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Preface 
Artificial Intelligence (Al) has fascinated me from the first time I heard about it. 
My first exposure to it came on a tour of the Stanford Artificial Intelligence Labo
ratory (SAIL). I was entranced at the work the people at SAIL were doing with 
computer music generation, robotics, and problem-solving. This book is the 
beginning of the fulfillment of my intense desire to be part of what is happening 
in that community. 

I also wanted this book to fill what seemed to me to be a rather large gap in 
the literature of Al. I have searched fruitlessly for a book that did not assume the 
reader was already knowledgeable about programming in an esoteric language 
such as LISP and aware of such fundamental computer science ideas as heuris
tics and search mechanisms. I hope this book takes a small step toward filling 
the need of interesting more and more people in the field of Al. 

Few would argue with the proposition that Al is the next frontier in the 
world of computers. In the past two years, real Al development tools and lan
guages have become available on microcomputers, making hands-on experi
mentation with and exploration of this fascinating field accessible to millions 
who otherwise would have had to content themselves with reading about the 
subject. 

The growing importance of Al is enough of a practical reason for you to 
spend your time reading this book, examining the programs it contains, and 
exploring Al with the book as a guide. But the value of learning more about 
intelligence-artificial or natural-transcends even the practical benefit of learn
ing about a field that promises to have a tremendous impact on our daily lives. 

Who This Book Is For 

On one level, this is an introductory book about Al programming techniques. To 
read the first part of each chapter in Part I and all of Part II requires no program
ming background in particular, though a nodding acquaintance with some of 
the basic ideas of computers and programming would be useful. On another 
level, the book abounds with examples and complete Al programs written in 
ExperLogo® from ExperTelligence of Santa Barbara, California. To make full use 
of these programs, you should have some Logo programming knowledge 
(though Chapter 10 may give you enough of an introduction to the language), 
access to an Apple Macintosh® computer, and a copy of ExperLogo®. 
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viii I Al Programming on the Macintosh 

If you use ExperLogo® on your Macintosh®, you'll also find that an external 
drive is extremely helpful and a printer almost a requirement. 

Two Decisions 

Two aspects of this book deserve an explanation. Why did I focus on the 
Macintosh® and why did i choose Logo as the principal language? 

The Mac, with its desktop, icons, and windows, comes closer to what most 
Al researchers view as a "rich and supportive" programming environment than 
any other machine on the market. As you program the examples in this book, 
you will be doing so in an environment that is quite similar to that enjoyed by 
professional Al workers. In addition, the Mac is fun to use and seems more 
accessible to those new to computers than any other computer. 

Logo is an excellent compromise selection between LISP, which is clearly 
the Al language of choice but is difficult to learn and not readily available on the 
Mac, and BASIC, which is far more available but not well suited to Al program
ming. I deal with the issue of language selection at some length in Part II of this 
book. 

Besides, Logo is easy to learn and is gaining increasing acceptance in the 
educational community as a superb language for the exploration of new ideas. 
And that is precisely what I wish for you: exploration of new ideas. 

DAN SHAFER 
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At its root, the difficulty with Artificial Intelligence (Al) as a discipline is the lack 
of a good definition of the key word, "intelligence." We think we know what 
we mean when we say a particular person, animal, or thing exhibits intelligence. 
But think of each of the following scenarios and ask yourself whether intelli
gence is involved in any. 

Scenario 1. A man and a woman sit across a table from each other. On the 
table chess pieces are arrayed on a chessboard. A glance reveals no particular 
pattern to the arrangement of the pieces. You watch the scene for 15 minutes 
and neither player moves a piece. 

Scenario 2. Same setting as the first, except that you've now watched for 15 
minutes and 1 second and the woman picks up one of her pieces and moves it a 
few squares. The move follows the rules for how that particular piece should be 
moved, but the move is not a very good one. 

Scenario 3. One person is in the room with a chessboard and pieces in 
front of him. Off to the side, a small computer displays the chessboard and 
pieces on its screen. The screen reads out a move, "Rook to Queen's Rook 5." 
The move follows the rules for how a rook should be moved, but the move is 
not a very good one. 

Scenario 4. You are in a small laboratory. A white rat is placed in the center 
of a complex maze. In less than 30 seconds, it finds its way to the center of the 
maze, gets some food, and finds its way back out. You are convinced that, faced 
with a maze of similar complexity, you'd be awfully hungry before you found 
the food. 

Scenario 5. Same maze, different rat. This rat goes into the maze and blun
ders about for 10 minutes, getting no closer to the food, and running down the 
same blind alley several times. 

Scenario 6. A mechanical rat is placed into the same maze. In less than 15 
seconds, it finds its way to the center of the maze, presses a button, and exits the 
maze without making a single wrong turn. 

We could go on. But you probably get the idea. Intelligence is difficult to 
relate to in the abstract; instead, we tend to think of it in terms of behavior. And, 
though we talk about our species as intelligent, our intelligence doesn't pre
clude our doing some things that require little or no intelligence, or are just plain 
dumb. Similarly, you may not believe a rat could ever achieve intelligence, but 
the behavior of the rat in Scenario 4 certainly has some of the characteristics of 
intelligence. 

In Scenario 1, you may have concluded that the people were intelligent, 
even though they did nothing during your period of observation. They were ob
serving a complex situation with apparent understanding. Perhaps you thought 
that chess is a difficult game and figured that anyone who could understand the 
game and concentrate that hard upon a single move had to be intelligent. But 
you didn't really know that, did you? It's possible that the players had gone to 
sleep-or were mannequins! 

The point is, we can define intelligence by looking at specific behaviors, 
tangible or presumed, and drawing conclusions. In other words, we can discuss 
intelligence in the specifics, but in the abstract it is a difficult subject, one which 
continues to elude meaningful definition. 

Two interesting points derive from this brief discussion. 
First, intelligence quite often appears to be largely a matter of problem

so/ving. Chess players are trying to solve a problem-finding the best move from 



What Makes a Program Intelligent? I 5 

a huge array of possible and legal ones. The rats in the maze are trying to solve a 
problem-finding the right path to the food. Alternatively, we could think of 
these expressions of intelligence in terms of goal attainment. The chess players 
have a goal of victory and the rats a goal of satisfying hunger. Both ways of look
ing at intelligence are valid, up to a point, and they encompass a great deal of 
what we think of as intelligent. Neither presents a complete or comprehensive 
view of the subject, however. 

The second point is that intelligence is a concept here, not a measurement. 
Even a dumb chess move requires intelligence to make. Thus we are not con
cerned with whether the behavior involved is "wise" or "fruitful," only that it 
exhibits "intelligence." 

What Has This to Do with Programs? 

This book is only indirectly about intelligence in the abstract. My purpose is to 
enable you to use your Macintosh® to explore the fundamental ideas involved 
in artificially intelligent computer programs. So why spend time discussing an 
abstract, or noncomputer, definition of intelligence? I do so because defining a 
program as intelligent is as difficult as trying to define intelligence in humans or 
laboratory animals. Obviously I consider the programs in this book to be in 
some sense intelligent, or their inclusion here would be foolish, given our 
objective. 

So I've adopted a somewhat circular definition of intelligence which has 
been used by many researchers in the field of Al, even though it begs the under
lying philosophical question of what constitutes intelligence. 

For our purposes in this book, we will consider a program intelligent if it does 
something that we would feel exhibited intelligence if a human did the same 
thing. 

This definition spares us the niceties-and the tedium-of an extended les
son on the subject of intelligence and moves us into our main interest: writing 
programs to explore the ideas behind Al. The fact is, we don't have to write pro
grams that are indisputably intelligent, even by our broad definition, to explore 
some of the concepts underlying Al. 

Major Al Research Themes 

Research in Al has taken on greater emphasis and importance during the past 
few years and the field has undergone an inevitable segmentation. Today, Al 
work is concentrated in six major categories of discovery: search techniques, 
natural language processing (NLP), expert systems, pattern recognition, learning, 
and planning/problem-solving. 

We will now turn to a brief discussion of the subject matter and relative 
importance of each of these areas to gain a good foundation of understanding of 
Al, though our programs will not deal with all of these areas. 
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Search Techniques: Brute Force vs. Finesse 
There are many problems to which computers can be applied that involve the 
need to search through a number of possible solutions and come up with the 
best one, the only one, or any one that works. In fact, for a time many of those 
involved in Al research felt that the idea of search was the core on which all else 
would be built. The concept no longer enjoys such a lofty position, but its 
importance is not in doubt. 

There are dozens of design methods that permit Al programs to carry out 
searches. We will examine a small subset of those that have been proposed or 
tried. 

The most obvious and effective-but least efficient-search technique is 
called "brute force." Using this technique to solve the chess problem of which 
move to make, a computer program would look at every single legal move the 
computer could make at the time, every single response its human opponent 
could make, and perhaps every single countermove the computer could make. 
A value could then be assigned to each such "solution." Then the program 
could simply sort the results of this massive search into a list and pick the solu
tion with the highest value. 

This approach will obviously work. It is, in fact, applied by many computer
ized chess-playing programs. However, there are at least two fundamental prob
lems with this method. First, it can be extremely time and resource consuming. 
The design requires a great deal of memory, or disk capacity, for holding the val
ues of all the moves. There will be tens of millions of such moves in any given 
situation. Second, the brute force technique, as Margaret Boden (1977, 346) has 
pointed out, "relies on speed of computation, slavish adherence to some ex
haustive procedure, and faultless memory, as opposed to intelligent ways of 
minimizing thinking." In other words, the approach really isn't very intelligent 
or enlightening. 

Using a brute force method leads to something called the "combinatorial 
explosion." The number of possible points of solution increases geometrically as 
the number of "moves" or decisions increases. I'll have more to say about this 
when we explore specific solutions offered by our search-exploration programs. 
For now it is enough to know that brute force approaches seldom work well for 
any but the most trivial of problems, particularly in the world of microcom
puters. 

As a result of combinatorial explosion, Al researchers spend a great deal of 
time attempting to limit the search space of a problem-solving program. 

Broadly speaking, search strategies fall into the two major categories: 
depth-first and breadth-first. A "depth-first" search approach follows each possi
ble solution to its ultimate limit before turning to other possible solutions. A 
"breadth-first" approach examines all possible alternatives in a somewhat cur
sory fashion and decides on some basis which to follow first. At each level of 
complexity, a breadth-first approach looks at each possible next step before 
deciding how to proceed. 

Neither search strategy is inherently more efficient than the other. Which 
strategy will reach the desired goal sooner is a function of how far down the 
search "tree" the solution appears rather than a function of the strategy chosen. 

Figure 1-1 provides an example of how the two search strategies differ from 
one another. In that figure, we begin at the top of the search tree and place our 
goal-for example, the food at the center of the laboratory maze-at the point 
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labeled 7. A depth-first search approach moving down the search tree to the end 
of any given line of investigation and, for the sake of argument, always choosing 
the right-most path, would find the cheese before a breadth-first search. 

Figure 1-1. Depth-first search "defeats" 
breadth-first 

4 

II 

A depth-first search would follow the steps in this order: 1, 2, 3, 4, 3, 5, 3, 
2, 6, 7. A total of 10 steps would be required. A breadth-first search would fol
low the steps in this order: 1, 2, 9, 10, 11, 3, 6, 12, 13, 14, 4, 5, 7-a total of 13 
steps. But in Figure 1-2 we put the cheese goal at position 13. The depth-first 
search now goes through the following steps to find the goal: 1, 2, 3, 4, 3, 5, 3, 
2, 6, 7, 6, 8, 6, 2, 1, 9, 12, 9, 13-for a total of 19 steps. The breadth-first search, 
meanwhile, uses just 9 steps to reach the goal: 1, 2, 9, 10, 11, 3, 6, 12, 13. 

Figure 1-2. Breadth-first search turns the 
tables 

II 

Both search strategies will work with a goal-oriented problem-one in 
which we know where we are trying to go. But both lean more in the direction 
of brute force than in the direction of finesse. More intelligent search techniques 
apply principles from the field of computer science known as heuristics. 

Broadly understood, "heuristics" applies to a computer program being 
able to adjust its actions as it proceeds to carry out tasks. In other words, the 
program "learns" -at least in a rudimentary sense-which paths are likely to be 
fruitful and which are not. The concept of heuristic search is one in which infor
mation gained is used to explore the problem at various points. The points may 
be summarized as follows: 

1. Determining the "node," or decision point, to expand on next, rather than 
proceeding in either a depth-first or breadth-first order without regard to the 
situation. 
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2. Deciding which subsequent node to move to at a given decision point, 
rather than blindly following a right-left or left-right strategy. 

3. Discerning certain nodes as unprofitable and discarding them from the 
search tree completely-a process known, not surprisingly, as "pruning." 

Such searches are sometimes referred to as "ordered" searches. One ex
ample is the concept of a "best-first search" in which heuristics are used only at 
point 1 to determine which node to analyze next, choosing the most promising 
on some basis. 

One other search concept is worth mentioning. In game searches-in 
which an opponent tries to thwart the computer program's goal-the computer 
often uses an approach called "minmax" searching. The term comes from the 
fact that the computer, using such search techniques, tries to find a proper 
course of action, assuming that its opponent will attempt to minimize the com
puter's gain and that the computer will always find it advantageous to maximize 
its position. 

We will examine searching techniques as we study and explore two pro
grams: "Micro-Logician" (Chapter 3) and "Intelligent Maze" (Chapter 6). This 
last, a computer vs. human game, uses minmax search techniques. 

Natural Language Processing: Computer Understanding 

Many Al researchers argue persuasively that the fundamental characteristic of a 
truly intelligent program is that it can understand information fed into it. The 
problem is that this definition substitutes the difficult word "understand" in 
place of our initial difficult word, "intelligence." 

Dr. Roger C. Schank and his colleagues at the Yale University Artificial 
Intelligence Laboratory have become well known in Al circles for their strong 
emphasis on computer understanding. (One of Dr. Schank's books is the source 
for some of the programs and ideas contained in this book.) Getting computers 
to understand human language is clearly recognized in the Al community as a 
goal that is foundational to other Al research. The ultimate role of computer 
understanding will be to make the computer a supremely useful tool in many 
fields of human endeavor. 

The goal of natural language processing (NLP) is to design computer pro
grams that can process human speech patterns. ("Speech" refers to verbal 
communication-communication carried out by manipulation of meaningful 
symbols. Speech is used here in its broadest sense; in fact, the word almost 
always refers to nonoral communication. Voice and speech recognition are not 
formally part of Al, though the two disciplines are certain to be intertwined with 
NLP at some point in the future.) 

This goal is elusive, though we may be closer to reaching it than we are to 
reaching many other intermediate goals of Al. The fact is, however, that pro
grams that process human language at all, do so in a very limited fashion. Given 
the amount of miscommunication that goes on among human beings, it should 
not surprise us to find that communicating in "natural" language poses many 
problems and challenges. Take, for example, the simple sentence: "Mary 
walked up and kissed Kevin." 

We understand that this sentence means that a girl named Mary saw a boy 
named Kevin, walked to where he was, and pressed her lips against his lips (or 
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perhaps his forehead or his cheek?). But a computer, to understand this sen
tence, would have to know or be told: 

• that the phrase "walked up" does not imply an ability to climb walls or 
thin air; 

• that a kiss is something good and connotes a liking for the person being 
kissed; 

• that Mary is a girl's name and Kevin a boy's name and that kissing between 
members of the opposite sex has a particular connotation. 

In the absence of this information, the computer could not answer ques
tions about that sentence that humans wouldn't even have to think about. These 
questions might include: 

• Did Mary hate Kevin? 
• Was Mary standing close to Kevin when she kissed him? 

• Was Mary driving a car at the time? 

Designing a computer program that can understand human speech re
quires a great deal of design effort and energy. It also requires, so far at least, a 
willingness to limit things about which the computer will "know"-referred to 
as the system's "knowledge domain." It is far easier to teach a computer about 
the words and ideas involved in moving blocks around on a tabletop (as we do 
in Chapter 5, "Micro Blocks World") than to teach it about human emotions. 

One technique for discovering some of the ideas and problems behind NLP 
is to create programs which generate words, sentences, and poems. We have 
such a program in this book: "The Digital Poet" (Chapter 4). The "Micro Blocks 
World" program of Chapter 5 is a microcomputer version of a famous Al pro
gram called SHRDLU. Micro Blocks Worlds operates within a limited domain-a 
set of blocks of various sizes, shapes, and colors and the relationships among 
their surfaces. It understands English sentences that tell it what to do with those 
blocks. The program contains elements of search and decision-making, but its 
real attraction lies in an ability to process and respond to natural-language input. 

Expert Systems: Getting Advice from a Computer 
This major area of Al research combines a number of different areas. It is also, at 
the moment, the one aspect of Al that is producing commercial products and, as 
a result, the one about which many people have at least some knowledge. 
Expert systems are being touted as the next major thrust in microcomputer 
technology. 

An expert system can be thought of most simply as a computer program 
that offers advice based on its knowledge or experience in the field it is being 
questioned about. 

There are many expert systems, with many different designs, on the market 
and in the literature of Al. Commercial products which are now on the market, 
or soon will be, assist human decision-makers in such areas as the following: 

• commercial loan analysis and decision-making; 
• wine selection; 
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• disease diagnosis; 
• prospecting for mineral deposits; 
• tax and investment decisions. 

All expert systems have certain components in common. They have a 
knowledge base of information from which they draw conclusions and make 
recommendations. Many times, the knowledge base contains rules about, or 
examples of, decisions. Expert systems also have inference engines-programs at 
the heart of the systems-which enable the computer to analyze its knowledge 
base and determine what decision-making rules are being followed. In that way 
it can respond to the question being asked of it. The term "inference engine" 
refers to the fact that it draws conclusions from information (an inference is a 
conclusion drawn from facts). The term "engine" has long been used in com
puting circles to symbolize a somewhat stand-alone device or section of pro
gramming code which "drives" the program or system of which it is a part. 

We will look at two programs in the field of expert systems. Chapter 7 pre
sents an implementation, in Experlogo®, of the popular expert systems program
ming language, Prolog. The program is known as "Prologo" and it is capable of 
drawing some relatively sophisticated conclusions about knowledge bases we 
provide for it. It is completely functional and can be used as a model to create 
an expert system on any subject we wish. Chapter 8 integrates the inference 
engine (which is what Prologo and its "big brother," Prolog, really are) into 
two full-blown, if small-scale, knowledge bases. As Prologo manipulates these 
knowledge bases and applies facts and rules intelligently, it displays many of the 
earmarks of an expert system. 

Our expert system will not do two things that some Al researchers would 
say are requisite to a true expert system. It will not be able to explain how it 
reached its conclusions, and it will not be able to learn from experience. In 
other words, if it reaches a conclusion and we indicate that its advice is incor
rect or incomplete, it will not avoid making the same mistake the next time. As a 
matter of fact, most commercial expert systems don't do either of these things 
yet, either. 

Pattern Recognition 

Early in its development, Al was blessed with a number of researchers who real
ized that human intelligence was often based on patterns and relationships. We 
could look at a situation that we had not encountered previously and still under
stand it in great detail by comparing it with other similar experiences. 
. The ideas behind true pattern-matching of this kind are extremely complex. 

The fundamental idea in pattern-matching is that events of a certain type
sentences, for example-tend to fall into groups of patterns. A question often 
has a verb followed by a noun followed by a noun phrase, as shown in Figure 
1-3. A declaratory sentence, which simply imparts information, usually has a 
noun phrase first, then a verb, and sometimes a noun phrase after the verb. Fig
ure 1-4 shows this structure. 

If a computer were given those patterns and information about vocabulary 
(what words are nouns, noun phrases, and verbs, for our present example), it 
could use pattern-matching to determine the type of sentence "handed" it by 



Figure 1-3. A question's pattern 

Figure 1-4. A declaratory sentence's 
pattern 
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This is a ball. 

L.o .. 
PHRASE 

'----------- VliRB 

NOUN 
~--------- (SUBJl!CT) 

the user. It could do that, provided the sentence fit into one of the patterns it 
"knew" about. 

Thus our hypothetical computer program could determine the type of each 
of these sentences: 

• Are you a programmer? (question) 

• John hit the ball. (declaratory) 

• Is she going to the dance? (question) 

but would be totally confused by these: 

• Watch out! 

• Apparently, John hit the ball. 
• John and Rick were chasing the bull across the green fields. 

Extending the pattern descriptions would, of course, enable the program to 
identify these sentence structures as well. 

We will see pattern-matching emerge as part of the concept behind the 
programs in Chapters 2-6. It is subtly present in other programs as well. 

The most prevalent use of pattern-matching is in the field of computer 
vision systems, where its application to the robot technology is being widely 
discussed. 

Learning 
It is frequently argued that a computer program that cannot learn is not really, in 
the final analysis, intelligent. By learning, the Al community usually means that 
the program is capable of extending its own knowledge, understanding, and 
skills-within a limited domain. 

In the field of expert systems, perhaps more than any other area of Al 
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research, the ability of the computer program to learn from its experiences and 
from information given by the user is a characteristic most designers would 
dearly love to develop. 

The question of how people learn is incredibly complex. Researchers have 
been able to determine that most learning takes place in one of four ways: 

First, people may acquire new information by rote learning. In school, 
basic skills-for example, multiplication-are usually taught by rote learning. 
No processing, thinking, or analysis is required. The learner merely memorizes 
incoming information for later retrieval and use. 

Another method by which people learn is advice taking, or learning by 
being told. Classroom lectures are often sources of advice-giving learning. Lim
ited processing is required to understand the information being provided and 
to connect it with previous information, but fundamentally the learner is not 
required to perform a detailed analysis simply to gain the knowledge. 

Learning by example is the most common method of teaching skills and the 
least used method of teaching ideas. We can learn to tie a shoe, for example, by 
watching someone else tie many shoelaces. We can learn how to position a 
telescope by watching an astronomer. We can learn by re.ading hundreds of 
chess games how to play the game better. The process of learning and extending 
knowledge from examples is referred to as induction. 

Finally, the little-known method of learning by analogy must be briefly con
sidered. People learn a great deal by analogy. The concept is simple: if we know 
how to do task X and we can see even superficial similarities between it and task 
Y, we may be able to learn a great deal about task Y simply by analogizing what 
we know about task X. Not much serious work has been published in the field of 
Al research on applying this idea to systems and programs. 

Planning/Problem-Solving 
In one sense, all computer programs that are artificially intelligent solve a prob
lem. But in a narrower sense, a great deal of Al research has the ultimate goal of 
designing programs that analyze a problem, develop an approach to its solution, 
monitor their progress in solving the problem, and adjust to changing condi
tions. In the general sense, all the programs in this book are in the planning and 
problem-solving category. In the narrow sense, however, none of the programs 
specifically deal with this concept. 

Al programs that fall into the problem-solving category of research are goal 
directed; they have objectives. A plan is a course of action, usually an ordered 
collection of interrelated goals and subgoals, designed to attain an objective. In 
an earlier example, the objective was to reach the cheese in the center of the 
maze and the plan would spell out the steps to be taken to get to the cheese. 

In the absence of a plan, programs that merely solve problems are likely to 
lead to the wrong results, even though their user might consider them extremely 
valuable. "If you don't know where you're going, you'll probably end up some
place." A problem-solving program that isn't based on a planned approach to 
the problem may find itself solving the wrong problem or, more likely, ap
proaching the right problem from a wrong direction. 

The concepts behind planning programs are so complex and cumbersome 
that I have largely left them out of this book. Refer to the annotated bibliography 
in Appendix C for sources of meaningful information on this subject. 
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Language Issues in Al 

The second major thrust of this book is to provide exposure to the primary lan
guages used in Al programming and research. Chapters 9-13 are devoted to the 
subject. Chapter 9 contains an overview of the language issues involved. Follow
ing that introduction, we examine in some detail each of three key languages: 
Logo, LISP, and Prolog. We conclude that section of the book with some hints 
for programmers who are familiar with BASIC, providing some insight and direc
tion into how these programs could be converted to that popular programming 
language. 

The purpose of each chapter on a specific language is to provide the reader 
with background material and a short refresher course in the basic ideas, com
mands, structures, and uses of the language. In this way, these chapters serve 
the purpose of introducing concepts to those who are unfamiliar with the lan
guages at all and affording an opportunity to refresh their skills to those who 
once used these languages but who have grown "rusty" from lack of use. 

Conclusion 

The broad, slippery, and intriguing field of Artificial Intelligence can be divided 
into six major areas of research and activity. We will examine four of these 
in some depth-search, natural language processing, pattern recognition, and 
expert systems. The other two concepts-learning and planning/problem
solving-are woven into the programs but are not discussed in great depth. 
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If you have any interest in logic puzzles, you know of the problem posed (and 
solved) by the program in this chapter. The scenario is simple enough. Three 
missionaries and three cannibals are on the left bank of a river. They have a boat 
that will hold two people; any combination of missionaries and cannibals can 
operate the boat. The objective is to move everyone from the left bank of the 
river to the right bank of the river. 

There's a catch: if the cannibals ever outnumber the missionaries on either 
bank, they will do their thing and convert the missionaries into a meal. 

Solving the problem requires two steps which play critical roles in the 
world of Al programming: precisely defining the rules of the problem and 
searching for the solution. The two steps are common to many kinds of 
problem-solving programs we might design, so we will discuss the basic ideas of 
both processes as they relate to the missionary-cannibal problem. Along the 
way, we'll develop a better understanding of the general steps and considera
tions involved in processes. 

Refining the Problem 

As with computer programming in general, our first step in an Al program design 
is to refine the problem. But the process is more complex in an Al program than 
in an accounting program, for example. The rules of accounting are well known. 
If asked to write a program that calculates net profit on a set of sales transac
tions, you would expect to be given information about volume of sales, cost of 
sales, overhead costs associated with sales, and a number of other factors. You 
would insert those values into a known formula and, voi/a, out pops the solu
tion. 

Many, if not most, Al problems, though, lack a preset rule for solving the 
problem. In fact, if we had such a rule, we wouldn't need an Al-oriented pro
gram to deal with it. Unless you went to an atypical kind of school, for example, 
you haven't learned a rule for moving missionaries and cannibals in groups of 
one or two between two banks of a river safely! (If you did, you might want to 
skip this chapter.) 

To deal with the missionary-cannibal problem, we must provide three parts 
of the problem-refinement process: 

• descriptions of the start and goal states described in computer terms; 
• an acceptable (to the computer) means for describing the state of the 

problem at any given time; and 
• a way of describing the "moves" to be made by the user. 

Start and Goal State Description 
Al professionals use the term "state" -a particular condition or circumstance
to talk about problem-solving programs. An Al problem is in a particular state at 
any given moment. Any problem can be broken down into discrete and unique 
states, similar to that shown in Figure 2-1. 

The object of problem-solving programs is to transform the initial, or start
ing, state into the solution, or goal, state. The problem's solution is then de
scribed in terms of the start state, the set of intermediate states through which it 
passes, and the goal state. Each state describes the "space" of the problem. 



Classic Missionary-Cannibal Problem I 17 

Figure 2-1. A problem and its states 

Each step between states constitutes a "move." In Figure 2-1, for example, the 
combination of Start State-Move A-Move D-Move G-Move J-Goal State repre
sents one solution to the problem. 

One other point should be made: real-life problems and typical complex Al 
problems will involve more than one start state and more than one goal state. In 
other words, the start state may be a function of what has gone on elsewhere in 
the system and the solution may be described in terms of reaching any of several 
alternative goal states. 

This may seem pretty abstract, so let's look at a concrete example that is 
often used in teaching basic Al courses and concepts. 

Three-Coins Problem This classic puzzle begins with three coins (see Figure 
2-2). One coin is placed tails up and the other two are placed heads up. The 
objective is to position the coins same side up-all heads or all tails. That would 
be easy-just turn each of the heads coins so the tails up or, easier yet, turn only 
the coin which had tails showing-except for the additional rule that this must 
be accomplished in exactly three moves. 

Figure 2-3 shows a typical state-space diagram for the three-coins problem. 
Note that it is a more specific version of the general diagram shown in Figure 
2-1. We use "H" to mean "heads" and "T" to mean "tails." (This brings up 
the question of symbolic representation, about which I will have more to say 
shortly.) Note, too, that there are only three moves possible in the problem 
we've described. We label them "1," "2," and "3," meaning, respectively, flip 
over the first coin, flip over the second coin, and flip over the third coin. 



18 I Al Programming on the Macintosh 

Figure 2-2. Three coins in the problem 

Figure 2-3. State-space diagram of three-coins problem 

From each state of the problem's state-space, three moves are possible. If 
you examine Figure 2-3, you'll find that all three moves lead to three additional 
states for each state. 

Beginning with the start state in the upper left corner of the diagram, if we 
choose Move 2-i.e., if we turn the middle coin over-we reach the state called 
HTI. From there, flipping the first coin over-i.e., choosing Move 1-leads to 
the goal of TIT. Unfortunately, we did not reach that goal in three moves, but in 
two, so our solution fails to meet a requirement that is outside the space-state 
diagram of the problem. Similarly, if we start from the start state and choose 
Move 3, we reach the HHH goal state in one step. 

You may have noticed that each state in a state-space diagram can be 
reached from any state to which it can be converted. In other words, there is a 
one-move relationship between connected states. In Figure 2-3, for example, we 
can move from the start state to the HTI state by using Move 2. Similarly, if we 
found ourselves in the HTI state at some point in our problem and wanted to 
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return to the start state, we could apply Move 2 and do so. This move-for-move 
correspondence is a key feature of a space-state diagram. 

Now a final examination of Figure 2-3 reveals that one way to solve the 
problem is to apply Moves 1, 3, and 1 in that sequence. There are five other 
solutions to the problem. Can you find them? If you want that challenge, stop 
now and try to find them, because I'll provide the answer in the next para
graph. 

Four of the five solutions are readily apparent. The new sequences are 
1-1-3, 2-2-3, 3-1-1, 2-3-2, and 3-2-2. The other, less obvious solution, is the 
sequence 3-3-3, a solution which meets the criteria of our problem definition, 
even if it is a little maddening! 

Describing the State of the Problem 
Now that we can define the problem's start, intermediate, and goal states in a 
state-space diagram, the next task is to decide how the computer should store 
the information about the state it is in at any given point. This step involves the 
concept of symbolic representation. A complete discussion is beyond the scope 
of this book, but we will discuss the concept in a broader sense than the 
missionary-cannibals problem encompasses. 

The field of knowledge representation is of great interest to Al researchers 
because of the emphasis on natural language processing and expert systems as 
areas of commercially viable applications of Al. Processing natural language and 
drawing conclusions from information "known" about a given situation both 
require the computer to represent this knowledge. 

Storing information in a computer requires a data structure. There are 
many such data structures available. Some depend on the programming lan
guage being used but others are more or less common to most programming 
languages. Some of the more widely available and useful types of data structures 
include: 

• Lists. These are collections of individual elements grouped into single data 
structures. Logo typically encloses these in square brackets. We might have a 
list called BIRDS represented as [ROBIN CANARY EGRET GULL MACAW 
PARAKEET]. 

• Property Lists. A special type of list, Al frequently uses property lists. They 
are almost always part of LISP and Logo languages. This type of list consists of 
paired attributes and values. For example, a property list called ROBIN might 
have the attributes SIZE, HABITAT, and KEY _COLOR filled in with the values 
MEDIUM, NORTH_.AMERICA, and RED. Our property list would then look 
like this: [SIZE MEDIUM HABITAT NORTH_.AMERICA KEY_COLOR RED]. 

• Arrays. Strictly speaking, a list is an array and so, by extension, is a 
property list. What I mean here, though, are arrays that have two or more 
dimensions. The most common array, perhaps, is the two-dimensional matrix. 
Figure 2-4 extends the idea of a property list into a two-dimensional array called 
BIRD_PROPERTIES. 

• Records. The Macintosh® often stores information on a disk as a collection 
of one or more records. Each record can contain several different kinds of 
information. As with arrays and unlike property lists, the attributes-those 
portions of the data structure that tell us what individual pieces of information 
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mean or what they relate to-are not stored in the record itself. Instead, the 
computer program must be told what each item, or field, in a record represents. 
The record for the robin would look like this: 

MEDIUM,NORTH__AMERICA,RED. 

• Files. A file is a collection of records. Each row of the two-dimensional 
array, BIRD_PROPERTIES, in Figure 2-4 would become a single record in a file 
called (perhaps) BIRD__ATIRIBUTES. Each record would look like the one 
described for the robin. 

Species 

ROBIN 
CANARY 
EGRET 
GULL 
MACAW 
PARAKEET 

Size 

MEDIUM 
SMALL 
LARGE 
LARGE 
LARGE 
SMALL 

Habitat 

NORTH__AMERICAN 
WORLD 
SOUTHEAST_ TROPICS 
WATER_SALT 
JUNGLES 
WORLD 

Figure 2-4. An array of bird information 

Key_Color 

RED 
YELLOW 
VARIES 
WHITE 
VARIES 
VARIES 

There are no right or wrong data structures. Rather, selection of the appro
priate data structure is a function of several factors, including the kind of data to 
be stored, the amount of information to be available, the programming language 
being used, and the need for permanence of the information. 

The goal of knowledge representation is to find the most natural way to 
mirror information considered by the programmer to be important in solving the 
problem. At the same time, the representation should make efficient use of stor
age space while granting rapid access to the information when it is needed by 
the program. Not surprisingly, these goals sometimes conflict with one another. 
As one writer puts it, "In Al programs, data structures tend to become large and 
complex. But complex data structures are inefficient, so the tendency is to sacri
fice some naturalness and convenience in order to make do with simpler data 
structures." (Barr 1981, 2:34) 

Describing Three-Coin States In making a decision about representation of the 
knowledge needed by the computer at each step to solve the three-coins prob
lem, we may conclude: 

1. The information needed is minimal-one of two states in each of three 
coins. 

2. There is no need for permanence (once the problem is solved, it is solved, 
and generating the data structures again is quite easy). 

3. There are no complex values to be stored. 

As we are programming in Logo, the list is the easiest structure to use for 
such storage. So we define each state as a list containing three elements, each of 
which would be either an "H" or a "T." The eight possible states shown in Fig-
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ure 2-3 are then represented as lists which look like this: [H H n [H T n [TT n, 
and so on. 

Describing the Moves 
The problems of describing the moves to be made in the course of solving a 
problem by a computer program are similar to those involved in making knowl
edge representation decisions. The goals are naturalness of expression (par
ticularly if the user is to inform the system of the moves rather than having the 
computer figure them out itself) and economy of programming space and mem
ory. Again, the two are often inconsistent with one another. 

Ideally, if the user were to enter information into the computer and have 
the program determine the consequence of the move-in other words, generate 
the next state-we would permit the user to type full sentences. "Flip over the 
first coin" would be the kind of input we would permit. As we will see later, we 
can in fact achieve something close to such natural language entry, but only at 
the expense of programming time and placing a sizable burden on the Mac's 
memory. 

On the other hand, we could simply require the user to type in one of three 
numbers to correspond to the moves defined earlier: where "1" means "Flip 
over the first coin," "2" flips the second coin, and "3" the third coin. Some 
people would consider this to be perhaps too sparse. But if we used this kind of 
move description language for the computer itself, and permitted the computer 

· to generate the moves and solve the problem, we would find such cryptic 
descriptions satisfactory. 

The question of move description becomes intricate and interesting even in 
the context of this relatively simple problem. For example, we could define the 
moves to be variations on the Logo MAKE primitive. We would begin by defin
ing the start state as follows: 

MAKE START-5TATE [H HT] 

We could then define a move procedure called FLIP which would invert 
the value of an element of the current state's description from H to T or vice 
versa. Another move procedure called STAY would define a no-change situa
tion. In that event, the move we've called "1" would be programmed some
thing like this: 

MAKE STATE [FLIP STAY STAY] 

This is more cumbersome than other ways we've discussed. The point is 
that there are a great many ways-some of them quite creative-to express 
movement from one state to another. 

Applying the Ideas to the Missionary-Cannibal 
Problem 

So much for the theoretical discussion. Let's return to the missionary-cannibals 
problem. (From now on, we'll use M-C instead of missionary-cannibals.) First, 
we'll consider the state-space representation issue. Next, we'll turn our attention 
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to the question of symbolic representation of the knowledge contained in the 
program while it is running. Finally, we'll look briefly at the issue of move 
description since the computer will be trying to find the solution to the problem 
in our program. 

Describing the M-C States 
Figure 2-5 shows all 32 possible combinations, including those that result in the 
loss of the problem's solution because of the cannibals' propensity to eat mis
sionaries-which can arise on either bank of the river. 

Left Bank Right Bank 
Miss. Cann. Boat Miss. Cann. Boat 

3 3 1 Start(i) 0 0 0 
3 2 1 2 0 1 0 
3 1 1 3 0 2 0 
3 0 1 4 0 3 0 
2 3 1 5 1 0 0 
2 2 1 6 1 1 0 
2 1 1 7 1 2 0 
2 0 1 8 1 3 0 
1 3 1 9 2 0 0 
1 2 1 10 2 1 0 
1 1 1 11 2 2 0 
1 0 1 12 2 3 0 
0 3 1 13 3 0 0 
0 2 1 14 3 1 0 
0 1 1 15 3 2 0 
0 0 0 Goal® 3 3 1 
3 2 0 17 0 1 1 
3 1 0 18 0 2 1 
3 0 0 19 0 3 1 
2 3 0 20 1 0 1 
2 2 0 21 1 1 1 
2 1 0 22 1 2 1 
2 0 0 23 1 3 1 
1 3 0 24 2 0 1 
1 2 0 25 2 1 1 
1 1 0 26 2 2 1 
1 0 0 27 2 3 1 
0 3 0 28 3 0 1 
0 2 0 29 3 1 1 
0 1 0 30 3 2 1 

Figure 2-5. All possible states of M-C problem 

The list of possible moves that can be made within the constraints of the 
problem definition is relatively small. In fact, there are only five combinations, 
as shown in Figure 2-6. Note that the issue of missionaries being eaten in the 
boat never arises because only two people can be in the boat at a time. Note, 

·too, that we have purposely omitted the boat from each scenario; you can't 
move without it, so it is unnecessary to include it in each description. 

By combining the possible states in Figure 2-5 with the possible moves in 
Figure 2-6, we could generate a state-space diagram of the M-C problem. A 



Move 

A 
B 
c 
D 
E 

Number of Missionaries 

0 
0 
1 
1 
2 
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Number of Cannibals 

2 
1 
1 
0 
0 

Figure 2-6. All possible moves in M-C problem 

small portion of the diagram that would result is reproduced as Figure 2-7. Each 
circle represents a state, and has three sets of numbers. The top number corre
sponds to the state number in Figure 2-5, the second and third describe the situ
ations on the left bank and the right bank. They consist of three values. The first 
designates the number of missionaries, the second the number of cannibals, and 
the third whether the boat is present ("1 ")or not ("O"). 

If even that small part of the state-space diagram in Figure 2-7 looks like 
spaghetti, it's because the problem permits a larger number of possible states 
and moves than the three-coins problem. We have actually illustrated less than 
one-fourth of the total diagram required to define the M-C problem completely! 

The point is not whether we can-or should-construct the complete state
space diagram of a problem, but that we should create at least the concept of 
the diagram so that we can determine the variety and number of states with 
which our program has to deal. This makes our decisions about knowledge rep
resentation more straightforward and fact based. Let's now turn our attention to 
those decisions. 

Choosing Representation for the M-C Problem 
Analysis of the possible states of the M-C problem gives at least two ways to rep
resent the state of the problem at any moment. 

First, we could simply use three numbers, as we did in Figure 2-5 and in the 
state-space diagram itself, to represent the state. Thus we would represent two 
missionaries and two cannibals on the left bank and the other missionary and 
cannibal on the right bank with the boat by two lists: 

MAKE LEFT_BANK (2 2 OJ 
MAKE RIGHT_BANK [111J 

Second, we could represent each m1ss1onary by the letter "M" in a list, 
each cannibal by a "C," and the boat by a "B." The same situation would then 
be represented: 

MAKE LEFT_BANK [MMC C] 
MAKE RIGHT_BANK [MC BJ 

The first method, using numbers, has two advantages. First, it takes up less 
space and, therefore, less computer memory. Second, we can completely de
scribe any situation by describing only one of the banks. Thus knowing that the 
left bank is represented as [2 2 O], for example, we can calculate that the right 
bank's representation for the same setup is [1 1 1]. This method has a disadvan-
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\5J 

Figure 2-7. Partial state-space diagram of M-C problem 

tage, though. If we are going to allow the program to move missionaries and 
cannibals by using the letters "M" and "C" (for reasons of clarity and natural
ness), it will be cumbersome to use numbers to represent the states. If, for exam
ple, the state of the system is represented as [2 2 0] and the program generates 
the move [M q, the program will have to determine where the boat is (in this 
case, it's on the right bank), calculate how many Ms, Cs, and Bs are present (one 
of each), count the number of Ms and Cs in the move (one of each), subtract 
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each of the moved values from the number in the starting position (yielding, 
temporarily, a state on the right bank of [O 0 1]), and then perform similar calcu
lations to update the left bank status, including the boat, when the move is 
complete. 

The second method-using a list of letter symbols-is more cumbersome 
than using numbers. It also does not permit an easy calculation to determine the 
state of the other side of the bank. At the very least, we'd have to count the 
number of Ms and Cs involved in the move and on each bank and then perform 
the mathematical processing to subtract and add Ms and Cs and the B to and 
from the appropriate banks. That's a fairly indirect way to approach the prob
lem. Using a list, we can simply delete and add new components to each side as 
events (moves) take place in the problem. 

It tu ms out we need two representations of the states of the system. One is 
the current state. That need is best served by using letter symbols to represent 
each bank. Logo's impressive list-manipulating instructions can manage the cur
rent state of affairs and change it. The representation is more natural than the 
numeric representation, though not as natural as one that uses the words "mis
sionary," "cannibal," and "boat" rather than letters M, C, and B. It also permits 
direct movement and display of the situation, since we merely work with exist
ing lists. 

The second need for representation in the system is to remember the pre
viously experienced states. If the computer didn't know which situations it had 
already encountered, it could end up trying the same paths and steps repeat
edly. Conceivably, it might never get around to trying a path that yields a solu
tion! This need is best served by numeric representation because any one state 
on the left bank corresponds to one and only one situation on the right bank, so 
we need only store information about the state of one bank. In addition, since 
this information will not be used to generate moves but only to check on their 
uniqueness in the current solution process, it need not be natural at all. 

As you will see in our discussion of the program, both approaches repre
sent the state of the problem at a given point in time. 

Describing Moves in the M-C Program 
In large part, deciding how to describe moves inside the Logo version of the 
M-C program depends on the choice of how to represent data in the system. If 
we had chosen to use arrays (a viable option in this case) or property lists (prob
ably not workable in this problem), we would have approached the description 
of moves differently. 

Because we chose to use list representations of the states of the system, our 
method of describing moves is to manipulate those lists. 

As you will see when you type in the program and run it, movements are 
defined by a process made up of the following steps: 

1. Select a move from the list of the five legal moves. (We do this selection 
sequentially to ensure no duplication.) 

2. Determine where the boat is. This defines the bank from which the 
movement must take place. 

3. Find out if the move is possible. The move is defined as a list of objects to 
be moved. For example, [MC BJ means to move a missionary and a cannibal. If 
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no missionaries or no cannibals are on the bank where the boat is, the move is 
rejected. 

4. Remove items in the list to be moved from the list of objects on the bank 
and add them to the other bank. 

The entire moving process consists of manipulating lists-creating them, 
checking them against one another, deleting information from them, and adding 
information to them. This describes the entire process by which moves are han
dled and represented in the M-C program. 

This direct method of representing moves is natural; each list presents 
exactly the items to be moved rather than pointing to them or encoding them 
somehow. Given the limited nature of the program and the problem to be 
solved, the method is satisfactory. If there were 25 or 30 different types of 
objects to be taken into account in a move and hundreds of possible states, we 
might well wish to use a process that would result in faster execution of the pro
gram. 

Using Search Techniques 

The second phase of program design involves the selection and use of appropri
ate search techniques. Searching is a critical part of Al programming. It finds its 
way into all types of Al systems, whether expert systems, natural language proc
essors, or problem-solving programs. 

One authoritative book offers this observation about searching and its 
importance: "At one time Al researchers believed that the problem of search 
was the central problem of Al. A parser would search through the possible syn
tactic structures of a sentence; a game player, through the possible legal moves 
in a game, etc. People now tend to emphasize the fact that programs with suffi
cient knowledge of their domains can avoid searching large spaces, but it is rec
ognized that in some cases one will still have to resort to search." (Cherniak et 
al. 1980, 257). That comment is certainly still valid. 

What Is a Search? 
It may seem trivial to define "search." After all, who hasn't lost something and 
ended up spending time searching for it? Well, a computer search has some 
things in common with our human searches, but it also has a key difference or 
two worth noting. 

Like a human search, a computer search begins with an initial state and has 
a goal state. In fact, we could generate a state-space diagram for a human search 
like the whimsical Figure 2-8. If we did that, we might draw curious looks from 
our friends and neighbors. But in a sense we do unconsciously draw such a dia
gram though we take a lot of mental shortcuts in the process. As part of the 
search process we actually generate each intermediate step between the initial 
state and the goal state. 

"I think I'll look in the garage," defines an intermediate state of determin
ing whether the lost object is among those objects stored in the garage. (If your 
garage is like mine, that intermediate state might be more accurately labeled 
"Chaos" instead of "Garage.") We don't, of course, generate the garage itself, 
but we do create the idea of searching there. In a computer sense, we generate 
the state of looking in the garage. 
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Figure 2-8. State-space diagram of dog search 

A computer program engaged in a search does the same thing. It begins 
with a start state and has in its structures a definition of the goal state. In 
between, it generates new states based on rules, parameters, and understand
ings it has been given in its programming design, and it examines each to see if it 
is the solution or if it leads to another step toward the solution. 

A human search, though, is more intelligent than any computer search. 
Humans draw inferences from circumstances which would require huge 
amounts of memory and mammoth programs to make available in a useful way 
to a computer. For example, if your dog is a Doberman, the chances of it hiding 
under a flowerpot in the garage are pretty slim (no pun intended). Storing the 
information in a computer program that a Doberman is a type of dog and that it 
is larger than a flower pot, for example, won't stop the program from searching 
in a breadbox, which is, after all, larger than a flower pot. Computer searches, 
even those that apply machine intelligence concepts, are more inclined to use 
techniques and processes that humans would discard immediately. This, among 
other things, prevents computer programs from being as intelligent as we might 
expect. 

Types of Search: An Overview 
We will return to the subject of searching several times in this book, each time 
adding more to our fund of knowledge about the subject. But for the moment, 
let us take a brief look at some key search techniques which are widely utilized 
in Al programming. 
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The "Brute Force" Method The Missionary-Cannibals program in this chapter 
uses the "brute force" search method. It simply tries every possible path at 
every possible point in the state-space diagram of the problem until it reaches a 
solution, breathes a heavy sigh, and quits. 

Brute force search is, as you can imagine, inefficient. Many blind alleys are 
pursued. With no means of ensuring that the program didn't repeat unsuccess
ful routes and patterns, the program could theoretically search forever without 
finding a solution. Our M-C program computer "recognizes" that it has tried a 
particular path previously without success. Although this clearly constitutes a 
useful modification of the brute force search method, it hardly approaches the 
addition of intelligence to the search process. 

Intelligent Search Concepts Search techniques which use intelligence often un
dertake their assignments using such approaches as: 

• "best-first" searching, in which evaluation takes place at each state in the 
state-space and findings of the search to that point are compared with findings 
from other partial searches; the most promising route is then pursued for one 
more level, and so on 

• "depth-first" searching, in which the program follows a given path to its 
ultimate conclusion and, if unsuccessful, backtracks to the next earliest level 
and checks the next path until it finally finds a solution 

• "breadth-first" searching, in which each possible path is followed to one 
level of depth in the search space and then each is pursued one additional 
level, and so on, so that the conclusion is reached when the goal state is 
discovered in a horizontal movement of the search process. 

Chapter 3 presents the "Micro-Logician" program and we will discuss 
more about search techniques and how they differ from one another then. As 
with knowledge representation, there are no "right" and "wrong" search tech
niques. Selection of a search technique derives from a host of factors including 
size of the state space to be searched, the language being used, machine limita
tions, and need for speed. 

Search in the M-C Problem 
In designing the M-C program, we realized that the number of states to be 
searched is relatively small and certainly manageable within the constraints of 
the Mac's 512K memory. Speed is not significant, since our primary objective is 
to learn about Al programming techniques and not to create commercially sal
able programs. So we used a brute force method, modified to avoid repeating 
previously tried pci.ths. 

We will describe the search processing itself when we reach that part of the 
program description. 

The Missionary-Cannibal Program 

Figure 2-9 is a box diagram of the program called, appropriately enough, 
SAVE_MISSIONARIES. The main procedure calls the SETUP _PROBLEM rou
tine, which initializes some key variable information and returns control to the 
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main procedure. The SHOW_STATUS procedure is then called to display the 
starting situation: three missionaries, three cannibals, and the boat, all on the left 
bank. The program then calls the main "workhorse" procedure, TRY, which 
determines whether or not a solution has been found (one always is, since we 
have designed it that way, but for debugging purposes, leaving the alternative 
possibility in the program is a good idea.) 

llAIN DKIVBR: I SA VB - lllSSIONAKIBS I 
SBTUP _ PKOBLBll 

TRY 

llXAMINIL MOVB VALJD_MOVB 

SHOW _STATUS MilJi_MOVB 

SUCCBSS LBAVB_LBFT DBPART 

LBA VB - RIGHT ARRI VB 

BATBN 

a>UNT - LB'JTJIR 

SHOW_ SOLUTION 

MOVB_BAO:: 

Figure 2-9. Box diagram of missionaries and cannibals 

SETUP _PROBLEM Procedure 
This procedure initializes variables describing each of the banks at starting posi
tion (BANKL and BANKR, for left and right bank, respectively). It then sets up a 
variable called ALLMOVES, which is a list of lists, each element of which is 
one of the five possible combinations of legal moves that can be made in a given 
situation. Finally, it sets up the variable BEEN_HERE, which keeps track of each 
position the program encounters to ensure that blind alleys aren't continually 
tried. 

SHOW_STATUS Procedure 
Besides displaying the left and right bank status at the end of each move, 
SHOW_STATUS affords a convenient place to update the variable BEEN_ 
HERE. We simply place the contents of the left bank into the list variable 
BEEN_HERE. 
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TRY: Second Main Driver Procedure 
Once everything is set up, the main procedure passes control to a collection of 
procedures. The main driver, TRY, is called with the ALLMOVES variable so 
that it is passed a list of all legal moves. TRY goes through the list one move at a 
time using the EXAMINE_MOVE procedure, which we will soon discuss, to 
determine if a move is legal and, if so, what its effect will be. 

After each move, TRY checks to see if a solution has been found. TRY calls 
the SUCCESS procedure, which outputs TRUE if a solution has been found (i.e., 
the left bank is empty) and nil if the problem has not been solved. If a solution 
has not been found, TRY displays the status of the left and right banks at that 
point using SHOW_STATUS. 

When a move has been successfully made with no missionaries being 
eaten and no solution being found, TRY calls itself again with the list of legal 
moves called ALLMOVES to work through another sequence of potential 
moves from the now-changed state of the problem. 

EXAMINE_MOVE Procedure 
The procedure EXAMINLMOVE first calls another procedure, VALID_MOVE 
(discussed in the next section) to determine if the move is legal. If so, VALID_ 
MOVE prints "true"; otherwise, it passes NIL to the calling procedure, 
EXAMINE_MOVE. If the move isn't valid for the circumstances, EXAMINE_ 
MOVE stops and control returns to TRY. 

Similarly, if the move creates a situation that the program has previously 
seen or if the procedure EATEN indicates that a missionary has been lost, the 
program calls the procedure MOVLBACK, which retracts the move. Control 
then returns to TRY. 

If the move is legal and does not result in a lost missionary, then the pro
gram sets a variable called SOLUTION to be "true." This variable is used 
throughout the program as a means of loop control, not to indicate that a solu
tion has necessarily been found (though it would also be used in that situation). 

VALID_MOVE Procedure 
This procedure determines which bank will be the departure bank by identifying 
the boat's location. It then checks to see if the move being tested is legal by 
ensuring that the number of missionaries and cannibals being moved is less than 
or equal to the number of missionaries and cannibals on the bank at the 
moment. Note that we have used the construction: 

IFAND 
(OR ((NUMBER._OF 'M :MOVE)< (NUMBER._OF 'M :BANK)) 

((NUMBER_OF 'M :MOVE)= (NUMBER._OF 'M :BANK))) 
(OR ((NUMBER._OF 'C :MOVE)<(NUMBER._OF 'C :BANK)) 

((NUMBER_OF 'D :MOVE)= (NUMBER_OF 'C :BANK))) 

instead of the ExperLogo® construction: 

IF AND (OR ((NUMBER_OF 'M :MOVE)s(NUMBER_OF 'M :BANK)) 
((NUMBER_OF 'C :MOVE) s (NUMBER_OF 'C :BANK)))) 

This is because most Logo implementations do not include a single less
than-or-equal-to symbol like ExperLogo's :S. 
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EATEN Test Procedure The EATEN procedure uses similar AND/OR logic to that 
in VALID_MOVE to ensure that the number of cannibals on one bank is not 
greater than the number of missionaries. (Note that it must also check to be sure 
there aren't "no missionaries," because then it wouldn't matter if there were 
more cannibals; they'd have nothing to eat!) 

LEAVE_LEFT and LEAVE_RIGHT 
The LEAVLLEFT and LEAVLRIGHT procedures are identical except for the 
arguments sent to the next-level procedures, DEPART and ARRIVE. Each sets up 
a variable called TEMP_BANK to hold information during processing. This 
makes it possible to move things around without disturbing variables that may 
be needed for further evaluation. 

After completing this setup, these procedures call on the DEPART proce
dure, which builds a list of who is left on the bank from which the boat is leav
ing, places that in the variable TEMP_BANK, and returns control to the calling 
procedure. There, TEMP _BANK's contents are swapped into the departure 
bank's list so that it contains an updated description of who is left on the bank 
following the departure. 

TEMP _BANK is now reinitialized to be an empty list and the procedure 
ARRIVE is called. This procedure is more complex than DEPART because it must 
keep track of the order of missionaries and cannibals in the boat when moving 
from the right bank to the left so that the variable BEEN_HERE will contain 
accurate and pattern-matchable information about what has gone before. 

Figure 2-10 reproduces the listing which appears in the Experlogo® Lis
tener Window (the Text Window in other Logos) as the program solves this puz
zle. It is self-explanatory. 

Exploring Al with Missionaries and Cannibals 

The program we have been discussing here cannot be greatly modified since its 
knowledge domain is limited to "knowing" about moving cannibals and mis
sionaries around. But a couple of things might make the program more inter
esting. 

For one thing, a random number generator could pick our moves instead 
of going through the same sequence each time. Over time, this should result in 
the program finding many solutions to the problem. Another approach would 
be to place the lists in the variable ALL_MOVES in another order to see how 
that affects the decision making of the program. 

If you're interested in seeing in greater depth how the program draws its 
conclusions, change the program so that when it runs into an illegal move or 
one that results in a missionary's demise, it prints a message indicating what 
move it tried and what the result was. This will, of course, make the program 
run more slowly but it may prove helpful in trying to figure out how the program 
works. 

You might also try changing the number of missionaries and cannibals or 
the number of people the boat can hold-though the results will be unpredict
able with some combinations. When you make these changes, be sure to think 
about what a state-space diagram would look like in identifying the possible 
legal moves. 
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SAVE_MISSIONARI ES 
The left bank is host to: M M M C C C B 
The right bank is host to: nil 
move C C B from left bank to right bank. 

The left bank is host to: M M M C 
The right bank is host to: C C B 
move C B from right bank to left bank. 

The left bank is host to: M M M C C B 
The right bank is host to: C 
move CC B from left bank to right bank. 

The left bank is host to: M M M 
The right bank is host to: C C C B 
move CB from right bank to left bank. 

The left bank is host to: M M M C B 
The right bank is host to: CC 
move M M B from left bank to right bank. 

The left bank is host to: M C 
The right bank is host to: C C M M B 
move M C B from right bank to left bank. 

The left bank is host to: M M C C B 
The right bank is host to: M C 
move M M B from left bank to right bank. 

The left bank is host to: C C 
The right bank is host to: M M C M B 
move C B from right bank to left bank. 

The left bank is host to: C C C B 
The right bank is host to: M M M 
move C C B from left bank to right bank. 

The left bank is host to: C 
The right bank is host to: M M M C C B 
move C B from right bank to left bank. 

The left bank is host to: C C B 
The right bank is host to: M M M C 
move C C B from left bank to right bank. 

The left bank is host to: nil 
The right bank is host to: MM MC CC B 
I DID IT! 
I DID IT! 

Figure 2-10. How the problem gets solved 
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Summary: What We've Learned about Al 
Programming 

In this chapter, we've taken our first steps in learning about Artificial Intelligence 
and the considerations behind intelligent programs. We've covered a great deal 
of new material here, including: 

• defining the state of a problem and the goals associated with its solutions; 
• making decisions about how to represent the knowledge contained in a 

problem's "world" system; 

• accurately and concisely describing moves from one state to another in 
ways which are consistent with programming language syntax. 

In the next chapter, "Micro Logician," we will further explore the ideas of 
searching. 

{Missionaries & Cannibals ©1985, The Waite Group} 
{Logo program by Ken Schieser} 

{Main calling procedure} 
TO SAVE_MISSIONARIES 

SETUP _PROBLEM 
SHOW_STATUS 
TRY :ALL_MOVES 
IF EQUALP :SOLUTION :FOUND 

[PR [I DID IT!]] 
[PR[SOLUTION NOT FOUND!]] 

END 

{Sets initial conditions} 
TO SETUP _PROBLEM 

{FOUND is a boolean variable. It holds a value of true throughout the program. Its 
main purpose is to make the program readable.} 

MAKE FOUND 'TRUE 
MAKE BANKL [MM MC CC BJ 
MAKE BANKR [] 
MAKE ALL_MOVES [[CC B][C B][M B][M C B][M MB]] 
MAKE BEEN_HERE[] 

END 
{Shows status, adds contents of left bank to BEEN_HERE, initializes loop control 
variable} 
TO SHOW-5TATUS 

PR SE [The left bank is host to:] :BAN KL 
PR SE [The right bank is host to:] :BAN KR 
{Loop control variable see TO TRY & TO EXAMINE} 
MAKE SOLUTION NIL 
MAKE BEEN_HERE LPUT :BAN KL :BEEN_HERE 

END 
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{Prints out the correct move} 
TO SHOW_SOLUTION 

IF MEMBERP 'B :BANKR 
[MAKE BANK1 [left bank] MAKE BANK2 [right bank.]] 
[MAKE BANK1 [right bank] MAKE BANK2 [left bank.]] 

PR (SE [Move] :MOVE [from] :BANK1 [to] :BANK2) 
PR<<>> 

END 

{Recursively test all moves} 
TO TRY :MOVES 

IF EMPTYP :MOVES [STOP] 
{The variable MOVE, used in all lower level procedures, is made to be the first set of 

the variable MOVES (or ALL.MOVES, since TRY is called with the argument 
ALL.MOVES)} 

MAKE MOVE FIRST :MOVES 
EXAMINL . ..MOVE 
{Test to see if a solution has been found-if not TRY is called recursively without the 

first member of the set MOVES. This continues until the solution is found or MOVES 
becomes the empty set. The stop is needed to prevent complex recursion.} 

IF EQUALP :SOLUTION NOT :FOUND [TRY BF :MOVES STOP] 
{If the program has made it past the above test, a solution has been found. At this 

point SHOW_STATUS is called-printing out the new banks & reinitializing the loop 
control variable} 

SHOW_STATUS 
{If the left bank is empty, the second level is stopped; control is passed back to the 

main level} 
IF SUCCESS [MAKE SOLUTION :FOUND STOP] 
{If the left bank is not empty, TRY is called again with an argument of :ALL.MOVES 
TRY :ALL.MOVES 

END 

TO SUCCESS 
IF EMPTYP :BAN KL [OP 'TRUE][OP NIL] 

END 

{Third level} 
TO EXAMINE__MOVE 

{If the move contains characters that are not members of the bank to be moved from, 
control is passed back to second level} 

IF NOT VALID__MOVE [STOP] 
MAKE__MOVE 
{Test for repetition} 
IF MEMBERP :BAN KL :BEEN_HERE [MOVE_BACK STOP] 
{Test for more cannibals on either bank} 
IF EATEN [MOVE_BACK STOP] 
{If either of the preceding tests pass, control is handed back to second level. If not, 

the loop control variable FOUND is made "true" and the solution is printed out} 



MAKE SOLUTION :FOUND 
SHOW_50LUTION 

END 
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{Function: Outputs "true" or "nil"} TO VALID_MOVE 
{A variable BANK is made equal to the bank with the boat} 
IF MEMBERP 'B :BANKL [MAKE BANK :BANKL][MAKE BANK :BAN KR] 

IFAND 
(OR ((NUMBER...._OF 'M :MOVE)<(NUMBER...._OF 'M :BANK)) 

((NUMBER...._OF 'M :MOVE)= (NUMBER...._OF 'M :BANK))) 
(OR ((NUMBER...._OF 'C :MOVE)< (NUMBER...._OF 'C :BANK)) 

((NUMBER...._OF 'C :MOVE)= (NUMBER...._OF 'C :BANK))) 
[OP 'TRUE][OP NIL] 

END 
{Function: Outputs "true" or "nil"} 
TO EATEN 

IFOR 
(AND((NUMBER...._OF 'M :BANKL)>O) 

((NUMBER...._OF 'M :BAN KL)< (NUMBER...._OF 'C :BAN KL))) 
(AND((NUMBER...._OF 'M :BANKR)>O) 

((NUMBER...._OF 'M :BANKR)<(NUMBER...._OF 'C :BANKR))) 
[OP 'TRUE][OP NIL] 

END 

{Function: Outputs a number} 
TO NUMBER...._OF :LETTER :COLLECTION 

MAKE NUMO 
COUNT_LETTER :LETTER :COLLECTION 
OP:NUM 

END 

{Counts letters in collection} 
TO COUNT_LETTER :LETTER :COLLECTION 

IF EMPTYP :COLLECTION [STOP] 
IF EQUALP FIRST :LETTER FIRST :COLLECTION [MAKE NUM :NUM + 1) 
COUNT_LETTER :LETTER BF :COLLECTION 

END 

{Same as MAKE_MOVE, purpose: readability} 
TO MOVLBACK 

MAKE_MOVE 
END 

TO MAKE_MOVE 
IF MEMBERP 'B :BANKL [LEAVE_LEFT][ LEAVE_RIGHT] 

END 

TO LEAVE_LEFT 
MAKE TEMP _BANK[] 
DEPART :BANKL :MOVE 
MAKE :BANKL :TEMP _BANK 
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MAKE TEMP _BANK[] 
ARRIVE :BAN KR :MOVE 
MAKE BANKR :TEMP _BANK 

END 

TO LEAVE_RIGHT 
MAKE TEMP _BANK[] 
DEPART :BAN KR :MOVE 
MAKE BANKR :TEMP _BANK 
MAKE TEMP _BANK [] 
ARRIVE :BAN KL :MOVE 
MAKE BAN KL :TEMP _BANK 

END 

{Places only those members of B that are not in Minto TEMP _BANK} 
TO DEPART :B :M 

IF EMPTYP :B [STOP] 
IF EMPTYP :M 

[MAKE TEMP _BANK LPUT FIRST :B :TEMP _BANK 
DEPART BF :B :M STOP] 

IF EQUALP FIRST :B FIRST :M 
[DEPART BF :B BF :M STOP] 

MAKE TEMP _BANK LPUT FIRST :B :TEMP _BANK 
DEPART BF :B :M 

END 

{The order of arriving to the right is not important, but it is crucial when arriving to the 
left. ARRIVE places all the Ms together, Cs together, and puts the boat on the end} 
TO ARRIVE :B :M 

IF EMPTYP :M [STOP] 
IF EMPTYP :B 

[MAKE TEMP _BANK LPUT FIRST :M :TEMP _BANK 
ARRIVE :B BF :M STOP] 

IF EQUALP FIRST :B FIRST :M 
[MAKE TEMP _BANK LPUT FIRST :M :TEMP _BANK 
MAKE TEMP _BANK LPUT FIRST :B :TEMP _BANK 
ARRIVE BF :B BF :M STOP] 

MAKE TEMP _BANK LPUT FIRST :B :TEMP _BANK 
ARRIVE BF :B :M 

END 
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The idea of searching is so important that we have included this program as 
another example of how it is done. This chapter adds one significant concept 
to the Missionaries and Cannibals program in Chapter 2: backward-chaining. 
Along the way, we'll present some ideas about natural language processing, 
which will be a primary topic of several of our programs. 

What You'll Learn 

As you read this chapter, type in the program it discusses. When you run and 
analyze that program, you'll appreciate the importance of selecting the right 
approach to searching through the possible solutions to a problem. More specif
ically, you'll understand the significance of the differences between forward
and backward-chaining, which relate to how we search for a solution to a 
problem. 

The ideas of forward- and backward-chaining have gained prominence 
as expert systems have become commercially available. Promoters of specific 
expert system development tools tout their products as forward-chaining, 
backward-chaining, or combination products, which do chaining of both kinds. 
As we will see, the differences between these kinds of chaining are technical 
rather than qualitative. 

The Program 
This chapter will analyze a program called "Micro-Logician." The program 
seems intelligent because it accepts information and then answers questions 
about that information that it can only know about indirectly. In other words, it 
appears to draw conclusions and inferences from facts without having been told 
the conclusions. 

In handling inquiries about fact patterns, the program performs backward
chaining so that it can determine where, if at all, in its "knowledge base" it has 
the data needed to answer the question. 

This chapter will also demonstrate the concept of pattern-matching as it is 
used in natural language processing. We'll see how we can determine content 
by examining the pattern and structure of input from the user. (See Figure 3-1.) 
(We will discuss the idea of pattern-matching using such templates as predeter
mined sentence patterns in more detail when we reach the subject of natural 
language later in our study. The current program simply demonstrates that idea.) 

What the Program Does 
Micro-Logician permits the user to enter three kinds of input: 

1. statements of fact (for example, "The house is large.") 
2. questions (for example, "Is a robin a bird?") 

3. general inquiries (for example, "What do you know about television?") 

The program uses statements of fact provided by the user without trying to 
evaluate their truth or practical value. The statements of fact form the basis for 
building a set of property lists in the program's memory. Property lists are an 
important characteristic of Logo and of other languages which are best suited for 
Al programming tasks. They provide a convenient way for the program to 
"remember" information passed to it by the user. 
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Figure 3-1. Pattern-matching: fitting incoming ideas to predefined structures 

If the user types in a question, the computer recognizes it as a question, 
searches through its property lists to see if it knows anything about the subject, 
and, if so, tries to reach a conclusion as to whether the question being asked 
should be answered "yes" or "no" or "I don't know." 

When the user types in a sentence starting with the word "lnquire"-for 
example, "Inquire about taxes" -the program searches through its list of topics 
to see if it knows anything about the subject. If it does, it performs a "memory 
dump," simply providing a list of all the facts it has been told about the subject. 

The program is terminated by the user typing "Quit" at the outermost pro
cedural block when being asked for an entry. 

Narrowing the Domain of Entries 
Ideally, a program like Micro-Logician would accept all kinds of statements and 
questions from its user. Obviously, it can understand such simple statements as 
''The box is blue." But it should also be able to handle complex sentences and 
thoughts like, ''The big box over in the corner, which belongs to Steve and has a 
pink. bow on it, is blue." After all, both sentences involve the same essential 
data...-there is a box and its color is blue. 
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We will see in our discussions of programs that are part of the Al discipline 
of natural language processing that such a capability would place a huge de
mand on the resources of the Macintosh® or any other desktop personal com
puter. We must, therefore, be willing to live with something less than total com
prehension. 

Micro-Logician doesn't limit the subjects about which the computer will be 
told; the subject is under the user's control. The program will, though, limit the 
kinds of sentences to which it will respond. 

Factual Statements Statements of fact will always require the following format: 

SUBJECT IS PREDICATE. 

The subject must be simple, rather than compound or complex. It may, 
however, include an article (a, an, or the). The following will be acceptable sub
jects in a factual statement entered into Micro-Logician: 

A writer is often out of cash. 
Computing is a fine art. 
The box is in the corner. 

The following subjects will not work: 

Writers are often out of cash. (The subject is plural. Since it requires a verb 
other than "is," it won't be recognized.) 

Computing with a Macintosh® is a fine art. (The compound subject won't 
be understood.) 

The big box is in the corner. (The adjective "big" makes the subject 
unacceptable to Micro-Logician.) 

Singularly Important Only the verb "is" will be understood by our micro ver
sion of this logical program. This simplifies the programming though it limits the 
input that the program can understand and use. 

Verbal Freedom The predicate-everything after the word "is" -can be convo
luted or comp.lex and the program will still accept it. The program, however, 
may not understand it as we intended. An example or two will clarify what we 
mean here. 

Look at the sentence: 

The programmer is tall and thin. 

Anyone listening to that sentence understands that the word "and" means 
that the programmer is both tall and thin. If we heard that sentence and were 
then asked, "ls the programmer thin?" we would answer "yes." But Micro
Logician doesn't understand words like "and" to have logical value; as far as the 
program is concerned, logical connectives are just words. Thus, if we ask 
Micro-Logician, after entering the above sentence, "Is the programmer thin?" it 
will insist he is not. If we ask, on the other hand, "Is the programmer tall and 
thin?" the program will agree that he is both of those things. 
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A Concluding Mark Every sentence or question typed into Micro-Logician must 
close with a period, question mark, or other punctuation. The punctuation need 
not be correct, but must be present. 

Logical Questions 
With that discussion behind us, we can quickly examine the format requirement 
of the other two types of sentences with which Micro-Logician has been pro
grammed to cope. A logical question must take the form: 

IS SUBJECT PREDICATE? 

The first word must be "is." The subject, therefore, must be simple. The 
program will consider everything after the subject to be a predicate defining the 
character trait of the subject. 

General Inquiries 
We have adopted the word INQUIRE to signal Micro-Logician that what follows 
is an inquiry about the information it has stored on the subject. 

The required form for such an inquiry is: 

INQUIRE SUBJECT. 

The subject may contain an article (though it almost never makes sense to 
include one) but otherwise must be simple. No predicate containing the trait 
involved is required since the inquiry elicits a// available information about the 
subject. 

For example, we could type in the following query: 

INQUIRE WRITER. 

The program would then tell us every fact it knows about writers. Assuming 
we had stored the information, it would respond: 

WRITER IS AN INTELLECTUAL. 
WRITER IS POOR. 
WRITER IS LONELY. 

How Micro-Logician Works 

As shown in the box diagram in Figure 3-2, Micro-Logician is divided into six 
Level 2 procedures: SET.UP, CLEAN.UP, SCANNER, ADD.A.FACT, INQUIRY, 
and LOGIC.FINDER. 

Micro-Logician lacks the "pure" main program that most of the other pro
grams in this book have. That is because we have two different kinds of setup or 
housekeeping chores to do at the beginning and we want to call one of the sets 
only once. So the start of the program calls for us to type in the command 
SET.UP. That routine in turn calls the main driver routine MICRO.LOGIC. In a 
sense, MICRO.LOGIC is the main procedure. 
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Figure 3-2. Box diagram of Micro-Logician 

SET.UP 
The SET.UP procedure is the Micro-Logician initialization routine. It initializes 
variables which will be needed through the rest of the program. Specifically, the 
Logo implementation of the SET.UP routine defines the articles "a," "an," and 
"the" as articles for later deletion and initializes the list called TOPICS to be the 
empty list. Ultimately, this list will store topics the program "knows" about 
based on subsequent user input. The SET.UP procedure is called by the user typ
ing in its name. 

The program is kept running by the MICRO.LOGIC procedure, which is 
called by other procedures. We can restart the program during a run of Micro
Logician by recalling SET.UP, which reinitializes the topic list. We can also call 
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the MICRO.LOGIC routine in order to continue processing after some kind of 
halt without the program "forgetting" all it had been told. 

CLEAN.UP 
After SET.UP and before CLEAN.UP, we invoke the main procedure, MI
CRO.LOGIC. This routine takes care of our request for user input and stores the 
routine to check to see if the user is done. It would be equally acceptable to 
design another procedure-perhaps called GET.INPUT-to handle input and at 
the same time check to see if the user is finished. Because of the way Logo han
dles the STOP command, however, our current method is the more straightfor
ward and easier to implement. 

The MICRO.LOGIC procedure also initializes a temporary holding variable 
called SENT2 which must be reset each time through the program's main proce
dures. 

The CLEAN.UP procedure puts the English-like data entered by the user 
into a more usable form. The procedure strips the punctuation mark at the end 
of the sentence and then scans the sentence for articles and removes them. 
When this CLEAN.UP procedure is completed, the sentence: 

THE BOX IS A CUBE. 

has been transformed into: 

BOX IS CUBE. 

This enables the program to store information efficiently about the subject 
"box." 

SCANNER 
The procedure SCANNER determines which of the three types of sentence
factual statement, logical question, or general inquiry-has been entered by the 
user. 

Since we have arbitrarily fixed the formats of each type of input, SCANNER 
has a quite simple task. It looks at the first and second words of the sentence 
that was entered. The first word is placed into a variable called KEY1 and the 
second word into the variable KEY2. 

If KEY1 is "is," then the program knows it is faced with a logical question. If 
it is "inquire," it knows that it is going to be asked to handle a general inquiry. 
Any other input could be designed to add a factual statement to the program's 
property lists. But we check explicitly for the word "is" as the second word in 
our stripped-down sentence, just to be sure. Micro-Logician will be able to han
dle a sentence like: 

The programmers are always broke! 

quite nicely without doing something unexpected or unwanted. 
If the sentence turns out to be a statement of fact, the procedure called 

ADD.A.FACT is invoked. If a logical· question is being posed, the LOG
IC.FINDER procedure is called into action. General inquiries are handled by the 
procedure called INQUIRY. 
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ADD.A.FACT 
The ADD.A.FACT procedure is actually divided into two procedures. Besides 
ADD.A.FACT, itself, there is a subordinate, Level 3, procedure called 
NEW.SUBJECT. 

ADD.A.FACT first sets up the subject and predicate. It now begins to refer 
to the predicate by its more proper name "trait." The procedure takes the first 
word of the sentence as the subject and everything after the word IS as the trait. 
Using the Logo primitives FIRST and BUTFIRST, this process is quite simple. 

The procedure determines if the subject is a new one or if new data is 
being provided concerning a topic it already knows about. It does this by check
ing to see if an attempt to read information about the subject results in an 
answer of ''nil." Nil in Logo means either that nothing is found or that an 
answer is false. When nil is returned, ADD.A.FACT calls on the procedure 
NEW.SUBJECT. Otherwise, it adds the value "1" to the number of facts it knows 
to be available about the subject and tacks the new information onto the end of 
the property list. 

NEW.SUBJECT The first time Micro-Logician encounters a particular subject, 
the NEW.SUBJECT procedure adds it to the variable list TOPICS, which keeps 
track of the subjects it knows about. It then puts the number "1" in place as the 
number of pieces of information-or traits-stored on the subject and places the 
trait in the property list. 

INQUIRY 
Micro-Logician permits two types of inquiries. The simpler is a request for 
all information available on a given subject. This assignment is handled by 
the Level 2 procedure INQUIRY. It in turn has a Level 3 procedure called 
SHOW. KNOWLEDGE. 

The sentence has to begin with the word "INQUIRE" in order to be classi
fied as a general inquiry sentence. INQUIRY then begins by defining the subject 
of the inquiry as everything following INQUIRE. It checks to see if that subject is 
on the list of subjects contained in the list called TOPICS it has been building. If 
not, it prints a polite message and asks for the next input. 

However, if INQUIRY finds that it does have information about the subject, 
it looks up how many pieces of data have been given to it about that subject and 
then calls the Level 3 procedure SHOW.KNOWLEDGE. This procedure, in turn, 
loops through the property list belonging to the subject, displaying each value 
until all have been displayed. 

LOGIC.FINDER 
The meat of Micro-Logician is in this procedure and its associated Level 3 pro
cedures, particularly concerning search techniques. This procedure group re
sponds to questions that may require it to draw conclusions from information it 
has been given, but not explicitly. 

For example, if we gave Micro-Logician the following two pieces of infor
mation: 

SOCRATES IS A MAN. 
MAN IS INTELLIGENT. 
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Micro-Logician should be able to handle the question: 

IS SOCRATES INTELLIGENn 

even though it has not been specifically told that he is. 
To accomplish this task, the LOGIC.FINDER procedure uses a series of 

searches aimed at backward-chaining to the solution to the question posed. 

What Is Backward-Chaining? 

Backward-chaining searches are extremely important in Al research. Many ex
pert systems use backward-chaining exclusively as a means of solving problems 
posed by their human designers and users. 

Simply stated, "backward-chaining" embodies the idea of beginning with 
the goal and following a logical chain back to the proof or solution. This is 
opposed to "forward-chaining" techniques, which begin with the problem and 
attempt to move forward through a knowledge base to a solution. (See Figure 
3-3.) Neither of these techniques is inherently superior to the other; each has its 
use and its application. Many systems combine the methods. 

Figure 3-3. Backward- vs. 
forward-chaining in 

Al programs 
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In a typical inquiry of Micro-Logician, the program begins with the goal
that is, the status about which the question has been posed-and attempts to 
work backwards to the point of linking the question to the answer. 

An example may help to clarify this. 

Backward-Chaining to Socrates Staying with our Socratic example, assume that 
we have stored the following information in our very small knowledge base. 
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SOCRATES IS A MAN. 
SOCRATES IS A PHILOSOPHER. 
A MAN IS TWO-LEGGED. 
A PHILOSOPHER IS EXASPERATING. 

Suppose we wish to know whether Socrates is exasperating. Humans can, 
of course, quickly determine that to be the case by looking at the information 
provided. But the computer is not nearly as capable of drawing such inferences. 
(At least, not yet!) 

To get the computer to draw inferences requires a program that will cer
tainly meet our criterion for an artificially intelligent program: the program will 
do something which, if a human did it, would require intelligence. 

Our program will first attempt to solve the question by a form of forward
chaining. It will look through its TOPICS list to see if Socrates is there and, find
ing it present, will examine the Socrates property list item-by-item to see if 
"exasperating" is present. For this approach to work, we would have had to tell 
the program that Socrates is exasperating. We know from the data listed above 
that we did not do that. 

(Please don't conclude from this single example that forward-chaining is 
less elegant or intelligent than backward-chaining. The example is not at all 
exemplary of how such an approach might be used effectively and intelligently 
in a computer program.) 

Having failed to find the information explicitly present, Micro-Logician 
moves to a backward-chaining approach to the problem. It starts at the trait 
"exasperating" and examines each property list in its memory to see if the term 
appears there. In this case, it finds the word "exasperating" in the property list 
associated with the word "philosopher." 

It now returns to the Socrates property list to see if it has the trait "phil
osopher" in it. It does, so the program dutifully reports that Socrates is, in fact, 
exasperating. If the program failed either to find the word "exasperating" in its 
collection of traits or failed to find the associated term in the Socrates property 
list, it would inform us that it didn't have enough information to respond to the 
query. 

We could, in theory, expand this backward-chaining search technique ad 
infinitum in our example. For instance, we could have had the sentence: 

AN INTELLECTUAL IS EXASPERATING. 

in place of the sentence about the philosopher and added a new sentence 
informing the system that: 

A PHILOSOPHER IS AN INTELLECTUAL. 

To achieve the correct response, Micro-Logician would take the following steps: 

1. Forward-chain through the Socrates property list. Failing to find 
"exasperating," it would then take the next step. 

2. Find "exasperating" in the property list labeled "intellectual." 
3. Look in the Socrates property list for the word "intellectual." 
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4. Not finding the word "intellectual" in the Socrates property list, look for 
the word "intellectual" in other property lists. 

5. Find the word "intellectual" in the property list labeled "philosopher." 
6. Examine the Socrates property list and find the word "philosopher" there. 
7. Report its conclusion that Socrates is exasperating. 

You can see that the extent of the search-and the resources of memory 
and time required to carry it out-will expand greatly as each additional level of 
search is encountered. The technical term for these levels is "ply"; scientists 
speak of a two-ply or three-ply search. We have confined ourselves to the sim
plest approach. 

The LOGIC.FINDER Procedure Set 
Let's examine the LOGIC.FINDER procedure itself, now that we understand 
how the chaining process it implements actually works. We find that the proce
dure first separates the subject of the inquiry-in our example, "Socrates"-from 
the predicate, which is the question being asked. The procedure checks if the 
subject is in the list of TOPICS. If it doesn't find it there, it prints a message to 
that effect and goes back for another input. If it does find it, the program carries 
out the simplest check first, finding whether the trait is part of the property list of 
the subject. It reads the number of traits it has stored and examines each in turn 
to see if it matches. In our program, CHECK.SUBJECT handles this process. 

Failing to find the predicate in the subject's property list, the program then 
calls on the CHECK.TOPIC.AREA procedure. This sets up a copy of the list. It 
uses a MEMBERP primitive to check if the predicate for which we are searching 
is a member of any property list associated with any of the topics. 

When we ask about Socrates's two-leggedness, a match is found in the 
property list for "man". The program then makes the name of the new property 
list (in this case, "man") the new trait for a search through the subject's property 
list. In other words, having found "two-legged" as a trait in the property list 
associated with man, the program tries to find "man" in the property list of Soc
rates. If it finds it, it will have successfully backward-chained to the answer and 
will report that Socrates is indeed two-legged. Any other result will produce the 
answer "Not enough data" and a request for the next input. 

Special Logo Primitive Used 
This program uses only one nonstandard Logo primitive-PRINC, used in the 
INQUIRY procedure. This would be replaced by the more conventional TYPE 
in most versions of Logo. Other than that, the rest of the program should run 
as well in Microsoft Logo® or any other "standard" Logo available on the Mac
intosh®. 

Exploring Al with Micro-Logician 

A number of improvements or enhancements may be made to our basic Micro
Logician program. 

For example, consider storing the property lists created by the program in a 
disk file and then storing and retrieving them with the disk access primitives 
LOAD and SAVE. The entire process could even be menu-driven in ExperLogo®. 
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Another refinement would permit use of other verbs besides IS (ARE, for 
example). If you undertake this, consider whether you should be concerned 
about singular and plural nouns during output of information as well as during 
its entry. 

Or add the word "about" to the list of words that could be extracted by the 
program. This would enable you to type 

INQUIRE ABOUT SOCRATES. 

which is a far more natural way of expressing the request than the somewhat 
arbitrary and rigid way we've designed. 

Incidentally, consider making punctuation optional by checking the last 
character in the SENT1 variable to see if it is punctuation and removing it only if 
it is. Again, this would make the program a bit easier to use. 

A more complicated refinement would permit multiple-ply backward
chaining. This would require considerable program modification, though basic 
procedures to accomplish the task are generally provided in the listing. 

Summary: What We've Learned about 
Al Programming 

Search techniques are an important aspect of Al programming. In this chapter, 
we've looked at the following: 

• The backward-chaining method of moving from a stated goal or objective 
to the cause or proof required; 

• the forward-chaining approach, though not in an optimum implementa
tion; 

• natural language usage to see how relatively "normal" English can be 
accommodated as a program input when the right intelligence is built into the 
program itself. 

TO MICRO.LOGIC 
MAKE SENT2[] 

{Micro-Logician ®1985, The Waite Group} 
{Logo program by Dan Shafer} 

PRINT [Let's have a sentence ••• ] 
MAKE SENT1 READLIST 
IF :SENT1 = [QUIT] [STOP] 

CLEAN.UP 
SCANNER 
MICRO.LOGIC 

END 

TO SET.UP 
MAKE ARTICLES [A AN THE] 



MAKE TOPICS [] 
MICRO.LOGIC 

END 

TO CLEAN.UP 
MAKE SENT1 SENTENCE BUTLAST :SENT1 BUTLAST LAST :SENT1 
DELETE .ARTICLES 
MAKE SENT1 BUTLAST :SENT2 

END 

TO DELETE.ARTICLES 
MAKE WORD1 FIRST :SENT1 
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IF EQUALP MEMBERP :WORD1 :ARTICLES NIL [MAKE SENT2 LPUT :WORD1 
:SENT2] 

IF EMPTYP :SENT1 [STOP] 
MAKE :SENT1 BUTFIRST :SENT1 
DELETE .ARTICLES 

END 

TO SCANNER 
MAKE KEY1 FIRST :SENT1 
MAKE KEY2 FIRST BUTFIRST :SENT1 
IF :KEY2 ='IS [ADD.A.FACT] 
IF :KEY1 ='IS [LOGIC.FINDER] 
IF :KEY1 ='INQUIRE [INQUIRY] 

END 

TO ADD.A.FACT 
SEPARATE.SENTENCE 
IF EQUALP GPROP :SUBJECT "NO_ VALUES NIL 

[NEW.SUBJECT] 
MAKE N GPROP :SUBJECT "NO_ VALUES 
MAKE N :N+1 
PPROP :SUBJECT "NO_ VALUES :N 
PPROP :SUBJECT WORD "P :N :TRAIT 

END 

TO SEPARATE.SENTENCE 
MAKE SUBJECT FIRST :SENT1 
MAKE TRAIT BUTFIRST BUTFIRST :SENT1 

END 

TO NEW.SUBJCT 
MAKE TOPICS LPUT :SUBJECT :TOPICS 
PPROP :SUBJECT "NO_ VALUES 0 

END 

TO INQUIRY 
MAKE SUBJECT FIRST BUTFIRST :SENT1 
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IF EQUALP MEMBERP :SUBJECT :TOPICS NIL [PRINT<< I have no data on that 
subject.>> STOP] 

MAKE N GPROP :SUBJECT "NO_ VALUES 
PRINC :SUBJECT PRINT<< IS .•• > > 
SHOW.KNOWLEDGE 

END 

TO SHOW.KNOWLEDGE 
PRINT GPROP :SUBJECT WORD "P :N 
MAKE N :N-1 
IF :N:t:O [SHOW.KNOWLEDGE] 

END 

TO LOGIC.FINDER 
MAKE ANSWER [NOT ENOUGH DATA] 
MAKE SUBJECT FIRST BUTFIRST :SENT1 
MAKE TRAIT BUTFIRST BUTFIRST :SENT1 
IF EQUALP MEMBERP :SUBJECT :TOPICS NIL [<<I have no data on that 

subject.> >STOP] 
MAKE N GPROP :SUBJECT "NO_ VALUES 
CHECK.Sl:JBJECT 
IF :ANSWER=[NOT ENOUGH DATA] 

[CHECK.KNOWLEDGE] 
PRINT :ANSWER 

END 

TO CHECK.SUBJECT 
IF EQUALP GPROP :SUBJECT WORD "P :N :TRAIT [MAKE ANSWER [YES] STOP] 
MAKE N :N-1 
IF :N :t: 0 [CHECK.SUBJECT] 

END 

TO CHECK.KNOWLEDGE 
MAKE TEMPLIST COPYLIST :TOPICS 
CH ECK. TOPIC.AREA 

END 

TO CHECK.TOPIC.AREA 
MAKE SEARCH. SUBJECT FIRST :TEMPLIST 
MAKE NEW.LIST PUST :SEARCH.SUBJECT 
MAKE SEARCH.SUBJECT (LIST :SEARCH.SUBJEcn 
IF NOT EQUALP MEMBERP :TRAIT :NEW.LIST NIL 

[IF NOT EQUALP MEMBERP :SEARCH.SUBJECT PUST :SUBJECT NIL 
[MAKE ANSWER [YES] [RETURN :ANSWER]] 

IF EMPTYP :TEMPLIST [STOP] 
MAKE TEMPLIST BUTFIRST :TEMPLIST 
CH ECK. TOPIC.AREA 

END 
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The Digital Poet exemplifies a basic form of natural language processing pro
grams known as "text generation" software. Before we can create computer 
programs that can comprehend human speech patterns, we need to analyze 
those speech patterns and find sensible, manageable rules. One efficient (and 
fun) way of doing that is to design programs that create stories, poems, and 
other human speech patterns. 

This program is a variation on themes that have been used in college class
rooms, Al laboratories, and homes for many years. I have written such programs 
in several computer languages on mainframes, minis, and micros. But as an 
amate.ur poet, I have never been satisfied with the programs' poetry. Nonethe
less, this program illustrates the ideas and techniques involved in text-genera
tion programs. 

In some ways, poetry is the easiest form to use for generating text. Poetry 
can be short, and I have chosen here a form which is quite brief. Poetry may 
also be structured. These traits make poetry such as that produced by the pro
gram in this chapter easy to manage by a moderately sized computer program. 

Designing a program that can "make up" entire stories is a far more com
plex task. A real story contains a beginning, middle, and end; a plot of sorts; and 
perhaps even characters. The process of generating story text is much more diffi
cult than that of generating poetry. 

In this chapter, then, we take our first tentative steps on the path of natural 
language processing. We have already examined some peripheral areas of inter
est in Chapter 3 as we examined the need to limit the type of input that would 
permit a program to "understand" and respond. Now we begin to take human 
writing patterns apart and see what goes into the computer creating meaningful 
written products. 

Two Types of Text Generation in Al 

Investigation into the area of automatic text generation has been going on for 
some 20 years without agreement on the part of Al researchers on principles 
and approaches. In part, this is because text generation has arguably less value 
to a commercial product implementing Al principles than does natural language 
processing, which permits the understanding of the natural language by the 
computer. 

Researchers and students of Al conducting experimental work in text 
generation have divided the field into two main types: random and meaning
ful. The line between the two types of text generation is not clear-cut. Random
ly generated text can sometimes be meaningful, particularly in the area of 
poetry where so much of the meaning is subjective. Similarly, even the best
designed "meaningful" text generation programs produce occasional or fre
quent gibberish. 

Random Generation of Text 
All text generation operates in the context of some rules of grammar and so is 
not truly random. However, when text is created randomly within the con
straints of a grammar, it is described as "random text generation." We will 
examine this relatively straightforward type of text generation in the "Poetry 
Maker" program in this chapter. 
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Programs that generate text pseudo-randomly, like Poetry Maker, select the 
words randomly from a vocabulary available to the program, but the sequence 
of their use-and, generally, of their selection as well-is determined by rules, 
formats, or patterns supplied in the program. Poetry Maker has four predefined 
poetry formats. Random selection of nouns, verbs, adjectives, adverbs, preposi
tions, and articles takes place in conformance with these formats. Thus, genera
tion of the text may seem random, but it is only somewhat so. 

Randomly generated text, as you will see when you type in and run the 
Poetry Maker program in this chapter, can be perfectly correct from a grammati
cal perspective and yet nonsensical, even confusing, to people trying to under
stand what the computer has created. For example, one of the first poems 
Poetry Maker turned out after we had programmed it read: 

SEA TO A WATERFALL 
A YELLOW RIVER NEAR A MOUNTAIN 
RED EVENING 

Even for blank verse this is pretty difficult to understand! But it makes sense 
grammatically; it follows a pattetn of parts of speech that will often produce 
meaningful sentences. The same grammatical rules that produced this nonsense 
are capable of producing this more comprehensible poetry: 

END OF A WATERFALL 
A MUDDY RIVER AT THE MOUNTAIN 
ETERNAL CYCLES 

We may not appreciate or even understand this bit of poetry but at least we 
know that waterfalls have ends, rivers get muddy and find themselves at moun
tains, and some cycles are eternal. That's clearly more than we can say about 
"sea to a waterfall"! 

Meaningful Text Generation 
The other form of text generation used by Al researchers is far more complex. 
Programs designed to handle this meaningful text generation are generally large. 
They are not beyond the capability of the Mac but are beyond the scope of this 
book. 

Generally speaking, the reason for creating meaningful text generators is to 
convert some internal representation of information into an appropriate string of 
words that may be understood by the user. In other words, it emphasizes the 
meaning rather than the syntactical form of natural language. 

As it turns out, the computer can never be said to "understand" the infor
mation it contains. For example, it might have stored somewhere in its memory 
the information that someone named "Rex Sole" has a string of convictions for 
stealing information from computers. The information may be stored in a data 
base so that everything the computer "knows" is represented by fields of data 
(see Figure 4-1 ). The computer, if programmed to produce natural language 
responses to inquiries, might even be able to produce the result: 

REX SOLE STEALS INFORMATION FROM COMPUTERS. 

-
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LasL..Name firsL.Name Age Sex Occupation Code 

Jones Alan 39 M 27.023 
Meltz Deborah 26 F 19.113 
Sole Rex 29 M 09.119 
Wilson Todd 19 M 0 

Figure 4-1. Data stored about Rex Sole, computer thief 

But if Rex Sole comes to the system and types in his name, unless the com
puter is programmed to search its data base for such an individual, it will blithely 
let Mr. Sole extract whatever data he wants. The computer doesn't understand 
what "steals information from computers" means in the same sense that we do. 

Nonetheless, a computer programmed to generate text in a way that is con
cerned with meaning and not just form will appear to be more intelligent than 
one which, like most modern systems, is capable only of telegraph English 
communication. ("Telegraph English" refers to sentences like "Rex Sole com
puter thief," which employ the fewest possible words to convey an idea, with 
no regard to ·the correctness of the sentence or to the aesthetic of the use of arti
cles and verbs, adjectives and adverbs.) More important, we can learn a great 
deal from designing, using, and analyzing the output of such text generation 
programs. 

A Learning Example Al researchers learned early in their work in text generation 
that there are hundreds of possible sentence forms or structures in the English 
language. They also learned that the ambiguity of words is not necessarily a 
function of where they fall in a sentence. Dr. Roger C. Schank of Yale Univer
sity's Al Laboratory provides the following example in his popular book The 
Cognitive Computer. 

yve start with a sample sentence that says: 

JOHN GAVE MARY A BOOK. 

Now we program the computer to understand that when we say "gave" 
we mean that, when the action depicted in the sentence is complete, the person 
named as having been given something is now in possession of it. The computer 
is now able to understand if we type in the sentence and then ask it: 

IS MARY IN POSSESSION OF A BOOK? 

that the answer is "yes." 
But what will the computer do with this understanding of the word "gave" 

in the following sentences? 

JOHN GAVE MARY A HARD TIME. 
JOHN GAVE MARY A NIGHT ON THE TOWN. 
JOHN GAVE UP. 
JOHN GAVE A PARTY. 
JOHN GAVE HIS LIFE FOR FREEDOM. 
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If we now ask the computer: 

IS MARY IN POSSESSION OF A HARD TIME? 

the answer will still be affirmative, even though you and I know that both the 
question and the answer are nonsense. 

This excursion into the ambiguity of the word "gave" does not carry the 
solution to such ambiguity. We'll discuss this more in later chapters on NLP con
cepts, but an actual solution to the problem still awaits Al researchers. Perhaps 
you will find the answer! Our intent in the example is to show something that Al 
researchers learned about language by using text generation programs that pro
duced sentences having logical understanding errors in them. By analyzing such 
sentences in terms of their grammar and content, researchers learned more 
about human language and how the computer would have to be programmed 
to deal with its intricacies. 

The Program 
Poetry Maker has two main subprograms which do not interact directly with 
one another. The first, ADD.VOCABULARY, permits us to put new words 
into the vocabulary from which the program will create poetry. The second, 
MAKE.UP.POEM, generates a poem in one of four predefined formats. The two 
modules are loosely stuck together at the beginning of the program with a rou
tine called POETRY.MAKER whose job is to ask the user which of the two main 
functions is desired to perform and then to call the appropriate subprogram. 

Figure 4-2 is a box diagram of the Poetry Maker program. Referring to 
it may help you understand the following discussion about the program's con
tents. 

What the Program Does 
Figure 4-3 shows the opening menu of the program. The menu is displayed and 
managed by the main routine, POETRY.MAKER. 

The main program uses READCHAR to get the user's response to the menu 
request, so no [RETURN] key is needed. The user types in one of the three let
ters and the program follows instructions. The menu is repeated if a letter other 
than A, M, or Q is pressed. 

Adding Vocabulary: An Overview If users indicate that they want to add new 
words to the files of Poetry Words stored on the disk called "Logo Files," the 
program calls the ADD.VOCABULARY routine. This routine reads the existing 
file of words from the disk, if any are present, and informs the user that it is cre
ating a new file if no previous file exists on the disk. 

The rest of the ADD.VOCABULARY routines allow the user to enter new 
word(s) and identify their parts of speech and number of syllables. It adds these 
new words to the file in the appropriate property list for later retrieval and use 
by the MAKE.UP.POEM routines. If any articles or particles ("a," "an," and 
"the") are present, they are stripped from the input. The routine which handles 
this task is an old friend, the DELETE.ARTICLES routine found in Chapter 3 in the 
Micro Logician program. 

When the ADD.VOCABULARY routines finish their task, they return con
trol to the main POETRY.MAKER routine, where the menu is repeated. 

-
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Figure 4-2. Partial box diagram of Poetry Maker 

EHperlogo listener 
Do you 1ant to: 

[A]dd Uocabulary Uords to the File 
[M]ake Up Poe1(s) 
[Q]ult 

Figure 4-3. Opening menu of Poetry Maker 
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Creating Poems: A Quick look If, at the main menu, users indicate that they 
want the program to make up a new poem, the routines associated with the 
MAKE.UP.POEM subprogram take over. This set of routines asks users for the 
poem pattern they want the program to use, leaving the choice up to the pro
gram if desired. It then sets up the patterns of parts of speech needed to create 
the lines of poetry to match the chosen form and composes the poem. 

Composing the poem consists of going through each line of the poem's for
mat and generating words randomly from property lists for each part of speech. 
Each line is printed as it is composed. This process continues until a three-line 
poem has been composed and displayed. Control then returns to the main 
POETRY.MAKER menu. 

Sample Runs of the Program 
Figure 4-4 shows a sample run of the POETRY.MAKER program's ADD.VOCAB
ULARY routines. Note that users are asked to enter all the words to be added to 
the vocabulary, separating them with spaces. This method permits users to add 
entire poems to the vocabulary if they desire to do so. You could choose your 
favorite short poems and put them into the vocabulary (but punctuation must be 
omitted in the program's present form). 

Do you want to: 
[A]dd Vocabulary Words to the File 
[M]ake Up Poem(s) 
[Q]uit 

Poetry .Maker 

Please enter new words, separated by spaces. 
You can even enter a whole new poem if you like! 

When you're done, just enter a RETURN at the start of a line. Then I'll ask you about the 
new words you've given me before I add them to the vocabulary file. 
POETS WORK INSPIRATIONALLY 

HOW MANY SYLLABLES DOES POETS HAVE? 
WHAT PART OF SPEECH IS POETS? 
N = NOUN V = VERB A= ADJECTIVE D =ADVERB P = PREPOSITION 
HOW MANY SYLLABLES DOES WORK HAVE? 
WHAT PART OF SPEECH IS WORK? 
N = NOUN V = VERB A = ADJECTIVE D = ADVERB P = PREPOSITION 
HOW MANY SYLLABLES DOES INSPIRATIONALLY HAVE? 
WHAT PART OF SPEECH IS INSPIRATIONALLY? 
N = NOUN V = VERB A= ADJECTIVE D =ADVERB P = PREPOSITION 
Do you want to: 

[A]dd Vocabulary Words to the File 
[M]ake Up Poem(s) 
[Q]uit 

Figure 4-4. Sample run of ADD.VOCABULARY routines 
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After the words have been entered, the program goes through the word list 
and asks about each word (except articles, which it skips), the part of speech it 
is, and the number of syllables it contains. (The program as presented here 
doesn't use this information about number of syllables, but we ask for it and 
store it to enable an interesting modification discussed later.) 

The program writes the new vocabulary on the "Poetry Words" file on the 
"Logo Files" disk and returns to the main menu. 

Figure 4-5 shows a sample run of the MAKE.UP.POEM routines. There is, as 
you can see, very little for users to do. After choosing the "M" option from the 
main menu, they need only type a single-digit number in response to the com
puter's request for the format of the poem to be used. Then, in a few seconds, a 
poem appears on the screen and users are asked if they'd like to see another. 

Do you want to: 

[A]dd Vocabulary Words to the File 
[M]ake Up Poem(s) 
[Q]uit 
I know four Haiku poetry patterns. 

Enter the number of the pattern you want me to use (1-4) or use any other number to 
tell me to pick one at random. 

SOARING EARLY AFTERNOON 
THE POOR SHIMMERS UNDER GREEN PEOPLE 
LITTLE QUIET GRASS 
Do you want me to compose another poem? 
I know four Haiku poetry patterns. 

Enter the number of the pattern you want me to use (1-4) or use any other number to 
tell me to pick one at random. 

AN DARK HAZY RIVER 
AT THE RED LEAVES 
THE LEAVES DIES 
Do you want me to compose another poem? 
nil 

Figure 4-5. Sample Run of MAKE.UP.POEM Routines 

A Few Words about Poetry 

Before analyzing the program listing to see how Poetry Maker works, it will be 
useful to discuss poetry in general and the Haiku form specifically. This will 
enable you to understand better why the poems produced by Poetry Maker 
sound the way they do. 
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The poems created by Poetry Maker don't rhyme. At least they don't 
automatically rhyme. They are of the form called "blank verse" and, though 
they don't often rhyme, they are poems. 

Not all poetry is structured in a definable way, but much poetry is struc
tured in terms of rhyme and meter. Meter refers to the way syllables are empha
sized and the kind of "singing" effect that results from particular patterns of 
such syllables. For example, the famous Joyce Kilmer poem, "Trees," uses the 
simplest meter-emphasizing alternate syllables. The dark syllables are empha
sized: 

I think that I shall never see 

a poem as lovely as a tree. 

Other forms of meter emphasize varying patterns of syllables; and some meter 
patterns can be quite complex and sophisticated. 

What's Haiku Poetryl 
While the poems created by this program are not structured as to their meter, 
they are, never the less, highly structured compositions. They are English varia
tions on the Japanese theme of poetry known as Haiku. They are not true Haiku 
because they do not pay attention to syllable count, but they are attempts at 
emulating the Haiku form. 

Haiku is an ancient form of verse-making that lends itself better to Japanese 
than to English. In Japanese, Haiku has two important characteristics. Most 
important, it attempts to distill deep and eternal truths and ideas into a very 
small number of words. Each composition is supposed to contain power and 
depth. Some Haiku poems, even in Japanese, fail to do this, but that doesn't 
change the fact that the poet's intent was to focus a great idea into a small 
poem. Second, each Haiku poem has the same kind of syllable structure, with 
five syllables in the first line, seven in the second, and five in the third. 

Because of their brevity, intense imagery is essential in Haiku. Most of the 
poems focus on events and images in nature; it is with this in mind that we 
chose the vocabulary for the program. You may wish your Poetry Maker pro
gram to produce poems with themes of sports, or love and romance, or religion. 
In that case, you choose appropriate nouns, verbs, adjectives, and adverbs
prepositions are somewhat limited and of more general use-and watch as your 
program cranks out masterpiece after masterpiece. Well, poem after poem. 

People who have the time to pursue such studies have determined that the 
vast majority of published Haiku poetry can be seen as falling into one of four 
different patterns or formats. We have chosen these four formats for Poetry 
Maker. You can alter them in almost any way you wish, as I will explain when 
we discuss the routines that contain representations of the formats. The formats 
themselves are described as sequences and combinations of articles, nouns, 
verbs, adjectives, adverbs, and prepositions. 

Do you need a review of the parts of speech? If not, skip to "How the Pro
gram Works." 

• Articles point to the thing about which we are talking. Particles allow the 
thing to remain indefinite. The common article is "the." Particles are "a," and 
"an." The book is different from a book. An alligator is far different from 
the alligator which just bit the end off your stick! 

-
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• Nouns are names of people, places, things, or ideas. Nouns include 
"book" and "alligator" from the two previous examples. 

• Verbs are of two types: action and state-of-being. The former express what 
a particular noun is doing or having done to it. In the sentence, "The alligator 
just bit the end off my stick!" the word "bit" is an action verb. Verbs that 
describe the state of being of something tend to be variations on the verb "to 
be." In the sentence, "The alligator is very large," the verb "is" indicates the 
state of being or condition of the noun "alligator." 

• Adjectives describe or tell something about nouns or pronouns. The word 
"large" in the preceding example is an adjective that describes, or modifies, the 
noun "alligator." 

• Adverbs describe (modify) verbs, adjectives, or other adverbs. In the 
sentence, "The alligator quickly bit the end off the stick," the word "quickly" is 
an adverb which describes how the alligator bit the stick. 

• Prepositions are connecting words such as "to," "toward," "at," and 
"in," which indicate relationships between objects. They often indicate place 
or position: The book is in the car. The alligator came toward the dog. 

How the Program Works 

We have already seen what the program does. We have gained an appreciation 
for the program's overall operation. Now let's look at the Logo procedures that 
carry out the functions. The three major routines in the program are POET
RY .MAKER, ADD.VOCABULARY, and MAKE.UP.POEM. We will examine each 
in turn, describing subprocedures as we encounter them. 

POETRY.MAKER Procedure 
The POETRY.MAKER procedure is a straightforward menu handler. 

Figure 4-2 provides a partial box diagram of the Poetry Maker program. It 
shows the major functional blocks that make up the program. Figure 4-6 pro
vides a more detailed box diagram of ADD.VOCABULARY and its associated 
routines, showing their relationships and briefly defining their purposes. 

The first statement, CLEARTEXT, erases the contents of the Listener Win
dow, which is the only text window permitted in ExperLogo®. In Microsoft 
Logo®, the command CT will have the same effect on the current text window. 

A series of PRINT statements follows. A peculiarity in these statements is 
the use of guillemets ( < < and > >) instead of the more traditional quotation 
marks. These marks are made by holding down the [OPTION] and [bs] keys 
simultaneously, along with the [SHIFT] key for the closing guillemets. In Micro
soft Logo®, ordinary double quotation marks will work nicely. 

After using READCHAR to get the user's response, the next three lines call 
the appropriate procedures or the primitive STOP, as appropriate. If the user's 
input is not A, M, or Q, the program calls POETRY.MAKER again and redisplays 
the menu. 

ADD.VOCABULARY and Related Procedures 
When users select A, indicating they wish to add to the file, the POETRY.MAKER 
routine calls the ADD.VOCABULARY procedure. 
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Figure 4-6. Detailed box diagram of ADD.VOCABULARY routines 

The ADD.VOCABULARY routine provides our first example of how a com
puter might "learn" something new-in this case, new words for use in poetry. 
I'll have more to say about the subject later in the book, but you should know 
that the learning involved here is called "explicit instruction" learning. The 
computer is given information and retains it in some form for later use. The 
process parallels rote memorization for humans. The computer learns new 
vocabulary words in the same way most of us "learned" our multiplication 
tables-by committing them to memory. Its "memory" is a disk file. 

The procedure first calls the GET.WORDS procedure (discussed in the next 
section in greater detail), which reads in the existing file of poetry words and sets 
up the property lists for adding words to them. ADD.VOCABULARY then initial
izes three variables that will be needed by the procedures that follow. These 
variables must not be reinitialized during vocabulary input. 

The main work of the procedure is then handled by the next four state
ments. INPUT.NEW.WORDS gets new words from the user. DELETE.ARTICLES 
is the same procedure of the same name in the Micro-Logician program in 
Chapter 3. The next statement converts the output from the DELETE.AR
TICLES routine back to the WORD.LIST with which the program works. 
GET.WORD.INFO goes through WORD.LIST and asks the user to enter the part 
of speech and number of syllables for each word and adds this information to 
the property lists. Finally, UPDATE.FILE writes the property lists to the file, closes 
the file, and returns control to the POETRY.MAKER menu. 

GET. WORDS This procedure attempts to open a poetry words file on the Logo 
Files disk. If the result of this is "nil," there is no such file. In that case, the pro
cedure prints a message to that effect and STOPs, returning control to the 
ADD.VOCABULARY procedure. 

-
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Note 

If this is the first time you are creating a file of words, be certain to put at least 
one word· of each type-noun, verb, adjective, adverb, and preposition-into 
the file. Failure to do so may result in the file becoming garbled later when 
you attempt to add more words. The poetry produced will contain "nil," 
perhaps with some frequency. 

Assuming GET.WORDS finds the file it expected to find, it then sets up a list 
called WORDTYPES to contain the letters "N" (noun), "V" (verb), "A" (adjec
tive), "D" (adverb-we couldn't use "A" again, so we punted!), and "P" (prep
osition). Then it calls the REBUILD.PLISTS procedure. 

(Note that if you are using Microsoft Logo® rather than ExperLogo®, the 
disk file handling routine must be substantially rewritten. See Appendix B for 
details.) 

REBUILD.PLISTS Information about words in the vocabulary is contained in five 
property lists, each of which is named after one part of speech. After storing 
information in a disk file, retrieve it and print out the property list showing, for 
example, all nouns in the file by typing: 

PRINT PUST 'N 

Substitute the other letters-V, A, D, or P-for the N in order to examine 
the property lists for the other parts of speech. 

The REBUILD.PLISTS procedure reassembles the information stored in 
each of the five lists into a PUST-or property list. It must do this since Logo 
stores the information in each property list on the file as a simple list and doesn't 
remember it as a property list. REBUILD.PLISTS is designed to be used in all 
parts of the program. 

The procedure reads the first list from the file and puts this list into the vari
able named TEMP1. Then it calls the BUILD.A.LIST procedure, which assembles 
this information into the PUST for nouns. 

When BUILD.A.LIST has completed its task, the REBUILD.PLISTS pro
cedure eliminates the first element in the list of WORDTYPES using the BF (But
First) primitive. It then checks to see if the end of the word file has been reached 
and, if so, STOPs processing. Otherwise, it recalls itself and the WORDTYPES 
list now contains the label for the next property list to be read. The first state
ment reads the subsequent list in the file and processing continues until the end 
of the file has been reached. 

BUILD.A.LIST This procedure (see Figure 4-7) constructs the property list for 
each of the five parts of speech using the data in the variable TEMP1 as read by 
the REBUILD.PLISTS procedure. 

This line takes the first element of the list WORDTYPES and gives the prop
erty list that name. Then it appends the first and second elements of the TEMP1 
list to the property list for this part of speech. The next line removes the two ele
ments of the TEMP1 list that have just been appended to the property list and 
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Is called. 

STBP 5: Blimlnate first element of WORDTYPES, as in: 

Repeat Steps 2-4 for each type of word. 

Figure 4-7. Constructing property lists in BUILD.A.LIST 

the following line checks to see if the end of that list has been reached. If so, it 
STOPs processing. Otherwise, BUILD.A.LIST recalls itself with the list now two 
elements shorter than it was on the last pass through the procedure. 

INPUT.NEW.WORDS This procedure is simply a set of instructions that tell the 
user what is going to happen and then calls the ADD.A.LINE subprocedure. 

ADD.A.LINE This procedure reads a line of input from the user, puts the input 
into the variable LINE, checks to see if it is an empty list (i.e., that the user 
has finished and has simply pressed the [RETURN] key), and then calls the 
BREAK.LIST procedure. 

BREAK.LIST The BREAK.LIST procedure breaks each line of input into its com
ponent words and puts each into the variable WORD.LIST. This is necessary so 
that we don't end up with WORD.LIST as a list of lists rather than a list of words. 
This avoids some strange and undesirable consequences. For example, if the 
user entered the following two lines of words to add to the vocabulary: 

-
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SLIMY SLITHERING SNAKES 
SOAKED SUDSY STUFF 

[RETURN] +--- to indicate the input is ended. If we hadn't set up the BREAK.LIST 
procedure correctly, the variable WORD.LIST would eventually contain two 
lists: 

[[SLIMY SLITHERING SNAKES][SOAKED SUDSY STUFF]] 

The problem with this is that when the program asks the user to enter infor
mation about each "word," it would be asking the number of syllables and 
which part of speech the "word" SLIMY SLITHERING SNAKES is. Further, the 
first element of a list of lists would be a list, not a word. Thus, 

MAKE WORD1 FIRST :WORDLIST 

would result in WORD1 containing the list [SLIMY SLITHERING SNAKES] rather 
than the word, SLIMY, that we obviously wanted. Since BREAK.LIST essentially 
goes through the list entered one element at a time, adding each element to the 
list and redefining the input to be reduced by the element with which it has just 
dealt, we build one long list instead of a list of lists. 

After removing the word just placed into the variable WORD.LIST, the 
BREAK.LIST procedure calls itself again. When the list LINE is finally empty (as 
shown by the result of "T," for "true" when the EMPTYP test is run on it), the 
procedure STOPs execution and returns control to the ADD.A.LINE procedure. 

DELETE.ARTICLES After all of the user's words have been assembled into the 
variable called WORD.LIST, the procedure DELETE.ARTICLES goes through the 
list and removes all occurrences of "a," "an," and "the." This eliminates the 
necessity of asking for their number of syllables and parts of speech over and 
over when actual poetry is used to update the vocabulary. Since this procedure 
is identical to the one we studied in Chapter 3, it is not described in detail here. 

Note that DELETE.ARTICLES routine leaves the original WORD.LIST in a 
temporary holding variable called SENT2 (for SENTence 2). The ADD.VOCABU
LARY procedure removes the last element of this list and puts the rest into the 
variable WORD.LIST again. The last element of the list always is a "nil" because 
we initialized SENT2 to start out as the empty list which in ExperLogo® is repre
sented as "nil." 

GET.WORD.INFO GET.WORD.INFO is a straightforward procedure. It goes 
through the contents of WORD.LIST, which contains all words entered by the 
user with articles removed. It asks about each word-how many syllables it has 
and what part of speech it is. Each input uses READCHAR so the user never has 
to press the [RETURN] key. This means a word cannot contain more than nine 
syllables, a limitation we won't find troublesome! 

Information about each word is placed into the appropriate property list 
and removed from the WORD.LIST. When the list of words entered by the user 
is exhausted, the program returns control to the ADD.VOCABULARY procedure 
for the final step in the processing. 
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UPDATE.FILE To update the file of vocabulary words, we set up the file for 
writing and then use one of the output functions to print each property list on 
the file. Normally we store data on a disk file with the PRIN1 function in 
ExperLogo® because that function preserves the data type and special punctua
tion (brackets, etc.) associated with the data as it is written to the file. But han
dling a property list that way has no real advantage. Since the PRINT function is 
more common in Logo, we chose to use that approach here. 

At the end of this processing, the file is closed and control passes through 
ADD.VOCABULARY back to POETRY.MAKER. 

MAKE.UP.POEM and Related Procedures 
Figure 4-8 is a detailed box diagram of the MAKE.UP.POEM procedures. The 
diagram will help you follow the discussion about how creating a new poem is 
handled by Poetry Maker. 
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ANOTHER POEM 

Figure 4-8. Detailed box diagram of MAKE.UP.POEM routines 

Compare Figure 4-8 with Figure 4-6. The structure of this set of routines dif
fers markedly from that of the ADD.VOCABULARY procedures. Here, the main 
procedure, MAKE.UP.POEM, is little more than a driver routine that gives the 
user access to the rest of the procedures. The procedures are arranged less hier
archically and more sequentially because the processing in MAKE.UP.POEM is 
less repetitive and more serial in nature. 

MAKE.UP.POEM uses the same GET.WORDS procedure we discussed in 
ADD.VOCABULARY procedures. One difference, though, is that if you try to 
run MAKE.UP.POEM without a file, the program informs you that, "I can't com
pose poetry with no vocabulary!" It STOPs processing and returns control to 
the POETRY.MAKER menu handler. Figure 4-9 shows the vocabulary used by 
POETRY .MAKER. 



70 I Al Programming on the Macintosh 

N ~OOR 1PEOPLE2LEAVES1MOUNTAIN2GRASS1BUTTERFLY3 SHADOW 2 
TERNOON 3 PUDDLE 2 SUNSET 2 EVENING 2 MORNING 2 WAVES 1 SEA 1 
VER 2 WATERFALL 3 LAKE 1 

V f'GIVE 1 ROLLS 1STATTERS2 COURSES 2 FLIES 1 ROARS 1 BABBLES 2 WHISPERS 2 
lliEEPS 1STRUGGLES2ENDS1 RISES 2FLOATS1 DIES 1SHIMMERS2 

A raITTLE 2 COMFORTABLE 4 CRAWLING 2 SOARING 2 BLAZING 2 HOT 1 COOL 1 
ARK 1YELLOW2 GREEN 1RED1EARLY2 CRASHING 2 RUSHING 2CLEAR1 
LUE 1 HAZY 2 SOFT 1 QUIET 2 

D f\iERY 2 OFTEN 2 SLOWLY 2 LIGHTLY 2 GENTLY 2 SWIFTLY 2 SOMBERLY 3 
l.M_OURNFULLY 3 ENDLESSLY 3 

P I TOWARD 2 INTO 2 FOR 1 AT 1 TO 1 IN 1 UNDER 2 OVER 2 NEAR 1 

Figure 4-9. Vocabulary chosen for Poetry Maker 

SELECT.PATTERN This procedure provides instructions on selecting the type of 
poem to be created and then obtains the user's selection. The line: 

IF NOT NUMBERP :POEM.TYPE [SELECT.PATTERN] 

checks to be sure the POEM.TYPE entered by the user is a number. If not, the 
routine calls itself again, reprompting the user for a number. 

After ensuring the input is numeric, the program calls SET.POEM. 

SET.POEM This calls one of four procedures-named, appropriately enough, 
POEM1, POEM2, POEM3, and POEM4-depending on whether the user entered 
a 1, 2, 3, or 4. 

But the instructions produced by SELECT.PATTERN give users the option of 
permitting the program to create one of the four formats at random. The final 
line of the SET.POEM procedure says, "If the user didn't enter any of the 
expected values, 1-4, then generate a random number between 1 and 4 and 
run the procedure with that type as the input." 

(As with many microcomputer random number generators, the RANDOM 
instruction in both Experlogo® and Microsoft Logo® produces a number be
tween 0 and one less than the number provided. Therefore, we added 1 to the 
value produced to ensure that we didn't end up with a value of 0. Getting a O 
would not cause the program to malfunction, but it would slow down execution 
while the program repeated the selection until it generated a random number 
that was between 1 and 4. Also, failure to use the form shown would result in 
format 4 never being selected except by explicit instructions from the user.) 

POEM1, POEM2, POEM3, and POEM4 The four procedures create patterns for 
each of three lines of poetry. Each calls the COMPOSER procedure when it has 
established the patterns. 

Pattern-matching is an important Al concept that we will consider when we 
examine programs dealing with natural language processing. Here, there is no 
real matching of patterns going on; instead, the program simply generates pat
terns for the computer to fill with words. 

Let's look at POEM1 to see how each pattern is constructed; you can look 
at the other three formats for yourself. 
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Each of the first three lines of the procedure creates a list associated with a 
pattern. Each list consists of a number of letters. You will recognize all of them 
except one as identical to those used in the variable WORDTYPES in the 
ADD.VOCABULARY routine. The one new letter added here is "R," which is 
used to mean "article." 

When POEM1 completes its run, PATTERN1 will be defined as a line of 
poetry consisting of an adjective, followed by an adjective, followed by a noun. 
A line like: 

COOL GREEN SEA 

would fill this pattern. The second line would consist of an article or a particle, a 
noun, a verb, a preposition, an adjective, and a noun. This is one of the most 
common forms of the English declarative sentence (a sentence that makes a 
statement). Look at this sentence for the pattern just described: 

The boy listened to loud noises. 

In poems of Type 1, then, the second line will often sound like a "normal" 
sentence conveying some information (though the information may be unusual 
given the vocabulary we are using). 

The third line of this type of poem has two adjectives followed by a noun, 
just like the first line. This brings up a good point about Haiku which we saved 
until now so you could see how it related to the patterns we define. 

The "point" of a Haiku poem is often conveyed in the last line. The 
absence of a verb in its format-as in this pattern and two of the others as well
evokes imagination, but not action, from the poet's perspective. Thus we might 
have a poem which ends: 

QUIET DARK MORNING 

Such a line doesn't tell us anything about the quiet, dark morning other than 
that it is or was. The poet leaves the image for our imagination to deal with, a 
technique the great human poets use to great effect. 

COMPOSER COMPOSER is the "heart" of the MAKE.UP.POEM procedure 
group. It first initializes the variable LINE to be an empty list. It then counts the 
number of elements in each of the property lists (we'll soon see why we need 
this information) and it defines the number of articles in the variable NO._R to 
be3. 

Then it places the three patterns (PATTERN1, PATTERN2, and PATTERN3) 
consecutively into a variable called PAT and passes this variable to the pro
cedure called DO.LINE. When it has done this three times, it calls the 
RUN.AGAIN procedure, which asks users if they want to see another poem 
created. 

COUNT.WORDS This procedure uses the Logo primitive COUNT to determine 
the number of elements in each property list. Keep in mind that each property 
list contains the word and the number of syllables as two units, so the result of 
COUNT will always be an even number. Later, we have to adjust for that fact. 
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DO.LINE Taking each pattern as it receives it an element at a time, this proce
dure looks at the type of word (part of speech) in each element of the pattern. It 
then generates a random number between 1 and the number of elements that 
particular property list contains (as determined by COUNT.WORDS). Control is 
then passed to the GET.NEXT.WORD procedure. 

After each word is handled this way, the DO.LINE procedure removes it 
from the PAT variable with the command: 

MAKE PAT BF :PAT 

where "BF" is a shorthand way of programming the BUTFIRST primitive. 
It then checks to see if the pattern is empty. If so, it prints the line of poetry 

it has been composing and then STOPs. If there are more word types to find in 
the pattern, it calls itself with PAT reduced by the word just located. 

The exception to the use of GET.NEXT.WORD is when the word to be 
found is an article or a particle (type "R"). In that case, the DO.LINE procedure 
calls GET.ARTICLE. 

GET.NEXT. WORD and GET.ARTICLE These two procedures do essentially the 
same thing, though GET.NEXT.WORD is more complex for obvious reasons. 

GET.NEXT.WORD first ensures that the random number generated by 
DO.LINE is odd. This is because the information is stored in each property list so 
that the word is followed by its number of syllables, followed by the next word 
and its number of syllables, and so forth. The words themselves, therefore, 
occupy the first, third, fifth, seventh, and remaining odd positions. To find a 
word, then, we select an odd-numbered position in the list. The procedure 
ensures this by checking to determine what remainder we have when dividing 
by 2 the number generated by the DO.LINE procedure. If the answer is 0 (i.e., 

-EQUALP ... 0), then we subtract 1 from the answer. Note that this can never 
leave us with a zero, since the number had to be even before we subtracted. 

GET.NEXT.WORD then defines the variable NEXT.WORD to be the :LOCth 
element of the appropriate property list. This line is worth a brief examination. It 
reads as follows: 

MAKE NEXT.WORD HEMS :LOC 1 PUST :WORD1.TYPE 

The primitive ELEMS is unique to ExperLogo®. (Appendix B describes how 
to carry out the same function in Microsoft Logo®.) ELEMS takes three argu
ments. The first, in this case :LOC, is the beginning position in the list from 
which extraction is to begin. The second, in this case 1, tells the program how 
many elements to extract beginning at that location. The final argument, in this 
case PUST :WORD1 .TYPE, is the name of a list from which the information is to 
be extracted. This is a very efficient way of finding a specific element in a list. 
ExperLogo® simply goes to the property list for the type of word involved, moves 
to the position indicated by the variable :LOC and takes that one element as the 
value of NEXT.WORD. 

After picking up NEXT.WORD from the property list, it puts this word into 
the variable LINE. Note that it takes the first element of it before putting it into 
LINE. This is because ELEMS returns a list and we want the variable LINE to con
tain words not single-word lists. 
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The same procedure is followed in GET.NEXT.ARTICLE except we don't 
have to check for odd numbers-there are only three values and no syllable 
lengths stored in our arbitrarily defined list of articles. 

RUN.AGAIN When COMPOSER has run once for each line of a poem's pat
tern, it calls the RUN.AGAIN procedure, which asks if the user wishes to see 
another poem. If the answer is "Y," the program reruns SELECT.PATTERN; oth
erwise, the program will STOP and return to the POETRY.MAKER menu. (It calls 
SELECT.PATTERN rather than MAKE.UP.POEM to avoid rereading the data file 
and unnecessarily reinitializing variables.) 

Exploring Al with Poetry Maker 

Poetry Maker provides many opportunities for enhancements, refinements, and 
explorations. For the sake of organization and discussion, we'll examine these 
possible changes in three categories: improving the program's poetic product, 
making the program more flexible, and adding greater intelligence. 

Better Poetry Through Programming 
There are at least four interesting changes to Poetry Maker that would improve 
the quality of the poetry it produces. Your love of poetry and your imagination 
can provide dozens of ideas for such modifications. 

Handling Punctuation Correctly Poetry Maker will not deal with punctuation. If 
we enter a line of poetry like this: 

UNDER A SOARING RIVER, 
A MORNING DIES. 

the computer will pick up the punctuation as part of the words and define 
RIVER, and DIES. as two new words. When words are being added to the 
vocabulary, we must strip them of punctuation just as we strip them of articles 
As we did with the DELETE.ARTICLE procedure, .we now define a variable list of 
the punctuation marks, scan for them, and eliminate them. 

Punctuating poems as they are displayed is trickier, but not too difficult 
with the four patterns given in the program. We can, for example, add a dash (a 
double-hyphen) to the end of the first line of a poem of the first type, a period to 
the end of the second line (remember, the pattern merely produces a declara
tive sentence) and a second period to the end of the last line. Examine the three 
other formats given in the program and you will find that more than one kind of 
punctuation may be used at the ends of some lines. 

Punctuation possibilities also include inserting commas between adjectives 
any place they appear next to each other, as they do in the first line of type 1, 
for example. This is the preferred method of punctuating such sentences as: 

THE BIG, BLUE BALL. 

Punctuation isn't always handled that way, but it is correct in this case to 
do so. 
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Proper Use of "A" and "An" It would be relatively straightforward to examine 
the first syllable of each word preceded by a particle, find out if the item in ques
tion requires "a" or "an" and make the appropriate substitution. As it stands, 
the program frequently misuses those two articles, producing phrases like "an 
red afternoon" and "a awesome sunset." Cleaning up such usage would take 
the program a step closer to producing human-sounding poetry. 

Eliminating Duplicate Word Use We indicated in our discussion of ADD.VO
CABULARY routines that it would be possible, though perhaps unnecessary, 
to eliminate duplicate words from the vocabulary of the program. The only 
"harm" caused by duplicate words in the file is the slight increase in the proba
bility that the word will be used more than once in a poem-which occasionally 
might even be desirable. But if Poetry Maker produces something like this: 

SOFT SOFT SEA 
A MOUNTAIN ROARS NEAR SOFT WAVES 
QUIET SOFT MORNING 

one's mind could turn soft reading it. You can use a number of methods to 
avoid the duplicate use of words in a poem. Perhaps the easiest is to build 
a variable that lists all words used and checks each word as it is found by 
GET.NEXT.WORD against the contents of this list. If the word is found, the pro
gram could generate another random number (or, alternatively, the routine 
could move up or down the list two positions to the next word) and pick a new 
word for comparison and possible inclusion. 

True Haiku Patterns The final change is the reason a syllable count of each 
word was included in property lists and files of words learned by the program. 
True Haiku has five syllables in the first line, seven in the second, and five in the 
third. Using the syllable count in the property lists, it is possible to construct 
Haiku poetry that fits this traditional set of rules. 

Award of caution is in order. It is not just a matter of keeping track of how 
many syllables are used and merely subtracting. For example, suppose you gen
erate a poem of type 1 and you are on the first line where the pattern is 
adjective-adjective-noun. If you've already picked two adjectives and they're 
each one syllable long, but you don't have a three-syllable noun in your vocabu
lary, you're in trouble. Also, if you use the current random selection of words 
and if there are a limited number of three-syllable words and each word has to 
be checked before it can be used, you may find yourself with a program that 
takes longer to run than you have patience for. Several iterations through the 
noun property list might be required before the correct word is found. 

You might solve this problem by altering the patterns so that in place of the 
present PATTERN1 in POEM1 you would have a pattern like this: 

MAKE PATTERN1[A2 A 1 N 2) 

The program would be revised to look for a two-syllable adjective, fol
lowed by a one-syllable adjective, followed by a two-syllable noun. This is more 
complex and restricts the poetic output a bit more than our original design, but 
it's an approach that would work. You can undoubtedly think of others. 
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Adding Flexibility 
Two relatively easy changes would make Poetry Maker more flexible from the 
user's perspective. One involves permitting the user to enter a poetic pattern 
and the other permits use of more than one word file. 

Give Me a Pattern Where the Poets Roam. • • The first modification would be to 
ask the user, in the SET.PATIERN routine, to enter either a number from 1 to 4 
or another number to indicate a desire to enter a new pattern. Then the user 
enters three lists consisting of the six letters representing the parts of speech and 
generates a poem using that pattern. 

The poem does not have to be limited to three lines, but if you change this, 
you must modify the COMPOSER routine accordingly. 

As an adjunct to this idea, you could design the program to store poetic for
mats in a disk file, just as it stores vocabulary. Then large numbers of forms 
could match large, perhaps multiple, vocabularies. 

l.ots of Kinds of Words Another modification would permit users to tell the 
name of the file containing the words they want to work with. This would permit 
files of different kinds of words for different kinds of poetic moods. For example, 
one might be called "Romance Words," another "Nature Words," and still 
another "Humor Words." Then, depending on mood, the user could create any 
of several kinds of poems. 

This approach, if combined with permitting users to enter a poetry format, 
would result in a highly flexible and recreational program. It might even have 
some limited commercial potential! 

Adding Intelligence to Poetry Maker 
If you're ready for a real challenge, try adding semantic content considerations 
(i.e., meaning) to the Poetry Maker. A complete discussion of how this could be 
done is beyond the scope of this book, but a few ideas might get you started in 
the right direction. 

As the program is now designed, it can create pretty nonsensical sentences 
like: 

MOUNTAIN FOR THE LEAVES 
SEA TO A WATERFALL 

and others. The problem is that words picked at random don't necessarily bear 
any semantic relationship to one another. "Sea near a waterfall" and "mountain 
over the leaves" make sense in a poetic way, but our sentences do not. 

It would be possible to add some information to the property list about 
each word. As one minor example, if the user enters a noun, we could ask if it's 
the name of a place or a thing, and add a property list entry accordingly. Or we 
could ask if the thing was movable or not and add a property for that condition. 
Then if we added information about verbs that indicated whether they are appli
cable to objects that cannot move, we'd avoid nonsense like: 

THE MOUNTAIN DROVE HOME. 

You get the idea. By giving the program more information about each 
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word-in the form of additional data fields in the property lists-we could give 
our poems a better chance of making sense. 

Summary: What We've Learned about 
Al Programming 

In this chapter we've discussed some key concepts involved in natural language 
processing. We've laid the groundwork for programs coming up which are part 
of the NLP thread. We've examined key issues in text generation and reviewed 
the degree to which programs that produce text are useful tools for helping us 
learn about how language is put together. We have looked at how patterns can 
be used as ways of formatting results in addition to their more traditional Al role 
of being matched for identification of unknown items. 

TO POETRY.MAKER 
CLEARTEXT 

{Poetry Maker ®1985, The Waite Group} 
{Logo Program by Dan Shafer} 

PRINT <<Do you wantto: > > 
PRINT<<>> 
PRINT < < [A]dd Vocabulary Words to the File>> 
PRINT < < [M]ake Up Poems(s) > > 
PRINT< <[Q]uit> > 
MAKE MENU.CHOICE READCHAR 
IF :MENU.CHOICE= 'A [ADD.VOCABULARY] 
IF :MENU.CHOICE= 'M [MAKE.UP.POEM] 
IF :MENU.CHOICE= 'Q [STOP] 
POETRY .MAKER 

END 

TO ADD.VOCABULARY 
GET.WORDS 
MAKE WORD.LIST [) 
MAKE SENT2[) 
MAKE ARTICLES [A AN THE] 
INPUT.NEW.WORDS 
DELETE .ARTICLES 
MAKE WORD.LIST BUTLAST :SENT2 
GET.WORD.INFO 
UPDATE.FILE 

END 

TO INPUT.NEW.WORDS 
PRINT <<Please enter new words, separated by spaces.>> 
PRINT <<You can even enter a whole new poem if you like!>> 
PRINT<<>> 
PRINT <<When you're done, just enter a RETURN at the start>> 
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PRINT <<of a line. Then I'll ask you about the new words>> 
PRINT< <you've given me before I add them to the vocabulary file.>> 
ADD.A.LINE 

END 

TO ADD.A.LINE 
MAKE LINE READLIST 
IF EQUALP :LINE [NIL] [STOP] 
BREAK.LIST 
ADD.A.LINE 

END 

TO BREAK.LIST 
IF EMPTYP :LINE [STOP] 
MAKE WORD.LIST LPUT FIRST :LINE :WORD.LIST 
MAKE LINE BUTFIRST :LINE 
BREAK.LIST 

END 

TO DELETE.ARTICLES 
MAKE WORD 1 FIRST :WORD.LIST 
IF EQUALP MEMBERP :WORD 1 :ARTICLES NIL [MAKE SENT 2 LPUT :WORD 1 
:SENT 2) 
IF EMPTYP :WORD.UST [STOP] 
MAKE :WORD.LIST BUTFIRST :WORD.LIST 
DELETE .ARTICLES 

END 

TO GET.WORD.INFO 
MAKE WORD 1 FIRST :WORD.LIST 
PRINC [HOW MANY SYLLABLES DOES<<>>] PRINC :WORD 1 PRINT 
[<<>>HAVE?] 
MAKE SYLLABLES READCHAR 
PRINC [WHAT PART OF SPEECH IS<<>>] PRINC :WORD 1 PRINT < <?> > 
PRINT [N =NOUN V=VERB A=ADJECTIVE D=ADVERB P= PREPOSITION] 
MAKE WORD.TYPE READCHAR 
PPROP :WORD. TYPE :WORD 1 :SYLLABLES 
MAKE WORD.LIST BUTFIRST :WORD.LIST 
IF EMPTYP :WORD.LIST [STOP] 
GET.WORD.INFO 

END 

TO UPDATE.FILE 
MAKE WORDFILE OPEN_WRITE <<Logo Files: Poetry Words>> 
(PRINT PUST "N :WORDFILE) 
(PRINT PUST "V :WORDFILE) 
(PRINT PUST "A :WORDFILE) 
(PRINT PUST "D :WORDFILE) 
(PRINT PUST "P :WORDFILE) 
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CLOSE_FILE :WORDFILE 
END 

TO MAKE.UP.POEM 
GET.WORDS 
IF EQUALP :WORDFILE NIL [PRINT <<I can't compose poetry with no 
vocabulary!> > STOP] 
SELECT.PATTERN 

END 

TO SELECT.PATTERN 
PRINT <<I know four Haiku poetry patterns.>> 
PRINT<<>> 
PRINT <<Enter the number of the pattern you want me to use (1-4) > > 
PRINT < <or use any other number to tell me to pick one at random.>> 
PRINT<<>> 
MAKE POEM.TYPE READCHAR 
IF NOT NUMBERP :POEM.TYPE [SELECT.PATTERN] 
SET.POEM :POEM.TYPE 

END 

TO SET.POEM :POEM.TYPE 
IF :POEM.TYPE= 1 [POEM1] 
IF :POEM.TYPE= 2 [POEM2] 
IF :POEM.TYPE= 3 [POEM3] 
IF :POEM.TYPE =4 [POEM4] 
IF NOT MEMBERP :POEM.TYPE (123 4] [SET.POEM RANDOM 4+ 1] 

END 

TO POEM1 
MAKE PATTERN1 [A A NJ 
MAKE PATTERN2 [RN V PA NJ 
MAKE PATTERN3 [A A NJ 
COMPOSER 

END 

TO POEM2 
MAKE PATTERN1 [NP R NJ 
MAKE PATTERN2 [RAN PR NJ 
MAKE PATTERN3 [A NJ 
COMPOSER 

END 

TO POEM3 
MAKE PATTERN1 [RA A NJ 
MAKE PATTERN2 [PR A NJ 
MAKE PATTERN3 [RN VJ 
COMPOSER 

END 



TO POEM4 
MAKE PATTERN1 [RAN V] 
MAKE PATTERN2 [RA AN] 
MAKE PATTERN3 [PR AN] 
COMPOSER 

END 

TO COMPOSER 
MAKE LINE[] 
COUNT.WORDS 
MAKE NO._R3 
MAKE PAT :PATTERN1 
DO.LINE 
MAKE PAT :PATTERN2 
DO.LINE 
MAKE PAT :PATTERN3 
DO.LINE 
RUN.AGAIN 

END 

TO COUNT.WORDS 
MAKE NO._N COUNT PUST 'N 
MAKE NO._V COUNT PUST 'V 
MAKE NO._A COUNT PUST 'A 
MAKE NO._D COUNT PUST 'D 
MAKE NO._P COUNT PUST 'P 

END 

TO DO.LINE 
MAKE WORD1.TYPE FIRST :PAT 
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IF :WORD1.TYPE = 'N [MAKE LOC (RANDOM :NO._N) + 1 GET NEXT.WORD] 
IF :WORD1.TYPE = 'V [MAKE LOC (RANDOM :NO._V) + 1 GET NEXT.WORD] 
IF :WORD1.TYPE ='A [MAKE LOC (RANDOM :NO._A) + 1 GET.NEXT.WORD] 
IF :WORD1.TYPE = 'D [MAKE LOC (RANDOM :NO._D) + 1 GET.NEXT.WORD] 
IF :WORD1.TYPE = 'P [MAKE LOC (RANDOM :NO._P) + 1 GET.NEXT.WORD] 
IF :WORD1.TYPE = 'R [MAKE LOC (RANDOM :NO._R) + 1 GET.ARTICLE] 

MAKE PAT BF :PAT 
IF EMPTYP :PAT [PRINT :LINE MAKE LINE[] STOP] 
DO.LINE 

END 

TO GET.NEXT WORD 
IF EQUALP REMAINDER :LOC 2 0 [MAKE LOC :LOC-1] 
MAKE NEXT.WORD ELEMS :LOC 1 PUST :WORD 1.TYPE 
MAKE LINE LPUT FIRST :NEXT.WORD :LINE 

END 

TO GET.ARTICLE 
MAKE NEXT.WORD ELEMS :LOC 1 [A AN THE] 
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MAKE LINE LPUT FIRST :NEXT.WORD :LINE 
END 

TO RUN.AGAIN 
PRINT <<Do you want me to compose another poeml> > 
MAKE ANSWER READCHAR 
IF :ANSWER= 'Y [SELECT.PATTERN] 

END 

TO GET.WORDS 
MAKE WORDFILE OPEN_READ <<Logo Files:Poetry Words>> 
IF EQUALP :WORDFILE NIL [PRINT <<New File Being Created This Time>> STOP] 
MAKE WORDTYPES [N VA D P] 
REBUILD.PLISTS 
CLOSE_FILE :WORDFILE 

END 

TO REBUILD.PLISTS 
MAKE TEMP1 (READLIST :WORDFILE) 
BUILD.A.LIST 
MAKE WORDTYPES BF :WORDTYPES 
IF EQUALP (END_OF_FILE :WORDFILE) T [STOP] 
REBUILD.PLISTS 

END 

TO BUILD.A.LIST 
PPROP FIRST :WORDTYPES FIRST :TEMP1 FIRST BF :TEMP1 
MAKE TEMP1 BF BF :TEMP1 
IF EMPTYP :TEMP1 [STOP] 
BUILD.A.LIST 

END 
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In the early 1970s, an Al researcher named Terry Winograd wrote a program 
called, unpronounceably, SHRDLU. (Unlike the names of other programs, Pro
fessor Winograd picked this name because it had no meaning!) 

SHRDLU displayed an amount of apparent intelligence previously un
known to computers. Within its knowledge domain, it could respond to com
plex commands written in ordinary English (for example, "Find a block taller 
than the one you are holding and put it into the box."). More significant for Al 
research, SHRDLU could also explain why it did what it did. You could ask it, 
"Why did you pick up the green pyramid?" and it would respond with an expla
nation like, "The green pyramid was on top of the blue block. You asked me to 
put the red block on top of the blue block. I had to clear the top of the blue 
block." 

Any program that can understand reasonably complex English commands 
and then explain its behavior apparently evidences a fascinating degree of intel
ligence. People who saw and ran SHRDLU certainly felt that way. In point of 
fact, SHRDLU is neither complicated nor revolutionary in light of some of the 
research that has followed it in the past decade or so. But it remains an interest
ing program to contemplate and to use. 

We will examine a scaled-down version of the famous SHRDLU program, 
called "Micro Blocks World." We will prepare to understand the program and 
the Al implications it presents by first studying parsing-one of the key new 
ideas the program presents. Parsing is crucial to natural language processing 
design and to Al research in general. 

Parsing Natural Language 

The idea of parsing, and the term itself, originated with linguists. Linguists use 
parsing to refer to the process of analyzing language and breaking it into its com-

· ponent parts. There is a strong resemblance between that definition of parsing 
and what computer scientists call "parsing input." There are some differences, 
however. 

When computer scientists speak of parsing, they may not be referring to 
language in the traditional sense. Not only inputs, responses, and natural lan
guage entries are parsed in the world of computers. Some data base manage
ment programs store data in a compact stream of characters. When such data is 
retrieved, it must be broken into various fields and groups of characters. This 
process is sometimes referred to as parsing. 

An interesting symbiosis has been going on in the study of language. Prior 
to the emergence of natural language processing (NLP) and the related field of 
study known as computational linguistics, there was little need for scientists to 
think precisely about meaning, syntax, and structure in language. Humans intu
itively understood what was intended. But the introduction of computers and 
their insistence on precision of communication forced linguists to take a closer, 
more precise look at languages. 

The study of language benefited from the inspection forced by the com
puter-and from the theoretical ideas growing out of that inspection. Computer 
science benefited as linguists learned more about how humans communicate 
with language. The linguists provided Al researchers and other computer people 
with accurate and useful data about the processes involved. This, in turn, led to 
greater insight into the role computers and programs might play in the process. 
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What Parsing Is 

For our purposes, parsing is the process in which a computer program takes 
apart natural language to gain insight into the meaning of the words in a particu
lar sentence or phrase. However, this definition of parsing is at once too simple 
and too complex. 

The definition is too simple from the perspective of the serious Al re
searcher who wants to be sure that a definition of parsing incorporates such 
ideas as syntax, sources of knowledge, and data structures for knowledge repre
sentation. On the other hand, the definition is too complex in that, even stated 
simply, the idea is difficult to grasp and to deal with in a computer program. 
Nonetheless, the definition is sufficient for our needs in this chapter. 

It is interesting to investigate the process of parsing more rigorously than 
the Micro Blocks World program requires. So in the next few pages we will 
examine parsing on a broader scale. 

Parsing Techniques and Strategies 

-In designing a full-fledged parser for a complete Al system, a programmer would 
be forced to make some important design trade-off decisions. A discussion of all 
of these decisions is beyond the scope of this book, but one aspect is of particu
lar interest to us. 

Bottom-Up vs. Top-Down Design A parser can either start with the goals (i.e., 
the set of possible sentence structures) or it can begin with the words actually in 
the sentence being parsed. The former technique is referred to as "top-down" 
and the latter as "bottom-up." 

For example, a top-down parser would begin parsing a sentence by looking 
at the rules for a sentence, then looking for the constituent parts of a sentence 
(clauses, phrases, etc.), and then looking to their constituent parts until it 
has composed a complete sentence structure from the rules. If this sentence 
matches the pattern of the sentence being parsed, the program is successful; 
otherwise, it starts back at the top again, generating a different sentence struc
ture to compare. 

The bottom-up parser would attempt to combine the words and word 
groups in the input sentence into larger and larger structures, trying to recom
bine them to prove that all of the input words together form a legal sentence in 
the grammar. In theory, both parsers reach the same conclusion about the same 
input, given the same grammar. Many large-scale parsers combine both tech
niques and use them interactively with one another. 

One frequently recurring discussion in Al is whether top-down or bottom
up parsing techniques will lead to more efficient or accurate results. The details 
of that discussion are esoteric, but one thing is safe to say: there is no way to 
conclude yet that one approach is superior to the other. They are simply differ
ent ways of pursuing similar goals. 

Micro Blocks World performs bottom-up parsing. It begins with the words 
entered by the user as a command and attempts to find the specific parts of the 
entry with which the program must concern itself. The bottom-up approach 
works best in this instance because of the program's limited knowledge base, 
the predictable nature of the input, and the narrow set of rules within which 
parsing must take place. 
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Combining Words in Bottom-Up Parsing A related design issue in parsing con
cerns the method by which portions of input-technically called "constitu
ents"-are to be combined in a bottom-up approach. Words are generally dealt 
with in groups. The rules by which words are combined into these groups may 
affect the ability of the parser to "understand" the meaning of the input. 

Our Micro Blocks World program requires three elements: identification of 
the subject and the object and the operation to be performed by one on the 
other. That makes it easy for us to combine words into groups by their position 
relative to the basic command word or verb. The program finds this verb, splits 
the sentence into two pieces and then searches for the other necessary compo
nents within these pieces. 

The more complex are the rules associated with the language being imple
mented and understood by the program, the more difficult and complicated the 
issue of design becomes. 

Examples of Parsing 
Parsing is easier to understand if we apply some of the basic ideas of the tech
nique to a simple but potentially ambiguous English sentence. 

Vocabulary: A Starting Point Parsers generally begin with a basic vocabulary of 
words they understand as being certain parts of speech or playing specific roles 
in communication. For example, a parser might be given the information that 
the word "give," along with its variants "gives," "gave" and "given," is transi
tive, requiring a direct object (the thing that is given) and an indirect object (the 
person to whom the thing is given). 

The parser might also know that any word beginning with a capital letter is 
the name of a person. To deal with the possibility that the first word in a sen
tence will be capitalized but not necessarily a proper name, we provide a sec
ond rule that says that if the program can make sense of the first word in a 
sentence by some other rule, it should use that rule. If not, it should assume that 
name is a proper noun, too. 

Let's also have our program understand some nouns that serve as direct 
objects. We could choose "bell," "book," and "candle," for example. When 
the program encounters these words, it will know that they are potential direct 
objects of the sentence. 

We'll add one other rule about vocabulary to our knowledge base: the 
words "a," "an," and "the" -the two particles and the article-are "throwaway 
words," which can be simply ignored. 

We should note here that not all of these rules would be valid in all parsers; 
in fact, this last rule about throwaway words would almost certainly not be 
acceptable in a truly useful language parsing program. Whether or not a word 
has an article can affect the use of the word in the sentence, but in complex 
ways. 

Rules to Be Applied A parser will also have a set of rules, called a "grammar," 
to apply to data it receives from the user. We'll discuss grammars later, but for 
now assume our parser has one rule. It knows that a valid sentence will include 
the word "give" or one of its variations, that the next word group it encounters 
will define the indirect object, and that the final word group will describe the 
direct object. 
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The parser also knows that a word group can consist of throwaway words, 
nouns it understands, and any number of other words (adjectives, adverbs and 
the like) that must be dealt with by some other part of the parser. 

Finally, it knows that the direct object portion of the input sentence will 
always begin with a throwaway word. (This is almost always true in real-life Eng
lish as well.) 

A Sample Sentence Now let's give our "program" a sentence to work with: 

John gave Mary a book. 

Our program could easily handle this group of words. Parsing from left to 
right and using a bottom-up approach, the program first looks at the word 
"John," notes that it is capitalized but that it is the first word in the sentence. It 
then looks in its vocabulary to see if "John" is a word it knows in some other 
context. Not finding it, the program concludes that John is the name of a specific 
person. 

Now the parser can move to the word "gave." This word is a variant on 
the main verb it understands, "give." Therefore, the sentence is potentially a 
sentence that it can parse. It moves to the next word. 

"Mary" is capitalized and does not appear at the beginning of a sentence; 
therefore, it is a proper noun. The program knows that a verb, "gave," can be 
followed by an indirect object. No great amount of thinking or analysis is 
needed here. 

The word "a" is a throwaway word. The program knows that the direct 
object portion of a valid sentence for our arbitrary set of rules could begin with 
such a throwaway word, so it notes that it may now be dealing with the direct 
object and throws the "a" away. 

"Book" is a noun the parser knows can serve as a direct object. Since it has 
already determined from previous analysis that it may be dealing with the direct 
object part of the input sentence, it now concludes that "book" is the direct 
object of the sentence it is parsing. 

The period signals the end of the sentence, so parsing stops and the pro
gram can now be said to have understood and assimilated this sentence. 

A Bit More Complexity Just so we can see what our hypothetical parser will do 
when faced with more difficult problems, let's create a slightly more complex 
sentence for it to parse. 

The big man gave little Mary a purple book. 

Parsing from left to right, the program first analyzes the word "The." Not
ing that it is capitalized, but the first word in the sentence, the parser checks to 
see if it knows the word from some other context. It finds that it is a throwaway 
word and therefore ignores it and moves to the next word. 

The two words "big" and "man" receive identical treatment. Neither is 
capitalized, neither is known to the program. The parser does what it has been 
told to do with any words it doesn't know. (Possibly keeping them in reserve for 
later use.) 

Next, the familiar word "gave" appears. The program now knows that this 
is a sentence it can possibly handle. It expects to confront a direct object at this 
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point. (If the parser has been designed to do so, it will also now conclude that 
"big man" is a word group that serves as the subject of the sentence.) 

The word "little" gets the same handling as the words "big" and "man"; it 
is set aside for the moment as not conforming to any known rules. 

"Mary," on the other hand, is a known quantity-a proper noun, and, 
therefore, the indirect object of the sentence. (Again, depending on design, the 
parser might even conclude that "little Mary" is an indirect object word group.) 

You can probably figure out that the next word group will be handled by 
treating "a" as a throwaway word, setting aside "purple" as unrecognizable, 
and noting "book" as a legal direct object. The period flags the end of the sen
tence and the parser now "knows" that the sentence is valid, that it is likely that 
the subject is "big man," that the indirect object is "Mary" or perhaps "little 
Mary" and that the direct object is "book," or perhaps "purple book." 

A Final Test What will a parser such as this do when it encounters a sentence 
outside its realm of knowledge? Let's try it on one: 

The 1985 San Francisco Giants played baseball poorly. 

Our parser first determines that "The," is a throwaway word. It then looks 
at "San" and, since it is capitalized and not the first word in the sentence, 
decides that it is the name of a person. It does the same thing with "Francisco" 
and "Giants." 

None of the last three words mean anything to the parser, which has never 
been told about the verb "play" or the noun "baseball" or the adverb "poor
ly." But all of a sudden, there's a period, so the parsing assignment is over. 

The parser cannot interpret this sentence. How it deals with that fact 
depends upon how the program has been designed to deal with the unknown. 
In any case, the parser would not acknowledge that this sentence is valid since it 
doesn't comply with the parser's knowledge of what a valid sentence is. 

Parsing and Other NLP Techniques 
Real-life NLP programs in Al labs also include such things as generators, infer
ence engines, and memories in addition to parsers. Generators create parsable 
sentences from information passed to the program. Inference engines draw con
clusions from information. Memories build up information over time and permit 
parsers to adapt to changing information. 

We examined one crude text generator in the Poetry Maker program. In 
Chapter 7 we present an inference engine of sorts that implements a subset of a 
full-fledged Al programming language written in Experlogo®. Memories are too 
complex a subject to be dealt with in this book. 

In any case, all NLP programs include a parser of some kind as part of their 
design. So understanding parsing is an important part of understanding NLP 
generally. 

The Role of Grammars 

We mentioned the use of grammars several times in the course of describing the 
process of parsing. We now turn our attention to a brief examination of gram
mars as they relate to computers. 
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What a Grammar Is 
We all studied grammar in school. A few people love studying grammar
including professional linguists and writers (some of whom view themselves as 
saviors of a rapidly vanishing "pure" English language). However, the subject is 
not generally relished by students (or, for that matter, by anyone else). 

But when it comes to computers, grammar is given a very specific defini
tion. A "grammar" is that portion of an NLP program that consists of the rules of 
what constitutes a grammatical (i.e., correct or understandable) sentence and 
what makes up its component parts. 

Sentence Grammar We could have a grammar with only one rule: anything that 
begins with a capital letter and ends with a period, question mark, or exclama
tion point is a correct input. This grammar would be easy for a computer to 
implement, but it has two primary drawbacks: first, it doesn't tell us what the 
sentence is or means; second, it fails to match what we think of as "correct" 
grammar. It would pass all of the following as complete or correct inputs: 

The cow jumped over the moon. 
We are one. 
Cats, dogs, chickens. 

It. 
Somewhere over the rainbow! 
Taking a walk? 

Grzwilly frbl sksb! 

On the other hand, it would reject, as incorrect sentences, all of the follow
ing inputs: 

ready? +-no capital letter at the beginning 
"Help me, please." +-doesn't end with known punctuation mark 
e e cummings +-no capital, no punctuation 

Also, it would never tell us anything about input except that it was a valid 
or an incorrect sentence-not particularly helpful information. It is certainly not 
worth the power of a computer program. 

Subsentence Grammar The next logical level of sentence parsing differentiates 
between subjects and predicates. We can define a grammar that, along with 
associated vocabulary, contains the following rules: 

1. If the sentence ends with a period, look for the verb in your vocabulary. 
Everything coming before the verb is the subject; the verb and the rest of the 
sentence are the predicate. A subject always acts on a predicate. 

2. If the sentence ends with a question mark, the first word is a helper that 
belongs with the verb. Find the verb. Everything that appears before the verb 
and is not a helping verb, is the subject. The helper verb and the verb along 
with the rest of the sentence, is the predicate. Such a sentence always asks if the 
predicate is true of the subject. 



90 I Al Programming on the Macintosh 

Such a grammar will correctly recognize and analyze the following sen
tences: 

The subject of this sentence acts on the predicate. 

We entered the room calmly. 
Does she look healthy to you? 

Are you going to the dance? 

It will not, however, deal correctly with these sentences: 

How many are in your party? +-no helper verb before verb 
Quaking in his boots, the man turned away. +-introductory clause 
"Merry Christmas," he said to me. +-no rules about quotes 

The Role of Context Al researchers are coming to the conclusion that grammar 
rule sets, in and of themselves, do not provide a sufficiently rich framework 
within which to attempt the machine interpretation of natural language. _The 
most complex parser-generator combined with the most capable and rich gram
mar would still have trouble with the common sense in the following sentences: 

We saw Detroit flying to New York. 

Jane was hurt. 

Both sentences are valid and correct, from a grammatical perspective. The 
problem is that they are ambiguous on a contextual level. To make sense of 
them, we need to know something about the context within which they are 
said. 

The first example, "We saw Detroit flying to New York," would not, in 
context, give human listeners any trouble. But for a computer to understand it 
correctly, the program would have to know something about flight, about which 
objects fly and which don't, about what New York and Detroit are, and perhaps 
a number of other facts. It is not difficult to present such information to a com
puter program or to store it, but such rules are neither grammars nor vocabula
ries. They are, rather, contexts or concepts. 

The second sentence is ambiguous even to a human listener. We do not 
know whether Jane was hurt physically or emotionally. We need to know the 
context, the action that took place just prior to the statement. 

The importance of context or concept has led a number of researchers
notably those at Yale University's Al Laboratory under the direction of Al guru 
Dr. Roger Schank-to focus on issues other than grammars in attempting to deal 
with NLP problems and designs. 

And So On. . . We could go on, adding more and more "knowledge" about 
grammar, syntax, semantics (whatever they are!), vocabulary, and context. But 
the conclusion is probably clear already; parsing is no simple matter. Without it, 
however, NLP would remain an unattainable idea. 

Let's turn our attention now to the program we will be working with in this 
chapter. Although the program uses a simple form of parsing, it will clearly dem
onstrate the role parsing plays and one way parsing is undertaken by NLP 
programs. 
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The Program 

SHRDLU has a tradition in Al computing circles. Since you will encounter our 
program's "big brother" if you do any serious reading in Al literature, we will 
take a few moments to explore what the original program did-and how it did 
it-before jumping into our microcomputer version. 

Original Program 
When Winograd introduced SHRDLU to the world of Al, he offered his col
leagues a radical departure from earlier work in NLP. The program represented 
a robot (after whom the program is named) that responded verbally and graphi
cally to human commands. 

This program "knew" about a small universe of a tabletop holding various 
sizes of blocks and boxes of various shapes and colors. (Thus the name "Blocks 
World"; it is a world of blocks about which the program has knowledge.) When 
told to do something with a particular block or box, SHRDLU carries out the 
instruction and either informs the user of its success or asks for clarification. 

Within the confines of this small universe, SHRDLU is a real expert. For 
example, it knows that things put on top of pyramids will fall off. It knows that to 
move an object which is supporting another object, it must first move the top 
object. 

But SHRDLU's real strength lies in its ability to deal with English language 
input. In this sense, it is a truly remarkable program, even by today's more 
advanced standards. Let's look at a sample of the kind of dialog in which 
SHRDLU could engage. 

Sample Dialog 
Figure 5-1 shows the universe of the SHRDLU robot at the beginning of the dia
log. (SHRDLU is capable of dealing with a far larger number of objects than this, 
but we will reduce the universe for the sake of clarity and brevity.) 

YELLOW 

' ' 
•• 1. .................................... .. 

.." BLACK 

Figure 5-1. Starting point for SHRDLU dialog 

Now let's follow a few lines of dialog between the user of this program (in 
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capital letters) and the computer (in lower case letters and indented from the left 
margin): 

PICK UP THE BIG YELLOW BLOCK. 
ok. 

PUT IT IN THE BOX. 
ok. 

(Note: figuring out what "it" means is not always so easy, as we shall soon 
see; it is here that SHRDLU shines!) 

PICK UP THE BIG PYRAMID. 
i don't understand which pyramid you mean. 

(There are two large pyramids.) 

PUT THE BLUE BLOCK IN THE BOX. 
ok. 

WHERE IS THE PURPLE PYRAMID? 
the purple pyramid is supported by the table. 

WHEN DID YOU MOVE IT THE RH 
when i was putting the blue block in the box. 

WHY? 
to clean off the blue block. 

WHY? 
because you told me to. 

(The machine's ultimate justification!) 

PUT THE YELLOW BLOCK BEHIND THE PURPLE PYRAMID. 
ok. 

PUT THE PINK PYRAMID ON TOP OF THE GREEN PYRAMID. 
i can't. 

WHY? 
a pyramid cannot support·an object. 

PUT THE PINK PYRAMID ON TOP OF THE YELLOW BLOCK. 
ok. 

PUT THE RED BLOCK ON TOP OF THE YELLOW BLOCK. 
ok. 

WHAT IS THE TABLE SUPPORTING? 
the purple pyramid, the yellow block, the green pyramid, and 
the black box are supported by the table. 

PUTIT DOWN. 
i can't. 

(Note that it doesn't need to know what "it" we are referring to; any "it" 
won't work since it is "empty-handed.") 

WHY? 
i am not in possession of anything now. 
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Pretty smart program, eh? Yet, it knows about only a very limited knowl
edge domain and only responds mechanically to information it is given and 
requests it is handed. 

What Micro Blocks World Does 
The Macintosh® Experlogo® implementation in this program is not nearly as 
elaborate as Dr. Winograd's original product. Nonetheless, it is fairly sophisti
cated and we think it is instructive and enjoyable. The program contains several 
of the fascinating features that made SHRDLU such a widely studied and copied 
program. 

What It Knows The universe of Micro Blocks World consists of two blocks and 
two pyramids. One of each of these pairs is larger than the other so that there 
are four easily differentiated objects: a large block, a small block, a large pyra
mid, and a small pyramid. 

The vocabulary contains recognizable nouns (block and pyramid), adjec
tives (small and large) and "operators" (top, right, and left). 

Rules of the grammar by which Micro Blocks World interprets input and 
responds to "commands" are: 

1. A grammatically correct sentence contains one operator preceded by a 
subject and followed by an object. 

2. A subject and an object each consist of one adjective and one noun. 

3. Everything that isn't an operator, a known noun, or a known adjective is a 
throwaway word and may be ignored. 

4. Punctuation is not permitted. 

The laws that govern the program's world include: 

1 . An object can't be placed next to or on top of itself. 
2. Objects can't be stacked on top of pyramids. 

3. Objects can't be positioned outside the range of the tabletop. 
4. Objects can't be placed next to objects that are not themselves positioned 

directly on the tabletop. 

5. Subjects that are under other objects can't be moved. 
6. Two objects can't occupy the same position at the same time. 

This is the sum total of the knowledge of the program. Obviously, it is far 
more limited than SHRDLU. But the principles upon which it operates and the 
means by which it knows things are quite similar. 

What It Understands Given the rules and knowledge base, we can see that 
Micro Blocks World "understands" commands that tell it to do things with 
objects. More precisely, the program understands instructions that tell it to move 
one of the four objects into a new spatial relationship with another of the four 
objects. Because the program focuses attention upon subject-object combina
tions placed on either side of a known operator, it can deal intelligently with a 
wide range of commands. All the following will be understood and responded 
to properly by our program. 
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Note 

Do not end sentences with punctuation. Doing so will cause the program to 
behave unpredictably. 

Put the large pyramid to the right of the small block 
Large pyramid right small block 
Pick up the large pyramid and move it just to the right of the small block please 

The following sentences would not be understood but in the program 
attempts to elicit missing information from the user. 

Put it to the right of the large block. 
Put the block to the left of the small pyramid. 
Put the large pyramid on top of the block. 

How the computer specifically reacts to such situations is covered in the 
next section of this discussion. 

How It Reacts When you enter a command into the Micro Blocks World's Lis
tener Window, one of three things can happen. 

First, if the command is complete and your instruction can be followed, the 
program will do what you tell it and await another command. (You will see your 
instruction carried out in Experlogo's® Graphics Window.) A complete com
mand has a subject containing an adjective and a noun, and an object contain
ing an adjective and a noun, with a known operator between the two. 

Second, if the command you enter contains a known operator but is miss
ing some information, the program will request clarification until it is sure it 
understands your command. Then, if possible, it will carry out your instructions. 

Finally, if you enter a command which has no operator-and therefore 
makes no sense to the program-it will tell you it doesn't know how to carry out 
that instruction and ask for another. 

There is one other command the program understands; the word "cancel" 
stops the program from running and returns you to Experlogo®. 

A Small Sample Session When you start the program by typing in the command 
BLOCKS_WORLD, the screen will look like Figure 5-2. Figures 5-3 through 5-8 
depict a typical session running Micro Blocks World. The interaction with the 
program takes place in the Experlogo® Listener Window and results are dis
played in the Graphics Window. 

If we ask the program to carry out an instruction with more than one piece 
of required information missing, it will doggedly pursue the matter until we have 
told it everything it needs to know, as you can see from Figure 5-9. 

If you let your friends work with the program for a while, they will probably 
conclude that the program is intelligent. It seems to understand human input 
and knows how to ask for information needed to use that information wisely. In 
short, it's a "smart" program! 
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• File Edit Run Help System 

EJ.1perlogo listener 

block~-•orld I 
The objects are: a small block, a large block 

a small pyramid, and a large pyramid. The key 
operators are : top, right, and left. 
The word "cancel" quits the progra•. 

I IJhat wou Id you I i ke me to do ? 

Graphics Window 

Figure 5-2. Starting position of Micro Blocks World 

s File Edit Run Help System 

EHperlogo listener 
·--

a s•all pyra•id, and a large pyra•id. The key 
operators are : top, right, and left. 
The •ord "cancel" quits the progra•. 

IJhat would you like •e to do? 
Put the s•all pyra•id on top of the large block 
IJhat · •ould you like •e to do? 

Graphics Window 

Figure 5-3. First command executed 
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1 

s File Edit Run Help System 

Ewperlogo listener 
The ~ord "cancel" quit~ the program. 

What would you like 1e to do? 
Put the small pyra1id on top of the large block 
What would you t ike me to do ? 
smal I block left of large pyra1id 
What •ould you I ike me to do ? 
I 

Graphics Window 

Figure 5-4. Abbreviated command understood and executed 

s File Edit Run Help System 

Ewperlogo listener 
smal I block left of large pyra1id 
What would you I ike me to do ? 
large pyramid left of block 
large pyramid left mhich block ? 
large block 
What would you I ike me to do ? I . 

Graphics Window 

Figure 5-5. Missing information obtained 
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.S File Edit Run Help System 

EHperLogo listener 

Uhat would you I ike me to do ? 
Pick up the smal I block and put it on top of the pyramid 
Pick up the smal I block and put it on top which pyramid ? 
large pyramid 
I can't put the smal I block on a pyramid ! 
Uhat would you I ike me to do ? 

1 

................... 1111111115111111m111111111111=-i--1111:m 
Graphics Window 

Figure 5-6. Can't stack things on pyramids! 

.S File Edit Run Help System 

EHperlogo listener 

Uhat would you I ike me to do ? 
Put the large pyran id next to the 9nal I biock 

~h:o~~Je~~~"a~~~ : t~ ~~~l~h~l~~~;e/~;:;;db~:;: to the ~Ml I block 'l .. =1.: .... i!····';· ... ···.1 .... ·.1 ... =· 

a 9nal I pyra~id, and a large pyramid . The key 
operator' are : top, right, and left. ;:=:;; 

The word "cancel• quits the program. 
Uhat would you I ike me to do 7 

Figure 5-7. Illegal sentence entered and rejected 
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a File Edit Run Help System 

EHperLogo listener 
What would you I ike me to do ? 
Put the large block to the right of the smal I block 
I have to move the smal I pyramid first 
Uhat would you I ike me to do ? 
Smal I pyramid on top of smal I block 
What would you I ike me to do? 
Put the large block to the right of the smal I block 

· Uhat wou Id you I i ke me to do ? 

Figure 5-8. Tried to move an object under another object 

.S File Edit Run L Help System 

EHperLogo Listener 
operators are : top, right, and left. 
The word "cancel" quits the program . 

Uhat would you I ike me to do ? 
put it on top of it 
Put it on top of it ? 
block 
Which block top of it ? 

1 sma 11 block 
s111al I block top of what ? 
block 
sma 11 block top of which block 
large block 
What would you I i ke me to do ? 

? 

Figure 5-9. Program plays detective, gives us third degree! 

lll!ll! 
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How Micro Blocks World Works 
Figure 5-10 is a box diagram of MICRO_BLOCKS_WORLD. It is divided into 
two major blocks: INITIALIZE and GET_COMMAND block. The latter, in turn, 
is broken into two blocks: a single procedure called INITIALIZE_COMMAND 
and the "workhorse" of the program, PARSE. We will spend most of our time in 
this section examining the PARSE procedure and some of its key subprocedures. 

The INITIALIZE Procedure INITIALIZE has two major functions: it sets up the ini
tial position of the tabletop and objects, and it prints the rules of the blocks 
world. 

The SET_TABLE procedure uses QuickDraw Graphic commands, which 
are key extensions to the Macintosh® implementations of both ExperLogo® and 
Microsoft Logo®. (These commands vary from one Logo to another; see Appen
dix B for more information.) 

The GET_COMMAND Procedure Group The GET_COMMAND procedure asks 
the user, "What would you like me to do?" It then waits for an answer, checks 
to see that it is not CANCEL, and sends the input to the PARSE procedure. 

Before it does this, though, GET_COMMAND calls the INITIALIZE_ 
COMMAND procedure. The procedure clears out information that may have 
been contained previously in the four key variables, PHASE1, PHASE2, SUB
JECT, and OBJECT. PARSE procedures use these variables to analyze the input. 
Leaving information in them from one command to the next would result in the 
program not recognizing when information was missing from a command. 

The PARSE Procedure Group The process of parsing an input sentence in the 
program consists of five basic steps. Figure 5-11 depicts these steps and provides 
a map of the rest of this discussion. 

Dividing the Input into Clauses The PARSE procedure parses from left to right 
the sentence it receives from the GET_COMMAND procedure, seeking an 
operator: "top," "right," or "left." If it doesn't find one, it takes three steps: 

1. It prints, "I don't know how to" followed by a repeat of the input. 

2. It displays the rules as a gentle reminder to the user of what it does 
understand. 

3. It returns control to GET_COMMAND. 

When it does find an operator, it splits the input on both sides of the opera
tor, putting the first part into the variable PHASE1 and the second part into 
PHASE2. 

Locating and Verifying the Subject According to the program's rules, the subject 
of the sentence always precedes the operator. Therefore, the program searches 
through the list called PHASE1 using the LOCATE_SUBJECT procedure and, if it 
can find both, picks out the adjective and noun which make up the subject. 

After parsing through PHASE1, the PARSE procedure passes control to the 
VERIFY_SUBJECT procedure, which checks to be sure that what LOCATE_ 
SUBJECT has found is complete-a valid noun and adjective. If one or both are 
missing, the procedure asks for the missing information needed until it is com
plete. Control is then returned to the PARSE procedure. 
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llAIN DRIYD: BLOCH- WORLD 

INITIALIZE 

SBT _TABLE SMALL - BLOCK 

PRINT - RULES LARGB - BLOCK 

SMALL - PYRAMID 

GBT - OOMMAND LARGll _PYRAMID 

INITIALIZE_ OOMMAND 

PARSE 

LOCA TB_ SUBJECT 

VERIFY _ SUBJBCT 

LOCATB - OBJBCT 

VERIFY_ OBJBCT 

TBST - OOMMAND 

GBT - CURPOSITION 

VALID_MOVB 

RBARRANGB 

ERASE_ SUBJBCT 

GBT - NEW POSITION 

DRAW - SUBJBCT 

Figure 5-10. Main driver MICRO_BLOCKS_WORLD 



Figure 5-11. The parsing process in five 
steps 
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Put the large block OD top or the small block 

STIP I: OperalOI' • &op 

PllASBI •Pu\ U&e hlrge block -

PBASll2 • Of \Ile 1m.U bloct. 

STIP 2: SUBJBCT • IU'lle bloct. 

STIP 3: OBJBCT • am.U bloct. 

STIP 4: Is the move valid? (Depends OD setup or tabletop 
and OD Input compared to rules.) 

STIP '' Rearranae the tabletop to retlect tbe new 
situation. 

Locating and Verifying the Object PARSE takes the same steps with PHASE2 that 
it did with PHASEl in an effort to find and complete any missing elements in the 
object of the sentence. 

It is interesting to note that the process results in one anomalous situation. 
If we ask the program to: 

Put the block on the large pyramid 

the program will dutifully ask us for the missing description of the block and 
then inform us that it can't put that block-or any other block, for that matterl
on top of a pyramid. This is because the program deals with the subject first and 
then the object. 

Testing the Validity of the Move Once the program has a complete subject and 
object and knows what the operator is, it is ready to see if it can legally make the 
move. The TEST_COMMAND procedure is the main driver routine for this 
processing. 

First, the GET_CURPOSITION procedure examines the subject and object 
and determines where on the tabletop-or where in relation to one another
they are. It puts the current row and column of the subject in the variables Rl 
and Cl, respectively. Then it puts the current row and column of the object in 
R2 and C2. 

The program uses this information in the VALID_MOVE procedure, which 
informs the program if the requested move is valid or invalid. If invalid, it 
informs the user of the reason and returns "nil" to the TEST_COMMAND pro
cedure. In that event, the procedure invokes a STOP command and returns con
trol to PARSE. 

When the move is valid, TEST_COMMAND calls the REARRANGE pro
cedure, which erases the subject from its current position, uses GET_NEW
POSITION to calculate the new position for the item, and stores this information 
for later use. TEST_COMMAND then calls the procedure DRAW_SUBJECT, 
which in turn calls on the appropriate graphic command routine to redraw the 
moved item. 

The Use of Arrays in the Program 
While most of the Experlogo programs in this book use lists as their primary 
knowledge representation vehicle, Micro Blocks World uses an array. Chapter 
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10 provides a basic introduction to the idea and use of arrays in Logo. If the idea 
is unfamiliar to you, it might be useful to review that material in trying to under
stand Micro Blocks World. 

The array used here is called POSITION. It keeps track of the graphic coor
dinate positions of each of the four objects. Four variables, called SB_POS, 
LB_POS, SP _POS, and LP _POS, point to the locations in this array where 
information about the small block, large block, small pyramid, and large pyra
mid, respectively, is stored. 

Exploring Al with Micro Blocks World 

We can make a number of improvements to Micro Blocks World without trying 
to duplicate Winograd's original SHRDLU program. Here are a few suggested 
changes; you will undoubtedly see others as you work with Micro Blocks 
World. 

Dealing with Objects under Objects 
One change we could make would be to have the program react differently 
when we ask it to move an object that has an object sitting on it. We could take 
one of two approaches. 

First, the program could move the object along with anything stacked on it. 
This results in a straightforward programming situation. It will be a little tricky 
getting all the coordinates of the three stacked objects right, but that should not 
involve a great deal of trouble. 

Second, and more sophisticated, the program could ask the user where to 
place the object that is on top of the object to be moved. Then it could go 
through the same process of subject-object checking, rearranging, and so on. 
Then it could automatically carry out the user's first command. This alteration 
gives the program a stronger appearance of intelligence in its analysis and 
understanding of our input. 

Coping with Punctuation 
As the program is now designed, punctuation at the end of the input sentence 
causes problems. It would be relatively easy to look for punctuation and strip off 
any. Define a list called PUNCTUATION to contain all the punctuation marks, 
scan from right to left on the input, and strip them off until you come to a char
acter other than a punctuation mark. Then proceed as the program now runs. 

Adding Objects 
A more complex alteration would add graphic elements and/or objects to the 
universe of the program. We could, for example, add small blocks or large pyra
mids or both. In fact, we could add more of each type of object. To do so, we'd 
need a way of differentiating objects from one another. Colors were used in 
SHRDLU. Our program could use pen patterns (black, gray, light gray, dark 
gray, and white). 

This would necessitate a fairly major change. We would first have to add 
these new descriptions to the vocabulary. Then we'd have to define new objects 
to incorporate their patterns. We'd also have to modify PARSE to look for two 
adjectives and a noun and to be prepared for these adjectives to appear in either 
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color-size or size-color sequence (i.e., "large gray block" is the same thing as 
"gray large block"). 

Expanding its Comprehension 
It would be interesting to fiddle with the program's vocabulary to expand its 
ability to deal with certain kinds of input. For example, we could add the word 
"next" as an operator and design the program's response so that it would ask, 
"next to the large pyramid on which side?" Many such opportunities may occur 
to you as you run this program and watch your friends use it. 

Adding an Explanation Facility 
Perhaps the most difficult improvement we could consider would enable the 
program to explain its actions. This would involve giving the program a "mem
ory." This could be done by a series of lists or an array in which we store the last 
step the program took at the top of a stack of information and let older informa
tion drop off the bottom. Then when we ask the program why it did something, 
it would simply go through the list or array and print the information stored 
there. 

Summary: What We've Learned about Al 

We have taken an in-depth look at one of the most important ideas in NLP pro
gramming: parsing input. We have seen what parsing is, strategies available for 
its implementation, its importance in NLP, and its relationship to other aspects 
of such programs. We have also taken a look at the concept of "grammars" 
in the context of a computer program whose goal is to understand human 
language. 

We also examined the capabilities and performance of the famous Al pro
gram SHRDLU as preparation for understanding our own new microcomputer 
version of a subset of that program. We have seen what parsing, grammars, and 
rules in knowledge bases do when trying to design a program to understanding 
natural language input. 

{Micro Blocks World ©1985, The Waite Group} 
{Logo program by Ken Schieser} 

TO BLOCKS_WORLD 
INITIALIZE 
GET_COMMAND 

END 

TO INITIALIZE 
MAKE NOUNS [block pyramid] 
MAKE ADJECTIVES [small large] 
MAKE OPERATORS [top right left] 
{Arrays hold an object & graphic position} 
MAKE POSITION MAKL . ..ARRAY [4 5) 
MAKE (POSITION 3 1) [[small block][ - 75 70]] 
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MAKE (POSITION 3 2) [[large block][ - 25 70)] 
MAKE (POSITION 3 3) [[small pyramid][25 70]] 
MAKE (POSITION 3 4) [[large pyramid][75 70)] 
{SB short for small block etc. Variables hold array positions [column row]} 
MAKE SB_POS [3 1] 
MAKE LB_POS [3 2] 
MAKE SP _POS [3 3] 
MAKE LP _POS [3 4] 
SET_TABLE 
PRINT_RULES 

END 

TO SET_TABLE 
PENPAT :GRAY 
PAINTRECT [70 -100 75 100] 
PENPAT :BLACK 
SMALLBLOCK - 75 70 
LARGE_BLOCK - 25 70 
SMALLPYRAMID 25 70 
LARGE_PYRAMID 75 70 
(LISTENER 'SELECTWINDOW) 

END 

TO PRINT_RULES 
PR< <The objects are :a small block, a large block, a small pyramid, and a large 

pyramid. The key operators are: top, right, and left. The word "cancel" quits the 
program.>> 
END 

TO GET_COMMAND 
INITIALIZE_COMMAND 
PR< <What would you like me to do?>> 
MAKE COMMAND READLIST 
IF :COMMAND= [CANCEL] [STOP] 
PARSE 
GET_COMMAND 

END 

TO INITIALIZE_COMMAND 
MAKE PHRASE1[] 
MAKE PHRASE2[] 
MAKE SUBJECT[] 
MAKE OBJECT[] 

END 

{Procedure Parse: Find an operator (top right or left) splits the sentence into 2 phrases 
(phrase1- first part before the operator, phrase2- second part after operator} 
TO PARSE 

IF EMPTYP :COMMAND [PR (SE< < I don't know how to> > : PH RASE 1 < < ! > >) 



PRINT_RULES STOP] 
MAKE WORD FIRST :COMMAND 
IF MEMBERP :WORD :OPERATORS 

[MAKE OPERATOR :WORD 
MAKE PHRASE2 BF :COMMAND 

{subject is located in phrasel} 
LOCATE-5UBJECT :PHRASE1 

{object is located in phrase2} 
LOCATE_OBJECT :PHRASE2 

{tesLcommand is the call to the graphics} 
TEST_COMMAND STOP] 

MAKE PHRASE1 LPUT :WORD :PHRASE1 
MAKE COMMAND BF :COMMAND 
PARSE 

END 

TO LOCATEJUBJECT :PHRASE 
IF EMPTYP :PHRASE [VERIFY-5UBJECT STOP] 
MAKE WORD FIRST :PHRASE 
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IF OR MEMBERP :WORD :NOUNS MEMBERP :WORD :ADJECTIVES 
[MAKE SUBJECT LPUT :WORD :SUBJECT] 

LOCATE-5UBJECT BF :PHRASE 
END 
{Procedure verify_subject verifies that the variable subject contains one adjective & one 
noun. 
The user is given the option to enter the correct data. Same for verify_object} 
TO VERIFY-5UBJECT 

IF OR EMPTYP :SUBJECT (COUNT :SUBJECT) >2 
[PR (SE <<Put what>> :OPERATOR :PHRASE 2 <<l>>) 
MAKE SUBJECT[] 
MAKE PHRASE1 READLIST 
LOCATE-5UBJECT :PHRASE1 STOP] 

IF NOT MEMBERP FIRST :SUBJECT :ADJECTIVES 
[PR (SE <<Which>> :SUBJECT :OPERATOR :PHRASE2: <<l>> 
MAKE SUBJECT[] 
MAKE PHRASE1 READLIST 
LOCATE-5UBJECT :PHRASE1 STOP] 

IF NOT MEMBERP LAST :SUBJECT :NOUNS 
[PR(SE <<The>> :SUBJECT <<what>> :OPERATOR:PHRASE2 <<l>> 

MAKE SUBJECT[] 
MAKE PHRASE1 READLIST 
LOCATE-5UBJECT :PHRASE1 STOP] 

END 

TO LOCATE_OBJECT :PHRASE 
IF EMPTYP :PHRASE [VERIFY_OBJECT STOP] 
MAKE WORD FIRST :PHRASE 
IF OR MEMBERP :WORD :NOUNS MEMBERP :WORD :ADJECTIVES 

[MAKE OBJECT LPUT :WORD :OBJECT] 
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LOCATE_OBJECT BF :PHRASE 
END 

TO VERIFY_OBJECT 
IF OR EMPTYP :OBJECT (COUNT :OBJECn >2 

[PR(SE :PHRASE1 :OPERATOR <<ofwhaH>>) 
MAKE OBJECT[] 
MAKE PHRASE2 READLIST 
LOCATE_OBJECT :PHRASE2 STOP] 

IF NOT MEMBERP FIRST :OBJECT :ADJECTIVES 
[PR (SE :PHRASE1 :OPERATOR< <which>> :OBJECT< <1>>) 

MAKE OBJECT[] 
MAKE PHRASE2 READLIST 
LOCATE_OBJECT :PHRASE2 STOP] 

IF NOT MEMBERP LAST :OBJECT :NOUNS 
[PR (SE :PHRASEl :OPERATOR <<the>> :OBJECT <<what?>>) 
MAKE OBJECT[] 
MAKE PHRASE2 READLIST 
LOCATE_OBJECT :PHRASE2 STOP] 

END 

TO TEST_COMMAND 
GET_CURPOSITION 
IF NOT VALID_MOVE [STOP] 
REARRANGE 

END 

---------~--

{Procedure geLcurposition obtains the current array position of the subject [Cl R1] & 
the object [C2 R21} 
TO GET_CURPOSITION 

IF :SUBJECT =[small block] 
[MAKE C1 FIRST :SB_POS MAKE Rl LAST :SB_POS] 

IF :SUBJECT =[large block] 
[MAKE Cl FIRST :LB_POS MAKE Rl LAST :LB_POS] 

IF :SUBJECT =[small pyramid] 
[MAKE Cl FIRST :SP _POS MAKE Rl LAST :SP _POS] 

IF :SUBJECT =[large pyramid] 
[MAKE Cl FIRST :LP _POS MAKE Rl LAST :LP _POS] 

IF :OBJECT =[small block] 
[MAKE C2 FIRST :SB_POS MAKE R2 LAST :SB_POS] 

IF :OBJECT =[large block] 
[MAKE C2 FIRST :LB_POS MAKE R2 LAST :LB_POS] 

IF :OBJECT =[small pyramid] 
[MAKE C2 FIRST :SP _POS MAKE R2 LAST :SP _POS] 

IF :OBJECT =[large pyramid] 
[MAKE C2 FIRST :LP _POS MAKE R2 LAST :LP _POS] 

END 

TO VALID_MOVE 
{If subject & object are the same} 
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IF AND :Cl= :C2 :Rl = :R2 
[PR (SE <<I can't>> :PHRASEl :OPERATOR :PHRASE2 < < ! > >) 

OP NIL] 
{if trying to place on a pyramid} 

IF AND :OPERATOR = 'top (LAST :OBJECn = 'pyramid 
[PR (SE <<I can't putthe> > :SUBJECT < < on a pyramid!>>) OP NIL] 

{if trying to place out of array bounds (off the table)} 
IF OR (AND :OPERATOR = 'right :R2 = 4) 

(AND :OPERATOR = 'left :R2 = 1) 
[PR (SE <<I can't putthe> > :SUBJECT <<off the table!>>) 
OP NIL] 

{if trying to place next to an object that is on top of another} 
IF AND (OR :OPERATOR = 'right :OPERATOR = 'left) :C2<3 

[PR (SE <<I can't place the>> :SUBJECT <<to the right or the left since the>> 
:OBJECT <<is not sitting on the table.>>) OP NIL] 

{if the subject is pinned down by another object} 
IF NOT EMPTYP (POSITION :Cl -1 :Rl) 

[PR (SE <<I have to move the>> FIRST (POSITION :Cl -1 :Rl) <<first!>>) OP 
NIL] 

{NEXT 3 - if another object currently holds the position} 
IF AND :OPERATOR= 'top NOT EMPTYP (POSITION :C2 -1 :R2) 

[PR (SE < <The> > Fl RST (POSITION :C2 - 1 : R2) < <is on top of the > > 
:OBJECT<<!>>) OP NIL] 

IF AND :OPERATOR ='right NOT EMPTYP (POSITION :C2 :R2+1) 
[PR (SE <<The>> FIRST (POSITION :C2:R2+1) <<is to the right of the>> 

:OBJECT<<!>> OP NIL] 
IF AND :OPERATOR = 'left NOT EMPTYP (POSITION :C2 :R2-1) 
[PR (SE <<The>> FIRST (POSITION :C2 :R2-1) <<is to the left of the>> 

:OBJECT < < ! > > OP NIL] 
OP 'TRUE 
END 

TO REARRANGE 
ERASE_SUBJECT 
GET_NEWPOSITION 
DRAW_SUBJECT 

END 

{Procedure geLnewposition: calculates coordinates & array position, redefines array & 
array position variables} 
TO GET_NEWPOSITION 

MAKE X FIRST LAST (POSITION :C2 :R2) 
MAKEY LAST LAST (POSITION :C2 :R2) 
IF :OPERATOR= 'TOP 

[IF :OBJECT =[large block] 
[MAKE HEIGHT 48][MAKE HEIGHT 24 ] 

MAKE :Cl :C2 - 1 
MAKE :Rl :R2 
MAKE Y :Y - :HEIGHT] 
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IF :OPERATOR= 'right 
[MAKE Cl :C2 
MAKE R1 :R2 + 1 
MAKE X :X + 50] 

IF :OPERATOR ='left 
[MAKE Cl :C2 
MAKE Rl :R2 -1 
MAKE X :X - 50] 
MAKE (POSITION :Cl :Rl) LIST :SUBJECT SE :X :Y 

IF :SUBJECT =[small block][MAKE SB_POS SE :Cl :Rl] 
IF :SUBJECT =[large block][MAKE LB_POS SE :C1 :Rl] 
IF :SUBJECT =[small pyramid][MAKE SP _POSSE :Cl :Rl] 
IF :SUBJECT =[large pyramid][MAKE LP _POSSE :C1 :R1] 

END 

TO DRAW-5UBJECT 
MAKE X FIRST LAST (POSITION :Cl :Rl) 
MAKE Y LAST LAST (POSITION :C1 :R1) 
IF :SUBJECT =[small block][SMALLBLOCK :X :Y] 
IF :SUBJECT =[large block][LARGE_BLOCK :X :Y] 
IF :SUBJECT =[small pyramid][SMALLPYRAMID :X :Y] 
IF :SUBJECT =[large pyramid][LARGE_PYRAMID :X :Y] 

END 

TO ERASE-5UBJECT 
PENPAT :WHITE 
DRAW-5UBJECT 
PENPAT :BLACK 
MAKE (POSITION :C1 :R1) NIL 

END 

TO SMALLPYRAMID :X :Y 
PU SETPOS SE :X -12 :Y 
MAKE TRI OPENPOLY 
SHOWPEN 
LEFT 90 REPEAT 3[RT 120 FD 24] RT 90 
CLOSE POLY 
PAINTPOLY :TRI 
KILLPOLY :TRI 

END 

TO LARGE_PYRAMID :X :Y 
PU SETPOS SE :X- 24 :Y - 1 PD 
MAKE TRI OPENPOLY 
SHOWPEN 
LT 90 REPEAT 3[RT 120 FD 48] RT 90 
CLOSEPOLY 
PAINTPOLY :TRI 
KILLPOLY :TRI 

END 



TO SMALLBLOCK :X :Y 
PAINTRECT (SE :Y- 24 :X-12 :Y :X + 12) 

END 

TO LARGE_BLOCK :X :Y 
PAINTRECT (SE :Y - 48 :X - 24 :Y :X + 24) 

END 
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In the early 1980s when video games were the rage, some programs were noto
rious for the seeming intelligence of the "enemy" against whom one "fought." 
It seemed that no matter how hard one tried, the enemy was relentless and 
seemingly unbeatable. The persistent little opponents heatedly and smartly pur
sued the "victim." They even anticipated one's actions. The ghosts pursuing the 
little hero always "knew" how to cut the hero off, unless the player was particu
larly quick-witted. 

"How does he know that's where I'm going?" more than one human 
player might have wondered. How, indeed? 

Predicting behavior can be done in a number of ways. The one with which 
this chapter will concern itself is predicting sequencing through pattern-match
ing. That means the program anticipates what you are going to do next based on 
what you have most recently done. 

We will first discuss the concepts and significance of pattern-matching and 
its role in predictive sequencing. Next we will examine a program in which we 
try to escape from a maze guarded by a seemingly intelligent being bent on 
keeping us trapped. 

Pattern-Matching in Al 

We have already encountered minor instances of pattern-matching in the first 
three programs. Missionaries and Cannibals used pattern-matching techniques 
to determine if the situation created was one we had already dealt with. Micro
Logician could compare an input string to a stored pattern or template to deter
mine if the program could deal with the sentence and, if so, how. Poetry Maker, 
used patterns to establish the sequence of parts of speech in order to randomly 
generate poetry so the program would seem sensible. 

An Important Concept 
Pattern-matching is an important concept in Al programming-one which has 
been applied to a number of fields of investigation. For example, it plays a key 
role in most NLP programming. Matching sentences and clauses against stored 
patterns as they are parsed enables programs to differentiate one kind of gram
matical input from another. 

Robotic vision is another area that has seen much emphasis on pattern rec
ognition and matching. A robot "eye" -a camera or cameralike apparatus
gathers information about images in its field of view. It compares edges, sizes, 
and even shadows with stored patterns to determine the kind of object it is deal
ing with. 

Humans and Patterns 
It has often been said, with some exaggeration, that "people are creatures of 
habit." We may not be entirely creatures of habit but we are certainly creatures 
of pattern. When faced with a frequent trip between home and a store, we will 
probably follow the same route almost every time. We may eat meals in a cer
tain pattern, we probably always get dressed in a certain sequence. (The differ
ence between habit and pattern is perhaps only one of degree. A "habit" is an 
unconscious but repetitively performed set of behaviors, while a "pattern" is 
performed consciously.) 
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Much of our success coping with seemingly trivial things in daily life can be 
attributed to patterns and predictability. A traffic light which has just turned 
amber is certain to turn red; faced with a red light, people will almost always 
stop. A delicious dinner served by Aunt Mabel will almost surely be followed by 
something chocolate and fattening. 

Intelligence Is Seeing Patterns Analogy problems are perhaps the most fre
quently posed problems on tests designed to measure either intelligence or abil
ity to learn new concepts. You've almost certainly encountered such problems 
as that shown in Figure 6-1. The problem is stated algebraically as: "A is to B as 
C is to what?" 

A IS TO B AS c 

IS TO: 

d. NONB OF THE ABOVE 

Figure 6-1. Analogy problems test intelligence 

How we go about solving such problems has fascinated Al researchers 
almost from the beginning. Problem-solving is an area of Al research which has 
borne important fruit in the past few years. Without going into psychological or 
educational theories, it is clear that we all follow roughly the same sequence of 
steps. 

1. We look back and forth between A and B and try to find out what they 
have in common and what is different between them. 

2. We try to formulate a rule about what is different between A and B. 
3. Then we look at C and try to see how it differs from and is similar to A. 
4. We try to formulate a rule about what is different between C and A. 
5. We examine the optional answers in turn to see if one predicts the logical 

outcome of applying the A-B rule to the figure called C. 
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Quite often, similarities between A and C may be minimal or nonexistent, 
at least on the surface. The less obvious such similarities are, the more difficult 
the problem will be to solve. 

The understanding of vocabulary also is often tested by analogic reasoning. 
The test provides three words along with instructions to find the word in the 
answer list that is related to the third word as the first two are related to one 
another. For example: 

Empty is to full as depressed is to: 

a. joyful 
b. tired 
c. sad 
d. content 

We observe that the first two wor9s are direct opposites, so we look for the 
direct opposite to the word "depressed" in the list and find "joyful." Note that 
"content" comes close but seems to fall short of being a direct opposite. 

The point is simple-a provable relationship exists between the ability to 
discern patterns in things and the ability to learn new ideas and incorporate new 
concepts into our thinking. Analogic reasoning is not in itself intelligence, but it 
certainly plays a major role in measuring intelligence. 

Predictive Sequencing: Basic Ideas 
So far the analogy problems we've looked at involve very small two-step se
quences. From the A-B sequence of two steps we try to analogize a rule which 
will solve the C-? two-step sequence. In human behavior-and in other aspects 
of intelligence testing as well-sequences are often much longer than two steps. 

To predict how an individual will react to a specific situation, we would 
increase the probability of accuracy as we recorded more and more observa
tions of his behavior in that situation. We see a man arrive at a restaurant at 7:33 
A.M. on a weekday. He goes to the newspaper rack outside, buys a paper, carries 
it inside the restaurant, and reads it while he has breakfast. 

We predict, based on this single observation, that at 7:33 A.M. the following 
day, the same man will repeat the sequence. If he doesn't, we have no pattern 
on which to base another prediction. If he does show up and follow the same 
steps, we have a much higher degree of confidence that the man will do the 
same thing the next day, and so on. 

What if, on the second day we are watching our man, he does indeed 
show up at 7:33 A.M., but this time has the newspaper under his arm when he 
arrives. For the next few days, he repeats the same pattern. We now might feel 
safe in predicting that his behavior pattern, broken only occasionally, is to bring 
his newspaper to the restaurant, arriving 7:33 A.M., and eat breakfast while read
ing his paper. We have altered our prediction about the sequence of events 
based upon our observation. 

To predict the outcome of sequences, then, we have to have enough 
observations, or examples, to work with to think that our prediction will be 
right. The more instances we have, the more likely we are to be correct in a 
prediction. 
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Number Sequences 
Anyone who has taken an IQ test or an achievement test in the past few years 
will recognize this type of problem: 

Find the next number in the sequence: 
32, 24, 18, _ 

a. 0 
b. 27'2 
c. 6 
d. 14 

Faced with this kind of problem, we apply slightly different logic than we 
did to our earlier analogies problems. Here, we try to find a pattern among the 
three numbers given to us and then predict, based on that pattern, what the 
next value in the sequence will be. In other words, we assume the sequence will 
continue and that the pattern, whatever it is, will repeat itself. We don't merely 
look through the answers to see which one might fit (unless we reach the point 
where we simply can't see the pattern and are looking for some clues in the 
answers). 

(The answer, by the way, is "b." Each number is% of its predecessor.) 

When Prediction Is Less Certain 

Most prediction, whether involving predictive sequencing or some other tech
nique, is far less precise than prediction involving analogies and number se
quences where strict rules apply and one answer must be right, even if the 
answer is the infamous "none of the above." Weather forecasting, particularly 
by laypeople, provides a good example of the kind of prediction we are likely to 
engage in in daily life-and which, therefore, provides a better model for Al pro
gramming than does an intelligence test. 

One Hundred Heads in a Row ••• 
The traditional logic problem about coin-tossing provides an example of the 
truth of the difficulty of real-life prediction. The question is usually framed like 
this: "If I toss a coin in the air 100 times and it comes down heads every time, 
what are the chances that the 101 st toss will also be heads?" The answer, of 
course, is 50-50, the same as on every toss of a coin. Every toss of the coin is a 
completely independent event; previous results do not affect the next toss. 

When events are either truly random or disconnected from one another, 
we cannot find a pattern that can predict what will happen in a given event. But 
we can often bring some sense of order and sequence and consequent predict
ability to a seemingly random situation by examining more information. 

There is an important idea in pattern-matching in Al programs; the more 
factors available to compose the pattern, the more likely we are to find some 
pattern fit in a knowledge base and thus be able to use the information for 
prediction. 
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Three Types of Pattern-Matching 

Pattern-matching doesn't lend itself well to categorization. It may be helpful, 
however, to think of pattern-matching as having three varieties: template
matching, macro-matching, and micro-matching (Drs. Cherniak, Riesbeck, and 
McDermott identified the last two categories). 

Template-Matching 
At its simplest level, "template-matching" compares one thing to another to see 
if sufficient similarities exist to declare them to be of the same pattern. An exam
ple of this kind of simplistic pattern-matching occurs in Micro-Logician (Chapter 
3) when we compare input against several stored prototypes of what sentences 
should look like to the program. 

Early NLP programs-ELIZA, PARRY, and others-used relatively straight
forward pattern-matching of this variety to achieve some seemingly astonishing 
results. 

Another level of template-matching involves comparing two pieces of infor
mation to see if they intend to represent the same thing. For example, the fol
lowing two sentences: 

John gave Mary the ball. 
Mary got the ball from John. 

should come out as "equal" in any pattern-matching, which would be useful in 
NLP programming. The level of sophistication is obviously one degree greater 
than that of the simple template-matching we've seen earlier. 

Micro-Matching 
Quite often Al programming has two "small" data or knowledge structures, 
each of which contains variable information (i.e., unknowns). Our objective is 
to "squeeze" the two together to see if they will fill in some or all of each 
other's missing data. This important part of the Al programming environment is 
referred to as "micro-matching." 

We will view this kind of pattern-matching in some detail in Chapter 7 
when we examine a small language built in Logo to combine two such inputs to 
produce an output containing less unknown information than either original. 

Macro-Matching 
Sometimes Al programs need to take two large structures-entire knowledge 
bases, for example-and compare them to identify similarities and differences. A 
classic example of this kind of matching is the General Problem-Solving (GPS) 
program (written by G. Ernst and A. Newell in 1969 in an effort to devise strate
gies for problem-solving that would work on a broad range of problem types). 

The GPS program essentially compared two sets of knowledge, looked for 
differences and then tried to eliminate them. As the number of differences was 
reduced, the data bases become more and more similar and so more closely 
approached a solution. 

Except for some very theoretical exploration, little work has been done in 
macro-matching because such programs must be large and are very expensive 
to create and maintain. 
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The pattern-matching going on in a macro-matching program goes beyond 
template-matching. It is micro-matching without variables. In the following pro
gram, the goal is simply to look for any pattern whatsoever-sequences of 
moves that seem to repeat-to help predict with some confidence the next 
move the player is liable to make. 

The Intelligent Maze Program 

The program's execution is quite simple, and its structure and syntax are refresh
ingly straightforward. Best of all, it provides a clear and convincing demonstra
tion of pattern-matching at work. 

What It Does 
The "Intelligent Maze" program pits the user against the program's predictive 
pattern-matching algorithms. The program's objective is to keep the user from 
successfully moving from the bottom of the maze to the exit at the top. It does 
this by blocking the pathway in the direction the program thinks the person is 
likely to try to move next. Figure 6-2 shows what the opening screen looks like 
as you begin to play the game. 

Graphics Window -------------------

Figure 6-2. Opening screen of INTELLIGENT_MAZE 

Users, represented by the circle, click the mouse button anywhere in the 
Graphic Window. To move left, for example, they click anywhere along the row 
to the left of where the marker is positioned. The program interprets that click as 
"move to the left one position." By holding the mouse button down, the player 
can move as far to the left as the maze and the enemy, the square, will allow. 
Similarly, upward movements, downward movements, and shifts to the right are 
handled by clicking and/or holding the mouse button down with the pointer 
positioned on the side of the maze where users wish to move. 

We could have designed this program so that the enemy simply moved to 
the exit and blocked it at the beginning of the game. So much for intelligence! 
But that would have defeated our purpose, besides creating a very boring 
program. 

We decided instead to make the "enemy" powerful but not invincible. He 
can move through walls and traverses the maze quite rapidly. But he only 
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moves when he thinks he's found a pattern in the user' s movements and the 
user is in a position to move in at least two directions. This means the player will 
quite often move without any response from the computer. 

Winning the Game 
It is quite difficult for the player to emerge from the maze. Once you reach the 
upper right corner of the maze area, your opponent moves to block the exit and 
you are stuck. (Figure 6-3 shows this situation.) But at that point, you must 
become "sneaky." You have to convince the enemy, based on your pattern of 
movement, that you are heading in a different direction. But you can't get so far 
away from the exit that when the enemy finally moves to block your path, you 
can't exit in a move or two, before he discerns the pattern of movement. You 
can win (for proof, see Figure 6-4). 

Graphics Window 

Figure 6-3. INTELLIGENT__MAZE game at impasse near end 

Graphics Window 

FREE 

Figure 6-4. Success in INTELLIGENT__MAZE 

Don't get discouraged if you don't win this game right away. Learn how it 
works first. Remember, the idea isn't to create a game you can win or to create 
one you can 't win. The idea, rather, is to help you learn something about Al. 
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How It Works 

Figure 6-5 is a box diagram of the INTELLIGENT_MAZE program. The main 
driver routine, INTELLIGENT_MAZE, calls two other main procedures. SET
UP _GAME initializes the information needed to keep track of what is going on 
in the maze (more in a moment). It then draws the three graphic objects: the 
maze itself, the circle representing the player, and the square representing the 
computer enemy. 

We are ready for the PLAY procedure, where all of the action in the pro
gram takes place. 

Before we look at several of the procedures that make up PLAY, we should 
understand how the layout of the collection of rows composing the maze is 
represented. 

INITIALIZE_ROWS Procedure 
You can see from Figure 6-6 that the maze layout is composed of nine rows, not 
counting the entrance and exit rows. The rows are numbered from top to 
bottom. 

Figure 6-6 shows how Row 1 is represented in the data structure in the pro
gram. The variable ROWl is a list of lists, one list for each space in the row 
where the circle could land. Each list consists of two more lists. The first list pro
vides coordinates of the position (with the center of the maze at 0,0, or "origin" 
point) and the second list contains all the moves legal from that position. 

Thus, if we look at the leftmost open square in Row 1 of Figure 6-6, we find 
that it has coordinates [20, - 40] and the legal moves that can be made from it 
are [D, R], or down and right. The second square is located at position [30, 
- 40] and a circle placed there can move left or right. The third and final square 
on this row is at coordinates [40, - 40]. Legal moves are up, down, or left, but 
not right. 

Each row of the maze is set up the same way, so that once we have posi
tioned the circle, we only need to determine its coordinates, match them with 
the coordinates possible for that row, and we know what possible moves the cir
cle can make. 

PLAY Procedure Group 

As you can see from Figure 6-5, the PLAY procedure contains three main proce~ 
dure groups and a fourth, stand-alone procedure. The procedure groups are 
called GET_DIRECTION, MOVE_CIRCLE, and BLOCK. The stand-alone FREE 
procedure checks to see if the circle's vertical coordinate has exceeded - 50, in 
which case it has escaped from the top of the maze and the game is over. 

GET_DIRECTION Procedure Group 
This small collection of procedures determines the direction the player is trying 
to move and, if it is a legal move, updates the list called LAST_MOVES. Based 
on the contents of this list, the program predicts the player's next move. 

The third line of the GET_DIRECTION procedure is the key to this group. 
The line checks to see if either the direction the player is trying to move is not 
one of the legal moves for that square or the player is blocked in that direction 
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MAIN DRIVBR: INTBLLJGBNT_ llAZll 

SBTUP-GAMB 

INITIALIZED_ ROWS 

DRAW _MAZE 
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DRAW_ SQUARB 

PLAY 

GBT _ DIRBCTION 
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HEADING_ DIRBCTION 

BLOCKED 

UPDATED 

MOVB _CIRCLE ERASE - CIRCLE 

NBW _COORDINATES 

GBT - NEW - POSSIBLE_ DIRBCTIONS 

SEARCH 

DRAW_ CIRCLE 

BLOCK 

ERASB _SQUARE 
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Figure 6-5. Main driver: INTELLIGENT_MAZE 
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by the enemy. If either is true, the procedure simply calls itself and waits for the 
user to make a legal move. 

If neither condition is true-in other words, if the move is legal and not 
blocked-the procedure updates the LAST_MOVES list and returns control to 
PLAY. 

MOVE_CIRCLE Procedure Group 
This group of procedures performs two major functions. It actually relocates the 
circle for the player from its present position to the place the player has asked it 
to move. Second, it updates the list of legal directions the player can now move, 
based on the contents of the row list representing the row on which the circle is 
located. 

The NEW_COORDINATES procedure looks at the direction the player has 
moved. This information is output by the HEADING_DIRECTION procedure in 
the GET_DIRECTION group. Each row of the maze is -10 units away from the 
row below it. If the player has moved up, the NEW_COORDINATES procedure 
updates only the Y coordinate by subtracting 10 from its former position. Simi
larly, right, left, and down are handled by adding or subtracting 10 from the for
mer X or Y coordinate, as appropriate. 

GET_NEW_POSSIBLLDIRECTIONS determines which row the player is 
on by examining the Y coordinate of the position. It then calls the SEARCH pro
cedure and tells it which row to look at. SEARCH, in turn, looks at each pair of 
lists in the variable associated with that row description (ROW1 for the first row, 
ROW2 for the second, and so on) until it finds the coordinates that match those 
of the circle. It then takes the second part of that list and puts its contents into 
the POSSIBLLDIRECTIONS variable. 

BLOCK Procedure Group 
This procedure group actually carries out the program's moves. It erases the 
square and draws it in a new position . The heart of this procedure group, and of 
the program from an Al perspective, is the procedure called FIND_PROBABLE. 

The FIND_PROBABLE procedure operates on a list called LAST_MOVES 
which is passed to it by the PROBABLE_DIRECTION procedure. LAST_ 
MOVES contains the last six moves made by the player, with the most recent on 
the right end of the list. FIND_PROBABLE goes through the list from left to right 
and, if it finds sequences of moves which consist of the same move two or three 
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times in succession, it considers this to be the most probable next move. If it 
finds more than one such sequence, the rightmost (in other words, most recent) 
combination is used because the procedure moves through the list from the old
est to the newest move. 

The pattern-matching accounts for the fact that if the next move the player 
is apparently going to make is illegal, then that possibility is excluded. 

Exploring Al with the Intelligent Maze Program 

One experiment you might undertake with this program would be to expand the 
size of the list of LAST _MOVES from the present 6 to 10 or 12. Does this make 
the game harder to win and the enemy harder to fool? Does it appreciably slow 
down processing? 

Another interesting change to the program would be to try to eliminate the 
player's ability to outfox the enemy by making false moves. One way to do this 
would be to have the BLOCK procedure group contain a new procedure that 
would look for obvious stalling patterns like [L R L R L R], where the player is 
simply moving back and forth trying to confuse the program. 

Finally, try expanding the size of the maze and drawing a more compli
cated one or have the program draw a maze at random so that the game is 
never the same twice. These kinds of changes don't have much to do with Al 
but would make the program more fun to use. 

Summary: What We've Learned about Al 

This chapter has focused upon the important Al concept of pattern-matching. 
(We'll learn more about this in the next chapter when we apply pattern-match
ing to NLP programming.) 

We explored three types of pattern-matching: template, micro and macro. 
We saw how predictive sequencing fits into the issue of pattern-matching and 
how such an approach can be used to create a seemingly intelligent enemy in a 
computer game. 

{INTELLIGENT MAZE ©1985, The Waite Group} 
{Logo program by Ken Schieser} 

{Main calling procedure} 
TO SMART_MAZE 

SETUP_GAME 
PLAY 

END 

TO SETUP _GAME 
INITIALIZE_ROWS 
MAKE CIRCLE_COORDINATES [ - 40 50] 
MAKE SQUARE_COORDINATES [O O] 



MAKE POSSIBLE_DIRECTIONS [U] 
MAKE BLOCK_DIRECTION NIL 
MAKE LAST__MOVES [0 0 0 0 0 0) 
DRAW__MAZE 
DRAW_CIRCLE 
DRAW_SQUARE 

END 

TO INITIALIZE_ROWS 
MAKE ROWl 

[[[20 -40][D R]][[30 -40][L R]][[40 -40][U D L]]] 
MAKE ROW2 

[[[-20 -30][DR]][[-10 -30][LR])[[O -.30][DLR]] 
[[10 -30][L R]][[20 -30][L U D]][[40 -30][U D]]) 

MAKE ROW3 
[[[ - 30 - 20][D R]][[ - 20 - 20][U L]][[O - 20][U DJ] 
[[20 - 20][U R]][[30 - 20][D L R]][[ 40 - 20][U L]]) 

MAKE ROW4 
[[[ - 30 - lO][U D]][[O - lO][U D]][[30 - lO][U D]]] 

MAKE ROWS 
[[[ - 30 O][U DR])[[ - 20 O][L R]][[ -10 O][L R]] 
[[O O][U D L R]][[lO O][L R]][[20 O][L R]] 
[[30 O][U D L]]) 

MAKE ROW6 
[[[ - 30 lO][U D]][[O lO][U D]][[30 lO][U D]]] 

MAKE ROW7 
[[[ - 40 20][D R]][[ - 30 20][U LR]][[ - 20 20][D L]] 
[[O 20][U D]][[20 20][D R])[[30 20][U L]]] 

MAKE ROWS 
[[[ -40 30][U D]][[ - 20 30][U DR])[[ -10 30][L R]] 
[[O 30][U L R]][[lO 30][L R]][[20 30][U L]]] 

MAKE ROW9 
[[[ -40 40][U R]][[ - 30 40][L R]][[ - 20 40][U L])] 

END 

TO DRAW__MAZE 
cs 
PENPAT :DKGRAY 
PAINTRECT [ - 25 -15 - 5 - 5) 
PAINTRECT [-25 5 -515) 
PAINTRECT [5 -15 25 - 5) 
PAINTRECT [5 5 25 15) 
PAINTRECT [-15 -25 -5 -15) 
PAINTRECT [ -15 15 - 5 25) 
PAINTRECT [5 - 25 15 -15) 
PAINTRECT [5 15 15 25) 
PAINTRECT [ -35 25 -25 35) 
PAINTRECT [25 - 35 35 - 25) 
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PAINTRECT [ - 45 - 45 - 25 - 25) 
PAINTRECT [25 25 45 45) 
PAINTRECT [ -45 - 25 - 35 15) 
PAINTRECT [ -25 -4515 - 35) 
PAINTRECT [ -15 35 25 45) 
PAINTRECT [35 -15 45 25) 
PAINTRECT [ - 55 - 55 - 45 35) 
PAINTRECT [45 - 35 55 55] 
PAINTRECT [ - 45 - 55 55 - 45) 
PAINTRECT [ - 55 45 45 55) 
PENPAT :BLACK 

END 

TO DRAW_CIRCLE 
MAKE X FIRST :CIRCLE_COORDINATES 
MAKEY LAST :CIRCLE_COORDINATES 
PAINTOVAL(SE :Y- 4 :X-4 :Y + 4 :X + 4) 

END 

TO ERASE_CIRCLE 
MAKE X FIRST :CIRCLE_COORDINATES 
MAKEY LAST :CIRCLE_COORDINATES 
ERASEOVAL(SE :Y-4 :X- 4 :Y + 4 :X + 4) 

END 

TO DRAW_SQUARE 
MAKE X FIRST :SQUARE_COORDINATES 
MAKEY LAST :SQUARE_COORDINATES 
PAINTRECT (SE :Y- 4 :X- 4 :Y + 4 :X + 4) 

END 

TO ERASE_SQUARE 
MAKE X FIRST :SQUARE_COORDINATES 
MAKEY LAST :SQUARE_COORDINATES 
ERASERECT (SE :Y- 4 :X-4 :Y + 4 :X + 4) 

END 

TO PLAY 
GET_DIRECTION 
MOVE_CIRCLE 
IF FREE [MOVETO 30 - 60 DRAWSTRING <<FREE>> STOP] 
IF (COUNT :POSSIBLE_DIRECTIONS) > 2 [BLOCK] 
PLAY 

END 

TO FREE 
IF :Y = - 50[0P 'TRUE][OP NIL] 

END 

------ - ------
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TO GET_DIRECTION 
MAKE HEADING READMOUSE 
MAKE DIRECTION HEADING_DIRECTION 
IF OR (NOT MEMBERP :DIRECTION :POSSIBLE_DIRECTIONS) BLOCKED 

[GET_DIRECTION STOP] 
MAKE LAST_MOVES UPDATED :LAST_MOVES 

END 

TO READMOUSE 
IF BUTTON [OP GETMOUSE][READMOUSE] 
END 

{Function heading_direction analyzes mouse position and outputs a direction} 
TO HEADING_DIRECTION 

MAKE X FIRST :CIRCLE_COORDINATES 
MAKEY LAST :CIRCLE_COORDINATES 
IF :Y s ((LAST :HEADING) - 10) [OP 'DJ 
IF :Y ~ ((LAST :HEADING) + 10) [OP 'U] 
IF :X s ((FIRST :HEADING) - 10) [OP 'R] 
IF :X ~ ((FIRST :HEADING) + 10) [OP 'L] 
OPNIL 

END 

TO BLOCKED 
IF EQUALP :DIRECTION :BLOCIL.DIRECTION 

[OP 'TRUE][OP NIL] 
END 

{Function update is responsible for recording the last six valid moves} 
TO UPDATE :LIST 

MAKE :LIST BF :LIST 
MAKE :LIST LPUT :DIRECTION :LIST 
OP :LIST 

END 

TO MOVE_CIRCLE 
ERASE_ Cl RCLE 
MAKE CIRCLE_COORDINATES NEW_COORDINATES 
GET_NEW_POSSIBLE_DIRECTIONS 
DRAW_CIRCLE 

END 

{Function new_coordinates analyzes direction & outputs new coordinates} 
TO NEW_COORDINATES 

MAKE X FIRST :CIRCLE_COORDINATES 
MAKEY LAST :CIRCLE_COORDINATES 
IF :DIRECTION = 'U [MAKE Y :Y -10] 
IF :DIRECTION = 'D [MAKE Y :Y + 10] 
IF :DIRECTION = 'L [MAKE X :X-10] 

.. 
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IF :DIRECTION = 'R [MAKE X :X + 10] 
OP SE :X :Y 

END 

~--

{Procedure geLnew_possible_directions finds which row to search for the new 
possible directions} 
TO GET_NEW_POSSIBLE_DIRECTIONS 

MAKE BLOCK_DIRECTION NIL 
IF :Y = - 40 [SEARCH :ROWl] 
IF :Y = - 30 [SEARCH :ROW2] 
IF :Y = - 20 [SEARCH :ROW3] 
IF :Y = -10 [SEARCH :ROW4] 
IF :Y = 0 [SEARCH :ROW5] 
IF :Y = 10 [SEARCH :ROW6] 
IF :Y = 20 [SEARCH :ROW7] 
IF :Y = 30 [SEARCH :ROW8] 
IF :Y = 40 [SEARCH :ROW9] 

END 

{Procedure search looks for a match between the present coordinates & the first set of 
each element of the row} 
TO SEARCH :ROW 

IF EQUALP SE :X :Y FIRST FIRST :ROW 
[MAKE POSSIBLE_DIRECTIONS LAST FIRST :ROW STOP] 

SEARCH BF :ROW 
END 

TO BLOCK 
ERASE_SQUARE 
MAKE DIRECTION PROBABLE_DIRECTION 
MAKE SQUARE_COORDINATES NEW_COORDINATES 
DRAW_SQUARE 
MAKE BLOCK_DIRECTION :DIRECTION 

END 

{Function probable_direction initializes variables for procedure find_probable then 
output the most probable move} 
TO PROBABLE_DIRECTION 

MAKE NEWCOUNT 1 
MAKE OLDCOUNT 1 
FIND_PROBABLE :LAST_MOVES 
OP :MOST_PROBABLE 

END 

{Procedure find_probable makes mosLprobable the direction.} 
TO FIND_PROBABLE :LIST 

MAKE CHARACTER FIRST :LIST 
IF (COUNT :Llsn < 2 

[IF AND :OLDCOUNT = :NEWCOUNT MEMBERP 



------------ ----

LAST :LIST :POSSIBLE_DIRECTIONS 
[MAKE MOST_PROBABLE LAST :LIST] STOP] 

TEST (ITEM 1 :Llsn = (ITEM 2 :Llsn 
IFTRUE [MAKE NEWCOUNT :NEWCOUNT + 1] 
IFFALSE [IF AND (:NEWCOUNT ~ :OLDCOUNn 

(MEMBERP :CHARACTER :POSSIBLE_DIRECTIONS) 
[MAKE MOST_PROBABLE :CHARACTER 
MAKE OLDCOUNT :NEWCOUNT 
MAKE NEWCOUNT 1][MAKE NEWCOUNT 1]] 

FIND_PROBABLE BF :LIST 
END 
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In this and the next chapter we will concentrate on the application of Al pro
gramming techniques in programs with potential real-world uses. As a result, the 
chapters explore concepts and problem-solving rather than specific Al program
ming skills. 

In this chapter we will learn to use a Logo program that implements a 
scaled-down version of a widely used Al programming language, Prolog. Be
cause the interpreter is written in Logo, the program is called "Prologo." Chap
ter 8 carries this discussion beyond to the process of designing knowledge bases 
for Prologo for use as demonstrations of scaled-down expert systems. 

Why Prolog or Prologo? 

Prolog is the best-known and most widely used example of nonprocedural pro
gramming language. Later this chapter will make clear what this distinction is 
and why it is important. We can gain a great deal of insight into programming 
languages by seeing Prolog, a nonprocedural language, written in a procedural 
language like Logo. The process of taking a language apart and dividing it into 
neat procedures goes a long way toward demystifying the language. In fact, in 
college Al programming courses, a common assignment is to write an inter
preter for one language in a completely different language. 

Beyond this pure learning process, you can learn more about Al from play
ing with this program than from dozens of theoretical discussions. Prolog is a 
powerful language in its full implementation and even though we will be dealing 
with a small subset of the language, you will soon grasp and appreciate the 
power of the language and the ease and elegance of programming in it. You 
may even want to run out and learn Prolog when you're done with this chapter! 
(If that bug bites, see the references in Appendix C for a place to start.) 

The Program's Background 

Before delving into the intricacies of Prolog programming, we should acknowl
edge the source of the program we are about to review. Prologo was written by 
Steve Lurya of ExperTelligence. His work was built to some degree on an earlier 
implementation of the language in ExperLogo® written for ExperTelligence by 
John Worthington. Worthington, in turn, borrowed many of the ideas for his 
Logo implementation of Prolog from a program called PiL, an acronym for Pro
log in LISP. That program, in turn, grew out of a paper entitled "The world's 
shortest Prolog interpreter?" by M. Nilsson of Uppsala University, published in 
Implementations of Prolog (Campbell 1984). 

ExperTelligence introduced Prologo as one of several programs on a disk of 
demonstration programs to show the power of the ExperLogo® language. The 
company encourages widespread enhancement, duplication, and usage of the 
program. 

Prolog and Expert Systems 

Prolog, in its full implementation, is an extremely powerful Al language. In fact, 
it is so powerful that the Japanese originally chose Prolog as the language to be 
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used in carrying out their widely publicized and well-funded Fifth Generation 
Project. (The Japanese are becoming increasingly interested in LISP as the lan
guage of choice.) In Europe, particularly in the United Kingdom and France, 
Prolog is clearly the language of choice of Al experimenters. It is worth learning 
about Prolog if for no other reason than that a great part of the Al research com
munity outside the United States relies largely or exclusively on this language for 
its extensive research. 

In the United States, Prolog and its adaptations have been used for Al 
research. It has been used extensively in designing expert systems. Prolog is par
ticularly well suited to the kind of expert systems design used in this chapter 
because it is data-driven (or, in other words, knowledge-based) rather than rule
driven. (More about that in a moment.) 

What Is Prolog'l 

Prolog is unlike any other programming language you will encounter. Most 
computer programs-including those written in Logo and LISP-consist primar
ily of statements that tell the computer what to do each step of the way in 
a problem-solving situation. Prolog, on the other hand, permits the user to 
describe the problem and as much as is known of the solution. The program 
then uses deductive reasoning techniques to fill in the blanks and solve the 
problem. So, in a sense, Prolog appears to be less a language than a program 
itself. It does implicitly what would have to be explicitly programmed in a more 
traditional, procedural language. 

Because of this fundamentally different design, Prolog programs tend not to 
look very much like traditional computer programs. Here is a small example of 
such a program: 

David-Senior father-of David-Junior 
Daniel father-of Sheila 
Alice mother-of David-Junior 
Carolyn mother-of Sheila 
David-Junior male 
Sheila female 

As it now stands, this program doesn't "do" anything. An interesting and 
important aspect of Prolog programs is that they describe relationships rather 
than "doing" something. 

The statements contained in this sample descriptive knowledge base are all 
axioms. An axiom is a statement given as true; there need not be any connec
tion between an axiom and reality. The instant we place such a statement as 
"Orange bears dance Irish jigs" jn a Prolog program, the program accepts the 
statement as true. In Prolog, then, proving the validity of any statement about a 
knowledge base is accomplished by merely stating the axiom(s) of which the 
proof consists. No proof of the axioms is needed. Axioms are one of two main 
types of objects that are understood by Prologo. (We'll get to the other in a 
moment.) We run such a program by asking it questions like: 

who (x : x father-of David-Junior) 
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We get an answer that looks like this: 

David-Senior 
No (more) answers 

Prolog scanned its knowledge base, consisting of the facts presented earlier 
about family relationships, and found any that would "match" the pattern: 
blank father-of David-Junior. It filled in the blank and gave us the answer. Unless 
we tell it not to, it continues that search through the entire knowledge base to 
see if there are any other matches for our query. 

Prolog-and, by extension, Prologo-operates on what is often referred to 
as the "closed-world assumption." In brief, this means that anything included in 
the knowledge base with which the program is running is true and everything 
else is nonexistent. In other words, the world stops at the borders of the knowl
edge base. 

As shown in Figure 7-1, if the sharp, jagged lines represent the closed world 
that Prologo knows about, it can be said to know about the seven trees and two 
circles inside its world but to be completely ignorant of the trees and rectangles 
that lie just outside its borders of knowledge. 
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Figure 7-1. The dosed world of Prolog 

More Complexity ••• 
If Prolog could merely go through a knowledge base and retrieve information, it 
would be neither useful nor unusual. But it is useful and unusual. A number of 
features contribute to these characteristics. Perhaps most important, the knowl
edge base may contain rules that define more general relationships, in addition 
to facts that describe specific relationships. These rules are the second type of 
Prolog object that may be found in a Prolog knowledge base. 

For example, we could add to the existing knowledge base the rule: 

x parent-of y if x father-of y or x mother-of y 
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Now, we could pose the following query, with the indicated result (com
puter response is indented): 

which(x : x parent-of Sheila) 
Daniel 
Carolyn 
No (more) answers 

The fact that Daniel is a parent of Sheila exists nowhere explicitly in our 
knowledge base. Nor does the fact that Carolyn is Sheila's parent. Rather, we 
have asked Prolog to infer from the information it has been given whether it can 
determine who Sheila's parents might be. It does so by applying the rule that a 
parent is either a father or a mother of a person. It is this ability to draw infer
ences that sets a Prolog knowledge base apart from the otherwise.ordinary data 
base with which many programming languages work quite effectively (See Fig
ure 7-2). 

Figure 7-2. Rules + axioms = 
conclusions not explicitly 

stated 

mother-of 
axiom kno'a'n 

parent-of rule known 

father-of 
axiom known 

.._ __ ...,.....,leading ta ••• ~.,----

parent-of conclusions can be drawn 

We can design extensive and seemingly intelligent programs in Prolog by 
defining complex rules and increasingly complex relationships. 

But It's All Descriptive 
Note that no program statement tells Prolog to follow a set of instructions like 
this: 

1. Read the first fact in your knowledge base. 
2. Compare the first element in your first fact list with the first element in the 

query being processed. 
3. If those are equal, repeat step 2 with the next element in the fact list with 

the next element in the query being processed. 
4. If you run out of facts in your fact list and elements in the query and 

nothing has been found to be different between them, report the fact list as an 
answer to the query and return to step 1 unless the knowledge base has been 
completely scanned, in which case print "No (more) answers" and quit. 

This set of instructions doesn't take into account the drawing of inferences 
from existing rules; that list of instructions would be more than twice the length 
of the list above. But none of this appears in the Prolog program; Prolog is 
designed to do those things automatically by looking through a knowledge base 
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in response to queries. In other words, you tell Prolog what you want to know, 
not how to find it out. (For a fuller discussion of Prolog, see Chapter 12.) 

Prologo: An Overview 

A complete implementation of a programming language as rich and complex as 
Prolog would require more space than we have here. The program would also 
be so long that you'd never want to spend the many hours it would take to type 
it into your Mac and debug it. So we will implement a kernel of Prolog in 
Pro logo. 

This section describes Prologo as a language subset and discusses how to 
run Prologo. It also explains aspects of Prolog not implemented in this version. 
Additionally, we will look at the substantial, important differences between the 
syntax of Prologo and Prolog. Some of the differences occur because Logo looks 
at the world differently from Prolog. Others are due to the implementation limi
tations of ExperLogo® itself. 

Running Prologo 
In previous chapters, you have been used to reading the materials first, then 
analyzing the program and finally, if you wished to do so, typing the Logo listing 
into your Mac and running it. This chapter is different. 

Pause now to type Prologo into your Mac, save it, debug it, and get it ready 
to run. This will enable you to follow the discussion of the Prologo language by 
hands-on performance at your Mac's keyboard. Please don't go on until you've 
got Prologo ready to run. 

Now that you've typed in Prologo and checked it out to be sure that it 
compiles correctly, it needs a knowledge base upon which it can operate. In the 
implementation of Prologo that we are using here, a knowledge base is created 
explicitly with a Logo "make" command. The procedure that follows creates 
the sample knowledge base. Type the procedure into an Edit Window in Exper
Logo®, run it, and then execute Prologo. 

make family_db 
[[[father-of jim rick]] 
[[father-of jim susan]] 
[[grandparent-of _grandparent _grandchild] 

[parent-of _grandparent _parent] 
[parent-of _parent _grandchild]] 

[[mother-of rhoda rick]] 
[[mother-of anne jim]] 
[ [parent-of _parent _child] 

[mother-of _parent _child]] 
{[parent-of _parent _child] 

[father-of _parent _child]]] 

This knowledge base consists of a list of lists. Some of the lists (e.g., 
[[father-of jim susan]]) describe specific individual relationships. Others (e.g., 
[[grandparent-of _grandparent _grandchild][parent-of _grandparent _par
ent][parent-of _parent _grandchild]]) are the equivalent of Prolog rules. This 
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particular one, translated into literal English, would read: "A grandparent-of 
relationship is defined as consisting of a grandparent and a grandchild. If a per
son called '_parent' (note that this is not the relationship called parent-of, but a 
new person called '_parent') is both in a parent-of relationship with the grand
parent and a parent-of to another person called '_grandchild.'" 

This will become clearer as we make inquiries of the knowledge base we 
call "family_db." 

With this knowledge base entered into memory via the "make" instruc
tion, we are now ready to run Prologo. We load the program and choose the 
Run All option from the Experlogo® Run menu. Then we type: 

Prologo :family_db 

and Prologo responds with: 

Welcome to Prologo 

The program is waiting for an inquiry (which Prologo will refer to as an 
"assertion"). Prologo has two types of assertions. The first is the general inquiry 
that translates to "Tell me everything you know." The second is the more com
monly used inquiry that seeks an answer to a specific question. 

What Do You Know? 
We use a single command to cause Prologo to print everything it knows or can 
deduce from the knowledge base that we have provided: _what. With the 
family_db knowledge base as input, the _what command produces the fol
lowing resu It: 

_what 
[father-of jim rick] 
what = father-of jim rick 
[father-of jim susan] 
what = father-of jim susan 
grandparent-of anne rick 
what = grandparent-of anne rick 
[grandparent-of anne susan] 
what = grandparent-of anne susan 
[mother-of rhoda rick] 
what = mother-of rhoda rick 
[mother-of anne jim] 
what = mother-of anne jim 
[parent-of rhoda rick] 
what = parent-of rhoda rick 
[parent-of anne jim] 
what = parent-of anne jim 
[parent-of jim rick] 
what = parent-of jim rick 
[parent-of jim susan] 
what = parent-of jim susan 
no (more) answers 
Another assertion? (y or n) 
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Since our knowledge base has only two rules-the grandparent-of rule and 
the parent-of rule-we can trace this listing through to determine how Prologo 
got these answers. I suggest you do so as an exercise in learning how Prologo 
"thinks." Incidentally, because of ExperLogo's® design, each response appears 
twice. Logo produces the list response-the first of each pair of identical 
answers. ProLogo produces the second, more English-seeming answer. 

If you look through the procedures making up this Prolog subset, you 
won't find a statement that tells the program what to do if it encounters the com
mand "_what." In fact, Prologo interprets an initial underscore followed by 
any text at all, to mean, "Tell me all you know." We use the term _what 
because it makes it clear to us that we are asking that question (or, more accu
rately, making that assertion). The underscore, not the word that follows, causes 
Prologo to give us a complete analysis of the knowledge base. 

Confirming a Single Fact 
Another thing Prologo can do besides completely "dump" what it "knows" is 
confirm a single fact by means of an assertion that the fact in question is true. If 
we assert a fact that is true as far as the knowledge base is concerned, it will 
repeat the fact to us; if our assertion is unknown to the knowledge base, it will 
not return an answer. Examine the following exchanges to see what I mean. 

[father-of jim rick] 
[father-of jim rick] 
Another assertion? (y or n)y 

[father-of jim steve] 
Another assertion? (y or n)y ~assertion was unknown 

[grandparent-of anne rhoda] 
Another assertion? (y or n)n ~ assertion was unknown 
Back to Logo 

Notice that we do not use any words preceded by underscores in the 
above assertions. Prologo uses the underscore to designate unknown or variable 
values and the assertions in our example do not contain specific unknown infor
mation. We are merely confirming that an assertion we are making is valid 
according to the knowledge available to the program. 

Notice, too, that each answer is printed only once. Again, that is because 
there is no variable for Prologo to "fill in" a value for-and as a result we get 
only Logo's displayed return answer. 

The assertion that anne was a grandparent-of rhoda, received a negative 
response (i.e., Prologo did not print the assertion back to us, indicating that the 
information was not in its knowledge base). We know anne is a grandparent-of 
someone, but we we haven't selected a correct grandchild-though rhoda is 
someone about whom the program has information. This differs from our other 
wrong assertion, where steve simply doesn't exist as far as our knowledge base 
is concerned. 

The important point here is that any assertion we make in an effort to deter
mine its veracity will be negative whether it is a nonsense inquiry or simply inac
curate. If we asked our family_db knowledge base: 

[better-of Prolog LISP] 
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its answer would be negative. It wouldn't say something like, "Come on, 
human, I only know about families." All it knows is that it has no such relation
ship as "better-of" and it never heard of Prolog or LISP. 

These exchanges prepare us to understand why inquiries to the Prologo 
knowledge base are called "assertions." In each case we assert to Prologo that 
some relationship is valid and ask it to confirm the validity of the data. It is 
almost as if we were saying to Prolog, "[father-of jim rick], right?" 

Finding Unknown Information 
The most frequent use of Prolog in connection with a knowledge base is extrac
tion of unknown data. This is its primary function in expert system designs. 
Expert systems help the user determine a course of action or an applicable diag
nosis. Users employ variables to make assertions and Prologo fills in the vari
ables with known data. 

For example, to find out who is the father-of rick, we would conduct the 
following interchange with the program: 

[father-of _who rick] 
[father-of jim rick] 
who= jim 
no (more) answers 
Another assertion? (y or n) 

Prologo finds the name "jim" in the data base and puts it in the variable 
called _who. We have defined only one father for rick, so it returns one answer 
and then informs us it has no more responses. If we change the assertion 
slightly, we would get more than one response: 

[parent-of _who rick] 
[parent-of rhoda rick] 
who= rhoda 
[parent-of jim rick] 
who= jim 
no tmore) answers 
Another assertion? (y or n) 

Here, two people-rhoda and jim-fit the rule for the parent-of relationship 
with rick so the program supplies both names as valid values for the variable 
_who. (See Figure 7-3.) 

As you may have expected, the choice of the variable name is not impor
tant. We could use _name or _person or _bxtflk as the variable to be filled in 
and Prologo would handle the problem identically. We use _who because it 
describes what we are trying to determine with our assertion. 

It seems strange to continue using the term "assertion" when we clearly 
are not asking Prologo to confirm the accuracy of a factual statement as we were 
in the examples in the previous section. But if we stop to think about it, it will 
make sense. When we pose the query: 

[father-of _who rick] 
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_who 
Ila 

KNOWLEDGE-BASE 

Figure 7-3. Some fit and some do not 

we are really asking, "You have someone who is in a father-of relationship with 
rick, don't you?" Prologo responds by telling us who that is (if it knows) or sim
ply ignoring our assertion (if the data is unknown). 

So the term "assertion" is still used in such inquiries, even though we 
might think another alternate term would be more accurate. This makes it possi
ble for us to talk more consistently about how we use Prologo. 

This is one of the most obvious differences between Prologo and Prolog. In 
Prolog, we must explicitly cause the program to display the results of its analysis 
of our assertions before it wlll do so. (To see how to do so, refer to Chapter 12.) 
Prologo, on the other hand, supplies the variable name in an assertion that auto- _ 
matically displays the result of the analysis. 

Multiple Unknowns Sometimes we supply assertions in Prolog or Prologo that 
involve more than one missing piece of information. When we do so, the real 
power of the language comes to the fore. It fills in each variable for every occur
rence it finds that makes the assertion true. 
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For example, suppose we want to know about all the parent-of relation
ships in the knowledge base. We supply an assertion like this: 

[parent-of _parent _child] 

This is the equivalent of asking Prologo, "You know about at least one 
parent-of relationship between two people, don't you?" Prologo dutifully re
sponds by presenting the names of parents and children in each such relation
ship: 

[parent-of _parent _child] 
[parent-of rhoda rick] 
child = rick 
parent = rhoda 
[parent-of anne jim] 
child = jim 
parent = anne 
[parent-of jim rick] 
child = rick 
parent = jim 
[parent-of jim susan] 
child = susan 
parent= jim 
no (more) answers 
Another assertion? (y or n) 

Compare this result with the display Prologo produced from this knowl
edge base when we asked it what it knew and you will see that all parent-of rela
tionships have been reported, with the variables filled in correctly and only 
parent-of relationships have been listed. 

Performing Calculations in Prologo 
Prologo can understand formulas as well as facts and rules. A formula is merely 
a special rule. To demonstrate we will use a new knowledge base. 

Type the following small knowledge base called, immodestly, world_db, 
into an Edit Window in Prologo and run it. Then type: 

Prologo :world-db 

and follow the examples in the rest of this section. (Note that you now have two 
knowledge bases resident in Prologo; you choose which one to run by supply
ing its name after the Prologo command.) 

make world_db 
[[[population usa 203)) 
[[population china 800)) 
[[area usa 3]] 
[[area china 4]] 
[[density-of _country _d] 
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[population _country _p] 
[area country _a] 
[is _d[/ _p _a))) 

This knowledge base is similar to the family_db knowledge base with 
which we have been working, except in its last entry, which appears to define a 
rule called "density-of." Other than that, it gives the populations of the United 
States and China in millions, and the areas of the two countries in millions of 
square miles. The usual queries will produce the expected results: 

[population usa _howmany] 
[population usa 203) 
howmany = 203 
no (more) answers 
Another assertion? (y or n)y 

[area _whichone 4) 
[area china 4) 
whichone = china 
no (more) answers 
Another assertion? (y or n)n 
Back to Logo 

If we make an assertion about the density-of relationship, we see what cal
culation is performed. Two variables will get all of the density-of responses the 
knowledge base has in it. 

[density-of _country _density) 
[density-of usa 67.66666666666) 
country = usa 
density = 67 .66666666666 
[density-of china 200) 
country = china 
density = 200 
no (more) answers 
Another assertion? (y or n) 

When we inquire about the density-of relationship, Prologo divides the 
population by the area and comes up with a people-per-square-mile figure. In 
the case of the United States, the answer comes up 67.66666666666 people per 
square mile; in China, it is 200 people per square mile. 

The "is" operator in the density-of rule makes the calculation possible. 
Translated into technical English, the rule about density-of would read: "The 
density-of relationship exists between two variables called _country and _d. 
This latter variable, _d, is calculated by looking up the population of a country 
called _country and storing it in a new variable called _p, then looking up the 
area of a country called _country and storing it in a new variable called _a, 
and then dividing _p by _a." In one sense, this is an imperative command that 
tells Prologo how to calculate the density of a country given information about 
its size and population. In another sense, though, you can see how density-of 
describes the relationship it names. 
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Prolog, but not Prologo, permits comparisons on the results of calculations 
defined with the "is" operator. For example, the following assertion would be 
valid in Prolog, though Prologo will act as if it weren't true: 

[ [density-of china _what]> [density-of usa 
_what2]] 

The Program 

We now turn our attention from how to run Prologo to an examination of how 
the Prologo program itself works. Along the way, we will look closely at unifica
tion-one of the most powerful Al programming concepts. 

An Overview of the Program 

Prologo is the most complex Logo program in this book. Not only is its process
ing complex, it also uses some statements unique to ExperLogo®. These are 
explained in Appendix B. Appendix B also demonstrates how to convert be
tween these ExperLogo® statements to more conventional Logo commands. 
That may dispose of the language complexities, but the processing complexities 
of the program are such that a thorough overview of its activity will help you 
understand the discussion that follows on the individual procedures. 

What Prologo Does 

Prologo begins with a goal (an assertion we make about the knowledge base) 
and attempts to attain it by proving that the assertion of it is true in the knowl
edge base. As the program runs, it may create "subgoals" that must be proven 
before other goals can be established, including our original assertion. 

When it begins to execute an assertion about a knowledge base, Prologo 
tries to match, or "unify," the current goal (the fill-in-the-blanks part of the 
assertion) with the first clause of the first axiom in the knowledge base. In the 
simplest case, the assertion and the first axiom match and Prologo's job is com
plete. Thus, in our earlier sample family knowledge base, the assertion: 

[father_of jim rick] 

is unified with the first clause of the first axiom in the knowledge base, which is 
identical to the assertion in content and structure. 

The process of unification can be thought of as the process of finding some
thing to fill in every blank or variable position in an assertion. If no variables are 
included in the assertion, the process boils down simply to trying to find the 
assertion present in the knowledge base as an axiom. 

If, as is usually the case, the first clause of the first axiom in the knowledge 
base does not immediately unify with the assertion, then Prologo chops off the 
first axiom from the knowledge base and tries to unify the assertion with the first 
clause of the next assertion. It continues this process until it has searched 
through the entire knowledge base. 
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If Unification Is Successful When some portion of a current goal is successfully 
unified with the first clause of an axiom in the knowledge base, Prologo has pro
gressed toward satisfaction of the goal. In that case, Prologo appends the re
maining part of this axiom to the beginning of the list of all other goals left un
proved at that point. The program then tries to prove this newly established 
goal. 

If the program is not successful in proving the new clause of the axiom, the 
entire axiom is dropped from the knowledge base, its once-promising role as a 
goal-prover no longer useful, and the process moves on to the next axiom in the 
knowledge base. 

How It Works Keep this description of how Prologo works in mind as we 
become more specific in the next few pages about the individual procedures, 
their relationships with one another, and the precise way in which the unifica
tion process occurs. 

Procedures and Relationships 
Figure 7-4 is a box diagram of the Prologo program. The primary top-level proce
dures are PROLOGO, PROLOG0_1, PROVE, TRY_EACH, and UNIFY. 

PROLOGO 

UNIFY 

Y _QR_N_P 

EXP AND_ ASSBRTION 

PRINT - BINDINGS NAM!i 

RliNAMli - V ARIABLliS H RAW_ VARIABLB_P 

JS_ p 

UNIFY_ JS EXPAND - FORMULA 

FUNCTION_ NAM!i _ P 

FULLY_ JNSTANTIATBD_ P 

COOLED_ V ARIABLB - P 1-..:..: -1--L-BV-BL---, . . 
,___v_A_LUl! __ _,.-~~--i~..__As_soc_~ 

Figure 7-4. Box diagram of Prologo 
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PROLOGO and PROLOG0_ 1 

These two main driver routines set up Prologo to run and manage its top-level 
needs. PROLOGO itself prints a welcome message and then calls PROLO
G0_ 1. When the user ends a session with Prologo, this procedure prints the 
"Back to Logo" message. 

PROLOG0_ 1 is only slightly more complex. It reads an input, uses the 
RENAME_VARIABLES procedure to handle the designation of variables in the 
input, calls the PROVE procedure to attempt to prove the assertion in the en
try, prints the message, "Another assertion? (y or n)," and then calls the 
Y_OR__N_P procedure. If the user responds "yes," the program returns to 
this procedure and uses the same knowledge base. 

The PROVE Procedure 

PROVE is just one big if statement. It determines if there are any goals left to 
prove. If there aren't, then the task it is working on is complete. If any goals 
remain, though, PROVE calls TRY _EACH (discussed in a moment). 

PROVE prints the result of any matches (i.e., successful unifications) by call
ing the PRINT_BINDINGS procedure and, if there are still goals left to deal 
with, calls TRY_EACH once again. 

The list of arguments passed to PROVE comprises the current list of goals, 
the original goal, something called the "environment," the knowledge base 
(represented by the variable :database), and a level. Let's pause to discuss the 
list of goals, the environment, and the meaning of "level" in Prologo. Doing so 
here will clarify much of what follows in our analysis of the program. 

The List of Goals The first argument given to PROVE when it is called is a vari
able called :lisLof_goals. The first time we run the PROVE procedure on a 
specific assertion, the list will correspond to the assertion being evaluated. But 
when Prologo encounters a rule in its knowledge base and attempts to prove its 
validity against the current assertion, the subgoal(s) involved will be passed back 
to PROVE. This is because rules, by their nature, include variables in their state
ments. The existence of the variable creates a subgoal that the program must 
prove before it can prove the original goal. 

Figure 7-5 clarifies the way this works. When Prologo encounters the rule 
about grandparent-of in the family knowledge base, it creates a new goal or 
assertion, one level deeper into the analysis of the knowledge base. 

Goal Being Examined 

grandparent-of anne LwhoO] 
grandparent-of anne [_whoO] 
grandparent-of anne [_whoO] 

Knowledge Base 

[father_of jim rick] 
[father_of jim susan] 
grandparenLof] rule 

parent-of [_grandparent 1][_parent 1] [father_of jim rick] 

parent-of [_grandparent 1][_parent 1] [parenLof ]rule 

GoaVSubgoalAdded 

none 
none 
parent-of [_grandparent 1] 
[_parent 1] 
none 

mother-of [_parent 2] 
[child 2] 

Figure 7-5. Subgoal creation in Prologo 
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The riew assertion holds that it must attempt to satisfy the parent-of rela
tionship between a person (called, in the rule, __grandparent) and another per
son (referred to in the rule as _parent). It does this because it has been 
instructed to satisfy a grandparent-of relationship assertion and has now found 
that satisfying the parent-of relationship between two people is a prerequisite to 
satisfying the grandparent-of relationship. 

Once it has generated this subgoal, the TRY _EACH procedure starts at the 
beginning of the knowledge base again and goes through the process of attempt
ing to verify this assertion. This process continues until a match is found or the 
knowledge base and list of goals are exhausted, in which case no further 
answers are obtainable. 

The Environment At any given time during the execution of a Prologo analysis 
of a knowledge base, the program will have created an "environment." When 
you look at the PROLOG0_1 procedure, you see a line that calls the PROVE 
procedure with several arguments, one of which is the list of the list called 
"bottom_of_environment." This is the artificially created environment with 
which Prologo begins its assignment. 

When a subgoal is created, a new environment is created, consisting of 
the subgoal appended to the front of a list that ends with the "bottom_ 
of_environment" marker. 

From a technical perspective, the environment is actually a list of "bind
ings." A binding is the formal establishment of a connection between a variable 
and a value. (In other programming languages, we would think of this as an 
"assignment" rather than a binding.) A binding is a list that includes a variable 
and its value. The value, in turn, may be another variable, an expression (which 
may in turn contain variables), a number, or a constant piece of information. 

The procedure called VALUE is given the task of determining what, if any, 
value is currently bound to a given variable. When it finds such a value, it 
returns that value to the calling program, which essentially decodes the binding. 
If it doesn't find such a binding, it returns the variable name, which informs the 
calling procedure that no binding yet exists for this variable. 

Level of Search Each time the TRY_EACH procedure (discussed in the next 
section in detail) is entered recursively, the program adds one to the current 
value of the variable LEVEL. This level is used in the Prologo program only by 
the RENAMLVAR procedure. Its purpose is to ensure that we don't run into 
collisions in the program between variables of the same name. This might occur 
because in going through the knowledge base we could use some variables 
more than once in attempting to unify goals and axioms and these goals and axi
oms often have identically named variables. 

Credit goes to a programmer named Kenneth Kahn for developing the idea 
of adding a level number to the end of the variable name and incrementing that 
level number only as often as needed. The result is that we avoid a tremendous 
amount of very complex list-handling as we try to keep track of which variable is 
bound to which instance of the variable(s) it contains. 

TRY_EACH 
We have an idea of what TRY _EACH does from what has gone before. The 
procedure is responsible for determining if there are any unexamined axioms 
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left in the knowledge base at each pass through the rules and axioms. If there 
are no axioms left, then we know we are dealing with a false (i.e., unprovable) 
goal. If there are remaining axioms, then they must be examined before we 
know whether we have been successful. The variable :database_left always 
contains the values left in the knowledge base. 

The program does different things depending on whether UNIFY succeeds 
in finding a match between a goal and a fact or rule interpretation in the knowl
edge base. TRY _EACH may lop off the most recently tested axiom from the 
knowledge base and run the process again, or it may add the newly matched 
information to the knowledge base and continue processing one level deeper in 
the search. 

In the course of performing its chores, TRY _EACH deals with the fact that 
some of the information it passes to the UNIFY procedure will be known data (in 
our family_db, for example, the name of a known person). Other information 
will be in the form of variables (i.e., preceded with an underscore, according to 
Prologo's rules). To ensure that this information gets passed to other proced
ures in a format they can handle, TRY_EACH uses procedures called RAW_ 
VARIABLE_P and RENAME_VARIABLES. 

RAW_VARIABLE_P is a predicate-testing procedure. It is, therefore, sim
ilar in function to such built-in Logo functions as LISTP. Just as LISTP determines 
whether an argument passed to it is a list, so RAW_VARIABLE_P determines 
whether an argument passed to it is a "raw variable" -a variable with no value 
assigned yet. 

The RENAME_VARIABLES procedure restructures information passed to it 
in order to isolate the variable information along with the level of search from 
the rest of the assertion. Thus, if we carry out the task: 

RENAME_ VARIABLES [father-of jim _who] 

at the first level of search, the procedure will return that information in a new 
form: 

father-of jim [_who OJ 

As we have already seen, this approach results in efficient operation of the 
Prologo program in dealing with potential name conflicts among variables in axi
oms, rules, and goals. 

Special Tracing Function TRY _EACH has one additional feature worth mention
ing. Notice the group of lines beginning with the third line of the procedure. 
These lines begin with an IF statement and have only one clause to execute 
when the IF statement is true. The clause consists of four statements which dis
play information on the Mac's screen. 

If you are working with Prologo and wish to see what is happening in goal 
and subgoal creation, and how Prologo is analyzing each step of the processing, 
then before you run Prologo, type: 

MAKE TRACE_PROLOG 'TRUE 

Each time it executes, TRY_EACH will print the current goal and the cur-
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rent axiom (i.e., rule or assertion in the knowledge base currently being worked 
on). When it proves (or disproves) the assertion, a complete record of its analy
sis and processing will be preserved in the ExperLogo® Listener Window. This 
helps identify how Prologo understands information given to it in knowledge 
bases. 

UNIFY: The Key Procedure 
The Prologo unification process takes place in the UNIFY. procedure, which 
attempts to match variable information, if any is present, with data in the knowl
edge base. 

The procedure creates the variable NEW_ENVIRONMENT, discussed ear
lier in conjunction with the PROVE procedure. UNIFY is a recursive procedure 
that continues to call itself with new arguments, lopping off the first element of 
the environment in which it is operating, until it successfully unifies the assertion 
and information contained in or inferred from the knowledge base, or until it 
runs out of things to try. 

The Three-Way Interaction in Prologo 
The three procedures, PROVE, TRY_EACH, and UNIFY, interact extensively. 
They are the heart of our implementation of Prologo. The partial flowchart in 
Figure 7-6 clarifies the interrelationships among these procedures. (A full flow
chart of the relationships would be large and practically indecipherable.) In
stead, we have focused on the points at which key decisions and passage of 
control between procedures occurs. 

Figure 7-6 should provide a good understanding of how Prologo's main 
procedures work together for the common purpose of confirming information 
and extracting unknown data from knowledge bases. 

IS_P and UNIFY_IS Procedures 
We won't discuss the many procedures Prologo comprises, but we should look 
briefly at the procedures labeled IS_P and UNIFY_IS. These work with the IS 
construct, which can be used to define processes in knowledge base rules in 
Prologo. IS_P checks to see if an IS is present in the axiom being evaluated. If 
so, it passes a "true" back to the program, which then calls UNIFY_IS to carry 
out the necessary processing. This processing is similar to that used in the 
UNIFY procedure discussed earlier. 

However, any Logo expression used in conjunction with the IS function is 
passed to the APPLY procedure with no further processing inside Prologo. We'll 
see a number of examples of such usage in the next chapter. 

Exploring Al with Prologo 

The most obvious way of learning about Al from the Prologo program is to build 
your own knowledge bases and then make assertions for it to test. Turn on 
Prologo's goal-axiom trace function by making the variable "trace_prolog" 
true and print out the resulting output. 

Beyond that experimentation, you might undertake an even more ambi
tious task: enhancing Prologo as a language. ExperTelligence welcomes such 
enhancements and may even assist you in distributing your ideas to others. A 
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wide range of things could be done to extend the power of Prologo. Let's look at 
four ideas. 

Create Interactive Knowledge Base Generators 
You could design new procedures-called, for example, ADD_CLAUSE, IN
SERT_CLAUSE, and DELETLCLAUSE-to build and modify knowledge bases 
without the necessity of creating MAKE constructs and lists with seemingly end
less brackets. 

Prolog uses such functions as "add," "insert," and the special "accept" to 
create and modify knowledge bases. You might even implement the Prolog 
"save" and "load" functions to have knowledge bases stored on disk for re
trieval during Prologo execution. 

All knowledge bases are lists of lists. The process of creating and modifying 
them involves straightforward Logo procedures. But be careful to differentiate 
Prologo command names from their Logo equivalents or you'll find yourself in a 
very confusing situation indeed! 

Convert to Prolog Syntax 
Using the parsing ideas that we discuss in the chapters on natural language pro
cessing programming techniques, you might construct a parser that permits the 
use of such traditional Prolog inquiries as "which" and "all" and "is." This 
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would be an extensive modification, and it would require transferring the idea of 
preceding a variable with an underscore to the inquiry process in a way that is 
consistent with the design of Prologo. 

Enable Use of All Logo Functions 
Using the IS construction, Prologo rules can adopt most, if not all, Logo com
mands. But we are unable to use these Logo statements inside assertions. Thus, 
the assertion: 

density-of china _what]> [density-of usa 
_what2]] 

won't work in Prologo because the greater-than sign doesn't have a place in 
assertions. 

Adding this capability would require a thorough understanding of the way 
Prologo handles instantiation of the built-in Logo commands in an IS statement. 

Implement Conjunctive Assertions 
The conjunctive assertion is one powerful feature of Prolog not available in 
Prologo. Conjunctive assertions involve AND and OR to pose complex asser
tions like: 

[[mother-of _who rhoda] and [father-of 
_who rhoda]] 

The program would respond to this query only if the knowledge base con
tained both parents of Rhoda. Combining instantiation of Logo commands with 
such conjunctive assertions would go a long way toward converting Prologo to a 
real Prolog language system. 

Summary 

In this chapter we have covered knowledge bases, how Prologo manipulates 
them and obtains information from them, and how one language is imple
mented in another language. Along the way, we studied examples of complex 
search pattern fulfillment in the form of unification, a very important Al concept. 

We have seen how backward-chaining works to enable us to track through 
a search process in a knowledge base and to report findings even though they 
involve several levels of variable substitution. 

{Prologo Program by Steve Lurya} 
{Uncopyrighted program maintained by ExperTelligence} 

to prologo :database 
print< <Welcome to Prologo> > 
prologo_ 1 :database 
<<Back to Logo>> 

end 



to prologo_ 1 :database ;;a top-level loop for Prologo 
;;reads a form, proves it, and then iterates 
local goal 
make goal (list rename_variables first readlist [0)) 
prove :goal :goal [[bottom_of_environment]) :database 1 
print <<no (more) answers>> 
if y_or_n_p <<Another assertion? (y or n) > > 

[prologo_1 :database] 
end 
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to prove :lisLof_goals :original_goal :environment :database :level 
;;proves the conjunction of the lisLof_goals 
;;in the current environment 
if emptyp :IisLof_goals 

;;succeeded since there are no goals 
[print expand_assertion :original_goal :environment 
prinLbindings :environment :environment 

;;ask user if another possibility is wanted 
{not y_or_n_p <<More? (y or n) >>}nil] 

[try_each :database :database 
butfirst :lisLof_goals 

end 

first :lisLof_goals :original_goal 
:environment :level] 

to try_each :database_left :database :goals_left :goal :original_goal :environment 
:level 

local assertion 
local new_environment 
if and boundp 'trace_prolog :trace_prolog 

[princ < <Goal:> > 
print :goal 
princ <<Current axiom:> > 
print first :database_left] 

if emptyp :database_left 
[[]] ;;fail if nothing left in database 
[make assertion 

rename_variables first :database_left (list :level) 
if is_p :goal 
[make new_environment 

unify_is :goal :environment 
if emptyp :new_environment 

[nil) 
[prove :goals_left :original_goal :new_environment 

:database (:level + 1)]] 
[make new_environment 

unify :goal first :assertion :environment 
if emptyp :new_environment ;;failed to unify 

[try_each butfirst :database_left 
:database :goals_left :goal 
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] 
end 

:original_goal :environment :level] 
[if prove append butfirst :assertion :goals_left 

:original_goal :new_environment 
:database (:level + 1) 
[t] 
[try_each butfirst :database_left 

:database :goals_left :goal 
:original_goal :environment :level] 

to unify :xl :yl :environment 
local x 
local y 
local new_environment 
make x value :xl :environment 
make y value :yl :environment 
if cooked_variable_p :x 

] 
end 

[append (list list :x :y) :environment] 
[if cooked_variable_p :y 

[append (list list :y :x) :environment] 
[if (or atom :x atom :y) 

[and (equalp :x :y) :environment] 
[make new_environment 

unify first :x first :y :environment 
(and :new_environment 

unify butfirst :x butfirst :y :new_environment)] 

to value :x :environment 
local binding 
if cooked_variable_p :x 

end 

[make binding (assoc :x :environment) 
if emptyp :binding 

[:x] 
[value (first butfirst :binding) :environment]] 

[:x] 

to name :var 
and cooked_variable_p :var butfirst first :var 

end 

to raw_variable_p :var 
and atom :var eq first :var'_ 

end 



to cooked_variable_p :var 
(and listp :var raw_variable_p first :var numberp level :var) 

end 

to level :var 
and listp :var first butfirst :var 

end 

to rename_variables :term :level 
if raw_variable_p :term 

[append (list :term) :level] 

1 
end 

[if atom :term 
[:term] 
[append (list rename_variables first :term :level) 

rename_variables butfirst :term :level] 

to prinLbindings :environmenLJeft :environment 
local variable 
if butfirst :environmenLJeft 

end 

[make variable first first :environmenLJeft 
if (level :variable) = 0 ;;variable level 

[princ name :variable ;;variable name 
princ << = >> 
;print value :variable :environment 
print expand_assertion :variable :environment] 

prinLbindings butfirst :environmenLleft :environment] 

to y_or_n_p :message 
local response 
print :message 
make response readlist 
if eq first :response 'y 

[t] 
[if eq first :response 'n 

[[]] 

] 
end 

[y_or_n_p :message] 

to expand_assertion :assertion :environment 
local expression 
if cooked_variable_p :assertion 

[make expression value :assertion :environment 
if eq :expression :assertion 

[:expression] 
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[ expand_assertion :expression :environment]] 
[if atom :assertion 

[:assertion] 
[append (list expand_assertion 

first :assertion :environment) 
expand_assertion butfirst :assertion :environment 

] 
end 

to expand_formula :assertion :environment 
local expression 
if cooked_variable_p :assertion 

[make expression value :assertion :environment 
if eq :expression :assertion 

[:expression] 
[ expand_formula :expression :environment]] 

[if atom :assertion 

l 
end 

[:assertion] 
[make expression append 

(list expand_formula 
first :assertion :environment) 

expand_formula butfirst :assertion :environment 
if (and fully_instantiated_p :expression 

function_name_p first :expression) 
[apply thing first :expression butfirst :expression] 
[:expression]] 

to is_p :goal 
(and listp :goal eq first :goal 'is) 

end 

to unify_is :goal :environment 
local firsLpart 
local second_part 
make firsLpart 

expand_formula first butfirst :goal :environment 
make second_part 

expand_formula first butfirst butfirst :goal :environment 
unify :firsLpart :second_part :environment 

end 

to function_name_p :fn 
(and symbolp :fn boundp :fn functionp thing :fn) 

end 

to fully_instantiated_p :assertion 



if atom :.assertion 
[t] 

end 

[if cooked_variable_p :assertion 
[nil] 
[(and fully_instantiated_p first :assertion 

fully_instantiated_p butfirst :assertion)]] 

to assoc :x :alist 
if emptyp :alist 

[:alist] 

end 

[if equalp :x first first :alist 
[first :alist] 
[assoc :x butfirst :alist]] 
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In this chapter we see the real-life utility of the Prologo program presented in 
Chapter 7 by building two small expert systems. The first will know about litera
ture: who wrote what, what kind of work a particular title is, and a few other 
facts. It is the smaller of the two systems, and it enables us to discuss the tech
niques and concepts involved in designing a knowledge base. 

The second expert system will be a geography whiz that can tell us such 
facts as population densities of countries, relative locations of national capitals, 
and continental locations of cities and countries. In developing this knowledge 
base, we will examine a few of the more technical and specialized issues in
volved in knowledge base creation. 

Knowledge Acquisition: The Key Roadblock? 
Dr. Edward Feigenbaum of Stanford University suggests that the biggest stum
bling block to the creation of meaningful and useful expert systems is the 
problem of knowledge acquisition, a problem he termed the "Knowledge Ac
quisition Bottleneck." As we will see in building even relatively small expert 
systems, significant time, energy, and thought are required for the construction 
of knowledge bases. 

To be useful, the acquisition of knowledge involves more than simply add
ing facts to a knowledge base. Whether we are discussing human or machine 
knowledge, knowledge acquisition involves relating something we are learning 
to what we already know. This integrative process is often quite complex, partic
ularly in the human learning process. 

But for our limited examination of the subject, we restrict our meaning of 
"knowledge acquisition" to the process of adding new factual information to 
the knowledge base of the Prologo system. To be sure, we will almost always 
express such information in the form of relationships, since this is how Prologo 
organizes and deals with facts. But we will not permit the program to integrate 
the new information; instead, we will explicitly provide the relationship data as 
we enter the new facts. 

What Experts Know 
An expert system's job is to emulate the process by which a human expert ana
lyzes problems and provides answers to questions. Before an expert system can 
function, it must be given knowledge similar to that upon which human experts 
base their decisions and recommendations. The process of transferring informa
tion from humans to computer programs is referred to as "knowledge engineer
ing," a field that is certain to be one of the best growth opportunities for 
employment in the next 10 years. 

As you might imagine, transferring knowledge from human to machine is 
not a simple process. The problems are myriad and we cannot hope to analyze 
all of them here. But we will look briefly at some of the more significant barriers 
that knowledge engineers must overcome. 

You Don't Know What You Know 
One of the most intriguing problems faced by knowledge engineers is that 
experts don't know what they know. That is, on a conscious level, they are not 
aware of the knowledge, rules, and relationships they use in making judgments. 
They cannot completely describe the process of getting from a question to a 
conclusion or recommendation. 
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That doesn't affect human experts' usefulness as consultants, but as sources 
of information for knowledge engineering purposes, experts must be able to 
think about what information they need to get from one point to another. 

Consider an example. Your car is not running right. It makes a strange 
noise when you slow down and sometimes it stalls. You take it to the expert 
mechanic at your local garage. He starts the car, opens the hood, moves a part 
back and forth, listens to the engine, and says, "You probably have a clogged 
fuel line." Curious, you ask him, "How did you know that?" If he's inclined to 
explain, his answer will probably be something like this: "Well, I pulled on the 
throttle and listened to the air sound going into the carburetor and concluded 
there was too much air and not enough fuel getting to it. The major reason for 
reduced fuel flow is a clogged fuel line." 

If you pursue the point, you'll have to ask such questions as, "How did you 
know that the throttle was the right part to manipulate? How did you know that 
the carburetor was a likely place to look for the problem? How is the air going 
into the carburetor supposed to sound? How did you eliminate other possible 
causes of lack of fuel flow?" 

True experts will probably have answers for most questions we raise about 
their fields of expertise, but they can't tell us what the questions need to be. In 
other words, the mechanic won't have thought in a conscious way about all the 
things he needs to know and do in order to troubleshoot your car. 

The problem of not knowing what we know is not confined to experts, of 
course. Try explaining to someone who has never done so how to start a car, 
put it into gear, back it out of the driveway, and drive it to the store. 

Much of what we know is buried information, subconsciously retrieved, so 
that extracting it intentionally to build it into an expert system is quite a task. In 
the course of constructing a knowledge base, the knowledge engineer must be 
able to determine when pieces of data are missing and what questions to ask to 
fill in those blanks. 

How Experts Think 
Beyond the issue of information, there is the difficulty of stating the process by 
which the experts massage the information they have to reach their conclusions. 
In short, experts aren't conscious of how they think about a problem. 

Superficially, this difficulty seems identical to that of submerged knowl
edge, but in reality it is quite different, particularly when viewed from a com
puter program's viewpoint. Simply having pieces of information labeled "A," 
"B," and "C" in a program running on a computer doesn't tell us what to do 
with that information. We need to know, among other things, how the pieces of 
data are interrelated, if they are; where they fit into the overall picture of 
problem-solving; and how reliable they are. 

Your friendly mechanic, for example, might throw a wrench at you if you 
asked him to explain how his billions of neurons "knew" how to connect with 
one another to set up the right path so that he could solve the problem of why 
your car wasn't functioning correctly. On only a slightly less abstract level, you 
might ask him to describe the process of elimination he goes through as he first 
looks at a car, listens to its owner describe the problem, opens the hood, listens 
to the engine, and so on. He may not be conscious of the thousands of options 
he rejects as he narrows his focus to a method or approach to solving the prob
lem, let alone the process by which this narrowing occurs in his mind. 
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From the computer's perspective, in such traditional programming lan
guages as BASIC and Pascal, and even LISP, the knowledge is stored as informa
tion in an array, list, or other data structure. The process of dealing with that 
data is what the program is all about. That is not the case in Prolog-and, by 
extension, in Prologo. Knowledge engineers can focus all their attention and 
energy on the knowledge and relationships among various aspects of the knowl
edge and let the programming language take care of drawing inferences and 
conclusions. That is a primary reason Prolog is such a powerful language for 
expert systems design. 

The Experts Disagree 
Another difficulty for knowledge engineers is that there are no absolute answers 
in many areas of human knowledge. If we consult three different experts, we 
might end up designing three different expert systems. The less precise the arena 
of knowledge, the more likely this disagreement will occur. 

Such subjective fields as art appreciation, literary criticism, and the inter
pretation of historical events involve such disagreement. But even seemingly 
objective fields pose similar problems. Three mathematicians from diverse back
grounds will not disagree on the basic concepts of numbers, numerical symbols, 
and mathematical rules. But those same mathematicians might have quite diver
gent views on aspects of such issues as zero, infinity, and four-dimensional 
space, all of which are also concepts in mathematics. 

Similarly, a group of attorneys may agree on the definition of what a con
tract is and yet draw strongly differing-and perfectly plausible-conclusions 
about whether a given document is or is not a contract. 

So what do knowledge engineers do when faced with such disagreements? 
They have, in essence, three options. 

The Top Expert They can decide to let one expert be the person whose knowl
edge becomes the expert system's knowledge. This is particularly suitable if the 
expert is preeminent in his or her field or, better, the only "real" expert, the oth
ers having learned from her or him. (This is not as unlikely as it might seem. 
Westinghouse, for example, had one senior engineer who understood locomo
tive repair so much better than anyone else in the company that his expertise 
was used to build an expert system to be used by all of the other engineers.) 

When one person is the acknowledged top expert in a field and confusion 
or disagreement is minor or unimportant to the design process, this approach 
may work quite well. 

However, an inherent danger is that one person may hold some basic mis
conceptions that could creep into the expert system, flawing its ability to pro
vide sound advice. 

There is one other problem with this approach. When we get two or more 
experts together to discuss what they know and how they reach conclusions, we 
are more apt to obtain a complete and clear picture of the knowledge base to be 
constructed. This is true partly because each will fill in gaps in the other's knowl
edge, and, even more important, because in challenging one another, the 
experts will draw out answers to questions that the knowledge engineer will not 
have thought to ask. 

Consensus Expertise The second way for the knowledge engineer to deal with 
the conflicting experts' views is to continue to talk with them until something 
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resembling consensus emerges. This will occasionally happen, perhaps even to 
the surprise of the experts. More often, though, it will not happen; the experts 
will continue to disagree, and the knowledge engineer will be stuck with a prob
lem that appears to be insoluble. 

Even when it can be reached, consensus is not necessarily the best view. In 
the same way that a camel has been said to be a horse designed by a commit
tee, consensus may be a compromise of the best views on a subject. The 
tendency in such situations is for the experts to reach the lowest common de
nominator position because it is the least risky and least likely to lead to further 
disagreement. 

Consensus knowledge might be, however, the only alternative when the 
knowledge needed is imprecise and experts of equal stature and background 
cannot agree. 

Weighting the Views If experts differ and if the views of each are important, the 
knowledge engineer can take a third road of giving each expert's views a 
weighted value in the expert system. This would be the equivalent of a human 
in need of expert consultation bringing the problem to several experts and then 
drawing a conclusion based on an evaluation of their credibility and experience. 

The weighting of the certainty of various conclusions is easier to obtain 
from people than you might imagine. It is also more difficult to implement on a 
computer than you might think. 

If you asked your auto mechanic how certain he is that your fuel line is 
clogged, it's fairly predictable that he won't say he's 100 percent confident. 
Other possibilities could lead to the same symptoms. So he'd probably say 
something like, "I'm 90 percent certain." 

Most human experts, particularly in fields that allow some imprecision (as 
most do), are more or less certain about their conclusions. A doctor will say, 
"About 80 percent of the time when I see that combination of symptoms, I 
know the disease I'm dealing with is a cancer." 

It's Not That Simple 
Dealing with information that is not clearly right or wrong ("fuzzy" knowledge) 
is a complex problem. (I mention it here so that you won't conclude from our 
far more limited experimentation later in this chapter that knowledge engineer
ing is a cakewalk in which we simply look up facts someplace and stick them 
into a knowledge base. That is what we will do in this chapter, but only because 
of limitations of space, time, and expertise.) 

Transferring Expertise 
The expert in the knowledge engineering process may be a human, a book 
about the subject, or our own storehouse of expertise. In all of these, the pro
cess of transferring the expertise to the computer is quite similar. 

Among our first steps is the process of refining, defining, and focusing the 
expert system's domain of expertise. That process is similar to preparing to write 
a report or a book. We start with a broad, perhaps vague idea of what we want 
to write about. Then we look at how big that assignment would be, narrow our 
focus, and figure out how much valuable information we could convey to some
one in a certain number of pages. 

Let's say that we want to write a book about literature. That's a pretty 
broad subject; tens of thousands of books have been written on it already. That 
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is not to say we cannot write a single book on the general subject of world litera
ture; many textbooks are just that kind of book. But it is to say that if we want a 
student to emerge from having read the book feeling as an expert on the sub
ject, we' re going to have to either focus our topic or write a very long book. 

So we decide to focus on American literature. That's still pretty broad, so 
we narrow it to twentieth century American literature. Now we're down to han
dling a few hundred major novelists, poets, playwrights, essayists, and journal
ists. That's still pretty broad for a book of, say, 500 pages. Gradually, we define 
our domain of expertise and end up with a book entitled, The Novels of Ernest 
Hemingway. Now we can write a fairly definitive (i.e., expert) book on this sub
ject in a few hundred pages (assuming we know this subject or know someone 
who does). 

Figure 8-1 depicts the refining process as a series of sieves through which 
each idea is filtered until we reach the point where the amount of information to 
be dealt with is manageable. 

I-+-+--+-- SPECIFIC 
FACTS: 
AXIOMS 
AND RULES 

Figure 8-1. Refining the domain of knowledge 

In effect, this process takes two steps. The first, about which we don't think 
too much as a general rule, is defining the domain of expertise. We are going to 
write about literature rather than about politics. The second, about which we do 
a great deal of thinking if we are successful in presenting a usable finished prod
uct, is the restriction of the knowledge base-American literature of the twenti
eth century and more specifically, novelists, and still more specifically, Hem
ingway. 

As we construct the two knowledge bases in this chapter, we will take both 
steps and explain some of the thinking that goes into this process. 

Constructing Knowledge Bases: General 
Principles 

Let us move on to the design and implementation of knowledge bases that 
Prologo can manipulate and use. As we do so, we will focus more sharply on 
the issues of knowledge engineering and acquisition as they affect our experi
ments. 

Defining the Domain 
The first step in constructing a knowledge base is to define the domain of exper
tise within which the system will operate. We have already made some general 
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observations about this subject, but now we'll concentrate on the computer
related decisions involved. 

The myth that expert systems are only capable of being expert about one 
subject is not true. Single expert systems may know about any two domains of 
knowledge. For example, there is no reason-other than logic and reason-that 
we can't put the family tree and the world population knowledge bases from 
Chapter 7 into one MAKE statement. We could then ask questions both about 
population density and specific peoples' parenthood and grandparenthood from 
one knowledge base. 

Such a combined knowledge base would, of course, have little or no prac
tical value. Similarly, it may be that an expert system with expertise in more than 
one area might not be a marketable, usable, or practical product. But, because 
there is no theoretical limit to the number of topics about which we can con
struct a Prologo knowledge base, it is important to focus on the practical issue of 
domain definition as the first step in designing the knowledge base. 

Key Considerations Several critical issues must be addressed in domain defini
tion. The most obvious and important is of the expectations of users of the 
expert system. What do they want to know? We generally do not create expert 
systems in a musty laboratory somewhere and then spring them on the world. 
The world might not be interested in an expert system that would classify the 
small Hermes-head postage stamps of Greece from the second half of the nine
teenth century, no matter how efficiently or effectively it did so. But if you 
designed expert systems for a living and had a philatelist friend who would pay 
handsomely for such a system and the knowledge were available to you, you 
might be well advised to construct such a knowledge base. 

The second issue determining how we define the domain is knowledge 
availability and accessibility. If all the information we need in order to construct 
a specific knowledge base is not known, we will find ourselves with an incom
plete knowledge base and perhaps a nonfunctional expert system. 

Beyond these two overriding considerations, however, other issues remain 
to be examined. Some of the more important are: 

1. How many axioms and rules will be required to represent all of the 
knowledge in the domain? 

2. How certain can we be of information in the domain? 

3. How many conditional parts will meaningful questions addressed to the 
knowledge base have? 

4. How important will a correct response be? 
5. Will the user be knowledgeable enough to understand when an erroneous 

answer is received? 

As you can see, these questions relate to the quantity and quality of knowl
edge and the use to which the expert system will be put. 

Restricting the Knowledge Base 
Even after we have specifically limited the domain of knowledge, we will proba
bly face the additional task of restricting the amount and kinds of information 
we will store and analyze. For example, let's assume that we have decided to 
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design an expert system on Hemingway's novels. Here is a partial listing of the 
kinds of information we could keep track of on this seemingly narrow topic: 

Title 
Year of publication 

Publisher 
Number of pages 
Color of book cover 
Number of printings 

Foreign publications 

Movie made 
Main characters 
Geographic setting(s) 
Number of words 

Number of uses of four-letter words 

Price of book 
Number sold 

Weeks on The New York Times Best-Seifer List 

Sequence number (which novel for Hemingway) 

Names of secondary characters 
Number of male vs. female characters 

Mentions of Mad rid 

You get the idea. Within the knowledge domain, we will select information 
to be stored, tracked, and analyzed by the expert system based on several cri
teria. The key considerations will include at least the following: 

• purpose of the system 
• knowledge level of users 

• computer storage capacity 
• language capabilities and limitations 
• complexity of interrelationships of data. 

If the point of the expert system is to answer trivia questions about Heming
way's novels, we will choose to include more information of more different 
kinds than if we are interested in a semantic analysis. If, on the other hand, our 
expert system is designed to analyze a given piece of writing and determine 
whether it is likely that it was produced by Hemingway, perhaps we would store 
a small number of kinds of data, but include a large number of pieces of infor
mation about each work. 

The more knowledgeable our user is, the less information that is generally 
known must be stored. For example, if our users are all English professors, stor
ing the fact that For Whom the Bell Tolls was written by Hemingway should be 
largely unnecessary. On the other hand, if the system is designed to help stu-
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dents learn more about Hemingway and his style, that piece of information may 
be essential. 

Similarly, if we develop our expert system on a computer with a megabyte 
of memory, we may choose to store information of marginal value, whereas if 
we are limited to the once-standard 64K, we may well be quite selective and 
store only essential knowledge. 

If the language we are working with has a facility for dealing with relation
ships among pieces of information, we may want to store larger amounts of 
related data than if such relationships are difficult to depict. 

Finally, if some bits of knowledge that we might include are only remotely 
related to other pieces of information, we might omit them because it is not 
likely that we will be able to frame intelligent questions requiring that informa
tion. 

Numerous other such considerations, of course, are involved in restricting 
the knowledge base. As you gain experience developing expert systems you will 
undoubtedly meet dozens of other situations in which trade-off decisions about 
what to include and what to omit must be made. 

Structuring the Knowledge 
Having defined the domain and restricted the knowledge base, the next deci
sion typically will be about the knowledge base structure. Quite often, this is 
dictated by the choice of language (a topic discussed at length in Part Ill). 

For us, the decision about knowledge representation, covered extensively 
in Chapters 2 and 3, is relatively simple. We use lists betause Logo has good 
list-handling capability. 

To be more specific, as we will see shortly, we actually use lists of lists of 
lists to represent knowledge bases in Prologo. The fill-in-the-blanks format for a 
Prologo knowledge base construct will look something like this: 

MAKE WORLD_DBASE 
[[[axioml axiomla axiomlb]] 
[[axiom2 axiom2a axiom2b]] 
[ [ axiom3 axiom3a axiom3b]]] 

Notice that each axiom in the listing consists of several parts. (If this seems 
confusing, please stop and review Chapter 7's discussion of Prologo's formatting 
of knowledge bases.) Each axiom is a list enclosed in two sets of square brack
ets, except that the first axiom is preceded by three brackets and the last axiom 
is followed by three, resulting in the construction we described as a list of list of 
lists. 

Each axiom is a list of lists (because it is enclosed in double brackets) and 
the entire knowledge base is a list of these lists. 

Why go into such depth about the structure of the knowledge base in 
Prologo? When we construct the two sample knowledge bases in this chapter, 
you want to be comfortable with the format so that we can concentrate on the 
content rather than the structure. 

Importance of Sequence in Prologo 
As we saw in Chapter 7 when we examined the Prologo program listing in 
detail, Prologo and Prolog analyze knowledge bases by back-tracking. This tech-
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nique means that each time the knowledge base adds a new axiom to its list of 
things to be proved, it starts over at the beginning of the knowledge base. 

As a result, it's a good idea to structure a Prologo knowledge base so that 
the axioms and rules appear in the sequence in which we expect most queries 
to be asked. This is not required, but is a good design idea. Thus all the informa
tion about the titles of Hemingway's novels should appear first in the knowledge 
base: 

MAKE HEMINGWAY_DB 
[[[For_Whom_The_Bell_Tolls Title_Of Novel]] 
[[Old__Man_And_The_Sea Title_Of Novel]] 

In full-blown implementations of Prolog, incidentally, the process of group
ing similar data together happens automatically. This enables Prolog to stop 
searching for proof of a statement or query when it reaches the last item of the 
type for which it is searching. Prologo does not include this design feature in its 
current implementation. 

It will make our knowledge bases easier to understand and modify if we fol
low this sequencing principle even though Prologo will not execute any more 
quickly as a result. 

Querying Knowledge Bases 

Once we have constructed knowledge bases, we call on Prologo to compile 
them and then we can make inquiries about their contents. This process of que
rying the knowledge base is at the heart of an expert system. In Chapter 7 we 
explored in detail this process as it relates to Prologo. In Chapter 12 the full
blown Prolog language is discussed in some detail. 

It will be useful now to consider briefly the kinds of questions we can and 
cannot expect our Prologo knowledge bases to understand and respond to, 
since this will bear on our design decisions. 

Questions We Can Ask 
We can ask Prologo any questions that are stated as axioms in our knowledge 
base. We can also ask questions whose answers can be inferred from axioms 
and rules in the knowledge base. For example, we could ask questions about 
grandparent relationships, in our family example in Chapter 7, even though 
such relationships are not directly defined, because we had a rule defining 
grand parenting. 

Questions We Cannot Ask 
There is actually only one type of question we cannot ask in Prologo that we can 
ask in Prolog or other expert system languages. As we saw at the end of Chapter 
7, Prologo does not implement conjunctive inquiries. We cannot ask questions 
about things related by the word "and" or by the word "or." For example, we 
cannot ask of our Hemingway knowledge base, "Which Hemingway novels 
mention Madrid and have mostly female characters?" even if we phrase that as 
a Prologo query. 
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Other than this limitation-which is fairly significant in terms of real-life 
expert systems-we can inquire anything of the knowledge base that it knows 
about or can conclude. 

The Literary Knowledge Base 

The time has come to put all of this theory-and our knowledge of Prologo-to 
practical use. In the rest of this chapter, we will design, construct, and use two 
small knowledge bases. To get maximum benefit from the rest of this chapter, 
you should have Prologo running on your Macintosh® and type in the knowl
edge bases and queries as we go. 

The Domain: Two American Writers 
Beginning with the idea that we wanted to create a knowledge base in the gen
eral subject area of literature, we began to narrow our field a bit at a time. We 
moved from literature to American literature to twentieth century American lit
erature to fiction. Finally now, in the interest of time, we will focus on two mod
ern American writers of some renown: Ernest Hemingway and John Steinbeck. 

The Knowledge Base: Purposely Limited 
We will further restrict the knowledge base by choosing to tell it only about a 
sampling of the works of these two writers. For each work, the knowledge base 
will contain the type (novel, story, play, poem, and so on) and the year of 
publication. 

Stopping there would result in our having created a data base management 
system but not an expert system, so we will add a few rules about what are 
"early" and what are "major" works of the two writers. Fortunately, they were 
contemporaries, so the time-related terms can be used somewhat interchange
ably. 

We will also store some basic information about the authors, just to make 
inquiries a bit more interesting. 

Constructing the Knowledge Base 
As we know, building the knowledge base in Prologo consists of creating a 
MAKE command with a list of list of lists as its argument. The following repre
sents the first pass at the knowledge base we are creating for the literary expert 
system. In an effort to simplify its entry and use, we will not yet include any rules 
in this version; later, we will modify it. 

MAKE LITERARY_DB 
[[[HEMINGWAY HOME ILLINOIS]] 
[[STEINBECK HOME CALIFORNIA]] 
[[HEMINGWAY DOB 1899]] 
[[STEINBECK DOB 1902]] 
[[SUN_ALSO_RISES TYPE NOVEL]] 
[[SUN_ALSO_RISES WRITTEN_BY HEMINGWAY]] 
[[SUN_ALSO_RISES PUBLISHED 1926]] 
[[SUN_ALSO_RISES CLASS MAJOR]] 
[[FAREWELLTO_ARMS TYPE NOVEL]] 
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[[FAREWELLTO__ARMS WRITTEN_BY HEMINGWAY]] 
[[FARWELLTO__ARMS PUBLISHED 1929]] 
[[FAREWELLTO__ARMS CLASS MAJOR]] 
[[DEATH_IN_THE__AFTERNOON TYPE NOVEL]] 
[[ DEATH_IN_THE__AFTERNOON WRITTEN_BY HEMINGWAY]] 
[[DEATH_IN_THE__AFTERNOON PUBLISHED 1932]] 
[[DEATH_IN_THE__AFTERNOON CLASS MINOR]] 
[[FIFTH_COLUMN TYPE PLAY]] 
[[FIFTH_COLUMN WRITTEN_BY HEMINGWAY]] 
[[FIFTH_COLUMN PUBLISHED 1938]] 
[[FIFTH_COLUMN CLASS MINOR]] 
[[FOILWHOM..._THE_BELLTOLLS TYPE NOVEL]] 
[[ FOILWHOM..._THE_BELLTOLLS WRITTEN_BY HEMINGWAY]] 
[[ FOILWHOM..._THE_BELLTOLLS PUBLISHED 1940]] 
[[FOILWHOM..._THE_BELLTOLLS CLASS MAJOR]] 
[[OLD__MAN__AND_THE_5EA TYPE NOVELLA]] 
[[OLD__MAN__AND_THE-5EA WRITTEN_BY HEMINGWAY]] 
[[OLD__MAN__AND_THE-5EA PUBLISHED 1952]] 
[[OLD_MAN__AND_THE-5EA CLASS MAJOR]] 
[[KILLERS TYPE STORY]] 
[[KILLERS WRITTEN_BY HEMINGWAY]] 
[[KILLERS PUBLISHED 1934]] 
[[KILLERS CLASS MINOR]] 
[[NOBELPRIZE HEMINGWAY 1954]] 
[[PULITZEILPRIZE HEMINGWAY 1953]] 
[[PASTURES_OF_HEAVEN TYPE NOVEL]] 
[[PASTURES_OF_HEAVEN WRITTEN_BY STEINBECK]] 
[[PASTURES_OF_HEAVEN PUBLISHED 1932]] 
[[PASTURES_OF_HEAVEN CLASS MINOR]] 
[[TORTILLA_FLAT TYPE NOVEL]] 
[[TORTILLA_FLAT WRITTEN_BY STEINBECK]] 
[[TORTILLA_FLAT PUBLISHED 1935]] 
[[TORTILLA_FLAT CLASS MAJOR]] 
[[IN_DUBIOUS_BATTLE TYPE NOVEL]] 
[[IN_DUBIOUS_BATTLE WRITTEN_BY STEINBECK]] 
[[IN_DUBIOUS_BATTLE PUBLISHED 1936]] 
[[ IN_DUBIOUS_BA TILE CLASS MINOR]] 
[[GRAPES_OF_WRATH TYPE NOVEL]] 
[[GRAPES_OF_WRATH WRITTEN_BY STEINBECK]] 
[[GRAPES_OF_WRATH PUBLISHED 1939]] 
[[GRAPES_OF _WRATH CLASS MAJOR]] 
[[SEA...._OF_CORTEZ TYPE NONFICTION]] 
[[SEA...._OF _CORTEZ WRITTEN_BY STEINBECK]] 
[[SEA...._OF_CORTEZ PUBLISHED 1941]] 
[[SEA...._OF _CORTEZ CLASS MINOR]] 
[[NOBELPRIZE STEINBECK 1962)) 
[[PULITZEILPRIZE STEINBECK 1940)]] 

This will suffice for the first version of our literary knowledge base. (See 
Table 8-1 for a summary of our information.) We will add to it later. 
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Table 8-1. Literary Knowledge Base 

Author Year Publication Trtle Type Classification Other Event of Note 

Hemingway 1899 Birth (Illinois) 

1926 Sun_Also_Rises Novel Major 

1929 Farewell_to_Arms Novel Major 

1932 Death_in_the_Afternoon Novel Minor 

1934 Killers Story Minor 

1938 Fifth_Column Play Minor 

1940 For_Whom_the_Bell_Tolls Novel Major 

1952 OlcL.Man_and_the_Sea Novella Major 

1953 Pulitzer_Prize Awarded 

1954 Nobel_Prize Awarded 

Steinbeck 1902 Birth (California) 

1932 Pastures_of_Heaven Novel Minor 

1935 Tortilla_Flat Novel Major 

1936 ln_Dubious_Battle Novel Minor 

1939 Grapes_of_Wrath Novel Major 

1940 Pulitzer_Prize Awarded 

1941 5ea_of_Cortez Nonfiction Minor 

1962 Nobel_Prize Awarded 

Querying the Knowledge Base 
Now that we have constructed this knowledge base with 56 items of information 
in it, we can make inquiries about the things it knows. 

Questions About Authors We might want to know something about Ernest Hem
ingway. A dialog like the following might take place (computer responses are 
indented throughout the rest of this chapter). 

[_WHAT WRITTEN_BY HEMINGWAY]+-our query 
[SUN_ALSO_RISES WRITTEN_BY HEMINGWAY] 

y 

WHAT = SUN_ALSO_RISES 
[FAREWELLTO_ARMS WRITTEN_BY HEMINGWAY] 
WHAT= FAREWELLTO_ARMS 
[DEATH_IN_THE_AFTERNOON WRITTEN_BY HEMINGWAY] 
WHAT = DEATH_IN_THE_AFTERNOON 
[FIFTH_COLUMN WRITTEN_BY HEMINGWAY] 
WHAT= FIFTH_COLUMN 
[FOLWHOM_THE_BELLTOLLS WRITTEN_BY HEMINGWAY] 
WHAT = FOLWHOM_THE_BELLTOLLS 
[OLD_MAN_AND_THE-5EA WRITTEN_BY HEMINGWAY] 
WHAT = OLD_MAN_AND_THE_SEA 
[KILLERS WRITTEN_BY HEMINGWAY] 
WHAT= KILLERS 
no (more) answers 
Another assertion? (y or n) 

Or we might want to know something more about the authors, such as the 
years they won the Nobel Prize. 
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[NOBELPRIZE _WHO _WHEN] 
[NOBELPRIZE HEMINGWAY 1954) 
WHEN= 1954 

y 

WHO= HEMINGWAY 
[NOBELPRIZE STEINBECK 1962) 
WHEN= 1962 
WHO = STEINBECK 
no (more) answers 
Another assertion? (y or n) 

Questions About Works Let's obtain a list of all the major works in the knowl-
edge base: 

[_WHAT CLASS MAJOR] 

y 

[SUN__ALSO_RISES CLASS MAJOR] 
WHAT = SUN__ALSO_RISES 
[FAREWELLTO__ARMS CLASS MAJOR] 
WHAT= FAREWELLTO__ARMS 
[FOR_WHOM_THE_BELLTOLLS CLASS MAJOR] 
WHAT = FOR_WHOM_THE_BELLTOLLS 
[OLD_MAN__AND_THE_SEA CLASS MAJOR] 
WHAT= OLD_MAN__AND_THE_SEA 
[TORTILl.A_FLAT CLASS MAJOR] 
WHAT= TORTILl.A_FLAT 
[GRAPES_OF _WRATH CLASS MAJOR] 
WHAT= GRAPES_OF_WRATH 
no (more) answers 
Another assertion? (y or n) 

Adding Some Rules 

So far, so good. The problem is that what we have so far is not really acting like 
an expert system-because we have not given the knowledge base anything but 
data; it needs rules from which to draw conclusions. Let's add two rules to the 
knowledge base. 

The first rule will define a "big book" as a novel that is a major work. Go to 
the end of the current knowledge base, delete the third closing bracket at the 
end of the last line so that the last line ends with two brackets, like all of the 
other facts in the knowledge base, and type the following rule: 

[[ BIG_BOOK _TITLE] 
[_TITLE TYPE NOVEL] 
[_TITLE CLASS MAJOR]]] 

After we run this knowledge base so that the LITERARY _DB includes this 
rule, we can make inquiries that require the knowledge base to draw some 
inferences: 



[BIG_BOOK _TITLES] 
[BIG_BOOK SUN__ALSO_RISES] 
TITLES = SUN__ALSO_RISES 
[BIG_BOOK FAREWELLTO__ARMS] 
TITLES = FAREWELLTO__ARMS 
[BIG_BOOK 

FOR._WHOM_THE_BELLTOLLS] 

y 

TITLES = FOR._WHOM_THE_BELLTOLLS 
[BIG_BOOK TORTILLA_FLAT] 
TITLES = TORTI LLA_FLA T 
[BIG_BOOK GRAPES_OF _WRATH] 
TITLES= GRAPES_Of_WRATH 
no (more) answers 
Another assertion? (y or n) 
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If we assert that a specific title is a BIG_BOOK, as we know, the system 
will confirm if it is true and not respond if it is not true. So we could have the fol
lowing exchange with Prologo: 

[BIG_BOOK FAREWELLTO__ARMS] 
[BIG_BOOK FARWELLTO__ARMS] 
no (more) answers 
Another assertion? (y or n) 

y 
[BIG_BOOK SEA_OF _CORTEZ] 

no (more) answers 
Another assertion? (y or n) 

N 

Let's add one last rule to our growing literary knowledge base. This one 
will require Prologo to carry out a calculation to determine whether a particular 
conclusion is true or not. It uses the IS feature of Prologo discussed at some 
length in Chapter 7. The rule tells us about "EARLY _WORK" titles, which we 
have arbitrarily defined as those that were published in 1935 or earlier. 

To add this rule, follow the same procedure as before. Go to the last state
ment in the file and delete one right bracket so that the rule about BIG_BOOK 
ends with two right brackets rather than three. Now type the following new rule: 

[[ EARLY_WORK _TITLE] 
[_TITLE PUBLISHED _YEAR] 
[IS (:s; 1935 _YEAR]]]] 

Notice that we use four sets of closing brackets this time instead of three. 
That's because the statement, [:s;; 1935 _YEAR], which is evaluated by the IS 
expression in Prologo's syntax, is itself inside a pair of brackets. (Brackets must 
always balance-there must be exactly as many right brackets as there are left in 
any expression.) 
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Now let's ask Pro logo to tell us about early works of the two authors. 

[EARLY _WORK _NAMES] 

y 

[EARLY_WORK SUN__.ALSO_RISES] 
NAMES = SUN__.ALSO_RISES 
[EARLY_WORK FARWELLTO__.ARMS] 
NAMES= FAREWELLTO__.ARMS 
[EARLY_WORK DEATH_IN_THE__.AFTERNOON] 
NAMES = DEATH_IN_THE__.AFTERNOON 
[EARLY_WORK KILLERS] 
NAMES= KILLERS 
[EARLY_WORK PASTURES_OF_HEAVEN] 
NAMES= PASTURES_OF_HEAVEN 
[EARLY_WORK TORTILl.A_FLAT] 
NAMES = TORTILl.A_FLAT 
no (more) answers 
Another assertion? (y or n) 

Some Miscellaneous Thoughts 
By now, you're probably getting the hang of knowledge base construction and 
usage in Prologo. In fact, we've gotten about as complex as is possible in 
Prologo; additional levels of complexity are just matters of degree. For example, 
we could devise a rule that would enable us to find all early works that are also 
considered major titles by the author. Such a rule might look something like this 
(the bracketing depends on where the rule is placed in the knowledge base): 

[[EARLY_BIGGIE _TITLE] 
[BIG_BOOK _TITLE] 
[EARLY_WORK_TITLE]] 

If we had never defined BIG_BOOK and EARLY_WORK, we could enter 
the same rule as follows: 

[[EARLY_BIGGIE _TITLE] 
[_TITLE TYPE NOVEL] 
[_TITLE CLASS MAJOR] 
[_TITLE PUBLISHED _YEAR] 
[IS[~ 1935 _YEAR]]] 

As we learned in Chapter 7, the more clauses we add after each rule defini
tion (in this example we have four), the more AND combinations we're defin
ing. Here, a book that will fit our definition of an EARLY _BIGGIE must be a 
novel, major, and published during or before 1935. 

You can see how we could define more and more complex rules to design 
a Prologo knowledge base that would look intelligent to anyone making inquir
ies of it. 

Next, we will construct a substantially larger knowledge base dealing with 
geography and geopolitics. It will incorporate relatively complex rules and do 
calculations using the IS function in Prologo. 
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The Geography Knowledge Base 

By the time we're done exploring this, you'll know about Al expert systems
with some information about geography thrown in at no extra charge. 

The Domain: World Geography 
One reason for choosing geography for our second knowledge base is that it 
permits us to establish and describe relationships. Our literary knowledge base 
showed a limited capacity to do this because of the subject matter; one item did 
not necessarily "belong" with another. But in this section, we are going to be 
able to discuss countries and cities as belonging to each other, to continents, 
and to various other groups. It is in defining and manipulating such related infor
mation that Prolog (and, by extension, Prologo) really shines. 

The Knowledge Base 
In the interest of protecting your fingers, your sanity, and the publisher's supply 
of paper, we'll limit the number of countries and cities in this knowledge base. 
We have also chosen to restrict our attention to a modest amount of information 
about each city, country, and continent. But within the context of those restric
tions, and given the limits of both our study and our endurance, this knowledge 
base comes close to being a real expert system. 

Constructing the Knowledge Base 
Since we've already built one relatively substantial knowledge base, let's just 
dive right into this one. Type the following MAKE statement in your Experlogo® 
environment, save it, and run all of its contents. Compiling it takes a few 
moments, so try to be patient! 

MAKE WORLD_KB~note that we use "KB" for Knowledge Base here 
([USA POPULATION 234)) 
[[USA AREA 3615)) 
[[WASHINGTON_DC CAPITALOF USA]] 
[[WASHINGTON_DC LATITUDE 39]] 
[[USA CONTINENT NORTH_AMERICA]] 
[[USA GOVERNMENT DEMOCRACY]] 
[[USA LANGUAGE ENGLISH]] 
[[VENEZUELA POPULATION 18)) 
[[VENEZUELA AREA 352]] 
[[CARACAS CAPITAL_OF VENEZUELA]] 
[[CARACAS LATITUDE 10)) 
[[VENEZUELA CONTINENT SOUTH_AMERICA]] 
[[VENEZUELA GOVERNMENT REPUBLIC]] 
[[VENEZUELA LANGUAGE SPANISH]] 
([USSR POPULATION 273]] 
[ [USSR AREA 8650]] 
[[MOSCOW CAPITALOF USSR]] 
[[MOSCOW LATITUDE 55]] 
[[USSR CONTINENT ASIA]] 
[[USSR GOVERNMENT SOCIALIST]] 
[[USSR LANGUAGE SLAVIC]] 
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[[ARGENTINA POPULATION 30]] 
[[ARGENTINA AREA 1065]] 
[[BUENOS___.AIRES CAPITALOF ARGENTINA]] 
[[BUENOS___.AIRES LATITUDE -36]] 
[[ARGENTINA CONTINENT SOUTH___.AMERICA]] 
[[ARGENTINA GOVERNMENT REPUBLIC]] 
[[ARGENTINA LANGUAGE SPANISH]] 
[[UNITED_KINGDOM POPULATION 56]] 
[[UNITED_KINGDOM AREA 94]] 
[[LONDON CAPITALOF UNITED_KINGDOM]] 
[[LONDON LATITUDE 51]] 
[[UNITED_KINGDOM CONTINENT EUROPE]] 
[[UNITED_KINGDOM GOVERNMENT DEMOCRACY]] 
[[UNITED_KINGDOM LANGUAGE ENGLISH]] 
[[CHINA POPULATION 1022]] 
[[CHINA AREA 3692]] 
[[PEKING CAPITALOF CHINA]] 
[[PEKING LATITUDE 40]] 
[[CHINA CONTINENT ASIA]] 
[[CHINA GOVERNMENT TOTALITARIAN]] 
[[CHINA LANGUAGE CHINESE]] 
[[RWANDA POPULATION 6]] 
[[RWANDA AREA 10]] 
[[KIGALI CAPITALOF RWANDA]] 
[[ KIGALI LATITUDE - 23]] 
[[RWANDA CONTINENT AFRICA]] 
[[RWANDA GOVERNMENT TOTALITARIAN]] 
[[RWANDA LANGUAGE FRENCH]] 
[[FRANCE POPULATION 55]] 
[[FRANCE AREA 210]] 
[[PARIS CAPITALOF FRANCE]] 
[[PARIS LATITUDE 49]] 
[[FRANCE CONTINENT EUROPE]] 
[[FRANCE GOVERNMENT DEMOCRACY]] 
[[FRANCE LANGUAGE FRENCH]] 
[[NORWAY POPULATION 4]] 
[[NORWAY AREA 125]] 
[[OSLO CAPITALOF NORWAY]] 
[[OSLO LATITUDE 60]] 
[[NORWAY CONTINENT EUROPE]] 
[[NORWAY GOVERNMENT MONARCHY]] 
[[NORWAY LANGUAGE NORWEGIAN]] 
[[NIGERIA POPULATION 85]] 
[[NIGERIA AREA 357]] 
[[LAGOS CAPITALOF NIGERIA]] 
[[LAGOS LATITUDE 7]] 
[[NIGERIA CONTINENT AFRICA]] 
[[NIGERIA GOVERNMENT TOTALITARIAN]] 
[[NIGERIA LANGUAGE ENGLISH]] 
[[WESTERN _COUNTRY] 



[_COUNTRY CONTINENT NORTH_AMERICA]] 
[[WESTERN _COUNTRY] 

[_COUNTRY CONTINENT SOUTH_AMERICA]] 
[[WESTERN _COUNTRY] 

[_COUNTRY CONTINENT EUROPE]] 
[[POPULOUS _COUNTRY] 

[_COUNTRY POPULATION _COUNT] 
[_COUNTRY AREA _SIZE] 
[IS _DENSITY[/ _COUNT -51ZE]] 
[IS[> _DENSITY .25]]] 

[[BIGGER _Cl _C2] 
[_Cl POPULATION _Pl] 
[_C2 POPULATION _P2] 
[IS [<_Pl _P2]]] 

[[_Cl NORTH_OF _C2] 
[_Cl LATITUDE _LAT1] 
[_C2 LATITUDE _LAT2] 
[IS[> _LAT2 _LAT1 ]]]] 
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Some Explanatory Comments Populations are rounded in millions of people and 
areas are rounded to thousands of square miles. A negative latitude indicates a 
location south of the equator. 

The choice of labels for governments is somewhat arbitrary. Semantic dif
ferences between democracies and republics and between socialist and totali
tarian are of less interest than how the knowledge base makes available several 
kinds of governmental types. In addition to the specific information, our knowl
edge base also contains four rules. 

Rule 1: WESTERN Countries This determines whether a country is part of the 
Western World-the Americas and Europe. It uses an OR construction by defin
ing WESTERN three times with three different continents as clauses. 

Rule2: POPULOUS Nations This arbitrary rule defines a populous nation as one !l. 

with more than 250 people per square mile. Note that the rule contains two IS 
statements. The first calculates a variable called _DENSITY and the next com-
pares the result of this calculation against our arbitrary yardstick. 0.25. If the 
value tests true, the condition is satisfied and Prologo reports the country as 
populous. In the next section we will discuss the IS constructions and the order 
in which variables appear in them. 

Rule 3: BIGGER We can compare the sizes of two countries to each other, with 
population as the criterion, using the BIGGER rule. The rule extracts the popula
tions of the two countries, then uses the IS construct to determine if the first is 
larger than the second. 

It is worth noting that the last line of this rule statement, which contains the 
IS construction, seems backward but is not: 



176 I Al Programming on the Macintosh 

Once it finds the IS, Prologo scans the IS statements from right to left. So in 
this case we must put the value we would usually put first in a greater-than test 
in the second position. This rule expression, then, asks, "Is P2 less than P1 ?" 

Rule 4: NORTH_OF We can determine which cities are north of which other 
cities by using this simple rule. It extracts the latitude of each of two cities from 
the knowledge base and compares them. If the first is larger, the city it repre
sents is north of the other city. 

This rule demonstrates an important point about Prologo: the rule name
in this case NORTH_OF-need not be the first item in a rule statement. We 
want to be able to make inquiries that are more English-sounding than many of 
our other queries tend to be, so we put the city we want to test for 
"northernness" first, then the rule name, then the city to be tested against. 

Querying the Knowledge Base 
We can ask a wide range of questions about the knowledge base given the 
amount of data and the four rules it contains. Let's look at some examples of 
queries we can make. 

Queries About Capitals We can find out the capital of any country: 

[_CITY CAPITALOF FRANCE] 
[PARIS CAPITALOF FRANCE] 
CITY = PARIS 

We can get a list of all of the capitals known to the knowledge base, too. 

[_CITY CAPITALOF _COUNTRY] 
[WASHINGTON_DC CAPITALOF US] 
COUNTRY= US 
CITY = WASHINGTON_DC 
[CARACAS CAPITALOF VENEZUELA] 
COUNTRY= VENEZUELA 
CITY = CARACAS 

[LAGOS CAPITAL NIGERIA] 
COUNTRY = NIGERIA 
CITY= LAGOS 

We can also identify the country, given the name of the capital. We leave 
the framing of this query to the user. 

Questions About Continents Because we've told the system the continent on 
which each country is located, we can find countries by continent. To obtain a 
list of all African nations, for example, we would simply assert the following 
query: 

[_COUNTRIES CONTINENT AFRICA] 
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and wait for the system to inform us that Rwanda and Nigeria are African 
nations. 

We can also find out which continent any given country is on. 

Questions About POPULOUS Countries Given our rule of 250 people per square 
mile being populous, we can inquire of the system which countries meet this 
criterion by querying: 

[POPULOUS _WHICH] 

Prologo would scan the knowledge base and inform us that the United 
Kingdom (density 595.7), China (density 276.8), and France (density 261.9) are 
populous countries according to our definition of the term. 

To test the theory that China is a populous country, you could assert: 

[POPULOUS CHINA] 

and Prologo would affirm your assertion by repeating it. 

Questions About NORTHerliness Not only can we find out if one city is north of 
another by such a query as: 

[WASHINGTON_DC NORTH_OF LONDON] 

but we can also find out which cities are north or south of any city we pick. To 
locate all cities north of Paris, for example, we would query: 

[_CITIES NORTH_OF PARIS] 

On the other hand, we can find all the cities south of Paris without a 
SOUTH_OF function by the following Prologo query: 

[PARIS NORTH_OF CITIES] 

Exploring Al Further with Prologo 

We can ask our WORLD_KB knowledge base a great deal about these coun
tries; you should certainly spend some time querying the knowledge base to see 
the kinds of responses you can retrieve. (Table 8-2 summarizes the information 
in tabular form.) 

Beyond enhancements to these knowledge bases-by adding axioms (facts) 
or rules-you should now feel comfortable designing your own knowledge base 
for Prologo to manipulate. Pick a subject you're interested in and where you 
have some knowledge or experience. Start drawing up relationships and infor
mation about it and build a knowledge base. You might try designing an expert 
system that can predict the weather, based on such data as temperature, wind 
direction, amount of moisture the preceding day, and the like. 



178 I Al Programming on the Macintosh 

Table 8-2. World_KB Knowledge Base 

Country Population• Area .. l.an&uase Government Continent Capita/ City latitude of Capitalt 

USA 234 361S English Democracy NorthJmerica Washington_DC 39 
Venezuela 18 3S2 Spanish Republic SouthJmerica Caracas 10 
USSR 273 86SO Slavic Socialist Asia Moscow SS 
Argentina 30 106S Spanish Republic SouthJmerica Buenos_Aires -36 
United_Kingdom S6 94 English Democracy Europe London Sl 
China 1022 3692 Chinese Totalitarian Asia Peking 40 
Rwanda 6 10 French Totalitarian Africa Kigali -23 

France SS 210 French Democracy Europe Paris 49 

Norway 4 12S Norwegian Monarchy Europe Oslo 60 

Nigeria 8S 3S7 English Totalitarian Africa Lagos 

*in millions 
**in thousands of square miles 
tin degrees north or south ( - ) of equator 

What We've Learned About Al 

Thus far, expert systems are the only aspect of Al research that have commercial 
application and value. In this chapter we've explored expert systems and their 
position in the field of Al. We've seen how expert system development is largely 
a matter of knowledge acquisition and representation and we have reviewed 
some of the problems involved. 

By designing and constructing two knowledge bases, we can appreciate 
the difficulty and importance of the design task facing anyone who wishes to 

. construct an expert system. 
Along the way, we've solidified our understanding of Prologo and devel

oped greater insight into that language and into Prolog. 
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In this third part of our exploration of Al, we move from the topics of specific 
programming techniques to the interesting and challenging topics of languages. 

This chapter looks at the subject from a broad perspective. In it, we'll 
examine issues involved in selecting an appropriate Al language, compare the 
most popular ones, and discuss dialects and offshoot languages. We'll also 
cover why BASIC (the most popular and widely available language on micro
computers) is not generally thought to be well suited to Al applications. 

The remaining three chapters will summarize the essential ideas of each of 
the most popular programming languages for Al: Logo, LISP, and Prolog. My 
goal is to permit a person with some programming experience to pick up the 
main concepts of each language. The chapters are not full-fledged tutorials 
about the languages involved, but they are sufficiently detailed to serve as good 
introductions for anyone with programming experience. 

Finally, Chapter 13 will examine how a programmer experienced in BASIC 
might convert the Experlogo® programs in this book into that language. We'll 
discuss handling data structures that are peculiar to the list-oriented languages 
and not available in BASIC as well as the issues of procedural program design 
and recursion. We'll focus on Microsoft's BASIC 2.0 for the Macintosh®, the 
only full-fledged implementation of BASIC for the Mac with widespread distribu
tion. Further, it overcomes some of the major obstacles to Al programming in 
that language. 

Where's the Superlanguage? 
If we could have our way, we might wish for one all-powerful language that 
could do everything we would ever want a programming language to do
handle lists, arrays, matrices, strings, formulas, vectors, relationships, property 
lists, very large numbers, very small numbers, input/output operations, report 
generation, and a thousand other tasks and features with equal speed and facil
ity. It would be easy to use, and it would look as much like English (or German 
or Russian, depending on our native language) as possible. 

Such a language will never be developed because we can't even begin to 
envision what it would look like. Even the powerful human natural languages 
aren't rich enough to do the job. Think how many specialized dialects have 
developed in English, at least in part because there were not enough words of 
precise meaning in the standard language. There are sublanguages for doctors, 
lawyers, scientists, mathematicians, television producers, teenagers, philoso
phers, among others. 

Some of these languages-particularly scientific ones-don't even use En
glish words as their symbols; they use formulas, subscripts, superscripts, and the 
like. But they are languages nonetheless, because they use symbols to convey 
meaning, which is what a language does. 

Selecting a language for an application, then, is a matter of deciding which 
features of the hypothetical superlanguage we need and which we can do with
out. We select a programming language containing the appropriate subset of all 
of our ideal features. 

What Programming Languages Do ... and 
Don't Do 

All of the languages we've discussed so far are incomprehensible to the com
puter on which they run. The computer only understands a peculiar binary Ian-
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guage which consists of the symbols 1 and 0. Any High-Level Language (or 
HLL), as BASIC, LISP, Logo, Pascal, and others are called, is designed to make it 
easier for us to communicate our ideas and needs to the computer. Somewhere 
between us and the computer lies a program (or several programs) that translate 
this human-readable programming code into ls and Os for the computer's con
sumption. 

An interesting result of this well known but not often considered fact is that 
no HLL can do anything that the machine isn't capable of understanding on a 
very elementary level. If your Mac responds when you click the mouse button 
on a pull-down menu, it's because someone has spent a lot of time, energy, and 
thought programming the machine to understand those actions in its own terms. 

High-level languages were developed because it was essential for people to 
communicate effectively and efficiently with the computer. (One wag has sug- • 
gested that the lower-level languages, which are close to or at the level of the 
machine's binary understanding, are useful when we want to get maximum 
speed from the computer and minimum speed from the programmer!) 

Another major benefit of the creation of HLLs is that such languages often 
act as analytical aids, helping us to organize thinking about and analysis of the 
problem we are trying to solve. By forcing us to think of the problem in its com
ponent parts, label them meaningfully, and describe interactions among them 
precisely, such languages often help us to crystallize our thinking about a 
problem. 

Beyond that, our HLL selection often shapes or even dictates the way we 
approach a problem or examine its solution. For example, BASIC, because of 
the way it was designed, lends itself to a lot of FOR-NEXT loops (where we count 
iteratively through a process and keep track of how many times or under what 
circumstances we continue to do so). So when we think of solving a problem in 
BASIC we often find ourselves thinking in terms of such loops, whether or not 
they are the best way to solve the problem in an abstract sense. 

Two factors affect the difficulty in selecting languages. 
First, some problems are difficult or impossible to solve using some ap

proaches. For example, if arrays (or tables) aren't available in a language, a table 
look-up solution to a problem will be difficult (or impossible) to implement in 
the language. If a problem can only be solved by using a look-up table, the 
absence of such features may be a sufficient reason in and of itself for rejecting 
that language for solving the problem. 

Second, while there is usually not just one "right" way to solve a particular 
problem, there is often a "best" way to do so. To the extent that we choose a 
language that permits us to implement these best solutions, we make things eas-
ier for ourselves in programming them. · 

What an Al Language Needs 
If we put three Al researchers into a room and asked them to list the features of 
an HLL that are appropriate to the kind of work they do, we would deprive the 
world of three Al researchers for a long, long time. There would be a great deal 
of discussion about what an Al language ought to compromise short of being the 
superlanguage. 

But our researchers would take only a few minutes to agree on two features 
required in an Al language. And two other features would follow soon thereaf
ter, if we allowed a two-out-of-three vote to prevail. The two consensus points 
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would be the need for complex data structures and extensibility. The other two 
important features would be the ability to treat a program as a data structure and 
the need for powerful string-handling capability. 

Let's take a brief look at why each of these four features is important in an 
Al language. 

Complex Data Structures 
When we build an accounting program or an educational quiz program, we can 
predetermine the size of data structures to be accommodated by the program 
(i.e., number of accounts, largest dollar value represented, number of questions, 
degree of accuracy of reporting the student's score). We guess on the high side 
because it is difficult to add to these structures later. 

But when we are talking about parsing a sentence, planning the next move 
in a maze game against an intelligent adversary, or drawing inferences from a 
knowledge base in Prologo, we don't know in advance what the size and shape 
of the information will be-or what information we will generate during our 
analysis. This uncertainty means we must have a data structure that is capable of 
efficiently handling a large amount of data. 

Further (as we have seen in our discussions about knowledge representa
tion), associations and relationships among bits of information are sometimes 
more important than the information itself. An Al programming language, to be 
useful and efficient, should permit such representation of knowledge. 

Lists as a Solution From the mid-1950s (when LISP was developed), lists have 
been accepted as the proper data structure for Al tasks. Lists are capable of con
tinual expansion by definition; we need not declare their size in advance or limit 
their size at any point. Items can be paired or associated within and between 
lists without predefining what those relationships might be or become. Property 
lists are an outstanding example of the power of list processing. 

Beyond the innate power of a list as a data structure, the list manipulating 
languages like LISP and Logo have built-in instructions that make it very easy to 
extract, compare, analyze, modify, and store information stored in lists. 

Extensibility 
Extensibility means defining new terms in old words. With this capability, a lan
guage can overcome some of its deficiencies in terms of how we interact with it. 
A good example of this occurs in the Missionaries and Cannibals program in 
Chapter 2. We needed a word that meant we had solved the problem. We 
chose, logically enough, "success." Unfortunately, Logo does not understand 
that word at all. So we added the word "success" to Logo's vocabulary for the 
purpose of this program. 

Again, Micro Blocks World (Chapter 5) required words for blocks, pyra
mids, and rearranging the tabletop, so we created them. This makes it possible 
for us to say things like REARRANGE TABLE, which is certainly clearer than 
GOSUB 9000, even though they may both have the same effect. 

More important, having defined a new Logo word for a specific program's 
needs, we can use it in other procedures. This makes such languages as LISP 
and Logo extensible (Forth is also extensible in this way, incidentally). 

It may have occurred to you that if a language were extensible enough, you 
could write another whole language in it. Al researchers have been doing it for 
years. They have created dozens of new languages that are written in LISP (there 
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are even a few Prologs written in LISP and a LISP or two written in another dia
lect of LISP!). These other languages have names like PLANNER, CONNIVER, 
and IRIS, and their purpose is to permit experimentation with specific domains 
of problems and types of input. 

Programs as Data Structures 
As they begin to learn LISP, one of the most difficult ideas to grasp for program
mers with experience in BASIC is that the LISP program is a data structure. In 
BASIC, this is simply not the case; the program and the data are distinct and sep
arate from one another. A BASIC program doesn't even look like a data struc
ture: it is a collection of commands delineated (usually) by line numbers and it 
lacks inherent structure. 

But LISP programs are definitely data structures. It is thus possible to have a 
LISP program that modifies itself-since it is just another data structure-and 
thus modifies its behavior based on its "experience." In an Al environment, 
where one objective is to make programs more human like, the ability of the pro
gram to adapt as it is used is certainly attractive. 

String-Handling Power 
Most knowledge that we work with in Al is not numeric but includes ideas, con
cepts, interrelationships, and expressions of language. Thus the ability to manip
ulate strings-store them efficiently, extract information from and about them, 
modify them, and combine them-is one that most Al researchers would proba
bly agree is important to a language used for Al research. 

Popular Languages and Al 

With all of this background, we still have to face the question of which program
ming language to choose for our Al work. 

The choice is arbitrary; if we are willing to put up with inefficiencies and 
implementation difficulties, we may choose virtually any microcomputer pro
gramming language and eventually develop an Al program with it. 

Computer consultants are frequently asked by clients questions like, "Can 
Computer X run my Y-square-foot warehouse?" Sometimes, depending on 
which computer is in the sentence, and how large the warehouse is, the answer 
will be, "Sure. You can use that computer to do that. You could also use a 
motorcycle as a moving van if you wanted to hook a trailer to it, but that doesn't 
mean it's the best solution." The issue for us here involves the efficiency and 
effectiveness of various languages as Al programming environments. 

Let's take a quick look at a few popular languages in this context. 

BASIC 
Generally, BASIC doesn't deal with lists and has no equivalent data structure. It 
is also unstructured in most of its implementations, which creates problems in 
program design, whether we are discussing Al or other types of programs. 
Microsoft BASIC 2.00 for the Mac overcomes some of these problems but has no 
list-handling capability. 

Still, just to prove that the decision is arbitrary, a whole book on the subject 
of expert systems has been produced using BASIC as the language for imple
menting the systems (see Appendix C for details on the book by Chris Naylor). 



186 I Al Programming on the Macintosh 

Pascal 
Pascal is increasingly the language of choice on microcomputers. It is a substan
tial improvement over BASIC for Al work. Pascal is structured, and it has good 
string-handling capabilities; but it has no lists, is not capable of self-modification, 
and is not really extensible. 

Logo 
Logo is an offshoot of Al research. Dr. Seymour Papert developed the language 
at MIT's Al laboratory in the late 1970s after seeing how children could learn to 
think abstractly in a Logo programming environment. The language has power
ful list-handling capability, good string manipulation, and is highly extensible. 
However, it cannot be modified by a program while the program is running. 

Pro log 
Since we discuss this language extensively in Chapters 7, 8, and 12, we will say 
here only that Prolog is a nonprocedural language and thus lends itself to a dif
ferent kind of analysis as an Al language than the others we are considering 
here. Further, it is just becoming available on microcomputers. 

LISP 
LISP is one of the oldest programming languages, having been introduced in 
1958. As an Al language, it has all of the desirable features. In addition, and not 
to be discounted, it has a rich history and a huge collection of programs already 
written in it, which serve as a key research base for future Al work. 

The language has also been implemented in numerous versions on micro
computers and two are now available for the Macintosh®. 

Making the Choice 
When selecting an Al language on your micro ask yourself about your intended 
Al application: 

1. Is a great deal of the knowledge or data base with which the program is 
expected to work made up of strings and relationships? 

2. Are complex interrelationships among pieces of knowledge involved in 
problem-solving? 

3. Does the application call for the ability to create a new "vocabulary" for 
the language? 

4. How important is speed of programming? 

In the first three cases, the more affirmative answers you give, the more 
likely you are to want to try LISP or Logo. The more negative answers, the more 
likely it is that a more traditional, conventional language will suit your needs. 

Summary and Looking Ahead 

In this chapter you have a brief background against which to understand the 
debates in the Al community regarding selection of an appropriate language for 
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Al development work. We have discussed some of the considerations that go 
into the selection of a language for a specific Al application. 

In looking at the desired features of an Al language and then holding each 
of several popular micro-based languages up to that standard, we have been 
able to assess the strengths and weaknesses of each language. 

In Chapter 10 we begin our look at the operations and functions of specific 
languages. 
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This chapter constitutes a brief refresher course in the basic concepts, syntax, 
and commands of the Logo programming language. For the most part, it is a 
generic review of the language although it incorporates some commands unique 
to ExperLogo®. These unique commands are noted as they are reviewed. 

After reading this chapter, if you wish to learn more about Logo, select one 
of the Logo programming introductions listed in Appendix C. 

Logo's Image 

Logo has been both popular and maligned ever since its introduction in the 
1960s. It has been popular, particularly with educators, because it is easy to 
learn and use and because it is an extensible language. This latter quality results 
from Logo's ability to use procedures inside other procedures, leading to Logo's 
apparent ability to "learn" new words and commands from the user. This easily 
understood way of programming has led people to conclude that Logo is an 
excellent language to use for exploring the world of computers. 

At the same time, other people view Logo as a "toy" language that is 
quickly outgrown. This perception has been aided by the companies who pub
lished Logo language systems with very limited vocabularies, but occupying 
large amounts of the relatively small memory spaces available on the popular 
microcomputers of the late 1970s and early 1980s. 

Most Logo implementations, for example, did not include any way of work
ing with information other than with Logo procedures on disk files. So, writing 
real-world applications in Logo was impossible. Similarly, Logo was an inter
preted language. To a great extent it still is. This makes most Logo programs run 
slowly. 

But Logo enthusiasts always realized that Logo is a far more powerful pro
gramming tool than popular perception held. Logo is an incarnation of the pow
erful Al programming language known as LISP. Logo uses many of the same 
concepts of processing lists-a key concept in Al programming-as LISP does. 
Some Logo implementations are, in fact, written in LISP-notably the Exper
Logo® chosen for this book. ExperLogo® is really a subset of Experlisp with a 
special processor that interprets Logo commands and carries them out. In its 
Experlogo implementation, Logo is as fast and as powerful as such "serious" 
languages as C and Pascal. 

Anatomy of a Logo Program 

A Logo program consists of one or more procedures. Each procedure carries out 
a step in the process the program is designed to handle. Each procedure has 
approximately the same structure as the other procedures. 

The TO Requirement 
A Logo procedure must begin with the reserved word TO, which signals Logo 
that what follows is a definition of a procedure to be remembered and carried 
out as one sequence of steps. This differentiates the definition of a procedure 
from the actual execution of a procedure. Thus, we would type as the first line of 
a procedure definition to draw a box: 

TO BOX 
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To ask the computer to execute that procedure we would type: 

BOX 

Passing Variables 
Some Logo procedures require information be passed to them from outside their 
boundaries. Such a procedure includes the names of the variables to be used as 
part of the TO procedure definition line. For example, if our BOX procedure was 
to be told how big the box is to be, the first line of the procedure might be: 

TO BOX :SIZE 

Notice that variable information needed by the program is preceded by a 
colon; this signals Logo that the name which follows is the name of a variable, 
not another procedure about which we expect Logo to "know." 

There is no theoretical limit to the number of variables that may be used by 
a Logo procedure. 

Using variables tends to make Logo procedures generalized and thus po
tentially usable in similar programs that may require the same procedure with 
slightly different parameters. 

Using Variables in a Logo Procedure 
We often use variables inside Logo procedures. In fact, if we use the method of 
passing variables to a program, we will always use the variable information 
somewhere inside the procedure. Otherwise, why send the information along? 

With variable usage inside its boundaries, our BOX procedure might look 
something like this: 

TO BOX :SIZE 
REPEAT 4 [FD :SIZE RT 90] 

END 

Notice that the variable name is preceded by a colon; this is standard Logo 
syntax and common to all versions or dialects. Variable names are preceded by 
colons when their values should be used. When assigning values to variables or 
changing their contents we do not precede the variables' names with a colon. 

Using MAKE to Assign Variable Values One of the most common built-in Logo 
functions is MAKE. It is used to assign a value to a variable name. MAKE is fol
lowed first by the name of the variable to be created or changed and then by the 
value to be assigned to that variable. The following examples are all valid uses of 
the MAKE command: 

MAKE VAR113 
MAKE VAR2 '13 +-VAR2 becomes the letters "1" and "3" 
MAKE STRING1 'THIS IS A STRING, PEOPLE 
MAKE LIST1 [TH IS IS A LIST]+- more about lists later 

A string value is assigned to a variable by preceding the value with a single 
quotation mark, as we did in assigning VAR2 and STRING1 their values. 
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Notice that, as we have previously indicated, the variable name is not 
preceded by a colon in these examples because we are using the variables as 
variable names, not using their values. Once we have defined VAR1 to be the 
number 13, though, we could add 5 to its value by coding: 

MAKE VAR1 :VAR1 + 5 

Now, in the second use of the variable's name, we intend to refer to its 
contents-the number 13-rather than its identifying name, so we precede it 
with a colon. 

Calling Other Procedures 
As we saw earlier, one feature that makes Logo so powerful is the ability to call 
procedures from inside other procedures. There are dozens of instances of this 
common Logo technique in the programs in this book. 

If we tell Logo to do something it doesn't have a procedure defined for, an 
error message will appear saying something like: 

I don't know how to BRXFMJX 

The message may vary from one Logo to another, but the idea is the same; 
we must tell Logo how to carry out a procedure before we try to use it. 

A procedure can use any other procedure defined in the program exactly 
as if the created procedure were in Logo's large built-in vocabulary. (We'll re
view some of the terms in Logo's vocabulary later in this chapter.) As we define 
procedures, our newly defined "words" are added to Logo's vocabulary. To 
observe this, we can use our own procedure to define a function that Logo 
knows by some other name. Let's take the Logo command BUTFIRST, for an 
example. (This command returns everything but the first element of whatever list 
it is told to operate on.) 

Let's say we like the word TAIL instead of the longer BUTFIRST (deciding 
that the FIRST is the head of whatever we are working with and BUTFIRST the 
tail). We can define a new word TAIL by writing this procedure: 

TO TAIL :OBJECT 
BUTFIRST :OBJECT 

END 

Now we can use TAIL in other procedures exactly as if we had used the 
built-in BUTFIRST. Thus, we could program a procedure that printed each letter 
of a word or list on a separate line: 

TO PRINT_FIRST_LETTER :OBJECT 
PRINT FIRST :OBJECT 
MAKE OBJECT TAIL :OBJECT 
IF EMPTYP :OBJECT [STOP] 
PRINT_FIRST_LETTER :OBJECT 

END 

It isn't important that you understand what this procedure is doing. What is 
important is that you note that it calls our recently defined TAIL procedure 
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which substitutes for BUTFIRST. Logo programs are almost always constructed 
of procedures calling procedures that call other procedures. Ultimately, every
thing is defined in terms of the Logo's built-in vocabulary. 

The END Requirement 
Every Logo procedure must end with the word END. Some programming lan
guages do not require the explicit termination of a procedure, but Logo does. 

The Language of Logo 

The rest of this chapter briefly discusses a number of often-used Logo com
mands and functions. 

Graphics Commands 

Logo is a very graphic language. The use of the turtle as a mythical drawing 
character in early implementations of the language brought the term "Turtle 
Graphics" into the English language. The first Logo that used a turtle was 
Microsoft's LCSI Logo® for the Macintosh®. Turtle Graphics also led to the cre
ation of organizations called "Friends of the Turtle" and "Turtle Trackers." 
ExperLogo® has departed from this tradition, choosing "Bunny Graphics" as the 
name of its three-dimensional and spherical drawing animals-because, of 
course, the language is so much faster. 

This section presents the most often used Logo graphics commands. (We 
have avoided ExperLogo's® 3-D and spherical drawing commands, which are 
not used in this book and are not part of standard Logo.) 

CLEARing Space to Draw 
Drawing in any Mac version of Logo takes place in a Graphics Window. It's a 
good practice to make sure that the contents of the window are erased before 
creating new art in it. The usual Logo command to clear the Graphics Window 
is CLEARSCREEN, usually abbreviated CS. Some implementations of Logo on the 
Macintosh® use CG to clear the Graphics Window and CT to clear the Text 
Window. 

HOME 
Whether you're drawing with a turtle or a bunny (or any other member of the 
menagerie, for that matter!), you'll frequently use a universal Logo command 
called HOME. HOME returns the turtle or bunny to its original position, "point
ing" toward the top of the screen. The original position on the Mac is the center 
of the Graphics Window. 

HOME does not usually clear the screen and will work whether or not the 
turtle or bunny is visible (more on this as we discuss other commands). 

SHOWTURTLE and HIDETURTLE 
The commands SHOWTURTLE and HIDETURTLE-and their ExperLogo® equiv
alents, SHOWBUNNY and HIDEBUNNY-determine whether or not the shape 
used to draw in the Graphics Window is visible. These commands are abbrevi
ated ST, HT, SB, and HB. 
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Whether or not the turtle or bunny is visible, any drawing it is directed to 
do is displayed. In most Logos, including ExperLogo®, the drawing "animal" is 
really a triangle. We'll stop the confusion of mixing turtles and bunnies and use 
the more conventional turtle from now on. 

Direction Commands 
When we draw using Logo commands, we maneuver the turtle and its accom
panying pen inside (or outside) the Graphics Window. 

We can instruct the turtle to move forward or backward, turn left or turn 
right. We must tell the turtle how far to move or turn. 

Any movement made inside the Graphics Window with the pen down (see 
next section) results in a line being drawn. Moving the turtle forward requires the 
FORWARD (FD) command. To cause the turtle to move forward 50 steps from 
its current position, we write: 

FD50 

Backward movement requires the BACK (BK) command. Like the FD com
mand, it takes one command to tell the turtle how far to move backward. 

We turn the turtle to the left by using the LEFT (LT) command, accompa
nied by the number of degrees we wish to turn. This is an absolute amount to 
turn, not a movement relative to a fixed point. Thus, if the turtle is already point
ing at an angle, and we use an LT command to move it to the left 30 degrees, it 
will move from where it is 30 degrees farther to the left. If it started out pointing 
straight up (i.e., at 0 degrees), this results in the turtle pointing at a 30-degree 
angle. But if, starting at O degrees, we execute two consecutive LT commands: 

LT30 
LT45 

the turtle now points 75 degrees left of the straight-up position. We emphasize 
this because it is a frequent point of misunderstanding for inexperienced Logo 
programmers. 

As you might expect, RIGHT (Rn works the same way. The back-to-back 
commands: 

LT90 
RT90 

cancel each other out. They serve no purpose unless the turtle is visible and you 
just want it to wiggle. 

Figure 10-1 shows the results in a Graphics Window of executing in 
ExperLogo® the following command sequence: 

CS HOME FD 50RT120 FD 50RT120 FD 50 LT 60 FD 60 LT 30 BK 90 

You can tell where things started because the first drawing command is 
executed after a HOME instruction. The initial line, then, is the one drawn 
straight toward the top of the screen. 
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~o Graphics Window 

Figure 10-1. Result of Logo drawing with turtle hidden 

If you want to shift the position of the turtle to a specific angle, regardless of 
where it is when things start, use the SETHEADING command. For example, if 
you want the turtle moving horizontally left, write: 

SETHEADING 90 

PEN Controls 

The turtle doesn't actually do the drawing in the tiny world of Logo. It carries a 
"pen" which does the actual drawing. The pen is either "up" or "down" (not 
drawing or drawing when the turtle moves). To move the turtle without drawing 
anything, use the PENUP (PU) command. Use a PENDOWN (PD) command in 
order to draw after a PU command has been carried out. In addition, Logo on 
the Mac permits the pen to do two other things: erase and reverse. 

Using a PEN ERASE (PE) command makes the pen draw in the same color as 
the background. That's usually white, but can be changed by the program as 
we'll see in the next section. With the pen in the erase mode, any lines pre
viously drawn that you retrace are erased. 

PENREVERSE (PX) is a close cousin of the PE command. It, too, erases any 
lines it passes over. But it also draws lines where there were none before. So, in 
other words, PX reverses the situation, drawing lines where none were and eras
ing lines where they had been drawn. Figure 10-2 demonstrates the difference. 

Figure 10-2b results from using a PE command and drawing across a por
tion of the figure shown in Figure 10-2a. Figure 10-2c results from using the PX 
command on the same path. 

The pattern and size of the pen can also be set by Logo commands on the 
Mac; check the documentation for your version of Logo for specific instructions. 

BACKGROUND Control 

ExperLogo® permits control of the background pattern of the Graphics Window 
with the SETBACKGROUND (SETBG) command. Not all Logos for the Mac 
allow this. The SETBG command in ExperLogo® takes as an argument the name 
of a pattern, chosen from Figure 10-3. 
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Figure 10-2. PE compared to PX 
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Macintosh® QuickDraw Graphics Commands 

One feature that makes the Mac such a powerful machine is a set of built-in rou
tines known collectively as the QuickDraw Manager. These routines are famil
iar, at least in terms of their function, to anyone who has ever used MacPaint. 

In General: Accessing QuickDraw from Logo 
All implementations of Logo on the Mac permit you to use the Mac's Quick
Draw routines, but the method of using the routines varies by dialect. Consult 
your language manual to see how your version of Logo handles QuickDraw 
graphics. ExperLogo® handles the QuickDraw routines just as they were de
signed by Apple Computer. Microsoft Logo®, on the other hand, permits access 
to all of the routines, but in a different syntactical way. 

QuickDraw Shapes and What to Do With Them 
Four shapes are available in the QuickDraw routines: arcs, ovals, rectangles, 
and round-cornered rectangles. Each of these can be drawn (usually called 
"framed"), filled in with a pattern, erased, or reversed. The two methods for fill
ing in the shapes are filling and painting. Filling requires you to tell the computer 
which pattern to use; painting fills in with the current pen pattern. 

The commands in ExperLogo® to carry out these QuickDraw routines 
combine the action (FILL, PAINT, FRAME, ERASE, INVERT) with the shape name 
(RECT, ROUNDRECT, OVAL, ARC). The command FRAMEROUNDRECT, along 
with the proper arguments, draws a round-cornered rectangle of a given size at 
a given point in the Graphics Window. 

Cursor Control 
The cursor (sometimes referred to in Mac books and manuals as the "pointer") 
displays the current position of the mouse. ExperLogo® includes commands 
to cause the cursor to be displayed, hidden, or temporarily hidden. SHOW
CURSOR displays the cursor so you can see mouse movements. HIDECURSOR 
causes the cursor to be invisible, though mouse movements are still tracked in 
the system. OBSCURECURSOR hides the cursor until the mouse is moved. 
Many Mac programs use this ability to obscure the cursor. For example, most 
text editors available on the Mac hide the cursor while you're typing so the 
mouse's cursor doesn't get confused with the text pointer. 

Other QuickDraw Commands 
The size, font, and style of text to be drawn in the Graphics Window can also be 
controlled by Logo commands. In addition, versions of Logo for the Mac will 
also permit you to manipulate complex graphic objects such as pictures, 
regions, and polygons. (A discussion of these topics is beyond the scope of this 
chapter. See the reference manual that came with your Logo for more informa
tion.) 

Input/Output Commands 

Like programs written in other languages, Logo programs are nearly useless 
unless we can put information into them and get results out. The commands to 
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handle displaying information and getting data from the keyboard are relatively 
standard from one Logo dialect to another. Unfortunately, disk file input and 
output vary a great deal. 

PRINT and Its Relatives, PRINC and TYPE 
To display information in the Text (or Listener) Window of the Mac, use the 
PRINT command. As a rule, anything that follows a PRINT command will be dis
played in the active Text Window. To print the sentence, "This will display in 
the Text Window," we would code the following line: 

PRINT [This will display in the Text Window] 

In ExperLogo®, the use of guillemets marks strings to be displayed. So, in 
ExperLogo®, our command could also be written: 

PRINT <<This will display in the Text Window>> 

The guillemets are produced by using the [OPTION] and back-slash key 
together for the opening pair and the [SHIFT][OPTION] and backslash key for 
the closing pair. 

There are occasions when we wish to print something without having the 
program insert a [RETURN] and line feed at the end of the statement being 
printed. This is particularly true when we write programs that include prompts 
for input from the user. Programming the line 

PRINT [Enter a number between 1 and 100:] 

will result in the user's response being entered on the line below the request. 
But, using the PRINC command in ExperLogo® suppresses the carriage return 
and line feed so that writing this line: 

PRINC [Enter a number between 1 and 100:] 

results in the user's answer being placed on the same line as the prompt. In 
Microsoft's Logo and most other dialects of the language, the TYPE command 
has the same effect. 

READing Data 
To obtain information from outside the program for use in the program, we can 
use either the READLIST or the READCHAR command in Logo. There are two 
difference between the commands. First, they differ in terms of how the user 
indicates that the requested information has been entered. Second, they differ as 
to the data type of the information entered. 

READLIST accepts all of the user's input to the first [RETURN] and stores 
the result as a list. READCHAR looks only for the first character entered by the 
user, places that key in a character variable and continues processing without 
waiting for the [RETURN]. 

Neither command will store anything unless it is explicitly told to do so 
with a MAKE command or a similar assignment command. 
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If we code this line: 

MAKE VALUE1 READLIST 

at one place in a program and this line: 

MAKE VALUE2 READCHAR 

and in response to both input requests we type the words "THIS IS MY 
ANSWER," the result is that VALUE1 will contain the list: 

[THIS IS MY ANSWER] 

while the variable VALUE2 will contain the single letter "T." 

File Usage in Experlogo® 
One thing about language design that plagues programmers is the inconsistency 
in how file input/output operations are handled on the same machine, even by 
different dialects or implementations of the same language. The user manual 
Experlogo® for the Macintosh® from ExperTelligence contains a brief tutorial on 
disk file 1/0. Some programs, including "Poetry Maker," in this book use file 1/0 
relatively extensively. 

A detailed discussion of file 1/0 in Logo is beyond the scope of this book. 
Refer to your user manual for information on file handling specific to your soft
ware. 

Conditionals and Program Flow Control 

Generally, the flow of a Logo program follows a relatively straight line. First an 
instruction is executed, then the next one in the procedure is executed, and so 
on, until a new procedure is called or the program ends. Sometimes we want to 
alter that straight-line flow. Basically, there are three ways we can do this: condi
tional processing using IF testing, loops using REPEAT constructions, and uncon
ditional branching using GO and LABEL commands in conjunction with one 
another. 

IF Testing and Conditional Processing 
When a program needs to take one course of action in one set of circumstances 
but a different course of action in another set of conditions, an IF construction 
will obtain the desired result. 

In ExperLogo®, as in most dialects of the language, the IF statement is fol
lowed by a list of instructions to be carried out if the statement is true and, 
optionally, a second list of instructions to be carried out if the statement is false. 
If the optional list is not present, and the IF statement turns out false, the pro
gram skips the first statement list and continues processing normally. 

Two simple examples will help to clarify this usage of the IF construct. 

IF With One Statement List The first, simpler, example involves just one state-
ment list to be executed when the IF condition is true: 
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TOSHOW_IF 
PRINC [Give me a number between 1 and 10, please:] 
MAKE VALUE READLIST 
IF (OR :VALUE < 1 :VALUE > 10) [PRINT [SORRY, TRY AGAIN] SHOW_IF] 
NEXT_PROCEDURE 

END 

The IF statement uses the OR logical function (discussed later) to determine 
if an acceptable value has been entered by the user in response to the instruc
tion. If it has been, the procedure NEXT_PROCEDURE is executed. Otherwise, 
if the answer is smaller than 1 or greater than 10, the message "SORRY, TRY 
AGAIN" is displayed and the procedure is run again. 

IF With Two Statement Lists Sometimes, the user will be given two clear alterna
tive responses. For example, if we are writing an educational program that 
requires a correct answer for a question, we want different types of feedback to 
the user. The program needs to react to right and wrong answers. We might use 
a procedure like this to accomplish this task: 

TOASK_IT 
PRINT [WHO WROTE A MIDSUMMER NIGHT'S DREAM?] 
MAKE ANSWER READLIST 
IF EQUALP ANSWER [WILLIAM SHAKESPEARE] 

[PRINT [YOU ARE ABSOLUTELY CORRECT!]] 
[PRINT [SORRY, TRY AGAIN.] ASK_IT] 

END 

When users provide the right answer, the program indicates that they are 
right and the procedure ends. Otherwise, a message informs them that they are 
wrong and the procedure runs again. Notice the important consideration here: 
both courses of action are provided as lists of instructions, even when only a sin
gle instruction is to be carried out. 

Testing Alternatives 
The key part of the IF construction is the portion that evaluates a condition to 
determine which course of action is to be taken. This almost always involves 
comparing the values of two different items against one another. We can test 
them to determine if they are identical, or if one is larger than the other or if they 
are not equal to one another. Figure 10-4 provides a list of the most common 
Logo tests for conditional processing. 

Sometimes we want to combine two tests, as we did in our sample 
SHOW_IF procedure. In such a case, we use any combination of three logical 
operators: AND, OR, and NOT. These Logo operators are almost self-explana
tory, but a brief example or two will help to fix them in your mind. 

If we use the AND logical connective, then both tests (or all of them if there 
are more than two) must be true for the IF statement to be found to be true. For 
example, when this line executes: 

IF AND :VALUE>l :VALUE<10 [PRINT [FINE. 
PROCEED] NEXT_PROCEDURE] 
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Less than or equal to 
Greater than or equal to 

Figure 10-4. Conditional tests 

the message "FINE. PROCEED" will print and the procedure NEXT_ 
PROCEDURE will be carried out, if and only if both conditions are true-that is, 
if the value of the variable called VALUE is both greater than 1 and less than 10. 

On the other hand, when this line of Logo code is encountered: 

IF OR :VALUE>1 :VALUE< -10 [PRINT [FINE. 
PROCEED] NEXT_PROCEDURE] 

and the variable called VALUE is either greater than 1 or smaller than -10, 
processing will continue with the procedure called NEXT_PROCEDURE after 
the message is printed. (Note that we changed the value 10 from our AND 
example to -10 here. To choose between values of greater than 1 or less than 
10 would exclude no numbers whatsoever, since all known numbers are either 
greater than 1 or less than 1 O!) 

Looping With REPEAT 
At times we want to repeat a given instruction or set of instructions a certain 
number of times. In those circumstances, Logo uses the REPEAT function as 
shown in this example: 

REPEAT 4 [FD 50 LT 90] 

This is the classical one-step l!.ogo procedure to draw a square 50 pixels on 
a side. We can use a variable for the count, too, as in: 

REPEAT :COUNT [PRINT [HELLO THERE, YOU BRIGHT OPERATOR]] 

(It's probably not a good idea to set the value of COUNT too high; some
one might come into the room while we are shamelessly letting the Mac compli
ment us.) 

GO and LABEL 
There are those who argue that using GO and LABEL constructions defeats one 
of the main attractions of Logo-its clean, structural organization. However, 
there are programming problems that seem to have no clean solutions. Gener
ally, we only think that is the case; we can almost always solve the problem in 
the far more Logolike manner of writing a new procedure and calling it. 
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The two commands work together. A LABEL command defines a point to 
which the procedure can later be told to GO. The following example shows 
how they work together. 

TO COUNTDOWN :NUM 
LABEL COUNTER 
IF :NUM > 0 
[PRINT :NUM MAKE NUM :NUM -1 GO COUNTER]END 

The line that sets up the label called COUNTER gives the instruction list fol
lowing the IF construct a place to go in the program when it has finished print
ing out the number it has and decreasing it by one. 

We have avoided the use of GO and LABEL commands in our programs 
whenever possible. We suggest you do the same in your Logo programming. 

Math Functions 

Routine math operations like addition, subtraction, multiplication, and division 
can be performed in ExperLogo® in one of two ways. The first, more familiar 
way, is called "infix" notation; the second is called "prefix" notation. 

Infix Forms of Math 
In an "infix" form of mathematics, the symbol to carry out an operation is 
placed between the numbers or variables that it applies too. Thus we would 
write: 

3 + 4 

to add the numbers 3 and 4. Similarly, 

PRINT [3 * 4] 

prints the answer found by multiplying 3 by 4. This is how most math on the 
Mac will be performed in Logo. Division uses the slash (/) and subtraction the 
minus sign ( - ) Exponentiation-raising a number to a power-uses the up
pointing caret(/\) made by using a [SHIFll- 6 combination. 

Prefix Forms of Math 
There are times when we wish to use a different approach to math, putting the 
function to be performed first. (Never mind why we would wish to do so; suffice 
it to say that there are times when this approach is more efficient than .the infix 
method.) In such situations, Logo provides us with prefix forms. These forms are 
SUM, PRODUCT, QUOTIENT, DIFFERENCE, and REMAINDER. 

We can add 3 and 4 by coding: 

SUM34 

in exactly the same way we coded "3 + 4" earlier. The result will be the same. 
Similarly, PRODUCT handles multiplication, QUOTIENT division, and DIFFER
ENCE subtraction. The REMAINDER function looks at a division problem and 
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provides the remainder rather than the answer (quotient). Thus, if you write a 
line of Logo code like this: 

PRINT QUOTIENT 15 4 
PRINT REMAINDER 15 4 

the computer's answer will be 3 and 3 because 15 divided by 4 is 3 with a 
remainder of 3. 

RANDOMizing Activities 
The RANDOM function is one other math function which finds frequent use in 
some kinds of Logo programs. This function produces a random number 
between 0 and any number it is given, minus 1. Thus, writing this line of Logo 
code: 

MAKE RESULT RANDOM 10 

will produce a random number between 0 and 9. 

Other Math Commands and Functions 
Several other useful math operations can be performed with Logo commands on 
the Mac and most other machines. These include square root extraction, trigo
nometric functions, absolute value calculation, and truncation or rounding. 

Square Roots A square root can be extracted in Logo by using the SQRT built-in 
command. To find the square root of 37, for example, code: 

MAKE ANSWER SQRT 37 

The answer is 6.08276. 

Trigonometric Functions All basic trigonometric functions-SIN, COS, TAN, and 
ARCTAN-are available in Logo using those names as the commands. In all 
cases, the angle must be furnished in radians. Using these functions, any needed 
trigonometric function can be derived. 

ABSolutely! There are times when we don't care about the sign of a number, 
only its value. That is referred to as the number's absolute value and it is found 
in Logo by the ABS function. The following two lines produce the same result 
when the value of the variable NUM1 is 45 and the value of the variable NUM2 
is -45. 

PRINT ABS :NUM1 
PRINT ABS :NUM2 

In both cases, the program will print 45. This function finds its most fre
quent use when we want to know the distance between two points or the differ
ence between two values, not caring whether the result of the subtraction is 
positive or negative. 
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TRUNCation and ROUNDing There may be times when a math problem's 
answer given to us by Logo is too large to suit our purposes. For example, if we 
want to know how much it will cost us to buy 13 lemons at $1 per dozen, the 
answer $1.0833333 ... isn't going to be particularly helpful. We can figure out 
the answer, of course, but it's messy and makes the report we print look bad. 

In such situations, we can either truncate the answer or round it off. When 
we truncate or round off in Logo, we eliminate the fractional decimal portion. 
Thus without some intermediate step, truncating or rounding the value 
$1.08939 would lead to the same answer: $1. To get around this problem when 
we really want to truncate or round to the hundredths place, we multiply the 
value by 100, then truncate or round it, then divide it by 100 again. We'll avoid 
that nicety in the next few paragraphs, but keep it in mind when you write pro
grams using these functions. 

Truncating the value $1.08939 leads to the answer $1.08. Rounding it off 
leads to the answer $1.09. The Logo functions are TRUNC and ROUND: 

PRINT TRUNC :VALUE1 
PRINT ROUND :VALUE1 

Most of the time, accuracy is important, so we round values. 

List-Processing Commands 

One of the features that makes Logo particularly well suited to programming Al 
applications is its powerful list-handling ability. Treating many kinds of informa
tion as lists of data to be manipulated not only makes intuitive sense-i.e., it 
matches the way we do things in real life-but it enables us to do very flexible 
things with the contents of those lists. 

Logo offers us a strong set of commands to extract parts of lists (and, 
optionally, redefining the list itself in the process), adding to or combining lists, 
obtaining information about lists, and modifying the contents of lists. 

Extracting Parts of Lists 

We can extract from a list its "head," (first element), its "tail," (everything but 
the first element), its last element, or all but the last element. We can also extract 
any given item from the list. 

The Logo commands that provide us with this capability are FIRST, BUT
FIRST, LAST, BUTLAST, and ITEM. The first four operate like one another and 
will be clarified by this example. 

[THIS LIST [CONTAINS LISTS [WITHIN LISTS]] BUT IS STILL A [LIST]] 

Let's call this LIST1. Note that the list is composed of eight elements, as shown 
in Figure 10-5. 

The following shows the results of the various extractions. Note particularly 
how combinations of list extractions can be used effectively to narrow our 
extraction to exactly what is desired. 



A Quick Logo Refresher I 205 

[THIS LIST [CONTAINS LISTS [WITHIN LISTS] BUT IS STILL A [LISnJ 
__.,,.._., .__.,,.-- '-v--' -- '-v--' -- ---v---
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Figure 10-5. The eight elements of LIST1 

PRINT FIRST :LIST1 
THIS ~ all underlined material is computer's response 

PRINT LAST :LIST1 
[LIST] 

PRINT BUTFIRST :LIST1 
[LIST [CONTAINS LISTS [WITHIN LISTS)] BUT IS STILL A [LIST)] 

PRINT BUTLAST :LIST1 
[THIS LIST [CONTAINS LISTS [WITHIN LISTS]] BUT IS STILL A] 

PRINT FIRST BUTFIRST :LIST1 
LIST 

PRINT FIRST BUTFIRST BUTFIRST :LIST1 
[CONTAINS LISTS [WITHIN LISTS]] 

Using the ITEM command, we can select any given item in the list if we 
know its relative position. Staying with LIST1 as our example, notice the effects 
of the ITEM command in these operations: 

PRINT ITEM 4 :LIST1 
BUT 

PRINT ITEM 9 :LIST1 
nil ~ LIST1 has only eight items; Item nine is empty 

PRINT ITEM 2 BUTFIRST BUTFIRST :LIST1 
BUT 

Experlogo® contains one other unique command which we have had 
occasion to use in the programs in this book. The ELEMS command is a variation 
on ITEM; it permits us to extract a number of adjoining items in one step. ELEMS 
takes three arguments: the first tells it which item or element to start extracting 
from; the second tells it how many items or elements to extract; and the third 
tells it the name of the list on which to operate. If we wanted to take the second 
and third elements of the list we have called LIST1 in this example, we would 
write: 

PRINT HEMS 2 2 :LISTl 

(The computer's response, incidentally, would be to tell us that the second and 
third items of the list are, respectively, LIST and [CONTAINS LISTS [WITHIN 
LISTS]].) 

Adding to and Combining Lists 
There are three Logo commands for adding information to a list or combining 
two or more lists: SENTENCE, FPUT, and LPUT. SENTENCE, abbreviated SE, 
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takes an arbitrary number of items or lists and converts them into a single list. If 
two objects are used, it is written: 

MAKE NEWLIST SENTENCE :LIST1 :LIST 2 

If more than two lists are involved in the creation of the SENTENCE, we can 
use parentheses: 

MAKE NEWLIST (SENTENCE :LIST1 :LIST2 :LIST99) 

FPUT takes two arguments from any kind of Logo object: lists, words, or 
strings. It creates a new object-note that it is not necessarily a list, depending 
on the objects provided as arguments-with the first object in front of the sec
ond. LPUT operates similarly, except that it puts the first object after the second 
object. 

If we start with two lists: 

MAKE LIST1 [THE] 
MAKE LIST2 [END] 

then the following results will be obtained using these three commands: 

PRINT SE :LIST1 :LIST2 
[THE END] 

PRINT FPUT :LIST1 :LIST2 
[END THE] 

Obtaining Information About Lists 
We can find out how many elements are in a list by using the COUNT com
mand. (Note that an element in this sense can also be a list within a list, so 
counts don't always return the results we might expect to get by counting each 
"word" in a list!). Here's an example: 

PRINT COUNT [THIS LIST [CONTAINS SEVERAL] ITEMS] 
3 

The list [CONTAINS SEVERAL] is counted as one item in the larger list. So 
even though it looks like there are five items in the list, Logo only sees four. 

We can also determine if an item is a list using the LISTP test. Related to this 
are the STRINGP and WORDP tests which determine whether an object is a 
string or a word. Look at this example: 

MAKE OBJECT1 [APPLE ORA~GE TOMATO] 
MAKE OBJECT2 'ALASKA +-string preceded by single quotation 
MAKE OBJECT3 <<Stringing me along, eh?>> +-string in guillemets 
PRINT LISTP :OBJECT1 

T 
PRINT LISTP :OBJECT2 

nil 
PRINT :STRINGP :OBJECT1 



nil 
PRINT :WORDP :OBJECT2 

T 
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When we manipulate lists in Logo, we often reduce their size by removing 
elements after we have performed operations on them. But, if we try to perform 
operations on nonexistent items, we will encounter serious problems. So Logo 
provides us with a way to find out if a list is empty. It is called, logically enough, 
EMPTYP, as shown in this example: 

IF EMPTYP :LISTl [STOP] 

One final but very important thing we can find out about a list is whether a 
given object can be found in its contents. We use the MEMBERP command for 
this purpose. An example will clarify how MEMBERP works. 

MAKE OBJECT1 'POUND 
MAKE POETS [ELIOT SHAKESPEARE POUND FROST DING-PAO] 
MEMBERP 'POUND :POETS 

[POUND FROST DING-PAO] 

Our MEMBERP function finds that POUND is indeed a member of the 
POETS list and returns the list from the point where it locates the requested 
object to the end of the list. This can be quite a useful technique when searching 
through lists. Because the IF function views any result other than "nil" as mean
ing "true," we can write statements such as: 

IF MEMBERP 'POUND :POETS [PRINT [HE CERTAINLY IS!] STOP] 

Modifying the Contents of Lists 
ExperLogo® is particularly rich in list-processing commands that enable us to 
make selective and significant changes in lists. These are peculiar to ExperLogo®. 

The SUBST command (for "substitute") is one of the most powerful of 
these commands. It replaces all occurrences of a given element in a list with a 
new element. (In fact, SUBST works on words, arrays, and strings as well as lists, 
but we will confine our discussion here to lists.) For example: 

MAKE LIST1 [BIG IDEAS MAKE BIG PROBLEMS FOR BIG COMPANIES] 
SUBST 'BIG 'LITTLE :LISTl 

[LITTLE IDEAS MAKE LITTLE PROBLEMS FOR LITTLE COMPANIES] 

ExperLogo's® DELETE and REMOVE functions can be used to modify lists 
by removing elements from them. DELETE will erase all occurrences of an ele
ment in a list (or other object) except for the first position. REMOVE will erase all 
occurrences of an element anywhere at the top level of a list. REMOVE will not 
erase an occurrence of an element inside a list within a list. Let's look at these 
examples for clarification: 

MAKE TESTLIST [BOOKS [MANY BOOKS] ARE GOOD BOOKS ARE GOOD] DELETE 
'BOOKS :TESTLIST 
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[BOOKS [MANY] ARE GOOD ARE GOOD] -c-left first "books" 
REMOVE 'BOOKS :TESTLIST 

[[MANY BOOKS] ARE GOOD ARE GOOD] -c-left second "books" 

Two other commands warrant mentions. RPLACA and RPLACD replace, 
respectively, the FIRST and BUTFIRST elements of a list with the new informa
tion provided in the command. Again, a brief example will help clarify. 

MAKE LIST1 [L 0 G 0 B 0 0 K] 
RPLACA :LIST1[ANYZ0] 

[A N Y Z 0 0 G 0 B 0 0 K] 
RPLACD :LIST1[ANYZ0] 

[LAN Y ZO] 

Arrays 

Arrays are a special type of variable that is quite popular in many programming 
languages, particularly those that deal primarily with numeric data. (The Micro 
Blocks World program in Chapter 5 makes extensive use of arrays.) Most imple
mentations of Logo do not include arrays. Strangely, both ExperLogo® and 
Microsoft Logo® for the Mac do permit the creation and manipulation of arrays, 
although Microsoft Logo® limits arrays to one dimension, making them more 
like lists of predetermined size and therefore less useful than those in Exper
Logo®. We will discuss two-dimensional arrays here; one-dimensional arrays are 
similar and easier to learn. 

Essentially, an array is a table that has rows and columns of information. 
Each row and column in the array is numbered, starting with zero for the upper 
row and left-most column. The index position is given in brackets after the name 
of the array. Data is placed into or extracted from an array by providing the 
index position of the array to be affected. For example, to put the number 43 in 
the upper left corner of an array previously defined as ARRA Yl, we would write: 

MAKE ARRAY1[0 O] 43 

In ExperLogo®, we would define an array to be a 6 x 6 matrix or table of 
objects with a command such as this: 

MAKE ARRAY11 MAKL . ..ARRAY [6 6) 

Then we could put the name ''Terwilliger" in the third row, fourth column, by 
writing: 

MAKE ARRAY11[34) 'Terwilliger 

Information is retrieved from an array by the same indexing method. Thus 
to find out what is in the third row, fourth column, of the array called ARRA Yl 1, 
we could code: 

MAKE ANSWER (ARRA Y11 3 4) 
Terwilliger 
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Note that the extraction must be enclosed in parentheses. That is because 
the number of dimensions-and therefore, arguments-in the statement is not 
predetermined. ExperLogo® uses the parentheses to know when to stop looking 
for data about the extraction assignment. 

Predicate Commands: Testing 

Logo offers a number of predicate commands. These are characterized by the 
letter P as their final letter. We have already discussed some of these such as 
EMPTYP, MEMBERP, LISTP, EQUALP, and WORDP. 

One of the most useful of these commands is the KEYP instruction, which 
tests to see if a key has been pressed on the keyboard since the last time the 
program checked. NAMEP, another useful predicate function, checks to see 
whether a particular name has been assigned a value in the program. 

All these predicate functions return a "t" or true response if the tested con
dition is found to be valid and a "nil" if it isn't. Therefore, the most common use 
of these commands is in If.constructions. 

Property Lists 

The property list is a special, and useful, type of Logo list. The programs in this 
book make extensive use of property lists. 

General Characteristics 
Structurally, a property list is composed of pairs of values. Because of its special 
character, a property list cannot be manipulated with the commands that work 
for other Logo lists. 

Like an ordinary list, a property list is associated with a name. If the pro
grammer does a good job of such things, the name will reveal something about 
what the list contains. For example, if we are working with descriptions of com
puter systems, we might name each property list after the appropriate computer: 
IBM_PC, FAT_MAC, C64. Each property list will then set up certain attributes 
we wish to track: maximum memory capacity, operating system, suggested retail 
price, availability of color, and other data. Each computer's property list would 
contain an entry-or value-for each attribute. For the property list called 
FAT_MAC (Apple's 512K Macintosh®), we might find that the attribute 
MAXMEM has the value 512 associated with it. Its operating system, defined by 
an attribute OS, might have the word "proprietary" tied to it. Similarly, PRICE 
might be 2200 and COLOR would have the value NO. 

The property list for each of the other computers would have as its contents 
similar pairs of attribute-value relationships. In a sense, then, property lists are 
structured lists that are well suited to storing data for later retrieval. The property 
list is a superb data structure to be used when designing data base applications 
in Logo. 

Creating Property Lists 
We don't use the usual MAKE command to create a property list. Instead, we 
use the Logo command PPROP-which stands for Put PROPerty-to create lists. 
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This command also adds more data to an existing property list, but if no prop
erty list of that name exists, Logo creates a new one. 

PPROP requires three arguments. The first names the property list; the sec
ond names the attribute; the third is the value itself. For example, to put the 
price of a 512K Macintosh® into a property list called FAT_MAC, we would 
write: 

PPROP 'FAT_MAC 'PRICE '2200 

Notice the use of single quotation marks to delineate the contents of the 
list. The quotation mark before the last item, the value itself, is not used if the 
value to be stored is for numerical calculation. Here, the price is not available 
for calculation, so string storage is sufficient. 

The rest of the property list for the FAT_MAC would be built the same 
way, with PPROP statements. 

Displaying Property Lists 
The Logo command PUST displays the contents of a property list. We simply 
supply the name of the property list. Writing the Logo command: 

PUST 'FAL .. .MAC 

will result in the computer displaying the property list for the FAT_MAC: 

MAXMEM 512 OS PROPRIETARY PRICE 2200 COLOR NO 

We use the Logo command GPROP (for Get PROPerty) to extract a single 
attribute's value from a property list. Having retrieved the piece of information, 
we can use it to test for conditions in IF statements, display it, or use it some 
other way. For example, to find out whether the FAT_MAC has color capabil
ity, we might code: 

IF EQUALP GPROP 'FAL . ..MAC 'COLOR 'NO [PRINT [SORRY, NO COLOR!]] 

Modifying Property Lists 
We can modify a property list in two ways: add more attributes and values to it 
(or, by the same method, change an existing attribute's value) or remove a prop
erty from the list. As indicated earlier, the PPROP command will put a new 
property value on a list. If Apple releases a Color Macintosh, for example, we 
could update our property list by adding: 

PPROP 'FAT_MAC 'COLOR 'YES 

If we decide to stop tracking color availability for our computer data base, 
we use the REMPROP (for-you guessed it!-REMove PROPerty) command and 
tell Logo from which property list to remove which attribute-value pair: 

REMPROP 'FAT_MAC 'COLOR 

Perhaps the most common use of the REMPROP command is to reduce the 
size of a property list we are working with while leaving the entire property list 
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on a disk file unchanged. If we had just read the FAT__MAC property list from a 
disk file of property lists describing computers and only wanted to compare 
maximum memory sizes, we could make our program run more efficiently by 
removing the other property list entries: 

MAKE TEMPLIST :FAT_MAC 
REMPROP 'TEMPLIST 'OS 
REMPROP 'TEMPLIST 'PRICE 
REMPROP 'TEMPLIST 'COLOR 

Workspace Management 

The remaining two Logo commands are used mainly in program writing rather 
than in program execution. The ER command will erase any object from the 
workspace. (The "workspace" is the name given to the portion of the com
puter's memory in which we are working and storing information as we develop 
Logo programs.) This is often useful during program debugging to ensure that no 
list or variable is assigned an initial incorrect value. ERALL is a closely related 
command that has the effect of dramatically clearing the workspace. You will 
probably use this only when you have reached a major milestone in your pro
gram development and want to start with fresh lists, variables, and procedures. 
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This chapter is a highly condensed presentation of the key ideas in the LISP pro
gramming language. It is aimed at the reader who is familiar with LISP and has 
programmed in it, but whose experience may not be recent. The chapter is nei
ther exhaustive nor detailed. If you are unfamiliar with LISP or you wish more 
in-depth education in this intriguing and unique language, refer to one of the 
several LISP books mentioned in Appendix C. 

Introduction to LISP 

LISP is an acronym that stands for LISt Processing. Since lists are generally 
viewed as the best way to store and manipulate information for artificially intelli
gent programs, LISP has become the language of choice for Al program develop
ment in the United States. 

Like virtually all other programming languages, the creators of LISP began 
with the idea of standardizing it so that any program written in LISP would run 
on any computer with LISP available to it. Like virtually all other programming 
languages, LISP unfortunately eluded standardization. There are many dialects 
of LISP on the market and in use in universities and research laboratories. The 
most widely used dialects today are probably Interlisp, MACLISP, Zetalisp, and 
Common Lisp. 

Dialects of LISP and the Mac 
As of this writing, only two dialects of LISP are available for the Macintosh®: 
XLISP and Experlisp. The former is a public domain program available free from 
many Apple bulletin boards. It appears to be primarily a MACLISP-compatible 
approach to the language. Experlisp, the first implementation of LISP available 
for the Mac, combines Zetalisp and Common Lisp with some new routines to 
accommodate the Mac's unusual interface and design. 

New versions and dialects of LISP continue to become available for the 
Macintosh®. Because the LISP examples in Appendix A are written in ExperLISP, 
and because no real standard for the language exists yet, we will focus on the 
portions of the LISP language that are used in all dialects of the language. Where 
a function unique to Experlisp is presented, I will point that out. 

Basic LISP Syntax 

A first-time LISPer examining the first listing in this peculiar language notices two 
things about LISP programs. First, we notice that program statements-if they 
can be located at all in the midst of the structures-seem reversed from the usual 
way of thinking about languages. For example, adding two numbers in LISP re
quires that we write a line such as: 

(PLUS 45 53) 

This is different from the way we woul.d expect to phrase this problem in 
English or BASIC, where we would be inclined to write (and say): 

45 PLUS 33 
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In LISP, the function name always comes first in a program statement. The 
function name is followed by arguments or operands, which provide informa
tion for the procedure to use in carrying out its instructions. 

How, in the midst of all of these functions and arguments, does LISP know 
where one program instruction ends and another begins? The answer lies in the 
huge number of parentheses present in all LISP programs. 

Parentheses Are Important ... And Confusing! 
Parentheses are important in LISP; if they are not properly used, your program
ming results can range from unpredictable to disastrous. Each instruction in a 
LISP program is enclosed in parentheses; if the instruction itself contains instruc
tions as part of its structure, then those instructions, too, are enclosed in paren
theses. 

We'll have more to say about this subject when we discuss program struc
ture in LISP. For now, just note that parentheses are important. 

Data Structures in LISP 

All data structures in LISP are referred to generically as "$-expressions" (for sym
bolic expressions). There are three types of S-expressions: atoms, strings, and 
lists. 

Atoms 
An atom is the smallest data element in LISP. Atoms are of two types: literal and 
numeric. A literal atom consists of a letter which may be followed by additional 
letters or digits. The following are all literal atoms in LISP: 

FOO 
Fl 
F 
FOOLISH-ATOMS 

A numeric atom may begin with an optional plus or minus sign, to be fol
lowed by a digit, which may be followed by additional digits. The following are 
all numeric atoms in LISP: 

+14 
-11 
23 
987654321 

Strings 
Strings in LISP are always enclosed within double quotation marks. Anything 
that appears between two sets of such marks is a string. The following are all 
legitimate strings in LISP: 

"This is a string" 
"This is also a string" 
"This is a (string) with parentheses" 
"test-it-yourself" 



216 I Al Programming on the Macintosh 

Lists 
A list is defined (somewhat confusingly) as a collection of other S-expressions, 
though it is itself also an S-expression. You can always recognize a list in LISP, 
though, because it begins with a left parenthesis and ends with a right parenthe
sis. In between, a list contains any number and any combination of types of 
other LISP S-expressions with individual elements separated by spaces. Here are 
some basic lists: 

(LIST1) 
(ITEM1 ITEM2 ITEM3) 
(ABC DE) 
(APPLES ORANGES BANANAS MANGOS KIWI PLUMS TANGARINES GRAPEFRUln 

Unlike most other programming languages, LISP uses the parentheses not 
only as delimiters but also as important parts of the 5-expressions being defined. 
The list: 

(X) 

is a list containing the atom "X." But the list: 

((X)) 

is a list that contains a list which is in turn a list containing the atom X. This dis
tinction is important and is perhaps the single most difficult concept to grasp 
about LISP data structures. 

Program Structure in LISP 

At a basic level, LISP program structure is elegantly straightforward: every S
expression is a syntactically legal LISP program. This is because LISP treats pro
grams written in it as lists that can be manipulated, giving the effect of a person 
looking in a mirror that reflects a different mirror and so on, producing a nearly 
endless series of images. A LISP program is a list containing lists of lists that in 
turn comprise lists, and so on. 

Just because every S-expression is a legal LISP program, however, don't 
suppose that every S-expression is a useful or functional LISP program. Function
ally correct LISP programs are subject to being evaluated as proper by the LISP 
interpreter or compiler. This evaluation process is designed so that one S
expression is handled at a time. The evaluation of each S-expression results is 
another S-expression. In the following examples, this is depicted by the ex
pression: 

S-expression -+ value 

According to Dr. Eugene Cherniak (1980), the LISP interpreter has four 
basic rules it follows: 
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LISP Interpreter Rules 

• RULE 1. If the expression is either a number or "T" (for true) or "nil" 
(for false or empty), then the expression's value is itself. So if we type into the 
LISP interpreter the S-expression: 

5 

the LISP interpreter will return to us the value 5. 

• RULE 2. If the S-expression consists of a function followed by one or 
more arguments, then the interpreter evaluates each argument (which, of 
course, may in turn be an S-expression) and then calls on the function with 
these values as arguments. For example, addition in LISP is handled by a 
function called variously +, PLUS, or SUM. Experlisp permits the first and 
third variations. Multiplication is called for by the function *, PRODUCT, 
TIMES, or MULTIPLY. Experlisp permits both * and PRODUCT to signify 
multiplication. Thus the following expression evaluation would take place 
with the S-expressions shown: 

(SUM 14 8)--+- 22 
(PRODUCT 11 7)--+- 77 
(SUM 14 8 (PRODUCT 11 7))--+- 99 

• RULE 3. If the $-expression is a list beginning with a reserved word that 
is not a function, the value depends on the way the reserved word is 
implemented. This is a subtle but important variation on rule 2. For example, 
a reserved word common to all LISPs is SETQ, which assigns a value to a 
variable. 

(SETQ X 5) 

makes the variable X have the value 5. (In LISP terminology, this is called 
"binding" a variable.) The X is not evaluated; it is merely used. But the 
expression which follows the variable name is evaluated. Thus a LISP list 
which said: 

(SETQ X (SUM 14 8 (PRODUCT 7 11))) 

would bind the value 99 to the variable X. 
RULE 4. If the S-expression is an atom, its value is the last value assigned 

to it. If no value is assigned, an error condition results. After we've carried 
out the last SETQ operation, typing the atom X results in the value 99 being 
returned: 

x --+- 99 

There is one other thing you should know about SETQ. If it is designed to 
bind a literal string to a variable name, the literal string must be preceded by a 
single quotation mark. Thus we would have such constructions as: 

(SETQ A 1 'TESTING) 
(SETQ ITEM43 'CARPET_CLEANER) 
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As you can see, except for the operation of reserved words, the interpreta
tion of LISPS-expressions is simple and straightforward. 

The bulk of the rest of this chapter deals with LISP functions and reserved 
words and how they work. 

Operations on Lists 

Since lists are the primary building blocks of LISP data structures and programs, 
it's not surprising that a great many built-in functions can operate on lists to 
extract information from them, create and modify them, and analyze their 
contents. 

CAR and CDR 
The two most basic and widely used LISP list manipulation functions are CAR 
and CDR (pronounced "cudder'' to rhyme with "rudder"). CAR evaluates a list 
and returns the first element of that list (i.e., the first S-expression). CDR evalu
ates a list and returns everything except the first S-expression. Starting with the 
list (APPLES ORANGES BANANAS WATERMELON), CAR would return APPLES 
and CDR would return the list (ORANGES BANANAS WATERMELON). (Note 
that CAR does not return a list unless the first S-expression is also a list.) 

The following exchange with a LISP interpreter will be self-explanatory and 
will clarify how CAR and CDR work on different kinds of lists. (The material 
typed by the user is printed in ALL CAPS and the information typed by the inter
preter is all lower case.) 

(SETQ LISTl '(DAN CAROLYN (DON RAE))) 
(dan carolyn (don rae)) +- LISP always prints what it returns 
(SETQ LIST2 '((BOB VAL) ALBERT MARILEE)) 
((bob val) albert marilee)) 
(CAR LIST1) 
dan 
(CDR LISTl) 
(carolyn (don rae)) 
(CAR LIST2) 
(bob val) 
(CDR LIST2) 
(albert marilee) 

Combinations of CAR and CDR 
Using just CAR and CDR, we can extract any portion of the list that we want. It 
may get complicated, but it is possible. We just use CAR and CDR in various 
combinations. For example, if we start with the list (DAN (BOB VAL) CAROLYN 
(ALBERT MARILEE)) and want to extract CAROLYN from this list, we would 
write: 

(CAR (CDR (CDR UST-OF-NAMES))) 

This sequence would be evaluated from the inside out. First the system 
would evaluate (CDR LIST-OF-NAMES), dropping DAN from the list. It would 
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then take that resulting list and evaluate the CDR of it, resulting in the list (BOB 
VAL) being eliminated. CAROLYN is now the first element of the remaining list, 
so CAR extracts her name and we're done. 

You can see how complicated such a process could get. Add to that com
plexity the fact that this is one of the most commonly needed operations in LISP 
programming, and it's no wonder that most implementations of the language 
include shorthand ways of doing these things. Experlisp has no less than 28 
such special combination functions that permit fast extraction of information 
from lists. Each such special function begins with the letter "C" and ends with 
the letter "R" and has (in the case of Experlisp) up to four letters in between. 
Each letter is an "A" (for CAR) or a "D" (for CDR). Our example above would 
be handled in Experlisp by coding: 

(CADDR UST-OF-NAMES) 

The first A executes a CAR, the first D a CDR, and the second D another CDR; 
the combined CADDR yields the same result as our example which called those 
three operations separately. 

CONS and LIST for List Construction 
We can use one of two LISP functions to build a list: CONS or LIST. The choice 
of which to use depends on the kind of list to be constructed. 

CONS is short for CONStruct. It takes two arguments and puts the first 
argument onto the list made up of its second element. Writing: 

(CONS 'WATERMELON '(APPLE ORANGE)) 

leads to a new list that has WATERMELON as its first element: 

(WATERMELON APPLE ORANGE) 

To build a list from scratch, we use the special LISP value nil as the right
hand argument: 

(CONS 'WATERMELON NIL) 

which produces the single-element list (WATERMELON). From that, we can add 
another element: 

(CONS 'APPLE '(WATERMELON)) 

CONS always requires two arguments. To build a two-element list with a 
watermelon and an apple as its members we would have to write: 

(CONS (CONS 'APPLE NIL) 'WATERMELON) 

LIST provides a more straightforward way of doing this. It takes any number 
of arguments and simply puts them all into one list. Thus we could write: 

(LIST 'APPLE 'WATERMELON) 
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or even: 

(LIST 'APPLE 'WATERMELON 'MANGO 'PEACH 'PLUM 'PEAR) 

and LISP would create a list of the appropriate size. 
We can also create a list by the same means we used to create variables in 

LISP, using SETQ or one of its close variations. We'll have more to say about this 
later. 

APPENDing to a List 
The APPEND function in LISP combines two lists into one large list. '(The techni
cal name for this is concatenation.) The following illustration demonstrates the 
use of APPEND. 

(APPEND '(PLEASE MAKE) '(A BIGGER LIST)) 
(please make a bigger list) 

APPEND normally requires precisely two arguments, both of which must 
be lists. But in Experlogo, we can use as many arguments as we wish. All argu
ments must still be lists, however. The following statement is perfectly legal in 
Experlisp: 

(APPEND '(PLEASE MAKE) '(THIS A) '(BIGGER) '(LIST)) 

but it would not be permitted in most LISP dialects. 

SUBSTituting Items in a List 
To replace every occurrence of one symbol for another each time the latter 
appears in a string or list, we use the SUBST function. The following interaction 
with the LISP interpreter will clarify what is meant. 

(SUBST 'THE 'A '((A GIRL)(AND A BOY)(WALKED DOWN A STREEn)) 
((the girl)(and the boy)(walked down the street)) 

The first argument is the new value to be substituted, the second is the 
value to be replaced, and the third is the list (or the name of the list if it is bound 
to a variable). 

MEMBER 
Strictly speaking, the MEMBER reserved word isn't a list manipulator, but it does 
work on a list. It finds out whether the first argument is found in the second 
argument. It returns the part of the list starting with the word to be found, or it ~ 
returns "nil" if the word isn't present. 

An example may help to clarify the operation of the MEMBER reserved 
word. 

If we begin with the list (BEEF PORK CHICKEN FISH) and wish to deter
mine if PORK is among its member~, we might find ourselves doing this: 

(SETQ 'FOOD1 '(BEEF PORK CHICKEN FISH)) 
(beef pork chicken fish) 



(MEMBER 'PORK FOOD1) 
(pork chicken fish) 

Many Other Functions 
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As I said at the outset, there are a great many commands designed to be used in 
conjunction with lists in LISP. Check your particular version of LISP to see what 
other capabilities it has. 

Defining Functions 

Like most useful modern computer languages, LISP is extensible. Simply put, 
"extensible" means that we can define new procedures or functions which we 
can then use in our programs. This is equivalent to inventing a new LISP func
tion or reserved word, one feature of LISP that makes the language especially 
intriguing. 

The LISP function DEFUN is perhaps the most commonly used means of 
creating new functions in Al programs. The structure of a DEFUN instruction is: 

(DEFUN NAME (ARG-usn (BODY)) 

When DEFUN is carried out, the LISP interpreter returns NAME as the 
value. This means that when DEFUN is used successfully to create a new func
tion in LISP, its name is returned by the interpreter. (There is, of course, no guar
antee that the function created was the one you wanted to create!) 

To use the function, you use the newly defined NAME and pass whatever 
arguments are required, as defined by the ARG-LIST. The BODY portion of a 
DEFUN instruction provides the list of operations to be carried out by LISP when 
the function is called. Let's see how this works. 

(DEFUN CUBE (N) (PRODUCT N N N)) 
cube 
(CUBE 3) 
27 ~typed by computer in answer to previous instruction 
(CUBE) 
0 arguments sent, 1 required ~ error message may vary with version of LISP 

Setting Up Variables 

Variables are an important part of LISP, as they are with all useful programming 
languages. We use the reserved word SETQ to define variables and give them 
their initial values. This command takes two arguments. The first is a variable 
name. The second is an $-expression that LISP evaluates in accordance with its 
rules in order to determine a value to assign to the variable name. 

We have already encountered SETQ, so we need not spend a great deal of 
time on it here. The f0llowing interaction exemplifies the use of variables in LISP 
with SETQ. (Assume the LISP session has just started; nothing yet is set up.) 
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R 
unbound variable R +- message may vary; LISP doesn't "know" R 
(SETQ R 'TRIAL) 
trial 
R 
trial 
(SETQ R (SUM 4 5 6)) 
15 +- computer's response 
R 
15 +-computer's response 

We begin a LISP session with no variables bound to values. Typing a vari
able's name will result in an error message indicating the variable is unbound. 
SETQ assigns the variable a value; to change that value, use SETQ again with the 
same variable name. 

Conditional Processing 

Al programs, more than any other kind, require a great deal of conditional pro
cessing. We want the program to react differently to various kinds of inputs or 
situations. An expert system such as the one we developed in Chapter 8 must be 
able to analyze numerous inputs in various combinations and "learn" how to 
react to each new set of combinations it faces. 

LISP has two basic conditional processing instructions: IF and COND. In 
many ways they are similar; some Al programmers would argue that they are 
stylistically different but functionally identical. But syntactically, they are quite 
different, so we will examine them both briefly here. 

The IF Statement 
The IF statement in LISP has three arguments: a condition to be tested, a list of 
instructions to carry out if the condition produces a result of T (true), and a list of 
instructions to carry out if the condition produces a result of NIL (false). The 
third argument is optional. 

The condition to be tested is usually a predicate form that evaluates infor
mation and compares it to other information. There are several such predicate 
forms in LISP. For now, don't worry about the purpose of a particular predicate 
form; focus instead on the use of the form in an IF statement. 

In LISP, a predicate is any function that returns a result of T if it evaluates to 
true and NIL if it evaluates to false. These yes-no forms usually end in the letter P 
to remind us that they are predicate forms. 

Here's a small example of an IF construction in LISP: 

(IF (LISTP (X)) 'YES 'NO) 

This statement group would take an input called "X" and determine if it 
was a list. If so, it would print "YES"; if not, it would print "NO." The condi
tional structure here is 

(LISTP (X)) 
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which uses one of LISP's predicate forms. The first instruction list is the simple 
literal S-expression 'YES, which prints YES. This instruction will execute if LISTP 
indicates that X is a list. Otherwise, the second instruction list-another simple 
literal S-expression 'NO-prints "NO" if Xis not a list. 

COND Constructions 
More traditional LISP implementations use COND rather than IF. Experlisp uses 
both forms, as do most modern implementations of the language. COND con
sists of a series of conditional clauses, each of which contains a condition to be 
tested and a list of instructions to be carried out if the condition evaluates to be 
true. A COND construction stops executing the instant it reaches a clause with a 
condition that tests to be true. 

An advantage of the COND form is that it permits easy implementation of a 
number of consecutive circumstances to be checked, whereas IF is limited to a 
true-false result of one condition. (Actually, we can use nested IF statements to 
achieve something like a COND construction, but it is far less efficient to do so.) 
The following example tests for five conditions and acts based on which condi
tion tests true. 

(DEFUN MENU-CHECK (ITEM1) 
(COND ((EQUAL ITEM11) (PRODUCT 10 10) 

((EQUAL ITEM1 2) (PRODUCT 10 10 10) 
((EQUAL ITEM1 3) (PRODUCT 5 5 5 5) 
((EQUAL ITEM1 4) (SUM 1 2 3 4) 
((EQUAL ITEM1 5) (QUOTIENT 475 5)))))))) 

This function examines a variable called ITEM1. If it is a 1, the function 
multiplies 10 by ,10, prints the results, and quits. If ITEM 1 is a 2, the function 
multiplies 10 by 10 by 10, prints the results, and quits. You can follow the other 
steps in the COND construction. 

Using T as a Test Condition The COND construction has a fatal flaw: if the value 
being tested (in the example, ITEM1) meets none of the values shown, an error 
results. The error will vary from system to system and LISP to LISP, but an error 
will definitely appear. To program around this problem, LISP software designers 
use T-for true-as a condition to be tested against. T is always true; that is its 
meaning. So if we put a T followed by a statement list at the end of each COND 
construction, we never encounter a situation the program won't handle. Follow
ing that procedure, our example becomes: 

(DEFUN MENU-CHECK (ITEM1) 
(COND ((EQUAL ITEM11) (PRODUCT 10 10) 

((EQUAL ITEM1 2) (PRODUCT 101010) 
((EQUAL ITEM1 3) (PRODUCT 5 5 5 5) 
((EQUAL ITEM1 4) (SUM 1 2 3 4) 
((EQUAL ITEM1 5) (QUOTIENT 475 5) 
(T 'HUH?)))))))) 

Now when we run MENU-CHECK with ITEM1 set to, say, 45, the program 
will simply print "HUH?" on the screen and go on. 
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Predicate Forms for Testing 
As we have indicated, LISP contains a number of predicate forms for testing con
ditions in the system. A complete discussion of these forms is beyond the scope 
of this refresher, but the more significant ones are ARRAYP, BOUNDP, CHAR
ACTERP, EQ, EQUAL, FUNCTIONP, LISTP, NUMBERP, SYMBOLP, and VAR
IABLEP. 

EQUAL Is Not the Same as EQ One of the most confusing things about LISP is 
the way it evaluates S-expressions for equality with one another. In fact, it's so 
confusing that LISP has not one but two different predicate forms for testing for 
equality: EQUAL and EQ (pronounced "eek"). 

EQ is perhaps the more commonly used form. EQ will evaluate to a true 
result only when the items given it are identical in every respect. In fact, what 
EQ does is to examine the computer address at which the information for the 
two variables is stored. If both are at the same address, then they are EQ. Other
wise, even though the information may look the same, it is not EQ. 

Using EQUAL results in slightly slower execution. The command checks 
the contents of variables rather than their address. EQUAL matches each ele
ment to determine if one variable is equal to another. 

The following interaction demonstrates the differences between EQ and 
EQUAL. 

(SETQ A1 '(A 8 C)) 

(a be) 
(SETQ 81 A1) 
(a be) 
(SETQ C1 '(A 8 C)) 

(a be) 
(EQUAL A1 81) 
t 
(EQUAL A1 C1) 
t 
(EQA1 81) 
t 
(EQ A1 C1) 
nil 

All three lists-A1, B1, and C1-have the same contents: the list (A B C). 
But lists A 1 and B1 occupy the same address in the computer's memory because 
we defined them to be identical. B1 is A 1. The list C1, on the other hand, was 
created separately and although its contents are EQUAL to those of A 1 and B 1, it 
doesn't have the same computer address; it is a separate list. 

Most LISPs, including Experlisp, have variations of some or all of their 
predicate forms, one variation that uses EQ and another that uses EQUAL. The 
results of using these are often the same, but the difference is crucial in some 
situations. 

Combining Predicate Forms: Logical Connectors 
Often we want to construct predicate forms that are more complex than a sim
ple one-element test for equality or for the presence or absence of a list. LISP 
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provides two logical connectors that make the task of constructing such com
plex forms straightforward, if not simple. These two connectors are AND and 
OR. Using them in combination, we can create highly complex IF and COND 
constructions. 

When AND connects two conditional constructions, it means that both 
conditions must produce a true result before the condition is satisfied. When OR 
is used, it means that if either condition-or both of them-produces a true 
result, the condition is satisfied. 

Like other LISP functions, the two connectors precede the list of informa
tion they connect. To test if it is true that a variable called "A" is "HELP" and 
"B" is less than 20, we would write: 

(IF (AND (EQUAL A 'HELP) (8 20)) 'OKAY 'REJEcn 

If the conditions outlined are both true-i.e., A is HELP and B is less than 
20-the 'OKAY S-expression will evaluate, and the word "OKAY" will print. 
Otherwise, the computer will "REJECT" the input. To accept the entry if either 
condition is true, we would code: 

(IF (OR (EQUAL A 'HELP)(< B 20)) 'OKAY 'REJECn 

Essential Input/Output 

Basic 1/0 routines are common to all LISP implementations, even though there 
are many variations on the themes and nuances in these variations from one 
LISP to another. The basic 1/0 functions are READ and PRINT. These two com
mands get information from the user at the keyboard and display results on the 
screen or printer. 

READing from Keyboard 
The READ function in LISP creates a pause in the execution of a program and 
waits for data to be entered from the current input device (the keyboard, unless 
it is explicitly changed). The input continues until encountering a carriage 
return. 

A common use of the READ function is to ask for and receive a value from 
the user during program execution. Generally, this process would use an S-ex
pression such as: 

(SETQ X (READ)) 

The READ function also retrieves information from a disk file. We'll discuss the 
processing in disk 1/0 later. 

PRINTing Results and Requests 
Most LISP output functions use PRINT. This function simply prints whatever 
information it is given and returns the information as its value. This means that 
information displayed by LISP will usually print twice on the screen. 

The information to be printed may be enclosed in quotation marks, 
guillemets, or parentheses, or it may be preceded by a single quotation mark. 
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PRINT can display strings or the values of variables. Here are some examples of 
PRINT (with the computer's response indented). 

(SETQ XY 43) 
43 

(PRINT 'TESTING) 
testing 
testing 

(PRINT '(TESTING)) 
(testing) 
(testing) 

(PRINT XY) 
43 
43 

XY 
43 ~only one line when we type variable name without PRINT 

(PRINT (TESTING)) 
the value TESTING is not a valid function 

The last example shows what happens when we put something we intend 
to print inside parentheses as a literal string but forget to use the single quotation 
mark in front of it. 

Note that the computer prints a result twice when we use the PRINT func
tion. That's because PRINT, like all LISP functions, must return a result. In the 
case of PRINT, its result is the item it has been told to print. So, the first occur
rence of the word "testing" is the result of PRINT carrying out our instructions. 
The second occurrence is a result of PRINT's requirement to return a result. 

Variations of PRINT LISP offers two (in some dialects, even more) variations of 
PRINT. PRINC acts the same as PRINT except that it doesn't insert a carriage 
return at the end of the line. It is most useful for printing prompts on the screen 
when the answer will look best appearing at the end of the line requesting the 
information. 

PRIN1 displays the information exactly as it is given, including punctuation 
marks and special characters which might otherwise be suppressed by PRINT. 
Its primary use is in disk file 1/0, where we want to ensure that special symbols 
are stored on the disk for later recovery. 

Disk File 1/0 Overview 
Using a disk file on the Mac under Experlisp requires that the disk file be prop
erly opened. Data may then be placed in the file using PRINT or PRIN1 where 
special characters form a key part of the information to be stored. Information is 
retrieved using READ. 

OPENing Disk Files The three OPEN commands in Experlisp are: OPEN_ 
WRITE, OPEN_READ, and OPEN_APPEND. OPEN_WRITE creates a new file 
of the name supplied. If a file with that name already exists, OPEN_WRITE 
writes the new information over the contents of the old file. If no file exists with 
the requested name, Experlisp creates one. 
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OPEN_READ opens a file from which we wish to retrieve information. No 
data can be written to a file that has been opened for reading only. 

OPEN_APPEND permits us to add information to an existing file without 
erasing the file's present contents. If no file of the name you provide exists, 
Experlisp creates it. 

With all OPEN commands, the programmer supplies the file name as a 
string in quotation marks. To facilitate later use of the file, we assign its "stream" 
(a LISP term referring to the 1/0 process) as a variable using SETQ. Once the file 
is open, READ and PRINT retrieve information from and write data to the file, 
respectively. When we are done with a file, we close it with the CLOSE 
command. 

The following dialog with Experlisp demonstrates the process. 

(SETQ CURFILE (OPEN_WRITE "TEST1"))) +- file "TESTl" is CURFILE 
function #54011184 +- response value may vary 

(PRINT '(HELLO THERE) CURFILE) +-writes first record 
(hello there) 

(CLOSE CURFILE) 
t 

(SETQ CURFILE (OPEN_READ "TEST1))) 
function #54011184 +- response value may vary 

(PRINT (READ CURFILE)) 
(hello there) 

(CLOSE CURFILE) 
t 

(SETQ CURFILE (OPEN__APPEND "TEST1))) 
function #54011184 +- response value may vary 

(PRINT '(ARISTOTLE THINKS) CURFILE) 
(aristotle thinks) 

(CLOSE CU RFI LE) 
t 

(SETQ CURFILE (OPEN_READ) "TEST1))) 
function #54011184 +- response value may vary 

(PRINT (READ CURFILE)) 
(hello there) 

(PRINT (READ CURFILE)) 
(aristotle thinks) 

(CLOSE CURFILE) 
t 

Experlisp adds three other file 1/0 functions: WITH_OPEN_READ, 
WITH_OPEN_WRITE, and WITH_OPEN_APPEND. These operations are 
similar to those we have just reviewed except that these permit a body of data to 
accompany the commands so that one instruction can open a file and write data 
to it. This approach works well for adding a small amount of information to a file 
(i.e., one or two records), but it is inefficient in other applications. 
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Math Operators and Functions 

Because function is the first element in a LISP instruction list, math is carried out 
using prefix notation, as in some handheld calculators-especially those made 
by Hewlett-Packard. In other words, the math operation to be performed pre
cedes the values. This takes some getting used to but it is not difficult to manage. 

The usual math symbols are available in LISP-+ for addition, - for sub
traction, I for division, and * for multiplication. The following are examples of 
the proper use of these functions in LISP. 

( + 4 3) 
7 
(- 4311) 
32 
(/ 88 6) 
14.66666666 
(* 12 18) 
216 
( + 4 (- 43 11)) 
36 

LISP also allows some words to carry out the math functions: SUM for addi
tion, DIFFERENCE for subtraction, QUOTIENT for division, and PRODUCT or 
TIMES for multiplication. Experlisp uses SUM, DIFFERENCE, QUOTIENT, and 
PRODUCT. (The use of these words in newer LISP programs reflects the desire 
to make them compatible with older ones. For there is no other logical reason, 
except perhaps readability, to type PRODUCT instead of "* .") The function 
names are used as their corresponding math symbols are. 

Another LISP function, REMAINDER, is quite useful in division problems. In 
the example in which we divided 88 by 6 and got 14.666666, REMAINDER 
would return the value 4, the remainder when we divide 88 by 6 and get 14. 

ADD1 and SUB1 
It is often necessary in computer programs to add 1 to or subtract 1 from a num
ber. This is particularly important when using counters to keep track of how 
many times we've done something, how many lines we've printed on a report, 
and the like. LISP provides two built-in functions to accomplish these tasks, 
called ADD1 and SUB1. Here is how they work: 

(SUB1 43) 
42 
(ADD1 43) 
44 
(SUB1 (ADD1 43)) 
43 

RANDOMness 
When designing games or creating codes or encryption techniques, we some
times want unpredictability as a result. LISP offers a RANDOM function to gen-
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erate a random number between 0 and any number we choose. The function 
(RANDOM 1234) will return a number between 0 and 1233. Normally, this is 
not what we want: a result of 0 will be unusable and we really want the possibil
ity of having 1234 as an answer. So we usually use RANDOM in conjunction 
with ADD1, like this: 

(SETQ VAL1 (ADD1(RANDOM1234))) 
576 +- response will vary 

ROUND and TRUNCATE 
Sometimes, we want numeric results rounded off. LISP's ROUND function 
enables us to do this. It rounds its argument to the nearest integer number, rais
ing it to the next higher value if the decimal part is 0.5 or greater and leaving it 
as is if the decimal part is less than 0.5. 

TRUNCATE is related to ROUND. It eliminates the fractional part of a num
ber, but does so simply by lopping it off, not by rounding the integer part of the 
number. 

(ROUND 15.49) 
15 
(ROUND 15.5) 
16 
(TRUNCATE 15.49) 
15 
(TRUNCATE 15.5) 
15 
(TRUNCATE 15.9999999) 
15 

Trigonometric Functions 
LISP provides access to the common trigonometric functions of ACOS, ASIN, 
ATAN, COS, SIN, and TAN. The angle must be supplied in radians. 

Miscellaneous Math Operations 
We can calculate the square root of a number with the LISP built-in function 
SQRT, as shown here: 

(SQRT 25) 
5 

Natural logarithms of numbers can be calculated using LN and LN1 (the lat
ter calculating the natural logarithm of 1 greater than the value furnished). Thus 
(LN 3) and (LN1 2) have the same answers. We can calculate logarithms to the 
base 2 with LOG2 and LOGB. The latter truncates the answer as if LOG2 had 
been used. 

The "absolute value" of a number is the value when the sign is ignored. 
The absolute value of a number can be obtained with the LISP function ABS. 
(DIFFERENCE 2 11), for example, returns a -9, while (ABS (DIFFERENCE 2 11)) 
returns a 9. 
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ExperLisp includes functions that determine the larger or largest or the 
smaller or smallest of two or more numbers. These functions are called, respec
tively, MAX and MIN. Here's how they work: 

(MIN 4 8 16 9 23 96 14) 
4 
(MAX 4 8 16 9 23 96 14) 
96 

It is also possible in ExperLisp to determine whether a particular numerical 
atom is odd or even using ODDP and EVENP. As with most predicate forms (see 
our discussion of "Conditional Processing"), these return the results of "t" or 
"nil." 

LISP: Rich and Extensible 

We have only been able to cover here some of the most important LISP func
tions. LISP is a rich language and, because of its extensibility, it has as many vari
ations and implementations as there are people who want to use it. As with all 
languages, the key to becoming efficient in LISP lies in being willing to try new 
ideas and to explore the language. 

Until recently, there were no easily accessible texts on LISP that a person 
without a great deal of programming background could grasp. That void has 
been filled and the annotated bibliography in Appendix C offers some excellent 
choices. 
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Introduction and Purpose 

This chapter presents a brief overview and tutorial of the basic concepts in Pro
log. My purpose is not to train you in the ins and outs of Prolog programming, 
but to provide a refresher for you if you have previously worked with Prolog. If 
you have no exposure to Prolog, you should be able to learn enough in this 
chapter to undertake minimal programming tasks. 

Unlike Logo, the language used for most of the programs in this book, and 
LISP, the most widely used Al language, Prolog may seem unrelated to the pur
pose of this book. But, I have chosen to include it for a host of reasons, two of 
which are paramount. 

First, it could be argued that an introduction to the world of artificial intelli
gence on micros that didn't include a Prolog discussion would be woefully inad
equate to its task of preparing the reader for the real world of Al. Much Al work 
is being done in Prolog; Prolog dialects and derivatives are used at Al research 
facilities all over the world. It is without doubt the second most important Al lan
guage available today. 

Second, and of more immediate concern, since we spend a fair amount of 
time in this book discussing a scaled-down version of Prolog (Prologo in Chapter 
7), it seems fitting that you should get a feel for the power,'flexibility, and struc
ture of the language in a full implementation. Otherwise, you might be left with 
an unfair impression of the limitations of Prolog. 

Prolog: Is It a Language? 
There are those who argue that Prolog is not really a language at all but more a 
method of describing decision-making to a computer. To be sure, when com
pared with most computer languages, Prolog lacks certain things that the others 
(more or less) have in common. This is because it is a totally different way of 
looking at the task of programming. 

In micro-PROLOC: Programming in Logic, Clark and McCabe depart from 
the tendency to describe most computer languages as procedural and Prolog as 
nonprocedural. Instead, they refer to Prolog as a descriptive language and other 
programming languages as imperative by nature. This distinction has some 
value. 

What's the Difference? 
In BASIC, LISP, Logo, Pascal, and virtually all other computer programming lan
guages, programs consist of sets of commands or instructions to the computer. 
"Do this. Now do that. If this is true, do this; otherwise, do that." We are speak
ing in the imperative, or command, voice of the language. In other words, we 
tell the computer how to do what we want done, step-by-step. 

Prolog programs, however, describe a set of information and knowledge 
and a set of relationships among those pieces of data. Running a Prolog program 
consists of asking the program to respond to certain queries. To respond, the 
program needs to understand which data to manipulate, how it is arranged, and 
what the question is. We need not tell the program to enter or stop running 
loops, to count values up or down to keep track of where we are in a system, or 
provide any other directions. Instead, we say, in effect, "Here is some knowl
edge. Given that that information is true, tell me this .... " We don't explain to 
the program at any point how to get the information, only that it is available and 
that we want it. 
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How Prolog Programs Compute 
As we ask questions of Prolog, it computes answers by looking for values in its 
knowledge base that match up with the variable(s) contained in the inquiry. 
Each match it finds must, of course, derive from the definitions of the knowledge 
furnished in the knowledge base. Prolog accomplishes this by searching through 
all sentences for each condition in an inquiry and matching the condition with 
the conclusion of the sentence. Each time it finds a match, it looks at the new 
sentence from the knowledge base to see if, in turn, it has preconditions which 
must be met to solve the original problem. 

When it finds preconditions in the new sentence, it goes through the same 
pattern-matching process with the newly formed query. If it doesn't find precon
ditions, it has solved the problem-Le., located the answer to the query-and 
stops processing and reports its findings to the user. 

The process of matching knowledge to conditions in order to form a new 
query is called "pattern-directed, rule"based programming." This approach to 
Al programming is finding increasing use in the field, particularly in expert sys
tem program development. 

If this sounds a bit abstract, we'll look at some concrete examples of this 
after we discuss Prolog syntax. For now, we understand that Prolog program
ming is different in a fundamental way from programming in any other lan
guage. 

Knowledge Base Description 
The primary task of Prolog programming is describing the knowledge base with 
which we want to work. From a logical viewpoint, a knowledge base is nothing 
more than a set of facts that defines relationships. For example, we might have a 
knowledge base containing information about world population. Two of its 
records might be: 

United-States population 230 
China population 842 

Of course it is easy for us to read such a knowledge base to determine what 
the computer "knows." That is one of the beauties of Prolog programming: it 
has many elements of intuitive clarity. 

Now, to query the knowledge base about the population of the United 
States, we can type a sentence such as this: 

which(x : United-States population x) 

(For the moment, don't worry about the syntax; we'll explore that subject 
shortly.) In technical English, this sentence is translated: "Which variable x can 
be found in this knowledge base such that it properly completes the logic sen
tence 'United-States population x'?" The answer comes back "230." The first x 
inside the parentheses results in the answer being displayed on the terminal. · 

Invertible Programs 
Our use of queries to access information in a knowledge base in Prolog leads to 
an interesting phenomenon called "invertible programs." To demonstrate, look 
at a built-in arithmetic function in Prolog called TIMES. TIMES is part of the 
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knowledge base that composes Prolog, so we need not specifically define it. It is 
set up by the system to describe a fact such as: 

TIMES(x y z) 

This statement is true only if x multiplied by y results in the answer z. TIMES(4 8 
32) is a true statement. To multiply, then, we would code a Prolog sentence 
such as: 

which(x : TIMES (4 8 x)) 

The answer comes back "32." In essence, we could think of this process as 
looking up the answer in a multiplication table, which consists of a set of facts 
about multiplying. 

The invertible nature of this approach is evident when we decide to divide 
32 by 8. In that event, our Prolog inquiry might be: 

which(x: TIMES(32 x 8)) 

Notice that there need not be any relationship between the variable names 
used in queries and those used in describing the fact in the knowledge base. We 
are free to use any legal variable in a query. Prolog simply remembers the posi
tions of each unknown in a statement of factual information. 

Upper-Lower Case Significance 
In virtually all Prolog implementations, upper and lower case are significant; "x" 
is not the same thing as "X." This is important to remember when writing Prolog 
programs. Most programming languages ignore case, so we might forget that in 
Prolog that is not the situation. 

Describing Data Relationships 

Essentially, programming in Prolog can be thought of as consisting of two steps: 
setting up a knowledge base and querying it. This section describes the process 
of setting up a Prolog knowledge base. Querying its contents will be covered in 
the next section. 

Prolog Sentences 
Three types of Prolog sentences can describe facts in a knowledge base. All 
other knowledge base descriptions build on these three basic sentences. 

Binary Relations The first sentence type describes a binary (i.e., two-way) rela
tionship between a pair of individuals. It has the same form as our examples 
describing the population of countries. 

first-individual name-of-relationship second-individual 

The name-of-relationship can be any word group (see the "Name Rules" sec
tion) that describes a connection between two individual pieces of information. 
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In the world population example, each of the first individuals is a country name 
and each of the second is population figure in millions. We could have changed 
"population" to "has-population-of," which would be a more understandable 
word group for inquiries, but the shorter form is easier to work with during que
ries and is often preferred by Prolog programmers. 

Property Sentences A sentence may want to give us some information describ
ing a specific individual rather than describing a relationship between two indi
viduals. In this case, a Prolog sentence takes the form: 

individual-name property-name 

For example, we might wish to record in our world information knowledge 
base that the United States is a Western nation while China is an Asian nation. 
We could do that with the following two Prolog sentences: 

United-States Western 
China Asian 

Nonbinary Sentences Sentences about relationships that aren't pairings of val
ues and value-holders are written as follows: 

relationship-name(individual-1 individual-2 •.• individual-n) 

There are two occasions for the use of this form of Prolog sentence. The 
first has to do with list processing (discussed later), where one relationship 
applies to a number of individuals separately, as in: 

hard-working(Dan Don Ken John) 

The other situation in which this form of Prolog sentence is used is where a 
single relationship ties together three or more individual pieces of information. 
In natural language processing, for example, "Steve threw Mary the ball" could 
be represented in Prolog as: 

threw(Steve Mary ball) 

Such a form makes pattern-matching in natural language processing much 
easier than requiring that the sentence be in its usually displayed form. 

Notice that the name of the relationship that exists among the individuals 
comes first and that individual pieces of information to which the relationship 
applies are enclosed together in parentheses, separated by spaces. 

Name Rules 
Prolog has only two rules about names of individuals or relationships: they must 
begin with a letter (not a number or symbol) and they must not include spaces. 
By convention, most Prolog programmers use hyphens to connect what would 
otherwise be separate words in describing relationships and naming individuals 
in a knowledge base. Thus the fact that Steven is the father of Steven, Jr., would 
be described: 

Steven father-of Steven-Jr 
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Listing Prolog Programs 
While the methods for listing a Prolog program are to some degree imple
mentation-dependent, virtually all Prologs trigger the action by using the impera
tive "list." There are two forms of the "list" command. "List all" lists all the 
relationships, facts, and rules of which the knowledge base is constructed. To 
see only the statements relative to a specific relationship, we use a command 
like "list population-of." 

Modifying Prolog Programs 
Making changes to Prolog knowledge bases is also somewhat implementation
dependent. Some Prologs on microcomputers come with full screen editors 
which make modification quite simple. But within a Prolog program and in virtu
ally all Prolog implementations, we can add new sentences to the knowledge 
base and can delete either individual items of information or whole collections 
of relationships. 

ADDing Sentences In most Prologs, we put new information into the knowledge 
base by typing: 

add SE 

where SE is a sentence. This command adds the SE to the end of that part of the 
list of the knowledge base where information about the relationship is stored. 
Prolog keeps all sentences about one relationship together, regardless of the 
order in which the information is entered. 

If we want to have a newly added fact become the third item in the group 
of sentences on the relationship involved, we can use the alternate form: 

add 3 SE 

If we use this form and there are fewer than two sentences already in the 
knowledge base, the sentence SE simply becomes the last sentence. In other 
words, it acts like "add" without a number. 

It is important to understand that we can add facts to the knowledge base 
dynamically, (i.e., during program execution). Thus the knowledge base can 
grow as we gain experience and as the program encounters more items to 
assimilate. 

DELETE and KILL To remove a specific sentence from the knowledge base, we 
simply use a "delete" command. Thus, if we have changed our minds and no 
longer need to keep track of China's population (or, more likely, we want to 
update it), we type: 

delete China population 842 

On the other hand, perhaps we only want to delete the last sentence we 
added for a particular relationship. If we know it is the fifth sentence, we can use 
the command: 

delete population 5 
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If we don't know the number of the relation, we can use a number so high 
that it won't be in the group of information about this relationship. In that event, 
Prolog deletes the last item in that portion of the knowledge base. 

If we wish to remove all references to a particular relationship, we use the 
"kill" command. The command has two forms. The first deletes references to a 
relationship. The second removes all knowledge from the knowledge base; this 
should only be used after the knowledge base has been saved and we wish to 
move on to something else. 

To remove all references to the "parent-of" relationship, we would write: 

kill parent-of 

To delete the entire genealogical knowledge base-after saving it on the 
disk-we type: 

kill all 

A Word of Caution Let me point out that the particular implementation of Pro
log you may be using may vary somewhat from these approaches to program 
modification. Consult the documentation that came with the program to be sure 
you are running things the way your Prolog interpreter expects. 

Queries 

There are essentially two kinds of queries to be made of a knowledge base. Con
firming a single fact (equivalent to answering a simple question) or retrieving 
unknown information that may encompass many facts. In either of these types 
of query, we may wish to make very simple inquiries or we may need to phrase 
a complex set of conditions. 

The next several sections discuss how Prolog inquiries should be designed 
and phrased. 

Confirming a Single Fact 
This is the simplest form of query. We may want to know, for example, if the 
population of the United States is 230 million. To find out in Prolog, we would 
write a sentence beginning with the key word "is": 

is (United-States population 230) 

Prolog would oblige us by answering "YES." If we simply want to know 
whether the population of China is even known to the knowledge base, we can 
use a variable (which we'll discuss in more detail shortly), as in: 

is (China population x) 

Prolog searches through its knowledge base to see if it has any relationship 
defined that looks like "China population" followed by any value. If it finds one, 
it prints the answer "YES," meaning it has access to the information, but it does 
not print the answer. To have it do so, we use a form of query designed to 
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retrieve information, not merely confirm a fact. Before we move on to more 
complex and useful queries that retrieve unknown data from a knowledge base, 
let's consider the use of variables in Prolog. 

Variables 
Variables play two essential roles in a Prolog program. They are used to retrieve 
information and to display the results of queries. The two are, of course, inti
mately interrelated; typically we retrieve information in order to display it! 

Every variable in Prolog begins with one of the six letters x, y, z, X, Y, or Z. 
This doesn't mean that a Prolog program can only have six variables in it (a limi
tation which would be totally unacceptable). A variable must begin with one of 
those letters, but it is followed by a unique integer. The following variables are 
all different from one another and legal in Prolog: 

xl 
Xl 
z43 
y22 

The variables x1, x01, and x000001 are all the same because the integer of 
each evaluates to the number 1. 

Retrieving Unknown Data 
Most often, we don't just want to confirm a fact or to confirm the existence of a 
fact in our knowledge base, but we want to ask the system something more 
complicated. The most common query will require the knowledge base to fill in 
the blanks in our query with information it has that fulfills the requirements 
posed. 

To make the following discussion a bit more interesting, let's assume our 
world knowledge base has been expanded and now includes the following Pro
log descriptive sentences. 

United-States population 230 
United-States Western 
United-States democracy 
United-States area 3 
United-States language English 
China population 824 
China Asian 
China dictatorship 
China area 4 
China language Chinese 
United-Kingdom population 53 
United-Kingdom Western 
United-Kingdom parliamentary-democracy 
United-Kingdom area .9 
United-Kingdom language English 

We have already seen how to retrieve a single fact from such a knowledge 
base. For example, to find out what language is spoken in China, we could write 
a Prolog query such as this: 

which(x : China language x) 
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Prolog would retrieve the result, "Chinese," and print it as shown here: 

Chinese 
no (more) answers 

The second line, used in most Prolog implementations, informs us that the 
search has been completed through the entire knowledge base and the an
swer(s) printed are the only ones that satisfy the criteria of the query. 

Some queries obviously have more than one answer. For example, we 
could write the following Prolog inquiry to extract from our knowledge base the 
names of all countries where the principal language is English: 

which(z: z language English) 

Prolog's answer would be: 

United-States 
United-Kingdom 
no (more) answers 

Notice that in "which" queries the variable appears twice. The first time it 
is followed by a colon. This is called the "answer pattern" and it tells Prolog 
what to print. The second occurrence is the "query condition" itself. Some
times, we will want to print more than one variable from a search (an idea we 
explored in some detail in Chapter 7) and so we will have more than one vari
able in the answer pattern position. 

We would take a similar approach to finding out which countries in our 
knowledge base are Western (the computer's responses are indented in the text 
below): 

which(x23 : x23 Western) 
United-States 
United-Kingdom 
no (more) answers 

Note that the variables used must match. Using different variable names 
won't achieve the desired result. Thus this Prolog inquiry: 

which(x23 : x15 Western) 

will not print the answer to the query because we've asked Prolog to retrieve 
information with one variable name and print it with another. 

Besides retrieving information that is an exact match with our condition 
(i.e., language English), we can use built-in Prolog primitives to do comparison 
selection from the knowledge base. For example, to see all of the countries with 
a population less than 250, we could write this Prolog query sentence: 

which(y : y population LESS 250) 
United-States 
United-Kingdom 

no (more) answers 
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If we make an inquiry that has no matching information in the knowledge 
base, Prolog's response is simply "no (more) answers," which is why "more" is 
in parentheses. In this case, the answer is really "no answers." 

Conjunctive Queries 
Even the ability to retrieve specific information by fill-in-the-blanks methods is 
limiting. We might really want to know, for example, what Western country has 
a population of less than 100. In that situation, we use a conjunctive query-one 
that combines two or more criteria into a single query using the word "and" or 
the symbol &. Prolog understands both to mean that the conditions joined by 
them must be true for the condition to be met. (The next section discusses NOT 
and OR conditions which can be used similarly.) 

To find out which Western country or countries have populations of less 
than 100, we would write this query: 

which(x: x population LESS 100 and x Western) 
United-Kingdom 
no (more) answers 

Another variation of the conjunctive query is the double-blank query repre
sented by the following sentence: 

which(x : x population y) 
United-States 
China 
United-Kingdom 
no (more) answers 

Essentially, the query means, "Tell me which countries you have popula
tion information about." If we had deleted the United Kingdom's population 
record with a delete command, it would not appear in the answer list above. 
Although we've asked Prolog to match up any population value with the vari
able "y," we have not asked to have that value printed. We could have done so 
by coding: 

which(x y : x population y) 
United-States 230 
China 824 
United-Kingdom 53 
no (more) answers 

You can see, from the way Prolog responded to this query, that the ques
tion posed is slightly different from the inquiry. Here, we asked Prolog, "For 
every country about which you have population information, print out the name 
of the country and the population data." 

More Complexity: NOT and OR 
We can negate a condition by the use of the Prolog primitive relation NOT. This 
is how we get around the fact that Prolog does not include a greater-than func
tion but only a less-than function called LESS. To extract from our knowledge 
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base the countries whose populations are greater than 200, we use this Prolog 
sentence: 

which(x : x population not LESS 200) 
United-States · 
China 
no (more) answers 

If we had a larger knowledge base we might want to list all of the countries 
that are either Asian or Western but not list the African and European nations. 
We could use this approach: 

which(x: either x Western or x Asian) 
United-States 
China 
United-Kingdom 
no (more) answers 

As it turns out, all the countries in our very small knowledge base fit the cri
teria. The form of the OR construction in Prolog is: 

either condition1 or condition2 

Any information in the knowledge base that fits either of the conditions will 
be selected and reported. 

You can see how nesting these types of combinations and controls-LESS, 
EQ, AND, and EITHER-OR-in one Prolog query can result in a very complex, 
sophisticated, and focused inquiry sentence. 

Arithmetic Processing in Prolog 

Prolog is not a strong language for mathematics. If you design an application 
that involves extensive use of calculations, you'd be better off with another lan
guage. Nonetheless, there are times when you need some arithmetic. In such 
situations, Prolog has basic primitives that can be used. 

Which primitives are available for math is implementation-dependent. 
Most Prologs will at least have the following primitives: SUM, INT, TIMES, and 
comparison operators, including LESS and EQ. The last two, LESS and EQ, are 
not solely arithmetic functions since they can be applied to strings as well, but 
they are often used to compare two numeric values, so we discuss them here for 
convenience. 

An interesting restriction on the use of these built-in Prolog primitive rela
tions is that you can include only one unknown in a query using these primitive 
commands. This is because there really isn't a knowledge base in which Prolog 
looks up answers and fills in blanks with a combination matching the pattern. 
Instead, Prolog essentially simulates the knowledge bases of addition and multi
plication tables. The following attempt, for example, to code an inquiry to list 
all pairs of numbers that when multiplied together result in the answer 18: 

which(x y: TIMES (x y 18)) 

results in the error message, "Too many variables." 
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SUM 
The Prolog primitive relationship SUM describes a three-argument relationship 
that is true only when the third argument in its list is equal to the sum of the first 
two arguments. In other words, 

SUM (x y z) 

is a true relationship only if x + y = z. 
We can use SUM to check a value to see if it is the sum of two numbers: 

is (SUM (25 55 80)) 

YES 

SUM can be used both for addition and subtraction, as shown in these two 
Prolog query sentences: 

which (x: SUM(31.3 14.4 x)) 
45.7 

which (x: SUM(x 14.4 45.7)) 
31.3 

In the subtraction example, we could have placed the variable "x" in 
either of the first two positions in the SUM argument list, since addition doesn't 
care which value is in which place. 

INT 
This built-in Prolog primitive relation has two functions: it can test a value to 
determine if it is an integer (i.e., a whole number with no decimal part) or it can 
convert a number from a floating-point number (i.e., a number with a decimal 
portion) to an integer. Let's look at some examples: 

is ca291Nn 
YES 

is (14.3 INn 
NO 

which (x: 11.98 INT x) 
11 

TIMES 
We have discussed TIMES previously. It is used to check a product and for mul
tiplication and division. The following examples demonstrate its use: 

is (TIMES 8 12 96)) 
YES 

which (x : TIMES(B 12 x)) 
96 

which (x : TIMES(B x 96)) 
12 

which (x : TIMES(x 8 96)) 
12 
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TIMES is used in conjunction with INT to determine if a specific division 
produces a whole-number result. These two examples demonstrate this use. 

is(TIMES (6 x 72) and x INn 
YES 

is(TIMES (6 Y 14) and Y INT) 
NO 

LESS and EQ 
The two main comparison primitives in Prolog are LESS and EQ. Both may be 
used only with two arguments and only to determine if two values are equal or 
unequal and if unequal, which is the greater. The use of these primitive relations 
is shown in these examples. 

is(83 LESS 43) 
NO 

is(14 ~ESS 14) 
NO 

is(l 1 LESS 111) 
YES 

is(9 EQ 9) 
YES 

Most of the time our checking will involve combinations of variables and 
calculations rather than the simple number-for-number comparisons shown 
here, but the syntax is the same for all such evaluations. 

We discussed earlier how combining these comparison operations with 
AND and OR constructions can yield complex and sophisticated Prolog query 
sentences. 

Creating Rules with Conditional Sentences 

We have said that a Prolog knowledge base consists of a collection of relation
ship descriptions (facts). We also alluded to the existence of rules. Now we'll 
look at what rules are and how they relate to the knowledge base. 

A rule is more precisely referred to in Prolog as an "implication." I use the 
word "rule" because it communicates more clearly what we're talking about. 

Simple Rules 
Essentially, a rule defines a relationship by means of a conditional sentence. 
Here's an example, stated in English, of the type of rule we are considering: "A 
man is tall and slender if he has a height of more than six feet and a weight of 
less than 200 pounds." In Prolog, this rule sentence might be coded in this way: 

(x tall-and-slender if x height not LESS 6 and x weight LESS 200) 

This defines a new relationship called "tall-and-slender" and we can use 
this rule relation in querying the data base. The following query is legal if we 
have made the rule sentence part of our knowledge base. 

which(x : x tall-and-slender) 
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In response to this query, Prolog scans the knowledge base and examines 
each data item to see if its height is 6 or greater and its weight was less than 200. 
For each "hit" in this process, it prints the person's name on the terminal 
display. 

Returning to our world population knowledge base, we could write a new 
rule: 

(x free if not x dictatorship) 

Now we can write this query sentence: 

which(x: x free) 
United-States 
United-Kingdom 

We may, of course, combine these rule statements with other query sen
tence constructions: 

which(x : x free and x population not LESS 200) 
United-States 
no (more) answers 

This would return a list of all countries that are not dictatorships and that have a 
population of 200 or greater; in this case, the only match with the query pattern 
is United-States. 

Recursive Rules 
One of the most powerful ideas in programming is that of "recursion"
programs or procedures that call on themselves for further execution. In Prolog, 
recursive rule definition adds a dimension of power and flexibility to knowledge 
base inquiries. 

To understand this concept, we'll look at an example involving a family 
tree. This example is used often in Prolog texts and by instructors because it is a 
rich model and one in which the ideas of relationship are understood. If our 
family knowledge base contains a relationship called "parents-of" that defines 
the mother and father of a member of the tree, we need recursion to effectively 
and efficiently define a new relation called "ancestor-of." 

To define what "ancestor-of" means in English, we might tell someone, 
"Your ancestors are your parents and all the ancestors of your parents." This is a 
recursive definition using the term "ancestors" to define the term "ancestors." 
(If you read this in a dictionary, you'd be justifiably angry. It's perfectly accept
able in a computer program, though-and even necessary sometimes.) Let's 
look at how Prolog could handle this assignment. 

Stating the Relationship In Prolog sentence terms, an ancestor-of relation is 
defined by a combination of two relationships: one's parents and one's parents' 
ancestors. We can write this relationship in Prolog as follows: 

x ancestor-of y if x parent-of y 
x ancestor-of y if z1 parent-of y and x ancestor-of z1 
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Now if we inquire of our family knowledge base: 

which(x ancestor-of Danielle) 

the program will examine the "ancestor-of" property and determine that it 
requires either that we be talking about one's parents or about people who qual
ify as ancestors of the parents. It looks up the definition of "parents-of," substi
tuting that in the query we have made, and so on. Depending on how the 
knowledge base was initially defined, this query might ultimately be integrated 
by Prolog into this statement: 

(which x : (x either (either mother-of y or father-of y) or ancestor-of 
(either mother-of y or father-of-y)) 

Since this is a recursive rule, we never eliminate the "ancestor-of" term as 
we would in solving, for example, a mathematical equation where that was an 
unknown term. 

List-Processing Fundamentals 

The list is a key data structure in Prolog. As with LISP and Logo, Prolog is often 
called upon to manipulate the contents of lists in Al applications. 

Using Lists in Sentences 
We use lists when we have a fact that refers to a group of individual data items. 
For example, if Carolyn, Sheila, and Mary enjoy music, we might define the rela
tionships as follows: 

music enjoyed-by Carolyn 
music enjoyed-by Sheila 
music enjoyed-by Mary 

(We could have written these the other way around, "Carolyn enjoys 
music," but the first approach will be more natural in the next example.) 

Now if we ask the knowledge base via a Prolog query sentence: 

which(x : music enjoyed-by x) 
Carolyn 
Sheila 
Mary 
no (more) answers 

we can expect the program to find all three people in its knowledge base who 
enjoy music. But we could also code the original relationship as follows: 

music enjoyed-by (Carolyn Sheila Mary) 

In this case, however, our query produces an entirely different result: 

which(x : music enjoyed-by x) 
(Carolyn Sheila Mary) 
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The use of a list here has the advantage of producing, in one simple 
answer, all the people in the knowledge base who have the relationship 
"enjoyed-by" with the individual called "music." But, the disadvantage of this 
approach is that if we ask the system: 

is(music enjoyed-by Carolyn) 

the answer will be NO because Carolyn does not match any conditional clause 
that attaches the enjoyed-by relationship with music. 

Extracting Information from Lists 

Obviously, we need some way of getting one individual extracted from a list. 
The technique for doing this depends on whether we know the length of the list 
in advance. 

Known-Length Lists For the next few examples, we will assume we have a fam
ily tree knowledge base built with lists of parents and children. 

(Dan Carolyn) parents-of (Sheila Mary Christy Heather) 
(Don Rae) parents-of (Matt Dawn Adam) 
(John Cindy) parents-of (Becky Shannon) 
(Corky Penny) parents-of () 
(Wally Julie) parents-of (Candace) 
(Donald Daisy) parents-of (Huey Dewey Louie) 

This list consists of a fixed-length list two elements long on the left, where 
the parents are stored; a description of the parents-of relationship; and a 
variable-length list on the right which lists all of the couple's children. 

Notice that we have two situations in the right-hand list that don't seem to 
call for a list. Corky and Penny are childless but are described as parents of an 
empty list (which is how () is translated). Wally and Julie have only one child, 
Candace, but she is placed in a list of her own. We do this in Prolog because all 
sentences about one relationship must have a uniform pattern. This enables us 
to use predictable pattern-matching techniques to retrieve information. 

Suppose we now want to retrieve the children of Don. Children of Don will 
be stored in a sentence with the pattern: 

(Don y) parents-of x 

where the length of x is unknown and, for this purpose, not important. We write 
the following Prolog query sentence: 

which(x : (Don y) parents-of x) 
(Matt Dawn Adam) 
no (more) answers 

Since we know the length of the list of parents is two, we can extract infor
mation about any one of them by the expedient of substituting a variable for the 
other. For example, if we want to know Don's wife's name, we inquire: 



which(y (Don y) parents-of x) 
Rae 
no (more) answers 
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Lists of Unknown Length Our first approach works for obtaining information 
about parents but does not permit us to find out, in a single Prolog query sen
tence, whether or not someone is a particular child's mother. Nor can we find 
out if a child is the offspring of one or two parental names. If all the families had 
two children, we could define two new rules like this: 

y mother-of xl if (x y) parents-of (x1 x2) 
y mother-of x2 if (x y) parents-of (x1 x2) 

But we need similar rules for one-child families as well as for larger families. This 
process is more complex than that for getting information from fixed- or known
length lists, but its implementation is important to being able to program in Pro
log efficiently. 

To begin with, Prolog adopts a new syntax to describe a list. It defines all 
lists as consisting of a head followed by a tail. Thus the list (Sheila Mary Christine 
Heather) has as its head its first element, "Sheila," and as its tail the list "Mary 
Christine Heather''. This head-tail schematic is represented in Prolog by the 
symbol: 

<xiv> 

In this syntax, the vertical bar symbol ("!") is read "followed by." So (xiy) 
is the list comprising the element x followed by the list y. 

Using this new list description syntax, Prolog defines a new primitive rela
tion, "belongs-to." It does so by means of a pair of recursive rules: 

X belongs-to (XIZ) 
X belongs-to (YIZ) if X belongs-to Z 

With, this definition we cause Prolog to look at each element in a list Z to 
see if X is equal to that element. If it is, Prolog declares that X does have the 
belongs-to property with respect to the list Z. If the first element (i.e., the head) 
is not the element X, then the second step of the recursive rule takes over and 
looks at the rest of the list, dropping the old head from consideration and making 
the first element in the tail the new head. This is the key to the idea of getting 
information from variable-length lists. An example may clarify the situation. 

If we want to know if Christine is a child of Dan and Carolyn, we would use 
the new belongs-to syntax as follows: 

is((Dan Carolyn) parents-of Z and Christy belongs-to Z) 
YES 

In other words, we first define the list Z as containing the list of children of 
Dan and Carolyn and then ask if the specific child belongs to the list. The 
answer, here, is YES. 
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Incidentally, the notion of a list as a head followed by a tail has many other 
uses in Prolog; it is an important concept in any meaningful Al application of the 
language. 

The Lengths to Which Lists Will Go 
There are two other commonly built-in Prolog routines dealing with lists that we 
should mention here. One determines the length of a list and the other finds a 
list or lists of a given length in a knowledge base. 

A List Has-Length The "has-length" primitive relation is used to find or check 
the length of a list. If we have a list (Matt Dawn Adam) whose length we wish to 
check, we use the following processing step: 

which{x : {Matt Dawn Adam) has-length x) 
3 
no {more) answers 

If, on the other hand, we want to confirm that a given list has a length of 
four, we might code: 

is{{Matt Dawn Adam) has-length 3) 
YES 

Find a List with Length-Of. To find a list of a given length in a knowledge 
base, we could use this query sentence: 

which{x: 4 length-of x) 
{Sheila Mary Christine Heather) 
no {more) answers 

Notice that we don't need to include the length of the list explicitly in the 
data base as we do geographic information in our one knowledge base or family 
data in the other. Prolog "knows" about the length-of attribute of a list; all we 
do is access it. 

Input/Output Primitives 

In this section we'll explore the primitives for displaying information on a com
puter screen, for asking for and receiving data from the keyboard, and for saving 
and retrieving Prolog programs. 

Printing on a Screen: P and PP 
Prolog statements that result in information being displayed, retrieved, and 
stored are among the very few imperatives in this descriptive language. 

To print a message on a display screen in Prolog, use either the "P" or 
"PP" primitive. The difference between them is that P prints the message and 
leaves the cursor at the end of the line of data, while PP causes a carriage return 
and line feed at the end of the line of output, placing the cursor at the first posi
tion on the next line. 



Here are two examples(@ represents the cursor). 

P (Dan Carolyn parents-of Mary) 
Dan Carolyn parents-of Mary@ 

PP (Don Rae parents-of Adam) 
Don Rae parents-of Adam 
@ 
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Note that what we want printed is enclosed in parentheses, but that the 
parentheses do not print. 

Querying the User with "is-told" 
There are times when the information to be queried in the knowledge base is 
something the user will furnish, rather than being known when the program is 
written. In this case, the "is-told" primitive can be used to ask questions of the 
user. Its general form is: 

(question) is-told 

For example, to enable the system to determine merchandise prices 
marked down by%, we could write a small Prolog routine such as this: 

which(Price at Y : (Current price xl) is-told and which Y(TIMES 0.3333 Xl Y)) 

This query sets up a dialog between Prolog and the user in which Prolog 
asks "Current price x1 ?" and prints "Price at. .. ," supplying the figure that is % 
of the price. Because of the rules of the language, users must precede a response 
either with the symbol "ans" (which means "Here's one answer; come back 
when you're ready for another input") or "just" (which means "This is my last 
(or only) answer. Quit when you've done this one.") 

Here is how such a dialog might look on the terminal: 

Current price xH ans 21 
Price at 7 
Current price xH ans 41 
Price at 13.666667 
Current price xH just 15.15 
Price at 5.05 
no (more) answers 

The is-told primitive is also used to get yes and no answers from the user in 
response to questions. The format is identical to that in our example. 

The R (for "Read") Primitive 
The "R" primitive permits us to read information from the keyboard. It differs 
from the is-told primitive in some important respects. First, R will accept any 
number of inputs as a response until the user hits the [RETURN] key. Second, 
the user need not precede the answer with ans or just. Finally, responses using 
the R primitive need not have a question associated with them (i.e., they may be 
unprompted). 
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The following rule defines a new function that asks for a list of numbers and 
then furnishes the sum of those numbers. It uses another description called 
"list-sum," which is not shown here but is assumed to exist elsewhere in the 
program. 

x sum-of-entered-list if P(Enter a list of numbers) and R(y) and x list-sum y 

If we now query this relation by coding: 

which (x: x sum-of-entered list) 

the following dialog will occur: 

which (x: x sum-of-entered list) 
Enter a list of numbers (8 12 411 3) 
434 
no (more) answers 

Concluding Remarks 

Prolog is one of the most flexible languages available. This chapter has provided 
the basic elements of Prolog, a language capable of extension by the program
mer who wishes to define new functions and operators. To learn more about 
this language, I strongly recommend Clark and McCabe's book, referenced in 
Appendix C. 
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If you are a BASIC programmer who would like to implement some of the pro
grams in this book in that language, you may wonder how difficult such a trans
lation will be. In this chapter, we'll explore some of the major tasks involved in 
the translation. If you want to undertake such a conversion, you should know 
something about both BASIC and Logo. The fact that you are even reading this 
chapter indicates you have at least an acquaintance with BASIC. Reading Chap
ter 10 will give you enough information about Logo to get by this chapter. With 
that background, you're ready to see what's involved in the translation of these 
programs. 

Fundamental Differences 

In addition to the specific, detailed differences discussed in the remainder of this 
chapter, there are a few fundamental, stylistic differences between BASIC and 
Logo programs. 

These comments are more applicable to versions of BASIC available on 
most other microcomputers prior to the introduction of Microsoft's powerful 
and structured MSBASIC Version 2.00 for the Mac in early 1985. From an Al 
programming standpoint, the Microsoft® program overcomes many of the short
comings of earlier implementations of the language. Apart from the cumber
some way even this version of BASIC deals with lists, meaningful Al programs 
could be written in MSBASIC Version 2.00 or later. 

Structured vs. Unstructured Programs 
BASIC programs have tended to be unstructured, primarily because of BASIC's 
use of line numbers rather than procedure names to transfer control. Such a 
design encourages programs that are collections of sequential commands with 
GOTO and GOSUB branching implemented to deviate from the otherwise 
straight-line execution of code. 

With good commenting (almost never done by programmers in any lan
guage!), an unstructured program is not necessarily any worse than a structured 
one. But it has the distinct disadvantage-in the world of commercial program
ming-of being difficult for a team of programmers to work on. Structured lan
guages, on the other hand, facilitate and even encourage piecemeal, teamwork 
approaches to system design and programming. 

Recursion Impossible 
There are frequent needs in Al applications to implement recursive proce
dures-procedures that repeatedly invoke themselves with different arguments. 
(The classic example of recursion is a program that calculates the factorial of any 
number.) 

Implementing such a recursive procedure typically requires two things 
lacking in most BASICs: local variables and separate procedures. Again, 
MSBASIC 2.00 corrects these deficiencies, so this discussion does not apply if 
you are using it. But other microcomputer versions of BASIC typically ignore 
these issues. 

Intuitive Program Understanding 
A final essential difference between BASIC and Logo is that Logo uses names 
where BASIC uses line numbers. When we see a Logo statement that calls into 
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effect a procedure, named for example, SETUP _MAZE, we know intuitively 
what that procedure will do (provided the programmer has not used misleading 
names for procedures, of course). But in a BASIC program, the command 
GOSUB 20000 doesn't tell us anything at all about what the subroutine at line 
20000 does. We have to look at that line of code and, if the programmer has 
commented the code liberally, we may get an understanding of the program's 
flow and operation. 

In a Logo program, then, we can look at the main driver routine and those 
procedures it directly invokes, and we can figure out a great deal about how the 
program works. That's why we used box diagrams throughout the first part of 
this book to depict the operation of our programs. 

Specific Implementation Concerns 

So much for generalities. Now let's look at some of the very specific implemen
tation problems that arise when we try to write Al-type programs in BASIC. 

List Manipulation 
Perhaps the most important problem in converting a program written in Logo or 
LISP (or some other list-rich language) is the absence of the list as a data struc
ture in BASIC. No BASIC we know about for a microcomputer-including the 
otherwise quite powerful MSBASIC 2.00-implements lists. As you have seen, if 
you have worked through any of the programs in Part I, lists are critically impor
tant data structures in Al programs. That is why Logo, LISP, and other languages 
with strong list-handling capabilities tend to be selected for the creation of Al 
systems. 

Even though cumbersome, it is possible to implement listlike structures in 
BASIC. We'll describe how a list can be simulated in BASIC and demonstrate 
how some of the key list-manipulation routines can be handled. 

A List Is an Array • •• Sort Of From the standpoint of a BASIC program, a list is a 
1-dimensional array. To define a list that will contain five elements, we would 
set up an array in BASIC using a command such as: 

DIM LIST1$[5] 

(Throughout this chapter, we'll use generic BASIC commands wherever we can. 
Where an MSBASIC 2.00 instruction is needed, we'll point out its use.) 

Two important limits about the way BASIC handles lists are apparent. First, 
the program must be told in advance what kind of data the list will contain; mix
ing data types, which can be done in Logo and LISP lists with no problem, is 
taboo in BASIC. Our DIM statement defines this list to contain only strings. 
(Since BASIC offers a facility for converting from strings to numeric values and 
back, that drawback may, with difficulty, be overcome.) Second, we must pre
determine the maximum number of elements the list will have; the example 
specifies 5. Thus an array is a static data structure. Lists are dynamic structures in 
Logo and LISP, to which we can add data as necessary. 

Creating Lists Creating a pseudo-list in BASIC requires two steps: dimensioning 
the 1-dimension array (as just described) and initializing data in the array. This 
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latter is generally handled with a loop something like the one in this very short 
program segment: 

10 DIM LIST1$[5] 
20 FOR N = 1 TO 5 
30 READ VALUE$ 
40 LIST1$[N] =VALUE$ 
50 VALUE$="" 
60 NEXT N 
70 DATA THIS,IS,A,DIFFICULT,TEST 
80 END 

This program sets up the array called LIST1 $ to have five elements and then 
puts THIS, IS, A, DIFFICULT, TEST into the array. (Some versions of BASIC call 
the first element in an array element zero instead of element one, resulting in 
another level of confusion for the programmer.) 

Simulating FIRST and BUTFIRST In Logo and LISP, when dealing with lists, we 
often want to do something to the first element of the list or, alternatively, to all 
of the elements except the first. Because of the frequent need for such manipula
tion, those languages have specific string manipulators for these extractions. In 
Logo, they are FIRST and BUTFIRST (abbreviated BF), respectively. Invoking 
those functions in BASIC is more complex than in Logo or LISP. 

FIRST can be implemented quite easily. We define a function or use a sub
routine or a subprogram (in MSBASIC 2.00 or later) to return the first element of 
an array. 

FIRST$= LIST1$[1] 

If a program will frequently need this simulation, you pass the name of the list to 
the procedure or function rather than code it explicitly into the definition of the 
operation. 

BUTFIRST is more complex to implement. It requires a loop similar to that 
used to initialize the array in the first place. Assuming we want to assign the 
BUTFIRST of the list called LIST1 $ to a new variable called BFLIST1 $, the follow
ing code could be used (assuming the list is set up): 

100 FOR N = 1 TO 4 
110 BFLIST1$[N] = LIST1$[N + 1) 
120 NEXT N 

How to know that the original list had five elements and, therefore, the 
new BF of that list will contain four, is problematic. In Logo, if we had to carry 
out such a function, we simply use the command COUNT to find out how many 
elements were in the list. No such command exists in BASIC. We will probably 
want to store explicitly in some variable, say LENLIST1, the number of elements 
in LIST1 $. Then the earlier code could be generalized as follows: 

100 FOR N = 1 TO LENLIST1 -1 
110 BFLIST1$[N] = LIST1$[N + 1) 
120 NEXT N 
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Adding Elements to a List Another frequent occurrence in Logo programs is the 
need to add an element to a list, usually with some concern about adding it to 
the front or the end of the list. This is a tricky and cumbersome process in 
BASIC. Assuming we haven't dimensioned the array too small initially to handle 
the additional element, adding one to the end of the list is straightforward. We 
use a variable to keep track of the last position in the list and then assign the 
new item to the end of the list. 

Assume, for the sake of example, that we want to add the word "indeed" 
to the end of LIST1 $ and have dimensioned that array to be six elements long 
rather than five. Further assume that the last position used in the array-the 
fifth-stored in the variable called LASTUSED. Then the following routine would 
add IN DEED to the end of the list called LIST1 $: 

100 LIST1$[LASTUSED + 1] ="INDEED" 
110 LASTUSED = LASTUSED + 1 

This second line will only be necessary if we expect to add more than one 
element to the end of a list. 

Adding an element at the front of a list is really tricky in BASIC. Rather than 
reproduce the code, we'll explain the steps required and leave it to you to figure 
out how to implement that in BASIC code. 

1. Begin with two arrays, one dimensioned at least one element larger than 
the other. We'll call them LIST1 $and LIST2$, with the latter being the larger of 
the two. 

2. To add an element to the front of LIST1 $, put that element into the first 
position of LIST2$. 

3. Next, copy the elements of LIST1 $into LIST2$, with their position in 
LIST2$ incremented by one over their position in LIST1 $ (LIST1 $[1] becomes 
LIST2$[2], etc.). 

4. Now, if you want the new list to be called LIST1 $,you'll have to write the 
entire new list back into the variable LIST1 $. If your BASIC permits you to 
release arrays when they are no longer needed, remove LIST1 $ from the arrays 
the program knows about and rename LIST2$ as LIST1 $. (If that's not possible, 
using lists is going to get even messier!) 

REVERSE a List Though we haven't used REVERSE operations on lists in this 
book, Al programs often need such a facility, particularly in natural language 
processing. Logo includes a command to REVERSE a list; BASIC does not. To 
simulate the REVERSE function in BASIC, you could try such a routine as this: 

100 FOR N = 1 TO LENLIST1 
110 LIST2$[N] = LIST1$[LENLIST1+1- NJ 
120 NEXT N 

This routine takes advantage of the fact that when we reverse a list, the 
numbers of the positions of the corresponding elements add up to the length of 
the list plus 1. In other words, if we are working with a five-element list, the 
value in position one of the new list corresponds to the value in position five of 
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the old list and 5 + 1 = 6. The second and fourth positions correspond (2 + 
4 = 6) and so on. 

Property Lists 

Another major data structure in Logo not available in BASIC is the property list. 
These lists are composed of a series of elements associated in pairs. The first 
item in each pair names the attribute involved and the second the value of that 
attribute for this particular list. Thus if we have a collection of lists about birds 
and one is called ROBIN, we might have an attribute called COLOR_OF _ 
BREAST and, for ROBIN, the value associated with that attribute would be RED. 

Implementing property lists in Logo is very clean; to know the color of the 
robin, we use a GPROP (Get PROPerty) command. In BASIC, things are far 
stickier. 

Property Lists as Two-Dimensional Arrays 
A property list, from BASIC's point of view, would probably be implemented as 
an array of two dimensions. Each row of the table corresponds to a pair in the 
property list, with the first column representing the attribute and the second the 
value. (See Figure 13-1.) 

Row Column 0 Column 1 

0 attribute-name 0 value 0 
1 attribute-name 1 value 1 
2 attribute-name 2 value 2 Figure 13-1. Property list structure in 
3 attribute-name 3 value 3 BASIC 
4 attribute-name 4 value 4 

n attribute-name n value n 

Naming the array to correspond with the object being described (e.g., a list 
called ROBIN) facilitates retrieval of information. But, this also makes it difficult 
to keep a list of property lists all under one name, like BIRDS, which is a trivial 
task for Logo. This entails a trade-off for the BASIC programmer using a two
dimensional array to replace the more flexible property list. If we are keeping 
track of birds, we have a choice of one large array named BIRDS, with the first 
entry in each row of the array being the name of the particular bird (see Figure 
13-2) or a collection of smaller individual arrays, one for each type of bird (as in 
Figure 13-3). Neither approach permits the dynamic sizing of the array, but that 
is simply a BASIC limitation over which we have no control. 

An additional complication occurs because an array in BASIC is indexed by 
numeric position while a property list in Logo is accessed by the attribute name. 
We have two choices in BASIC: we can keep track as we program that, for 
example, the second entry of each property array corresponds to the value for 
the color, or we can use the process of looping through the array to find the car-
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ARRAY BIRDS (4 X 4) 

(name) (size) (color) (domesticated) 
Row Column O Column 1 Column2 Column3 

0 ROBIN MEDIUM RED NO 
1 SPARROW SMALL BROWN NO 
2 PARAKEET VERY-SMALL YELLOW YES 
3 HAWK LARGE BROWN NO 

Figure 13-2. Single Large Array Approach to Property Lists 

ARRAY ROBIN (2 x 3) 

SIZE MEDIUM 
COLOR RED 
DOMESTICATED NO 

ARRAY SPARROW (2 X 3) 

SIZE SMALL 
COLOR BROWN 
DOMESTICATED NO 

ARRAY PARAKEET (2 X 3) 

SIZE 
COLOR 
DOMESTICATED 

VERY-SMALL 
YELLOW 
YES 

ARRAY HAWK (2 X 3) 

SIZE LARGE 
COLOR BROWN 
DOMESTICATION NO 

Figure 13-3. Collection of Smaller Arrays as Property Lists 

responding pair. If we choose the first method, we could design the property list 
as a one-dimensional array (i.e., something that more closely resembles a list) as 
in Figure 13-4. We would then keep track of the position of each kind of attri
bute separately from the array, designing the program so that if we want to 
retrieve the color of a bird, we simply automatically index the second position of 
the array. Let's look at an example. 

Figure 13-4. A one-dimensional array 
as a property list 

Setting Up the Property Array in BASIC 

ARRAY ROBIN (1 X 3) 

SMALL RED NO 

Let's assume we want to keep track of a little information about birds. Specifi
cally, we want to record their size (in small-medium-large terms), the color of 
their breasts, and whether they are domesticated. An array for the robin (called 
ROBIN$), will contain the following pairs of data: SIZE-MEDIUM, BREAST.COL
OR-RED, DOMESTIC-NO. The same entry for a parakeet will look like this: 
SIZE-VERY-SMALL, BREAST.COLOR-YELLOW, DOMESTIC-YES. These arrays 
will look like those in Figure 13-3. 

The following routine would set up these two property arrays in generic 
BASIC. 
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10 DIM ROBIN$[2,3],PARAKEET$[2,3] 
20 ROBIN$[1, 1) ="SIZE" 
30 PARAKEET$[1, 1) ="SIZE" 
40 ROBIN$[1,2] ="BREAST.COLOR" 
50 PARAKEET$[1,2] ="BREAST.COLOR" 
60 ROBIN$[1,3] ="DOMESTIC" 
70 PARAKEET$[1,3] ="DOMESTIC" 
80 ROBIN$[2, 1] ="MEDIUM" 
90 PARAKEET$[2, 1] ="SMALL" 
100 ROBIN$[2,2] ="RED" 
110 PARAKEET$[2,2] ="YELLOW" 
120 ROBIN$[2,3] ="NO" 
130 PARAKEET$[2,3] ="YES"$ 

There are many other ways to approach this routine, some of which may 
be more efficient, but our example is useful for clarity. 

Querying the Property Array 
Now let's assume that the user wants to retrieve the breast color of the robin. 
One way of approaching that problem is as follows: 

100 FOR N = 1 TO LENLIST1 
110 IF ROBIN$[1,N] ="COLOR" THEN 130 
120 NEXT N 
130 ANS$= ROBIN$[2,N] 
140 PRINT "The robin's breast is", ANS$;"." 

This approach searches through the first column of a list, where the names 
of the attributes are stored, and finds the corresponding list entry for the value of 
that attribute. The alternative-keeping two arrays, one that contains the names 
of the attributes and the other containing the values for the array-may seem 
more efficient in terms of memory usage, since the words "SIZE" and 
"BREAST.COLOR," for example, would only be stored once. But we would 
then have to search through two arrays, one to find the location of the index 
that points to the value we want to recover. This would further slow down our 
already slow BASIC program. 

Other Considerations 

There are many other considerations involved in converting from LIST and Logo 
programs to their BASIC equivalents. Most of these should be apparent if you 
know both languages and study a listing in one of them. 
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This appendix presents a listing of the Prologo interpreter of Chapters 7 and 8 
written in ExperLISP for the Macintosh®. The program is popularly referred to in 
the computer press as "PiL," an acronym of sorts meaning Prolog in LISP. 

Why This Listing Is Included 

I have included this LISP listing in a book on Logo because I thought that it 
would be helpful for the reader who wants to see what a real LISP program 
looks like. It will also be helpful to you to use this listing after you have looked at 
Chapter 11, which is an introduction to this strange-looking but widely used 
language. 

Pil serves the secondary purpose of presenting information about Prolog in 
a different form for the person who is really interested in the nonprocedural lan
guages of which Prolog is the best current example. 

Where Pil Originated 

PiL grew out of a paper entitled "The World's Shortest Prolog Interpreter?" writ
ten by Professor M. Nilsson of Uppsala University. This paper appeared, among 
other places, in J. A. Campbell's compilation of highly technical material on Pro
log entitled Implementations of Prolog; a full bibliographic citation appearing in 
Appendix C. 

Although it was upon this program that the ExperLogo® interpreter in this 
book was based, the similarities between the Logo and LISP versions are not as 
great as one might hope or expect. For one thing, Pil implements the widely 
debated Prolog CUT function that permits some facility in recursion but results 
in less "Prologlike" code in the minds of some purists. (A discussion of this func
tion is beyond the scope of this book; see Appendix C's recommended refer
ences for more study.) 

Executing Pil 
The interpreter in PiL is invoked by coding: 

(PROVE (goal1)(goal2) ••• (goal N)) 

Goals are stated the same way as in Prologo except that the question mark is 
used in place of the underscore to indicate the variables whose values are being 
sought. Thus we might write this line of LISP code: 

(PROVE (GRANDFATHER-OF ?X ?Y)) 

to get a list of all the grandfathers in the knowledge base. 
A knowledge base in LISP is set up with the SETQ primitive rather than the 

MAKE command of Logo. Other than that, the establishment of a knowledge 
base is quite similar between the two implementations. 

Nonstandard LISP Syntax 
There is only one nonstandard LISP syntax in the PiL program and it was origi
nally introduced by Nilsson. The use of the LOOP construct is not generally per-
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mitted in LISP and, in fact, most LISP interpreters don't allow for it at all. But it is 
a useful construction, particularly in situations like those in Experlisp where an 
iteration is required. Most LISPs provide for some form of iteration. 

If you are working with XLISP (a public-domain LISP available from a num
ber of sources for the Macintosh®) or a non-Macintosh® LISP, you may find it 
necessary to modify Pil to accommodate your interpreter's definition of an 
interactive process. You can use a PROG or a DO construction if you're using a 
version of MACLISP. 

Essentially, the LOOP construction can be understood as follows: Set the 
local variables var/ and var2 to exprl and expr2, respectively. Then for all ele
ments in (list) set (var3) to the head of the element and (var4) to the tail and eval
uate (expr3). Continue to evaluate (expr3) until the list is exhausted, and then 
return "nil" unless RETURN gets called with an argument during the evaluation, 
in which case that value should be returned immediately and the iteration 
terminated. 

(defun prolog (database) 

) 

(print "Welcome to Prolog") 
(prolog-1 database) 
(print "Back to Lisp") 
t 

(defun prolog-1 (database) ;;a top-level loop for Prolog 
;;reads a form, proves it, and then iterates 
(prove (list (rename-variables (read) '(0))) 

'((bottom-of-environment))database 1) 
(print "no (more) answers") 
(if (y-or-n-p "Another assertion? (y or n)") 

(prolog-1 database))) 

(defun prove (list-of-goals environment database level) 
;;proves the conjunction of the list-of-goals 
;;in the current environment 
(cond 

((null list-of-goals) 
;;succeeded since there are no goals 
(print-bindings environment environment) 
;;ask user if another possibility is wanted 
(not (y-or-n-p "More? (y or n)"))) 

(t (try-each database database 
(rest list-of-goals) 
(first list-of-goals) 
environment level)))) 

(defun try-each (database-left database goals-left goal environment level) 
(cond 

((null database-left) 
()) ;;fail if nothing left in database 
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(t (let ((assertion 
(rename-variables (first database-left) 

(list level)))) 
(let ((new-environment (unify goal (first assertion) environment))) 

(cond 
((null new-environment) ;;failed to unify 

(try-each (rest database-left) database 
goals-left goal environment level)) 

((prove (append (rest assertion) goals-left) 
new-environment database (add1 level))) 

(t (try-each (rest database-left) database 
goals-left goal environment level)))))))) 

(defun unify (x y environment) 
(let ((x (value x environment)) 

(y (value y environment))) 
(cond 

((variable-p x) (cons (list x y) environment)) 
((variable-p y) (cons (list y x) environment)) 
((or (atom x) (atom y)) (and (equal x y) environment)) 
(t (let ((new-environment (unify (first x) (first y) environment))) 

(and new-environment (unify (rest x) (rest y) new-environment))))))) 
(defun value (x environment) 

(cond 
((variable-p x) 

(let ((binding (assoc x environment))) 
(cond 

((null binding) x) 
(t (value (second binding) environment))))) 

(t x))) 

(defun variable-p (x) ;;a variable is a list beginning with "1" 
(and (listp x) (eq (first x) '?))) 

(defun rename-variables (term level) 
(cond 

((variable-p term) 
(append term level)) 

((atom term) term) 
(t (cons (rename-variables (first term) level) 

(rename-variables (rest term) level))))) 

(defun print-bindings (environment-left environment) 
(cond 

((rest environment-left) 
(let ((variable (first (first environment-left)))) 
(cond 

((zerop (third variable)) ;;variable level 
(princ (second variable)) ;;variable name 



(princ " = ") 
(print (value variable environment))))) 

(print-bindings (rest environment-left) environment)))) 

(defun y-or-n-p (message) 
(print message) 
(let ((response (read))) 
(cond ((eq response 'y) t) 

((eq response 'n) nil) 
(t (y-or-n-p message))))) 

(setq rest cdr) 

(defun expand-assertion (assertion environment) 
(cond 

((atom assertion) assertion) 
((variable-p assertion) 

(let ((val (value assertion environment))) 
(if (eq val assertion) 

val 
(expand-assertion val environment)))) 

(t (cons (expand-assertion (car assertion) environment) 
(expand-assertion (cdr assertion environment))))) 
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Two important versions of Logo available for the Macintosh®: ExperLogo® by 
ExperTelligence (the one we chose to use for our programs) and Microsoft's 
LCSI Logo®. This appendix discusses significant differences between these two 
published versions of Logo and points out what to watch for in future implemen
tations. For people who don't have ExperLogo®, this appendix should facilitate 
translating the programs in this book to another form of Logo. 

Throughout the text, where differences exist between ExperLogo® and LCSI 
Logo®, we have noted them with comments contained in parentheses; those dif
ferences are not duplicated here. 

Speed of Execution 

One of the biggest differences between ExperLogo® and any other Logo we've 
seen for any system is its speed of execution. Because ExperLogo® is compiled 
rather than interpreted, it can run programs and procedures much faster than 
one would expect from this traditionally slower language. 

We can't do anything about that. But if you find yourself with a traditional 
interpreted Logo, and some of the programs-particularly such longer ones as 
Blocks World and Prologo-run unacceptably slowly, you'll understand the 
reason. 

Array-Handling 

The ability to manipulate arrays is available on both of the currently published 
versions of Logo. However, such a capability has not been part of Logo tradi
tionally, and it is conceivable that Logos developed for the Mac in the future 
may not include them. 

This would not be a serious drawback, however, since the primary advan
tage of arrays over the more flexible and popular list structure is one of proc
essing speed. Because an array has known dimensions, and is accessed by 
numerical position rather than by list-manipulating instructions, extracting data 
from an array is quicker than drawing information from a list. Other than that, 
substituting a list for an array has no effect on the program. 

There is another array distinction between ExperLogo® and Microsoft 
Logo®. To create an array in ExperLogo®, the MAKE_ARRA Y function is com
bined with the well-known MAKE function, as shown here: 

MAKE POSITION MAKE_ARRAY (4 5] 

(This line is from Micro Blocks World in Chapter 5.) 
In Microsoft Logo®, the equivalent of MAKE_ARRAY is ARRAY, so the 

above example would be coded as follows: 

MAKE POSITION ARRAY (4 5] 

Extracting Multiple Elements from a List 

ExperLogo® implements a very powerful ELEMS command that extracts several 
consecutive items from a list. It takes three arguments. The first provides the 
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starting element, the second defines the number of elements to extract, and the 
third is the name of the string from which the elements are to be extracted. The 
following examples (with computer output indented for ease of reading) clarify 
this command. 

MAKE TESTLIST [A B C D E F G H I J K] 
[A B C D E F G H I J K] 

HEMS 2 5 :TESTLIST 
[BCD E F] 

HEMS 61 :TESTLIST 
[F] 

HEMS 1 9 :TESTLIST 
[A B C D E F G H I] 

There is no direct equivalent of the ELEMS function in LCSI Logo (or in 
most other Logos, for that matter). The same result can be achieved, however, 
by defining a procedure called ELEMS that takes the same information as ar
guments. There are a number of ways of implementing such a procedure. Here 
is one: 

TO HEMS :START :LENGTH :OBJECT 
IF :START= l[HEMS---2 :LENGTH :OBJECT] 
[HEMS :START - 1 :LENGTH BF :OBJECT] 

END 

TO HEMS---2 :LENGTH :OBJECT 
IF :LENGTH= l[ITEM 1 :OBJECT] 
[SE ITEM 1 :OBJECT ELEMS---2 :LENGTH -1 BF :OBJECT] 

END 

(This solution is adapted from the ExperLogo® user manual, page 164.) 

Local Variable Declaration 

LCSI Logo permits a list of names to be given to the LOCAL command, which 
can compress the code ·where such variables are defined. For example, in 
Prologo's TRY_EACH procedure, there are two LOCAL variables: ASSERTION 
and NEW_ENVIRONMENT. In ExperLogo®, declaring these requires two state
ments; in LCSI Logo®, one statement suffices. 

TEST, IFTRUE and IFFALSE 

Microsoft's Logo® has no equivalent of the ExperLogo® TEST function. (For an 
example of its use, see the final procedure, FIND_PROBABLE, in the program 
in Chapter 6.) The alternative implementation is more cumbersome, but only 
slightly so. Substitute an IF construct as shown here. 

In ExperLogo®, the operation is performed as follows: 

TEST (ITEM 1 :LIST) = (ITEM 2 :usn 
IFTRUE [MAKE NEWCOUNT :NEWCOUNT + 1] 
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IFFALSE [IF AND (:NEWCOUNT ~ :OLDCOUNn 
(MEMBERP :CHARACTER :POSSIBLE_DIRECTIONS) 
[MAKE MOST_PROBABLE :CHARACTER 
MAKE OLDCOUNT :NEWCOUNT 
MAKE NEWCOUNT l][MAKE NEWCOUNT 1)) 

In Microsoft Logo®, the same construct would be handled as a straightfor
ward IF sequence: 

IF ITEM 1 :LIST = ITEM 2 :LIST 
[MAKE NEWCOUNT :NEWCOUNT + 1] 
[IF AND (OR :NEWCOUNT > :OLDCOUNT :NEWCOUNT = :OLDCOUNT) 
[MEMBERP :CHARACTER :POSSIBLE_DIRECTIONS] 

[MAKE MOST_PROBABLE :CHARACTER 
MAKE OLDCOUNT :NEWCOUNT 
MAKE NEWCOUNT l][MAKE NEWCOUNT 1]] 

(Note that the third line in this example is necessary because Microsoft 
Logo® lacks a "greater than or equal to" function. So we must do both tests 
joined with an OR.) 

APPLYing Procedures 

The ExperLogo® APPLY function is a handy addition to Logo but is not usually 
implemented in that language. It is similar to a LISP construct, applying a proce
dure or function to a list of arguments. It is a powerful shorthand for carrying out 
certain Al programming needs. 

In more standard Logos, the same result can be achieved by defining your 
own APPLY procedure: 

TO APPLY :FUNCTION :ARGUMENTS 
IF EMPTYP :ARGUMENTS [STOP] 
RUN LIST :FUNCTION FIRST :ARGUMENTS 
MAKE ARGUMENTS BF :ARGUMENTS 
APPLY :FUNCTION :ARGUMENTS 

END 

Variable Binding 

ExperLogo® uses some LISPlike structures that don't have equivalents in LCSI 
Logo. In the Prologo TRY_EACH procedure, one of these structures, BOUNDP, 
appears. In fact, this expression is undocumented in ExperLogo® and is a carry
over from the language's alter ego, Experlisp. It is used in that procedure simply 
to determine whether tracing of the Prologo execution should be carried out or 
not. If you are not using ExperLogo®, we recommend eliminating the IF con
struct that uses that relationship. If you wish to be able to trace the execution, 
you can do so with a menu option or user request. 

Another LISP construct, ATOM, appears in this book infrequently. In LISP, 
an atom is a value that is not part of a list. (This is something of an oversimplifi-
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cation; see Chapter 12 for more information.) We can achieve essentially the 
same result in more standard Logo by using the function WORDP. 

The APPEND function also appears only in Prologo. It is roughly equivalent 
to the more standard Logo command SE. As it turns out, there are a very small 
number of situations where SE will not work quite as well as Prologo needs, so 
we chose to use the APPEND function. But you are not likely to encounter 
many, if any, such situations, so feel free to substitute SE where the Prologo list
ing includes the APPEND function. 

Finally, LISP offers two types of equality checking. For the most part, we 
use the standard EQUALP processing in this book. But in some instances, we 
have chosen the slightly different LISP construct of EQ. For all practical purposes 
in this book, it is identical to the Logo EQUALP. Its advantage is that it is far 
faster in its execution, so we have chosen to use it in places where extensive 
looping is going on and speed could be a significant factor. 

Logical Comparators 

ExperLogo® takes full advantage of the Macintosh® keyboard's inclusion of ;:::::, 
s, and -4::. functions, using these symbols, respectively, for greater-than-or
equal-to, less-than-or-equal-to, and not-equal-to. Microsoft's Logo does not 
implement these functions directly, requiring instead that we use OR and AND 
constructs. 

Thus the greater-than-or-equal-to function is implemented in Microsoft 
Logo® by using an OR to connect tests for greater-than and equality. Not-equal
to is simulated by using an AND between less-than and greater-than symbols. 

QuickDraw Graphic Commands 

The names by which QuickDraw graphic commands are called varies between 
the two published Logos for the Mac. Table B-1 provides the Microsoft Logo® 
equivalents of those QuickDraw and mouse commands that appear in programs 
in this book. 

Table 8-1. Microsoft Logo® Graphic and Mouse Commands 

ExperLogo® Command 

PEN PAT 
SHOWPEN 
PAINTRECT 
MOVETO 
GETMOUSE 

Microsoft Logo® Equivalent 

SetPPattern 
Pen Down 
FillSh 
SetX,SetY 
MousePos 

One QuickDraw command in ExperLogo® is implemented indirectly in 
Microsoft Logo®. The DRAWSTRING function in ExperLogo® writes text into the 
Graphics Window. In Microsoft Logo®, it is necessary to make the Graphics 
Window the currently active window and then to use PRINT to display the 
information: 
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SETWRITE "GRAPHICS 
PRINT [Here is a string.] 

The set of graphic commands used in ExperLogo® to manipulate poly
gons-used in this book only in the Blocks World program of Chapter 5-are not 
available in Microsoft Logo® and there is no equivalent way of dealing with their 
function. Since these operations are used only in conjunction with the pyramids, 
you can skirt the problem by treating the pyramids as individual shapes rather 
than as polygon regions. This will make the program run even more slowly, but 
it will permit it to run. 

Closing Remarks 

There may be other differences among Logos implemented on the Mac. We 
can't anticipate how Logo will be developed by others marketing the language 
for the Macintosh® system. In most cases, though, noting these differences 
between ExperLogo® and more standard Logo, carefully reviewing the manual 
for your version, and doing some experimenting, should help you deal with any 
incompatibilities you encounter. 
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Books on Artificial Intelligence 

For the General Reader 
Boden, Margaret. Artificial Intelligence and Natural Man. New York: Basic Books, 1977. 

473 pages, with extensive bibliography and comprehensive index. One of the 
more readable books on the subject which, though somewhat dated, remains an 
intelligent reader's excellent choice as a place to start learning about Al. Surveys 
much of what was valuable at the time the book was written. Avoids programming 
examples but contains many examples of how programs run. 

Hofstadter, Douglas. Godel, Escher, Bach: An Eternal Colden Braid. New York: Basic 
Books, 1979. 800 pages. A well-deserved Pulitzer Prize was awarded to Dr. 
Hofstadter for this work. It is difficult reading in some places and isn't the kind of 
book you sit down to relax with for an evening. But for a highly readable, 
intelligent, perceptive, and thorough introduction to the panorama and issues of 
the rapidly growing field of cognitive science, of which Al is a part, this book is 
difficult to beat. Borders on "must" reading for everyone; crosses that border for 
serious students of the subject. 

Hofstadter, Douglas and Daniel C. Dennett, eds. The Mind's I: Fantasies and Reflections 
on Self & Soul. New York: Basic Books, 1981. 464 pages, with annotated 
bibliography and extensive index. Something of a sequel to Godel, Escher, Bach. 
The coeditors bill themselves as "composers and arrangers" and the metaphor is 
apt. A collection of essays and fiction on cognitive science, interconnected by 
witty and incisive comments by Hofstadter and Dennett. More readable than its 
predecessor, this book makes no less significant a contribution to the field. 

Hunt, Morton. The Universe Within: A New Science Explores the Human Mind. New 
York: Simon and Schuster, 1982. 364 pages, plus solutions to problems, end 
notes, bibliography (cited references only), and index. This is a highly readable 
and immensely enjoyable overview of the emerging field of cognitive science. The 
author understands what most of his readers will and will not know before they 
read this book. As a result, he amplifies where amplification is needed and doesn't 
talk down to the reader who has already done some reading or thinking in the 
field. Of particular interest here is his entertaining Chapter 9, "Mind and 
Supermind," in which he explores what the human mind and the computer mind 
have in common and, more important to Hunt, what they don't have in common. 
Highly recommended reading for the curious. 

Schank, Roger C. The Cognitive Computer: On Language, Learning and Artificial 
Intelligence. Reading, MA: Addison-Wesley, 1984. 264 pages, plus index. Easily 
one of the most accessible books on the subject, this widely read work is written 
in lay language. It represents an attempt on the part of one of the premier 
researchers in the field to popularize the subject and his views on it, which are 
considerable and somewhat controversial. There is much of value here for the 
intelligent general reader and no knowledge of programming is needed to 
understand it. On the other hand, there is a certain lack of depth and an 
overabundance of opinion. Dr. Schank has a perception of the field of Al as it 
relates to cognition and he doesn't hesitate to use this book as a vehicle for 
spreading that view. Nonetheless, a very useful work and one well worth reading, 
but not as a primary source of information. 
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Simon, Geoff. Are Computers Alive? Boston: Birkhauser, 1983. 195 pages, with 
bibliography and index. An unusual book that addresses the issue of whether 
computers-or more appropriately, their future offspring, robots and androids
should be properly viewed as a new life form entitled to rights, protection, and so 
on. No basic data here, but an entertaining diversion nonetheless, and one that 
may provoke more thinking about what computers are not than any other book 
on our list. 

Weizenbaum, Joseph. Computer Power and Human Reason: From Judgment to 
Calculation. San Francisco: Freeman, 1976. 300 pages. Dr. Weizenbaum is one of 
the best-known critics of Al and its proponents. This book is his classic work on 
the subject of the limits of computing. He argues against the possibility that 
computers can do certain things and adds his view that they should not be 
allowed to intrude into other areas. If you're interested in the critics' side of the 
underlying issues in Al, this is the most important book of its kind. 

More Technical Materials 
Barr, Avron and Edward A. Feigenbaum, eds. The Handbook of Artificial Intelligence. 

Los Altos, CA: William Kaufmann, Inc., 1981. 3 vols. Total of 1302 pages of text, 
plus extensive indexes and a comprehensive bibliography. The current bible of Al 
research, this set of works collects much of the important writing on the subject 
from the early 1970s to its publication date. As with any collection, readability 
varies dramatically. Not for the technically unsophisticated, but on the whole well 
assembled and certainly a seminal work. Particularly strong in the areas of 
theoretical work and experimentation, less so in terms of real-world uses and 
applications. 

Krutch, John. Experiments in Artificial Intelligence for Small Computers. Indianapolis: 
Howard W. Sams, 1981. 106 pages, plus index. This book collects several 
programs, written in BASIC, that demonstrate Al concepts and that can be run on 
microcomputers. If you have an interest in languages and how they can be 
applied to Al ideas, this book makes the tacit argument that BASIC can be used 
for Al. 

Nilsson, Nils J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga Publishing, 1980. 
476 pages. A classic work aimed at the technical reader interested in the 
theoretical and linguistic framework of Al. Quite readable, but somewhat out of 
date. Does a good job of explaining some of the more difficult ideas behind Al 
programs, especially the concept of unification. 

Winston, Patrick Henry. Artificial Intelligence, 2nd Edition. Reading, MA: Addison
Wesley, 1984. 527 pages. The most current and useful book on the field for the 
technical reader. Winston is one of the most widely read authors of texts and 
technical materials in the field of Al. The best comprehensive overview of the 
technical, programming, and conceptual issues involved in bringing intelligence to 
machines. Not for the faint-at-heart. 

Books on Logo 

(Author's Note: There is a dearth of Logo programming texts and books that go beyond 
a simplistic use of Turtle graphics. One book, Dr. Thornburg's, is known to be in the 
works and rumors persist that others will be forthcoming. I hope so.) 
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Martin, Donald, Marijane Paulsen, and Stephen Prata. Apple Logo Programming Primer. 
Indianapolis: Howard W. Sams & Co., 1984. 448 pages, plus index. This is the best 
introduction to the language available. It focuses on structured programming 
approaches, which I have adopted with some minor modifications in the 
programs in this book. Going beyond graphics, it does a fine job of explaining 
property lists and data management concepts. Many examples. If you don't have 
access to an Apple II series, the Logo is still standard enough to be used with 
minor modifications on other popular micros. A good book if you really want to 
learn Logo. A companion book for the IBM PC is also available from the same 
publisher. 

Thornburg, David. Beyond Turtle Graphics. Dr. Thornburg, one of the most prolific 
authors in the field of Logo and easily one of its most visible and vocal defenders, 
indicates that this book will transcend the usual introductory work on Logo and 
explore advanced concepts. Portions of the book were used by Thornburg in a 
class he taught at Stanford University in the spring of 1985 on Al programming 
ideas in Logo on the Macintosh®. Watch for this one; it could be one of the best 
Logo buys when it emerges, given Thornburg's sterling reputation in the field. In 
press, 1985. 

Waite, Mitchell, Don Martin, and Jennifer Martin. 88 Apple Logo Programs. 
Indianapolis: Howard W. Sams, 1984. 422 pages, no index. This collection of 
programs is noteworthy for the number of interesting and instructive programs it 
crams into a limited space. A companion book for the IBM PC is also available. 

Watt, Daniel. Learning With Logo. New York: McGraw-Hill, 1983. 358 pages, plus 
index. A generic Logo teaching book, particularly useful for a young person 
interested in learning Logo on his or her own or for a parent interested in teaching 
a child Logo. It offers lots of hints along the way for how to teach ideas in Logo. 
Focuses on Terrapin, Apple, and Tl Logo, but among them there is enough 
commonality that adapting the book to the Mac and other computers ought not 
be too difficult. Profusely illustrated. 

Books on LISP 

Cherniak, Eugene, Christopher K. Riesback, and Drew V. McDermott. Artificial 
Intelligence Programming. Hillsdale, NJ: Lawrence Erlbaum Associates, 1980. 310 
pages, plus bibliography and indexes. An advanced LISP programming text that is 
definitely not for the uninitiated. After reading a more basic LISP text, however, 
this book can be quite useful to the reader who wonders what to do with this 
language. It offers abundant examples and suggests many ways for the student 
reader to explore the language. 

Schank, Roger C. and Christopher K. Riesback. Inside Computer Understanding: Five 
Programs Plus Miniatures. Hillsdale, NJ: Lawrence Erlbaum Associates, 1981. 372 
pages, plus bibliography and indexes. For the advanced LISPer, this book provides 
two useful things: insights into how some of the better-known Al programs in the 
research literature work and scaled-down versions for implementation on 
microcomputers. All of the programs are generally in the field of natural language 
processing. Not for the beginner, this is more of an intermediate book. 
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Touretzky, David S. LISP: A Gentle Introduction to Symbolic Computation. New York: 
Harper & Row, 1984. 298 pages, plus answers to exercises and index. Easily the 
least intimidating introductory text on the language. Using a plethora of hands-on 
examples, this book leads the reader step-by-step down the path to learning LISP. 
It is as "gentle" as its title promises. If it has one failing, it is that it stops far short 
of providing the reader with anything resembling a comprehensive understanding 
of the language. Even the "Advanced Topics" in each chapter fall short of this. 
But that shouldn't stop you. It is one of the two best books to use to learn LISP. 
The other is the next one in our bibliography. 

Winston, Patrick Henry and Berthold K. P. Horn. LISP. Reading, MA: Addison-Wesley, 
1981. 314 pages, plus bibliography, index, and four helpful appendices. A classic 
one-year textbook in LISP programming for the serious student. Dry in its writing 
approach (contrasted with Touretzky's work), this book takes a no-nonsense 
approach to teaching the language. Its problems are challenging and solutions are 
provided. If you're interested in learning LISP for practical programming use rather 
than for casual experimentation, this book is preferable to Touretzky's. A good 
idea would be to get both, go through Touretzky's and then tackle Winston's. 

Books on Prolog 

(Books on Prolog are not yet widely available in the United States. These two offer a 
beginning and an advanced approach. Others are being published frequently. Check 
your bookstore for latest releases.) 

Campbell, J.A., ed. Implementations of Pro/og. Chichester, UK: Ellis Harwood Ltd., 
1984. 388 pages, plus minimal index. This book is highly technical, consisting of a 
collection of papers and articles by various Prolog researchers on the inner 
workings of the language. Readers seriously interested in Prolog should find in this 
book a great many in-depth pointers to future research on specific Prolog issues. 

Clark, K. L. and F. G. McCabe. micro-PROLOG: Programming in Logic. Englewood 
Cliffs, NJ: Prentice-Hall, 1984. 364 pages, with answers to exercises and index. 
This is the best introductory book on this language. While it becomes hard to 
follow at times and condenses some of its explanations, it is nonetheless possible 
to become a competent Prolog programmer with this book and some practice. 

Books on Expert Systems 

For the General Reader 
Hayes, J.E., and D. Michie, eds. Intelligent Systems: The Unprecedented Opportunity. 

Chichester, UK: Ellis Harwood, Ltd., 1984. 199 pages, plus index. Though there is 
some technically challenging material here, the book also contains some very 
thought-provoking and insightful writing on the role of expert systems and their 
future. Of particular interest is Dr. Edward Feigenbaum's excellent piece, 
"Knowledge Engineering: The Applied Side." 

Hayes-Roth, Frederick, Donald A. Waterman, and D. Lenat. Building Expert Systems. 
Reading, MA: Addison-Wesley, 1983. Although technical, this book is still 
readable. It provides a comprehensive overview of the field: technical 
considerations, impact of the technology, and problem areas. May tell you more 
than you need or want to know on the subject. 
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Technical Materials 
Brownston, Lee, Robert Farrell, Elaine Kant, and Nancy Martin. Programming Expert 

Systems in OPSS. Reading, MA: Addison-Wesley, 1985. 411 pages, plus 
bibliography, answers to exercises, index, and excellent glossary. This is the first 
comprehensive book to be published on the popular OPSS programming 
language, a language designed specifically for expert systems development work. 
It contains a great many hands-on examples, and it is an excellent introduction to 
the idea of production rule systems as well. If you have access to Experlisp and 
ExperOPSS, this book could make you at least comfortable with expert systems 
programming. 

Naylor, Chris. Build Your Own Expert System. Cheshire, UK: Sigma Technical Press, 
1983. 246 pages, including annotated bibliography and minimal index. This book 
uses Apple and Spectrum BASIC listings and examples to explain the ideas 
involved in expert system design. The book is entertaining, brightly written, and 
enjoyable. Beyond that, the programs work and although they are clearly not 
intended to be full-blown expert systems, they provide some clear insights into 
how such systems are put together. 

Books on Natural Language Processing 

Dyer, Michael G. In-Depth Understanding: A Computer Model of Integrated Processing 
for Narrative Comprehension. For the reader willing to work a little, Dyer has 
managed to make accessible a very complex concept and approach to natural 
language processing. Though the technical vocabulary can be troublesome, if you 
persist, you can emerge from this book with a deeper appreciation for the 
incredible array of problems involved in this field of Al. 

Winograd, Terry. Understanding Natural Language. New York: Academic Press, 1972. 
608 pages. This is the landmark work in this field. If you are seriously interested in 
research in this area, this is the starting point. While much of what Dr. Winograd 
wrote in this book has since been clarified or corrected, much of what has gone 
since was built upon his basic ideas. 
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BREAK.LIST procedure, 67-68 
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Language, 181-87 
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research in, 8-9 
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PAINT command, 197 
Papert, Seymour, 186 
PARSE procedures, 99, 101 
Parsing, 84-88 
Pascal language, 186 
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Program (s): 

as data structure, 185 
Intelligent Maze, 122-27 
Micro Blocks World, 103-9 
Micro-Logician, 50-53 
Missionaries & Cannibals, 33-36 
PiL, 132, 266-69 
Poetry Maker, 76-80 
Prologo, 150-55 

.Program flow control, 199-202 
Program structure, 216-18, 256 
Prologlanguage, 132-36, 186, 234-52 

arithmetic processing in, 236, 243-45 
data relationships in, 236-39 
expert systems and, 10, 132-33, 160 
input/output in, 250-52 
invertible programs in, 235-36 
list-processing in, 247-50 
PiL program, 266-69 
queries in, 166, 239-43 
rules with conditional sentences in, 

245-47 

PROLOGO procedure, 143, 144 
Prologo program, 10, 132, 136-55 

inquiries, 137 
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performing calculations, 141-43 
procedures and relationships, 144-49 
sequence in, 165-66 
_what command, 137-38 

Property list, 19 
in BASIC, 260-62 
in Logo, 209-11 
in Micro-Logician, 40, 49 
in Poetry Maker, 66, 67, 71, 72 

PROVE procedure, 145, 148 

Q 

Queries, 166, 239-43 
Questions, 43, 169-70, 176-77 
QuickDraw graphics commands 99 197 

275-76 , , , 

QUOTIENT function, 202-3, 228 
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R(ead) primitive, 251 
RANDOM function, 70, 203, 228-29 
Random text generation, 56-57 
RAW_VARIABLE_P procedure, 147 
READ function, 225 
READCHAR, 59, 64, 68, 198-99 
READLIST command, 198-99 
REARRANGE procedure, 101 
REBUILD.PLISTS procedure, 66 
Record, 19-20 
Recursion, 246, 256 
Recursive rules, 246, 249 
REMAINDER function, 202-3, 228 
REMOVE command, 207-8 
REMPROP command, 210-11 
RENAME_VARIABLES, 145, 146, 147 
REPEAT function, 199, 201 
Representation, 19, 23-25 
REVERSE function, 259-60 
Riesbeck, Christopher K., 116 
RIGHT (RT) command, 194 
ROUND function, 204, 229 
RPLACA command, 208 
Rules, 170-72, 175-76, 245-47, 249 
RUN.AGAIN procedure, 71, 73 
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Schank, Roger C., 8, 58, 90 
Schieser, Ken, 33, 103, 122 
Search, 26-27, 49, 146 
SEARCH procedure, 121 
Search techniques, 6-8, 26-28 
SELECT.PATIERN, 70, 73, 75 
Sentence(s), 41-43, 71, 236-37, 245-47 
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SENTENCE (SE) command, 205-6 
Sentence grammar, 89 
Sequence, 114-15, 165-66 
SETBACKGROUND (SETBG), 195 
SETHEADING command, 195 
SETQ, 217, 220, 221-22, 266 
SET_TABLE procedure, 99 
SET.UP procedure, 44-45 
SETUP _PROBLEM, 28, 29 
S-expressions, 215-16, 217 
Shafer, Dan, 50, 76 
SHOWBUNNY command, 193-94 
SHOWCURSOR command, 197 
SHOW_IF procedure, 200 
SHOW.KNOWLEDGE procedure, 46 
SHOW_STATUS procedure, 29, 30 
SHOWTURTLE command, 193-94 
SHRDLU program, 9, 84, 91-92 
SIN command, 203 
Speech,8,63-64 

See also Natural language processing 
SQRT function, 229 
Square roots, 203, 229 
Statements, 40-43 
States, 16-20, 22, 25, 29 
STAY move procedure, 21 
String(s), 185, 215 
STRINGP test, 206 
Subgoal creation, 145 
Subject, 42, 99 
SUB1 function, 228 
SUBST command, 207, 220 
Subtraction, 202, 228-29, 244 
SUCCESS procedure, 30 
SUM function, 202, 228, 244 
Superlanguage, 182 
Symbolic representation, 19, 23-25 

T 

TAN command, 203 
Template-matching, 116 

Test procedures, 31, 101, 209, 223-24, 
273-74 

Text generation, 56-80 
Three-coins problem, 17-19, 20-21 
TIMES function, 235-36, 244-45 
TO reserved word, 190 
Tracing function, 147 
Trigonometric functions, 203, 229 
TRUNC function, 204, 229 
TRY procedure, 29, 30 
TRY_EACH, 145, 146-48, 273 
Turtle Graphics, 193 

See also Logo language 
TYPE command, 49, 198 
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UNIFY procedure, 147-48 
UPDATE.FILE procedure, 65, 69 
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VALID_MOVE procedure, 30, 101 
VALUE procedure, 146 
Variables, 191-92, 221-22, 240, 273 

binding, 146, 217, 274-75 
Verb, 42, 50, 64 
VERIFY_SUBJECT procedure, 99 
Vocabulary, 69-70, 74, 75, 86 
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Waite Group, 33, 50, 76, 103, 122 
_what command, 138 
Winograd, Terry, 84, 91 
Word file, 65-66 
WORDP function, 206-7, 209, 275 
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D Macintosh™ Programming Techniques 
David C. Willen 
Intermediate and advanced programmers will learn to 
get the most out of the powerful, versatile Microsoft® 
BASIC 2.0 with this excellent tutorial. The author's 
easy-to-understand programs and helpful illustrations 
demonstrate Macintosh techniques such as windowing, 
custom dialog boxes, accessing utilities in the 
Macintosh ROM tool kit, pull-down menus, powerful 
graphics, and using the mouse. 
ISBN: 0-672-22411-9, $22.95 

D C Programming Techniques for 
Macintosh™ 
Terry M. Schilke and Zigurd Medneiks 
This intermediate-level programming book provides a 
thorough grounding in the C programming language as 
it is uniquely designed for the Macintosh. The authors 
discuss the history of the development of C, its 
relationship to other languages, its syntax, and specific 
usages. This comprehensive treatment examines the 
difference between tool kit calls and system calls, 
illustrates the design of a Macintosh application, and 
discusses debugging techniques and tools. It allows 
you to access over 500 ROM tool kit routines and 
clearly demonstrates how you may use those routines 
to develop your own programming application in C. 
ISBN: 0-672-22461-5, $18.95 

D Macintosh™ User's Guide 
Gordon McComb 
Is the Macintosh right for you? The introductory 
section of this complete user's guide compares the 
Mac to five other best-selling micros. What follows is a 
well-written, well-illustrated, and attractively presented 
explanation of fundamental and advanced applications 
of the Macintosh. 
ISBN: 0-672-22328-7, $16.95 

D MacPascal Programming Techniques: An 
Intermediate Guide 
Jack Gassidy and Janice Steinberg 
This book provides a sorely needed overview and 
interactive teaching guide for the student of Pascal, a 
dominant language for software development, as well 
as for the intermediate and advanced Pascal 
programmers who own a Macintosh™. The student 
will gain a sturdy foundation from the book's 
introduction to the basic concepts of Pascal and from 
the complete guide to the use of the newest Think 
Technologies Pascal, Version 2.0. The experienced 
programmer will be interested in the more advanced 
topics, such as accessing the ROM tool kit and 
creating applications and programs in Pascal. 
ISBN: 0-672-22440-2, $18.95 

D Programmer's Guide to Asynchronous 
Communications Joe campbell 
For intermediate and advanced programmers this book 
provides the history and technical details of 
asynchronous serial communications. Upon this 
foundation Campbell builds the specifics for the 
technical programmer, with an emphasis on popular 
UARTS and pseudo assembly language code. 
ISBN: 0-672-~450-X, $21.95 

D Modem Connections Bible 
carolyn Curtis and Daniel L. Majhor, The Waite Group 
Describes modems, how they work, and how to hook 
10 well-known modems to 9 name-brand 
microcomputers. A handy Jump Table shows where to 
find the connection diagram you need and applies the 
illustrations to 11 more computers and 7 additional 
modems. Also features an overview of communications 
software, a glossary of communications terms, an 
explanation of the RS-232C interface, and a section on 
troubleshooting. 
ISBN: 0-672-22446-1, $16.95 

D Printer Connections Bible 
Kim G. House and Jeff Marble, The Waite Group 
At last, a book that includes extensive diagrams 
specifying exact wiring, DIP-switch settings and 
external printer details; a Jump Table of assorted 
printer/computer combinations; instructions on how to 
make your own cables; and reviews of various printers 
and how they function. 
ISBN: 0-672-22406-2, $16.95 

D Computer-Aided Logic Design 
Robert M. McDermott 
An excellent reference for electronics engineers who 
use computers to develop and verify the operation of 
electronic designs. The author uses practical, everyday 
examples such as burglar alarms and traffic light 
controllers to explain both the theory and the technique 
of electronic design. CAD topics include common 
types of logic gates, logic minimization, sequential 
logic, counters, self-timed systems, and tri-state logic 
applications. Packed with practical information, this is 
a valuable source book for the growing CAD field. 
ISBN: 0-672-22436-4, $25.95 



D 68000, 68010, 68020 Primer 
Stan Kelly-Bootle and BobFowler, The Waite Group 
Here's a user-friendly guide to one of the most popular 
families of microprocessor chips on the market. The 
authors show you how to use the powerful 68000 series 
to its maximum. Find out how to work with assemblers 
and cross-assemblers, how to use various instructions 
and registers, and how chips are employed in multiuser 
systems. Follow specific programming examples and 
use the handy tear-out instruction card for quick 
reference. For novice and experienced programmers. 
ISBN: 0-672-22405-4, $21.95 

D Apple® lie Programmer's Reference 
Guide David L. Heiserman 
This comprehensive user's guide will help you use all 
the programming capabilities of the Apple lie. 
Following a brief introduction, the author describes the 
four principal programming languages and operating 
systems for the Apple lie: Applesoft BASIC, the 
monitor, Pro-DOS®, and 65C02 machine-language 
coding. Key topics such as text screen, keyboard 
input, and low- and high-resolution graphics are covered 
in separate chapters. A complete memory map is 
included, with procedures for managing all 128K of 
memory. Valuable for beginners as well as seasoned 
programmers. 
ISBN: 0-672-22422-4, $24.95 

D AppleWriter™ Cookbook Don Lancaster 
Don Lancaster makes it easy to personalize AppleWriter 
for the Apple® lie and lie using the latest ProDOS® 2.0 
routines. Providing workable answers to everyday 
questions about programming, he covers an extensive 
range of topics, including patches, microjustification, a 
complete and thorough disassembly script, source-code 
capturing, WPL routines for columns, and helpful 
information on continuing support, or user helpline, and 
upgrades. Everything you want to know about the 
AppleWriter word processing package in one book. 
ISBN: 0-672-22460-7, $19.95 

D Managing with AppleWorks™ 
Ruth K. Witkin 
This book makes AppleWorks understandable even for 
the reader who has no experience with computers or 
integrated software. Author Ruth K. Witkin provides 
step-by-step instructions and illustrated examples 
showing how to use this popular software for effective, 
efficient business management. Written in a clear, 
concise manner and organized into four basic sections 
that can be used in any order. 
ISBN: 0-672-22441-0, $17.95 

D Computer Dictionary (4th Edition) 
Charles J. Sipp/ 
This updated and expanded version of one of SAMS' 
most popular references is two books in one - a 
"browsing" dictionary of basic computer terms and a 
handbook of computer-related topics, including fiber 
optics, sensors and vision systems, and computer-aided 
design, engineering, and manufacturing. Clarifies 
micro, mini, and mainframe terminology. Contains over 
12,000 terms and definitions with scores of illustrations 
and photographs. The 1,000 new entries in this edition 
focus on the RAF classifications: robotics, artificial 
intelligence, and factory automation. 
ISBN: 0-672-22205-1, $24.95 

D Data Communications, Networks, and 
Systems Thomas C. Bartee, Editor-in-Chief 
A comprehensive overview of state-of-the-art 
communications systems, how they operate, and what 
new options are open to system users, written by 
experts in each given technology. Learn the 
advantages and disadvantages of local area networks; 
how modems, multiplexers, and concentrators operate; 
the characteristics of fiber optics and coaxial cables; 
and the forces shaping the structure and regulation of 
common carrier operations. 
ISBN: 0-672-22235-3, $39.95 
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More Books from Sams and The Waite Group 
C Primer Plus 
A clear, complete introduction to the C language that 
guides you in the fundamentals, covers use of 
Microcomputer C with. assembly language, and 
contains many sample programs usable with any 
standard C compiler. Watie, Prata, and Martin. 
No. 22090, $21.95 

UNIXTM Prim'er Plus 
Presents the elements of UNIX clearly, simply, and 
accurately, for ready understanding by anyone in any 
field who needs to learn, use, or work with UNIX in 
some way. Fully illustrated. Waite, Martin, and Prata. 
No. 22028, $19.95 

UNIX System V Primer 
Shows you how to work with multi-user, multi-tasking 
UNIX System V, including its built-in utilities and 
software tools. Reference cards included. 
Waite, Martin, and Prata. 
No. 22404, $19.95 

Advanced UNIX - A Programmer's Guide 
Use UNIX in problem-solving. Learn to develop 
shells, use UNIX tools, functions, and UNIX graphics, 
and use C with UNIX. Exercises and questions test 
your progress. Stephen Prata. 
No. 22403, $17.95 

Tricks of the UNIX Masters 
Learn the shortcuts, tips, tricks, and secrets used by 
the masters of the UNIX operating system. Includes 
working examples of important UNIX and C utilities 
and tools not found in technical manuals or other 
UNIX books. The Waite Group. 
No. 22449, $22.95 

Inside XENIXTM 
Provides an in-depth examination of the internal 
structure of XENIX, including its shells and utilities. 
Learn to access and use XENIX's special terminal 
handling features, its kernal shell, and file access 
control facilities. The Waite Group. 
No. 22445, $22.95 

CP!M® Primer (2nd Edition) 
Completely updated to give you the know-how to 
begin working with new or old CP/M versions 
immediately. Includes CP/M terminology, operation, 
capabilities, internal structure, and more. 
Waite and Murtha. 
No. 22170, $16.95 

CPIM Bible: The Authoritative Reference 
Guide to CP/M 
Gives you instant, one-stop access to all CP/M 
keywords, commands, utilities, conventions, and more. 
A must for any computerist using any version of 
CP/M. Waite and Angermeyer. 
No. 22015, $19.95 

Soul of CP/M: How to Use the Hidden 
Power of Your CPIM System 
Teaches you how to use and modify CP/M's internal 
features, use CP/M system calls, and more. You'll 
need to read CP/M PRIMER or be otherwise familiar 
with CP/M's outer-layer utilities. Waite and Lafore. 
No. 22030, $19.95 

Discovering MS™-DOS 
From complete description of the basic command set 
through analysis of architectural implications, you will 
gain a complete understanding of this operating 
environment. Kate O'Day. 
No. 22407, $15.95 
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MS-DOS Bible 
A step beyond Discovering MS-DOS. Take an in
depth look at MS-DOS, particularly at commands such;. 
as DEBUG, LINK, EDLIN. Provides quick and ilasy' 
access to MS-DOS features and clear explanations of 
DOS utilities. Steve Simrin. 
No. 22408, $18.95 

68000, 68010, 68020 Primer 
The newest 68000 family of chips is covered in this 
timely and up-to-date primer. Gives you a complete 
understanding of Motorola's powerful microprocessor 
chip and features actual programming examples such 
as file locking and data handling techniques. 
Kelly-Bootle and 'Fowler. 
No. 22405, $18.95 

IBM® PCIPCj,:r'M Logo Programming Primer 
Emphasizes structured, top-down programming 
techniques with box charts that help you maximize 
effectiveness in planning, changing, and debugging 
Logo programs. Covers recursion, outputs, and 
utilities. Several sample programming projects 
included. Martin, Prata, and Paulsen. 
No. 22379, $24.95 

88 IBM PC and PCjr Logo Programs 
Learn structured programming and Logo syntax fast. 
Includes simple, ready to run database and graphics 
packages for home and business as well as entertain
ment, special turtle graphics programs, and a powerful 
"Matchmaker" program. Waite, Martin, and Martin. 
No. 22344, $17.95 

The Official Book for the Commodore 128™ 
Personal Computer 
Discover Commodore's most exciting computer and its 
three different operating modes - 64, 128, and CP/M. 
Create exciting graphics and animation, program in 
three-voice sound, use spreadsheets, word processing, 
database, and much more. Waite, Lafore, and Volpe. 
No. 22456, $12.95 

Pascal Primer 
Guides you swiftly through Pascal program structure, 
procedures, variables, decision making statements, and 
numeric functions. Contains many useful examples 
and eight appendices. Waite and Fox. 
No. 21793, $17.95 

Printer Connections Bible 
Covers major computer/printer combinations, supplies 
detailed diagrams of required cables, dip-switching 
settings, etc. Includes diagrams illustrating numerous 
printer/computer combinations. House and Marble. 
No. 22406, $16.95 

Modem Connections Bible 
This book describes modems and how they work, how 
to hook up major brands of microcomputers, and what 
happens with the RS-232C interface. A must for users 
and technicians. Richmond and Majhor. 
No. 22446, $16.95 
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Artlflclal Intelligence 
Programming on 
the Macintosh 
For the programming student and hobbyist eager to learn the fundamentals of Artificial 
Intelligence (Al) programming theory and technique, this book provides a step-by-step 
introduction to this next frontier in computer usage. No prior knowledge of Al and only a 
minimum of programming experience is assumed . 

The author explains basic Al concepts and procedures by means of fascinating hands-on 
programs that run on your Macintosh. Discover search te chniques as you move cannibals 
and missionaries from bank to bank in this classic problem ; build property lists from which 
the program can make inferences in the Micro-Logician ; construct a vocabulary and 
formats for text generation in the form of Haiku poetry in the Poetry Maker; move blocks 
to and fro, up and down, using natural language processing in the Micro Blocks World; 
learn about pattern-matching as you try to beat the system in the Intelligent Maze Game; 
and design your own expert systems based on models given here. 

Among the features of this reader-friendly book : 
• Full program listings are in the easy-to-learn Logo language 
• Program codes and their relationship lo Al concepts are fully e xplained 
• Ideas for expansion are given for each of the programs 
• Features of Logo, LISP, and Prolog languages are summarized 
• Conversion factors are explained for BASIC programmers 
• Richly annotated bibliography aids further study 

Dan Shafer is an independent product consultant and freelance 
writer in California' s Silicon Valley. He is also the coordinator 
of symposia for attorneys on the impact of Artificial Intelligence 
and expert systems on their profession . Dozens of his feature 
articles and product reviews have appeared in computer 
magazines. As publisher of the monthly newsletter, Visions : 
The Shafer Report, he analyzes future technological trends and 
impacts. Dan and his wife and four daughters live in 
Sunnyvale, California. 

The Waite Group is a San Francisco-based ·producer of books on personal computing . 
Acknowledged as a leader in the field, The Waite Group has produced over 50 titles, 
including such best sellers as Un ix Primer Plus, C Primer Plus , CP / M Primer, and 
Assembly Language Primer for the IBM PC & XT. Mitchell Waite, president of The 
Waite Group, has been involved in the computer industry since 1976, when he bought 
one of the first Apple I computers from Steven Jobs. Besides writing and producing 
books, Mr. Waite is also a columnist and lecturer on computer-related topics . 
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