code, the first half of the rectangle is drawn in light gray, and after
that, the entire rectangle is drawn in black:

if (count < 60)
Fi.11 Rect < &theRect. &qd. ltGray } :

else
FillRect(&theRect, &qd.black_);

The following snippet shows where the preceding code should go in the
Animator source code listing:

case 2:
SetRectC &theRect, o. o. 400, 280);
EraseRect(&theRect >:
SetRectC &theRect. 200, 135, 200. 135);
count .. O; -
whtle (count·< 120 >
{

if (count < 60) . · . . . • . : ·
Fi llRect c &theRect. &qd. ltGray } :

else . ·. . . . " . '
Fill Re.ct(&theRect.~ &qd.bla¢1<, ..)1:

InsetRect(&theRect, -1. -1) ; ·
count++; ·
Delay(2. &thelong >: I* slow clown drawing*/
)
break:

More ideas, please!
Okay, I've got one more. Read the next section to see how to add the Apple
menu to the menu bar of the Animator - or any other program you may be
working on.

Addin9 the Apple Menu
Hundreds of Macintosh programming topics go beyond the scope of this
entry-level ... For Dummies book. Later in this chapter, I introduce a couple of
them. First, however, take a look at a final topic that I feel you're quite capa­
ble of mastering - one that is a little trickier than what you 're used to, but

2 9 0 Part V: The Moment of Truth: Writing a Program!

not so difficult that it can't be covered (and understood) in just a few pages.
From the title of this section you know that the subject is, of course, adding
the Apple menu to the menu bar of an application.

Because you understand the Animator program - a program that includes a
menu bar with a functioning menu - it makes sense to modify this program
rather than start from scratch. This approach allows me to simply add a
small amount of new source code to the source code you're already familiar
with. It also allows me to skate by without having to think up an idea for a
new program! I did, however, have to come up with a new name for this
new program. After several seconds of brainstorming, I came up with
AnimatorApple. Grant you, that the name isn't too catchy, but it is descrip­
tive, and it does differentiate it from the original Animator program.

If you look in the ... For Dummies Examples folder, you see a folder titled C21
AnimatorApple. That folder holds the files for the project I describe over
the next few pages. Whether you're using CodeWarrior Professional or
CodeWarrior Lite, open the AnimatorApple.mcp project so that you can
follow along.

Understandin9 U!hlJ. lJ.OU want to add
the Apple to v.our menu
Why do you want to add the Apple to your menu? Because, quite frankly,
Macintosh users expect and demand that it be there. If you are sitting in front
of your Mac right now, take a look at the screen. No matter what program you
have running, I'll bet that there's a small, multicolored Apple sitting at the far
left of the menu bar. That's a pretty safe bet - all but the most trivial pro­
grams implement this menu.

So why didn't any of the examples in this book include the Apple menu? Yes,
you guessed it- they were all very trivial programs! Don't take that as a crit­
icism of the programs, however. The best way to learn just about any subject
is by working with simple examples. So small programs like MyProgram,
WindowWorks, MenuDrop, and Animator serve very useful purposes. Now,
however, it's time to move on to bigger and better things.

When a user clicks the Apple menu, a menu like the one shown next appears.
Because there could be dozens of items in this menu, I cut the menu off after
only showing a few items, just to keep it simple. But I think you can still rec­
ognize the menu as one you've worked with often.

_____________ Chapter 21: Where Do You Go from Here? 291

Rb out •••

6 Apple Uldeo Player
8 AppleCD Rudio Player
CJ Automated Tasks ~
El Calculator
~Chooser
~ Control Panels ~
•Find Fiie

If you drop down the Apple menu on your own Mac, you may very well see all
of the items that appear in the preceding figure. You may also see some,
none, or other items. That's because each Mac user has the ability to change
the contents of this menu. Any items that a user places in the Apple Menu
Items folder in his or her System Folder show up in the Apple menu - no
matter what program the user runs. It is this fact that makes adding the
Apple menu to your program a little harder than adding other menus. The
extra effort that's necessary to add the Apple does, however, pay off. When
users of your program see the Apple in the menu bar, they appreciate that
they're using a real Mac application.

Understandin9 Apple menu resources
The Apple menu starts its life as a 'MENU' resource - just as any other menu
does. As you soon see, you do a couple of things differently as you create this
resource. After you create the 'MENU' resource, you'll be back on familiar
ground: You add the new 'MENU' resource to the existing 'MBAR' resource -
just as you would any other 'MENU' resource.

As a shortcut in my development of the AnimatorApple program, I made a
copy of the Animator.rsrc resource file found in the C20 Animator folder. I
then renamed the copied file Animator Apple.rsrc. I knew in advance that this
new program was going to be similar to the program I developed in Chapters
19 and 20, so I thought I'd save myself a little extra work. Always look for
effort-saving tricks like this. As a programmer, you've got enough work to do
without repeating your prior efforts!

Chan9in9 the ID of a resource
I'm working on a copy of the Animator resource file, so the file already holds
a 'MENU' resource - the 'MENU' used for the Animator's MyMenu menu.
This 'MENU' has a resource ID of 128. Before creating the 'MENU' resource
that I want to use for the Apple menu, I want to renumber the ID of this exist­
ing 'MENU' resource from 128 to 129. Changing the ID isn't a requirement, but
I have my reasons for doing this.

29 2 Part V: The Moment of Truth: Writing a Program! _________ _

W
~Sl'(I~

s "' !.

..

The Apple menu appears in the program's menu bar before (to the left of)
the MyMenu menu, so I'd like it to have an ID smaller than 129. For an orderly
guy like me, it feels good to have numbers increase in value from left to
right - like they did on the number line in school. Now, you may be wonder­
ing why I don't just leave the MyMenu ID set to 128 and give the new Apple
menu an ID of 127. If you think back to the reason why ResEdit generally
starts numbering resources with the number 128, you have the answer. Give
up? Remember, Apple reserves the numbers up to 127 for its own use. So it's
best to stay away from numbers less than 128.

Enough of the reasoning for making a resource ID change. You just need to do
it. The process for changing the ID of any resource is the same. Start at the
main window of the resource file, which is the type picker window. That's the
window that holds the icons of all the different types of resources in the file.
Then follow these steps:

1. Double-click the icon of interest.

A list of resources of that type appears.

2. Click once on the resource whose ID you want to change.

3. Choose Get Resource Info from the Resource menu.

A window with resource information appears.

4. Type in the new resource ID in the ID edit box.

In this next figure, you can see that I've followed the preceding steps for the
MyMenu 'MENU' resource. Its ID has now been changed from 128 to 129.

A project's 'MENU' resources don't have to be numbered consecutively. For
example, I could give the Apple 'MENU' an ID of 5000 and the MyMenu 'MENU'
an ID of 253. This has no effect on the order in which each 'MENU' will later
appear in the menu bar of the program. It is the order in which 'MENU'
resources are listed in the 'MBAR' resource that establishes the placement of
each 'MENU' in a menu bar.

_____________ Chapter 21: Where Do You Go from Here? 29 3
AnimatorAppie.rsrc

WIND

MENUs from AnlmatorApple.ruc

Beep Mel
Grow Squ11re
Moue Squ11re

11'-""'"Qu_lt_-1:::01 Info for MENU t 29 from Rnlm11torApple.rsr

Type: MENU Size: 76

ID: ~i_2_9 __ ___..__ _____ ~
Name: .

Owner ID:

Sub 10:

Attributes:

owner type
ORUR
WOEF
MOEF -0-

O System He11p O Locked O Preloed
O Purgeable 0 Protected O Compressed

After typing the new resource ID in the Get Resource Info window, click the
window's close box. When you do that, you see this alert:

You hnue just changed the resource
ID of this menu to 129. The menulO
field (stored Inside the menu) Is,
howeuer, set to 128. Would you like
to upd11te the menu ID to I 297

Cancel I OK B

Because ResEdit is polite enough to ask my permission before it monkeys
around with this mysterious internal menuID field, I reciprocate the kindness
by giving ResEdit the green light to do so. You should do the same by clicking
the OK button.

Creatin9 the Apple 'MENU' resource
Now it's on to the creation of the new 'MENU' resource. You've performed the
first step before - choose Create New Resource from the Resource menu. If
you do this with the list of 'MENU' resources open on your screen, ResEdit

29 fl Part V: The Moment of Truth: Writing a Program!

won't prompt you for the type of new resource you want to create. Instead,
it quite appropriately assumes that you want to create another 'MENU'
resource, and it opens a new menu-editing window. ResEdit is smart enough
to notice that the resource file no longer holds a 'MENU' resource with an ID
of 128, so that's the ID it assigns to this new 'MENU'.

Now comes the new part. The 'MENU' resource for the Apple menu is a little
different than 'MENU' resources used for a ll other menus. To tell ResEdit to
mark this resource as one that will be used for the Apple menu, click the
radio button labeled ti (Apple menu) as I'm doing here:

rm MENU ID • 128 from Anlmator11pple.rsrc

1:1 Entire Menu: 181 Enabled

~
Title: 0 l J

~ s (Apple menu)

Color

Title: Ill
I tern Te Ht Default: •

izy Menu 8ackground: D

Next, add the items that will appear in the Apple menu. Choose Create New
Item from the Resource menu to add the first item. Programs typically make
the first item in the Apple menu one that opens a window that displays
information about the program or about the company that developed the
program. I type in the word About followed by an ellipsis, which is pretty
much what you see done for most programs. By the way, those three dots
that make up an ellipsis are created by holding down the Option key and then
pressing the semicolon key.

fflil MENU I D • 128 from Anlmator11pple.rsrc E

[!]_ Selected Item: 181 Enabled
About ... 0

TeHI: ®I About ••• I
0 - (separator llne)

Color

D hns Submenu TeHt:.

Cmd-Key:O•

~ Mark: I None

____________ Chapter 21: Where Do You Go from Here? 29 5
The Apple menu generally has a gray separator, or divider, line as its second
item. This line doesn't do anything except provide a visual indicator of where
the user's own Apple menu items start. You can confirm this by clicking the
Apple menu on your own Mac and taking a look. ResEdit provides you with
an easy way to tum a menu item into a separator line. Again, choose Create
New Item from the Resource menu. Then click the radio button labeled (sepa­
rator line):

- ----· MENU ID .. 128 from Rnlmatorffpple.rsrc ~·~-- -

[!l Selected Item: OEnabled
Rb out ••• Q

--··-·--·----·-- Teat: OI I
<iPt ······-(separator llne)

Color

, D has Submenu TeHt:lllJ

I £m1i-Key:OllJ)

ol Mork: [N0r10 ... qg

That's it for the 'MENU' resource that will be used for the Apple menu. What's
that, you say, seems like something's missing? You're right there - you
haven't added any of the many items that appear in the Apple menu below
the separator line. As you see ahead, that's a job handled by source code, not
by resources.

Addin9 the Apple 'MENU' to the 'MBAR'
You can create as many 'MENU' resources as you want, but your program
won't do anything with them unless they're listed in an 'MBAR' resource. At
this point, you have an Apple 'MENU' with an ID of 128 and a MyMenu 'MENU'
with an ID of 129. rm working with a copy of the Animator.rsrc resource file,
so I've already got an 'MBAR' resource in this AnimatorApple.rsrc file. It, how­
ever, just lists the ID of the one 'MENU' used in the original Animator
program. I add a second 'MENU' to it by following these steps:

1. Double-click the MBAR icon in the type picker window.

A list of 'MBAR' resources appears.

2. Double-click the 'MBAR' resource in the list (you typically only have a
single 'MBAR' resource).

3. Cilek once on the last row of asterisks.

4. Choose Insert New Fleld(s) from the Resource menu.

5. Cilek in the new Menu Res ID edit box.

6. Type in the ID of the 'MENU' resource to be added to the 'MBAR'.

296 Part V: The Moment of Truth: Writing a Program!

After following these steps, the 'MBAR' now looks like this:

:mm~ MBRR ID a I 28 from RnlmetorApple.rsrc

a of menus 2

I) *****
Henu res ID I 120

2) *****
Menu res ID I 129

J) *****

That completes the work for adding the Apple menu - from a resource
standpoint anyway. Now it's on to the source code.

Dealing with Apple menu source code
In your quest to add the Apple menu to the Animator program, modifying the
resources in the Animator.rsrc resource file represents only half the battle.
Now you've got to do a little work on the Animator.c source code. In this sec­
tion, you see what needs to be added, and why.

If you're sitting in front of your Mac as you read this, double-click the
AnimatorApple.mcp project located in the C21 AnimatorApple folder. Then
open the AnimatorApple.c source code file by double-clicking its name in the
project window. As you read about the changes to Animator.c, check the
AnimatorApple.c file to see exactly where these changes fit in. To make that
easy to do, I added plenty of comments to the AnimatorApple.c source
code file.

Declaring new tlariahtes
The source code for the Animator program declares a dozen variables.
AnimatorApple uses all those same variables, plus two more:

MenuHandle appleMenu:
Str255 itemName:

The first variable, appl eMenu, lets AnimatorApple get in touch with the new
Apple 'MENU' resource - the program needs to access this resource so that
the various items located in the user's Apple Menu Items folder can be
added. The second variable, i temName, comes into play when the user of
AnimatorApple chooses an item from the Apple menu.

____________ Chapter 21: Where Do You Go from Here? 29 7
New menu bar setup code
The Animator source code uses three lines of code to set up the menu bar:

menuBarHandl e = GetNewMBar(128);
SetMenuBarC menuBarHandle);
OrawMelluBarO:

The first line gives the program access to the information stored in the
'MBAR' resource. The second line takes that information and does something
with it - it sets up, or prepares, the program for the display of the menu bar.
It takes the third line to actually draw the menu bar to the top of the screen.

To get a menu bar to recognize and set up the Apple menu, you need some
more code - but only a couple of lines. I insert the two new lines of code in
the preceding snippet and come up with the following:

menuBarHandle = GetNewMBar< 128 >:
SetMenuBarc menuBarHandle l:
appl eMenu = GetMenuHandl e< · 128);
AppendResMenu< appleHenu, 'DRVR'1;
·orawM.enuBarO: · · · · ·

The first new line calls GetMenuHandl e. The parameter to this Toolbox func­
tion is the ID of a 'MENU' resource. I give it a value of 128, which in
Animator Apple turns out to be the ID of the new Apple 'MENU' resource. In
exchange for that information, the GetMenuHandl e function returns some­
thing called a MenuHandl e to the program. The program tucks this
Menu Hand 1 e into the a pp 1 e Menu variable, which is the first of the two vari­
ables new to this program. A MenuHandl e allows your program to access -
to get a handle on, so to speak - the information in a 'MENU' resource.

The second new line of code uses the MenuHandl e variable appl eMenu to
actually do something with the information in the Apple 'MENU' resource.
This line of code calls the Toolbox function AppendResMenu to append the
names of all of the items in the user's Apple Menu Items folder onto the cur­
rent contents of the Apple menu. Recall that the current contents of this
menu is the About menu item and the dashed line, or separator, menu item.
It's this significant line of code that allows the contents of the Apple menu to
vary from Macintosh to Macintosh.

Recappin9 the handlin9 of a selection from a menu
In Chapter 18, you see what happens when the Toolbox function
Wai tNextEvent comes across an event that happens to involve a click of the
mouse button. The Toolbox function Fi ndWi ndow is called to determine in
which part of the screen the mouse click took place. If Fi ndWi ndow reports
that the event occurred while the cursor was over the menu bar, your pro­
gram handles things by first determining which menu was clicked. Here's an

298 PartV:The Moment of Truth: Writing a Program!

overview of the code section that would appear in a hypothetical program
that displayed three menus based on 'MENU' resources with IDs of 128, 129,
and 130:

case inMenuBar:
switch (theMenu)
I

case 128:
I* handle selectfon from an ite• in 'MENU' 128 */

case 129:
I* handle selection from an item in 'MENU' 129 */

case 130:
I* handle selection from an item in 'MENU' 130 */

Next, the particular menu item that was selected is determined. That informa­
tion is used to run the code that exists for just that one menu item.
Something like this:

case 128:
switch C theMenuitem)
I

case 1:
I* handle 1st menu item from 'MENU' 128 */

case 2:
/* handle 2nd menu Jtem from 'MENU' 128 */

case 3.:
I* handle 3rd menu item from 'MENU' 128 */

case 129:
/* use same approach as shown for 'MENU' 128 */

case 130:
I* use same approach as shown for 'MENU' 128 */

Handlin9 a selection from the Apple menu
The original Animator program has a single menu named MyMenu. This menu
is represented by a 'MENU' resource with an ID of 128. In Animator Apple, I
change the ID of this 'MENU' to 129 so that I can give my new Apple 'MENU'
the ID of 128. In the Animator Apple.c source code, that necessitates changing
the case 128 to case 129. BecauseAnimatorApple handles the MyMenu
items just as they are handled in Animator, everything beneath this case
label remains the same. Here's a snippet that provides some context for this
change. Again, note that only the first line of this snippet is different:

case 129: /* This was 128 */
switch (theMenultem)
{

case 1:
SysBeep(1 >:
break:

case 2:
SetRectC &theRect. 0, 0, 400, 280 >:

_____________ Chapter 21: Where Do You Go from Here? 299
EraseRectHtheRect) : · · : ·· ··.
SetRectC &theRect, 200, 135,-:200;· 135): ·
count .. •O::
while (couni ~ 120)
(

Fil 1 Rect(· &theRect, &qd. !)Jack J:; ·

To handle a menu selection from the new Apple menu, you need a new case
section. Because the Apple 'MENU' resource has an ID of 128, that's the label
you need to give to this new case label. Here, in its entirety, is the new code
that's needed to handle a selection of any menu item in the Apple menu. Note
that even though the items in the Apple menu vary from user to user, the fol­
lowing code can - without modification - always be used:

case 128:
switch C theMentilteln) ., . .

I

case 1:
SysBeep< ·1 >:
break:

default : . . .
GetMenultemTextC appleMenu; JheMenultern. i_temName J:
OpenOeskAcct itemName l:
break:

· break:

Most programs that include an About menu item in the Apple menu display a
dialog box or an alert in response to the user choosing this item. All I do is
call the Toolbox routine Sys Beep to beep the user's speaker. That's a bit of a
cop-out, but my hands are tied here - I dido 't cover dialog boxes or alerts
anywhere in this book. If you want to find out about those topics, you'll find
references to a couple of other, more advanced-level books later in this
chapter.

The code under the case 1 label handles a selection of the first Apple menu
item. A selection of any other menu item in the Apple menu is covered by the
code under the default statement. This may be new to you, so let me take a
moment to explain.

A program runs a s w i t ch statement by comparing the value of the variable in
the s w i t ch statement with each of the case labels. When it encounters a
match, the code under the matching case label is executed. Simple enough.
But what if there is no match? Normally, if there isn't a match, the program
skips all the code under the switch statement and goes merrily on its way.
If there's no match, and a section labeled default is present, however, the
program executes the code under the def au 1 t statement.

J 00 Part V: The Moment of Truth: Writing a Program!

Take a look at how the s w i t ch and the def au 1 t work in this particular exam­
ple. Say the user selects the second item found in his or her Apple Menu
Items folder. For this particular user, that item is the AppleCD Audio Player.
As shown in the following figure, this item is the fourth item in the Apple
menu. That means variable theMenultem ends up a value of 4. It is this
number that is used in the switch statement. Because no case has a label
of 4, the s w i t ch statement runs the code under the def au 1 t statement.

ltem#l
ltem#2 1---------1

ltem#3 Apple Uideo Player

ltem#4 mmmmmmm••lll
ltem#5 CJ Automated Tasks
ltem#6 Im Calculator

~Chooser
~ Control Panels ~

•Find File

L switch

case 1:

(theMenultem)

Sys Beep(1) :

Only two lines of code are necessary to take care of a menu item selection
that involves an item from the Apple Menu Items folder. The first line is a call
to GetMenuitemText. This Toolbox function reports the text of a menu item
to your program. GetMenultemText requires three parameters: the menu
that holds the item in question, the number of the item in question, and a
variable of the data type Str255.

The first parameter is one your program already has. If you go back a few
pages to the section titled "New menu bar setup code," you see the code that
assigns the MenuHandl e variable appl eMenu a value. Because the program
already has a variable that can be used to reference the correct menu - the
Apple menu - use this variable again here.

The second parameter that GetMenu I temText needs is the item number of
the selected menu item. Again, the program already has this information. The
variable theMenu I tern holds this value. So that's the variable you use here.

____________ Chapter 21: Where Do You Go from Here? 3 O 1

The last parameter is a string variable of type Str255. You've worked with
strings throughout this book. For example, you drew the string Hello, World!
to a window using the Toolbox function DrawStri ng. A string, like a number,
can be stored in a variable. Generally that's done by using a variable of the
type Str255. Recall that i temName, one of the two new variables declared by
Animator Apple, is of just such a type. Here's another look at those two vari­
able declarations:

MenuHandl e ~ppl eMentf;.
Str255 . 1temName:

I won't go into all the details of what a St r 2 5 5 is or how you use one, but I
will say this. The Str part of this data type stands for string. The 255 part
refers to the number of characters that a variable of this type can hold, which
is 255.

You don't have to assign a string to the i temName variable-the Toolbox
does that for you. In fact, that's the sole purpose of the GetMenu ItemText
function. For example, if the user chooses the AppleCD Audio Player item
from the Apple menu, the GetMenuitemText function assigns a value of
AppleCD Audio Player to the variable i temName.

After the AnimatorApple program has the name of the selected item, it can
use that name to go ahead and open that item. I'm using the word open a
little loosely here. You can stick anything you want in the Apple Menu Items
folder in your System Folder and its name appears in the Apple menu. When
you choose an item from this menu, your Mac does what's appropriate for
that item. If the item is a folder, the folder opens. If the item is an application,
the application runs. The line of code that carries out this magic is the one
that calls the Toolbox routine Open Des kAcc. I show this line of code in the
context in which it's used:

default :
GetMenultemTextC appleMenu. theMenuitern, itemMame >:
OpenDeskAccC itemNarne >; ·
break:

When you pass the name of a file, application, or folder to OpenDeskAcc, the
Toolbox finds that item in the Apple Menu Items folder and does its thing
on the item. In the previous snippet, you can see that the last parameter
to GetMenultemText and the one parameter to OpenDeskAcc are the
same. GetMenuitemText stores the name of the selected menu item in the
i temName string variable, and Open Des kAcc uses this string to determine
what item is to be worked with.

J 0 2 Part V: The Moment of Truth: Writing a Program!

Years back, only small applications called desk accessories could be stored in
the Apple menu. Thus the name of the Toolbox function - OpenDes kAcc.
Now, anything goes. But while the Mac is capable of storing and opening just
about anything in the Apple menu, the old Toolbox routine has kept its same
name.

What happens if the user selects the separator line? This is the second item
in the menu, yet there's no case 2 label. And surely the code under the
default statement - the code used to handle menu selections of Apple Menu
Item folder items - doesn't apply. This isn't an oversight-there's just no
need to handle this scenario. Separator lines - no matter what menu they
appear in - are inactive menu items. Selecting a separator line never pro­
duces any results, so you never have to write source code to handle this type
of menu item.

Handfin9 update eflents
A Mac program can recognize several different types of events. In Chapter 17,
you experience two such event types, the key Down and mouse Down event
types. Another event type is the updateEvt -the update event. An update
event occurs when a window gets moved partially offscreen and then back on
screen, or when a window that was partially or fully obscured by a different
window is brought to the forefront. When one of these situations occurs, the
program has to redraw the contents of the window. That is, things need to be
updated.

In AnimatorApple, you aren't too interested in update events. However, in
order for the Apple menu to properly function, Animator Apple must include a
case section that handles update events. Although a user's selection of an
item from the Apple menu may not seem to have much to do with updating
anything, it apparently does - if you don't include the following code in the
program, the Apple menu won't work as expected:

.case µpQ~teEvt: ...
Begi nVpda~eC tbeWj ndow h
ElldUpdateC. ·theWfndow >:
break:

The preceding code goes right near the case mouseDown section - it can go
either before or after it. The code under the case label includes calls to two
Toolbox functions - Begi nUpdate and EndUpdate. Knowing exactly
what these routines do isn't too important. Just pass each a Wi ndowPt r
variable - any W i n d ow Pt r variable your program declares - and everything
will be fine. Animator Apple declares a W i nd ow Pt r variable named
theWi ndow, so that's what I use as the parameter.

After adding the case updateEvt section, AnimatorApple is all set to handle
selections from the Apple menu!

____________ Chapter 21: Where Do You· Go from Here? 3 O 3

Viewin9 the AnimatorApple
source code listin9
The AnimatorApple.c source code listing is so similar to the Animator.c
source code listing found in Chapter 20 that I don't want to waste paper
showing it here. Instead, take a look at the listing on your screen. To do that,
open the AnimatorApple.mcp project found in the C21 AnimatorApple folder
and then open the AnimatorApple.c file. I've added comments to any new
code, so you should be able to quickly spot the changes.

lntroducin9 a More Adflanced Pro9ram:
Si9htAndSound

I've written this book with several goals in mind, including:

1

1"' Getting you acquainted with the C language

1"' Familiarizing you with source code and resources

1"' Eliminating your apprehensions about compilers

1"' Helping you create a Mac program from start to finish

You may notice that absent from the preceding list is a point about creating a
sophisticated, exciting application that shows off the graphics and sound
capabilities of the Macintosh. In this book, you haven't explored the really
fun part of Mac programming. Sorry, but that's just the nature of learning
something new -you have to have a good grasp of the basics before moving
on to the esoteric.

Cool programming topics like displaying color graphics and pictures in win­
dows, playing sounds, running QuickTime movies, and sending the contents
of a window to the printer are all covered in other Mac programming books.
I list a couple of those books later in this chapter. But before you invest in a
second book, ask yourself a few pertinent questions:

1
1"' Do I know the basics of programming?

1"' Do I enjoy the challenge of programming?

1"' Will I be able to learn more advanced programming topics?

By now you should have the answer to the first two questions. To determine
the answer to the third question, it looks like you have to drop the bucks on
another book. But wait-don't do that just yet! Instead, read on. Over the
next few pages I present the SightAndSound program - an application that

3 Q fl Part V: The Moment of Truth: Writing a Program! __________ _

demonstrates a couple of the more interesting features a Mac program can
have. Unlike the other programs described in the rest of this book, I won't
describe SightAndSound line by line. Instead, I just provide some general ref­
erences to what certain sections of the source code do. You won't be
expected to understand exactly what every line of code is doing. But if you
find that you have a general feel for what's going on, you can be confident
that you can follow the much more thorough descriptions provided in other
books.

Understandin9 what Si9htAndSound does
When you run SightAndSound, you're presented with a window that displays
a picture. While I can't show it in this book, the picture is in living color. You
see this amazing color when you run the program on a Mac that has a color
monitor.

New Window

At the top of the screen is a menu bar that holds the following three menus:

_____________ Chapter 21: Where Do You Go from Here? 3 Q 5

About ...

• Apple Uldeo Pl11yer
@} AppleCO Audio Pl11yer
LI Autom11ted T11slcs ~

EJ C11lcul11tor

~Chooser
~ Control P11nels ~
•Find Fiie

r'"""'· M11ke Moo I

Earlier in this chapter, you see how to implement the first of these menus -
the Apple menu. The second menu is the File menu. It holds a single item -
Quit. Nothing new so far. The third menu, the one titled Sounds, also has a
single item. When you choose Make Moo! from this menu, the melodic sound
of cows mooing emits from your Mac's speakers. Why mooing? To match the
picture of the cows, of course. Why cows? Because I'm here in Wisconsin,
also known as the Dairy State. I could have taken a picture of a brick of
cheese and used that instead, but what sound could I have then placed in the
Sounds menu?

Pictures and sounds are resources
Throughout this book, you see the important role resources play in
Macintosh programs. Using ResEdit to view the contents of the resource file
used in the SightAndSound project further illustrates this. Here you can see
two types of resources new to you: the 'PICT' and the 'snd' resource types:

!!Ii S.!S!JtAndSound.rsrc llft

w ~ . a.i <l>~ CJ ~
HBAR l'£HU PICT snd \IH>

~

Double-clicking the 'PICT' icon in the type picker window displays the pic­
tures in the resource file. In this example, only one 'PICT' resource appears -
but a resource file can hold any number of 'PICT' resources.

3 06 Part V: The Moment of Truth: Writing a Program!

PI CTs from SI htRndSound.rsrc

128

ResEdit doesn't display large pictures in their true size. To see a picture in
actual size, you double-click the small version of the picture. That opens a
new window and displays an actual-size version of the picture in it.

Like pictures, sounds can be stored as resources in a resource fi le. ResEdit
calls such resources 'sod' resources. When you double-click the 'sod' icon in
the type picker window, ResEdit displays a list of the sounds in the resource
file. The SightAndSound program uses only one sound, so only one 'sod'
resource appears in the SightAndSound resource file. Double-clicking on a
sound in the list opens a window that d isplays that sound:

snds from SightnndSound.rsrc
JI!. Siu NllTlt

20000 240147 " moool" I
ll llll snd " mooo! " 10 • 20000 from SlghtR1 c:=::

000000 0002 0000 000 1 ~ ooooo!R>

~ 000008 0000 0000 OOOE 0000 00000000
0000 10 0000 0003 flQE8 ~E OOOO•OIJO
0000 18 88A3 0003 ll9EA 0003 0£0D OOO
000020 A9E8 003C 8080 8080 POO<MM
000028 8080 8080 8080 8080 ftilMNlM
000030 8080 8080 8080 8080 /!>iWWIM
00003$ 8080 8080 8080 8080 f>JlNWWI
()()()()40 8080 8080 8080 8080 f>JlNWWI
()()()()48 8080 8080 8080 8080 IWN#il
ooooso 8080 8080 8080 7E7C twiWt-1 ~ 0000$8 7C7C 7C7C 7C70 707E !l:)JJJJ; li!i ooooco 7E7F 8080 808 1 8 18 1

Because no easy way exists to display a sound in a graphical format, ResEdit
simply displays the numbers that make up the sound. That's right - the Mac
is smart enough to store a sound in a fi le as a series of numbers. When it
comes time to play the sound, the Mac converts these numbers back into a
sound. I show you this 'sod' resource to satisfy your curiosity. Although you
may have cause to store sounds in a resource file, you normally won't have
much of a need to view such a resource.

_____________ Chapter 21: Where Do You Go from Here? 3 Q 7

Workin' with the same of' kind of project
A program that is more complex than the ones presented in this book may
still have a CodeWarrior project that looks very similar to the projects used
to create simpler programs. Here's the project window for the SightAndSound
program:

Debi
0 0 • (3 .
0 0 • El
0 0 8

n/• n/• El
0 0 El
0 0 El
0 0 (3

0 0 El
0 0 El
0 0 El

<¥ 0 0 El

7 fllH 0 0 ~

From the preceding figure you can see that the files listed in the
SightAndSound.mcp project are the same as those named in projects you've
already seen - a source code file, a resource file, and a bunch of library files
(the names of the library files may differ depending on whether you're using
the project from the CD-ROM or a project you created yourself using
CodeWarrior Professional). So where does the added complexity come in? A
program that does more than another program has more source code and
more resources than that program. But it can still keep all its code in a single
source code file and all its resources in a single resource file.

A CodeWarrior project can hold more than one source code file or more than
one resource file. When a project uses a lot of resources or a lot of source
code, programmers often do break things up into separate files. This is done
simply for organizational purposes - the resulting program remains the
same no matter how a programmer distributes code and resources among
files.

Glancin9 at the Si9htAndSound
source code listin9
Here, for your reading enjoyment, is the entire source code listing for the
SightAndSound program. As I stated a few pages back, you won't be expected

3 Q 8 Part V: The Moment of Truth: Writing a Program!

to understand everything you see here. Instead, browse through the listing,
watching for code that looks familiar and code that doesn't. When you
encounter something that looks new, take a moment to try to guess what may
be going on. After the listing, I'll point out what some of the new code does.

void OpenW indow(void) ;
void HandleAppleMenu(short theltem) ;
void HandlefileMenu(short theltem J;
void HandleAnimalMenu(short theltem);

short
MenuHandle
WindowPtr
PicHandle
Rect

main()
I

Event Record
WindowPtr
short
Handle
long
short
short

all Done ;
appleMenu ;
theWindow;
mooPicture ;
mooRect ;

theEvent;
whichWindow;
thePart ;
menuBarHandle ;
menuAndltem;
theMenu ;
theMenultem;

InitGraf(&qd.thePort);
InitFonts();
Ini tWi ndows () :
Ini tMenus() :
TE!ni t() ;
InitDialogs(nil);
FlushEvents(everyEvent , O);
InitCursor();

menuBarHandle • GetNewMBarC 128) ;
SetMenuBar(menuBarHandle l :
appleMenu : GetMenuHandle(128) ;
AppendResMenu(appleMenu . ' DRVR ');
DrawMenuBar () ;

OpenWi ndow();

allDone - O;
while (allDone < 1)
I

WaitNextEvent(every Event , &theEvent, 7, ni 1) ;
swi tch (theEvent.what)
I

case updateEvt:
BeginUpdate(theWindow J;
DrawPicture(mooPicture . &mooRect);
EndUpdate(theWindow);
break;

case mouseOown :
thePart • FindWindow(theEvent .where ,

&whichWindow);

_____________ Chapter 21: Where Do You· Go from Here? 3 09
switch (thePart)
I

case inDrag:
DragWindow(whichWindow . theEvent.where.
&qd.screenBits.bounds l:
break:

case inGoAway:
OisposeWindow(whichWindow l:
allOone • 1:
break:

case inHenuBar:
menuAndltem • HenuSelect(theEvent .where):
if (menuAndltem > 0 l
I

theHenu • HiWord(menuAndlteml :
theMenultem • LoWord(menuAndltem l:
switch (theHenu)
I

l

case 128:
HandleAppleMenu(menuAndltem);
break :

case 129:
HandleFileMenu(menuAndltem):
break:

case 130:
HandleAnimalHenu(menuAndltem) :
break:

HiliteMenu(0):
l
break:

l
break :

void OpenWindow()
I

short width:
short height:

mooPicture • GetPicture(128 l:

mooRect • (**mooP1cture) .picFrame:
OffsetRect(&mooRect . - mooRect . left , · mooRect.top);

width • mooRect.right - mooRect.left :
height• mooRect .bottom - mooRect.top;

theWindow • GetNewWindow(128 , nil, CWindowPtr)·ll):
SizeWindow(theWindow. width , height. true l:
ShowWindow(theWindow):

(continued)

J 1 0 Part V: The Moment of Truth: Writing a Program!

(continued)

SetPort(theWindow >:

void HandleAppleMenuC short theitem)
{

Str255 itemName;
short reference:

switch (theltem)
{

case 1:
SysBeep(1):
break;

default :
GetMenuitemText(appleHenu, theltem, itemName):
reference= OpenOeskAccC itemName);
break;

void HandleFileMenu(short theltem }
{

switch (theltem)
I

case 1:
allOone = l;
break;

void HandleAnimalMenu(short theltem)
(

Handle rnooSound;

switch C theltern >
{

case 1:
mooSound = GetResource('snd ', 20000 >:
SndPlay(nil. CSndlistHandle)mooSound, false>:
break;

Lookin9 at function prototu.pes
Right after the Sound.h file in the listing come the names of four functions. In
Chapter 4 you see that a function is a (usually) small amount of source code
written to perform a specific task. Up until now you've worked mostly with
Toolbox functions - functions written by Apple and available for use in your
own programs. I say you've worked mostly with Toolbox functions because in
each program in this book you also see one function not written by Apple -
the ma i n function.

____________ Chapter 21: Where Do You Go from Here? J 11
I wrote the main function in each example program. But I didn't have to stop
there. I could have written other functions and included them in a program
along with the main function. Why do that? Again, recall from Chapter 4 that
one purpose of a function is to isolate a section of code to clarify what's
going on in a program. That's what I've done here in the SightAndSound
source code. Besides ma i n, I wrote four other functions. I've written the name
of each near the top of the source code listing:

void OpenWindowC void >:
void HandleAppleMenuC short theltem.l:
void HandlefileMenuC short the!tem >:
void H!!ndleAnimalMenu< short the.Item T:·

These four lines of code aren't the functions themselves - those appear later
in the listing. Instead, these lines are called function prototypes. They exist to
make it clear to the compiler that this program defines its own functions, and
to tell the compiler what it should expect the parameters of those functions
to be.

Gettin9 another dose of functions
While I'm on the subject of functions, you should take a look at one. Look
back at the source code listing and find the Toolbox initialization code -
that's something you're very familiar with. After that code comes the code to
set up and display the menu bar. Again, that's code that should look familiar.
Just past that, however, is this line:

OpepWindowC>:

Because the word OpenWi ndow is followed by a pair of parentheses, you
know it's a call to a function. But OpenWi ndow isn't a Toolbox function - it's
one I defined myself. Look back at the source code listing again and find the
end of main. In the past, the end of main was the end of the source code list­
ing. In SightAndSound, however, more code comes after main. The first line of
code that follows ma i n looks like this:

void OpenWindow<>

This is the start of the definition of my OpenWi ndow function. Just as the
definition - the body - of the main function appears between braces, so too
does the body of the OpenWi ndow function:

void'. Open\.J,indowO l , ...
l*fu~~tton body here *I

What does OpenWi ndow do? Anything I want it to - 'cause I wrote it!
Specifically, this function does the following:

3 12 Part V: The Moment of Truth: Writing a Program!

, Y' Gets the picture information from the 'PICT' resource

Y' Sets up the picture so that its upper-left corner is displayed in the
upper-left corner of a window

Y' Calls GetNewWi ndow to open a new window

' Y' Changes the size of the window so that it matches the size of the picture

Y' Displays the window on the screen

Y' Makes the window's port the active port - ready for any other drawing
that may take place

I didn't have to write a function that does all of the above. I could have just
included all of the above code inside of main. I chose to group all this
window-related code together in the OpenWi ndow function, though. Now,
when the call to OpenWi ndow is made, it's just as if this code did appear in
main anyway:

main()
{

I* other code here *I

lluahEvents(everyEvent. O);
Initcuraor();

menuBarlfandle .. GetNevHBar(128);
SetHenuBar (menuBarHandle) ;
appleHenu .. GetHenuHandle(128 ?;
AppendReattenu(appleHenu, 'DRVR) ;
DravHenuBar();

Open'llindov();

allDone .. O;
while (allDone < 1)

I* other code here *I

void OpenYindov()
{

abort width;
abort heiqht;

mooPicture .. GetPicture(128);

mooRect • (**mooPicture).picFrame;
OftaetRect(&mooRect. - mooRect ...
width .. mooRect.right - mooRect.left;
height .. mooRect.bottom - mooRect.top;

theVindov .. GetNev'llindov(128. nil •...
Size'llindov(theYindov. width, height •...
ShovVindov(the'llindov) :
SetPort(the'llindov) ;

SightAndSound includes three other functions - one to handle each of the
three menus. I'll leave it as an exercise for you to find the definitions for these
three functions and the calls to each. If you are in any way interested in
finding out about these other three functions, then you have some solid
proof that you're ready to move on to more advanced Mac programming
techniques.

_____________ Chapter 21: Where Do You Go from Here? 313

That Wasn't Too Bad; How
Do I Learn More?

The SightAndSound source code listing shows you that you already have a
good understanding of much of what goes into a typical Mac program. If
you'd like to fill in the gaps, though, consider picking up a more advanced
Macintosh programming book.

And Now a Few Words about
CodeWan-ior Professional

If you're interested in continuing with your programming endeavors, you'll
want to get a full-featured integrated development environment, or IDE. The
Lite version of CodeWarrior that's included with this book is great for learn­
ing about programming, but it's not enough for more complicated
development. In particular, the Lite version of CodeWarrior doesn't allow you
to create your own new projects - and that's something you'll need to be
able to do if you're to develop your own programs. If you want to really pro­
gram, you should consider purchasing CodeWarrior Professional.

CodeWarrior Professional is a three-CD set that includes two versions of the
CodeWarrior IDE - one that runs on a Mac and one that runs on a PC with
Windows 95, Windows 98, or Windows NT. Each version of CodeWarrior
includes several compilers. If you're a real glutton for punishment, you can
learn all sorts of computer languages and program in any of them without
buying separate compilers. With CodeWarrior Professional, you get separate
compilers for all of these languages: C, C++, Java, and Pascal.

CodeWarrior Professional also comes with a wealth of electronic documenta­
tion. Read it on screen or print it out. Whatever your preference, you'll get
plenty of information on using the CodeWarrior environment, programming
in C and C++, and more.

CodeWarrior Professional comes with a complete set of tools to debug your
code, analyze memory usage, and to profile code at run time with micro­
second accuracy. If those sound like advanced topics -you're right. You
may not be ready for these programming tools now, but if the time comes
when you're a Macintosh programming wizard, you'll be all set.

J 1 fl Part V: The Moment of Truth: Writing a Program I ----------

If you're beginning to feel comfortable with programming, it may be a good
time to take a look inside the CodeWarrior Goodies folder on this book's
CD-ROM. It holds a few of the things you'll find on the CodeWarrior
Professional CD-ROMs.

I'll finish up by providing you with a list of much of what's included in
CodeWarrior Professional. Don't be intimidated if you don't understand many
of the items in this list. Metrowerks takes the the-more-the-merrier approach.
They provide everything any Mac programmer could possibly need, and then
they let each programmer pick what he or she needs. You don't have to use
anything except the C compiler - though the more you program, the more
you'll certainly want to try out.

1"" CodeWarrior IDE with project manager, editor, and browser

1"" Source-level debugger

; 1"" Compilers and linkers for several languages

1"" Support for Mac OS, Windows 95, Windows 98, Windows NT, and Java
virtual machine

1"" Profiling and memory tracking tools

(1"" PowerPlant application framework

1"" Constructor visual interface builder

1"" Microsoft Foundation Classes application framework

1"" Java API framework

1"" Metrowerks Standard Libraries

1"" SIOUX input-output console library (for command-line programs)

1"" Macintosh Toolbox libraries

1"" Thousands of pages of helpful documentation

1"" Electronic versions of a few programming books

1"" Megabytes of tutorial and example code

1"" Helpful source code and libraries

1"" Demos of various programmer tools

1"" One free update when you register

If you're interested in purchasing CodeWarrior Professional, look on this
book's CD-ROM. There you find a text file with all the latest scoop on
Metrowerks products and how you can go about ordering them. For still
more information, visit the Metrowerks Web site at www. met rowerks. com.

Part VI

The Part of Tens

The 5th Wave BY. Rich Tennant

A11 th:rcwlt H\qh. Schrol he woold.n:-1:.
-talk to a~-hardJy: said. aw::>Jtl..
~hes gm::lu:it.inq from an Ivg
1~ coJ~ wlfh an a11anc00.

~ree 111 cooununic:.ations.

In this part ...
Tust what are the steps for creating a CodeWarrior pro­
/. !ect? After a project is created, which Toolbox functions

should you use in the source code? And, finally, what are
the common programming mistakes that can be - but often
aren't - avoided? You'll find the answers to these three
questions - in the form of lists - right here in this part of
the book.

Each of the three chapters in this part contain short, concise
summaries of what to do (or not do) to create a Mac pro­
gram. Each chapter has about ten steps, or items, in its list.
Why not exactly ten as the title of this part indicates? Sorry,
things just don't always work out so evenly. So maybe I took
a few liberties when I named the part. But really, now, would
you rather it had a more accurate name, like The Part of
Sometimes More, Sometimes Less, But Always Very Close to Ten?

Chapter22

Ten Steps to Creating
a Mac Program

ct 0 G) 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 Q 0 Q 0 0

In This Chapter
> Creating a CodeWarrior project file

ii>-- Creating a resource file

fl>- Adding the resource file to your project

~ Removing the resource file placeholder from your project

Bl>- Creating a new source code file

f> Saving the source code file

D> Adding the source code file to your project

I>- Removing the source code file placeholder from your project

Ii>- Writing source code

a>- Compiling and running the code

0000000000000000000$0000000000000000000G000000000

r.eating a new Mac program using CodeWarrior always involves the same
_., ~teps. That's good, because it allows me to create a step-by-step plan
that you can follow for every Mac program you write.

Using the Warning icon may be coming on a little too strong, but I did want to
catch your eye. The Lite version of CodeWarrior that comes on this book's
CD-ROM doesn't allow you to create new projects from scratch - it was
designed to let you experiment, compile, and run the example projects in this
book. To make your own, brand-new programs, you need the full-featured ver-
sion of CodeWarrior - Metrowerks CodeWarrior Professional.

Creatin9 a CodeWan-ior Project File
The project file is CodeWarrior's way of keeping track of all the information
about the program you're developing. You need a separate project file for
each program you write.

After launching (starting up) CodeWarrior, choose New Project from the File
menu. In the dialog box that appears, you choose a project stationery. A pro­
ject stationery is simply a template that tells CodeWarrior which files need to
be included in your new project. Beginners do best by going with the MacOS
Toolbox 68K stationery. To get to that stationery, click on MacOS, and then
click on C_C++, and finally click on MacOS Toolbox. Sorry about all that click­
ing, but it's easier than it sounds! Now click once on MacOS Toolbox 68K and
then click on the OK button.

Now, a second dialog box appears. Here you get to name the project. Type
a name that is at least somewhat descriptive of the program you'll be devel­
oping and end the name with a period and the letters mcp (for Metrowerks
CodeWarrior Professional), as in KidsGame.mcp.

The previous dialog box (the one that let you choose a project stationery)
included a Create Folder check box. Now, after clicking the Save button here
in the Name New Project As dialog box, CodeWarrior will create a new folder
and place the new project in that folder. Before clicking the Save button,
make sure that the pop-up menu at the top of the dialog box shows the name
of the folder where you want the newly created folder to end up. The exact
location for this new folder isn't critical, but it should end up somewhere in
the main CodeWarrior folder.

Here's a summary of the steps for creating a new project:

1. Start up CodeWarrior.

2. Choose New Project from the File menu.

3. Select a project stationery.

4. Click the OK button.

5. Type a name for the new project.

6. Click the Save button.

Creatin9 a Resource File
You use a resource editor, such as ResEdit, to create a resource file for the
program. To switch from CodeWarrior to ResEdit, double-click on the name of
the resource file in the project window. If you're working from a new project

__________ Chapter 22: Ten Steps to Creating a Mac Program 3 19
window, then CodeWarrior will have placed a resource file named
SillyBalls.rsrc in the project window - go ahead and double-click on that
name. If ResEdit isn't running when you do this, it now runs. If ResEdit is
already running when you do this, that's fine. In either case, if you double­
clicked on the SillyBalls.rsrc name, then an empty resource file appears on
your screen. You want to create a new resource file to be used by your new
project. Choose New from the File menu to do that.

Check the pop-up menu at the top of the dialog box that appears. Make sure
it shows the name of the folder that holds your CodeWarrior project. If it
doesn't, use this menu to navigate to that folder - you want the resource file
to be in that same folder so that CodeWarrior can find it.

Next, type a name for the resource file. While not required, it's good practice
to give the resource file the same name as the project file (without the .mcp
part of the project name). Then append .rsrc to the end of the file name to
make it clear that this is a resource file. Save the file by clicking the New
button.

Create a resource for each of the graphical elements your program will use.
You'll be making great use of the Create New Resource menu item from the
Resource menu to do this. When finished, save the file and quit ResEdit.
Remember, ResEdit is a resource editor, which means that if you forget to
include a resource, you can always use ResEdit to open the resource file and
add more resources.

Here are the steps for creating a new resource file:

1. Create a new project.

2. Double-click the SlllyBalls.rsrc name in the project window.

3. Choose New from ResEdit's File menu.

4. Use the pop-up menu to move to the folder that holds the project.

5. Type in a name for the new resource ft.le.

6. Click the New button.

Addin9 the Resource File to Your Project
Creating a resource file isn't enough. You also have to make CodeWarrior
aware of the fact that you want this particular file to be a part of your
CodeWarrior project. To do that, click once on the SillyBalls.rsrc name in
the CodeWarrior project window. Then choose Add Files from the Project
menu. Use the pop-up menu at the top of the dialog box that opens to work
your way into the folder that holds the resource file you want to add to the

project. Click once on this file's name in the top list of the dialog box and
then click the Add button. The file moves to the bottom list. Click the Done
button to finalize your addition and to dismiss the dialog box.

These are the steps for adding your resource file to your project:

1. Make sure that you're working with CodeWarrior and not ResEdit
(click the project window or choose CodeWarrior from the menu at
the far-right end of the menu bar).

2. Click the SillyBalls.rsrc name in the project window.

3. Choose Add Flies from the Project menu.

4. Use the pop-up menu to move to the folder that holds the resource
file.

5. Click the resource file name in the list.

6. Click the Add button.

7. Click the Done button.

Remoflin9 the Resource File Placeholder
A new CodeWarrior project window holds a resource file placeholder named
SillyBalls.rsrc. This file exists primarily as a placeholder of sorts - it is noth­
ing more than a reminder for you to add your own resource file to the project.
After adding the resource file, remove the placeholder. First, click once on the
name SillyBalls.rsrc in the project window. Then choose Remove from the
Project menu. That's it-the placeholder file is gone!

To remove the resource file placeholder:

1. Click the SillyBalls.rsrc name once in the project window.

2. Choose Remove from the Project menu.

Creatin9 a Neu! Source Code File
You type your source code into a text file that's created in CodeWarrior. To
create this new text file, choose New from the CodeWarrior File menu to open
an untitled, empty window.

__________ Chapter 22: Ten Steps to Creating a Mac Program 3 21

Sat1in9 the Source Code File
You can save your source code file at any time, but I suggest that you do so
before you even type a line of code, just so you don't forget. Choose Save As
from the File menu. Type in a name that is appropriate for the program you're
writing. This can be any name you want; but for a C language source code file,
it must end with .c (a period and the letter c). Before clicking the Save button,
use the pop-up menu at the top of the dialog box to work your way into the
folder that holds your resource file and project file.

To save a new source code file:

1. Choose Save As from the File menu.

2. Type in a name for the new source code file (end the name with .c)

3. Use the pop-up menu to move to the folder that holds the project file.

4. Click the Save button.

Addin9 the Source Code
File to the Project

Creating a new source code file isn't enough to make Code Warrior aware of
its existence. You've got to add the new file to the project. Don't be con­
cerned with the fact that you don't have any code typed in the new file. Begin
by clicking once on the source code file placeholder in the project window -
that would be the SillyBalls.c name. Then choose Add Window from the
Project menu.

Again, here's a list of the steps you perform to add a source code file to a
project:

1. Click the SillyBalls.c name in the project window.

2. Choose Add Window from the Project menu.

Remoflin9 the Source Code
File Placeholder

A new CodeWarrior project window holds a source code file placeholder
named SillyBalls.c. Like the resource file placeholder, the purpose of this
entry in the project window is to serve as a reminder - a reminder that you

not only need to create a source code file, but that you must add the file to
the project. After adding the source code file, remove the placeholder. First,
click once on its name in the project window. Then choose Remove from the
Project menu.

To remove the source code file placeholder:

I. Click the SillyBalls.c name once in the project window.

2. Choose Remove from the Project menu.

Writin9 the Source Code
Type away! Or do what most programmers do. Choose Open from the File
menu and open an existing C source code file - one you created for a differ­
ent program. Copy part or all of it and then paste it into your new file. Now
use the old code as the basis for your new program. Make the necessary
changes to turn the old code into new code. In any event, choose Save from
the File menu occasionally to save your work.

Compilin9 the Source Code
When you feel satisfied that your source code looks complete, choose
Compile from the Source menu. Hopefully, things will be uneventful. If that's
the case, your code was successfully compiled. If a window opens up with an
error message, things didn't go quite so smoothly. Take note of the error mes­
sage and make the necessary corrections to your source code. If you can't
figure out the message, try referring to Appendix C. There I list several errors
and possible cures that get rid of the pesky messages. After your corrections
are made, try compiling again. Keep trying until you get it right!

Runnin9 the Code
CodeWarrior has a powerful menu item named Run, which you find in the
Project menu. When you choose this one item, CodeWarrior compiles your
source code file, builds a standalone application, saves that program to your
hard drive, and then gives the program a test run. As the program runs, test
out whatever it is your program is supposed to be able to do. Click menus
and move the window - try out all the features you added to the program.
When through, quit the program. If you aren't entirely satisfied with the
results, or one or more features don't work as you expected, it's time to look
over your source code to figure out what went wrong. Make any changes that
you want and then run the program again.

Chapter23

Ten Toolbox Functions You
Can't Live Without

000

In This Chapter
r:> Initializing functions

I>- Displaying a window

!> Activating a window

t> Displaying a menu bar

t> Getting event information

t> Determining the location of a mouse click

I> Understanding window functions

I>- Understanding menu functions

t> Understanding graphics functions

o c o o o o o o 0 o o o o e e o o o e o o o o o o o e e o e o o l9 o o o o o • a o o e o e IP o e o

t e Toolbox is Apple's name for the collection of the thousands of func­
ions that Mac programmers can use to get their programs to do all sorts

of wonderful things. Two dozen of these functions are scattered throughout
this book and even more are listed in Appendix B. While you may find many
of the Toolbox functions interesting, many are indispensable, and those are
the ones I list here.

Usin9 the Toolbox Initialization Functions
The eight functions that initialize the Toolbox are vital to any Mac program.
Call them at the start of your program, right after you declare your variables.
And call them in the order I list here:

InitGrafC &qd .• thePort) :
InitFonts();
Ini tWindows();
InitMenusC);
TElnjtJt:
initOialogs(ni 1 ..);
F1 ushEvents'(everyfvent,, o·);,
Init.CursorO:

Eight functions? But that leaves just two more for my list of ten functions you
can't live without. Hey, that's no fun! I didn't intend to kill the whole list on
boring initialization stuff. So I hope you don't mind if I group all eight of these
functions together and only count them as one.

Displa1J.in9 a Window
Everything that's drawn in a Mac program is drawn in a window. So the func­
tion that displays a window is one of the most important of all Toolbox
functions. Here's a typical call to the function that performs this task, along
with the one variable declaration you need to make:

WfndowPtr theWindow:

theWindow = GetN.ewWindow(128. nil, C~in.dow.Ptr).:ll):

If your program calls GetNewWi ndow, make sure that the resource file for the
project has a 'WIND' resource in it with an ID that matches the first parame­
ter in the call to GetNewWi ndow.

GetNewWi ndow returns a Wi ndowPtr to your program. You can use that
Wi ndowPt r in other Toolbox calls, including the one I'm about to cover.

Preparin9 a Window For Drawin9
After creating and displaying a window, you want to draw to it - text, graph­
ics, or both. But before you start whipping out those fancy pictures, make
sure to tell the Mac to draw to the new window with a call to Set Port:

SetPort(.theWindow >:

Set Port tells the Mac which window it should draw in, which is always
important, especially so if more than one window is open. To help Set Port
do its thing, you pass it the Wi ndowPt r of the window. Use the Wi ndowPt r
variable that was returned by the call to GetNewWi ndow.

________ Chapter 23: Ten Toolbox Functions You Can't Live Without J 2 5

Displa1J.in9 a Menu Bar
You need to make one variable declaration and three Toolbox calls in order
to display a menu bar:

Handle. . ~~n'tiBarHari.~l~!

:menuBarHandle' ~ GetNewMBafl 128· >;
SetMenuBar{ menuSarHaridle):
OrawMenuBarCJ: ·

Pass GetNewMBa r the ID of the 'MBAR' resource that's in the project's
resource file. In return, GetNewMBa r gives your program a Handle. That's
something that the SetMenuBa r function needs in order to gather up all the
information about the menu bar and the menus in it. Finally, a call to
DrawMenuBa r displays the menu bar on the screen.

Oops, there I've gone and done it again! I'm counting a few functions as one
so that I can cram as much important stuff as possible into this Part of Tens
chapter. As a matter of fact, don't be surprised if I do this a few more times.

Capturin9 Eflents
Capturing events - sounds exciting, doesn't it? Well, it isn't really too
thrilling, but it sure is easy, thanks to Wai tNextEvent. This function looks for
an event and, when it notices one, stores all the information about the event
in an EventRecord variable:

EventRecord theEvent;

WaitNextEvent(everyEvent, &theEvent, 7, nil):

You use the information housed in the Event Record at several points in your
program. One of those occasions is when the user clicks the mouse button.

Locatin9 a Mouse Click
The user can click the mouse anywhere on the screen. It's up to your pro­
gram to figure out where the cursor was at the time of the mouse click. Your
program needs that information to determine how to respond to the click. To
get that information, call Fi ndWi ndow:

Event Record
WindowPtr
short

theEvent:
which\rlindow:
thePart

thePart.g Fin9WindowC theEvent.where, &whichWindow):

Fi ndWi ndow uses information from the EventRecord variable, so you call
the function after Wai tNextEvent. In particular, the where part of the
Event Record is examined. (Refer to Chapter 17 for more information on how
a single EventRecord variable holds more than one piece of information
about an event.) When completed, Fi ndWi ndow gives your program the
screen or window location where the mouse click took place. It stores this
information in variable the Part. If the mouse click occurs in a window,
Fi ndWi ndow also uses the variable whi chWi ndow to provide your program
with a Wi ndowPtr to the window.

Workin9 With Windows
If Fi ndWi ndow tells your program that a mouse click occurred in the drag bar
of a window, you should respond by calling DragWi ndow. The DragWi ndow
function follows the cursor as the user moves the mouse and moves the
window accordingly.

WindowPtr whichWindow:
EventRecord theEvent:

DragWindowC whichWindow, theEvent.where, &qd.screenB1ts.bounds >:

The first parameter of DragWi ndow tells the Toolbox which window to drag.
This variable gets its value from the call to Fi n d W i n d ow that was made ear­
lier. The second parameter is the location where the mouse is first clicked.
The last parameter tells DragWi ndow to allow the window to be dragged any­
where on the screen.

If Fi ndWi ndow tells your program that a click of the mouse was made in the
close box of a window, you should call Di sposeWi ndow to remove the
window. Fi ndWi ndow notifies your program which window needs closing by
assigning a value to the Wi ndowPtr variable whi chWi ndow.

WindowPtr whichWindow;

DisposeWindowC wh1chWindow >:

Mana9in9 Menus
Displaying a menu is one thing, making it usable is another. When the user
clicks the mouse in the menu bar, call MenuSel ect to take care of the work of
dropping menus as the user moves the mouse over them. When the user
makes a menu selection, Menu Se 1 ect is smart enough to know which menu
item is selected and from which menu. It stores this information in variable
menuAnd Item.

________ Chapter 23: Ten Toolbox Functions You Can't Live Without 3 2 7

long menuAndltem:

menuAndltem a MenuSelect(theEvent.where);

Call the Toolbox functions Hi Word and LoWord to extract the number of the
menu and the number of the menu item from menuAnd I tern.

short theMenu;
short theMenul~em;

theMenu .. HiWord(menuAnditem);
theMenuitem a loWord(menuAndltem);

The call you make to MenuSel ect highlights a menu name in the menu bar.
After you take care of business, call Hi l i teMe nu to return the menu name to
its original state, which is typically black text on a white background:

Hil iteMenuCO>:

Draulin9 Text
On a Macintosh, text is said to be drawn, not written. Use the Toolbox func­
tion DrawStri ng to draw a word or a sentence to a window. Enclose the text
in double quotes and precede the first word of text with the backslash char­
acter (\) and the letter p.

Drawstring(•\pDrawing text is ~asy!•);

Where does the text get drawn? I know, wiseguy-in the window. More
specifically then, where in the window? That depends on the parameters you
pass to the function MoveTo. Tell MoveTo how many pixels to move in from
the left edge of a window and how many pixels to move down from the top.
Then call DrawStri ng:

HoveTo< 20. 50 >:
Drawstring(•\pDrawing text is easy!• >:

Draulin9 Shapes
You can use the Toolbox function FrameRect to frame a rectangle, or you can
use Fi 11 Re ct to fill in a rectangle with a pattern. But first tell the Toolbox
where the rectangle should go and how big it should be. Use a call to
SetRect for this purpose:

32 8 Part VI: The Part of Tens ______________ _

Rect theRect;

SetRect(&theRect , 0. 0, 400, 280 l :

Don't mix up the parameters of SetRect. Try thinking of them like this:

SetRect(&theRect. left, top. right , bottom l ;

After setting up the rectangle, call FrameRect to draw a black frame around it:

FrameRect(&theRect l:

If you'd like to fill the rectangle, call Fi 11 Re ct. The second parameter tells
the Toolbox what pattern to fill the rectangle with. Here's a call that fills the
rectangle with a light gray pattern:

FillRect(&theRect. &qd.ltGray);

You can also use black, white, gray, or dkGray, preceded by &qd., to achieve
other fill effects.

Chapter24

The Ten Most Common Mac
Programming Mistakes

o a o e a o o o o o o o D o o o o o o

In This Chapter
~ Problems with the resource file

II> Mismatched braces

a>- Too many semicolons

f> Using the wrong capitalization

I> Problems drawing a string of text

~ Function parameters and the & character

t>- Loop counters and infinite loops

~ Giving a variable its starting value

~ Problems with the s w i t ch statement

o 41 o o o o o o o o o o e o o o o

1n programming, making mistakes is commonplace. Everyone who writes
programs makes them. While there are easily more than ten different mis­

takes a programmer can make, there are about ten or so slip-ups that just about
everyone new to programming the Mac makes. I outline them in this chapter
so that you can be on the lookout to avoid as many of them as possible.

HaflinlJ. Trouble With the Resource File
Don't forget to make a resource file, and don't forget to add it to your project!
In your excitement to start writing code, you may jump right in and forget all
about resources. Some Toolbox function calls look for a resource. The
GetNewWi ndow function is an example:

theWindow • GetNewWindowc 128. nil. c.W.indowPtr}-ll) :

What does the number 128 represent? The ID of a 'WIND' resource. What hap­
pens if you run a program with this GetNewWi ndow line in it and that resource
can't be found? You don't get a friendly little reminder to the fact that you
forgot to make a resource. Instead, your program will simply quit, or the
screen of your Mac freezes up and an alert appears. This dreaded alert may
say something about a bad F-Line instruction. I'm not exactly sure what the
heck a bad F-Line instruction is, but judging from the fact that a little bomb
appears in the corner of the alert and the Mac freezes up, I can only assume
that it's not good. What's particularly troubling, though, is that the error mes­
sage gives you no clue that the problem is resource-related. A few things can
give you an alert like the one mentioned above:

I
V' No resource file added to the project.

V' A resource file is in the project, but a resource is missing from that file.

111" A resource file is in the project, and the resources are all present in the
file, but you've used an incorrect resource number in your code.

If you forgot to add your resource file to the project, use the Add Files menu
item from the CodeWarrior Project menu to do that. Chapter 9 introduces this
menu item. If you've added the resource file, but forgot to add one or more
resources to that file, use ResEdit to take care of that task. Chapters 7 and 8
provide more information on adding resources to a resource file. If you've ref­
erenced a non-existing resource (say, you've used 129 as the first parameter
in a call to GetNewWi ndow when in fact the 'WIND' resource in your resource
file has an ID of 128), make the correction in your source code. Chapters 7
and 8 discuss resource ID numbers. See Chapter 15.

Not l'airin9 Braces
Every opening brace must have a corresponding closing brace. For example,
the code under a loop begins with a brace, so it must end with one as well:

while C count < 10)
{

DrawStringc•\pTest•>:
count++:

What happens if you forget a brace? The CodeWarrior compiler responds
with an error message about an expression syntax error.

Addin9 an Ertra Semicolon
In C, a semicolon ends just about every line. So when you're typing code, it's
easy to start sticking semicolons everywhere. That can lead to problems
because the first line of a branch or loop doesn't end with a semicolon.

______ Chapter 24: The Ten Most Common Mac Programming Mistakes 3 3 1
This is correct:

wlli}e <: C()Unt. CIO~)

This isn't:

while L count <· 100 >:

Look closely at the preceding two lines of code. The second w hi 1 e statement
ends with a semicolon, which is wrong. In C, declarations, assignments, and
Toolbox calls all end with a semicolon:

short dogs;
dogs .. &: ·
MoveToJ 30, 50) :

But loops don't:

l* declaration' *t
l* assignment */

. I* .Toolbox call */

whfle C count < 100 J /*.no semicolon */

And branches don't either:

switch C thePart•) I* no .semfcolon · *l

Adding a semicolon to the end of the first line of a loop or branch may or may
not give you an error message. Even if the code does compile successfully,
the extra semicolon can lead to real confusion. Your code runs, but the
results won't be as expected. Adding a semicolon to the first line of a loop
causes the lines below the loop to run only once regardless of how many
times you hoped they would run. For a branch that inadvertently ends with a
semicolon, the lines beneath always run- even if you don't want them to.

Usin9 Incorrect Case
What's wrong with the following declaration?

windowPtr theWindow;

Here's a hint: C is case-sensitive, meaning that the proper use of uppercase
and lowercase letters is very important. The C data type for a pointer to
a window is a Wi ndowPt r, not a wi ndowPt r. That first letter makes a big
difference. If you make a mistake of this type, the CodeWarrior compiler dis­
plays an error message that says an undefined identifier error occurred. To a
compiler, an identifier is essentially a variable. Because the compiler doesn't
recognize wi ndowPt r as a data type, it assumes it's an identifier, a variable.
And because a variable named wi ndowPtr wasn't defined by the program,
CodeWarrior determines that something is wrong.

For9ettin9 the \p in Drau1Strin9
The Draw String function is a very handy and easy-to-use Toolbox function,
but it does take a little getting used to. Several mistakes can occur when
using it, and most result in an error message that says something like Cannot
convert 'char*' to 'const unsigned char *'.lwanttoshowacor­
rect usage of DrawSt ring:

'
Dr,a.wstri ng(• \pHe Ho. World!.) : /* CORRECT! *I

The number one mistake in using DrawStri ng comes when a programmer
forgets to include \ p before the text, like this:

Drawstring(•Hello. World I•) ; I* WRONG! No \p */

Another common mistake is to forget the quotations before and after the text:

.Drawstring< \pHello, World! >: /*WRONG! No quotes */

And while you may remember to use quotes, you could mistakenly use the
wrong type of quote marks. DrawSt ring requires double quotes, not single:

Dra1r1String< '\pHello, World!' >: /* WRONG! Wrong quotes */

Finally, be careful which slash you use. The backslash(\) is the correct one.
Here's a look at the incorrect slash being used:

DrawStringC •/pHello, World!• l: /* llRONGl Wrong slash*/

For9ettin9 the & With a Parameter
You may notice that in many Toolbox calls one of the parameters requires
that you include the & character before it. I never liked the awkward name of
this character - the ampersand - and after working with C I know why. The
ampersand can be the cause of a lot of programming headaches. Here's a typ­
ical Toolbox call that requires its use:

isetRectC &theRect .• O. o, 400. 280) :

If you try to call SetRect without using the ampersand before theRect, you
get an error message. This message is much like the one you get when you
incorrectly use Draw String, which is something about not being able to con­
vert one thing to another. Because many Toolbox functions have parameters
that don't require the ampersand, forgetting to include it when required is an
easy mistake to make.

I can't give you any set rule as to when a parameter requires the ampersand.
You have to make sure that you match your source code with that in this

______ Chapter 24: The Ten Most Common Mac Programming Mistakes 3 3 3
book. The good news is that you don't have to page through the entire book
to find an example of a call to each function. Before you use a function, you
can refer to Appendix B. There I list all of the functions used in this book and
a few others. I also give an example call to each so that you can see what the
parameters should be.

For9ettin9 to Increment a Loop Counter
How many times will the following loop run? Three times? Four times?

count "" 0:

~hile < count < 4)
(

Drawstring{ "\pHello!" >:

How many times? That depends on when you turn your computer off -
cause that's the only thing that can stop this loop from running! The variable
count is not incremented anywhere in the loop. That means that count
always has a value of 0, and 0 is always less than 4. That's called an infinite
loop. Let me rewrite the loop with count properly incremented:

count .. O;
while (count < 4)
{

Oraw$tring(•\pHellor• l:
cou.nt++:

For9ettin9 to Gille a Variable
an Initial Value

When you declare a variable, it doesn't have a value. Actually, it may have a
value, but you can't be sure of what that value is:

short allOone; /* variable allOone ~ ?? *I

After you use a variable in an assignment statement, you know its value:

_c1llDorie ... 0: /* variable all Done has .a' value of zero *./

Using a variable in a branch statement or loop statement before giving it a
value can lead to unexpected results. Here's some of the code from my
Animator program. This code appears right at the start of the program's
event loop:

al lDone .. 0:
while (allDon~ < 1
{

WaitNextEvente everyEvent. &.the Event .• 7, ni 1 >;
I* r.est of program here *I

What would happen if I omitted the line that assigns a 7 7 Done a value of O?
Variable a 7 7 Done could then easily have a value other than 0. If that's the
case, what happens when the program reaches the next line of code - the
wh i 7 e statement? a 7 7 Done may not be less than 1, the loop won't run, and
the Animator program ends. And that's not good.

For9ettin9 a Break in a
SU/itch Statement

A switch statement places code in groups and lets your program select
which group to run. Each group of code starts with a case label and ends
with a break statement. Here's an example:

switch (booksWri tten >
f

case 1:
DrawStringc•\pYour first book!•>:
break:

case 2:
DrawStri ng c· \pYour second. book!•) :
break:

If booksWri tten has a value of 1, then the code under the first case label
runs. If books W r i t ten has a value of 2, then the code under the second case
label runs. Now, look at the same example without a break statement after
the code under the first case label:

switch C booksWritten >
{

case 1:
DrawString(•\pYour first book!•): /*forgot a break*/

case 2:
DrawStringc•\pYour second bookf•J:
break;

Now what happens if booksWri tten has a value of 1? The code under both
case labels runs! The break statement is the signal to the switch to stop
running. Without a break, the determined switch just plods on to the next
line of code, the case 2 label, and then on to the code under it.

Part VII

Glossary and
Appendixes

In this part ...
Tust when you think that you've got this C stuff under con­
/. ~rol, you realize that you don't remember how to write an

if-else branch. Or you forget what goes between the
parentheses that follow a call to the Toolbox function
GetNewMBa r. And don't you hate it when you get one of
those error messages and you can't figure out how to make it
go away? Ifs almost as infuriating as coming across a Mac
programming term and not remembering what it means.

Well, don't get frustrated. In this part, you can find help and
answers to get you through all of these situations and others.
And a special bonus: You'll also find a description of the con­
tent's of the book's CD-ROM in this part, and you'll discover
how to access CodeWarrior Lite and other files that come up
in the course of this book. For you iMac owners, there's even
an appendix that supplies you with a few special program­
ming tips.

Appendix A

C Language Reference
o o o o o Q o o o o o o o o o o e o o o o o o o o • o

J.::tire books have been written on the C language, so how did I manage to
f;, ~over it all in just a few pages of an appendix? By not covering it all, of
course. But I do summarize all the features of C that appear in this book, plus
a few additional choice tidbits of C not covered in this book.

Variables
A variable holds a value. What kind of value? That depends on the type of the
variable. See also "Data Types."

Declarin9 a llariable
A variable must be declared so that the compiler becomes aware of it. The
format of a variable declaration is always the same regardless of the type of
variable. First list the data type, and then the variable name. Follow that with
a semicolon. Here's an example that declares a variable named tickets to be
of the short data type:

short tickets;

Git1in9 a l/ariable a name
Your variables should have names that describe the type of information they
hold. When you name your variables, keep a couple of restrictions in mind:

~
y1 Use only letters, digits, and the underscore character in a variable name.

y1 The first character of the name must be a letter or underscore - not
a digit.

J J 8 Part VII: Glossary and Appendixes ______________ _

Assi9nin9 a t/ariable a t/alue
When you declare a variable, it has no value. Well, it may have some random
value, but probably not the value you want it to have. To give a variable a
value, first specify the variable you're working with. Follow that name with
the equal sign and then the value you want to assign. End it all with a semi­
colon. In the following example, l declare a short variable named Tota 1 and
then give it a value of 25:

short Total;

To.tal .. 25:

There's a second way to assign a variable a value. When you declare the vari­
able, you can give it a value on the spot. Here's an example that has the same
outcome as the previous two lines of code:

short Total • 25:

Data TIJ.pes
When you declare a variable, you state the type of data that variable holds,
and you also state the name of the variable.

Number t1J.pes
If you want a variable to hold a whole number, you have three options. The
int data type holds numbers as high in value as 32,767. So does the short
data type. Though the int and the short data types are just about one and
the same, I recommend you use the short type. In the Macintosh world, the
short data type is becoming much more popular than the i n t data type. I'm
not sure why the short is so trendy, but l want to be hip, so I use it.

For numbers larger than 32,767, use the 1 ong data type-it holds whole
numbers as large as 2 billion. If the number you want to use is greater than 2
billion, or it contains a decimal point, use the f 1 oat data type.

Window t1J.pes
Variables don't always hold numbers. Sometimes data types hold other infor­
mation. The Wi ndowPtr data type is an example. If you call a Toolbox
function that works with a window, you have to let the Toolbox know which
window you're referring to. When a window is created, your program gets
something called a pointer to the window - a Wind ow Pt r. Think of this
W i n d ow Pt r as a reference to one particular window.

_______________ .Appendix A: C Language Reference 3 3 9
Here's the declaration of a window pointer variable and its use in two
Toolbox functions:

WindowPtr theWindow:

theWindow .. GetNewWindowC 128, .nil, (WindowPtr).·ll) ;
SetPortC theWindow);

Menu t1J.pes
When you display a menu bar in your program, you have to help the Toolbox
out by providing it with a Handle to the menu bar. The Handle has many pur­
poses, but in this book, you only see it used with the menu bar. The Handle
helps the Toolbox get a handle on (so to speak) the information that
describes the menu bar. Here's how I use the Handle data type in this book:

Handle menuBarHandle:

menuBarHandle .. GetNewMBarC 128 >:

Operators
In C, the symbols that perform different mathematical and comparative oper­
ations are called operators.

Math operators
C has a symbol, or operator, for each of the four major mathematical opera­
tions: addition, subtraction, multiplication, and division. Intuitively enough,
the plus sign (+) symbolizes addition, and the minus sign (-) represents sub­
traction. For multiplication, place an asterisk (*) between two variables or
numbers. For division, use the slash symbol U). Here are several examples of
math operators:

short scorel;
short score2:
short total:

score! "' 30:
score2 .. 10:

total .. scorel + score2
total A scorel - score2
total a scorel * score2
total A scorel I score2

/* total = 30 plus 10 ~ 40 */
I* total .. 30 minus 10 "' 20 */
I* total ,,. 30 times 10 .. 300 */
I* total .. 30 divided by 10 = 3 */

JI, 0 Part VII: Glossary and Appendixes ______________ _

You can use operators on any combination of variables and/or numbers, as
shown in these examples:

short scorel:
short score2:
short total:

scorel .. 25:
score2 .. 5:

total .. scorel + score2 + 10;
total • scorel - ~core2 + 10:
total 0 scorel I 5:
total .. 50 + (scorel * score2);

I* total ... 25 + 5 + 10 .. 40 *I
J* total ... z5 - 5 + 10 .. 30 .*l
I* total =·25 I 5 5 *f

I* tptaLi= 50>+ (25 * 51 ... 175 */

I put a new twist into that last example - a pair of parentheses. If you have
more than one operation on one line of code, you can tell the computer
which operation to perform first by setting it off in parentheses. In the last
example above, variable score 1 is multiplied by variable score 2 first. Then
50 is added to that result.

In programming, you often want to increment the value of a variable by one.
The increment operator, which is two plus signs in a row (++) does that. Here
a variable named i n de x is first given a value of 5 and then incremented to 6:

short index:

index .. 5: /* index now equals 5 */
index++: /* index now equals 6 *I

Adding one to the value of a variable is called incrementing the variable.
Subtracting one from a variable is called decrementing the variable. The C lan­
guage provides a means to easily do that. Use the decrement operator, which
is two minus signs in a row (--). Here's an example:

short index:

index .. 5: /* index now equals 5 *J
index--: /* 1ndex now equrl~ 4 ~1

Comparatifle operators
Programmers often test the value of a variable by comparing it to the value of
another variable or to a number. Programmers perform these tests to deter­
mine whether a loop should run another time. To perform this test, use one
of the comparative operators. The less-than operator (<) checks to see
whether the value to the left of it is less than the value to the right, as in this
example:

while (count < 5) /* is count less than 5 ? *I

______________ __,Appendix A: C Language Reference 3 !, 1
The greater-than operator (>) determines whether the value to the left of the
operator is greater than the value to the right:

while (count > O) l* is count greater than O ? *I

Assi9nment operators
Every time you assign a variable a value, you're using an operator - the
assignment operator. That's what C calls it, but you and I would simply refer
to it as the equal sign(=). In this example, variable numberOfWi ns receives a
value of 7 through the use of the assignment operator:

short numberOfWins:

numberOfWins .. 7:

Loopin9 Statements
By setting up a loop, you can make any section of source code run more than
once. And by changing a single number in the loop, you can have that section
of code run two, ten, or ten thousand times. Now that's power!

The while statement
A w hi 1 e loop, or w hi 1 e statement, begins with the word w hi 1 e followed by a
test in parentheses. The test determines how many times the code under the
whi 1 e runs. The test compares a variable with a value (which could be
another variable). The test is performed after each running of the code
beneath the wh i 1 e. If the test condition is not met, the test is said to have
failed, and the code under the wh i 1 e no longer runs. The following wh i 1 e
loop writes the word Warning! three times:

short count:

count .. 0:

while < count < 3 >
I

Drawstring{ •\pWarning!• >:
count++:

Make sure you don't place a semicolon at the end of the line of code that con­
tains the word whi 1 e unless you want the loop to go forever.

3 !, 2 Part VII: Glossary and Appendixes ______________ _

Branchin9 Statements
A loop runs the same code more than once. A branch runs code only once,
but it allows the program to select the code from more than one grouping.

The switch statement
A s w i t ch branching statement begins with the word switch followed by a
variable between parentheses. Groups of code appear underneath the
switch. Each group begins with the word case and ends with the word
break. The switch statement works by making a comparison between the
value of the variable between the parentheses on the s w i t ch line and each of
the values associated with the case labels. The following example gives a
response based on the number of computers the user has:

short numberOfCornputers:

switch (numberOfComputers)
(.

case 0:
Drawstring(•\pUsing someone else's, eh?• >:
break:

case l:
Drawstring(•\pSometimes one is one too many!•);
break:

case 2:
Drawstring< •\plove chaos. huh.?• J;
break:

Don't inadvertently add a semicolon to the end of the line of code that con­
tains the word switch.

In many situations, you may be interested in just a few of many possible num­
bers, but you still want to acknowledge the other possibilities. C provides a
catch-all provision that you can add to the s w i t ch branch - the def au l t
statement. After you add all the case labels you need, add the word default.
Then add the code you want to run in the instances when none of the case
conditions are met. In the following example, my code lets the user know that
he or she wins if he or she gets the number 7 or 11. If the user gets any
number other than those two numbers, the program writes the message,
Sorry, try again!

short diceTotal;

switch < diceTotal
(

case 7:

_______________ Appendix A: C Language Reference 31,3

Drawstring("\p7 is a winner !" l ;
break;

case 11:
Drawstring("\pll is a winner!");
break;

default:
Drawstring("\pSorry, try again!" l ;
break;

The if statement
You use the switch branch when you want your program to be able to
choose from two or more possibilities. For situations where you only want
your program to run a section of code or not run it, use the i f branch
instead. Here's an example:

short score :

if (score < 70
(

MoveTo(30 . 50 l :
Drawstring("\pSorry, you need at least 70% to pass.' l :

The i f branch uses a test condition to determine whether the code under
the i f should run or not run. In the preceding example, the i f examines the
value of the variable score to see whether it is less than 70. If it is, the two
lines of code between the braces run. If score isn't less than 70, the program
skips the lines and doesn't write any message.

The if branch can also include a second part - an else section. If the test
condition fails , the code under the e l s e runs. In this example, if the score is
less than 70, the first block of code, the code directly under the i f test , runs.
If the score is greater than or equal to 70 (that is, should the if test fail),
then the second block of code, the code directly under the e l se , runs instead
of the first block:

short score;

if (score < 70
(

MoveTo(30 . 50);
Drawstring("\pSorry , you need at least 70% to pass.· l ;

)
else
{

MoveTo(30 , 50);
Drawstring("\pCongratulations , you passed the test!");

344 Part VII: Glossary and Appendixes ______________ _

Notice that no semicolon appears at the end of the line that includes the
word i f. Putting one there is a no-no; a semicolon would cause the code that
follows the i f test to always execute, regardless of whether the test passes
or fails.

Toolbox Functions
See Appendix B!

Appendix B

Toolbox Reference
G 0 0 0 0 0 0 0 0 0 0 0 0 0 <i 0 0 0 Q C 0 0 0 0 0 0 0 Q 0 0 0 Q C 0 e 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After typing in all the programs listed in this book, you'll be proficient at
using Toolbox functions. But there will still be times when you can't

remember the exact spelling of one, or how many parameters get passed to
it. Look here when these situations arise.

Initialization
Initialization means to set up, or give initial values, to certain variables or
data. Initialization can pertain to many things, but in Mac programming, it
generally means initializing things in the Toolbox.

When a program runs, the Toolbox needs a little information about it. This is
called Toolbox initialization. Fortunately, the Toolbox is capable of initializing
itself. For example, the Toolbox function In i t Graf initializes graphics.

Every program you write should include eight Toolbox initialization calls. If
you call the following eight functions, in the order shown, the Toolbox will be
properly initialized. Call the functions just after declaring your program's
variables. The parameters for each call are listed below:

InitGraf(&qd.thePort):
InitFonts ();
InitWindows();
InitMenus():
TElnitO:
InitDialogs(nil):
FlushEvents(everyEvent, 0);
InitCursor();

Eflents
An action such as a mouse click is called an event. The Macintosh stores
information about events as they occur. The Toolbox can help you get infor­
mation about events so that your program can respond appropriately.

31,6 Part VII: Glossary and Appendixes ______________ _

Your program can get information for the most recent event by calling
Wai tNext Event. The first parameterto Wa itNextEvent tells your program
to keep a watch for every type of event. Always use every Event. The
second parameter is an EventRecord variable that holds the information
about the event. This parameter must be preceded by an ampersand charac­
ter. The third and fourth parameters are used when other programs are
running concurrently with yours and for special cursor-handling work. For
simplicity, set the third parameter to 7 and the fourth parameter to n i 1 .

EventRecord theEvent:

WattNextEvent< everyEvent~ 1theEvent, 7~ ~il >:·

Windows
Macintosh means windows. Not much happens on the screen without at least
one window present. The Toolbox does much of the work of displaying,
moving, and closing windows.

Openin9 and displa1J.in9 a window
To open and display a new window, call GetNewWi ndow. The traits of the
window - its type, size, and initial screen location - are found in a 'WIND'
resource. The first parameter to GetNewWi ndow is the resource ID of this
'WIND' resource. The second and third parameters are used for window
memory storage and positioning. Always use the two values shown in the
next example.

After opening the window, GetNewWi ndow returns a Wi ndowPt r to your pro­
gram. This Wi ndowPtr variable can then be used in future Toolbox calls such
as SetPort and Di sposeWi ndow.

WindowPtr theWindow:

theWf ndow .. GetNewWindow< 128, nil, (WindowPtrl,.J.L) :

Closin9 a window
To remove a window from the screen, call Di sposeWi ndow. To let the
Toolbox know which window to close, pass the Wi ndowPtr variable that was
returned to your program by GetNewWi ndow.

_________________ Appendix B: Toolbox Reference 3 !,, 7
'·WfoClowPtr theWfndow;

theWtndow D GetNewWindowC 128 •. nil, CWin(fo_\ilftr};;;lL) :
DisposeWindowCtheWindow);

' '

Mot1in9 a window
Call DragWi ndow when your program receives a mouseDown event in a
window's drag bar. DragWi ndow does all of the work of moving the window
around the screen as the user drags the mouse. The first parameter to
DragWi ndow is a Wi ndowPtr to the window to drag. Use a call to Fi ndWi ndow
to get this value. The second parameter is the screen coordinates where the
mouse click took place. The third parameter tells the Toolbox what part of
the screen it can use to drag the window. Passing a value of
&qd. screen Bi ts. bounds tells the Toolbox to use the entire screen. (Don't
forget to precede this third parameter with an ampersand.)

EventRecord theEvent:

WiridowPtr whichWin'Clow; ,
DragWi ndo.wCwhi chW1ndow ~theEvent .where.~q4~~cr~een8Jts. bounds):

Respondin9 to the Mouse Button
When the user clicks the mouse button, your program wants to know where
the click occurs. Did the user have the cursor positioned over a window?
Over the menu bar? This information is vital if you want your program to
respond in an appropriate and logical manner. The Toolbox gives you this
information in one easy-to-use function call.

When a mouseDown event happens, respond by calling Fi ndWi ndow to deter­
mine in what part of the screen or window the mouse click occurs. The first
parameter to Fi ndWi ndow holds the screen coordinates where the mouse
button is pressed. The second parameter is a pointer to the window that was
clicked in - if one was. The second parameter is not the pointer that is
returned by the Toolbox in a call to GetNewWi ndow. Instead, it is a different
Wi ndowPtr variable created just for this purpose. It gets its value from the
Toolbox - the Toolbox places a value in this variable when it is finished run­
ning Fi ndWi ndow. This second parameter must be preceded by an
ampersand character.

After the call to Fi ndWi ndow is complete, the variable the Pa rt holds a value
that represents the part of the screen or window that was clicked on.

3 fl 8 Part VII: Glossary and Appendixes ______________ _

Event Record
WindowPtr
short

theEvent:
whichWindow:
thePart:

thePart .. FindWindow< theEvent.where, &whichWindow }:

Menus
What's a Mac program without at least one menu? The Toolbox helps you set
up a menu bar and handle a user's menu selection.

Displa1Jin9 menus and the menu bar
To let your program know which 'MBAR' resource it should use as the basis
for a menu bar, call GetNewMBa r. Pass this function the resource ID of the
'MBAR' that's in your program's resource file. In return, GetNewMBa r provides
your program with a Handle that you use in a call to SetMenuBar.

Handle 1J1enuBarHandle:

menuBarHandle 0 GetNewMBar(128);

To help your program set up the menu bar with the appropriate menus, call
Set Menu Ba r. Pass the Hand 1 e obtained from the preceding call to
GetNewMBa r as the only parameter.

Handle menuB•rH~ndle:

SetMenuBar{ menuBarHandle):

Neither GetNewMBa r or SetMenuBa r actually display the menu bar on the
screen. To do this, call Dr a wMe nu Bar. This function requires no parameters,
but you still need to include a pair of parentheses after the function name.

DrawMenuBarC>:

Responding to a mouse click in the
menu bar
In response to a click in the menu bar, call MenuSel ect. This function does
the work of tracking the mouse as the user moves it about the menu bar.
MenuSel ect displays and hides menus as the user moves over their names in
the menu bar. The only parameter Menu Se 1 ect requires is the screen

_________________ Appendix B: Toolbox Reference 3 fl 9
coordinates where the mouse button is first clicked in the menu bar. When
the user makes a menu selection, MenuSel ect returns information about the
selected item in the long variable menuAnd I tern. Use the Toolbox functions
Hi Word and LoWord to extract information from this variable.

EventRecord theEvent:
long menuAndltem:

menuAnditem • MenuSelect(theEvent.wtiere r:

When the user makes a menu selection, MenuSel ect highlights the name of
the menu in the menu bar. When your program has finished handling the
menu item, call Hi l i teMenu to return the menu name to its original state of
black text on a white background.

Hi l i teMen.uC o >:

Determinin9 which menu item is selected
MenuSel ect returns a number that represents both the menu and the menu
item. This information is stored in the long variable rnenuAnd I tern. To extract
just the number of the menu from this variable, call Hi Word. Pass
rnenuAnd I tern as the only parameter. When the function is complete, Hi Word
returns the resource ID of the 'MENU' resource from which the menu selec­
tion was made.

Long menuAndltem;
short theMenu:

theMenu .. Hi Word(,menuAndltem.) :

As mentioned in the description of Hi Word, Men uSe l ect returns a number
that represents both the menu and the menu item. To extract just the number
of the menu item from this variable, call LoWord. Pass menuAnd I tern as the
sole parameter. When the function is complete, LoWord returns a number
that tells your program which menu item was selected. The first menu item is
number l, the second item is number 2, and so forth.

long menuAnditem:
short theMenuitem:

theMenultem .. LoWordC menuAndltem); ~

35 0 Part VII: Glossary and Appendixes _____________ _

QuickDraul
Programming is like life - you have many chores that have to be taken care
of, but you should also have time for fun. Drawing is the fun part of program­
ming. The Toolbox provides you with some help to make even this fun part of
programming easier. QuickDraw is the name of the set of Toolbox functions
that performs text, line, and shape drawing in the windows of your programs.

Settin9 up ports
Every window has a port, and all drawing takes place in the port. After using
the Toolbox function GetNewWi ndow to create and display a window, make its
port the current, or active, port. Make a call to Set Port to do this. Pass
SetPort one parameter, and make it the Wi ndowPtr of the window to draw to.

Wi ndowPtr theWi.ndow:

theWi ndow .. GetNewWi ridowC 128, nil , CWfodowPtr l- ll >:
SetPortC theW1ndow };

Mo<1in9 to a location
The MoveTo function moves, without drawing, to a location in a window. The
first parameter is the pixel distance in from the left of the window, the second
parameter is the pixel distance down from the top of the window.

MoveToC 20, 50 J: /*move 20 pixelstn.(5~ pixels down*/
Drawstring(•\pText~ >:./*draw some text */

Drawin9 a line
Unsurprisingly, the Li n e function draws a line. The first parameter tells how
many pixels to the right the line should go, and the second parameter tells
how many pixels down the line should go. The starting point of the line is
determined by a call to Move To.

MoveToC 20, 50); /*move 20 pixels in, 50 pixels down */
Unec 200, 10 >:./*draw a line 200 pixels across, 10 dowri *{

___________________ Appendix B: Toolbox Reference 351

Drawin9 a shape
Before the program can draw a rectangle, its boundaries must be established.
Set Re ct sets up the coordinates of the Rect variable named as the first para­
meter. SetRect does not draw a rectangle. You use FrameRect or Fi 11 Rect
to do that. The first parameter to SetRect must be preceded by an amper­
sand character. The last four parameters are the pixel coordinates of the
rectangle. The ordering of the last parameters is the left, top, right, and
bottom of the rectangle.

Rect theRect:

SetReet(&the.Rect, 20, 40., 300, 150.
1
);

FrameRect< &theRect) :
Move To(. 20, 50) : /* move 20. pixels i~. 50 pixels down *I

After setting the boundaries of a rectangle using Set Re ct, that same rectan­
gle can now be framed using a call to FrameRect. Pass FrameRect a Rect
variable as the only parameter. The parameter must be preceded by an
ampersand character.

Rect theRect:

SetRect(&theRect. 10. 10, lOOi. lQO };
Fr~meRect< &t.heRect >:

After setting the boundaries of a rectangle using SetRect, that same rectan­
gle can now be filled with a pattern using a call to Fi 11 Rect. Pass Fi 11 Rect
a Rect variable as the first parameter. The first parameter must be preceded
by an ampersand character. The second parameter to Fi 11 Rect is the pat­
tern that the Toolbox uses to fill in the rectangle. The available
Toolbox-defined patterns are:

white. ltGray, gray, dkGray, black

Patterns must use capitalization as shown above. As you can see in the fol­
lowing examples, a pattern must also be preceded by an ampersand(&) plus
the letters qd and a period.

Rect theRect:

SetRectC &theRect. 10. 10, 100, 100 >:
FillRect(&theRect, &qd.white); /*white rectangle */
FillRectC &theRect, &qd.ltGray >: /*light gray rectangle*/
FillRectC &theRect, &qd.gray >: /*gray rectangle */
FillRect(&theRect, &qd.dkGray); /*dark gray rectangle */
FillRect(-&theRect, &qd.black): /*black rectangle */

You had to have known that rectangles aren't the only shape you can draw!

35 2 Part VII: Glossary and Appendixes ______________ _

To draw an oval, first set up a rectangle using SetRect. Follow the call to
SetRect with a call to FrameOval. This function draws the frame of an oval,
neatly inscribed just within the boundaries established by Set Re ct. The one
and only parameter to FrameOva 1 is a Re ct variable that must be preceded
by an ampersand.

Rect theRect:

SetRect(&theRect, 20, 20, 80, 100);
FrameOval(&theRect):

Fi 11 Oval works just like Fi 11 Rect, except that it (of course) fills in an oval.
After setting the boundaries of a rectangle using SetRect, call Fi 11 Oval to
fill an oval that fits into the rectangle with a pattern. Pass Fi 11 Oval a Re ct
variable as the first parameter. The first parameter must be preceded by an
ampersand character. The second parameter is the pattern that the Toolbox
uses to fill in the oval. Fi 11 0 val offers the same predefined patterns used by
Fi 11 Rect:

white, ltGray, gray, dkGray, black

Use the capitalization shown above for all patterns.

Rect th.eRect:

SetRect(&theRect, 100. 100. 150, 150):
Fill Ova 1(&theRect, &qd J tGray) ; .

Drawing text
On a Macintosh, text is drawn - not written. To write a letter, word, or sen­
tence, use DrawStri ng. The only parameter DrawStri ng needs is the text to
draw. Always enclose the text in double quotes, and precede the text with \ p.
Where the text appears depends on the previous call to Move To.

Move To(35. 60) ;l* here's· where text Will start */
Drawstring("\pTest texttt); ·/*~r~w sO~e text•*/

AppendixC

If Something Should Go Wrong I I I

0 G 0 0 0 e G 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W:th the crystal-clear explanations and examples presented in this
book, how could anything possibly go wrong in your programming

endeavors? I'm sure it won't, but you may still want to browse through this
appendix just for fun!

E"ors While Tru.in9 to Compile Your Code
Compilers are sticklers for detail and are quick to complain when they find
something out of place. The CodeWarrior compiler is no exception. When you
choose Compile, Make, or Run from the Project menu, you may end up seeing
an error message listed in a window titled Errors & Warnings. If that happens,
look through the headings of this section to find the error message - and the
means to correct the mistake.

The Errors & Warnings window may give you bad news, but it does its best to
help you out. You can double-click anywhere on an error message in this
window and CodeWarrior brings the window holding your source code file to
the front and scrolls to the line of code that holds the error.

The Compile menu item is dim
You can't compile your source code if the Compile menu item can't be
selected! Code Warrior doesn't know what to compile if your source code isn't
open, or if the source code file isn't highlighted in the project window. If your
source code file has been added to the project file, that's great. But now you
have to either open it by double-clicking the file's name in the project window
or highlight it by clicking once on its name in the project window. After you
open or highlight the source code file, you can then check the Project menu
to see that the Compile option is now enabled.

3 5 fl Part VII: Glossary and Appendixes __________ ____ _

Declaration SIJ.ntax error
When CodeWarrior encounters a word it doesn't recognize, it calls it a decla­
ration syntax error. When that happens, you see a message like this in the
Errors & Warnings window:

.Q f)= ~-~Errors & W11mlngsm'..,_ Nl!JS,

ar mro- I Errws. -i Ytrninql, . .Si91>t AndSo<.rod.mop • l§J ~8
O Error ;-fln..i ldlnll fler · flool ' A

1
_ Slg.tl.nclSo<m .c hne 107 !1221_ _price;

-1

~

41
I> -=---'-'--=-- --=--~-=-

l•, ~

A few things can cause the CodeWarrior compiler to issue an error of this type:

I
Y" A C word that is misspelled.

Y" A C word that uses incorrect uppercase or lowercase.

Y" A word that is not part of the C language.

Expression SIJ.ntax error
Always remember the age-old words of the wise old computer man: For every
opening brace there must be a closing brace. If you get an error message like
the one pictured here, then your braces don't match up.

I>

By omitting a brace, you create a syntax error in a branching or looping sec­
tion of your code. Double-click the error message to move to the location
near the error in your source code file. Once there, hunt for a missing brace -
from my experience, I can tell you that it's most likely a closing one. Here 's an
example of code that's missing a brace:

___________ Appendix C: If Something Should Go Wrong . . . 3 5 5

while (count < 10 >
(

Drawstring< "\pTest • l :
count++:

HoveTo(20 , 40) : /* should be a brace befo re this line*/
Drawstring("\pEnd test•):

Function call does not match
prototlJ.pe error
Many Toolbox functions require one or more parameters to be passed to
them. CodeWarrior is aware of just how many parameters should be passed
to each Toolbox function. CodeWarrior also knows which data type each of
these parameters should be. Talk about smart! But just as a very smart
person can be annoyingly smart, so too can a compiler be obnoxiously smart -
CodeWarrior won't ever let you forget just how knowledgeable it is! If you
make a mistake in naming the parameters that go with a Toolbox function call,
CodeWarrior rubs it in by displaying an error message similar to this one:

D·~ ~-= £rran I> W11mlng1~-- ~i"E!JEI

11r mro- !Errors .nd w1rnn;t. . .S11t>t~sno1>' ~a~
0Error : function call doe• nol ... \eh prololr

SI 'lf\tAndSoo;nl. c line 182 Se \A.cl(W\I teRec 10 IO, 100 >;. A

0
4-1 l•

I> - ~

Cannotcon~erterror
Certain mistakes you make in listing the parameters to a Toolbox function
result in an error message that includes words about not being able to con­
vert one thing to another - like this:

0 -= £rran I> W11mlng1 ~ ~ ~E!JEI

air mro- !errors .nd wrn • . .S'9M~""I' • ~3E]
e~l ~~t! conuorl A

'struc:l Reel •·
Sl'lf\ tAndSoo;nl . c I Ina 182 S.\A.ct< llhl teRec~,. 10, 10 100, 100)• ~

•l l •
I> --=-· ::!'.: ..::;. ~ ~ -

35 6 Part VII: Glossary and Appendixes _____________ _

This error results from a situation similar to the one mentioned in the previ­
ous section, "Function call does not match prototype error." If you haven't
read that section, do so now.

One of the primary candidates for bringing on this error message is forgetting
to include the & symbol before a parameter that requires it. In particular,
Toolbox routines that require that a rectangle variable be passed in further
require that this variable should be preceded by the ampersand symbol. A
second mistake that can cause this error is messing up the parameter to the
DrawStri ng Toolbox function.

En-ors While Truin9 to Run Your CoJe
After successfully compiling your source code, you want to test it by choos­
ing Run from the Project menu. That runs your code and builds an
application. That is, if all goes well. If it doesn't, check out the problems and
solutions listed in this section.

First off, are IJOU in the ri9ht sectionl
When you choose Run from the Project menu, CodeWarrior first compiles
your source code file if necessary. What does if necessary mean? If you made
a change, or changes, to your source code since the last time you chose
Compile or Run from the Project menu, CodeWarrior wants to update things.
That is, the compiler wants to recompile your source code so that your
changes can be incorporated.

If recompiling your code opens the Errors & Warnings window, then your mis­
take involves something the compiler didn't like. Check under the first
section in this appendix - not here. This section assumes that your code
gets compiled successfully but something goes wrong as CodeWarrior tries to
run the code. In those instances, you won't see the Errors & Warnings
window.

Nothin9 seems to happen
If you choose Run from the Project menu and nothing happens, you may have
forgotten to include the Toolbox initialization calls. Don't forget to include
these eight lines in every program:

___________ Appendix C: If Something Should Go Wrong . . . J 5 7

lnitGrafC &qd.thePort):
InitFonts():
lnitWindows<>:
lnitMenus();
TEinitC):
InitDialogsC nil) ;
FlushEvents(everyEvent. 0):
InitCursor();

If you left one or more of these eight lines out of your code, then go back and
insert any that you forgot.

A flickerin9 alert and a frozen Mac
Look at the previous section - the one titled "Nothing seems to happen." If
you forget the initialization calls and nothing happens, consider yourself
lucky! It's more likely that you'll instead see an alert flickering on your Mac's
screen.

You may encounter a few variations of this alert - it may have a small pic­
ture of a bomb in the upper-left corner, and it may have some words written
in it. In any case, you need to restart your Mac to get out of the jam. If press­
ing the reset button on your Mac doesn't do anything, you may even need to
unplug your Mac from the wall outlet. While this is all a bit inconvenient, you
don't have to worry too much -you didn't break anything.

Forgetting to include the initialization calls near the start of your source code
is one way to bring about such an alert. A second way to end up in this
predicament is by making a mistake involving resources.

The numero uno resource-related mistake is failing to include a particular
resource in your project's resource file. For instance, the Mac gets hopelessly
confused if your program attempts to display a menu bar and there is no
'MBAR' resource in the resource file. If your project doesn't run correctly,
open the resource file by double-clicking its name in the project window. Then
verify that the file has the 'WIND', 'MENU', and 'MBAR' resources it needs.

The pro9ram runs and then t(uits
immediatef IJ.
What went wrong if you choose Run from the Project menu and you see
your program's menu bar for a moment, and then your program ends? You
probably forgot to give variable a 11 Done a value, or you gave it the wrong

35 8 Part VII: Glossary and Appendixes ______________ _

value. That would mean your event loop got skipped and your program
assumed it was time to pack up and leave. Here's the part of your source
code to examine:

allOone .~ 0: /* Must give allOone a value of 0 here */
while < all Done (1)
{

WaitNextEvent(everyEvent, &theEvent, 7. nil l:

Link failed error
When you run your code, two things may happen. First, if the source code
has been changed since the last time you compiled, CodeWarrior compiles it
again. Second, CodeWarrior links the code. That just means that your source
code is merged with your project's resources and with whatever code is in
the various libraries that CodeWarrior placed in the project. If all goes well,
your program runs on the screen. If all doesn't go well, you may see the
Errors & Warnings window. In this window could be any number of different
error messages, but if they start with the words link Error, then you know the
problem probably isn't with your source code.

A link failed error means that CodeWarrior couldn't find some code it needs
to complete the program. The most common cause for this is that you inad­
vertently removed a library from the project. When you create a new project,
CodeWarrior adds several libraries to it. These libraries hold code that
CodeWarrior uses in conjunction with your own source code. If you click one
of these library names in the project window and then select Remove from
the Project menu, that library is deleted from the project. That's something
you don't want to do. Don't worry, though, the library is still around on your
hard drive - it just isn't a part of your project.

Because the preceding scenario would occur unintentionally, it's pretty
unlikely that you know which library you removed. The solution? Close the
project and create a new one. That's not quite as bad as it sounds. You don't
have to create a new source code file or resource file. Just add these same
files to the new project, and you're all set.

Errors While Runnin9 Your Code
So your program is compiled and is running - that's great newst But wait a
minute. You say it's not doing something that it should be doing? Check this
section for answers to problems of this nature.

__________ __,Appendix C: If Something Should Go Wrong... 35 9

Thin9s aren't 9ettin9 drawn in the window
If your program is supposed to be drawing text or graphics to a window, but
it's not, you may have omitted the call to SetPort. Make sure that the call
appears after the call to GetNewWi ndow, like this:

theWindow = GetNewWindow(128, nil, CWindowPtrl:lJ.;);
SetPort(theWi ndow >: · · · ·

A rectan9le that should be there
just ain't there
When drawing a rectangle, don't forget to first set up the coordinates for the
rectangle. Without a call to SetRect, a call to FrameRect or Fi 11 Rect won't
work.

So you insist that you did call SetRect, but the rectangle still hasn't
appeared? Double-check the order of the coordinates you passed to SetRect.
Here's how SetRect views the four numbers you give it:

SetRect(&theRect, left, top, right, bottom >:

What do you suppose would be the result of this code:

SetRect(&theRect. 10. 100, 50, 20) :
FrameRect(&theRect):

Absolutely nothing! Why? Because the fourth number, 20, is less than the
second number, 100. You're essentially asking the bottom of the rectangle to
appear above the top of it, and that's something Set Re ct can't do.

E"ors Not Addressed in This Appendi}(
If you come across a problem not addressed on these pages, what should you
do? Here are a few ideas:

1
1"" Leaf through the index, looking for a word that at least partially

describes your predicament - I may have addressed the problem some­
where in this book.

3 60 Part VII: Glossary and Appendixes ______________ _

;, 1"" Post your question in an Internet newsgroup- comp. sys. mac.
programmer. codewa rri or and comp. sys. mac. programmer. help are
excellent sources of help for new programmers. Make sure you read the
newsgroup's FAQ first to check that the question hasn't already been
asked and answered.

< 1"" If you have another Mac programming book - even one you find too
· advanced - look through its index and table of contents. Even if much of

the book isn't for you, perhaps it contains a page or two that may help.

Appendix D

Glossary
0 Q 0 0 0 0 0 9 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 O 0 0 Q O O 0 O 0

argument: The same as a parameter- a variable or value passed to a
function.

branch: Source code that allows a program to follow just one of two or more
paths. The switch and the if statements are examples of C branches.

Central Processing Unit (CPU): The computer chip that serves as the brains
of a computer.

comparative operator: A symbol that compares the value on the operator's
left side with the value on its right side. The less-than operator (<) is an
example. These operators are also referred to as relational operators.

compiler: The software program that turns source code into code that a com­
puter can understand.

coordinate system: The means of identifying every pixel on a monitor.

counter: A variable used to control the number of times a loop runs.

decrement: To decrease the value of a variable by one. The decrement opera­
tor is represented by two minus signs (--).

desktop: The area of the screen that holds icons such as folders and the
trash can.

dialog box: A special type of window that contains items - such as buttons -
that allow a program user to communicate with the program.

event: Each action a program user takes is an event. A click of the mouse or a
press of a key are each events. The Toolbox data type Event Record holds
information about an event.

event loop: A section of source code that repeatedly watches and responds
to events as they occur. The event loop runs until the program ends.

J 6 2 Part VII: Glossary and Appendixes ______________ _

floating-point number: A number that has a decimal point. The numbers
5.24, 9200.0, and -72.3 are examples. The C data type for a floating-point
number is the fl oat type.

function: A group of source code that serves a specific task. That is, a group
of source code that performs a single function. Functions can also be referred
to as routines.

graphical user interface (GUI): The user interface of a computer helps the
user communicate with the computer. When the user interface contains
graphical elements such as icons, menus, and windows, it is said to be a
graphical user interface.

icon: A small image that represents something. The trash can on the desktop
is an example.

increment: To increase the value of a variable by one. The increment opera­
tor is represented by two plus symbols (++).

initialization: To give something a value for the first time. The group of func­
tions that give the Toolbox some initial values at the start of a program are
called Toolbox initialization functions.

integer: A whole number - a number with no decimal point. The numbers 7,
8214, and-42 are examples. The C data type for an integer is the int type.

loop: A group of source code that repeats itself. The w hi l e statement is an
example of a C loop. The C language provides programmers with other types
of loop statements as well, including the for statement. (This book only
describes the wh i 1 e statement.)

menu: A part of the graphical user interface that allows the computer user to
make selections from a list of choices.

menu bar: A collection of menus in a program. The menu bar is located at the
top of the screen.

'MBAR': A type of resource that represents a menu bar.

'MENU': A type of resource that represents a single menu.

operating system: Software that controls the very basic activities of a com­
puter, such as copying files.

operator: A symbol that is used to perform an operation on variables or
values. An example is the addition operator (+), which adds two variables or
values together.

parameter: A variable or value passed to a function. Also referred to as an
argument.

pixel: The smallest dot on the screen. Because there are approximately 72
pixels in a one-inch line, you may not be able to see a pixel. But the Mac
knows all about them - the Mac builds, or defines, images by adjusting the
color of a number of pixels.

pop-up menu: A menu that doesn't appear in the menu bar. Usually found in a
dialog box.

port: The means of identifying which window should be drawn to. A port is
also referred to as a GrafPort or a graphics port.

project file: A CodeWarrior file that holds information about the contents of a
project. The project file holds the name of the source code files, resource file,
and libraries used to create a single program.

real number: See floating-point number.

rectangle: A commonly and easily drawn graphics shape. The Toolbox data
type that holds information about a rectangle is the Rect type.

relational operator: See comparative operator.

resource: Information that defines one part of the graphical user interface,
such as a menu or window. Resources are used in conjunction with source
code to form programs.

source code: A series of statements, or instructions, written in a computer
language such as C.

string: A letter, word, or group of words. In C, a string to be used by the
Toolbox is preceded by the \p characters and enclosed in quotes, as shown
here: \pExampl e string.

Toolbox function: A collection of functions written by Apple and stored in
the ROM chips and System file in the Macintosh.

type: Every variable has a type - a category that defines what kind of data
the variable can hold.

variable: A piece of code used to store a value.

'WIND': A type of resource that represents a window.

window: The object that is used to display text and graphics. A window can
usually be opened, moved, and closed by the user.

J 6 fl Part VII: Glossary and Appendixes ______________ _

Appendix E

iMac Programming and Movie
Playing

0 0 0 Q 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 C> Cl 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 @ 0 O O O 0 o O O O e

In This Chapter
bi>- Understanding how to play QuickTime movies

I> Discovering the Movie Toolbox functions

D>- Looking at a movie-playing example program

~ Adding movie-playing features to your own programs

ooooooooooooooooooooooooooooooooooooooeoooooooooo

A t this writing, well over 800,000 iMacs have been sold - and that's just
four months after its introduction. It's a safe bet that plenty of you -

and plenty of the Mac users who may run your own program - have an iMac.
In Chapter 3 you read that among the chief features of the iMac is its speed -
the iMac is fast. Speed is the key element that makes one really cool multime­
dia technology a reality. That technology is QuickTime movie-playing. Here I
provide you with an introduction of how you can make your own program a
movie-playing one. Although such a program will run on most Mac models, it
will especially shine when run on a fast machine such as Apple's iMac.

Pla1Jin9 Mollies
By now you're familiar with the Macintosh Toolbox, so you know it to be the
huge set of Apple-written functions that give programmers the ability to add
all sorts of features to their programs. In this book the focus is on the
Toolbox functions that bring the basic features to a Mac program - features
such as windows and menus. But the Toolbox provides numerous functions
that allow you to add all sorts of goodies to your Mac programs. In Chapter
21 you get a hint of this when you see the code for programs that display a
picture and play a sound. Another forte of the Toolbox is movie-playing -
the Toolbox includes several functions that can be used to give a Mac pro­
gram the capability to play QuickTime movies.

3 66 Part VII: Glossary and Appendixes ______________ _

QuickTime is Apple's software technology that allows programs to play
movies. Just about any Macintosh can play QuickTime movies, but there's a
big variance in the movie-playing quality from one Mac model to another. The
chief factor in how well a Mac plays movies is processor speed. If a Mac has a
fast processor (CPU), then it plays movies nice and smooth. If a Mac has a
slow processor, then a movie may appear jerky- there'll be pauses between
frames or even skipped frames. In the past, entry-level Macs (lower-priced
models aimed at those new to computing) tended to have slower processors,
so playing QuickTime movies wasn't always a thrilling experience for owners
of such computers. That's changed forever with the arrival of the iMac.
There's no overlooking this fact: the iMac is fast. If a user of your program has
an iMac, you're safe in assuming that the user can successfully and enjoyably
view QuickTime movies. With that in mind, here's a quick introduction on
how to write a Mac program that plays a movie.

To get a hold of some movies, you can buy commercial CD-ROMs that include
QuickTime movies. You can also make your own. To do that, you connect a
camcorder or VCR to your Macintosh. You then run the Apple Video Player
program located under the Apple menu (it's included with most Macs, includ­
ing the iMac). You can also download a number of QuickTime movies from
the Internet - for example, Apple has many of its television commercials
available for download in QuickTime format.

The Moflie Toolbox
You're familiar with the Toolbox, the huge set of Apple-written functions that
you call from within your own source code. A part of the Toolbox that I
haven't explored in this book is called the Movie Toolbox. As its name
implies, the functions in this part of the Toolbox exist to assist you in provid­
ing your own Mac programs with QuickTime movie-playing capabilities.

Just as you initialize other parts of the Toolbox, you need to initialize the
Movie Toolbox. You do that by calling the EnterMovies function, like this:

EnterMoviesC):

When the Movie Toolbox is initialized, your program can call any of the
dozens of Movie Toolbox functions. A detailed look at the use of this part of
the Toolbox is beyond the scope of this book, but I provide you with a brief
overview of some of the most important functions in the next few sections.

_________ .Appendix E: iMac Programming and Movie Playing J 6 7
OpenMoflieFile
A QuickTime movie exists in a file on disk (on a hard drive, floppy disk, CD,
and so forth). Before a program can play the movie, the program needs to
open the movie file. The OpenMovi eFi le function does just that.

NewMoflieFromFile
The just-mentioned OpenMovi eFi 1 e function opens a file, meaning the pro­
gram is able to access the contents of the file. Accessing the file means
placing the file's data, or information (the movie), into memory. That's how a
program typically works with a file's data - it places the data in RAM.
NewMovi eFromFi 1 e is the Movie Toolbox function that gets movie data into
memory where the program can make use of it.

CloseMoflieFile
Even before a program plays the movie in an open movie file, the program
typically closes the file. Why? Because the information that's needed has
been placed in memory by the call to NewMovi eFromFi 1 e.

SetMoflieGWorld
To display a movie, a regular 'ole window is opened by calling the same
GetNewWi ndow function that you're used to using. Then a call to the Movie
Toolbox function SetMovi eGWorl dis made to associate, or link, the movie
data in memory with the newly opened window.

GetMot1ieB01t and SetMot1ieB01t
It's possible to display only a part of a movie in a window. That is, you could
tell a program to crop the boundaries of a movie frame so that the user sees
only a portion of each frame as the movie plays. The Movie Toolbox func­
tions GetMovi eBox and SetMovi eBox are used to do this. More importantly
for us, these same functions can be used to ensure that the entire frame of a
movie is displayed in a window. After that task is taken care of, the window
that is to display the movie needs to be resized. QuickTime movies come in
all sorts of sizes - a movie may be very small or it may fill the screen. When
a program opens a window in which to play the movie, though, the window
size may very well not match the movie size. A call to the Toolbox function
Si z e W i n d ow resizes a window to match the size of a movie.

Go To8e9innin90f Moflie
I'm in the habit of watching a VHS tape and then forgetting to rewind it. It
annoys the heck out of the next person who wants to watch the tape, but hey,
nobody's perfect. QuickTime movies can be subject to the same kind of

3 6 8 Part VII: Glossary and Appendixes ______________ _

irresponsible behavior, too. Before a program starts playing a movie, it
should call the Movie Toolbox GoToBegi nni ngOfMovi e to ensure that the
movie starts from the beginning.

StartMof/ie and Mof/ies Task
Finally- let's play the darn thing! The Movie Toolbox function Sta r tMovi e
starts a QuickTime movie playing. But it doesn't keep it playing. The
Sta rtMov i e function doesn't know how long the movie is (that is, it doesn't
know how many frames the movie consists of), so it's necessary to repeatedly
call another Movie Toolbox function, Movies Task, to keep the movie going.

DisposeMof/ie
When a program is finished playing a movie it should free up, or release, the
memory that holds the movie data. That allows the memory to be used for
other purposes.

A Quick Time mollie-playin9 example
As I mentioned earlier in this appendix, complete coverage of QuickTime
movie playing requires a lot of pages. But I'd feel bad if I left you hanging
without some kind of usable example. So of course I've provided such an
example. The program, named QuickMovie, plays a QuickTime movie and
then quits. In order to work properly, the movie must be in the same folder as
the QuickMovie program, and the movie file must have the name XmasMovie.
Double-clicking on the QuickMovie icon starts the program and opens a
movie of a little girl opening a Christmas present:

__________ .Appendix E: iMac Programming and ·Movie Playing 3 6 9
Next comes the source code for the QuickMovie program. I haven't provided
enough of an explanation to make all the code understandable, but it's still
some very useful code. First, look it over and see how much you can under­
stand. If you carry on with your Mac programming endeavors, pick up a more
advanced Mac programming book and read up on QuickTime to get all the
juicy movie-playing details. Before you do that, however, there's a way you
can make the code work for you - even without understanding exactly how
the code works. I'll tell you about that after you look over the code.

The QuickMovie program works by initializing the Toolbox, initializing the
Movie Toolbox (by calling EnterMov i es), and then by calling the function
Pl ayOneMovi e. This all happens from within the program's main function:

void main(void l
I

lnitGraf(&qd . thePort l:
lnitFonts() ;
lnitWi ndows() ;
lnitMenusO :
TEI nit() ;
InitOialogsC nil l :
FlushEvents(everyEvent , 0 l :
lnitCursor() :

EnterHovies();

Pl ay0nel1ovie() :

Now here's the Pl ayOneMov i e function. You can get a general idea of how the
function works by reading the Movie Toolbox function summary earlier in
this appendix:

void PlayOneMovie(void
[

FSSpec
Short
Movie
Short
St r255
Boolean
WindowPtr
Re ct
unsigned 1 ong

theFSSpec :
thefileRefNum:
theMovie :
theMovieRes !O • 0 :

t heMovieResName:
wasAltered;
t heWindow :
theHovi eBox ;
thelong ;

FSMakeFSSpecC o. O. "\pXmasMovie", &theFSSpec l :
OpenMovieflle(&theFSSpec, &theFileRefNum . fsRdPerm l :
NewMoviefromFlleC &theMovie , thefileRe fN um ,

&theMovieRes!D , t heMovieResName ,
newMovieActive , &wasAl tered);

CloseMovlefileC thef ileRefNum J;

(continued)

3 7 Q Part VII: Glossary and Appendixes ________ ______ _

(continued)

theWindow • GetNewWindow(128 . nil , (WindowPtr)-lL);

SetHovieGWorld(theHovie , (CG rafPtr)theWindow, nil l;

GetHovieBox(theHovie, &theHovieBox);
OffsetRect(&theMovieBox . -theMovieBox.left ,

-theMovieBox . top) ;
SetHovieBox(theHovie, &ta"HovieBox) ;

SizeWindow(theWindow. theMovieBox .right ,
theMovieBox.bottom , true) ;

ShowWindow(theWindowl ;

GoToBeginningOfMovie(theMovie);

StartMovie(theMovie) ;

do
l

I
HoviesTask(theMovie. OJ;

while (l sMovieOone(theMovie l •• false l;

Delay(120 , &thelong l :

DisposeMovieC theMovie l ;
DisposeWindow< theWindow) ;

Even though I wrote the Pl ayOneMovi e function, you can easily make use of
it in your own program. Here's how. Begin by copying the entire function
Pl ayOneMov i e (its code exists in the QuickMovie.c file in the XE QuickMovie
folder on this book's CD-ROM). Now paste it into your own program's source
code file. At the top of your source code file include a function prototype - a
line of code that tells the compiler a little bit about the function. That proto­
type looks like this:

void PlayOneMovie(void);

In the program's main function, add a call to the Movie Toolbox initialization
function EnterMovi es - like this:

void main(void)
(

lnitGraf(&qd .thePort);
lnitFonts();
InitWi ndows();
InitHenus(l;
TE!nit();
InitDialogs(nil) ;
FlushEvents(everyEvent . O);
InltCursor();

EnterMovies();

[other code goes here]

________ _.Appendix E: iMac Programming and Movie Playing 3 71
Now include a call to the Pl ayOneMov i e function. For instance, if I added the
function prototype to the top of the Animator.c source code file in the
Chapter 20 Animator example, I could call the Pl ayOneMovi e function when
the user selected, say, the Move Square menu item. Looking back at Chapter
20, you 'II find the following code in the source code listing for the Animator
program. This is the code that runs when the user chooses the third menu
item (the Move Square item) from the program's one menu:

case 3:
SetRectC &theRect, 0, 0, 400~ 28fr):
EraseRect(&theRect) : · ·
SetRect(&theRect, 10, 10, 60~ 60. >:
count • O:
while < count < 140)
{ .

FrameRect(&theRect):
OffsetRect{ &theRect, 2, 2);
count++: ·
Delay< 2, &thelong >:

)
break:

Instead of moving a square across the window, this menu item could be made
to play a QuickTime movie by replacing the preceding code with a call to
Pl ayOneMovi e:

case 3:
PlayOneMovfeC>:
break:

If you look in the XE AnimatorWithMovie folder on this book's CD-ROM, you'll
find a new version of the Chapter 20 Animator example. In this version I've
added the previously mentioned changes so that the program now plays the
Christmas movie when the user chooses the Move Square menu item.

What if you don't want your own program to play this particular movie of a
little girl opening a Christmas present? What if you'd like your program to
play a different movie? That's an easy one. Just change the name of the movie
to play in the Pl ayOneMov i e function to match the name of the QuickTime
movie file to play (and make sure that movie file is in the same folder as your
program. For example, if the movie to play was named MyVacation, then this
line of code:

FSMa keFSSpec (o .. o, "\pXma sMov ~.e.•. &theFSSpe.c ..) :

should be changed to this:

FSMakeFSSpec{ o. o. •\pMyVacation•', &theFSSpec >:

3 7 2 Part VII: Glossary and Appendixes ______________ _

Appendix F

What's on the CD-ROM?
0 B 0 0 0 G 0 0 0 0 0 C> 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0

In This Chapter
I!> Having CodeWarrior Lite on this book's CD-ROM

r> Installing CodeWarrior Lite onto your hard drive

ll> Copying ResEdit and the ... For Dummies Examples folder from the CD-ROM

oooeGOOOOOOOOGGOOOQOOOOOOOOOOOOOOOOOOOOOGOOOOOOOO

I /ou get both bad and good news when it comes to Mac programming.
¥.__You want the bad news first? Okay, brace yourself. The bad news is that

to create a Macintosh program, you need a compiler, which is the software
that turns your source code into a living, breathing program. The good news
is that I know you have one. I made sure that a copy of the CodeWarrior Lite
compiler made it onto the CD-ROM that comes with this book.

You use a compiler quite a bit in Mac programming, and so I want to make
absolutely sure that the compiler makes it from the CD-ROM to your hard
drive. I also want to make sure that everything gets set up just right so that
you and I are both confident that you can work with all the examples that
appear in this book. In this chapter, I walk you through the process of getting
the CodeWarrior Lite compiler and other files from the book's CD-ROM.

CodeWa"ior Professional or
CodeWarrior Lite?

CodeWarrior Lite is a trimmed-down version of the full-featured CodeWarrior
Professional compiler. Although CodeWarrior Lite can't perform all the com­
piling tricks that CodeWarrior Professional can, it does allow you to try out
each and every example on this book's CD-ROM.

If you haven't purchased CodeWarrior Professional, then this is really your
lucky day. The CodeWarrior Lite compiler is just waiting for you on this book's
CD-ROM. Make sure to read the next section, "Installing Code Warrior Lite," to
see how that's done. Then read the remainder of this appendix to make sure
you copy a few other choice files from the CD-ROM to your hard drive.

3 7 !, Part VII: Glossary and Appendixes ______________ _

For owners of the full-featured CodeWarrior
If you're fortunate enough to own CodeWarrior
Professional and already have it installed on
your ma chine, you may be tempted to skip.t~e
oext section - or·even the rest of this.appen•
dix. Please don't Even though you own a copy of

· CodeWarrior, you may still wantto install the Lite
version on your hard drive. Here's why. All the
examples for this book have been thoroughly
tested. using the current· version of both

. CodeWarrior Professional ·and CodeWarrior
IJte. If you own any :other version ~of"
CodeWarrior, I can't guarantee everything wm
go perfectly smoothly~ For experienced pro­
grammers, minor differences from one version

of a compiler to another aren't too important
They just click a few buttons, or type a few extra
words somewhere, and everything works oµt
just fine. For beginners, it's bestto guarantEJe
complete compatibility, though.

Here's what I recommend you do. First, install
this book's CD-ROM version of CodeWarrior Lite
on your Mac's hard drive. Then try things out
using. CodeWa'rrior Lite. After that, when you

·have Cl little c·onfidence, try things out ~gain+­
this time with your full-featured version of
Code Warrior.

lnstatlin9 CodeWarrior Lite
No, there's no way you can avoid using a compiler; in order to work with
code and turn it into a program, you need a compiler. So if you haven't done
so already, unpack the CD-ROM from the back of this book and, handling it
carefully by its edges, set it in your Mac's CD-ROM drive. As with any CD-ROM
disc, make sure the side with the writing on it goes in face-up.

Runnin9 the installers
After inserting the CD-ROM in the drive, a CD-ROM icon named CodeWarrior
Lite appears on your Mac's desktop. Double-click this icon to open the
window that lists the disc's contents. You see a window with the names of
several files and folders listed in it. Right now, of most importance to you are
the two installers. Between them, these two installers have over 1,000 files
(yes, that's right, more than 1,000!) embedded within them. Running the two
installers places copies of all these files on your hard drive. Here are the
icons you need to look for:

H H
CW LITE C....CPP Installer CW LITE IDE Installer

Metrowerks has set up the CodeWarrior Lite Installer programs such that
they do all the work for you, and do it correctly. The installer creates one
main CodeWarrior Lite folder on your hard drive, and then it keeps

______________ Appendix F: What's on the CD-ROM? 3 7 5
everything neat and tidy by placing everything it needs (including more fold­
ers and all those files) in this folder.

The file named CW LITE IDE Installer is the first of the two installers to run.
Its purpose is to place a copy of the CodeWarrior Lite integrated develop­
ment environment (IDE), along with a number of other files, on your hard
drive. To run the installer, simply double-click the CW LITE IDE Installer icon.
When you do that, a dialog box like this one appears:

Metrower1<s CodeWarr1or Lite Disclaimer And Software License I Agreement

METROWERKS DOES NOT PROVIDE ANY TECHNICAL SUPPORT FOR
CODEWARRIOR LITE.

IN ORDER TO RECEIVE TECHNICAL SUPPORT YOU MUST UPGRADE TO THE
COMMERCIAL VERSION OF COOEWARRIOR. PLEASE USE THE ORDER FORM
IN THE DOCUMENT NAMED "HOW TO ORDER".

."I
PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFTWARE.
BY USING THE SOFTWARE, VOU ARE AGREEING TO BE BOUND BV THE
trERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY, OR USE THE SOFTWARE.

I+
(Print •••) (Soue Rs •••) (Decline) ((Accept J

Scroll through the dialog box text and then click the Accept button to agree
to give up your firstborn. No, no, all you're really being asked to do is use
Metrowerks' software in good faith. That is, don't attempt to sell it, distribute
it yourself, or do anything else naughty with this program that Metrowerks is
so kindly providing you with.

After clicking the Accept button, a dialog box with a few buttons appears:

- - --..... - . - CW LITE IDE lnstoller

Selecting the I nstoll button wilt Install the CodeWorrlor LITE I DE
(I ntegr11ted Deuelopment Enulronment), Debugger , end ell the
necessary system eHtenslons.

NOTE: This does not Install ony compilers, libraries, or sample code.
This Is only Port ONE of 11 multi- pert lnst11ll11tlon process.

l>ldt-•nilllllo: 98,445:
1astan LMaliM -----------,

(Select folder)

(Quit)

(lnst111t J
ii

3] 6 Part VII: Glossary and Appendixes ______________ _

If you have more than one hard drive, the dialog box won't look just like the
one in the previous figure. In place of the Select Folder button there will be a
Switch Disk button and a pop-up menu. These items let you choose where to
install CodeWarrior Lite. Typically, programmers keep their programming
tools on their startup, or main, hard drive. Before installing, glance at the
hard drive icon pictured in the lower left of the install dialog box. The name
under it will most likely be the name of your startup hard drive. That's the
drive I recommend you install CodeWarrior Lite on. If you insist on ignoring
my advice, use the Switch Disk button or the pop-up menu to change the
drive. Playing with either this button or this pop-up menu won't actually
install any files, so don't worry if you accidentally end up with the wrong
drive name under the hard drive icon. Just select a different drive. When you
are finally content with the hard drive name under the hard drive icon, all
you need to do is click the Install button to kick things off.

Now, here's the really great part of installing CodeWarrior Lite: You get to
take a break from programming before you even begin to program! Install­
ation takes a couple of minutes. You can gauge how much of a break you get
by glancing at the progress indicator on your screen:

lnstallln

Items remelnlng to be Installed: 36

Installing: ReceiuerOragOemo.mcp

Stop

This inshlt.tton vu erHttd with hst.ti11tr VIS£ from MW'MfYfskin SoftwM"•

When installation is complete, a new dialog box appears. Click the Quit
button to confirm that you're all finished with the installer program.

If you're a little intimidated by the thought of having to actually start pro­
gramming, you're in luck. You get to delay that act just a bit longer! You've
run one installer, but you still need to run the second one - the one named
CW LITE C_CPP Installer. As it's name hints, this installer places on your hard
drive a number of files that CodeWarrior Lite needs in order to work with C
and C++ source code. Now that you've run the firs t installer, you know the
drill:

I. Double-click on the CW LITE C_CPP Installer icon to start the installer.

2. Click the Accept button to agree to the licensing terms.

3. Use the Switch Disk button if the preferred hard drive isn't named.

4. Click the Install button to begin the installation.

5. Click the Quit button when the installation is complete.

----------------'Appendix F: What's on the CD-ROM? J 7 7
When you run the second installer (CW LITE C_CPP Installer), you'll want
to specify the same hard drive as you did when you ran the first installer
(CW LITE IDE Installer). The running of the first installer created a new
CodeWarrior Lite folder on the hard drive you specified, and you want all the
files installed by the second installer to end up in this same CodeWarrior Lite
folder. Don't worry about trying to tell the second installer anything about
the exact location of the CodeWarrior Lite folder - just make sure the same
hard drive is specified during the running of both installers.

Checkin9 to see if the installation worked
After the installers run, you'll want to convince yourself that the installation
was successful. Look on the hard drive you specified as the destination for
CodeWarrior Lite and see whether you find a folder named CodeWarrior Lite.
When you find it, double-click it to satisfy yourself that there's a bunch of
files and folders inside! In particular, you'll want to peek in the Metrowerks
CodeWarrior folder to see if there's a file named CodeWarrior Lite 3.0 in it.
This file is the CodeWarrior Lite IDE - double-clicking on it starts up
CodeWarrior Lite.

lnstallin9 Other Files from the CD .. ROM
Metrowerks set up the CodeWarrior Installer program so that you'd have an
easy way to copy all those CodeWarrior-related files and folders to your hard
drive. The installer does that task quite well. But it doesn't copy everything
from the CD-ROM to your hard drive. It leaves a few goodies on the disc. It's
up to you to decide if you want any of this other stuff on your hard drive. For
working along with this book, you should definitely copy two other things:

i
Y" ResEdit, the resource editor program.

Y" ... For Dummies Examples folder, which holds all of the examples from
this book.

Cop1J.in9 ResEdit to IJ.Our hard drifle
Just about every Mac program uses resources. You use a resource editor,
such as Apple's ResEdit, to create and edit these resources (see Chapter 7 for
details on ResEdit). Where can you get this vital piece of programming equip­
ment? Call the neighbors and wake up the dog! You've got a fully functional
version of ResEdit right on this book's CD-ROM. And if you've already
installed CodeWarrior Lite, or if you have a folder devoted to programming
on your hard drive, you can copy ResEdit right into either one of those

J 7 8 Part VII: Glossary and Appendixes ______________ _

folders. If for some reason you already have ResEdit on your hard drive, now
is the time to drag it into your main CodeWarrior folder. For users of
CodeWarrior Lite, that would be your CodeWarrior Lite folder.

If you're pretty sure that you have a copy of ResEdit tucked away in a folder
on your hard drive already, but you don't remember where you put it, don't
worry. Go ahead and copy the version from this book's CD-ROM. The version
on the CD-ROM is the most recent as of this writing, so you'll know you're not
using a dated version.

If you want ResEdit, copy the entire ResEdit 2.1.3 folder from the CD-ROM to
your hard drive. While it can go anywhere on your hard drive, I suggest you
copy the folder into your main CodeWarrior folder by dragging the ResEdit
2.1.3 folder from the CD-ROM to this folder. For you CodeWarrior Lite users,
this main folder is named CodeWarrior Lite. Now you have a copy of ResEdit
on your hard drive all ready for creating and editing resources.

Cop1J.in9 the ... For Dummies
Examples folder
To save you some effort, I've taken the time to type in all the source code for
all the examples in this book. I know, I know. You can thank me later. I've
saved the fruits of my labor in a number of files, all of which you find in a
folder titled ... For Dummies Examples on the CD-ROM. To make use of these
files, you need to copy them from the CD-ROM to your hard drive. The easiest
way to copy these files is to copy the entire folder to your main CodeWarrior
folder. All you have to do is click and drag the ... For Dummies Examples icon
from the CD-ROM to your hard drive. To make it easy to run the examples, I
suggest you drag the entire ... For Dummies Examples folder from the CD-ROM
to your main CodeWarrior folder (the CodeWarrior Lite folder for you
CodeWarrior Lite users).

You're All Set
Now you're all set to try out the examples from the book. If you haven't
already done so, start reading. No, don't turn the page - jump all the way to
the start of the book! When you get to the first example project, you'll be all
set to give it a whirl. ...

Index
oooeooooooooeooooooooGooooooooooooeoooooooooooooo

• S11mhols & Numbers •
& (ampersand)

in function parameters, 332-333
in Rect variable name, 197

* (asterisk)
for comments, 162
as multiplication operator, 167,

339-340
{}(braces)

in Animator program, 270
enclosing functions, 56, 208
troubleshooting, 330, 354-355

= (equal sign) as assignment operator,
163, 185,341

- (minus sign) as subtraction operator,
166,339-340

+(plus sign) as addition operator,
164-165,339-340

: (semicolons), troubleshooting, 330-331
(single quotes) for resource types, 69

I (slash)
for comments, 162
as division operator, 167-168, 339-340

68K Debug MacOS Preferences dialog
box, 284-286

68K project stationery type, 259
128 ID number, 70, 71, 273-274

•A•
active port, 215
Add Files command (CodeWarrior), 117
Add Files dialog box (CodeWarrior), 127

Add Window command (CodeWarrior),
126-127

addition operator, 164-165, 339-340
alert, flickering, 357
ampersand(&)

in function parameters, 332-333
in Rect variable name, 197

Animator program, 255-286. See also
Animator Apple program

adding resource file to project, 267
adding the Apple menu, 289-303
Beep Me! menu item, 251, 279
compiling, 283-284
creating resource file, 260-262
creating source code file, 267-268
creating the project, 259-260
declaring variables, 27 4-275
displaying windows and menus, 276
eventloop,276-279
experimenting with source code,

288-289
files for, 257-258
files on CD, 256, 258
finding files, 258-259
Grow Square menu item, 256-257,

279-282
ID 128 in, 273-274
initialization, 275
i nMen uBa r event handling, 177-178
'MBAR' resource, 265-267
menu items, 256-257
'MENU' resources, 264-267
mouseDown event handling, 276-277
Move Square menu item, 257, 282-283
naming, 284-286
new source code in, 270

(continued)

3 8 0 Mac Programming For Dummies, 3rd Edition

Animator program (continued)
Quit menu item, 257, 283
running, 284
source code, 269-283
'WIND' resource, 262-264

Animator Apple program, 289-303
adding Apple menu items, 294-295
Apple menu overview, 290-291
changing resource IDs, 291-293
declaring variables, 296
files on CD, 303
handling menu selections, 297-302
handling update events, 302
'MBAR' resource, 295-296
menu bar setup code, 297
'MENU' resource, 293-295
opening Apple menu items, 301-302
source code, 296-302

appearance, changing for windows,
98-100

Apple menu, 289-303
adding menu items, 294-295
declaring variables, 296
handling menu selections, 297-302
handling update events, 302
'MBAR' resource, 295-296
menu bar setup code, 297
'MENU' resource, 293-295
need for, 290
opening menu items, 301-302
overview, 290-291
resources,291-296
SightAndSound program, 305
source code, 296-302

applications. See programs
arguments, 361. See also parameters
arithmetic operators, 164-168, 339-340
assigning

changing assigned values, 172

order for, 155-156
values to variables, 154-156, 160, 164,

165-166, 172,338
assignment operator

overview, 163, 341
return values and, 185

assignment statements, 155
asterisk (*)

for comments, 162
as multiplication operator, 167,

339-340

• B •
Blanguage, 149
BASIC, 149
Beep Me! menu item, 251, 279
Begi nUpdate function, 302
blank lines in source code, 56-57, 136
blank spaces in source code, 165
blocks of code, 170
body of loop, 1 73
braces({})

in Animator program, 270
enclosing functions, 56, 208
troubleshooting, 330, 354-355

branches,361
branching statements, 174-180. See also

looping statements
branching event loops, 223-226,

228-230
i f statements, 179-180, 343-344
if - e 1 s e statements, 180, 343-344
need for, 175
overview, 342-344
s w i t ch statements, 176-179, 342-343

break statements
in Animator program, 270
in s w i t ch statements, 178-179, 334
troubleshooting, 334

________________ Index 381

building (making) programs, 46-48, 138,
139, 140

But ton function, 219
buttons, 16

.c files, 124-125
Clanguage

basics, 161-180
branching statements, 174-180,

342-344
.c files, 124-125
case-sensitivity, 70
comments, 161
data types, 152, 154, 156-158,338-339
features, 148-149
keywords, 170
looping statements, 169-174, 341
naming source code files, 124-125
newsgroups for programmers, 148
operators, 163-168,339-341
origin of name, 149
other languages, 149-150
reasons for choosing, 147-149
reference, 337-344
variables, 40, 152-156, 159-160,

162-163,337-338
C++language, 149
cache memory of iMac computers, 35
calculator program, DOS versus

Macintosh, 26-32
calling Toolbox functions, 57-58
cannot convert errors, 355-356
capitalization. See case-sensitivity
capturing event information, 220-223

ca s e labels. See also s w i t ch statements
b re a k statements with, 178-1 79
in switch statements, 177-179

case-sensitivity
ofClanguage, 70
of resource names, 69
troubleshooting, 331

CD. See Mac Programming For Dummies
CD

CD-ROM drive requirement, 3
central processing units (CPUs), 34, 36,

361
check boxes, 16
close boxes, clicks in, 232-233, 238-240
C 1 oseMov i e File function, 367
closing

movies, 367
windows, 232-233, 238-240, 346-347

COBOL, 149
code font in this book, 5, 49-50
code, object, 24-25
code, source. See source code
CodeWarrior Limited Version. See also

CodeWarrior Professional
adding files to projects, 116-11 7
adding source code files to projects,

125
adding 'WIND' resources, 116
building programs, 138, 139, 140
capabilities, 106
on CD with this book, 3, 24
CodeWarrior Professional versus,

105-106, 373-374
compiling source code, 46, 48,

131-137,322
creating new projects, 109-110, 317
creating project folders, 108-109
creating resource files, 115

(continued)

3 8 2 Mac Programming For Dummies, 3rd Edition

CodeWarrior Limited Version (continued)
creating source code files, 122-123
entering source code, 129-130
Errors & Warnings window, 133,

135-137, 354-356
folder for, 108
icons, 108
installing, 374-377
launching from project icon, 121-122
launching ResEdit from, 114, 318
making programs, 46-48
naming projects, 112
opening projects, 121-122
opening source code files, 128-129
overview, 24
preferences, 284-286
reasons for choosing, 4 7, 106-107
removing files from projects, 119-120
running source code, 138-142, 322
selecting project stationary, 110
steps to create programs, 48
support, 107
text editor, 107-108

CodeWarrior Professional. See also
CodeWarrior Limited Version

adding files to projects, 116-119
adding source code files to projects,

125-127
CodeWarrior Limited Version versus,

105-106, 373-374
creating Animator program files, 258,

261-262,267,272-273
creating different programs from same

project, 119
creating new projects, 109-113,

127-128,317-318
creating source code files, 122-123
features, 314

folder for, 108-109
icons, 108
installing CodeWarrior Limited

Version anyway, 374
overview, 313-314
preferences, 284-286
reasons for choosing, 4 7, 106-107
support, 107
text editor, 107-108

colors for Fi 11 Rect function, 230, 351
comments

importance of, 202
overview, 161-162

compact disc. See Mac Programming For
Dummies CD

comparative operators, 171-172,
340-341,361

Compile command (CodeWarrior), 46,
48, 132,283,343

compilers. See also CodeWarrior Limited
Version; CodeWarrior Professional

alternative compilers, 4 7
defined,361
overview, 24

compiling, 131-137
Animator program, 283-284
connecting resources and source

code, 66
Errors & Warnings window, 133,

135-137,283,354-356
linking, 45
menu item dim, 353
overview, 45-48, 322
process of, 134
recompiling, 137
running versus, 134
troubleshooting, 353-356
using CodeWarrior, 46-48

_______________ Index 383
compound statements, 170
conditional statements. See branching

statements; looping statements
conventions for source code, 5, 49-50
coordinate system

defined,361
grid marks per inch, 193
overview, 97, 190-193

Copy command, adding to menus, 81
copying program example files from CD,

378
count variable

in event loop, 229-230
experimenting with source code, 289
incrementing, 172-17 4, 333
troubleshooting, 33

counters, 361
CPUs (central processing units), 34,

36,361
Create New Item command (ResEdit),

79-80
Create New Resource command

(ResEdit), 75-77, 79
current port, 215
cursors, initializing, 209
Cut command, adding to menus, 81

• D •
data types. See also specific types

common data types, 156-158, 338-339
declaring variables, 154-156, 159-160
defined,363
for menus, 339
non-numeric, 185-186
overview, 152, 338-339
return type of functions, 207
for whole numbers, 156-157, 338
for windows, 338-339

Davis, Stephen, 25
debugging. See troubleshooting
declaration syntax errors, 354
declaring

orderfo~ 155-156
syntax errors, 354
variables, 154-156, 159-160, 274-275,

296,337
decrement, 361
def au 1 t statement, 299-300
Delay function, 281-282, 288
deleting. See removing
desk accessories, 302
desktop

defined,361
icons, 14
overview, 13

dialog boxes
defined,361
initializing, 209
overview, 16-17
windows versus, 16

disc. See Mac Programming For Dummies
CD

Discover Programming compiler, 106
disk events, 224-225
disk operating system (DOS), 11-13, 21,

22, 25-32
di s k Ev t events, 224-225
displaying. See also opening; viewing

menu bars, 242-243, 325
menus, 276
windows, 53-54, 242, 276, 324, 346

Di sposeMovi e function, 368
DisposeWindowfunction

Animator program, 277
overview, 326, 346-34 7
parameter, 238
WindowWorks program, 239

3 8 !, Mac Programming For Dummies, 3rd Edition

division operator, 167-168, 339-340
DOS, 11-13, 21, 22, 25-32
drag bar, clicks in, 232-238, 239-240
dragging windows by title bar, 232-238,

239-240,347
DragWindowfunction

Animator program, 277
overview, 326, 347
parameters, 237
time required to run, 237-238

drawing
coordinate system, 190-193
lines, 193-195,350
ovals, 352
to ports, 198-202, 350
rectangles, 195-198, 327-328, 351-352
rectangles around text, 211-217
shapes,351-352
solid rectangles, 230
text, 183, 191-193,211,327,352
troubleshooting, 359

DrawMenuBa r function, 243, 325, 348
DrawStri ng function

location of text start, 191-193
overview, 327, 352
\ p before strings, 211, 332
parameter, 183
troubleshooting, 332

•E•
Edit menu (CodeWarrior), Preferences

command, 284-286
Edit menu (ResEdit), 83
editing

defined,67
resources, 78-81, 82-83

editor windows (ResEdit), 74-75, 83-84

editors, types of, 67-68
efficient source code, 209, 210
e 1 s e section of i f - e 1 s e statements, 180
ending programs, 55-56
EndUpdate function, 302
entering source code, 129-130, 322
EnterMovi es function, 366
equal sign (=) as assignment operator,

163, 185,341
EraseRect function, 280
erasing. See removing
Errors & Warnings window

(CodeWarrior), 133, 135-137, 283.
See also troubleshooting

cannot convert errors, 355-356
declaration syntax errors, 354
expression syntax errors, 354-355
function call does not match

prototype errors, 355
event loops, 361. See also events;

looping statements
event-driven programs, 218
EventRecord data type

declaring variables, 221
overview, 220-221
what with, 221
where with, 221

events
Animator event loop, 276-279
Apple menu selections, 297-302
branching event loops, 223-226,

228-230
capturing event information, 220-223,

325
close box clicks, 232-233, 328-340
defined, 15,345,361
event loops for closing windows,

238-240

_______________ Index 385

event loops for dragging windows,
235-238, 239-240

Event Record data type, 220-22l
EventTesteventloop,228-230
keyDown events, 224
menu bar clicks, 232-233, 240-253
mouseDown events, 224
MyProgram event loop, 218-226
overview, 217-218
simple event loop, 218-220
title bar clicks, 232-238, 239-240
Toolbox functions, 345-346
update events, 302
WaitNextEventfunction

221-223,346 '
WindowWorks event loop, 239-240

EventTest program, 226-230
eventloop,228-230
files on CD, 227
initializations, 228
source code, 226-227
variable declarations, 227

ExampleOne program, 49-58
blank lines, 56-57
displaying a window, 53-54
ending the program, 55-56
initialization, 52-53
ma i n function, 56
MoveTo function parameters, 183-184
naming, 51-52
overview, 50-51
source code, 50, 52
Toolbox functions, 57-58
writing to a window, 54-55

executing. See launching; running
source code

experimenting with source code
288-289 '

expression syntax errors, 354-355

•F•
false, w hi 1 e test result, 170
File menu (CodeWarrior)

New Folder command, 109
New Project command, 109-11 o
Save As command, 124
Save command, 124

F!le menu (ResEdit), Save command, 88
Fde menu (SightAndSound), 305
files. See also projects; resource files;

source code
adding source code files to projects,

125-127, 321
adding to projects, 116-119
creating source code files, 122-123
finding, 258-259
installing program example files 378
in new projects, 113 '
opening source code files, 128-129
removing from projects, 119-120
removing placeholder files, 320,

321-322
resource files, 65
saving source code files, 123-125
SillyBalls files, 113, 114, 126
source code files, 43-45

Fi 11 Oval function, 352
Fill Rect function

colors and patterns for, 230, 351
erasing text using, 230
overview, 327, 328, 351-352
parameters, 230

finding
files, 258-259
resource IDs, 70,89

3 8 6 Mac Programming For Dummies, 3rd Edition

Fi ndWi ndow function
Animator program, 277
AnimatorApple program, 297
callto,234-235,236,347-348
overview, 234, 325-326, 347-348

flickering alert, 357
fl oat data type

operators with, 168
overview, 158

floating-point numbers
data type, 158
defined, 158,362
operators with, 168

Fl us h Events function, in initialization
process,209

folders
CodeWarrior folder, 108-109
project folders, 108-109

fonts
code font in this book, 5, 49-50
initializing, 53, 184

FORTRAN, 149
fractional numbers. See floating-point

numbers
FrameOva l function, 352
FrameRect function, 197-198, 279, 327,

328,351
frozen computer when running source

code,357
function prototypes, 310-311, 355
functions. See also Toolbox functions

ampersand(&) in parameters,
332-333

assignment operator with, 185
basic Toolbox functions, 323-328,

345-352
braces enclosing, 56, 208
defined,42-43, 182,362

function call does not match
prototype errors, 355

function prototypes, 310-311
initialization functions, 208-210, 345
main function requirement, 207
Movie Toolbox, 366-368
naming, 207
overview, 56, 206-207
parameters, 182-183
return type, 207
return values, 184-186

•G•
Get Resource Info window (ResEdit),

292-293
GetMenuHandlefunction,297
GetMenultemTextfunction,300-301
GetMovieBoxfunction,367
GetNewMBa r function, 242-243, 325, 348
GetNewWindowfunction

opening windows, 210
overview, 324, 346
parameters, 187-188
resource IDs and, 101
return values, 185-186

GoToBegi nni ngOfMovi e function,
367-368

graphical user interface (GUI), 13-17.
See also specific parts of the
interface

common tasks, 18
defined,362
desktop, 13
dialog boxes, 16-17
DOS versus, 11-13, 21, 22, 25-32
icons, 14

________________ Index 387

menus, 15
mouse, 14-15
resources defining, 61-63
summary, 17
windows, 14

greater than(>) operators, 171, 341
Grow Square animation

Animator program, 256-257, 279-282
changing the loop, 289
changing the timing, 288

GUI. See graphical user interface (GUI)

•H•
Handle data type, 339
highlighting menu names, 248-249
Hi 1 iteMenu function, 248-249, 278,

327,349
Hi Word function, 246-248, 278, 327, 349

•]•
icons

Code Warrior, 108
defined,362
in margins of this book, 8
overview, 14

IDE (integrated development environ-
ment), 106, 107, 313

IDs. See resource IDs
if statements, 179-180, 343-344
i f - e 1 s e statements, 180, 343-344
iMac computers, 33-36. See also

Macintosh computers
cache memory, 35
features, 33-34
multimedia features, 35-36

playing movies, 365-371
popularity of, 365
processing power, 34
programming for, 36
system bus, 35

increment, 362
incrementing variables, 172-174, 333
i n Drag events, 232-233, 234-238,

239-240
event loop for dragging windows,

235-238
overview, 232-233
as values, 234-235
WindowWorks program example,

239-240
infinite loop, 174
i nGoAway events

event loop for closing windows, 238
overview, 232-233
WindowWorks program example,

239-240
InitCursorfunction,209
In i tDi a 1 ogs function, 209
InitFonts function, 184
InitGraf function,345
initialization

Animator program, 275
defined,362
efficient code and, 209, 210
ExampleOne program, 52-53, 184
MyProgram program, 208-210
overview, 52-53, 208-210
standard initialization process, 209
Toolbox functions, 208-210,

323-324,345
Ini tMenus function, 209
InitWindowsfunction, 184

3 8 8 Mac Programming For Dummies, 3rd Edition

i nMenuBa r events
Animator program, 177-178
overview, 232-233
pulling down menus, 243-245

Insert New Field(s) command
(ResEdit), 90

InsetRect function, 279
installing

CodeWarrior Limited Version, 374-377
program example files, 378
ResEdit, 377-378

instructions. See statements
i n t data type

defined,38, 151-152
overview, 156-157
short data type versus, 157

integers, 38, 362. See also whole
numbers

integrated development environment
(IDE), 106, 107,313

interface. See graphical user
interface (GUI)

'itlk' resource type, 76

•J•
Java, 149

keyboard events. See keyDown events
keyDown events

defined,224
handling, 224-225, 228-230

keywords, 170

• L •
languages. See C language; programming

languages
launching. See also running source code

CodeWarrior from project icon,
121-122

defined, 122
programs, 142-143
ResEdit from CodeWarrior, 114
running source code, 137-142, 322

less than (<)operators, 171-172, 340
libraries, 113, 149
Limited Version of CodeWarrior. See

CodeWarrior Limited Version
Li n e function

drawing lines, 194-195, 350
overview, 350
parameters, 194
starting location, 194

lines
drawing, 193-195,350
Line function, 194-195, 350

link failed errors, 357
linking, 45
litterbug mnemonic, 197
location. See also MoveTo function

changing initial window location,
96-98

coordinate system, 97, 190-193
GetNewWi ndow parameter, 188

1 ong data type
declaring for menu selection

variables, 245
overview, 157
short data type versus, 157
unsigned variables, 281-282

_______________ Index 389
look, changing for windows, 98-100
looping statements, 169-174. See also

branching statements
body of loop, 173
branching event loops, 223-226,

228-230
changing for animations, 289
comparative operators, 171-172,

340-341
event loops for closing windows,

238-240
event loops for dragging windows,

235-238, 239-240
EventTesteventloop,228-230
incrementing variables, 172-17 4, 333
infinite loop, 174
MyProgram event loop, 218-226
need for, 169-170
overview, 170-174, 341
simple event loop, 218-220
tests and results, 171
wh i 1 e statements, 170-174, 341
WindowWorks event loop, 239-240

loops, 362
LoWord function, 246-248, 278, 327, 349

Mac Programming For Dummies
about, 4
conventions, 5, 49-50
how to use, 5
icons in margins, 8
intended audience, 2
organization, 6-8

Mac Programming For Dummies CD,
373-378

Animator program files, 256, 258
AnimatorApple program files, 303

contents, 3
EventTest program files, 227
icon in margins of this book, 8
installing Code Warrior, 37 4-377
installing program example files, 378
installing ResEdit, 377-378
MenuDrop program files, 252
MyProgram program files, 206

Mac Psychology icon, 8
Macintosh computers. See also iMac

computers
DOS computers versus, 10-13, 14, 21,

22, 25-32
frozen when running source code, 357
graphical user interface (GUI), 13-17
iMacs, 33-36
system requirements, 2-3

Macintosh Programmers Workshop
(MPW), 47, 107

main function
ExampleOne program, 56-58
requirement, 207
SightAndSound program, 310-311

Make command (CodeWarrior), 46-48,
140

making (building) programs, 46-48, 138,
139, 140

math operators, 164-168, 339-340
'MBAR' resources, 85-93

adding 'MENU' resources, 89-91
adding to resource file, 87-88
for Animator program, 265-267
for AnimatorApple program, 295-296
creating, 86-87
defined,362
displaying menu bars, 242-243
editor window, 90-91
IDs, 101
'MENU' resources and, 86, 92-93

(continued)

J 9 0 Mac Programming For Dummies, 3rd Edition

'MBAR' resources (continued)
for MenuDrop program, 241
menus versus menu bars, 85-86
ordering menus on menu bars,

91-92,292
pulling down menus, 243-245

.mcp files, 112
megahertz (MHz), 34
memory

cache memory of iMac computers, 35
checking amount you have, 3
GetNewWi ndow parameter, 188
long variable requirements, 157
removing movies from, 368
requirements, 3

menu bars. See also Apple menu; 'MBAR'
resources

adding menus, 89-91
adding the Apple menu, 289-303
clicksin,232-233,240-253
creating, 86-87
defined,362
displaying, 242-243, 325
menuBarHandl e data type, 339
MenuDrop program, 251-253
menus versus, 85-86
ordering menus on, 91-92, 292
pulling down menus, 243-245

'MENU' resources. See also menus
adding menu items, 78-81
adding separator lines, 80
adding to 'MBAR' resources, 89-91
for Animator program, 264-267
for Apple menu, 293-295
creating, 75-78
defined,362
determining menu and item selected,

245-249

editing, 82-83
editor window, 83-84
finding in resource files, 89
handling menu selections, 249-251
IDs, 70-71, 101
'MBAR' resources and, 86, 92-93
for MenuDrop program, 241
menus versus, 75
menus versus menu bars, 85-86
naming, 69
ordering menus on menu bars,

91-92,292
previewing, 82
pulling down menus, 243-245

menu Ba rHandl e data type, 339
MenuDrop program

'MBAR' resources, 241
'MENU' resources, 241
source code, 251-253
'WIND' resources and, 240

menuHa nd le variable, 297
menus. See also Apple menu; 'MENU'

resources
adding the Apple menu, 289-303
adding to menu bar, 89-91
capabilities of, 18-19
data types, 339
defined,362
determining menu and item selected,

245-249,300-301
displaying, 276
DOS versus Macintosh, 31-32
Handle data type, 339
handling selections, 249-251, 297-302
highlighting menu names, 248-249
initializing, 209
menu bars versus, 85-86
'MENU' resources versus, 75

_______________ l,ndex 391
MenuDrop program, 251-253
ordering on menu bar, 91-92, 292
overview, 15
pull-down menus, 15
pulling down, 243-245
separator lines, 80, 302
Toolbox functions, 348-349

MenuSel ect function
Animator program, 277-278
capabilities of, 245
overview, 326-327, 348-349

Metrowerks CodeWarrior. See
CodeWarrior Limited Version;
CodeWarrior Professional

MHz (megahertz), 34
mice. See mouse
microprocessors, 34, 36, 361
Microsoft Windows, 13, 22, 25
miniprograms. See functions
minus sign (-) as subtraction operator,

166,339-340
monitors of iMac computers, 35
mouse. See also events; mouseDown

events
names for clicks in windows, 232-233
overview, 14-15
Toolbox functions, 347-348

mouseDown events
in Animator program, 276-277
defined,224
handling,224-226,347-348
i nDrag events, 232-233, 234-238,

239-240
i nGoAway events, 232-233, 238-240
i nMenuBa r events, 232-233, 243-245,

277-278
locating, 325-326
Toolbox functions, 34 7-348

Move Square animation
Animator program, 257, 282-283
changing the loop, 289
changing the timing, 288

Move To function
coordinate system for parameters,

190-193
overview, 350
parameters, 183-184

Movie Toolbox, 366-368
movies, 365-371

Movie Toolbox, 366-368
QuickMovie program, 368-371
QuickTime, 365-366

MoviesTaskfunction,368
MPW (Macintosh Programmers

Workshop),47, 107
MS-DOS, 12. See also DOS
multimedia

defined,35
iMac computer features, 35-36
SightAndSound program, 303-313

multiplication operator, 167, 339-340
MyMenu

Beep Me! menu item, 251, 279
Grow Square menu item, 256-257,

279-282
'MBAR' resource, 265-267
'MENU' resources, 264-267
Move Square menu item, 257, 282-283
overview, 256-257
Quit menu item, 257, 283

MyProgram program, 205-226
drawing rectangles around text,

211-217
eventloop,218-226
initializing the Toolbox, 208-210
source code, 205-206
window processes, 210-217

3 9 2 Mac Programming For Dummies, 3rd Edition

Name new project as: dialog box, 111
naming

programs,51-52,284-286
projects, 111, 112
resource files, 72
resource IDs, 70-71
resource types, 69
source code files, 124-125
variables, 162-163, 337
Wi ndowPt r variables, 199

New Folder command (CodeWarrior), 109
New Project command (CodeWarrior),

109-110
New Project dialog box, 110
NewMovi eFromFi le function, 367
newsgroups for programmers, 107,

148,360
ni 1 . GetNewWi ndow parameter, 188
number line, 190

•O•
object code, 24-25
offensive code, 136, 137
OffsetRect function, 282
On the CD icon, 8
one-minute program, 49-58

blank lines, 56-57
displaying a window, 53-54
ending the program, 55-56
initialization, 52-53
main function, 56
naming, 51-52
overview, 50-51
source code, 50, 52
Toolbox functions, 57-58
writing to a window, 54-55

128 ID number, 70, 71, 273-274
OpenDeskAccfunction,301-302
opening. See also displaying; launching;

running source code
Apple menu items, 301-302
movie files, 367
projects, 121-122
resource files, 85-86, 94
source code files, 128-129
windows, 210, 346

OpenMovieFilefunction,367
OpenWi ndow function, 311-312
operating system, 3, 362
operators, 163-168,339-341

addition, 164-165, 339-340
assignment, 163
comparative operators, 171-172,

340-341,361
defined,362
division, 167-168, 339-340
with floating-point numbers, 168
math operators, 164-168, 339-340
multiplication, 167, 339-340
operator precedence, 168
subtraction, 166, 339-340
using together, 168

order
for declaring and assigning, 155-156
for menus on menu bars, 91-92, 292

ovals, drawing, 352

•P•
\ p before strings, 211, 332
parameters of functions

& (ampersand) in, 332-333
defined,363
overview, 182-183

_______________ Index 393
Pascal, 149
Paste command, adding to menus, 81
patterns for Fi 11 Rect function, 230, 351
PCs (personal computers), 13
'PICT' resources, 305-306
picture program. See SightAndSound

program
pixels, 98, 193, 363
placeholder files

removing, 320, 321-322
SillyBalls files, 113, 114, 126

placement. See location
playing movies, 365-371
plus sign (+) as addition operator,

164-165, 339-340
pop-up menus, 363
ports

current or active, 215
defined, 199,363
drawingto, 198-202,350
naming Wi ndowPtr variables, 199
need for, 198-199
pointers to, 199-200
setting, 199, 201-202

position. See location
PowerPC processors, 36
precedence of operators, 168
Preferences command (CodeWarrior),

284-286
previewing resources, 82
processors,34,36,361
programmers

intimidating vocabulary of, 37
newsgroups for, 107, 148, 360

programming
common tasks, 18
Macs versus DOS, 21, 22, 25-32
Macs versus Windows, 25
one-minute program, 49-58

for PowerPC processors, 36
reasons for, 1-2
resources and, 63-65

programming examples on CD, 3
Animator program files, 256, 258
Animator Apple program files, 303
EventTest program files, 227
MenuDrop program files, 252
MyProgram program files, 206

programming languages. See also C lan-
guage

proliferation of, 149-150
reasons for choosing C, 147-149
spoken languages versus, 23
types of, 23-24

programs
Animator program, 255-286
Animator Apple program, 289-303
basic steps, 317-322
building, 138, 139, 140
CodeWarrior icon, 108
creating different programs from same

project, 119
defined,43
event-driven, 218
EventTest program, 226-230
ExampleOne program, 49-58
installing program example files, 378
launching, 142-143
Mac versus others, 24
Make command (CodeWarrior) for,

46-48
MenuDrop program, 240, 241, 251-253
MyProgram program, 205-226
naming, 51-52, 284-286
QuickMovie program, 368-371
quits immediately when running,

357-358
SightAndSound program, 303-313
source code versus, 24
steps to create, 48

3 9 !, Mac Programming For Dummies, 3rd Edition

project file. See also projects
adding files, 116-119, 319-320
adding source code files, 125-127, 321
creating, 109-113, 127-128, 318
defined,363
removing files, 119-120

project folders, creating, 108-109
Project menu (CodeWarrior)

Add Files command, 117
Add Window command, 126-127
Compile command, 46, 48, 132,

283,343
Make command, 46-48, 140
Run command, 138-139, 140, 141-142,

284,356
project stationary

68K stationery type, 259
selecting, 110

projects
68K stationery type, 259
adding files, 116-119, 319-320
adding source code files, 125-127, 321
Animator program, 259-260
creating, 109-113, 127-128, 318
creating different programs from same

project, 119
creating project folders, 108-109
files created by CodeWarrior, 113
launching CodeWarrior from project

icons, 121-122
libraries, 113
multiple source code or resource

files, 307
naming, 111, 112
opening, 121-122
overview, 108, 112
removing files, 119-120
SightAndSound program, 307

prototypes, function, 310-311, 355
pull-down menus. See menus
pulling down menus, 243-245
push buttons, 16

•O•
~

QuickDraw, 189-202, 350-352
coordinate system, 190-193
drawing lines, 193-195, 350
drawing rectangles, 195-198, 351-352
drawing shapes, 351-352
drawing to ports, 198-202, 350
moving to locations, 350
overview, 350-352
as part of the Toolbox, 189-190
troubleshooting, 359

QuickMovie program, 368-371
QuickTime, 365-366
Quit menu item, 257, 283

•R•
radio buttons, 16
RAM. See memory
real numbers. See floating-point numbers
reasons for programming, 1-2
recompiling, 137
Rect data type

ampersand (&)in variable name, 197
declaring Rect variables, 213
overview, 195-196

rectangles
adding to windows, 211-213
ampersand(&) in Rect variable

name, 197
correcting size of, 216-217

_______________ ,Index 395

defined,363
drawing, 195-198,327-328,351-352
drawing around text, 211-21 7
drawing solid rectangles, 230
erasing using EraseRect. 280
FrameRect function, 197-198, 351
Grow Square animation, 256-257,

279-282
Move Square animation, 257, 282-283
Rect data type, 195-196
SetRect function, 196-197, 327-328,

351-352
relational operators. See comparative

operators
removing

erasing rectangles using
EraseRect, 280

files from projects, 119-120
movies from memory, 368
placeholder files, 320, 321-322
text using Fi 11 Rect, 230

ResEdit, 67-84. See also resources; spe-
cific types of resources

adding a 'MENU' to and 'MBAR,' 89-91
adding to resources, 78-81
changing resource IDs, 291-293
creating resource files, 71-72, 318-319
creating resources, 75-78
editing resources, 78-81, 82-83
editor windows, 7 4-75, 83-84
installing, 377-378
Jack-in-the-Mac introductory

screen, 71-72
launching from CodeWarrior, 114, 318
previewing resources, 82
reasons for choosing, 68
resource IDs, 70-71
resource picker windows, 7 4
resource types, 69

saving your work, 88
type picker window, 72-73

resource files
adding 'MBAR' resources, 87-88
adding to projects, 116-119
adding 'WIND' resources, 94-96, 116
for Animator program, 260-262
creating, 71-72, 115, 318-319
missing or incomplete, 284
multiple files per project, 307
naming, 72
opening, 85-86, 94
overview, 65
removing placeholders, 320
resource IDs in, 70-71, 101,273-274
SillyBalls.rsrc, 114-115
troubleshooting, 329-330

resource IDs
128 ID number, 70, 71, 273-274
in Animator program, 273-27 4
changing resource IDs, 291-293
overview, 70-71, 89, 101

Resource menu (ResEdit)
Create New Item command, 79-80
Create New Resource command,

75-77, 79
Insert New Field(s) command, 90

resource picker (ResEdit)
viewing, 89
windows, 74

resources, 61-66. See also ResEdit; spe-
cific types of resources

adding to, 78-81
Apple menu, 291-296
case-sensitivity, 69
changing IDs, 291-293
creating, 75-78
creating resource files, 71-72
editing, 78-81, 82-83

(continued)

3 9 6 Mac Programming For Dummies, 3rd Edition

resources (continued)
file for, 65
IDs, 70-71, 101,273-274
importance of, 62-63
!nterface parts defined by, 61-63
MBAR' resources, 85-93
'MENU' resources, 70-71,

75-84, 89-93
minimum required, 100-101
'PICT' resources, 305-306
pictures as, 305-306
previewing, 82
programming and, 63-65
'snd' resources, 305, 306
sounds as, 305, 306
source code and, 65-66
types, 69
'WIND' resources, 69, 93-101

return type of functions, 207
return values

non-numeric, 185-186
numeric, 184-185

rewinding movies, 367-368
Ritchie, Dennis, 149
routines. See functions
rules for source code, 39-42
Run command (CodeWarrior), 138-139,

140, 141-142,284,356
running source code, 137-142, 322. See

also launching
Animator program, 284
compiling versus, 134
errors when recompiling, 356
flickering alert, 357
frozen Mac, 357
link failed errors, 35 7
nothing happens, 356
program quits immediately, 357-358
rerunning, 141-142
troubleshooting, 356-359
windows not getting drawn to, 359

Save As command (CodeWarrior), 124
Save command

CodeWarrior, 124
ResEdit, 88

saving
importance of, 88
from ResEdit, 88
source code files, 123-125, 321

Select New Type dialog box, 76-77
selecting

handling Animator menu selections
249-251 '

handling Apple menu selections,
297-302

project stationary, 11 O
semicolons (;), troubleshooting, 330-331
separator lines

adding to menus, 80
as inactive items, 302

SetMenuBa r function, 242-243, 325, 348
SetMovi eBox function, 367
SetMovieGWorldfunction,367
Set Po rt function

current or active port, 215
need for, 201-202
overview, 324, 352
setting ports, 201
single window and, 201-202

SetRect function
Animator program, 279, 280
drawing rectangles around text,

211-213, 216-217
erasing text by drawing

rectangles, 230
order for coordinates, 197

_______________ Index 397
overview, 327-328, 351-352
parameters, 196-197

shapes,drawing,351-352
short data type

int data type versus, 157
long data type versus, 157
overview, 157
for window event variables, 234-235

SightAndSound program, 303-313
File menu, 305
function prototypes, 310-311
OpenWi ndow function, 311-312
overview, 304-305
'PICT' resources, 305-306
project, 307
'snd' resources, 305, 306
source code, 307-310

SillyBalls files, 113, 114, 126
removing, 320, 321-322

Simon, Richard, 25
single quotes (') for resource types, 69
68K Debug MacOS Preferences dialog

box, 284-286
68K project stationery type, 259
size

changing initial window size, 96-98
correcting rectangle size, 216-21 7

slash(/)
for comments, 162
as division operator, 167-168, 339-340

'snd' resources, 305, 306
sound program. See SightAndSound

program
Sound Retrieval System (SRS), 36
sound system of iMac computers, 36
Sounds menu, 305
source code, 38-43. See also C language;

compiling
abbreviations in, 38-39
adding files to projects, 125-127, 321

for Animator program, 269-283
for Apple menu, 296-302
blank lines, 56-57, 136
blocks of code, 1 70
bracesin,56,208
building programs from, 138, 139, 140
.c files, 124-125
changing, 141-142
CodeWarrior icon, 108
CodeWarrior text editor and, 107-108
comments, 161-162
compiling, 131-137, 322
conventions in this book, 5, 49-50
creating Animator program file,

267-268
creating files, 122-123, 267-268, 320
defined,5,22,38,363
efficient, 209, 210
entering, 129-130, 322
Errors & Warnings window

(CodeWarrior), 133, 135-137,
283, 354-356

EventTest program, 226-227
ExampleOne program, 50, 52
experimenting with existing

code, 288-289
instructions or statements, 42
MenuDrop program, 252-253
multiple files per project, 307
MyProgram program, 205-206
naming files, 124-125
offensive, 136, 137
opening files, 128-129
overview, 22-23
programs versus, 24
project folder for, 108-109
projects, 109-113
QuickMovie program, 368-371

(continued)

J 9 8 Mac Programming For Dummies, 3rd Edition

source code (continued)
recompiling, 137
removing placeholders, 321-322
resources for, 65-66
routines or functions, 42-43
rules for, 39-42
running, 137-142,322
saving files, 123-125, 321
SightAndSound program, 307-310
SillyBalls.c file, 126
terminology, 42-43
as text files, 43-45, 122-123, 125
white space in, 165
WindowWorks program, 239-240

speakers of iMac computers, 36
SRS (Sound Retrieval System), 36
starting. See launching; opening; running

source code
Sta rtMov i e function, 368
statements

branching statements, 174-180,
342-344

compound statements, 170
defined,42
looping statements, 169-174, 341

strings, 363. See also DrawSt ring
function; text

subtraction operator, 166, 339-340
s w i t ch statements

Animator event loop, 276-279
AnimatorApple event loop, 298-302
break statements in, 178-179, 334
case labels, 177-179
comparing variable values, 177-178
event loop for closing windows,

238-240
event loop for dragging windows,

235-238,239-240
EventTesteventloop,228-230

handling menu selections, 249-251
MyProgram event loop, 223-226
overview, 176-179, 342-343
troubleshooting, 334
WindowWorks event loop, 239-240

syntax errors. See Errors & Warnings
window (CodeWarrior);
troubleshooting

Sys Beep function, 251, 279, 299
system bus of iMac computers, 35
system requirements, 2-3

•T•
Technical Stuff icon, 8
TE I n i t function, 209
text. See also Draw St r i n g function

drawing, 183, 191-193,211,327,352
drawing rectangles around, 211-217
location of start, 191-193
\ p before strings, 211, 332
removing using Fi 11 Rect, 230

text boxes, 16
text editors

CodeWarrior, 107-108
initializing, 209
source code and, 43-45

text files, source code as, 43-45,
122-123, 125

Thompson, Ken, 149
timing, changing for animations, 288
Tip icon, 8
title bar, clicks in, 232-238, 239-240
Toolbox functions, 181-188. See also

functions; initialization; QuickDraw;
specific functions

assignment operator with, 185
basic functions, 323-328, 345-352

_______________ Index 399
calling, 57-58
defined,363
for events, 345-346
GetNewWi ndow example, 185-188
initialization functions, 208-210,

323-324,345
for menus, 348-349
for mouseDown events, 347-348
need for, 181-182
overview, 57
parameters, 182-183
QuickDraw, 189-202, 350-352
reference, 345-352
return values, 184-186
for windows, 346-34 7

troubleshooting
ampersand (&) in function

parameters,332-333
braces ({}), 330, 354-355
break statements, 334
caseincorrect,331
common mistakes, 329-334
compiling troubles, 353-356
declaration syntax errors, 354
DrawStri ng function, 332
Errors & Warnings window

(CodeWarrior), 133, 135-137,
283,354-356

flickering alert, 35 7
frozen Mac, 357
incrementing loop counters, 333
initial variable values, 333-334
link failed errors, 357
newsgroups for programmers,

107, 148,360
nothing happens when running

source code, 356
other errors, 359-360

program quits immediately, 357-358
resource file missing or

incomplete, 284
resource files, 329-330
running source code, 356-359
semicolons (;), 330-331
switch statements, 334
windows not getting drawn to, 359

true, wh i 1 e test result, 170
type picker window (ResEdit), 72-73
types. See data types
typing in source code, 129-130, 322

•U•
unsigned variables, 281-282
update events, 302
updateEvt event, 302 . (/•
values

assigning to variables, 154-156, 160,
164, 165-166, 172,338

changing assigned values, 172
comparing variable values, 177-178
initial variable values, 333-334
return values, 184-186

variables, 152-156
in Animator program, 27 4-275
in Animator Apple program, 296
assigning values, 154-156, 160, 164,

165-166, 172,338
changing assigned values, 172
comparing values, 177-178

(continued)

f1' 00 Mac Programming For Dummies, 3rd Edition

variables (continued)
declaring, 154-156, 159-160,

274-275,296,337
defined,40,363
examples, 159-160
incrementing, 172-17 4, 333
initial values, 333-334
naming, 162-163, 337
order for declaring and assigning,

155-156
overview, 152-154, 337-338
in switch statements, 177-178
unsigned variables, 281-282

viewing. See also displaying
previewing resources, 82
resource picker, 89

Wai tNext Event function
Animator program, 276
AnimatorApple program, 297
in event loops, 223, 225-226
overview, 221-223, 325, 346

Warning! icon, 8
warnings. See Errors & Warnings window

(CodeWarrior); troubleshooting
what. with Event Record data type, 221
where, with EventRecord

data type, 221
wh i 1 e statements

Animator event loop, 276-279
AnimatorApple event loop, 298-302
body of loop, 173
comparative operators, 171-172,

340-341
event loops, 218-219, 223-226,

228-230

EventTesteventloop,228-230
incrementing variables, 172-174, 333
infinite loop, 17 4
MyProgram event loop, 223-226
overview, 170-174, 341
tests and results, 171
WindowWorks event loop, 239-240

white space in source code, 165
whole numbers

data types, 156-157,338
defined,38

'WIND' resources, 93-101. See also
windows

adding to resource files, 94-96, 116
for Animator program, 262-264
defined,363
editor window, 95
as GetNewWi ndow parameter, 187-188
IDs, 101
initial window location, 96-98
initial window size, 96-98
look of windows, 98-100
MenuDrop program and, 240
naming, 69
opening windows, 210

(Wind ow Pt r) -1 L parameter, 188
Wi ndowPtr data type

declaring variables, 199-200, 210
naming Wi ndowPt r variables, 199
overview, 338-339
return value for, 185-186
Set Port function with, 201-202, 352

Windows 95 Programming For
Dummies, 25

Windows 98 Programming For
Dummies, 25

_______________ Index t,,O 1
windows. See also 'WIND' resources

adding rectangles, 211-213
capabilities of, 19, 31
closing, 232-233, 238-240, 346-34 7
coordinate system, 97, 190-193
creating, 94-96
data types, 338-339
defined,363
dialog boxes versus, 16
displaying, 53-54, 242, 276, 324, 346
dragging by title bar, 232-238,

239-240,347
editor (ResEdit), 74-75, 83-84
initial location, 96-98
initial size, 96-98
initializing, 184
linking with movies, 367
look of, 98-100
mouse events in, 232-233
not getting drawn to, 359
opening, 210, 346
overview, 14
pointers to, 199-200
ports, 198-199
programmer responsibilities, 30-31
resource picker (ResEdit), 74
Toolbox functions, 346-34 7
type picker (ResEdit), 72-73
writing to, 54-55, 210-211

Windows (Microsoft), 13, 22, 25
WindowWorks program, 239-240
word processors, source code and,

43-45
writing to windows, 54-55, 210-211

lJ 0 2 Mac Programming For Dummies, 3rd Edition

IDG Books Worldwide, Inc.,
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book ("Book"). This is a license agree­
ment ("Agreement") between you and IDG Books Worldwide, Inc. ("IDGB"). By
opening the accompanying software packet(s), you acknowledge that you have
read and accept the following terms and conditions. If you do not agree and do not
want to be bound by such terms and conditions, promptly return the Book and
the unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. IDGB grants to you (either an individual or entity) a nonex­
clusive license to use one copy of the enclosed software program(s)
(collectively, the "Software") solely for your own personal or business pur­
poses on a single computer (whether a standard computer or a workstation
component of a multiuser network). The Software is in use on a computer
when it is loaded into temporary memory (RAM) or installed into perma­
nent memory (hard disk, CD-ROM, or other storage device). IDGB reserves
all rights not expressly granted herein.

2. Ownership. IDGB is the owner of all right, title, and interest, including copy­
right, in and to the compilation of the Software recorded on the disk(s) or
CD-ROM ("Software Media''). Copyright to the individual programs recorded
on the Software Media is owned by the author or other authorized copyright
owner of each program. Ownership of the Software and all proprietary rights
relating thereto remain with IDGB and its licensers.

3. Resbictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub­
scriber system or bulletin-board system, or (iii) modify, adapt, or
create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a perma­
nent basis, provided that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies. If the Software
is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in
Appendix F of this Book. These limitations are also contained in the individ­
ual license agreements recorded on the Software Media. These limitations
may include a requirement that after using the program for a specified
period of time, the user must pay a registration fee or discontinue use. By
opening the Software packet(s), you will be agreeing to abide by the licenses
and restrictions for these individual programs that are detailed in Appendix
F and on the Software Media. None of the material on this Software Media or
listed in this Book may ever be redistributed, in original or modified form,
for commercial purposes.

'5 Mac Programming For Dummies, 3rd Edition. ___________ _

5. Umited Warranty.

(a) IDGB warrants that the Software and Software Media are free from
defects in materials and workmanship under normal use for a period
of sixty (60) days from the date of purchase of this Book. If IDGB
receives notification within the warranty period of defects in materials
or workmanship, IDGB will replace the defective Software Media.

(b) IDGB AND THE AUTHOR OF THE BOOK DISCLAIM AU OTHER
WARRANTIFS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITA­
TION IMPLIED WARRANTIFS OF MERCHANTABIU1Y AND mNFSS
FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE,
THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN,
AND/OR THE TECHNIQUFS DESCRIBED IN THIS BOOK. IDGB DOES
NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) IDGB's entire liability and your exclusive remedy for defects in materi­
als and workmanship shall be limited to replacement of the Software
Media, which may be returned to IDGB with a copy of your receipt at
the following address: Software Media Fulfillment Department, Attn.:
Mac Programming For Dummies, 3rd Edition, IDG Books Worldwide,
Inc., 7260 Shadeland Station, Ste. 100, Indianapolis, IN 46256, or call
800-762-297 4. Please allow three to four weeks for delivery. This
Limited Warranty is void if failure of the Software Media has resulted
from accident, abuse, or misapplication. Any replacement Software
Media will be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer.

(b) In no event shall IDGB or the author be liable for any damages whatso­
ever (including without limitation damages for loss of business profits,
business interruption, loss of business information, or any other pecu­
niary loss) arising from the use of or inability to use the Book or the
Software, even if IDGB has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation
or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software by the U.S. Government is subject to restrictions stated in para­
graph (c)(l)(ii) of the Rights in Technical Data and Computer Software
clause of DFARS 252.227-7013, and in subparagraphs (a) through (d) of the
Commercial Computer-Restricted Rights clause at FAR 52.227-19, and in
similar clauses in the NASA FAR supplement, when applicable.

8. General. This Agreement constitutes the entire understanding of the parties
and revokes and supersedes all prior agreements, oral or written, between
them and may not be modified or amended except in a writing signed by
both parties hereto that specifically refers to this Agreement. This
Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement
are held by any court or tribunal to be invalid, illegal, or otherwise unen­
forceable, each and every other provision shall remain in full force and effect.

Installation Instructions
The Mac Programming For Dummies CD-ROM contains software and
files you can use to learn how to program your Mac. The installation
instructions for each of these tools is too long to summarize here.
For installation instructions for the programs and files, just turn to
Appendix F at the end of this book.

Discover Dummies™ Online!
The Dummies Web Site is your fun and friendly online resource for the latest informat ion
about ... for DummieB~ books on all your favorite topic5. From car5 to computen:;, wine to
Windows, and investing to the Internet, we've got a shelf full of .. .for Dummies books

waiting for you!

Ten Fun and Useful Things You Can Do
at www.dummies.com

1. Register this book and win!

2. Find and buy the .. .For Dummies books you want online.

3. Get ten great Dummies Tips™ every week.

4. Chat with your favorite .. .For Dummies authors.

5. Subscribe free to The Dummies Dispatch™ newsletter.

6. Enter our sweepstakes and win cool stuff.

7. Send a free cartoon postcard to a friend.

8. Download free software.

9. Sample a book before you buy.

10. Talk to us. Make comments, ask questions,

and get answers!

Jump online to these ten
fun and useful things at

http://www.dummies.com/10useful
For other technology citle6 from IDG Book6 Worldwide, go to

www.idgbooks.com

Not on line yet'? It's easy to get started with The Internet for Dummies~ 5th Edition,
or Dummies 101~: The Internet For Windows~ 98, available at local retailers everywhere.

~· ::::;;;;;
IDG
BOOKS
wotl.D'WIDl

Find other ... For Dummies books on these topics:
Business• Careers• Databases• Food & Beverages• Games• Gardening• Graphics• Hardware

Health & Fitness• Internet and the World Wide Web • Networking• Office Suites
Operating Systems• Personal Finance• Pets• Programming• Recreation• Sports

Spreadsheets• Tea cher Resources• Test Prep• Word Processing

The IOG Books Wor1dwide logo is a registered trademarl< under exclusive license to IOG Books Worldwide, Inc., from International Oata Group. Inc.
Dummies lips, the ... For Dummies logo, The Dummies Dispatch, and Dummies are trademarks, and Dummies Man, __ For Dummies, -For Dummies,

and Dummies 101 are registered trademarks of IOG Books Worldwide, Inc. All other trademarks are the property of their respective owners.

lt)G BQOKO WORLDWIDi
BOOK RE.GIOTRATION

We Want to hear
from IJ.OU!

Visit http://my2cents.dummies.com to register this book and tell us
how you liked it!

111" Get entered in our monthly prize giveaway.

111" Give us feedback about this book - tell us what you like best,
what you like least, or maybe what you'd like to ask the author
and us to change!

111" Let us know any other ... For Dummies® topics that interest you.

Your feedback helps us determine what books to publish, tells us what
coverage to add as we revise our books, and lets us know whether
we're meeting your needs as a ... For Dummies reader. You're our most
valuable resource, and what you have to say is important to us!

Not on the Web yet? It's easy to get started with Dummies JOJ®: The
Internet For Windows® 98 or The Internet For Dummies~ 5th Edition, at
local retailers everywhere.

Or let us know what you think by sending us
a letter at the following address:

.. . For Dummies Book Registration
Dummies Press
7260 Shadeland Station, Suite 100
Indianapolis, IN 46256-3945
Fax 31 7-596-5498

BPSl'SELLOO
BOOK SERIES

The Mac 1$ t.a4! With the succeu of the
iMac and the power of high~d Macs,
new Mac software programs are once
again in demand Whether you're a
programming wannabe or a veteran
developer, MaCt Programming For
JJunrmks9, 3rd Edition gives you ea.sy­
to-understand, up-to-date guidance on
Mac programming basks, compilers,
programming languages, code writing,
and more. So start creating new
Mac OS 8.5 applications today -
the fun and easy way!

Inside, find helpful advice
on how to:
• Compile and run Mac source axle easily

with CodeWarrior Lite

• Understand why programming for the
iMac is different

• Create menus that drop and windows that
move - quickly and easily

• Avoid the most common Mac programming
mistakes

• Become fluent in C, the most important
Mac programming language

• Use ResEdit to edit 'MBAR' and 'WIND'
resources

• Discover Dan Parks Sydow's debugging
secrets - and get your programs up and
running faster

Your Gulde to Creating Softwa'e
fol' the Mac - Cov81S 'Rlrough OS 8.5

Let These Icons Gulde You!

Hilhl&hts nerdy technical
discussions you can skip If
you Wint to

..... you unique
MIC t1111•1C11au nl concepts

About the Author
Dan Parks Sydow is the author of previous
editions of Ma~ Programming For D11mmi~ as
well as Ma~ OS 8 For Dummies Quick Reference
and 77ze Internet For Maese For Dummi~ Quick
Reference. Dan holds a degree in software
engineering and has worked on a variety of
software projects for Macintosh computers.

~ Technical Review
~ by DenNs Cohen

Mac Is a registered trademark of Apple Computer. Inc

The IDG Bool<s Wor1dwidt logo Is 1 r1g1stertd trademark under
excluSMI locense to IDG Books Wor1dwode, Inc . from International
D1t1 Group, Inc The Fun and Easy Way, Dummies Press and the

For Dummies logo are tridemarl<s, and Dummies Man. ·••• For
Dummies. A Reltrence tor the Rest of Us!. Your First Alcl Krt. and For
Dummies are regostered trademarl<I ol IDG Books Wor1dwode, Inc.

Prtnted 1n the U S A

Valuable
Bonus
CO.ROM
Includes:

• CodeWarrtor Ute -
Limited version of
Metrowerks CodeWarri
compiler software

• ResEdlt - Resource
editing software by
Apple Computer, Inc.

• Source code and
examples from the boo

.._ ~,....__,..,_,..... ... ~ ,, • ..,,,Pea.,. .. _ ... _,
-- 1111:c..-•-•1J
MmMll;m.D
1111• ...

ISBN 0-7645 - 0544-(

7 7

lllADEll LIVEl.
h~nnlllC to lnt-.cllllt•

DummJes rrw· ·-ol IDG-Wor1dwlclt,ln<
llll'SlDG An lntdNUONI
1001.Sllll! 0.0J Group Com pony

.tte .U• t
..... UIA www.dummies.com
Ml.II c..a,/a&ll llllL VAT.. f0< tnro • • oth<r 100 looks llUo: ._ _________ ___. www.l~books.com

5 2 9 9 ~

9 780764 505447

